COMMITTENTE

PROGETTAZIONE:

DIREZIONE TECNICA

U.O. GALLERIE

PROGETTO DEFINITIVO

TRATTA CALTANISSETTA XIRBI – NUOVA ENNA (LOTTO 4A)

Galleria Trinacria

Relazione geotecnica e di calcolo della galleria naturale

SCALA:	
-	

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

RS3U 40 D 07 CL GN0300 001 C

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato/Data
	5140010115 505011T11/A	ROCKSOIL	Gennaio	S.Vagnozzi	Gennaio	A.Barreca	Gennaio	
A	EMISSIONE ESECUTIVA		2020		2020		2020	A.SCIOTTI
		ROCKSOIL	Febbraio	S.Vagnozzi	Febbraio	A.Barreca	Febbraio	Maggio 2020
В	EMISSIONE ESECUTIVA	QQvnawi	2020	W	2020	-A	2020	a a se di
		ROCKSOIL	Maggio	S.Vagnozzi	Maggio	A.Barreca	Maggio	RR S.
С	EMISSIONE ESECUTIVA	QQuran;	2020	W	2020	-A	2020	FER Aless Aless inge
				-				AL U.O. Geg
								五気道 歌

File: RS3U40D07CLGN0300001C.doc n. Elab.: 07_93

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA LOTTO

RS3U 40 D 07

CODIFICA CL DOCUMENTO
GN 03 0001

REV. F

С

FOGLIO 2 di 201

INDICE

1	PR	EMESSA	6
2	SC	OPO DEL DOCUMENTO	6
3	NO	DRMATIVE E SPECIFICHE TECNICHE DI RIFERIMENTO	7
4	DO	OCUMENTI DI RIFERIMENTO	7
	4.1	DOCUMENTI CORRELATI	8
5	AL	LEGATI	8
6	DO	OCUMENTI PRODOTTI A SUPPORTO	8
7	DE	SCRIZIONE DELL'OPERA	11
	7.1	La galleria Trinacria	11
	7.2	OPERE PER LA SICUREZZA IN GALLERIA	14
	7.3	OPERE TECNOLOGICHE	16
	7.4	INTERFERENZE LUNGO IL TRACCIATO	17
8	FA	SE CONOSCITIVA	18
	8.1	INQUADRAMENTO GEOLOGICO E GEOMORFOLOGICO	18
	8.1.	.1 Assetto geologico e geomorfologico lungo il tracciato	18
	8.2	Indagini geotecniche	18
	8.3	CARATTERIZZAZIONE GEOTECNICA	22
	8.4	FORMAZIONE TRV	23
	8.3	1.1. Caratteristiche fisiche	23
	8.3.	2.1.2. Caratteristiche meccaniche: resistenza non drenata	28
	8.3	1.1.3. Caratteristiche meccaniche da prove di laboratorio: resistenza drenata	34
	8.3	1.4. Caratteristiche meccaniche da prove di laboratorio TRV Lotto 4	36
	8.3.	2.1.5. Caratterizzazione TRV ad alte coperture	38

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 07
 CL
 GN 03 0001
 C
 3 di 201

8.3.1.6. Caratteristiche meccaniche: deformabil	ità	39
8.3.1.7. Caratteristiche di permeabilità		48
8.3.1.8. Parametri geotecnici		49
8.5 FORMAZIONE TRVA		50
8.3.1.9. Caratteristiche fisiche (trva argilloso)		50
8.3.1.10. Caratteristiche fisiche (trva sabbio	oso)	54
8.3.1.11. Caratteristiche meccaniche: resista	enza non drenata (facies argilloso)	60
8.3.1.12. Caratteristiche meccaniche da pro	ve di laboratorio: resistenza drenata	61
8.3.1.13. Caratteristiche meccaniche: deform	mabilità (facies argillosa)	63
8.3.1.14. Caratteristiche meccaniche: deform	mabilità (facies sabbiosa)	64
8.3.1.15. Caratteristiche di permeabilità (fa	cies argillosa)	65
8.3.1.16. Parametri geotecnici		66
8.6 VALORI CARATTERISTICI UTILIZZATI NELLE	ANALISI	67
9 FASE DI DIAGNOSI		68
9.1 CLASSI DI COMPORTAMENTO DEL FRONTE D	I SCAVO	68
9.2 DETERMINAZIONE DELLE CATEGORIE DI CO	MPORTAMENTO	69
9.2.1 Analisi con il metodo delle linee caratte	ristiche	69
9.2.2 Analisi della stabilità del fronte		72
9.3 DEFINIZIONE DELLE TRATTE A COMPORTAM	IENTO TENSIO-DEFORMATIVO OMOGENEO	76
10 FASE DI TERAPIA		77
10.1 SCELTA DEL METODO DI SCAVO		77
10.2 SCAVO MECCANIZZATO		77
10.3 CARATTERISTICHE DEI MATERIALI STRUTTU	JRALI	79
10.4 ANALISI E VERIFICA DEGLI INTERVENTI AL I	FRONTE E DEI RIVESTIMENTI DEFINITIVI	82
10.4.1 Criteri di verifica		83
Definizione dell'azione sismica di progetto		85

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 07
 CL
 GN 03 0001
 C
 4 di 201

	Ana	lisi sismiche pseudo-statiche in direzione trasversale	88
	Ana	lisi sismiche pseudo-statiche in direzione longitudinale	89
1	0.5 A	NALISI E VERIFICA DELLE SEZIONI TIPO	90
	10.5.1	Requisiti conci rivestimento	91
	10.5.2	Requisiti miscela bicomponente	92
	10.5.3	Verifiche statiche in fase transitoria – concio da 45 cm	93
	10.5.4	Verifiche statiche in fase transitoria – concio da 50 cm	113
	10.5.5	Verifiche statiche in fase definitiva : modelli di calcolo e criteri di verifica	132
	10.5.6	Requisiti Stati limite	135
1	0.6 V	ERIFICHE STATICHE: PRESENTAZIONE E RISULTATI	144
	10.6.1	Modelli assialsimmetrici – Criteri di verifica	146
		Modelli assialsimmetrici - Valutazione delle spinte massime di esercizio della TBM e dei fattori di rilascio Insionale	
	10.6.3	Modelli piani	151
	10.6.4	Verifica dei giunti - pressioni di contatto	153
	10.6.5	Verifica delle pressioni di contatto	153
	10.6.6	Verifica alle trazioni indotte	154
	10.6.7	Analisi n. 15 - Sezione di calcolo pk 25150	160
	10.6.8	Analisi n. 16 - Sezione di calcolo pk 23850	168
	10.6.9	Analisi n. 17 - Sezione di calcolo pk 19600	175
	10.6.10	Analisi n. 18 - Sezione di calcolo pk 20150	182
	10.6.11	Analisi n. 19 - Sezione di calcolo pk 20300	190
	Azioni	di mitigazione dei potenziali rischi	198
11	FASE	DI VERIFICA E MESSA A PUNTO DEL PROGETTO	199
1	1.1 C	RITERI GENERALI	199
1	1.2 N	IONITORAGGIO IN CORSO D'OPERA	199

1 PREMESSA

Nel presente documento sono analizzate le tematiche progettuali e gli aspetti tecnici relativi al progetto definitivo della salleria Trinacria facente parte dei lavori riguardanti il nuovo collegamento Palermo-Catania della Direttrice ferroviaria Messina-Palermo-Catania, tratta Lercara – Caltanissetta Xirbi, che si estende tra le stazioni di Lercara Diramazione (inclusa) e Caltanissetta Xirbi (inclusa), dal km 0+000 (coincidente con la pk 76+730 della linea storica Palermo Catania) al km 47+683 (coincidente con la pk 126+412 della linea storica Palermo Catania).

2 SCOPO DEL DOCUMENTO

Nel presente documento si affrontano le problematiche progettuali connesse alla realizzazione della galleria naturale"Trinacria", ubicata, per quanto riguarda la galleria di linea, fra le progressive km 13+427.00 (imbocco lato Ovest) e km 28+876.00 (imbocco lato Est), per una lunghezza comprensiva delle opere di imbocco di circa 13.449km.

Per la descrizione delle opere di imbocco e dei tratti di galleria artificiale si rimanda alla "Relazione geotecnica e di calcolo delle opere di imbocco" (0).

La progettazione delle opere in sotterraneo, condotta secondo il metodo ADECO-RS (0), si è articolata nelle seguenti fasi:

- 1. <u>Fase conoscitiva</u>: è finalizzata allo studio e all'analisi del contesto geologico e geotecnico in cui sarà realizzata la galleria; i risultati dello studio geologico sono descritti nella specifica "Relazione geologica, geomorfologica ed idrogeologica" (Rif. [12]) a cui si rimanda per l'illustrazione del modello geologico; lo studio geotecnico con la definizione del modello geotecnico di sottosuolo e dei parametri di progetto è illustrata nel Capitolo 8.
- 2. <u>Fase di diagnosi</u>: si esegue la valutazione della risposta deformativa dell'ammasso allo scavo in assenza di interventi di stabilizzazione per la determinazione delle categorie di comportamento (Cap. 0).
- 3. <u>Fase di terapia</u>: sulla base dei risultati delle precedenti fasi, si individuano le modalità di scavo e gli interventi di stabilizzazione idonei (sezioni tipo) per realizzare l'opera in condizioni di sicurezza (Cap.0). Le soluzioni progettuali sono state analizzate per verificarne l'adeguatezza: nel capitolo 0 sono illustrati metodi e risultati delle analisi condotte per la verifica della stabilità globale della cavità, per il dimensionamento/verifica degli interventi di stabilizzazione e dei rivestimenti, nelle diverse fasi costruttive e in condizioni di esercizio, e per la valutazione dei risentimenti attesi in superficie.
- 4. <u>Fase di verifica e messa a punto</u>: il progetto è completato dal piano di monitoraggio da predisporre ed attuare nella fase realizzativa (Cap 11). Nel piano di monitoraggio sono individuate le grandezze fisiche a cui riferirsi in corso d'opera per controllare la risposta deformativa dell'ammasso al procedere dello scavo, verificare la rispondenza con le previsioni progettuali e mettere a punto le soluzioni progettuali nell'ambito delle variabilità previste in progetto.

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 07
 CL
 GN 03 0001
 C
 7 di 201

3 NORMATIVE E SPECIFICHE TECNICHE DI RIFERIMENTO

- Rif. [1] Decreto Ministero delle Infrastrutture e Trasporti 17/01/2018, "Aggiornamento delle Nuove norme Tecniche per le Costruzioni";
- Rif. [2] C.S.LL.PP., Circolare n°7 del 21/01/2019, "Istruzioni per l'applicazione dell'Aggiornamento delle Norme Tecniche per le Costruzioni" di cui al DM 14/01/2018".
- Rif. [3] Decreto Ministeriale 28/10/2005. "Sicurezza nelle gallerie ferroviarie";
- Rif. [4] Regolamento del 18/11/2014 della Commissione dell'Unione Europea 1303/2014 relativa alla Specifica Tecnica di Interoperabilità concernente "la sicurezza nelle gallerie ferroviarie" nel sistema ferroviario transeuropeo convenzionale e ad alta velocità;
- Rif. [5] Regolamento del 18/11/2014 della Commissione dell'Unione Europea 1300/2014 relativa ad una Specifica Tecnica di Interoperabilità concernente le "persone a mobilità ridotta" nel sistema ferroviario transeuropeo convenzionale e ad alta velocità;
- Rif. [6] Regolamento del 18/11/2014 della Commissione dell'Unione Europea 1299/2014 relativa ad una Specifica Tecnica di Interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario transeuropeo ad alta velocità.
- Rif. [7] RFI, doc RFI DTC SI SP IFS 001 C "Capitolato generale tecnico di appalto delle opere civili" (21/12/2018);
- Rif. [8] RFI, doc RFI DTC SI MA IFS 001 C "Manuale di Progettazione delle opere civili" (21/12/2018);
- Rif. [9] ITALFERR, Specifica Tecnica PPA.0002403 "Linee guida per la progettazione geotecnica delle gallerie naturali" (Dicembre 2015).

4 DOCUMENTI DI RIFERIMENTO

- Rif. [10] Rif. [10] Italferr, Progetto Preliminare/Progetto di fattibilità tecnico economica [Dicembre 2018];
- Rif. [11] Rif. [11] ITALFERR [RS3D00014RGMD0000001A], Dossier dati e requisti di base [Maggio 2018].

Nel presente documento si fa inoltre riferimento ai seguenti elaborati allegati al progetto:

- Rif. [12] Rif. [12] U.O. Geologia [RS3G30R69RHGE0005001B] "Relazione geologica, geomorfologica ed idrogeologica"
- Rif. [13] Rif. [13] U.O. Sicurezza, manutenzione e interoperabilità [inserire codifica] "Elaborati specialistici"
- Rif. [14] Rif. [14] U.O. Impiantistica industriale "Elaborati specialistici"
- Rif. [15] U.O. Gallerie, doc. RS3U40D07RHGN0000001B "Relazione tecnica delle opere in sotterraneo";
- Rif. [16] U.O. Gallerie, doc. RS3U40D07CLGA0000003A "Relazione geotecnica e di calcolo delle opere di imbocco";
- Rif. [17] U.O. Gallerie, doc RS3U40D07F5GN0300001B "Profilo geotecnico 1/2 RS3U40D07F5GN0300002B "Profilo geotecnico 2/2 Galleria Trinacria".

4.1 Documenti Correlati

- Rif. [18] Lunardi P. (2006). Progetto e Costruzione di Gallerie: Analisi delle deformazioni controllate nelle rocce e nei suoli ADECO-RS (Hoepli Ed.).
- Rif. [19] Bernaud D., Benamar I., Rousset G. (1994). La "nouvelle méthode implicite" pour le calcul des tunnel dans les milieux élastoplastiques et viscoplastiques Revue Française de Géotechnique, N° 68.
- Rif. [20] Bernaud D., Rousset G. (1992). La « nouvelle méthode implicite » pour l'étude du dimensionnement des tunnels Revue Française de Géotechnique, N° 60.
- Rif. [21] Tamez E. (1984) "Estabilidad de tuneles excavados en suelos" Mexican Engineering Academy.
- Rif. [22] Broms B.B., Bennermark H. (1967). Stability of a clay at a vertical opening. J.Soil Mech. Found. Div. ASCE

5 ALLEGATI

Il documento è corredato dai seguenti allegati:

- All. [1] "Analisi con il metodo delle linee caratteristiche";
- All. [2] "Analisi numeriche;

6 DOCUMENTI PRODOTTI A SUPPORTO

I contenuti della presente relazione sono illustrati negli elaborati grafici specialistici allegati al progetto:

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 07
 CL
 GN 03 0001
 C
 9 di 201

MARCH BURNAL				T						COD	FICA E	LAB	DRATO		\Box
MARCHATTERNIAL				ľ					Τ			Τ			П
MINISTERNAL	N°	Descrizione elaborato	scala		COM	/IES	SA	LOTT	FASE	ENTE			OPERA/DISCIPLINA	PROGR.	REV.
MINISTERNAL PROPRIES AND ALTERNAL PROPRIES A				ŀ		Γ.	Ι.	T	+	<u>Н.</u>		+			+
3. 1	~	FLARORATI GENERALI	*	-	1 2	3	4	5 *	5 7	8 9	10 1	1 1	2 13 14 15 16 17	18 19 2	21
3 3 1 1 1 2 1 1 1 1 1 1		Relazione tecnica delle opere in sotterraneo	-	_		-	-								
1 1 1 1 1 1 1 1 1 1	07_3	Computo metrico estimativo	-	I	R S	3	U	4 1	0 D	0 7	CI	E G	N 0 0 0 0	0 0 1	L A
20 - 20 1.0		Schema WBS	-	1	R S	3	U								A
Col. 1. Control products - Statement plan h. C. Copperints, some a connectment 10		Scavo tradizionale - Sezione tipo s.b. B1 - Carpenteria, scavo e consolidamenti		Ī											
Section Continue Properties Competents Competen	07_11	Scavo tradizionale - Sezione tipo s.b. C2 - Carpenteria, scavo e consolidamenti	1:50	1	R S		U	4 1	D D	0 7	ВЕ	В С	N 0 0 0 0	0 0 3	3 B
10 10 10 10 10 10 10 10	07_13	Scavo tradizionale - Sezione tipo s.b. C2p - Carpenteria, scavo e consolidamenti	1:50	I	R S		U	4 1	D D	0 7	ВЕ	В С	N 0 0 0 0	0 0 5	БВ
10 15 10	07_15	Scavo tradizionale - Sezione tipo d.b. C2ali - Carpenteria, scavo e consolidamenti	1:50				U	4 (0 D	0 7	ВЕ	В С	N 0 0 0 0	0 0 7	7 A
Description of the professors Comprehensive Comprehens						3			0 D	0 7	В	ΚС	N 0 0 0 0		
10 13 13 13 14 15		Rivestimento conci prefabbricati - Anello universale carpenteria e sviluppata tipo 2 (50cm)				3									
3		Rivestimento conci prefabbricati - Anello universale carpenteria e sviluppata tipo 3 (45cm)	Varie 1:10			3					В	z G	N 0 0 0 0		
3	07_ 25	Scavo tradizionale - Nicchie standard - Carpenteria, scavo e consolidamenti	1:50	I	R S		U	4 (0 D	0 7	ВВ	В С	N 0 0 0 0	0 1 1	L A
1972 20 20 20 20 20 20 20	07_27	Scavo tradizionale - Nicchie tecnologiche TLC - Carpenteria, scavo e consolidamenti	1:50		R S	3	U	4	0 D	0 7	ВЕ	В С	N 0 0 0 0	0 1 3	3 A
3 3 2 2 3 3 3 2 4 0 0 0 0 0 0 0 0 0	07_ 29	Scavo meccanizzato - Nicchie standard - Carpenteria, scavo e consolidamenti	1:50	I	R S	3	U	4 (0 D	0 7	ВВ	В С	N 0 0 0 0	0 1 5	A
0.7 35 Cellegement transverul cardial* Califertal fulles an scene meascastato*. Partial as section. Top. 2.0 1 50 R S 1 U 4 0 0 0 0 7 8 8 0 N 0 0 0 0 0 0 2 2 1 A 0.7 35 Cellegement transverul cardial* Califertal fulles an scene meascastato. Partial as section. Top. 2.0 1 50 R S 1 U 4 0 0 0 0 7 8 8 0 N 0 0 0 0 0 0 2 2 1 A 0.7 35 Cellegement transverul cardial* Califertal fulles an scene cardial fulles. The cardial full scene is cardi	07_31	Scavo meccanizzato - Nicchie tecnologiche TLC - Carpenteria, scavo e consolidamenti	1:50	1	R S	3	U	4 1	0 D	0 7	ВВ	В С	N 0 0 0 0	0 1 7	7 A
Companies for tenument and excelsion - Estimate tign 8.1 Companies, some compositionments 1.50	07_ 35	Collegamenti trasversali carrabili - Galleria di linea in scavo meccanizzato - Pianta e sezioni - Tav. 1 di 2	1:50	I	R S	3	U	4 (0 D	0 7	ВВ	В С	N 0 0 0 0	0 2 1	L A
Collegement transversal de sotion - Serione topic C-Troppretits, sance a consideration The 18 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 5	07_37	Collegamento trasversale di esodo - Sezione tipo B1 - Carpenteria, scavo e consolidamenti	1:50	1	R S	3	U	4 1	0 D	0 7	ВВ	В С	N 0 0 0 0	0 2 3	3 A
Collegement	07_39		1:50				U	4	0 D	0 7	ВВ	В С	N 0 0 0 0	0 2 5	5 A
ALLERA MONTS TISTED 9. 46 Palazione protectica e di citatido 1. 8 5 3 U 4 0 D 0 7 C L G N 0 1 D 0 0 1 A 9. 40 Palazione protectica e di citatido delle opere di infocco 1. 8 5 3 U 4 D D 0 7 C L G N 0 D 0 0 0 1 A 9. 50 Palazione protectica e di citatido delle opere di infocco 1. 8 5 3 U 4 D D 0 7 C L G N D D 0 D		Collegamenti trasversali carrabili - Sezione tipo B2 - Carpenteria, scavo e consolidamenti	1:50				U	4 1	D D	0 7	ВВ	В С	N 0 0 0 0	0 2 7	
Materians geoteconic ed incidoro B 5 3 U 4 0 0 0 7 C 1 G N 0 1 0 0 0 0 0 0 0 1 N	07_ 42		1:50	_	R S	3	U	4	D D	0 7	ВЕ	В	i N 0 0 0 0	0 2 8	. A
Profit Confession 15000/500 R S 3 U R 0 D 0 7 R S 0 0 0 0 0 0 0 1 8		Relazione geotecnica e di calcolo	-	Ŧ											
07 69 Fase provisional - Paleminetrial epositio longitudinale 1.200 R S 3 0 4 0 0 0 7 1 9 G 1 0 1 0 0 0 1 1 A O 5 5 5 S S S S S S S			1:5000/500												
10 15 15 15 15 15 15 15		Fase provvisoria - Planimetria e profilo longitudinale													
0.7 5.5 Statemacione definitive - Sectione Caratteristiche 1.200 R S 3 U 4 0 0 0 7 W 9 6 A 0 0 0 0 1 A 0 0 0 7 5 C A 0 0 0 0 1 A 0 0 0 7 5 C A 0 0 0 0 1 A 0 0 0 0 0 1 A 0 0 0 7 5 C 0 0 0 0 0 0 1 A 0 0 0 0 0 0 0 0 0	07_51	Fase provvisoria - Sviluppata delle opere di imbocco e particolari costruttivi	varie	T	R S	3	U	4 1	0 D	0 7	В 2	z G	i I 0 1 0 0	0 0 1	L A
07 55 Gallenia artificiale policentria - Carpenteria 1.50 R S 3 U 4 0 D 0 7 8 B G A 0 3 0 0 0 0 2 A	07_53	Sistemazione definitiva - Sezioni caratteristiche	1:200	1	R S	3	U	4 1	0 D	0 7	W S	9 6	A 0 3 0 0	0 0 1	L B
30 10 10 10 10 10 10 10	07_55	Galleria artificiale policentrica - Carpenteria	1:50	1	R S	3	U	4 1	0 D	0 7	ВВ	В С	i A 0 3 0 0	0 0 1	L A
27 58 Fase provisional - Planimetria e profile longitudinale 1.200 R S 3 U 4 0 0 0 7 W 9 6 1 0 2 0 0 0 1 A O 7 S Pase provisional - Sectional carateristiche 1.200 R S 3 U 4 0 0 0 7 W 9 6 1 0 2 0 0 0 0 1 A O O 7 S Pase provisional - Sectional carateristiche 1.200 R S 3 U 4 0 0 0 7 W 9 6 0 0 0 0 0 1 A O O 0 1 A O O 0 1 A O O O 0 1 A O O O O O O 0 1 A O O O O O O O O O		Muri in c.a Carpenteria		1	R S										
OFFICE Pase provisions - Shiluppata delle opere di imbocco e particolari costruttivi Varie R S 3 U 4 0 0 0 7 8 Z G 1 0 2 0 0 0 1 8 1 0 1 0 1 1 0 1 1 0 1 1		Fase provvisoria - Planimetria e profilo longitudinale													
100 100	07_60	Fase provvisoria - Sviluppata delle opere di imbocco e particolari costruttivi	varie	1	R S	3	U	4 (0 D	0 7	В	z G	1 0 2 0 0	0 0 1	L A
190 Color	07_ 62	Sistemazione definitiva - Sezioni caratteristiche	1:200			3	U	4 1	D D	0 7	w	9 0	A 0 4 0 0	0 0 1	
150 Muri in Ca. Carpenteria 150 R S 3 U 4 0 D 0 7 R B G A 0 0 0 0 3 A	07_64			1	R S	3	U	4 (0 D	0 7	ВВ	В С	A 0 4 0 0	0 0 1	L A
1,00	07_66	Muri in c.a Carpenteria	1:50	1	R S		U	4 (D D	0 7	ВЕ	В С	A 0 4 0 0	0 0 3	3 A
Original Intervented istabilizazione-planimetria e serioni in fase definitiva 1.200 R S 3 U a 0 D 0 7 P 9 6 A 0 0 0 0 0 A A	07_68	Intervento di stabilizzazione - Planimetria e sezioni in fase intermedia	1:200		R S		U	4 (0 D	0 7	L s	9 6	A 0 4 0 0	0 0 3	3 A
O7 71 Relazione geotecnica ed icalcolo	07_69	Intervento di stabilizzazione - Planimetria e sezioni in fase definitiva	1:200	ſ	R S		U	4 (D D	0 7	P S	9 6	i A 0 4 0 0	0 0 4	
30 15 15 15 15 15 15 15 1		Relazione geotecnica e di calcolo	-												
1,000		Profilo Geotecnico	1:5000/500	0		3	U								В
107 Fase provisionsSviluppata delle lopere di imbocco e particolari costruttivi varie R S 3 U 4 0 D 0 7 R 2 G 1 0 3 0 0 0 0 1 A A C T A C		Fase provvisoria - Planimetria e profilo longitudinale													
07 78 Sistemazione definitiva - Sezioni caratteristiche 1.200 R S 3 U 4 0 D 0 7 W 9 6 A 0 5 0 0 0 1 8	07_76	Fase provvisoria - Sviluppata delle opere di imbocco e particolari costruttivi	varie	1	R S		U	4 (D D	0 7	В 2	z G	1 0 3 0 0	0 0 1	L A
O7 80 Galleria artificiale policentrica - Carpenteria - Tav. 2 di 2 1590 R S 3 U a 0 D 0 7 R B G A 0 S 0 0 0 0 1 A	07_78	Sistemazione definitiva - Sezioni caratteristiche	1:200	Ţ	R S	3	U	4 1	0 D	0 7	w s	9 G	A 0 5 0 0	0 0 1	L B
07 82 Portale di limbocco - Carpenteria 1:50 R S 3 U 4 0 D 0 7 R 8 G A 0 S 0 0 0 0 3 A	07_80	Galleria artificiale policentrica - Carpenteria - Tav. 1 di 2	1:50	1	R S	3	U	4 (0 D	0 7	ВВ	В С	A 0 5 0 0	0 0 1	L A
Column C	07_82	Portale di imbocco - Carpenteria	1:50	I	R S	3	U	4 (D 0	0 7	B 8	В С	i A 0 5 0 0	0 0 3	3 A
07 85 Fase provisionalselion caratteristiche 1200 R S 3 U 4 0 D 0 7 W 9 G 1 0 4 0 0 0 0 1 A 07 86 Fase provisionalseliulpata delle opere di imbocco e particolari costruttivi Varie R S 3 U 4 0 D 0 7 W 9 G 1 0 4 0 0 0 0 1 A 07 87 Ststemazione definitivalPlanimetriae profilo longitudinale 1200 R S 3 U 4 0 D 0 7 V 9 G A 0 6 0 0 0 1 B 07 89 Dima- Carpenteria 1500 R S 3 U 4 0 D 0 7 B B G A 0 6 0 0 0 1 A 07 90 Galleria artificiale policentrica - Carpenteria - Tav. 2 di 2 1590 R S 3 U 4 0 D 0 7 B B G A 0 6 0 0 0 0 1 A 07 92 Portale di imbocco - Carpenteria - Tav. 2 di 2 1590 R S 3 U 4 0 D 0 7 C V B B G A 0 0 0 0 0 3 A 08 Tava -		GALLERIA SALSO - IMBOCCO LATO CATANIA		_											
07 87 Sternazione definitiva - Planimetria e profilio longitudinale 1200 R S 3 U A 0 D 0 7 L 9 G A 0 6 0 0 0 0 1 8 07 88 Sternazione definitiva - Serioni carrieristiche 1200 R S 3 U A 0 D 0 7 L 9 G A 0 6 0 0 0 0 1 8 07 89 Oima - Carpenteria 1:50 R S 3 U A 0 D 0 7 B B G A 0 6 0 0 0 1 A 07 90 Galleria artificiale policentrica - Carpenteria - Tav. 2 di 2 1:50 R S 3 U A 0 D 0 7 B B G A 0 6 0 0 0 0 1 A 07 91 Galleria artificiale policentrica - Carpenteria - Tav. 2 di 2 1:50 R S 3 U A 0 D 0 7 B B G A 0 6 0 0 0 0 2 A 08 Oima - Carpenteria - Tav. 2 di 2 1:50 R S 3 U A 0 D 0 7 C L G N 0 0 0 0 0 0 3 A 08 Oima - Carpenteria - Tav. 2 di 2 1:50 R S 3 U A 0 D 0 7 C L G N 0 3 0 0 0 0 3 A 08 Oima - Carpenteria - Tav. 2 di 2 1:50 R S 3 U A 0 D 0 7 C L G N 0 0 0 0 0 3 A 08 Oima - Carpenteria - Tav. 2 di 2 1:50 R S 3 U A 0 D 0 7 C L G N 0 0 0 0 0 0 3 A 09 Oima - Carpenteria - Tav. 2 di 2 1:50 R S 3 U A 0 D 0 7 C L G N 0 0 0 0 0 0 3 A 09 Oima - Carpenteria - Tav. 2 di 2 1:50 R S 3 U A 0 D 0 7 C L G N 0 0 0 0 0 0 3 A 09 Oima - Carpenteria - Tav. 2 di 2 1:50 R S 3 U A 0 D 0 7 C L G N 0 0 0 0 0 0 1 A 09 Oima - Carpenteria - Tav. 2 di 2 1:50 R 0 R 0 R 0 R 0 R 0 0	07 85	Fase provvisoria - Sezioni caratteristiche	1:200	T	R S	3	U	4 (D 0	0 7	W S	9 6	1 0 4 0 0	0 0 1	L A
07 89 0ma - carpenteria 150 R S 3 U 4 0 0 0 7 8 B 6 1 0 4 0 0 0 0 1 A 07 90 Galleria artificiale policentrica - Carpenteria - Tav. 1 di 2 150 R S 3 U 4 0 0 0 7 8 B G A 0 6 0 0 0 1 A 07 91 Galleria artificiale policentrica - Carpenteria - Tav. 2 di 2 150 R S 3 U 4 0 0 0 7 8 B G A 0 6 0 0 0 0 1 A 08 150	07_87	Sistemazione definitiva - Planimetria e profilo longitudinale	1:200	1	R S	3	U	4 1	D 0	0 7	L 9	9 6	i A 0 6 0 0	0 0 1	L B
07 90 Galleria artificiale policentrica - Carpenteria - Tav. 2 di 2 1:50 R S 3 U 4 0 D 0 7 B B G A 0 6 0 0 0 0 1 A		Dima - carpenteria			R S	3	U	4 (D	0 7	BB	в С	i I 0 4 0 0	0 0 1	L A
07 92 Portale di limbocco - Carpentería 1:50 R S 3 U 4 0 D 0 7 B B G A 0 0 0 0 3 A GALERIA TRIMACRIA		Galleria artificiale policentrica - Carpenteria - Tav. 1 di 2		Ţ	R S	з	J	4 1	D 0	0 7	B 8	В С	A 0 6 0 0 A 0 6 0 0	0 0 1	L A
07. 93 Relazione geotecnicae di calcolo - R S 3 U 4 0 D 0 7 C L G N 0 3 0 0 0 0 1 A		Portale di imbocco - Carpenteria				3	U	4	D D	0 7	ВЕ	В С	A 0 6 0 0	0 0 3	
07 95 Profilo Geotecnico - Tav. 1 di 2 1:5000/500 R S S 3 U 4 0 D 0 7 F 5 G N 0 3 0 0 0 0 1 B		Relazione geotecnica e di calcolo	-	Ŧ	R S	3	U	4	D D	0 7	C	L G	N 0 3 0 0	0 0 1	A
			1:5000/500	0	R S	3	U	4 1	D D	0 7	F !	5 6	N 0 3 0 0	0 0 1	L B

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 07
 CL
 GN 03 0001
 C
 10 di 201

U/ 30	FTOTIIO GEOLEGIICO - Tav. 2 GI 2	1.5000/500	ı n		1 2	ΙU	1 **	ıυ	IU	IU	1 / 1	F 1		UI	14	U		U	UI	U	UIL	
	GALLERIA TRINACRIA - IMBOCCO LATO PALERMO																					
07_ 100	Fase provvisoria - Planimetria e profilo longitudinale	1:200	R	S	3	U	4	0	D	0	7	L	9	G	1	0	5	0	0	0	0 1	A
07_ 101	Fase provvisoria - Sezioni caratteristiche	1:200	R	S	3	U	4	0	D	0	7	W	9	G	Τ	0	5	0	0	0	0 1	L A
07_ 102	Fase provvisoria - Sviluppata delle opere di imbocco e particolari costruttivi	varie	R	S	3	U	4	0	D	0	7	В	Z	G	_	0	5	0	0	0	0 1	L A
07_ 103	Sistemazione definitiva - Planimetria e profilo longitudinale	1:200	R	S	3	U	4	0	D	0	7	L	9	G	Α	0	7	0	0	0	0 1	В
07_ 104	Sistemazione definitiva - Sezioni caratteristiche	1:200	R	S	3	U	4	0	D	0	7		9	G	Α	0	7	0	0	0	0 1	В
07_ 105	Dima - carpenteria	1:50	R	S	3	U	4	0	D	0	7	В	В	G	1	0	5	0	0	0	0 1	A
07_ 106	Galleria artificiale policentrica - Carpenteria	1:50	R	S	3	U	4	0	D	0	7	В		G	Α	0	7	0	0	0	0 1	A
07_ 107	Portale di imbocco - Carpenteria	1:50	R	S	3	U	4	0	D	0	7	В	В	G	Α	0	7	0	0	0	0 2	2 A
	GALLERIA TRINACRIA - IMBOCCO LATO CATANIA		_		_			_			_											
07_ 108	Fase provvisoria - Planimetria e profilo longitudinale	1:200	R	S	3	U	4	0		0	7	L		G	1	0	6	0	0		0 1	L A
07_ 109	Fase provvisoria - Sezioni caratteristiche	1:200	R	S	3	U	4	0		0	7			G	1	0		0	0		0 1	L A
07_ 110	Fase provvisoria - Sviluppata delle opere di imbocco e particolari costruttivi	varie	R	S	3	U	4	0		0	7			G	1	0	6	0	0	0	0 1	A
07_ 111	Sistemazione definitiva - Planimetria e profilo longitudinale	1:200	R	S	3	U	4	0		0	7			G	Α	0	8	0	0	0	0 1	В
07_112	Sistemazione definitiva - Sezioni caratteristiche	1:200	R	S	3	U	4	0		0	7			G	Α	0	8	0	0		0 1	В
07_113	Dima e concio d'attacco - Scavo e consolidamenti	1:50	R	S	3	U	4	0			7			G	1	0	6	0	0		0 1	A
07_114	Galleria artificiale scatolare - Carpenteria	1:50	R	S	3	U	4	0			7			G	Α	0	8	0	0		0 1	
07_ 115	Muri in c.a Carpenteria	1:50	R	S	3	U	4	0	D	0	7	В	В	G	Α	0	8	0	0	0	0 3	B A
	USCITE/ACCESSI LATERALI - ELABORATI GENERALI			_	_					_	_	_	_	_	_	_	_		_	_	_	
07_ 117	Uscita/accesso laterale pedonale - Sezione tipo B1 - Carpenteria, scavo e consolidamenti	1:50	R	S	3	U	4	0		0	7			G	N	0		0	0	_	3 5	_
07_ 118	Uscita/accesso laterale pedonale - Sezione tipo B2 - Carpenteria, scavo e consolidamenti	1:50	R	S	3	U	4	0		0	7			G	N	0	0	0	0		3 6	
07_ 119	Uscita/accesso laterale pedonale - Sezione tipo C2 - Carpenteria, scavo e consolidamenti	1:50	R	S	3	U	4	0			7			G		0		0	0		3 7	
07_ 120	Uscita/accesso laterale pedonale - Sezione tipo C2v - Carpenteria, scavo e consolidamenti	1:50	R	S	3	U	4	0			7			G	N	0		0	0		3 8	
07_ 121	Uscita/accesso laterale pedonale - Sezione tipo C2p - Carpenteria, scavo e consolidamenti	1:50	R	S	3	U	4	0	D	0	7	В	В	G	N	0	0	0	0	0	3 9) B
	USCITA/ACCESSO LATERALE PEDONALE F1 - GALLERIA MONTE STRETTO																					
									_					-				-	-			
07_ 123	Profilo geotecnico	1:5000/500	R	S	3	U	4	0	_	0	7	F		G	N	0	4	0	0	-	0 1	_
07_ 124	Relazione geotecnica e di calcolo	-	R	S	3	U	4	0	D	0	7		L	G	N	0	4	0	0	0	0 1	Α
07_ 124 07_ 125	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco	-	R R	S	3	U	4	0	D D	0	7	С	L L	G G	N A	0	4	0	0	0	0 1 0 4	A
07_ 124 07_ 125 07_ 126	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2	- varie	R R	S S	3 3	U	4 4	0	D D	0	7	C B	L L Z	G G	N A N	0 0 0	4 0 4	0	0	0	0 1 0 4 0 1	A
07_ 124 07_ 125	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2	-	R R	S	3	U	4	0	D D	0	7	C B	L L Z	G G	N A	0	4	0	0	0	0 1 0 4	A
07_ 124 07_ 125 07_ 126 07_ 127	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCITA/ACCESSO LATERALE PEDONALE F1 - GALLERIA MONTE STRETTO - IMBOCCO	varie	R R R	S S S	3 3 3	U U U	4 4 4	0 0 0	D D D	0 0 0	7 7 7	C B	L L Z	G G G	N A N	0 0 0	4 0 4 4	0 0 0	0 0 0	0 0 0	0 1 0 4 0 1	A A
07 124 07 125 07 126 07 127 07 128	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCITIA/ACCESSO LATERALE PEDONALE F1 - GALLERIA MONTE STRETTO - IMBOCCO Fase provvisoria - Planimetria e profilo longitudinale	varie varie	R R R	S S S	3 3 3 3	UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	4 4 4	0 0 0	D D D	0 0 0	7 7 7	C B B	L L Z Z	G G G	N A N	0 0 0	4 0 4 4	0 0 0	0 0 0	0 0 0	0 1 0 4 0 1 0 2	A A A
07 124 07 125 07 126 07 127 07 128 07 129	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCITI/ACCESSO LATERALE PEDONALE F1 - GALLERIA MONTE STRETTO - IMBOCCO Fase provisioria - Planimetria e profilo longitudinale Fase provisioria - Sezioni caratteristiche	- varie varie 1:200	R R R R	S S S S	3 3 3 3 3	UUUUUU	4 4 4 4	0 0 0	D D D	0 0 0	7 7 7 7	B B L W	L Z Z 9	G G G	N A N	0 0 0 0	4 0 4 4 7 7	0 0 0	0 0 0	0 0 0	0 1 0 4 0 1 0 2	A A A A A A A A A A A A A A A A A A A
07 124 07 125 07 126 07 127 07 128 07 129 07 130	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCITA/ACCESSO LATERALE PEDDONALE FI - CALLERIA MONTE STRETTO - IMBOCCO Fase provvisoria - Planimetria e profilo longitudinale Fase provvisoria - Sezioni caratteristiche Fase provvisoria - Sezioni caratteristiche Fase provisoria - Sviluppata delle opere di imbocco e particolari costruttivi	- varie varie 1:200 1:200 varie	R R R R	S S S S	3 3 3 3 3	U U U U	4 4 4 4	0 0 0	D D D D D	0 0 0	7 7 7 7 7	B B L W B	L Z Z Z 9 9	G G G G	N A N N	0 0 0 0 0	4 0 4 4 7 7 7	0 0 0	0 0 0 0 0	0 0 0 0	0 1 0 4 0 1 0 2 0 1 0 1	A A A A A A A A A A A A A A A A A A A
07 124 07 125 07 126 07 127 07 128 07 129 07 130 07 131	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCITA/ACCESSO LATERALE PEDONALE F.I - GALLERIA MONTE STRETTO - IMBOCCO Fase provvisoria - Planimetria e profilo longitudinale Fase provvisoria - Sezioni caratteristiche Fase provvisoria - Sviluppata delle opere di imbocco e particolari costruttivi Sistemazione definitiva - Planimetria e profilo longitudinale	- varie varie 1:200 1:200 varie 1:200	R R R R R	S S S S S	3 3 3 3 3 3	U U U U	4 4 4 4	0 0 0 0 0 0	D D D D D D D	0 0 0 0 0 0 0 0	7 7 7 7 7 7	B B L W B	L Z Z Z 9 9 2 9 9 9	G G G G G	N A N N I I A A	0 0 0 0 0 0 0	7 7 7 8	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0	0 1 0 4 0 1 0 2 0 1 0 1 0 1	A A A A A A A A A A A A A A A A A A A
07 124 07 125 07 126 07 127 07 127 07 128 07 129 07 130 07 131	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco linnesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 linnesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 linnesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 SUSTIA/ACCESSO LATERALE PEDDONALE FI - CALLERIA MONTE STRETTO - IMBOCCO Fase provisoria - Planimetria e profilo longitudinale Fase provisoria - Seizoni caratteristiche Fase provisoria - Seizoni caratteristiche Sistemazione definitiva - Planimetria e profilo longitudinale Sistemazione definitiva - Seizoni caratteristiche	- varie varie 1:200 1:200 varie 1:200 1:200	R R R R R	\$ \$ \$ \$ \$ \$ \$	3 3 3 3 3 3 3 3	U U U U U U	4 4 4 4 4 4 4	0 0 0 0 0 0	D D D D D D D D	0 0 0 0 0	7 7 7 7 7 7 7	B B W B L W	L	G G G G G G	N A N N	0 0 0 0 0 0 0 0	7 7 7 8 8	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 1 0 4 0 1 0 2 0 1 0 1 0 1 0 1	A A A A A A A A A A A A A A A A A A A
07 124 07 125 07 126 07 127 07 128 07 129 07 130 07 131 07 132 07 133	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCITA/ACCESSO LATERALE PEDONALE F1 - GALLERIA MONTE STRETTO - IMBOCCO Fase provvisoria - Planimetria e profilo longitudinale Fase provvisoria - Sezioni caratteristiche Fase provvisoria - Sviuppata delle opere di imbocco e particolari costruttivi Sistemazione definitiva - Pasioni caratteristiche Dima e condo d'attacco - Scavo e consolidamenti		R R R R R R	\$ \$ \$ \$ \$ \$ \$	3 3 3 3 3 3 3 3 3	U U U U U U U	4 4 4 4 4 4 4	0 0 0 0 0 0 0 0 0	D D D D D D D D	0 0 0 0 0 0 0	7 7 7 7 7 7 7 7	B B L W B	L Z Z 9 9 9 2 9 9 B	G G G G G G G G G	N A N N I I A A A I	0 0 0 0 0 0 0 0	7 7 7 8 8 7	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 1 0 4 0 1 0 2 0 1 0 1 0 1 0 1	A A A A A A A A A A A A A A A A A A A
07 124 07 125 07 126 07 127 07 128 07 128 07 129 07 130 07 131 07 132 07 133 07 134	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCITA/ACCESSO LATERALE PEDDONALE FI - AGLALERIA MONTE STRETTO - IMBOCCO Fase provisoria - Planimetria e profilo longitudinale Fase provisoria - Sezioni caratteristiche Fase provisoria - Sezioni caratteristiche Fase provisoria - Sezioni caratteristiche Sistemazione definitiva - Planimetria e profilo longitudinale Sistemazione definitiva - Sezioni caratteristiche Dima e condo d'attacco - Scavo e consolidamenti Galleria artificia policentrica - Carpenteria		R R R R R R R	S S S S S S S	3 3 3 3 3 3 3 3 3	U U U U U U U U U U U U U	4 4 4 4 4 4 4 4	0 0 0 0 0 0 0 0 0	D D D D D D D D D D D	0 0 0 0 0 0 0 0	7 7 7 7 7 7 7 7	B B W B B B	L Z Z Z 9 9 9 9 B B B	G G G G G G G G G G G G G G G G G G G	N A N N I I A A A I A	0 0 0 0 0 0 0 0 0	7 7 7 7 8 8 7	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 1 0 4 0 1 0 2 0 1 0 1 0 1 0 1 0 1 0 1	A A A A A A A A A A A A A A A A A A A
07 124 07 125 07 126 07 127 07 128 07 129 07 130 07 131 07 132 07 133	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCITA/ACCESSO LATERALE PEDDONALE FI - CALLERIA MONTE STRETTO - IMBOCCO Fase provisioria - Planimetria e profilo longitudinale Fase provisioria - Sezioni caratteristide Fase provisioria - Sviluppata delle opere di imbocco e particolari costruttivi Sistemazione definitiva - Planimetria e profilo longitudinale Sistemazione definitiva - Sezioni caratteristiche Dima e concio d'attacco - Scavo e consolidamenti Galleria artificiale policentrica - Carpenteria Portale di imbocco - Carpenteria		R R R R R R	\$ \$ \$ \$ \$ \$ \$	3 3 3 3 3 3 3 3 3	U U U U U U U	4 4 4 4 4 4 4	0 0 0 0 0 0 0 0 0	D D D D D D D D D D D	0 0 0 0 0 0 0 0	7 7 7 7 7 7 7 7	B B W B B B	L Z Z Z 9 9 9 9 B B B	G G G G G G G G G G	N A N N I I A A A I	0 0 0 0 0 0 0 0	7 7 7 8 8 7	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 1 0 4 0 1 0 2 0 1 0 1 0 1 0 1	A A A A A A A A A A A A A A A A A A A
07 124 07 125 07 126 07 127 07 128 07 129 07 130 07 131 07 132 07 133 07 134 07 135	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCITA/ACCESSO LATERALE PEDONALE F1 - GALLERIA MONTE STRETTO - IMBOCCO Fase provvisoria - Planimetria e profilo longitudinale Fase provvisoria - Sezioni caratteristiche Fase provvisoria - Sviluppata delle opere di imbocco e particolari costruttivi Sistemazione definitiva - Planimetria e profilo longitudinale Sistemazione definitiva - Pianimetria e profilo longitudinale Galleria artificiale policentrica - Carpenteria Portale di imbocco - Carpenteria Interretare		R R R R R R R R R	S S S S S S S S S S S S S S S S S S S	3 3 3 3 3 3 3 3 3 3	U U U U U U U U U U U U U U U U U U U	4 4 4 4 4 4 4 4	0 0 0 0 0 0 0 0 0 0	D D D D D D D D D	0 0 0 0 0 0 0 0 0 0 0	7 7 7 7 7 7 7 7 7 7	C B B B W B L W B B B	9 9 9 9 B B B B	G G G G G G G G G G G G G G G G G G G	N A N N N A A A A A A A A A A A A A A A	0 0 0 0 0 0 0 0 0	4 0 4 4 7 7 7 7 8 8 7 8 8	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 1 0 4 0 1 0 2 0 1 0 1 0 1 0 1 0 1 0 1	A A A A A A A A A A A A A A A A A A A
07 124 07 125 07 126 07 127 07 128 07 128 07 129 07 130 07 131 07 132 07 133 07 134	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCITA/ACCESSO LATERALE PEDDONALE F1 - CALLERIA MONTE STRETTO - IMBOCCO Fase provvisoria - Planimetria e profilo longitudinale Fase provvisoria - Sezioni caratteristiche Fase provvisoria - Suliuppata delle opere di imbocco e particolari costruttivi Sistemazione definitiva - Planimetria e profilo longitudinale Sistemazione definitiva - Sezioni caratteristiche Dima e condo d'attacco - Savo e consolidamenti Galleria artificia policentrica - Carpenteria Portale di imbocco - Carpenteria INTERFERNZE Relazione sulla valutazione delle subsidenze e verifica degli effetti indotti sulle interferenze in		R R R R R R R	S S S S S S S	3 3 3 3 3 3 3 3 3	U U U U U U U U U U U U U	4 4 4 4 4 4 4 4	0 0 0 0 0 0 0 0 0	D D D D D D D D D D D D D D D D D D D	0 0 0 0 0 0 0 0 0 0 0	7 7 7 7 7 7 7 7	C B B C W B L W B B B	9 9 9 9 B B B B	G G G G G G G G G G G G G G G G G G G	N A N N I I A A A I A	0 0 0 0 0 0 0 0 0	4 0 4 4 7 7 7 7 8 8 7 8 8	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 1 0 4 0 1 0 2 0 1 0 1 0 1 0 1 0 1 0 1	A A A A A A A A A A A A A A A A A A A
07 124 07 125 07 126 07 127 07 128 07 129 07 130 07 131 07 132 07 133 07 134 07 135	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCITA/ACCESSO LATERALE PEDONALE F1 - GALLERIA MONTE STRETTO - IMBOCCO Fase provvisoria - Planimetria e profilo longitudinale Fase provvisoria - Sezioni caratteristiche Fase provvisoria - Sviluppata delle opere di imbocco e particolari costruttivi Sistemazione definitiva - Planimetria e profilo longitudinale Sistemazione definitiva - Pianimetria e profilo longitudinale Galleria artificiale policentrica - Carpenteria Portale di imbocco - Carpenteria Interretare		R R R R R R R R R	S S S S S S S S S S S S S S S S S S S	3 3 3 3 3 3 3 3 3 3	U U U U U U U U U U U U U U U U U U U	4 4 4 4 4 4 4 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D D D D D D D D D D D D D D D D D D D	0 0 0 0 0 0 0 0 0 0	7 7 7 7 7 7 7 7 7 7	C B B B C C	9 9 9 9 B B B B L	G G G G G G G G G G G G G G G G G G G	N A N N I I A A A A A N N	0 0 0 0 0 0 0 0 0 0 0	7 7 7 7 8 8 7 8 8	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 1 0 4 0 1 0 2 0 1 0 1 0 1 0 1 0 1 0 1	A A A A A A A A A A A A A A A A A A A
07 124 07 125 07 126 07 127 07 128 07 129 07 130 07 131 07 132 07 133 07 134 07 135	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCITA/ACCESSO LATERALE PEDDONALE FI - GALLERIA MONTE STRETTO - IMBOCCO Fase provisoria - Planimetria e profilo longitudinale Fase provisoria - Selioni caratteristiche Fase provisoria - Selioni caratteristiche Fase provisoria - Selioni caratteristiche Sistemazione definitiva - Planimetria e profilo longitudinale Sistemazione definitiva - Selioni caratteristiche Dima e condio d'attacco - Scavo e consolidamenti Galleria artificiale policentrica - Carpenteria Portale di imbocco - Carpenteria INTERFERENZE Relazione sulla valutazione delle subsidenze e verifica degli effetti indotti sulle interferenze in superficio	1:200 1:200 1:200 varie 1:200 1:200 1:50 1:50 1:50	R R R R R R R R R	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3 3 3 3 3 3 3 3 3 3 3	U U U U U U U U U U U U U U U U U U U	4 4 4 4 4 4 4 4 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D D D D D D D D D D D D D D D D D D D	0 0 0 0 0 0 0 0 0 0	7 7 7 7 7 7 7 7 7 7	C B B B C C P	9 9 9 9 B B B B T L	G G G G G G G G G G G G G G G G G G G	N A N N N A A A A A A A A A A A A A A A	0 0 0 0 0 0 0 0 0 0 0	7 7 7 7 8 8 7 8 8 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 1 0 4 0 1 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1	A A A A A A A A A A A A A A A A A A A
07 124 07 125 07 126 07 127 07 128 07 129 07 130 07 131 07 132 07 133 07 134 07 135	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCITA/ACCESSO LATERALE PEDDONALE FI - CALLERIA MONTE STRETTO - IMBOCCO Fase provisioria - Planimetria e profilo longitudinale Fase provisioria - Sezioni caratteristiche Fase provisioria - Sezioni caratteristiche Fase provisioria - Sviluppata delle opere di imbocco e particolari costruttivi Sistemazione definitiva - Planimetria e profilo longitudinale Sistemazione definitiva - Sezioni caratteristiche Dima e concio d'attacco - Scavo e consolidamenti Galleria artificiale policentrica - Carpenteria Portale di imbocco - Carpenteria INTERFERNZE Relazione sulla valutazione delle subsidenze e verifica degli effetti indotti sulle interferenze in superficie Planimetria opere interferenti con livello di danno Tav. 1 di 2 Planimetria opere interferenti con livello di danno Tav. 2 di 2	1:200 1:200 1:200 varie 1:200 1:200 1:50 1:50 1:50 1:100	R R R R R R R R R R	S S S S S S S S S S S S S S S S S S S	3 3 3 3 3 3 3 3 3 3 3	U U U U U U U U U	4 4 4 4 4 4 4 4 4 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D D D D D D D D D D D D D D D D D D D	0 0 0 0 0 0 0 0 0 0	7 7 7 7 7 7 7 7 7 7 7	C B B B C C P	9 9 9 9 B B B B T L	G G G G G G G G G G G G G G G G G G G	N A N N I I A A A A A N N	0 0 0 0 0 0 0 0 0 0 0	7 7 7 7 8 8 7 8 8 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 1 0 4 0 1 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 2	A A A A A A A A A A A A A A A A A A A
07 124 07 125 07 126 07 127 07 128 07 129 07 130 07 131 07 132 07 133 07 134 07 135	Relazione geotenica e di calcolo Relazione geotenica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCITA/ACCESSO LATERALE PEDONALE F1 - GALLERIA MONTE STRETTO - IMBOCCO Fase provvisoria - Planimetria e profilo longitudinale Fase provvisoria - Planimetria e profilo longitudinale Fase provvisoria - Sezioni caratteristiche Fase provvisoria - Sezioni caratteristiche Sistemazione definitiva - Planimetria e profilo longitudinale Sistemazione definitiva - Sezioni caratteristiche Dima e condo d'attacco - Scavo e consolidamenti Galleria artificiale policentrica - Carpenteria Portale di imbocco - Carpenteria INTERFERENZE Relazione sulla valutazione delle subsidenze e verifica degli effetti indotti sulle interferenze in superficia Planimetria opere interferenti con livello di danno Tav. 1 di 2 Planimetria opere interferenti con livello di danno Tav. 2 di 2 MONITORAGGIO	1:200 1:200 1:200 varie 1:200 1:200 1:50 1:50 1:50 1:100	R R R R R R R R R R	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3 3 3 3 3 3 3 3 3 3 3	U U U U U U U U U U U U U U U U U U U	4 4 4 4 4 4 4 4 4 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D D D D D D D D D D D D D D D D D D D	0 0 0 0 0 0 0 0 0 0 0	7 7 7 7 7 7 7 7 7 7 7	C B B B C C P	9 9 7 7 7 7	G G G G G G G G G G G G G G G G G G G	N A N N N A A A A A A A A A A A A A A A	0 0 0 0 0 0 0 0 0 0 0	4 0 4 4 7 7 7 7 8 8 7 8 8 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 1 0 4 0 1 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 2	A A A A A A A A A A A A A A A A A A A
07 124 07 125 07 126 07 127 07 128 07 129 07 130 07 131 07 132 07 134 07 135 07 136 07 137 07 138	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCITA/ACCESSO LATERALE PEDDONALE F1 - CALLERIA MONTE STRETTO - IMBOCCO Fase provvisoria - Planimetria e profilo longitudinale Fase provvisoria - Sezioni caratteristiche Fase provvisoria - Suliuppata delle opere di imbocco e particolari costruttivi Sistemazione definitiva - Planimetria e profilo longitudinale Sistemazione definitiva - Sezioni caratteristiche Dima e condo d'attacco - Savo e consolidamenti Galleria artificiale policentrica - Carpenteria Portale di imbocco - Carpenteria INTERFENZE Relazione sulla valutazione delle subsidenze e verifica degli effetti indotti sulle interferenze in superficie Planimetria opere interferenti con livello di danno Tav. 2 di 2 MONITORAGGIO Planimetria di monitoraggio Tav. 1 di 2	1:200 1:200 1:200 1:200 1:200 1:200 1:50 1:50 1:50 1:1000	R R R R R R R R R R R	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	U U U U U U U U U U U U U U U U U U U	4 4 4 4 4 4 4 4 4 4 4 4 4	0 0 0 0 0 0 0 0 0 0 0 0	D D D D D D D D D D D D D D D D D D D	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 7 7 7 7 7 7 7 7 7 7	C B B U W B L W B B C P	9 9 9 2 9 9 B B B B T 7 7	G G G G G G G G G G G G G G G G G G G	N A N N N A A A A A A A A A A A A A A A	0 0 0 0 0 0 0 0 0 0 0	7 7 7 8 8 7 8 8 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 1 0 2 0 1 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	A A A A A A A A A A A A A A A A A A A
07 124 07 125 07 126 07 127 07 128 07 129 07 130 07 131 07 132 07 133 07 134 07 135 07 136 07 137 07 138	Relazione geotenica e di calcolo Relazione geotenica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCITA/ACCESSO LATERALE PEDDONALE FI - CALLERIA MONTE STRETTO - IMBOCCO Fase provvisoria - Planimetria e profilo longitudinale Fase provvisoria - Secioni caratteristiche Fase provvisoria - Selioni caratteristiche Fase provvisoria - Selioni caratteristiche Fase provvisoria - Suliopata delle opere di imbocco e particolari costruttivi Sistemazione definitiva - Planimetria e profilo longitudinale Sistemazione definitiva - Sezioni caratteristiche Dima e concio d'attacco - Scavo e consolidamenti Galleria artificiale policentrica - Carpenteria Portale di imbocco - Carpenteria INTERFERNZE Relazione sulla valutazione delle subsidenze e verifica degli effetti indotti sulle interferenze in superficie Planimetria opere interferenti con livello di danno Tav. 1 di 2 Planimetria di monitoraggio Tav. 1 di 2 Planimetria di monitoraggio Tav. 1 di 2 Planimetria di monitoraggio Tav. 2 di 2	1:200 1:200 1:200 1:200 1:200 1:50 1:50 1:50 1:1000 1:1000	R R R R R R R R R R R	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	U U U U U U U U U U U U U U U U U U U	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D D D D D D D D D D D D D D D D D D D	0 0 0 0 0 0 0 0 0 0 0 0	7 7 7 7 7 7 7 7 7 7 7 7	C B B B B B B C C P P P	9 9 9 8 B B C 7 7 7	G G G G G G G G G G G G G G G G G G G	N A N N N A A A A A A A N N N N N N N N	0 0 0 0 0 0 0 0 0 0 0 0	7 7 7 8 8 8 7 8 8 8 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 4 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 2	A A A A A A A A A A A A A A A A A A A
07 124 07 125 07 126 07 127 07 128 07 129 07 130 07 131 07 132 07 134 07 137 07 138 07 139 07 130 07 131 07 132	Relazione geotecnica e di calcolo Relazione geotecnica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCITA/ACCESSO LATERALE PEDDONALE FI - AGALLERIA MONTE STRETTO - IMBOCCO Fase provisoria - Planimetria e profilo longitudinale Fase provisoria - Selioni caratteristiche Bitanico del caratteristiche Dima e condo d'attacco - Scavo e consolidamenti Galleria artificiale policentrica - Carpenteria Portale di imbocco - Carpenteria PUTERFERENZE Relazione sulla valutazione delle subsidenze e verifica degli effetti indotti sulle interferenze in superficia Planimetria opere interferenti con livello di danno Tav. 1 di 2 Planimetria opere interferenti con livello di danno Tav. 2 di 2 MONITORAGGI Planimetria di monitoraggio Tav. 1 di 2 Planimetria di monitoraggio Tav. 1 di 2 Planimetria di monitoraggio Tav. 2 di 2 Secioni tipologiche opere di imbocco	1:200 1:200 varie 1:200 1:200 1:200 1:50 1:50 1:50 1:1000 1:1000 Varie	R R R R R R R R R R R	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	U U U U U U U U U U U U U U U U U U U	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D D D D D D D D D D D D D D D D D D D	0 0 0 0 0 0 0 0 0 0 0 0	7 7 7 7 7 7 7 7 7 7 7 7 7	L W B B B C C P P P W	9 9 9 9 B B B C 7 7 7 Z	G G G G G G G G G G G G G G G G G G G	N A N N N A A A A A A A A A A A A A A A	0 0 0 0 0 0 0 0 0 0 0 0	7 7 7 8 8 8 7 8 8 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 4 0 1 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	A A A A A A A A A A A A A A A A A A A
07 124 07 125 07 126 07 127 07 128 07 129 07 130 07 131 07 132 07 133 07 134 07 135 07 136 07 137 07 138	Relazione geotenica e di calcolo Relazione geotenica e di calcolo delle opere di imbocco Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 1 di 2 Innesto con la galleria di linea - Carpenteria, scavo e consolidamenti - Tav. 2 di 2 USCITA/ACCESSO LATERALE PEDDONALE FI - CALLERIA MONTE STRETTO - IMBOCCO Fase provvisoria - Planimetria e profilo longitudinale Fase provvisoria - Secioni caratteristiche Fase provvisoria - Selioni caratteristiche Fase provvisoria - Selioni caratteristiche Fase provvisoria - Suliopata delle opere di imbocco e particolari costruttivi Sistemazione definitiva - Planimetria e profilo longitudinale Sistemazione definitiva - Sezioni caratteristiche Dima e concio d'attacco - Scavo e consolidamenti Galleria artificiale policentrica - Carpenteria Portale di imbocco - Carpenteria INTERFERNZE Relazione sulla valutazione delle subsidenze e verifica degli effetti indotti sulle interferenze in superficie Planimetria opere interferenti con livello di danno Tav. 1 di 2 Planimetria di monitoraggio Tav. 1 di 2 Planimetria di monitoraggio Tav. 1 di 2 Planimetria di monitoraggio Tav. 2 di 2	1:200 1:200 1:200 1:200 1:200 1:50 1:50 1:50 1:1000 1:1000	R R R R R R R R R R R	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	U U U U U U U U U U U U U U U U U U U	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	D D D D D D D D D D D D D D D D D D D	0 0 0 0 0 0 0 0 0 0 0 0	7 7 7 7 7 7 7 7 7 7 7 7	C B B B C C P P P W W	9 9 9 9 8 B B B B T T T T T T T T T T T T T T T	G G G G G G G G G G G G G G G G G G G	N A N N N A A A A A A A A A A A A A A A	0 0 0 0 0 0 0 0 0 0 0 0	7 7 7 8 8 8 7 8 8 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 4 0 2 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 2	A A A A A A A A A A A A A A A A A A A

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO CO	LLEGAME	NTO PALERN	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	0
Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40 D 07	CODIFICA CL	DOCUMENTO GN 03 0001	REV.	FOGLIO 11 di 201

7 DESCRIZIONE DELL'OPERA

7.1 La galleria Trinacria

La galleria Trinacria è costituita da un tratto in naturale di 13399.6 m e da due tratti in artificiale in corrispondenza dei due imbocchi (lato Palermo e lato Catania) di lunghezza complessiva pari a 49.4 m per l'imbocco lato Palermo e pari a 38.4 m per l'imbocco lato Catania. L'opera interessa pertanto quattro tbm provenineti da imbocchi lato Catania e lato Palermo; la partenza dal lato Catania presenta una partenza previa realiazzazione tramite allarghi da realizzare in tradizionale per accogliere un tratto contenente il doppio binario. Essa presenta un tratto di lunghezza complessiva pari a 13449 m, dal km 13+427.00 al km 28+876.00. Partendo dall'imbocco lato Palermo, posto ad una quota di 341.03 m s.l.m., il tracciato procede in discesa con pendenza del circa 3‰, fino a raggiungere l'imbocco lato Catania, posto ad una quota di 449 m s.l.m.. Il tracciato prevede il passaggio in punti a basse coperture, in corrispodenza delle progressive km 15+410 circa, km 15+950 e km 25+650. Lo scavo viene effettuato all'interno delle litologie incontrate con metodo meccanizzato (Errore. L'origine riferimento non è stata trovata.). La copertura massima è di circa 500 metri.

