COMMITTENTE

PROGETTAZIONE:

DIREZIONE TECNICA

U.O. GALLERIE

PROGETTO DEFINITIVO

TRATTA CALTANISSETTA XIRBI – NUOVA ENNA (LOTTO 4A)

Galleria Salso Relazione geotecnica e di calcolo della galleria naturale

								SCALA:
COMI	MESSA LOTTO FASH 3 U 4 0	E ENTE		C. OPERA/	DISCIPLIN	A PROG 0 0 0	ar. re 1 B	v.]
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato/Data
A	EMISSIONE ESECUTIVA	ROCKSOIL	Gennaio 2020	S.Vagnozzi	Gennaio 2020	A.Barreca	Gennaio 2020	A.သို့ရှိသို့
В	EMISSIONE ESECUTIVA		Febbraio 2020	S.Vagnozzi	Febbraio 2020	A.Barreca	Febbraio 2020	LERACA Index A. and a Scir 348 05ci
								ALFERR U.O. GAL Ing. Aless degli Inge degli Inge
								I Staget
File: R	S3U40D07CLGN0200001B.0	loc						n. Elab.: 07 70

Galleria Salso - Relazione geotecnica e di calcolo della	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
galleria naturale	RS3U	40D 07	CL	GN 00001	В	2 di 124

INDICE

1	PRE	MESSA	5
2	SCC	OPO DEL DOCUMENTO	5
3	NOF	RMATIVE E SPECIFICHE TECNICHE DI RIFERIMENTO	6
4	DOO	CUMENTI DI RIFERIMENTO	6
	4.1	Documenti Correlati	7
5	ALI	EGATI	7
6	DO	CUMENTI PRODOTTI A SUPPORTO	7
7	DES	SCRIZIONE DELL'OPERA	10
	7.1	LA GALLERIA SALSO	10
	7.2	OPERE PER LA SICUREZZA IN GALLERIA	13
	7.3	OPERE TECNOLOGICHE	15
	7.4	INTERFERENZE LUNGO IL TRACCIATO	16
8	FAS	E CONOSCITIVA	17
	8.1	INQUADRAMENTO GEOLOGICO E GEOMORFOLOGICO	17
	8.1.	1 Assetto geologico e geomorfologico lungo il tracciato	17
	8.2	INDAGINI GEOTECNICHE	17
	8.3	CARATTERIZZAZIONE GEOTECNICA	19
	8.4	FORMAZIONE TRV	21
	Paran	IETRI NON DRENATI	30
	8.5	VALORI CARATTERISTICI UTILIZZATI NELLE ANALISI	33
9	FAS	E DI DIAGNOSI	34
	9.1	CLASSI DI COMPORTAMENTO DEL FRONTE DI SCAVO	34
	9.2	DETERMINAZIONE DELLE CATEGORIE DI COMPORTAMENTO	35

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE NUOVO COL TRATTA CAL	FERROV LEGAME TANISSE	IARIA MESSI NTO PALERM TTA XIRBI –	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	0
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40D 07	CODIFICA CL	DOCUMENTO GN 00001	REV. B	FOGLIO 3 di 124
9.2.1 Analisi con il metodo delle linee caratteris	tiche					35
Analisi della stabilità del fronte						
9.3 DEFINIZIONE DELLE TRATTE A COMPORTAMEN	TO TENSIO-D	EFORMAT	TIVO OMOGEN	NEO		43
10 FASE DI TERAPIA						44
10.1 Scelta del metodo di scavo						44
10.2 Scavo meccanizzato						44
10.3 CARATTERISTICHE DEI MATERIALI STRUTTURA	ALI					46
10.4 ANALISI E VERIFICA DEGLI INTERVENTI AL FRO	ONTE E DEI RIV	/ESTIMEN	NTI DEFINITIN	/I		48
10.4.1 Criteri di verifica						
Definizione dell'azione sismica di progetto						51
Analisi sismiche pseudo-statiche in direzione tra	usversale					54
Analisi sismiche pseudo-statiche in direzione lo	ngitudinale					55
10.5 ANALISI E VERIFICA DELLE SEZIONI TIPO						56
10.5.1 Requisiti conci rivestimento						57
10.5.2 Requisiti miscela bicomponente						57
10.5.3 Verifiche statiche in fase transitoria – con	cio da 45 cm .					59
10.5.4 Verifiche statiche in fase definitiva : mode	lli di calcolo d	e criteri d	li verifica			
10.5.5 Requisiti Stati limite			-			81
10.6 VERIFICHE STATICHE: PRESENTAZION	E E RISULTA	АТІ				
10.6.1 Modelli assialsimmetrici – Criteri di verifi	ca					90
10.6.2 Modelli assialsimmetrici - Valutazione del stato tensionale	le spinte mass	sime di e.	sercizio della	a TBM e dei fatt	ori di ril	ascio dello 93
10.6.3 Modelli piani						94
10.6.4 Verifica dei giunti - pressioni di contatto						97
10.6.5 Verifica delle pressioni di contatto						97
10.6.6 Verifica alle trazioni indotte						
10.6.7 Analisi n. 4						101

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICI NUOVO CO TRATTA CA	E FERROV LLEGAME	'IARIA MESSI NTO PALERN ETTA XIRBI –	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	0
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40D 07	CODIFICA CL	DOCUMENTO GN 00001	REV. B	FOGLIO 4 di 124
10.6.8 Analisi n. 5						113
Azioni di mitigazione dei potenziali rischi						121
11 FASE DI VERIFICA E MESSA A PUNTO DEL F	PROGETTO					122
11.1 CRITERI GENERALI PER L'APPLICAZIONE DELL	E SEZIONI TIF	PO 01				
11.2 MONITORAGGIO IN CORSO D'OPERA						
12 CONCLUSIONI						

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA							
Galleria Salso - Relazione geotecnica e di calcolo della	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
galleria naturale	RS3U	40D 07	CL	GN 00001	B	5 di 124		

1 PREMESSA

Nel presente documento sono analizzate le tematiche progettuali e gli aspetti tecnici relativi al progetto definitivo della salleria Salso facente parte dei lavori riguardanti il nuovo collegamento Palermo-Catania della Direttrice ferroviaria Messina-Palermo-Catania, tratta Lercara – Caltanissetta Xirbi, che si estende tra le stazioni di Lercara Diramazione (inclusa) e Caltanissetta Xirbi (inclusa), dal km 0+000 (coincidente con la pk 76+730 della linea storica Palermo Catania) al km 47+683 (coincidente con la pk 126+412 della linea storica Palermo Catania).

2 SCOPO DEL DOCUMENTO

Nel presente documento si affrontano le problematiche progettuali connesse alla realizzazione della galleria naturale "Salso", ubicata fra le progressive km 7+701.82 (imbocco lato Ovest) e km 11+548.50 (imbocco lato Est), per una lunghezza di circa 3846.68 m km. Per la descrizione delle opere di imbocco e dei tratti di galleria artificiale si rimanda alla "Relazione geotecnica e di calcolo delle opere di imbocco".

La progettazione delle opere in sotterraneo, condotta secondo il metodo ADECO-RS (Rif. [15]), si è articolata nelle seguenti fasi:

1. <u>Fase conoscitiva</u>: è finalizzata allo studio e all'analisi del contesto geologico e geotecnico in cui sarà realizzata la galleria; i risultati dello studio geologico sono descritti nella specifica "Relazione geologica, geomorfologica ed idrogeologica" (Rif. [12]) a cui si rimanda per l'illustrazione del modello geologico; lo studio geotecnico con la definizione del modello geotecnico di sottosuolo e dei parametri di progetto è illustrata nel Capitolo 7.2.

2. <u>Fase di diagnosi</u>: si esegue la valutazione della risposta deformativa dell'ammasso allo scavo in assenza di interventi di stabilizzazione per la determinazione delle categorie di comportamento (Cap. 9).

3. <u>Fase di terapia</u>: sulla base dei risultati delle precedenti fasi, si individuano le modalità di scavo e gli interventi di stabilizzazione idonei (sezioni tipo) per realizzare l'opera in condizioni di sicurezza (Cap.0). Le soluzioni progettuali sono state analizzate per verificarne l'adeguatezza: nel capitolo 0 sono illustrati metodi e risultati delle analisi condotte per la verifica della stabilità globale della cavità, per il dimensionamento/verifica degli interventi di stabilizzazione e dei rivestimenti, nelle diverse fasi costruttive e in condizioni di esercizio, e per la valutazione dei risentimenti attesi in superficie.

4. <u>Fase di verifica e messa a punto</u>: il progetto è completato dal piano di monitoraggio da predisporre ed attuare nella fase realizzativa (Cap 11). Nel piano di monitoraggio sono individuate le grandezze fisiche a cui riferirsi in corso d'opera per controllare la risposta deformativa dell'ammasso al procedere dello scavo, verificare la rispondenza con le previsioni progettuali e mettere a punto le soluzioni progettuali nell'ambito delle variabilità previste in progetto.

FOGLIO

6 di 124

в

Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale

CODIFICA COMMESSA LOTTO DOCUMENTO REV. BS3U 40D 07 CI GN 00001

NORMATIVE E SPECIFICHE TECNICHE DI RIFERIMENTO 3

- Rif. [1] Decreto Ministero delle Infrastrutture e Trasporti 17/01/2018, "Aggiornamento delle Nuove norme Tecniche per le Costruzioni";
- Rif. [2] C.S.LL.PP., Circolare n°7 del 21/01/2019, "Istruzioni per l'applicazione dell'Aggiornamento delle Norme Tecniche per le Costruzioni" di cui al DM 14/01/2018".
- Rif. [3] Decreto Ministeriale 28/10/2005. "Sicurezza nelle gallerie ferroviarie";
- Rif. [4] Regolamento del 18/11/2014 della Commissione dell'Unione Europea 1303/2014 relativa alla Specifica Tecnica di Interoperabilità concernente "la sicurezza nelle gallerie ferroviarie" nel sistema ferroviario transeuropeo convenzionale e ad alta velocità;
- Rif. [5] Regolamento del 18/11/2014 della Commissione dell'Unione Europea 1300/2014 relativa ad una Specifica Tecnica di Interoperabilità concernente le "persone a mobilità ridotta" nel sistema ferroviario transeuropeo convenzionale e ad alta velocità;
- Rif. [6] Regolamento del 18/11/2014 della Commissione dell'Unione Europea 1299/2014 relativa ad una Specifica Tecnica di Interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario transeuropeo ad alta velocità.
- Rif. [7] RFI, doc RFI DTC SI SP IFS 001 C "Capitolato generale tecnico di appalto delle opere civili" (21/12/2018);
- Rif. [8] RFI, doc RFI DTC SI MA IFS 001 C "Manuale di Progettazione delle opere civili" (21/12/2018);
- Rif. [9] ITALFERR, Specifica Tecnica PPA.0002403 "Linee guida per la progettazione geotecnica delle gallerie naturali" (Dicembre 2015).

4 **DOCUMENTI DI RIFERIMENTO**

Rif. [10] Italferr, Progetto Preliminare/Progetto di fattibilità tecnico economica;

Rif. [11] Italferr - Dossier dati e requisti di base.

Nel presente documento si fa inoltre riferimento ai seguenti elaborati allegati al progetto:

Rif. [12] Rif. [12] U.O. Geologia - [RS3G30R69RHGE0005001B] "Relazione geologica, geomorfologica ed idrogeologica"

Rif. [13] Rif. [13] U.O. Sicurezza, manutenzione e interoperabilità - [inserire codifica] "Elaborati specialistici"

Rif. [14] Rif. [14] U.O. Impiantistica industriale - "Elaborati specialistici"

Rif. [15] U.O. Gallerie, doc. RS3U40D07RHGN0000001B "Relazione tecnica delle opere in sotterraneo";

Rif. [16] U.O. Gallerie, doc. RS3U40D07CLGA0000002A "Relazione geotecnica e di calcolo delle opere di imbocco";

Rif. [17] U.O. Gallerie, doc RS3U40D07F5GN0300002B "Profilo geotecnico Galleria Salso".

Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale

MMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40D 07	CL	GN 00001	В	7 di 124

4.1 Documenti Correlati

Rif. [15] Lunardi P. (2006). Progetto e Costruzione di Gallerie: Analisi delle deformazioni controllate nelle rocce e nei suoli - ADECO-RS – (Hoepli Ed.).

COI

- Rif. [16] Bernaud D., Benamar I., Rousset G. (1994). La "nouvelle méthode implicite" pour le calcul des tunnel dans les milieux élastoplastiques et viscoplastiques Revue Francaise de Géotechnique, N° 68.
- Rif. [17] Bernaud D., Rousset G. (1992). La « nouvelle méthode implicite » pour l'étude du dimensionnement des tunnels Revue Francaise de Géotechnique, N° 60.
- Rif. [18] Tamez E. (1984) "Estabilidad de tuneles excavados en suelos" Mexican Engineering Academy.
- Rif. [19] Broms B.B., Bennermark H. (1967). Stability of a clay at a vertical opening. J.Soil Mech. Found. Div. ASCE

5 ALLEGATI

Il documento è corredato dai seguenti allegati:

- All. [1] "Analisi con il metodo delle linee caratteristiche";
- All. [2] "Analisi numerica";

6 DOCUMENTI PRODOTTI A SUPPORTO

I contenuti della presente relazione sono illustrati negli elaborati grafici specialistici allegati al progetto:

 1222
 V
 1
 1
 1
 2
 2
 V
 1
 1
 2
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <th1</th>
 <th1</th>
 <th1</th>
 1</t

 V
 J
 a
 b
 a
 c
 a
 a
 b
 a
 a
 b
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a
 a

FOGLIO

8 di 124

Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale

en definition - Plantenator en definition - Sectorel are En 25 de la company de la co Bright Pata et Hanner Bernerfer a Result in Tenensen

2. 10 Prancy profession in an e 2. 15 Prancy profession in an efficiency information 2. 15 Prancy profession in an effective information 2. 15 Profession in Tex 10 I 2. 17 Profession in Tex 10 I

B. Annual starts for every start of an analysis of the second start of th

har one searce the second second in any labor of

na o'n seur "i - andr is - andr is - anno 1. -inn a rathan - andr it Garai an Gilaith a Finischi a ann i farisaith

OMMESSA	LOTTO	CODIFICA	DOCUMENTO
RS3U	40D 07	CL	GN 00001

CC REV. в COCIFICS ILS BOR 310 соличната цанто <mark>5</mark> вили <mark>1800</mark> синко, рассицио и коже. 2³ 2 ос. 120 Descriptionelle sportage an aire REARCH AND SOLUTION OF THE SECOND
 Image: Second state
 Image: Second st ŧ Seattle state de l'estrera in Laboureau Seveluie reférencia est a tor an income and 2 for a ABC patrice of these is control invations - These 5 (1) - C
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 Sauve Section and Associate Space S (S) - Carportation, a source and real darways Source Section and a Sauvery Space S (S) - Carport Science and a more set for every 12 Save Collisionale - Sectors Cyre 5 C1 - Coperficiely a sole exerced Marrie Save Collisionale - Sectors Cyre 5 C1+ Coperficiely access a sector Dev Save Collisionale - Sectors Cyre 5 C1+ Coperficiely access a sector Marrie R 1 1 Securited approach compared and a Sector system as a preserve de
 I
 J
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I</t 12 ne, la
 1
 Novačnenok seni pratačka 10 - čerá la Linkovana pratačka nij

 2
 1
 Novačnenok seni pratačka 10 - čerprečeni senio čera 1 (čere)

 2
 1
 Novačnenok seni pratačka 10 - čerprečeni senio čera 1 (čere)

 2
 1
 Novačnenok seni pratačka 10 - čerprečeni senio čera 1 (čere)

 2
 1
 Novačnenok seni pratačka 10 - čerprečeni senio čera 1 (čere)

 2
 1
 Novačnenok seni pratačka 10 - čerprečeni senio čera 1 (čere)

 2
 1
 Novačnenok seni pratačka 10 - čerprečeni senio čera 1 (čere)

 K
 3
 U
 6
 C
 7
 8
 1
 6
 7
 6
 7
 6
 7
 6
 7
 6
 7
 6
 7
 6
 7
 6
 7
 6
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7
 7

 7
 7
 7
 Verle 300 1 1
 Norm
 X
 1
 1
 4
 2
 5
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1 a', 11 to and marks with day its [21] M. Anaraki and A. Sairikan apple 17 - Sour-Sea and assess intervel. 27, 17 Anaraki and a first apple 7.4 Sour-Sea and assess intervel. 27, 13 Anaraki and Sour-Sea apple 7.4 Proceedings of the source of the Source Sea and Source Sour 1. J. Barrish and the second secon anan Area - **1** - **1** - **1** St. 11 Annu space as the first of strange start " Philosophics and strange laws St. 41. In agricul Strange and the first start space summarized to the start of the first second starts and the first start second strange starts of the start start start.
 2
 1
 So approximation of a state of a stat ar_ 14 So apprend to a second careful - Souther the S - Souther to a second second device the second s B. Anterspectromand and a B. St. France performant and air course france D. St. France performant and air course france. ANÎ le Canadar Mar In Luir In, Mon te sitretto — în Bocco la to Paleri I
 1233
 *
 1
 *
 1
 2
 2
 *
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1 [25] D. Barres, Carson Street Street and a new Solid re- 20 20 Announcement of a set of the set Schematzen betretten Protection partie inngrü-2012 - Determinen betretten Partie und Greichen 2013 - Schematzen Distantien andere einer die erste 2013 - Bernard Schematzen und Schematzen 2013 - Bernard Schematzen und Schematzen 2013 - Schematzen Bernard und Bernard und 2014 - Schematzen Be 12- мал. - Селенбена Казация и монути аптенто — макосор като са так 10 A 10 at Later. Note the artistic - An except is the activate 27, 52, 54 April 1999, and 1999 and 1999 and 1999 and 1999 27, 57 April 1999 and 1999 and 1999 and 1999 and 1999 27, 52 April 1999 and 1999 and 1999 and 1999 and 1999 27, 52 April 1999 and 1999 and 1999 and 1999 and 1999 27, 52 April 1999 and 1999 and 1999 and 1999 and 1999 27, 53 April 1999 and 1999 and 1999 and 1999 and 1999 28 April 1999 and 1999 and 1999 and 1999 and 1999 28 April 1999 and 1999 and 1999 and 1999 and 1999 29 April 1999 and 1999 and 1999 and 1999 and 1999 and 1999 and 1999 29 April 1999 and 1999 an 21 M. Diversity of Alternative Sector Sector Sector 2.
 Image: Second
 B*
 M
 Personanger/Section 1
 Section 1

 B*
 11
 Personanger/Section 1
 Section 1
 Section 1

 B*
 12
 Personanger/Section 1
 Section 1
 Section 1
 Section 1

 B*
 13
 Personanger/Section 1
 Section 1
 Section 1
 Section 1

 B*
 14
 Section 1
 Section 1
 Section 1
 Section 1

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <th1</th>
 <th1</th>
 <th1</th>
 <th1</th>
 fran ens searce of a second second in many listence. Fran ens searce class are another the first ÷. lan oraș stara și contra la sundre la stara e anti-tit Referențiare definiții și Perioa în constitui a contra finiteria en definition - Parsimation particul en definition - Sectori anatterinte fa
 1000
 4
 3
 4
 0
 0
 0
 0
 0
 1
 1
 0
 5
 0
 0
 0
 0
 1
 0
 5
 0
 0
 0
 0
 1
 0
 5
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 1
 1
 1
 1
 1
 1
 <th1</th>
 <th1</th>
 <th1</th>
 <th1</th>
 a. . . B. Barrad's and a second second

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA

TRATTA CALTANISSETTA XIRBI – NUOVA ENNA

Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA LOTTO CODIFICA
RS3U 40D 07 CL

REV. B FOGLIO

9 di 124

DOCUMENTO

GN 00001

0/ 50	110110 GEOLEGIILO - 189. 2 UL 2	1.300,30		5	2	U		0		U	1	F	21	91	IN I	U I	21	01	U I	010	14	
	GALLERIA TRINACRIA - IMBOCCO LATO PALERMO			-	-				·					_		-					-	
07 100	Fase provvisoria - Planimetria e profilo longitudinale	1:200	R	S	3	U	4	0	D	0	7	L	9	G	1	0	5	0	0	0 0	1	А
07 101	Fase provvisoria - Sezioni caratteristiche	1:200	R	S	3	U	4	0	D	0	7	w	9	G	1	0	5	0	0	0 0	1	Α
07 102	Fase provvisoria - Sviluppata delle opere di imbocco e particolari costruttivi	varie	R	S	3	U	4	0	D	0	7	в	Ζ	G	1	0	5	0	0	0 0	1	Α
07 103	Sistemazione definitiva - Planimetria e profilo longitudinale	1:200	R	S	3	U	4	0	D	0	7	L	9	G	А	0	7	0	0	0 0	1	В
07 104	Sistemazione definitiva - Sezioni caratteristiche	1:200	R	S	3	U	4	0	D	0	7	w	9	G	А	0	7	0	0	0 0	1	В
07 105	Dima - carpenteria	1:50	R	S	3	U	4	0	D	0	7	в	в	G	1	0	5	0	0	0 0	1	А
07 106	Galleria artificiale policentrica - Carpenteria	1:50	R	S	3	U	4	0	D	0	7	в	в	G	А	0	7	0	0	0 0	1	Α
07 107	Portale di imbocco - Carpenteria	1:50	R	S	3	U	4	0	D	0	7	в	в	G	А	0	7	0	0	0 0	2	Α
	GALLERIA TRINACRIA - IMBOCCO LATO CATANIA																					
07_108	Fase provvisoria - Planimetria e profilo longitudinale	1:200	R	S	3	U	4	0	D	0	7	L	9	G	1	0	6	0	0	0 0	1	Α
07_109	Fase provvisoria - Sezioni caratteristiche	1:200	R	S	3	U	4	0	D	0	7	W	9	G	1	0	6	0	0	0 0	1	Α
07_110	Fase provvisoria - Sviluppata delle opere di imbocco e particolari costruttivi	varie	R	S	з	U	4	0	D	0	7	В	Ζ	G	1	0	6	0	0	0 0	1	Α
07_111	Sistemazione definitiva - Planimetria e profilo longitudinale	1:200	R	S	З	U	4	0	D	0	7	L	9	G	А	0	8	0	0	0 0	1	В
07_112	Sistemazione definitiva - Sezioni caratteristiche	1:200	R	S	3	U	4	0	D	0	7	W	9	G	A	0	8	0	0	0 0	1	В
07_113	Dima e concio d'attacco - Scavo e consolidamenti	1:50	R	s	З	U	4	0	D	0	7	В	В	G	1	0	6	0	0	0 0	1	Α
07_114	Galleria artificiale scatolare - Carpenteria	1:50	R	S	3	U	4	0	D	0	7	В	в	G	А	0	8	0	0	0 0	1	А
07_115	Muri in c.a Carpenteria	1:50	R	S	3	U	4	0	D	0	7	В	В	G	А	0	8	0	0	0 0	3	Α
	USCITE/ACCESSI LATERALI - ELABORATI GENERALI																					
07_117	Uscita/accesso laterale pedonale - Sezione tipo B1 - Carpenteria, scavo e consolidamenti	1:50	R	S	з	U	4	0	D	0	7	В	В	G	Ν	0	0	0	0	0 3	5	В
07_118	Uscita/accesso laterale pedonale - Sezione tipo B2 - Carpenteria, scavo e consolidamenti	1:50	R	S	з	U	4	0	D	0	7	В	В	G	Ν	0	0	0	0	0 3	6	В
07_119	Uscita/accesso laterale pedonale - Sezione tipo C2 - Carpenteria, scavo e consolidamenti	1:50	R	S	з	U	4	0	D	0	7	В	В	G	Ν	0	0	0	0	0 3	7	В
07_120	Uscita/accesso laterale pedonale - Sezione tipo C2v - Carpenteria, scavo e consolidamenti	1:50	R	S	з	U	4	0	D	0	7	В	В	G	Ν	0	0	0	0	0 3	8	В
07_121	Uscita/accesso laterale pedonale - Sezione tipo C2p - Carpenteria, scavo e consolidamenti	1:50	R	S	3	U	4	0	D	0	7	В	В	G	Ν	0	0	0	0	0 3	9	В
	USCITA/ACCESSO LATERALE PEDONALE F1 - GALLERIA MONTE STRETTO																					
07 123	Drofile genteenice			-	-	1.1		0	~		7	E	5	G	N	~			0	0 0	1	
U, 123	Promo geotecnico	1:5000/500	R	S	3	U	4	U	D	0	/		5	0	14	U	4	0	•		-	в
07_124	Relazione geotecnica e di calcolo	1:5000/500	R	S	3	U	4	0	D	0	7	С	L	G	N	0	4	0	0	0 0	1	A
07_124 07_125	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco	-	R R R	S S	3	U U U	4 4 4	0	D	0	, 7 7	C C	L	G	N A	0	4 0	0	0	0 0	1	A A
07_124 07_125 07_126	rromo geotecnica Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2	1:5000/500 - - varie	R R R R	S S S	3 3	U U U	4 4 4	0 0 0	D D D	0 0 0	7 7 7	C C B	L L Z	G G G	N A N	0 0 0 0	4 4 0 4	0 0 0	0 0 0	0 0	1 4 1	A
07_124 07_125 07_126 07_127	rationa geordenica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galeria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2	1:5000/500 - - varie varie	R R R R R	s s s	3 3 3	U U U U	4 4 4 4	0 0 0 0 0		0 0 0 0 0	7 7 7 7	C C B B	L L Z Z	G G G	N A N	0 0 0 0 0 0	4 4 0 4 4	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	1 4 1 2	A A A
07_124 07_125 07_126 07_127	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la gallera di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la gallera di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCITA/ACCESSO LATERALE PEDONALE F1 - GALLERIA MONTE STRETTO - IMBOCCO	- varie varie	R R R R R	S S S S	3 3 3 3	U U U U	4 4 4 4 4	0 0 0 0 0	D D D D	0 0 0 0 0	7 7 7 7 7	C C B B	L L Z Z	G G G	N A N	0 0 0 0 0 0	4 0 4 4	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 4 1 2	A A A
07_124 07_125 07_125 07_126 07_127 07_128	Holin geordenica e di calcolo Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCTIA/ACCESO LATRALE PEODALE F1 - GALLERIA MONTE STRETTO - IMBOCCO Fase provisoria - Planimetria e profilo longitudinale	1:5000/500 - - varie varie 1:200	R R R R R R	s s s s	3 3 3 3		4 4 4 4 4 4	000000000000000000000000000000000000000		000000000000000000000000000000000000000	7 7 7 7 7	C C B B	L L Z Z 9	G G G G	N A N N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0 4 4 7	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	1 4 1 2	A A A A
07_124 07_125 07_126 07_127 07_128 07_129	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di inbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCITÀ/ACCESSO LATERALE PEDONALE F1 - GALLERIA MONTE STRETTO - IMBOCCO Fase provisoria - Planimetria e profilo longitudinale Fase provisoria - Sezioni caratterístiche	1:5000/500 - - varie varie 1:200 1:200	R R R R R R R R	s s s s s s	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		4 4 4 4 4 4 4	000000000000000000000000000000000000000		0 0 0 0 0 0 0 0 0	7 7 7 7 7 7 7 7	C C B B L W	L L Z Z 9 9	G G G G G G	N A N I	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0 4 4 7 7	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	1 4 1 2 1	A A A A A
07 124 07 125 07 126 07 127 07 127 07 128 07 129 07 130	Ralazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCITA/ACCESSO LATERALE PEDONALE F1 - GALLERIA MONTE STRETTO - IMBOCCO Pase provvisoria - Planimetria e profilo longitudinale Fase provisoria - Seioni caratteristiche Fase provisoria - Sviluppata delle opere di imbocco e particolari costruttivi	1:5000/500 	R R R R R R R R R	s s s s s s s s s s s s	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		4 4 4 4 4 4 4 4	000000000000000000000000000000000000000			7 7 7 7 7 7 7 7	C C B B L W B	L L Z 9 9 2		N A N I I	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0 4 4 7 7 7 7	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 4 1 2 1 1 1	
07_124 07_125 07_126 07_127 07_128 07_129 07_130 07_131	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCTA/ACCESSO LATERALE PEDONALE F1 - GALLERIA MONTE STRETTO - IMBOCCO Fase provisoria - Planimetria e profilo longitudinale Fase provisoria - Sezioni caratteristiche Fase provisoria - Sezioni caratteristiche Stetemazione definitiva - Planimetria e profilo longitudinale Stetemazione definitiva - Planimetria e profilo longitudinale	1:5000/500 - - varie varie 1:200 1:200 varie 1:200	R R R R R R R R R R	s s s s s s s s s s s s s	<u></u>		4 4 4 4 4 4 4 4 4				7 7 7 7 7 7 7 7 7	C B B U W B L	2 Z 9 9 Z 9		N A N I I A	0 0 0 0 0 0 0 0 0	4 0 4 4 7 7 7 8	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 4 1 2 1 1 1 1 1	
07_124 07_125 07_126 07_127 07_128 07_129 07_130 07_131 07_132	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 linesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCITA/ACCESSO LATERALE PEDONALE F1 - GALLERIA MONTE STRETTO - IMBOCCO Fase provisoria - Planimetria e profilo longitudinale Fase provisoria - Sviluppata delle opere di imbocco e particolari costruttivi Sistemazione definitiva - Planimetria e profilo longitudinale Sistemazione definitiva - Sicioni caratteristiche	1:5000/500 - varie varie 1:200 1:200 varie 1:200 1:200	R R R R R R R R R R R R	s s s s s s s s s s s s s s s s			4 4 4 4 4 4 4 4 4 4 4	0 0 0 0 0 0 0 0 0 0			7 7 7 7 7 7 7 7 7 7	C B B W B L W	L Z Z 9 9 2 9 2 9		N A N N I I A A	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0 4 4 7 7 7 8 8	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 4 1 2 1 1 1 1 1 1	
07 123 07 124 07 125 07 126 07 127 07 127 07 128 07 129 07 130 07 131 07 132 07 133	In on percention Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo elle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCITA/ACCESSO LATERALE PEDONALE F1 - GALLERIA MONTE STRETTO - IMBOCCO Fase provisoria - Planimetria e profilo longitudinale Fase provisoria - Svilopata delle opere di imbocco e particolari costruttivi Sistemazione definitiva - Planimetria e profilo longitudinale Sistemazione definitiva - Sezioni caratteristiche Dima e condi od tatacco - Scavo e consolidamenti	1:5000/500 - varie varie 1:200 1:200 varie 1:200 1:200 1:200 1:200	R R R R R R R R R R R R R R R	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 3 3 3 3 3 3 3 3 3 3 3 3		4 4 4 4 4 4 4 4 4 4 4 4 4 4			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 7 7 7 7 7 7 7 7 7 7 7 7	C C B B U W B L W B	L Z Z 9 9 2 9 2 9 8 8		N A N N I I A A I I	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0 4 4 7 7 7 7 8 8 8 7 7	0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 4 1 2 1 1 1 1 1 1 1	
07 123 07 124 07 125 07 126 07 127 07 128 07 129 07 130 07 131 07 132 07 133 07 134	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Cargenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Cargenteria, scavo e consolidamenti - Tav. 2 di 2 USCTA/ACCESSO LATERALE PEDONALE F1 - GALLERIA MONTE STRETTO - IMBOCCO Fase provisoria - Palnimetria e profilo longitudinale Fase provisoria - Sviluppata delle opere di imbocco e particolari costruttivi Sistemazione definitiva - Panimetria e profilo longitudinale Sistemazione definitiva - Sezioni caratteristiche Dima e concio d'attacco - Savo e consolidamenti Galleria artificiale policentrica - Cargenteria		R R R R R R R R R R R R R R R	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	C C B B U W B L W B B B B	L L Z Z 9 9 2 9 9 2 9 9 8 8 8 8		N A N N I I A A A A	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0 4 4 7 7 7 8 8 8 7 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
07 124 07 126 07 126 07 127 07 128 07 129 07 130 07 131 07 132 07 134 07 135	Raizione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCITA/ACCESSO LATERALE PEDONALE F1 - GALLERIA MONTE STRETTO - IMBOCCO Fase provisoria - Planimetria e profilo longitudinale Fase provisoria - Svilopata delle opere di imbocco e particolari costruttivi Sistemazione definitiva - Svilopata delle opere di Inbocco e particolari costruttivi Sistemazione definitiva - Socioni caratteristiche Dima e concio d'attacco - Scavo e consolidamenti Galleria artificiale policentrica - Carpenteria Portale di imbocco - Carpenteria	1:5000/50. - varie varie 1:200 1:200 1:200 1:200 1:50 1:50	R R R R R R R R R R R R R R R R R R R		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	C C B B B W B L W B B B B B	L L Z Z 9 9 9 9 9 9 9 9 8 8 8 8		N A N N I I A A I A A A	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 0 4 4 7 7 7 7 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 4 1 2 1 1 1 1 1 1 1 1 1 2	B A A A A A A A A A A A A A A A A A A A
07 124 07 125 07 126 07 127 07 128 07 129 07 130 07 131 07 132 07 134 07 135	Protocological and a second	1:5000 S0 	R R R R R R R R R R R R R R R		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	C C B B B U W B C W B B B B B	L L Z Z 9 9 9 9 9 9 9 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N A N N I I A A A A A		4 0 4 4 7 7 7 7 8 8 7 8 8 8 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 4 1 2 1 1 1 1 1 1 1 1 1 2	B A A A A A A A A A A A A A A A A A A A
07 124 07 125 07 125 07 126 07 127 07 128 07 129 07 130 07 131 07 133 07 134 07 134 07 135 07 136	Ralazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la gallera di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la gallera di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCTIA/ACCESSO LATERALE PEDONALE E 1 - GALLERIA MONTE STRETTO - IMBOCCO Fase provisoria - Planimetria e profilo longitudinale Fase provisoria - Sviluppata delle opere di imbocco e particolari costruttivi Sistemazione definitiva - Stoino caratteristibue Dima e condo d'attaco - Scavo e consolidamenti Galeria antificate policentira - argenteria Portale di imbocco - Carpenteria NITERFERENZE Relazione sulla valutazione delle subsidenze e verifica degli effetti indotti sulle interferenze in	1:5000 S0 varie varie 1:200 varie 1:200 varie 1:200 1:50 1:50 1:50	R R R R R R R R R R R R R R R		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	C C B B C U W B C C	L L Z Z 9 9 9 9 9 9 9 8 8 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N A N N 1 A A A A A A A A A A A A A A A		4 0 4 4 7 7 7 8 8 8 7 8 8 8 8 8 8 0					
07 124 07 124 07 125 07 126 07 128 07 128 07 128 07 128 07 130 07 132 07 133 07 135 07 136 07 136	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCITA/ACCESSO LATERALE PEDONALE F1 - GALLERIA MONTE STRETTO - IMBOCCO Fase provisoria - Planimetria e profilo longitudinale Fase provisoria - Sulipata delle opere di imbocco e particolari costruttivi Sistemazione definitiva - Planimetria e profilo longitudinale Dima e concio di attacco - Scavo e consolidamenti Galleria artificiale policentrica - Carpenteria Portale di imbocco - Carpenteria INTERFENZE Relazione sulla valutazione delle subsidenze e verifica degli effetti indotti sulle interferenze in superficie	1:5000 500 varie varie 1:200 1:200 1:200 1:200 1:50 1:50 1:50 1:50	R R R R R R R R R R R R		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	C C B B C W B C C	L L Z Z 9 9 9 9 2 9 9 8 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1		N A N N N 1 1 A A A A A A N N		4 4 0 4 4 4 7 7 7 7 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8				1 1 4 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2	B A A A A A A A A A A A A A A A A A A
07 124 07 124 07 125 07 126 07 126 07 128 07 129 07 130 07 131 07 132 07 133 07 134 07 135 07 136 07 137	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galleria di lina - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di lina - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCTA/ACCESSO LATERALE PEDONALE F1 - GALLERIA MONTE STRETTO - IMBOCCO Fase provisoria - Planimetria e profilo longitudinale Fase provisoria - Sezioni caratteristiche Sistemazione definitiva - Planimetria e profilo longitudinale Sistemazione definitiva - Planimetria e profilo longitudinale Galleria artificiale policentrica - Carpenteria Mina e condo d'attaco - Scavo e consolidamenti Galleria artificiale policentrica - Carpenteria Portale di imbocco - Carpenteria INTERFERENZE Relazione sulla valutazione delle subsidenze e verifica degli effetti indotti sulle interferenze in superficie Planimetria opere interferenti con livello di danno Tav. 1 di 2	1:5000 900 varie varie 1:200 1:200 1:200 1:200 1:50 1:50 1:50 1:50 1:50	R R R R R R R R R R R R R R R R	S S	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	C C B B C W B C C P	L L Z Z 9 9 9 9 9 9 9 9 9 8 8 8 8 8 1 7 1 7		N A N N I I A A A I A A A N N N		4 4 0 4 4 4 7 7 7 8 8 7 8 8 7 8 8 7 8 8 0 0 0 0				1 1 4 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1	B A
07 124 07 124 07 125 07 126 07 128 07 128 07 128 07 129 07 131 07 132 07 133 07 134 07 136 07 137 07 138	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCITA/ACCESSO LATERALE PEDONALE F1 - GALLERIA MONTE STRETTO - IMBOCCO Fase provisoria - Planimetria e profilo longitudinale Fase provisoria - Selioni caratteristiche Fase provisoria - Sulpapta delle opere di imbocce o particolari costruttivi Sistemazione definitiva - Sveino caratteristiche Dima e conclo d'attacco - Scavo e consolidamenti Galleria artificiale policentrica - Carpenteria INTERFERNZE Relazione sulla valutazione delle subsidenze e verifica degli effetti indotti sulle interferenze in superficie Planimetria opere interferenti con livello di danno Tav. 1 di 2 Planimetria opere interferenti con livello di danno Tav. 2 di 2	1:500'50 	R R R R R R R R R R R R R R R R R R		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	C B B B U W B B B B B B B B C P P	L L Z 2 9 9 9 9 9 9 8 8 8 8 8 8 8 1 7 7 7		N A N N 1 A A A A A A A A A A A A A A A		4 4 4 4 4 7 7 7 7 8 8 7 8 8 7 8 8 8 0 0 0 0 0				1 1 4 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2	B A A A A A A A A A A A A A A A A A A A A A
07 124 07 125 07 126 07 127 07 127 07 120 07 130 07 133 07 134 07 135 07 136 07 137 07 137 07 138	Protocological estimation of the second sec	1:300 300 	R R R R R R R R R R R R R R R R R R R		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	C C B B B C C P P	L 2 2 9 9 9 9 8 8 8 8 8 8 7 7 7		N N N N N N N N N N N N N N N N N N N		4 4 4 4 7 7 7 7 7 7 8 8 7 8 8 7 8 8 7 8 8 0 0 0 0 0				1 1 4 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2	
07 124 07 124 07 125 07 126 07 127 07 128 07 120 07 130 07 131 07 132 07 134 07 135 07_ 136 07_ 137 07_ 138 07_ 139	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCITA/ACCESSO LATERAL PEDONALE £1 - CALLERIA MONTE STRETTO - IMBOCCO Pase provvisoria - Planimetria e profilo longitudinale Fase provisoria - Seioni caratteristiche Fase provisoria - Selupiata delle opere di imbocco e particolari costruttivi Sistemazione definitiva - Seioni caratteristiche Dima e concio d'attaco: - Scavo e consolidamenti Galleria artificiale policentrica - Carpenteria Portale di imbocco - Carpenteria Relazione sulla valutazione delle subsidenze e verifica degli effetti indotti sulle interferenze in superficie Planimetria opere interferenti con livello di danno Tav. 2 di 2 MONTORAGGIO Planimetria di monitoraggio Tav. 1.di 2	1:300 900 	R R R R R R R R R R R R R R R R R R R				4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	C B B B C B B B B B B B B C P P P	L L Z Z 9 9 9 7 7 7 7		N A A N A A A A A A A A A A A A A A A A		4 4 4 4 7 7 7 7 7 7 8 8 7 8 8 7 8 8 0 0 0 0 0 0				1 1 4 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 2 2 3	B A A A A A A A A A A A A A A
07 124 07 125 07 126 07 127 07 128 07 129 07 130 07 133 07 133 07 134 07 135 07 136 07 138 07 138 07 139 07 139 07 134	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo elle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCITA/ACCESSO LATERALE PEDONALE F1 - GALLERIA MONTE STRETTO - IMBOCCO Fase provisoria - Planimetria e profilo longitudinale Fase provisoria - Planimetria e profilo longitudinale Fase provisoria - Planimetria e profilo longitudinale Sistemazione definitiva - Planimetria e profilo longitudinale Dima e condo d'attacco - Scavo e consolidamenti Galleria artificiale policentria - Carpenteria Portale di imbocco - Carpenteria INTERFENZE Relazione sulla valutazione delle subsidenze e verifica degli effetti indotti sulle interferenze in superficie Planimetria opere interferent con livello di danno Tav. 2 di 2 MONTORAGGO Planimetria di monitoraggio Tav. 1 di 2 Planimetria di monitoraggio Tav. 2 di 2	1:300 S0C 	R R R R R R R R R R R R R R R R R R R		3 3 3 3		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	C B B W B C B B B B B B C P P P	L L Z Z 9 9 9 7 7 7 7 7		N N N N N N N N N N N N N N N N N N N		4 4 0 4 4 7 7 7 7 7 8 8 7 7 8 8 7 8 8 7 8 8 7 8 8 7 8 8 7 0 0 0 0 0 0 0 0 0 0 0 0 0					A A
07 124 07 126 07 126 07 126 07 126 07 128 07 129 07 130 07 131 07 133 07 136 07 136 07 137 07 138 07 141	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCTIA/ACCESSO LATERALE PEODANLE E 1 - GALLERIA MONTE STRETTO - IMBOCCO Fase provisoria - Planimetria e profilo longitudinale Fase provisoria - Sviluppata delle opere di imbocco e particolari costruttivi Sistemazione definitiva - Stoino i caratteristiche Dima e condo d'attaco - Scavo e consolidamenti Galeria antificate policentrica - carpenteria Portale di imbocco - Carpenteria Portale di imbocco - Carpenteria Portale di imbocco - Carpenteria NITERFERENZE Relazione sulla valutazione delle subsidenze e verifica degli effetti indotti sulle interferenze in superficie Planimetria opere interferenti con livello di danno Tav. 1 di 2 Planimetria opere interferenti con livello di danno Tav. 2 di 2 MONTORAGGIO Planimetria di monitoraggio Tav. 1 di 2 Planimetria di monitoraggio Tav. 2 di 2 Secioni tipologiene opere di mbocco	1:500 90 	R R R R R R R R R R R R R R R R R R R	x x	3 3 3 3 3 3		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	C B B B C W B B C P P P P P P	L L Z Z 9 9 7 7 7 7 7 7 7 7 7 7 7 7 7		N A N N A A N N N N N N N A A A A A A A		4 4 0 4 4 7 7 7 7 7 8 8 8 7 7 8 8 8 7 7 8 8 8 7 7 8 8 8 7 7 8 8 8 7 0 0 0 0					B A
07 124 07 125 07 126 07 128 07 129 07 129 07 130 07 132 07 133 07 134 07 135 07 136 07 137 07 138 07 139 07 140 07 141 07 141	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo elle opere di imbocco Relazione geotecnica e di calcolo elle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCITA/ACCESSO LATERALE PEDONALE F1 - GALLERIA MONTE STRETTO - IMBOCCO Fase provisoria - Planimetria e profilo longitudinale Fase provisoria - Seizoni caratteristiche Fase provisoria - Soliupata delle opere di imbocco e particolari costruttivi Sistemazione definitiva - Suizone caratteristiche Sistemazione definitiva - Suizone caratteristiche Jorda el imbocco - Carpenteria MITERFERNZE Relazione sulla valutazione delle subsidenze e verifica degli effetti indotti sulle interferenze in superficie Planimetria opere interferenti con livello di danno Tav. 1 di 2 Planimetria opere interferenti con livello di danno Tav. 1 di 2 Planimetria di monitoraggio Tav. 2 di 2 Sezioni tipo nontoraggio Tav. 2 di 2 Sezioni tipo nontoraggio Tav. 2 di 2	1:200 S0 	R R R R R R R R R R R R R R R R R R R	S S	3 3		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	C C B B B C W B B B B B B B C P P P P P V W	L L Z Z 9 9 7 7 7 7 7 7 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1		N A N N N A N N N A N N A N N A N N A N N A N A N N A		4 4 0 4 4 7 7 7 7 7 8 8 8 7 7 8 8 8 7 7 8 8 8 7 7 8 8 8 7 7 8 8 8 7 7 8 8 8 7 0 0 0 0			0 0 0 0	1 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1	B A

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE NUOVO CO TRATTA CA	E FERROV LLEGAME LLTANISSI	YIARIA MESSI INTO PALERN ETTA XIRBI —	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	0
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	B	10 di 124

7 DESCRIZIONE DELL'OPERA

7.1 La galleria Salso

La lunghezza totate del tracciato della tratta Lercara-Caltanissetta Xirbi, è di circa 46.7 km, e si sviluppa in sotterraneo per una lunghezza complessiva di circa 20.96 km, mediante 7 gallerie naturali denominate: Santa Catena, Nuova Marianopoli, Trabona, Salito 1, Salito 2, Masareddu, Xirbi.