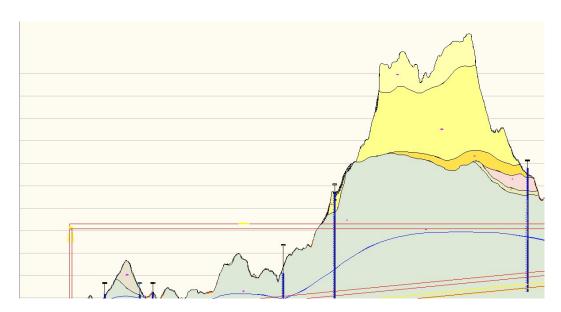


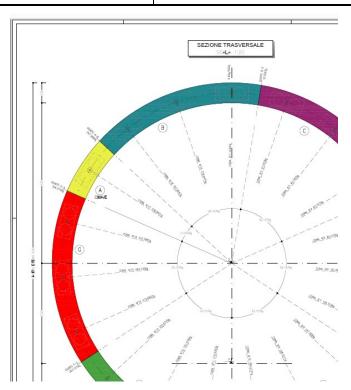
Figura 1 - Profilo galleria Trinacria

Sono di seguito illustrate le principali caratteristiche e i requisiti funzionali della galleria Trinacria. Per maggiori dettagli si rimanda alla "Relazione tecnica delle opere in sotterraneo"

Tabella 1 Progressive delle gallerie Trinacria

Gallerie di linea	WBS	Opera	PK inizio	PK fine	Lunghezza parziale [m]	Lunghezza totale [m]
Trinacria	GA06	Galleria Artificiale e Portale di Imbocco - lato Palermo	13+427.00	13+476.40	49.4	13449
Trinacria	GN03	Galleria naturale	13+476.40	26+876.00	13399.6	

La galleria è progettata per consentire il transito del Gabarit C (PMO n°5) (Rif. [11]).


Le sezioni geometrico funzionali previste sono in accordo con le sezioni tipo del Manuale di Progettazione RFI (Rif. [8]) idonee al transito del Gabarit indicato e velocità di progetto sino 200 km/h. Al suo interno è previsto l'alloggiamento dell'armamento tradizionale con traverse tipo "RFI-240" poggiate su ballast ed elettrificazione a c.c. a 3 kV (Rif. [11]).

La sezione d'intradosso della galleria a singolo binario in scavo meccanizzato ha raggio pari a 4,00 m per i conci di altezza pari a 0.5 m e 4.05 per i conci di altezza pari a 0.45 m, sviluppa un'area libera di circa 43 m² e un perimetro pari a circa 25 m.

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	13 di 201

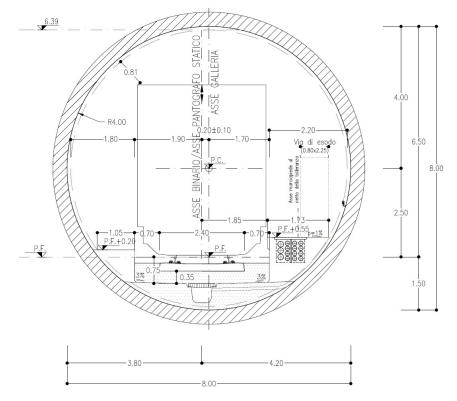


Figura 2 – Sezione di intradosso galleria di linea a singolo binario in scavo meccanizzato (sezione corrente)

7.2 Opere per la sicurezza in galleria

In accordo a quanto previsto negli elaboati della U.O. Sicurezza, manutenzione e interoperabilità (Rif. [13]), i requisiti di sicurezza previsti per la galleria Trinacria sono conformi alle disposizioni legislative emanate in campo europeo attraverso la Specifica Tecnica di Interoperabilità STI-SRT 2014 "Safety in Railway Tunnels" (Rif. [4]) e le indicazioni del Manuale di Progettazione RFI (Rif. [7]).

Al fine di garantire l'accesso alle aree di sicurezza, le gallerie sono dotate di uscite/accessi laterali pedonali ogni 1000 m e uscite/accessi laterali carrabili ogni 4000 m.

Per la galleria è stato previsto un cunicolo parallelo alla galleria di linea, avente medesima sezione. Il cunicolo parallelo è quindi connesso alla galleria di linea tramite collegamenti trasversali pedonali ogni 1000 m e carrabili ogni 4000 m. E' prevista sul cunicolo parallelo, all'innesto coi by pass carrabli una piazzola di allargo per consentire le manovre dei mezzi di soccorso.

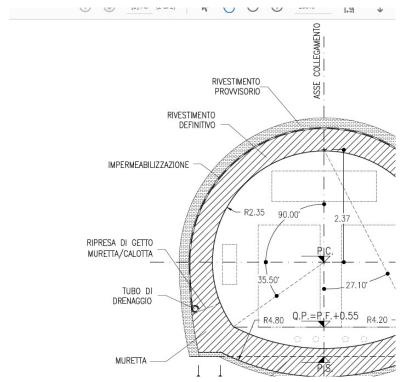


Figura 3 - Sezione di intradosso bypass pedonale (sezione corrente)

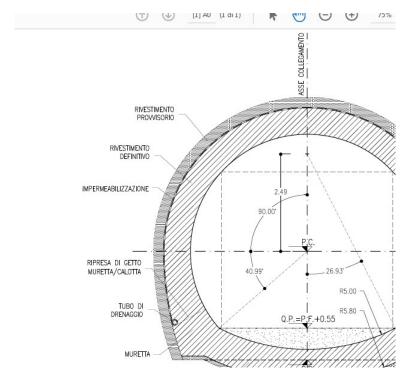


Figura 4 - Sezione di intradosso bypass carrabile (sezione corrente)

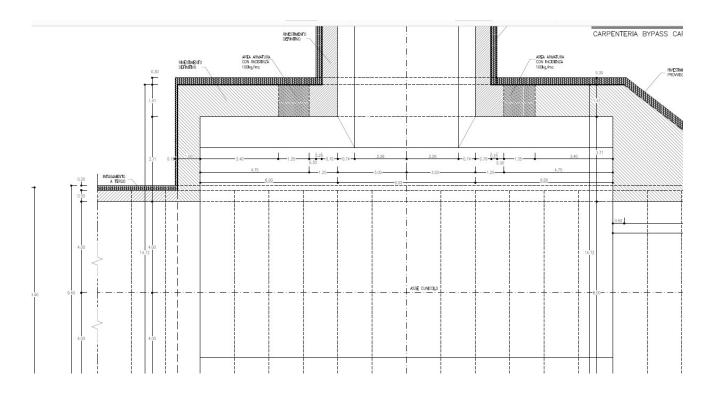


Figura 5 Innesto bypass carrabile su cunicolo parallelo (pianta)

7.3 Opere tecnologiche

In accordo al Manuale di Progettazione RFI (Rif. [8]), le gallerie non sono dotate di nicchie di ricovero personale.

Per quanto riguarda le gallerie di linea sono presenti:

- nicchie standard, aventi larghezza di 2.80m, lunghezza 3.55m e altezza di 2.45m;
- nicchie tecnologiche IS-TE, aventi larghezza di 2.80m, lunghezza 4.10m e altezza di 2.95m;
- nicchie tecnologiche TLC, aventi larghezza di 2.80m, lunghezza di 5.75m e altezza di 2.95m;
- nicchie cabine MT-BT, aventi larghezza di 5.60 m, lunghezza di 10.00m e altezza di 4.06m.

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI	LLEGAME	NTO PALERN	NA – CATANIA – IO - CATANIA NUOVA ENNA	PALERM	0
Galleria Trinacria - Relazione geotecnica e di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
della galleria naturale	RS3U	40 D 07	CL	GN 03 0001	С	17 di 201

7.4 Interferenze lungo il tracciato

Dall'analisi della cartografia di progetto è stato possibile appurare che nel tracciato della galleria naturale Trinacria vi siano nella maggiorparte dei casi (es. Enna) interferenze con opere preesistenti a coperture di sicurezza superiori a 100m per i quali si esclusono fenomeni di interazione. Alcuni corpi di fabbrica isolati risultano a coperture inferiori; è stato analizzato il calcolo delle subsidenze e del relativo potenziale d danno enlla specifica relazione come da elenco elaborati.

8 FASE CONOSCITIVA

Nella fase conoscitiva si acquisiscono gli elementi necessari alla caratterizzazione e modellazione geologica del sito e alla caratterizzazione e modellazione geotecnica del volume significativo interessato dalle opere in sotterraneo.

8.1 Inquadramento geologico e geomorfologico

L'area di studio ricade nel settore centro-orientale della penisola siciliana, in corrispondenza del margine più orientale della Catena Appenninico-Maghrebide. Dal punto di vista geologico la Catena Appenninico-Maghrebide, affiorante nella porzione settentrionale dell'isola (Figura 13), è costituita da sequenze mesocenozoiche sia di piattaforma che di bacino, con coperture flyschoidi mioceniche.

8.1.1 Assetto geologico e geomorfologico lungo il tracciato

La galleria attraversa quasi esclusivamente i terreni di natura argilloso-marnosa, riferibili al membro pelitico della formazione di Terravecchia (TRV), che costituiscono la parte basale della rocca su cui sorge la città di Enna; l'unità TRV viene attraversata dall'imbocco ovest fino alla pk 26+550 ca. Tra la pk 26+550 ca. e l'imbocco lato Catania ca si prevede che il tunnel attraversi i termini sabbioso-limosi riferibili al membro arenaceo della medesima unità (TRVa), in contatto stratigrafico con il membro pelitico, evidenziati dalle stratigrafie dei sondaggi 4SD1 e 4a-GN3-S19.

La parte sommitale della rocca è impostata nelle sequenze messiniane e plioceniche (Gessoso-Solfifera e gruppo di Enna) che, data la loro giacitura suborizzontale a grande scala, non arrivano a quota tunnel.

Non vi sono indizi circa la possibile presenza di zone di faglia e/o contatti tettonici (sovrascorrimenti) a quota galleria.

È previsto lo scavo di un complesso fondamentalmente argilloso, con locali passaggi a facies marnose a comportamento più litoide, la cui distribuzione non può però essere assunta come una funzione della profondità a cui avviene lo scavo. L'alternanza di facies non litoidi, francamente argillose e facies litoidi marnose è di tipo stratigrafico, dipendendo da variazioni nelle condizioni di sedimentazione, e non dall'aumento del carico litostatico.

In linea di massima si stima che la quota di materiale a comportamento litoide non superi il 5% della lunghezza della galleria (cfr. tabella seguente). La relativa maggiore percentuale di materiale litoide ipotizzata per l'unità TRVa è legata alla possibile presenza di livelli di arenarie cementate, che comunque in genere hanno spessore metrico o plurimetrico al massimo.

8.2 Indagini geotecniche

Ai fini della modellazione e della caratterizzazione geotecnica delle unità che interessano le opere in sotterraneo in progetto, sono stati utilizzati i dati relativi alle campagne geotecniche di seguito elencate:

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO CO	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO	o			
Galleria Trinacria - Relazione geotecnica e di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
della galleria naturale	RS3U	40 D 07	CL	GN 03 0001	С	19 di 201

Per la fase progettuale definitiva sono stati eseguiti:

- n. 96 sondaggi a carotaggio continuo (profondità varabili tra 5 m e 280 m dal piano campagna), attrezzati con piezometri ed inclinometri (laddove presenti);
- n. 36 prove dilatometriche/pressiometriche nei fori di sondaggio;
- n. 50 prove di permeabilità di tipo Lefranc e Lugeon;
- n. 12 prospezioni sismiche MASW.
- n. 16 prove sismiche in foro tipo down-hole;

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 07
 CL
 GN 03 0001
 C
 20 di 201

## As 501	1 1 1 1	1 1 1 1	1
#4-902	1	1	
## 49-503	1	1	
## \$506	1	1	
## 48-90	1	1	
49-507 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1	1
## 4-508	1	1	1
## 4-509	1	1	1
## 4-512	1	1	
## 4-513	1	1	
## 4-S14	1	1	
## 49-S15			
## 4a-S16			
## 49-S17			
4a-GN1-S01 40 1 4 3 3 1 1 1 3 <td< td=""><td>1</td><td>1</td><td></td></td<>	1	1	
## 46-GN1-502			
4a-GN1-503 140 1 1 1 1 1 1 1 1 1 1 1 4 4 4 5 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7			
4a-GN1-505 95 1 1 1 1 1 1 1 1 1 1 4 4 4 5 1 5 1 1 1 1			
4a-GN1-506 30 1 1 1 4a-GN1-506b 30 1 1 4a-GN1-506b 30 1 1 4a-SIGN1 35 1 4a-SIGN1a 35 4a-SIGN1b 20 1 4a-SIGN1b 20 1 4a-S20 40 1 1 4a-S21 40 1 1			
4a-GN1-506a 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
4a-GN1-506b 30 1 4a-SIGN1 35 4a-SIGN1a 35 4a-SIGN1b 20 4a-SIGN1b 20 4a-SIGN1b 1 1 1 4a-S20 40 4a-S21 40 1 1 1 1 1 1 1 1			
4a-SIGN1 35 4a-SIGN1a 35 4a-SIGN1b 20 4a-SIGN1b 20 4a-S20 40 1 1 4a-S21 40 1 1 1<			1
4a-SIGN1a 35 4a-SIGN1b 20 4a-S20 1 4a-S21 40 1 1 1 1 1 1 1 1			-
4a-SGM1b 20 1 1 48-520 40 1			1
4a-S21 40 1 1 1 1			
49577 40 1 1 1 1 1 1			
4a-524 40 1 1 1 4a-GN2-S07 40 1 1 1 1 1			
4a-CN2-507 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
48-CNZ-5076 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1
4a-GN2-507bis 50 1 1 1 1			
4a-GN2-508 145 1 1 1 1 1 1 1 1			
4a-GN2-509 70 1 1 1 1 1			
4a-GN2-510 30 1 1			
4a-GN2-S10a 30 1 4a-GN2-S10b 30 1			1
4a-GN2-510b 30 1			
48-527 40 1 1 1	1	1	
4a528 40 1 1 1 1			
49-5289 6 1 1 1 1			
4a-S29 40 1 1 1	1	1	
4a-GN3-511 30 1 1 1 1 1 1			
4a-GN3-511a 30 1 1 1			
4a-GN3-S12 75 1 1 1 1 1 1 4a-GN3-S13 80 1 1 1 1 1			
49-GN3-513a 20 1 1 1 1			
4a-GN3-514 85 1 1 1 1 1 1			
4a-GN3-S15 265 1 1 1 1 1 1			
4a-GN3-S16 280 1 1 1 1 1 1 1 1 1			
4a-GN3-517 170 1 1 1 1 1 1 1			
4a-GN3-519 35 1 1 1 1	1	1	
4a-GN3-519b 30 1 1			
4a-GN3-S20_int 200 1			
4a-S30/40m 40 1 1			
4a-V01/30m 40 1 1	1	1	
4351 30 1 1			
4a532 30 1 1 1 1 1 4a533 30 1 1 1 1 1	1	1	
48303 30 1 1 1 1 1			
4aV03 30 1 1 1 1 1 1			
4a/05 30 1 1 1 1 1 1	1	1	
4aV06 30 1 1 1 1			
4a-V04 30 1 1 1 1 1	1	1	
4aV07 30 1			
4aV08 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
4aV09 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
48V11 50 1 1 1	1	1	
4aV12 40 1 1 1			
4aV12a 12 1 1 1 1			
4a SI 01 30 1 1			
4s 0 tbis 30 1 1			
4a 5I · 02 30 1 1 1 4a 5I · 03 30 1 1 1			
4a 31-03 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
4a Si - 06 30 1			1
4a Si - 06a 20 1 1 1 1			
4a Si - 07 30			1
4a SI - 07a 15 1			
4a SI - 08 30			1
4a Si-08a 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
4a Si - 08b 6 1 1 1 1			
49V14 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1
4ay15a 20 1 1 1			
4aV16 40 1			1
4aV16a 20 1 1 1			
4aV17 30 1 1			
4a 5i Olbis 30 1 1			
4a-F01 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
4a-f01a 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			4
4a-F01b 30 1 1 1 1 1 1 1 1			1

Il numero totale dei campioni analizzati nella tratta di interesse e sottoposti a prove di laboratorio è di 184. Sui campioni indisturbati sono state eseguite le seguenti prove meccaniche:

- prove di taglio diretto (TD);
- prove di compressione triassiale (CIU, CID, UU);
- prove di compressione monoassiale;
- prove di rigonfiamento impedito;
- prove di rigonfiamento secondo il metodo Huder-Amberg.

Nel corso della campagna di indagini eseguita nel 2018, complessivamente nel Lotto 4 sono state eseguite le seguenti indagini in sito:

• n. 14 sondaggi a rotazione e carotaggio continuo, di cui 13 strumentati con piezometri. All'interno dei fori di sondaggio sono state eseguite n. 24 prove di permeabilità, n. 16 prove pressiometriche ed n. 66 prove SPT.

Il numero totale dei campioni prelevati nel settore di intervento del Lotto 4 e sottoposti a prove di laboratorio è di 94, di cui 60 campioni indisturbati di terreno, 34 rimaneggiati Sui campioni prelevati sono state compiute le seguenti prove:

- prove di taglio diretto (TD);
- prove di compressione triassiali (CIU, CID, UU);
- prove edometriche.

Nella campagna di indagini pregressa (2013) sono state, invece, eseguite le seguenti indagini:

- n. 4 sondaggi a rotazione e carotaggio continuo, strumentati con piezometri. Prove di permeabilità ed SPT in foro di sondaggio.
- n. 3 prospezioni sismiche MASW.
- prove di laboratorio.

Per ulteriori dettagli relativi alle campagne di indagini si rimanda al documento "Relazione geologica, geomorfologica ed idrogeologica".

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA					
Galleria Trinacria - Relazione geotecnica e di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
della galleria naturale	RS3U	40 D 07	CL	GN 03 0001	С	22 di 201

8.3 Caratterizzazione geotecnica

I risultati delle indagini geotecniche, in situ e di laboratorio, hanno permesso di definire il modello geotecnico rappresentativo delle condizioni stratigrafiche e delle caratteristiche fisico-meccaniche dei terreni/rocce interessati dall'opera in sotterraneo lungo il suo tracciato. L'ubicazione dei sondaggi ed il modello geotecnico sono rappresentati nell'elaborato "Profilo geotecnico" (0). Nei paragrafi che seguono si riepilogano in sintesi i risultati della caratterizzazione e modellazione geotecnica per ciascuna delle formazioni interessate dallo scavo delle gallerie.

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI	LLEGAME	NTO PALERI	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	o
Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40 D 07	CODIFICA CL	DOCUMENTO GN 03 0001	REV.	FOGLIO 23 di 201

8.4 Formazione TRV

Di seguito si riportano i grafici e le tabelle contenenti i parametri per le singole gallerie in esame per la formazione del TRV. Questa formazione è composta da argille limose e argille marnose di colore grigio, grigio-azzurro e grigio-verdastro, marrone per alterazione, a struttura scagliosa o sottilmente stratificata, talora con laminate e con strati irregolari e lentiformi, con frequenti livelli millimetrici di sabbie e sabbie limose grigie e giallastre.

8.3.1.1. Caratteristiche fisiche

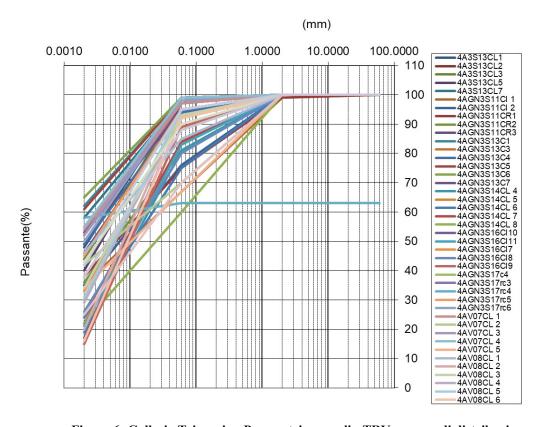


Figura 6: Galleria Trinacria - Parametri generali - TRV - curve di distribuzione granulometrica

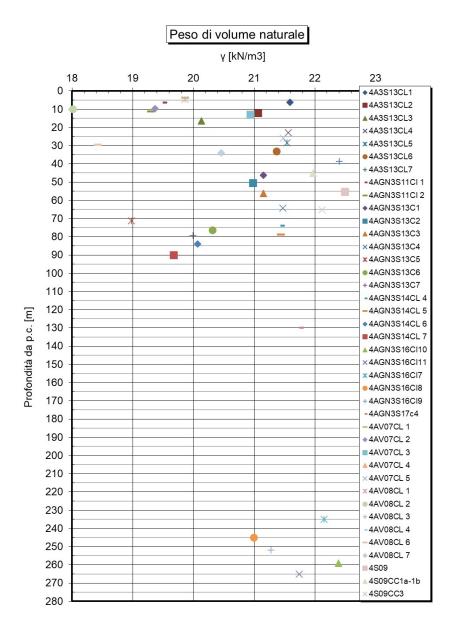
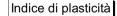



Figura 7: Galleria Trinacria - Parametri generali - TRV - peso dell'unità di volume

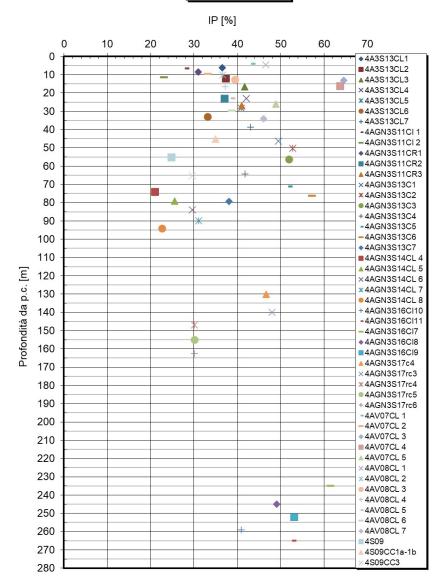


Figura 8: Galleria Trinacria - Parametri generali - TRV - Indice di plasiticà

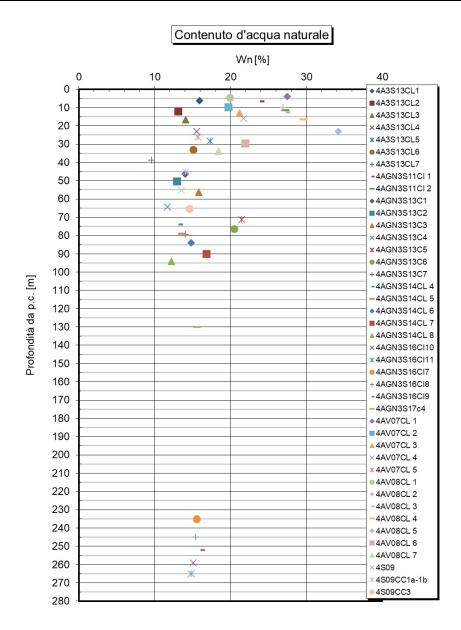


Figura 9: Galleria Trinacria - Parametri generali - TRV - contenuto di acqua naturale

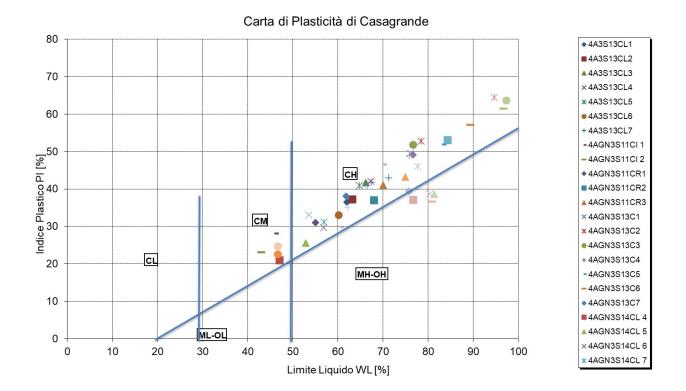


Figura 10: Galleria Trinacria - Parametri generali - TRV - Carta di plasticità di Casagrande

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI	LLEGAME	NTO PALERI	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	0
Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40 D 07	CODIFICA CL	DOCUMENTO GN 03 0001	REV.	FOGLIO 28 di 201

8.3.1.2. Caratteristiche meccaniche: resistenza non drenata

Coesione non drenata da prove SPT Cu [kPa] ◆4aGN3S11 ■4AGN3S17 **▲**4S09

Figura 11: Galleria Trinacria - TRV - resistenza al taglio non drenata da NSPT

OCR da SPT

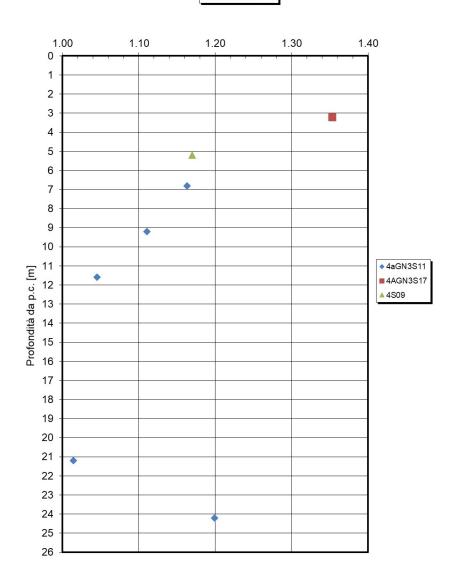


Figura 12: Galleria Trinacria - TRV - OCR da CU NSPT

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI	LEGAME	NTO PALERN	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	o
Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40 D 07	CODIFICA CL	DOCUMENTO GN 03 0001	REV.	FOGLIO 30 di 201

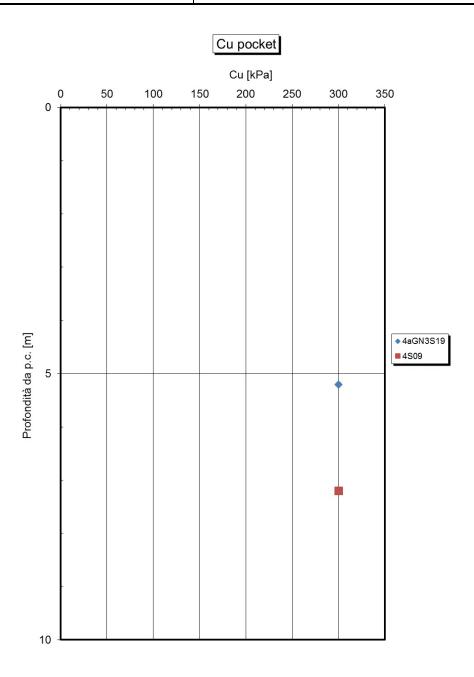


Figura 13: Galleria Trinacria - TRV – coesione non drenata da pocket

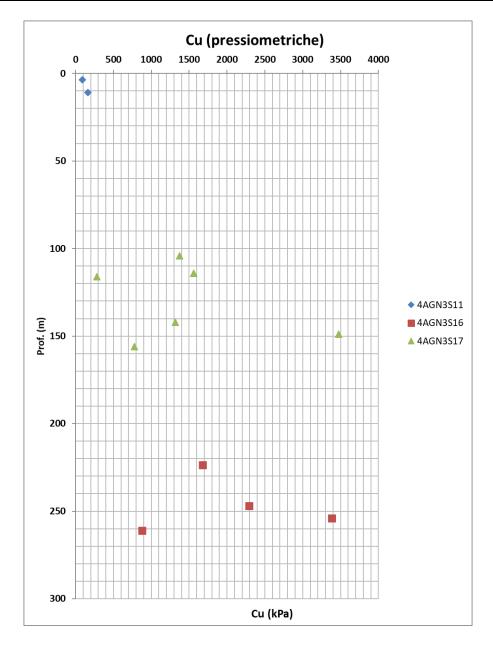


Figura 14: Galleria trinacria - TRV - coesione non drenata da pressiometriche

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI	LLEGAME	NTO PALERN	NA – CATANIA – IO - CATANIA NUOVA ENNA	PALERM	0
Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40 D 07	CODIFICA CL	DOCUMENTO GN 03 0001	REV.	FOGLIO 32 di 201

Per la determinazione dei valori sperimentali di Cu sono stati considerate prevalentemente le prove in situ, soprattutto ad elevate profondità, perché ritenute più affidabili e meno affette dal disturbo del campione che nella formazione in esame è risultato essere a volte particolarmente evidente. In questo caso una volta stimata la pressione limite efficace anche dalle prove dilatometriche si è pensato di sfruttare le note correlazioni di letteratura (Amar e Jezequel, 1972): Cu=(pl-po)/5.5 (KPa). Pertanto i valori di Cu hanno consentito di valutare la modifica delle caratteristiche di consistenza della formazione in esame anche ad elevate profondità e quindi avere indirettamente informazioni sulla modifica delle caratteristiche di rigidezza ad essa correlata. Per i parametri di resistenza non drenati si evidenzia soprattutto se si analizzamno i dati dell'intero lotto una grande variabilità de ivalori soprattutto nei primi 50m circa di profondità probabilmente connessa con strati sovraconsolidati e/o marnosi più consistenti. In profondità tale dispersione sembra essere meno evidente complice probabilmente anche il numero più esiguo di prove disponibili. Una valutazione teorica cautelativa dei range caratteristici e del relativo andamenta è rappresentata nel grafico: per coperture maggiori di 50m si è assunto un profilo cautelativo linearmente crescente con la profondità pari a Cu=5.9z che interpola i dati disponibili e si avvicina ad un andamento tipico di un argilla NC.

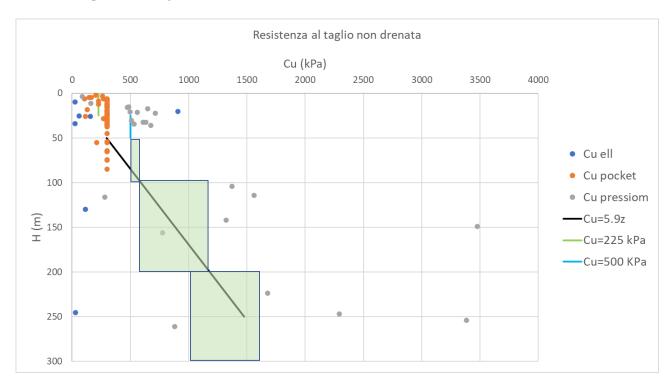


Figura 15: Galleria trinacria - TRV - coesione non drenata lotto 4

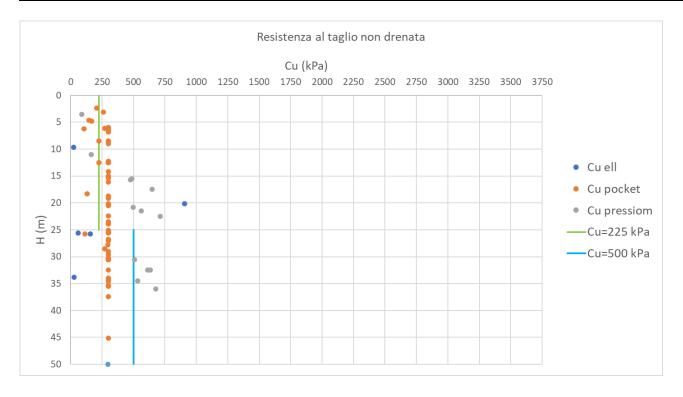


Figura 16: Galleria Trinacria - TRV - coesione non drenata Da 0 - 50 m

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI	LLEGAME	NTO PALERN	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	0
Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40 D 07	CODIFICA CL	DOCUMENTO GN 03 0001	REV.	FOGLIO 34 di 201

8.3.1.3. Caratteristiche meccaniche da prove di laboratorio: resistenza drenata

Le tre prove triassiali consolidate non drenate condotte sul campione CI1 (12 m da p.c.) del sondaggio 4a-GN3-S11 e sui campioni CI2 e CI3 (11,4 e 56,3 m d p.c.) del sondaggio 4a-GN3-S13 restituiscono un inviluppo di resistenza nel piano degli invarianti t' ed s' con una buona correlazione con valori di coesione c' pari a 19 kPa e di resistenza al taglio φ' pari a 20° (Figura 17).

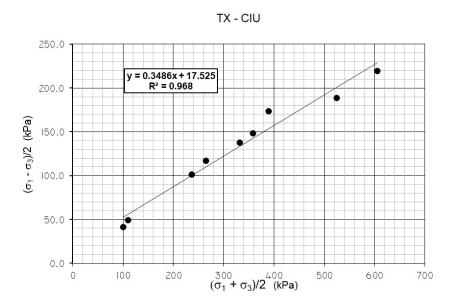


Figura 17: Galleria Trinacria – TRV - Inviluppo di resistenza delle prove triassiali

Le 9 prove di taglio diretto di picco eseguite sui campioni indisturbati dei sondaggi 4S8, 4S10, 4a-GN3-S13 e 4a-GN3-S17 evidenziano un inviluppo di resistenza nel piano di Mohr-Coulomb (Figura 18) con valori dei parametri di resistenza con coesione c' pari a 36 kPa e angolo di resistenza al taglio φ' pari a 19°. Le profondità di prelievo dei 9 campioni sono variabili tra 6 e 162,6 m da piano campagna.

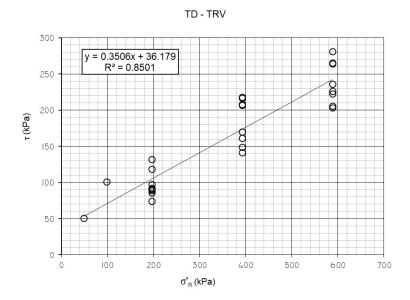


Figura 18: Galleria Trinacria – TRV – Inviluppo di resistenza delle prove di taglio diretto (TD)

Come si evince dalla Figura 18, risulta possibile definire un intervallo inferiore e superiore degli inviluppi di resistenza (Figura 19). Nello specifico l'inviluppo inferiore restituisce dei parametri di resistenza con coesione c' pari a 22 kPa e angolo di resistenza al taglio φ' pari a 18°, mentre quello superiore coesione c' pari a 63 kPa e angolo di resistenza al taglio φ' pari a 21°.

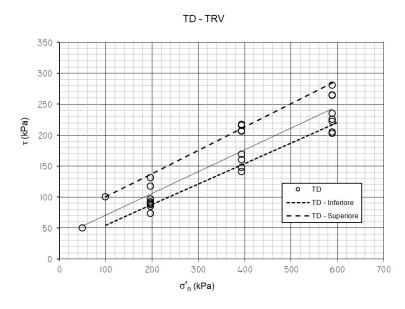


Figura 19: Galleria Trinacria – TRV - intervallo inviluppo di resistenza delle prove di taglio diretto (TD)

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI	LLEGAME	NTO PALERI	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	0
Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40 D 07	CODIFICA	DOCUMENTO GN 03 0001	REV.	FOGLIO 36 di 201

8.3.1.4. Caratteristiche meccaniche da prove di laboratorio TRV Lotto 4

L'insieme delle prove rappresentate per le singole galleria sono state elaborate in maniera complessiva così da definire un unico inviluppo di resistenza per la formazione TRV per il Lotto 4, per profondità fino a 50 m da piano campagna.

L'insieme delle prove di taglio diretto, per un totale di 39 prove, condotte sui campioni afferenti alla formazione TRV per il Lotto 4 evidenziano un inviluppo di resistenza nel piano di Mohr-Coulomb (Figura 20) con valori dei parametri di resistenza con coesione c' pari a 35 kPa e angolo di resistenza al taglio φ' pari a 22°. Le profondità di prelievo dei 39 campioni sono variabili tra 3,4 e 162,6 m da piano campagna.

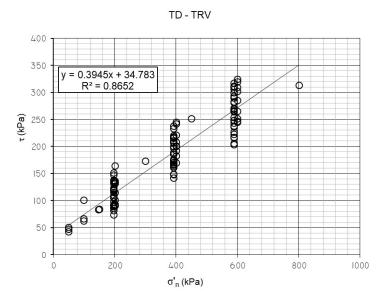


Figura 20: Lotto 4 – TRV - inviluppo di resistenza delle prove di taglio diretto (TD)

Come si evince dalla Figura 20, risulta possibile definire un intervallo inferiore e superiore degli inviluppi di resistenza (Figura 21). Nello specifico l'inviluppo inferiore restituisce dei parametri di resistenza con coesione c' pari a 25 kPa e angolo di resistenza al taglio φ' pari a 18°, mentre quello superiore coesione c' pari a 55 kPa e angolo di resistenza al taglio φ' pari a 24°.

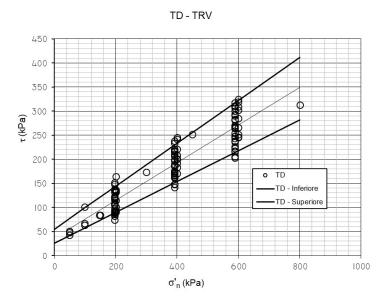


Figura 21: Lotto 4 – TRV - intervallo inviluppo di resistenza delle prove di taglio diretto (TD)

L'insieme delle 17 prove triassiali consolidate non drenate, condotte sui campioni afferenti alla formazione TRV per il Lotto 4 evidenziano un inviluppo di resistenza nel piano degli invarianti t' ed s' con una buona correlazione con valori dei parametri di resistenza con coesione c' pari a 17 kPa e angolo di resistenza al taglio ϕ ' pari a 22°. Le profondità di prelievo dei 13 campioni sono variabili tra 3,5 e 76,3 m da piano campagna.

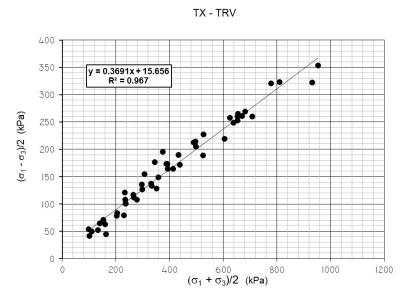


Figura 22: Lotto 4 – TRV - inviluppo di resistenza prove triassiali (TX-CIU)

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI	LEGAME	NTO PALERN	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	0
Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40 D 07	CODIFICA CL	DOCUMENTO GN 03 0001	REV.	FOGLIO 38 di 201

8.3.1.5. Caratterizzazione TRV ad alte coperture

La caratterizzazione di tale formazione per coperture maggiori di 50 m (le coperture raggiungono anche i 600 m di profondità) si basa su un modello geotecnico che parte da alcune assunzioni di comportamento. A profondità molto elevate il numero e la rappresentatività delle prove è risultato un aspetto critico: gli stati tensionali di prova infatti per quanto spinti al massimo delle potenzialità delle attrezzature di laboratorio non sono risultati in linea con quelli litostatici. Anche il prelievo dei campioni ad elevate profondità ha mostrato delle criticità con un rischio di non rappresentatività dello stato indisturbato del campione e delle conseguenti prove di laboratorio. La consistenza della formazione ad elevate profondità (fino a 250 m), rilevata sia tramite ispezione visiva delle carote sia in base ai risultati delle prove a rottura dei campioni, non è risultata assimilabile a quella di una roccia.

Per la determinazione dei parametri di resistenza drenati è stato necessario ricorrere ad inviluppi teorici, presenti nella letteratura tecnico-scientifica, per ricavare i parametri di resistenza a stati tensionali paragonabili a quelli litostatici. Gli inviluppi sono stati tarati sui risultati delle prove di laboratorio disponibili eseguite a stati tensionali massimi raggiunti in laboratorio.

Poiché, come evidenziato in precedenza, per profondità elevate, le prove di laboratorio eseguite non risultano rappresentative dei relativi stati tensionali, per i parametri di resistenza drenati è stato fatto ricorso ad un inviluppo curvilineo tarato sui dati sperimentali disponibili (cfr. relazione Geotecnica generale), dal quale è possibile ricavare i valori dei parametri di resistenza al variare dello stato tensionale.

Si riporta di seguito l'inviluppo curvilineo, nel piano di Mohr-Coulomb (Figura 23), tarato sull'insieme delle prove di taglio e delle prove triassiali eseguite per la formazione TRV del Lotto 4:

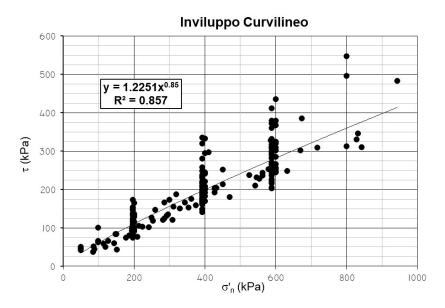


Figura 23: Lotto 4 – TRV ad alte coperture – inviluppo curvilineo

8.3.1.6. Caratteristiche meccaniche: deformabilità

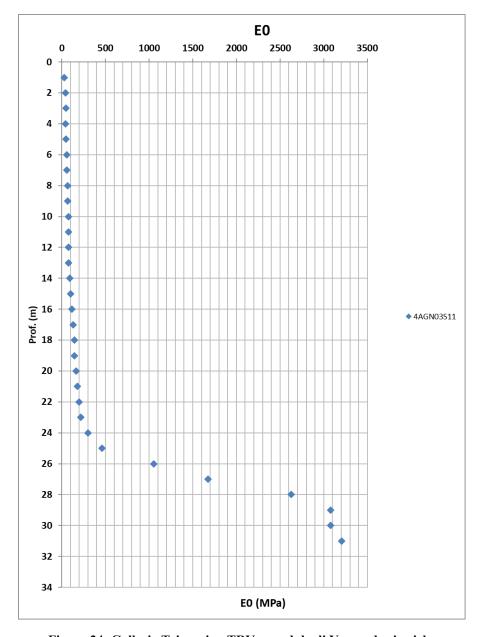


Figura 24: Galleria Trinacria - TRV – modulo di Young da sismiche

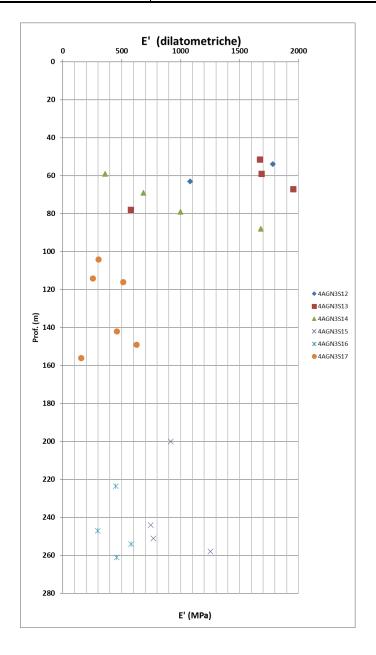


Figura 25: Galleria Trinacria - TRV – modulo di Young da dilatometriche

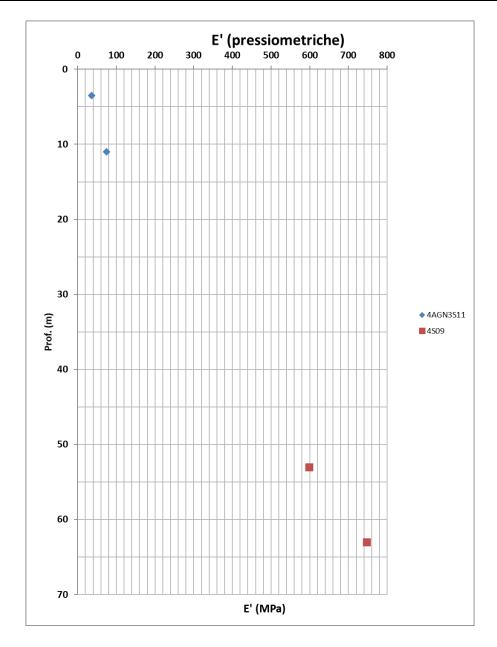
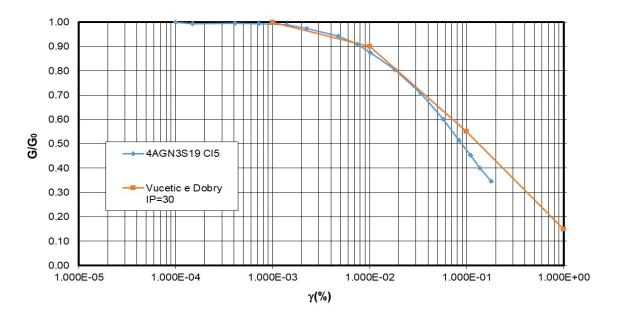



Figura 26: Galleria Trinacria - TRV - modulo di Young da pressiometriche

Si riportano di seguito le prove in colonna risonante effettuate in corrispondenza o in prossimità della tratta in esame;si riportano anche le curve teoriche che meglio approssimano l'andamento.

4AGN3S19	PROVINO			
G [MPa]	G/Gmax	γ (%)	D (%)	D/D0
201.83	1.000	0.0001	2.17	1
200.36	0.993	0.00015	2.62	1.207373
200.89	0.995	0.00041	3.19	1.470046
200.46	0.993	0.00072	3.23	1.488479
199.73	0.990	0.0014	3.23	1.488479
196.66	0.974	0.00224	3.29	1.516129
190.43	0.944	0.00478	3.38	1.557604
183.73	0.910	0.00752	3.54	1.631336
176.72	0.876	0.01024	3.71	1.709677
162.47	0.805	0.01835	3.93	1.81106
142.57	0.706	0.0338	4.39	2.023041
121.39	0.601	0.0573	5.14	2.368664
104.05	0.516	0.083	6.12	2.820276
91.41	0.453	0.11	6.97	3.211982
80.85	0.401	0.137	7.96	3.668203
69.96	0.347	0.18	9.14	4.211982

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	43 di 201

SONDAGGIO	PROFONDITA'	LITOLOGIA	ν	G (γ=0.1)	E (MPa)
4A_GN3_S19	25.00-25.50	TRV	0.5	92	276

Il valore di G0 alla profondità indagata fornisce valori più bassi di quelli sismici, comunque il grafico normalizzato fornisce per un fattore riduttivo pari a 0.2 un valore delle deformazioni compatibile con quanto ci si attende in base alle previsioni numeriche degli scavi della galleria.

Anche i moduli elastici (il modulo esastico statico derivato dal modulo sismico è stato assunto pari a 0.2 E0 anche alla luce delle prove in colonna risonante) confermano che nei primi 50m di profondità il materiale appare più consistente che per le profondità immediatamente sottostanti per cui anche per la deformabilità si è assunta una legge di variabilità lineare con la profondità a partire dai 50m, E'=3z, assolutamente congruente con l'ipotesi effettuata per la coseione non drenata Cu e precedentemente descritta.

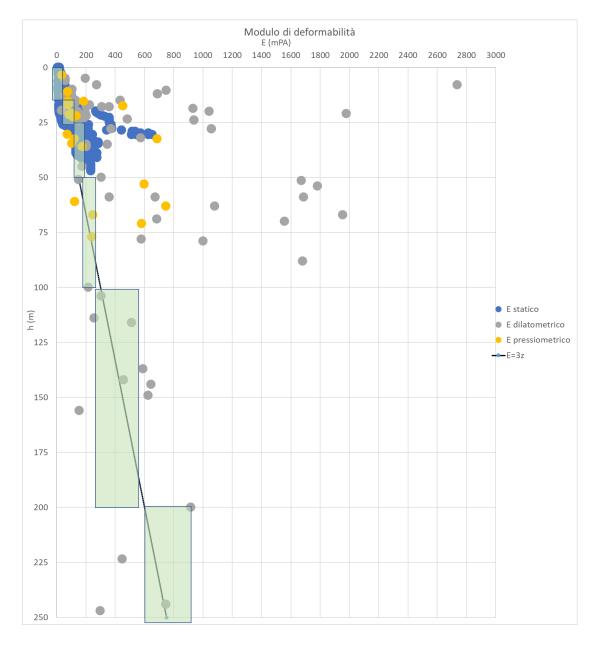


Figura 27: Galleria Trinacria - TRV – modulo di Young lotto 4

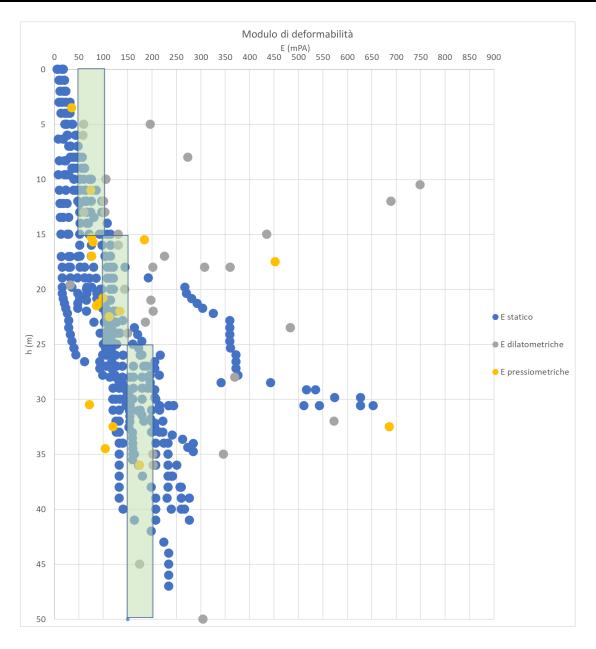
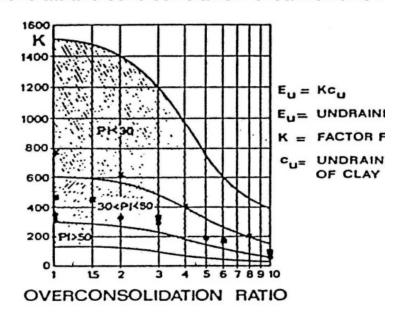
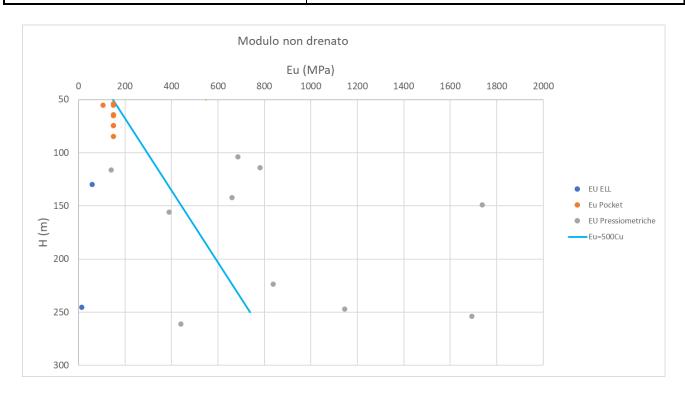



Figura 28: Galleria Trinacria - TRV – modulo di Young lotto 4 da 0-50m

Infatti, ricavando il modulo non drenato dal valore di Cu secondo la correlazione sotto riportata ed assumendo Eu=500Cu, soi ottengono dei valori dei moduli non drenati assolutamente congruenti con quelli drenati, come di seguito rappresentato.


lutato anche attraverso le correlazioni di Jamiolkowski

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	47 di 201

8.3.1.7. Caratteristiche di permeabilità

Coefficiente di permeabilità da Le Franc

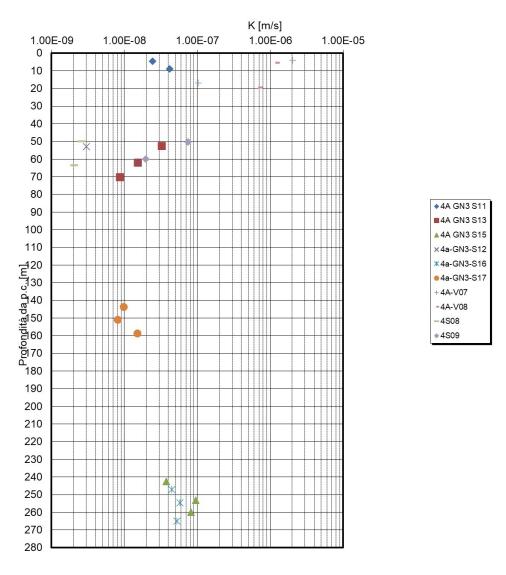


Figura 29: Galleria Trinacria – TRV – permeabilità da prove in sito

8.3.1.8. Parametri geotecnici

Tabella 2 – Parametri derivati dalla caratterizzazione geotecnica – Galleria Trinacria - TRV

COPERTURA	FORMAZIONE	γ	GSI	mi	σm	ν	E'	c'	Cu	φ'
		[kN/m3]			[MPa]		[GPa]	[kPa]	[kPa]	[°]
0-15	TRV	21	-	-	-	0.3	0.05-0.10	25-55	225	18-24
15-25	TRV	21	-	-	-	0.3	0.10-0.15	25-55	225	18-24
25-50	TRV	21	-	-	-	0.3	0.15-0.2	25-55	500	18-24
50-100	TRV	22	-	-	-	0.3	0.2-0.3	43-108	594	19-22
100-200	TRV	22	-	-	-	0.3	0.3-0.6	78-196	594- 1188	17-20
200-300	TRV	22	-	-	-	0.3	0.6-0.9	145-265	1188- 1782	16-18
300-400	TRV	22	-	-	-	0.3	0.9-1.2	238-337	1782- 2970	15-16
400-500	TRV	22	-	-	-	0.3	1.2-1.5	330-419	2970- 3564	15-16

γ = peso dell'unità di volume dell'ammasso

GSI = geological strength index

mi = costante del materiale

σm = resistenza a compressione monoassiale

c' k = valore caratteristico della coesione efficace dell'ammasso

 $\phi \lq_k = valore$ caratteristico dell'angolo di attrito dell'ammasso

 $c_{u\,k}$ = valore caratteristico della coesione non drenata

Per i parametri di resistenza per profondità maggiori di 50 m da p.c., si è fatto riferimento all'inviluppo curvilineo riportato nel capitolo 8.3.1.5, che fornisce il valore di resistenza a taglio in funzione dello stato tensionale efficacie in sito.

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI	LLEGAME	NTO PALERI	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	0
Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40 D 07	CODIFICA CL	DOCUMENTO GN 03 0001	REV.	FOGLIO 50 di 201

8.5 Formazione TRVa

Di seguito si riportano i grafici e le tabelle contenenti i parametri per le singole gallerie in esame per la formazione del TRVa.

8.3.1.9. Caratteristiche fisiche (trva argilloso)

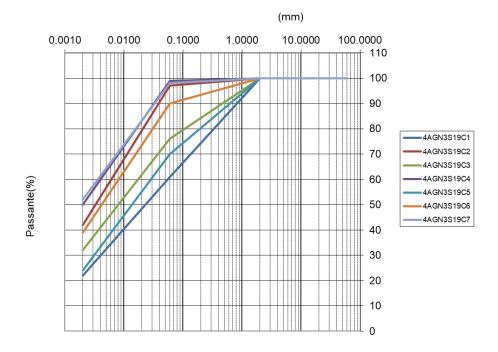


Figura 30: Galleria Trinacria - Parametri generali - TRVa- curve di distribuzione granulometrica

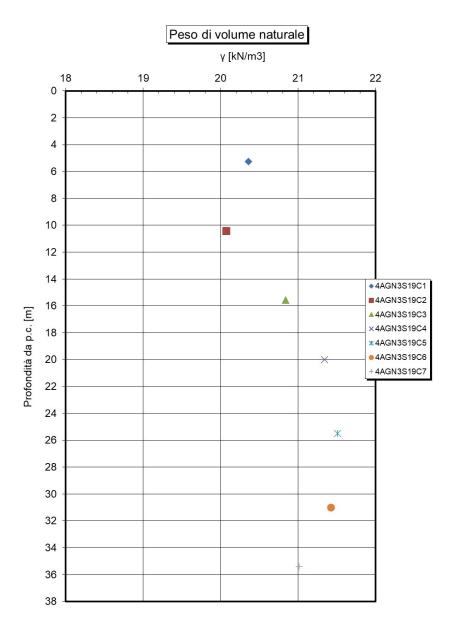


Figura 31: Galleria Trinacria - Parametri generali - TRVa - peso dell'unità di volume

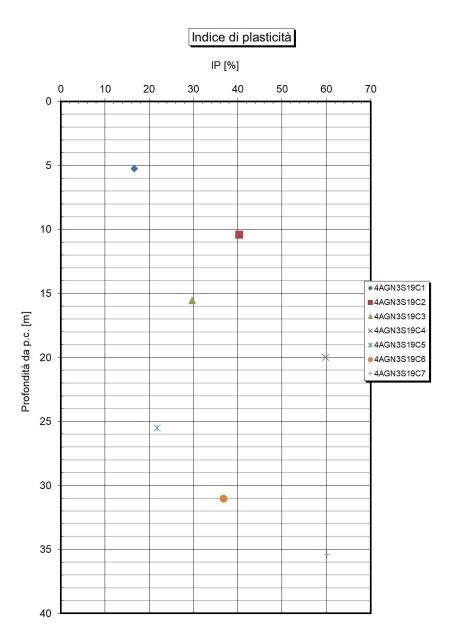


Figura 32: Galleria Trinacria - Parametri generali - TRVa - Indice di plasiticà

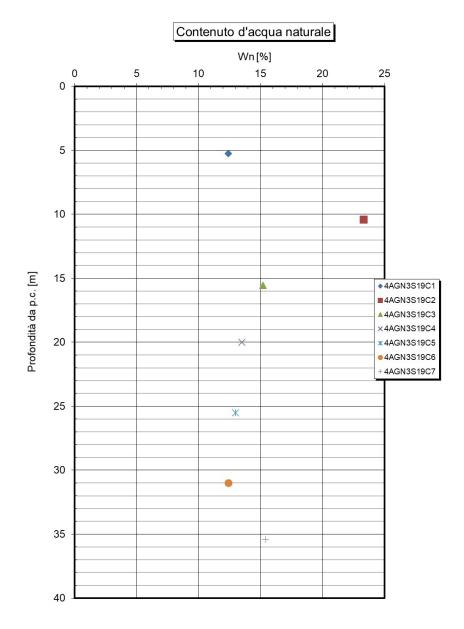


Figura 33: Galleria Trinacria - Parametri generali - TRVa - contenuto di acqua naturale

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI	LLEGAME	NTO PALERI	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	O
Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40 D 07	CODIFICA CL	DOCUMENTO GN 03 0001	REV.	FOGLIO 54 di 201

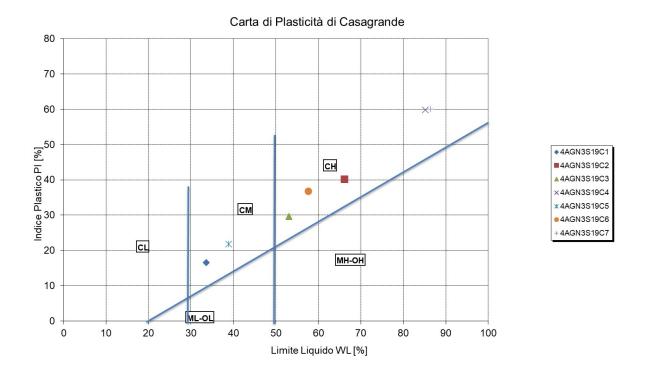


Figura 34: Galleria Trinacria - Parametri generali - TRVa - Carta di plasticità di Casagrande

8.3.1.10. Caratteristiche fisiche (trva sabbioso)

Per quanto concerne i parametri fisici, in base alle prove dei laboratorio effettuate su provini disturbatti e/o rimaneggiati si sono potute ottenere delle informazioni sui fusi granulometrici caratteristici (fuso medio e range di variabilità suffragato da considerazioni di tipo probabilistico) e sulle principali caratteristiche granulometriche medie (D_{10} , D_{60} , D_{50}), valori del peso di volume dei granuli \Box_s . Per i fusi granulometrici si sono fatte considerazioni statistiche vista l'esiguità dei dati disponibili evidenziando il fuso medio ed i fusi "estremi" statisticamente rappresentativi (distribuzione di t-Student) e le percentuali medie delle componenti granulometriche, nonché, laddove numericamente significativo, la distribuzione delle percentuali con la profondità.

Una volta noto il valore di Dr, il valore dell'indice dei vuoti in sito e del peso di volume del secco possono essere determinati anche dalla relazione:

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	55 di 201

$$D_{\rm r} = \frac{e_{\rm max} - e_o}{e_{\rm max} - e_{\rm min}} = \frac{\gamma_{d\,{\rm max}}}{\gamma_d} \cdot \frac{\gamma_d - \gamma_{d\,{\rm min}}}{\gamma_{d\,{\rm max}} - \gamma_{d\,{\rm min}}}$$

una volta noti i valori di e_{max}, e_{min}, g_{dmax} e g_{dmin}. Essi possono essere determinati in laboratorio.

In questa sede, in mancanza del valore e_{emin} , noto o stimato il valore e_{max} (Youd (1973)) è stato possibile determinare e_0 una volta noto il valore di Dr e quello della differenza e_{max} - e_{min} attraverso le relazioni di Cubrinowski & Ishihara (1999):

$$(e_{\text{max}}-e_{\text{min}})=0.23+0.06 / D_{50}$$

con D₅₀ in mm

Si riportano al proposito anche le relazioni di Youd (1973):

$$e_{max}=0.554+0.154 \text{ R}^{-1}$$

$$e_{min}=0.359+0.082 R^{-1}$$

essendo R definito come "rotondità" delle particelle e stimabile mediamente pari a 0.5.

Per la determinazione di $g_{d,i}$ in mancanza di determinazioni di laboratorio per g_{dmax} e g_{dmin} si può fare riferimento a dati di letteratura per i siti in esame (Jamiolkowski and Lo Presti, 2003).

Figura 35: Galleria Trinacria – TRVa Sabbioso- peso dell'unità di volume da prove SPT

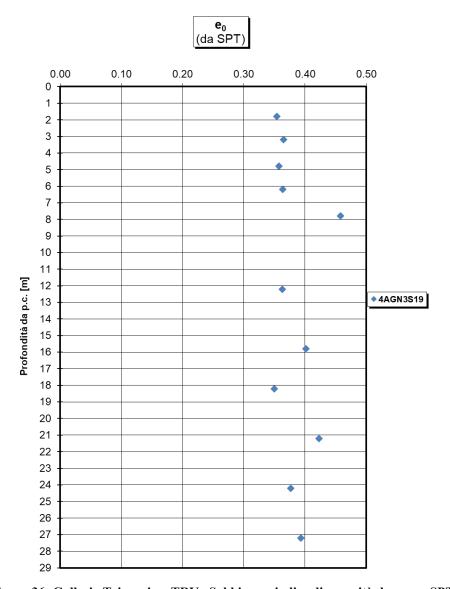


Figura 36: Galleria Trinacria – TRVa Sabbioso— indice di porosità da prove SPT

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 07
 CL
 GN 03 0001
 C
 58 di 201

La densità relativa si definisce:

$$D_{r} = \frac{e_{\text{max}} - e_{o}}{e_{\text{max}} - e_{\text{min}}}$$

essendo:

 e_{max} = indice dei vuoti massimo del materiale (-)

e_{min} = indice dei vuoti minimo del materiale (-)

e_o = indice dei vuoti in sito del materiale (-)

Per quanto riguarda i terreni incoerenti prevalentemente sabbiosi la densità relativa D_r può essere correlata al valore N_{SPT} con la seguente legge di Skempton (1986):

$$D_r = \left(\frac{1}{A + B \cdot \sigma_{vo}} \cdot N_{SPT}\right)^{0.5}$$

essendo:

A, B = costanti empiriche indicate in tabella

 σ_{vo} ' = pressione verticale efficace esistente in sito alla quota della prova SPT

 N_{SPT} = numero di colpi per 30 cm corrispondente ad una energia di infissione pari ad una percentuale di quella teorica (60%)

 (K_o) = coefficiente di spinta a riposo per terreni (-)

Costanti empiriche A e B (Skempton, 1986)

Tipo di materiale	Α	В
Sabbie fini normalmente consolidate	27,5	27,5
Sabbie grosse normalmente consolidate	43,3	21,7
Sabbie sovraconsolidate	27,5÷43,3	(21,7÷27,5)· 1+2.(ko)sc 1+2.(ko)nc

La densità relativa e stata determinata anche utilizzando la correlazione di Bazaara [1967]:

 $Dr = [N'_{SPT}/(20+0.8\sigma'_{Vo})]_{0.5} per \sigma'_{Vo} < 73.2 kPa$

 $Dr = [N'_{SPT}/(65+0.2\sigma'_{Vo})]_{0.5} per \sigma'_{Vo} > 73.2 kPa$

In cui:

N'spt = Numero di colpi risultanti dalla prova SPT, corretto in funzione del rendimento del sistema di infissione;

 σ'_{vo} =pressione geostatica verticale efficace.

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO CO	LLEGAME	NTO PALERI	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	0
Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40 D 07	CODIFICA CL	DOCUMENTO GN 03 0001	REV.	FOGLIO 60 di 201

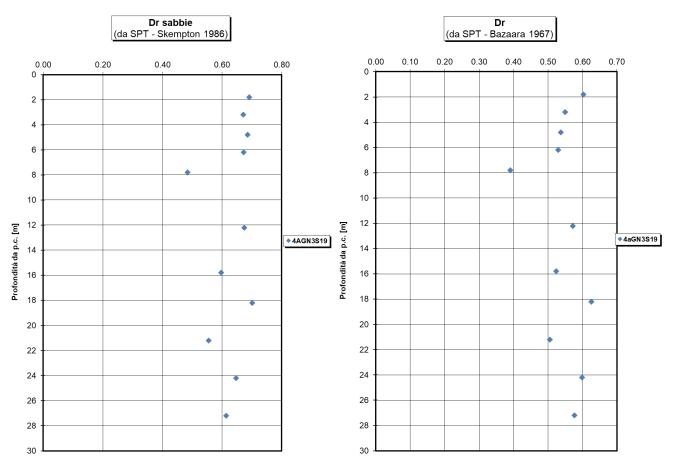


Figura 37: Galleria Trinacria – TRVa Sabbioso – densità relativa da prove SPT

8.3.1.11. Caratteristiche meccaniche: resistenza non drenata (facies argilloso)

Per quanto riguarda la resistenza non drenata, da prove NSPT si è potuto ricavare il valore di una prova a 9.2m il cui valore risulta pari a 175 Kpa. Dalla stessa prova l'OCR è risultato pari a 1.315.

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI	LLEGAME	NTO PALERN	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	o
Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40 D 07	CODIFICA CL	DOCUMENTO GN 03 0001	REV.	FOGLIO 61 di 201

8.3.1.12. Caratteristiche meccaniche da prove di laboratorio: resistenza drenata

La due prove triassiali consolidate drenate condotta sui campioni CI4 e CI7 (20 e 35,4 m da p.c.) del sondaggio 4a-GN3-S19 restituisce un inviluppo con valori dispersi e parameri di coesione c' pari a 30 kPa e di resistenza al taglio φ' pari a 24° (Figura 38).

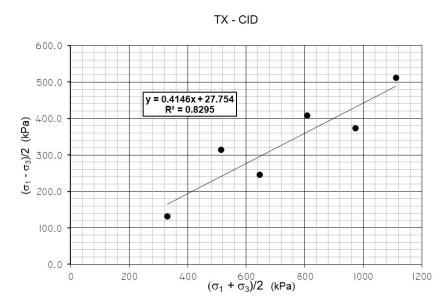


Figura 38: Galleria Trinacria – TRVa - Inviluppo di resistenza delle prove triassiali

Le 5 prove di taglio diretto di picco eseguite sui campioni indisturbati del sondaggio 4a-GN3-S19 evidenziano un inviluppo di resistenza nel piano di Mohr-Coulomb (Figura 39) con valori dei parametri di resistenza con coesione c' pari a 22 kPa e angolo di resistenza al taglio φ ' pari a 23°. Le profondità di prelievo dei 5 campioni sono variabili tra 10 e 35,4 m da piano campagna.

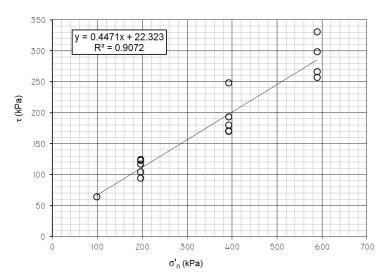


Figura 39: Galleria Trinacria – TRVa – Inviluppo di resistenza delle prove di taglio diretto (TD)

8.3.1.13. Caratteristiche meccaniche: deformabilità (facies argillosa)

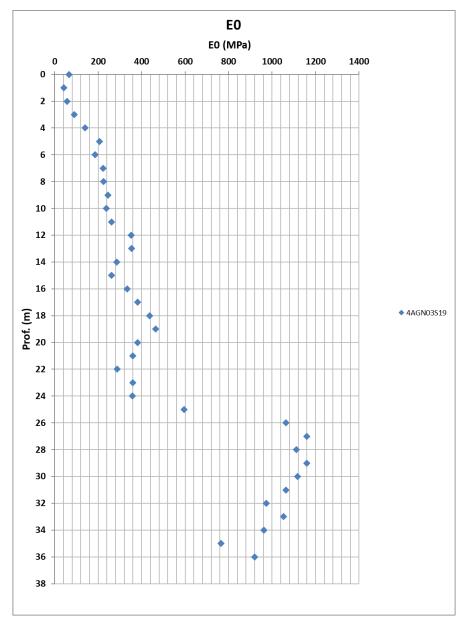


Figura 40: Galleria Trinacria - TRVa - modulo di Young da sismiche

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI	LLEGAME	NTO PALERI	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	D
Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40 D 07	CODIFICA CL	DOCUMENTO GN 03 0001	REV.	FOGLIO 64 di 201

8.3.1.14. Caratteristiche meccaniche: deformabilità (facies sabbiosa)

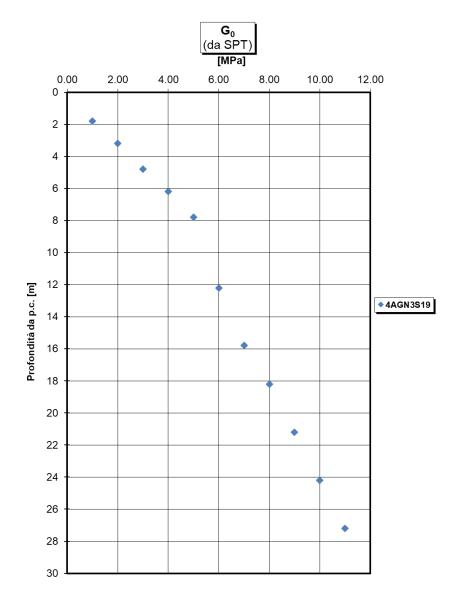


Figura 41: Galleria Trinacria - TRVa - G0 da NSPT

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA								
Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40 D 07	CODIFICA CL	DOCUMENTO GN 03 0001	REV.	FOGLIO 65 di 201				

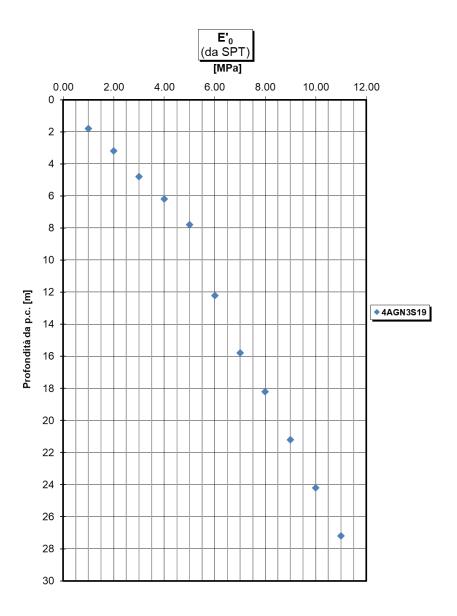


Figura 42: Galleria Trinacria – TRVa – modulo di Young da prove SPT

8.3.1.15. Caratteristiche di permeabilità (facies argillosa)

I valori di permeabilità riscontrati nel sondaggio 4AGNS19 a 8.75 m e 22.25m sono rispettivamente 5.74E-06 e 1.95E-06

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	66 di 201

8.3.1.16. Parametri geotecnici

Tabella 3 - Parametri derivati dalla caratterizzazione geotecnica - Galleria Trinacria - TRVa argilloso

COPERTURA	FORMAZIONE	γ	GSI	mi	σm	ν	E	c'	Cu	φ'
		[kN/m3]			[MPa]		[GPa]	[kPa]	[kPa]	[°]
0-15	TRVa	21	-	-	-	0.3	0.030-0.080	22	225	24
15-25	TRVa	21	-	-	-	0.3	0.050-0.270	22	225	24
25-50	TRVa	21	-	-	-	0.3	0,105-0.55	22	500	24

γ = peso dell'unità di volume dell'ammasso

GSI = geological strength index

mi = costante del materiale

σm = resistenza a compressione monoassiale

c' k = valore caratteristico della coesione efficace dell'ammasso

 ϕ'_k = valore caratteristico dell'angolo di attrito dell'ammasso

cuk = valore caratteristico della coesione non drenata

Tabella 4 – Parametri derivati dalla caratterizzazione geotecnica – Galleria Trinacria – TRVa sabbioso

COPERTURA	FORMAZIONE	γ	GSI	mi	σm	ν	Е	c'k	c _{u k}	φ' _k
[m]		[kN/m3]			[MPa]	İ	[GPa]	[kPa]	[kPa]	[°]
0-50	TRVa sabbioso	21	-	-	-	0.3	0-0.2	21-38	-	30-38

γ = peso dell'unità di volume dell'ammasso

GSI = geological strength index

mi = costante del materiale

 $\sigma m = resistenza \ a \ compressione \ monoassiale$

c' k = valore caratteristico della coesione efficace dell'ammasso

 $\phi \lq_k = valore \; caratteristico \; dell'angolo \; di \; attrito \; dell'ammasso \;$

cuk = valore caratteristico della coesione non drenata

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 07
 CL
 GN 03 0001
 C
 67 di 201

8.6 Valori caratteristici utilizzati nelle analisi

Tabella 5 – Intervallo dei parametri geotecnici

Sezione		pk	Z_0	$h_{\rm w}$	σ_{o}	$p_{\mathrm{w}0}$	p_{wR}	$R_{\rm w}$	γ	c'k	ϕ ' _k	c _{u k}	$E_{\mathbf{k}}$	E_{uk}
di analisi	Unità	[km]	[m]	[m]	[MPa]	[MPa]	[MPa]	[m]	[kN/m³]	[MPa]	[°]	[MPa]	[MPa]	[MPa]
D1	TRV	25400	50	-	1,05	-	-	-	21	-	-	0,500	-	250
D2	TRV	25150	100	40	2,2	0.4	-	-	22	150	18	0,594	300	297
D3	TRV	23850	200	35	4,4	0.35	-	-	22	300	16	1,188	600	594
D4	TRV	19600	300	33.6	6,6	0.34	-	-	22	421	14	1,782	900	891
D5	TRV	20150	400	0	8,8	0	-	-	22	85	22	2,376	1200	1800*
D6	TRV	20300	500	0	11	0	-	-	22	-	-	2,970	-	1485
D7	TRV	25150	600	0	13.2	0	-	-	22	85	22	3,564	2000	1800

Z₀ = copertura rispetto al piano dei centri della galleria

h_w= carico idraulico

 σ_0 = tensione totale iniziale al livello del cavo

 p_{w0} = pressione interstiziale al livello del cavo in condizioni indisturbate

pwR = pressione interstiziale sul profilo di scavo

 R_w = raggio di influenza idraulica oltre il quale si ristabilisce p_{w0}

γ = peso dell'unità di volume dell'ammasso

c'k = valore caratteristico della coesione efficace dell'ammasso

 ϕ'_k = valore caratteristico dell'angolo di attrito dell'ammasso

 $c_{u\,k}$ = valore caratteristico della coesione non drenata

E_k = valore caratteristico del modulo elastico dell'ammasso

E_{u k} = valore caratteristico del modulo elastico non drenato dell'ammasso

Le analisi sono svolte con riferimento allo scavo di una galleria di raggio equivalente Req pari a 4,65m.

9 FASE DI DIAGNOSI

Nella fase di diagnosi, sulla base del modello geotecnico scaturito dagli studi e dalle indagini effettuati nella fase conoscitiva, si procede alla previsione della risposta tensio-deformativa dell'ammasso allo scavo, in assenza di interventi di stabilizzazione. La valutazione della risposta deformativa dell'ammasso allo scavo è condotta con riferimento alle tre categorie di comportamento fondamentali individuate nel metodo ADECO-RS (0), di seguito brevemente richiamate, sulla base delle quali il tracciato sotterraneo è suddiviso in tratte a comportamento deformativo omogeneo.

9.1 Classi di comportamento del fronte di scavo

Secondo l'approccio ADECO-RS (0) la previsione dell'evoluzione dello stato tensionale a seguito dell'apertura di una galleria è possibile attraverso l'analisi dei fenomeni deformativi, che forniscono indicazioni sul comportamento della cavità nei riguardi della stabilità a breve e a lungo termine. Dati sperimentali e analisi teoriche hanno dimostrato che il comportamento della cavità è significativamente condizionato, oltre che dalle caratteristiche geometriche della galleria stessa e dai carichi litostatici, anche dalle caratteristiche di resistenza e di rigidezza del nucleo d'avanzamento, inteso come il volume di terreno a monte del fronte di scavo. Se il nucleo non è costituito da materiale sufficientemente rigido e resistente da mantenere in campo elastico il proprio comportamento tensio-deformativo, si sviluppano fenomeni deformativi e plasticizzazioni rilevanti in avanzamento, a cui consegue l'evoluzione verso condizioni di instabilità del fronte e del cavo. Se, invece, il comportamento del nucleo d'avanzamento si mantiene in campo elastico, il nucleo stesso svolge un'azione di precontenimento del cavo, che si mantiene a sua volta in condizioni elastiche, conservando le caratteristiche di massima resistenza del materiale attraversato e quindi configurazioni di stabilità.

Sulla base di tali considerazioni, il comportamento del nucleo-fronte di scavo, al quale è legato quello della cavità, può essere sostanzialmente ricondotto alle seguenti tre categorie:

Categoria A: nucleo-fronte stabile

Tale categoria corrisponde alla condizione in cui lo stato tensionale nel terreno al fronte e al contorno della cavità non supera le caratteristiche di resistenza dell'ammasso; in tal caso le deformazioni sono prevalentemente elastiche, di piccola entità e tendono ad esaurirsi rapidamente con la distanza dal fronte. Il fronte di scavo e il cavo sono stabili e quindi non si rendono necessari interventi preventivi di stabilizzazione, se non localizzati e in misura ridotta. Il rivestimento definitivo costituisce il margine di sicurezza per la stabilità a lungo termine.

Categoria B: nucleo-fronte stabile a breve termine

Tale categoria corrisponde alla condizione in cui lo stato tensionale nel terreno al fronte e al contorno della cavità, a seguito delle operazioni di scavo, raggiunge la resistenza dell'ammasso. I fenomeni deformativi tensioni sono di

tipo elasto-plastico, di maggiore entità rispetto al caso precedente. Nell'ammasso può prodursi una eventuale riduzione delle caratteristiche di resistenza con decadimento verso i parametri residui. La risposta tensio-deformativa può essere opportunamente controllata con adeguati interventi di preconsolidamento del fronte e/o di consolidamento al contorno del cavo. In tal modo si fornisce l'opportuno contenimento all'ammasso perché mantenga un comportamento stabile. Nel caso non si prevedano interventi, lo stato tensio-deformativo può evolvere verso situazioni di instabilità del cavo in fase di realizzazione. Il rivestimento definitivo costituisce il margine di sicurezza per la stabilità a lungo termine.

Categoria C: nucleo-fronte instabile

Tale categoria corrisponde alla condizione in cui, superata la resistenza del terreno, i fenomeni deformativi evolvono molto rapidamente in campo plastico, producendo la progressiva instabilità del fronte di scavo e un incremento dell'estensione della zona dell'ammasso decompressa e plasticizzata al contorno della cavità, con rapido decadimento delle caratteristiche meccaniche del materiale. L'espansione della fascia di materiale decompresso al contorno del cavo deve essere contenuta prima dell'arrivo del fronte di scavo, mediante interventi di preconsolidamento in avanzamento, che consentono di creare artificialmente l'effetto arco per far evolvere la risposta tensio-deformativa verso configurazioni di stabilità.

9.2 Determinazione delle categorie di comportamento

Per la determinazione delle categorie di comportamento sono stati utilizzati due metodi di analisi:

- per le tratte ad alta copertura è stato utlizzato il metodo delle linee caratteristiche (o convergenzaconfinamento); tale metodo consente l'analisi 3D semplificata dello scavo di gallerie in relazione alle
 proprietà meccaniche dell'ammasso attraversato, alle caratteristiche geometriche dell'opera, agli interventi
 previsti di precontenimento e contenimento, e all'installazione dei rivestimenti provvisori e definitivi. Nella
 fase di diagnosi, poiché la finalità è la valutazione del comportamento deformativo dell'ammasso in
 assenza di interventi di stabilizzazione, le analisi consistono nella valutazione della sola curva caratteristica
 del fronte (e del cavo) senza considerare l'interazione con i sostegni.
- Per le tratte a bassa copertura sono stati utlizzati i metodi di analisi della stabilità del fronte all'equilibrio limite.

La definizione delle sezioni analizzate è stata eseguita sulla base dei risultati della caratterizzazione geotecnica (vedi § 8.3), in funzione delle condizioni idrauliche previste e della distribuzione delle diverse classi di copertura lungo il tracciato.

9.2.1 Analisi con il metodo delle linee caratteristiche

Il comportamento delle strutture di rivestimento e dell'ammasso sono studiati separatamente: la curva caratteristica del cavo (o curva di convergenza) rappresenta l'evoluzione della convergenza radiale del cavo al diminuire della

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	70 di 201

tensione radiale agente sul contorno del profilo di scavo, espressa in funzione del tasso di deconfinamento λ con cui è simulato l'effetto dello scavo in avanzamento; la curva caratteristica dei sostegni (o curva di confinamento) rappresenta l'evoluzione della loro convergenza radiale al crescere della pressione radiale agente sugli stessi. L'intersezione tra la curva di convergenza e la curva di confinamento individua il punto di equilibrio rappresentativo dello stato finale della galleria rivestita.

Le ipotesi alla base del metodo rendono lo stesso adatto allo studio di gallerie profonde a sezione circolare.

Per l'ammasso si utilizza un modello costitutivo elasto-plastico, con criterio di resistenza di Mohr-Coulomb.

Ove necessario, per la definizione del comportamento deformativo della galleria in funzione della distanza dal fronte, si è utilizzato il Nuovo Metodo Implicito (NMI) (0, 0).

Per il calcolo della convergenza al fronte si utilizzano le soluzioni analitiche per cavità sferiche.

Per le analisi relative alla fase di diagnosi, finalizzate quindi alla sola valutazione del comportamento deformativo dell'ammasso per la determinazione della categoria di comportamento, non viene presa in considerazione l'interazione con i sostegni, per cui la soluzione del problema è ridotta alla valutazione della sola curva caratteristica del fronte (e del cavo) in assenza di interventi.

Sezioni analizzate

Nelle tabelle seguenti sono riepilogate le sezioni analizzate con i relativi dati di input utilizzati per il calcolo.

Tabella 6 - Sezioni analizzate con il metodo delle curve caratteristiche: dati di input

Sezione		pk	Z_0	hw	σ_{o}	p_{w0}	p_{wR}	Rw	γ	c'k	ϕ 'k	Cu k	$E_{\mathbf{k}}$	E _{u k}
di analisi	Unità	[km]	[m]	[m]	[MPa]	[MPa]	[MPa]	[m]	[kN/m³]	[MPa]	[°]	[MPa]	[MPa]	[MPa]
D1	TRV	25400	50	-	1,05	-	-	-	21	-	-	0,500	-	250
D2	TRV	25150	100	40	2,2	0.4	-	-	22	150	18	0,594	300	297
D3	TRV	23850	200	35	4,4	0.35	-	-	22	300	16	1,188	600	594
D4	TRV	19600	300	33.6	6,6	0.34	-	-	22	421	14	1,782	900	891
D5	TRV	20150	400	0	8,8	0	-	-	22	85*	22*	2,376	1200	1188
D6	TRV	20300	500	0	11	0	-	-	22	-	-	2,970	-	1485
D7	TRV	25150	600	0	13.2	0	-	-	22	85*	22*	3,564	1800	1782

 Z_0 = copertura rispetto al piano dei centri della galleria

h_w= carico idraulico

 σ_o = tensione totale iniziale al livello del cavo

 p_{w0} = pressione interstiziale al livello del cavo in condizioni indisturbate

 p_{wR} = pressione interstiziale sul profilo di scavo

 R_w = raggio di influenza idraulica oltre il quale si ristabilisce p_{w0}

γ = peso dell'unità di volume dell'ammasso

c'_k = valore caratteristico della coesione efficace dell'ammasso

φ'_k = valore caratteristico dell'angolo di attrito dell'ammasso

c_{u k} = valore caratteristico della coesione non drenata

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	71 di 201

E_k = valore caratteristico del modulo elastico dell'ammasso

E_{u k} = valore caratteristico del modulo elastico non drenato dell'ammasso

Le analisi sono svolte con riferimento allo scavo di una galleria di raggio equivalente R_{eq} pari a 4,65m.

La rappresentazione delle curve caratteristiche delle sezioni di analisi eseguite è riportata integralmente in allegato.

Risultati delle analisi

I risultati delle analisi sono stati esaminati alla luce di due aspetti:

- confronto tra la resistenza a compressione monoassiale dell'ammasso σ_c e la pressione critica al fronte $p_c = (3\sigma_o 2\sigma_c) / (1 + 2K_p)$, che individua il passaggio dal comportamento elastico a quello plastico,
- sviluppo dei fenomeni deformativi e di plasticizzazione nella sezione al fronte e al contorno del cavo.

I risultati delle analisi, riassunti nella tabella seguente, mostrano:

Il comportamento allo scavo è instabile con tendenza all'instabilità a coperture maggiori

Tabella 7 - Risultati delle analisi

Sezione	u_F	u_F/R_{eq}	R _{PF}	R_{PF}/R_{eq}	u∞	R _P	Criterio	Criterio
di analisi	[m]	[%]	[m]	[-]	[m]	[m]	u _F /R _{eq}	R _{pl F} /R _{eq}
D1	1.02	0.22	4.65	1	0.047	7.8	В	С
D2	4,33	0.93	8.3	1.8	20.77	17.7	С	С
D3	3,72	0.80	8.4	1.8	17.9	17.7	С	С
D4	4.29	0.92	8.4	1.8	20.61	17.7	С	С
D5	4.33	0.93	8.4	1.8	20.77	17.7	С	С
D6	4.33	0.93	8.4	1.8	20.77	17.7	С	С
D7	4.33	0.93	8.4	1.8	20.77	17.7	С	С

u_F = convergenza al fronte (soluzione cavità sferica)

 R_{PF} = raggio plastico al fronte

 u_{∞} = convergenza finale del cavo

R_P = raggio plastico finale al contorno del cavo

R_{eq} = raggio di scavo equivalente della galleria (vedi tabella precedente)

^{*}i valori rappresentano una retta nel piano di Mohr-Coulomb che è secante rispetto il dominio curvilineo. I punti rappresentativi che appartengono alla retta sono: lo stato tensionale ottenuto dall'analisi Flac in condizioni non drenate in calotta e lo stato tensionale indisturbato nello stesso punto.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO CO	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA									
Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40 D 07	CODIFICA CL	DOCUMENTO GN 03 0001	REV.	FOGLIO 72 di 201					

9.2.2 Analisi della stabilità del fronte

Per la valutazione del comportamento deformativo del fronte nelle tratte a bassa copertura sono stati utilizzati i metodi di seguito descritti.

Metodo di Tamez & Cornejo (1984)

Il metodo all'equilibrio limite proposto da Tamez (1984, 0) è basato sull'ipotesi di risposta del fronte di scavo in condizioni drenate e pertanto il calcolo è eseguito in tensioni efficaci. Si ipotizza che al fronte si formi un meccanismo di rottura approssimabile mediante solidi prismatici, come mostrato in Figura 43, e si valuta il coefficiente di sicurezza FSF rispetto a tale condizione di collasso, come rapporto tra i momenti delle forze resistenti e i momenti delle forze agenti

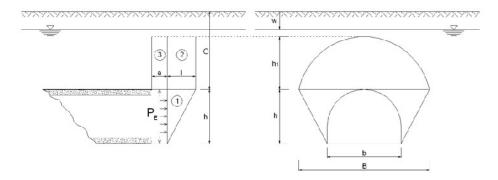


Figura 43 - Stabilità del fronte secondo il Metodo di Tamez (1984)

Talvolta la stabilità del solo prisma 3, gravante sulla zona di galleria non ancora sostenuta dal rivestimento, può risultare più critica rispetto all'insieme dei tre prismi; è definito in tal senso un secondo coefficiente di sicurezza FS₃, per cui ai fini della stabilità del fronte si assume il coefficiente di sicurezza minimo tra i due,

$$FSF = \frac{(A+B+C)}{D}$$

$$B = \left[\frac{2(\tau_{m2} - \tau_{m3})}{(1+a/l)^2} + 2\tau_{m3}\right] \times \frac{h_l}{b}$$

$$FSF = \frac{(A+B+C)}{D}$$

$$C = \left[\frac{3.4C_1}{(1+a/l)^2 \times \sqrt{K_A}}\right]$$

$$D = \left[1 + \frac{2h}{3Z(1+a/l)^2}\right] \times (\gamma Z - P_E)$$

Il fronte di scavo è considerato stabile per valori di FSF > 1,5, Per valori di FSF superiori a 2, il sostegno del fronte può considerarsi non necessario,

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA				0	
Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40 D 07	CODIFICA CL	DOCUMENTO GN 03 0001	REV.	FOGLIO 73 di 201

Metodo di Broms e Bennermark (1967)

Broms e Bennemark (0) hanno affrontato per la prima volta sperimentalmente il problema della stabilità del fronte, deducendo una relazione in grado di descrivere la stabilità di fori non supportati praticati su sostegni verticali in un terreno puramente coesivo (criterio di Tresca) in condizioni non drenate, in assenza di falda (Figura 44).

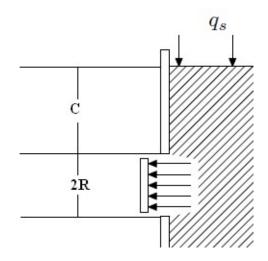


Figura 44 - Stabilità del fronte secondo il Metodo di Broms & Bennermark (Broms et al., 1967 (0))

Con questa relazione è stato definito il rapporto di stabilità N, dato da:

$$N = \frac{\sigma_s + \gamma z - \sigma_T}{c_u}$$

dove:

γ = peso dell'unità di volume del terreno

z = profondità dell'asse della galleria

 σ_s = sovraccarico eventualmente presente in superficie

 σ_T = eventuale pressione di sostegno applicata al fronte

 C_u = resistenza al taglio, in condizioni non drenate, alla profondità della galleria.

Sulla base di prove di estrusione eseguite in laboratorio e d'osservazioni in sito, Broms e Bennermark (1967) hanno concluso che il valore del rapporto di stabilità critico *N* perché si manifesti il collasso è pari a circa 6. A conclusioni simili giunse Peck (1969).

La seguente tabella fornisce una indicazione della relazione fra il numero di stabilità e le deformazioni attese:

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 07
 CL
 GN 03 0001
 C
 74 di 201

Tabella 8 - Relazione fra il numero di stabilità e le deformazioni attese

N	Deformazioni
< 1	Trascurabili
1 - 2	Elastiche
2 - 4	Elasto-plastiche
4-6	Plastiche
> 6	Collasso

Sezioni analizzate

Le sezioni analizzate risultano in prossimità degli imbocchi della galleria per coperture ridotte

In Tabella 9 e

Tabella 10 sono riepilogati tutti i dati di input utilizzati nelle analisi.

Tabella 9 - Sezione analizzate col metodo di Tamez per l'analisi di stabilità del fronte di scavo

Sezione di	E	pk.	Z	b	h	W	h ₁	γ 1	γ2	c'1	c'2	φ' _m
calcolo	Formazione	[km]	[m]	[m]	[m]	[m]	[m]	[kN/m³]	[kN/m³]	[kPa]	[kPa]	[°]
1	TRV	-	15	9.3	9.3	-	15	21	21	225	225	0
2	TRV	ı	25	9.3	9.3	ı	15	21	21	225	225	0

z = copertura rispetto alla calotta della galleria

b = larghezza dello scavo

h = altezza dello scavo

h₁= altezza sopra la calotta della galleria del meccanismo di collasso (se Z/h<3, h₁=Z)

W = profondità superficie piezometrica da piano campagna

 γ_1 = peso medio dell'unità di volume del terreno sopra la calotta (su h1)

γ₂= peso medio dell'unità di volume del terreno da scavare (su h)

c'₁ = valore caratteristico medio della coesione al fronte (su h)

c'₂ = valore caratteristico medio della coesione dalla calotta fino a h1

φ'm = valore caratteristico medio dell'angolo di attrito dei materiali presenti dall'arco rovescio fino a h1

L'analisi è stata svolta considerando:

 $K_0 = \text{coefficiente di spinta a riposo} = 1 - \text{sen } \phi$

 $K_a = \text{coefficiente di spinta attiva} = 1 - \sin \phi' / (1 + \text{sen } \phi')$

a = lunghezza non sostenuta = 0m

Tabella 10 - Sezione analizzate col metodo di Broms e Bennermark per l'analisi di stabilità del fronte di scavo

Sezione	Formazione	pk.	Z	σ (Is	γ	0 ∰1	Cu k
di calcolo		[km]	[m]	[kPa]	$[kN/m^3]$	[kPa]	[kPa]
1	TRV	-	15	0	21	0	225
2	TRV	-	25	0	21	0	225

z = profondità dell'asse della galleria

Risultati delle analisi

Per l'analisi eseguita con il metodo di Tamez i risultati sono stati esaminati in funzione dei valori dei coefficienti di sicurezza FSF e FS₃ calcolati secondo quanto riportato nel paragrafo precedente, In particolare per la definizione della categoria di comportamento si è preso a riferimento il seguente criterio:

Tabella 11: Criterio per la definizione della categoria di comportamento

FS = min (FSF; FS3)	<u>Classe di</u> comportamento
≥2	<u>A</u>
< 2 e ≥ 1,5	<u>B</u>
< 1,5	<u>C</u>

Per quanto riguarda l'analisi a 15m con Tamez nella formazione si ottiene FS=5.34 per la formazione TRV (cat A).

Per quanto riguarda l'analisi a 25m con Tamez nella formazione TRV si ottiene FS=3.4 per la formazione TRV (cat A).

Per quanto riguarda la formazione del TRV a 15m con Broms e Bennermark si ottiuene N=1.8 e quindi le deformazioni risultano in campo elastico.

Per quanto riguarda la formazione del TRV a 25m con Broms e Bennermark si ottiuene N=2.8 e quindi le deformazioni risultano in campo elasto-plastico.

Si rimanda in Allegato per maggiori informazioni.

σ_s= sovraccarico eventualmente presente in superficie

γ = peso dell'unità di volume del terreno

 $[\]sigma_{\!\scriptscriptstyle T}\!\!=\!$ eventuale pressione di sostegno applicata al fronte

c_u= peso medio dell'unità di volume del terreno sopra la calotta (su h1)

9.3 Definizione delle tratte a comportamento tensio-deformativo omogeneo

Sulla base dei risultati delle analisi sopra descritte, esaminati in modo critico tenendo conto dell'affidabilità dei dati di ingresso in termini di parametri di ammasso (rigidezza e resistenza), delle condizioni idrauliche al contorno, di eventuali variabilità attese lungo il tracciato della galleria e di possibili conseguenze per comportamenti imprevisti, è stato possibile concludere che:

- per la Galleria Trinacria si prevede:
 - o nel tratto interessato dalla formazione TRV, è atteso un comportamento del nucleo-fronte di scavo di categoria C (Instabile);

Le previsioni di comportamento lungo il tracciato della galleria sono illustrate in forma sintetica nel "Profilo geotecnico – Galleria Trinacria" (0).

10 FASE DI TERAPIA

Nel presente capitolo sono definiti gli interventi necessari per garantire la stabilità del cavo a breve e a lungo termine, in accordo con le indicazioni provenienti dalla fase conoscitiva e dall'analisi del comportamento allo scavo in assenza di interventi (fase di diagnosi).

10.1 Scelta del metodo di scavo

La scelta di uno scavo meccanizzato garantisce la stabilità del fronte e del cavo in modalità a fronte chuso ed in pressione anche in contesti geomeccanici difficili ed in presenza di falda apportando il minimo disturbo e garantendo anche produzioni di decine di metri al giorno, e quindi idonea per gallerie molto lunghe come quella in esame.

10.2 Scavo meccanizzato

Scelta della tipologia di TBM

La scelta di una TBM – EPB consente l'applicazione di uno scavo meccanizzato a fronte chiuso in contesti geomeccanici i più disparati adattandosi in modo affidabile anche in condizioni di estrema variabilità geomeccanica, come nel caso in esame.

Sezione di avanzamento

La sezione tipo di avanzamento in scavo meccanizzato fa riferimento ad una configurazione standard per comportamenti d'ammasso tipo C.

La sezione tipo ha le seguenti caratteristiche:

- raggio interno: 4,00 4.05 m
- raggio estradosso: 4.50 m
- diametro scavo: 4,7 m (in testa)
- macchina scudata dotata di conicità radiale centimetrica (differenza di raggio fra testa e coda)
- sovrascavo permanente tramite gauge cutters (4.70m in testa)
- sovrascavo eccezionale in testa (tramite copy cutter). Totale sovrascavo 5-10cm
- tipologia anello: universale
- numero conci: 6+1
- spessore conci: 45cm, 50cm
- lunghezza conci: 1,5m

• guarnizioni in EPDM integrate su ciascun concio per garantire la tenuta idraulica tra i giunti (sia longitudinali che radiali)

Si è scelto di adottare un anello di tipo universale, che consente, mediante la semplice rotazione attorno al proprio asse di un anello rispetto al precedente, di sfalsare i giunti longitudinali e di seguire l'andamento plano-altimetrico del tracciato e di apportare le eventuali necessarie correzioni in corso d'opera, senza ricorrere ad elementi speciali.

Per una rappresentazione completa della sezione in scavo meccanizzato e del rivestimento in conci prefabbricati si rimanda agli specifici elaborati grafici di progetto.

Per i conci prefabbricati di altezza pari a 45 cm è prevista una classe di resistenza del calcestruzzo RCK55 e un'incidenza dell'armatura di circa 72-88 kg/m³ di rivestimento (2 classi di armatura, rispettivamente classe IV ed III) mentre per i conci di altezza pari a 50 cm è prevista una classe di resistenza del calcestruzzo RCK67 e RCK75 e un'incidenza dell'armatura di circa 113 kg/m³ di rivestimento (2 classi di armatura, rispettivamente classe II ed I)

Modalità di avanzamento

Si prevede una modalità chiusa di avanzamento per tutta la galleria con range di pressioni compresa fra 1bar e 5 bar con il valore massimo alle massime coperture e/o in presenza di battente idraulico.

Per il dettaglio delle modalità di avanzamento previste lungo il tracciato si rimanda all'elaborato "Profilo geotecnico" (0).

Di seguito si riporta, per ciascuna formazione, il range dei valori di pressione derivanti dalle verifiche di stabilità del fronte condotte.

Tabella 12 - Avanzamento in modalità chiusa - Valori della contropressione al fronte

Formazione	P _{min} [bar]	P _{max} [bar]
TRV	0	5

Tali valori risultano compatibili con quelli garantiti dalla tipologia di TBM prevista in progetto.

Nelle successive fasi di progettazione dovranno essere definiti nel dettaglio i valori di pressione al fronte lungo l'intero tratta in scavo.

Drenaggio della falda

Per la galleria Trinacria a lungo termine al fine di ridurre i carichi idrostatici sui rivestimenti, per coperture di terreno che vanno dai 400m ai 600m, che realmente si dovessero realizzare soprattutto nelle tratte eventualmente più permeabili della formazione in esame, si prevedono dei drenaggi provvisori dal rivestimento definitivo dei conci ed un contorno drenante com backfilling.

GALLERIA DI LINEA SEZIONE CON CONTORNO DRENANTE

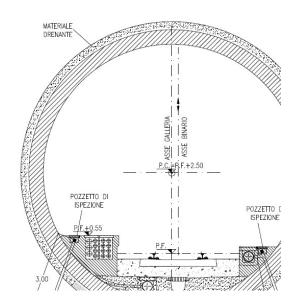


Figura 45 - Drenaggi dal rivestimento della galleria TBM

10.3 Caratteristiche dei materiali strutturali

Si riportano di seguito le principali caratteristiche dei materiali impiegati nelle opere in progetto, con l'indicazione dei valori di resistenza e deformabilità adottati nelle verifiche, nel rispetto delle indicazioni della Normativa vigente (Rif. [1]), del "Capitolato generale tecnico di appalto delle opere civili" (Rif. [7]) e del "Manuale di Progettazione delle opere civili" (Rif. [8])

Con riferimento ai rivestimenti in calcestruzzo, si sottolinea che la classe di resistenza riportata nelle tabelle che seguono è quella utilizzata ai fini della modellazione numerica e delle verifiche strutturali. Per la completa e puntuale definizione delle caratteristiche dei materiali previsti per la realizzazione dell'opera si rimanda all'elaborato di progetto Caratteristiche dei materiali - Note generali.

Galleria	Copertura [m]	Classe CLS	Altezza [m]	As [m^2]	A's [m^2]	Incidenza totale
Trinacria	100 m	45/55	0.45	14Ф14	14Ф14	73.27
Trinacria	200 m	45/55	0.45	14Ф16	14Ф16	89.36
Trinacria	300 m	55/67	0.5	14Ф20	14Ф20	114.65
Trinacria	400 m	55/67	0.5	14Ф20	14Ф20	114.65
Trinacria	600 m	70/85	0.5	15Ф30	15Ф30	250.24

Rivestimenti definitivi

Calcestruzzo per conci prefabbricati					
Classe di resistenza di calcolo	C 45/55				
Resistenza di progetto a compressione a 28 giorni	f_{cd} = 0.85 f_{ck} /1.5 = 25.5 MPa				
Modulo elastico a 28 giorni	$E_{cm} = 22000 (f_{cm}/10)^{0.3} = 36283 \text{ MPa}$				
Tensione massima in condizioni di esercizio (NTC 2018)	$\sigma_c = 0.45 f_{ck} = 20.25 \ MPa$ combinazione quasi permanente				

Calcestruzzo per conci prefabbricati				
Classe di resistenza di calcolo	C 55/67			
Resistenza di progetto a compressione a 28 giorni	f_{cd} = 0.85 f_{ck} /1.5 = 31.2 MPa			
Modulo elastico a 28 giorni	$E_{cm} = 22000 (f_{cm}/10)^{0.3} = 38214 \text{ MPa}$			
Tensione massima in condizioni di esercizio (NTC 2018)	$\sigma_c = 0,45 f_{ck} = 24.7 \; MPa$ combinazione quasi permanente			

Calcestruzzo per conci prefabbricati				
Classe di resistenza di calcolo	C 60/75			
Resistenza di progetto a compressione a 28 giorni	f_{cd} = 0.85 f_{ck} /1.5 = 34 MPa			
Modulo elastico a 28 giorni	$E_{cm} = 22000 (f_{cm}/10)^{0.3} = 39100 \text{ MPa}$			
Tensione massima in condizioni di esercizio (NTC 2018)	$\sigma_c = 0.45 f_{ck} = 27 \ MPa$ combinazione quasi permanente			

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	81 di 201

Acciaio per barre di armatura				
Tipo	B450C			
Tensione caratteristica di rottura	f _{tk} ≥ 540 MPa			
Resistenza di progetto	$f_{yd} = f_{yk}/\gamma_s = 391,3 \text{ MPa}$			
Tensione massima in condizioni di esercizio (NTC 2018)	$\sigma_{lim} = 0.80 \text{ f}_{yk} = 360 \text{ MPa}$			

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA						
Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40 D 07	CODIFICA CL	DOCUMENTO GN 03 0001	REV.	FOGLIO 82 di 201	

10.4 Analisi e verifica degli interventi al fronte e dei rivestimenti definitivi

Le soluzioni progettuali descritte nel capitolo precedente sono state analizzate per verificarne adeguatezza ed efficacia, con riferimento al modello geotecnico illustrato nel capitolo 8 e nel rispetto delle indicazioni della normativa vigente (Rif. [1]).

Le sezioni di analisi sono state definite sulla base della fase conoscitiva, individuando le condizioni più rappresentative anche in termini di copertura e condizioni idrauliche. Nella tabella seguente sono riepilogate le analisi eseguite:

Tabella 13 - Sezioni di analisi fasi di terapia – pressioni al fronte

Analisi n.	Sezione	progressiva	formazione	Condizione analisi
1	Cc1	-	TRV	Curva caratteristica 50m – pressione fronte 3 bar
2	Cc2	-	TRV	Curva caratteristica 100m – pressione fronte 3 bar
3	Cc3	-	TRV	Curva caratteristica 200m– pressione fronte 5 bar
4	Cc4	-	TRV	Curva caratteristica 300m– pressione fronte 5 bar
5	Cc5	-	TRV	Curva caratteristica 400m– pressione fronte 5 bar
6	Cc6	-	TRV	Curva caratteristica 500m– pressione fronte 5 bar
7	Cc7	-	TRV	Curva caratteristica 600m– pressione fronte 5 bar
8	Tamez	-	TRV	15m – no pressione al fronte
9	Tamez	ı	TRV	25m – no pressione al fronte
10	Broms e Bennermark	-	TRV	15m – no pressione al fronte
11	Broms e Bennermark	-	TRV	25m – no pressione al fronte

In ogni caso l'esito della Terapia (analisi 1-5) in termini di analisi svolte con le Curve Caratteristiche o i Metodi di Tamez e Broms e Bennermark è riportata in Allegato.

Tabella 14 - Sezioni di analisi fasi di terapia - rivestimenti definitivi e spinte sullo scudo

Analisi n.	Sezione	progressiva	formazione	Condizione analisi
10	axiTRV100m	_	TRV	Assialsimmetrico copertura 100m
11	axiTRV200m_s	_	TRV	Assialsimmetrico copertura 200m – sovrascavo 5cm
12	axiTRV300m_s	_	TRV	Assialsimmetrico copertura 300m – sovrascavo 5cm
13	axiTRV400m_s	_	TRV	Assialsimmetrico copertura 400m – sovrascavo 5cm
				Assialsimmetrico copertura 600m – sovrascavo
14	axiTRV600m_s	-	TRV	10cm
15	TRV100m	25150	TRV	Piana copertura 100m
16	TRV200m_s	23850	TRV	Piana copertura 200m – sovrascavo 5cm
17	TRV300m_s	19600	TRV	Piana copertura 300m – sovrascavo 5cm
18	TRV400m_s	20150	TRV	Piana copertura 400m – sovrascavo 5cm
19	TRV600m s	20300	TRV	Piana copertura 600m – sovrascavo 10cm

Le sezioni di analisi sono state individuate perché ritenute più significative del comportamento deformativo in base all'esito delle curve caratteristiche.

Nei successivi capitoli si esplicitano le verifiche effettuate ed il relativo esito.

10.4.1 Criteri di verifica

Stabilità del fronte

Le analisi di stabilità del fronte e del cavo sono mirate alla valutazione dello sviluppo di possibili meccanismi di collasso, con o senza propagazione verso la superficie, o di deformazioni e spostamenti elevati al contorno ed in superficie. Trattandosi di una verifica per uno stato limite ultimo di tipo GEO, si è utilizzato l'Approccio 1-Combinazione 2 (A2+M2+R2), con R2 =1.

La verifica della stabilità del fronte è condotta applicando i coefficienti parziali sui parametri di resistenza dell'ammasso e valutando il risultato della verifica in funzione della formulazione del particolare metodo di calcolo adottato (si può fare riferimento ad esempio, al fattore di stabilità, o alla pressione di equilibrio sul fronte, o al coefficiente di sicurezza globale o a sviluppo di elevate deformazioni/plasticizzazioni al fronte).

Le pressioni applicate al fronte, sono simulate mediante un incremento di coesione equivalente del fronte (Δc), attraverso il calcolo della resistenza di mezzo nucleo secondo le seguenti relazioni:

$$\Delta c = \frac{1}{2} \sigma_{TBM} tan \left(45 + \frac{\varphi}{2} \right)$$

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	84 di 201

$$R_{1/_{2}nucleo_TBM} = (c + \Delta c)\sqrt{K_{p}}$$

con:

$$K_p = \frac{1 + sen\varphi}{1 - sen\varphi}$$

Nella fase di terapia quindi, anche per le pressioni applicate al fronte tramite TBM, si utilizzano i parametri caratteristici abbattuti secondo i coefficienti M2 di normativa.

Le valutazioni relative all'effetto dei consolidamenti sono condotte a partire dai parametri geotecnici caratteristici e adottando coefficienti parziali unitari sulle resistenze dei materiali; agli incrementi di coesione equivalente calcolati come sopra descritto può quindi essere applicato lo stesso coefficiente parziale previsto per la coesione dell'ammasso.

Per quanto riguarda lo scavo meccanizzato nelle analisi si tiene conto direttamente dell'eventuale pressione applicata dalla macchina..

Le analisi di stabilità del fronte di scavo sono condotte utilizzando:

- il metodo delle linee caratteristiche (per le sezioni ad alta copertura);
- i metodi di analisi della stabilità del fronte (per le sezioni a bassa copertura).

Anche in merito alla risposta allo scavo (in condizioni drenate o non drenate), sono riproposti gli stessi criteri adottati nella fase di diagnosi in funzione delle formazioni interessate.

Interazione opera-terreno

Il comportamento del sistema opera-terreno è analizzato nelle diverse fasi costruttive, fino alla configurazione finale, e in condizioni di esercizio. Le analisi sono mirate alla previsione del comportamento deformativo al contorno dello scavo e dei carichi attesi sui sostegni provvisori e sui rivestimenti definitivi, e, nel caso delle gallerie superficiali, alla valutazione degli effetti indotti al piano campagna. Le analisi consentono, pertanto, di verificare:

- stati limite ultimi per raggiungimento della resistenza del terreno/ammasso roccioso interessato dallo scavo (stato limite ultimo di tipo GEO), con lo sviluppo di fenomeni di instabilità del fronte o di deformazioni e spostamenti elevati al contorno ed in superficie;
- stati limite ultimi relativi al raggiungimento delle resistenze degli elementi strutturali che costituiscono gli interventi di stabilizzazione, del rivestimento di prima fase e del rivestimento definitivo (stato limite ultimo di tipo STR);
- stati limite di esercizio.

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	85 di 201

Per le verifiche di <u>stati limite ultimi STR</u>, le analisi di interazione opera – terreno sono condotte con i valori caratteristici dei parametri geotecnici e applicando i coefficienti parziali amplificativi delle azioni all'effetto delle azioni (le sollecitazioni negli elementi strutturali). Ciò significa adottare la Combinazione 1 dell'Approccio 1 (A1+M1+R1), nella quale i coefficienti sui parametri di resistenza (M1) e sulla resistenza globale del sistema (R1) sono unitari, mentre le azioni permanenti e le azioni variabili sono amplificate mediante i coefficienti del gruppo A1.

Pertanto, con la combinazione dei carichi fondamentale si procede secondo questo schema:

- verifiche SLU interventi di stabilizzazione: $\gamma_E = 1,3$ applicato alle caratteristiche delle sollecitazioni N, M,T,
- verifiche SLU rivestimento di prima fase: $\gamma_E = 1,3$ applicato alle caratteristiche delle sollecitazioni N, M,T,
- verifiche SLU rivestimento definitivo: $\gamma_E = 1,3$ applicato alle caratteristiche delle sollecitazioni N, M, T.

Per la verifica degli <u>stati limite di esercizio (SLE)</u> del rivestimento definitivo in calcestruzzo armato, le analisi numeriche sono condotte con i valori caratteristici delle azioni e dei parametri geotecnici, adottando le pertinenti combinazioni dei carichi per la verifica di fessurazione e la verifica delle tensioni di esercizio, secondo quanto previsto dal D.M. 17/01/2018 (Rif. [1]).

Le analisi di interazione opera-terreno sono condotte con <u>modelli numerici bidimensionali</u> <u>o pseudo tridimensionali</u> (assialsimmetrici) mediante il codice di calcolo [Itasca FLAC v.8].

In tale tipologia di analisi lo scavo della galleria è simulato rilasciando in modo uniforme un sistema di forze equivalenti applicate sul contorno del profilo di scavo, tenendo conto della variazione del tasso di confinamento in funzione della distanza della sezione di calcolo dal fronte; in questo modo il problema tridimensionale dello scavo della galleria è ricondotto ad un problema piano, con la possibilità di valutare le azioni sulle strutture di rivestimento al progredire degli avanzamenti.

L'effetto delle pressioni al fronte di scavo è tenuto in conto in modo indiretto, nella definizione della percentuale di rilascio delle forze forze equivalenti applicate sul contorno del profilo di scavo.

Le strutture di rivestimento definitivo della galleria sono simulate con elementi "beam".

Interazione opera-terreno con analisi sismica pseudostatica

Definizione dell'azione sismica di progetto

Per la definizione dell'azione sismica di progetto, l'effetto della risposta sismica locale si valuta mediante specifiche analisi nelle quali l'azione sismica è definita in termini di storia temporale di accelerazione (cfr. § 7.11.3.1 del DM 17/01/2018).

In alternativa, l'effetto della risposta sismica locale può essere valutato con approccio semplificato (cfr. § 3.2.2 del DM 17/01/2018) basato sulla classificazione del sottosuolo in base ai valori della velocità di propagazione delle onde di taglio, qualora le condizioni stratigrafiche e le proprietà dei terreni risultino chiaramente riconducibili alle

categorie definite nella Tab. 3.3.II del DM 17/01/2018. In questo caso, il moto sismico in superficie è definito mediante l'accelerazione massima a_{max} attesa.

In entrambi i casi, una volta definita l'azione sismica di progetto, è possibile stimare gli effetti indotti mediante un approccio di tipo pseudo-statico. Nello specifico, per le opere in sotterraneo, gli effetti indotti dal sisma sono riprodotti sotto forma di una deformazione di taglio massima, agente alla quota della galleria, ricavata a partire dall'azione sismica di progetto.

La possibilità di ricorrere ad approccio semplificato deve essere verificata per ogni caso specifico: in alternativa è necessario ricorrere a specifiche analisi di Risposta Sismica Locale. Di seguito vengono fornite indicazioni per la valutazione della risposta sismica locale sia nel caso di ricorso ad approccio semplificato sia mediante specifiche analisi con accelerogrammi.

Nel caso in cui l'effetto della risposta sismica sia valutato con approccio semplificato, l'accelerazione orizzontale massima attesa al sito è valutata con la relazione (DM 17/01/2018):

$$a_{\max} = S_s \cdot S_T \cdot \left(\frac{a_g}{g}\right)$$

Dove:

- a_g è l'accelerazione orizzontale massima attesa su sito di riferimento rigido;
- S_S è il fattore di amplificazione stratigrafica del terreno, funzione della categoria del sottosuolo di fondazione e dei parametri sismici F_0 e a_g/g (Tabella 3.2.IV del D.M. 17/01/2018);
- S_T è il fattore di amplificazione che tiene conto delle condizioni topografiche, il cui valore dipende dalla categoria topografica e dall'ubicazione dell'opera (Tabella 3.2.V del D.M. 17/01/2018).

L'accelerazione orizzontale massima a_g è funzione delle coordinate geografiche del sito e del tempo di ritorno T_R valutato a partite dalla probabilità di superamento dell'azione sismica (P_{VR}) attribuita allo stato limite ultimo considerato e del periodo di riferimento dell'azione sismica dell'opera in progetto (V_R), secondo la seguente espressione:

$$T_R = -\frac{V_R}{\ln(1 - P_{V_R})}$$

La valutazione del livello di deformazione indotta dal sisma e del corrispondente modulo di deformazione al taglio mobilitato è condotta adottando un modello costitutivo di tipo iperbolico in accordo alla formulazione di Hardin & Drnevich (Hardin, B.O., and Drnevich, V.P. (1972) - *Shear modulus and damping in soils: design equations and curves*) riportata nel seguito:

$$G/G_{max} = 1 / (1+\gamma_h)$$
 (1)

dove
$$\gamma_h = \gamma / \gamma_{ref} \cdot [k_1 + a \cdot e^{(-b \cdot (\gamma / \gamma^{ref}))}]$$

con: $\gamma_{ref} = \tau_{max} / G_{max}$ deformazione di riferimento;

 G_{max} modulo di deformazione al taglio iniziale $G_{max} = \rho \cdot V_s^2$

 au_{max} tensione tangenziale massima; γ livello di deformazione corrente;

k₁, a, b parametri di forma del modello adottato;

Il modello iperbolico, caratterizzato nel piano τ - $\gamma\tau$ — γ dai parametri pendenza iniziale (G_{max}) e asintoto (\Box_{max}), consente con un approccio semplificato di tenere conto del comportamento non lineare del terreno. Il modello è calibrato con curve di decadimento attraverso il parametro \Box_h . I parametri k_l , a, b, sono parametri di forma attraverso i quali adattare il modello non lineare alle curve di letteratura o, qualora disponibili, curve di decadimento derivanti da specifiche prove di laboratorio.

Il valore della resistenza massima del terreno è calcolato alla quota del piano dei centri secondo il criterio di Mohr-Coulomb:

$$\tau_{max} = c' + \sigma'_{v} \cdot tan(\phi')$$

Il metodo proposto è basato sulla stima delle deformazioni $\Box(z)$ indotte dal sisma nel sottosuolo, valutando in maniera statica la distribuzione delle accelerazioni, delle tensioni tangenziali e quindi della deformazione ad una generica profondità z, tenendo in conto il decadimento del modulo di taglio.

Il valore della tensione tangenziale corrispondente al livello di deformazione corrente è pari a:

$$\tau = G_{\text{max}} \cdot (1 / (1 + \gamma_h)) \cdot \gamma < \tau_{\text{max}}$$
 (2)

Il valore della tensione tangenziale massima indotta dal sisma alla profondità z viene valutata attraverso la seguente relazione, basata sull'equilibrio di una colonna di terreno sottoposta ad un'accelerazione sismica $a_{max,s}$ (in cui le forze di inerzia sono bilanciate dalla risultante delle tensioni tangenziali alla base):

$$\tau_{\text{max,sis}}(z) = r_{\text{d}}(z) \cdot a_{\text{max}} / g \cdot \sigma_{\text{v}}(z)$$

dove:

- fattore di attenuazione con la profondità assunto pari a $r_d(z) = 1-0.015 \cdot z$ (Iwasaki et al., 1978), che tiene in conto del sincronismo del moto sismico;
- a_{max} accelerazione massima a piano campagna;
- $\sigma_v(z)$ tensione geostatica verticale totale.

Il livello di deformazione indotto dal sisma è quello associato al valore di $\square_{max,sis}$ letto nel legame costitutivo (2). In riferimento alle sezioni analizzate (§ 10.4) si riportano i valori delle grandezze necessarie per la definizione dell'azione sismica:

Tabella 15 Parametri per la definizione dell'azione sismica per le sezioni considerate

		Sezioni	
	Sezione TBM con Protesi	Sezione TBM minime coperture	Sottoattraversamento SS90
Formazione	ASP	FAE	FAE
Progressiva	31+330	37+780	40+910
Coperture (m)	5.65	30	6.5
P _{VR} (%)	10	10	10
V _N (anni)	75	75	100
c _U (-)	1.5	1.5	2
V _R (anni)	112.5	112.5	200
T _R (anni)	1068	1068	1898
a _g (-)	0.235	0.261	0.348
F ₀ (-)	2.499	2.454	2.404
Categoria di sottosuolo	С	В	В
S _S (-)	1.347	1.144	1.066
Categoria topografica	T2	T1	T2
S _T (-)	1.2	1.0	1.2
a max (g)	0.380	0.299	0.445

Nel caso in cui l'effetto della risposta sismica locale sia valutato mediante specifiche analisi, con la definizione di storie temporali di accelerazione, è possibile ottenere informazioni delle grandezze di interesse (deformazione, modulo di taglio, tensione tangenziale) in maniera puntuale con la profondità.

L'analisi monodimensionale può essere svolta con un codice di calcolo che valuta la risposta sismica di un deposito nell'ipotesi di comportamento del terreno lineare equivalente ed in condizioni di free-field (trascurando l'interazione cinematica tra terreno e struttura).

I dati necessari per tale analisi sono l'input sismico ed un modello geotecnico di sottosuolo caratterizzato appositamente per l'analisi da svolgere fino ad uno strato individuabile come "bedrock" (coincidente con la profondità alla quale le velocità delle onde di taglio raggiungono il valore di 800 m/s). L'input sismico si basa sulla definizione dello spettro elastico di risposta di riferimento (che rispecchia sinteticamente l'azione simica di base in funzione dello stato limite e del tempo di ritorno considerati) e la selezione di accelerogrammi spettro-compatibili. Per la selezione di accelerogrammi sono presi a riferimento accelerogrammi reali, effettivamente registrati durante eventi sismici, coerentemente con gli intervalli di magnitudo e distanza della sorgente ricavati dalle mappe di disaggregazione della pericolosità per la PGA (5% di probabilità di superamento in 50 anni) assegnando una tolleranza di compatibilità inferiore e superiore.

Analisi sismiche pseudo-statiche in direzione trasversale

Gli incrementi di sollecitazione mediante soluzioni analitiche in forma chiusa nelle ipotesi di galleria circolare in semispazio lineare ed isotropo sono stimati a partire dalla deformazione di taglio massima stimata (Wang J.N. (1993) - Seismic design of tunnels: a state-of-the-art approach) oppure, nel caso di geometrie complesse, implementando l'approccio pseudo-statico in un modello numerico.

Di seguito si riporta formulazione di Wang (Wang J.N. (1993) - Seismic design of tunnels: a state-of-the-art approach) per la forza circonferenziale massima ed il momento massimo che agiscono nella sezione trasversale della galleria nell'ipotesi di perfetta aderenza al contatto terreno-rivestimento:

$$M = \pm \frac{1}{K} \frac{E_m}{E_m} r^2 \chi$$
 $N_{\text{max}} = \pm K_2 \frac{E_m}{2(1+v)} r^2$

Dove:

$$K_{2} = 1 + \frac{F\left[\left(1 - 2v_{m}\right) - \left(1 - 2v_{m}\right)C\right] - \frac{1}{2}\left(1 - v_{m}\right)}{F\left[\left(3 - 2v_{m}\right) + \left(1 - 2v_{m}\right)C\right] + C\left[\frac{5}{2} - 8v_{m} + 6v_{m}^{2}\right]}$$

C e F sono rispettivamente le rigidezze relative a compressione e a flessione:

$$C = \frac{E_m (1 - v_l^2) r}{E_l t (1 + v_m) (1 - 2)}$$

$$E_m \left(1 - v_I^2\right) r^3$$

Le analisi sismiche pseudo-statiche in direzione trasversale sono state svolte sia in riferimento allo stato limite ultimo di salvaguardia della vita (SLV), valutando la compatibilità delle sollecitazioni con i domini di resistenza delle sezioni, sia rispetto allo stato limite di danno (SLD), garantendo per quest'ultimo un limite all'ampiezza delle fessure tale da non compromettere la durabilità dell'opera e imponendo limiti tensionali sia per l'acciaio che per il calcestruzzo.

Analisi sismiche pseudo-statiche in direzione longitudinale

La stima della deformazione in direzione longitudinale indotta da un evento sismico si basa sull'ipotesi di *free-field*, per la quale sono stimate le deformazioni nel terreno in assenza della struttura o dell'esecuzione dello scavo (deformazione che viene in seguito applicata interamente sul rivestimento della galleria stessa). Le deformazioni così stimate trascurano l'interazione terreno-struttura ma forniscono comunque una stima delle deformazioni indotte nell'opera (*ITA-AITES – Seismic design and analysis of underground structures*).

Nello studio degli effetti longitudinali si ipotizza un'onda sismica (armonica) piana che si propaga secondo un angolo di incidenza ϕ rispetto all'asse della galleria, in un mezzo elastico, isotropo ed omogeneo. Si fa riferimento all'angolo di incidenza critico (al quale corrisponde il valore massimo della deformazione) come misura di sicurezza nella stima dell'effetto dell'evento sismico in relazione alle sole onde di taglio essendo queste ultime

causa delle maggiori deformazioni ed essendo il tipo di onda governante (U.S. Department of Transportation – Federal Highway Administration – Technical Manual for Design and Construction of Road Tunnels).

Le formulazioni in forma chiusa di letteratura (Newmark, 1968 e Kuesel, 1969, St. John e Zahrah, 1987) stimano la deformazione assiale ε^a e la deformazione flessionale in direzione longitudinale ε^b assimilando la galleria ad una trave elastica:

$$\varepsilon^a = \frac{V_s}{C_s} sen\phi \cos \theta$$

$$e^b = r \frac{a_s}{cos^3} ds$$

La deformazione totale può essere stimata come la somma delle due. Cautelativamente, Power et al. (1996) propongono di calcolare la deformazione totale in direzione longitudinale come somma della massima deformazione assiale e della massima deformazione flessionale:

$$\varepsilon^{ab} = \varepsilon_{\text{max}}^{a} + \varepsilon_{\text{max}}^{b} = \frac{V_{S}}{2C_{S}} +$$

L'ipotesi di free-field presuppone che la galleria si adatti completamente alle deformazioni del terreno e, sebbene conservativa, può fornire una stima ragionevole in quanto, nella maggior parte dei casi, la rigidezza longitudinale della galleria è considerato relativamente flessibile confrontata con quella dell'ammasso circostante (U.S. Department of Transportation – Federal Highway Administration – Technical Manual for Design and Construction of Road Tunnels).

Verifiche nei confronti di azioni eccezionali

Tra le azioni che si verificano solo eccezionalmente nel corso della vita nominale delle opere si considera quella di incendio. Per le verifiche di competenza si rimanda al documento specialistico di progetto.

10.5 Analisi e Verifica delle sezioni tipo

Il rivestimento della galleria di linea è realizzato con anelli in conci prefabbricati in calcestruzzo: ogni anello è composto da 7 conci dello spessore di 45 cm e 50 cm con raggio interno di 4.05 m per i conci da 45 cm e 4.0 m per quelli da 50 cm, e raggio esterno nominale di 4.7

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	91 di 201

La galleria ha un diametro nominale di scavo pari a circa 9.40

Il sovrascavo va da 0 a 10 cm.

La monoliticità dell'insieme è garantita dal fatto che i giunti di ciascun anello vengono sfalsati rispetto ai giunti dell'anello successivo, e dalla messa in opera di connettori di adeguata rigidezza fra i singoli anelli.

La tenuta idraulica è realizzata mediante l'adozione di guarnizioni continue annegate nei conci ed attraverso la scelta di un'idonea granulometria del calcestruzzo estruso di intasamento a tergo del rivestimento.

10.5.1 Requisiti conci rivestimento

I conci verranno realizzati in calcestruzzo C45/55 per coperture fino a 200m, mentre da 200 a 400m si utilizza la classe C55/67 per coperture mentre per coperture oltre i 400m si utilizza la classe di resistenza C60/75.

Lo studio di qualifica della miscela di calcestruzzo dei conci TBM verrà effettuato dal prefabbricatore incaricato di provvedere a definire il mix design ed ad effettuare le relative prove compatibilmente con la Normativa vigente.

Le prescrizioni di progetto si riferiscono alle seguenti caratteristiche:

- classe di resistenza: C45/55
- classe di esposizione ambientale: XA2
- massimo rapporto a/c (acqua/cemento): 0.4
- tipo e classe di cemento: III A 32.5 N / IV B 32.5 R
- classe di lavorabilità: S4
- classe di resistenza: C55/67
- classe di esposizione ambientale: XA2
- massimo rapporto a/c (acqua/cemento): 0.4
- tipo e classe di cemento: III A 32.5 N / IV B 32.5 R
- classe di lavorabilità: S4
- classe di resistenza: C60/75
- classe di esposizione ambientale: XA2
- massimo rapporto a/c (acqua/cemento): 0.4
- tipo e classe di cemento: III A 32.5 N / IV B 32.5 R
- classe di lavorabilità: S4

Le caratteristiche del mix-design e le modalità di getto del calcestruzzo all'interno dei casseri dovranno essere tali da garantire una distribuzione omogenea impedendo la segregazione e/o la creazione di vuoti, garantendo quindi la sagomatura ed integrità dei conci e la perfetta aderenza con tutte le barre d'armatura.