La galleria Salso è costituita da un tratto in naturale di 3735.70 m e da due tratti in artificiale in corrispondenza dei due imbocchi (lato Palermo e lato Catania) di lunghezza complessiva pari a 39.58 m per l'imbocco lato Palermo e pari a 71.40 m per l'imbocco lato Catania. L'opera interessa due tbm sul lato Catania , estratte sull'imbocco lato Palermo; essa pertanto un tratto di lunghezza complessiva pari a 3846.68 m, dal km 7+701.82 al km 11+548.50. Partendo dall'imbocco lato Palermo, posto ad una quota di 318.30 m s.l.m., il tracciato procede in salita con pendenza del 5.5‰, fino a raggiungere l'imbocco lato Catania, posto ad una quota di 338.63 m s.l.m.. Il tracciato prevede il passaggio in punti a basse coperture, in corrispodenza delle progressive km 8+260 circa. Lo scavo viene effettuato all'interno della litologia del TRV (e nel tratto in cui si attraversa TRVa e AV) con metodo meccanizzato per tutta la lunghezza della galleria. La copertura massima è di circa 200 metri.

Figura 1 - Profilo geologico galleria Salso

Sono di seguito illustrate le principali caratteristiche e i requisiti funzionali della galleria Salso. Per maggiori dettagli si rimanda alla "Relazione tecnica delle opere in sotterraneo".

Gallerie di linea	WBS	Opera	PK inizio	PK fine	Lunghezza _{parziale} [m]	Lunghezza _{totale} [m]
Salso	GA04	Galleria Artificiale e Portale di Imbocco - lato Palermo	7+701.82	7+741.40	39.58	
Salso	GN02	Galleria naturale	7+741.40	11+477.10	3735.7	3846.68
Salso	GA05	Galleria Artificiale e Portale di Imbocco - lato Catania	11+477.10	11+548.50	71.4	

Tabella 1 Progressive delle gallerie Salso

La galleria è progettata per consentire il transito del Gabarit C (PMO n°5) (Rif. [11]).

Le sezioni geometrico funzionali previste sono in accordo con le sezioni tipo del Manuale di Progettazione RFI (Rif. [8]) idonee al transito del Gabarit indicato e velocità di progetto sino 200 km/h. Al suo interno è previsto l'alloggiamento dell'armamento tradizionale con traverse tipo "RFI-240" poggiate su ballast ed elettrificazione a c.c. a 3 kV (Rif. [11]).

La sezione d'intradosso della galleria a singolo binario in scavo meccanizzato ha raggio pari a 4,00 m, sviluppa un'area libera di circa 43 m² e un perimetro pari a circa 25 m.

Figura 2 – Sezione di intradosso galleria di linea a singolo binario in scavo meccanizzato (sezione corrente)

7.2 Opere per la sicurezza in galleria

In accordo a quanto previsto negli elaboati della U.O. Sicurezza, manutenzione e interoperabilità (Rif. [13]), i requisiti di sicurezza previsti per la galleria Trinacria sono conformi alle disposizioni legislative emanate in campo europeo attraverso la Specifica Tecnica di Interoperabilità STI-SRT 2014 "Safety in Railway Tunnels" (Rif. [4]) e le indicazioni del Manuale di Progettazione RFI (Rif. [7]).

Al fine di garantire l'accesso alle aree di sicurezza, le gallerie sono dotate di uscite/accessi laterali pedonali ogni 1000 m e uscite/accessi laterali carrabili ogni 4000 m.

Per la galleria è stato previsto un cunicolo parallelo alla galleria di linea, avente medesima sezione. Il cunicolo parallelo è quindi connesso alla galleria di linea tramite collegamenti trasversali pedonali ogni 1000 m e carrabili ogni 4000 m. E' prevista sul cunicolo parallelo, all'innesto coi by pass carrabli una piazzola di allargo per consentire le manovre dei mezzi di soccorso.

Figura 3 - Sezione di intradosso bypass pedonale (sezione corrente)

Figura 4 - Sezione di intradosso bypass carrabile (sezione corrente)

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE NUOVO COI TRATTA CA	E FERROV LLEGAME LTANISSE	'IARIA MESSI NTO PALERN ETTA XIRBI —	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	O
Galleria Salso - Relazione geotecnica e di calcolo della	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
galleria naturale	RS3U	40D 07	CL	GN 00001	B	15 di 124

Figura 5 Innesto bypass carrabile su cunicolo parallelo (pianta)

7.3 Opere tecnologiche

In accordo al Manuale di Progettazione RFI (Rif. [8]), le gallerie non sono dotate di nicchie di ricovero personale. Per quanto riguarda le gallerie di linea sono presenti:

- nicchie standard, aventi larghezza di 2.80m, lunghezza 3.55m e altezza di 2.45m;
- nicchie tecnologiche IS-TE, aventi larghezza di 2.80m, lunghezza 4.10m e altezza di 2.95m;
- nicchie tecnologiche TLC, aventi larghezza di 2.80m, lunghezza di 5.75m e altezza di 2.95m;
- nicchie cabine MT-BT, aventi larghezza di 5.60 m, lunghezza di 10.00m e altezza di 4.06m.

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA						
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
	RS3U	40D 07	CL	GN 00001	B	16 di 124	

7.4 Interferenze lungo il tracciato

Dall'analisi della cartografia di progetto è stato possibile appurare che nel tracciato della galleria naturale Salso non vi siano interferenze con opere preesistenti a coperture di sicurezza inferiori a 100m per cui si esclusono fenomeni di interazione degli scavi con le preesistenze.

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA					
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	B	17 di 124

8 FASE CONOSCITIVA

Nella fase conoscitiva si acquisiscono gli elementi necessari alla caratterizzazione e modellazione geologica del sito e alla caratterizzazione e modellazione geotecnica del volume significativo interessato dalle opere in sotterraneo.

8.1 Inquadramento geologico e geomorfologico

L'area di studio ricade nel settore centro-orientale della penisola siciliana, in corrispondenza del margine più orientale della Catena Appenninico-Maghrebide. Dal punto di vista geologico la Catena Appenninico-Maghrebide, affiorante nella porzione settentrionale dell'isola (Figura 13), è costituita da sequenze mesocenozoiche sia di piattaforma che di bacino, con coperture flyschoidi mioceniche.

8.1.1 Assetto geologico e geomorfologico lungo il tracciato

La galleria interferisce con la ormazione Terravecchia (TRVa) (Tortoniano superiore - Messiniano inferiore) costituito da argille, arenarie e conglomerati; prevalenti argille, argille sabbiose e marne grigie e grigio verdastre o azzurrognole; si riscontrano lenti metriche di sabbie e arenarie da giallastre a grigie, con stratificazione incrociata, alternate con peliti e lenti conglomeratiche.

Per una dettagliata descrizione del modello geologico del sito si rimanda al documento "Relazione geologica, geomorfologica ed idrogeologica" (Rif. [12]).

8.2 Indagini geotecniche

Ai fini della modellazione e della caratterizzazione geotecnica delle unità che interessano le opere in sotterraneo in progetto, sono stati utilizzati i dati relativi alle campagne geotecniche di seguito elencate:

Per la fase progettuale definitiva sono stati eseguiti:

- n. 179 sondaggi a carotaggio continuo (profondità varabili tra 30 m e 250 m dal piano campagna), attrezzati con piezometri ed inclinometri (laddove previsti);
- n. 80 prove dilatometriche/pressiometriche nei fori di sondaggio;
- n. 129prove di permeabilità di tipo Lefranc e Lugeon;
- n. 31 prospezioni sismiche MASW.
- n. 44 prove sismiche in foro tipo down-hole;

Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	В	18 di 124

shortyop 40 1	ID	Prof. ipotizzata	log	Rilievo gas	Prove permeabilità	Prove pressiometriche e dilatometriche	Piezometro casagrande	Piezometro norton	Piezometro Elettrico	DH	MASW	HVSR	inclinometro
short 1 1 1 1 1 1 1 1 short 1 1 1 1 1 1 1 1 short 1 1 1 1 1 1 1 1 short 1 1 1 1 1 1 1 1 short 1 1 1 1 1 1 1 1 short 1 1 1 1 1 1 1 1 short 1 1 1 1 1 1 1 1 short 1 1 1 1 1 1 1 1 short 1 1 1 1 1 1 1 1 short 1 1 1 1 1 1 1 1 short 1 1 1 1 1 1 1 1 short 1 1 1 1 1 1 1 1 short 1 1 1 1 1 1 1 short 1	4a-S01/40m	40	1		1	1	1				1	1	
Ab3040 40 1 </td <td>4a-S02/40m</td> <td>40</td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td>	4a-S02/40m	40	1			1				1			
Abbox Abbox <th< td=""><td>4a-S03/40m</td><td>40</td><td>1</td><td></td><td>1</td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	4a-S03/40m	40	1		1	1	1						
Abborn Abb Abb<	4a-S04/40m	40	1		1	1	1						
start start <th< td=""><td>4a-S06/40m</td><td>40</td><td>1</td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>1</td></th<>	4a-S06/40m	40	1				1						1
4-9590004001011111010101001001004-939000400111111111114-91300040011<	4a-506015	10	1		1	1	1						
4+89440n 40 1 - - - - - - - - - 1 4>51140n 40 1 1 1 1 1 -	4a-S08/40m	40	1		1	1	1						
hesh	4a-S09/40m	40	1										1
44.51340m40011 <th< td=""><td>4a-S11/40m</td><td>40</td><td>1</td><td></td><td>1</td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	4a-S11/40m	40	1		1	1	1						
4+514/40m40111111111114+514/40m40111111111114+515/40m40111 <td>4a-S12/40m</td> <td>40</td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	4a-S12/40m	40	1		1	1	1						
44-514/00m4011 <th< td=""><td>4a-S13/40m</td><td>40</td><td>1</td><td></td><td>1</td><td>1</td><td>1</td><td></td><td></td><td></td><td>1</td><td>1</td><td></td></th<>	4a-S13/40m	40	1		1	1	1				1	1	
Analyadin Au I <thi< th=""> I I I</thi<>	4a-S14/40m	40	1		1	1	1			1			
B s DT Adm A b I <thi< th=""> I I <th< td=""><td>4a-S15/40m</td><td>40</td><td>1</td><td>-</td><td>1</td><td>1</td><td>1</td><td></td><td></td><td>1</td><td>1</td><td>1</td><td></td></th<></thi<>	4a-S15/40m	40	1	-	1	1	1			1	1	1	
base base <th< td=""><td>4a-S10/40m</td><td>40</td><td>1</td><td></td><td>1</td><td>1</td><td>T</td><td></td><td></td><td>1</td><td>1</td><td>1</td><td></td></th<>	4a-S10/40m	40	1		1	1	T			1	1	1	
4a GN1 5013 40 10 100 1	4a-GN1-S01	40	1	1	1	1	1			-	1	1	
44-6N1-501n 40 10 </td <td>4a-GN1-S01a</td> <td>40</td> <td></td>	4a-GN1-S01a	40											
44-6N1-30 140 1	4a-GN1-S01b	40											
A+AR14-50 135 1	4a-GN1-S02	85	1		1	1					-		
As 6N1-50% DS I	4a-GN1-S03	140	1	1	1	1	1						
4a-GN1-SOS/SOM 95 1 <td>4a-GN1-S04</td> <td>135</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	4a-GN1-S04	135	1	1	1	1	1						
44 eON1-SOG 30 · · · 1 1 · <t< td=""><td>4a-GN1-S05/50m</td><td>95</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	4a-GN1-S05/50m	95					1						
da< N1-bbs 30 -	4a-GN1-S06	30				1	1				-	-	
Harvard Harvard <t< td=""><td>4a-GN1-S06a</td><td>30</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	4a-GN1-S06a	30											
Add	4a-GN1-S06b	30								1	1	1	1
AassAyAum Au 1	48-319/4011	40	4		1	1	1				1	1	
Horseynam Horseynam Image	4a-S20/40m	40	1	-	1	1	1			1			
As S24/40m 40 1 <th< td=""><td>4a-S22/40m</td><td>40</td><td>1</td><td></td><td>1</td><td></td><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td></td></th<>	4a-S22/40m	40	1		1		1			1			
4a-GN2-507 40 1 <th< td=""><td>4a-S24/40m</td><td>40</td><td>1</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td></th<>	4a-S24/40m	40	1		1					1			
4a-GN2-S07a 40 1 1 1 1 4a-GN2-S07b 50 1 1 1 1<	4a-GN2-S07	40	1	1	1	1	1						
$A_3 - GN2-507b$ 40 1 $ 1$ 1	4a-GN2-S07a	40	1							1			
Aa < GN2 < SD7bis S0 1 1 - - - - - - - - - - - - - - - 1 -	4a-GN2-S07b	40	1										1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4a-GN2-S07bis	50	1	1	-	1							
4a-GN2- SOP1ZOM SOP1ZOM 4a-GN2- 310a/30m 70 11 1 11 11 11 11 11 11 4a-GN2- 310a/30m 30 1 4 1 1 1 1 1 1 1 1 4a-GN2- 510a/30m 30 1 1 1 1 1 1 1 1 1 4a-GN2- 510b/30m 30 1 1 1 1 1 1 1 1 4a-S22/40m 400 1 1 1 1 1 1 1 4a-S22/30m 400 1 1 1 1 1 1 1 4a-S22/40m 400 1 1 1 1 1 1 1 4a-S23/40m 40 1 1 1 1 1 1 1 4a-S23/40m 6 1 1 1 1 1 1 1 4a-S23/40m 6 1 1 1 1 1 1 1 4a-S23/40m 6 1 1 1 1 1 1 1 4a-S23/40m 6 1 1 1 1 1 <	\$08/165m	165											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4a-GN2- \$09/120m	70	1		1		1						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4a-GN2-S10	30	1				1						
S10a/30m S0 A Image: second seco	4a-GN2-	20	1										1
4a-GN2- S10b/30m 30 1 Image: single si	\$10a/30m	JU	1										1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4a-GN2- S10b/30m	30	1										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4a-S26/40m	40	1		1	1	1						
4a-528/40m 40 1	4a-S27/40m	40	1		1						1	1	
4a-528/40m 66 1	4a-S28/40m	40	1		1		1						
4a - cy - y - urbox (A + urbox (A	4a-S28a/40m	6	L				-	1			-	-	ļ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4a-529/40m	40	1	1	1	1	1	<u> </u>		<u> </u>	1	1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4a-GN3-S11a	30	1	1	1	1	1			1			
S11b/30m 30° 1°	4a-GN3-	30	_										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	S11b/30m												
4a-GN3-5 Joom 50 1	4a-GN3-S12	/5	1		1	1	1						
S13a/80m 20 20 1	4a-GN3-	0U 20	1		1		1						
Hardroid (1) (3) 1 1 1 1 1 1 1 4a-GN3- S15/265m 265 280 1 280 1 280 1	\$13a/80m	20	1		1	1	1						
S15/265m 250 250 1 1 1 4a-GN3- S16/280m 280 1 1 1 1 4a-GN3- S17/170m 170 1 1 1 1 4a-GN3-S18/40m 440 1 1 1 1	4a-GN3-	05 265	1		1	1	1						
1 1 1 1 36/280m 10 1 1 1 4a-GN3- S17/170m 170 1 1 1 1 4a-GN3- S17/170m 170 1 1 1 1 1 4a-GN3-S18/40m 40 1 1 1 1 1 1	\$15/265m	205											
4a-GN3- S17/170m 170 1 1 1 1 4a-GN3-S18/40m 40 4	\$16/280m	280	1						1				
4a-GN3-518/40m 40 40	4a-GN3- S17/170m	170	1						1				
	4a-GN3-S18/40m	40											

Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	в	19 di 124

Il numero totale dei campioni analizzati nella tratta di interesse e sottoposti a prove di laboratorio è di 177. Sui campioni indisturbati sono state eseguite le seguenti prove meccaniche:

- prove di taglio diretto (TD);
- prove di compressione triassiale (CIU, CID, UU);
- prove di compressione monoassiale;
- prove di rigonfiamento impedito;
- prove di rigonfiamento secondo il metodo Huder-Amberg.

Nel corso della campagna di indagini eseguita nel 2018, complessivamente nel Lotto 3 sono state eseguite le seguenti indagini in sito:

• n. 14 sondaggi a rotazione e carotaggio continuo, di cui 13 strumentati con piezometri. All'interno dei fori di sondaggio sono state eseguite n. 24 prove di permeabilità, n. 16 prove pressiometriche ed n. 66 prove SPT.

Il numero totale dei campioni prelevati nel settore di intervento del Lotto 3 e sottoposti a prove di laboratorio è di 94, di cui 60 campioni indisturbati di terreno, 34 rimaneggiati Sui campioni prelevati sono state compiute le seguenti prove:

- prove di taglio diretto (TD);
- prove di compressione triassiali (CIU, CID, UU);
- prove edometriche.

Nella campagna di indagini pregressa (2013) sono state, invece, eseguite le seguenti indagini:

- n. 4 sondaggi a rotazione e carotaggio continuo, strumentati con piezometri. Prove di permeabilità ed SPT in foro di sondaggio.
- n. 3 prospezioni sismiche MASW.
- prove di laboratorio.

Per ulteriori dettagli relativi alle campagne di indagini si rimanda al documento "Relazione geologica, geomorfologica ed idrogeologica".

8.3 Caratterizzazione geotecnica

I risultati delle indagini geotecniche, in situ e di laboratorio, hanno permesso di definire il modello geotecnico rappresentativo delle condizioni stratigrafiche e delle caratteristiche fisico-meccaniche dei terreni/rocce interessati dall'opera in sotterraneo lungo il suo tracciato. L'ubicazione dei sondaggi ed il modello geotecnico sono rappresentati nell'elaborato "Profilo geotecnico" (0). Nei paragrafi che seguono si riepilogano in sintesi i risultati

della caratterizzazione e modellazione geotecnica per ciascuna delle formazioni interessate dallo scavo delle gallerie.

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA						
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
	RS3U	40D 07	CL	GN 00001	B	21 di 124	

8.4 Formazione TRV

Di seguito si riportano i grafici e le tabelle contenenti i parametri per le singole gallerie in esame per la formazione del TRV.

Figura 6: Galleria Salso – TRV – fuso granulometrico

Figura 7: Galleria Salso - TRV - peso dell'unità di volume

Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale

Figura 8: Galleria Salso - TRV – indice di plasticità e contenuto d'acqua naturale

Carta di Plasticità di Casagrande

Figura 9: Galleria Salso - TRV – carta di plasticità di Casagrande

Figura 10: Galleria Salso - TRV - coesione e angolo di resistenza al taglio da prove di taglio diretto

Figura 11: Galleria Salso - TRV - coesione non drenata da prove SPT

Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale

Figura 12: Galleria Salso - TRV - modulo di Young da sismiche

Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	В	28 di 124

Figura 13: Galleria Salso - TRV - modulo di Young da prove dilatometriche

	I					
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	в	29 di 124

Figura 14: Galleria Salso - TRV - modulo di Young da prove pressiometriche

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA						
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
	RS3U	40D 07	CL	GN 00001	B	30 di 124	

Parametri non drenati

Per la determinazione dei valori sperimentali di Cu sono stati considerate prevalentemente le prove in situ, soprattutto ad elevate profondità, perché ritenute più affidabili e meno affette dal disturbo del campione che nella formazione in esame è risultato essere a volte particolarmente evidente. Pertanto si sono elaborate le prove pressiometriche ma anche quelle dilatometriche più profonde le quali hanno consentito di valutare la modifica delle carattristiche della formazione in esame con la profondità. In questo caso si è pensato di sfruttare le note correlazioni di letteratura con la pressione limite effficace p'l (Amar e Jezequel, 1972): Cu=(pl-po)/5.5 (KPa). La determinazione di questa grandezza è risultata particolarmente delicata in quanto ad elevate profondità la dilatazione dello strumento non produce deformazioni prossime alla rottura; è stato necessario quindi effettuare una stima per interpolazione dei dati sperimentali. Nella tabella seguente si evidenziano i valori così determinati e riportati nei grafici precedenti.

prova	p'L (KPa)	Cu(KPa)
4a_GN3S17 104m	13476.6	1372.7
4a_GN1_S03 P3 114m	15369.4	1561.9
4a_GN3S17 116m	2573.9	282.4
Fog4a_GN3S17 142m	12951.0	1320.1
Fog4a_GN3S17 149m	34514.1	3476.4
Fog4a_GN3S17 156m	7527.8	777.8
4AGN03 S16 1DRT 223,5m	16515.8	1676.6
4AGN03 S16 2DRT 243m	33585.7	3383.6
Fog4a_GN3S17 3DRT 254m	33585.7	3383.6
Fog4a_GN3S17 4DRT 261m	8553.4	880.3

Per i parametri di resistenza non drenati quindi a coperture maggiori di 50m si è assunto un profilo linearmente crescente con la profondità pari a Cu=5.9z che interpola l'andamento con la profondità dei dati sperimentali. Il modulo non drenato è stato assunto proporzionale al valore di Cu secondo la correlazione sotto riportata assumendo Eu=500Cu.

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA							
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
	RS3U	40D 07	CL	GN 00001	B	31 di 124		

Parametri drenati

Dal momento che le prove di laboratorio in profondità son meno numerose e gli stati tensionali di prova non sono rappresentativi degli elevati stati tensionali profondi, per i parametri di resistenza drenati si può utilizzare un inviluppo curvilineo dei dati sperimentali disponibili (vd. relazione Geotecnica generale), dal quale, è possibile calcolare i valori dei parametri meccanici di resistenza al variare dello stato tensionale, per argille OC. I risultati vengono mostrati nella figura sottostante.

Figura 15: TRV - inviluppo di Mesri a rottura da prove di laboratorio

Per coperture molto elevate (400m e 600m) si è comunque tenuto conto di uno stato tensionale che risente dell'elevato rilascio tensionale indotto al contorno degli scavi ed imputabile anche all'ipotesi di sovrascavo adottata. Per i moduli elastici si è assunto un profilo cautelativo che comunque interpola i dati sperimentali pari a E'=3z. per Eu si è assunto un valore proporzionale ai valori di Cu secondo la correlazione di Lancellotta Eu=500Cu.

Pertanto dall'analisi dei valori delle prove eseguite e dalle assunzioni evidenziate in precedenza si possono ricavare i parametri riporati nella tabella seguente, con le precisazioni di seguito esplicitate.

Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	в	32 di 124

Tabella 2 – Parametri derivati dalla caratterizzazione geotecnica – Galleria Trinacria - TRV

COPERTURA	FORMAZIONE	γ	GSI	mi	σm	ν	E'	c'	Cu	φ'
		[kN/m3]			[MPa]		[GPa]	[kPa]	[kPa]	[°]
0-15	TRV	21	-	-	-	0.3	0.05-0.10	-	225	0
15-25	TRV	21	-	-	-	0.3	0.10-0.15	-	225	0
25-50	TRV	21	-	-	-	0.3	0.15-0.2	-	500	-
50-100	TRV	22	-	-	-	0.3	0.2-0.3	101	594	19
100-200	TRV	22	-	-	-	0.3	0.3-0.6	224	1188	16
300	TRV	22	-	-	-	0.3	0.9	421	1782	14
400	TRV	22	-	-	-	0.3	1.2	85	2970	22
600	TRV	22	-	-	-	0.3	1.8	85	3564	22

 γ = peso dell'unità di volume dell'ammasso

GSI = geological strength index

mi = costante del materiale

 σm = resistenza a compressione monoassiale

c' $_k$ = valore caratteristico della coesione efficace dell'ammasso

 ϕ'_k = valore caratteristico dell'angolo di attrito dell'ammasso

 $c_{u\,k}$ = valore caratteristico della coesione non drenata

8.5 Valori caratteristici utilizzati nelle analisi

Tabella 3 –	Intervallo	dei	parametri	geotecnici
Tabena 5 –	inter vano	uu	parametri	geoteemer

Sezione		pk	Z_0	$\mathbf{h}_{\mathbf{w}}$	σο	p_{w0}	p_{wR}	$\mathbf{R}_{\mathbf{w}}$	γ	c' _k	ϕ'_k	C _{u k}	E_k	E_{uk}
di analisi	Unità	[km]	[m]	[m]	[MPa]	[MPa]	[MPa]	[m]	[kN/m ³]	[MPa]	[°]	[MPa]	[MPa]	[MPa]
D1	TRV		50	-	1,05	-	-	-	21	-	-	0,500	-	250
D2	TRV		100	81.5	2,2	0.815	-	-	22	121	19	0,594	300	297
D3	TRV		200	100	4,4	1	-	-	22	260	16	1,188	600	594
Z_0 = copertura rispetto al piano dei centri della galleria														
$h_w = carico idraulico$														
σ_0 = tensione totale iniziale al livello del cavo														
$p_{w0} = pre$	p_{w0} = pressione interstiziale al livello del cavo in condizioni indisturbate													
$p_{wR} = pre$	p _{wR} = pressione interstiziale sul profilo di scavo													
$R_w = rag_s$	gio di infl	uenza idrau	lica olt	re il qu	ale si rist	abilisce p	w0							
γ = peso dell'unità di volume dell'ammasso														
c'_k = valore caratteristico della coesione efficace dell'ammasso														
ϕ_{k}^{*} = valore caratteristico dell'angolo di attrito dell'ammasso														
c_{uk} = valore caratteristico della coesione non drenata														
E_k = valore caratteristico del modulo elastico dell'ammasso														
$E_{u k}$ = valore caratteristico del modulo elastico non drenato dell'ammasso														
Le analis	i sono svo	olte con rife	rimento	o allo se	cavo di u	na galleri	a di raggio	o equiva	llente R _{eq} p	ari a 4,6	5m.			

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA								
Galleria Salso - Relazione geotecnica e di calcolo della	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO			
galleria naturale	RS3U	40D 07	CL	GN 00001	B	34 di 124			

9 FASE DI DIAGNOSI

Nella fase di diagnosi, sulla base del modello geotecnico scaturito dagli studi e dalle indagini effettuati nella fase conoscitiva, si procede alla previsione della risposta tensio-deformativa dell'ammasso allo scavo, in assenza di interventi di stabilizzazione. La valutazione della risposta deformativa dell'ammasso allo scavo è condotta con riferimento alle tre categorie di comportamento fondamentali individuate nel metodo ADECO-RS (Rif. [15]), di seguito brevemente richiamate, sulla base delle quali il tracciato sotterraneo è suddiviso in tratte a comportamento deformativo omogeneo.

9.1 Classi di comportamento del fronte di scavo

Secondo l'approccio ADECO-RS (Rif. [15]) la previsione dell'evoluzione dello stato tensionale a seguito dell'apertura di una galleria è possibile attraverso l'analisi dei fenomeni deformativi, che forniscono indicazioni sul comportamento della cavità nei riguardi della stabilità a breve e a lungo termine. Dati sperimentali e analisi teoriche hanno dimostrato che il comportamento della cavità è significativamente condizionato, oltre che dalle caratteristiche geometriche della galleria stessa e dai carichi litostatici, anche dalle caratteristiche di resistenza e di rigidezza del nucleo d'avanzamento, inteso come il volume di terreno a monte del fronte di scavo. Se il nucleo non è costituito da materiale sufficientemente rigido e resistente da mantenere in campo elastico il proprio comportamento tensio-deformativo, si sviluppano fenomeni deformativi e plasticizzazioni rilevanti in avanzamento, a cui consegue l'evoluzione verso condizioni di instabilità del fronte e del cavo. Se, invece, il comportamento del nucleo d'avanzamento si mantiene in campo elastico, il nucleo stesso svolge un'azione di precontenimento del cavo, che si mantiene a sua volta in condizioni elastiche, conservando le caratteristiche di massima resistenza del materiale attraversato e quindi configurazioni di stabilità.

Sulla base di tali considerazioni, il comportamento del nucleo-fronte di scavo, al quale è legato quello della cavità, può essere sostanzialmente ricondotto alle seguenti tre categorie:

Categoria A: nucleo-fronte stabile

Tale categoria corrisponde alla condizione in cui lo stato tensionale nel terreno al fronte e al contorno della cavità non supera le caratteristiche di resistenza dell'ammasso; in tal caso le deformazioni sono prevalentemente elastiche, di piccola entità e tendono ad esaurirsi rapidamente con la distanza dal fronte. Il fronte di scavo e il cavo sono stabili e quindi non si rendono necessari interventi preventivi di stabilizzazione, se non localizzati e in misura ridotta. Il rivestimento definitivo costituisce il margine di sicurezza per la stabilità a lungo termine.

Categoria B: nucleo-fronte stabile a breve termine

Tale categoria corrisponde alla condizione in cui lo stato tensionale nel terreno al fronte e al contorno della cavità, a seguito delle operazioni di scavo, raggiunge la resistenza dell'ammasso. I fenomeni deformativi tensioni sono di tipo elasto-plastico, di maggiore entità rispetto al caso precedente. Nell'ammasso può prodursi una eventuale riduzione delle caratteristiche di resistenza con decadimento verso i parametri residui. La risposta tensio-deformativa può essere opportunamente controllata con adeguati interventi di preconsolidamento del fronte e/o di

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE NUOVO COI TRATTA CA	E FERROV LLEGAME LTANISSE	'IARIA MESSI NTO PALERN ETTA XIRBI –	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	C
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	B	35 di 124

consolidamento al contorno del cavo. In tal modo si fornisce l'opportuno contenimento all'ammasso perché mantenga un comportamento stabile. Nel caso non si prevedano interventi, lo stato tensio-deformativo può evolvere verso situazioni di instabilità del cavo in fase di realizzazione. Il rivestimento definitivo costituisce il margine di sicurezza per la stabilità a lungo termine.

Categoria C: nucleo-fronte instabile

Tale categoria corrisponde alla condizione in cui, superata la resistenza del terreno, i fenomeni deformativi evolvono molto rapidamente in campo plastico, producendo la progressiva instabilità del fronte di scavo e un incremento dell'estensione della zona dell'ammasso decompressa e plasticizzata al contorno della cavità, con rapido decadimento delle caratteristiche meccaniche del materiale. L'espansione della fascia di materiale decompresso al contorno del cavo deve essere contenuta prima dell'arrivo del fronte di scavo, mediante interventi di preconsolidamento in avanzamento, che consentono di creare artificialmente l'effetto arco per far evolvere la risposta tensio-deformativa verso configurazioni di stabilità.

9.2 Determinazione delle categorie di comportamento

Per la determinazione delle categorie di comportamento sono stati utilizzati due metodi di analisi:

- per le tratte ad alta copertura è stato utlizzato il metodo delle linee caratteristiche (o convergenzaconfinamento); tale metodo consente l'analisi 3D semplificata dello scavo di gallerie in relazione alle proprietà meccaniche dell'ammasso attraversato, alle caratteristiche geometriche dell'opera, agli interventi previsti di precontenimento e contenimento, e all'installazione dei rivestimenti provvisori e definitivi. Nella fase di diagnosi, poiché la finalità è la valutazione del comportamento deformativo dell'ammasso in assenza di interventi di stabilizzazione, le analisi consistono nella valutazione della sola curva caratteristica del fronte (e del cavo) senza considerare l'interazione con i sostegni.
- Per le tratte a bassa copertura sono stati utlizzati i metodi di analisi della stabilità del fronte all'equilibrio limite.

La definizione delle sezioni analizzate è stata eseguita sulla base dei risultati della caratterizzazione geotecnica (vedi § 0), in funzione delle condizioni idrauliche previste e della distribuzione delle diverse classi di copertura lungo il tracciato.

9.2.1 Analisi con il metodo delle linee caratteristiche

Il comportamento delle strutture di rivestimento e dell'ammasso sono studiati separatamente: la curva caratteristica del cavo (o curva di convergenza) rappresenta l'evoluzione della convergenza radiale del cavo al diminuire della tensione radiale agente sul contorno del profilo di scavo, espressa in funzione del tasso di deconfinamento λ con cui è simulato l'effetto dello scavo in avanzamento; la curva caratteristica dei sostegni (o curva di confinamento) rappresenta l'evoluzione della loro convergenza radiale al crescere della pressione radiale agente sugli stessi.

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE NUOVO CO TRATTA CA	E FERROV LLEGAME LTANISSE	'IARIA MESSI INTO PALERN ETTA XIRBI —	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	D
Galleria Salso - Relazione geotecnica e di calcolo della	Commessa	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
galleria naturale	RS3U	40D 07	CL	GN 00001	B	36 di 124

L'intersezione tra la curva di convergenza e la curva di confinamento individua il punto di equilibrio rappresentativo dello stato finale della galleria rivestita.

Le ipotesi alla base del metodo rendono lo stesso adatto allo studio di gallerie profonde a sezione circolare.

Per l'ammasso si utilizza un modello costitutivo elasto-plastico, con criterio di resistenza di Mohr-Coulomb.

Ove necessario, per la definizione del comportamento deformativo della galleria in funzione della distanza dal fronte, si è utilizzato il Nuovo Metodo Implicito (NMI) (Rif. [16], Rif. [17]).

Per il calcolo della convergenza al fronte si utilizzano le soluzioni analitiche per cavità sferiche.

Per le analisi relative alla fase di diagnosi, finalizzate quindi alla sola valutazione del comportamento deformativo dell'ammasso per la determinazione della categoria di comportamento, non viene presa in considerazione l'interazione con i sostegni, per cui la soluzione del problema è ridotta alla valutazione della sola curva caratteristica del fronte (e del cavo) in assenza di interventi.

Sezioni analizzate

Nelle tabelle seguenti sono riepilogate le sezioni analizzate con i relativi dati di input utilizzati per il calcolo.

Tabella 4 - Sezioni analizzate con il metodo delle curve caratteristiche: dati di input

Sezione		pk	Z_0	$h_{\rm w}$	σ_{o}	p_{w0}	p_{wR}	$\mathbf{R}_{\mathbf{w}}$	γ	c'k	φ'k	Cu k	E_k	E_{uk}
di analisi	Unità	[km]	[m]	[m]	[MPa]	[MPa]	[MPa]	[m]	[kN/m ³]	[MPa]	[°]	[MPa]	[MPa]	[MPa]
D1	TRV		50	-	1,05	-	-	-	21	-	-	0,500	-	250
D2	TRV		100	81.5	2,2	0.815	-	-	22	121	19	0,594	300	297
D3	TRV		200	100	4,4	0.95	-	-	22	260	16	1,188	600	594
Z ₀ = copertura rispetto al piano dei centri della galleria														
$h_w = carico idraulico$														
σ_0 = tensione totale iniziale al livello del cavo														
p_{w0} = pressione interstiziale al livello del cavo in condizioni indisturbate														
$p_{wR} = pre$	essione int	erstiziale su	ul profi	lo di sc	avo									
$R_w = ragg$	gio di infl	uenza idrau	lica olt	re il qu	ale si rist	abilisce p	w0							
$\gamma = peso$	dell'unità	di volume	dell'an	masso										
$c'_k = val$	ore caratte	eristico dell	a coesi	one effi	cace dell	'ammasso)							
φ_k^{*} = valore caratteristico dell'angolo di attrito dell'ammasso														
c_{uk} = valore caratteristico della coesione non drenata														
E_k = valore caratteristico del modulo elastico dell'ammasso														
$E_{u k}$ = valore caratteristico del modulo elastico non drenato dell'ammasso														
Le analis	i sono svo	olte con rife	rimento	o allo se	cavo di u	na galleria	a di raggio	equiva	llente R _{eq} p	ari a 4,6	5m.			