10.5.2 Requisiti miscela bicomponente

La miscela di tipo bi-componente viene utilizzata per il riempimento dello spazio anulare che si genera a tergo dei conci di rivestimento durante l'avanzamento dello scudo della TBM. Tale vuoto si crea per la differenza di diametro che si ha tra lo scudo e gli anelli di conci che compongono il rivestimento definitivo della galleria.

La miscela è costituita da:

- Una boiacca a base cementizia, di consistenza estremamente fluida, stabile volumetricamente ed a lungo mantenimento della lavorabilità.
- Un additivo accelerante, aggiunto alla boiacca immediatamente prima della sua iniezione, in grado di provocare una sua veloce gelificazione.

La miscela bi-componente presenta una serie di vantaggi rispetto ai sistemi di riempimento più tradizionali ed infatti il suo utilizzo si sta diffondendo sempre di più in progetti di scavo meccanizzato, sia in terreno sia in roccia.

Lo studio del mix-design di tale miscela devono garantire la fluidità nel breve termine e il sostegno necessario sia nel breve che nel lungo termine:

Stato fresco

- Fluidità iniziale della miscela: 30-45"
- Durabilità minima miscela base con inibitore: 72 h
- Bleeding: < 3% a 3 h dal confezionamento
- Bleeding: < 7% a 24 h dal confezionamento

Le prove richieste riguardano quindi la pompabilità della miscela, il mantenimento della lavorabilità per lunghi periodi, entrambe caratteristiche fondamentali per minimizzare il rischio di bloccaggio delle tubazioni.

Stato indurito

- Tempo di gelificazione compreso tra 5" e 15"
- Resistenza a compressione mono-assiale:

$$28 \text{ gg:} > 3.0 \text{ MPa}$$

Si richiede quindi un rapido sviluppo delle resistenze meccaniche, da misurare fino a 28 gg. E' importante avere una miscela con elevata stabilità volumetrica, per minimizzare il rischio di bloccaggio delle tubazioni e delle linee di pompaggio, e con una veloce e completa gelificazione in seguito all'aggiunta dell'additivo accelerante.

10.5.3 Verifiche statiche in fase transitoria – concio da 45 cm

In questo paragrafo verranno esaminate le condizioni più gravose a cui sono sottoposti i conci nelle fasi transitorie che precedono la posa in opera ed in particolare:

- Scasseratura
- Movimentazione
- Stoccaggio e trasporto
- Montaggio (sollevamento con erettore)

Oltre a queste, come condizione critica va considerata anche la fase di avanzamento dello scudo, in cui viene esercitata dai martinetti la necessaria spinta sui conci dell'ultimo anello di rivestimento posto in opera.

Si assume che per le prime due operazioni vengano effettuate quando il calcestruzzo ha raggiunto una resistenza caratteristica $Rck \ge 15 \text{ N/mm}2$.

Dopo un adeguato periodo di stoccaggio, allorché il calcestruzzo ha raggiunto la resistenza caratteristica di progetto (Rck ≥ 55 N/mm2), si procede al trasporto in cantiere.

La posa in opera in galleria avviene tramite apposito meccanismo erettore, disposto immediatamente a tergo del dispositivo di scavo.

Le verifiche vengono eseguite considerando le condizioni statiche più gravose e la classe di armatura minore (Classe II).

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

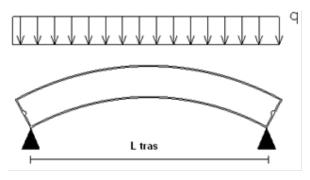
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	94 di 201

Scasseratura

Durante la fase di scasseratura, oltre al peso proprio del concio ed alla maggiorazione per carichi dinamici, si suppone la presenza delle forze di adesione alla superficie del cassero valutata, sulla base di esperienze analoghe, in circa 2.0 kN/m2.

Il calcolo delle sollecitazioni viene eseguito supponendo, cautelativamente, che il concio venga sollevato ai due lati

La rimozione dai casseri verrà effettuata solo dopo che il calcestruzzo abbia raggiunto la resistenza Rck di 15 N/mm2.


Si è ipotizzato che il concio venga agganciato e sollevato dai lati.

Le verifiche dei conci tengono conto delle loro effettive dimensioni; Lo sviluppo del singolo concio risulta pari a:

$$L_{dev} = 4.19 \text{ m}$$

La lunghezza trasversale del concio associata ad una trave equivalente posta su due appoggi all'estremità di intradosso, risulta pari a:

$$L_{tras} = 3.84 \text{ m}$$

I carichi che agiscono sul singolo concio sono:

$$P_p = 25 \text{ kN/m}^3 \cdot 0.45 \text{ m} \cdot 1.5 \text{ m} = 16.8 \text{ kN/m} \text{ (peso proprio)}$$

I P
$$_p = 0.4$$
 P $_p = 6.75$ kN/m (incremento dovuto all'effetto dinamico/vibrazioni)

 $P_a = 2 \cdot 1.5 \text{ m} = 3 \text{ kN/m}$ (incremento dovuto all'aderenza tra concio e cassero di 2 kN/m2)

$$P_{tot} = 26.55 \text{ kN/m}$$

Le sollecitazioni massime risultano:

$$M_1 = 26.55 \cdot 3.84^2 / 8 = 48.9 \text{ kNm}$$

$$V_1 = 26.55 \cdot 3.84 / 2 = 51 \text{ kN}$$

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	95 di 201

$$M_{sd1} = \gamma_a M_1 = 1.5 \cdot 48.9 = 73.35 \text{ kNm}$$

$$V_{sd1} = \gamma_q V_1 = 1.5 \cdot 51 = 76.5 \text{ kN}$$

Per quanto riguarda la verifica a flessione si ottiene:

$$M_{sd1} = 73.35 \text{ kNm} < M_{rd} (\text{Rck=15 MPa}) = 288.7 \text{ KNm}$$

Pertanto, la verifica risulta soddisfatta.

La verifica a fessurazione è soddisfatta in quanto il momento agente è inferiore al valore del momento di prima fessurazione calcolato secondo il metodo semplificato facendo riferimento alla sola sezione di calcestruzzo. Secondo tale ipotesi si ha:

$$M_{cr} = f_{ctm.fl}(b \cdot h^2/6)$$

in cui:

$$f_{ctm} = 0.3 \cdot f_{ck}^{2/3} = 1.6 \text{ MPa}$$

$$M_{sd1} = 73.35 \text{ kNm} < M_{cr} (\text{Rck}=15 \text{ MPa}) = 97.9 \text{ KNm}$$

Per la verifica a taglio, considerando le caratteristiche dei materiali precedentemente riportate e la sezione di progetto armata come sopra indicato, si ottiene quanto segue.

Si ottiene:

$$V_{sd1}$$
 max = 76.5 < 200 kN

Pertanto, la verifica risulta soddisfatta.

Movimentazione

Per la fase di movimentazione viene fatta l'ipotesi che il concio venga sollevato per le estremità e soggetto al peso proprio incrementato del 60% per tenere conto degli effetti dinamici.

I carichi che agiscono sul singolo concio sono:

$$P_p = 25 \text{ kN/m}^3 \cdot 0.45 \text{ m} \cdot 1.5 \text{m} = 16.875 \text{ kN/m} \text{ (Peso proprio)}$$

$$P_p + 60\% = 1.6 \cdot P_p = 27 \text{ kN/m} \text{ (dovuto ad effetti dinamici)}$$

$$P_{tot} = 27 \text{ kN/m}$$

Le sollecitazioni massime risultano:

Galleria Trinacria - Relazione	geotecnica	е	di	calcolo
della galleria naturale				

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	96 di 201

$$M_1 = 27 \cdot 3.84^2 / 8 = 49.7 \text{ kNm}$$

$$V_1 = 27 \cdot 3.84 / 2 = 51.84 \text{ kN}$$

$$M_{sd1} = \gamma_q M_1 = 1.5 \cdot 49.7 = 74.55 \text{ kNm}$$

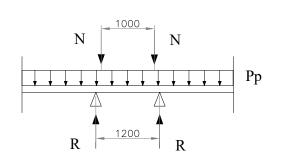
$$V_{sd1} = \gamma_a V_1 = 1.5 \cdot 51.84 = 77.74 \text{ kN}$$

Le sollecitazioni sui conci sono analoghe ai valori stimati con la combinazione di carico precedente, le verifiche sono pertanto soddisfatte.

Per quanto riguarda il controllo delle tensioni nei materiali strutturali, dalla verifica a pressoflessione allo SLE con $M_1 = 49.7$ kNm risulta σ_c pari a 1.66MPa e σ_s pari a -67.32MPa, compatibili con i limiti di Normativa.

La verifica a fessurazione è soddisfatta in quanto il momento è inferiore al valore di prima fessurazione.

Stoccaggio dei conci dalla scasseratura alla completa maturazione


I conci saranno accatastati verticalmente in gruppi di 4 elementi. Il peso totale della singola catasta si scarica sul terreno attraverso due travetti di legno a sezione rettangolare di 12×10 cm, posti ad un interrasse di 120 cm. I conci sono separati da travetti di legno intermedi 10×8, disposti ad un interasse di 100 cm (si considera che possa verificarsi un disallineamento dei travetti distanziatori in legno di 10 cm a destra e a sinistra).

La verifica viene condotta sul concio posizionato in fondo alla catasta. Sul concio in questione agisce il peso proprio ed il peso dei conci superiori trasferiti dai travetti di appoggio. Si è considerato un coefficiente moltiplicativo pari a 1.5 per il peso dell'ultimo concio, per tener conto delle sollecitazioni dinamiche durante la fase di accatastamento.

Lo stoccaggio dei conci in questa fase verrà effettuata solo dopo che il calcestruzzo abbia raggiunto la resistenza Rck di 15 N/mm2.

I carichi che agiscono sul singolo concio sono:

$$P_p = 25 \text{ kN/m}^3 0.45 \text{ m} 1.5 \text{ m} = 16.87 \text{ kN/m} \text{ (peso proprio)}$$

$$N = [(16.87 \cdot 4.19 \cdot 2) + (16.87 \cdot 4.19 \cdot 1.5)] / 2 = (141.37 + 106.02)/2 = 123.7 \text{ kN}$$

La reazione in corrispondenza dei travetti risulta pari a:

$$R = 16.87 \cdot 4.19 / 2 + 123.7 = 159 \text{ kN}$$

Le sollecitazioni nel concio di base risultano:

Sezione di appoggio

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 07
 CL
 GN 03 0001
 C
 97 di 201

$$M_{3a} = 16.87 \cdot (4.19 / 2 - 0.6)^2 / 2 = 18.8 \text{ kNm}$$

$$V_{3a} = 16.87 \cdot (4.19 / 2 - 0.6) = 25.2 \text{ kN}$$

$$M_{sd3a} = 1.5 \cdot 18.8 = 28.2 \text{ kNm}$$

$$V_{sd3a} = 1.5 \cdot 25.2 = 37.8 \text{ kN}$$

Sezione di carico

$$M_{3h} = 16.87 \cdot (4.19 / 2 - 0.5)^2 / 2 - 159 \cdot 0.1 = 5.55 \text{ kNm}$$

$$V_{3b} = 16.87 \cdot (4.19 / 2-0.5) - 159 = -132.1 \text{ kN}$$

$$M_{ud3b} = 1.5 \cdot 5.57 = 8.355 \text{ kNm}$$

$$V_{ud3h} = 1.5 \cdot 131.1 = 196.65 \text{ kN}$$

Mezzeria

$$M_{3c} = 16.87 \cdot (4.19 / 2)^2 / 2 - 159 \cdot 0.6 + 123.7 \cdot 0.5 = 3.47 \text{ kNm}$$

$$V_{3c} = 16.87 \cdot (4.19 / 2) - 159 + 123.7 = 0.04265 \text{ kN}$$

$$M_{sd3c} = 1.5 \cdot 3.47 = 5.2 \text{ kNm}$$

$$V_{sd3c} = 0.0639 \text{ kN}$$

Le sollecitazioni sui conci sono inferiori ai valori delle resistenze ultime ricavate precedentemente, le verifiche sono pertanto soddisfatte.

Per quanto riguarda il controllo delle tensioni nei materiali strutturali, dalla verifica a pressoflessione allo SLE con M $_{3a}$ =18.8 kNm risulta σ_c pari a 0.63MPa e σ_s pari a -25.47MPa, compatibili con i limiti di Normativa.

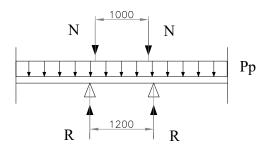
La verifica a fessurazione è soddisfatta in quanto il momento è inferiore al valore di prima fessurazione.

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 07
 CL
 GN 03 0001
 C
 98 di 201

Stoccaggio dei conci in cantiere


I conci saranno accatastati verticalmente in gruppi di 7 elementi (un'anello completo). Il peso totale della singola catasta si scarica sul terreno attraverso due travetti di legno a sezione rettangolare di 12×10 cm, posti ad un interrasse di 120 cm. I conci sono separati da travetti di legno intermedi 10×8, disposti ad un interasse di 100 cm (si considera che possa verificarsi un disalleneamento dei travetti distanziatori in legno di 10 cm a destra e a sinistra).

La verifica viene condotta sul concio posizionato in fondo alla catasta. Sul concio in questione agisce il peso proprio ed il peso dei conci superiori trasferiti dai traveti di appoggio. Si è considerato un coefficiente moltiplicativo pari a 1.5 per il peso degli ultimi due conci, per tener conto delle sollecitazioni dinamiche durante la fase di accatastamento.

Lo stoccaggio dei conci alla completa maturazione verrà effettuata solo dopo che il calcestruzzo abbia raggiunto la resistenza Rck di 55 N/mm2.

$$P_n = 25 \text{ kN/m}^3 \cdot 0.45 \text{ m} \cdot 1.5 \text{ m} = 16.87 \text{ kN/m} \text{ (peso proprio)}$$

$$N = [(16.87 \cdot 4.19 \cdot 4) + (16.87 \cdot 4.19 + 16.87 \cdot 2.38) \ 1.5] \cdot 0.5 = 224.5 \ kN$$

La reazione in corrispondenza dei travetti risulta pari a:

$$R = 16.87 \cdot 4.19 \cdot 0.5 + 224.5 = 260 \text{kN}$$

Le sollecitazioni nel concio risultano:

Sezione di appoggio

$$M_{3a} = 16.87 (4.19 / 2 - 0.6)^2 / 2 = 18.85 \text{ kNm}$$

$$V_{3a} = 16.87 (4.19 / 2 - 0.6) = 25.22 \text{ kN}$$

$$M_{sd3a} = 1.5 \cdot 18.85 = 28.27 \text{ kNm}$$

$$V_{sd3a} = 1.5 \cdot 25.22 = 37.83 \text{ kN}$$

Sezione di carico

$$M_{3h} = 16.87 (4.19 / 2 - 0.5)^2 / 2 - 260 \cdot 0.1 = -4.5 \text{ kNm}$$

$$V_{3h} = 16.87 (4.19 / 2 - 0.5) - 260 = -233.1 \text{ kN}$$

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 07
 CL
 GN 03 0001
 C
 99 di 201

$$M_{sd3b} = 1.5 \cdot -4.5 = -6.75 \text{ kNm}$$

$$V_{sd3b} = 1.5 \cdot 233.1 = 349.65 \text{ kN}$$

Mezzeria

$$M_{3c} = 16.87 (4.19 / 2)^2 / 2 - 260 \cdot 0.6 + 224.5 \cdot 0.5 = -6.73 \text{ kNm}$$

$$V_{3c} = 16.87 (4.19 / 2) - 260 + 224.5 = -0.15 \text{ kN}$$

$$M_{sd3c} = 1.5 \cdot -6.73 = -8.85 \text{ kNm}$$

$$V_{sd3c} = -0.23 \text{ kN}$$

Per quanto riguarda la verifica a flessione si ottiene:

$$M_{sd3a} = 28.27 \text{ kNm} < M_{rd} (\text{Rck}=55 \text{ MPa}) = 336.2 \text{ KNm}$$

Pertanto, la verifica risulta soddisfatta.

Per la verifica a taglio, considerando le caratteristiche dei materiali precedentemente riportate e la sezione di progetto armata come sopra indicato, si ottiene quanto segue.

Si ottiene:

$$V_{sd3h} = 349.65 > V_{rd} 309.4 \text{ kN}$$

Considerando l'armatura a taglio predisposta nel concio, V_{rsd} =685.1kN e V_{rcd} =2741.4kN risultano superiori a V_{sd3b} .

Per quanto riguarda il controllo delle tensioni nei materiali strutturali, dalla verifica a pressoflessione allo SLE con M $_{3a}=18.85$ kNm risulta σ_c pari a 0.63MPa e σ_s pari a -25.53MPa, compatibili con i limiti di Normativa.

La verifica a fessurazione è soddisfatta in quanto il momento è inferiore al valore di prima fessurazione.

<u>Montaggio dei conci</u>

Il concio viene sollevato dall'erettore tramite due inserti di presa collocati in corrispondenza del centro e quindi si comporta staticamente come una trave su un unico appoggio.

I carichi che agiscono sul singolo concio sono:

$$P_{tot} = 27 \text{ kN/m}$$

Le sollecitazioni nel concio di base risultano:

$$M_A = \frac{1}{2} \cdot 27 \cdot 2.1^2 = 59.535 \text{ kNm}$$

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	100 di 201

$$V_4 = 27 \cdot 2.1 / 2 = 28.35 \text{kN}$$

$$M_{sd4} = 1.5 \cdot 59.535 = 89.3 \text{ kNm}$$

$$V_{sd4} = 1.5 \cdot 28.35 = 42.5 \text{ kN}$$

Le sollecitazioni sui conci sono inferiori ai valori delle resistenze ultime ricavate precedentemente, le verifiche sono pertanto soddisfatte.

Per quanto riguarda il controllo delle tensioni nei materiali strutturali, dalla verifica a pressoflessione allo SLE con M $_4$ = 59.535 kNm risulta σ_c pari a 1.98MPa e σ_s pari a -80.64MPa, compatibili con i limiti di Normativa.

La verifica a fessurazione è soddisfatta in quanto il momento è inferiore al valore di prima fessurazione.

$$M_4 = 59.535 \text{ kNm} < M_{cr} (\text{Rck}=55 \text{ MPa}) = 177.2 \text{KNm}$$

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	101 di 201

Sforzi dovuti alla spinta dei martinetti

La massima forza prevista per la spinta dello scudo nelle fasi ordinarie di montaggio dei conci risulta pari a Nmax = 100.000 kN; in situazioni del tutto particolari, con l'adozione di opportuni accorgimenti sul sistema oleodinamico di spinta, è possibile raggiungere, per intervalli di tempo molto brevi, il valore eccezionale di N = 130.000 kN (valore massimo che può essere ottenuto dal circuito idraulico).

Si ipotizza che la spinta è fornita da 19 coppie di martinetti provvisti di piastra di ripartizione dalle dimensioni di 350×1400 mm.

Si ipotizza che il carico concentrato di ogni singolo martinetto sia trasferito dalla piastra di ripartizione e applicato al concio attraverso l'area di contatto costituita da un ringrosso sulla faccia di dimensioni $0.35 \text{ m} \times 1.4 \text{ m}$.

Verifica alla pressione di contatto – C45/55

Tale verifica è stata condotta in base al punto 6.7 dell'Eurocodice 2 (2004):

 $A_{c0} = d_1 b_1$ (dimensioni dell'area di carico)

 $A_{c1} = d_2 b_2$ (dimensioni dell'area di diffusione)

Si considera a favore di sicurezza un'eccentricità tra l'asse dei martinetti di spinta e l'asse del concio pari a:

$$e = 2 cm$$

$$b_1 = (45/2 - 2) 2 = 41 \text{ cm}$$

$$d_1 = 140 \text{ cm}$$

$$A_{c0}$$
= 0.41 x 1.40 = 0.574 m²

$$b_2 = b_1 + 2s$$

s = 2 cm (disassamento laterale)

$$b_2 = 45 \text{ cm}$$

$$d_2 = 144 \text{ cm}$$

$$A_{c1} = 0.45 \text{ x } 1.44 = 0.648 \text{ m}^2$$

$$N_u \le F r du \le F_{max}$$

- Verifiche in condizioni di spinta ordinaria

Il valore della sollecitazione agli SLU ($\gamma_q = 1.5$) è pari a:

$$N_{yy} = 1.5 \times 100.000 / 19 = 7894.7 \text{ kN}$$

$$Frdu = A_{c0} \cdot f_{cd2} \cdot (A_{c1}/A_{c0})^{0.5} = 0.574 \times 25.5 \times 10^{3} \times (0.648/0.574)^{0.5} = 15551 \text{ kN}$$

$$F_{max} = 3 \cdot f_{cd2} \cdot A_{c0} = 3 \times 25.5 \times 10^{3} \times 0.574 = 43911 \text{ KN}$$

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	102 di 201

$$N_u = 7894.7 \text{ kN} \le \text{Frdu} = 15551 \text{ kN} \le F_{\text{max}} = 43911 \text{ KN}$$

Verifiche in condizioni di spinta eccezionale

Il valore della sollecitazione agli SLU ($\gamma_a = 1$) è pari a:

$$N_u = 1 \times 130.000 / 19 = 6842 \text{ kN}$$

$$N_u = 6842 \le F r du \le F_{max}$$

Verifica alla pressione di contatto – C55/67

Tale verifica è stata condotta in base al punto 6.7 dell'Eurocodice 2 (2004):

$$A_{c0} = d_1 b_1$$
 (dimensioni dell'area di carico)

$$A_{c1} = d_2 b_2$$
 (dimensioni dell'area di diffusione)

Si considera a favore di sicurezza un'eccentricità tra l'asse dei martinetti di spinta e l'asse del concio pari a:

$$e = 2 cm$$

$$b_1 = (45/2 - 2) 2 = 41 \text{ cm}$$

$$d_1 = 140 \text{ cm}$$

$$A_{c0}$$
= 0.41 x 1.40 = 0.574 m²

$$b_2 = b_1 + 2s$$

s = 2 cm (disassamento laterale)

$$b_2 = 45$$
 cm

$$d_2 = 144 \text{ cm}$$

$$A_{c1} = 0.45 \text{ x } 1.44 = 0.648 \text{ m}^2$$

$$N_u \le F r du \le F_{max}$$

- Verifiche in condizioni di spinta ordinaria

Il valore della sollecitazione agli SLU (γ_q =1.5) è pari a:

$$N_{yy} = 1.5 \times 100.000 / 19 = 7894.7 \text{ kN}$$

$$Frdu = A_{c0} \cdot f_{cd2} \cdot (A_{c1}/A_{c0})^{0.5} = 0.574 \times 31.5 \times 10^{3} \times (0.648/0.574)^{0.5} = 19211 \text{ kN}$$

$$F_{max} = 3 \cdot f_{cd2} \cdot A_{c0} = 3 \times 31.5 \times 10^{3} \times 0.574 = 54243 \text{ KN}$$

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	103 di 201

$$N_{y} = 7894.7 \text{ kN} \le \text{Frdu} = 19211 \text{ kN} \le F_{\text{max}} = 54243 \text{ KN}$$

- Verifiche in condizioni di spinta eccezionale

Il valore della sollecitazione agli SLU ($\gamma_a = 1$) è pari a:

$$N_{y} = 1 \times 130.000 / 19 = 6842 \text{ kN}$$

$$N_u = 6842 \le F r du \le F_{max}$$

Verifica di resistenza alle trazioni indotte

La spinta del martinetto determina forze di divaricamento sul concio in direzione radiale; tali forze possono essere stimate secondo la formula proposta da Leonhardt:

$$Z = 0.3 \text{ Nu} (1 - a/d)$$

dove:

Z = forza di trazione risultante

a = larghezza della superficie di applicazione del carico = 0.35 m

d = altezza della sezione = 0.45 m

Nu = forza concentrata agente, dovuta alla spinta di un martinetto

- Verifiche in condizione di spinta ordinaria
- o Il valore della sollecitazione agli SLU ($\gamma_a = 1.5$) è pari a:

$$N_u = 1.5 \times 100.000 / 19 = 7894.7 \text{ kN}$$

$$Z = 0.3 \text{ N}_u (1 - \text{a/d}) = 0.3 \text{ x } 7894.7 (1 - 0.35 / 0.45) = 526 \text{ kN}$$

Considerando le armature presenti sotto l'area della piastra di spinta di lato 1.4 m si ottiene una forza di divaricamento espressa al metro pari a:

$$z = 526/1.4 \text{ m} = 375 \text{ kN/m}$$

L'armatura minima necessaria ad assorbire le trazioni di divaricamento è:

$$A_s = 375 \times 10^3 / 391 = 961 \text{ mm}^2 / \text{m} = 9.61 \text{ cm}^2$$

L'armatura prevista per il frettaggio è pari a 1 + 1 Ø12 spilli passo 15 cm.

$$(100 \text{ cm} / 15 \text{ cm}) \times 2 \text{ As} \varnothing 12 = 15.1 \text{ cm}^2$$

o Il valore della sollecitazione agli SLE ($\gamma_q = 1$) è pari a:

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	104 di 201

$$N_{y} = 1 \times 100000 / 19 = 5263 \text{ kN}$$

$$Z = 0.3 \text{ N}_u (1 - \text{a/d}) = 0.3 \text{ x } 5263 (1 - 0.35 / 0.45) = 351 \text{ kN}$$

Considerando le armature presenti sotto l'area della piastra di spinta di lato 1.2 m si ottiene una forza di divaricamento espressa al metro pari a:

$$z = 351/1.4 \text{ m} = 251 \text{ kN/m}$$

L'armatura minima necessaria ad assorbire le trazioni di divaricamento considerando un tasso di lavoro ridotto per l'acciaio pari a 210 MPa è:

$$A_s = 251 \times 10^3 / 210 = 1195 \text{ mm}^2 / \text{m} = 11.95 \text{ cm}^2$$

L'armatura prevista per il frettaggio è pari a 1 + 1 Ø12 spilli passo 15 cm.

$$(100 \text{ cm} / 15 \text{ cm}) \times 2 \text{ As} \varnothing 12 = 15.1 \text{ cm}^2$$

Il frettaggio previsto lavora ad una tensione media di 166MPa, permettendo di contenere il quadro fessurativo anche in questa condizione di carico di breve durata.

- Verifiche in condizione di spinta eccezionale

Il valore della sollecitazione agli SLU ($\gamma_q = 1$) è pari a:

$$N_{y} = 1 \times 130.000 / 19 = 6842 \text{ kN}$$

$$Z = 0.3 \text{ N}_{u} (1 - a/d) = 0.3 \text{ x } 6842 (1 - 0.35 / 0.45) = 451.6 \text{ kN}$$

Considerando le armature presenti sotto l'area della piastra di spinta di lato 1.2 m si ottiene una forza di divaricamento espressa al metro pari a:

$$z = 451.6/1.4 \text{ m} = 322.6 \text{ kN/m}$$

L'armatura minima necessaria ad assorbire le trazioni di divaricamento è:

$$A_s = 322.6 \times 10^3 / 391 = 825 \text{ mm}^2 / \text{m} = 8.25 \text{ cm}^2$$

L'armatura prevista per il frettaggio è pari a 1 + 1 Ø12 spilli passo 15 cm.

$$(100 \text{ cm} / 15 \text{ cm}) \times 2 \text{ As} \varnothing 12 = 15.1 \text{ cm}^2$$

Come si evince in tutti gli scenari analizzati, l'armatura di frettaggio di progetto risulta sempre superiore ai quantitativi minimi di armatura richiesti dal calcolo.

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 07
 CL
 GN 03 0001
 C
 105 di 201

Sollecitazioni dovute al peso dell'anello completo

Si propone una verifica relativa alle sollecitazioni agenti sui connettori nello scenario sfavorevole di anello completo in condizioni "sospese" all'anello precedente.

Il peso dell'intero anello costituito da 6+1 conci prefabbricati risulta pari a:

 $P_{\text{tot}} = 25 \text{ kN/m}^3 \text{ x } 1.5 \text{m x } \pi (R_e^2 - R_i^2) = 447 \text{ kN}$

questo agisce con uno sforzo di taglio (ripartito su 19 connettori complessivi) pari a:

T = P/19 = 23.6 kN

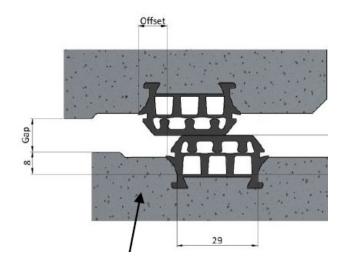
Elementi accessori del rivestimento

Il sistema di collegamento longitudinale tra gli anelli di rivestimento non prevede più bulloni metallici sui giunti (previsti nel PE in prima fase): il collegamento sui giunti circonferenziali è ora garantito per mezzo di connettori o equivalenti (in numero di quattro per i conci ordinari e in numero di due per il concio di chiave) mentre su quelli longitudinali attraverso le barre guida in polipropilene FAMA o equivalenti. I connettori, montati durante il posizionamento dei conci, devono garantire in fase di esercizio un adeguata continuità tra gli anelli contrastando in particolare la reazione dovuta allo schiacciamento della coppia di guarnizioni.

Guarnizioni di tenuta idraulica

Le guarnizioni utilizzate risultano annegate nel getto, e questo rappresenta un indubbio vantaggio eliminando qualsiasi rischio di scollamento o cattiva disposizione sulle facce; esse entrano in contatto tra di loro e schiacciandosi permettono di sigillare i giunti: vengono progettate in base alle specifiche esigenze di tenuta idraulica. Si prevede che nell'assetto finale ciascun concio debba essere posizionato, dopo il montaggio dell'intero anello, esattamente nella posizione prevista in progetto, con tutti i giunti circonferenziali e radiali allineati tra loro e perfettamente a contatto, in modo da garantire lo schiacciamento necessario affinche si realizzi la richiesta tenuta idraulica. Sono ammessi degli scostamenti minimi dalla posizione teorica di ciascun concio ed anello con determinate tolleranze di seguito indicate.

Per l'alloggiamento delle guarnizioni, previste annegate nel getto, si predispone sulle facce dei conci un'opportuna cava. Lo "schiacciamento" tra le due guarnizioni deve essere tale da garantire l'impermeabilità sotto il massimo carico idraulico previsto, pari in questo caso a circa 9 bar, e si tiene conto di eventuali disallineamenti relativi (offset) delle due guarnizioni o del non perfetto contatto (gap) dei ringrossi delle facce dei conci. Il ringrosso previsto è nel caso in esame pari a 3mm per parte.


Si è considerata una situazione in cui il gap è dell'ordine di 2mm in concomitanza con un disallineamento (offset) delle guarnizioni di 10mm (vedi figura).

Siccome la prova effettuata dal fornitore è stata realizzata tra due facce aventi ringrosso di 2mm per parte, per definire la pressione idrostatica sostenibile dalla guarnizione attraverso il grafico seguente si definisce un gap totale

pari alla somma del gap di montaggio (2mm) e dell'ulteriore gap che è dovuto alla configurazione geometrica delle facce nel caso specifico (2mm) per un totale di 4mm.

In queste condizioni, come evidente dalla figura seguente, la pressione idrostatica sostenibile è molto superiore (20bar), anche con un adeguato coefficiente di sicurezza, al massimo battente idraulico ipotizzato (Pw=9 bar).

Schema guarnizione con offset nella prova del fornitore

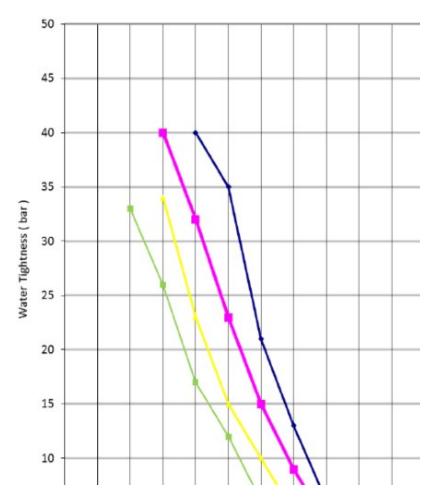


Diagramma di tenuta dell'acqua e geometrie della guarnizione di riferimento

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	108 di 201

LOAD DEFLECTION DIAGRAM FOR PROFILE UG018A

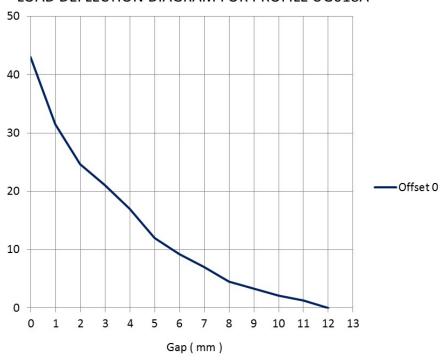


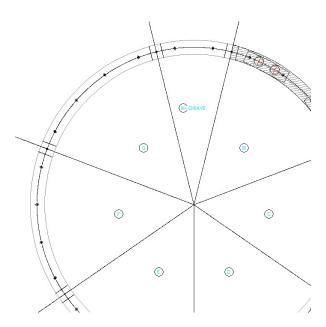
Diagramma di carico/deformazione profilo

Come si è detto precedentemente si prevede che ciascun concio ed anello debbano essere posizionati geometricamente esattamente come previsto in progetto, con tolleranze geometriche minime.

Ad ulteriore garanzia di un corretto montaggio del concio nella fase transitoria di predisposizione dell'anello si definisce comunque la forza minima di spinta dei martinetti sui conci che in fase di montaggio favorisce il contatto delle facce dei giunti.

La guarnizione, quando completamente compressa, offre una reazione di 25 kN/m. Di conseguenza la forza complessiva di reazione sulla faccia circonferenziale del concio è:

$$F_{g,an} = 25kN/m \cdot 4.19 m = 104.75 kN$$


Essendo previste 3 coppie di cilindri idraulici per concio, la spinta minima che deve essere corrisposta dalla singola coppia di martinetti al concio è pari a:

Per quanto riguarda il giunto longitudinale tra conci dello stesso anello si considera il caso più sfavorevole in cui, in fase di montaggio dell'anello, un concio si trovi ad avere la pressione della guarnizione nella parte superiore, ed inferiormente nessun concio su cui appoggiarsi (figura sotto). In questa condizione sul concio insistono le seguenti azioni verticali:

• Peso proprio: $P=25 \text{ kN/m}^3 \cdot V_{\text{concio}} = 25 \text{ kN/m}^3 \cdot 4.19 \text{m} \cdot 1.50 \text{m} \cdot 0.45 = 71 \text{ kN}$

• Spinta guarnizione: $S=25 \text{ kN/m} \cdot L_{\text{concio}} = 25 \text{ kN/m}^3 \cdot 1.50 \text{m} = 37.5 \text{ kN}$

Caso sfavorevole di verifica della guarnizione nei giunti longitudinali

Pertanto affinché il concio sia in equilibrio, ai suoi estremi longitudinali devono essere presenti delle reazioni vincolari pari a:

$$R_v = (P+S)/2 = 54.1 \text{ kN}$$

Nel giunto circonferenziale posteriore il taglio è fornito dai connettori, nella faccia frontale invece il meccanismo resistente è l'attrito che si sviluppa tra la scarpa dei martinetti e l'area di trasmissione del carico del concio, esprimibile come:

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	110 di 201

$$V_{Rd.fric} = \mu \cdot N_{Ed}$$
 -> $N_{Ed.min} = R_v / 0.5 = 108.2 \text{ kN}$

dove:

NEd [kN/m]: spinta totale agente sul concio

 μ [-]: coefficiente di attrito tra le interfacce (acciaio-calcestruzzo: μ = 0.5)

La spinta minima che deve essere corrisposta dalla singola coppia di martinetti al concio è quindi pari a:

$$F_{2,min} = N_{Ed,min} / 2 = 108.2 \text{ kN}$$

Connettori meccanici

I connettori scelti presentano le seguenti caratteristiche (scheda tecnica in Allegato):

Resistenza a trazione:

per rottura del connettore S_m = 100 kN resistenza di progetto S_r = S_m / γ_a = 100 / 1.15 = 87 kN

Resistenza al taglio:

per rottura del connettore $T_m = 160 \; kN$ resistenza di progetto $T_r = T_m / \; \gamma_a = 160 \ / \; 1.15 = 139 \; kN$

La massima forza di compressione nella guarnizione con un disallineamento di 0 mm e un gap di soli 2mm (facce a contatto) risulta pari a R=25kN/m.

La reazione che si sviluppa lungo tutta la faccia circonferenziale del concio è:

 $F=R\times4.19m=104.75 \text{ kN}$

A favore di sicurezza si prevede che in fase di esercizio solo tre connettori possano funzionare per una possibile rottura del quarto in fase di montaggio.

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	111 di 201

Conseguentemente la forza di trazione competente a ciascun connettore è:

$$S = F/3 = 35 \text{ kN}$$

$$F_d = F \times \gamma_{gtu} = 52.5 \text{ kN}$$

$$Fd < Sr = 87 kN$$

Per quanto riguarda il giunto longitudinale (tra conci di uno stesso anello) la reazione dovuta allo schiacciamento della relativa coppia di guarnizioni agisce come taglio sul sistema costituito dai due connettori più prossimi al giunto:

 $F = R \times 1.50 \text{ m} = 37.5 \text{ kN}$

T = F / 2 = 18.75 kN

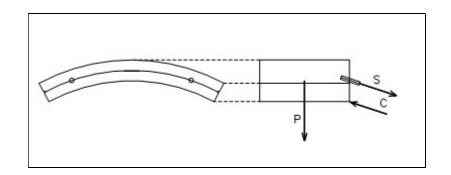
$$T_d = T \times \gamma_{gtu} = 28.1 \text{ kN}$$

$$Td < Tr = 139 \text{ kN}$$

Il fattore di riduzione γ_a adottato è pari a 1.15, uguale a quello adottato per l'acciaio nelle verifiche agli Stati limite, compatibilmente con quanto dettato dalla Normativa. Tale situazione di verifica è, tuttavia, legata all'errata manovra e quindi non utile per la statica della galleria.

Viene di seguito presa in considerazione la sollecitazione agente sui connettori a seguito di una temporanea sospensione del singolo concio ai soli connettori (errata manovra dei martinetti).

Tale condizione di carico non è in alcun modo prevista nella normale procedura di montaggio. Risulta tuttavia opportuno verificare che, nel caso in cui un evento accidentale provochi la sospensione del concio, la resistenza dei connettori garantisca la sicurezza impedendo la caduta del concio stesso. Si considera nelle verifiche il contributo di soli due connettori.

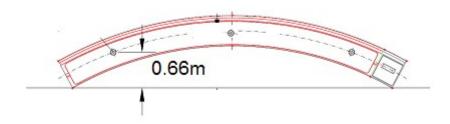

Il peso del concio è:

 $P = 25 \text{ kN/m} 3 \times 0.45 \text{m} \times 1.5 \text{m} \times 4.19 \text{m} = 71 \text{ kN}$

questo agisce con uno sforzo di taglio (ripartito su 2 connettori) pari a

$$T = P/2 = 35.3 \text{ kN} < Tr$$

Al momento flettente si oppone la coppia di forze data dalla trazione sui connettori e dalla compressione sui punti più bassi dove il concio si appoggia all'anello adiacente. Considerando collaboranti due soli connettori, la condizione più sfavorevole si presenta per l'assenza dei connettori centrali; in questo caso il braccio della coppia è il minimo possibile (vedi figura sotto):



Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 07
 CL
 GN 03 0001
 C
 112 di 201

$$M = P \times (1.5/2) = 47.3 \text{ kN m}$$

 $M=3 \times S \times b_{min}$

con bmin=0.66m

Si ricava quindi la forza di trazione sul singolo connettore:

$$S = M / (2 \times b_{min}) = 36kN$$

$$Sd = S \ x \ \gamma_{gtu} = 53.75 \ kN$$

$$Sd < Sr = 87 \text{ kN}$$

10.5.4 Verifiche statiche in fase transitoria – concio da 50 cm

In questo paragrafo verranno esaminate le condizioni più gravose a cui sono sottoposti i conci nelle fasi transitorie che precedono la posa in opera ed in particolare:

- Scasseratura
- Movimentazione
- Stoccaggio e trasporto
- Montaggio (sollevamento con erettore)

Oltre a queste, come condizione critica va considerata anche la fase di avanzamento dello scudo, in cui viene esercitata dai martinetti la necessaria spinta sui conci dell'ultimo anello di rivestimento posto in opera.

Si assume che per le prime due operazioni vengano effettuate quando il calcestruzzo ha raggiunto una resistenza caratteristica $Rck \ge 15 \text{ N/mm}2$.

Dopo un adeguato periodo di stoccaggio, allorché il calcestruzzo ha raggiunto la resistenza caratteristica di progetto (Rck ≥ 55 N/mm2), si procede al trasporto in cantiere.

La posa in opera in galleria avviene tramite apposito meccanismo erettore, disposto immediatamente a tergo del dispositivo di scavo.

Le verifiche vengono eseguite considerando le condizioni statiche più gravose e la classe di armatura minore (Classe IV).

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

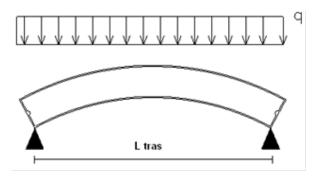
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	114 di 201

Scasseratura

Durante la fase di scasseratura, oltre al peso proprio del concio ed alla maggiorazione per carichi dinamici, si suppone la presenza delle forze di adesione alla superficie del cassero valutata, sulla base di esperienze analoghe, in circa 2.0 kN/m2.

Il calcolo delle sollecitazioni viene eseguito supponendo, cautelativamente, che il concio venga sollevato ai due lati

La rimozione dai casseri verrà effettuata solo dopo che il calcestruzzo abbia raggiunto la resistenza Rck di 15 N/mm2.


Si è ipotizzato che il concio venga agganciato e sollevato dai lati.

Le verifiche dei conci tengono conto delle loro effettive dimensioni; Lo sviluppo del singolo concio risulta pari a:

$$L_{dev} = 4.2 \text{ m}$$

La lunghezza trasversale del concio associata ad una trave equivalente posta su due appoggi all'estremità di intradosso, risulta pari a:

$$L_{tras} = 3.84 \text{ m}$$

I carichi che agiscono sul singolo concio sono:

$$P_p = 25 \text{ kN/m}^3 \cdot 0.5 \text{ m} \cdot 1.5 \text{ m} = 18.75 \text{ kN/m} \text{ (peso proprio)}$$

I P
$$_p = 0.4$$
 P $_p = 7.5$ kN/m (incremento dovuto all'effetto dinamico/vibrazioni)

 $P_a = 2 \cdot 1.5 \text{ m} = 3 \text{ kN/m}$ (incremento dovuto all'aderenza tra concio e cassero di 2 kN/m2)

$$P_{tot} = 29.25 \text{ kN/m}$$

Le sollecitazioni massime risultano:

$$M_1 = 29.25 \cdot 3.84^2 / 8 = 53.9 \text{ kNm}$$

$$V_1 = 29.25 \cdot 3.84 / 2 = 56.2 \text{ kN}$$

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	115 di 201

$$M_{sd1} = \gamma_a M_1 = 1.5 \cdot 53.9 = 80.9 \text{ kNm}$$

$$V_{sd1} = \gamma_q \ V_1 = 1.5 \cdot 56.2 = 84.2 \text{ kN}$$

Per quanto riguarda la verifica a flessione si ottiene:

$$M_{sd1} = 80.9 \text{ kNm} < M_{rd} \text{ (Rck=15 MPa)} = 425.4 \text{ KNm}$$

Pertanto, la verifica risulta soddisfatta.

Per quanto riguarda il controllo delle tensioni nei materiali strutturali, dalla verifica a pressoflessione allo SLE con $M_1 = 53.9$ kNm risulta σ_c pari a 1.45MPa e σ_s pari a -63.92MPa, compatibili con i limiti di Normativa.

La verifica a fessurazione è soddisfatta in quanto il momento agente è inferiore al valore del momento di prima fessurazione calcolato secondo il metodo semplificato facendo riferimento alla sola sezione di calcestruzzo. Secondo tale ipotesi si ha:

$$M_{cr} = f_{ctm,fl}(b \cdot h^2/6)$$

in cui:

$$f_{ctm} = 0.3 \cdot f_{ck}^{2/3} = 1.6 \text{ MPa}$$

$$M_{sd1} = 80.9 \text{ kNm} < M_{cr} (\text{Rck}=15 \text{ MPa}) = 120.9 \text{ KNm}$$

Per la verifica a taglio, considerando le caratteristiche dei materiali precedentemente riportate e la sezione di progetto armata come sopra indicato, si ottiene quanto segue.

Si ottiene:

 V_{sd1} max = 84.2 < 229 kN (V_{Rd} sezione non armata a taglio)

Pertanto, la verifica risulta soddisfatta.

<u>Movimentazione</u>

Per la fase di movimentazione viene fatta l'ipotesi che il concio venga sollevato per le estremità e soggetto al peso proprio incrementato del 60% per tenere conto degli effetti dinamici.

I carichi che agiscono sul singolo concio sono:

$$P_p = 25 \text{ kN/m}^3 \cdot 0.5 \text{ m} \cdot 1.5 \text{m} = 18.75 \text{kN/m} \text{ (Peso proprio)}$$

$$P_p + 60\% = 1.6 \cdot P_p = 30 \text{ kN/m} \text{ (dovuto ad effetti dinamici)}$$

$$P_{tot} = 30 \text{ kN/m}$$

Le sollecitazioni massime risultano:

$$M_1 = 30 \cdot 3.84^2 / 8 = 55.3 \text{ kNm}$$

$$V_1 = 30 \cdot 3.84 / 2 = 57.6 \text{ kN}$$

$$M_{sd1} = \gamma_q M_1 = 1.5 \cdot 55. = 83 \text{ kNm}$$

$$V_{sd1} = \gamma_a V_1 = 1.5 \cdot 57.6 = 86.4 \text{ kN}$$

Per quanto riguarda il controllo delle tensioni nei materiali strutturali, dalla verifica a pressoflessione allo SLE con $M_1 = 55.3$ kNm risulta σ_c pari a 1.49MPa e σ_s pari a -65.58MPa, compatibili con i limiti di Normativa.

La verifica a fessurazione è soddisfatta in quanto il momento è inferiore al valore di prima fessurazione.

Le sollecitazioni sui conci sono analoghe ai valori stimati con la combinazione di carico precedente, le verifiche sono pertanto soddisfatte.

Stoccaggio dei conci dalla scasseratura alla completa maturazione

I conci saranno accatastati verticalmente in gruppi di 4 elementi. Il peso totale della singola catasta si scarica sul terreno attraverso due travetti di legno a sezione rettangolare di 12×10 cm, posti ad un interrasse di 120 cm. I conci sono separati da travetti di legno intermedi 10×8, disposti ad un interasse di 100 cm (si considera che possa verificarsi un disallineamento dei travetti distanziatori in legno di 10 cm a destra e a sinistra).

La verifica viene condotta sul concio posizionato in fondo alla catasta. Sul concio in questione agisce il peso proprio ed il peso dei conci superiori trasferiti dai travetti di appoggio. Si è considerato un coefficiente moltiplicativo pari a 1.5 per il peso dell'ultimo concio, per tener conto delle sollecitazioni dinamiche durante la fase di accatastamento.

Lo stoccaggio dei conci in questa fase verrà effettuata solo dopo che il calcestruzzo abbia raggiunto la resistenza Rck di 15 N/mm2.

I carichi che agiscono sul singolo concio sono:

$$P_p = 25 \text{ kN/m}^3 \ 0.5 \text{ m} \ 1.5 \text{ m} = 18.75 \text{ kN/m} \text{ (peso proprio)}$$

$$N = [(18.75 \cdot 4.19 \cdot 2) + (18.75 \cdot 4.19 \cdot 1.5)] / 2 = 137.48 \text{ kN}$$

La reazione in corrispondenza dei travetti risulta pari a:

$$R = 18.75 \ 4.19 \ / \ 2 + 137.48 = 176.8 \ kN$$

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 07
 CL
 GN 03 0001
 C
 117 di 201

Le sollecitazioni nel concio di base risultano:

Sezione di appoggio

$$M_{3a} = 18.75 \cdot (4.19 / 2 - 0.6)^2 / 2 = 20.95 \text{kNm}$$

$$V_{3a} = 18.75 \cdot (4.19 / 2 - 0.6) = 28.03 \text{ kN}$$

$$M_{sd3a} = 1.5 \cdot 20.95 = 31.4 \text{ kNm}$$

$$V_{sd3a} = 1.5 \cdot 28.03 = 42 \text{ kN}$$

Sezione di carico

$$M_{3h} = 18.75 \cdot (4.19 / 2 - 0.5)^2 / 2 - 176.8 \cdot 0.1 = 6.17 \text{ kNm}$$

$$V_{3b} = 18.75 \cdot (4.19 / 2-0.5) - 176.8 = -129.1 \text{kN}$$

$$M_{ud3h} = 1.5 \cdot 6.17 = 9.26 \text{ kNm}$$

$$V_{ud3h} = 1.5 \cdot 129.1 = 194 \text{ kN}$$

Mezzeria

$$M_{3c} = 18.75 \cdot (4.19 / 2)^2 / 2 - 176.8 \ 0.6 + 137.5 \cdot 0.5 = 3.83 \ kNm$$

$$V_{3c} = 18.75 \cdot (4.19 / 2) - 176.8 + 137.5 = 0 \text{ kN}$$

$$M_{sd3c} = 1.5 \cdot 3.83 = 5.7 \text{ kNm}$$

$$V_{sd3c} = 0.0 \text{ kN}$$

Le sollecitazioni sui conci sono inferiori ai valori delle resistenze ultime ricavate precedentemente, le verifiche sono pertanto soddisfatte.

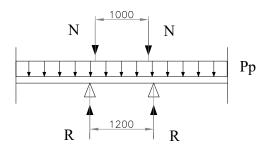
Per quanto riguarda il controllo delle tensioni nei materiali strutturali, dalla verifica a pressoflessione allo SLE con M $_{3a}$ =20.95 kNm risulta σ_c pari a 0.56MPa e σ_s pari a -24.85MPa, compatibili con i limiti di Normativa.

La verifica a fessurazione è soddisfatta in quanto il momento è inferiore al valore di prima fessurazione.

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	118 di 201

Stoccaggio dei conci in cantiere


I conci saranno accatastati verticalmente in gruppi di 7 elementi (un'anello completo). Il peso totale della singola catasta si scarica sul terreno attraverso due travetti di legno a sezione rettangolare di 12×10 cm, posti ad un interrasse di 120 cm. I conci sono separati da travetti di legno intermedi 10×8, disposti ad un interasse di 100 cm (si considera che possa verificarsi un disalleneamento dei travetti distanziatori in legno di 10 cm a destra e a sinistra).

La verifica viene condotta sul concio posizionato in fondo alla catasta. Sul concio in questione agisce il peso proprio ed il peso dei conci superiori trasferiti dai traveti di appoggio. Si è considerato un coefficiente moltiplicativo pari a 1.5 per il peso degli ultimi due conci, per tener conto delle sollecitazioni dinamiche durante la fase di accatastamento.

Lo stoccaggio dei conci alla completa maturazione verrà effettuata solo dopo che il calcestruzzo abbia raggiunto la resistenza Rck di 55 N/mm2.

$$P_n = 25 \text{ kN/m}^3 \cdot 0.5 \text{ m} \cdot 1.5 \text{ m} = 18.75 \text{ kN/m} \text{ (peso proprio)}$$

$$N = [(18.75 \cdot 4.19 \cdot 4) + (18.75 \cdot 4.19 + 18.75 \cdot 2.38) \cdot 1.5] \cdot 0.5 = 230$$

La reazione in corrispondenza dei travetti risulta pari a:

$$R = 18.75 \cdot 4.19 \cdot 0.5 + 230 = 269.3$$
kN

Le sollecitazioni nel concio risultano:

Sezione di appoggio

$$M_{3a} = 18.75 (4.19 / 2 - 0.6)^2 / 2 = 20.9 \text{ kNm}$$

$$V_{3a} = 18.75 (4.19 / 2 - 0.6) = 28 \text{ kN}$$

$$M_{sd3a} = 1.5 \cdot 20.9 = 31.35 \text{ kNm}$$

$$V_{sd3a} = 1.5 \cdot 28 = 42 \text{ kN}$$

Sezione di carico

$$M_{3h} = 18.75 (4.19 / 2 - 0.5)^2 / 2 - 269.3 0.1 = -3.1 \text{ kNm}$$

$$V_{3h} = 18.75 (4.19 / 2 - 0.5) - 269.3 = -239.4 \text{ kN}$$

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 07
 CL
 GN 03 0001
 C
 119 di 201

$$M_{sd3b} = 1.5 \cdot -3.1 = -4.65 \text{ kNm}$$

$$V_{sd3h} = 1.5 \cdot 239.4 = 359.1 \text{ kN}$$

Mezzeria

$$M_{3c} = 18.75 (4.19 / 2)^2 / 2 - 269.3 \cdot 0.6 + 230 \cdot 0.5 = -5.4 \text{ kNm}$$

$$V_{3c} = 18.75 (4.19 / 2) - 269.3 + 230 = -0.019 kN$$

$$M_{sd3c} = 1.5 \cdot -5.4 = -8.1 \text{ kNm}$$

$$V_{sd3c} = 0 \text{ kN}$$

Le sollecitazioni sui conci sono inferiori ai valori delle resistenze ultime, le verifiche sono pertanto soddisfatte.

La verifica a fessurazione è soddisfatta in quanto il momento è inferiore al valore di prima fessurazione.

Per quanto riguarda il controllo delle tensioni nei materiali strutturali, dalla verifica a pressoflessione allo SLE con $M_{3a} = 20.90$ kNm risulta σ_c pari a 0.56MPa e σ_s pari a -24.79MPa, compatibili con i limiti di Normativa.

Montaggio dei conci

Il concio viene sollevato dall'erettore tramite due inserti di presa collocati in corrispondenza del centro e quindi si comporta staticamente come una trave su un unico appoggio.

I carichi che agiscono sul singolo concio sono:

$$P_{tot} = 27 \text{ kN/m}$$

Le sollecitazioni nel concio di base risultano:

$$M_4 = \frac{1}{2} \cdot 27 \cdot 2.1^2 = 59.535 \text{ kNm}$$

$$V_4 = 27 \cdot 2.1 / 2 = 28.35 \text{kN}$$

$$M_{sd4} = 1.5 \cdot 59.535 = 89.3 \text{ kNm}$$

$$V_{sd4} = 1.5 \cdot 28.35 = 42.5 \text{ kN}$$

Le sollecitazioni sui conci sono inferiori ai valori delle resistenze ultime ricavate precedentemente, le verifiche sono pertanto soddisfatte.

Per quanto riguarda il controllo delle tensioni nei materiali strutturali, dalla verifica a pressoflessione allo SLE con $M_4 = 59.535$ kNm risulta σ_c pari a 1.60MPa e σ_s pari a -70.60MPa, compatibili con i limiti di Normativa.

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	120 di 201

La verifica a fessurazione è soddisfatta in quanto il momento è inferiore al valore di prima fessurazione.

$$M_{sd1} = 89.3 \text{ kNm} < M_{cr} (\text{Rck}=50 \text{ MPa}) = 269.7 \text{KNm}$$

Sforzi dovuti alla spinta dei martinetti

La massima forza prevista per la spinta dello scudo nelle fasi ordinarie di montaggio dei conci risulta pari a Nmax = 100.000 kN; in situazioni del tutto particolari, con l'adozione di opportuni accorgimenti sul sistema oleodinamico di spinta, è possibile raggiungere, per intervalli di tempo molto brevi, il valore eccezionale di N = 130.000 kN (valore massimo che può essere ottenuto dal circuito idraulico).

Si ipotizza che la spinta è fornita da 19 coppie di martinetti provvisti di piastra di ripartizione dalle dimensioni di 350×1400 mm.

Si ipotizza che il carico concentrato di ogni singolo martinetto sia trasferito dalla piastra di ripartizione e applicato al concio attraverso l'area di contatto costituita da un ringrosso sulla faccia di dimensioni $0.35 \text{ m} \times 1.4 \text{ m}$.

Verifica alla pressione di contatto – C55/67

Tale verifica è stata condotta in base al punto 6.7 dell'Eurocodice 2 (2004):

 $A_{c0} = d_1 b_1$ (dimensioni dell'area di carico)

 $A_{c1} = d_2 b_2$ (dimensioni dell'area di diffusione)

Si considera a favore di sicurezza un'eccentricità tra l'asse dei martinetti di spinta e l'asse del concio pari a:

$$e = 2 cm$$

$$b_1 = (50/2 - 2) 2 = 46 \text{ cm}$$

 $d_1 = 140 \text{ cm}$

$$A_{c0}$$
= 0.46 x 1.40 = 0.644 m^2

$$b_2 = b_1 + 2s$$

s = 2 cm (disassamento laterale)

 $b_2 = 50 \text{ cm}$

 $d_2 = 144 \text{ cm}$

$$A_{c1} = 0.50 \text{ x } 1.44 = 0.72 \text{ m}^2$$

$$N_u \le F r du \le F_{max}$$

- Verifiche in condizioni di spinta ordinaria

Il valore della sollecitazione agli SLU ($\gamma_a = 1.5$) è pari a:

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	121 di 201

$$N_{y} = 1.5 \times 100.000 / 19 = 7894.7 \text{ kN}$$

$$Frdu = A_{c0} \cdot f_{cd2} \cdot (A_{c1} / A_{c0})^{0.5} = 0.644 \times 31.2 \times 10^{3} \times (0.72/0.644)^{0.5} = 21245 \text{ kN}$$

$$F_{max} = 3 \cdot f_{cd2} \cdot A_{c0} = 3 \times 31.2 \times 10^{3} \times 0.644 = 60278 \text{ KN}$$

$$N_u = 7894.7 \text{ kN} \le \text{Frdu} = 21245 \text{ kN} \le F_{\text{max}} = 60278 \text{ KN}$$

- Verifiche in condizioni di spinta eccezionale

Il valore della sollecitazione agli SLU (γ_q =1) è pari a:

$$N_{y} = 1 \times 130.000 / 19 = 6842 \text{ kN}$$

$$N_u = 6842 \le F r du \le F_{max}$$

Verifica alla pressione di contatto – C60/75

Tale verifica è stata condotta in base al punto 6.7 dell'Eurocodice 2 (2004):

 $A_{c0} = d_1 b_1$ (dimensioni dell'area di carico)

 $A_{c1} = d_2 b_2$ (dimensioni dell'area di diffusione)

Si considera a favore di sicurezza un'eccentricità tra l'asse dei martinetti di spinta e l'asse del concio pari a:

$$e = 2 cm$$

$$b_1 = (50/2 - 2) 2 = 46 \text{ cm}$$

$$d_1 = 140 \text{ cm}$$

$$A_{c0}$$
= 0.46 x 1.40 = 0.644 m^2

$$b_2 = b_1 + 2s$$

s = 2 cm (disassamento laterale)

$$b_2 = 50 \text{ cm}$$

$$d_2 = 144 \text{ cm}$$

$$A_{c1} = 0.50 \text{ x } 1.44 = 0.72 \text{ m}^2$$

$$N_u \le F r du \le F_{max}$$

- Verifiche in condizioni di spinta ordinaria

Il valore della sollecitazione agli SLU ($\gamma_q = 1.5$) è pari a:

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	122 di 201

$$N_{y} = 1.5 \times 100.000 / 19 = 7894.7 \text{ kN}$$

$$F rdu = A_{c0} \cdot f_{cd2} \cdot (A_{c1} / A_{c0})^{0.5} = 0.644 \times 34 \times 10^{3} \times (0.72/0.644)^{0.5} = 23151 \text{ kN}$$

$$F_{max} = 3 \cdot f_{cd2} \cdot A_{c0} = 3 \times 34 \times 10^{3} \times 0.644 = 65280 \text{ KN}$$

$$N_u = 7894.7 \text{ kN} \le \text{Frdu} = 23151 \text{ kN} \le F_{\text{max}} = 65280 \text{ KN}$$

- Verifiche in condizioni di spinta eccezionale

Il valore della sollecitazione agli SLU (γ_q =1) è pari a:

$$N_{y} = 1 \times 130.000 / 19 = 6842 \text{ kN}$$

$$N_u = 6842 \le F r du \le F_{max}$$

Verifica di resistenza alle trazioni indotte

La spinta del martinetto determina forze di divaricamento sul concio in direzione radiale; tali forze possono essere stimate secondo la formula proposta da Leonhardt:

$$Z = 0.3 \text{ Nu} (1 - a/d)$$

dove:

Z =forza di trazione risultante

a = larghezza della superficie di applicazione del carico = 0.4 m

d = altezza della sezione = 0.5 m

Nu = forza concentrata agente, dovuta alla spinta di un martinetto

- Verifiche in condizione di spinta ordinaria
- o II valore della sollecitazione agli SLU ($\gamma_a = 1.5$) è pari a:

$$N_{y} = 1.5 \times 100.000 / 19 = 7894.7 \text{ kN}$$

$$Z = 0.3 \text{ N}_u (1 - a/d) = 0.3 \text{ x} 7894.7 [1 - (0.4 / 0.5)] = 473.7 \text{ kN}$$

Considerando le armature presenti sotto l'area della piastra di spinta di lato 1.4 m si ottiene una forza di divaricamento espressa al metro pari a:

$$z = Z/1.4 \text{ m} = 338.3 \text{ kN/m}$$

L'armatura minima necessaria ad assorbire le trazioni di divaricamento è:

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	123 di 201

$$A_s = z \times 10^3 / 391 = 865.3 \text{ mm}^2 / \text{m} = 8.7 \text{ cm}^2$$

L'armatura prevista per il frettaggio è pari a 1 + 1 Ø12 spilli passo 15 cm.

$$(100 \text{ cm} / 15 \text{ cm}) \times 2 \text{ As} \otimes 12 = 15.1 \text{ cm}^2$$

o Il valore della sollecitazione agli SLE ($\gamma_a = 1$) è pari a:

$$N_u = 1 \times 100000 / 19 = 5263 \text{ kN}$$

$$Z = 0.3 \text{ N}_u (1 - \text{a/d}) = 0.3 \text{ x } 5263 (1 - 0.4 / 0.5) = 316 \text{ kN}$$

Considerando le armature presenti sotto l'area della piastra di spinta di lato 1.2 m si ottiene una forza di divaricamento espressa al metro pari a:

$$z = 316/1.4 \text{ m} = 225.5 \text{ kN/m}$$

L'armatura minima necessaria ad assorbire le trazioni di divaricamento considerando un tasso di lavoro ridotto per l'acciaio pari a 210 MPa è:

$$A_s = 225.5 \times 10^3 / 210 = 1074.1 \text{ mm}^2 / \text{m} = 10.7 \text{ cm}^2$$

L'armatura prevista per il frettaggio è pari a 1 + 1 Ø12 spilli passo 15 cm.

$$(100 \text{ cm} / 15 \text{ cm}) \times 2 \text{ As} \otimes 12 = 15.1 \text{ cm}^2$$

Il frettaggio previsto lavora ad una tensione media di 149MPa, permettendo di contenere il quadro fessurativo anche in questa condizione di carico di breve durata.

- Verifiche in condizione di spinta eccezionale

Il valore della sollecitazione agli SLU ($\gamma_a = 1$) è pari a:

$$N_{y} = 1 \times 130.000 / 19 = 6842 \text{ kN}$$

$$Z = 0.3 \text{ N}_u (1 - a/d) = 0.3 \text{ x } 6842 (1 - 0.4 / 0.45) = 410.5 \text{ kN}$$

Considerando le armature presenti sotto l'area della piastra di spinta di lato 1.2 m si ottiene una forza di divaricamento espressa al metro pari a:

$$z = 410.5/1.4 \text{ m} = 293.2 \text{ kN/m}$$

L'armatura minima necessaria ad assorbire le trazioni di divaricamento è:

$$A_s = 293.2 \times 10^3 / 391 = 750 \text{ mm}^2 / \text{m} = 7.5 \text{ cm}^2$$

L'armatura prevista per il frettaggio è pari a 1 + 1 Ø12 spilli passo 15 cm.

$$(100 \text{ cm} / 15 \text{ cm}) \times 2 \text{ As} \otimes 12 = 15.1 \text{ cm}^2$$

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	124 di 201

Come si evince in tutti gli scenari analizzati, l'armatura di frettaggio di progetto risulta sempre superiore ai quantitativi minimi di armatura richiesti dal calcolo.

Sollecitazioni dovute al peso dell'anello completo

Si propone una verifica relativa alle sollecitazioni agenti sui connettori nello scenario sfavorevole di anello completo in condizioni "sospese" all'anello precedente.

Il peso dell'intero anello costituito da 6+1 conci prefabbricati risulta pari a:

 $P_{tot} = 25 \text{ kN/m}^3 \text{ x } 1.5 \text{m x } \pi (R_e^2 - R_i^2) = 501 \text{ kN}$

questo agisce con uno sforzo di taglio (ripartito su 19 connettori complessivi) pari a:

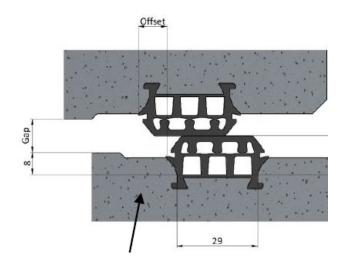
T = P/19 = 26.3 kN

Elementi accessori del rivestimento

Il sistema di collegamento longitudinale tra gli anelli di rivestimento non prevede più bulloni metallici sui giunti (previsti nel PE in prima fase): il collegamento sui giunti circonferenziali è ora garantito per mezzo di connettori, mentre su quelli longitudinali attraverso le barre guida in polipropilene FAMA o equivalenti. I connettori, montati durante il posizionamento dei conci, devono garantire in fase di esercizio un adeguata continuità tra gli anelli contrastando in particolare la reazione dovuta allo schiacciamento della coppia di guarnizioni.

Guarnizioni di tenuta idraulica

Le guarnizioni utilizzate risultano annegate nel getto, e questo rappresenta un indubbio vantaggio eliminando qualsiasi rischio di scollamento o cattiva disposizione sulle facce; esse entrano in contatto tra di loro e schiacciandosi permettono di sigillare i giunti: vengono progettate in base alle specifiche esigenze di tenuta idraulica. Si prevede che nell'assetto finale ciascun concio debba essere posizionato, dopo il montaggio dell'intero anello, esattamente nella posizione prevista in progetto, con tutti i giunti circonferenziali e radiali allineati tra loro e perfettamente a contatto, in modo da garantire lo schiacciamento necessario affinche si realizzi la richiesta tenuta idraulica. Sono ammessi degli scostamenti minimi dalla posizione teorica di ciascun concio ed anello con determinate tolleranze di seguito indicate.


Per l'alloggiamento delle guarnizioni, previste annegate nel getto, si predispone sulle facce dei conci un'opportuna cava. Lo "schiacciamento" tra le due guarnizioni deve essere tale da garantire l'impermeabilità sotto il massimo carico idraulico previsto, pari in questo caso a circa 9 bar, e si tiene conto di eventuali disallineamenti relativi (offset) delle due guarnizioni o del non perfetto contatto (gap) dei ringrossi delle facce dei conci. Il ringrosso previsto è nel caso in esame pari a 3mm per parte.

Si è considerata una situazione in cui il gap è dell'ordine di 2mm in concomitanza con un disallineamento (offset) delle guarnizioni di 10mm (vedi figura).

Siccome la prova effettuata dal fornitore è stata realizzata tra due facce aventi ringrosso di 2mm per parte, per definire la pressione idrostatica sostenibile dalla guarnizione attraverso il grafico seguente si definisce un gap totale pari alla somma del gap di montaggio (2mm) e dell'ulteriore gap che è dovuto alla configurazione geometrica delle facce nel caso specifico (2mm) per un totale di 4mm.

In queste condizioni, come evidente dalla figura seguente, la pressione idrostatica sostenibile è molto superiore (20bar), anche con un adeguato coefficiente di sicurezza, al massimo battente idraulico ipotizzato (Pw=9 bar).

Schema guarnizione con offset nella prova del fornitore

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 07
 CL
 GN 03 0001
 C
 126 di 201

WATER TIGHTNESS TEST UG018A 70 SH CAVA

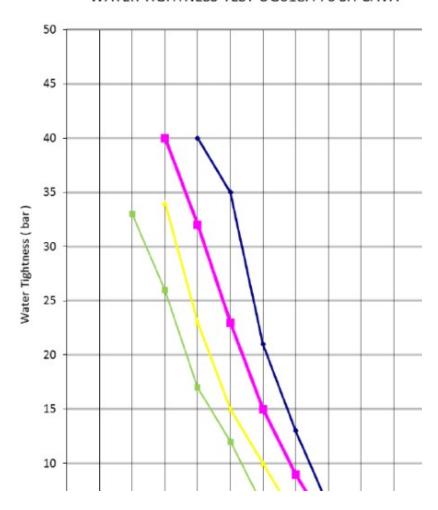


Diagramma di tenuta dell'acqua e geometrie della guarnizione di riferimento

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	127 di 201

LOAD DEFLECTION DIAGRAM FOR PROFILE UG018A



Diagramma di carico/deformazione profilo

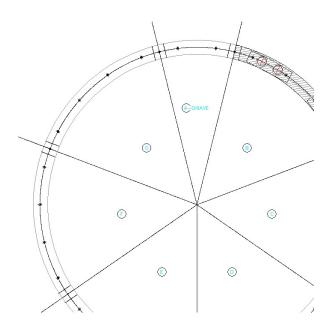
Come si è detto precedentemente si prevede che ciascun concio ed anello debbano essere posizionati geometricamente esattamente come previsto in progetto, con tolleranze geometriche minime.

Ad ulteriore garanzia di un corretto montaggio del concio nella fase transitoria di predisposizione dell'anello si definisce comunque la forza minima di spinta dei martinetti sui conci che in fase di montaggio favorisce il contatto delle facce dei giunti.

La guarnizione, quando completamente compressa, offre una reazione di 25 kN/m. Di conseguenza la forza complessiva di reazione sulla faccia circonferenziale del concio è:

$$F_{g,an} = 25kN/m \cdot 4.19 m = 104.75 kN$$

Essendo previste 3 coppie di cilindri idraulici per concio, la spinta minima che deve essere corrisposta dalla singola coppia di martinetti al concio è pari a:


$$F_{1,min} = F_{g,an} / 3 = 34.92 \text{ kN}$$

Per quanto riguarda il giunto longitudinale tra conci dello stesso anello si considera il caso più sfavorevole in cui, in fase di montaggio dell'anello, un concio si trovi ad avere la pressione della guarnizione nella parte superiore, ed inferiormente nessun concio su cui appoggiarsi (figura sotto). In questa condizione sul concio insistono le seguenti azioni verticali:

• Peso proprio: $P=25 \text{ kN/m}^3 \cdot V_{\text{concio}} = 25 \text{ kN/m}^3 \cdot 4.19 \text{m} \cdot 1.50 \text{m} \cdot 0.5 = 78.6 \text{ kN}$

• Spinta guarnizione: $S=25 \text{ kN/m} \cdot L_{\text{concio}} = 25 \text{ kN/m}^3 \cdot 1.50 \text{m} = 37.5 \text{ kN}$

Caso sfavorevole di verifica della guarnizione nei giunti longitudinali

Pertanto affinché il concio sia in equilibrio, ai suoi estremi longitudinali devono essere presenti delle reazioni vincolari pari a:

$$R_v = (P+S)/2 = 58 \text{ kN}$$

Nel giunto circonferenziale posteriore il taglio è fornito dai connettori, nella faccia frontale invece il meccanismo resistente è l'attrito che si sviluppa tra la scarpa dei martinetti e l'area di trasmissione del carico del concio, esprimibile come:

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	129 di 201

$$V_{Rd.fric} = \mu \cdot N_{Ed}$$
 -> $N_{Ed.min} = R_v / 0.5 = 116 \text{ kN}$

dove:

NEd [kN/m]: spinta totale agente sul concio

 μ [-]: coefficiente di attrito tra le interfacce (acciaio-calcestruzzo: μ = 0.5)

La spinta minima che deve essere corrisposta dalla singola coppia di martinetti al concio è quindi pari a:

$$F_{2,min} = N_{Ed,min} / 2 = 116 \text{ kN}$$

Connettori meccanici

I connettori scelti presentano le seguenti caratteristiche (scheda tecnica in Allegato):

Resistenza a trazione:

per rottura del connettore S_m = 100 kN resistenza di progetto S_r = S_m / γ_a = 100 / 1.15 = 87 kN

Resistenza al taglio:

per rottura del connettore $T_m = 160 \; kN$ resistenza di progetto $T_r = T_m / \; \gamma_a = 160 \ / \; 1.15 = 139 \; kN$

La massima forza di compressione nella guarnizione con un disallineamento di 0 mm e un gap di soli 2mm (facce a contatto) risulta pari a R=25kN/m.

La reazione che si sviluppa lungo tutta la faccia circonferenziale del concio è:

 $F=R\times4.19m=104.75 \text{ kN}$

A favore di sicurezza si prevede che in fase di esercizio solo tre connettori possano funzionare per una possibile rottura del quarto in fase di montaggio.

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	130 di 201

Conseguentemente la forza di trazione competente a ciascun connettore è:

$$S = F/3 = 35 \text{ kN}$$

$$F_d = F \times \gamma_{gtu} = 52.5 \text{ kN}$$

$$Fd < Sr = 87 kN$$

Per quanto riguarda il giunto longitudinale (tra conci di uno stesso anello) la reazione dovuta allo schiacciamento della relativa coppia di guarnizioni agisce come taglio sul sistema costituito dai due connettori più prossimi al giunto:

 $F = R \times 1.50 \text{ m} = 37.5 \text{ kN}$

T = F / 2 = 18.75 kN

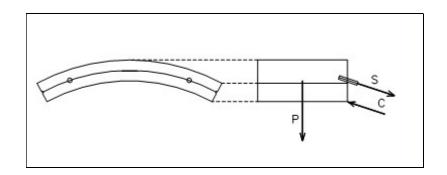
$$T_d = T \times \gamma_{gtu} = 28.1 \text{ kN}$$

$$Td < Tr = 139 \text{ kN}$$

Il fattore di riduzione γ_a adottato è pari a 1.15, uguale a quello adottato per l'acciaio nelle verifiche agli Stati limite, compatibilmente con quanto dettato dalla Normativa. Tale situazione di verifica è, tuttavia, legata all'errata manovra e quindi non utile per la statica della galleria.

Viene di seguito presa in considerazione la sollecitazione agente sui connettori a seguito di una temporanea sospensione del singolo concio ai soli connettori (errata manovra dei martinetti).

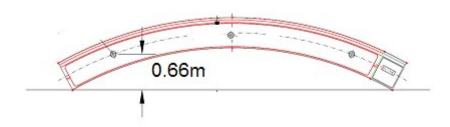
Tale condizione di carico non è in alcun modo prevista nella normale procedura di montaggio. Risulta tuttavia opportuno verificare che, nel caso in cui un evento accidentale provochi la sospensione del concio, la resistenza dei connettori garantisca la sicurezza impedendo la caduta del concio stesso. Si considera nelle verifiche il contributo di soli due connettori.


Il peso del concio è:

 $P = 25 \text{ kN/m3} \times 0.5 \text{m} \times 1.5 \text{m} \times 4.19 \text{m} = 78.6 \text{ kN}$

questo agisce con uno sforzo di taglio (ripartito su 2 connettori) pari a

$$T = P/2 = 39.3 \text{ kN} < Tr$$


Al momento flettente si oppone la coppia di forze data dalla trazione sui connettori e dalla compressione sui punti più bassi dove il concio si appoggia all'anello adiacente. Considerando collaboranti due soli connettori, la condizione più sfavorevole si presenta per l'assenza dei connettori centrali; in questo caso il braccio della coppia è il minimo possibile (vedi figura sotto):

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	131 di 201

$$M = P x (1.5/2) = 59 kN m$$

 $M=3 \times S \times b_{min}$

con bmin=0.66m

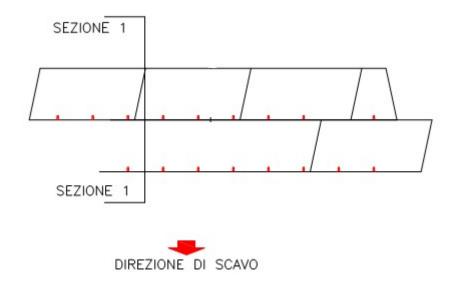
Si ricava quindi la forza di trazione sul singolo connettore:

$$S = M / (2 \times b_{min}) = 45kN$$

$$Sd = S \times \gamma_{gtu} = 67.5 \text{ kN}$$

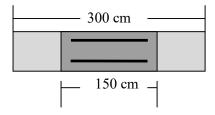
$$Sd < Sr = 87 \text{ kN}$$

10.5.5 Verifiche statiche in fase definitiva: modelli di calcolo e criteri di verifica


Nelle analisi numeriche effettuate in sede di progetto l'anello del rivestimento definitivo è stato simulato come elementi continui (beam), ossia in grado di trasferire momenti flettenti lungo tutto il perimetro di scavo.

Infatti i giunti tra concio e concio di due anelli contigui sono sfalsati in modo che ciascun anello può essere considerato come un involucro continuo cilindrico.

Il complesso dei conci sfalsati ha quindi un comportamento globale a "guscio".


Nelle analisi, essendo rappresentato il rivestimento definitivo come costituito da conci discontinui e sfalsati, le caratteristiche meccaniche di ogni asta si riferiscono ad una sezione di anello di lunghezza unitaria.

A seguito delle analisi così condotte, l'anello del rivestimento definitivo in cls è stato verificato facendo riferimento alla sezione n°1 di Figura (sezione <u>in prossimità</u> del giunto), ossia considerando l'area di cls di due conci e l'armatura di uno soltanto.

Le sollecitazioni applicate sono quelle relative a due conci.

Per quanto riguarda le analisi e le verifiche condotte si considera quindi la sezione 1.

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 07
 CL
 GN 03 0001
 C
 133 di 201

Al fine di integrare le verifiche di cui sopra, è stata analizzato il comportamento <u>in corrispondenza</u> del giunto per il quale sono state effettuate le opportune verifiche.

Definizione degli stati limite

Le verifiche sono eseguite mediante il metodo agli stati limite; preliminarmente vengono quindi trovate le sollecitazioni ultime alle quali l'anello di conci armato può resistere in termini di dominio Nu-Mu e di massima sollecitazione di taglio Tu; successivamente vengono calcolate le sollecitazioni di progetto Nd, Md, Td agenti nelle diverse fasi e verificata la loro appartenenza ai domini di resistenza.

Caratteristiche dei materiali

CALCESTRUZZO:

classe (resistenza caratteristica cubica): C45/55 MPa

resistenza caratteristica cilindrica: $f_{ck}=0.83xR_{ck}=45.65 \text{ MPa}$

resistenza caratteristica a trazione: $f_{ctk}=2.7 \text{ MPa}$

modulo elastico: $E_{cm} = 22000 (f_{cm}/10)^{0.3} = 36416 \text{ MPa}$

massima deformazione di accorciamento: ϵ_c =3.5 $^{\circ}/_{oo}$

classe (resistenza caratteristica cubica): C55/67 MPa

resistenza caratteristica cilindrica: $f_{ck}=0.83xR_{ck}=55 \text{ MPa}$

resistenza caratteristica a trazione: f_{ctk}=2.95 MPa

modulo elastico: $E_{cm} = 22000 (f_{cm}/10)^{0.3} = 38214 \text{ MPa}$

massima deformazione di accorciamento: $\epsilon_c=3.5$ °/ $_{oo}$

classe (resistenza caratteristica cubica): C60/75 MPa

resistenza caratteristica cilindrica: f_{ck}=0.83xR_{ck}=62.2 MPa

resistenza caratteristica a trazione: f_{ctk}=3.04 MPa

modulo elastico: $E_{cm} = 22000 (f_{cm}/10)^{0.3} = 39100 MPa$

massima deformazione di accorciamento: $\varepsilon_c=3.5$ °/ $_{oo}$

ACCIAIO PER ARMATURA:

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 07
 CL
 GN 03 0001
 C
 134 di 201

tipo: B450

tensione caratteristica di snervamento: f_{yk} =450 MPa modulo elastico: E_s =210000 MPa

massima deformazione di allungamento ε_a =10 °/ $_{oo}$

Coefficienti di sicurezza sulla resistenza dei materiali

Per il calcolo delle azioni resistenti allo SLU della sezione sono stati utilizzati i seguenti coefficienti di sicurezza (a dividere i valori di resistenza dei materiali).

- per la resistenza a compressione del cls.:

 $\gamma c=1.5$

- per la resistenza a compressione del cls. in condizioni eccezionali:

 $\gamma c=1.3$

- per la resistenza dell'acciaio:

 $\gamma a = 1.15$

per tenere conto della diminuzione della resistenza del calcestruzzo sottoposto a carichi di lunga durata, nelle verifiche in fase definitiva la resistenza caratteristica cilindrica (fck) viene opportunamente ridotta di un ulteriore coefficiente pari a 0.85.

I valori di calcolo delle resistenze del calcestruzzo e dell'acciaio risultano quindi:

CALCESTRUZZO

C45/55

resistenza di calcolo a compressione del cls (carichi di lunga durata):

 $fcd1=0.85xfck/\gamma c=25.5 MPa$

resistenza di calcolo a compressione del cls (carichi di breve durata):

fcd2=fck/yc=30 MPa

C55/67

resistenza di calcolo a compressione del cls (carichi di lunga durata):

fcd1=0.85xfck/ γ c=31.2 MPa

resistenza di calcolo a compressione del cls (carichi di breve durata):

 $fcd2=fck/\gamma c=36.7 MPa$

C60/75

resistenza di calcolo a compressione del cls (carichi di lunga durata):

 $fcd1=0.85xfck/\gamma c=34 MPa$

resistenza di calcolo a compressione del cls (carichi di breve durata):

fcd2=fck/yc=40 MPa

ACCIAIO

resistenza di calcolo a snervamento dell'acciaio:

fyd=fyk/ γ a= 391 MPa

COEFFICIENTI DI AMPLIFICAZIONE DELLE SOLLECITAZIONI:

Le sollecitazioni agenti sulla sezione nelle diverse condizioni di carico, sia in fase definitiva che in fase transitoria vengono amplificate secondo un coefficiente di sicurezza pari a $\gamma_{gtu}=1.3$ per le verifiche agli stati limite ultimi, mentre $\gamma_{gte}=1.0$ per le verifiche agli stati limite di esercizio.

Le sollecitazioni di calcolo sono quindi:

 $N_d = N_t x \gamma_{gt}$

 $M_d=Mx \gamma_{gt}$

 $T_d = Tx \gamma_{gt}$

10.5.6 Requisiti Stati limite

S.L.U. per tensioni normali in fase definitiva

Per la verifica a pressoflessione in fase definitiva si riporta il dominio di resistenza della sezione di due anelli consecutivi del rivestimento. Data la discontinuità del rivestimento posto in opera, dovuta alla presenza dei giunti tra gli anelli, le verifiche vengono effettuate considerando che il momento flettente possa essere assorbito, a livello di trazioni, soltanto dove è presente la continuità strutturale.

Le verifiche sono quindi condotte considerando due anelli consecutivi mentre l'armatura è quella relativa ad un solo anello.

Viste le 3 differenti classi di armatura, riportati nella tabella seguente, verranno definiti i 3 domini di rottura. Si riporteranno inoltre nello stesso grafico il dominio della sezione con le armature necessarie.

Classi di armatura	Estradosso	Intradosso
I	14 <i>ϕ</i> 24	14 <i>ϕ</i> 24

II	14 ø 20	$14\phi 20$
III	14 ø 16	14 <i>ø</i> 16
IV	14 ø 14	14 <i>ϕ</i> 14

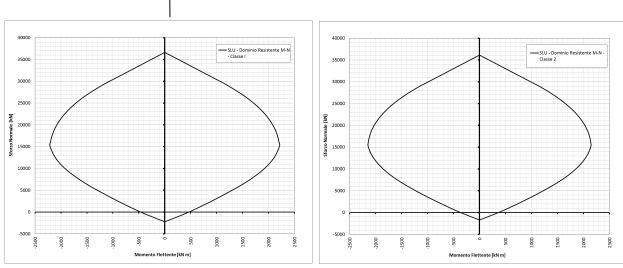


Figura 46 - Dominio resistente SLU (B=3, H = 0.45 m) - Classe 3 e 4 - C45/55

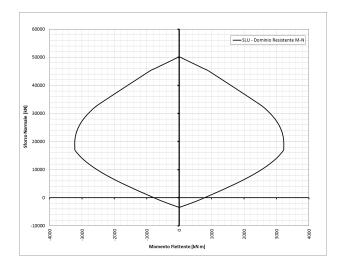


Figura 47 - Dominio resistente SLU (B=3, H = 0.5 m) - Classe 2 - C55/67

GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA						
Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40 D 07	CODIFICA CL	DOCUMENTO GN 03 0001	REV.	FOGLIO 137 di 201	

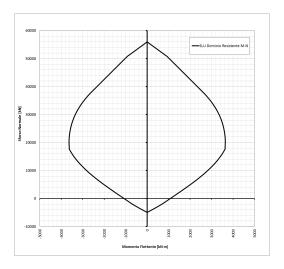


Figura 48 - Dominio resistente SLU (B=3, H = 0.5 m) – Classe 1 – C60/75

Per la valutazione delle resistenze ultime nei confronti di sollecitazioni taglianti (valido per elementi monodimensionali), è stato considerato quanto riportato di seguito.

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA						
Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40 D 07	CODIFICA CL	DOCUMENTO GN 03 0001	REV.	FOGLIO 138 di 201	

S.L.U. per taglio in fase definitiva

La resistenza a taglio V_{Rd} degli elementi strutturali sprovvisti di specifica armatura a taglio è stata valutata, utilizzando formule di comprovata affidabilità, sulla base della resistenza a trazione del calcestruzzo.

La verifica di resistenza (SLU) si pone con:

$$V_{Rd} \ge V_{Ed}$$

dove V_{Ed} è il valore di calcolo dello sforzo di taglio.

Con riferimento all'elemento fessurato da momento flettente, la resistenza al taglio si valuta con:

$$\begin{split} V_{Rd} = & \left\{ 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \geq \left(v_{min} + 0.15 \cdot \sigma_{cp} \right) \cdot b_w d \quad (4.1.14) \\ con \\ k = 1 + \left(200 / d \right)^{1/2} \leq 2 \\ v_{min} = 0.035 k^{3/2} f_{ck}^{-1/2} \\ e \ dove \\ d \qquad \qquad \dot{e} \ l'altezza \ utile \ della \ sezione \ (in \ mm); \\ \rho_1 = A_{sl} / (b_w \cdot d) \quad \dot{e} \ il \ rapporto \ geometrico \ di \ armatura \ longitudinale \ (\leq 0.02); \\ \sigma_{cp} = N_{Ed} / A_c \qquad \dot{e} \ la \ tensione \ media \ di \ compressione \ nella \ sezione \ (\leq 0.2 \ f_{cd}); \\ b_w \qquad \dot{e} \ la \ larghezza \ minima \ della \ sezione \ (in \ mm). \end{split}$$

Nelle tabelle di sintesi delle verifiche è riportato il coefficiente di utilizzo della sezione ($V_{Ed}/V_{Rd} \le 1$), il quale deve risultare inferiore all'unità affinché la verifica risulti soddisfatta.

S.L.U. per tensioni normali in fase provvisoria

Per le verifiche a pressoflessione nelle fasi provvisorie che si verificano prima della messa in opera dell'anello di rivestimento a tergo della macchina TBM si riporta il dominio di resistenza della sezione un singolo concio.

Le verifiche riportate in seguito sono state svolte nelle condizioni più gravose, ovvero con la classe di armatura II.

Il momento resistente della sezione per un N = 0 è pari a 288.7 kN m

____ 150 cm ___

b=150 cm

h=45 cm

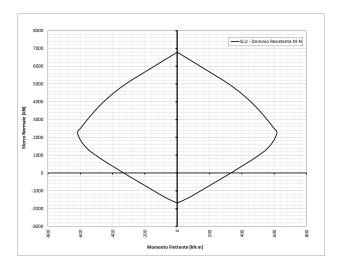
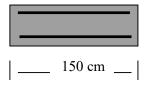



Figura 49 - Dominio resistente SLU (B=1,50, H = 0.45 m) - Classe 3 - C 12/15

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA						
Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40 D 07	CODIFICA CL	DOCUMENTO GN 03 0001	REV.	FOGLIO 140 di 201	

Il momento resistente della sezione per un N=0 è pari a 330 kN m

b=150 cm

h= 50 cm

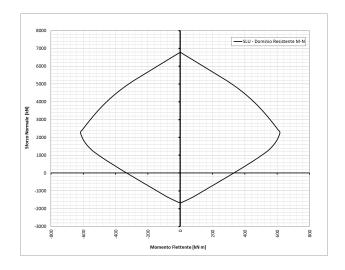


Figura 50 - Dominio resistente SLU (B=1,50, H = 0.5 m) - Classe 3 - C 12/15

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA						
Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40 D 07	CODIFICA CL	DOCUMENTO GN 03 0001	REV.	FOGLIO 141 di 201	

Stati limite di esercizio

S.L. per le tensioni di esercizio

Le condizioni ambientali più gravose per i conci si stabiliscono in fase definitiva con il rivestimento completato. Le massime tensioni tollerate nei materiali sono le seguenti:

CLS(C45/55)

σ_{max} per combinaz. di carico rara	$0.60 \cdot f_{ck} = 27 \text{ MPa}$
σ_{max} per combinaz. di carico quasi permanente	$0.45 \cdot f_{ck} = 20.25 \text{ MPa}$

CLS(C55/65)

σ_{max} per combinaz. di carico rara	$0.60 \cdot f_{ck} = 33 \text{ MPa}$
σ_{max} per combinaz. di carico quasi permanente	$0.45 \cdot f_{ck} = 24.8 MPa$

CLS(C60/75)

σ_{max} per combinaz. di carico rara	$0.60 \cdot f_{ck} = 37.4 \text{ MPa}$
σ_{max} per combinaz. di carico quasi permanente	$0.45 \cdot f_{ck} = 28MPa$

ACCIAIO

 σ_{max} 0.8· f_{yk} =360 MPa

Stato limite di fessurazione

Per assicurare la funzionalità e la durata delle strutture si deve:

- garantire un sufficiente ricoprimento delle armature con calcestruzzo di buona qualità e compattezza, bassa porosità e bassa permeabilità;
- non superare uno stato limite di fessurazione adeguato alle condizioni ambientali, alle sollecitazioni ed alla sensibilità delle armature alla corrosione;
- tener conto delle esigenze estetiche.

In ordine di severità decrescente si distinguono i seguenti stati limite di fessurazione:

- stato limite di decompressione nel quale, per la combinazione di azioni prescelta, la tensione normale è ovunque di compressione ed al più uguale a 0;
- stato limite di formazione delle fessure, nel quale, per la combinazione di azioni prescelta, la tensione normale di trazione nella fibra più sollecitata è:

dove f_{ctm} rappresenta la resistenza a trazione media del cls.

• stato limite di apertura delle fessure, nel quale, per la combinazione di azioni prescelta, il valore limite di apertura della fessura calcolato al livello considerato è pari ad uno dei seguenti valori nominali:

 $\underline{\mathbf{w}}_1 = 0.2$ mm per combinazione qusi permanente

w₂ = 0.3mm per combinazione frequente (considerata per le condizioni di carico provvisorie)

Lo stato limite di fessurazione è stato fissato in funzione delle condizioni ambientali e della sensibilità delle armature alla corrosione. Le verifiche condotte per i diversi stati limite di fessurazione sono di seguito riportate.

Il valore di calcolo di apertura delle fessure (w_d) non deve superare i valori nominali w di progetto. Il valore di calcolo è dato da:

$$w_d = 1.7 w_m$$

dove w_m, rappresenta l'ampiezza media delle fessure.

L'ampiezza media delle fessure w_m è calcolata come prodotto della deformazione media delle barre d'armatura ϵ_{sm} per la distanza media tra le fessure Δ_{sm} :

$$W_m = \varepsilon_{sm} \chi \Delta_{sm}$$

Per il calcolo di ε_{sm} , e Δ_{sm} vanno utilizzati criteri consolidati riportati nella letteratura tecnica nel rispetto delle indicazioni fornite nel paragrafo C4.1.2.2.4.6 della Circolare 02/02/2009.

In assenza di dati più precisi, i parametri Δ_{sm} e ϵ_{sm} che definiscono w_m , possono valutarsi come segue, nell'ipotesi che le armature siano distribuite uniformemente sull'area efficace della sezione trasversale.

• la distanza media fra le fessure Δ_{sm} per la condizione di fessurazione stabilizzata in corrispondenza del livello baricentrico dell'armatura all'interno dell'area efficace e data da:

$$\Delta_{\rm sm} = 2 (c + s/10) + k2 k3 \phi/\rho_{\rm r}$$

c = copriferro netto armatura tesa (mm);

s = interasse tra i ferri, se s>14 Φ si adotterà s=14 Φ (mm);

 Φ = diametro delle barre (mm);

k2 = 0.4, per barre ad aderenza migliorata;

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	143 di 201

k3 = 0.125, per diagramma delle σ triangolare, dovuto a flessione o pressoflessione;

$$\rho r = A_s/A_{c eff};$$

 A_s = area della sezione di acciaio posta nell'area $A_{c,eff}$.

• la deformazione unitaria media dell'armatura ɛsm può valutarsi secondo la seguente espressione che tiene conto della collaborazione del calcestruzzo teso che la circonda:

$$\varepsilon_{sm} = \sigma_s/E_s (1-\beta 1 \beta 2 (\sigma_{sr}/\sigma_s)2) \ge (0.4 \sigma_s/E_s)$$

 σ_s = tensione dell'acciaio calcolata nella sezione fessurata per la combinazione di azioni considerata;

 σ_s = tensione dell'acciaio calcolata nella sezione fessurata per la sollecitazione corrispondente al raggiungimento della resistenza a trazione fetm nella fibra di calcestruzzo più sollecitata nella sezione interamente reagente;

 $\beta_1 = 1.0$ per barre ad aderenza migliorata;

 $\beta_2 = 0.5$ nel caso di azioni di lunga durata o ripetute.

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA					
Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40 D 07	CODIFICA	DOCUMENTO GN 03 0001	REV.	FOGLIO 144 di 201

10.6 VERIFICHE STATICHE: PRESENTAZIONE E RISULTATI

Si riporta di seguito una tabella repilogativa delle analisi numeriche efettuate per l'analisi e la verifica degli scavi e dei rivestimenti.

Tabella 16 - Sezioni di analisi fasi di terapia

Analisi n.	Sezione	progressiva	formazione	Condizione analisi	
10	axiTRV100m	-	TRV	Assialsimmetrico copertura 100m	
11	axiTRV200m_s	-	TRV	Assialsimmetrico copertura 200m – sovrascavo 5cm	
12	axiTRV300m_s	-	TRV	Assialsimmetrico copertura 300m – sovrascavo 5cm	
13	axiTRV400m_s	-	TRV	Assialsimmetrico copertura 400m – sovrascavo 5cm	
				Assialsimmetrico copertura 600m – sovrascavo	
14	axiTRV600m_s	_	TRV	10cm	
15	TRV100m	25150	TRV	Piana copertura 100m	
16	TRV200m_s	23850	TRV	Piana copertura 200m – sovrascavo 5cm	
17	TRV300m_s	19600	TRV	Piana copertura 300m – sovrascavo 5cm	
18	TRV400m_s	20150	TRV	Piana copertura 400m – sovrascavo 5cm	
19	TRV600m_s	20300	TRV	Piana copertura 600m – sovrascavo 10cm	

Ai fini di una corretta e completa valutazione della adeguatezza del dimensionamento effettuato, si ritengono sufficienti le verifiche statiche eseguite.

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 07
 CL
 GN 03 0001
 C
 145 di 201

Modello geotecnico

Tabella 17 – Intervallo dei parametri geotecnici

Sezione		pk	Z_0	$h_{\rm w}$	σ_{o}	p_{w0}	p_{wR}	$R_{\rm w}$	γ	c'k	ϕ ' _k	c _{u k}	E_k	E_{uk}
di analisi	Unità	[km]	[m]	[m]	[MPa]	[MPa]	[MPa]	[m]	[kN/m ³]	[MPa]	[°]	[MPa]	[MPa]	[MPa]
D1	TRV	25425	50	-	1,05	-	-	-	21	-	-	0,500	-	250
D2	TRV	25150	100	95	2,2	0.95	-	-	22	78	20	0,594	300	297
D3	TRV	23850	200	115	4,4	1.15	-	-	22	177	17	1,188	600	594
D4	TRV	19600	300	33.6	6,6	0.34	-	-	22	421	14	1,782	900	891
D5	TRV	20150	400	0	8,8	0	-	-	22	85*	22*	2,268	2000*	1800*
D6	TRV	20300	600	0	13.2	0	-	-	22	85*	22*	3,564	2000*	1800*

 Z_0 = copertura rispetto al piano dei centri della galleria

h_w= carico idraulico

 σ_o = tensione totale iniziale al livello del cavo

 p_{w0} = pressione interstiziale al livello del cavo in condizioni indisturbate

pwR = pressione interstiziale sul profilo di scavo

 R_w = raggio di influenza idraulica oltre il quale si ristabilisce p_{w0}

γ = peso dell'unità di volume dell'ammasso

c'_k = valore caratteristico della coesione efficace dell'ammasso

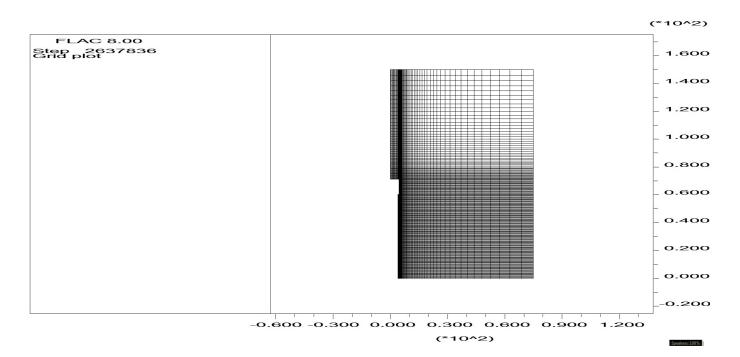
φ'_k = valore caratteristico dell'angolo di attrito dell'ammasso

 $c_{u\,k}$ = valore caratteristico della coesione non drenata

E_k = valore caratteristico del modulo elastico dell'ammasso

Eu k = valore caratteristico del modulo elastico non drenato dell'ammasso

Le analisi sono svolte con riferimento allo scavo di una galleria di raggio equivalente R_{eq} pari a 4,65m.


10.6.1 Modelli assialsimmetrici – Criteri di verifica

Si sono effettuate 6 analisi numeriche assialsimmetriche al fine di simulare il comportamento del terreno allo scavo e l'interazione del medesimo con gli interventi previsti (pressioni al fronte) nonché con lo scudo della TBm ed il rivestimento a tergo. In particolare l'analisi si prefigge lo scopo di stimare le pressioni del terreno sullo scudo, al fine di determinare la spinta totale necessaria negli scenari di seguito indicati, nonché il detensionamento del terreno al contorno dei conci, a debita distanza dal fronte (condizioni piane indisturbate), al fine di determinare il rilascio delle forze da imporre nelle analisi numeriche piane utilizzate per il dimensionamento e la verifica dei conci.

Modello geometrico

La mesh di calcolo è costituita da 71x200 di elementi rettangolari, opportunamente intensificati nelle zone di maggiore interesse in corrispondenza della galleria, in modo da seguire il più fedelmente possibile le geometrie locali delle strutture. Inferiormente il modello è vincolato con carrelli.

La griglia presenta un'estensione laterale di 75 m e un'altezza complessiva di 150 m. I bordi del modello numerico sono stati collocati sufficientemente lontani dalla galleria (a distanza >8D con D=diametro della galleria), in modo tale che le condizioni di vincolo ivi definite non influenzino la modellazione.

L'analisi si prefigge passo passo di simulare l'avanzamento sia dello scudo metallico che del rivestimento e relativo riempimento di miscela a tergo, simulando l'applicazione di una pressione al fronte e di un eventuale sovrascavo. Esso si può realizzare sia grazie alla configurazione geometrica della macchina TBM (e cioè la differenza di raggio fra la testa e la coda rappresentata dalla conicità del mantello) sia tramite i gauge cutters che possono portare ad una ulteriore alesatura in testa attraverso il copy-cutter. Questo sovrascavo in terreni scadenti in relazione agli stati tensionali in gioco, spesso non viene compensato totalmente dal riempimento della miscela bicomponente a tergo, per cui si realizza un ulteriore deconfinamento oltre a quello del fronte.

I rivestimenti e lo scudo sono simulati con elementi mesh. Lo sfondo virtuale di scavo è di 0.5m. il sovrascavo, nel caso in cui si decida di simularlo, è realizzato attraverso un gap dotato di interfacce e l'analisi è svolta in modalità a grandi deformazioni. Lo scudo ipotizzato di lunghezza 11m e spessore 5cm è simulato con un modello costitutivo elastico lineare; tutti gli altri elementi compreso il terreno è simulato con un legame elastoplastico con criterio di resistenza di Mohr Coulomb.

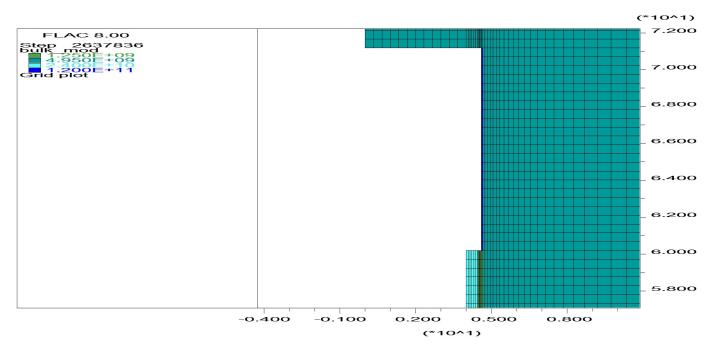
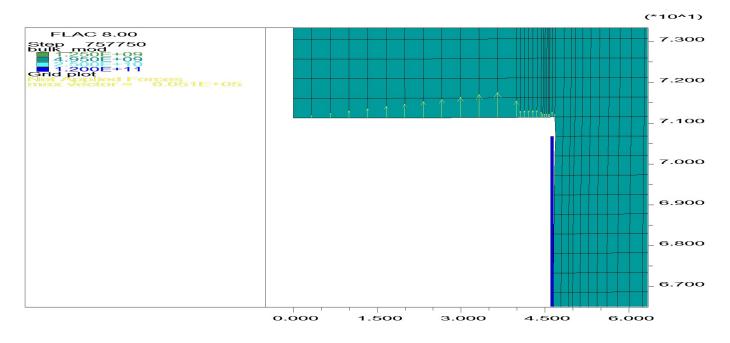

La seguente tabella riassume la successione delle fasi di calcolo delle analisi condotte:

Tabella 2 - Fasi di analisi


Fase	Descrizione
0	Creazione della geometria del modello
1	Inizializzazione dello stato tensionale geostatico in condizioni elastiche
2	Inizializzazione dello stato tensionale geostatico in condizioni plastiche (modello costitutivo di Mohr-Coulomb)
3	Scavo iniziale corripondente allo scudo TBM ed applicazione pressioni al fronte
4	Simulazione dello scavo in CND (TRV - Cu) a regime per sfondi limitati (con eventuale sovrascavo) avanzamento scudo metallico, applicazione della pressione al fronte e installazione del rivestimento definitivo e della miscela bicomponente
5	Scavo per una lunghezza totale finale di 75m, fino al centro della mesh; si valutano le pressioni sullo scudo e sul rivestimentodefinitivo a tergo

Si ipotizza un sovrascavo di circa 5cm da realizzarsi attraverso un opportuna conicità dello scudo e/o attraverso l'ausilio del copycutter. Si sono svolte comunque anche analisi senza simulare il sovrascavo ipotizzando comunque un raggio di scavo pari a 4.65m.

Rappresentazione della mesh e degli elamenti di sostegno (scudo in giallo, rivestimento in conci in rosso, miscela bicomponente in viola)

Particolare della mesh e degli elementi di sostegno (scudo in giallo e relativo gap con deformzione del terreno fino a toccare lo scudo, pressione al fronte)

10.6.2 Modelli assialsimmetrici - Valutazione delle spinte massime di esercizio della TBM e dei fattori di rilascio dello stato tensionale

Di seguito si rappresenta l'esito delle analisi assialsimmetriche in forma sintetica

N	Id	Facies geotecnica	Tipologia analisi	Tipo di analisi	Pressione fronte (bar)	Relax preinstallazione conci (%)	Spinta su scudo (KN)
1	axiTRV100m	TRV	Assialsimmetrico copertura 100m	Non drenata	3	32	1650*
2	axiTRV200m_s	TRV	Assialsimmetrico copertura 200m– sovrascavo 5cm	Non drenata	5	42	22000
3	axiTRV300m_s	TRV	Assialsimmetrico copertura 300m– sovrascavo 5cm	Non drenata	5	76	21722
4	axiTRV400m_s	TRV	Assialsimmetrico copertura 400m– sovrascavo 5cm	Non drenata	5	80	41633
5	axiTRV600m_s	TRV	Assialsimmetrico copertura 600m– sovrascavo 10cm	Non drenata	5	95	11840

^{*}spinta sullo scudo valutata nel caso di sovrascavo di 5cm comunque dovuto ai cutter-edges

Dal punto di vista delle spinte le analisi più significative sono quelle che ipotizzano un sovrascavo permanente di 5cm dal momento che la macchina TBM è sempre progettata con una conicità radiale centimetrica e tramite gauge cutters. Nel dettaglio la spinta complessiva deve tenere conto di quattro singoli termini:

$$\Sigma W = W_{sh} + W_{sk} + W_{exc} + W_{sup}$$

W sh: Forza dovuta alla presenza delle spazzole e del cutting edge =584KN

W sk : Forza dovuta all'attrito (μ =0.2) macchina-terreno (spinta massima prevista dal calcolo sullo scudo più peso totale macchina incluso backup stimato in 1200t) =53633 KN

W sup: Forza di pressione max da applicare al fronte=33900 KN

W exc: Forza necessaria allo scavo=9000KN

Le analisi svolte hanno condotto ai seguenti valori di progetto:

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO CO	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA							
Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40 D 07	CODIFICA CL	DOCUMENTO GN 03 0001	REV.	FOGLIO 150 di 201			

[·]Spinta di progetto max (avanzamento in condizioni ordinarie, in relazione al contesto geomeccanico e morfologico): 100.000 – 115.000 kN

Extra Spinta di progetto (ripartenza fresa in condizioni eccezionali): 130.000 kN

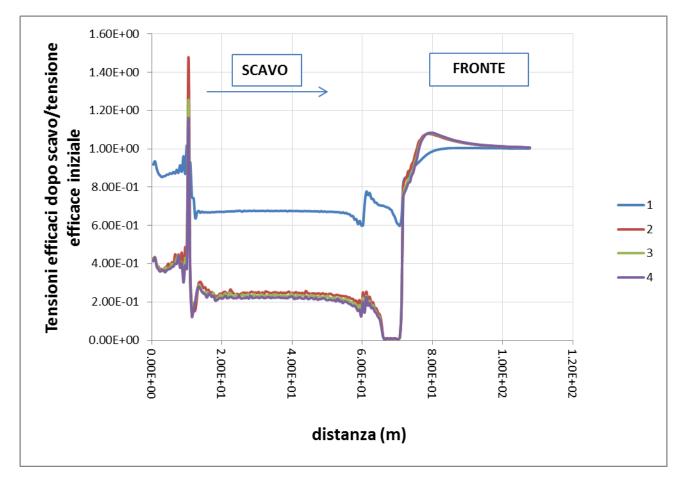


Figura 51 – andamento delle tensioni efficaci post scavo normalizzate in funzione della distanza dal fronte

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO CO	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA							
Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40 D 07	CODIFICA CL	DOCUMENTO GN 03 0001	REV.	FOGLIO 151 di 201			

10.6.3 Modelli piani

Si sono effettuate 6 analisi numeriche piane al fine di simulare l'interazione del medesimo il rivestimento definitivo a tergo.

Modello geometrico

La mesh di calcolo è costituita da 71x200 di elementi rettangolari, opportunamente intensificati nelle zone di maggiore interesse in corrispondenza della galleria, in modo da seguire il più fedelmente possibile le geometrie locali delle strutture. Inferiormente il modello è vincolato con carrelli.

La griglia presenta un altezza di 75 m e una larghezza complessiva di 150 m. I bordi del modello numerico sono stati collocati sufficientemente lontani dalla galleria (a distanza >8D con D=diametro della galleria), in modo tale che le condizioni di vincolo ivi definite non influenzino la modellazione.



Figura 52 – Mesh di calcolo

Fasi e percentuali di rilascio

Al fine di tener conto della natura tridimensionale del problema, nelle analisi svolte in condizioni di deformazione piana lo scavo della galleria è stato simulato con il metodo delle forze di scavo equivalenti. In particolare, l'effetto dell'avanzamento dello scavo viene modellato rilasciando un sistema di forze applicate sul contorno del profilo di scavo. La riduzione delle forze di scavo a partire dalla condizione originaria è

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO CO	LLEGAME	NTO PALERI	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	0
Galleria Trinacria - Relazione geotecnica e di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
della galleria naturale	RS3U	40 D 07	CL	GN 03 0001	С	152 di 201

definita tramite un fattore di rilascio, determinato dalle analisi assialsimmetriche. Per il valore di K0 in questo caso si è assunto il valore reale stimato nella caratterizzazione geotecnica.

La seguente tabella schematizza la successione delle fasi di calcolo delle due differenti analisi condotte:

Tabella 2 - Fasi di analisi

Fase	Descrizione	Rilascio forze di scavo
0	Creazione della geometria del modello	-
1	Inizializzazione dello stato tensionale geostatico in condizioni elastiche	-
2	Inizializzazione dello stato tensionale geostatico in condizioni plastiche (modello costitutivo di Mohr-Coulomb)	-
	SCAVO CANNA DESTRA	1
3	Rilascio delle forze al contorno (da assialsimmetrici) TRV : in condizioni non drenate (Cu)	varie
4	Installazione dell'anello universale	1.0
	SCAVO CANNA SINISTRA	
5	Rilascio delle forze al contorno (da assialsimmetrici) (come per canna destra)	varie
6	Installazione dell'anello universale	1.0
	LUNGO TERMINE	
7	Equalizzazione pressioni interstiziali / ripristino pp iniziali al contorno di scavo – parametri drenati	1.0

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 07
 CL
 GN 03 0001
 C
 153 di 201

10.6.4 Verifica dei giunti - pressioni di contatto

La trasmissione degli sforzi assiali lungo l'anello, in corrispondenza dei giunti tra conci successivi, avviene su una superficie di contatto ridotta rispetto alla sezione effettiva in relazione alla presenza degli smussi ai bordi. Pertanto, su tali sezioni sono state condotte le verifiche alla pressione di contatto e alle trazioni indotte per effetto di un carico concentrato.

Le verifiche descritte nel seguito fanno riferimento al dettaglio della geometria dei giunti e dello schema di diffusione delle pressioni di contatto nei giunti tra concio e concio.

Per quanto riguarda le sollecitazioni, i momenti agenti in corrispondenza del giunto sono stati opportunamente ridotti.

10.6.5 Verifica delle pressioni di contatto

La verifica SLU, condotta in base al punto 5.4.8.1 dell'Eurocodice 2, è soddisfatta essendo:

 $Nd < Frdu \le Fmax$

dove:

Frdu = Ac0*fcd*(Ac1/Ac0)*0.5

Ac0 = b0*10

Ac1 = b1*11

Fmax = 3.3*fcd*Ac0

Nelle relazioni sopra riportate risulta:

Ac0 = area caricata della sezione di verifica in esame, essendo b0 l'altezza di sezione reagente a compressione, con riferimento alle sollecitazioni di presso-flessione determinate con l'analisi per differenze finite per la condizione di carico considerata, ed 10 la larghezza del concio decurtata degli smussi presenti sul bordo;

Ac1 = massima area corrispondente geometricamente ad A c0 avente lo stesso baricentro ed inscrivibile nella sezione del concio, essendo b1 l'altezza del prisma sostitutivo per carico eccentrico, corrispondente al valore di b0 prima definito, quindi dedotta dall'altezza di sezione reagente a complessione, ed 11 la larghezza del concio.

Per il cls le tensioni nel calcestruzzo, nel caso d di SLU a 0.85fck/yc

Le verifiche risultano soddisfatte essendo Nd< Frdu ≤ Fmax.

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 07
 CL
 GN 03 0001
 C
 154 di 201

10.6.6 Verifica alle trazioni indotte

Il carico concentrato determina inoltre una forza di divaricamento sul concio in direzione radiale che può essere stimata secondo la formula proposta da Leonhardt:

$$F_t = 0.3 \text{ x (N_d) x (1-b_0/b_1)}$$

in cui b₀ e b₁ sono rispettivamente l'altezza della superficie di contatto e la dimensione del prisma sostitutivo per carico eccentrico, precedentemente determinate.

Allo scopo di assorbire la forza di trazione indotta, verranno disposte lungo la faccia del singolo concio un'area complessiva pari a:

Tipo I: 14\psi24

Tipo II: 14φ20

Tipo III: 14\psi16

Tipo IV: 14φ20

La massima forza di trazione resistente risulta pari a:

SLU:

Tipo I: $F_{t,res} = As \times f_{yd}$

Tipo II: $F_{t,res} = As \times f_{yd}$

Tipo III: $F_{t,res} = As \times f_{vd}$

Tipo IV: $F_{t,res} = As \times f_{yd}$

In entrambi i casi, le verifiche risultano soddisfatte essendo F_t< F_{t,res.}

<u>Analisi 1 - TRV - Verifiche delle pressioni di contatto - Assenza di sovrascavo - 100 m di copertura - C45/55 - Classe IV</u>

CANNA destra

			100m TRV	Α
	Nsle	Msle	N	M
7	5313.00	87.62	5313.00	87.62
49	6020.00	-114.50	6020.00	-114.50
38	5501.00	93.62	5501.00	93.62
25	6051.00	-99.23	6051.00	-99.23

Step di	Sezione	N _{SLE}	M _{SLE}	M _{joint}	Eccentr	H/6	b ₁	d_1	A _{c0}	b ₂	d ₂	A _{c1}
calcolo	OCZIONO	[kN]	[kNm]	[kNm]	[cm]	[cm]	[cm]	[cm]	[cm ²]	[cm]	[cm]	[cm ²]
	7	7969.5	-131.4	-92.0	3.2	5.83	35.0	140.0	4,900	43.0	148.0	6364
_	49	9030.0	171.8	120.2	3.3	5.83	35.0	140.0	4,900	43.0	148.0	6364
≥	38	8251.5	-140.4	-98.3	3.2	5.83	35.0	140.0	4,900	43.0	148.0	6364
<u> </u>	25	9076.5	148.8	104.2	3.1	5.83	35.0	140.0	4,900	43.0	148.0	6364
100m												
10												
									· ·			

	Cl	_S			ACC	CIAIO	
N _{SLU}	F_{rdu}	F _{max}	VERIF.	F_{td}	A _{smin}	$F_{t,res}$	VERIF.
[kN]	kN	kN	V L I (III .	[kN]	[cm ²]	[kN]	V = 1 X
10360	16995	49211	OK	578	14.8	969.8	OK
11739	16995	49211	OK	655	16.8	969.8	OK
10727	16995	49211	OK	599	15.3	969.8	OK
11799	16995	49211	OK	659	16.8	969.8	OK

CANNA sinistra

			100m TRV	Α
	Nsle	Msle	N	М
128	5315.00	81.64	5315.00	81.64
120	5981.00	-52.15	5981.00	-52.15
100	5583.00	74.77	5583.00	74.77
81	5961.00	-94.14	5961.00	-94.14

Step di	Sezione	N _{SLE}	M _{SLE}	M _{joint}	Eccentr	H/6	b ₁	d ₁	A _{c0}	b ₂	d ₂	A _{c1}
calcolo	calcolo	[kN]	[kNm]	[kNm]	[cm]	[cm]	[cm]	[cm]	[cm ²]	[cm]	[cm]	[cm ²]
	128	7972.5	-122.5	-85.7	3.1	5.8	35.0	140.0	4,900	43.0	148.0	6364
_	120	8971.5	78.2	54.8	2.6	5.8	35.0	140.0	4,900	43.0	148.0	6364
TRV	100	8374.5	-112.2	-78.5	2.9	5.8	35.0	140.0	4,900	43.0	148.0	6364
	81	8941.5	141.2	98.8	3.1	5.8	35.0	140.0	4,900	43.0	148.0	6364
100m												
10												
-												

	Cl	_S			ACC	CIAIO	
N _{SLU}	F_{rdu}	F_{max}	VERIF.	F_{td}	A _{smin}	$F_{t,res}$	VERIF.
[kN]	kN	kN	V LI (III .	[kN]	[cm ²]	[kN]	VEIXII.
10364	16995	49211	OK	578	14.8	969.8	OK
11663	16995	49211	OK	651	16.6	969.8	OK
10887	16995	49211	OK	608	15.5	969.8	OK
11624	16995	49211	OK	649	16.6	969.8	OK

^{*}per il significato delle grandezze nelle tabelle si veda il paragrafo "verifica delle pressioni di contatto"

Le verifiche risultano soddisfatte

<u>Analisi 2 - TRV - Verifica delle pressioni di contatto - 5cm sovrascavo - 200 m di copertura - C45/55-Classe III</u>

CANNA DX

200m TRV sovr	Α
N	M
8108.00	-39.02
7530.00	41.18
8228.00	-73.42
8324.00	66.54

Step di	Sezione	N _{SLE}	M _{SLE}	M_{joint}	Eccentr	H/6	b ₁	d ₁	A _{c0}	b ₂	d_2	A _{c1}
calcolo	OCZIONO	[kN]	[kNm]	[kNm]	[cm]	[cm]	[cm]	[cm]	[cm ²]	[cm]	[cm]	[cm ²]
ī	0	12162.0	58.5	41.0	2.3	5.83	35.0	140.0	4,900	43.0	148.0	6364
sovr	0	11295.0	-61.8	-43.2	2.4	5.83	35.0	140.0	4,900	43.0	148.0	6364
	0	12342.0	110.1	77.1	2.6	5.83	35.0	140.0	4,900	43.0	148.0	6364
TRV	0	12486.0	-99.8	-69.9	2.6	5.83	35.0	140.0	4,900	43.0	148.0	6364
Τι												
200m												
20												
,,												

	Cl	LS		ACCIAIO					
N _{SLU}	F_{rdu}	F _{max}	VERIF.	F_{td}	A _{smin}	$F_{t,res}$	VERIF.		
[kN]	kN	kN	V LIXII .	[kN]	[cm ²]	[kN]	V L I (III .		
15811	16995	49211	OK	882	22.6	1266.0	OK		
14684	16995	49211	OK	820	21.0	1266.0	OK		
16045	16995	49211	OK	896	22.9	1266.0	OK		
16232	16995	49211	OK	906	23.2	1266.0	OK		

CANNA SX

200m TRV sovr	Α
N	M
7009.00	40.89
7254.00	4.60
6986.00	11.11
7123.00	-35.30

Step di	Sezione	N _{SLE}	M_{SLE}	M_{joint}	Eccentr	H/6	b ₁	d_1	A _{c0}	b ₂	d_2	A _{c1}
calcolo	OCZIONO	[kN]	[kNm]	[kNm]	[cm]	[cm]	[cm]	[cm]	[cm ²]	[cm]	[cm]	[cm ²]
r	0	10513.5	-61.3	-42.9	2.4	5.83	35.0	140.0	4,900	43.0	148.0	6364
sovr	0	10881.0	-6.9	-4.8	2.0	5.83	35.0	140.0	4,900	43.0	148.0	6364
	0	10479.0	-16.7	-11.7	2.1	5.83	35.0	140.0	4,900	43.0	148.0	6364
RV	0	10684.5	53.0	37.1	2.3	5.83	35.0	140.0	4,900	43.0	148.0	6364
Ţι												
0n												
200m												
''												

	C	LS		ACCIAIO					
N _{SLU}	F_{rdu}	F _{max}	VERIF.	F_{td}	A _{smin}	$F_{t,res}$	VERIF.		
[kN]	kN	kN	V = 1 (III .	[kN]	[cm ²]	[kN]	V L I (III .		
13668	16995	49211	OK	763	19.5	1266.0	OK		
14145	16995	49211	OK	790	20.2	1266.0	OK		
13623	16995	49211	OK	760	19.4	1266.0	OK		
13890	16995	49211	OK	775	19.8	1266.0	OK		

^{*}per il significato delle grandezze nelle tabelle si veda il paragrafo "verifica delle pressioni di contatto"

Le verifiche risultano soddisfatte

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 07
 CL
 GN 03 0001
 C
 157 di 201

<u>Analisi 3 - TRV - Verifica delle pressioni di contatto - 5cm sovrascavo - 300 m di copertura - C55/67-Classe II</u>

CANNA destra

			300m TRV	Α
	Nsle	Msle	N	M
7	8453.00	112.40	8453.00	112.40
49	9013.00	-99.35	9013.00	-99.35
39	8540.00	127.50	8540.00	127.50
17	9396.00	-80.70	9396.00	-80.70

Step di	Sezione	N _{SLE}	M _{SLE}	M _{joint}	Eccentr	H/6	b ₁	d_1	A _{c0}	b ₂	d_2	A _{c1}
calcolo	COLIGINO	[kN]	[kNm]	[kNm]	[cm]	[cm]	[cm]	[cm]	[cm ²]	[cm]	[cm]	[cm ²]
	7	12679.5	-168.6	-118.0	2.9	6.67	40.0	140.0	5 600	48.0	148.0	7104
_	49	13519.5	149.0	104.3	2.8	6.67	40.0	140.0	5 600	48.0	148.0	7104
Ϋ́	39	12810.0	-191.3	-133.9	3.0	6.67	40.0	140.0	5 600	48.0	148.0	7104
 -	17	14094.0	121.1	84.7	2.6	6.67	40.0	140.0	5 600	48.0	148.0	7104
300m												
õ												
.,												

	Cl	_S			ACC	CIAIO	
N _{SLU}	F_{rdu}	F _{max}	VERIF.	F_{td}	A _{smin}	$F_{t,res}$	VERIF.
[kN]	kN	kN	V = 1 (III .	[kN]	[cm ²]	[kN]	V = 1 (III .
16483	23383	68512	OK	824	21.1	2826.0	OK
17575	23383	68512	OK	879	22.5	2826.0	OK
16653	23383	68512	OK	833	21.3	2826.0	OK
18322	23383	68512	OK	916	23.4	2826.0	OK

CANNA sinistra

			300111 1 1 1 1 1	
	Nsle	Msle	N	М
74	8540.00	50.76	8540.00	50.76
112	8872.00	-69.90	8872.00	-69.90
90	8562.00	61.14	8562.00	61.14
81	8847.00	-85.89	8847.00	-85.89

Step di	Sezione	N _{SLE}	M_{SLE}	M _{joint}	Eccentr	H/6	b ₁	d ₁	A _{c0}	b ₂	d ₂	A _{c1}
calcolo	COZIONO	[kN]	[kNm]	[kNm]	[cm]	[cm]	[cm]	[cm]	[cm ²]	[cm]	[cm]	[cm ²]
	74	12810.0	-76.1	-53.3	2.4	6.7	40.0	140.0	5 600	48.0	148.0	7104
_	112	13308.0	104.9	73.4	2.6	6.7	40.0	140.0	5 600	48.0	148.0	7104
Σ	90	12843.0	-91.7	-64.2	2.5	6.7	40.0	140.0	5 600	48.0	148.0	7104
⊢ ⊢	81	13270.5	128.8	90.2	2.7	6.7	40.0	140.0	5 600	48.0	148.0	7104
300m												
Ř												
``												

	Cl	_S			ACC	CIAIO	
N _{SLU}	F_{rdu}	F _{max}	VERIF.	F_{td}	A _{smin}	$F_{t,res}$	VERIF.
[kN]	kN	kN	V LIXII .	[kN]	[cm ²]	[kN]	V LIXII .
16653	23383	68512	OK	833	21.3	2826.0	OK
17300	23383	68512	OK	865	22.1	2826.0	OK
16696	23383	68512	OK	835	21.4	2826.0	OK
17252	23383	68512	OK	863	22.1	2826.0	OK

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 07
 CL
 GN 03 0001
 C
 158 di 201

<u>Analisi 4 - TRV - Verifica delle pressioni di contatto - 5cm sovrascavo - 400 m di copertura - C55/67-Classe II</u>

CANNA DX

			400m TRV sovr	Α
	Nsle	Msle	N	М
Calotta - 1	10910.00	108.60	10910.00	108.60
piedritto dx - 42	10980.00	-77.31	10980.00	-77.31
arco rovescio - 28	11060.00	143.20	11060.00	143.20
piedritto sx - 22	10980.00	70.41	10980.00	70.41

Step di	Sezione	N _{SLE}	M _{SLE}	M _{joint}	Eccentr	H/6	b ₁	d ₁	A _{c0}	b ₂	d ₂	A _{c1}
calcolo	Gezione	[kN]	[kNm]	[kNm]	[cm]	[cm]	[cm]	[cm]	[cm ²]	[cm]	[cm]	[cm ²]
<u> </u>	Calotta - 1	16365.0	-162.9	-114.0	2.7	6.67	40.0	140.0	5 600	48.0	148.0	7104
SOV	piedritto dx	16470.0	116.0	81.2	2.5	6.67	40.0	140.0	5 600	48.0	148.0	7104
8	arco rovescio	16590.0	-214.8	-150.4	2.9	6.67	40.0	140.0	5 600	48.0	148.0	7104
TRV	piedritto sx	16470.0	-105.6	-73.9	2.4	6.67	40.0	140.0	5 600	48.0	148.0	7104
Ŭ.												
400m												
•												

	Cl	LS			ACC	CIAIO	
N _{SLU}	F_{rdu}	F _{max}	VERIF.	F_{td}	A _{smin}	$F_{t,res}$	VERIF.
[kN]	kN	kN] V = I (III	[kN]	[cm ²]	[kN]	V = 1 (III .
21275	23383	68512	OK	1064	27.2	4069.4	OK
21411	23383	68512	OK	1071	27.4	4069.4	OK
21567	23383	68512	OK	1078	27.6	4069.4	OK
21411	23383	68512	OK	1071	27.4	4069.4	OK

CANNA SX

			400m TRV sovr	Α
	Nsle	Msle	N	M
Calotta - 53	11230.00	77.10	11230.00	77.10
piedritto dx - 96	10620.00	-168.60	10620.00	-168.60
arco rovescio - 79	11200.00	217.10	11200.00	217.10
piedritto sx - 66	10120.00	-145.10	10120.00	-145.10

Step di	Sezione	N _{SLE}	M _{SLE}	M _{joint}	Eccentr	H/6	b ₁	d ₁	A _{c0}	b ₂	d ₂	A _{c1}
calcolo	Gezione	[kN]	[kNm]	[kNm]	[cm]	[cm]	[cm]	[cm]	[cm ²]	[cm]	[cm]	[cm ²]
<u></u>	Calotta - 53	16845.0	-115.7	-81.0	2.5	6.67	40.0	140.0	5 600	48.0	148.0	7104
sovr	piedritto dx	15930.0	252.9	177.0	3.1	6.67	40.0	140.0	5 600	48.0	148.0	7104
	arco rovescio	16800.0	-325.7	-228.0	3.4	6.67	40.0	140.0	5 600	48.0	148.0	7104
TRV	piedritto sx	15180.0	217.7	152.4	3.0	6.67	40.0	140.0	5 600	48.0	148.0	7104
400m												
\$												
1												

	Cl	LS			ACC	CIAIO	
N _{SLU}	F_{rdu}	F _{max}	VERIF.	F_{td}	A _{smin}	$F_{t,res}$	VERIF.
[kN]	kN	kN] V = I (III	[kN]	[cm ²]	[kN]	V = 1 (III .
21899	23383	68512	OK	1095	28.0	4069.4	OK
20709	23383	68512	OK	1035	26.5	4069.4	OK
21840	23383	68512	OK	1092	27.9	4069.4	OK
19734	23383	68512	OK	987	25.2	4069.4	OK

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 07
 CL
 GN 03 0001
 C
 159 di 201

<u>Analisi 4 - TRV - Verifica delle pressioni di contatto - 10cm sovrascavo - 600 m di copertura - C60/75-Classe I</u>

CANNA DX

			600m TRV sovr	
	Nsle	Msle	N	М
Calotta - 52	10910.00	108.60	10910.00	108.60
piedritto dx - 44	10980.00	-77.31	10980.00	-77.31
arco rovescio - 28	11060.00	143.20	11060.00	143.20
piedritto sx - 10	10980.00	70.41	10980.00	70.41

Step di calcolo Sezione	Sezione	N _{SLE}	M _{SLE}	M _{joint}	Eccentr	H/6	b ₁	d ₁	A _{c0}	b ₂	d ₂	A _{c1}
	[kN]	[kNm]	[kNm]	[cm]	[cm]	[cm]	[cm]	[cm ²]	[cm]	[cm]	[cm ²]	
<u>-</u>	Calotta - 52	16365.0	-162.9	-114.0	2.7	6.67	40.0	140.0	5 600	48.0	148.0	7104
sovr	piedritto dx	16470.0	116.0	81.2	2.5	6.67	40.0	140.0	5 600	48.0	148.0	7104
	arco rovescio	16590.0	-214.8	-150.4	2.9	6.67	40.0	140.0	5 600	48.0	148.0	7104
TRV	piedritto sx	16470.0	-105.6	-73.9	2.4	6.67	40.0	140.0	5 600	48.0	148.0	7104
O <u>u</u>												
600m												
•												

	Cl	LS			ACC	CIAIO	
N _{SLU}	F_{rdu}	F _{max}	VERIF.	F_{td}	A _{smin}	$F_{t,res}$	VERIF.
[kN]	kN	kN	V E I (III .	[kN]	[cm ²]	[kN]	V = 1 (III .
21275	26175	76692	OK	1064	27.2	2848.6	OK
21411	26175	76692	OK	1071	27.4	2848.6	OK
21567	26175	76692	OK	1078	27.6	2848.6	OK
21411	26175	76692	OK	1071	27.4	2848.6	OK

CANNA SX

			600m TRV sovr	Α
	Nsle	Msle	N	M
Calotta - 53	11230.00	77.10	11230.00	77.10
piedritto dx - 85	10620.00	-168.60	10620.00	-168.60
arco rovescio - 79	11200.00	217.10	11200.00	217.10
piedritto sx - 67	10120.00	-145.10	10120.00	-145.10

Step di	Sezione	N _{SLE}	M _{SLE}	M _{joint}	Eccentr	H/6	b ₁	d ₁	A _{c0}	b ₂	d_2	A _{c1}
calcolo		[kN]	[kNm]	[kNm]	[cm]	[cm]	[cm]	[cm]	[cm ²]	[cm]	[cm]	[cm ²]
Ļ	Calotta - 53	16845.0	-115.7	-81.0	2.5	6.67	40.0	140.0	5 600	48.0	148.0	7104
sovr	piedritto dx	15930.0	252.9	177.0	3.1	6.67	40.0	140.0	5 600	48.0	148.0	7104
s >	arco rovescio	16800.0	-325.7	-228.0	3.4	6.67	40.0	140.0	5 600	48.0	148.0	7104
₩.	piedritto sx	15180.0	217.7	152.4	3.0	6.67	40.0	140.0	5 600	48.0	148.0	7104
Ē												
600m												
90												
_							_					

	Cl	_S			ACC	CIAIO	
N _{SLU}	F_{rdu}	F_{max}	VERIF.	F _{td}	A _{smin}	$F_{t,res}$	VERIF.
[kN]	kN	kN	V E I (III .	[kN]	[cm ²]	[kN]	V = 1 (III .
21899	26175	76692	OK	1095	28.0	2848.6	OK
20709	26175	76692	OK	1035	26.5	2848.6	OK
21840	26175	76692	OK	1092	27.9	2848.6	OK
19734	26175	76692	OK	987	25.2	2848.6	OK

10.6.7 Analisi n. 15 - Sezione di calcolo pk 25150

Modello geotecnico

Il modello geotecnico di sottosuolo in corrispondenza della sezione di analisi è caratterizzato dalla Formazione TRV costituita prevalentemente da Argilla.