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA

	l					
Galleria Salso - Belazione geotecnica e di calcolo della	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
galleria naturale	RS3U	40D 07	CL	GN 00001	В	37 di 124

Sezione	TT 1 1 1	pk	Z ₀	$h_{\rm w}$	σο	p_{w0}	p_{wR}	$R_{\rm w}$	γ	c'k	φ'ĸ	Cu k	E_k	E_{uk}
dı analisi	Unità	[km]	[m]	[m]	[MPa]	[MPa]	[MPa]	[m]	[kN/m ³]	[MPa]	[°]	[MPa]	[MPa]	[MPa]
D1	TRV		50	-	1,05	-	-	-	21	-	-	0,500	-	250
D2	TRV		100	-	2,2	-	-	-	22	121	19	0,594	300	297
D3	TRV		200	-	4,4	-	-	-	22	260	16	1,188	600	594
	Za = copertura rispetto al piono dei centri della galleria													
$Z_0 = cop$	$Z_0 = \text{copertura rispetto al piano dei centri della galleria}$													
$\Pi_w - carro$	$h_w = carico idraulico$													
$\Box_0 =$ tensione totale iniziale al livello del cavo														
$p_{w0} = pre$	p_{w0} = pressione interstiziale al livello del cavo in condizioni indisturbate													
$p_{wR} = pre$	p _{wR} = pressione interstiziale sul profilo di scavo													
$R_w = rag$	gio di infl	uenza idrau	lica olt	re il q	uale si ris	tabilisce p	D_{W0}							
$\Box = \text{pesc}$	dell'unit	à di volume	dell'ai	nmass	80									
$c'_k = val$	ore caratte	eristico dell	a coesi	one ef	ficace del	l'ammass	0							
$\varphi'_k = va$	lore caratt	eristico dell	l'angol	o di at	trito dell'	ammasso								
$c_{u k} = val$	ore caratte	eristico dell	a coesi	one no	on drenata	L								
$E_k = valc$	ore caratte	ristico del r	nodulo	elasti	co dell'an	nmasso								
$E_{uk} = va$	$E_{n,k}$ = valore caratteristico del modulo elastico non drenato dell'ammasso													
Le analis	Le analisi sono svolte con riferimento allo scavo di una galleria di raggio equivalente R_{eq} pari a 4,65m.													

*drenaggi da galleria TBM in fase di scavo

La rappresentazione delle curve caratteristiche delle sezioni di analisi eseguite è riportata integralmente in allegato.

Risultati delle analisi

I risultati delle analisi sono stati esaminati alla luce di due aspetti:

- confronto tra la resistenza a compressione monoassiale dell'ammasso σ_c e la pressione critica al fronte $p_c = (3\sigma_o 2\sigma_c) / (1 + 2K_p)$, che individua il passaggio dal comportamento elastico a quello plastico,
- sviluppo dei fenomeni deformativi e di plasticizzazione nella sezione al fronte e al contorno del cavo.

I risultati delle analisi, riassunti nella tabella seguente, mostrano:

Il comportamento allo scavo è instabile con tendenza all'instabilità a coperture maggiori e nelle tratte a comportamento drenato (TRVa)

Sezione	UF	$u_{\rm F}/R_{eq}$	R _{PF}	R_{PF}/R_{eq}	u∞	R _P	Criterio	Criterio	
analisi	[m]	[%]	[m]	[-]	[m]	[m]	u_F/R_{eq}	$R_{pl F}/R_{eq}$	
D1	1.02	0.22	4.65	1	0.047	7.8	В	С	
D2	4,33	0.93	8.3	1.8	20.77	17.7	С	С	
D3	3,72	0.80	8.4	1.8	17.9	17.7	С	С	
$u_F = conv$	ergenza al	fronte (so	luzione c	avità sferic	ca)				
$R_{PF} = ragg$	gio plastic	o al fronte							
$u_{\infty} = conv$	vergenza fi	nale del ca	vo						
$R_P = ragg$	R_P = raggio plastico finale al contorno del cavo								
$R_{eq} = ragg$	gio di scav	o equivale	nte della	galleria (vo	edi tabella	a preceden	ite)		

Tabella 5 - Risultati delle analisi

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA					D
Galleria Salso - Relazione geotecnica e di calcolo della	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
galleria naturale	RS3U	40D 07	CL	GN 00001	B	39 di 124

Analisi della stabilità del fronte

Per la valutazione del comportamento deformativo del fronte nelle tratte a bassa copertura sono stati utilizzati i metodi di seguito descritti.

Metodo di Tamez & Cornejo (1984)

Il metodo all'equilibrio limite proposto da Tamez (1984, Rif. [18]) è basato sull'ipotesi di risposta del fronte di scavo in condizioni drenate e pertanto il calcolo è eseguito in tensioni efficaci. Si ipotizza che al fronte si formi un meccanismo di rottura approssimabile mediante solidi prismatici, come mostrato in Figura 16, e si valuta il coefficiente di sicurezza FSF rispetto a tale condizione di collasso, come rapporto tra i momenti delle forze resistenti e i momenti delle forze agenti

Figura 16 - Stabilità del fronte secondo il Metodo di Tamez (1984)

Talvolta la stabilità del solo prisma 3, gravante sulla zona di galleria non ancora sostenuta dal rivestimento, può risultare più critica rispetto all'insieme dei tre prismi; è definito in tal senso un secondo coefficiente di sicurezza FS₃, per cui ai fini della stabilità del fronte si assume il coefficiente di sicurezza minimo tra i due,

$$FSF = \frac{(A + B + C)}{D}$$

$$A = \left[\frac{2(\tau_{m2} - \tau_{m3})}{(1 + a/l)^2} + 2\tau_{m3}\right] \times \frac{h}{b}$$

$$B = \left[\frac{2\tau_{m3}}{(1 + a/l) \times \sqrt{K_A}}\right] \times \frac{h_1}{h}$$

$$FS_3 = \frac{2\tau_{m3}}{(\gamma Z - P_E)} \times \frac{h_1}{b} \times \left(1 + \frac{b}{a}\right)$$

$$D = \left[\frac{3.4C_1}{(1 + a/l)^2 \times \sqrt{K_A}}\right]$$

$$D = \left[1 + \frac{2h}{3Z(1 + a/l)^2}\right] \times (\gamma Z - P_E)$$

Il fronte di scavo è considerato stabile per valori di FSF > 1,5, Per valori di FSF superiori a 2, il sostegno del fronte può considerarsi non necessario,

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA						
Galleria Salso - Relazione geotecnica e di calcolo della	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
galleria naturale	RS3U	40D 07	CL	GN 00001	B	40 di 124	

Metodo di Broms e Bennermark (1967)

Broms e Bennemark (Rif. [19]) hanno affrontato per la prima volta sperimentalmente il problema della stabilità del fronte, deducendo una relazione in grado di descrivere la stabilità di fori non supportati praticati su sostegni verticali in un terreno puramente coesivo (criterio di Tresca) in condizioni non drenate, in assenza di falda (Figura 17).

Figura 17 - Stabilità del fronte secondo il Metodo di Broms & Bennermark (Broms et al., 1967 (Rif. [19]))

Con questa relazione è stato definito il rapporto di stabilità *N*, dato da:

$$N = \frac{\sigma_s + \gamma z - \sigma_T}{c_u}$$

dove:

 γ = peso dell'unità di volume del terreno

z = profondità dell'asse della galleria

 σ_s = sovraccarico eventualmente presente in superficie

 σ_T = eventuale pressione di sostegno applicata al fronte

 C_u = resistenza al taglio, in condizioni non drenate, alla profondità della galleria.

Sulla base di prove di estrusione eseguite in laboratorio e d'osservazioni in sito, Broms e Bennermark (1967) hanno concluso che il valore del rapporto di stabilità critico *N* perché si manifesti il collasso è pari a circa 6. A conclusioni simili giunse Peck (1969).

La seguente tabella fornisce una indicazione della relazione fra il numero di stabilità e le deformazioni attese:

Tabella 6 - Relazione fra il numero di stabilità e le deformazioni attese

N	Deformazioni
< 1	Trascurabili
1 – 2	Elastiche
2-4	Elasto-plastiche
4-6	Plastiche
> 6	Collasso

Sezioni analizzate

Le sezioni analizzate risultano in prossimità degli imbocchi della galleria per coperture ridotte

In Tabella 7 e

Tabella 8 sono riepilogati tutti i dati di input utilizzati nelle analisi.

Tabella 7 - Sezione analizzate col metodo di Tamez per l'analisi di stabilità del fronte di scavo

Sezione		pk.	Z	b	h	W	h_1	γ1	γ2	c' 1	c' 2	φ'm
dı calcolo	Formazione	[km]	[m]	[m]	[m]	[m]	[m]	[kN/m ³]	[kN/m ³]	[kPa]	[kPa]	[°]
1	TRV	-	15	9.3	9.3	-	15	21	21	225	225	0
2	TRV	-	25	9.3	9.3	-	15	21	21	225	225	0
z = copert	z = copertura rispetto alla calotta della galleria											
b = larghe	b = larghezza dello scavo											
h = altezz	a dello scavo											
h ₁ = altezz	h ₁ = altezza sopra la calotta della galleria del meccanismo di collasso (se Z/h<3, h ₁ =Z)											
W = profondità superficie piezometrica da piano campagna												
γ_1 = peso medio dell'unità di volume del terreno sopra la calotta (su h1)												
γ₂= peso r	γ_2 = peso medio dell'unità di volume del terreno da scavare (su h)											
$c'_1 = valor$	re caratteristic	o medio d	ella coesio	one al fror	te (su h)							
$c'_2 = valor$	re caratteristic	o medio d	ella coesio	one dalla c	calotta fino	o a h1						
$\varphi'_m = valc$	ore caratteristic	co medio o	dell'angolo	o di attrito	dei mater	iali presenti	dall'arco	rovescio fin	o a h1			
L'analisi é	è stata svolta c	onsideran	do:									
$K_0 = coeff$	ficiente di spin	ita a ripos	o = 1-sen	φ'								
$K_a = coeff$	$K_a = \text{coefficiente di spinta attiva} = 1 - \sin \phi' / (1 + \sin \phi')$											
a = lunghe	ezza non soste	nuta = 0n	1									

Tabella 8 - Sezione analizzate col metodo di Broms e Bennermark per l'analisi di stabilità del fronte di scavo

Sezione	Formazione	pk.	Z	σ <mark>Ø</mark> s	γ	σ Ω T	Cu k
di calcolo		[km]	[m]	[kPa]	[kN/m ³]	[kPa]	[kPa]
1	TRV	-	15	0	21	0	225
2	TRV	-	25	0	21	0	225
z = profon $\sigma_s = sovrac$ $\gamma = peso d$ $\sigma_T = eventu$ $c_u = peso n$	dità dell'asse c carico eventua ell'unità di vol ale pressione o nedio dell'unità	della galle Ilmente pr ume del to di sostegn à di volum	ria resente in erreno o applicat ne del terro	superficie a al fronte eno sopra	e la calotta ((su h1)	

Risultati delle analisi

Per l'analisi eseguita con il metodo di Tamez i risultati sono stati esaminati in funzione dei valori dei coefficienti di sicurezza FSF e FS₃ calcolati secondo quanto riportato nel paragrafo precedente, In particolare per la definizione della categoria di comportamento si è preso a riferimento il seguente criterio:

Tabella 9: Criterio per la definizione della categoria di comportamento

FS = min (FSF; FS3)	<u>Classe di</u> <u>comportamento</u>
≥2	<u>A</u>
$< 2 e \ge 1,5$	<u>B</u>
< 1,5	<u>C</u>

Per quanto riguarda la formazione del TRV a 15m con Broms e Bennermark si ottiuene N=1.8 e quindi le deformazioni risultano in campo elastico.

Per quanto riguarda la formazione del TRV a 25m con Broms e Bennermark si ottiuene N=2.8 e quindi le deformazioni risultano in campo elasto-plastico.

Si rimanda in Allegato per maggiori informazioni.

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA							
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
	RS3U	40D 07	CL	GN 00001	B	43 di 124		

9.3 Definizione delle tratte a comportamento tensio-deformativo omogeneo

Sulla base dei risultati delle analisi sopra descritte, esaminati in modo critico tenendo conto dell'affidabilità dei dati di ingresso in termini di parametri di ammasso (rigidezza e resistenza), delle condizioni idrauliche al contorno, di eventuali variabilità attese lungo il tracciato della galleria e di possibili conseguenze per comportamenti imprevisti, è stato possibile concludere che:

- per la Galleria Salso si prevede:
 - nel tratto interessato dalla formazione TRV, è atteso un comportamento del nucleo-fronte di scavo di categoria C (Instabile);

Le previsioni di comportamento lungo il tracciato della galleria sono illustrate in forma sintetica nel "Profilo geotecnico – Galleria Salso" (0).

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA					C
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	B	44 di 124

10 FASE DI TERAPIA

Nel presente capitolo sono definiti gli interventi necessari per garantire la stabilità del cavo a breve e a lungo termine, in accordo con le indicazioni provenienti dalla fase conoscitiva e dall'analisi del comportamento allo scavo in assenza di interventi (fase di diagnosi).

10.1 Scelta del metodo di scavo

La scelta di uno scavo meccanizzato garantisce la stabilità del fronte e del cavo in modalità a fronte chuso ed in pressione anche in contesti geomeccanici difficili ed in presenza di falda apportando il minimo disturbo e garantendo anche produzioni di decine di metri al giorno, e quindi idonea per gallerie molto lunghe come quella in esame.

10.2 Scavo meccanizzato

Scelta della tipologia di TBM

La scelta di una TBM – EPB consente l'applicazione di uno scavo meccanizzato a fronte chiuso in contesti geomeccanici i più disparati adattandosi in modo affidabile anche in condizioni di estrema variabilità geomeccanica, come nel caso in esame.

Sezione di avanzamento

La sezione tipo di avanzamento in scavo meccanizzato fa riferimento ad una configurazione standard per comportamenti d'ammasso tipo C.

La sezione tipo ha le seguenti caratteristiche:

- raggio interno: 4,00 m
- raggio estradosso: 4.45 m
- diametro scavo: 4,65 m (in testa)
- macchina scudata dotata di conicità radiale centimetrica (differenza di raggio fra testa e coda)
- sovrascavo permanente max 50 mm (raggio) tramite gauge cutters (4.70m in testa)
- sovrascavo eccezionale in testa (tramite copy cutter): 5-10cm
- tipologia anello: universale
- numero conci: 6+1
- spessore conci: 45cm
- lunghezza conci: 1,5m

• guarnizioni in EPDM integrate su ciascun concio per garantire la tenuta idraulica tra i giunti (sia longitudinali che radiali)

Si è scelto di adottare un anello di tipo universale, che consente, mediante la semplice rotazione attorno al proprio asse di un anello rispetto al precedente, di sfalsare i giunti longitudinali e di seguire l'andamento plano-altimetrico del tracciato e di apportare le eventuali necessarie correzioni in corso d'opera, senza ricorrere ad elementi speciali.

Per una rappresentazione completa della sezione in scavo meccanizzato e del rivestimento in conci prefabbricati si rimanda agli specifici elaborati grafici di progetto.

Per i conci prefabbricati è prevista una classe di resistenza del calcestruzzo RCK55 e un'incidenza dell'armatura di circa 80- 98 kg/m³ di rivestimento (2 classi di armatura, rispettivamente classe II ed I).

Modalità di avanzamento

Si prevede una modalità chiusa di avanzamento per tutta la galleria con range di pressioni compresa fra 1bar e 5 bar con il valore massimo alle massime coperture e/o in presenza di battente idraulico (ridotto rispetto a quello originario) massimo pari a 50m in presenza della facies denominata TRVa.

Per il dettaglio delle modalità di avanzamento previste lungo il tracciato si rimanda all'elaborato "Profilo geotecnico" (0).

Di seguito si riporta, per ciascuna formazione, il range dei valori di pressione derivanti dalle verifiche di stabilità del fronte condotte.

Formazione	P _{min} [bar]	P _{max} [bar]
TRV	0	5

Tabella 10 - Avanzamento in modalità chiusa - Valori della contropressione al fronte

Tali valori risultano compatibili con quelli garantiti dalla tipologia di TBM prevista in progetto.

Nelle successive fasi di progettazione dovranno essere definiti nel dettaglio i valori di pressione al fronte lungo l'intero tratta in scavo.

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE NUOVO COI TRATTA CA	E FERROV LLEGAME LTANISSE	'IARIA MESSI NTO PALERN ETTA XIRBI –	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	D
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	B	46 di 124

10.3 Caratteristiche dei materiali strutturali

Si riportano di seguito le principali caratteristiche dei materiali impiegati nelle opere in progetto, con l'indicazione dei valori di resistenza e deformabilità adottati nelle verifiche, nel rispetto delle indicazioni della Normativa vigente (Rif. [1]), del "Capitolato generale tecnico di appalto delle opere civili" (Rif. [7]) e del "Manuale di Progettazione delle opere civili" (Rif. [8])

Con riferimento ai rivestimenti in calcestruzzo, si sottolinea che la classe di resistenza riportata nelle tabelle che seguono è quella utilizzata ai fini della modellazione numerica e delle verifiche strutturali. Per la completa e puntuale definizione delle caratteristiche dei materiali previsti per la realizzazione dell'opera si rimanda all'elaborato di progetto Caratteristiche dei materiali - Note generali.

Galleria	Copertura [m]	Classe CLS	Spessore [m]	As_circ [m^2]	<u>Incidenza</u> <u>totale</u>
Salso	≤100 m	45/55	0.45	14 Φ 14	80
Salso	≤200 m	55/67	0.45	14 Φ 16	98

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA

Galleria Salso - Belazione geotecnica e di calcolo della	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
galleria naturale	RS3U	40D 07	CL	GN 00001	в	47 di 124

Rivestimenti definitivi

Calcestruzzo per conci prefabbricati				
Classe di resistenza di calcolo	C 45/55			
Resistenza di progetto a compressione a 28 giorni	f_{cd} = 0.85 f_{ck} /1.5 = 25.5 MPa			
Modulo elastico a 28 giorni	$E_{cm} = 22000 (f_{cm}/10)^{0.3} = 36283 \text{ MPa}$			
Tensione massima in condizioni di esercizio (NTC 2018)	$\sigma_c = 0.6 f_{ck} = 27.4 \text{ MPa}$ combinazione caratteristica (rara) $\sigma_c = 0.45 f_{ck} = 20.5 \text{ MPa}$ combinazione quasi permanente			

Calcestruzzo per conci prefabbricati			
Classe di resistenza di calcolo	C 55/67		
Resistenza di progetto a compressione a 28 giorni	f_{cd} = 0.85 $f_{ck}/1.5$ = 31.5 MPa		
Modulo elastico a 28 giorni	$E_{cm} = 22000 (f_{cm}/10)^{0.3} = 37239 \text{ MPa}$		
Tensione massima in condizioni di esercizio (NTC 2018)	$\sigma_c = 0.6 f_{ck} = 33 \text{ MPa}$ combinazione caratteristica (rara) $\sigma_c = 0.45 f_{ck} = 25 \text{ MPa}$ combinazione quasi permanente		

Acciaio per barre di armatura		
Тіро	B450C	
Tensione caratteristica di rottura	$f_{tk} \ge 540 \text{ MPa}$	
Resistenza di progetto	$f_{yd} = f_{yk} / \gamma_s = 391,3 \text{ MPa}$	
Tensione massima in condizioni di esercizio (NTC 2018)	$\sigma_{\text{lim}} = 0,80 \text{ f}_{yk} = 360 \text{ MPa}$	

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE NUOVO COL TRATTA CA	E FERROV LLEGAME LTANISSE	'IARIA MESSI NTO PALERN ETTA XIRBI –	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	D
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	B	48 di 124

10.4 Analisi e verifica degli interventi al fronte e dei rivestimenti definitivi

Le soluzioni progettuali descritte nel capitolo precedente sono state analizzate per verificarne adeguatezza ed efficacia, con riferimento al modello geotecnico illustrato nel capitolo 7.2 e nel rispetto delle indicazioni della normativa vigente (Rif. [1]).

Le sezioni di analisi sono state definite sulla base della fase conoscitiva, individuando le condizioni più rappresentative anche in termini di copertura e condizioni idrauliche. Nella tabella seguente sono riepilogate le analisi eseguite:

Analisi n.	Sezione	progressiva	formazione	Condizione analisi
1	Cc1		TRV	Curva caratteristica 50m – pressione fronte 1 bar
2	Cc2		TRV	Curva caratteristica 100m – pressione fronte 3 bar
3	Cc3		TRV	Curva caratteristica 200m– pressione fronte 5 bar
4	Tamez		TRV	15m – no pressione al fronte
5	Tamez		TRV	25m – no pressione al fronte
6	Broms e Bennermark		TRV	15m – no pressione al fronte
7	Broms e Bennermark		TRV	25m – no pressione al fronte

Tabella 11 - Sezioni di analisi fasi di terapia – pressioni al fronte

In ogni caso l'esito della Terapia (analisi 1-6) in termini di analisi svolte con le Curve Caratteristiche o i Metodi di Tamez e Broms e Bennermark è riportata in Allegato.

Tabella 12 - Sezioni di analisi fasi di terapia – rivestimenti definitivi e spinte sullo scudo

Analisi n.	Sezione	progressiva	formazione	Condizione analisi
8	axiTRV100m	-	TRV	Assialsimmetrico copertura 100m
9	axiTRV200m_s	-	TRV	Assialsimmetrico copertura 200m – sovrascavo 5cm
10	TRV100m		TRV	Piana copertura 100m
11	TRV200m_s		TRV	Piana copertura 200m – sovrascavo 5cm

Le sezioni di analisi sono state individuate perché ritenute più significative del comportamento deformativo in base all'esito delle curve caratteristiche.

Nei successivi capitoli si esplicitano le verifiche effettuate ed il relativo esito.

10.4.1 Criteri di verifica

Stabilità del fronte

Le analisi di stabilità del fronte e del cavo sono mirate alla valutazione dello sviluppo di possibili meccanismi di collasso, con o senza propagazione verso la superficie, o di deformazioni e spostamenti elevati al contorno ed in superficie. Trattandosi di una verifica per uno stato limite ultimo di tipo GEO, si è utilizzato l'Approccio 1-Combinazione 2 (A2+M2+R2), con R2 =1.

La verifica della stabilità del fronte è condotta applicando i coefficienti parziali sui parametri di resistenza dell'ammasso e valutando il risultato della verifica in funzione della formulazione del particolare metodo di calcolo adottato (si può fare riferimento ad esempio, al fattore di stabilità, o alla pressione di equilibrio sul fronte, o al coefficiente di sicurezza globale o a sviluppo di elevate deformazioni/plasticizzazioni al fronte).

<u>Le pressioni applicate al fronte</u>, sono simulate mediante un incremento di coesione equivalente del fronte ($\Delta c \Delta c$) valutato attraverso il calcolo della pressione equivalente al fronte (σ_3) secondo le seguenti relazioni:

$$\Delta c = \frac{1}{2} \sqrt{K_p} \cdot \sigma_3^{press}$$

con:

$$K_p = \frac{1 + sen\varphi}{1 - sen\varphi}$$

Le valutazioni relative all'effetto dei consolidamenti sono condotte a partire dai parametri geotecnici caratteristici e adottando coefficienti parziali unitari sulle resistenze dei materiali; agli incrementi di coesione equivalente calcolati

come sopra descritto può quindi essere applicato lo stesso coefficiente parziale previsto per la coesione dell'ammasso.

Per quanto riguarda lo scavo meccanizzato nelle analisi si tiene conto direttamente dell'eventuale pressione applicata dalla macchina.

Le analisi di stabilità del fronte di scavo sono condotte utilizzando:

- il metodo delle linee caratteristiche (per le sezioni ad alta copertura);
- i metodi di analisi della stabilità del fronte (per le sezioni a bassa copertura).

Anche in merito alla risposta allo scavo (in condizioni drenate o non drenate), sono riproposti gli stessi criteri adottati nella fase di diagnosi in funzione delle formazioni interessate.

Interazione opera-terreno

Il comportamento del sistema opera-terreno è analizzato nelle diverse fasi costruttive, fino alla configurazione finale, e in condizioni di esercizio. Le analisi sono mirate alla previsione del comportamento deformativo al contorno dello scavo e dei carichi attesi sui sostegni provvisori e sui rivestimenti definitivi, e, nel caso delle gallerie superficiali, alla valutazione degli effetti indotti al piano campagna. Le analisi consentono, pertanto, di verificare:

- stati limite ultimi per raggiungimento della resistenza del terreno/ammasso roccioso interessato dallo scavo (stato limite ultimo di tipo GEO), con lo sviluppo di fenomeni di instabilità del fronte o di deformazioni e spostamenti elevati al contorno ed in superficie;
- stati limite ultimi relativi al raggiungimento delle resistenze degli elementi strutturali che costituiscono gli interventi di stabilizzazione, del rivestimento di prima fase e del rivestimento definitivo (stato limite ultimo di tipo STR);
- stati limite di esercizio.

Per le verifiche di <u>stati limite ultimi STR</u>, le analisi di interazione opera – terreno sono condotte con i valori caratteristici dei parametri geotecnici e applicando i coefficienti parziali amplificativi delle azioni all'effetto delle azioni (le sollecitazioni negli elementi strutturali). Ciò significa adottare la Combinazione 1 dell'Approccio 1 (A1+M1+R1), nella quale i coefficienti sui parametri di resistenza (M1) e sulla resistenza globale del sistema (R1) sono unitari, mentre le azioni permanenti e le azioni variabili sono amplificate mediante i coefficienti del gruppo A1.

Pertanto, con la combinazione dei carichi fondamentale si procede secondo questo schema:

- verifiche SLU interventi di stabilizzazione: $\gamma_E = 1,3$ applicato alle caratteristiche delle sollecitazioni N, M,T,
- verifiche SLU rivestimento di prima fase: $\gamma_E = 1,3$ applicato alle caratteristiche delle sollecitazioni N, M,T,

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE NUOVO COL TRATTA CA	E FERROV LLEGAME LTANISSE	'IARIA MESSI NTO PALERN ETTA XIRBI –	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	0
Galleria Salso - Relazione geotecnica e di calcolo della	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
galleria naturale	RS3U	40D 07	CL	GN 00001	B	51 di 124

• verifiche SLU rivestimento definitivo: $\gamma_E = 1,3$ applicato alle caratteristiche delle sollecitazioni N, M, T.

Per la verifica degli <u>stati limite di esercizio (SLE)</u> del rivestimento definitivo in calcestruzzo armato, le analisi numeriche sono condotte con i valori caratteristici delle azioni e dei parametri geotecnici, adottando le pertinenti combinazioni dei carichi per la verifica di fessurazione e la verifica delle tensioni di esercizio, secondo quanto previsto dal D.M. 17/01/2018 (Rif. [1]).

Le analisi di interazione opera-terreno sono condotte con <u>modelli numerici bidimensionali</u> <u>o pseudo tridimensionali</u> (assialsimmetrici) mediante il codice di calcolo [Itasca FLAC v.8].

In tale tipologia di analisi lo scavo della galleria è simulato rilasciando in modo uniforme un sistema di forze equivalenti applicate sul contorno del profilo di scavo, tenendo conto della variazione del tasso di confinamento in funzione della distanza della sezione di calcolo dal fronte; in questo modo il problema tridimensionale dello scavo della galleria è ricondotto ad un problema piano, con la possibilità di valutare le azioni sulle strutture di rivestimento al progredire degli avanzamenti.

L'effetto delle pressioni al fronte di scavo è tenuto in conto in modo indiretto, nella definizione della percentuale di rilascio delle forze forze equivalenti applicate sul contorno del profilo di scavo.

Le strutture di rivestimento definitivo della galleria sono simulate con elementi "beam".

Interazione opera-terreno con analisi sismica pseudostatica

Definizione dell'azione sismica di progetto

Per la definizione dell'azione sismica di progetto, l'effetto della risposta sismica locale si valuta mediante specifiche analisi nelle quali l'azione sismica è definita in termini di storia temporale di accelerazione (cfr. § 7.11.3.1 del DM 17/01/2018).

In alternativa, l'effetto della risposta sismica locale può essere valutato con approccio semplificato (cfr. § 3.2.2 del DM 17/01/2018) basato sulla classificazione del sottosuolo in base ai valori della velocità di propagazione delle onde di taglio, qualora le condizioni stratigrafiche e le proprietà dei terreni risultino chiaramente riconducibili alle categorie definite nella Tab. 3.3.II del DM 17/01/2018. In questo caso, il moto sismico in superficie è definito mediante l'accelerazione massima a_{max} attesa.

In entrambi i casi, una volta definita l'azione sismica di progetto, è possibile stimare gli effetti indotti mediante un approccio di tipo pseudo-statico. Nello specifico, per le opere in sotterraneo, gli effetti indotti dal sisma sono riprodotti sotto forma di una deformazione di taglio massima, agente alla quota della galleria, ricavata a partire dall'azione sismica di progetto.

[La possibilità di ricorrere ad approccio semplificato deve essere verificata per ogni caso specifico: in alternativa è necessario ricorrere a specifiche analisi di Risposta Sismica Locale. Di seguito vengono fornite indicazioni per la valutazione della risposta sismica locale sia nel caso di ricorso ad approccio semplificato sia mediante specifiche analisi con accelerogrammi].

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE NUOVO COL TRATTA CAI	E FERROV LLEGAME LTANISSE	'IARIA MESSI NTO PALERN ETTA XIRBI –	NA - CATANIA - 10 - CATANIA NUOVA ENNA	PALERM	D
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	B	52 di 124

Nel caso in cui l'effetto della risposta sismica sia valutato con approccio semplificato, l'accelerazione orizzontale massima attesa al sito è valutata con la relazione (DM 17/01/2018):

$$a_{\max} = S_s \cdot S_T \cdot \left(\frac{a_g}{g}\right)$$

Dove:

- a_g è l'accelerazione orizzontale massima attesa su sito di riferimento rigido;
- S_S è il fattore di amplificazione stratigrafica del terreno, funzione della categoria del sottosuolo di fondazione e dei parametri sismici F₀ e a_g/g (Tabella 3.2.IV del D.M. 17/01/2018);
- S_T è il fattore di amplificazione che tiene conto delle condizioni topografiche, il cui valore dipende dalla categoria topografica e dall'ubicazione dell'opera (Tabella 3.2.V del D.M. 17/01/2018).

L'accelerazione orizzontale massima a_g è funzione delle coordinate geografiche del sito e del tempo di ritorno T_R valutato a partite dalla probabilità di superamento dell'azione sismica (P_{VR}) attribuita allo stato limite ultimo considerato e del periodo di riferimento dell'azione sismica dell'opera in progetto (V_R), secondo la seguente espressione:

$$T_R = -\frac{V_R}{\ln(1 - P_{V_R})}$$

La valutazione del livello di deformazione indotta dal sisma e del corrispondente modulo di deformazione al taglio mobilitato è condotta adottando un modello costitutivo di tipo iperbolico in accordo alla formulazione di Hardin & Drnevich (Hardin, B.O., and Drnevich, V.P. (1972) - *Shear modulus and damping in soils: design equations and curves*) riportata nel seguito:

$$G/G_{max} = 1 / (1 + \gamma_h) \tag{1}$$

dove $\gamma_h = \gamma / \gamma_{ref} \cdot [k_1 + a \cdot e^{(-b \cdot (\gamma/\gamma^{ref})]}]$

con:	$\gamma_{ref} = \tau_{max} / G_{max}$	deformazione di riferimento;
	G _{max}	modulo di deformazione al taglio iniziale $G_{max} = \rho \cdot V_s^2$
	$ au_{max}$	tensione tangenziale massima;
	γ	livello di deformazione corrente;
	k_1 , a, b	parametri di forma del modello adottato;

Il modello iperbolico, caratterizzato nel piano $\tau - \gamma \tau - \gamma$ dai parametri pendenza iniziale (G_{max}) e asintoto (\Box_{max}), consente con un approccio semplificato di tenere conto del comportamento non lineare del terreno. Il modello è calibrato con curve di decadimento attraverso il parametro \Box_h . I parametri k₁, a, b, sono parametri di forma attraverso i quali adattare il modello non lineare alle curve di letteratura o, qualora disponibili, curve di decadimento derivanti da specifiche prove di laboratorio.

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE NUOVO COL TRATTA CA	E FERROV LLEGAME LTANISSE	IARIA MESSI NTO PALERN ETTA XIRBI —	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	C
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40D 07	CODIFICA CL	DOCUMENTO GN 00001	REV.	FOGLIO 53 di 124

Il valore della resistenza massima del terreno è calcolato alla quota del piano dei centri secondo il criterio di Mohr-Coulomb:

 $\tau_{max} = c' + \sigma'_{v} \cdot \tan(\phi')$

Il metodo proposto è basato sulla stima delle deformazioni $\Box(z)$ indotte dal sisma nel sottosuolo, valutando in maniera statica la distribuzione delle accelerazioni, delle tensioni tangenziali e quindi della deformazione ad una generica profondità *z*, tenendo in conto il decadimento del modulo di taglio.

Il valore della tensione tangenziale corrispondente al livello di deformazione corrente è pari a:

 $\tau = G_{max} \cdot (1 / (1 + \gamma_h)) \cdot \gamma < \tau_{max}$ (2)

Il valore della tensione tangenziale massima indotta dal sisma alla profondità z viene valutata attraverso la seguente relazione, basata sull'equilibrio di una colonna di terreno sottoposta ad un'accelerazione sismica $a_{max,s}$ (in cui le forze di inerzia sono bilanciate dalla risultante delle tensioni tangenziali alla base):

$$\tau_{max,sis}(z) = r_d(z) \cdot a_{max} / g \cdot \sigma_v(z)$$

dove:

- $r_d(z)$ fattore di attenuazione con la profondità assunto pari a $r_d(z) = 1-0.015 \cdot z$ (Iwasaki et al., 1978), che tiene in conto del sincronismo del moto sismico;
- a_{max} accelerazione massima a piano campagna;
- $\sigma_v(z)$ tensione geostatica verticale totale.

Il livello di deformazione indotto dal sisma è quello associato al valore di $\Box_{\max,sis}$ letto nel legame costitutivo (2). In riferimento alle sezioni analizzate (§ 10.4) si riportano i valori delle grandezze necessarie per la definizione dell'azione sismica:

Tabella 13 Parametri per la definizione dell'azione sismica per le sezioni considerate

		Sezioni	
	Sezione TBM con Protesi	Sezione TBM minime coperture	Sottoattraversamento SS90
Formazione	ASP	FAE	FAE
Progressiva	31+330	37+780	40+910
Coperture (m)	5.65	30	6.5
P _{VR} (%)	10	10	10
V _N (anni)	75	75	100
c _U (-)	1.5	1.5	2
V _R (anni)	112.5	112.5	200
T _R (anni)	1068	1068	1898
a _g (-)	0.235	0.261	0.348
F ₀ (-)	2.499	2.454	2.404
Categoria di sottosuolo	С	В	В
S _S (-)	1.347	1.144	1.066
Categoria topografica	T2	T1	T2
S _T (-)	1.2	1.0	1.2
a _{max} (g)	0.380	0.299	0.445

Nel caso in cui l'effetto della risposta sismica locale sia valutato mediante specifiche analisi, con la definizione di storie temporali di accelerazione, è possibile ottenere informazioni delle grandezze di interesse (deformazione, modulo di taglio, tensione tangenziale) in maniera puntuale con la profondità.

L'analisi monodimensionale può essere svolta con un codice di calcolo che valuta la risposta sismica di un deposito nell'ipotesi di comportamento del terreno lineare equivalente ed in condizioni di free-field (trascurando l'interazione cinematica tra terreno e struttura).

I dati necessari per tale analisi sono l'input sismico ed un modello geotecnico di sottosuolo caratterizzato appositamente per l'analisi da svolgere fino ad uno strato individuabile come "*bedrock*" (coincidente con la profondità alla quale le velocità delle onde di taglio raggiungono il valore di 800 m/s). L'input sismico si basa sulla definizione dello spettro elastico di risposta di riferimento (che rispecchia sinteticamente l'azione simica di base in funzione dello stato limite e del tempo di ritorno considerati) e la selezione di accelerogrammi spettro-compatibili. Per la selezione di accelerogrammi sono presi a riferimento accelerogrammi reali, effettivamente registrati durante eventi sismici, coerentemente con gli intervalli di magnitudo e distanza della sorgente ricavati dalle mappe di disaggregazione della pericolosità per la PGA (5% di probabilità di superamento in 50 anni) assegnando una tolleranza di compatibilità inferiore e superiore.

Analisi sismiche pseudo-statiche in direzione trasversale

Gli incrementi di sollecitazione mediante soluzioni analitiche in forma chiusa nelle ipotesi di galleria circolare in semispazio lineare ed isotropo sono stimati a partire dalla deformazione di taglio massima stimata (Wang J.N. (1993) - *Seismic design of tunnels: a state-of-the-art approach*) oppure, nel caso di geometrie complesse, implementando l'approccio pseudo-statico in un modello numerico.

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE NUOVO COI TRATTA CA	E FERROV LLEGAME LTANISSE	IARIA MESSI NTO PALERN ETTA XIRBI –	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	D
Galleria Salso - Relazione geotecnica e di calcolo della	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
galleria naturale	RS3U	40D 07	CL	GN 00001	B	55 di 124

Di seguito si riporta formulazione di Wang (Wang J.N. (1993) - *Seismic design of tunnels: a state-of-the-art approach*) per la forza circonferenziale massima ed il momento massimo che agiscono nella sezione trasversale della galleria nell'ipotesi di perfetta aderenza al contatto terreno-rivestimento:

$$M_{\max} = \pm \frac{1}{6} K_1 \frac{E_m}{(1 + v_m)} r^2 \gamma_{\max} \qquad N_{\max} = \pm K_2 \frac{E_m}{2(1 + v_m)} r \gamma_{\max}$$

Dove:

$$K_{2} = 1 + \frac{F\left[\left(1 - 2v_{m}\right) - \left(1 - 2v_{m}\right)C\right] - \frac{1}{2}\left(1 - v_{m}\right)^{2} + 2}{F\left[\left(3 - 2v_{m}\right) + \left(1 - 2v_{m}\right)C\right] + C\left[\frac{5}{2} - 8v_{m} + 6v_{m}^{2}\right] + 6 - 8v_{m}}$$

C e F sono rispettivamente le rigidezze relative a compressione e a flessione:

$$C = \frac{E_m (1 - v_l^2) r}{E_l t (1 + v_m) (1 - 2v_m)}$$

$$F = \frac{E_m (1 - v_l^2) r^3}{6E_l I (1 + v_m)}$$

Le analisi sismiche pseudo-statiche in direzione trasversale sono state svolte sia in riferimento allo stato limite ultimo di salvaguardia della vita (SLV), valutando la compatibilità delle sollecitazioni con i domini di resistenza delle sezioni, sia rispetto allo stato limite di danno (SLD), garantendo per quest'ultimo un limite all'ampiezza delle fessure tale da non compromettere la durabilità dell'opera e imponendo limiti tensionali sia per l'acciaio che per il calcestruzzo.

Analisi sismiche pseudo-statiche in direzione longitudinale

La stima della deformazione in direzione longitudinale indotta da un evento sismico si basa sull'ipotesi di *free-field*, per la quale sono stimate le deformazioni nel terreno in assenza della struttura o dell'esecuzione dello scavo (deformazione che viene in seguito applicata interamente sul rivestimento della galleria stessa). Le deformazioni così stimate trascurano l'interazione terreno-struttura ma forniscono comunque una stima delle deformazioni indotte nell'opera (*ITA-AITES – Seismic design and analysis of underground structures*).

Nello studio degli effetti longitudinali si ipotizza un'onda sismica (armonica) piana che si propaga secondo un angolo di incidenza ϕ rispetto all'asse della galleria, in un mezzo elastico, isotropo ed omogeneo. Si fa riferimento all'angolo di incidenza critico (al quale corrisponde il valore massimo della deformazione) come misura di sicurezza nella stima dell'effetto dell'evento sismico in relazione alle sole onde di taglio essendo queste ultime

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE NUOVO COI TRATTA CA	E FERROV LLEGAME LTANISSE	'IARIA MESSI NTO PALERN ETTA XIRBI –	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	D
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	B	56 di 124

causa delle maggiori deformazioni ed essendo il tipo di onda governante (U.S. Department of Transportation – Federal Highway Administration – Technical Manual for Design and Construction of Road Tunnels).