La Figura 1 riassume i dati di input che caratterizzano la sezione geotecnica utilizzata per l'analisi numerica. Per dettagli in merito ai valori assunti si rimanda al capitolo 8

Figura 1 - Sezione geotecnica di calcolo

Stratigra	fia di calcolo		Superficie						
Formazione	Profondità da p.c.	С	piezometrica	γ	C'k	ф'к	E'	K ₀	
[-]	[m da pc]	[m]	[m] da calotta	[kN/m³]	[kPa]	[°]	[MPa]	[-]	
TRV	In tutto il modello	100	95	22	78	20	300	0.66	

C = copertura (rispetto alla calotta)

γ = peso di volume

c'k=coesione drenata

φ'k =angolo di attrito interno

E'= modulo elastico

Ko = coefficiente di spinta a riposo

Modello geometrico

Per le caratteristiche della mesh si rinvia al Capitolo 10.6.3 – "Modelli Piani".

Il rivestimento della galleria è stato simulato utilizzando elementi tipo "liner", aventi modello costitutivo elastico lineare.

Si riportano di seguito le caratteristiche del rivestimento:

Tabella 1 - Definizione delle caratteristiche del rivestimento della galleria

Caratteristiche	Conci dell'anello universale
Spessore dei conci di cls	45 cm
Coperture	< 100
Classe di calcestruzzo utilizzato	C45/55
Modulo elastico	36000 MPa
Inerzia della sezione di cls	7.6E-3 m ²

Fasi e percentuali di rilascio

Al fine di tener conto della natura tridimensionale del problema, nelle analisi svolte in condizioni di deformazione piana lo scavo della galleria è stato simulato con il metodo delle forze di scavo equivalenti. In particolare, l'effetto dell'avanzamento dello scavo viene modellato rilasciando un sistema di forze applicate sul contorno del profilo di scavo). La riduzione delle forze di scavo a partire dalla condizione originaria è definita tramite un fattore di rilascio, funzione della distanza dal fronte ("rilascio forze di scavo").

L'analisi svolta mira a definire la massima sollecitazione possibile agente sui rivestimenti.

Per la descrizione delle fasi di analisi si rinvia al capitolo 10.6.3 – "Modelli Piani"

Analisi e commento dei risultati

Sono di seguito illustrati e commentati i risultati delle fasi di scavo, relative alla sezione di scavo in meccanizzato analizzata. I risultati dell'analisi numerica sono riportati in allegato per la fase di calcolo finale. In particolare, l'allegato illustra le componenti verticale e orizzontale degli spostamenti totali cumulati, i vettori degli spostamenti totali, le plasticizzazioni al contorno del cavo e la tensione principale massima con le direzioni delle tensioni principali. Per le fasi pertinenti, riporta inoltre le caratteristiche della sollecitazione negli elementi strutturali del modello (liner).

Verifiche strutturali SLU del rivestimento definitivo

La verifica strutturale del rivestimento definitivo prevede il confronto tra le sollecitazioni di calcolo, ottenute a partire dai risultati del modello numerico applicando i relativi coefficienti parziali, e le resistenze di calcolo che individuano il dominio resistente nel piano M,N.

Per la verifica a taglio, il valore di calcolo è ottenuto in accordo con la normativa vigente.

I rivestimenti definitivi delle gallerie di linea sono realizzati con elementi prefabbricati aventi classe di resistenza del calcestruzzo C45/55 e armatura costituita da 14\psi414 sia in intradosso che in estradosso per coperture fino a 100m, da 100 a 200 m si applica la classe di armatura II 14\psi46 mentre e una classe di

resistenza del calcestruzzo pari a C55/67, da 200 a 400 m la sezione ha un'altezza pari a 0.5m con una classe di resistenza di C55/67 e un'armatura costituita da $14\phi20$, da 400 a 600 m di copertura, invece, la classe di resistenza del calcestruzzo è pari a C60/75 e la classe di armatura è la I, $14\phi24$.

Le tabelle seguenti sintetizzano le sollecitazioni ottenute, nelle zone significative del rivestimento definitivo della galleria. Le tabelle riportano le sollecitazioni derivanti dall'analisi numerica a metro di galleria, prive di fattori amplificativi, e le sollecitazioni adottate nelle verifiche strutturali: queste ultime risultano moltiplicate per il coefficiente $\gamma_E = 1.3$ (allo SLU) e per la lunghezza di due conci consecutivi 2b=3.0 m.

Considerate le sollecitazioni agenti su due conci adiacenti di due anelli consecutivi consente di condurre verifiche strutturali cautelative, tenendo conto del trasferimento del carico da un anello a quello adiacente. Nelle verifiche, pur considerando le sollecitazioni e l'area di calcestruzzo di due conci consecutivi, si considera in zona tesa e compressa l'armatura di un solo concio; questo metodo consente di tenere in conto della presenza del giunto tra due conci adiacenti e dunque la non perfetta collaborazione delle armature dei suddetti nell'assorbimento delle sollecitazioni.

Le verifiche strutturali del rivestimento definitivo sono state condotte per la fase finale e per entrambe le canne o comunque considerando la massima sollecitazione agente.

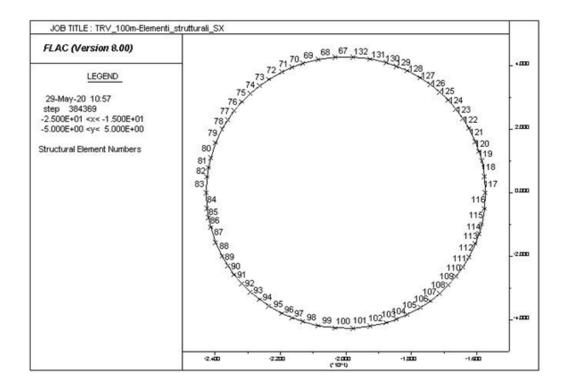


Figura 5 - Elementi liner canna sinistra

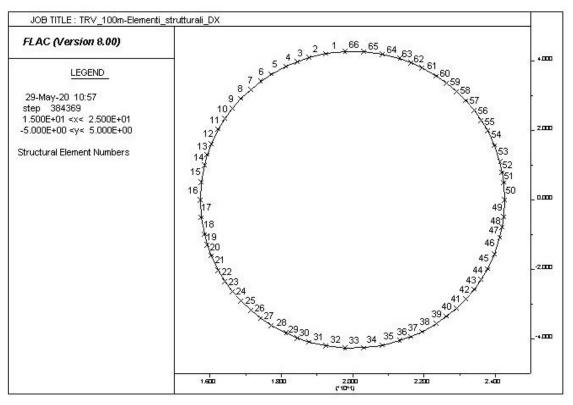


Figura 6 - Elementi liner canna destra

Tabella 4- Sollecitazioni nel rivestimento della canna sinistra

GALL SX				N	M1	M2	Mmax	Т
Calotta	132	132	67	15945.00	244.92	-222.07	244.9	1.14
piedritto dx	112	112	113	17943.00	-156.45	185.61	185.6	82.38
arco rovescio	97	97	98	16749.00	224.31	-220.44	224.3	-42.18
piedritto sx	81	81	82	17883.00	-282.42	281.12	282.4	57.76

Tabella 5 - Sollecitazioni nel rivestimento della canna destra

GALL DX	ELE	NODO 1	NODO 2	N	M1	M2	Mmax	Т
Calotta	1	1	2	15939.00	262.86	-242.34	262.9	0.00
piedritto dx	49	49	50	18060.00	-343.50	332.64	343.5	63.14
arco rovescio	33	33	34	16503.00	280.86	-266.28	280.9	-10.39
piedritto sx	18	18	19	18153.00	-297.69	285.60	297.7	16.91

Le verifiche sono state condotte considerando una distanza tra il baricentro dell'armatura principale e il lembo più esterno della sezione pari a 65 mm.

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 07
 CL
 GN 03 0001
 C
 164 di 201

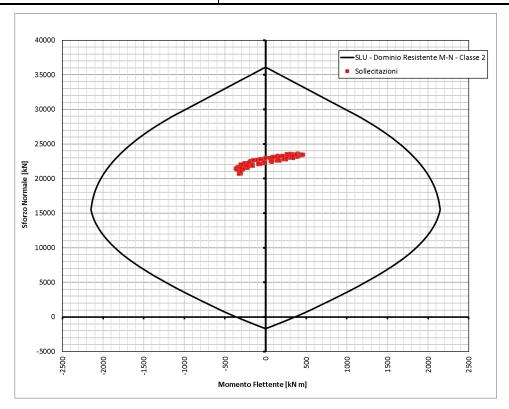


Figura 7 - Dominio resistente SLU (B = 3,00 m, H = 0.45 m) - Classe 4 - C45/55

Per le verifiche a taglio si mostra solo la verifica nel punto di massima sollecitazione

Tabella 5 – Sollecitazione Massima e verifica a taglio SLU

Sollecitazion	e da analisi	Sollecitazion	e di verifica
T	N	Т	N
[N/m]	[N/m]	[N]	[N]
7.12E+04	5.97E+06	2.78E+05	1.79E+07

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	165 di 201

Geon	netria della se	zione	Armatu	ra longitudin	ale
bw	1500.00	mm	Øı	14	mm
h	450.00	mm	Aøl	154	mm ²
c	63.00	mm	Sı	100.00	mm
d	387.00	mm	n° strati	1	
Ac	675000	mm^2	n°ø/strato	15	
b _w d	580500	mm ²	Asl,tot	2309	mm ²
k	1.72		ρι	0.00398	
			Materiali		
Cls:			Acciaio:		
Rck	55.00	MPa	fyk	450.00	MPa
fck	45.65	MPa	fyd	391.3	MPa
fcd	30.4	MPa	γs	1.15	
γε	1.50				
Sol	lecitazioni (S	LU)	Resistent	e al taglio per	·Cls
Nsd	17913.0	kN	${ m V_{Rd}}^{\sf min}$	839.4	kN
σер	6.09	MPa	Vrd	844.7	kN
		Verific	he di resistenza		
V _{Ed}	277.52	kN	V_{Rd} > V_{Ed} e	V _{Rd} > V _{Rd}	min
			OK, Sezione	non armata	verificat

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA							
Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40 D 07	CODIFICA CL	DOCUMENTO GN 03 0001	REV.	FOGLIO 166 di 201			

Verifiche SLE

Le verifiche SLE risultano soddisfatte sia lato calcestruzzo che lato acciaio rispettando i valori limite imposti sia dalla normativa vigente [NTC]. Poiché la sezione risulta interamente compressa non si ha l'apertura di fessure.

Tabella 5 – Analisi e Verifiche SLE per Canna Destra e Canna Sinistra

ERIFICHE SI ck 45/55	EZIONE						
GEOMETRIA	DELLA SEZ	IONE		CALCESTR	RUZZO		
В	cm =	300.0	base sezione	Rck	Mpa =	55.00	resistenza caratteristica cubica
Н	cm =	45.0	altezza sezione	fck	Mpa =	45.65	resistenza caratteristica cilindrica
Cs	cm =	6.2	copriferro delle staffe	fcd	Mpa =	30.43	resistenza di calcolo cilindrica
				fctm	Mpa =	4.34	resistenza media a trazione
ACCIAIO				fctk	Mpa =	3.04	resistenza caratteristica a trazione
fyk	Mpa =	450.0	tensione caratteristica di snervamento	fctd	Mpa =	2.02	resistenza di calcolo a trazione
fyd	Mpa =	391.3	tensione di calcolo	fc Max. es.	. Mpa =	20.54	Max. tensione esercizio = 0.45 x fck
σf adm	Mpa =	360.0	tensione ammissibile armatura longitudinale	σc adm	Mpa =	16.00	tensione ammissibile cls
σ fs adm	Mpa =	360.0	tensione ammissibile staffe	τ C O	Mpa =	0.93	τ max. con armatura minima a taglio
				τ C 1	Mpa =	2.54	τ max. con armatura a taglio
γ cls	kN/m3	25.0	peso specifico calcestruzzo				
N1	kN =	0.00	azione assiale Z=0 Positiva compressione	n	=	15	Coeff. omogenizzazione armature
NOTE				MOLTIPLIC	CATORI DE	ELLE AZI	IONI
No	= N1 + γ cls	x Z x A x	B : azione assiale Positiva compressione	CV	=	1.00	Coeff. moltiplicativo azioni di Taglio
Mo	Positivo tend	de fibre late	o armatura As	CM	=	1.00	Coeff. moltiplicativo Momento flettente
Mo	Negativo tend	de fibre late	o armatura A's	CN	=	1.00	Coeff. moltiplicativo Azione Assiale
S	distanza tra l	e barre tes	se per verifica a fessurazione (< 14				

SEZIC	DNE	AZIO	NI DI INGR	ESSO	AZIONI DI CALCOLO		Α	RMATURA A	As	ARMATURA A's			
elem	Z	Vo	Мо	No	Vo x Cv	Mo x CM	No x CN	n. ferri	ф	As	n. ferri	ф	A's
	m	kN	kNm	kN	kN	kNm	kN	(x As)	mm	cm2	(x A's)	mm	cm2
1	0.00	0.0	262.86	15939.00	0.0	262.9	15939.0	14	14	21.55	14	12	15.83
49	0.00	0.0	343.5	18060.00	0.0	343.5	18060.0	14	14	21.55	14	12	15.83
33	0.00	0.0	280.86	16503.00	0.0	280.9	16503.0	14	14	21.55	14	12	15.83
18	0.00	0.0	297.69	18153.00	0.0	297.7	18153.0	14	14	21.55	14	12	15.83
132	0.00	0.0	244.92	15945.00	0.0	244.9	15945.0	14	14	21.55	14	12	15.83
112	0.00	0.0	185.61	17943.00	0.0	185.6	17943.0	14	14	21.55	14	12	15.83
97	0.00	0.0	224.31	16749.00	0.0	224.3	16749.0	14	14	21.55	14	12	15.83
81	0.00	0.0	282.42	17883.00	0.0	282.4	17883.0	14	14	21.55	14	12	15.83

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 07
 CL
 GN 03 0001
 C
 167 di 201

							VE	RIFICA P	RESSO - FL	ESSIONE	.
elem		Vo x Cv	Mo x CM	No x CN	d	ď'	Х	σ cls	σ f	σ' f	TEST
		kN	kNm	kN	cm	cm	cm	Мра	Мра	Мра	PR./ FL.
1	0.00	0.0	262.9	15,939.0	38.10	6.80		-13.79	-144.72	-195.82	SI
49	0.00	0.0	343.5	18,060.0	38.10	6.80		-16.06	-159.58	-226.36	SI*
33	0.00	0.0	280.9	16,503.0	38.10	6.80		-14.36	-149.01	-203.60	SI
18	0.00	0.0	297.7	18,153.0	38.10	6.80		-15.70	-164.99	-222.86	SI
132	0.00	0.0	244.9	15,945.0	38.10	6.80		-13.63	-146.51	-194.12	SI
112	0.00	0.0	185.6	17,943.0	38.10	6.80		-14.50	-173.54	-209.62	SI
97	0.00	0.0	224.3	16,749.0	38.10	6.80		-14.01	-157.08	-200.68	SI
81	0.00	0.0	282.4	17,883.0	38.10	6.80		-15.36	-163.58	-218.48	SI
•											

Ast. Min = armatura a taglio Min. di regolamento

X nullo = sezione interamente reagente

SI SI*

Ast. Pro. = armatura a taglio di Progetto

Gli elementi risultano interamente compressi per cui non ci si attende apertura di fessure, le verifiche agli SLE risultano soddisfatte

10.6.8 Analisi n. 16 - Sezione di calcolo pk 23850

Modello geotecnico

Il modello geotecnico di sottosuolo in corrispondenza della sezione di analisi è caratterizzato dalla Formazione TRV costituita prevalentemente da Argilla.

La Figura 1 riassume i dati di input che caratterizzano la sezione geotecnica utilizzata per l'analisi numerica. Per dettagli in merito ai valori assunti si rimanda al capitolo 8

Figura 1 - Sezione geotecnica di calcolo

Stratigra	ıfia di calcolo		Superficie					
Formazione	Profondità da p.c.	С	piezometrica	γ	C'k	ф'к	E'	K ₀
[-]	[m da pc]	[m]	[m] da calotta	[kN/m³]	[kPa]	[°]	[MPa]	[-]
TRV	In tutto il modello	200	115	22	177	17	600	0.71

C = copertura (rispetto alla calotta)

Modello geometrico

Per le caratteristiche della mesh si rinvia al Capitolo 10.6.3 – "Modelli Piani".

Il rivestimento della galleria è stato simulato utilizzando elementi tipo "liner", aventi modello costitutivo elastico lineare.

Si riportano di seguito le caratteristiche del rivestimento:

γ = peso di volume

c'k=coesione drenata

φ'k =angolo di attrito interno

E'= modulo elastico

K₀ = coefficiente di spinta a riposo

Tabella 1 - Definizione delle caratteristiche del rivestimento della galleria

Caratteristiche	Conci dell'anello universale
Spessore dei conci di cls	45 cm
Coperture	100 – 200 m
Classe di calcestruzzo utilizzato	C45/55
Modulo elastico	38000 MPa
Inerzia della sezione di cls	7.6E-3 m ²

Fasi e percentuali di rilascio

Al fine di tener conto della natura tridimensionale del problema, nelle analisi svolte in condizioni di deformazione piana lo scavo della galleria è stato simulato con il metodo delle forze di scavo equivalenti. In particolare, l'effetto dell'avanzamento dello scavo viene modellato rilasciando un sistema di forze applicate sul contorno del profilo di scavo). La riduzione delle forze di scavo a partire dalla condizione originaria è definita tramite un fattore di rilascio, funzione della distanza dal fronte ("rilascio forze di scavo").

L'analisi svolta mira a definire la massima sollecitazione possibile agente sui rivestimenti.

Per la descrizione delle fasi di analisi si rinvia al capitolo 10.6.3 – "Modelli Piani"

Analisi e commento dei risultati

Sono di seguito illustrati e commentati i risultati delle fasi di scavo, relative alla sezione di scavo in meccanizzato analizzata. I risultati dell'analisi numerica sono riportati in allegato per la fase di calcolo finale. In particolare, l'allegato illustra le componenti verticale e orizzontale degli spostamenti totali cumulati, i vettori degli spostamenti totali, le plasticizzazioni al contorno del cavo e la tensione principale massima con le direzioni delle tensioni principali. Per le fasi pertinenti, riporta inoltre le caratteristiche della sollecitazione negli elementi strutturali del modello (liner).

Verifiche strutturali SLU del rivestimento definitivo

La verifica strutturale del rivestimento definitivo prevede il confronto tra le sollecitazioni di calcolo, ottenute a partire dai risultati del modello numerico applicando i relativi coefficienti parziali, e le resistenze di calcolo che individuano il dominio resistente nel piano M,N.

Per la verifica a taglio, il valore di calcolo è ottenuto in accordo con la normativa vigente.

I rivestimenti definitivi delle gallerie di linea sono realizzati con elementi prefabbricati aventi classe di resistenza del calcestruzzo C45/55 e armatura classe IV costituita da 14φ14 sia in intradosso che in estradosso per coperture fino a 100m, da 100 a 200 m si applica la classe di armatura III 14φ16 mentre e una classe di resistenza del calcestruzzo pari a C45/55, da 200 a 400 m la sezione ha un'altezza pari a 0.5m con una classe di resistenza di C55/67 e un'armatura classe II costituita da 14φ20, da 400 a 600 m di copertura, invece, la classe di resistenza del calcestruzzo è pari a C60/75 e la classe di armatura è la I, 14φ24.

Le tabelle seguenti sintetizzano le sollecitazioni ottenute, nelle zone significative del rivestimento definitivo della galleria. Le tabelle riportano le sollecitazioni derivanti dall'analisi numerica a metro di galleria, prive di fattori amplificativi, e le sollecitazioni adottate nelle verifiche strutturali: queste ultime risultano moltiplicate per il coefficiente $\gamma_E = 1.3$ (allo SLU) e per la lunghezza di due conci consecutivi 2b=3.0 m.

Considerate le sollecitazioni agenti su due conci adiacenti di due anelli consecutivi consente di condurre verifiche strutturali cautelative, tenendo conto del trasferimento del carico da un anello a quello adiacente. Nelle verifiche, pur considerando le sollecitazioni e l'area di calcestruzzo di due conci consecutivi, si considera in zona tesa e compressa l'armatura di un solo concio; questo metodo consente di tenere in conto della presenza del giunto tra due conci adiacenti e dunque la non perfetta collaborazione delle armature dei suddetti nell'assorbimento delle sollecitazioni.

Le verifiche strutturali del rivestimento definitivo sono state condotte per la fase finale e per entrambe le canne o comunque considerando la massima sollecitazione agente.

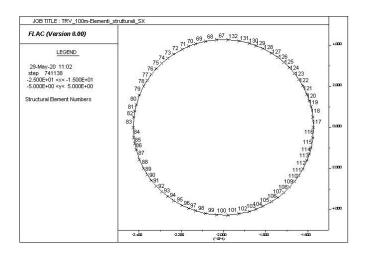


Figura 5 - Elementi liner canna sinistra

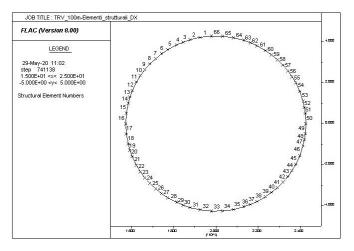


Figura 6 - Elementi liner canna destra

Tabella 4- Sollecitazioni nel rivestimento della canna sinistra

GALL SX				N	M1	M2	Mmax	Т
Calotta	67	67	68	21027.00	122.67	-101.58	122.7	71.42
piedritto dx	111	111	112	21762.00	13.79	-15.70	15.7	8.95
arco rovescio	97	97	98	20958.00	33.33	-32.40	33.3	67.34
piedritto sx	77	77	78	21369.00	-105.90	92.37	105.9	100.02

Tabella 5 - Sollecitazioni nel rivestimento della canna destra

GALL DX	ELE	NODO 1	NODO 2	N	M1	M2	Mmax	Т
Calotta	6	6	7	24324.00	-117.06	113.82	117.1	5.94
piedritto dx	50	50	51	22590.00	123.54	-88.06	123.5	-18.71
arco rovescio	28	28	29	24684.00	-220.26	150.22	220.3	15.86
piedritto sx	19	19	20	24972.00	199.62	-162.93	199.6	-10.15

Le verifiche sono state condotte considerando una distanza tra il baricentro dell'armatura principale e il lembo più esterno della sezione pari a 65 mm.

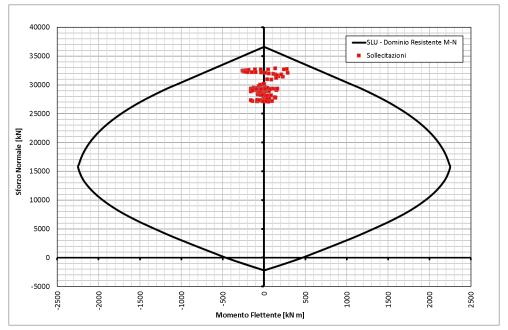


Figura 7 - Dominio resistente SLU (B = 3,00 m, H = 0.45 m) - Classe III - C45/55

Per le verifiche a taglio si mostra solo la verifica nel punto di massima sollecitazione

Tabella 5 – Sollecitazione Massima e verifica a taglio SLU

Sollecitazion	i da analisi	Sollecitazioni di verifica		
T	N	T	N	
DATI	DATI	D. 7.4	DAT/ 1	
[N]		[N/m]	[N/m]	

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	173 di 201

Verifica a taglio di sezioni rettangolari

1) Elementi non armati a taglio ($Ve_d \le V_{Rd}$)

Geometria della sezione					
$\mathbf{b}_{\mathbf{w}}$	1500.00	mm			
h	450.00	mm			
c	63.00	mm			
d	387.00	mm			
Ac	675000	mm^2			
b _w d	580500	mm^2			
k	1.72				

Armatura longitudinale					
Øl	16	mm			
Aøl	201	mm^2			
Sı	100.00	mm			
n° strati	1				
n°ø/strato	15				
A _{sl,tot}	3016	mm^2			
ρ1	0.00520				

<u>Cls:</u>		
Rck	55.00	MPa
fck	45.65	MPa
f _{cd}	30.4	MPa
γο	1.50	

Materiali					
	Acciaio:				
	fyk	450.00	MPa		
	fyd	391.3	MPa		
	γs	1.15			

Sollecitazioni (SLU)			
Nsd	22185.0	kN	
σер	6.09	MPa	

Resistente al taglio per Cls				
${ m V_{Rd}}^{\sf min}$	839.4	kN		
V_{Rd}	874.0	kN		

Verifiche di resistenza

 V_{Ed} 306.93 kN

 $V_{\rm Rd}$ > $V_{\rm Ed}$ e $V_{\rm Rd}$ > $V_{\rm Rd}^{\rm min}$

OK, Sezione non armata verificata

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA							
Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40 D 07	CODIFICA CL	DOCUMENTO GN 03 0001	REV.	FOGLIO 174 di 201		

Verifiche SLE

Le verifiche SLE risultano soddisfatte sia lato calcestruzzo che lato acciaio rispettando i valori limite imposti sia dalla normativa vigente [NTC]. Poiché la sezione risulta interamente compressa non si ha l'apertura di fessure.

Tabella 5 – Analisi e Verifiche SLE per Canna Destra e Canna Sinistra

GEOMETRIA	DELLA SEZ	IONE		CALCESTR	UZZO		
В	cm =	300.0	base sezione	Rck	Mpa =	55.00	resistenza caratteristica cubica
Н	cm =	45.0	altezza sezione	fck	Mpa =	45.65	resistenza caratteristica cilindrica
Cs	cm =	6.2	copriferro delle staffe	fcd	Mpa =	30.43	resistenza di calcolo cilindrica
				fctm	Mpa =	4.34	resistenza media a trazione
ACCIAIO				fctk	Mpa =	3.04	resistenza caratteristica a trazione
fyk	Mpa =	450.0	tensione caratteristica di snervamento	fctd	Mpa =	2.02	resistenza di calcolo a trazione
fyd	Mpa =	391.3	tensione di calcolo	fc Max. es.	Mpa =	20.54	Max. tensione esercizio = 0.45 x fck
σf adm	Mpa =	360.0	tensione ammissibile armatura longitudinale	σc adm	Mpa =	16.00	tensione ammissibile cls
σ fs adm	Mpa =	360.0	tensione ammissibile staffe	τ C O	Mpa =	0.93	τ max. con armatura minima a taglio
				τ c 1	Mpa =	2.54	τ max. con armatura a taglio
γ cls	kN/m3	25.0	peso specifico calcestruzzo				•
N1	kN =	0.00	azione assiale Z=0 Positiva compressione	n	=	15	Coeff. omogenizzazione armature
NOTE				MOLTIPLIC	CATORI DE	LLE AZI	ONI
No	= N1 + γ cls	xZxAx	B : azione assiale Positiva compressione	CV	=	1.00	Coeff. moltiplicativo azioni di Taglio
Mo	Positivo tend	de fibre late	o armatura As	C M	=	1.00	Coeff. moltiplicativo Momento flettente
Mo	Negativo tend	de fibre late	o armatura A's	CN	=	1.00	Coeff. moltiplicativo Azione Assiale
S	distanza tra l	e barre tes	se per verifica a fessurazione (< 14				

SEZIC)NF	AZIO	NI DI INGR	FSSO	A710	ONI DI CA	I COLO	Α	RMATURA A	Δς	ARMATURA A's		
OLLIC) \ \L	71210	i i bi ii tort		7 (2101 ti 21 07 (2002)		,			7			
elem	Z	Vo	Мо	No	Vo x Cv	Mo x CM	No x CN	n. ferri	ф	As	n. ferri	ф	A's
	m	kN	kNm	kN	kN	kNm	kN	(x As)	mm	cm2	(x A's)	mm	cm2
6	0.00	0.0	117.06	24324.00	0.0	117.1	24324.0	14	16	28.15	14	16	28.15
50	0.00	0.0	123.54	22590.00	0.0	123.5	22590.0	14	16	28.15	14	16	28.15
28	0.00	0.0	220.26	24684.00	0.0	220.3	24684.0	14	16	28.15	14	16	28.15
19	0.00	0.0	199.62	24972.00	0.0	199.6	24972.0	14	16	28.15	14	16	28.15
67	0.00	0.0	122.67	21027.00	0.0	122.7	21027.0	14	16	28.15	14	16	28.15
111	0.00	0.0	15.70	21762.00	0.0	15.7	21762.0	14	16	28.15	14	16	28.15
97	0.00	0.0	33.33	20958.00	0.0	33.3	20958.0	14	16	28.15	14	16	28.15
77	0.00	0.0	105.90	21369.00	0.0	105.9	21369.0	14	16	28.15	14	16	28.15

							VE	RIFICA P	RESSO - FL	ESSIONE	E
elem		Vo x Cv	Mo x CM	No x CN	d	ď'	Х	σ cls	σf	σ'f	TEST
		kN	kNm	kN	cm	cm	cm	Мра	Мра	Мра	PR./ FL.
6	0.00	0.0	117.1	24,324.0	38.00	7.00		-18.02	-243.39	-265.33	SI*
50	0.00	0.0	123.5	22,590.0	38.00	7.00		-16.87	-224.65	-247.80	SI*
28	0.00	0.0	220.3	24,684.0	38.00	7.00		-19.21	-237.48	-278.76	SI*
19	0.00	0.0	199.6	24,972.0	38.00	7.00		-19.22	-242.43	-279.84	SI*
67	0.00	0.0	122.7	21,027.0	38.00	7.00		-15.77	-208.38	-231.37	SI
111	0.00	0.0	15.7	21,762.0	38.00	7.00		-15.31	-226.09	-229.04	SI
97	0.00	0.0	33.3	20,958.0	38.00	7.00		-14.91	-216.03	-222.28	SI
77	0.00	0.0	105.9	21,369.0	38.00	7.00		-15.86	-213.53	-233.38	SI

Gli elementi risultano interamente compressi per cui non ci si attende apertura di fessure, le verifiche agli SLE risultano soddisfatte

10.6.9 Analisi n. 17 - Sezione di calcolo pk 19600

Modello geotecnico

Il modello geotecnico di sottosuolo in corrispondenza della sezione di analisi è caratterizzato dalla Formazione TRV costituita prevalentemente da Argilla.

La Figura 1 riassume i dati di input che caratterizzano la sezione geotecnica utilizzata per l'analisi numerica. Per dettagli in merito ai valori assunti si rimanda al capitolo 8

Figura 1 - Sezione geotecnica di calcolo

Stratigra	fia di calcolo		Superficie				E'	K ₀
Formazione	Profondità da p.c.	С	piezometrica	γ	C'k	ф'к		
[-]	[m da pc]	[m]	[m] da calotta	[kN/m³]	[kPa]	[°]	[MPa]	[-]
TRV	In tutto il modello	300	90	22	391	15	900	0.74

C = copertura (rispetto alla calotta)

Modello geometrico

Per le caratteristiche della mesh si rinvia al Capitolo 10.6.3 – "Modelli Piani".

Il rivestimento della galleria è stato simulato utilizzando elementi tipo "liner", aventi modello costitutivo elastico lineare.

Si riportano di seguito le caratteristiche del rivestimento:

γ = peso di volume

c'k=coesione drenata

φ'k=angolo di attrito interno

E'= modulo elastico

Ko = coefficiente di spinta a riposo

Tabella 1 - Definizione delle caratteristiche del rivestimento della galleria

Caratteristiche	Conci dell'anello universale			
Spessore dei conci di cls	50 cm			
Coperture	200-300 m			
Classe di calcestruzzo utilizzato	C55/67			
Modulo elastico	38000 MPa			
Inerzia della sezione di cls	10.4E-3 m ²			

Fasi e percentuali di rilascio

Al fine di tener conto della natura tridimensionale del problema, nelle analisi svolte in condizioni di deformazione piana lo scavo della galleria è stato simulato con il metodo delle forze di scavo equivalenti. In particolare, l'effetto dell'avanzamento dello scavo viene modellato rilasciando un sistema di forze applicate sul contorno del profilo di scavo). La riduzione delle forze di scavo a partire dalla condizione originaria è definita tramite un fattore di rilascio, funzione della distanza dal fronte ("rilascio forze di scavo").

L'analisi svolta mira a definire la massima sollecitazione possibile agente sui rivestimenti.

Per la descrizione delle fasi di analisi si rinvia al capitolo 10.6.3 – "Modelli Piani"

Analisi e commento dei risultati

Sono di seguito illustrati e commentati i risultati delle fasi di scavo, relative alla sezione di scavo in meccanizzato analizzata. I risultati dell'analisi numerica sono riportati in allegato per la fase di calcolo finale. In particolare, l'allegato illustra le componenti verticale e orizzontale degli spostamenti totali cumulati, i vettori degli spostamenti totali, le plasticizzazioni al contorno del cavo e la tensione principale massima con le direzioni delle tensioni principali. Per le fasi pertinenti, riporta inoltre le caratteristiche della sollecitazione negli elementi strutturali del modello (liner).

Verifiche strutturali SLU del rivestimento definitivo

La verifica strutturale del rivestimento definitivo prevede il confronto tra le sollecitazioni di calcolo, ottenute a partire dai risultati del modello numerico applicando i relativi coefficienti parziali, e le resistenze di calcolo che individuano il dominio resistente nel piano M,N.

Per la verifica a taglio, il valore di calcolo è ottenuto in accordo con la normativa vigente.

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	177 di 201

I rivestimenti definitivi delle gallerie di linea sono realizzati con elementi prefabbricati aventi classe di resistenza del calcestruzzo C45/55 e armatura costituita da 14φ14 sia in intradosso che in estradosso per coperture fino a 100m, da 100 a 200 m si applica la classe di armatura II 14φ16 mentre e una classe di resistenza del calcestruzzo pari a C55/67, da 200 a 400 m la sezione ha un'altezza pari a 0.5m con una classe di resistenza di C55/67 e un'armatura costituita da 14φ20, da 400 a 600 m di copertura, invece, la classe di resistenza del calcestruzzo è pari a C60/75 e la classe di armatura è la I, 14φ24.

Le tabelle seguenti sintetizzano le sollecitazioni ottenute, nelle zone significative del rivestimento definitivo della galleria. Le tabelle riportano le sollecitazioni derivanti dall'analisi numerica a metro di galleria, prive di fattori amplificativi, e le sollecitazioni adottate nelle verifiche strutturali: queste ultime risultano moltiplicate per il coefficiente $\gamma_E = 1.3$ (allo SLU) e per la lunghezza di due conci consecutivi 2b=3.0 m.

Considerate le sollecitazioni agenti su due conci adiacenti di due anelli consecutivi consente di condurre verifiche strutturali cautelative, tenendo conto del trasferimento del carico da un anello a quello adiacente. Nelle verifiche, pur considerando le sollecitazioni e l'area di calcestruzzo di due conci consecutivi, si considera in zona tesa e compressa l'armatura di un solo concio; questo metodo consente di tenere in conto della presenza del giunto tra due conci adiacenti e dunque la non perfetta collaborazione delle armature dei suddetti nell'assorbimento delle sollecitazioni.

Le verifiche strutturali del rivestimento definitivo sono state condotte per la fase finale e per entrambe le canne o comunque considerando la massima sollecitazione agente.

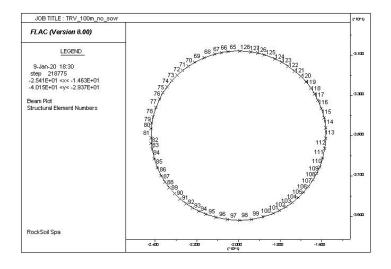


Figura 5 - Elementi liner canna sinistra

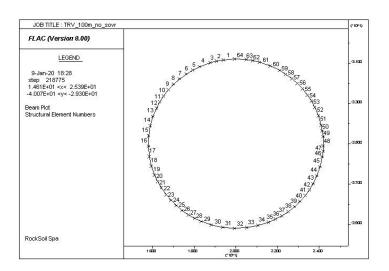


Figura 6 - Elementi liner canna destra

Tabella 4- Sollecitazioni nel rivestimento della canna sinistra

			Sollecitazioni da analisi numerica Sollecitazioni di verifica								
GALL Sx	ELE	NODO 1	NODO 2	N	M1	M2	Mmax	N	M1	M2	Mmax
Calotta	121	121	122	9387.00	68.13	-61.58	68.1	36609.30	265.71	-240.16	265.71
piedritto dx	112	112	113	9878.00	-53.23	49.93	53.2	38524.20	-207.60	194.73	207.60
arco rovescio	90	90	91	9565.00	66.01	-77.76	77.8	37303.50	257.44	-303.26	303.26
piedritto sx	74	74	75	9500.00	52.30	-37.02	52.3	37050.00	203.97	-144.38	203.97

Tabella 5 - Sollecitazioni nel rivestimento della canna destra

				Sollecitazioni da analisi numerica				Sollecitazioni di verifica				
GALL Dx	ELE	NODO 1	NODO 2	N	M1	M2	Mmax	N	M1	M2	Mmax	
Calotta	7	7	8	9456.00	106.70	-93.66	106.7	36878.40	416.13	-365.27	416.13	
piedritto dx	49	49	50	9875.00	-95.45	95.80	95.8	38512.50	-372.26	373.62	373.62	
arco rovescio	39	39	40	9514.00	129.10	-108.20	129.1	37104.60	503.49	-421.98	503.49	
piedritto sx	17	17	18	10310.00	-65.56	67.59	67.6	40209.00	-255.68	263.60	263.60	

Le verifiche sono state condotte considerando una distanza tra il baricentro dell'armatura principale e il lembo più esterno della sezione pari a 65 mm.

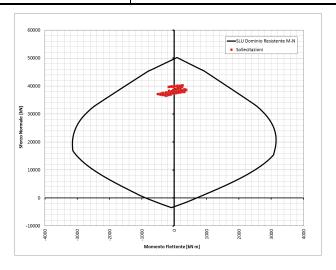


Figura 7 - Dominio resistente SLU (B = 3,00 m, H = 0.5 m) - Classe 2 - C55/67

Per le verifiche a taglio si mostra solo la verifica nel punto di massima sollecitazione

Tabella 5 – Sollecitazione Massima e verifica a taglio SLU

Sollecitazion	ni da analisi	Sollecitazioni di verifica			
T	N	T	N		
[N/m]	[N /m]	[N]	[N]		
1.056E+05	9.548E+06	4.118E+05	2.864E+07		

Geome	Geometria della sezione							
$\mathbf{b}_{\mathbf{w}}$	1500.00	mm						
h	500.00	mm						
c	63.00	mm						
d	437.00	mm						
Ac	750000	mm^2						
b _w d	655500	mm^2						
k	1.68	•						

Armatura longitudinale							
Øl	20	mm					
Aøl	314	mm^2					
SI	100.00	mm					
n° strati	1						
n°ø/strato	15						
Asl,tot	4712	mm^2					
ρ1	0.00719						

			Materi
Cls:			
Rck	67.00	MPa	
fck	55.61	MPa	
fcd	37.1	MPa	
γε	1.50		_

450.00	MPa	
391.3	MPa	
1.15		
	391.3	

Sollecitazioni (SLU)							
Nsd	28644.0	kN					
σср	7.41	MPa					

Resistente	al taglio per	·Cls
${ m V_{Rd}}^{\sf min}$	1100.4	kN
V_{Rd}	1180.0	kN

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO CO	LLEGAME	NTO PALERI	NA – CATANIA – 10 - CATANIA NUOVA ENNA	PALERM	O
Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale	COMMESSA RS3U	LOTTO 40 D 07	CODIFICA CL	DOCUMENTO GN 03 0001	REV.	FOGLIO 180 di 201

Verifiche SLE

Le verifiche SLE risultano soddisfatte sia lato calcestruzzo che lato acciaio rispettando i valori limite imposti sia dalla normativa vigente [NTC]. Poiché la sezione risulta interamente compressa non si ha l'apertura di fessure.

Tabella 5 – Analisi e Verifiche SLE per Canna Destra e Canna Sinistra

'ERIFICHE S Rck 55/67	SEZIONE						
GEOMETRIA	A DELLA SEZ	ZIONE		CALCESTR	RUZZO		
В	cm =	300.0	base sezione	Rck	Mpa =	67.00	resistenza caratteristica cubica
Н	cm =	50.0	altezza sezione	fck	Mpa =	55.61	resistenza caratteristica cilindrica
Cs	cm =	6.2	copriferro delle staffe	fcd	Mpa =	37.07	resistenza di calcolo cilindrica
				fctm	Mpa =	4.95	resistenza media a trazione
ACCIAIO				fctk	Mpa =	3.46	resistenza caratteristica a trazione
fyk	Mpa =	450.0	tensione caratteristica di snervamento	fctd	Mpa =	2.31	resistenza di calcolo a trazione
fyd	Mpa =	391.3	tensione di calcolo	fc Max. es.	. Mpa =	25.02	Max. tensione esercizio = 0.45 x fck
σf adm	Mpa =	360.0	tensione ammissibile armatura longitudinale	σc adm	Mpa =	19.00	tensione ammissibile cls
σ fs adm	Mpa =	360.0	tensione ammissibile staffe	τ C O	Mpa =	1.09	τ max. con armatura minima a taglio
				τ C 1	Mpa =	2.89	τ max. con armatura a taglio
γ cls	kN/m3	25.0	peso specifico calcestruzzo				
N1	kN =	0.00	azione assiale Z=0 Positiva compressione	n	=	15	Coeff. omogenizzazione armature
NOTE				MOLTIPLIC	CATORI DE	LLE AZI	ONI
No	= N1 + γ cls	xZxAx	B : azione assiale Positiva compressione	CV	=	1.00	Coeff. moltiplicativo azioni di Taglio
Mo	Positivo teno	de fibre late	o armatura As	C M	=	1.00	Coeff. moltiplicativo Momento flettente
Mo	Negativo teno	de fibre late	o armatura A's	CN	=	1.00	Coeff. moltiplicativo Azione Assiale
S	distanza tra l	le barre tes	se per verifica a fessurazione (< 14 _φ)				

SEZIC	ONE	AZIO	ni di ingr	ESSO	AZIONI DI CALCOLO		ARMATURA As			ARMATURA A's			
elem	Z	Vo	Мо	No	Vo x Cv	Mo x CM	No x CN	n. ferri	ф	As	n. ferri	ф	A's
	m	kN	kNm	kN	kN	kNm	kN	(x As)	mm	cm2	(x A's)	mm	cm2
7	0.00	0.0	320.1	28368.00	0.0	320.1	28368.0	14	20	43.98	14	20	43.98
49	0.00	0.0	286.35	29625.00	0.0	286.4	29625.0	14	20	43.98	14	20	43.98
39	0.00	0.0	387.3	28542.00	0.0	387.3	28542.0	14	20	43.98	14	20	43.98
17	0.00	0.0	196.68	30930.00	0.0	196.7	30930.0	14	20	43.98	14	20	43.98
121	0.00	0.0	204.39	28161.00	0.0	204.4	28161.0	14	20	43.98	14	20	43.98
112	0.00	0.0	159.69	29634.00	0.0	159.7	29634.0	14	20	43.98	14	20	43.98
90	0.00	0.0	217.73	28695.00	0.0	217.7	28695.0	14	20	43.98	14	20	43.98
74	0.00	0.0	156.90	28500.00	0.0	156.9	28500.0	14	20	43.98	14	20	43.98
			•										

ERIFICA	TENSIONI A	MMISSIBIL	ı	(Positive sol	l. di trazio	one)	VE	DIFICA DE	RESSO - FL	FECTON	- 1				
elem	1	Vo x Cv	Mo x CM	No x CN	d	ď'	X	σ cls	σ f	σ' f	TEST	1	1	1	
0.0111		kN	kNm	kN	cm	cm	cm	Mpa	Mpa	-	PR./ FL.			1	
7	0.00	0.0		28 368.0	42.80	7.20		-19.64	-236.62	-284.87	SI*				
49	0.00	0.0	286.4	29 625.0	42.80	7.20		-20.17	-250.72	-293.88	SI*				
39	0.00	0.0	387.3	28 542.0	42.80	7.20		-20.22	-233.16	-291.53	SI*				
17	0.00	0.0	196.7	30 930.0	42.80	7.20		-20.34	-269.47	-299.11	SI*				
121	0.00	0.0	204.4	28 161.0	42.80	7.20		-18.70	-243.44	-274.24	SI				
112	0.00	0.0	159.7	29 634.0	42.80	7.20		-19.29	-260.35		SI*				
90	0.00	0.0		28 695.0	42.80	7.20		-19.12	-247.34						
74	0.00	0.0	156.9	28 500.0	42.80	7.20		-18.57	-250.13	-273.78	SI				
	<u> </u>														

Gli elementi risultano interamente compressi per cui non ci si attende apertura di fessure, le verifiche agli SLE risultano soddisfatte

10.6.10 Analisi n. 18 - Sezione di calcolo pk 20150

Modello geotecnico

Il modello geotecnico di sottosuolo in corrispondenza della sezione di analisi è caratterizzato dalla Formazione TRV costituita prevalentemente da Argilla.

La Figura 1 riassume i dati di input che caratterizzano la sezione geotecnica utilizzata per l'analisi numerica. Per dettagli in merito ai valori assunti si rimanda al capitolo 8

Figura 1 - Sezione geotecnica di calcolo

Stratigra	fia di calcolo		Superficie					
Formazione	Profondità da p.c.	С	piezometrica	γ	C' _k	ф'к	E'	K ₀
[-]	[m da pc]	[m]	[m] da calotta	[kN/m³]	[kPa]	[°]	[MPa]	[-]
TRV	In tutto il modello	400	0	22	85	22	1200	1

C = copertura (rispetto alla calotta)

Modello geometrico

Per le caratteristiche della mesh si rinvia al Capitolo 10.6.3 – "Modelli Piani".

Il rivestimento della galleria è stato simulato utilizzando elementi tipo "liner", aventi modello costitutivo elastico lineare.

Si riportano di seguito le caratteristiche del rivestimento:

γ = peso di volume

c'k=coesione drenata

φ'k=angolo di attrito interno

E'= modulo elastico

Ko = coefficiente di spinta a riposo

Tabella 1 - Definizione delle caratteristiche del rivestimento della galleria

Caratteristiche	Conci dell'anello universale
Spessore dei conci di cls	50 cm
Coperture	300 - 400 m
Classe di calcestruzzo utilizzato	C55/67
Modulo elastico	38000 MPa
Inerzia della sezione di cls	10.4E-3 m ²

Fasi e percentuali di rilascio

Al fine di tener conto della natura tridimensionale del problema, nelle analisi svolte in condizioni di deformazione piana lo scavo della galleria è stato simulato con il metodo delle forze di scavo equivalenti. In particolare, l'effetto dell'avanzamento dello scavo viene modellato rilasciando un sistema di forze applicate sul contorno del profilo di scavo). La riduzione delle forze di scavo a partire dalla condizione originaria è definita tramite un fattore di rilascio, funzione della distanza dal fronte ("rilascio forze di scavo").

L'analisi svolta mira a definire la massima sollecitazione possibile agente sui rivestimenti.

Per la descrizione delle fasi di analisi si rinvia al capitolo 10.6.3 – "Modelli Piani"

Analisi e commento dei risultati

Sono di seguito illustrati e commentati i risultati delle fasi di scavo, relative alla sezione di scavo in meccanizzato analizzata. I risultati dell'analisi numerica sono riportati in allegato per la fase di calcolo finale. In particolare, l'allegato illustra le componenti verticale e orizzontale degli spostamenti totali cumulati, i vettori degli spostamenti totali, le plasticizzazioni al contorno del cavo e la tensione principale massima con le direzioni delle tensioni principali. Per le fasi pertinenti, riporta inoltre le caratteristiche della sollecitazione negli elementi strutturali del modello (liner).

Verifiche strutturali SLU del rivestimento definitivo

La verifica strutturale del rivestimento definitivo prevede il confronto tra le sollecitazioni di calcolo, ottenute a partire dai risultati del modello numerico applicando i relativi coefficienti parziali, e le resistenze di calcolo che individuano il dominio resistente nel piano M,N.

Per la verifica a taglio, il valore di calcolo è ottenuto in accordo con la normativa vigente.

I rivestimenti definitivi delle gallerie di linea sono realizzati con elementi prefabbricati aventi classe di resistenza del calcestruzzo C45/55 e armatura costituita da 14\psi4 sia in intradosso che in estradosso per

coperture fino a 100m, da 100 a 200 m si applica la classe di armatura II 14\psi16 mentre e una classe di resistenza del calcestruzzo pari a C55/67, da 200 a 400 m la sezione ha un'altezza pari a 0.5m con una classe di resistenza di C55/67 e un'armatura costituita da 14\psi20, da 400 a 600 m di copertura, invece, la classe di resistenza del calcestruzzo è pari a C60/75 e la classe di armatura è la I, 14\psi24.

Le tabelle seguenti sintetizzano le sollecitazioni ottenute, nelle zone significative del rivestimento definitivo della galleria. Le tabelle riportano le sollecitazioni derivanti dall'analisi numerica a metro di galleria, prive di fattori amplificativi, e le sollecitazioni adottate nelle verifiche strutturali: queste ultime risultano moltiplicate per il coefficiente $\gamma_E = 1.3$ (allo SLU) e per la lunghezza di due conci consecutivi 2b=3.0 m.

Considerate le sollecitazioni agenti su due conci adiacenti di due anelli consecutivi consente di condurre verifiche strutturali cautelative, tenendo conto del trasferimento del carico da un anello a quello adiacente. Nelle verifiche, pur considerando le sollecitazioni e l'area di calcestruzzo di due conci consecutivi, si considera in zona tesa e compressa l'armatura di un solo concio; questo metodo consente di tenere in conto della presenza del giunto tra due conci adiacenti e dunque la non perfetta collaborazione delle armature dei suddetti nell'assorbimento delle sollecitazioni.

Le verifiche strutturali del rivestimento definitivo sono state condotte per la fase finale e per entrambe le canne o comunque considerando la massima sollecitazione agente.

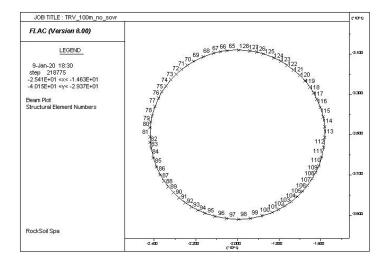


Figura 5 - Elementi liner canna sinistra

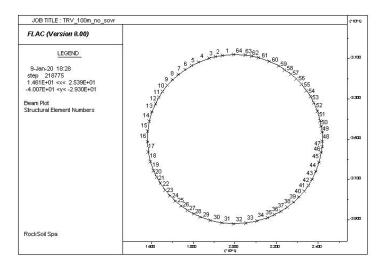


Figura 6 - Elementi liner canna destra

Tabella 4- Sollecitazioni nel rivestimento della canna sinistra

				Solle	citazioni da ana	lisi numerio	a	So	llecitazion	i di verific	а
GALL Sx	ELE	NODO 1	NODO 2	Ν	M1	M2	Mmax	N	M1	M2	Mmax
Calotta	53	53	54	8397.00	44.94	-57.46	57.5	32748.30	175.27	-224.09	224.09
piedritto dx	96	96	97	8306.00	-39.85	34.43	39.9	32393.40	-155.42	134.28	155.42
arco rovescio	79	79	80	8398.00	91.52	-89.81	91.5	32752.20	356.93	-350.26	356.93
piedritto sx	66	66	67	8059.00	-94.68	94.75	94.8	31430.10	-369.25	369.53	369.53

Tabella 5 - Sollecitazioni nel rivestimento della canna destra

				Solle	citazioni da ana	lisi numerio	a	So	llecitazion	i di verific	а
GALL Dx	ELE	NODO 1	NODO 2	N	M1	M2	Mmax	N	M1	M2	Mmax
Calotta	1	1	2	8155.00	67.81	-54.48	67.8	31804.50	264.46	-212.47	264.46
piedritto dx	42	42	43	8395.00	-58.97	77.63	77.6	32740.50	-229.98	302.76	302.76
arco rovescio	28	28	29	8170.00	111.70	-64.00	111.7	31863.00	435.63	-249.60	435.63
piedritto sx	22	22	23	8652.00	-45.14	40.45	45.1	33742.80	-176.05	157.76	176.05

Le verifiche sono state condotte considerando una distanza tra il baricentro dell'armatura principale e il lembo più esterno della sezione pari a 72 mm.

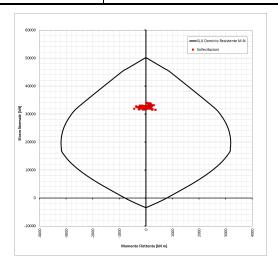


Figura 7 - Dominio resistente SLU (B = 3,00 m, H = 0.5 m) - Classe 2 - C55/67

Per le verifiche a taglio si mostra solo la verifica nel punto di massima sollecitazione

Tabella 5 – Sollecitazione Massima e verifica a taglio SLU

Sollecitazion	ni da analis i	Sollecitazio	ni di verifica
T	N	T	N
[N/m]	[N/m]	[N]	[N]
1.06E+05	8.13E+06	4.15E+05	2.44E+07

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	187 di 201

Geom	etria della sez	zione
bw	1500.00	mm
h	500.00	mm
c	63.00	mm
d	437.00	mm
Ac	750000	mm^2
bw d	655500	mm^2
k	1.68	

Armatur	Armatura longitudinale						
ØI	20	mm					
$\mathbf{A}_{m{artheta}}$ l	314	mm^2					
SI	100.00	mm					
n° s trati	1						
n°ø/s trato	15						
Asl,tot	4712	mm^2					
ρ1	0.00719						

<u>Cls:</u>			
Rck		67.00	MPa
fck	•	55.61	MPa
fcd		37.1	MPa
γc		1.50	

Acciaio: fyk 450.00 MPa	Materiali						
fyk 450.00 MPa							
fyd 391.3 MPa							
γ _s 1.15							

Soll	ecitazioni (SI	LU)
Nsa	24402.0	kN
о ср	7.41	MPa

Resistente a	al taglio per	· Cls
V _{Rd} ^{min}	1100.4	kN
VRd	1180.0	kN

 $V_{Rd} > V_{Rd}^{\min}$

Verifiche di resistenza

V_{Ed}	414.96	kN	$V_{Rd} > V_{Ed}$	е

OK, Sezione non armata verificata

Le verifiche SLE risultano soddisfatte sia lato calcestruzzo che lato acciaio rispettando i valori limite imposti sia dalla normativa vigente [NTC]. Poiché la sezione risulta interamente compressa non si ha l'apertura di fessure.

Tabella 5 – Analisi e Verifiche SLE per Canna Destra e Canna Sinistra

RIFICHE SI k 55/67	EZIONE						
GEOMETRIA	DELLA SEZ	IONE		CALCESTR	UZZO		
В	cm =	300.0	base sezione	Rck	Mpa =	67.00	resistenza caratteristica cubica
Н	cm =	50.0	altezza sezione	fck	Mpa =	55.61	resistenza caratteristica cilindrica
Cs	cm =	7.2	copriferro delle staffe	fcd	Mpa =	37.07	resistenza di calcolo cilindrica
				fctm	Mpa =	4.95	resistenza media a trazione
ACCIAIO				fctk	Mpa =	3.46	resistenza caratteristica a trazione
fyk	Mpa =	450.0	tensione caratteristica di snervamento	fctd	Mpa =	2.31	resistenza di calcolo a trazione
fyd	Mpa =	391.3	tensione di calcolo	fc Max. es.	Mpa =	25.02	Max. tensione esercizio = 0.45 x fck
σf adm	Mpa =	360.0	tensione ammissibile armatura longitudinale	σc adm	Mpa =	19.00	tensione ammissibile cls
σfs adm	Mpa =	360.0	tensione ammissibile staffe	τ C O	Mpa =	1.09	τ max. con armatura minima a taglio
				τ C 1	Mpa =	2.89	τ max. con armatura a taglio
γ cls	kN/m3	25.0	peso specifico calcestruzzo				-
N1	kN =	0.00	azione assiale Z=0 Positiva compressione	n	=	15	Coeff. omogenizzazione armature
NOTE				MOLTIPLIC	CATORI DE	ELLE AZI	IONI
No	= N1 + γ cls	x Z x A x	B : azione assiale Positiva compressione	CV	=	1.00	Coeff. moltiplicativo azioni di Taglio
			armatura As	CM	=	1.00	Coeff. moltiplicativo Momento flettente
Mo	Negativo tend	de fibre late	armatura A's	CN	=	1.00	Coeff. moltiplicativo Azione Assiale
	-		e per verifica a fessurazione (< 14 b)				*

SEZIC	NE	AZIO	ni di ingr	ESSO	AZIC	ONI DI CA	LCOLO	Al	RMATURA A	As	ARN	MATURA	A's
elem	Z	Vo	Мо	No	Vo x Cv	Mo x CM	No x CN	n. ferri	ф	As	n. ferri	ф	A's
	m	kN	kNm	kN	kN	kNm	kN	(x As)	mm	cm2	(x A's)	mm	cm2
1	0.00	0.0	203.43	24465.00	0.0	203.4	24465.0	14	20	43.98	14	20	43.98
42	0.00	0.0	217.364	25185.00	0.0	217.4	25185.0	14	20	43.98	14	20	43.98
28	0.00	0.0	335.1	24510.00	0.0	335.1	24510.0	14	20	43.98	14	20	43.98
22	0.00	0.0	135.42	25956.00	0.0	135.4	25956.0	14	20	43.98	14	20	43.98
53	0.00	0.0	160.89	25191.00	0.0	160.9	25191.0	14	20	43.98	14	20	43.98
96	0.00	0.0	119.55	24918.00	0.0	119.6	24918.0	14	20	43.98	14	20	43.98
79	0.00	0.0	274.56	25194.00	0.0	274.6	25194.0	14	20	43.98	14	20	43.98
66	0.00	0.0	284.04	24177.00	0.0	284.0	24177.0	14	20	43.98	14	20	43.98

RIFICHE	SEZIONE														
/ERIFICA	TENSIONI A	MMISSIBIL	.I	(Positive sol	II. di trazi	one)	VE	DIFICA DE	RESSO - FL	FECION	_				1
elem		Vo x Cv	Mo x CM	No x CN	d	ď'	X	σcls	σ f	σ'f	TEST			1	1
0.0		kN	kNm	kN	cm	cm	cm	Mpa	Mpa		PR./ FL.				1
1	0.00	0.0	203.4	24 465.0	41.80	8.20		-16.45	-210.21		SI				
42	0.00	0.0	217.4	25 185.0	41.80	8.20		-16.99	-215.83	-247.15	SI				1
28	0.00	0.0	335.1	24 510.0	41.80	8.20		-17.41	-201.14	-249.43	SI				1
22	0.00	0.0	135.4	25 956.0	41.80	8.20		-16.87	-228.82	-248.33	SI				
53	0.00	0.0	160.9	25 191.0	41.80	8.20		-16.59	-219.95	-243.13	SI				
96	0.00	0.0	119.6	24 918.0	41.80	8.20		-16.12	-220.42	-237.65	SI				
79	0.00	0.0	274.6	25 194.0	41.80	8.20		-17.40	-211.79	-251.35	SI				
66	0.00	0.0	284.0	24 177.0	41.80	8.20		-16.85	-201.76	-242.69	SI				
													ļ		4
															J

Gli elementi risultano interamente compressi per cui non ci si attende apertura di fessure, le verifiche agli SLE risultano soddisfatte

10.6.11 Analisi n. 19 - Sezione di calcolo pk 20300

Modello geotecnico

Il modello geotecnico di sottosuolo in corrispondenza della sezione di analisi è caratterizzato dalla Formazione TRV costituita prevalentemente da Argilla.

La Figura 1 riassume i dati di input che caratterizzano la sezione geotecnica utilizzata per l'analisi numerica. Per dettagli in merito ai valori assunti si rimanda al capitolo 8

Figura 1 - Sezione geotecnica di calcolo

Stratigra	fia di calcolo		Superficie					
Formazione	Profondità da p.c.	С	piezometrica	γ	C' _k	ф'к	E'	K ₀
[-]	[m da pc]	[m]	[m] da calotta	[kN/m³]	[kPa]	[°]	[MPa]	[-]
TRV	In tutto il modello	600	0	22	85	22	1200	1

C = copertura (rispetto alla calotta)

γ = peso di volume

c'k=coesione drenata

φ'k =angolo di attrito interno

E'= modulo elastico

Ko = coefficiente di spinta a riposo

Modello geometrico

Per le caratteristiche della mesh si rinvia al Capitolo 10.6.3 – "Modelli Piani".

Il rivestimento della galleria è stato simulato utilizzando elementi tipo "liner", aventi modello costitutivo elastico lineare.

Si riportano di seguito le caratteristiche del rivestimento:

Tabella 1 - Definizione delle caratteristiche del rivestimento della galleria

Caratteristiche	Conci dell'anello universale
Spessore dei conci di cls	50 cm
Coperture	400-600 m
Classe di calcestruzzo utilizzato	C60/75
Modulo elastico	39100 MPa
Inerzia della sezione di cls	10.4E-3 m ²

Fasi e percentuali di rilascio

Al fine di tener conto della natura tridimensionale del problema, nelle analisi svolte in condizioni di deformazione piana lo scavo della galleria è stato simulato con il metodo delle forze di scavo equivalenti. In particolare, l'effetto dell'avanzamento dello scavo viene modellato rilasciando un sistema di forze applicate sul contorno del profilo di scavo). La riduzione delle forze di scavo a partire dalla condizione originaria è definita tramite un fattore di rilascio, funzione della distanza dal fronte ("rilascio forze di scavo").

L'analisi svolta mira a definire la massima sollecitazione possibile agente sui rivestimenti.

Per la descrizione delle fasi di analisi si rinvia al capitolo 10.6.3 – "Modelli Piani"

Analisi e commento dei risultati

Sono di seguito illustrati e commentati i risultati delle fasi di scavo, relative alla sezione di scavo in meccanizzato analizzata. I risultati dell'analisi numerica sono riportati in allegato per la fase di calcolo finale. In particolare, l'allegato illustra le componenti verticale e orizzontale degli spostamenti totali cumulati, i vettori degli spostamenti totali, le plasticizzazioni al contorno del cavo e la tensione principale massima con le direzioni delle tensioni principali. Per le fasi pertinenti, riporta inoltre le caratteristiche della sollecitazione negli elementi strutturali del modello (liner).

Verifiche strutturali SLU del rivestimento definitivo

La verifica strutturale del rivestimento definitivo prevede il confronto tra le sollecitazioni di calcolo, ottenute a partire dai risultati del modello numerico applicando i relativi coefficienti parziali, e le resistenze di calcolo che individuano il dominio resistente nel piano M,N.

Per la verifica a taglio, il valore di calcolo è ottenuto in accordo con la normativa vigente.

I rivestimenti definitivi delle gallerie di linea sono realizzati con elementi prefabbricati aventi classe di resistenza del calcestruzzo C45/55 e armatura costituita da 14\psi4 sia in intradosso che in estradosso per

coperture fino a 100m, da 100 a 200 m si applica la classe di armatura II 14\psi16 mentre e una classe di resistenza del calcestruzzo pari a C55/67, da 200 a 400 m la sezione ha un'altezza pari a 0.5m con una classe di resistenza di C55/67 e un'armatura costituita da 14\psi20, da 400 a 600 m di copertura, invece, la classe di resistenza del calcestruzzo è pari a C60/75 e la classe di armatura è la I, 14\psi24.

Le tabelle seguenti sintetizzano le sollecitazioni ottenute, nelle zone significative del rivestimento definitivo della galleria. Le tabelle riportano le sollecitazioni derivanti dall'analisi numerica a metro di galleria, prive di fattori amplificativi, e le sollecitazioni adottate nelle verifiche strutturali: queste ultime risultano moltiplicate per il coefficiente $\gamma_E = 1.3$ (allo SLU) e per la lunghezza di due conci consecutivi 2b=3.0 m.

Considerate le sollecitazioni agenti su due conci adiacenti di due anelli consecutivi consente di condurre verifiche strutturali cautelative, tenendo conto del trasferimento del carico da un anello a quello adiacente. Nelle verifiche, pur considerando le sollecitazioni e l'area di calcestruzzo di due conci consecutivi, si considera in zona tesa e compressa l'armatura di un solo concio; questo metodo consente di tenere in conto della presenza del giunto tra due conci adiacenti e dunque la non perfetta collaborazione delle armature dei suddetti nell'assorbimento delle sollecitazioni.

Le verifiche strutturali del rivestimento definitivo sono state condotte per la fase finale e per entrambe le canne o comunque considerando la massima sollecitazione agente.

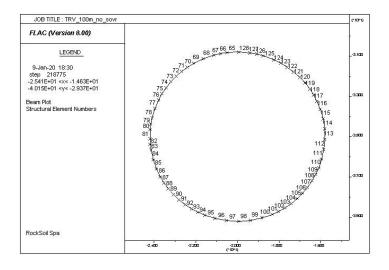


Figura 5 - Elementi liner canna sinistra

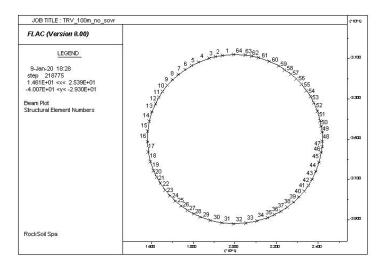


Figura 6 - Elementi liner canna destra

Tabella 4- Sollecitazioni nel rivestimento della canna sinistra

				Sollecitazioni da analisi numerica				Sollecitazioni di verifica				
GALL Sx	ELE	NODO 1	NODO 2	N	M1	M2	Mmax	N	M1	M2	Mmax	
Calotta	53	53	54	11230.00	77.10	-114.90	114.9	43797.00	300.69	-448.11	448.11	
piedritto dx	85	85	86	10620.00	-168.60	146.20	168.6	41418.00	-657.54	570.18	657.54	
arco rovescio	79	79	80	11200.00	217.10	-212.10	217.1	43680.00	846.69	-827.19	846.69	
piedritto sx	67	67	68	10120.00	-145.10	91.09	145.1	39468.00	-565.89	355.25	565.89	

Tabella 5 - Sollecitazioni nel rivestimento della canna destra

				Sollecitazioni da analisi numerica				Sollecitazioni di verifica			
GALL Dx	ELE	NODO 1	NODO 2	Ν	M1	M2	Mmax	N	M1	M2	Mmax
Calotta	52	52	1	10910.00	108.60	-119.30	119.3	42549.00	423.54	-465.27	465.27
piedritto dx	44	44	45	10980.00	-77.31	82.79	82.8	42822.00	-301.51	322.88	322.88
arco rovescio	28	28	29	10770.00	190.80	-89.54	190.8	42003.00	744.12	-349.21	744.12
piedritto sx	10	10	11	11170.00	-83.73	76.58	83.7	43563.00	-326.55	298.66	326.55

Le verifiche sono state condotte considerando una distanza tra il baricentro dell'armatura principale e il lembo più esterno della sezione pari a 72 mm.

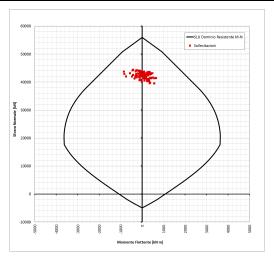


Figura 7 - Dominio resistente SLU (B = 3,00 m, H = 0.5 m) - Classe 1 - C60/75

Per le verifiche a taglio si mostra solo la verifica nel punto di massima sollecitazione

Tabella 5 – Sollecitazione Massima e verifica a taglio SLU

Sollecitazion	i da Analisi	Sollecitazioni da verifica				
T	N	T	N			
[N /m]	[N/m]	[N]	[N]			
-2.11E+05	1.09E+07	-8.23E+05	3.27E+07			

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	195 di 201

Geome	Geometria della sezione							
bw	1500.00	mm						
h	500.00	mm						
c ·	63.00	mm						
d	437.00	mm						
Ac	750000	mm^2						
bw d	655500	mm^2						
k	1.68							

Armatur	Armatura longitudinale						
Øl	24	mm					
$\mathbf{A}_{\mathbf{\mathfrak{G}}\mathbf{l}}$	452	mm^2					
SI	100.00	mm					
n° s trati	1						
n°ø/s trato	15						
Asl,tot	6786	mm^2					
ρι	0.01035						

Cls:		
Rck	75.00	MPa
fck	62.25	MPa
fcd	41.5	MPa
γε	1.50	

Materiali							
	Acciaio:						
	fyk	450.00	MPa				
	fyd	391.3	MPa				
	γ_{s}	1.15					

Sollecitazioni (SLU)						
Nsa	32700.0	kN				
σер	8.30	MPa				

Resistente	al taglio per	·Cls
V _{Rd} ^{min}	1209.0	kN
Vrd	1344.8	kN

Verifiche di resistenza

ı	VEd	822.90	kN	$V_{Rd} > V_{Ed}$	(
•					

 $V_{Rd} > V_{Ed}$ e $V_{Rd} > V_{Rd}^{min}$ OK, Sezione non armata verificata

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 07
 CL
 GN 03 0001
 C
 196 di 201

Le verifiche SLE risultano soddisfatte sia lato calcestruzzo che lato acciaio rispettando i valori limite imposti sia dalla normativa vigente [NTC]. Poiché la sezione risulta interamente compressa non si ha l'apertura di fessure.

Tabella 5 – Analisi e Verifiche SLE per Canna Destra e Canna Sinistra

ERIFICHE SI ck 60/75	EZIONE						
GEOMETRIA	DELLA SEZ	IONE		CALCESTR	RUZZO		
В	cm =	300.0	base sezione	Rck	Mpa =	75.00	resistenza caratteristica cubica
Н	cm =	50.0	altezza sezione	fck	Mpa =	62.25	resistenza caratteristica cilindrica
Cs	cm =	7.2	copriferro delle staffe	fcd	Mpa =	41.50	resistenza di calcolo cilindrica
				fctm	Mpa =	5.34	resistenza media a trazione
ACCIAIO				fctk	Mpa =	3.73	resistenza caratteristica a trazione
fyk	Mpa =	450.0	tensione caratteristica di snervamento	fctd	Mpa =	2.49	resistenza di calcolo a trazione
fyd	Mpa =	391.3	tensione di calcolo	fc Max. es.	Mpa =	28.01	Max. tensione esercizio = 0.45 x fck
σf adm	Mpa =	360.0	tensione ammissibile armatura longitudinale	σc adm	Mpa =	21.00	tensione ammissibile cls
σfs adm	Mpa =	360.0	tensione ammissibile staffe	τ C O	Mpa =	1.20	τ max. con armatura minima a taglio
				τ с 1	Mpa =	3.11	τ max. con armatura a taglio
γ cls	kN/m3	25.0	peso specifico calcestruzzo				
N1	kN =	0.00	azione assiale Z=0 Positiva compressione	n	=	15	Coeff. omogenizzazione armature
NOTE				MOLTIPLIC	CATORI DE	ELLE AZI	IONI
No	= N1 + γ cls	x Z x A x	B : azione assiale Positiva compressione	CV	=	1.00	Coeff. moltiplicativo azioni di Taglio
Mo	Positivo teno	de fibre late	o armatura As	СМ	=	1.00	Coeff. moltiplicativo Momento flettente
Mo	Negativo tend	de fibre late	o armatura A's	CN	=	1.00	Coeff. moltiplicativo Azione Assiale
S	distanza tra l	e barre tes	se per verifica a fessurazione (< 14 _φ)				

SEZIC	ONE	AZIO	NI DI INGR	ESSO	AZIC	ONI DI CA	LCOLO	Α	RMATURA .	As	ARI	//ATURA	A's	ARMA	distanza		
																	barre
elem	Z	Vo	Мо	No	Vo x Cv	Mo x CM	No x CN	n. ferri	ф	As	n. ferri	ф	A's	ф	passo	n.	S (< 14 ₀)
	m	kN	kNm	kN	kN	kNm	kN	(x As)	mm	cm2	(x A's)	mm	cm2	mm	cm	braccia	mm
52	0.00	0.0	334.04	32730.00	0.0	334.0	32730.0	14	24	63.33	14	24	63.33	0.001	0.001	0.001	100
44	0.00	0.0	231.93	32940.00	0.0	231.9	32940.0	14	24	63.33	14	24	63.33	0.001	0.001	0.001	100
28	0.00	0.0	572.4	32310.00	0.0	572.4	32310.0	14	24	63.33	14	24	63.33	0.001	0.001	0.001	100
10	0.00	0.0	251.19	33510.00	0.0	251.2	33510.0	14	24	63.33	14	24	63.33	0.001	0.001	0.001	100
53	0.00	0.0	321.72	33690.00	0.0	321.7	33690.0	14	24	63.33	14	24	63.33	0.001	0.001	0.001	100
85	0.00	0.0	505.80	31860.00	0.0	505.8	31860.0	14	24	63.33	14	24	63.33	0.001	0.001	0.001	100
79	0.00	0.0	651.30	33600.00	0.0	651.3	33600.0	14	24	63.33	14	24	63.33	0.001	0.001	0.001	100
67	0.00	0.0	435.30	30360.00	0.0	435.3	30360.0	14	24	63.33	14	24	63.33	0.001	0.001	0.001	100
	1																
					1												

· ·							VE	RIFICA P	RESSO - FLI	ESSIONE				
elem		Vo x Cv	Mo x CM	No x CN	d	d'	Х	σ cls	σf	σ'f	TEST			
		kN	kNm	kN	cm	cm	cm	Мра	Мра	Мра	PR./ FL.			
52	0.00	0.0	334.0	32 730.0	41.60	8.40		-21.66	-267.71	-313.30	SI*			
44	0.00	0.0	231.9	32 940.0	41.60	8.40		-21.08	-276.54	-308.19	SI*			
28	0.00	0.0	572.4	32 310.0	41.60	8.40		-23.04	-247.71	-325.84	SI *			
10	0.00	0.0	251.2	33 510.0	41.60	8.40		-21.55	-280.28	-314.57	SI*			
53	0.00	0.0	321.7	33 690.0	41.60	8.40		-22.14	-277.07	-320.98	SI*			
85	0.00	0.0	505.8	31 860.0	41.60	8.40		-22.32	-248.26	-317.30	SI*			
79	0.00	0.0	651.3	33 600.0	41.60	8.40		-24.34	-253.78	-342.67	SI *			
67	0.00	0.0	435.3	30 360.0	41.60	8.40		-20.95	-239.76	-299.17	SI			

Ast. Min = armatura a taglio Min. di regolamento
Ast. Pro. = armatura a taglio di Progetto

X nullo = sezione interamente reagente

SI = tensioni inferiori alle ammissibili

SI* = tensioni inferiori alle Max. in esercizio (0.4 - 0.6 fck)

GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COI	LLEGAME	NTO PALERN	NA – CATANIA – IO - CATANIA NUOVA ENNA	PALERM	0
Galleria Trinacria - Relazione geotecnica e di calcolo	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
della galleria naturale	RS3U	40 D 07	CL	GN 03 0001	С	197 di 201

Gli elementi risultano interamente compressi per cui non ci si attende apertura di fessure, le verifiche agli SLE risultano soddisfatte.

Azioni di mitigazione dei potenziali rischi

Le azioni di mitigazione dei potenziali rischi individuati nella fase conoscitiva sono state descritte nei paragrafi precedenti e sono di seguito riepilogate:

Rischi potenziali

Sono di seguito descritte le principali criticità, legate al contesto geologico, idrogeologico, geotecnico e ambientale, che potrebbero avere ripercussioni sulla fase realizzativa delle gallerie, e le conseguenti azione di mitigazione previste in progetto La mappatura dei diversi rischi è illustrata nell'elaborato Profilo geotecnico" di ogni singola galleria e generale (0). Oltre alle criticità di seguito riportate, che riguardano l'intero Lotto, si rimanda ai paragrafi precedenti in cui si sono descritte le criticità specifiche per le singole tratte delle gallerie di linea e imbocchi.

Presenza di acquiferi produttivi

Corpi idrici produttivi e caratterizzati da permeabilità media relativamente alta sono localizzati all'interno della Formazione di Terravecchia, in particolare nel membro sabbioso-conglomeratico (complesso idrogeologico CSC, 1E-07 < k < 1E-05).

Presenza di gas

Dati bibliografici integrati con le osservazioni di terreno e misurazioni fatte in sondaggio sia nella presente fase progettuale sia in fase di progettazione preliminare confermano che la potenziale presenza di gas in galleria, metano in particolare, rappresenta un rischio non trascurabile.

Manifestazioni gassose che danno origine a vulcani di fango (le cosiddette "maccalube") sono note nell'area di Caltanissetta, alla cui periferia est si trova un campo di emanazioni gassose attivo. Da dati bibliografici sono considerate suscettibili alla presenza di gas metano la Formazione Terravecchia, il Flysch Numidico e le Argille Variegate. Dati storici riportano anche la presenza di emanazioni superficiali di gas nei pressi di Marianopoli, mentre i rilievi di gas metano effettuati a boccaforo in alcuni sondaggi del PP hanno confermato la presenza di metano nel sottosuolo.

11 FASE DI VERIFICA E MESSA A PUNTO DEL PROGETTO

11.1 Criteri generali

Nel caso di scavo meccanizzato, la flessibilità in fase di avanzamento, in risposta alle condizioni riscontrate, è garantita dalla variabilità dei parametri operativi di controllo della TBM.

Pertanto, sulla base dei dati macchina raccolti durante l'avanzamento e le risultanze del monitoraggio geotecnico e topografico in superficie e in galleria, i parametri macchina (ad es.: contropressione al fronte) saranno modificati operando all'interno della variabilità prevista in fase progettuale.

In merito ai valori di contropressione al fronte da applicare durante l'avanzamento della TBM, nella presente fase progettuale sono forniti dei range ricavati mediante verifiche di stabilità puntuali lungo il tracciato per sezioni rappresentative. Nella progettazione esecutiva sarà redatto il profilo dettagliato delle pressioni operative da applicare lungo tutte le tratte previste con avanzamento in scavo meccanizzato in modalità chiusa, definendo altresì le relative soglie di attenzione e allarme e le corrispondenti azioni da intraprendere al superamento delle stesse.

11.2 Monitoraggio in corso d'opera

Nella fase realizzativa dovrà essere posto in opera un adeguato programma di monitoraggio, volto a verificare le previsioni progettuali e ad affinare le soluzioni tecniche nell'ambito delle variabilità indicate in progetto.

Con riferimento alla realizzazione della galleria naturale il programma di monitoraggio dovrà prevedere:

Si riportano di seguito alcuni esempi da valutare se pertinenti con l'opera in progetto

- monitoraggio piezometrico per la misura della variazione della quota di falda nelle aree prospicienti alle paratie di imbocco;
- monitoraggio inclinometrico per la misura degli spostamenti orizzontali delle paratie e del terreno limitrofo;
- monitoraggio degli spostamenti delle paratie mediante mire ottiche disposte sull'opera di sostegno;
- monitoraggio delle sollecitazioni indotte dallo scavo sui tiranti mediante celle di carico.

Con riferimento alle tratte realizzate con metodo di scavo meccanizzato il programma di monitoraggio dovrà prevedere:

- il controllo dei principali parametri macchina desunti direttamente in fase di scavo dalla fresa tra cui: pressione di supporto del fronte di scavo, densità del materiale nella camera di scavo, pressione e volume del materiale di intasamento iniettato a tergo dei conci, peso e volume del materiale scavato, condizionamento del terreno:
- il monitoraggio dello stato tensionale nel rivestimento definitivo mediante barrette estensimetriche saldate sui ferri di armatura dei conci e celle di carico tra i giunti longitudinali degli stessi;

- il monitoraggio degli spostamenti verticali assoluti e relativi dei terreni di copertura nelle tratte a bassa copertura mediante assestimetri;
- il monitoraggio piezometrico per la misura della variazione della quota di falda nelle tratte a bassa copertura;
- il monitoraggio inclinometrico per la misura degli spostamenti orizzontali nelle tratte a bassa copertura.

Il sistema di monitoraggio dovrà essere predisposto in modo tale da garantire l'esame tempestivo e continuativo dei dati rilevati e la trasmissione sistematica dei dati e delle elaborazioni, avendo precedentemente definito ed assegnato le responsabilità per la lettura, l'elaborazione e l'interpretazione dei dati di monitoraggio, nonché per la loro distribuzione.

Le grandezze individuate come rappresentative dovranno essere rilevate e controllate con un sistema di misura che abbia un grado di precisione compatibile con i valori attesi per le grandezze sopra dette.

Per ulteriori dettagli riguardo le frequenze delle letture e gli altri aspetti legati al monitoraggio delle opere minori si rimanda agli elaborati specialistici allegati al progetto.

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA TRATTA CALTANISSETTA XIRBI – NUOVA ENNA

Galleria Trinacria - Relazione geotecnica e di calcolo della galleria naturale

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
RS3U	40 D 07	CL	GN 03 0001	С	201 di 201

12 CONCLUSIONI

Nella presente relazione sono state affrontate le problematiche progettuali connesse con la realizzazione della galleria Trinacria.

La progettazione delle opere in sotterraneo è stata condotta secondo il metodo ADECO-RS (0), articolandosi nelle seguenti fasi:

- 1. <u>Fase conoscitiva (cap. 8)</u>: questa fase è stata dedicata allo studio e all'analisi del contesto geologico e geotecnico di inserimento in cui sarà realizzata la galleria, considerati anche i dati relativi alle precedenti fasi progettuali, ed ha portato alla definizione del modello geotecnico di sottosuolo utilizzato per le successive fasi del progetto.
- 2. <u>Fase di diagnosi (cap. 9</u>): in questa fase è stata eseguita la valutazione della risposta deformativa dell'ammasso allo scavo in assenza di interventi di stabilizzazione, per la determinazione delle categorie di comportamento; sulla base delle analisi condotte, lungo il tracciato della galleria il comportamento del fronte allo scavo risulta sia di tipo stabile o stabile a breve termine (categorie A e B) sia di tipo instabile (categoria C).
- 3. <u>Fase di terapia (cap. 10)</u>: si prevede di realizzare lo scavo sia con metodo meccanizzato che con metodo tradizionale. Entrambe le soluzione progettuali sono state analizzate verificandone adeguatezza ed efficacia in tutte le fasi costruttive previste ed in condizioni di esercizio.

Il progetto è completato dal piano di monitoraggio (cap. 11) da predisporre ed attuare nella fase realizzativa, nel quale sono individuati i valori delle grandezze fisiche a cui riferirsi in corso d'opera per controllare la risposta deformativa dell'ammasso e della galleria al procedere dello scavo e verificarne la rispondenza con le previsioni progettuali.

ALLEGATO 1

TITOLO	
TIPO DI DOCUMENTO	Documento – Formato A4
CODIFICA	RS3U40D07CLGN0300001C
PAGINE	72
DATA	05-2020
SORGENTE	U.O. Gallerie Italferr S.p.A.
NOTE	-

Analisi con il metodo delle linee caratteristiche

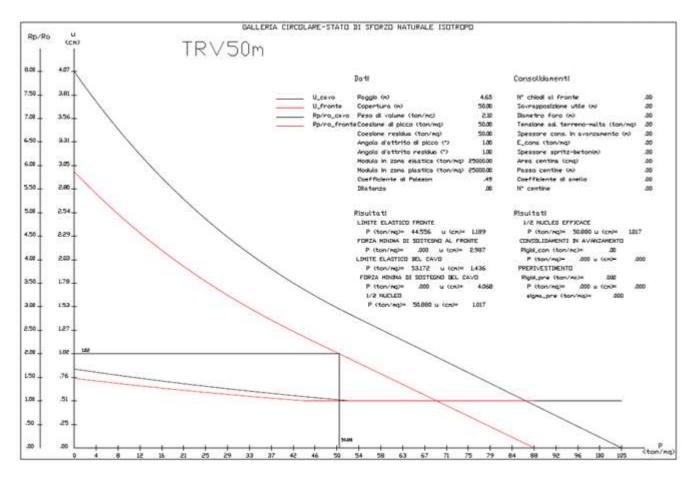


Figura 1: Fase di diagnosi – TRV – copertura di 50 metri

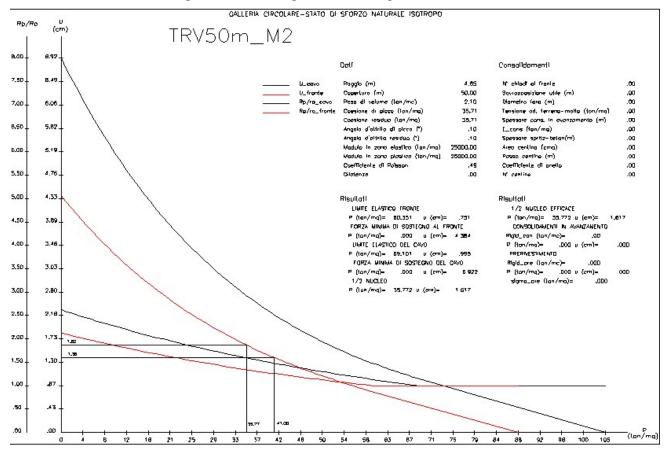


Figura 2: Fase di terapia A2+M2+R2 – TRV – copertura di 50 metri

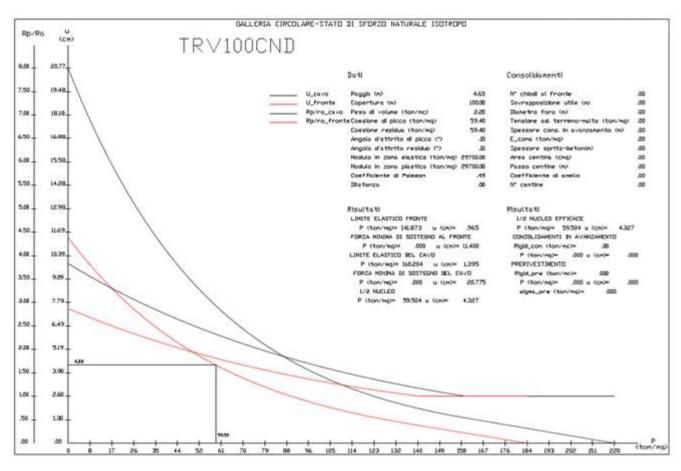


Figura 3: Fase di diagnosi - TRV - copertura di 100 metri

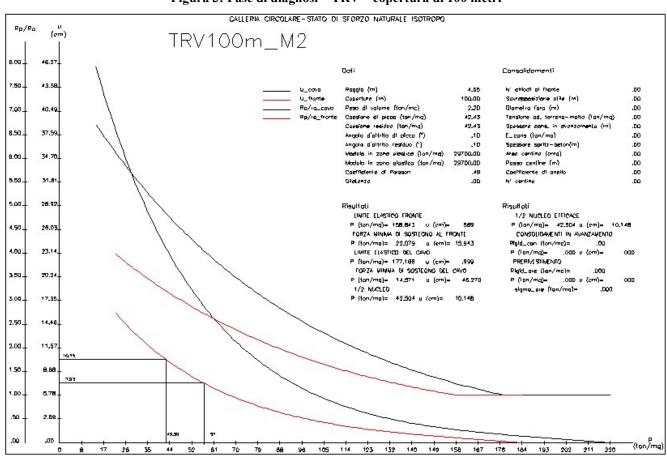


Figura 4: Fase di terapia A2+M2+R2 – TRV – copertura di 100 metri

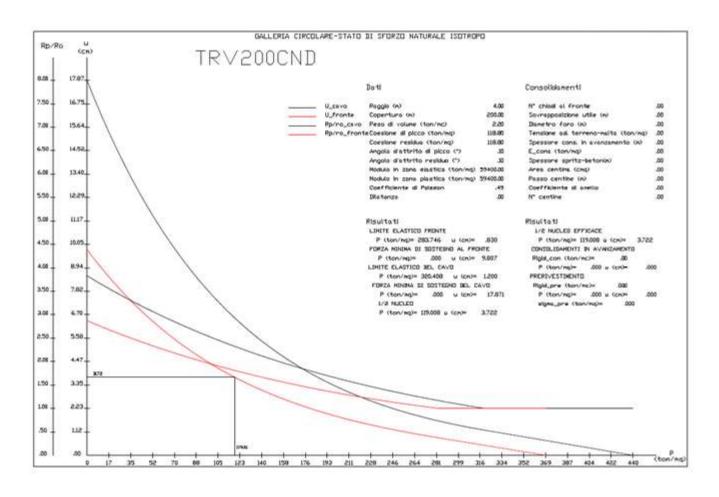


Figura 5: Fase di diagnosi - TRV - copertura di 200 metri

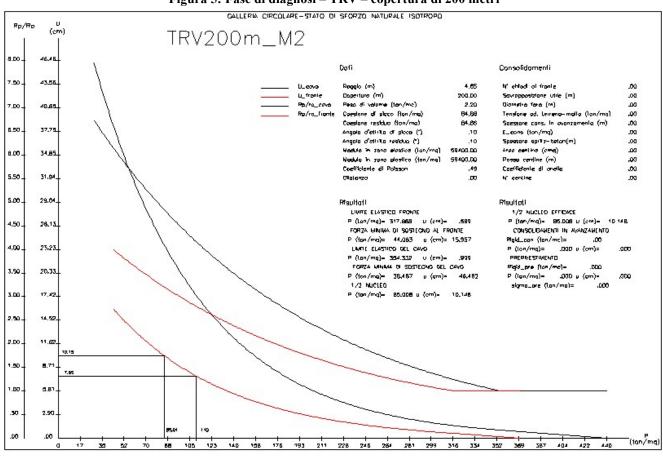


Figura 6: Fase di terapia A2+M2+R2 - TRV - copertura di 200 metri

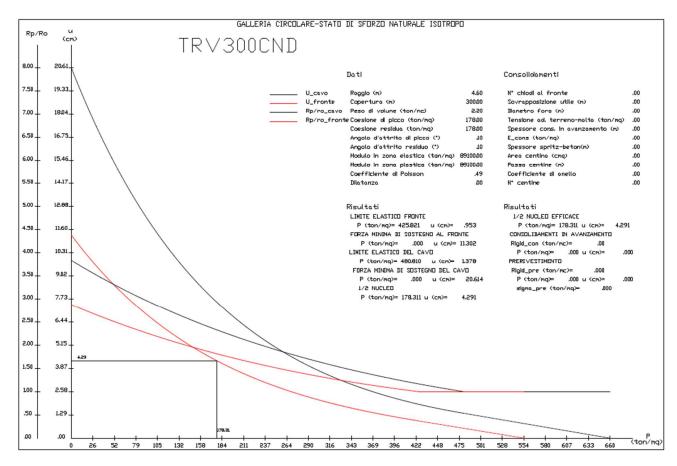


Figura 7: Fase di diagnosi - TRV - copertura di 300 metri

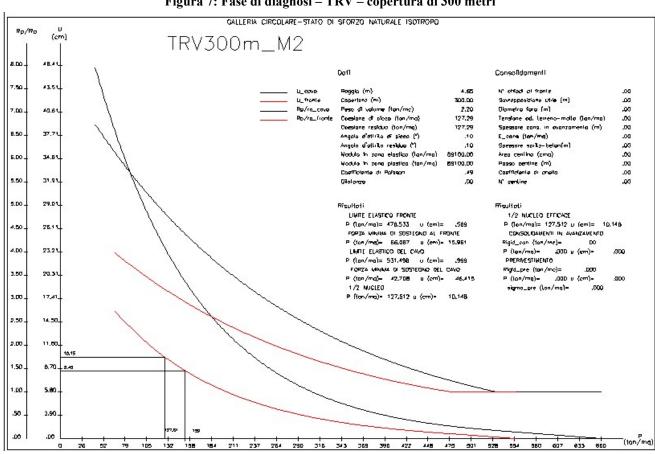


Figura 8: Fase di terapia A2+M2+R2 – TRV – copertura di 300 metri

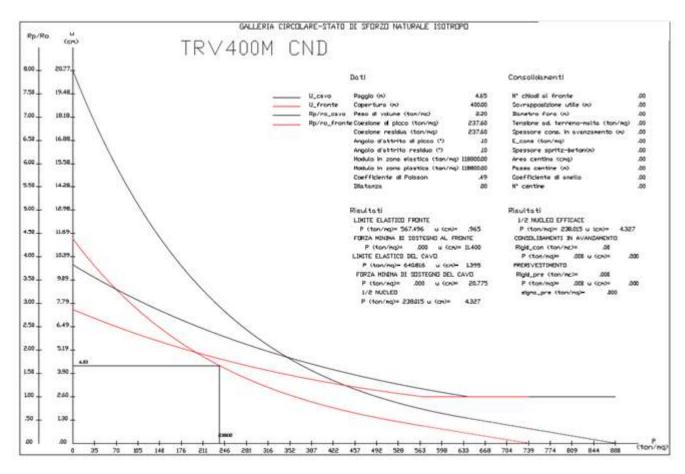


Figura 9: Fase di diagnosi - TRV - copertura di 400 metri

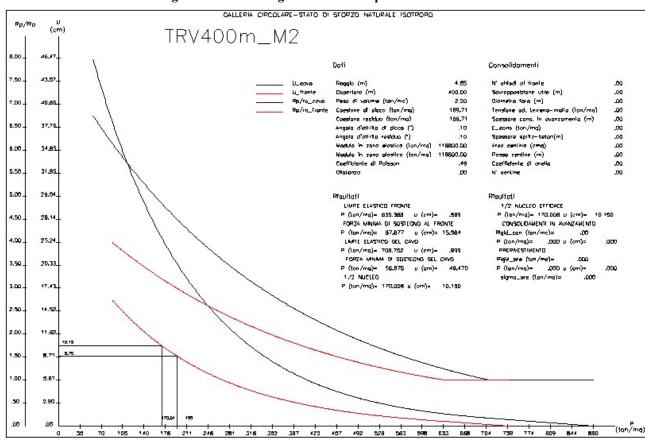


Figura 10: Fase di terapia A2+M2+R2 – TRV – copertura di 400 metri

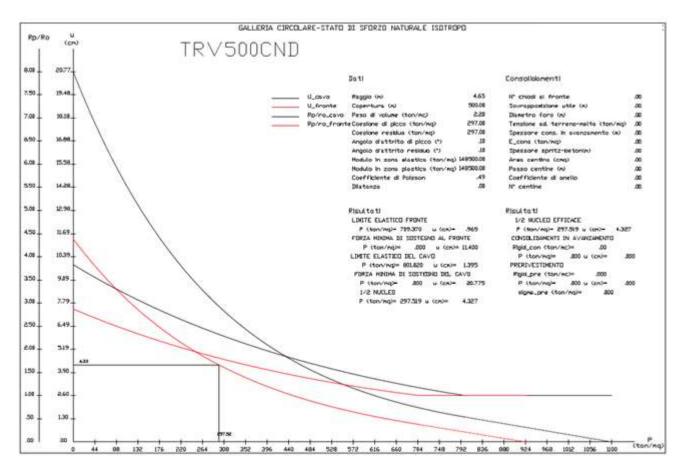


Figura 11: Fase di diagnosi - TRV - copertura di 500 metri

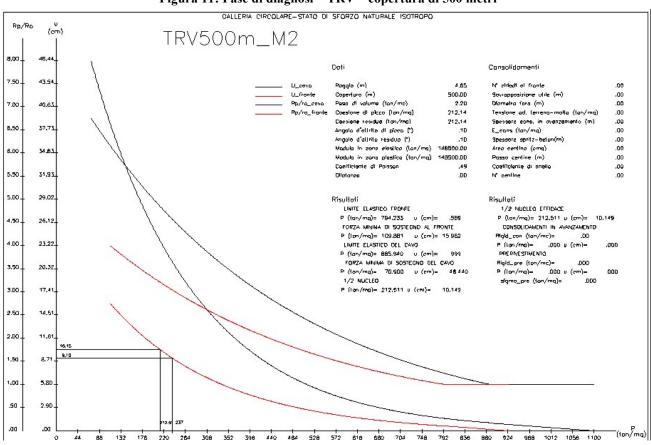


Figura 12: Fase di terapia A2+M2+R2 – TRV – copertura di 500 metri

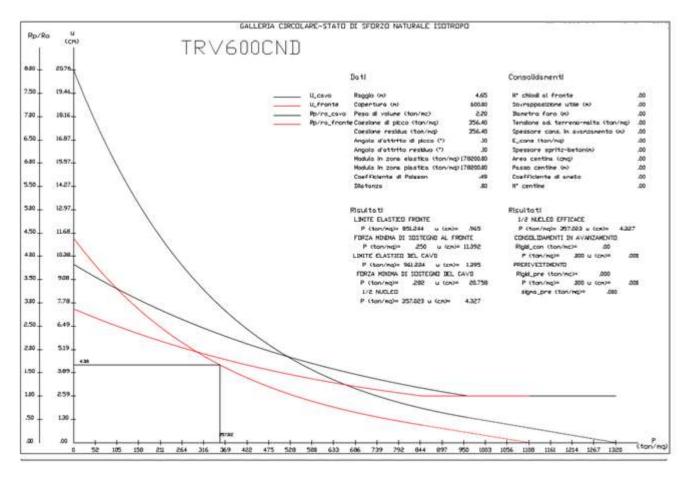


Figura 13: Fase di diagnosi - TRV - copertura di 600 metri

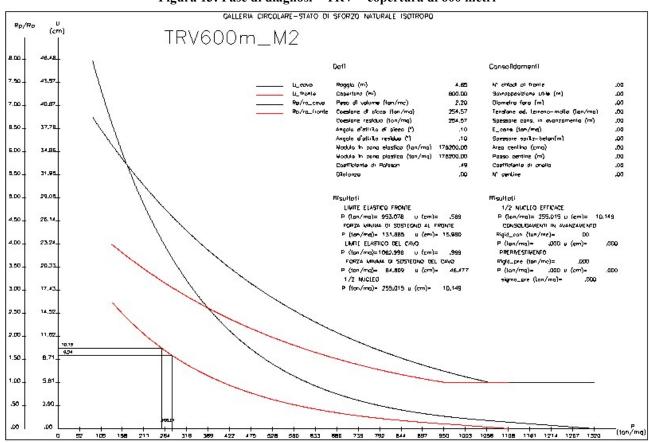


Figura 14: Fase di terapia A2+M2+R2 – TRV – copertura di 600 metri

Analisi con il metodo di stabilità al fronte

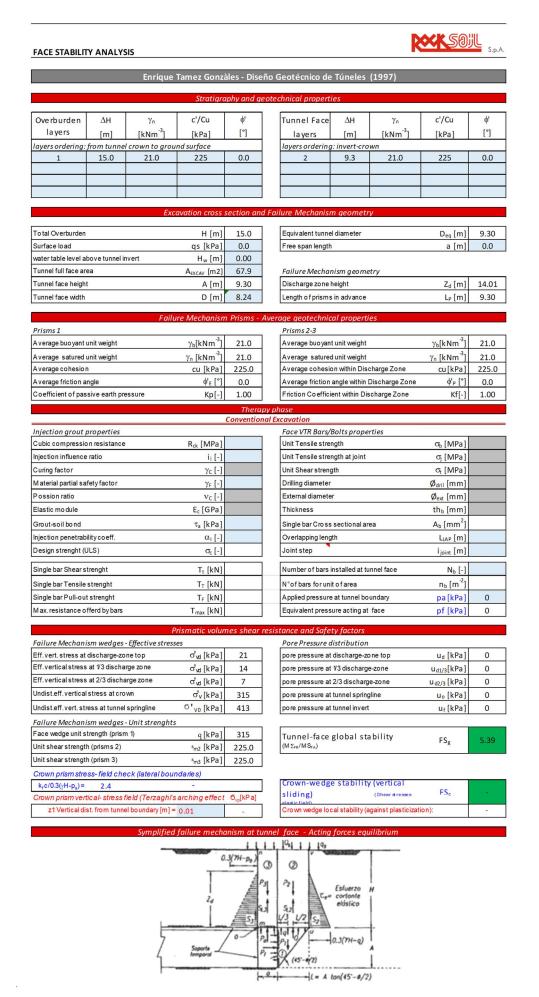


Figura 15: Fase di diagnosi – TRV - analisi di stabilità al fronte con metodo di Tamez a 15 metri di copertura

Figura 16: Fase di diagnosi - TRV - analisi di stabilità al fronte con metodo di Tamez a 25 metri di copertura

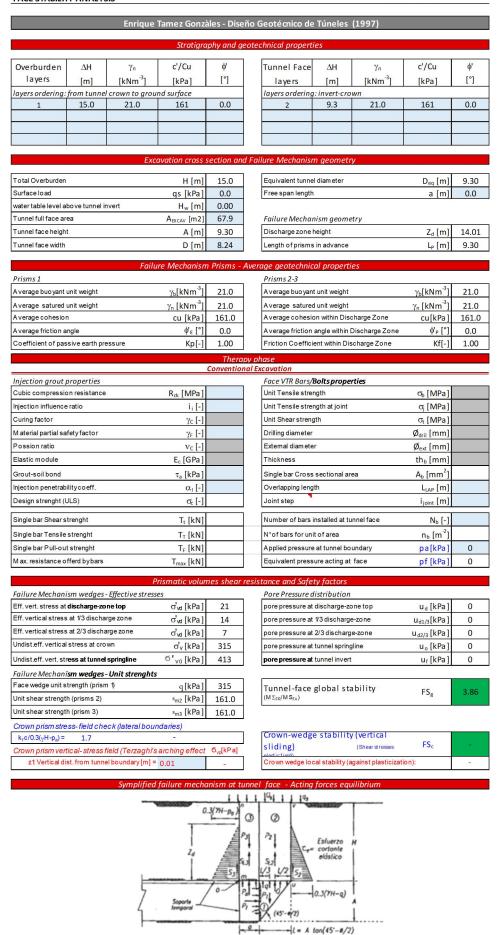


Figura 17: Fase di terapia - TRV - analisi di stabilità al fronte con metodo di Tamez a 15 metri di copertura

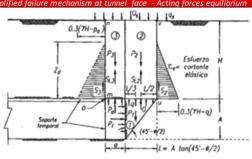


Figura 18: Fase di terapia - TRV - analisi di stabilità al fronte con metodo di Tamez a 25 metri di copertura

<u>Analisi numerica per la verifica dell'anello da 0.45 m - Analisi n°15</u>

Per comodità di lettura del presente allegato, nella tabella che segue è riportata una sintesi delle fasi di calcolo previste per l'analisi numerica:

La seguente figura schematizza la successione delle fasi di calcolo delle due differenti analisi condotte:

Tabella 3 - Fasi di analisi (sollecitazioni massime sui rivestimenti)

Fase	Descrizione	Rilascio forze di scavo
0	Creazione della geometria del modello	-
1	Inizializzazione dello stato tensionale geostatico in condizioni elastiche	-
2 2a	Inizializzazione dello stato tensionale geostatico in condizioni plastiche (modello costitutivo di Mohr-Coulomb) Eventuale inizializzazione pressioni interstiziali drenate: abbattimento pressioni al contorno della TBM (TRVa)	-
SCAVO CANNA DESTRA		
3	Rilascio delle forze al contorno (da assialsimmetrici) TRV : in condizioni non drenate (ma in parametri efficaci)	varie
4	Installazione dell'anello universale	1.0
SCAVO CANNA SINISTRA		
5	Rilascio delle forze al contorno (da assialsimmetrici) (come per canna destra)	varie
6	Installazione dell'anello universale	1.0
	LUNGO TERMINE	
7	Equalizzazione pressioni interstiziali / ripristino pp iniziali al contorno di scavo	1.0

Le unità di misura principali attraverso le quali sono rappresentati i risultati dell'analisi nelle figure contenute nel presente documento sono le seguenti:

- m per le grandezze egli spostamenti;
- N per le forze.

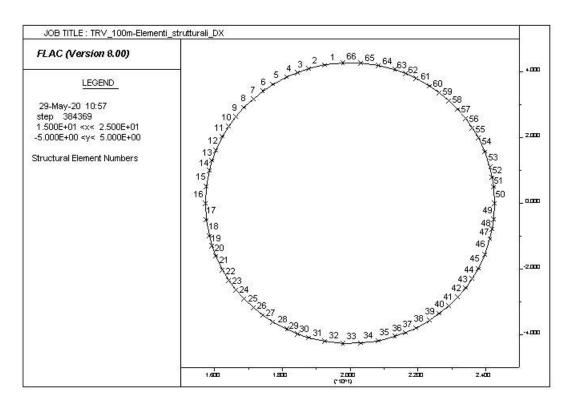


Figura 19 - Numerazione elementi beam canna Destra

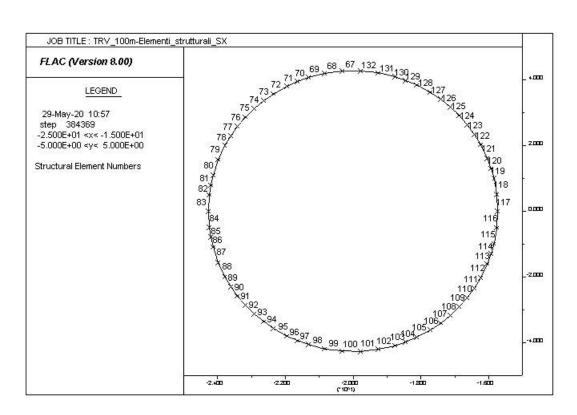


Figura 20 - Numerazione elementi beam canna Sinistra

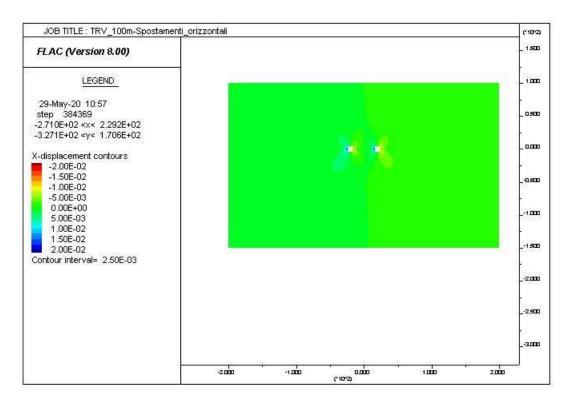


Figura 21 - Spostamenti x

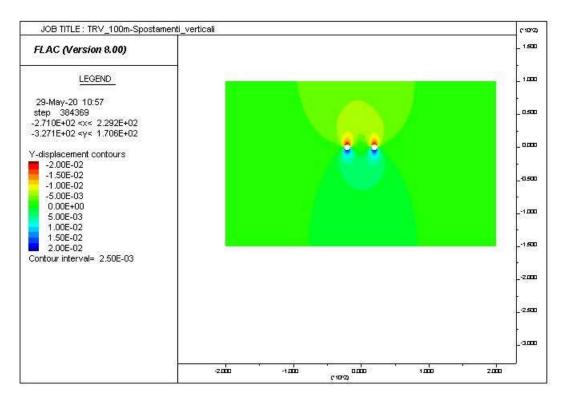


Figura 22 - Spostamenti y

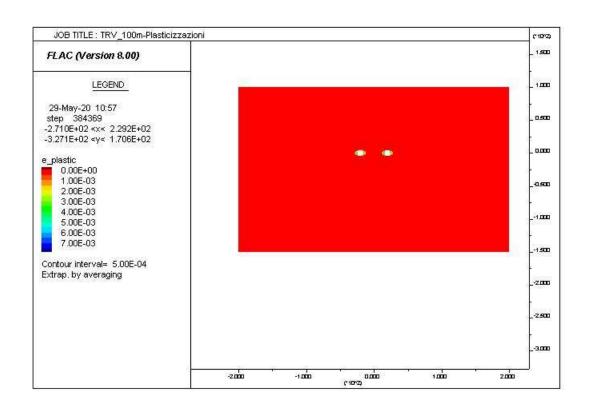


Figura 23 – Plasticizzazioni

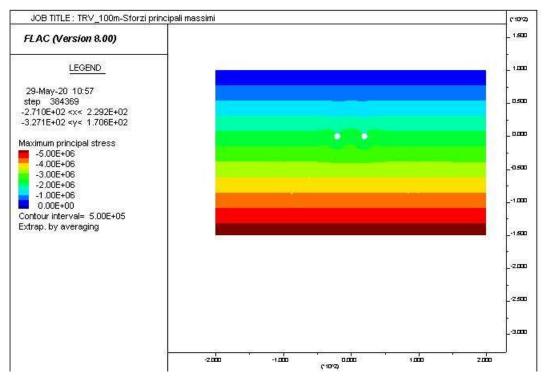


Figura 24 - Tensioni principali totali sigma1

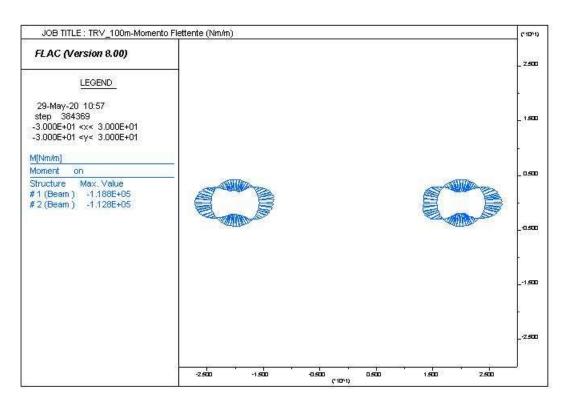


Figura 25 – Sollecitazioni M

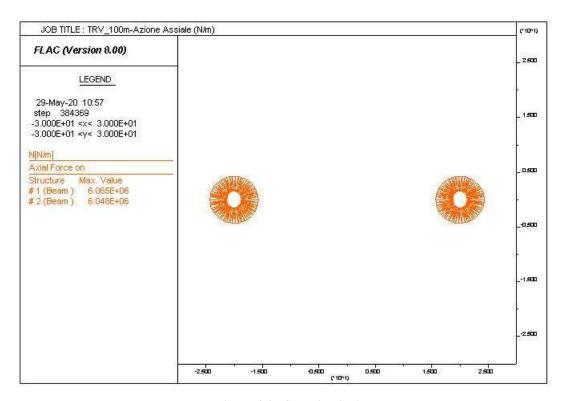


Figura 26 – Sollecitazioni N

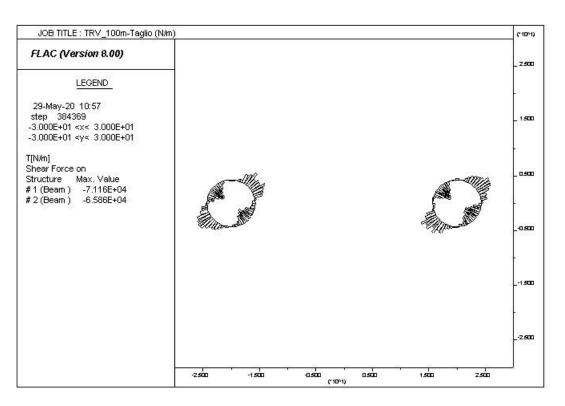


Figura 27 – Sollecitazioni T

Elem	ID	Nod1	Nod2	Prop		F-shear	F-axial	Mom-1	Mom-2	strain
-	-	-	-	-	-	[N]	[N]	[N m]	[N m]	-
132	2	132	67	1001	beam	4.42E+03	5.32E+06	8.16E+04	- 7.93E+04	-3.11E- 04
131	2	131	132	1001	beam	5.70E+02	5.38E+06	8.19E+04	- 8.16E+04	-3.14E- 04
130	2	130	131	1001	beam	- 7.97E+03	5.39E+06	7.91E+04	- 8.18E+04	-3.15E- 04
129	2	129	130	1001	beam	- 1.11E+04	5.45E+06	7.53E+04	- 7.91E+04	-3.19E- 04
128	2	128	129	1001	beam	3.92E+04	5.51E+06	5.70E+04	- 7.53E+04	-3.23E- 04
127	2	127	128	1001	beam	- 4.78E+04	5.60E+06	3.95E+04	- 5.70E+04	-3.28E- 04
126	2	126	127	1001	beam	- 6.59E+04	5.67E+06	1.54E+04	- 3.95E+04	-3.32E- 04
125	2	125	126	1001	beam	3.86E+04	5.74E+06	9.28E+02	- 1.54E+04	-3.35E- 04
124	2	124	125	1001	beam	- 4.91E+04	5.75E+06	- 1.74E+04	- 9.28E+02	-3.36E- 04
123	2	123	124	1001	beam	- 4.61E+04	5.78E+06	- 3.39E+04	1.74E+04	-3.38E- 04
122	2	122	123	1001	beam	- 6.35E+04	5.83E+06	- 5.65E+04	3.38E+04	-3.41E- 04
121	2	121	122	1001	beam	- 4.68E+04	5.89E+06	- 7.87E+04	5.66E+04	-3.44E- 04
120	2	120	121	1001	beam	- 4.22E+04	5.95E+06	- 9.23E+04	7.86E+04	-3.48E- 04
119	2	119	120	1001	beam	- 3.27E+04	5.98E+06	- 1.03E+05	9.23E+04	-3.50E- 04
118	2	118	119	1001	beam	- 4.36E+03	6.01E+06	- 1.05E+05	1.03E+05	-3.52E- 04
117	2	117	118	1001	beam	1.22E+04	6.02E+06	- 9.89E+04	1.05E+05	-3.52E- 04
116	2	116	117	1001	beam	1.29E+04	6.03E+06	- 9.24E+04	9.90E+04	-3.52E- 04
115	2	115	116	1001	beam	1.66E+04	6.03E+06	-	9.24E+04	-3.53E-

								8.43E+04		04
114	2	114	115	1001	beam	1.96E+04	6.05E+06	- 7.79E+04	8.42E+04	-3.54E- 04
113	2	113	114	1001	beam	3.58E+04	6.04E+06	- 6.63E+04	7.78E+04	-3.53E- 04
112	2	112	113	1001	beam	3.00E+04	5.98E+06	- 5.22E+04	6.63E+04	-3.50E- 04
111	2	111	112	1001	beam	4.12E+04	5.98E+06	- 3.77E+04	5.24E+04	-3.50E- 04
110	2	110	111	1001	beam	4.26E+04	5.94E+06	- 2.24E+04	3.77E+04	-3.48E- 04
109	2	109	110	1001	beam	5.67E+04	5.91E+06	- 1.33E+03	2.25E+04	-3.46E- 04
108	2	108	109	1001	beam	4.35E+04	5.86E+06	1.49E+04	1.36E+03	-3.43E- 04
107	2	107	108	1001	beam	4.94E+04	5.81E+06	3.30E+04	- 1.49E+04	-3.40E- 04
106	2	106	107	1001	beam	3.81E+04	5.78E+06	4.70E+04	- 3.30E+04	-3.38E- 04
105	2	105	106	1001	beam	3.85E+04	5.70E+06	6.49E+04	- 4.70E+04	-3.34E- 04
104	2	104	105	1001	beam	2.05E+04	5.65E+06	7.19E+04	- 6.49E+04	-3.30E- 04
103	2	103	104	1001	beam	1.61E+04	5.56E+06	7.75E+04	- 7.20E+04	-3.25E- 04
102	2	102	103	1001	beam	7.77E+03	5.54E+06	8.15E+04	- 7.76E+04	-3.24E- 04
101	2	101	102	1001	beam	6.84E+03	5.48E+06	8.52E+04	- 8.16E+04	-3.20E- 04
100	2	100	101	1001	beam	6.28E+02	5.49E+06	8.50E+04	8.54E+04	-3.21E- 04
99	2	99	100	1001	beam	5.09E+03	5.50E+06	8.23E+04	8.49E+04	-3.22E- 04
98	2	98	99	1001	beam	6.46E+03	5.56E+06	7.89E+04	8.21E+04	-3.25E- 04
97	2	97	98	1001	beam	- 1.15E+04	5.58E+06	7.48E+04	7.87E+04	-3.27E- 04
96	2	96	97	1001	beam	2.11E+04	5.65E+06	6.73E+04	7.45E+04	-3.30E- 04
95	2	95	96	1001	beam	3.09E+04	5.70E+06	5.33E+04	6.73E+04	-3.34E- 04
94	2	94	95	1001	beam	3.34E+04	5.78E+06	4.11E+04	5.32E+04	-3.38E- 04
93	2	93	94	1001	beam	3.75E+04	5.83E+06	2.74E+04	- 4.09E+04	-3.41E- 04
92	2	92	93	1001	beam	4.64E+04	5.85E+06	1.04E+04	2.74E+04	-3.42E- 04
91	2	91	92	1001	beam	6.28E+04	5.89E+06	- 1.27E+04	1.03E+04	-3.44E- 04
90	2	90	91	1001	beam	6.20E+04	5.92E+06	3.42E+04	1.25E+04	-3.46E- 04
89	2	89	90	1001	beam	5.96E+04	5.95E+06	5.49E+04	3.40E+04	-3.48E- 04
88	2	88	89	1001	beam	5.26E+04	5.98E+06	7.93E+04	5.49E+04	-3.50E- 04
87	2	87	88	1001	beam	3.43E+04	6.01E+06	- 9.67E+04	7.93E+04	-3.51E- 04
86	2	86	87	1001	beam	2.34E+04	6.02E+06	- 1.04E+05	9.67E+04	-3.52E- 04
85	2	85	86	1001	beam	2.36E+04	6.02E+06	- 1.11E+05	1.04E+05	-3.52E- 04
84	2	84	85	1001	beam	3.93E+03	6.00E+06	- 1.13E+05	1.11E+05	-3.51E- 04
83	2	83	84	1001	beam	8.07E+03	5.99E+06	- 1.09E+05	1.13E+05	-3.50E- 04
82	2	82	83	1001	beam	2.78E+04	5.98E+06	- 1.00E+05	1.09E+05	-3.50E- 04

81	2	81	82	1001	beam	2.06E+04	5.96E+06	- 9.41E+04	1.00E+05	-3.49E-
80	2	80	81	1001	beam	2.89E+04	5.92E+06	-	9.41E+04	04 -3.46E-
								7.95E+04 -		-3.43E-
79	2	79	80	1001	beam	4.60E+04	5.86E+06	5.82E+04	7.95E+04	04 -3.41E-
78	2	78	79	1001	beam	6.07E+04	5.82E+06	3.71E+04	5.83E+04	04 -3.38E-
77	2	77	78	1001	beam	6.10E+04	5.78E+06	1.57E+04	3.71E+04	04 -3.35E-
76	2	76	77	1001	beam	6.52E+04	5.73E+06	8.07E+03	1.58E+04	04
75	2	75	76	1001	beam	4.34E+04	5.68E+06	2.39E+04	7.96E+03	-3.32E- 04
74	2	74	75	1001	beam	4.47E+04	5.64E+06	4.00E+04	2.38E+04	-3.30E- 04
73	2	73	74	1001	beam	3.62E+04	5.59E+06	5.31E+04	- 4.00E+04	-3.27E- 04
72	2	72	73	1001	beam	3.12E+04	5.52E+06	6.72E+04	- 5.31E+04	-3.23E- 04
71	2	71	72	1001	beam	1.63E+04	5.46E+06	7.29E+04	- 6.73E+04	-3.19E- 04
70	2	70	71	1001	beam	1.02E+04	5.39E+06	7.65E+04	- 7.29E+04	-3.15E- 04
69	2	69	70	1001	beam	9.24E+02	5.38E+06	7.70E+04	- 7.65E+04	-3.14E- 04
68	2	68	69	1001	beam	3.48E+01	5.31E+06	7.70E+04	- 7.70E+04	-3.11E- 04
67	2	67	68	1001	beam	4.29E+03	5.32E+06	7.93E+04	- 7.70E+04	-3.11E- 04
66	1	66	1	1001	beam	- 6.06E+03	5.32E+06	8.45E+04	- 8.77E+04	-3.11E- 04
65	1	65	66	1001	beam	4.08E+01	5.30E+06	8.45E+04	- 8.45E+04	-3.10E- 04
64	1	64	65	1001	beam	- 2.63E+03	5.37E+06	8.31E+04	- 8.44E+04	-3.14E- 04
63	1	63	64	1001	beam	- 1.31E+04	5.40E+06	7.86E+04	- 8.31E+04	-3.16E- 04
62	1	62	63	1001	beam	- 2.28E+04	5.47E+06	7.07E+04	- 7.85E+04	-3.20E- 04
61	1	61	62	1001	beam	- 3.24E+04	5.53E+06	5.58E+04	- 7.05E+04	-3.24E- 04
60	1	60	61	1001	beam	- 4.13E+04	5.60E+06	4.06E+04	- 5.55E+04	-3.28E- 04
59	1	59	60	1001	beam	- 4.73E+04	5.65E+06	2.33E+04	- 4.04E+04	-3.31E- 04
58	1	58	59	1001	beam	- 5.19E+04	5.69E+06	4.30E+03	- 2.33E+04	-3.33E- 04
57	1	57	58	1001	beam	- 6.93E+04	5.74E+06	- 2.11E+04	- 4.34E+03	-3.36E- 04
56	1	56	57	1001	beam	- 6.50E+04	5.79E+06	- 4.37E+04	2.10E+04	-3.39E- 04
55	1	55	56	1001	beam	6.21E+04	5.84E+06	- 6.53E+04	4.36E+04	-3.42E- 04
54	1	54	55	1001	beam	- 4.72E+04	5.88E+06	- 8.71E+04	6.52E+04	-3.44E- 04
53	1	53	54	1001	beam	2.78E+04	5.93E+06	- 1.01E+05	8.69E+04	-3.47E- 04
52	1	52	53	1001	beam	2.19E+04	5.98E+06	1.08E+05	1.01E+05	-3.50E- 04
51	1	51	52	1001	beam	- 2.59E+04	6.00E+06	- 1.16E+05	1.08E+05	-3.51E- 04
50	1	50	51	1001	beam	- 6.56E+03	6.01E+06	1.10E+05	1.16E+05	-3.51E- 04
49	1	49	50	1001	beam	8.71E+03	6.02E+06	1.19E+05	1.19E+05	-3.52E- 04
48	1	48	49	1001	beam	3.16E+04	6.03E+06	-	1.15E+05	-3.53E-

	1					I		1.05E+05		04
47	1	47	48	1001	beam	2.63E+04	6.03E+06	- 9.72E+04	1.05E+05	-3.53E- 04
46	1	46	47	1001	beam	4.01E+04	6.01E+06	7.69E+04	9.72E+04	-3.52E- 04
45	1	45	46	1001	beam	5.04E+04	5.97E+06	5.39E+04	7.72E+04	-3.49E- 04
44	1	44	45	1001	beam	6.00E+04	5.94E+06	- 3.30E+04	5.40E+04	-3.48E- 04
43	1	43	44	1001	beam	4.63E+04	5.91E+06	- 1.74E+04	3.36E+04	-3.46E- 04
42	1	42	43	1001	beam	5.63E+04	5.89E+06	2.97E+03	1.77E+04	-3.44E- 04
41	1	41	42	1001	beam	4.56E+04	5.85E+06	1.97E+04	- 3.04E+03	-3.42E- 04
40	1	40	41	1001	beam	5.22E+04	5.80E+06	3.88E+04	- 1.99E+04	-3.39E- 04
39	1	39	40	1001	beam	3.09E+04	5.75E+06	4.99E+04	- 3.88E+04	-3.37E- 04
38	1	38	39	1001	beam	3.80E+04	5.70E+06	6.72E+04	- 5.00E+04	-3.34E- 04
37	1	37	38	1001	beam	3.49E+04	5.65E+06	7.93E+04	- 6.73E+04	-3.31E- 04
36	1	36	37	1001	beam	1.61E+04	5.53E+06	8.53E+04	- 7.98E+04	-3.24E- 04
35	1	35	36	1001	beam	1.03E+04	5.53E+06	9.04E+04	- 8.52E+04	-3.24E- 04
34	1	34	35	1001	beam	8.60E+03	5.48E+06	9.49E+04	9.04E+04	-3.21E- 04
33	1	33	34	1001	beam	2.78E+03	5.50E+06	9.36E+04	9.51E+04	-3.22E- 04
32	1	32	33	1001	beam	5.20E+03	5.47E+06	9.09E+04	9.36E+04	-3.20E- 04
31	1	31	32	1001	beam	8.82E+03	5.56E+06	8.63E+04	9.08E+04	-3.25E- 04
30	1	30	31	1001	beam	1.43E+04	5.56E+06	8.11E+04	8.60E+04	-3.25E- 04 -3.31E-
29	1	29	30	1001	beam	1.97E+04	5.66E+06	7.42E+04	8.09E+04	-3.31E- 04 -3.34E-
28	1	28	29	1001	beam	4.36E+04	5.72E+06	5.38E+04	7.41E+04	-3.34E- 04 -3.40E-
27	1	27	28	1001	beam	4.14E+04	5.81E+06	3.86E+04	5.37E+04	-3.40E- 04 -3.41E-
26	1	26	27	1001	beam	6.05E+04	5.83E+06	1.63E+04	3.85E+04	-3.44E-
25	1	25	26	1001	beam	4.30E+04	5.88E+06	2.79E+02	1.63E+04	04 -3.46E-
24	1	24	25	1001	beam	6.48E+04	5.92E+06	2.39E+04	2.75E+02	04 -3.47E-
23	1	23	24	1001	beam	5.55E+04	5.94E+06	4.38E+04	2.39E+04	04 -3.49E-
22	1	22	23	1001	beam	7.12E+04	5.97E+06	6.92E+04	4.37E+04	04 -3.51E-
21	1	21	22	1001	beam	4.46E+04	6.00E+06	9.00E+04 -	6.90E+04	04 -3.54E-
20	1	20	21	1001	beam	3.09E+04	6.05E+06	1.00E+05 -	9.01E+04	04 -3.55E-
19	1	19	20	1001	beam	5.86E+03	6.07E+06	1.02E+05 -	1.00E+05	04 -3.54E-
18	1	18	19	1001	beam	5.60E+03	6.05E+06	9.92E+04 -	1.02E+05	04 -3.53E-
17	1	17	18	1001	beam	8.46E+03	6.03E+06	9.49E+04 -	9.92E+04	04 -3.52E-
16	1	16	17	1001	beam	1.56E+03	6.01E+06	9.57E+04 -	9.49E+04	04 -3.51E-
15	1	15	16	1001	beam	3.30E+03	6.00E+06	9.73E+04	9.57E+04	04

14	1	14	15	1001	beam	5.52E+03	6.01E+06	- 9.56E+04	9.74E+04	-3.51E- 04
13	1	13	14	1001	beam	2.82E+04	5.98E+06	- 8.65E+04	9.56E+04	-3.50E- 04
12	1	12	13	1001	beam	4.31E+04	5.90E+06	- 6.61E+04	8.64E+04	-3.45E- 04
11	1	11	12	1001	beam	6.88E+04	5.84E+06	- 4.15E+04	6.61E+04	-3.42E- 04
10	1	10	11	1001	beam	5.84E+04	5.79E+06	- 2.06E+04	4.15E+04	-3.39E- 04
9	1	9	10	1001	beam	6.55E+04	5.74E+06	3.74E+03	2.07E+04	-3.36E- 04
8	1	8	9	1001	beam	5.10E+04	5.69E+06	2.27E+04	- 3.65E+03	-3.33E- 04
7	1	7	8	1001	beam	5.68E+04	5.63E+06	4.35E+04	- 2.27E+04	-3.29E- 04
6	1	6	7	1001	beam	4.29E+04	5.61E+06	5.92E+04	- 4.35E+04	-3.28E- 04
5	1	5	6	1001	beam	4.10E+04	5.52E+06	7.84E+04	- 5.93E+04	-3.23E- 04
4	1	4	5	1001	beam	1.66E+04	5.47E+06	8.41E+04	- 7.84E+04	-3.20E- 04
3	1	3	4	1001	beam	5.42E+03	5.36E+06	8.60E+04	- 8.42E+04	-3.14E- 04
2	1	2	3	1001	beam	4.92E+02	5.36E+06	8.65E+04	- 8.62E+04	-3.13E- 04
1	1	1	2	1001	beam	2.04E+03	5.31E+06	8.76E+04	- 8.66E+04	-3.11E- 04

<u>Analisi numerica per la verifica dell'anello da 0.45 m - Analisi n°16</u>

Per comodità di lettura del presente allegato, nella tabella che segue è riportata una sintesi delle fasi di calcolo previste per l'analisi numerica:

La seguente figura schematizza la successione delle fasi di calcolo delle due differenti analisi condotte:

Tabella 3 - Fasi di analisi (sollecitazioni massime sui rivestimenti)

Fase	Descrizione	Rilascio forze di scavo
0	Creazione della geometria del modello	-
1	Inizializzazione dello stato tensionale geostatico in condizioni elastiche	-
2	Inizializzazione dello stato tensionale geostatico in condizioni plastiche (modello costitutivo di Mohr-Coulomb)	-
	SCAVO CANNA DESTRA	
3	Rilascio delle forze al contorno (da assialsimmetrici) TRV : in condizioni non drenate (ma in parametri efficaci)	varie
4	Installazione dell'anello universale	1.0
	SCAVO CANNA SINISTRA	
5	Rilascio delle forze al contorno (da assialsimmetrici) (come per canna destra)	varie
6	Installazione dell'anello universale	1.0
	LUNGO TERMINE	
7	Equalizzazione pressioni interstiziali / ripristino pp iniziali al contorno di scavo – parametri drenati	1.0

Le unità di misura principali attraverso le quali sono rappresentati i risultati dell'analisi nelle figure contenute nel presente documento sono le seguenti:

- m per le grandezze egli spostamenti;
- N per le forze.