Le formulazioni in forma chiusa di letteratura (Newmark, 1968 e Kuesel, 1969, St. John e Zahrah, 1987) stimano la deformazione assiale ε^{a} e la deformazione flessionale in direzione longitudinale ε^{b} assimilando la galleria ad una trave elastica:

$$\mathcal{E}^a = \frac{V_s}{C_s} sen\phi \cos\phi$$

$$\mathcal{E}^{b} = r \frac{a_{s}}{C_{s}^{2}} \cos^{3} \phi$$

La deformazione totale può essere stimata come la somma delle due. Cautelativamente, Power et al. (1996) propongono di calcolare la deformazione totale in direzione longitudinale come somma della massima deformazione assiale e della massima deformazione flessionale:

$$\varepsilon^{ab} = \varepsilon^{a}_{\max} + \varepsilon^{b}_{\max} = \frac{V_s}{2C_s} + r\frac{a_s}{C_s^2}$$

L'ipotesi di *free-field* presuppone che la galleria si adatti completamente alle deformazioni del terreno e, sebbene conservativa, può fornire una stima ragionevole in quanto, nella maggior parte dei casi, la rigidezza longitudinale della galleria è considerato relativamente flessibile confrontata con quella dell'ammasso circostante (U.S. Department of Transportation – Federal Highway Administration – Technical Manual for Design and Construction of Road Tunnels).

Verifiche nei confronti di azioni eccezionali

Tra le azioni che si verificano solo eccezionalmente nel corso della vita nominale delle opere si considera quella di incendio. Per le verifiche di competenza si rimanda al documento specialistico di progetto. [Inserire riferimento all'elaborato di progetto in cui sono riportate le verifiche di resistenza al fuoco].

10.5 Analisi e Verifica delle sezioni tipo

Il rivestimento della galleria di linea è realizzato con anelli in conci prefabbricati in calcestruzzo: ogni anello è composto da 7 conci dello spessore di 45 cm con raggio interno di 4.0 m e raggio esterno di 4.45 m.

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE NUOVO COI TRATTA CA	E FERROV LLEGAME LTANISSE	'IARIA MESSI NTO PALERN ETTA XIRBI –	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	C
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	B	57 di 124

La galleria ha un diametro di scavo pari a circa 9.30 m.

La monoliticità dell'insieme è garantita dal fatto che i giunti di ciascun anello vengono sfalsati rispetto ai giunti dell'anello successivo, e dalla messa in opera di connettori di adeguata rigidezza fra i singoli anelli.

La tenuta idraulica è realizzata mediante l'adozione di guarnizioni continue annegate nei conci ed attraverso la scelta di un'idonea granulometria del calcestruzzo estruso di intasamento a tergo del rivestimento.

10.5.1 Requisiti conci rivestimento

I conci verranno realizzati in calcestruzzo C45/55 per coperture fino a 100m, mentre da 100 a 200m si utilizza la classe C55/67.

Lo studio di qualifica della miscela di calcestruzzo dei conci TBM verrà effettuato dal prefabbricatore incaricato di provvedere a definire il mix design ed ad effettuare le relative prove compatibilmente con la Normativa vigente.

Le prescrizioni di progetto si riferiscono alle seguenti caratteristiche:

- classe di resistenza: C45/55
- classe di esposizione ambientale: XA2
- massimo rapporto a/c (acqua/cemento): 0.4
- tipo e classe di cemento: III A 32.5 N / IV B 32.5 R
- classe di lavorabilità: S4
- classe di resistenza: C55/67
- classe di esposizione ambientale: XA2
- massimo rapporto a/c (acqua/cemento): 0.4
- tipo e classe di cemento: III A 32.5 N / IV B 32.5 R
- classe di lavorabilità: S4

Le caratteristiche del mix-design e le modalità di getto del calcestruzzo all'interno dei casseri dovranno essere tali da garantire una distribuzione omogenea impedendo la segregazione e/o la creazione di vuoti, garantendo quindi la sagomatura ed integrità dei conci e la perfetta aderenza con tutte le barre d'armatura.

10.5.2 Requisiti miscela bicomponente

La miscela di tipo bi-componente viene utilizzata per il riempimento dello spazio anulare che si genera a tergo dei conci di rivestimento durante l'avanzamento dello scudo della TBM. Tale vuoto si crea per la differenza di diametro che si ha tra lo scudo e gli anelli di conci che compongono il rivestimento definitivo della galleria.

La miscela è costituita da:

- Una boiacca a base cementizia, di consistenza estremamente fluida, stabile volumetricamente ed a lungo mantenimento della lavorabilità.

- Un additivo accelerante, aggiunto alla boiacca immediatamente prima della sua iniezione, in grado di provocare una sua veloce gelificazione.

La miscela bi-componente presenta una serie di vantaggi rispetto ai sistemi di riempimento più tradizionali ed infatti il suo utilizzo si sta diffondendo sempre di più in progetti di scavo meccanizzato, sia in terreno sia in roccia.

Lo studio del mix-design di tale miscela devono garantire la fluidità nel breve termine e il sostegno necessario sia nel breve che nel lungo termine:

Stato fresco

- Fluidità iniziale della miscela: 30-45"
- Durabilità minima miscela base con inibitore: 72 h
- Bleeding: < 3% a 3 h dal confezionamento
- Bleeding: < 7% a 24 h dal confezionamento

Le prove richieste riguardano quindi la pompabilità della miscela, il mantenimento della lavorabilità per lunghi periodi, entrambe caratteristiche fondamentali per minimizzare il rischio di bloccaggio delle tubazioni.

Stato indurito

- Tempo di gelificazione compreso tra 5" e 15"
- Resistenza a compressione mono-assiale:

24 h: > 0,5 MPa

28 gg: > 3,0 MPa

Si richiede quindi un rapido sviluppo delle resistenze meccaniche, da misurare fino a 28 gg. E' importante avere una miscela con elevata stabilità volumetrica, per minimizzare il rischio di bloccaggio delle tubazioni e delle linee di pompaggio, e con una veloce e completa gelificazione in seguito all'aggiunta dell'additivo accelerante.

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE NUOVO COL TRATTA CA	E FERROV LLEGAME LTANISSE	'IARIA MESSI NTO PALERM ETTA XIRBI –	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	0
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40D 07	CODIFICA CL	DOCUMENTO GN 00001	REV.	FOGLIO 59 di 124

10.5.3 Verifiche statiche in fase transitoria – concio da 45 cm

In questo paragrafo verranno esaminate le condizioni più gravose a cui sono sottoposti i conci nelle fasi transitorie che precedono la posa in opera ed in particolare:

- Scasseratura
- Movimentazione
- Stoccaggio e trasporto
- Montaggio (sollevamento con erettore)

Oltre a queste, come condizione critica va considerata anche la fase di avanzamento dello scudo, in cui viene esercitata dai martinetti la necessaria spinta sui conci dell'ultimo anello di rivestimento posto in opera.

Si assume che per le prime due operazioni vengano effettuate quando il calcestruzzo ha raggiunto una resistenza caratteristica $Rck \ge 15 \text{ N/mm2}$.

Dopo un adeguato periodo di stoccaggio, allorché il calcestruzzo ha raggiunto la resistenza caratteristica di progetto ($Rck \ge 50 N/mm2$), si procede al trasporto in cantiere.

La posa in opera in galleria avviene tramite apposito meccanismo erettore, disposto immediatamente a tergo del dispositivo di scavo.

Le verifiche vengono eseguite considerando le condizioni statiche più gravose e la classe di armatura minore (Classe II).

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA

ESSA LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
U 40D 07	CL	GN 00001	B	60 di 124
1	SSA LOTTO	SSA LOTTO CODIFICA	SSA LOTTO CODIFICA DOCUMENTO	SSA LOTTO CODIFICA DOCUMENTO REV.
	J 40D 07	J 40D 07 CL	J 40D 07 CL GN 00001	J 40D 07 CL GN 00001 B

<u>Scasseratura</u>

Durante la fase di scasseratura, oltre al peso proprio del concio ed alla maggiorazione per carichi dinamici, si suppone la presenza delle forze di adesione alla superficie del cassero valutata, sulla base di esperienze analoghe, in circa 2.0 kN/m2.

Il calcolo delle sollecitazioni viene eseguito supponendo, cautelativamente, che il concio venga sollevato ai due lati.

La rimozione dai casseri verrà effettuata solo dopo che il calcestruzzo abbia raggiunto la resistenza Rck di 15 N/mm2.

Si è ipotizzato che il concio venga agganciato e sollevato dai lati.

Le verifiche dei conci tengono conto delle loro effettive dimensioni; Lo sviluppo del singolo concio risulta pari a:

 $L_{dev} = 4.19 \text{ m}$

La lunghezza trasversale del concio associata ad una trave equivalente posta su due appoggi all'estremità di intradosso, risulta pari a:

 $L_{tras} = 3.84 \text{ m}$

I carichi che agiscono sul singolo concio sono:

 $P_{p} = 25 \text{ kN/m}^{3} \cdot 0.45 \text{ m} \cdot 1.5 \text{ m} = 16.8 \text{ kN/m}$ (peso proprio)

I P_p = 0.4 P_p = 6.75 kN/m (incremento dovuto all'effetto dinamico/vibrazioni)

 $P_a = 2 \cdot 1.5 \text{ m} = 3 \text{ kN/m}$ (incremento dovuto all'aderenza tra concio e cassero di 2 kN/m2)

$$P_{tot} = 26.55 \text{ kN/m}$$

Le sollecitazioni massime risultano:

 $M_1 = 26.55 \cdot 3.84^2 / 8 = 48.9 \text{ kNm}$

 $V_1 = 26.55 \cdot 3.84/2 = 51 \text{ kN}$

 $M_{sd1} = \gamma_a M_1 = 1.5 \cdot 48.9 = 73.35 \text{ kNm}$

 $V_{sd1} = \gamma_a V_1 = 1.5 \cdot 51 = 76.5 \text{ kN}$

Per quanto riguarda la verifica a flessione si ottiene:

 $M_{sd1} = 73.35 \text{ kNm} < M_{rd} (\text{Rck}=15 \text{ MPa}) = 288.7 \text{ KNm}$

Pertanto, la verifica risulta soddisfatta.

La verifica a fessurazione è soddisfatta in quanto il momento agente è inferiore al valore del momento di prima fessurazione calcolato secondo il metodo semplificato facendo riferimento alla sola sezione di calcestruzzo. Secondo tale ipotesi si ha:

 $M_{cr} = f_{ctm,fl}(b \cdot h^2/6)$

in cui:

 $f_{ctm} = 0.3 \cdot f_{ck}^{2/3} = 1.6 \text{ MPa}$

 $M_{sd1} = 73.35 \text{ kNm} < M_{cr} (\text{Rck}=15 \text{ MPa}) = 97.9 \text{ KNm}$

Per la verifica a taglio, considerando le caratteristiche dei materiali precedentemente riportate e la sezione di progetto armata come sopra indicato, si ottiene quanto segue.

Si ottiene:

 V_{sd1} max = 76.5 < 200 kN

Pertanto, la verifica risulta soddisfatta.

Movimentazione

Per la fase di movimentazione viene fatta l'ipotesi che il concio venga sollevato per le estremità e soggetto al peso proprio incrementato del 60% per tenere conto degli effetti dinamici.

I carichi che agiscono sul singolo concio sono:

 $P_n = 25 \text{ kN/m}^3 \cdot 0.45 \text{ m} \cdot 1.5\text{m} = 16.875 \text{ kN/m}$ (Peso proprio)

 $P_{p} + 60\% = 1.6 \cdot P_{p} = 27 \text{ kN/m}$ (dovuto ad effetti dinamici)

 $P_{tot} = 27 \text{ kN/m}$

Le sollecitazioni massime risultano:

 $M_1 = 27 \cdot 3.84^2 / 8 = 49.7 \text{ kNm}$

 $V_1 = 27 \cdot 3.84 / 2 = 51.84 \text{ kN}$

 $M_{sd1} = \gamma_q M_1 = 1.5 \cdot 49.7 = 74.55 \text{ kNm}$

 $V_{sd1} = \gamma_a V_1 = 1.5 \cdot 51.84 = 77.74 \text{ kN}$

La verifica a fessurazione è soddisfatta in quanto il momento è inferiore al valore di prima fessurazione.

Le sollecitazioni sui conci sono analoghe ai valori stimati con la combinazione di carico precedente, le verifiche sono pertanto soddisfatte.

Stoccaggio dei conci dalla scasseratura alla completa maturazione

I conci saranno accatastati verticalmente in gruppi di 4 elementi. Il peso totale della singola catasta si scarica sul terreno attraverso due travetti di legno a sezione rettangolare di 12×10 cm, posti ad un interrasse di 120 cm. I conci sono separati da travetti di legno intermedi 10×8, disposti ad un interasse di 100 cm (si considera che possa verificarsi un disallineamento dei travetti distanziatori in legno di 10 cm a destra e a sinistra).

La verifica viene condotta sul concio posizionato in fondo alla catasta. Sul concio in questione agisce il peso proprio ed il peso dei conci superiori trasferiti dai travetti di appoggio. Si è considerato un coefficiente moltiplicativo pari a 1.5 per il peso dell'ultimo concio, per tener conto delle sollecitazioni dinamiche durante la fase di accatastamento.

Lo stoccaggio dei conci in questa fase verrà effettuata solo dopo che il calcestruzzo abbia raggiunto la resistenza Rck di 15 N/mm2.

I carichi che agiscono sul singolo concio sono:

 $P_p = 25 \text{ kN/m}^3 0.45 \text{ m} 1.5 \text{ m} = 16.87 \text{ kN/m}$ (peso proprio)

N = $[(16.87 \cdot 4.19 \cdot 2) + (16.87 \cdot 4.19 \cdot 1.5)] / 2 = (141.37 + 106.02)/2=123.7 \text{ kN}$

La reazione in corrispondenza dei travetti risulta pari a: R = 16.87 4.19 / 2 + 123.7 = 159 kNLe sollecitazioni nel concio di base risultano:

Sezione di appoggio

$$M_{3a} = 16.87 \cdot (4.19 / 2 - 0.6)^2 / 2 = 18.8 \text{ kNm}$$
$$V_{3a} = 16.87 \cdot (4.19 / 2 - 0.6) = 25.2 \text{ kN}$$

 $M_{sd3a} = 1.5 \cdot 18.8 = 28.2 \text{ kNm}$

 $V_{sd3a} = 1.5 \cdot 25.2 = 37.8 \text{ kN}$

Sezione di carico

 $M_{3b} = 16.87 \cdot (4.19 / 2 - 0.5)^2 / 2 - 159 \cdot 0.1 = 5.55 \text{ kNm}$ $V_{3b} = 16.87 \cdot (4.19 / 2 - 0.5) - 159 = -132.1 \text{ kN}$

 $M_{ud3b} = 1.5 \cdot 5.57 = 8.355 \text{ kNm}$

 $V_{ud3b} = 1.5 \cdot 131.1 = 196.65 \text{ kN}$

Mezzeria

 $M_{3c} = 16.87 \cdot (4.19 / 2)^2 / 2 - 159 \ 0.6 + 123.7 \cdot 0.5 = 3.47 \ kNm$

 $V_{3c} = 16.87 \cdot (4.19 / 2) - 159 + 123.7 = 0.04265 \text{ kN}$

 $M_{sd3c} = 1.5 \cdot 3.47 = 5.2 \text{ kNm}$

 $V_{sd3c} = 0.0639 \text{ kN}$

Le sollecitazioni sui conci sono inferiori ai valori delle resistenze ultime ricavate precedentemente, le verifiche sono pertanto soddisfatte.

La verifica a fessurazione è soddisfatta in quanto il momento è inferiore al valore di prima fessurazione.

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE NUOVO CO TRATTA CA	E FERROV LLEGAME LLTANISSI	/IARIA MESSI INTO PALERN ETTA XIRBI —	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	0
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	B	64 di 124

Stoccaggio dei conci in cantiere

I conci saranno accatastati verticalmente in gruppi di 7 elementi (un'anello completo). Il peso totale della singola catasta si scarica sul terreno attraverso due travetti di legno a sezione rettangolare di 12×10 cm, posti ad un interrasse di 120 cm. I conci sono separati da travetti di legno intermedi 10×8, disposti ad un interasse di 100 cm (si considera che possa verificarsi un disalleneamento dei travetti distanziatori in legno di 10 cm a destra e a sinistra).

La verifica viene condotta sul concio posizionato in fondo alla catasta. Sul concio in questione agisce il peso proprio ed il peso dei conci superiori trasferiti dai traveti di appoggio. Si è considerato un coefficiente moltiplicativo pari a 1.5 per il peso degli ultimi due conci, per tener conto delle sollecitazioni dinamiche durante la fase di accatastamento.

Lo stoccaggio dei conci alla completa maturazione verrà effettuata solo dopo che il calcestruzzo abbia raggiunto la resistenza Rck di 50 N/mm2.

 $P_{n} = 25 \text{ kN/m}^{3} \cdot 0.45 \text{ m} \cdot 1.5 \text{ m} = 16.87 \text{ kN/m} \text{ (peso proprio)}$

N =
$$[(16.87 \cdot 4.19 \cdot 4) + (16.87 \cdot 4.19 + 16.87 \cdot 2.38) 1.5] \cdot 0.5 = 224.5 \text{ kN}$$

La reazione in corrispondenza dei travetti risulta pari a:

 $R = 16.87 \cdot 4.19 \cdot 0.5 + 224.5 = 260 \text{kN}$

Le sollecitazioni nel concio risultano:

Sezione di appoggio

 $M_{3a} = 16.87 (4.19 / 2 - 0.6)^2 / 2 = 18.85 \text{ kNm}$

 $V_{3a} = 16.87 (4.19 / 2 - 0.6) = 25.22 \text{ kN}$

 $M_{sd3a} = 1.5 \cdot 18.85 = 28.27 \text{ kNm}$

$$V_{sd3a} = 1.5 \cdot 25.22 = 37.83 \text{ kN}$$

Sezione di carico

 $M_{3b} = 16.87 (4.19 / 2 - 0.5)^2 / 2 - 260 \cdot 0.1 = -4.5 \text{ kNm}$ $V_{3b} = 16.87 (4.19 / 2 - 0.5) - 260 = -233.1 \text{ kN}$

 $M_{sd3b} = 1.5 \cdot -4.5 = -6.75 \text{ kNm}$

 $V_{sd3h} = 1.5 \cdot 233.1 = 349.65 \text{ kN}$

Mezzeria

M_{3c} = 16.87 $(4.19 / 2)^2 / 2 - 260 \cdot 0.6 + 224.5 \cdot 0.5 = -6.73$ kNm

 $V_{3c} = 16.87 (4.19 / 2) - 260 + 224.5 = -0.15 \text{ kN}$

 $M_{sd3c} = 1.5 \cdot -6.73 = -8.85 \text{ kNm}$

$$V_{sd3c} = -0.23 \text{ kN}$$

Le sollecitazioni sui conci sono inferiori ai valori delle resistenze ultime, le verifiche sono pertanto soddisfatte.

La verifica a fessurazione è soddisfatta in quanto il momento è inferiore al valore di prima fessurazione.

Montaggio dei conci

Il concio viene sollevato dall'erettore tramite due inserti di presa collocati in corrispondenza del centro e quindi si comporta staticamente come una trave su un unico appoggio.

I carichi che agiscono sul singolo concio sono:

 $P_{tot} = 27 \text{ kN/m}$

Le sollecitazioni nel concio di base risultano:

 $M_4 = \frac{1}{2} \cdot 27 \cdot 2.1^2 = 59.535 \text{ kNm}$

 $V_4 = 27 \cdot 2.1 / 2 = 28.35 \text{kN}$

 $M_{sd4} = 1.5 \cdot 59.535 = 89.3 \text{ kNm}$

 $V_{sd4} = 1.5 \cdot 28.35 = 42.5 \text{ kN}$

Le sollecitazioni sui conci sono inferiori ai valori delle resistenze ultime ricavate precedentemente, le verifiche sono pertanto soddisfatte.

La verifica a fessurazione è soddisfatta in quanto il momento è inferiore al valore di prima fessurazione.

 $M_{sd1} = 89.3 \text{ kNm} < M_{cr} (\text{Rck}=50 \text{ MPa}) = 177.2 \text{KNm}$

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE NUOVO COI TRATTA CA	E FERROV LLEGAME LTANISSE	IARIA MESSI NTO PALERM ETTA XIRBI –	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	C
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	B	66 di 124

Sforzi dovuti alla spinta dei martinetti

La massima forza prevista per la spinta dello scudo nelle fasi ordinarie di montaggio dei conci risulta pari a Nmax = 100.000 kN; in situazioni del tutto particolari, con l'adozione di opportuni accorgimenti sul sistema oleodinamico di spinta, è possibile raggiungere, per intervalli di tempo molto brevi, il valore eccezionale di N = 130.000 kN (valore massimo che può essere ottenuto dal circuito idraulico).

Si ipotizza che la spinta è fornita da 19 coppie di martinetti provvisti di piastra di ripartizione dalle dimensioni di 350×1400 mm.

Si ipotizza che il carico concentrato di ogni singolo martinetto sia trasferito dalla piastra di ripartizione e applicato al concio attraverso l'area di contatto costituita da un ringrosso sulla faccia di dimensioni $0.35 \text{ m} \times 1.4 \text{ m}$.

Verifica alla pressione di contatto – C45/55

Tale verifica è stata condotta in base al punto 6.7 dell'Eurocodice 2 (2004):

 $A_{c0} = d_1 b_1$ (dimensioni dell'area di carico)

 $A_{c1} = d_2 b_2$ (dimensioni dell'area di diffusione)

Si considera a favore di sicurezza un'eccentricità tra l'asse dei martinetti di spinta e l'asse del concio pari a:

e = 2 cm $b_1 = (45/2 - 2) 2 = 41$ cm $d_1 = 140$ cm $A_{c0} = 0.41 \text{ x } 1.40 = 0.574 \text{ m}^2$ $b_2 = b_1 + 2s$ s = 2 cm (disassamento laterale) $b_2 = 45$ cm $d_2 = 144$ cm $A_{c1} = 0.45 \text{ x } 1.44 = 0.648 \text{ m}^2$

 $N_u \leq F r du \leq F_{max}$

- Verifiche in condizioni di spinta ordinaria

Il valore della sollecitazione agli SLU ($\gamma_q = 1.5$) è pari a:

 $N_{u} = 1.5 \times 100.000 / 19 = 7894.7 \text{ kN}$ F $rdu = A_{c0} \cdot f_{cd2} \cdot (A_{c1} / A_{c0})^{0.5} = 0.574 \times 30.4 \times 10^{-3} \times (0.648 / 0.574)^{0.5} = 18540 \text{ kN}$ F $_{max} = 3 \cdot f_{cd2} \cdot A_{c0} = 3 \times 30.4 \times 10^{-3} \times 0.574 = 52350 \text{ KN}$

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE NUOVO COI TRATTA CA	E FERROV LLEGAME LLTANISSI	/IARIA MESSI INTO PALERM ETTA XIRBI —	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	0
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	Commessa	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	B	67 di 124

 $N_u = 7894.7 \text{ kN} \le \text{Frdu} = 18540 \text{ kN} \le F_{\text{max}} = 52350 \text{ KN}$

- Verifiche in condizioni di spinta eccezionale

Il valore della sollecitazione agli SLU ($\gamma_q = 1$) è pari a:

 $N_u = 1 \ge 130.000 / 19 = 6842 \text{ kN}$

 $N_u = 6842 \le F r du \le F_{max}$

Verifica alla pressione di contatto – C55/67

Tale verifica è stata condotta in base al punto 6.7 dell'Eurocodice 2 (2004):

 $A_{c0} = d_1 b_1$ (dimensioni dell'area di carico)

 $A_{c1} = d_2 b_2$ (dimensioni dell'area di diffusione)

Si considera a favore di sicurezza un'eccentricità tra l'asse dei martinetti di spinta e l'asse del concio pari a:

e = 2 cm $b_1 = (45/2 - 2) 2 = 41 \text{ cm}$ $d_1 = 140 \text{ cm}$ $A_{c0} = 0.41 \text{ x } 1.40 = 0.574 \text{ m}^2$ $b_2 = b_1 + 2s$ s = 2 cm (disassamento laterale) $b_2 = 45 \text{ cm}$ $d_2 = 144 \text{ cm}$ $A_{c1} = 0.45 \text{ x } 1.44 = 0.648 \text{ m}^2$

 $N_u \leq F r du \leq F_{max}$

- Verifiche in condizioni di spinta ordinaria

Il valore della sollecitazione agli SLU ($\gamma_q = 1.5$) è pari a:

$$N_{u} = 1.5 \times 100.000 / 19 = 7894.7 \text{ kN}$$

F rdu = A_{c0} · f_{cd2} · (A_{c1} / A_{c0})^{0.5} = 0.574 x 28.3 x 10³ x (0.648/0.574)^{0.5} = 17280 kN
F _{max} = 3 · f_{cd2} · A_{c0} = 3 x 28.3 x 10³ x 0.574 = 48733 KN

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE NUOVO COI TRATTA CA	E FERROV LLEGAME LTANISSE	'IARIA MESSI NTO PALERN ETTA XIRBI –	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	D
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	B	68 di 124

 $N_{u} = 7894.7 \text{ kN} \le \text{Frdu} = 17280 \text{ kN} \le \text{F}_{\text{max}} = 48733 \text{ KN}$

- Verifiche in condizioni di spinta eccezionale

Il valore della sollecitazione agli SLU ($\gamma_q = 1$) è pari a:

 $N_{u} = 1 \times 130.000 / 19 = 6842 \text{ kN}$

 $N_u = 6842 \le F r du \le F_{max}$

Verifica di resistenza alle trazioni indotte

La spinta del martinetto determina forze di divaricamento sul concio in direzione radiale; tali forze possono essere stimate secondo la formula proposta da Leonhardt:

Z = 0.3 Nu (1 - a/d)

dove:

Z = forza di trazione risultante

a = larghezza della superficie di applicazione del carico = 0.35 m

d = altezza della sezione = 0.45 m

Nu = forza concentrata agente, dovuta alla spinta di un martinetto

- Verifiche in condizione di spinta ordinaria

- Il valore della sollecitazione agli SLU ($\gamma_q = 1.5$) è pari a:
- $N_{u} = 1.5 \text{ x } 100.000 / 19 = 7894.7 \text{ kN}$

 $Z = 0.3 N_{\mu} (1 - a/d) = 0.3 \times 7894.7 (1 - 0.35 / 0.45) = 526 \text{ kN}$

Considerando le armature presenti sotto l'area della piastra di spinta di lato 1.4 m si ottiene una forza di divaricamento espressa al metro pari a:

$$z = 526/1.4 \text{ m} = 375 \text{ kN/m}$$

L'armatura minima necessaria ad assorbire le trazioni di divaricamento è:

 $A_s = 375 \times 10^3 / 391 = 961 \text{ mm}^2 / \text{m} = 9.61 \text{ cm}^2$

L'armatura prevista per il frettaggio è pari a $1 + 1 \emptyset 12$ spilli passo 15 cm.

 $(100 \text{ cm} / 15 \text{ cm}) \text{ x } 2 \text{ As} \emptyset 12 = 15.1 \text{ cm}^2$

REV.

в

FOGLIO

69 di 124

 Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO

 RS3U
 40D 07
 CL
 GN 00001

• Il valore della sollecitazione agli SLE ($\gamma_a = 1$) è pari a:

 $N_{\mu} = 1 \times 100000 / 19 = 5263 \text{ kN}$

 $Z = 0.3 N_u (1 - a/d) = 0.3 \times 5263 (1 - 0.35 / 0.45) = 351 \text{ kN}$

Considerando le armature presenti sotto l'area della piastra di spinta di lato 1.2 m si ottiene una forza di divaricamento espressa al metro pari a:

z = 351/1.4 m = 251 kN/m

L'armatura minima necessaria ad assorbire le trazioni di divaricamento considerando un tasso di lavoro ridotto per l'acciaio pari a 210 MPa è:

 $A_s = 251 \times 10^3 / 210 = 1195 \text{ mm}^2 / \text{m} = 11.95 \text{ cm}^2$

L'armatura prevista per il frettaggio è pari a 1 + 1 Ø12 spilli passo 15 cm.

 $(100 \text{ cm} / 15 \text{ cm}) \ge 2 \text{ As} \varnothing 12 = 15.1 \text{ cm}^2$

- Verifiche in condizione di spinta eccezionale

Il valore della sollecitazione agli SLU ($\gamma_q = 1$) è pari a:

 $N_{\mu} = 1 \times 130.000 / 19 = 6842 \text{ kN}$

 $Z = 0.3 N_{u} (1 - a/d) = 0.3 \times 6842 (1 - 0.35 / 0.45) = 451.6 \text{ kN}$

Considerando le armature presenti sotto l'area della piastra di spinta di lato 1.2 m si ottiene una forza di divaricamento espressa al metro pari a:

z = 451.6/1.4 m = 322.6 kN/m

L'armatura minima necessaria ad assorbire le trazioni di divaricamento è:

 $A_s = 322.6 \times 10^3 / 391 = 825 \text{ mm}^2 / \text{m} = 8.25 \text{ cm}^2$

L'armatura prevista per il frettaggio è pari a 1 + 1 Ø12 spilli passo 15 cm.

 $(100 \text{ cm} / 15 \text{ cm}) \text{ x } 2 \text{ As} \emptyset 12 = 15.1 \text{ cm}^2$

Come si evince in tutti gli scenari analizzati, l'armatura di frettaggio di progetto risulta sempre superiore ai quantitativi minimi di armatura richiesti dal calcolo.

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE NUOVO CO TRATTA CA	E FERROV LLEGAME LLTANISSI	YIARIA MESSI INTO PALERN ETTA XIRBI —	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	0
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	B	70 di 124

Sollecitazioni dovute al peso dell'anello completo

Si propone una verifica relativa alle sollecitazioni agenti sui connettori nello scenario sfavorevole di anello completo in condizioni "sospese" all'anello precedente.

Il peso dell'intero anello costituito da 6+1 conci prefabbricati risulta pari a:

P tot = 25 kN/m³ x 1.5m x π (R_e² - R_i²) = 447 kN

questo agisce con uno sforzo di taglio (ripartito su 19 connettori complessivi) pari a:

T = P/19 = 23.6 kN

Elementi accessori del rivestimento

Il sistema di collegamento longitudinale tra gli anelli di rivestimento non prevede più bulloni metallici sui giunti (previsti nel PE in prima fase): il collegamento sui giunti circonferenziali è ora garantito per mezzo di connettori o equivalenti (in numero di quattro per i conci ordinari e in numero di due per il concio di chiave) mentre su quelli longitudinali attraverso le barre guida in polipropilene. I connettori, montati durante il posizionamento dei conci, devono garantire in fase di esercizio un adeguata continuità tra gli anelli contrastando in particolare la reazione dovuta allo schiacciamento della coppia di guarnizioni.

Guarnizioni di tenuta idraulica

Le guarnizioni utilizzate risultano annegate nel getto, e questo rappresenta un indubbio vantaggio eliminando qualsiasi rischio di scollamento o cattiva disposizione sulle facce; esse entrano in contatto tra di loro e schiacciandosi permettono di sigillare i giunti: vengono progettate in base alle specifiche esigenze di tenuta idraulica. Si prevede che nell'assetto finale ciascun concio debba essere posizionato, dopo il montaggio dell'intero anello, esattamente nella posizione prevista in progetto, con tutti i giunti circonferenziali e radiali allineati tra loro e perfettamente a contatto, in modo da garantire lo schiacciamento necessario affinche si realizzi la richiesta tenuta idraulica. Sono ammessi degli scostamenti minimi dalla posizione teorica di ciascun concio ed anello con determinate tolleranze di seguito indicate.

Per l'alloggiamento delle guarnizioni, previste annegate nel getto, si predispone sulle facce dei conci un'opportuna cava. Lo "schiacciamento" tra le due guarnizioni deve essere tale da garantire l'impermeabilità sotto il massimo carico idraulico previsto, pari in questo caso a circa 9 bar, e si tiene conto di eventuali disallineamenti relativi (offset) delle due guarnizioni o del non perfetto contatto (gap) dei ringrossi delle facce dei conci. Il ringrosso previsto è nel caso in esame pari a 3mm per parte.

Si è considerata una situazione in cui il gap è dell'ordine di 2mm in concomitanza con un disallineamento (offset) delle guarnizioni di 10mm (vedi figura).

Siccome la prova effettuata dal fornitore è stata realizzata tra due facce aventi ringrosso di 2mm per parte, per definire la pressione idrostatica sostenibile dalla guarnizione attraverso il grafico seguente si definisce un gap totale

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA					
Galleria Salso - Relazione geotecnica e di calcolo della	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
galleria naturale	RS3U	40D 07	CL	GN 00001	B	71 di 124

pari alla somma del gap di montaggio (2mm) e dell'ulteriore gap che è dovuto alla configurazione geometrica delle facce nel caso specifico (2mm) per un totale di 4mm.

In queste condizioni, come evidente dalla figura seguente, la pressione idrostatica sostenibile è molto superiore (20bar), anche con un adeguato coefficiente di sicurezza, al massimo battente idraulico ipotizzato (Pw=9 bar).

Schema guarnizione con offset nella prova del fornitore

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA

Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA LOTTO CODIFICA DOCU RS3U 40D 07 CL GN 0

 DOCUMENTO
 REV.
 FOGLIO

 GN 00001
 B
 72 di 124

WATER TIGHTNESS TEST UG018A 70 SH CAVA

Diagramma di tenuta dell'acqua e geometrie della guarnizione di riferimento
GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA					
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	B	73 di 124

Diagramma di carico/deformazione profilo

Come si è detto precedentemente si prevede che ciascun concio ed anello debbano essere posizionati geometricamente esattamente come previsto in progetto, con tolleranze geometriche minime.

Ad ulteriore garanzia di un corretto montaggio del concio nella fase transitoria di predisposizione dell'anello si definisce comunque la forza minima di spinta dei martinetti sui conci che in fase di montaggio favorisce il contatto delle facce dei giunti.

La guarnizione, quando completamente compressa, offre una reazione di 25 kN/m. Di conseguenza la forza complessiva di reazione sulla faccia circonferenziale del concio è:

$$F_{g,an} = 25 \text{kN/m} \cdot 4.19 \text{ m} = 104.75 \text{ kN}$$

Essendo previste 3 coppie di cilindri idraulici per concio, la spinta minima che deve essere corrisposta dalla singola coppia di martinetti al concio è pari a:

$$F_{1,min} = Fg,an / 3 = 34.92 \text{ kN}$$

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA					
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	B	74 di 124

Per quanto riguarda il giunto longitudinale tra conci dello stesso anello si considera il caso più sfavorevole in cui, in fase di montaggio dell'anello, un concio si trovi ad avere la pressione della guarnizione nella parte superiore, ed inferiormente nessun concio su cui appoggiarsi (figura sotto). In questa condizione sul concio insistono le seguenti azioni verticali:

- Peso proprio: $P=25 \text{ kN/m}^3 \cdot V_{\text{concio}} = 25 \text{ kN/m}^3 \cdot 4.19 \text{m} \cdot 1.50 \text{m} \cdot 0.45 = 71 \text{ kN}$
- Spinta guarnizione: $S=25 \text{ kN/m} \cdot L_{\text{concio}} = 25 \text{ kN/m}^3 \cdot 1.50 \text{m} = 37.5 \text{ kN}$

Caso sfavorevole di verifica della guarnizione nei giunti longitudinali

Pertanto affinché il concio sia in equilibrio, ai suoi estremi longitudinali devono essere presenti delle reazioni vincolari pari a:

$$R_v = (P+S)/2 = 54.1 \text{ kN}$$

Nel giunto circonferenziale posteriore il taglio è fornito dai connettori, nella faccia frontale invece il meccanismo resistente è l'attrito che si sviluppa tra la scarpa dei martinetti e l'area di trasmissione del carico del concio, esprimibile come:

 $V_{Rd,fric} = \mu \cdot N_{Ed}$ -> $N_{Ed,min} = R_v / 0.5 = 108.2 \text{ kN}$

dove:

NEd [kN/m]: spinta totale agente sul concio

 μ [-]: coefficiente di attrito tra le interfacce (acciaio-calcestruzzo: μ = 0.5)

La spinta minima che deve essere corrisposta dalla singola coppia di martinetti al concio è quindi pari a:

 $F_{2,min} = N_{Ed,min} / 2 = 108.2 \text{ kN}$

Connettori meccanici

I connettori scelti presentano le seguenti caratteristiche (scheda tecnica in Allegato):

Resistenza a trazione:

per rottura del connettore $S_m = 100 \text{ kN}$ resistenza di progetto $S_r = S_m / \gamma_a = 100 / 1.15 = 87 \text{ kN}$

Resistenza al taglio:

per rottura del connettore $T_m = 160 \text{ kN}$ resistenza di progetto $T_r = T_m / \gamma_a = 160 / 1.15 = 139 \text{ kN}$

La massima forza di compressione nella guarnizione con un disallineamento di 0 mm e un gap di soli 2mm (facce a contatto) risulta pari a R=25kN/m.

La reazione che si sviluppa lungo tutta la faccia circonferenziale del concio è:

F=R×4.19m=104.75 kN

A favore di sicurezza si prevede che in fase di esercizio solo tre connettori possano funzionare per una possibile rottura del quarto in fase di montaggio.

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA					
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	B	76 di 124

Conseguentemente la forza di trazione competente a ciascun connettore è:

$$\begin{split} S &= F/3 = 35 \ kN \\ F_d &= F \ x \ \gamma_{gtu} = 52.5 \ kN \\ \hline Fd &< Sr = 87 \ kN \end{split}$$

Per quanto riguarda il giunto longitudinale (tra conci di uno stesso anello) la reazione dovuta allo schiacciamento della relativa coppia di guarnizioni agisce come taglio sul sistema costituito dai due connettori più prossimi al giunto:

$$\begin{split} F &= R \ x \ 1.50 \ m {=} 37.5 \ kN \\ T &= F \ / \ 2 = 18.75 \ kN \\ T_d &= T \ x \ \gamma_{gtu} = 28.1 \ kN \end{split} \qquad \qquad Td < Tr = 139 \ kN \end{split}$$

Il fattore di riduzione γ_a adottato è pari a 1.15, uguale a quello adottato per l'acciaio nelle verifiche agli Stati limite, compatibilmente con quanto dettato dalla Normativa. Tale situazione di verifica è, tuttavia, legata all'errata manovra e quindi non utile per la statica della galleria.

Viene di seguito presa in considerazione la sollecitazione agente sui connettori a seguito di una temporanea sospensione del singolo concio ai soli connettori (errata manovra dei martinetti).

Tale condizione di carico non è in alcun modo prevista nella normale procedura di montaggio. Risulta tuttavia opportuno verificare che, nel caso in cui un evento accidentale provochi la sospensione del concio, la resistenza dei connettori garantisca la sicurezza impedendo la caduta del concio stesso. Si considera nelle verifiche il contributo di soli due connettori.

Il peso del concio è:

P = 25 kN/m3 x 0.45 m x 1.5 m x 4.19 m = 71 kN

questo agisce con uno sforzo di taglio (ripartito su 2 connettori) pari a

T = P/2 = 35.3 kN < Tr

Al momento flettente si oppone la coppia di forze data dalla trazione sui connettori e dalla compressione sui punti più bassi dove il concio si appoggia all'anello adiacente. Considerando collaboranti due soli connettori, la condizione più sfavorevole si presenta per l'assenza dei connettori centrali; in questo caso il braccio della coppia è il minimo possibile (vedi figura sotto):

M = P x (1.5/2) = 47.3 kN m

 $M=3\ x\ S\ x\ bmin$

con bmin=0.66m

Si ricava quindi la forza di trazione sul singolo connettore:

 $S = M / (2 \times bmin) = 36kN$

 $Sd = S x \gamma_{gtu} = 53.75 kN$

Sd < Sr = 87 kN

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA					
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	B	78 di 124

10.5.4 Verifiche statiche in fase definitiva : modelli di calcolo e criteri di verifica

Nelle analisi numeriche effettuate in sede di progetto l'anello del rivestimento definitivo è stato simulato come elementi continui (beam), ossia in grado di trasferire momenti flettenti lungo tutto il perimetro di scavo.

Infatti i giunti tra concio e concio di due anelli contigui sono sfalsati in modo che ciascun anello può essere considerato come un involucro continuo cilindrico.

Il complesso dei conci sfalsati ha quindi un comportamento globale a "guscio".

Nelle analisi, essendo rappresentato il rivestimento definitivo come costituito da conci discontinui e sfalsati, le caratteristiche meccaniche di ogni asta si riferiscono ad una sezione di anello di lunghezza unitaria.

A seguito delle analisi così condotte, l'anello del rivestimento definitivo in cls è stato verificato facendo riferimento alla sezione $n^{\circ}1$ di Figura (sezione <u>in prossimità</u> del giunto), ossia considerando l'area di cls di due conci e l'armatura di uno soltanto.

Le sollecitazioni applicate sono quelle relative a due conci.

Per quanto riguarda le analisi e le verifiche condotte si considera quindi la sezione 1.

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA					
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	B	79 di 124

Al fine di integrare le verifiche di cui sopra, è stata analizzato il comportamento <u>in corrispondenza</u> del giunto per il quale sono state effettuate le opportune verifiche.

Definizione degli stati limite

Le verifiche sono eseguite mediante il metodo agli stati limite; preliminarmente vengono quindi trovate le sollecitazioni ultime alle quali l'anello di conci armato può resistere in termini di dominio Nu-Mu e di massima sollecitazione di taglio Tu; successivamente vengono calcolate le sollecitazioni di progetto Nd, Md, Td agenti nelle diverse fasi e verificata la loro appartenenza ai domini di resistenza.

Caratteristiche dei materiali

CALCESTRUZZO:

classe (resistenza caratteristica cubica):	C45/55 MPa
resistenza caratteristica cilindrica:	f _{ck} =0.83xR _{ck} =45.65 MPa
resistenza caratteristica a trazione:	f _{ctk} =2.7 MPa
modulo elastico:	$E_{cm} = 22000 \ (f_{cm}/10)^{0.3} = 36416 \ MPa$
massima deformazione di accorciamente	o: $\varepsilon_c=3.5$ °/ ₀₀

classe (resistenza caratteristica cubica):	C55/67 MPa
resistenza caratteristica cilindrica:	f _{ck} =0.83xR _{ck} = 55.6 MPa
resistenza caratteristica a trazione:	f _{ctk} =3 MPa
modulo elastico:	$E_{cm} = 22000 \ (f_{cm}/10)^{0.3} = 38325 MPa$
massima deformazione di accorciamente	o: $\epsilon_c=3.5 ^{\circ}/_{oo}$

ACCIAIO PER ARMATURA:

tipo:	B450	
tension	e caratteristica di snervamento:	f _{yk} =450 MPa
modulo	elastico:	Es=210000 MPa
massim	a deformazione di allungamento	$\epsilon_a=10 \circ/_{oo}$

Coefficienti di sicurezza sulla resistenza dei materiali

Per il calcolo delle azioni resistenti allo SLU della sezione sono stati utilizzati i seguenti coefficienti di sicurezza (a dividere i valori di resistenza dei materiali).

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA						
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40D 07	CODIFICA CL	DOCUMENTO GN 00001	REV. B	FOGLIO 80 di 124	
- per la resistenza a compressione del cls.:		,	γc=1.5				
- per la resistenza a compressione del cls. in condiz	lizioni eccezionali: $\gamma c=1.3$						
- per la resistenza dell'acciaio:			γa=1.15				

per tenere conto della diminuzione della resistenza del calcestruzzo sottoposto a carichi di lunga durata, nelle verifiche in fase definitiva la resistenza caratteristica cilindrica (fck) viene opportunamente ridotta di un ulteriore coefficiente pari a 0.85.

I valori di calcolo delle resistenze del calcestruzzo e dell'acciaio risultano quindi:

CALCESTRUZZO

C45/55

resistenza di calcolo a compressione del cls (carichi di lunga durata):

fcd1=0.85xfck/ yc=25.5 MPa

resistenza di calcolo a compressione del cls (carichi di breve durata):

fcd2=fck/ γ c=30 MPa

C55/67

resistenza di calcolo a compressione del cl
s (carichi di lunga durata): fcd1=0.85xfck/ γ c=31.5 MPa

resistenza di calcolo a compressione del cls (carichi di breve durata): fcd2=fck/ γ c=37 MPa

ACCIAIO

resistenza di calcolo a snervamento dell'acciaio:

fyd=fyk/ ya= 391 MPa

COEFFICIENTI DI AMPLIFICAZIONE DELLE SOLLECITAZIONI:

Le sollecitazioni agenti sulla sezione nelle diverse condizioni di carico, sia in fase definitiva che in fase transitoria vengono amplificate secondo un coefficiente di sicurezza pari a $\gamma_{gtu}=1.3$ per le verifiche agli stati limite ultimi, mentre $\gamma_{gte}=1.0$ per le verifiche agli stati limite di esercizio.

Le sollecitazioni di calcolo sono quindi:

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA

Galleria Salso - Belazione gentecnica e di calcolo della	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
galleria naturale	RS3U	40D 07	CL	GN 00001	В	81 di 124

 $N_d = N_t x \gamma_{gt}$

 $M_d \!\!=\!\! Mx \; \gamma_{gt}$

 $T_d {=} Tx \; \gamma_{gt}$

10.5.5 Requisiti Stati limite

S.L.U. per tensioni normali in fase definitiva

Per la verifica a pressoflessione in fase definitiva si riporta il dominio di resistenza della sezione di due anelli consecutivi del rivestimento. Data la discontinuità del rivestimento posto in opera, dovuta alla presenza dei giunti tra gli anelli, le verifiche vengono effettuate considerando che il momento flettente possa essere assorbito, a livello di trazioni, soltanto dove è presente la continuità strutturale.

Le verifiche sono quindi condotte considerando due anelli consecutivi mentre l'armatura è quella relativa ad un solo anello.

Viste le 2 differenti classi di armatura, riportati nella tabella seguente, verranno definiti i 2 domini di rottura. Si riporteranno inoltre nello stesso grafico il dominio della sezione con le armature necessarie.

Figura 18 - Dominio resistente SLU (B=3, H = 0.45 m) – Classe 1 e 2 – C45/55

Figura 19 - Dominio resistente SLU (B=3, H = 0.45 m) – Classe 1 – C55/67

Per la valutazione delle resistenze ultime nei confronti di sollecitazioni taglianti (valido per elementi monodimensionali), è stato considerato quanto riportato di seguito.

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA					
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	B	83 di 124

S.L.U. per taglio in fase definitiva

La resistenza a taglio V_{Rd} degli elementi strutturali sprovvisti di specifica armatura a taglio è stata valutata, utilizzando formule di comprovata affidabilità, sulla base della resistenza a trazione del calcestruzzo.

La verifica di resistenza (SLU) si pone con:

 $V_{Rd} \geq V_{Ed}$

dove $V_{\mbox{\scriptsize Ed}}$ è il valore di calcolo dello sforzo di taglio.

Con riferimento all'elemento fessurato da momento flettente, la resistenza al taglio si valuta con:

$$\begin{split} V_{\text{Rd}} &= \left\{0,18\cdot k\cdot (100\cdot\rho_{1}\cdot f_{\text{ck}})^{1/3}/\gamma_{\text{c}} + 0,15\cdot\sigma_{\text{cp}}\right\}\cdot b_{w}\cdot d \geq (v_{\text{min}} + 0,15\cdot\sigma_{\text{cp}})\cdot b_{w}d \quad (4.1.14) \\ \text{con} \\ &k = 1 + (200/d)^{1/2} \leq 2 \\ v_{\text{min}} = 0,035k^{3/2}f_{\text{ck}}^{-1/2} \\ \text{e dove} \\ d & \text{è l'altezza utile della sezione (in mm);} \\ &\rho_{1} = A_{\text{sl}}/(b_{w}\cdot d) \quad \text{è il rapporto geometrico di armatura longitudinale ($\leq 0,02$);} \\ &\sigma_{\text{cp}} = N_{\text{Ed}}/A_{\text{c}} & \text{è la tensione media di compressione nella sezione (is mm);} \\ &b_{w} & \text{è la larghezza minima della sezione(in mm).} \end{split}$$

Nelle tabelle di sintesi delle verifiche è riportato il coefficiente di utilizzo della sezione ($V_{Ed}/V_{Rd} \le 1$), il quale deve risultare inferiore all'unità affinché la verifica risulti soddisfatta.

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA						
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
	RS3U	40D 07	CL	GN 00001	B	84 di 124	

S.L.U. per tensioni normali in fase provvisoria

Per le verifiche a pressoflessione nelle fasi provvisorie che si verificano prima della messa in opera dell'anello di rivestimento a tergo della macchina TBM si riporta il dominio di resistenza della sezione un singolo concio.

Le verifiche riportate in seguito sono state svolte nelle condizioni più gravose, ovvero con la classe di armatura II.

Il momento resistente della sezione per un N = 0 è pari a 288.7 kN m

b=150 cm h= 45 cm

Figura 20 - Dominio resistente SLU (B=1,50, H = 0.45 m) - Classe 2 - C 16/20

Galleria Salso - Belazione geotecnica e di calcolo della	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
galleria naturale	RS3U	40D 07	CL	GN 00001	В	85 di 124

<u>Stati limite di esercizio</u>

S.L. per le tensioni di esercizio

Le condizioni ambientali più gravose per i conci si stabiliscono in fase definitiva con il rivestimento completato. Le massime tensioni tollerate nei materiali sono le seguenti:

CLS(C45/55)

σ_{max} per combinaz. di carico rara	$0.60 \cdot f_{ck}=27 \text{ MPa}$
σ_{max} per combinaz. di carico quasi permanente	$0.45 \cdot f_{ck}$ =20.25 MPa
CLS(C55/67)	
σ_{max} per combinaz. di carico rara	$0.60 \cdot f_{ck} = 33 \text{ MPa}$
σ_{max} per combinaz. di carico quasi permanente	$0.45 \cdot f_{ck} = 24.7 \text{ MPa}$

ACCIAIO

 σ_{max}

0.8.fyk=360 MPa

Stato limite di fessurazione

Per assicurare la funzionalità e la durata delle strutture si deve:

- garantire un sufficiente ricoprimento delle armature con calcestruzzo di buona qualità e compattezza, bassa porosità e bassa permeabilità;
- non superare uno stato limite di fessurazione adeguato alle condizioni ambientali, alle sollecitazioni ed alla sensibilità delle armature alla corrosione;
- tener conto delle esigenze estetiche.

In ordine di severità decrescente si distinguono i seguenti stati limite di fessurazione:

- stato limite di decompressione nel quale, per la combinazione di azioni prescelta, la tensione normale è ovunque di compressione ed al più uguale a 0;
- stato limite di formazione delle fessure, nel quale, per la combinazione di azioni prescelta, la tensione normale di trazione nella fibra più sollecitata è:

dove f_{ctm} rappresenta la resistenza a trazione media del cls.

• stato limite di apertura delle fessure, nel quale, per la combinazione di azioni prescelta, il valore limite di apertura della fessura calcolato al livello considerato è pari ad uno dei seguenti valori nominali:

$w_1 = 0.2$ mm per combinazione qusi permanente

 $w_2 = 0.3$ mm per combinazione frequente (considerata per le condizioni di carico provvisorie)

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE NUOVO COI TRATTA CA	E FERROV LLEGAME LTANISSE	'IARIA MESSI NTO PALERM ETTA XIRBI –	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	D
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	B	86 di 124

Lo stato limite di fessurazione è stato fissato in funzione delle condizioni ambientali e della sensibilità delle armature alla corrosione. Le verifiche condotte per i diversi stati limite di fessurazione sono di seguito riportate.

Il valore di calcolo di apertura delle fessure (w_d) non deve superare i valori nominali w di progetto. Il valore di calcolo è dato da:

$$w_{d} = 1.7 w_{m}$$

dove w_m, rappresenta l'ampiezza media delle fessure.

L'ampiezza media delle fessure w_m è calcolata come prodotto della deformazione media delle barre d'armatura ϵ_{sm} per la distanza media tra le fessure Δ_{sm} :

$$w_m = \varepsilon_{sm} x \Delta_{sm}$$

Per il calcolo di ε_{sm} , e Δ_{sm} vanno utilizzati criteri consolidati riportati nella letteratura tecnica nel rispetto delle indicazioni fornite nel paragrafo C4.1.2.2.4.6 della Circolare 02/02/2009.

In assenza di dati più precisi, i parametri Δ_{sm} e ε_{sm} che definiscono w_m , possono valutarsi come segue, nell'ipotesi che le armature siano distribuite uniformemente sull'area efficace della sezione trasversale.

• la distanza media fra le fessure Δ_{sm} per la condizione di fessurazione stabilizzata in corrispondenza del livello baricentrico dell'armatura all'interno dell'area efficace e data da:

$$\Delta_{\rm sm} = 2 \ (c + s/10) + k2 \ k3 \ \phi/\rho_{\rm r}$$

c = copriferro netto armatura tesa (mm);

s = interasse tra i ferri, se s>14 Φ si adotterà s=14 Φ (mm);

 Φ = diametro delle barre (mm);

k2 = 0.4, per barre ad aderenza migliorata;

k3 = 0.125, per diagramma delle σ triangolare, dovuto a flessione o pressoflessione;

$$\rho r = A_s / A_{c eff};$$

 A_s = area della sezione di acciaio posta nell'area $A_{c,eff}$.

• la deformazione unitaria media dell'armatura ɛsm può valutarsi secondo la seguente espressione che tiene conto della collaborazione del calcestruzzo teso che la circonda:

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICI NUOVO CO TRATTA CA	E FERROV LLEGAME LTANISSI	YIARIA MESSI INTO PALERN ETTA XIRBI —	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	0
Galleria Salso - Relazione geotecnica e di calcolo della	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
galleria naturale	RS3U	40D 07	CL	GN 00001	B	87 di 124

 $\epsilon_{sm} = \sigma_s/E_s \ (1-\beta 1 \ \beta 2 \ (\sigma_{sr}/\sigma_s)2) \ge (0.4 \ \sigma_s/E_s)$

 σ_s = tensione dell'acciaio calcolata nella sezione fessurata per la combinazione di azioni considerata;

 σ_s = tensione dell'acciaio calcolata nella sezione fessurata per la sollecitazione corrispondente al raggiungimento della resistenza a trazione fctm nella fibra di calcestruzzo più sollecitata nella sezione interamente reagente;

 $\beta_1 = 1.0$ per barre ad aderenza migliorata;

 $\beta_2 = 0.5$ nel caso di azioni di lunga durata o ripetute.

10.6 VERIFICHE STATICHE: PRESENTAZIONE E RISULTATI

Si riporta di seguito una tabella repilogativa delle analisi numeriche efettuate per l'analisi e la verifica degli scavi e dei rivestimenti.

Analisi n. Sezione		progressiva	formazione	Condizione analisi
1	axiTRV100m	-	TRV	Assialsimmetrico copertura 100m
2	axiTRV200m_s	-	TRV	Assialsimmetrico copertura 200m – sovrascavo 5cm
3	axiTRV100m_s	-	TRV	Assialsimmetrico copertura 100m – sovrascavo 5cm
4	TRV100m		TRV	Piana copertura 100m
5	TRV200m_s		TRV	Piana copertura 200m – sovrascavo 5cm

Ai fini di una corretta e completa valutazione della adeguatezza del dimensionamento effettuato, si ritengono sufficienti le verifiche statiche eseguite.

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA

Calleria Salca - Belazione geotoenica e di calcole della	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
galleria naturale	RS3U	40D 07	CL	GN 00001	В	89 di 124

Modello geotecnico

Sezione		pk	Z ₀	$h_{\rm w}$	σο	p_{w0}	p_{wR}	$R_{\rm w}$	γ	c'k	φ'ĸ	Cu k	E_k	E_{uk}
dı	Unità													
analisi		[km]	[m]	[m]	[MPa]	[MPa]	[MPa]	[m]	$[kN/m^3]$	[MPa]	[°]	[MPa]	[MPa]	[MPa]
D1	TRV	9200	50	-	1,05	-	-	-	21	-	-	0,500	-	250
D2	TRV	12050	100	81.5	2,2	0.815	-	-	22	121	19	0,594	300	297
D3	TRV	13100	200	100	4,4	1	-	-	22	260	16	1,188	600	594
$Z_0 = cont$	ertura rich	etto al nian	o dei c	entri de	lla galler	ia								

 Z_0 = copertura rispetto al piano dei centri della galleria h_w= carico idraulico

 σ_0 = tensione totale iniziale al livello del cavo

 p_{w0} = pressione interstiziale al livello del cavo in condizioni indisturbate

 p_{wR} = pressione interstiziale sul profilo di scavo

 R_w = raggio di influenza idraulica oltre il quale si ristabilisce p_{w0}

 γ = peso dell'unità di volume dell'ammasso

c'_k = valore caratteristico della coesione efficace dell'ammasso

 ϕ'_k = valore caratteristico dell'angolo di attrito dell'ammasso

 $c_{u\,k}$ = valore caratteristico della coesione non drenata

 E_k = valore caratteristico del modulo elastico dell'ammasso

 $E_{u\,k}$ = valore caratteristico del modulo elastico non drenato dell'ammasso

Le analisi sono svolte con riferimento allo scavo di una galleria di raggio equivalente Req pari a 4,65m.

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE NUOVO COI TRATTA CA	E FERROV LLEGAME LTANISSE	'IARIA MESSI NTO PALERN ETTA XIRBI –	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	C
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	B	90 di 124

Si sono effettuate 6 analisi numeriche assialsimmetriche al fine di simulare il comportamento del terreno allo scavo e l'interazione del medesimo con gli interventi previsti (pressioni al fronte) nonché con lo scudo della TBm ed il rivestimento a tergo. In particolare l'analisi si prefigge lo scopo di stimare le pressioni del terreno sullo scudo, al fine di determinare la spinta totale necessaria negli scenari di seguito indicati, nonché il detensionamento del terreno al contorno dei conci, a debita distanza dal fronte (condizioni piane indisturbate), al fine di determinare il rilascio delle forze da imporre nelle analisi numeriche piane utilizzate per il dimensionamento e la verifica dei conci.

Modello geometrico

La mesh di calcolo è costituita da 71x200 di elementi rettangolari, opportunamente intensificati nelle zone di maggiore interesse in corrispondenza della galleria, in modo da seguire il più fedelmente possibile le geometrie locali delle strutture. Inferiormente il modello è vincolato con carrelli.

La griglia presenta un'estensione laterale di 75 m e un'altezza complessiva di 150 m. I bordi del modello numerico sono stati collocati sufficientemente lontani dalla galleria (a distanza >8D con D=diametro della galleria), in modo tale che le condizioni di vincolo ivi definite non influenzino la modellazione.

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE NUOVO COL TRATTA CA	E FERROV LLEGAME LTANISSE	'IARIA MESSI NTO PALERN ETTA XIRBI –	NA - CATANIA - 10 - CATANIA NUOVA ENNA	PALERM	D
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40D 07	CODIFICA CL	DOCUMENTO GN 00001	REV.	FOGLIO 91 di 124

L'analisi si prefigge passo passo di simulare l'avanzamento sia dello scudo metallico che del rivestimento e relativo riempimento di miscela a tergo, simulando l'applicazione di una pressione al fronte e di un eventuale sovrascavo. Esso si realizza sia con la configurazione geometrica della macchina TBM (e cioè la differenza di raggio fra la testa e la coda rappresentata dalla conicità del mantello) e tramite gauge cutters che con un ulteriore alesatura in testa attraverso il copy-cutter. Questo sovrascavo, sia in un caso che nell'altro, in terreni scadenti in relazione agli stati tensionali in gioco, spesso non viene compensato totalmente dal riempimento della miscela bicomponente a tergo, per cui si realizza un ulteriore deconfinamento oltre a quello del fronte.

I rivestimenti e lo scudo sono simulati con elementi mesh. Lo sfondo virtuale di scavo è di 0.5m. il sovrascavo, nel caso in cui si decida di simularlo, è realizzato attraverso un gap dotato di interfacce e l'analisi è svolta in modalità a grandi deformazioni. Lo scudo ipotizzato di lunghezza 11m e spessore 5cm è simulato con un modello costitutivo elastico lineare; tutti gli altri elementi compreso il terreno è simulato con un legame elastoplastico con criterio di resistenza di Mohr Coulomb.

La seguente tabella riassume la successione delle fasi di calcolo delle analisi condotte:

Fase	Descrizione
0	Creazione della geometria del modello
1	Inizializzazione dello stato tensionale geostatico in condizioni elastiche
2	Inizializzazione dello stato tensionale geostatico in condizioni plastiche (modello costitutivo di Mohr-Coulomb)
3	Scavo iniziale corripondente allo scudo TBM ed applicazione pressioni al fronte
4	Simulazione dello scavo in CND (Cu) a regime per sfondi limitati (con eventuale sovrascavo) avanzamento scudo metallico, applicazione della pressione al fronte e installazione del rivestimento definitivo e della miscela bicomponente
5	Scavo per una lunghezza totale finale di 75m, fino al centro della mesh; si valutano le pressioni sullo scudo e sul rivestimentodefinitivo a tergo

Tabella 2 - Fasi di analisi

Si ipotizza un sovrascavo di circa 5cm da realizzarsi attraverso un opportuna conicità dello scudo e/o attraverso l'ausilio del copycutter. Si sono svolte comunque anche analisi senza simulare il sovrascavo ipotizzando comunque un raggio di scavo pari a 4.65m.

Rappresentazione della mesh e degli elamenti di sostegno (scudo in giallo, rivestimento in conci in rosso, miscela bicomponente in viola)

Particolare della mesh e degli elementi di sostegno (scudo in giallo e relativo gap con deformzione del terreno fino a toccare lo scudo, pressione al fronte)

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA							
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
	RS3U	40D 07	CL	GN 00001	B	93 di 124		

10.6.2 Modelli assialsimmetrici - Valutazione delle spinte massime di esercizio della TBM e dei fattori di rilascio dello stato tensionale

N	Id	Facies geotecnica	Tipologia analisi	Tipo di analisi	Pressione fronte (bar)	Relax preinstallazione conci (%)	Spinta su scudo (KN)
1	axiTRV100m	TRV	Assialsimmetrico copertura 100m	Non drenata	3	32	1650*
2	axiTRV200m_s	TRV	Assialsimmetrico copertura 200m– sovrascavo 5cm	Non drenata	5	42	22000
3	axiTRV100m_s	TRV	Assialsimmetrico copertura 100m– sovrascavo 5cm	Drenata	5	73	1649

Di seguito si rappresenta l'esito delle analisi assialsimmetriche in forma sintetica

*spinta sullo scudo valutata nel caso di sovrascavo di 5cm comunque dovuto ai cutter-edges

Dal punto di vista delle spinte le analisi più significative sono quelle che ipotizzano un sovrascavo permanente di 5cm dal momento che la macchina TBM è sempre progettata con una conicità radiale centimetrica e tramite gauge cutters. Nel dettaglio la spinta complessiva deve tenere conto di quattro singoli termini:

$$\Sigma W = W_{sh} + W_{sk} + W_{exc} + W_{sup}$$

W sh : Forza dovuta alla presenza delle spazzole e del cutting edge =584KN

W sk : Forza dovuta all'attrito (μ =0.2) macchina-terreno (spinta massima prevista dal calcolo sullo scudo più peso totale macchina incluso backup stimato in 1200t) =34000 KN

W sup : Forza di pressione max da applicare al fronte=33900 KN

W exc : Forza necessaria allo scavo=9000KN

Le analisi svolte hanno condotto ai seguenti valori di progetto:

 \cdot Spinta di progetto max (avanzamento in condizioni ordinarie, in relazione al contesto geomeccanico e morfologico): 100.000 – 115.000 kN·

Extra Spinta di progetto (ripartenza fresa in condizioni eccezionali): 130.000 kN

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE NUOVO COI TRATTA CA	E FERROV LLEGAME LTANISSI	/IARIA MESSI INTO PALERN ETTA XIRBI —	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	0
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	B	94 di 124

Figura 21 – andamento delle tensioni efficaci post scavo normalizzate in funzione della distanza dal fronte

10.6.3 Modelli piani

Si sono effettuate 2 analisi numeriche piane al fine di simulare l'interazione del medesimo il rivestimento definitivo a tergo.

Modello geometrico

La mesh di calcolo è costituita da 71x200 di elementi rettangolari, opportunamente intensificati nelle zone di maggiore interesse in corrispondenza della galleria, in modo da seguire il più fedelmente possibile le geometrie locali delle strutture. Inferiormente il modello è vincolato con carrelli.

La griglia presenta un altezza di 75 m e una larghezza complessiva di 150 m. I bordi del modello numerico sono stati collocati sufficientemente lontani dalla galleria (a distanza >8D con D=diametro della galleria), in modo tale che le condizioni di vincolo ivi definite non influenzino la modellazione.

Figura 22 – Mesh di calcolo

Fasi e percentuali di rilascio

Al fine di tener conto della natura tridimensionale del problema, nelle analisi svolte in condizioni di deformazione piana lo scavo della galleria è stato simulato con il metodo delle forze di scavo equivalenti. In particolare, l'effetto dell'avanzamento dello scavo viene modellato rilasciando un sistema di forze applicate sul contorno del profilo di scavo. La riduzione delle forze di scavo a partire dalla condizione originaria è definita tramite un fattore di rilascio, determinato dalle analisi assialsimmetriche. Per il valore di K0 in questo caso si è assunto il valore reale stimato nella caratterizzazione geotecnica.

La seguente tabella schematizza la successione delle fasi di calcolo delle due differenti analisi condotte:

\mathbf{I} abella $\mathbf{Z} = \mathbf{\Gamma}$ asi ul allalisi	Tabella	2 -	Fasi	di	analisi
--	---------	-----	------	----	---------

Fase	Descrizione	Rilascio forze di scavo
0	Creazione della geometria del modello	-
1	Inizializzazione dello stato tensionale geostatico in condizioni elastiche	-
2	Inizializzazione dello stato tensionale geostatico in condizioni plastiche (modello costitutivo di Mohr-Coulomb)	-
	SCAVO CANNA DESTRA	

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA

LOTTO CODIFICA DOCUMENTO REV. FOGLIO COMMESSA Galleria Salso - Relazione geotecnica e di calcolo della RS3U 40D 07 CL GN 00001 в 96 di 124 galleria naturale 3 Rilascio delle forze al contorno (da assialsimmetrici) varie TRV : in condizioni non drenate (Cu) 4 Installazione dell'anello universale 1.0 SCAVO CANNA SINISTRA 5 Rilascio delle forze al contorno (da assialsimmetrici) varie (come per canna destra) 6 1.0 Installazione dell'anello universale LUNGO TERMINE Equalizzazione pressioni interstiziali / ripristino pp iniziali al contorno di 7 1.0 scavo – parametri drenati

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE NUOVO COI TRATTA CA	E FERROV LLEGAME LTANISSE	'IARIA MESSI NTO PALERN ETTA XIRBI –	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	C
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	B	97 di 124

10.6.4 Verifica dei giunti - pressioni di contatto

La trasmissione degli sforzi assiali lungo l'anello, in corrispondenza dei giunti tra conci successivi, avviene su una superficie di contatto ridotta rispetto alla sezione effettiva in relazione alla presenza degli smussi ai bordi. Pertanto, su tali sezioni sono state condotte le verifiche alla pressione di contatto e alle trazioni indotte per effetto di un carico concentrato.

Le verifiche descritte nel seguito fanno riferimento al dettaglio della geometria dei giunti e dello schema di diffusione delle pressioni di contatto nei giunti tra concio e concio.

Per quanto riguarda le sollecitazioni, i momenti agenti in corrispondenza del giunto sono stati opportunamente ridotti.

10.6.5 Verifica delle pressioni di contatto

La verifica SLU, condotta in base al punto 5.4.8.1 dell'Eurocodice 2, è soddisfatta essendo:

 $Nd{<}\,Frdu{\,\leq\,}Fmax$

dove:

Frdu = Ac0*fcd*(Ac1/Ac0)*0.5

Ac0 = b0*10

Ac1 = b1*11

Fmax = 3.3*fcd*Ac0

Nelle relazioni sopra riportate risulta:

Ac0 = area caricata della sezione di verifica in esame, essendo b0 l'altezza di sezione reagente a compressione, con riferimento alle sollecitazioni di presso-flessione determinate con l'analisi per differenze finite per la condizione di carico considerata, ed 10 la larghezza del concio decurtata degli smussi presenti sul bordo;

Ac1 = massima area corrispondente geometricamente ad A c0 avente lo stesso baricentro ed inscrivibile nella sezione del concio, essendo b1 l'altezza del prisma sostitutivo per carico eccentrico, corrispondente al valore di b0 prima definito, quindi dedotta dall'altezza di sezione reagente a complessione, ed 11 la larghezza del concio.

Per il cls le tensioni nel calcestruzzo, nel caso d di SLU a 0.85fck/yc

Le verifiche risultano soddisfatte essendo Nd< Frdu \leq Fmax.

10.6.6 Verifica alle trazioni indotte

Il carico concentrato determina inoltre una forza di divaricamento sul concio in direzione radiale che può essere stimata secondo la formula proposta da Leonhardt:

 $F_t = 0.3 x (N_d) x (1-b_0/b_1)$

in cui b_0 e b_1 sono rispettivamente l'altezza della superficie di contatto e la dimensione del prisma sostitutivo per carico eccentrico, precedentemente determinate.

Allo scopo di assorbire la forza di trazione indotta, verranno disposte lungo la faccia del singolo concio un'area complessiva pari a:

Tipo I: 14\u00f616

Tipo II: 14\u00f614

La massima forza di trazione resistente risulta pari a:

<u>SLU:</u>

Tipo I: $F_{t,res} = As x f_{yd}$

Tipo II: $F_{t,res} = As x f_{yd}$

In entrambi i casi, le verifiche risultano soddisfatte essendo Ft< Ft,res.

<u>Analisi 4 - TRV - Verifiche delle pressioni di contatto – Assenza di sovrascavo – 100 m di copertura – C45/55</u> <u>– Classe II</u>

CANNA destra

			100m TRV	А
	Nsle	Msle	N	М
1	5383.00	138.80	5383.00	138.80
48	6340.00	-173.60	6340.00	-173.60
33	5735.00	161.30	5735.00	161.30
18	6409.00	-176.20	6409.00	-176.20

Step di	Sezione	N _{SLE}	M _{SLE}	Mjoint	Eccentr	H/6	b1	d ₁	A _{c0}	b ₂	d ₂	A _{c1}
calcolo	00210110	[kN]	[kNm]	[kNm]	[cm]	[cm]	[cm]	[cm]	[cm ²]	[cm]	[cm]	[cm ²]
	1	8074.5	-208.2	-145.7	3.8	5.83	35.0	140.0	4 900	43.0	148.0	6364
~	48	9510.0	260.4	182.3	3.9	5.83	35.0	140.0	4 900	43.0	148.0	6364
Ŕ	33	8602.5	-242.0	-169.4	4.0	5.83	35.0	140.0	4 900	43.0	148.0	6364
L L	18	9613.5	264.3	185.0	3.9	5.83	35.0	140.0	4 900	43.0	148.0	6364
οu												
<u>1</u> 0												

i

	Cl	_S			ACC	CIAIO	
N _{SLU}	F_{rdu}	F _{max}	VERIE	F _{td}	A_{smin}	$F_{t,res}$	VERIE
[kN]	kN	kN	v Li ui .	[kN]	[cm ²]	[kN]	VET III .
10497	16995	49211	OK	586	15.0	969.3	OK
12363	16995	49211	OK	690	17.6	969.3	OK
11183	16995	49211	OK	624	16.0	969.3	OK
12498	16995	49211	OK	698	17.8	969.3	OK

CANNA sinistra

		l															
			100m TRV	А	Step di	Sezione	N _{SLE}	M_{SLE}	Mjoint	Eccentr	H/6	b ₁	d ₁	A _{c0}	b ₂	d ₂	A _{c1}
	Nsle	Msle	N	М	calcolo	OCZIONE	[kN]	[kNm]	[kNm]	[cm]	[cm]	[cm]	[cm]	[cm ²]	[cm]	[cm]	[cm ²]
128	5388.00	137.90	5388.00	137.90		128	8082.0	-206.9	-144.8	3.8	5.8	35.0	140.0	4 900	43.0	148.0	6364
112	6396.00	-171.00	6396.00	-171.00	~	112	9594.0	256.5	179.6	3.9	5.8	35.0	140.0	4 900	43.0	148.0	6364
97	5740.00	157.60	5740.00	157.60	Ŕ	97	8610.0	-236.4	-165.5	3.9	5.8	35.0	140.0	4 900	43.0	148.0	6364
81	6343.00	-172.70	6343.00	-172.70	F	81	9514.5	259.1	181.3	3.9	5.8	35.0	140.0	4 900	43.0	148.0	6364
	6500		6500.00		οu	0	9750.0	0.0	0.0	2.0	5.8	35.0	140.0	4 900	43.0	148.0	6364
					10												

	Cl	S		ACCIAIO						
N _{SLU}	F _{rdu}	F _{max}	VERIE	F _{td}	A_{smin}	$F_{t, res}$	VERIE			
[kN]	kN	kN	v Li ili .	[kN]	[cm ²]	[kN]	v Li in .			
10507	16995	49211	OK	586	15.0	969.3	OK			
12472	16995	49211	OK	696	17.8	969.3	OK			
11193	16995	49211	OK	625	16.0	969.3	OK			
12369	16995	49211	OK	690	17.7	969.3	OK			
12675	16995	49211	OK	707	18.1	1978.2	OK			

*per il significato delle grandezze nelle tabelle si veda il paragrafo "verifica delle pressioni di contatto"

Le verifiche risultano soddisfatte

<u>Analisi 5 - TRV - Verifica delle pressioni di contatto – 5cm sovrascavo – 200 m di copertura – C55/67–</u> <u>Classe II</u>

CANNA DX

		UAITIA DA															
		200m TRV sovr	А	. [Step di	Sezione	N _{SLE}	M _{SLE}	Mjoint	Eccentr	H/6	b ₁	d ₁	A _{c0}	b ₂	d ₂	A _{c1}
Nsle	Msle	N	М		calcolo	Gezione	[kN]	[kNm]	[kNm]	[cm]	[cm]	[cm]	[cm]	[cm ²]	[cm]	[cm]	[cm ²]
7035.00	87.02	7035.00	87.02		L	Calotta - 6	10552.5	-130.5	-91.4	2.9	5.83	35.0	140.0	4 900	43.0	148.0	6364
7703.00	-130.90	7703.00	-130.90		2	piedritto dx	11554.5	196.4	137.4	3.2	5.83	35.0	140.0	4 900	43.0	148.0	6364
7345.00	73.23	7345.00	73.23		s/	arco rovescio	11017.5	-109.8	-76.9	2.7	5.83	35.0	140.0	4 900	43.0	148.0	6364
8108.00	-101.90	8108.00	-101.90		Ŕ	piedritto sx	12162.0	152.9	107.0	2.9	5.83	35.0	140.0	4 900	43.0	148.0	6364
					Ĕ												
					μO												
					50												
	Nsle 7035.00 7703.00 7345.00 8108.00	Nsle Msle 7035.00 87.02 7703.00 -130.90 7345.00 73.23 8108.00 -101.90	Source 200m TRV source Nsie Msie N 7035.00 87.02 7035.00 7703.00 -130.90 7703.00 7345.00 7345.00 8108.00 -101.90 8108.00 -	200m TRV sovr A Nsle Msle N M 7035.00 87.02 7035.00 87.02 7703.00 -130.90 7703.00 -130.90 7345.00 73.23 7345.00 73.23 8108.00 -101.90 8108.00 -101.90	200m TRV sovr A Nsle Msle N M 7035.00 87.02 7035.00 87.02 7703.00 -130.90 7703.00 -130.90 7345.00 73.23 7345.00 73.23 8108.00 -101.90 8108.00 -101.90	200m TRV sovr A Step di calcolo 7035.00 87.02 7035.00 87.02 7703.00 -130.90 7703.00 -130.90 7345.00 73.23 7345.00 73.23 8108.00 -101.90 8108.00 -101.90	200m TRV sovr A Step di calcolo Sezione 7035.00 87.02 7035.00 87.02 Calcolo Calcolo	200m TRV sovr A Step di calcolo Sezione Nsle Nsle Msle N M Calcolo Sezione [kN] 7035.00 87.02 7035.00 87.02 Sezione [kN] 7030.00 -130.90 7703.00 -130.90 732.33 7345.00 732.33 7345.00 732.33 7345.00 732.33 7345.00 1101.90 Field tar. 6 10552.5 arco rowsci 11017.5 piedritto sx 12162.0 L I	200m TRV sovr A Step di calcolo Sezione NsLe MsLe M	200m TRV sovr A Nsle Msle N M 7035.00 87.02 7035.00 87.02 7703.00 -130.90 7703.00 -130.90 7345.00 732.33 7345.00 732.33 8108.00 -101.90 8108.00 -101.90 — — — — — — — — — — — —	200m TRV sovr A Nsle Msle N M 7035.00 87.02 7035.00 87.02 7703.00 -130.90 7703.00 -130.90 7345.00 73.23 7345.00 732.3 8108.00 -101.90 101.90 -101.90	200m TRV sovr A Nsle Msle N M 7035.00 87.02 7035.00 87.02 7703.00 -130.90 7703.00 130.90 7345.00 7345.00 7345.00 7345.00 8108.00 -101.90 8108.00 -101.90 Image: State S	200m TRV sovr A Nsle Msle N M 7035.00 87.02 7035.00 87.02 7703.00 -130.90 7703.00 -130.90 7345.00 7345.00 7345.00 7345.00 101.90 101.90 101.90 101.90 2000 101.90 101.90 12162.0 152.9 107.0 2.9 5.83 35.0 101.90 101.90 101.90 101.90 12162.0 152.9 107.0 2.9 5.83 35.0 101.90 101.90 101.90 101.90 12162.0 152.9 107.0 2.9 5.83 35.0 101.90 101.90 101.90 101.90 12162.0 152.9 107.0 2.9 5.83 35.0 101.90 101.90 101.90 101.90 101.90 101.90 101.90 101.90 101.90 101.90 101.90 101.90 101.90 101.90 101.90 101.90 101.90 <td< td=""><td>200m TRV sovr A Nsle Msle N M 7035.00 87.02 7035.00 87.02 7703.00 -130.90 7703.00 130.90 7345.00 7345.00 732.33 8108.00 -101.90 8108.00 -101.90 2000 Calotia 1262.01 152.9 107.0 2.9 5.83 35.0 140.0 2000 703.00 -101.90 703.00 703.00 101.90 703.00 703.00 703.00 703.00 703.00 703.00 703.00 703.00 703.00 703.00 703.00 703.23 35.0 140.0 2000 Calotia - 6 10552.5 130.8 76.9 2.7 5.83 35.0 140.0 2000 Calotia - 6 10552.9 107.0 2.9 5.83 35.0 140.0 2000 Calotia - 6 152.9 107.0 2.9 5.83 35.0 140.0 2000 Calo Caloti</td><td>200m TRV sovr A Nsle Msle N M 7035.00 87.02 7035.00 87.02 7703.00 -130.90 7703.00 130.90 7703.00 130.90 7703.00 130.90 7703.00 130.90 7703.00 130.90 7845.00 7845.00 7845.00 7845.00 7845.00 7845.00 191.90 8108.00 -101.90 8108.00 -101.90 140.0 4 900 Piedritto sx 12162.0 152.9 107.0 2.9 5.83 35.0 140.0 4 900 Piedritto sx 12162.0 152.9 107.0 2.9 5.83 35.0 140.0 4 900 Piedritto sx 12162.0 152.9 107.0 2.9 5.83 35.0 140.0 4 900 Piedritto sx 12162.0 152.9 107.0 2.9 5.83 35.0 140.0 4 900 Piedritto sx 12162.0 152.9 107.0 2.9 5.83 35.0 140.0</td><td>200m TRV sovr A Nsle Msle N M 7035.00 87.02 7035.00 87.02 7703.00 -130.90 7703.00 -130.90 7703.00 -130.90 7345.00 73.23 7345.00 732.33 7345.00 732.33 7345.00 -101.90 Image: Construct of the state of the stat</td><td>200m TRV sovr A Nsle Msle N M 7035.00 87.02 7035.00 87.02 7703.00 -130.90 7703.00 -130.90 7703.00 -130.90 7345.00 73.23 7345.00 732.33 7345.00 110.90 8108.00 -101.90 8108.00 -101.90 110.90 126.01 L<</td></td<>	200m TRV sovr A Nsle Msle N M 7035.00 87.02 7035.00 87.02 7703.00 -130.90 7703.00 130.90 7345.00 7345.00 732.33 8108.00 -101.90 8108.00 -101.90 2000 Calotia 1262.01 152.9 107.0 2.9 5.83 35.0 140.0 2000 703.00 -101.90 703.00 703.00 101.90 703.00 703.00 703.00 703.00 703.00 703.00 703.00 703.00 703.00 703.00 703.00 703.23 35.0 140.0 2000 Calotia - 6 10552.5 130.8 76.9 2.7 5.83 35.0 140.0 2000 Calotia - 6 10552.9 107.0 2.9 5.83 35.0 140.0 2000 Calotia - 6 152.9 107.0 2.9 5.83 35.0 140.0 2000 Calo Caloti	200m TRV sovr A Nsle Msle N M 7035.00 87.02 7035.00 87.02 7703.00 -130.90 7703.00 130.90 7703.00 130.90 7703.00 130.90 7703.00 130.90 7703.00 130.90 7845.00 7845.00 7845.00 7845.00 7845.00 7845.00 191.90 8108.00 -101.90 8108.00 -101.90 140.0 4 900 Piedritto sx 12162.0 152.9 107.0 2.9 5.83 35.0 140.0 4 900 Piedritto sx 12162.0 152.9 107.0 2.9 5.83 35.0 140.0 4 900 Piedritto sx 12162.0 152.9 107.0 2.9 5.83 35.0 140.0 4 900 Piedritto sx 12162.0 152.9 107.0 2.9 5.83 35.0 140.0 4 900 Piedritto sx 12162.0 152.9 107.0 2.9 5.83 35.0 140.0	200m TRV sovr A Nsle Msle N M 7035.00 87.02 7035.00 87.02 7703.00 -130.90 7703.00 -130.90 7703.00 -130.90 7345.00 73.23 7345.00 732.33 7345.00 732.33 7345.00 -101.90 Image: Construct of the state of the stat	200m TRV sovr A Nsle Msle N M 7035.00 87.02 7035.00 87.02 7703.00 -130.90 7703.00 -130.90 7703.00 -130.90 7345.00 73.23 7345.00 732.33 7345.00 110.90 8108.00 -101.90 8108.00 -101.90 110.90 126.01 L<

	C	LS		ACCIAIO						
N _{SLU}	F _{rdu}	F _{max}	VERIE	F _{td}	A_{smin}	F _{t,res}	VERIE			
[kN]	kN	kN	• L I UI .	[kN]	[cm ²]	[kN]	VEI III.			
13718	20703	59948	OK	766	19.6	1266.0	OK			
15021	20703	59948	OK	838	21.4	1266.0	OK			
14323	20703	59948	OK	799	20.4	1266.0	OK			
15811	20703	59948	OK	882	22.6	1266.0	OK			

CANNA SX

			UANINA UA															
			200m TRV sovr	А		Step di		N _{SLE}	M _{SLE}	Migint	Eccentr	H/6	b ₁	d ₁	A _{c0}	b ₂	d ₂	A _{c1}
	Nsle	Msle	N	М	1	calcolo	Sezione	[kN]	[kNm]	[kNm]	[cm]	[cm]	[cm]	[cm]	[cm ²]	[cm]	[cm]	[cm ²]
Calotta - 69	7043.00	74.17	7043.00	74.17]	L	Calotta - 69	10564.5	-111.3	-77.9	2.7	5.83	35.0	140.0	4 900	43.0	148.0	6364
piedritto dx - 111	7726.00	-82.30	7726.00	-82.30		8	piedritto dx	11589.0	123.5	86.4	2.7	5.83	35.0	140.0	4 900	43.0	148.0	6364
arco rovescio - 97	7496.00	63.72	7496.00	63.72		< s	arco rovescio	11244.0	-95.6	-66.9	2.6	5.83	35.0	140.0	4 900	43.0	148.0	6364
piedritto sx - 81	7595.00	-117.60	7595.00	-117.60		É	piedritto sx	11392.5	176.4	123.5	3.1	5.83	35.0	140.0	4 900	43.0	148.0	6364
						5												1
						õ												1
																		1

	C	LS			ACC	CIAIO	
N _{SLU}	F _{rdu}	F _{max}	VERIE	F _{td}	A_{smin}	F _{t,res}	VERIE
[kN]	kN	kN	V L I III .	[kN]	[cm ²]	[kN]	VEI III .
13734	20703	59948	OK	767	19.6	1266.0	OK
15066	20703	59948	OK	841	21.5	1266.0	OK
14617	20703	59948	OK	816	20.9	1266.0	OK
14810	20703	59948	OK	827	21.1	1266.0	OK

10.6.7 Analisi n. 4 -

Modello geotecnico

Il modello geotecnico di sottosuolo in corrispondenza della sezione di analisi è caratterizzato dalla Formazione TRV costituita prevalentemente da Argilla.

La Figura 1 riassume i dati di input che caratterizzano la sezione geotecnica utilizzata per l'analisi numerica. Per dettagli in merito ai valori assunti si rimanda al capitolo 8

Stratigra	ıfia di calcolo		Superficie						
Formazione	Profondità da p.c.	С	piezometrica	γ	C'k	ф'к	Ε'	K ₀	
[-] [m da pc]		[m]	[m] da calotta	[kN/m³]	[kPa]	[°]	[MPa]	[-]	
TRV	In tutto il modello	100	81.5	22	121	19	300	0.67	
C = copertura (ris	spetto alla calotta)								
γ = peso di volum	е								
c'k=coesione drer	′k=coesione drenata								
ф'к <i>=angolo di ati</i>	b'k=angolo di attrito interno								
E'= modulo elasti	ico								
$K_0 = coefficiente d$	di spinta a riposo								

Figura 1 - Sezione geotecnica di calcolo

Modello geometrico

Per le caratteristiche della mesh si rinvia al Capitolo 10.6.3 – "Modelli Piani".

Il rivestimento della galleria è stato simulato utilizzando elementi tipo "liner", aventi modello costitutivo elastico lineare.

Si riportano di seguito le caratteristiche del rivestimento:

Caratteristiche	Conci dell'anello universale
Spessore dei conci di cls	45 cm
Classe di calcestruzzo utilizzato	C45/55
Modulo elastico	36000 MPa

Tabella 1 - Definizione delle caratteristiche del rivestimento della galleria

7.6E-3 m²

Fasi e percentuali di rilascio

Al fine di tener conto della natura tridimensionale del problema, nelle analisi svolte in condizioni di deformazione piana lo scavo della galleria è stato simulato con il metodo delle forze di scavo equivalenti. In particolare, l'effetto dell'avanzamento dello scavo viene modellato rilasciando un sistema di forze applicate sul contorno del profilo di scavo). La riduzione delle forze di scavo a partire dalla condizione originaria è definita tramite un fattore di rilascio, funzione della distanza dal fronte ("rilascio forze di scavo").

L'analisi svolta mira a definire la massima sollecitazione possibile agente sui rivestimenti.

Per la descrizione delle fasi di analisi si rinvia al capitolo 10.6.3 – "Modelli Piani"

Inerzia della sezione di cls

Analisi e commento dei risultati

Sono di seguito illustrati e commentati i risultati delle fasi di scavo, relative alla sezione di scavo in meccanizzato analizzata. I risultati dell'analisi numerica sono riportati in allegato per la fase di calcolo finale. In particolare, l'allegato illustra le componenti verticale e orizzontale degli spostamenti totali cumulati, i vettori degli spostamenti totali, le plasticizzazioni al contorno del cavo e la tensione principale massima con le direzioni delle tensioni principali. Per le fasi pertinenti, riporta inoltre le caratteristiche della sollecitazione negli elementi strutturali del modello (liner).

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE NUOVO COI TRATTA CA	E FERROV _LEGAME LTANISSE	'IARIA MESSI NTO PALERN ETTA XIRBI –	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	0
Galleria Salso - Relazione geotecnica e di calcolo della	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
galleria naturale	RS3U	40D 07	CL	GN 00001	B	103 di 124

Verifiche strutturali SLU del rivestimento definitivo

La verifica strutturale del rivestimento definitivo prevede il confronto tra le sollecitazioni di calcolo, ottenute a partire dai risultati del modello numerico applicando i relativi coefficienti parziali, e le resistenze di calcolo che individuano il dominio resistente nel piano M,N.

Per la verifica a taglio, il valore di calcolo è ottenuto in accordo con la normativa vigente.

I rivestimenti definitivi delle gallerie di linea sono realizzati con elementi prefabbricati aventi classe di resistenza del calcestruzzo C45/55 e armatura costituita da $14\phi14$ sia in intradosso che in estradosso.

Le tabelle seguenti sintetizzano le sollecitazioni ottenute, nelle zone significative del rivestimento definitivo della galleria. Le tabelle riportano le sollecitazioni derivanti dall'analisi numerica a metro di galleria, prive di fattori amplificativi, e le sollecitazioni adottate nelle verifiche strutturali: queste ultime risultano moltiplicate per il coefficiente $\gamma_E = 1.3$ (allo SLU) e per la lunghezza di due conci consecutivi 2b=3.0 m.

Considerate le sollecitazioni agenti su due conci adiacenti di due anelli consecutivi consente di condurre verifiche strutturali cautelative, tenendo conto del trasferimento del carico da un anello a quello adiacente. Nelle verifiche, pur considerando le sollecitazioni e l'area di calcestruzzo di due conci consecutivi, si considera in zona tesa e compressa l'armatura di un solo concio; questo metodo consente di tenere in conto della presenza del giunto tra due conci adiacenti e dunque la non perfetta collaborazione delle armature dei suddetti nell'assorbimento delle sollecitazioni.

Le verifiche strutturali del rivestimento definitivo sono state condotte per la fase finale e per entrambe le canne o comunque considerando la massima sollecitazione agente.

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA

Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale

Figura 5 - Elementi liner canna sinistra

Figura 6 - Elementi liner canna destra

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE NUOVO CO TRATTA CA	E FERROV LLEGAME LTANISSI	/IARIA MESSI INTO PALERN ETTA XIRBI —	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	0
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	B	105 di 124

Tabella 4- Sollecitazioni nel rivestimento della canna sinistra

				Sollecitazioni da analisi numerica				Sollecitazioni di verifica					
GALL Sx	ELE	NODO 1	NODO 2	N	M1	M2	Mmax	Ν	M1	M2	Mmax		
Calotta	128	128	65	5388.00	137.90	-136.20	137.9	21013.20	537.81	-531.18	537.81		
piedritto dx	112	112	113	6396.00	-171.00	168.00	171.0	24944.40	-666.90	655.20	666.90		
arco rovescio	96	96	97	5734.00	152.10	-158.30	158.3	22362.60	593.19	-617.37	617.37		
piedritto sx	81	81	82	6343.00	-172.70	170.80	172.7	24737.70	-673.53	666.12	673.53		

Tabella 5 - Sollecitazioni nel rivestimento della canna destra

				Sollecitazioni da analisi numerica				Sollecitazioni di verifica				
GALL Dx	ELE	NODO 1	NODO 2	Ν	M1	M2	Mmax	N	M1	M2	Mmax	
Calotta	1	1	2	5383.00	138.80	-142.80	142.8	20993.70	541.32	-556.92	556.92	
piedritto dx	48	48	49	6340.00	-173.60	176.10	176.1	24726.00	-677.04	686.79	686.79	
arco rovescio	33	33	34	5735.00	161.30	-154.50	161.3	22366.50	629.07	-602.55	629.07	
piedritto sx	18	18	19	6409.00	-176.20	169.50	176.2	24995.10	-687.18	661.05	687.18	

Le verifiche sono state condotte considerando una distanza tra il baricentro dell'armatura principale e il lembo più esterno della sezione pari a 70 mm.

Per le verifiche a taglio si mostra solo la verifica nel punto di massima sollecitazione

Tabella 5 – So	ollecitazione	Massima e	verifica a	taglio SL	U
----------------	---------------	-----------	------------	-----------	---

Sollecitazion	i da Analisi	Sollecitazioni di Verifica				
Т	Ν	Т	Ν			
[N/m]	[N/m]	[N]	[N]			
9.237E+04	6.272E+06	3.602E+05	1.882E+07			

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO **NUOVO COLLEGAMENTO PALERMO - CATANIA** TRATTA CALTANISSETTA XIRBI – NUOVA ENNA

2309

0.00398

DOCUMENTO

GN 00001

REV.

в

FOGLIO

106 di 124

CODIFICA

CL

Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale

bw

h

с

d

Ac

b_w d

k

1500.00

450.00

63.00

387.00

675000

580500

1.72

 mm^2

Geometria della sezione Armatura longitudinale 14 mm Øl $\mathbf{m}\mathbf{m}$ 154 mm^2 mm Aøl 100.00 mm mm Sı n° strati 1 mm 15 mm^2 n°ø/strato \underline{mm}^2

LOTTO

40D 07

Asl,tot

ρ1

				Mater	riali		
<u>Cls :</u>					<u>Acciaio :</u>		
Rck		55.00	MPa		fyk	450.00	MPa
fck	. *	45.65	MPa		fyd	391.3	MPa
fcd		30.4	MPa		γs	1.15	
γc		1.50					

COMMESSA

RS3U

Soll	ecitazioni (SI	.U)	Resisten	te al taglio per	Cls
Nsd	18816.0	kN	V _{Rd} ^{min}	839.4	kN
σcp	6.09	MPa	VRd	844.7	kN

Verifiche di resistenza												
VEd	360.24	kN	$V_{Rd} > V_{Ed}$ e $V_{Rd} > V_{Rd}^{min}$									
			OK, Sezione non armata verificata									

Verifiche SLE

Г

Le verifiche SLE risultano soddisfatte sia lato calcestruzzo che lato acciaio rispettando i valori limite imposti sia dalla normativa vigente [NTC]. Poiché la sezione risulta interamente compressa non si ha l'apertura di fessure.

Tabella 5 – Analisi e Verifiche SLE per Canna Destra e Canna Sinistra

VERIFICHE S Rck 45/55	SEZIONE						
GEOMETRI	A DELLA SE	ZIONE		CALCESTR	UZZO		
В	cm =	300.0	base sezione	Rck	Mpa =	55.00	resistenza caratteristica cubica
н	cm =	45.0	altezza sezione	fck	Mpa =	45.65	resistenza caratteristica cilindrica
Cs	cm =	6.2	copriferro delle staffe	fcd	Mpa =	30.43	resistenza di calcolo cilindrica
				fctm	Mpa =	4.34	resistenza media a trazione
ACCIAIO				fctk	Mpa =	3.04	resistenza caratteristica a trazione
fyk	Mpa =	450.0	tensione caratteristica di snervamento	fctd	Mpa =	2.02	resistenza di calcolo a trazione
fyd	Mpa =	391.3	tensione di calcolo	fc Max. es.	Mpa =	20.54	Max. tensione esercizio = 0.45 x fck
σfadm	Mpa =	360.0	tensione ammissibile armatura longitudinale	σc adm	Mpa =	16.00	tensione ammissibile cls
σ fs adm	Mpa =	360.0	tensione ammissibile staffe	τCΟ	Mpa =	0.93	τ max. con armatura minima a taglio
				τC 1	Mpa =	2.54	τ max. con armatura a taglio
γcls	kN/m3	25.0	peso specifico calcestruzzo				
N1	kN =	0.00	azione assiale Z=0 Positiva compressione	n	=	15	Coeff. omogenizzazione armature
NOTE				MOLTIPLIC		ELLE AZI	ONI
No	= N1 + γ cls	s x Z x A x	B : azione assiale Positiva compressione	CV	=	1.00	Coeff. moltiplicativo azioni di Taglio
Mo	Positivo ten	de fibre lat	o armatura As	CM	=	1.00	Coeff. moltiplicativo Momento flettente
Mo	Negativo ten	de fibre lat	o armatura A's	C N	=	1.00	Coeff. moltiplicativo Azione Assiale
S	distanza tra	le barre tes	se per verifica a fessurazione (< 14 🇄				

SEZIONE		AZIC	ni di Ingr	ESSO	AZIONI DI CALCOLO			A	RMATURA	As	ARMATURA A's		
elem	Z	Vo	Мо	No	Vo x Cv	Mo x CM	No x CN	n. ferri	¢	As	n. ferri	φ	A's
	m	kN	kNm	kN	kN	kNm	kN	(x As)	mm	cm2	(x A's)	mm	cm2
1			321.6	17415.00	0.0	321.6	17415.0	14	14	21.55	14	14	21.55
48			365.4	19575.00	0.0	365.4	19575.0	14	14	21.55	14	14	21.55
33			378.9	18405.00	0.0	378.9	18405.0	14	14	21.55	14	14	21.55
18			372.6	19689.00	0.0	372.6	19689.0	14	14	21.55	14	14	21.55
128			300.60	17454.00	0.0	300.6	17454.0	14	14	21.55	14	14	21.55
112			353.40	19686.00	0.0	353.4	19686.0	14	14	21.55	14	14	21.55
96			348.30	18444.00	0.0	348.3	18444.0	14	14	21.55	14	14	21.55
81			359.10	19572.00	0.0	359.1	19572.0	14	14	21.55	14	14	21.55

GRUPPO F				DIRE NUO' TRAT	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA									
Galleria S	Galleria Salso - Relazione geotecnica e di calcolo della								LOTTO 40D 07	CODIFICA CL		DOCUMENTO GN 00001	REV.	FOGLIO 108 di 124
VERIFICA S	VERIFICA SLE (Positive soll. di trazione)									ESSIONE		1		
elem		Vo x Cv	MoxCM	No x CN	Ь	ď	VE				TEST			
elein		kN kN	kNm	kN	cm	cm	cm	Mna	Mna	Mna	PR / FI			
1	0.00	0.0	321.6	17 415.0	38 10	6.90	UIII	-15.28	-153 76	-215 56	SI			
48	0.00	0.0	365.4	19 575.0	38.10	6.90		-17.21	-172.45	-242.67	SI *			
33	0.00	0.0	378.9	18 405.0	38.10	6.90		-16.51	-158.75	-231.56	SI *			
18	0.00	0.0	372.6	19 689.0	38.10	6.90		-17.36	-172.97	-244.57	SI *			
128	0.00	0.0	300.6	17 454.0	38.10	6.90		-15.12	-156.19	-213.95	SI			
112	0.00	0.0	353.4	19 686.0	38.10	6.90		-17.18	-174.78	-242.69	SI *			
96	0.00	0.0	348.3	18 444.0	38.10	6.90		-16.26	-162.10	-229.03	SI *			
81	0.00	0.0	359.1	19 572.0	38.10	6.90		-17.15	-173.03	-242.03	SI *			
]		
Ast. Min Ast. Pro.	= armatura = armatura	a a taglio Mir a a taglio di I	n. di regolar Progetto	nento		X nullo = :	sezione inf	teramente i	reagente		SI SI *	= tensioni inferiori alle an = tensioni inferiori alle Ma	nmissibili ax. in eserciz	io(0.4 - 0.6 fck)

Gli elementi risultano interamente compressi per cui non ci si attende apertura di fessure, le verifiche agli SLE risultano soddisfatte
GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA					
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40D 07	CODIFICA CL	DOCUMENTO GN 00001	REV.	FOGLIO 109 di 124

Analisi in condizione sismiche e incrementi delle azioni interne del rivestimento definitivo

Nel seguito si riportano gli incrementi di sollecitazioni sismiche stimate con la formulazione di Wang (Figura

18) nelle due ipotesi di scorrimento libero e perfetta aderenza all'interfaccia terreno-rivestimento (nel caso di momento flettente esse coincidono):

Tabella 5 – Parametri di input – Wang (1993)

RISPOSTA DELLA GALLERIA A DEFORMAZIONI IN DIREZIONE TRASVERSALE (OVALIZATION)

GEOTECHNICAL PARAMETERS

Formazione			
peso specifico	γ	[kN/m3]	22
coeff. Poisson terreno	v	[-]	0.3
coesione	c'	[kPa]	
densità	ρ [kNs2/m4]		2.24
copertura	h	[m]	100
coefficiente di riduzione	-	[-]	5
modulo elastico statico	EO	[MPa]	300
modulo electico dinemico	Emdinamico	[MPa]	1500.00
modulo elastico dinamico	EIII UIIIaIIIICO	[kPa]	1500000.0

STRUCTURAL PARAMETERS

diametro	D	[m]	8.4
spessore rivestimento	t	[m]	0.45
Ecls	Ec	[MPa]	36283
coeff. Poisson cls	v cls	[-]	0.2
defomaz amissibile cls	ε	[-]	0.003
G cls	Gc	[MPa]	15117.91667
inerzia	lc	[m4]	0.00759375
area per unità di larghezza	Al	[m2]	0.45

EARTHQUAKE PARAMETERS

accelerazione di progetto max	amax	[g]	0.177688767
PGV/PGA	PGV/amax	[cm/s/g]	87
riduzione	rid	[-]	0.7
peak ground velocity	PGV	[m/s]	0.1540
vel app. propagazione onde taglio	Cm	[m/s]	800
max deformazione taglio_TAO max	γmax	[-]	0.000191
Accelerazione di progetto	ag	[g]	0.126921
Amplificazione classe di suolo	Ss	-	1.4
Amplificazione topografica	Sτ	-	1
Periodo T _c	Tc	[s]	0.552113
max deformazione taglio	γmax	[-]	0.000192
τmax sisma	ттах	[kPa]	273.64
Gmax da Vs	Gmax	[-]	1435270

TR [anni]	ag [g]	FO	T*C [s]	SS	ST
2193.269146	0.126921	2.705688	0.552113	1	1

Tabella 5 – Soluzioni – Wang (1993)

coeff. di compressibilità С 0.712349 [-] coeff. di flessibilità F 49.64280086 [•] coeff. di risposta rivestimento K1 0.081962733 [-] NO SLIP coeff. di risposta rivestimento K2 [-] 1.055568012 ±Nmax ±Mmax s(0) [kN] [kNm] [MPa] 384.20 53.01 2.42

Figura 18 - Analisi sismica pseudo-statica in forma chiusa – incrementi di sforzo assiale e momento flettente

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA					
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	B	111 di 124

Gli incrementi di sollecitazioni sismiche si sommano, per ogni punto lungo la circonferenza definita dal rivestimento della TBM, alle sollecitazioni statiche (SLE) derivanti dall'ultima fase di calcolo statica.

Nel seguito si riportano i domini di resistenza, per entrambe le canne, per la sezione del rivestimento definitivo considerando le sollecitazioni statiche maggiorate degli incrementi sismici (sono considerate quattro combinazioni nelle quali si alternano i segni di sforzo normale e momento flettente):

Figura 19 - Dominio resistente SLV (B = 3,00 m, H = 0.45 m) - Classe 2 - C45/55

Per le verifiche a taglio si mostra solo la verifica nel punto di massima sollecitazione

Sollecitazior	ne di analisi	Sollecitazione di verifica			
Т	Ν	Т	Ν		
[N/m]	[N/m]	[N]	[N]		
9.24E+04	6.27E+06	4.07E+05	1.85E+07		

Tabella 5 – Sollecitazione Massima e verifica a taglio SLV

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA

Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	В	112 di 124

Geo	metria della sez	zione	Armatu	ıra longitudina	ale
bw	1500.00	mm	Øl	14	mm
h	450.00	mm	Aøl	154	mm^2
c	63.00	mm	S1	100.00	mm
d	387.00	mm	n° strati	1	
Ac	675000	mm^2	n°ø/strato	15	
b _w d	580500	mm^2	Asl,tot	2309	mm^2
k	1.72		ρ1	0.00398	

Materiali								
Cls :					<u>Acciaio :</u>			
Rck		55.00	MPa		fyk	450.00	MPa	
fck		45.65	MPa		fyd	391.3	MPa	
fcd		30.4	MPa		γs	1.15		
γc		1.50						

Sollecitazioni (SLU)		Resiste	nte al taglio per Cls	
Nsa	18432.0	kN	V _{Rd} ^{min}	839.4 kN
σcp	6.09	MPa	VRd	844.7 kN

Verifiche di resistenza						
V _{Ed}	440.69	kN	V_{Rd} > V_{Ed} e V_{Rd} > V_{Rd}^{min}			
			OK, Sezione non armata verificata			

Come si evince dai domini sopra riportati, le sollecitazioni incrementate del contributo sismico non comportano una modifica del progetto delle armature e delle relative incidenze previsto per le condizioni statiche.


```
10.6.8 Analisi n. 5 -
```

Modello geotecnico

Il modello geotecnico di sottosuolo in corrispondenza della sezione di analisi è caratterizzato dalla Formazione TRV costituita prevalentemente da Argilla.

La Figura 1 riassume i dati di input che caratterizzano la sezione geotecnica utilizzata per l'analisi numerica. Per dettagli in merito ai valori assunti si rimanda al capitolo 8

Stratigra	ıfia di calcolo		Superficie					
Formazione	Profondità da p.c.	С	piezometrica	γ	C'k	ф'к	E'	K ₀
[-]	[m da pc]	[m]	[m] da calotta	[kN/m³]	[kPa]	[°]	[MPa]	[-]
TRV	In tutto il modello	200	100	22	260	16	600	0.72
C = copertura (ris	petto alla calotta)							
γ = peso di volum	ie							
c'k=coesione drer	c'k=coesione drenata							
φ' <i>k=angolo di attrito interno</i>								
E'= modulo elasti	E'= modulo elastico							
K₀ = coefficiente (di spinta a riposo							

Figura 1 - Sezione geotecnica di calcolo

Modello geometrico

Per le caratteristiche della mesh si rinvia al Capitolo 10.6.3 – "Modelli Piani".

Il rivestimento della galleria è stato simulato utilizzando elementi tipo "liner", aventi modello costitutivo elastico lineare.

Si riportano di seguito le caratteristiche del rivestimento:

Caratteristiche	Conci dell'anello universale

Tabella 1 - Definizione delle caratteristiche del rivestimento della galleria

Caratteristiche	Conci dell'anello universale
Spessore dei conci di cls	45 cm
Classe di calcestruzzo utilizzato	C55/67
Modulo elastico	37000 MPa
Inerzia della sezione di cls	7.6E-3 m ²

Fasi e percentuali di rilascio

Al fine di tener conto della natura tridimensionale del problema, nelle analisi svolte in condizioni di deformazione piana lo scavo della galleria è stato simulato con il metodo delle forze di scavo equivalenti. In particolare, l'effetto dell'avanzamento dello scavo viene modellato rilasciando un sistema di forze applicate sul contorno del profilo di scavo). La riduzione delle forze di scavo a partire dalla condizione originaria è definita tramite un fattore di rilascio, funzione della distanza dal fronte ("rilascio forze di scavo").

L'analisi svolta mira a definire la massima sollecitazione possibile agente sui rivestimenti.

Per la descrizione delle fasi di analisi si rinvia al capitolo 10.6.3 – "Modelli Piani"

Analisi e commento dei risultati

Sono di seguito illustrati e commentati i risultati delle fasi di scavo, relative alla sezione di scavo in meccanizzato analizzata. I risultati dell'analisi numerica sono riportati in allegato per la fase di calcolo finale. In particolare, l'allegato illustra le componenti verticale e orizzontale degli spostamenti totali cumulati, i vettori degli spostamenti totali, le plasticizzazioni al contorno del cavo e la tensione principale massima con le direzioni delle tensioni principali. Per le fasi pertinenti, riporta inoltre le caratteristiche della sollecitazione negli elementi strutturali del modello (liner).

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA						
Galleria Salso - Relazione geotecnica e di calcolo della	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
galleria naturale	RS3U	40D 07	CL	GN 00001	B	115 di 124	

Verifiche strutturali SLU del rivestimento definitivo

La verifica strutturale del rivestimento definitivo prevede il confronto tra le sollecitazioni di calcolo, ottenute a partire dai risultati del modello numerico applicando i relativi coefficienti parziali, e le resistenze di calcolo che individuano il dominio resistente nel piano M,N.

Per la verifica a taglio, il valore di calcolo è ottenuto in accordo con la normativa vigente.

I rivestimenti definitivi delle gallerie di linea sono realizzati con elementi prefabbricati aventi classe di resistenza del calcestruzzo C55/67 e armatura costituita da $14\phi16$ sia in intradosso che in estradosso.

Le tabelle seguenti sintetizzano le sollecitazioni ottenute, nelle zone significative del rivestimento definitivo della galleria. Le tabelle riportano le sollecitazioni derivanti dall'analisi numerica a metro di galleria, prive di fattori amplificativi, e le sollecitazioni adottate nelle verifiche strutturali: queste ultime risultano moltiplicate per il coefficiente $\gamma_E = 1.3$ (allo SLU) e per la lunghezza di due conci consecutivi 2b=3.0 m.

Considerate le sollecitazioni agenti su due conci adiacenti di due anelli consecutivi consente di condurre verifiche strutturali cautelative, tenendo conto del trasferimento del carico da un anello a quello adiacente. Nelle verifiche, pur considerando le sollecitazioni e l'area di calcestruzzo di due conci consecutivi, si considera in zona tesa e compressa l'armatura di un solo concio; questo metodo consente di tenere in conto della presenza del giunto tra due conci adiacenti e dunque la non perfetta collaborazione delle armature dei suddetti nell'assorbimento delle sollecitazioni.

Le verifiche strutturali del rivestimento definitivo sono state condotte per la fase finale e per entrambe le canne o comunque considerando la massima sollecitazione agente.

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA

Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale

Figura 5 - Elementi liner canna sinistra

Figura 6 - Elementi liner canna destra

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICI NUOVO CO TRATTA CA	E FERROV LLEGAME LLTANISSI	/IARIA MESSI INTO PALERN ETTA XIRBI —	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	0
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	B	117 di 124

Tabella 4- Sollecitazioni nel rivestimento della canna sinistra

				Solle	Sollecitazioni di verifica						
GALL Sx	ELE	NODO 1	NODO 2	N	M1	M2	Mmax	Ν	M1	M2	Mmax
Calotta	128	128	65	6997.00	11.93	-13.10	13.1	27288.30	46.53	-51.09	51.09
piedritto dx	112	112	113	7711.00	-76.09	64.91	76.1	30072.90	-296.75	253.15	296.75
arco rovescio	96	96	97	7478.00	53.27	-64.18	64.2	29164.20	207.75	-250.30	250.30
piedritto sx	81	81	82	7595.00	-117.60	112.20	117.6	29620.50	-458.64	437.58	458.64

Tabella 5 - Sollecitazioni nel rivestimento della canna destra

				Solle	Sollecitazioni di verifica						
GALL Dx	ELE	NODO 1	NODO 2	Ν	M1	M2	Mmax	N	M1	M2	Mmax
Calotta	1	1	2	6987.00	34.33	-43.29	43.3	27249.30	133.89	-168.83	168.83
piedritto dx	48	48	49	7701.00	-111.60	126.40	126.4	30033.90	-435.24	492.96	492.96
arco rovescio	33	33	34	7455.00	76.56	-73.49	76.6	29074.50	298.58	-286.61	298.58
piedritto sx	18	18	19	8109.00	-96.30	101.70	101.7	31625.10	-375.57	396.63	396.63

Le verifiche sono state condotte considerando una distanza tra il baricentro dell'armatura principale e il lembo più esterno della sezione pari a 7 mm.

Figura 7 - Dominio resistente SLU (B = 3,00 m, H = 0.45 m) - Classe 1 – C55/67

Per le verifiche a taglio si mostra solo la verifica nel punto di massima sollecitazione

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA

Galleria Salso - Belazione geotecnica e di calcolo della	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
galleria naturale	RS3U	40D 07	CL	GN 00001	в	118 di 124

	Sollecitazioni da analisi		Sollecitaz	zioni di verifica			
	Т	Ν	Т	Ν			
	[N/m]	[N/m]	[N]	[N]			
	7.27E+04	7.58E+0	6 2.84E+05	2.28E+07			
~	, 						
Geomet	ria della sezio	ne	A	Armatura longitudinale			
bw	1500.00 1	nm	ØI	10	6 mm		
h	450.00	nm	Aøl	20	1 mm^2		
с	63.00 1	nm	SI	100.0	0 mm		
d	387.00 1	nm	n° stra	ati	1		
Ac	675000	nm^2	n°ø/str	ato 1:	5		
b _w d	580500	nm^2	Asl,to	t 301	6 mm^2		
k	1.72		ρ 1	0.0052	0 0		

Tabella 5 – Sollecitazione Massima e verifica a taglio SLU

Materiali								
<u>Cls :</u>					<u>Acciaio :</u>			
Rck		67.00	MPa		fyk	450.00	MPa	
fck		55.61	MPa		fyd	391.3	MPa	
fcd		37.1	MPa		γs	1.15		
γc		1.50			-			

ρ1

Sollecitazioni (SLU)					
Nsd	22752.0	kN			
σcp	7.41	MPa			

Resistente al taglio per Cls					
$\mathbf{V_{Rd}}^{min}$	987.1	kN			
V _{Rd}	1013.0	kN			

Verifiche	di	resistenza	

VEd 283.65 kN $V_{\rm Rd}$ > V_{Ed} e V_{Rd} > V_{Rd}^{min}

OK, Sezione non armata verificata

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE NUOVO COI TRATTA CA	E FERROV LLEGAME LTANISSE	'IARIA MESSI NTO PALERN ETTA XIRBI –	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	0
Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	RS3U	40D 07	CL	GN 00001	B	119 di 124

Verifiche SLE

Γ

Le verifiche SLE risultano soddisfatte sia lato calcestruzzo che lato acciaio rispettando i valori limite imposti sia dalla normativa vigente [NTC]. Poiché la sezione risulta interamente compressa non si ha l'apertura di fessure.

Tabella 5 – Analisi e Veri	fiche SLE ner	Canna Destra e	Canna Sinistra
Tabena 5 – Anansi e veri	nene SLE per	Canna Desti a e	Canna Sinisti a

VERIFICHE S Rck 45/55	SEZIONE						
GEOMETRI	A DELLA SE	ZIONE		CALCESTR	UZZO		
В	cm =	300.0	base sezione	Rck	Mpa =	67.00	resistenza caratteristica cubica
н	cm =	45.0	altezza sezione	fck	Mpa =	55.61	resistenza caratteristica cilindrica
Cs	cm =	6.2	copriferro delle staffe	fcd	Mpa =	37.07	resistenza di calcolo cilindrica
				fctm	Mpa =	4.95	resistenza media a trazione
ACCIAIO				fctk	Mpa =	3.46	resistenza caratteristica a trazione
fyk	Mpa =	450.0	tensione caratteristica di snervamento	fctd	Mpa =	2.31	resistenza di calcolo a trazione
fyd	Mpa =	391.3	tensione di calcolo	fc Max. es.	Mpa =	25.02	Max. tensione esercizio = 0.45 x fck
σfadm	Mpa =	360.0	tensione ammissibile armatura longitudinale	σc adm	Mpa =	19.00	tensione ammissibile cls
σfs adm	Mpa =	360.0	tensione ammissibile staffe	τCΟ	Mpa =	1.09	τ max. con armatura minima a taglio
				τC 1	Mpa =	2.89	τ max. con armatura a taglio
γcls	kN/m3	25.0	peso specifico calcestruzzo				
N1	kN =	0.00	azione assiale Z=0 Positiva compressione	n	=	15	Coeff. omogenizzazione armature
NOTE				MOLTIPLIC	CATORI DE	ELLE AZI	ONI
No	$= N1 + \gamma cls$	s x Z x A x	B : azione assiale Positiva compressione	CV	=	1.00	Coeff. moltiplicativo azioni di Taglio
Mo	Positivo ten	de fibre late	armatura As	CM	=	1.00	Coeff. moltiplicativo Momento flettente
Mo	Negativo ten	de fibre late	o armatura A's	CN	=	1.00	Coeff. moltiplicativo Azione Assiale
S	distanza tra	le barre tes	se per verifica a fessurazione (< 14 ϕ)				

SEZIC	DNE	AZIO	ni di Ingr	ESSO	AZIO	ONI DI CA	LCOLO	A	RMATURA	As	ARI	MATURA	A's
elem	Z	Vo	Мо	No	Vo x Cv	Mo x CM	No x CN	n. ferri	φ	As	n. ferri	¢	A's
	m	kN	kNm	kN	kN	kNm	kN	(x As)	mm	cm2	(x A's)	mm	cm2
6	0.00	0.0	261.06	21105.00	0.0	261.1	21105.0	14	16	28.15	14	16	28.15
50	0.00	0.0	392.7	23109.00	0.0	392.7	23109.0	14	16	28.15	14	16	28.15
35	0.00	0.0	219.69	22035.00	0.0	219.7	22035.0	14	16	28.15	14	16	28.15
19	0.00	0.0	305.7	24324.00	0.0	305.7	24324.0	14	16	28.15	14	16	28.15
69	0.00	0.0	222.51	21129.00	0.0	222.5	21129.0	14	16	28.15	14	16	28.15
111	0.00	0.0	246.90	23178.00	0.0	246.9	23178.0	14	16	28.15	14	16	28.15
97	0.00	0.0	204.79	22488.00	0.0	204.8	22488.0	14	16	28.15	14	16	28.15
81	0.00	0.0	352.80	22785.00	0.0	352.8	22785.0	14	16	28.15	14	16	28.15

ERIFICHE	SEZIONE															
/ERIFICA 1	FENSIONI A	MMISSIBIL	1	(Positive so	II. di trazio	one)	VE	RIFICA P	RESSO - FL	ESSIONE						
elem		Vo x Cv	Mo x CM	No x CN	d	d'	Х	σ cls	σf	σ'f	TEST					
		kN	kNm	kN	cm	cm	cm	Мра	Мра	Мра	PR./ FL.					
6	0.00	0.0	261.1	21 105.0	38.00	7.00		-17.08	-196.23	-245.16	SI					
50	0.00	0.0	392.7	23 109.0	38.00	7.00		-19.67	-204.85	-278.45	SI *					
35	0.00	0.0	219.7	22 035.0	38.00	7.00		-17.35	-209.83	-251.01	SI					
19	0.00	0.0	305.7	24 324.0	38.00	7.00		-19.73	-225.71	-283.00	SI *					
69	0.00	0.0	222.5	21 129.0	38.00	7.00		-16.75	-200.09	-241.80	SI					
111	0.00	0.0	246.9	23 178.0	38.00	7.00		-18.40	-219.23	-265.51	SI					
97	0.00	0.0	204.8	22 488.0	38.00	7.00		-17.53	-215.97	-254.35	SI					
81	0.00	0.0	352.8	22 785.0	38.00	7.00		-19.08	-205.20	-271.32	SI *					
st. Min st. Pro.	= armatura = armatura	a a taglio Mir a a taglio di	n. di regolan Progetto	nento		X nullo =	sezione int	eramente	reagente		SI SI *	= tensio = tensio	oni inferio oni inferio	ri alle am ri alle Ma	ımissibili ax. in esei	rcizio (0.4 -

Gli elementi risultano interamente compressi per cui non ci si attende apertura di fessure, le verifiche agli SLE risultano soddisfatte

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE NUOVO COI TRATTA CA	E FERROV LLEGAME LTANISSE	'IARIA MESSI NTO PALERN ETTA XIRBI –	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	0
Galleria Salso - Relazione geotecnica e di calcolo della	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
galleria naturale	RS3U	40D 07	CL	GN 00001	B	121 di 124

Azioni di mitigazione dei potenziali rischi

Le azioni di mitigazione dei potenziali rischi individuati nella fase conoscitiva sono state descritte nei paragrafi precedenti e sono di seguito riepilogate:

<u>Rischi potenziali</u>

Sono di seguito descritte le principali criticità, legate al contesto geologico, idrogeologico, geotecnico e ambientale, che potrebbero avere ripercussioni sulla fase realizzativa delle gallerie, e le conseguenti azione di mitigazione previste in progetto La mappatura dei diversi rischi è illustrata nell'elaborato Profilo geotecnico" di ogni singola galleria e generale (0). Oltre alle criticità di seguito riportate, che riguardano l'intero Lotto, si rimanda ai paragrafi precedenti in cui si sono descritte le criticità specifiche per le singole tratte delle gallerie di linea e imbocchi.

Presenza di acquiferi produttivi

Corpi idrici produttivi e caratterizzati da permeabilità media relativamente alta sono localizzati all'interno della Formazione di Terravecchia, in particolare nel membro sabbioso-conglomeratico (complesso idrogeologico CSC, 1E-07 < k < 1E-05).

Presenza di gas

Dati bibliografici integrati con le osservazioni di terreno e misurazioni fatte in sondaggio sia nella presente fase progettuale sia in fase di progettazione preliminare confermano che la potenziale presenza di gas in galleria, metano in particolare, rappresenta un rischio non trascurabile.

Manifestazioni gassose che danno origine a vulcani di fango (le cosiddette "maccalube") sono note nell'area di Caltanissetta, alla cui periferia est si trova un campo di emanazioni gassose attivo. Da dati bibliografici sono considerate suscettibili alla presenza di gas metano la Formazione Terravecchia, il Flysch Numidico e le Argille Variegate. Dati storici riportano anche la presenza di emanazioni superficiali di gas nei pressi di Marianopoli, mentre i rilievi di gas metano effettuati a boccaforo in alcuni sondaggi del PP hanno confermato la presenza di metano nel sottosuolo.

11 FASE DI VERIFICA E MESSA A PUNTO DEL PROGETTO

11.1 Criteri generali per l'applicazione delle sezioni tipo

Nel caso di scavo meccanizzato, la flessibilità in fase di avanzamento, in risposta alle condizioni riscontrate, è garantita dalla variabilità dei parametri operativi di controllo della TBM.

Pertanto, sulla base dei dati macchina raccolti durante l'avanzamento e le risultanze del monitoraggio geotecnico e topografico in superficie e in galleria, i parametri macchina (ad es.: contropressione al fronte) saranno modificati operando all'interno della variabilità prevista in fase progettuale.

In merito ai valori di contropressione al fronte da applicare durante l'avanzamento della TBM, nella presente fase progettuale sono forniti dei range ricavati mediante verifiche di stabilità puntuali lungo il tracciato per sezioni rappresentative. Nella progettazione esecutiva sarà redatto il profilo dettagliato delle pressioni operative da applicare lungo tutte le tratte previste con avanzamento in scavo meccanizzato in modalità chiusa, definendo altresì le relative soglie di attenzione e allarme e le corrispondenti azioni da intraprendere al superamento delle stesse.

11.2 Monitoraggio in corso d'opera

Nella fase realizzativa dovrà essere posto in opera un adeguato programma di monitoraggio, volto a verificare le previsioni progettuali e ad affinare le soluzioni tecniche nell'ambito delle variabilità indicate in progetto.

Con riferimento alla realizzazione della galleria naturale il programma di monitoraggio dovrà prevedere:

Si riportano di seguito alcuni esempi da valutare se pertinenti con l'opera in progetto

- monitoraggio piezometrico per la misura della variazione della quota di falda nelle aree prospicienti alle paratie di imbocco;
- monitoraggio inclinometrico per la misura degli spostamenti orizzontali delle paratie e del terreno limitrofo;
- monitoraggio degli spostamenti delle paratie mediante mire ottiche disposte sull'opera di sostegno;
- monitoraggio delle sollecitazioni indotte dallo scavo sui tiranti mediante celle di carico.

Con riferimento alle tratte realizzate con metodo di scavo meccanizzato il programma di monitoraggio dovrà prevedere:

- il controllo dei principali parametri macchina desunti direttamente in fase di scavo dalla fresa tra cui: pressione di supporto del fronte di scavo, densità del materiale nella camera di scavo, pressione e volume del materiale di intasamento iniettato a tergo dei conci, peso e volume del materiale scavato, condizionamento del terreno;
- il monitoraggio dello stato tensionale nel rivestimento definitivo mediante barrette estensimetriche saldate sui ferri di armatura dei conci e celle di carico tra i giunti longitudinali degli stessi;

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA

CL

DOCUMENTO

GN 00001

REV.

в

FOGLIO

123 di 124

CODIFICA COMMESSA LOTTO Galleria Salso - Relazione geotecnica e di calcolo della RS3U 40D 07 galleria naturale

- il monitoraggio degli spostamenti verticali assoluti e relativi dei terreni di copertura nelle tratte a bassa • copertura mediante assestimetri;
- il monitoraggio piezometrico per la misura della variazione della quota di falda nelle tratte a bassa copertura;
- il monitoraggio inclinometrico per la misura degli spostamenti orizzontali nelle tratte a bassa copertura. •

Il sistema di monitoraggio dovrà essere predisposto in modo tale da garantire l'esame tempestivo e continuativo dei dati rilevati e la trasmissione sistematica dei dati e delle elaborazioni, avendo precedentemente definito ed assegnato le responsabilità per la lettura, l'elaborazione e l'interpretazione dei dati di monitoraggio, nonché per la loro distribuzione.

Le grandezze individuate come rappresentative dovranno essere rilevate e controllate con un sistema di misura che abbia un grado di precisione compatibile con i valori attesi per le grandezze sopra dette.

Per ulteriori dettagli riguardo le frequenze delle letture e gli altri aspetti legati al monitoraggio delle opere minori si rimanda agli elaborati specialistici allegati al progetto.

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA

 Galleria Salso - Relazione geotecnica e di calcolo della galleria naturale
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40D 07
 CL
 GN 00001
 B
 124 di 124

12 CONCLUSIONI

Nella presente relazione sono state affrontate le problematiche progettuali connesse con la realizzazione della galleria Salso.

La progettazione delle opere in sotterraneo è stata condotta secondo il metodo ADECO-RS (Rif. [15]), articolandosi nelle seguenti fasi:

1. <u>Fase conoscitiva (cap. 8)</u>: questa fase è stata dedicata allo studio e all'analisi del contesto geologico e geotecnico di inserimento in cui sarà realizzata la galleria, considerati anche i dati relativi alle precedenti fasi progettuali, ed ha portato alla definizione del modello geotecnico di sottosuolo utilizzato per le successive fasi del progetto.

2.<u>Fase di diagnosi (cap. 9)</u>: in questa fase è stata eseguita la valutazione della risposta deformativa dell'ammasso allo scavo in assenza di interventi di stabilizzazione, per la determinazione delle categorie di comportamento; sulla base delle analisi condotte, lungo il tracciato della galleria il comportamento del fronte allo scavo risulta sia di tipo stabile o stabile a breve termine (categorie A e B) sia di tipo instabile (categoria C).

3. <u>Fase di terapia (cap. 10)</u>: si prevede di realizzare lo scavo sia con metodo meccanizzato che con metodo tradizionale. Entrambe le soluzione progettuali sono state analizzate verificandone adeguatezza ed efficacia in tutte le fasi costruttive previste ed in condizioni di esercizio.

Il progetto è completato dal piano di monitoraggio (cap. 11) da predisporre ed attuare nella fase realizzativa, nel quale sono individuati i valori delle grandezze fisiche a cui riferirsi in corso d'opera per controllare la risposta deformativa dell'ammasso e della galleria al procedere dello scavo e verificarne la rispondenza con le previsioni progettuali.

ALLEGATO 1

TITOLO	
TIPO DI DOCUMENTO	Documento – Formato A4
CODIFICA	RS3U40D07CLGN0200001B
PAGINE	42
DATA	02-2020
SORGENTE	U.O. Gallerie Italferr S.p.A.
NOTE	-

Analisi con il metodo delle linee caratteristiche

Figura 2: Fase di terapia A2+M2+R2 - TRVa - copertura di 50 metri

Figura 3: Fase di diagnosi - TRVa - copertura di 100 metri

Figura 4: Fase di terapia A2+M2+R2 - TRVa - copertura di 100 metri

Figura 5: Fase di diagnosi - TRVa - copertura di 200 metri

Figura 6: Fase di terapia A2+M2+R2 - TRVa - copertura di 200 metri

Figura 8: Fase di terapia A2+M2+R2 – TRV – copertura di 50 metri

Figura 9: Fase di diagnosi – TRV – copertura di 100 metri

Figura 10: Fase di terapia A2+M2+R2 - TRV - copertura di 100 metri

Figura 11: Fase di diagnosi – TRV – copertura di 200 metri

Figura 12: Fase di terapia A2+M2+R2 - TRV - copertura di 200 metri

Analisi con il metodo di stabilità al fronte

		Forique	Tamez Gonza	ales - Dise	ño Geotécnico de	Túneles	(1997)			
		Linique	Tamez Gonza	ales - Dise	no deotecinco de	Tulleles	(1997)			
			Stratigra	phy and ge	eotechnical propert	ies				
Overburden layers	ΔH [m]	γ _n [kNm ⁻³]	c'/Cu [kPa]	φ' [°]	Tunnel Face layers	ΔH [m]	γ _n [kNm ⁻³]	c'/Cu [kPa]	φ' [°]	
ayers ordering: 1	from tunne. 15.0	crown to grou 21.0	nd surface 5	38.0	layers ordering 2	: invert-cro 9.3	wn 21.0	5	38.0	
			4:					1		
		EXC	avation cross s	section and		n geometr	У			
Fotal Overburden			H [m]	15.0	Equivalent tunne	l diameter		D _{eq} [m]	9.30	
Surface load	ove tunnel i	wert	qs [kPa] H [m]	0.0	Free span length	1		a [m]	0.0	
Tunnel full face are	a	Weit	A _{EXCAV} [m2]	67.9	Failure Mechai	nism geome	etry			
Tunnel face height			A [m]	9.30	Discharge zone	height		Z _d [m]	14.01	
Tunnel face width			D [m]	8.24	Length of prisms	in advance		L _P [m]	4.54	
		Failu	ıre Mechanism	n Prisms - J	Average geotechnic	al properti	es			
Prisms 1					Prisms 2-3					
Average buoyant	unit weight		$\gamma_{b}[kNm^{-3}]$	11.2	A verage buo yan	t unit weight		$\gamma_b[kNm^{-3}]$	20.5	
Average satured	unit weight		$\gamma_n [kNm^3]$	21.0	Average sature	d unit weight		$\gamma_n [kNm^{-3}]$	21.0	
Average cohesion	nale		cu [kPa] ሐ', [°1	5.U 38.0	Average cohesio	on within Dis	charge Zone	cu[kPa] d'_ [°1	5.0 38 0	
Coefficient of pas	sive earth pre	essure	φει] Kp[-]	4.20	Friction Coeffici	ent within Dis	scharge Zone	۴۶[-] (Kf	0.45	
			113	Thera	oy phase		ÿ			
				Conventior	al Excavation					
Injection grout p	properties		D [MDal		Face VTR Bars/	Bolts prope	rties	= [MDal		
Injection influence	ratio		к _{ск} [IVIPa] i: [-]		Unit Tensile stre	ngth at joint		o _b [IVIPa]		
Curing factor	Tatlo		γ _c [-]		Unit Shear streng	gth		σ _t [MPa]		
Material partial sa	iety factor		γ _F [-]		Drilling diameter	-		Ø _{dril} [mm]		
Possion ratio			ν _c [-]		External diamete	r		Ø _{ext} [mm]		
Elastic module			E _c [GPa]		Thickness			th _b [mm]		
Grout-soil bond			τ _a [kPa]		Single bar Cross	sectional ar	ea	A _b [mm ²]		
Injection penetrab	lity coeff.		α ₁ [-]		Overlapping leng	Overlapping length				
Design strengnt (t	123)		0 _c [-]		Joint step			joint [111]		
Single bar Shear s	trenght		T _t [kN]		Number of bars	installed at tu	innel face	N _b [-]		
Single bar Tensile	strenght		T _T [kN]		N°of bars for un	it of area		n _b [m]		
Max resistance o	ferd by bars		T _F [KN]		Equivalent pressure	ure acting at	face	pd[kPd]	0	
	iona by baro		· max [·····]		Equivalent proce	are deting at	1000	b. [m. a]	Ū	
Failuro Mochani	cm wodaac	Fffoctivo ctrocc	Prismatic volun	nes shear i	resistance and Safe	ty factors				
Eff. vert. stress at	discharge-zo	netop	σ' _{vd} [kPa]	21	pore pressure at	discharge-zo	onetop	u _d [kPa]	0	
Eff. vertical stress	at 1/3 discha	rge zo ne	σ' _{vd} [kPa]	14	pore pressure at	1/3 discharg	e-zone	u _{d1/3} [kPa]	0	
Eff. vertical stress	at 2/3 discha	arge zone	σ' _{vd} [kPa]	7	pore pressure at	2/3 discharg	e-zone	u _{d2/3} [kPa]	0	
Undist.eff. vertical	stress at cro	wn	σ' _v [kPa]	308	pore pressure at	tunnel spring	gline	u _o [kPa]	52	
Undist.eff. vert. str	ess at tunnel	springline	б' _{v0} [kРа]	360	pore pressure at	tunnel invert		u _f [kPa]	98	
Face wedge unit e	sm wedges	- Unit strenghts n 1)	a [kDa]	٥	Turnel	alob'	- hilit-			
Unit shear strengt	n (prisms 2)	7	۹ [kPa] s _{m2} [kPa]	5.9	IUNDEL-Tace (M $\Sigma_{FR}/M S_{FA}$)	giobal sta	алніў	FS_{g}	0.22	
Unit shear strengtl	n (prism 3)		_{sm3} [kPa]	5.9						
Crown prism stre	ss-field che	eck (lateral bou	ndaries)				,,			
k, c/0.3(γH-p _a) =	0.0		-		crown-wedg sliding)	e stability	(Shear stresses	FSc	-	
crown prism vert	ical-stress	rield (Terzaghi's	arching effect,	б _{vp} [kРа]	Crown wedge lov	cal stability (s	against plasticizet	ion):		
tortiour ult			3.01	-	2.0 min Wedge lov		James prosticizat			
		Symplified	failure mecha	inism at tu	nnel face - Acting	forces equ	ilibrium			
			A CONTRACTOR	VNL a M	1 101 1 100	1003007	T			
				S(/n-p_0 /	0 0					
				A.	1 21	Felveras				
			Zd			cortonle	i			
			1	4	\$ \$21	E-0314-0				
		1		7-37	110111		-			
		2	Sagarta /	0- F	PI	0.3(7H-q)				
		1	temporal	F	1-0/		1			
				1	77 (45-1/2)					

Figura 13: Fase di diagnosi - TRVa - analisi di stabilità al fronte con metodo di Tamez a 15 metri di copertura

		Enrique	Tamez Gonza	àles - Dis	eño (Geotécnico de	e Túneles	(1997)		
			Stratiar	anhy and a	nente	chnical propert	iec			
	1	Γ	Stratigit	ipny unu g		chinear propert	103	Γ		
Overburden	ΔH	γn	c'/Cu	φ'		Tunnel Face	ΔH	γn	c'/Cu	φ'
layers	[m]	[kNm ⁻³]	[kPa]	[°]		layers	[m]	[kNm ⁻³]	[kPa]	[°]
layers ordering:	from tunne	l crown to groui	nd surface	20.0	-	layers ordering	g: invert-cro	wn 21.0	r I	20.0
1	25.0	21.0	5	38.0	-	2	9.3	21.0	5	38.0
		Exc	avation cross	section ar	nd Fai	ilure Mechanisi	m aeometi	ν		
		LAC.		Section a	-		in geometr	,		
Total Overburden	1		H [m]	25.0	_	Equivalent tunne	el diameter		D _{eq} [m]	9.30
Surface load			qs [kPa]	0.0		Free span length	ı		a [m]	0.0
water table level a	bove tunnel i	nvert	H _w [m]	20.00	-	Eailura Macha	nicm acom	stru		
Tunnel face beigh	ea t		A _{EXCAV} [III2]	9 30		Discharge zone	height	<i></i> y	7.[m]	14 01
Tunnel face width	it.		D [m]	8 24		Length of prisms	s in advance		L _a [m]	4 54
Tunnor labor matri			5 []	0.2.1		Longin or phone	andaranoo		цр ()	110 1
		Failu	re Mechanisn	n Prisms -	Aver	age geotechnic	al properti	es		
Prisms 1	unit contact of		v [LN31	11 7	٦	Prisms 2-3	t unit		v [LNI ⁻³ 1	16.0
Average buoyant	unit weight		γ _b [KINM]	20.0	-	Average buoyan	d unit weight		γ _b [KINM]	10.8
Average satured	unin weight n		γ _n [κινm] cu [kPa]	20.0	-	Average sature	on within Die	charge Zone	γ _n [κινm] cu[kPa]	<u>∠1.0</u> 5.0
Average friction a	ingle		φ' _ε [°]	38.0	1	Average friction	angle within	Discharge Zone	¢'₀ [°]	38.0
Coefficient of pas	ssive earth pre	essure	Kp[-]	4.20		Friction Coeffici	ient within Dis	scharge Zone	Kf[-]	0.45
				There	ару рі	hase				
				Conventio	nal E	xcavation				
Injection grout	properties				-	Face VTR Bars/	Bolts prope	rties		
Cubic compression	on resistance	•	R _{ck} [MPa]			Unit Tensile stre	ngth		σ _b [MPa]	
Injection influence	e ratio		۱ _i [-] ۲ []			Unit Lensile stre	ngth at joint		σ _j [IVIPa] σ [MPa]	
Material partial sa	fotufactor		γ _c [-]			Drilling diamotor	gtn		Øt [IVIPa]	
Possion ratio	letyractor		/F [-]			External diameter	ər	Ø _{dril} [mm]		
Elastic module			Ec[GPa]			Thickness		th _b [mm]		
Grout-soil bond			t₀[kPa]			Single bar Cross	sectional ar	ea	A _b [mm ²]	
Injection penetral	pility co eff.		α, [-]			Overlapping lend	ath	04	L _{IAP} [m]	
Design strenght (I	ULS)		σ _c [-]			Joint step			i _{joint} [m]	
Single her Sheers	tranght		T [kn]		7	Number of boro	installed at t	uppel feas	N []	
Single bar Shear s	strengnt		T [LN]			Number of bars	installed at tu	InnelTace	N _b [-]	
Single bar Tensile	strenght		T _T [KN]			Applied prossure	it of area	undan	n _b [m]	
Max resistance of	offerd by bars		T [kN]			Equivalent pressure	sure acting at	face	nf [kPa]	0
			. IIIdX []		_				p. (-
		P.	rismatic volur	nes shear	resis	tance and Safe	ty factors			
Failure Mechan	ism wedges	- Effective stress	es el [kBa]	221	٦	Pore Pressure d	discharge 7		u [kBa]	0
Eff. vertical stress	s at 1/3 discha	irge zone	oʻ _{vd} [kPa]	154		pore pressure at	1/3 dischard	e-zone		13
Eff. vertical stress	s at 2/3 discha	arge zone	orta [kPa]	77		pore pressure at	2/3 dischard	e-zone	u _{42/2} [kPa]	59
Undist.eff. vertica	I stress at cro	wn	σ' _v [kPa]	420		pore pressure at	t tunnel spring	gline	u ₀ [kPa]	151
Undist.eff. vert. st	ress at tunnel	Ispringline	ර්' _{v0} [kPa]	467	1	pore pressure at	t tunnel invert		u _f [kPa]	196
Failure Mechan	ism wedges	- Unit strenghts			-					
Face wedge unit s	strength (prisr	n 1)	q[kPa]	0		Tunnel-face	global sta	ability	FS-	0.75
Unit shear strengt	h (prisms 2)		s _{m2} [kPa]	42.9	4	$(M\Sigma_{FR}/MS_{FA})$. •g	
Unit shear strengt	h (prism 3)		_{sm3} [kPa]	42.9	1					
Crown prism stre	ess-field che	eck (lateral bour	ndaries)		٦	Crown-wedg	e stabilit	(vertical		
$r_1 c_1 v_2 s_3 (\gamma H - p_a) =$	U.U	field (Terzechi's	- arching effect	6, [kPal	L	sliding)		(Shear stresses	FSc	-
z1: Vertical di	ist. from tunn	el boundary [m] =	0.01		٦	Crown wedge log	cal stability (a	against plasticizat	ion):	-
		Symplified	failure mecho	anism at t	unne	l face - Acting	forces equ	ilibrium		
		-		1/21	_	191 193	MIL 1855			
			0	3(7H-p0)	0	0				
			1	A	Pat	BI A				
			2.	Ē	1	1 Ac.	Esluerzo cortonie	H		
			1		s.	52	elástico			
		L		E S _J	<i>m</i>	V3 V2 S2	_			
		5		10/	Pat	Pil of u	0.3(7H-a)			
		1	Soporte		Pr -	6		4		
]			-	(45-e(2)		1		
				1	.0.		ton(45'-0/2)		

Figura 14: Fase di diagnosi - TRVa - analisi di stabilità al fronte con metodo di Tamez a 25 metri di copertura

		Enrique	e Tamez Gonz	àles - Dise	eño (Geotécnico de	e Túneles	(1997)		
			Stratigra	aphy and g	eote	chnical propert	ies			
O an alternation			c'/()	μ.	٦	Transferre			c'/Cu	4
Overburgen	ΔH	γn τιν31	C/Cu	φ [9]		Tunnel Face	ΔH	Ϋ́n Γιν31	t/cu	φ
lavors ordoring:	[m]		[KPa]	IJ		layers	[m]	[kNm ⁻]	[kPa]	[]
1	15.0	21.0	225	0.0	-	2	93	21.0	225	0.0
-	10.00	21.0	225	0.0			5.5	2110		0.0
		Ex	cavation cross	section an	d Fa	ilure Mechanis	m aeometr	v		
		E/		Section an	-		ngeomet	y		
Total Overburden			H [m]	15.0		Equivalent tunne	el diameter		D _{eq} [m]	9.30
Surface load			qs [kPa]	0.0		Free span length	ı		a [m]	0.0
water table level at	bove tunnel ir	nvert	H _w [m]	0.00						
Tunnel full face are	ea		A _{EXCAV} [m2]	67.9		Failure Mecha	nism geome	etry		
Tunnel face height	t		A [m]	9.30		Discharge zone	height		Z _d [m]	14.01
Tunnel face width			D [m]	8.24	J	Length of prism:	s in advance		L _P [m]	9.30
		Fai	lure Mechanisn	n Prisms -	Aver	age geotechnia	al properti	es		
Prisms 1						Prisms 2-3				
Average buoyant u	unit weight		γ _b [kNm ⁻³]	21.0]	A verage buo yar	nt unit weight		γ _b [kNm ⁻³]	21.0
Average satured	unit weight		$\gamma_n [kNm^{-3}]$	21.0		Average sature	d unit weight		γ _n [kNm ⁻³]	21.0
Average cohesior	ı		cu [kPa]	225.0		Average cohesi	on within Dise	charge Zone	cu[kPa]	225.0
Average friction a	ngle		φ' _Ε [°]	0.0		Average friction	angle within I	Discharge Zone	ф' _Р [°]	0.0
Coefficient of pas	sive earth pre	essure	Kp[-]	1.00		Friction Coeffic	ient within Dis	scharge Zone	Kf[-]	1.00
				Thera	ipy p	hase				
				Conventio	nal E	xcavation				
Injection grout p	properties				1	Face VTR Bars/	Bolts prope	rties		
Cubic compression	n resistance		R _{ck} [MPa]			Unit Tensile stre	ngth		σ _b [MPa]	
Injection influence	ratio		i _i [-]			Unit Tensile stre	ngth at joint		σ _j [MPa]	-
Curing factor			γ _c [-]			Unit Shear stren	gth		σ _t [MPa]	
Material partial sa	fetyfactor		γ _F [-]			Drilling diameter			Ø _{dril} [mm]	
Possion ratio			ν _c [-]			External diameter	er		Ø _{ext} [mm]	
Elastic module			E _c [GPa]			Thickness			th _b [mm]	
Grout-soil bond			τ _a [kPa]			Single bar Cross	s sectional ar	ea	A _b [mm ²]	
Injection penetrab	ility coeff.		α, [-]			Overlapping leng	gth		L _{LAP} [m]	
Design strenght (L	JLS)		σ _c [-]		<u> </u>	Joint step			i _{joint} [m]	
Single bar Shear s	trenght		T _t [kN]		1	Number of bars	installed at tu	innel face	N _b [-]	
Single bar Tensile	strenght		T _T [kN]			N°of bars for un	it of area		n _b [m ⁻²]	
Single bar Pull-out	t strenght		T _F [kN]			Applied pressure	e at tunnel bo	undary	pa[kPa]	0
Max. resistance of	fferd by bars		T _{max} [kN]			Equivalent press	sure acting at	face	pf [kPa]	0
			Duisus atis		_		to Constant			
Failura Machani	icm wodaac	Effective stre		nes snear	resis	Boro Brossuro	ly jactors			
Eff vert stress at	discharge-zo	ne ton	പ്പ[kPa]	21	1		discharge-zo	neton	u.[kPa]	0
Eff. vertical stress	at 1/3 discha	rge zone	ovg[kira] ດ່⊣[kPa]	14		pore pressure at	1/3 discharge		un (kPa)	0
Eff. vertical stress	at 2/3 discha	arge zone	ovg[ki a]	7		pore pressure at	2/3 dischard	e-70.ne	u _{42/3} [kPa]	0
Undist.eff.vertical	stress at cro	wn	ر [kPa]	315		pore pressure at		line	u [kPa]	0
Undist.eff.vert.str	ess at tunnel	sprinaline	6'vo[kPa]	413	1	DOTE Dressure at	t tunnel invert	,	u, [kPa]	0
Eailure Mechani	sm wednes	I Init strengh	0 10 [u]	115	1	perepreduced			ar [.i. a]	Ū
Face wedge unit s	trength (prisn	n 1)	 a[kPa]	315	1	Tunnel face	global c+	hility		
Unit shear strength	h (prisms 2)	,	sm2 [kPa]	225.0		$(M \Sigma_{FR}/M S_{FA})$	giobai sta	JUIILY	FSg	5.39
Unit shear strength	h (prism 3)		s _{m3} [kPa]	225.0						
Crown prism stre	ss-field che	eck (lateral bo	undaries)		4					
$k_f c/0.3(\gamma H-p_a) =$	2.4		-]	Crown-wedg	e stability	(vertical	ES	
Crown prism vert	tical-stress	field (Terzagh	's arching effect	б _{vp} [kPa]	-	sliding)		(Shear stresses	r S _C	
z1: Vertical dis	st. from tunne	el bo undary [m]	= 0.01	-		Crown wedge lo	cal stability (a	igainst plasticizat	ion):	-
		Symplifie	d failure mech	nism at t	unne	l face <u>- Actino</u>	forces equ	ulibrium		
		Jympinjie		11	11	191 1 1 19	Juices equ	morram		
			0	3(7H-p.)	-	10	100000			
			-	F	0	0				
				a,	PJ	21	Col. and			
			2.	A	1		cortonte	1		
			1		u	52	elástico			
		1-		E S3	77	V3 V2 52				
		5		10/	2-	Iq yu	0 3/21/			
		/	Soporte _		Pr -		wolvu-d)	A		
		1	. remporal	_		× (45-42)				
				ł	0.		ton(45'-0/2)		

Figura 15: Fase di diagnosi – TRV - analisi di stabilità al fronte con metodo di Tamez a 15 metri di copertura

FACE STABILIT	Y ANALY	SIS						R	*** \$0]	S.p.A
		Enrique	Tamez Gonza	àles - Dise	eño G	eotécnico de	Túneles	(1997)		
		Lindec	Ctratiare	new and a		hnical propert	ioc	(1001)		
		1	Stratigro	ipny ana g	eoted	nnical properti	les	1	r	
Overburden	ΔH	γn No3n	c'/Cu	φ' [°]		Tunnel Face	ΔH	γn 131	c'/Cu	φ' [°]
layers ordering: j	[m] from tunne	[kNm ⁻] I crown to grou	[kPa] nd surface	[]		layers layers ordering	[m] i: invert-cro	[kNm ⁺]	[kPa]	IJ
1	25.0	21.0	225	0.0		2	9.3	21.0	225	0.0
] [
		Exc	avation cross :	section an	d Fail	ure Mechanisr	n geometr	Ŷ		
Total Overburden			H [m]	25.0] [Equivalent tunne	l diameter		D _{eg} [m]	9.30
Surface load			qs [kPa]	0.0		Free span length			a [m]	0.0
water table level ab	ove tunnel i	nvert	H _w [m]	0.00		Eailure Mecha	nism agoma	atru		
Tunnel face height	:d		A _{EXCAV} [III2] A [m]	9.30	1 [Discharge zone l	height	etry	Z _d [m]	14.01
Tunnel face width			D [m]	8.24		Length of prisms	in advance		L _P [m]	9.30
		Failu	re Mechanisn	n Prisms -	Avera	ige geotechnic	al properti	es		
Prisms 1					 י ר	Prisms 2-3				
A verage buo yant u	init weight		γ _b [kNm ⁻³]	21.0	$\left\{ \right\}$	A verage buo yan	t unit weight		$\gamma_{b}[kNm^{-3}]$	21.0
Average satured u Average cohesion	init weight		γ _n [kNm ⁻³] cu [kPa]	21.0 225.0		Average satured Average cohesid	a unit weight on within Dise	charge Zone	γ _n [kNm ⁻] cu[kPa]	21.0 225.0
A verage friction ar	ngle		φ' _E [°]	0.0	11	Average friction	angle within I	Discharge Zone	φ' _P [°]	0.0
Coefficient of pass	sive earth pr	essure	Kp[-]	1.00		Friction Coeffici	ent within Dis	scharge Zone	Kf[-]	1.00
				Thero Conventio	n <mark>al Ex</mark>	ase cavation				
Injection grout p	oroperties					Face VTR Bars/	Bolts prope	rties		
Cubic compressio	n resistance	•	R _{ck} [MPa]			Unit Tensile stre	ngth		σ _b [MPa]	
Curing factor	ratio		ν _c [-]			Unit Tensile strei	ngth at joint		ο _j [IVIPa] σ. [MPa]	
Material partial saf	ety factor		γ _F [-]			Drilling diameter			Ø _{dril} [mm]	
Possion ratio			ν _c [-]			External diamete	r		Ø _{ext} [mm]	
Elastic module			E _c [GPa]			Thickness			th _b [mm]	
Grout-soil bond	litycoeff		τ _a [kPa]			Single bar Cross	sectional ar	ea	A _b [mm]	
Design strenght (U	LS)		∞,[·] σ _c [-]			Joint step			i _{joint} [m]	
Single bar Shear st	renaht		T _t [kN]		 1 [Number of bars i	installed at tu	innel face	N _b [-]	
Single bar Tensile	strenght		T _T [kN]			N°of bars for uni	it of area		n _b [m ⁻²]	
Single bar Pull-out	strenght		T _F [kN]			Applied pressure	e at tunnel bo	undary	pa[kPa]	0
Max. resistance of	ferd by bars		T _{max} [kN]			Equivalent press	ure acting at	face	pf [kPa]	0
		P	rismatic volur	nes shear	resist	ance and Safe	ty factors			
Failure Mechanis	<i>sm wedges</i> discharge-zo	- Effective stress	es ດູ່ dikPal	231] [pore pressure at	discharge-zo	onetop	u⊿[kPa]	0
Eff. vertical stress	at 1/3 discha	irge zone	σ' _{vd} [kPa]	154		pore pressure at	1/3 discharge	e-zone	u _{d1/3} [kPa]	0
Eff. vertical stress	at 2/3 discha	arge zone	σ' _{vd} [kPa]	77		pore pressure at	2/3 discharg	e-zone	u _{d2/3} [kPa]	0
Undist.eff.vertical	stress at cro	WN	o'v[kPa]	525	-	pore pressure at	tunnel spring	gline	u _o [kPa]	0
Failure Mechanis	sm wedges	- Unit strenghts	U VO[KFd]	025	<u> </u>	pore pressure at	turinerinvert		uf[KFd]	U
Face wedge unit st	rength (prisr	n 1)	q[kPa]	510		Tunnel-face	global sta	ability	FS.	3 47
Unit shear strength	(prisms 2)		sm2 [kPa]	225.0		$(M \Sigma_{FR}/M S_{FA})$			1 Jg	5.47
Crown prism strength	i (prism 3)	eck (lateral bour	s _{m3} [KPa]	225.0						
k _f c/0.3(γH-p _a) =	1.4	ser llaterar bour	-] [Crown-wedge	e stability	y (vertical	FS	
Crown prism vert	ical-stress	field (Terzaghi's	arching effect	б _{vp} [kРа]	,	sliding)		(Shear stresses	F S _C	
z1: Vertical dis	t. from tunn	el boundary [m] =	0.01	-		Crown wedge loo	cal stability (a	against plasticizat	tion):	-
		Symplified	failure mecho	nism at t	unnel	face - Acting	forces equ	ilibrium		
		-	0	3(74-0-)		1 1 19	10000007	T		
			1		0	0				
				all a	PJ	21 A	Esluerzo	H		
			Zd			5.	cortonte elástico			
		Le		S,	m 4	13 1/2 52				
		5		10/	P		0.3(7H-a)	T		
		ζ.	Soporte temporal		Pr	Lus		A 1		
					-			1		

I

Figura 16: Fase di diagnosi – TRV - analisi di stabilità al fronte con metodo di Tamez a 25 metri di copertura

FACE STABILITY ANALYSIS

		Enrique	Tamez Gonza	àles - Dis	eño (Geotécnico de	• Túneles	(1997)		
			Stratiard	aphy and a	neote	chnical propert	ies			
	1	1			٦	r		r		
Overburden	ΔH	γn	c'/Cu	φ'		Tunnel Face	ΔH	γn	c'/Cu	¢'
Tayers	[m]	[kNm ^{->}]	[kPa]	[*]	-	layers	[m]	[kNm ^{->}]	[kPa]	ľ
1 ayers ordering:	15.0	21.0	na surjace 4	32.0		ayers ordering	9.3	21.0	4	32.0
	10.0	21.0		52.0			515	2110		52.0
		Exc	avation cross	section ar	nd Fai	lure Mechanisr	n geometr	y		
				45.0	٦				D [11]	0.20
Total Overburden	1		H [M]	15.0		Equivalent tunne	el diameter		D _{eq} [m]	9.30
water table level a	bove tunnel ir	nvert	чз [кга] Н.,, [m]	10.00		Filee sparrierigtr	I		a [iii]	0.0
Tunnel full face ar	ea		A _{EXCAV} [m2]	67.9		Failure Mechai	nism geome	try		
Tunnel face heigh	t		A [m]	9.30		Discharge zone	height		Z _d [m]	14.01
Tunnel face width			D [m]	8.24		Length of prisms	s in advance		L _P [m]	5.16
		Failu	ıre Mechanisn	n Prisms -	Aver	aae aeotechnic	al nronerti	es		
Prisms 1		r une		111131113	////	Prisms 2-3	ar properti	63		
A verage buo yant	unit weight		γ _b [kNm ⁻³]	11.2]	A verage buo yan	t unit weight		γ _b [kNm ⁻³]	20.5
Average satured	unit weight		$\gamma_n [kNm^{-3}]$	21.0]	Average sature	d unit weight		γ _n [kNm ⁻³]	21.0
A verage cohesion	n		cu [kPa]	4.0	1	Average cohesi	on within Dis	charge Zone	cu[kPa]	4.0
A verage friction a	ingle		φ' _E [°]	32.0	4	Average friction	angle within	Discharge Zone	φ' _Ρ [°]	32.0
Coefficient of pas	ssive earth pre	essure	Kp[-]	3.25		Friction Coeffici	ient within Dis	charge Zone	Kf[-]	0.56
				Ther	apy pl	hase				
Injection arout	properties			Conventio		Face VTR Bars/	Bolts prope	rties		
Cubic compression	on resistance		R _{ck} [MPa]			Unit Tensile stre	ngth		σ _h [MPa]	
Injection influence	e ratio		i _i [-]			Unit Tensile stre	ngth at joint		σ _i [MPa]	
Curing factor			γ _c [-]			Unit Shear streng	gth		σ _t [MPa]	
Material partial sa	fety factor		γ _F [-]			Drilling diameter			Ø _{dril} [mm]	
Possion ratio			v _c [-]			External diameter	er		Ø _{ext} [mm]	
Elastic module			E _c [GPa]			Thickness			th _b [mm]	
Grout-soil bond			τ _a [kPa]		_	Single bar Cross	sectional ar	ea	A _b [mm ²]	
Injection penetrab	oility co eff.		α, [-]		_	Overlapping leng	ŋth		L _{LAP} [m]	
Design strenght (I	ULS)		σ _c [-]			Joint step			i _{joint} [m]	
Single bar Shear s	trenght		T _t [kN]			Number of bars	installed at tu	innel face	N _b [-]	
Single bar Tensile	strenght		T _T [kN]			N°of bars for un	it of area		n _b [m ⁻²]	
Single bar Pull-ou	t strenght		T _F [kN]			Applied pressure	e at tunnel bo	undary	pa[kPa]	300
M ax. resistance o	fferd by bars		T _{max} [kN]			Equivalent press	sure acting at	face	pf [kPa]	0
		P	Prismatic volur	nes shear	resis	tance and Safe	ty factors			
Failure Mechan	ism wedges	- Effective stress	ies		_	Pore Pressure a	distribution			
Eff. vert. stress at	discharge-zo	ne top	σ' _{vd} [kPa]	21		pore pressure at	discharge-zo	one top	u _d [kPa]	0
Eff. vertical stress	s at 1/3 discha	rge zone	σ' _{vd} [kPa]	114		pore pressure at	1/3 discharg	e-zo ne	u _{d1/3} [kPa]	0
Eff. vertical stress	at 2/3 discha	arge zo ne	σ' _{vd} [kPa]	207	4	pore pressure at	2/3 discharg	e-zo ne	u _{d2/3} [kPa]	0
Undist.eff. vertical	stress at cro	wn	σ _v [kPa]	308	4	pore pressure at	tunnel spring	line	u _o [kPa]	52
Undist.eff. vert. st	ress at tunnel	springline	o' _{v0} [kPa]	360	L	pore pressure at	tunnel invert		u _f [kPa]	98
Face wedge upit s	ism wedges	- Unit strenghts n 1)	د [الا الم	Λ	7	Tunnelle		. h.: : e		
Unit shear strengt	h (prisms 2)		q[kPa] sma[kPa]	41.0	1	I UNNEL-TACE ($M \Sigma_{FR}/M S_{FA}$)	giobal sta	ability	FSg	1.00
Unit shear strengt	h (prism 3)		s _{m3} [kPa]	58.5	1	· · ·			I	
Crown prism stre	ess-field che	eck (lateral bour	ndaries)		-					
$k_r c/0.3(\gamma H-p_a) =$	0.9]	Crown-wedg	e stability	(vertical	EC	
Crown prism ver	tical-stress	field (Terzaghi's	arching effect	б _{vp} [kPa]	-	sliding)		(Shear stresses	Γ3 _C	
zt Vertical di	st.from tunne	el bo undary [m] =	0.01	-	1	Crown wedge loo	cal stability (a	gainst plasticizat	ion):	
		Symplified	failu <u>re mech</u> a	anis <u>m at t</u>	unne	l face <u>-Actina</u>	forces eau	ilibrium		
		Symphyrea		11	11	1911119	Jorees equ			
			0	3(7H-p0)	a	0	10333557			
			T		9	0				
				illi	PJ	21	Esluerzo	H		
			Zd			.]] C+*	elástico			
		1		S.	11	V3 V2 C				
		-		7.7	Î	1911190		-		
		7	Soporte /	10-	Pal	Pil	0.3(7H-q)	A		
		4	temporal	-	"13	X (45-0/2)		1		
		-	COMMENTER		0		lon(45'-#/2)		

Figura 17: Fase di terapia - TRVa - analisi di stabilità al fronte con metodo di Tamez a 15 metri di copertura

c'/Cu

[kPa]

4

φ'

[°]

32.0

D_{eq} [m] 9.30

Enrique Tamez Gonzàles - Diseño Geotécnico de Túneles (1997)

Stri	atiarank	w and	nenter	hnical	nronert

					_			
Overburden	ΔH	γn	c'/Cu	φ'		Tunnel Face	ΔH	
l a ye rs	[m]	[kNm ⁻³]	[kPa]	[°]		layers	[m]	
layers ordering:	from tunne	crown to groui	nd surface			layers ordering	g: invert-cro	wn
1	25.0	21.0	4	32.0		2	9.3	

Total Overburden	H [m]	25.0	Equivalent tunnel diameter
Surface load	qs [kPa]	0.0	Free span length
water table level above tunnel invert	H _w [m]	20.00	
Tunnel full face area	A _{EXCAV} [m2]	67.9	Failure Mechanism geor
Tunnel face height	A [m]	9.30	Discharge zone height
Tunnel face width	D [m]	8.24	Length of prisms in advance

Free span length	a [m]	0.0
Failure Mechanism geometry		

γn

[kNm⁻³]

21.0

Discharge zone height	Z _d [m]	14.01
Length of prisms in advance	L _P [m]	5.16

Prisms 1		
Average buo yant unit weight	$\gamma_{b}[kNm^{-3}]$	11.2
Average satured unit weight	$\gamma_n [kNm^{-3}]$	20.0
Average cohesion	cu [kPa]	4.0
Average friction angle	φ' _Ε [°]	32.0
Coefficient of passive earth pressure	Kp[-]	3.25

Prisms 2-3					
A verage buo yant unit weight	γ _b [kNm ⁻³]	16.8			
Average satured unit weight	γ _n [kNm ⁻³]	21.0			
Average cohesion within Discharge Zone	cu[kPa]	4.0			
Average friction angle within Discharge Zone	φ' _P [°]	32.0			
Friction Coefficient within Discharge Zone	Kf[-]	0.56			
hase					
xcavation					

Injection grout properties		Face VTR Bars/Bolts properties		
Cubic compression resistance	R _{ck} [MPa]	Unit Tensile strength	σ _b [MPa]	
Injection influence ratio	i _i [-]	Unit Tensile strength at joint	σ _j [MPa]	
Curing factor	γ _c [-]	Unit Shear strength	σ _t [MPa]	
Material partial safety factor	γ _F [-]	Drilling diameter	Ø _{dril} [mm]	
Possion ratio	v _c [-]	External diameter	Ø _{ext} [mm]	
Elastic module	E _c [GPa]	Thickness	th _b [mm]	
Grout-soil bond	τ _a [kPa]	Single bar Cross sectional area	A _b [mm ²]	
Injection penetrability coeff.	α,[-]	Overlapping length	L _{LAP} [m]	
Design strenght (ULS)	σ _c [-]	Joint step	i _{joint} [m]	
Single bar Shear strenght	T _t [kN]	Number of bars installed at tunnel fac	e N _b [-]	
Single bar Tensile strenght	Τ _τ [kN]	N°of bars for unit of area	n _b [m ⁻²]	
Single bar Pull-out strenght	T _F [kN]	Applied pressure at tunnel boundary	pa[kPa]	300
Max. resistance offerd by bars	T _{max} [kN]	Equivalent pressure acting at face	pf [kPa]	0

Failure Mechanism wedges - Effective stresses

Eff. vert. stress at discharge-zone top	σ' _{vd} [kPa]	231	pore pressure	
Eff. vertical stress at 1/3 discharge zone	σ' _{vd} [kPa]	254	pore pressure	
Eff. vertical stress at 2/3 discharge zone	σ' _{vd} [kPa]	277	pore pressure	
Undist.eff. vertical stress at crown	σ' _v [kPa]	420	pore pressure	
Undist.eff. vert. stress at tunnel springline	б' _{v0} [kРа]	467	pore pressure	
Failure Mechanism wedges - Unit strengh	ts			
Face wedge unit strength (prism 1)	q[kPa]	0	Tunnel-fa	
Unit shear strength (prisms 2)	_{sm2} [kPa]	77.8	$(M \Sigma_{FR}/M S_{FA})$	
Unit shear strength (prism 3)	_{sm3} [kPa]	95.4		
Crown prism stress-field check (lateral bo	undaries)			
$k_1 c/0.3(\gamma H-p_a) = 0.1$	-		Crown-we	
Crown prism vertical-stress field (Terzaghi	's arching effect,	б _{vp} [kPa]	sliding)	
zt: Vertical dist. from tunnel boundary [m]	= 0.01	-	Crown wedge	

Pore Pressure distribution		
pore pressure at discharge-zone top	u _d [kPa]	0
pore pressure at 1/3 discharge-zone	u _{d1/3} [kPa]	13
pore pressure at 2/3 discharge-zone	u _{d2/3} [kPa]	59
pore pressure at tunnel springline	u _o [kPa]	151
pore pressure at tunnel invert	u _f [kPa]	196

Tunnel-face global stability $(M \Sigma_{FR}/M S_{FA})$	FSg	1.20

crown-wedge sta	bility (vertical		
liding)	(Shear stresses	FS _c	-
Crown wedge local sta	bility (against plasticizatio	n):	-

Figura 18: Fase di terapia - TRVa - analisi di stabilità al fronte con metodo di Tamez a 25 metri di copertura

Total Overburden

Tunnel full face area

Tunnel face height

Tunnel face width

ater table level above tunn

Surface load

c'/Cu

[kPa]

161

u_d [kPa]

u_{d1/3}[kPa]

u_{d2/3} [kPa] u_o [kPa]

u_f [kPa]

 FS_{g}

 $\mathbf{FS}_{\mathbf{c}}$

0

0 0

0

0

3.86

φ'

[°]

0.0

Enrique Tamez Gonzàles - Diseño Geotécnico de Túneles (1997)

					_			
Overburden	ΔH	γn	c'/Cu	φ'		Tunnel Face	ΔH	
l a ye rs	[m]	[kNm ⁻³]	[kPa]	[°]		layers	[m]	
layers ordering:	from tunne	crown to groui	nd surface			layers ordering	g: invert-cro	wn
1	15.0	21.0	161	0.0		2	9.3	

H [m]

qs [kPa]

H_w [m]

A [m] D [m]

A_{EXCAV} [m2]

15.0

0.0

0.00

67.9

9.30

8.24

Equivalent tunnel diameter	D _{eq} [m]	9.30
Free span length	a [m]	0.0

γn

[kNm⁻³]

21.0

Failure Wechanism geometry		
Discharge zone height	Z _d [m]	14.01
Length of prisms in advance	L _P [m]	9.30

Prisms 1		
Average buo yant unit weight	$\gamma_{b}[kNm^{-3}]$	21.0
Average satured unit weight	$\gamma_n [kNm^{-3}]$	21.0
Average cohesion	cu [kPa]	161.0
Average friction angle	φ' _Ε [°]	0.0
Coefficient of passive earth pressure	Kp[-]	1.00

Prisms 2-3		
Average buo yant unit weight	$\gamma_{b}[kNm^{-3}]$	21.0
Average satured unit weight	$\gamma_n [kNm^{-3}]$	21.0
Average cohesion within Discharge Zone	cu[kPa]	161.0
Average friction angle within Discharge Zone	φ' _P [°]	0.0
Friction Coefficient within Discharge Zone	Kf[-]	1.00
nase		

Injection grout properties		Face VTR Bars/Bolts properties		
Cubic compression resistance	R _{ck} [MPa]	Unit Tensile strength	σ _b [MPa]	
Injection influence ratio	i _i [-]	Unit Tensile strength at joint	σ _j [MPa]	
Curing factor	γ _c [-]	Unit Shear strength	σ _t [MPa]	
Material partial safety factor	γ _F [-]	Drilling diameter	Ø _{dril} [mm]	
Possion ratio	ν _c [-]	External diameter	Ø _{ext} [mm]	
Elastic module	E _c [GPa]	Thickness	th _b [mm]	
Grout-soil bond	τ _a [kPa]	Single bar Cross sectional area	A _b [mm ²]	
Injection penetrability coeff.	α,[-]	Overlapping length	L _{LAP} [m]	
Design strenght (ULS)	σ _c [-]	Joint step	i _{joint} [m]	
Single bar Shear strenght	T _t [kN]	Number of bars installed at tunnel face	N _b [-]	
Single bar Tensile strenght	T _T [kN]	N°of bars for unit of area	n _b [m ⁻²]	
Single bar Pull-out strenght	T _F [kN]	Applied pressure at tunnel boundary	pa[kPa]	0
Max. resistance offerd by bars	T _{max} [kN]	Equivalent pressure acting at face	pf [kPa]	0

Failure Mechanism wedges - Effective stresses Pore Pressure distribution

Eff. vert. stress at discharge-zone top	σ' _{vd} [kPa]	21	pore pressure at discharge-zone top
Eff. vertical stress at 1/3 discharge zone	σ' _{vd} [kPa]	14	pore pressure at 1/3 discharge-zone U
Eff. vertical stress at 2/3 discharge zone	σ' _{vd} [kPa]	7	pore pressure at 2/3 discharge-zone U
Undist.eff. vertical stress at crown	σ' _v [kPa]	315	pore pressure at tunnel springline
Undist.eff.vert.stress at tunnel springline 6 'v0 [kPa]			pore pressure at tunnel invert
Failure Mechanism wedges - Unit strengh	ts		
Face wedge unit strength (prism 1)	q[kPa]	315	Tunnel-face global stability
Unit shear strength (prisms 2)	_{sm2} [kPa]	161.0	$(M \Sigma_{FR}/M S_{FA})$
Unit shear strength (prism 3)	_{sm3} [kPa]	161.0	
Crown prism stress-field check (lateral bo	undaries)		
$k_f c/0.3(\gamma H-p_a) = 1.7$	-		Crown-wedge stability (vertical
Crown prism vertical-stress field (Terzagh	i's arching effect	б _{vp} [kРа]	sliding) (Shear stresses
z1: Vertical dist. from tunnel boundary [m]	= 0.01	-	Crown wedge local stability (against plasticization):
Community of the	d faith and a she		
Symplifie	a failure mech	inism at tu	nnel face - Acting forces equilibrium
		11	1 1 10 1 1 1 10

Figura 19: Fase di terapia - TRV - analisi di stabilità al fronte con metodo di Tamez a 15 metri di copertura

Total Overburden

Tunnel full face area

Tunnel face height

Tunnel face width

ater table level above tunn

Surface load

c'/Cu

[kPa]

161

φ'

[°]

0.0

Enrique Tamez Gonzàles - Diseño Geotécnico de Túneles (1997)

Stratigraphy c	nd agotach	nical propert

-					-	_		
Overburden	ΔH	γn	c'/Cu	φ'		Tunnel Face	ΔH	γn
l a ye rs	[m]	[kNm ⁻³]	[kPa]	[°]		layers	[m]	[kNm ⁻³]
layers ordering:	from tunne	l crown to groui	nd surface			layers ordering	g: invert-cro	wn
1	25.0	21.0	161	0.0		2	9.3	21.0
		Exc	avation cross	section an	d Eail	lure Mechanis	n geometr	V

H [m]

qs [kPa]

H_w [m]

A [m] D [m]

A_{EXCAV} [m2]

Equivalent tunnel diameter	D _{eq} [m]	9.30
Free span length	a [m]	0.0

Failure Mechanism geometry	
Discharge zone height Z _d [m]	14.01
Length of prisms in advance $L_P[m]$	9.30

ge ge

25.0

0.0

0.00

67.9 9.30

8.24

Prisms 1		
Average buo yant unit weight	$\gamma_{b}[kNm^{-3}]$	21.0
Average satured unit weight	$\gamma_n [kNm^{-3}]$	21.0
Average cohesion	cu [kPa]	161.0
Average friction angle	φ' _Ε [°]	0.0
Coefficient of passive earth pressure	Kp[-]	1.00

Prisms 2-3		
Average buo yant unit weight	γ _b [kNm ⁻³]	21.0
Average satured unit weight	γ _n [kNm ⁻³]	21.0
Average cohesion within Discharge Zone	cu[kPa]	161.0
Average friction angle within Discharge Zone	φ' _P [°]	0.0
Friction Coefficient within Discharge Zone	Kf[-]	1.00

		1	e	ľ	IJ-	ıγ	1	Л	п	1.
• -	 		41	-		-		-		

vatio

Injection grout properties			Face VTR Bars/Bolts properties		
Cubic compression resistance	R _{ck} [MPa]		Unit Tensile strength	σ _b [MPa]	
Injection influence ratio	i _i [-]		Unit Tensile strength at joint	σ _j [MPa]	
Curing factor	γ _c [-]		Unit Shear strength	σ _t [MPa]	
Material partial safety factor	γ _F [-]		Drilling diameter	Ø _{dril} [mm]	
Possion ratio	v _c [-]		External diameter	Ø _{ext} [mm]	
Elastic module	E _c [GPa]		Thickness	th _b [mm]	
Grout-soil bond	τ _a [kPa]		Single bar Cross sectional area	A _b [mm ²]	
Injection penetrability coeff.	α,[-]		Overlapping length	L _{LAP} [m]	
Design strenght (ULS)	σ _c [-]		Joint step	i _{joint} [m]	
Single bar Shear strenght	T _t [kN]	1	Number of bars installed at tunnel face	N _b [-]	
Single bar Tensile strenght	Τ _τ [kN]		N°of bars for unit of area	n _b [m ⁻²]	
Single bar Pull-out strenght	T _F [kN]		Applied pressure at tunnel boundary	pa[kPa]	0
Max. resistance offerd by bars	T _{max} [kN]		Equivalent pressure acting at face	pf [kPa]	0

Prismatic volumes shear resistance and Safety factors			
Failure Mechanism wedges - Effective stresses		Pore Pressure distribution	

Eff. vert. stress at discharge-zone top σ'_{vd} [kP		231	pore pressure at discharge
Eff. vertical stress at 1/3 discharge zone	σ' _{vd} [kPa]	154	pore pressure at 1/3 discha
Eff. vertical stress at 2/3 discharge zone	σ' _{vd} [kPa]	77	pore pressure at 2/3 disch
Undist.eff. vertical stress at crown	σ' _v [kPa]	525	pore pressure at tunnel sp
Undist.eff.vert.stress at tunnel springline	б' _{v0} [kPa]	623	pore pressure at tunnel inv
Failure Mechanism wedges - Unit strengh	ts		
Face wedge unit strength (prism 1)	q[kPa]	337	Tunnel-face global
Unit shear strength (prisms 2)	_{sm2} [kPa] 161.0		$(M \Sigma_{FR}/M S_{FA})$
Unit shear strength (prism 3)	_{sm3} [kPa]	161.0	
Crown prism stress-field check (lateral bou	undaries)		
$k_1 c/0.3(\gamma H - p_a) = 1.0$	-		Crown-wedge stabil
Crown prism vertical-stress field (Terzaghi	's arching effect,	б _{vp} [kРа]	sliding)
z1 Vertical dist. from tunnel boundary[m]	= 0.01	-	Crown wedge local stabilit

Pore Pressure distribution		
pore pressure at discharge-zone top	u _d [kPa]	0
pore pressure at 1/3 discharge-zone	u _{d1/3} [kPa]	0
pore pressure at 2/3 discharge-zone	u _{d2/3} [kPa]	0
pore pressure at tunnel springline	u _o [kPa]	0
pore pressure at tunnel invert	u _f [kPa]	0

Tunnel-face global stability $(M \Sigma_{FR}/M S_{FA})$	FSg	2.49

rown-wedge stal					
liding)	(Shear stresses	FSc	-		
crown wedge lo cal stability (against plasticization):					

Figura 20: Fase di terapia – TRV - analisi di stabilità al fronte con metodo di Tamez a 25 metri di copertura

Analisi numerica per la verifica dell'anello da 0.45 m - Analisi n°6

Per comodità di lettura del presente allegato, nella tabella che segue è riportata una sintesi delle fasi di calcolo previste per l'analisi numerica:

La seguente figura schematizza la successione delle fasi di calcolo delle due differenti analisi condotte:

Tabella 3 - Fasi di analisi (sollecitazioni massime sui rivestimenti)

Fase	Descrizione	Rilascio forze di scavo
0	Creazione della geometria del modello	-
1	Inizializzazione dello stato tensionale geostatico in condizioni elastiche	-
2	2 Inizializzazione dello stato tensionale geostatico in condizioni plastiche (modello costitutivo di Mohr-Coulomb)	
	SCAVO CANNA DESTRA	
3	Rilascio delle forze al contorno (da assialsimmetrici) TRV : in condizioni non drenate (Cu)	varie
4	Installazione dell'anello universale	1.0
5	Rilascio delle forze al contorno (da assialsimmetrici) (come per canna destra)	varie
6	Installazione dell'anello universale	1.0
	LUNGO TERMINE	
7	Equalizzazione pressioni interstiziali / ripristino pp iniziali al contorno di scavo – parametri drenati	1.0

Le unità di misura principali attraverso le quali sono rappresentati i risultati dell'analisi nelle figure contenute nel presente documento sono le seguenti:

- m per le grandezze egli spostamenti;
- N per le forze.

Figura 21 - Numerazione elementi beam canna Destra

Figura 22 - Numerazione elementi beam canna Sinistra

Figura 23 - Spostamenti x

Figura 24 - Spostamenti y

Figura 25 – Plasticizzazioni

Figura 26 - Tensioni principali totali sigma1

Figura 27 – Sollecitazioni M

Figura 28 – Sollecitazioni N

Figura 29 – Sollecitazioni T

Elem	ID	Nod1	Nod2	Prop		F-shear	F-axial	Mom-1	Mom-2	strain
-	-	-	-	-	-	[N]	[N]	[N m]	[N m]	-
128	2	128	65	1	beam	3039	5388000	137900	-136200	-0.0003421
127	2	127	128	1	beam	-2276	5399000	138500	-139300	-0.0003428
126	2	126	127	1	beam	-17000	5429000	133800	-139400	-0.0003447
125	2	125	126	1	beam	-19990	5461000	124400	-135100	-0.0003467
124	2	124	125	1	beam	-29430	5500000	115300	-126300	-0.0003492
123	2	123	124	1	beam	-35240	5577000	101600	-114700	-0.0003541
122	2	122	123	1	beam	-64100	5659000	77590	-102500	-0.0003593
121	2	121	122	1	beam	-63370	5734000	53540	-78170	-0.0003641
120	2	120	121	1	beam	-84940	5826000	21380	-53540	-0.0003699
119	2	119	120	1	beam	-87090	5906000	-9564	-23420	-0.000375
118	2	118	119	1	beam	-90180	5986000	-41700	10430	-0.0003801
117	2	117	118	1	beam	-82840	6062000	-71060	42330	-0.0003849
116	2	116	117	1	beam	-70090	6147000	-102100	70900	-0.0003903
115	2	115	116	1	beam	-58780	6207000	-130400	102200	-0.0003941
114	2	114	115	1	beam	-46290	6293000	-153700	130400	-0.0003995
113	2	113	114	1	beam	-28240	6330000	-168400	153800	-0.0004019
112	2	112	113	1	beam	-5952	6396000	-171000	168000	-0.0004061

Elem	ID	Nod1	Nod2	Prop		F-shear	F-axial	Mom-1	Mom-2	strain
-	-	-	-	-	-	[N]	[N]	[N m]	[N m]	-
111	2	111	112	1	beam	10520	6398000	-165800	171000	-0.0004063
110	2	110	111	1	beam	38690	6448000	-148200	166200	-0.0004094
109	2	109	110	1	beam	53450	6390000	-129200	147900	-0.0004057
108	2	108	109	1	beam	83690	6377000	-101100	130300	-0.0004049
107	2	107	108	1	beam	67050	6347000	-73240	100900	-0.000403
106	2	106	107	1	beam	87030	6349000	-41300	73270	-0.0004031
105	2	105	106	1	beam	66690	6295000	-16930	41430	-0.0003997
104	2	104	105	1	beam	86270	6255000	15790	16260	-0.0003971
103	2	103	104	1	beam	60650	6185000	38550	-16020	-0.0003927
102	2	102	103	1	beam	71550	6118000	64500	-39210	-0.0003885
101	2	101	102	1	beam	54340	6047000	84570	-65360	-0.000384
100	2	100	101	1	beam	54130	5938000	112600	-84740	-0.000377
99	2	99	100	1	beam	41080	5863000	137500	-114700	-0.0003723
98	2	98	99	1	beam	26400	5767000	153400	-138200	-0.0003662
97	2	97	98	1	beam	7635	5740000	157600	-153200	-0.0003644
96	2	96	97	1	beam	-10960	5734000	152100	-158300	-0.0003641
95	2	95	96	1	beam	-28810	5800000	137600	-152700	-0.0003683
94	2	94	95	1	beam	-37620	5889000	124400	-137800	-0.0003739
93	2	93	94	1	beam	-42070	5946000	109600	-124500	-0.0003775
92	2	92	93	1	beam	-61320	5990000	86610	-109700	-0.0003803
91	2	91	92	1	beam	-68240	6057000	62200	-87930	-0.0003846
90	2	90	91	1	beam	-77600	6123000	33470	-62600	-0.0003888
89	2	89	90	1	beam	-89550	6205000	26.9	-33640	-0.000394
88	2	88	89	1	beam	-83410	6228000	-29160	-144.5	-0.0003954
87	2	87	88	1	beam	-85910	6266000	-59760	29580	-0.0003978
86	2	86	87	1	beam	-79340	6275000	-94750	60260	-0.0003984
85	2	85	86	1	beam	-67210	6356000	-127000	95060	-0.0004035
84	2	84	85	1	beam	-42570	6326000	-148500	126900	-0.0004016
83	2	83	84	1	beam	-61860	6341000	-165400	148600	-0.0004026
82	2	82	83	1	beam	-17690	6346000	-170600	165800	-0.0004029
81	2	81	82	1	beam	-3968	6343000	-172700	170800	-0.0004027
80	2	80	81	1	beam	21920	6337000	-166300	172500	-0.0004023
79	2	79	80	1	beam	24140	6332000	-159600	166500	-0.000402
78	2	78	79	1	beam	31470	6299000	-144400	159900	-0.0004
77	2	77	78	1	beam	57290	6278000	-118700	144700	-0.0003986
76	2	76	77	1	beam	62420	6184000	-96720	119000	-0.0003926
75	2	75	76	1	beam	89160	6130000	-65290	97070	-0.0003892
74	2	74	75	1	beam	60950	6060000	-41850	65450	-0.0003848
73	2	73	74	1	beam	87060	6040000	-10010	41450	-0.0003835
72	2	72	73	1	beam	58140	5950000	12180	8816	-0.0003778
71	2	71	72	1	beam	78890	5883000	41560	-13340	-0.0003735
70	2	70	71	1	beam	41170	5790000	56980	-42250	-0.0003676
69	2	69	70	1	beam	49920	5684000	82050	-57390	-0.0003609
68	2	68	69	1	beam	33040	5625000	101200	-83110	-0.0003571
67	2	67	68	1	beam	43180	5551000	116600	-102500	-0.0003524
66	2	66	67	1	beam	25010	5492000	126500	-118300	-0.0003487
65	2	65	66	1	beam	15940	5407000	135400	-126700	-0.0003433
64	1	64	1	1	beam	-16720	5407000	129700	-138800	-0.0003433
63	1	63	64	1	beam	-28880	5489000	119300	-128800	-0.0003485

Elem	ID	Nod1	Nod2	Prop		F-shear	F-axial	Mom-1	Mom-2	strain
-	-	-	-	-	-	[N]	[N]	[N m]	[N m]	-
62	1	62	63	1	beam	-47940	5549000	103600	-119300	-0.0003523
61	1	61	62	1	beam	-38400	5626000	81500	-102600	-0.0003572
60	1	60	61	1	beam	-53880	5692000	53910	-80530	-0.0003614
59	1	59	60	1	beam	-46320	5792000	37540	-54110	-0.0003678
58	1	58	59	1	beam	-80780	5886000	6630	-35530	-0.0003737
57	1	57	58	1	beam	-56640	5949000	-15360	-5086	-0.0003777
56	1	56	57	1	beam	-82910	6034000	-45560	15620	-0.0003831
55	1	55	56	1	beam	-61500	6056000	-69450	45640	-0.0003845
54	1	54	55	1	beam	-87540	6129000	-100800	69620	-0.0003891
53	1	53	54	1	beam	-62450	6182000	-122800	100500	-0.0003925
52	1	52	53	1	beam	-55820	6271000	-148000	122600	-0.0003982
51	1	51	52	1	beam	-31830	6296000	-163300	147600	-0.0003998
50	1	50	51	1	beam	-22710	6326000	-169200	162800	-0.0004016
49	1	49	50	1	beam	-22540	6332000	-176000	169600	-0.000402
48	1	48	49	1	beam	5340	6340000	-173600	176100	-0.0004026
47	1	47	48	1	beam	19610	6344000	-168300	173700	-0.0004028
46	1	46	47	1	beam	63560	6338000	-151200	168400	-0.0004024
45	1	45	46	1	beam	46950	6322000	-127400	151300	-0.0004014
44	1	44	45	1	beam	71920	6349000	-93480	127600	-0.0004031
43	1	43	44	1	beam	84280	6273000	-56980	93610	-0.0003983
42	1	42	43	1	beam	86710	6261000	-25870	56330	-0.0003975
41	1	41	42	1	beam	87190	6223000	5511	25120	-0.0003951
40	1	40	41	1	beam	90950	6198000	39330	-5190	-0.0003935
39	1	39	40	1	beam	79400	6115000	69330	-39520	-0.0003882
38	1	38	39	1	beam	63870	6056000	93690	-69600	-0.0003845
37	1	37	38	1	beam	53560	5988000	113200	-93050	-0.0003802
36	1	36	37	1	beam	39080	5943000	127500	-113600	-0.0003774
35	1	35	36	1	beam	35400	5890000	139600	-127000	-0.000374
34	1	34	35	1	beam	30040	5801000	154800	-139000	-0.0003683
33	1	33	34	1	beam	12210	5735000	161300	-154500	-0.0003641
32	1	32	33	1	beam	-9503	5745000	155600	-161100	-0.0003648
31	1	31	32	1	beam	-27380	5773000	139400	-155200	-0.0003666
30	1	30	31	1	beam	-43850	5873000	115000	-139300	-0.0003729
29	1	29	30	1	beam	-60940	5953000	83750	-115100	-0.000378
28	1	28	29	1	beam	-52680	6058000	64990	-83610	-0.0003846
27	1	27	28	1	beam	-75970	6128000	37300	-64150	-0.0003891
26	1	26	27	1	beam	-64500	6200000	12720	-36680	-0.0003936
25	1	25	26	1	beam	-92370	6272000	-22190	-12130	-0.0003982
24	1	24	25	1	beam	-70860	6307000	-48580	22550	-0.0004004
23	1	23	24	1	beam	-85480	6359000	-79420	48020	-0.0004037
22	1	22	23	1	beam	-65800	6359000	-106700	79630	-0.0004037
21	1	21	22	1	beam	-84570	6391000	-134500	105000	-0.0004058
20	1	20	21	1	beam	-51640	6407000	-151700	133600	-0.0004068
19	1	19	20	1	beam	-38830	6463000	-169600	151600	-0.0004103
18	1	18	19	1	beam	-13530	6409000	-176200	169500	-0.0004069
17	1	17	18	1	beam	8905	6418000	-171500	176000	-0.0004075
16	1	16	17	1	beam	32330	6347000	-154800	171500	-0.000403
15	1	15	16	1	beam	49220	6311000	-129600	154400	-0.0004007
14	1	14	15	1	beam	60170	6217000	-100800	129700	-0.0003947

Elem	ID	Nod1	Nod2	Prop		F-shear	F-axial	Mom-1	Mom-2	strain
-	I	-	-	-	-	[N]	[N]	[N m]	[N m]	-
13	1	13	14	1	beam	73730	6157000	-68340	101200	-0.0003909
12	1	12	13	1	beam	86750	6078000	-38320	68400	-0.0003859
11	1	11	12	1	beam	90990	6005000	-5796	37340	-0.0003813
10	1	10	11	1	beam	87370	5912000	26970	6116	-0.0003754
9	1	9	10	1	beam	87530	5835000	59310	-26160	-0.0003705
8	1	8	9	1	beam	57800	5742000	81810	-59350	-0.0003646
7	1	7	8	1	beam	64100	5668000	105600	-80660	-0.0003599
6	1	6	7	1	beam	34600	5584000	118700	-105800	-0.0003546
5	1	5	6	1	beam	31310	5508000	129400	-117700	-0.0003497
4	1	4	5	1	beam	14920	5467000	137500	-129500	-0.0003471
3	1	3	4	1	beam	18680	5435000	142600	-136400	-0.000345
2	1	2	3	1	beam	-312.7	5405000	141600	-141700	-0.0003431
1	1	1	2	1	beam	-7509	5383000	138800	-142800	-0.0003418

Analisi numerica per la verifica dell'anello da 0.45 m - Analisi n°7

Per comodità di lettura del presente allegato, nella tabella che segue è riportata una sintesi delle fasi di calcolo previste per l'analisi numerica:

La seguente figura schematizza la successione delle fasi di calcolo delle due differenti analisi condotte:

Tabella 3 - Fasi di analisi (sollecitazioni massime sui rivestimenti)

Fase	Descrizione	Rilascio forze di scavo							
0	Creazione della geometria del modello	-							
1	Inizializzazione dello stato tensionale geostatico in condizioni elastiche	-							
2	Inizializzazione dello stato tensionale geostatico in condizioni plastiche (modello costitutivo di Mohr-Coulomb)	-							
SCAVO CANNA DESTRA									
3	Rilascio delle forze al contorno (da assialsimmetrici) TRV : in condizioni non drenate (Cu)	varie							
4	Installazione dell'anello universale	1.0							
	SCAVO CANNA SINISTRA								
5	Rilascio delle forze al contorno (da assialsimmetrici) (come per canna destra)	varie							
6	Installazione dell'anello universale	1.0							
	LUNGO TERMINE								
7	Equalizzazione pressioni interstiziali / ripristino pp iniziali al contorno di scavo – parametri drenati	1.0							

Le unità di misura principali attraverso le quali sono rappresentati i risultati dell'analisi nelle figure contenute nel presente documento sono le seguenti:

- m per le grandezze egli spostamenti;
- N per le forze.

Figura 30 - Numerazione elementi beam canna Destra

Figura 31 - Numerazione elementi beam canna Sinistra

Figura 32 - Spostamenti x

Figura 33 - Spostamenti y

Figura 34 – Plasticizzazioni

Figura 35 – Tensioni principali totali sigma1

Figura 36 – Sollecitazioni M

Figura 37 – Sollecitazioni N

Figura 38 – Sollecitazioni T

Elem	ID	Nod1	Nod2	Prop		F-shear	F-axial	Mom-1	Mom-2	strain
-	-	-	-	-	-	[N]	[N]	[N m]	[N m]	-
128	2	128	65	1	beam	-2151	6997000	11930	-13100	-0.0004443
127	2	127	128	1	beam	25380	7005000	21910	-13530	-0.0004447
126	2	126	127	1	beam	32980	6998000	32800	-21910	-0.0004443
125	2	125	126	1	beam	30390	7002000	50810	-34450	-0.0004446
124	2	124	125	1	beam	28460	7015000	61280	-50660	-0.0004454
123	2	123	124	1	beam	14300	6992000	66900	-61570	-0.0004439
122	2	122	123	1	beam	-22500	7025000	58290	-67040	-0.0004461
121	2	121	122	1	beam	-33630	7045000	46160	-59230	-0.0004473
120	2	120	121	1	beam	-59300	7098000	24820	-47280	-0.0004506
119	2	119	120	1	beam	-52120	7167000	5622	-25360	-0.000455
118	2	118	119	1	beam	-53940	7245000	-12520	-6185	-0.00046
117	2	117	118	1	beam	-54750	7320000	-31460	12480	-0.0004648
116	2	116	117	1	beam	-31570	7402000	-45360	31300	-0.00047
115	2	115	116	1	beam	-15530	7503000	-53150	45700	-0.0004764
114	2	114	115	1	beam	-8659	7592000	-57370	53000	-0.0004821
113	2	113	114	1	beam	-15890	7666000	-64840	56640	-0.0004867
112	2	112	113	1	beam	-21820	7711000	-76090	64910	-0.0004896
111	2	111	112	1	beam	-12550	7726000	-82300	76100	-0.0004906
110	2	110	111	1	beam	-2794	7708000	-83520	82230	-0.0004894
109	2	109	110	1	beam	7360	7687000	-81250	83830	-0.0004881
108	2	108	109	1	beam	29660	7651000	-71390	81760	-0.0004858
107	2	107	108	1	beam	38240	7620000	-55920	71680	-0.0004838
106	2	106	107	1	beam	57540	7584000	-35190	56320	-0.0004815
105	2	105	106	1	beam	52630	7546000	-15810	35140	-0.0004791
104	2	104	105	1	beam	58170	7517000	5446	16160	-0.0004773
103	2	103	104	1	beam	46930	7481000	23860	-6421	-0.000475
102	2	102	103	1	beam	48880	7464000	41530	-24250	-0.0004739
101	2	101	102	1	beam	25070	7453000	50180	-41310	-0.0004732
100	2	100	101	1	beam	21740	7464000	62630	-51430	-0.0004739
99	2	99	100	1	beam	14580	7479000	70210	-62130	-0.0004748
98	2	98	99	1	beam	1711	7495000	72120	-71130	-0.0004759
97	2	97	98	1	beam	-16270	7496000	63720	-73140	-0.000476
96	2	96	97	1	beam	-19470	7478000	53270	-64180	-0.0004748
95	2	95	96	1	beam	4661	7446000	55980	-53540	-0.0004728
94	2	94	95	1	beam	14250	7402000	60800	-55730	-0.00047
93	2	93	94	1	beam	8787	7397000	64120	-61000	-0.0004697
92	2	92	93	1	beam	-838.2	7378000	63760	-64080	-0.0004685
91	2	91	92	1	beam	-16230	7357000	58000	-64130	-0.0004671
90	2	90	91	1	beam	-40020	7364000	43610	-58640	-0.0004676
89	2	89	90	1	beam	-48190	7404000	25970	-44060	-0.0004701
88	2	88	89	1	beam	-49040	7437000	9563	-26790	-0.0004722
87	2	87	88	1	beam	-57530	7473000	-10400	-9807	-0.0004745
86	2	86	87	1	beam	-62180	7503000	-36940	9913	-0.0004764
85	2	85	86	1	beam	-67710	7550000	-68880	36730	-0.0004794
84	2	84	85	1	beam	-50080	7588000	-94350	68950	-0.0004818
83	2	83	84	1	beam	-31450	7609000	-103000	94480	-0.0004831
82	2	82	83	1	beam	-27880	7608000	-111700	104100	-0.0004831
81	2	81	82	1	heam	-11450	7595000	-117600	112200	-0.0004822

Elem	ID	Nod1	Nod2	Prop		F-shear	F-axial	Mom-1	Mom-2	strain
-	-	-	-	-	-	[N]	[N]	[N m]	[N m]	-
80	2	80	81	1	beam	1152	7586000	-117500	117800	-0.0004816
79	2	79	80	1	beam	10060	7566000	-114900	117700	-0.0004804
78	2	78	79	1	beam	38540	7523000	-95880	114800	-0.0004777
77	2	77	78	1	beam	59680	7456000	-69110	96230	-0.0004734
76	2	76	77	1	beam	63630	7391000	-45860	68540	-0.0004693
75	2	75	76	1	beam	70100	7340000	-20280	45260	-0.000466
74	2	74	75	1	beam	60580	7275000	4217	19240	-0.0004619
73	2	73	74	1	beam	67950	7214000	29030	-4497	-0.0004581
72	2	72	73	1	beam	48050	7154000	46230	-28880	-0.0004542
71	2	71	72	1	beam	49420	7113000	64700	-47020	-0.0004516
70	2	70	71	1	beam	21240	7064000	72610	-65010	-0.0004485
69	2	69	70	1	beam	2419	7043000	74170	-72970	-0.0004472
68	2	68	69	1	beam	-18630	7022000	64700	-74920	-0.0004458
67	2	67	68	1	beam	-42310	7009000	51520	-65360	-0.000445
66	2	66	67	1	beam	-50660	7019000	34660	-51240	-0.0004457
65	2	65	66	1	beam	-42000	7012000	12390	-35290	-0.0004452
64	1	64	1	1	beam	12930	7034000	41390	-34340	-0.0004466
63	1	63	64	1	beam	27010	7086000	50220	-41380	-0.0004499
62	1	62	63	1	beam	22530	7103000	57510	-50140	-0.000451
61	1	61	62	1	beam	2730	7143000	59180	-57680	-0.0004535
60	1	60	61	1	beam	-11160	7200000	53410	-58920	-0.0004572
59	1	59	60	1	beam	-32550	7238000	41240	-52880	-0.0004595
58	1	58	59	1	beam	-53110	7295000	21680	-40680	-0.0004632
57	1	57	58	1	beam	-57370	7346000	1171	-21890	-0.0004664
56	1	56	57	1	beam	-66010	7408000	-23000	-828.4	-0.0004703
55	1	55	56	1	beam	-63840	7466000	-47920	23200	-0.000474
54	1	54	55	1	beam	-67490	7526000	-71860	47800	-0.0004778
53	1	53	54	1	beam	-60270	7572000	-93370	71890	-0.0004808
52	1	52	53	1	beam	-54020	7627000	-117900	93310	-0.0004843
51	1	51	52	1	beam	-27500	7678000	-131500	118000	-0.0004875
50	1	50	51	1	beam	2773	7703000	-130900	131700	-0.0004891
49	1	49	50	1	beam	14000	7707000	-126800	130800	-0.0004893
48	1	48	49	1	beam	32000	7701000	-111600	126400	-0.0004889
47	1	47	48	1	beam	44940	7696000	-98580	110800	-0.0004886
46	1	46	47	1	beam	42220	7687000	-86920	98390	-0.000488
45	1	45	46	1	beam	60240	7646000	-56450	87000	-0.0004855
44	1	44	45	1	beam	72730	7584000	-21890	56430	-0.0004815
43	1	43	44	1	beam	62100	7520000	5028	21970	-0.0004774
42	1	42	43	1	beam	55690	7472000	24700	-5138	-0.0004744
41	1	41	42	1	beam	46170	7422000	40280	-24070	-0.0004712
40	1	40	41	1	beam	39090	7369000	55210	-40540	-0.0004679
39	1	39	40	1	beam	42460	7321000	70790	-54850	-0.0004648
38	1	38	39	1	beam	13970	7299000	76030	-70760	-0.0004634
37	1	37	38	1	beam	6144	7321000	77810	-75490	-0.0004648
36	1	36	37	1	beam	-604.7	7334000	77660	-77880	-0.0004657
35	1	35	36	1	beam	-8437	7345000	73230	-76240	-0.0004663
34	1	34	35	1	beam	1557	7387000	73460	-72650	-0.000469
33	1	33	34	1	beam	5483	7455000	76560	-73490	-0.0004733
32	1	32	33	1	beam	-4526	7540000	73600	-76220	-0.0004787

Elem	ID	Nod1	Nod2	Prop		F-shear	F-axial	Mom-1	Mom-2	strain
-	-	-	-	-	-	[N]	[N]	[N m]	[N m]	-
31	1	31	32	1	beam	-16430	7618000	64210	-73700	-0.0004837
30	1	30	31	1	beam	-16710	7689000	54450	-63700	-0.0004882
29	1	29	30	1	beam	-18020	7749000	44780	-54050	-0.000492
28	1	28	29	1	beam	-31480	7782000	33990	-45120	-0.0004941
27	1	27	28	1	beam	-45180	7835000	17660	-33630	-0.0004974
26	1	26	27	1	beam	-45650	7870000	987.6	-17950	-0.0004997
25	1	25	26	1	beam	-58790	7919000	-21260	-576.9	-0.0005028
24	1	24	25	1	beam	-53440	7950000	-41060	21430	-0.0005047
23	1	23	24	1	beam	-58100	7988000	-62170	40830	-0.0005072
22	1	22	23	1	beam	-48250	8027000	-81330	61440	-0.0005097
21	1	21	22	1	beam	-36510	8059000	-94030	81260	-0.0005117
20	1	20	21	1	beam	-17740	8088000	-99980	93780	-0.0005135
19	1	19	20	1	beam	-5226	8108000	-101900	99440	-0.0005148
18	1	18	19	1	beam	10930	8109000	-96300	101700	-0.0005149
17	1	17	18	1	beam	22040	8073000	-84640	95940	-0.0005125
16	1	16	17	1	beam	23610	8002000	-72040	84220	-0.000508
15	1	15	16	1	beam	24660	7904000	-59570	72020	-0.0005018
14	1	14	15	1	beam	33400	7788000	-43380	59400	-0.0004945
13	1	13	14	1	beam	40610	7666000	-25530	43610	-0.0004867
12	1	12	13	1	beam	53440	7568000	-6901	25430	-0.0004805
11	1	11	12	1	beam	57470	7469000	12720	7211	-0.0004742
10	1	10	11	1	beam	53610	7355000	32240	-11940	-0.000467
9	1	9	10	1	beam	66760	7254000	57220	-31950	-0.0004605
8	1	8	9	1	beam	42940	7168000	73750	-57060	-0.0004551
7	1	7	8	1	beam	37960	7106000	88470	-73720	-0.0004512
6	1	6	7	1	beam	-2505	7035000	87020	-87950	-0.0004467
5	1	5	6	1	beam	-11950	7029000	82910	-87370	-0.0004463
4	1	4	5	1	beam	-22820	6990000	69620	-81910	-0.0004438
3	1	3	4	1	beam	-38750	6972000	55810	-68610	-0.0004427
2	1	2	3	1	beam	-32350	6984000	44210	-54890	-0.0004434
1	1	1	2	1	beam	-16500	6987000	34330	-43290	-0.0004436