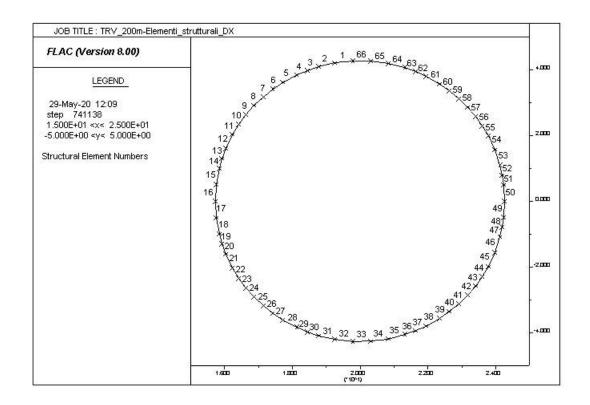


Figura 28 - Numerazione elementi beam canna Destra

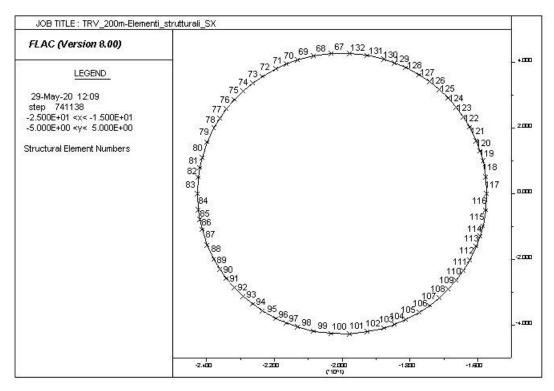


Figura 29 - Numerazione elementi beam canna Sinistra

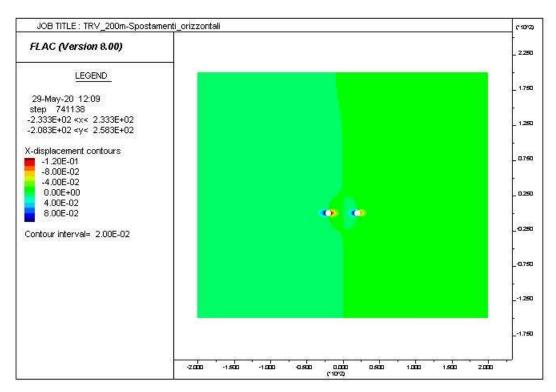


Figura 30 - Spostamenti x

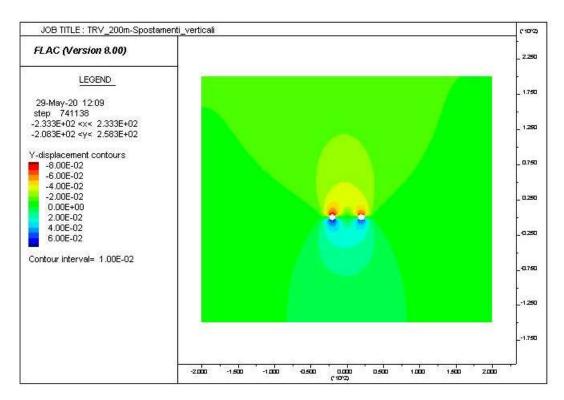


Figura 31 - Spostamenti y

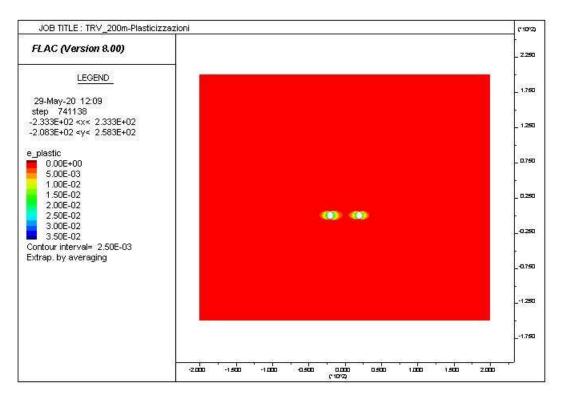


Figura 32 – Plasticizzazioni

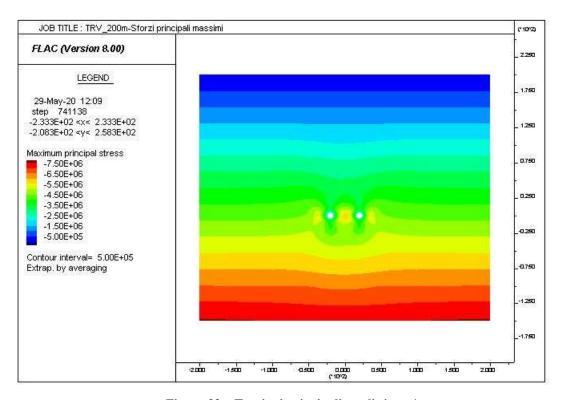


Figura 33 – Tensioni principali totali sigma1

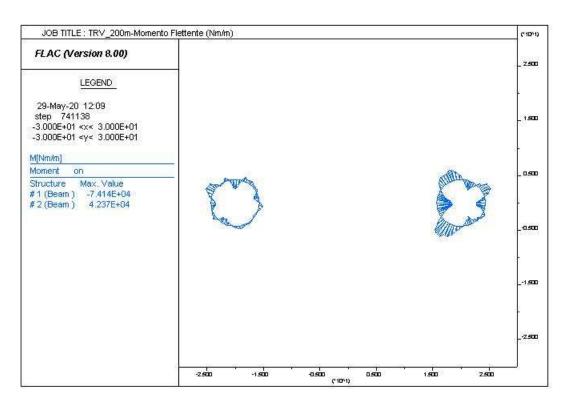


Figura 34 – Sollecitazioni M

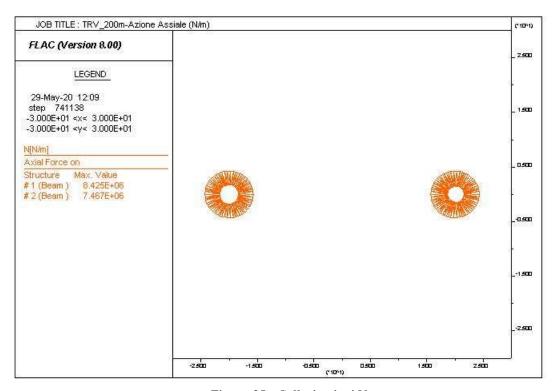


Figura 35 – Sollecitazioni N

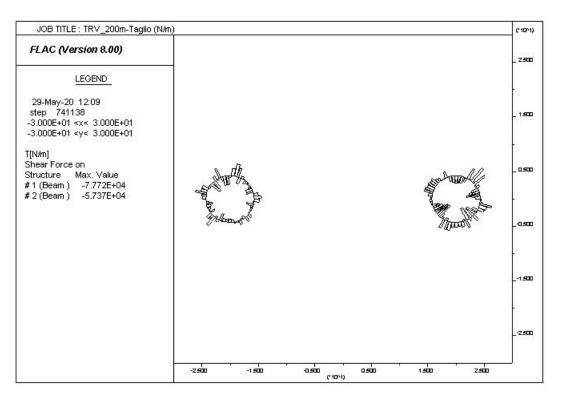


Figura 36 – Sollecitazioni T

Elem	ID	Nod1	Nod2	Prop		F-shear	F-axial	Mom-1	Mom-2	strain
-	-	-	-	-	-	[N]	[N]	[N m]	[N m]	-
						-			-	-4.07E-
132	2	132	67	1001	beam	3.69E+04	6.96E+06	2.16E+04	4.10E+04	04
						-		-	-	-4.09E-
131	2	131	132	1001	beam	6.04E+04	6.99E+06	9.13E+03	2.14E+04	04
						-		-		-4.08E-
130	2	130	131	1001	beam	4.28E+04	6.98E+06	2.41E+04	9.42E+03	04
								-		-4.09E-
129	2	129	130	1001	beam	3.34E+04	6.99E+06	1.23E+04	2.38E+04	04
	_					<u>-</u>		-		-4.10E-
128	2	128	129	1001	beam	5.82E+03	7.02E+06	1.50E+04	1.23E+04	04
4.0-		4.0=	400	4004				-		-4.15E-
127	2	127	128	1001	beam	1.39E+03	7.10E+06	1.44E+04	1.49E+04	04
400		400	407	4004		4.075.04	7.075.00	-	4.405.04	-4.14E-
126	2	126	127	1001	beam	1.67E+04	7.07E+06	8.79E+03	1.49E+04	04
405	_	405	400	4004	h	F 40F : 00	7.445.00	-	0.505.00	-4.16E-
125	2	125	126	1001	beam	5.40E+03	7.11E+06	6.52E+03	8.53E+03	04
104	2	124	105	1001	haam	2 04 5 1 02	7 165 106	5.29E+03	6.72E+03	-4.19E-
124	2	124	125	1001	beam	3.81E+03	7.16E+06	5.29E+03	0.725+03	04 -4.21E-
123	2	123	124	1001	beam	3.81E+03	7.20E+06	3.57E+03	4.94E+03	04
123		123	124	1001	Deam	3.01L103	7.20L100	3.37 L 1 0 3	4.946103	-4.23E-
122	2	122	123	1001	beam	1.03E+04	7.23E+06	7.24E+01	3.78E+03	04
122		122	120	1001	Dodin	1.002.04	7.202.00	7.242.01	-	-4.25E-
121	2	121	122	1001	beam	2.27E+04	7.28E+06	1.11E+04	3.52E+02	04
			122	1001	D G G I I I	2.272101	1.202 * 00		-	-4.26E-
120	2	120	121	1001	beam	2.53E+04	7.29E+06	1.93E+04	1.11E+04	04
									-	-4.28E-
119	2	119	120	1001	beam	4.43E+02	7.32E+06	1.99E+04	1.97E+04	04
						-			-	-4.32E-
118	2	118	119	1001	beam	1.84E+04	7.38E+06	1.10E+04	2.00E+04	04
						-		-	-	-4.35E-
117	2	117	118	1001	beam	3.03E+04	7.44E+06	4.54E+03	1.08E+04	04
						-		-		-4.36E-
116	2	116	117	1001	beam	2.08E+04	7.46E+06	1.51E+04	4.58E+03	04
								-		-4.33E-
115	2	115	116	1001	beam	6.64E+03	7.41E+06	1.20E+04	1.53E+04	04
114	2	114	115	1001	beam	3.53E+04	7.34E+06	-	1.26E+04	-4.29E-

								1.17E+03		04
113	2	113	114	1001	beam	1.32E+04	7.31E+06	2.95E+03	1.31E+03	-4.28E- 04
112	2	112	113	1001	beam	6.19E+03	7.29E+06	5.73E+03	- 2.81E+03	-4.26E- 04
111	2	111	112	1001	beam	- 2.82E+03	7.25E+06	4.60E+03	- 5.61E+03	-4.24E- 04
110	2	110	111	1001	beam	4.48E+03	7.23E+06	6.43E+03	- 4.83E+03	-4.23E- 04
109	2	109	110	1001	beam	- 1.38E+04	7.19E+06	1.17E+03	- 6.31E+03	-4.20E- 04
108	2	108	109	1001	beam	2.49E+03	7.11E+06	5.00E+02	- 1.43E+03	-4.16E- 04
107	2	107	108	1001	beam	- 2.55E+04	7.07E+06	- 8.59E+03	7.60E+02	-4.13E- 04
106	2	106	107	1001	beam	9.73E+03	7.05E+06	5.05E+03	8.62E+03	-4.12E- 04
105	2	105	106	1001	beam	4.81E+03	7.03E+06	- 2.83E+03	5.07E+03	-4.11E- 04
104	2	104	105	1001	beam	2.33E+04	7.01E+06	- 1.08E+04	2.80E+03	-4.10E- 04
103	2	103	104	1001	beam	- 7.08E+03	7.00E+06	- 1.33E+04	1.09E+04	-4.09E- 04
						4.36E+03		-		-4.10E-
102	2	102	103	1001	beam		7.01E+06	1.56E+04	1.34E+04	-4.11E-
101	2	101	102	1001	beam	1.07E+04	7.02E+06	1.01E+04	1.58E+04	-4.12E-
100	2	100	101	1001	beam	1.59E+04	7.05E+06	1.21E+03	9.71E+03	-4.10E-
99	2	99	100	1001	beam	1.15E+04	7.01E+06	5.32E+03	7.16E+02	-4.10E-
98	2	98	99	1001	beam	1.15E+04	7.01E+06	1.14E+04	5.63E+03	-4.09E-
97	2	97	98	1001	beam	1.32E+03	6.99E+06	1.11E+04	1.16E+04	-4.08E-
96	2	96	97	1001	beam	3.37E+04 -		2.25E+04	1.09E+04 -	-4.09E-
95	2	95	96	1001	beam	1.02E+04	6.99E+06	1.73E+04	2.20E+04 -	04 -4.11E-
94	2	94	95	1001	beam	9.43E+03 -	7.03E+06	2.07E+04	1.73E+04 -	-4.13E-
93	2	93	94	1001	beam	5.05E+04 -	7.06E+06	2.16E+03	2.05E+04 -	04 -4.17E-
92	2	92	93	1001	beam	2.12E+04 -	7.14E+06	6.18E+03	1.57E+03	04 -4.19E-
91	2	91	92	1001	beam	2.34E+04	7.17E+06	1.49E+04 -	6.36E+03	04 -4.19E-
90	2	90	91	1001	beam	2.70E+04	7.17E+06	5.58E+03 -	1.50E+04	04 -4.21E-
89	2	89	90	1001	beam	2.90E+03	7.19E+06	4.84E+03	5.86E+03	04 -4.22E-
88	2	88	89	1001	beam	1.05E+04	7.21E+06	3.76E+00	4.88E+03	04 -4.26E-
87	2	87	88	1001	beam	1.47E+04	7.28E+06	7.66E+03	1.97E+02	04 -4.27E-
86	2	86	87	1001	beam	2.45E+04	7.30E+06	1.54E+04	7.94E+03	-4.27E-
85	2	85	86	1001	beam	1.31E+04	7.31E+06	1.94E+04	1.55E+04	-4.26E-
84	2	84	85	1001	beam	3.79E+01	7.28E+06	1.96E+04	1.96E+04	-4.24E-
83	2	83	84	1001	beam	1.75E+04	7.25E+06	1.08E+04	1.95E+04	04
82	2	82	83	1001	beam	1.97E+04	7.24E+06	4.86E+03	1.08E+04	-4.24E- 04
81	2	81	82	1001	beam	4.65E+04	7.22E+06	9.47E+03	4.61E+03	-4.22E- 04

1		1						1		
80	2	80	81	1001	beam	- 2.46E+04	7.24E+06	- 2.21E+04	9.63E+03	-4.23E- 04
79	2	79	80	1001	beam	- 2.68E+04	7.12E+06	- 3.47E+04	2.23E+04	-4.17E- 04
78	2	78	79	1001	beam	5.68E+03	7.14E+06	3.30E+04	3.50E+04	-4.18E- 04
77	2	77	78	1001	beam	6.60E+03	7.12E+06	3.53E+04	3.30E+04	-4.17E- 04
76	2	76	77	1001	beam	5.00E+04	7.10E+06	- 1.68E+04	3.51E+04	-4.15E- 04
75	2	75	76	1001	beam	2.20E+04	7.08E+06	- 8.42E+03	1.65E+04	-4.14E- 04
74	2	74	75	1001	beam	4.31E+04	7.01E+06	8.03E+03	7.60E+03	-4.10E- 04
73	2	73	74	1001	beam	- 1.81E+04	6.99E+06	1.37E+03	- 7.93E+03	-4.09E- 04
72	2	72	73	1001	beam	4.29E+03	6.95E+06	3.33E+03	- 1.38E+03	-4.07E- 04
71	2	71	72	1001	beam	- 4.95E+04	6.94E+06	- 1.39E+04	- 3.07E+03	-4.06E- 04
70	2	70	71	1001	beam	2.14E+04	6.96E+06	- 6.04E+03	1.34E+04	-4.07E- 04
69	2	69	70	1001	beam	4.20E+04	7.01E+06	1.49E+04	6.04E+03	-4.10E- 04
68	2	68	69	1001	beam	4.07E+04	6.98E+06	3.62E+04	- 1.49E+04	-4.08E- 04
67	2	67	68	1001	beam	8.63E+03	7.01E+06	4.09E+04	- 3.63E+04	-4.10E- 04
66	1	66	1	1001	beam	3.57E+04	7.73E+06	- 5.95E+02	1.96E+04	-4.52E- 04
65	1	65	66	1001	beam	3.30E+04	7.64E+06	1.65E+04	7.93E+02	-4.47E- 04
64	1	64	65	1001	beam	3.08E+04	7.58E+06	3.19E+04	- 1.65E+04	-4.43E- 04
63	1	63	64	1001	beam	4.54E+03	7.46E+06	3.34E+04	- 3.19E+04	-4.36E- 04
62	1	62	63	1001	beam	2.18E+04	7.39E+06	4.09E+04	- 3.34E+04	-4.32E- 04
61	1	61	62	1001	beam	- 5.40E+04	7.37E+06	1.63E+04	- 4.09E+04	-4.31E- 04
60	1	60	61	1001	beam	- 4.99E+03	7.39E+06	1.46E+04	- 1.64E+04	-4.32E- 04
59	1	59	60	1001	beam	- 7.87E+04	7.40E+06	- 1.39E+04	- 1.46E+04	-4.32E- 04
58	1	58	59	1001	beam	- 6.39E+03	7.43E+06	- 1.61E+04	1.37E+04	-4.34E- 04
57	1	57	58	1001	beam	- 6.10E+04	7.46E+06	- 3.82E+04	1.59E+04	-4.36E- 04
56	1	56	57	1001	beam	4.07E+03	7.51E+06	- 3.68E+04	3.82E+04	-4.39E- 04
55	1	55	56	1001	beam	- 1.28E+04	7.53E+06	- 4.13E+04	3.68E+04	-4.41E- 04
54	1	54	55	1001	beam	3.28E+04	7.53E+06	- 2.60E+04	4.12E+04	-4.40E- 04
53	1	53	54	1001	beam	5.07E+04	7.58E+06	- 3.18E+02	2.60E+04	-4.43E- 04
52	1	52	53	1001	beam	6.60E+04	7.56E+06	2.01E+04	- 6.75E+01	-4.42E- 04
51	1	51	52	1001	beam	3.67E+04	7.55E+06	3.13E+04	- 2.01E+04	-4.42E- 04
50	1	50	51	1001	beam	1.97E+04	7.53E+06	4.12E+04	- 3.15E+04	-4.40E- 04
49	1	49	50	1001	beam	- 9.35E+03	7.52E+06	3.67E+04	- 4.13E+04	-4.40E- 04
48	1	48	49	1001	beam	- 1.42E+04	7.53E+06	3.25E+04	- 3.68E+04	-4.40E- 04
47	1	47	48	1001	beam	-	7.53E+06	1.42E+04	-	-4.41E-

						6.04E+04			3.24E+04	04
46	1	46	47	1001	beam	- 3.79E+04	7.57E+06	- 5.10E+03	- 1.41E+04	-4.43E- 04
45	1	45	46	1001	beam	- 2.83E+04	7.52E+06	- 1.83E+04	5.15E+03	-4.40E- 04
44	1	44	45	1001	beam	2.46E+04	7.56E+06	- 9.70E+03	1.83E+04	-4.42E- 04
43	1	43	44	1001	beam	2.30E+03	7.56E+06	- 1.07E+04	9.87E+03	-4.42E- 04
42	1	42	43	1001	beam	4.88E+04	7.53E+06	7.21E+03	1.07E+04	-4.41E- 04
41	1	41	42	1001	beam	- 2.75E+04	7.52E+06	- 2.86E+03	- 7.23E+03	-4.40E- 04
40	1	40	41	1001	beam	4.57E+04	7.50E+06	1.36E+04	2.97E+03	-4.39E- 04
39	1	39	40	1001	beam	- 1.21E+04	7.50E+06	8.80E+03	- 1.32E+04	-4.39E- 04
38	1	38	39	1001		5.92E+04	7.45E+06	3.55E+04	- 8.61E+03	-4.36E- 04
					beam	-			- 3.52E+04	-4.37E-
37	1	37	38	1001	beam	3.89E+04	7.48E+06	2.19E+04	-	-4.39E-
36	. 1	36	37	1001	beam	7.64E+03	7.50E+06	2.45E+04	2.19E+04	-4.50E-
35	1	35	36	1001	beam	2.51E+04 -	7.70E+06	1.20E+04	2.46E+04 -	04 -4.53E-
34	1	34	35	1001	beam	2.00E+04 -	7.75E+06	1.57E+03 -	1.20E+04 -	04 -4.64E-
33	1	33	34	1001	beam	2.10E+04 -	7.94E+06	9.62E+03 -	1.59E+03	04 -4.64E-
32	1	32	33	1001	beam	2.50E+04 -	7.93E+06	2.28E+04 -	9.67E+03	04 -4.72E-
31	1	31	32	1001	beam	4.22E+04	8.08E+06	4.42E+04	2.29E+04	04 -4.71E-
30	1	30	31	1001	beam	4.02E+04	8.05E+06	5.83E+04	4.45E+04	04 -4.77E-
29	1	29	30	1001	beam	1.42E+04	8.16E+06	5.36E+04	5.85E+04	04 -4.81E-
28	1	28	29	1001	beam	4.25E+04	8.23E+06	7.34E+04	5.37E+04	04
27	1	27	28	1001	beam	7.93E+03	8.40E+06	7.05E+04	7.34E+04	-4.91E- 04
26	1	26	27	1001	beam	2.52E+04	8.39E+06	- 6.12E+04	7.04E+04	-4.90E- 04
25	1	25	26	1001	beam	7.02E+04	8.42E+06	- 3.47E+04	6.09E+04	-4.93E- 04
24	1	24	25	1001	beam	5.93E+04	8.39E+06	- 1.23E+04	3.45E+04	-4.91E- 04
23	1	23	24	1001	beam	6.22E+04	8.39E+06	9.90E+03	1.24E+04	-4.91E- 04
22	1	22	23	1001	beam	5.14E+04	8.39E+06	2.83E+04	- 9.93E+03	-4.91E- 04
21	1	21	22	1001	beam	4.16E+04	8.35E+06	4.80E+04	- 2.84E+04	-4.89E- 04
20	1	20	21	1001	beam	3.12E+04	8.35E+06	5.81E+04	- 4.81E+04	-4.88E- 04
19	1	19	20	1001	beam	2.58E+04	8.32E+06	6.65E+04	- 5.82E+04	-4.87E- 04
18	1	18	19	1001	beam	5.08E+03	8.32E+06	6.43E+04	- 6.68E+04	-4.86E- 04
17	1	17	18	1001	beam	- 7.65E+03	8.28E+06	6.05E+04	- 6.43E+04	-4.84E- 04
16	1	16	17	1001	beam	4.38E+03	8.28E+06	5.82E+04	- 6.04E+04	-4.84E- 04
						-			-	-4.83E-
15	1	15	16	1001	beam	1.60E+04	8.25E+06	5.05E+04	5.84E+04	-4.83E-
14	1	14	15	1001	beam	3.70E+04	8.26E+06	3.85E+04	5.05E+04	04

						1		1		
						-			-	-4.83E-
13	1	13	14	1001	beam	3.98E+04	8.25E+06	2.56E+04	3.85E+04	04
						_			-	-4.82E-
12	1	12	13	1001	beam	3.36E+04	8.24E+06	9.66E+03	2.55E+04	04
						-		-	-	-4.81E-
11	1	11	12	1001	beam	3.85E+04	8.22E+06	4.12E+03	9.65E+03	04
						-		-		-4.80E-
10	1	10	11	1001	beam	3.00E+04	8.20E+06	1.49E+04	4.13E+03	04
						-		-		-4.79E-
9	1	9	10	1001	beam	3.54E+04	8.18E+06	2.81E+04	1.49E+04	04
						-		-		-4.77E-
8	1	8	9	1001	beam	1.98E+04	8.16E+06	3.54E+04	2.81E+04	04
						-		-		-4.75E-
7	1	7	8	1001	beam	1.40E+04	8.12E+06	4.05E+04	3.54E+04	04
								-		-4.74E-
6	1	6	7	1001	beam	4.46E+03	8.11E+06	3.90E+04	4.07E+04	04
		-						-		-4.68E-
5	1	5	6	1001	beam	2.97E+03	7.99E+06	3.76E+04	3.90E+04	04
						_		-		-4.64E-
4	1	4	5	1001	beam	2.49E+04	7.94E+06	4.61E+04	3.76E+04	04
			_			_		-		-4.65E-
3	1	3	4	1001	beam	4.75E+02	7.95E+06	4.62E+04	4.60E+04	04
		_	-					-		-4.62E-
2	1	2	3	1001	beam	2.14E+04	7.90E+06	3.54E+04	4.62E+04	04
_	•	_	_			1		-		-4.55E-
1	1	1	2	1001	beam	3.02E+04	7.78E+06	1.95E+04	3.54E+04	04

Analisi numerica per la verifica dell'anello da 0.5 m - Analisi n°17

Per comodità di lettura del presente allegato, nella tabella che segue è riportata una sintesi delle fasi di calcolo previste per l'analisi numerica:

La seguente figura schematizza la successione delle fasi di calcolo delle due differenti analisi condotte:

Tabella 3 - Fasi di analisi (sollecitazioni massime sui rivestimenti)

Fase	Descrizione	Rilascio forze di scavo
0	Creazione della geometria del modello	-
1	Inizializzazione dello stato tensionale geostatico in condizioni elastiche	-
2	Inizializzazione dello stato tensionale geostatico in condizioni plastiche (modello costitutivo di Mohr-Coulomb)	-
	SCAVO CANNA DESTRA	
3	Rilascio delle forze al contorno (da assialsimmetrici) TRV : in condizioni non drenate (Cu)	varie
4	Installazione dell'anello universale	1.0
	SCAVO CANNA SINISTRA	
5	Rilascio delle forze al contorno (da assialsimmetrici) (come per canna destra)	varie
6	Installazione dell'anello universale	1.0
	LUNGO TERMINE	
7	Equalizzazione pressioni interstiziali / ripristino pp iniziali al contorno di scavo – parametri drenati	1.0

Le unità di misura principali attraverso le quali sono rappresentati i risultati dell'analisi nelle figure contenute nel presente documento sono le seguenti:

- m per le grandezze egli spostamenti;
- N per le forze.

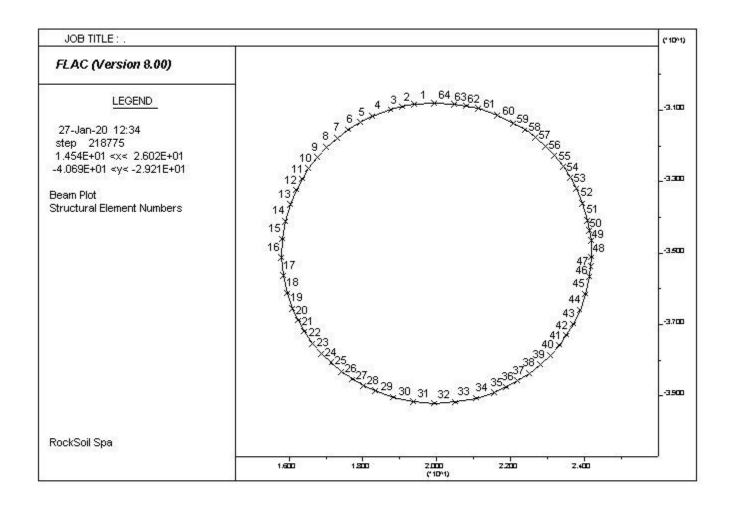


Figura 37 - Numerazione elementi beam canna Destra

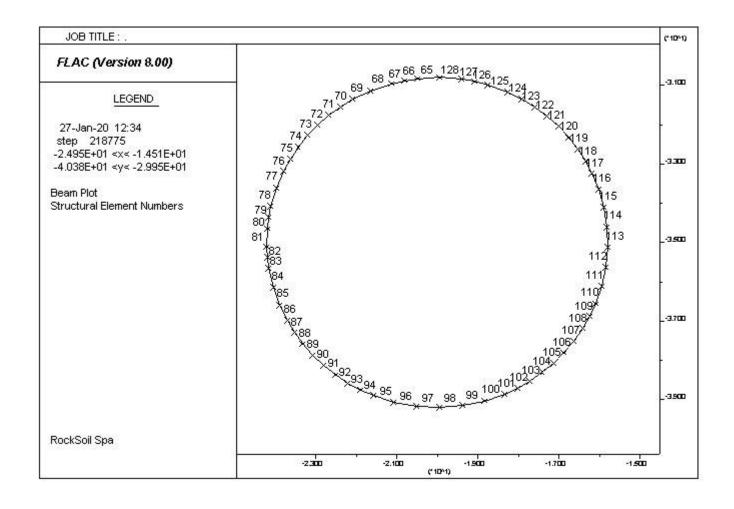


Figura 38 - Numerazione elementi beam canna Sinistra

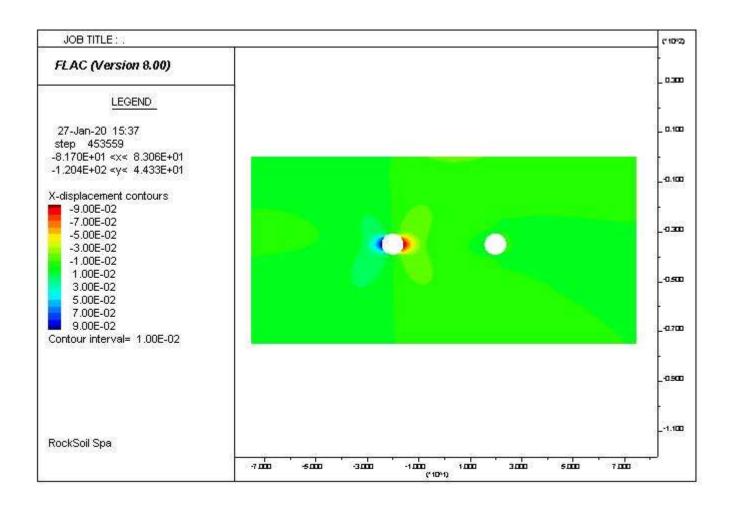


Figura 39 - Spostamenti x

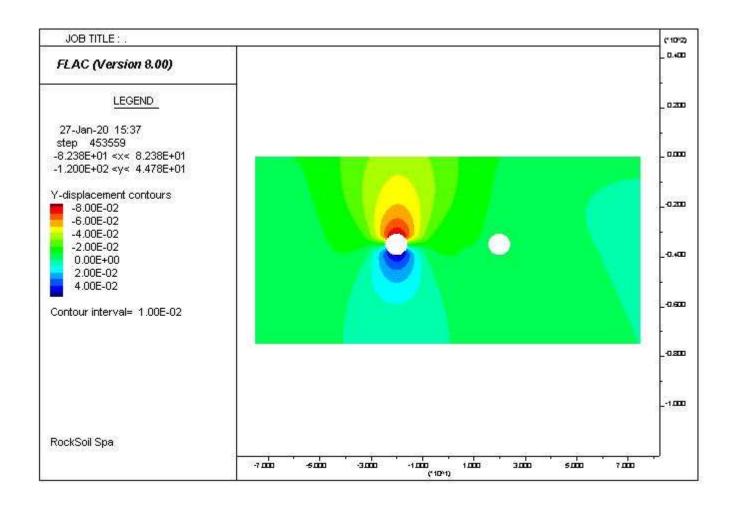


Figura 40 - Spostamenti y

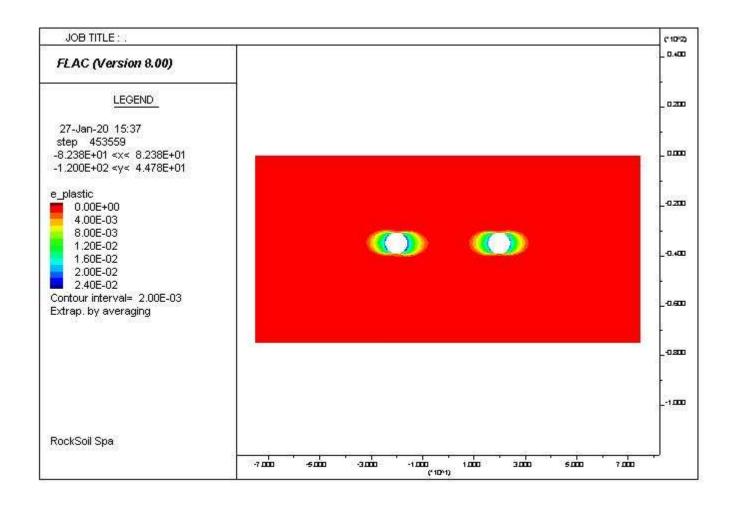


Figura 41 – Plasticizzazioni

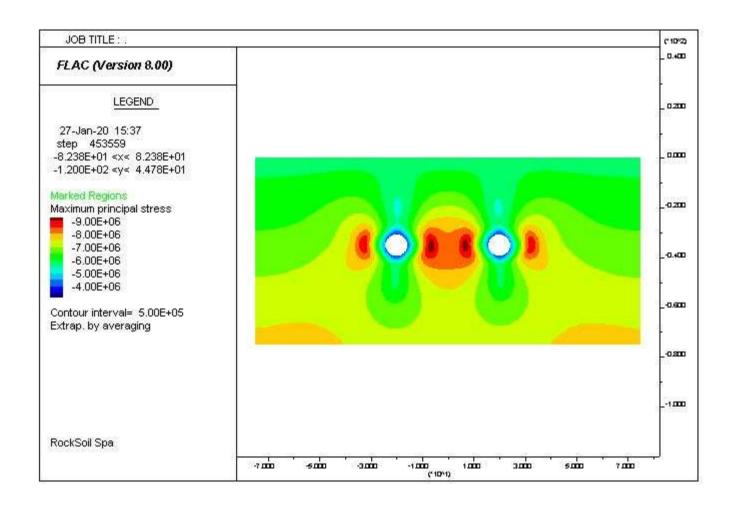


Figura 42 – Tensioni principali totali sigma1

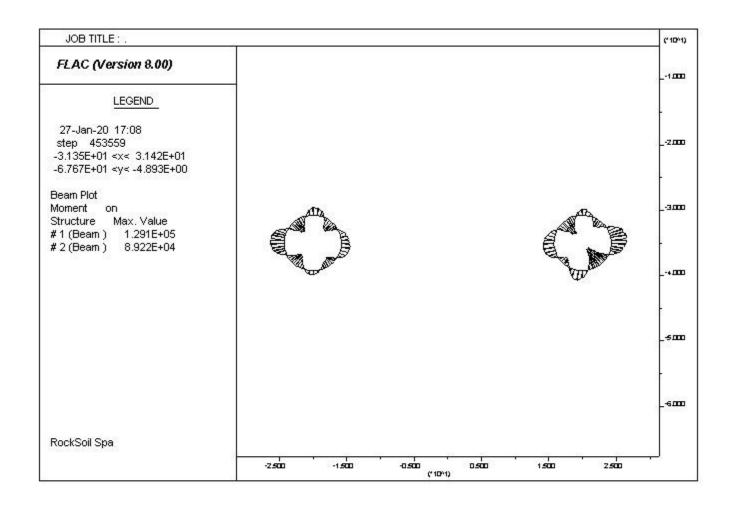


Figura 43 – Sollecitazioni M

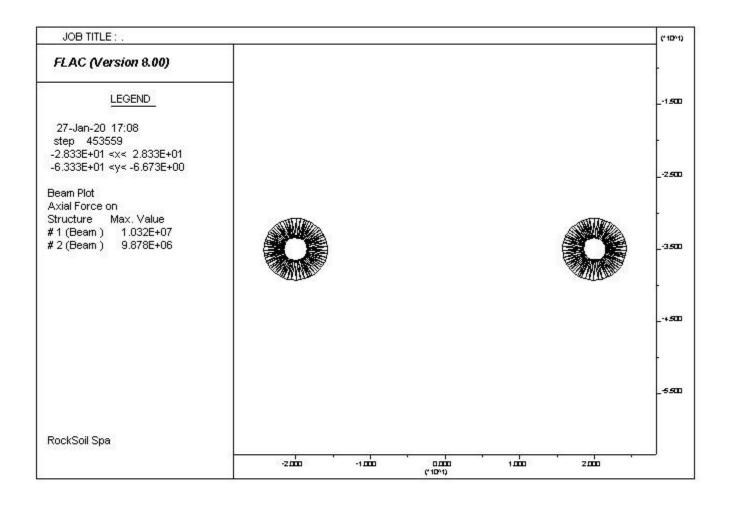


Figura 44 – Sollecitazioni N

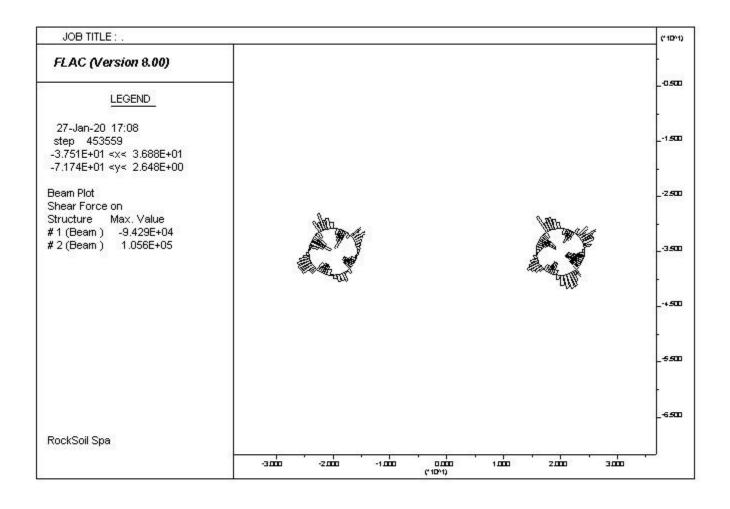


Figura 45 – Sollecitazioni T

Elem	ID	Nod1	Nod2	Prop		F-shear	F-axial	Mom-1	Mom-2	strain
-	-	-	NOUZ	гтор	_	[N]	[N]	[N m]	[N m]	-
			- 65	1	_			-		
128	2	128	65	1	beam	1204	9675000	-47240	47900	-0.0005092
127	2	127	128	1	beam	31750	9620000	-30550	47380	-0.0005063
126	2	126	127	1	beam	46900	9586000	-14540	30560	-0.0005045
125	2	125	126	1	beam	58890	9546000	5678	14440	-0.0005024
124	2	124	125	1	beam	54450	9462000	26260	-5699	-0.000498
123	2	123	124	1	beam	96490	9357000	62700	-26270	-0.0004925
122	2	122	123	1	beam	-2650	9360000	61530	-62720	-0.0004927
121	2	121	122	1	beam	18290	9387000	68130	-61580	-0.0004941
120	2	120	121	1	beam	-64870	9418000	44950	-68190	-0.0004957
119	2	119	120	1	beam	-43220	9478000	28320	-45110	-0.0004988
118	2	118	119	1	beam	-65710	9583000	5384	-28440	-0.0005043
117	2	117	118	1	beam	-44560	9633000	-10050	-5581	-0.000507
116	2	116	117	1	beam	-35090	9671000	-25740	9928	-0.000509
115	2	115	116	1	beam	-24460	9741000	-37420	25540	-0.0005127
114	2	114	115	1	beam	-15850	9816000	-45410	37320	-0.0005167
113	2	113	114	1	beam	-9409	9851000	-50250	45340	-0.0005184
112	2	112	113	1	beam	-6370	9878000	-53230	49930	-0.0005199
111	2	111	112	1	beam	5232	9859000	-50500	53110	-0.0005189
110	2	110	111	1	beam	24370	9842000	-39030	50480	-0.000518
109	2	109	110	1	beam	35410	9794000	-26510	39040	-0.0005155
108	2	108	109	1	beam	58390	9790000	-5937	26590	-0.0005153
107	2	107	108	1	beam	57680	9759000	18030	6022	-0.0005136
106	2	106	107	1	beam	43650	9702000	34290	-18060	-0.0005106
105	2	105	106	1	beam	46160	9654000	51470	-34310	-0.0005081
104	2	104	105	1	beam	-22800	9632000	42720	-51290	-0.000507
103	2	103	104	1	beam	-5525	9685000	40570	-42640	-0.0005097
102	2	102	103	1	beam	-7218	9687000	38010	-40590	-0.0005098
101	2	101	102	1	beam	-44250	9697000	22200	-38030	-0.0005103
100	2	100	101	1	beam	-35660	9739000	3599	-22170	-0.0005126
99	2	99	100	1	beam	-36610	9838000	-16980	-3551	-0.0005178
98	2	98	99	1	beam	-16060	9849000	-26330	16950	-0.0005184
97	2	97	98	1	beam	4184	9864000	-23830	26280	-0.0005192
96	2	96	97	1	beam	26980	9813000	-8550	23850	-0.0005165
95	2	95	96	1	beam	45980	9764000	15760	8604	-0.0005139
94	2	94	95	1	beam	50240	9684000	33860	-15770	-0.0005097
93	2	93	94	1	beam	50980	9652000	52140	-33790	-0.000508
92	2	92	93	1	beam	25300	9584000	61700	-52050	-0.0005044
91	2	91	92	1	beam	42380	9560000	77830	-61670	-0.0005031
90	2	90	91	1	beam	-30950	9565000	66010	-77760	-0.0005034
89	2	89	90	1	beam	-30130	9566000	54510	-65960	-0.0005035
88	2	88	89	1	beam	-62600	9619000	32170	-54430	-0.0005063
87	2	87	88	1	beam	-64490	9641000	9298	-32220	-0.0005074
86	2	86	87	1	beam	-69720	9667000	-21540	-9123	-0.0005088
85	2	85	86	1	beam	-65140	9712000	-52910	21620	-0.0005112
84	2	84	85	1	beam	-50260	9740000	-67910	52930	-0.0005126
83	2	83	84	1	beam	-26200	9741000	-75730	67920	-0.0005127
82	2	82	83	1	beam	-14010	9720000	-82070	75530	-0.0005127
02		02	03	т	Dealli	-14010	3720000	-020/0	73330	0.0003110

Elem	ID	Nod1	Nod2	Prop		F-shear	F-axial	Mom-1	Mom-2	strain
_		-	-	_	_	[N]	[N]	[N m]	[N m]	_
81	2	81	82	1	beam	-1105	9767000	-82660	82140	-0.0005141
80	2	80	81	1	beam	6101	9700000	-79880	82690	-0.0005141
79	2	79	80	1	beam	44550	9716000	-66300	79950	
78	2	78	79			17080				-0.0005114
	2			1	beam		9695000	-61000	66230	-0.0005103
77		77	78	1	beam	72170	9739000	-27820	61000	-0.0005126
76	2	76	77	1	beam	72910	9572000	-1315	27610	-0.0005038
75		75	76	1	beam	105600	9548000	36980	1115	-0.0005025
74	2	74	75	1	beam	39010	9500000	52300	-37020	-0.0005
73	2	73	74	1	beam	72080	9487000	78420	-52080	-0.0004993
72	2	72	73	1	beam	-3016	9453000	77250	-78350	-0.0004975
71	2	71	72	1	beam	33070	9424000	89090	-77120	-0.000496
70	2	70	71	1	beam	-61710	9410000	66890	-89220	-0.0004953
69	2	69	70	1	beam	-44650	9431000	44120	-66440	-0.0004964
68	2	68	69	1	beam	-86960	9564000	14210	-43870	-0.0005033
67	2	67	68	1	beam	-48210	9595000	-2402	-14050	-0.000505
66	2	66	67	1	beam	-54250	9639000	-31460	2423	-0.0005073
65	2	65	66	1	beam	-29470	9655000	-47840	31590	-0.0005082
64	1	64	1	1	beam	-2080	9772000	-34780	33630	-0.0005143
63	1	63	64	1	beam	28930	9784000	-19300	34790	-0.0005149
62	1	62	63	1	beam	31410	9788000	-8589	19300	-0.0005152
61	1	61	62	1	beam	69410	9777000	15100	8577	-0.0005146
60	1	60	61	1	beam	37790	9675000	34190	-15300	-0.0005092
59	1	59	60	1	beam	45550	9658000	50710	-34220	-0.0005083
58	1	58	59	1	beam	-28290	9682000	40500	-50740	-0.0005096
57	1	57	58	1	beam	-5577	9719000	38630	-40670	-0.0005115
56	1	56	57	1	beam	-62100	9754000	16060	-38750	-0.0005134
55	1	55	56	1	beam	-38690	9756000	1035	-16190	-0.0005135
54	1	54	55	1	beam	-88930	9795000	-31080	-997.3	-0.0005155
53	1	53	54	1	beam	-63890	9812000	-54300	31260	-0.0005164
52	1	52	53	1	beam	-59160	9953000	-81590	54390	-0.0005238
51	1	51	52	1	beam	-9262	9895000	-84420	81580	-0.0005208
50	1	50	51	1	beam	-37270	9902000	-95810	84390	-0.0005212
49	1	49	50	1	beam	741.7	9875000	-95450	95800	-0.0005198
48	1	48	49	1	beam	11360	9913000	-90130	95470	-0.0005217
47	1	47	48	1	beam	25760	9842000	-78120	90150	-0.000518
46	1	46	47	1	beam	38310	9841000	-66720	78140	-0.0005179
45	1	45	46	1	beam	57940	9826000	-49400	66670	-0.0005171
44	1	44	45	1	beam	82960	9772000	-9470	49330	-0.0005143
43	1	43	44	1	beam	86300	9690000	28480	9477	-0.00051
42	1	42	43	1	beam	87630	9652000	59570	-28420	-0.000508
41	1	41	42	1	beam	85740	9611000	89920	-59440	-0.0005059
40	1	40	41	1	beam	48650	9537000	108300	-89840	-0.0005019
39	1	39	40	1	beam	54870	9514000	129100	-108200	-0.0005007
38	1	38	39	1	beam	-40870	9502000	113500	-129100	-0.0005001
37	1	37	38	1	beam	-22030	9547000	105100	-113500	-0.0005025
36	1	36	37	1	beam	-52000	9618000	86340	-105100	-0.0005062
35	1	35	36	1	beam	-74360	9664000	59460	-86230	-0.0005086
34	1	34	35	1	beam	-75530	9762000	19360	-59380	-0.0005138
33	1	33	34	1	beam	-68870	9897000	-19650	-19390	-0.0005138
၁၁	Т	33	34	1 1	Dealii	-00070	2037000	-13030	-13330	0.0003209

Elem	ID	Nod1	Nod2	Prop		F-shear	F-axial	Mom-1	Mom-2	strain
-	-	-	-	-	-	[N]	[N]	[N m]	[N m]	-
32	1	32	33	1	beam	-51810	10030000	-50080	19700	-0.0005277
31	1	31	32	1	beam	-22650	10140000	-63190	49960	-0.0005335
30	1	30	31	1	beam	25390	10190000	-48950	63190	-0.0005363
29	1	29	30	1	beam	57670	10210000	-18960	49000	-0.0005372
28	1	28	29	1	beam	61250	10180000	3024	18880	-0.0005358
27	1	27	28	1	beam	44510	10190000	18950	-3032	-0.0005364
26	1	26	27	1	beam	33290	10180000	31540	-19030	-0.000536
25	1	25	26	1	beam	28950	10160000	42380	-31500	-0.0005346
24	1	24	25	1	beam	-22200	10180000	34300	-42550	-0.0005357
23	1	23	24	1	beam	-38730	10220000	20140	-34530	-0.0005379
22	1	22	23	1	beam	-53370	10250000	-1965	-20290	-0.0005397
21	1	21	22	1	beam	-65520	10280000	-25340	2154	-0.0005408
20	1	20	21	1	beam	-49810	10280000	-43200	25580	-0.000541
19	1	19	20	1	beam	-36770	10320000	-60570	43300	-0.0005431
18	1	18	19	1	beam	-13920	10310000	-67600	60630	-0.0005427
17	1	17	18	1	beam	3906	10310000	-65560	67590	-0.0005425
16	1	16	17	1	beam	13630	10240000	-58500	65620	-0.0005389
15	1	15	16	1	beam	23810	10180000	-46280	58430	-0.0005356
14	1	14	15	1	beam	32040	10050000	-30890	46450	-0.000529
13	1	13	14	1	beam	44760	9956000	-10830	30990	-0.000524
12	1	12	13	1	beam	53030	9890000	7736	10870	-0.0005205
11	1	11	12	1	beam	92000	9815000	40030	-7750	-0.0005166
10	1	10	11	1	beam	57760	9662000	62350	-39910	-0.0005085
9	1	9	10	1	beam	90870	9580000	94690	-62130	-0.0005042
8	1	8	9	1	beam	-2496	9520000	93700	-94600	-0.000501
7	1	7	8	1	beam	29120	9456000	106700	-93660	-0.0004977
6	1	6	7	1	beam	-94290	9422000	71130	-106700	-0.0004959
5	1	5	6	1	beam	-47920	9498000	53060	-71150	-0.0004999
4	1	4	5	1	beam	-65530	9579000	30800	-53190	-0.0005042
3	1	3	4	1	beam	-61960	9613000	9592	-30760	-0.0005059
2	1	2	3	1	beam	-50560	9669000	-17130	-9668	-0.0005089
1	1	1	2	1	beam	-30210	9733000	-33650	17040	-0.0005123

<u>Analisi numerica per la verifica dell'anello da 0.5 m - Analisi n°18</u>

Per comodità di lettura del presente allegato, nella tabella che segue è riportata una sintesi delle fasi di calcolo previste per l'analisi numerica:

La seguente figura schematizza la successione delle fasi di calcolo delle due differenti analisi condotte:

Tabella 3 - Fasi di analisi (sollecitazioni massime sui rivestimenti)

Fase	Descrizione	Rilascio forze di scavo		
0	Creazione della geometria del modello	-		
1	Inizializzazione dello stato tensionale geostatico in condizioni elastiche	-		
2	Inizializzazione dello stato tensionale geostatico in condizioni plastiche (modello costitutivo di Mohr-Coulomb)	-		
	SCAVO CANNA DESTRA			
3	Rilascio delle forze al contorno (da assialsimmetrici) TRV : in condizioni non drenate (Cu)	varie		
4	Installazione dell'anello universale	1.0		
	SCAVO CANNA SINISTRA	-		
5	Rilascio delle forze al contorno (da assialsimmetrici) (come per canna destra)	varie		
6	Installazione dell'anello universale	1.0		
	LUNGO TERMINE			
7	Ipotesi di drenaggio totale della falda al contorno del cavo – parateri drenati	1.0		

Le unità di misura principali attraverso le quali sono rappresentati i risultati dell'analisi nelle figure contenute nel presente documento sono le seguenti:

- m per le grandezze egli spostamenti;
- N per le forze.

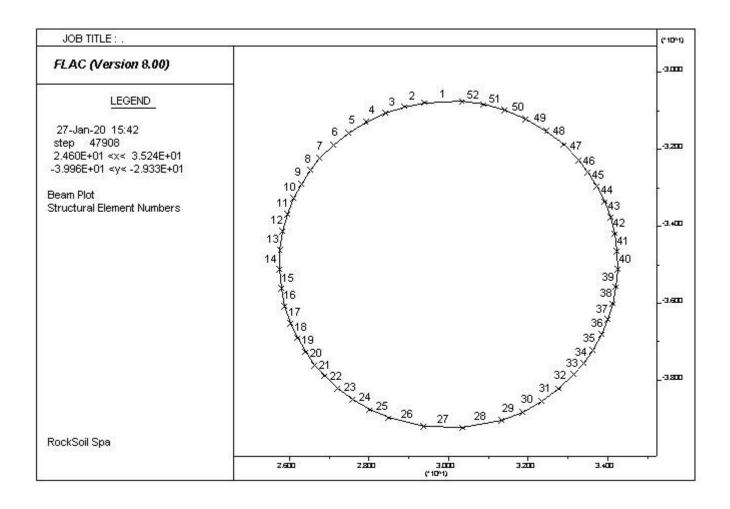


Figura 46 - Numerazione elementi beam canna Destra

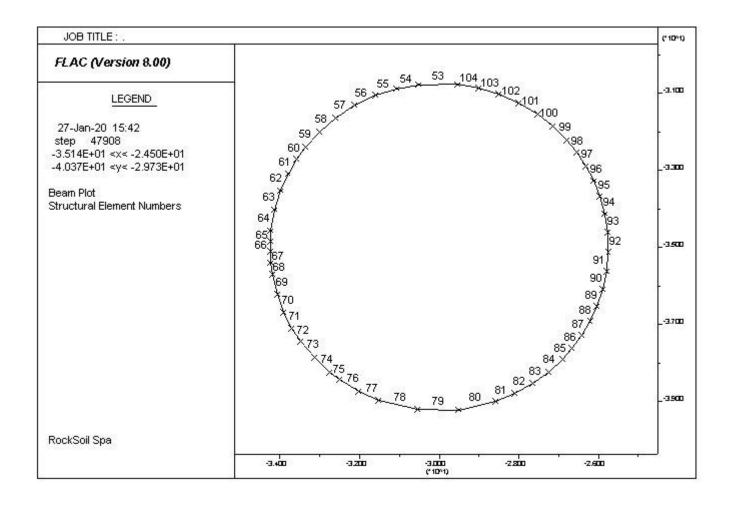


Figura 47 - Numerazione elementi beam canna Sinistra

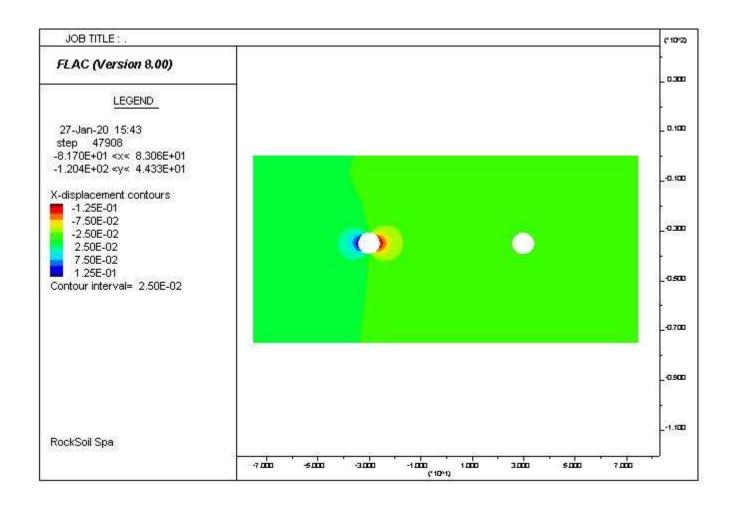


Figura 48 - Spostamenti x

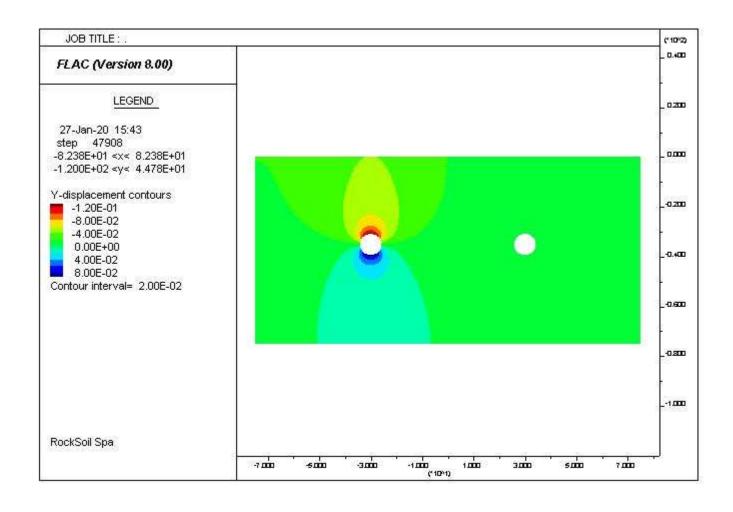


Figura 49 - Spostamenti y



Figura 50 – Plasticizzazioni

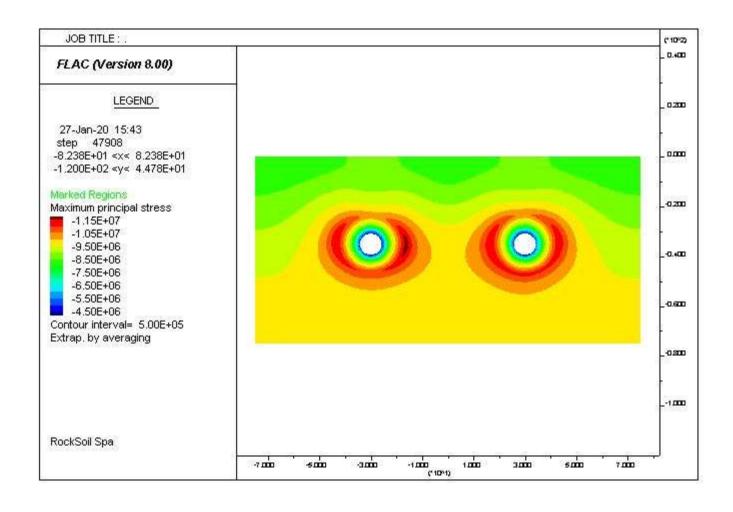


Figura 51 – Tensioni principali totali sigma1

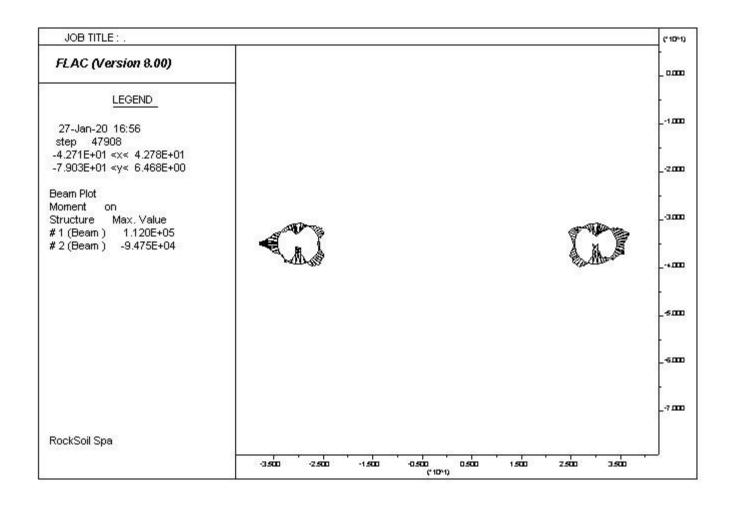


Figura 52 – Sollecitazioni M

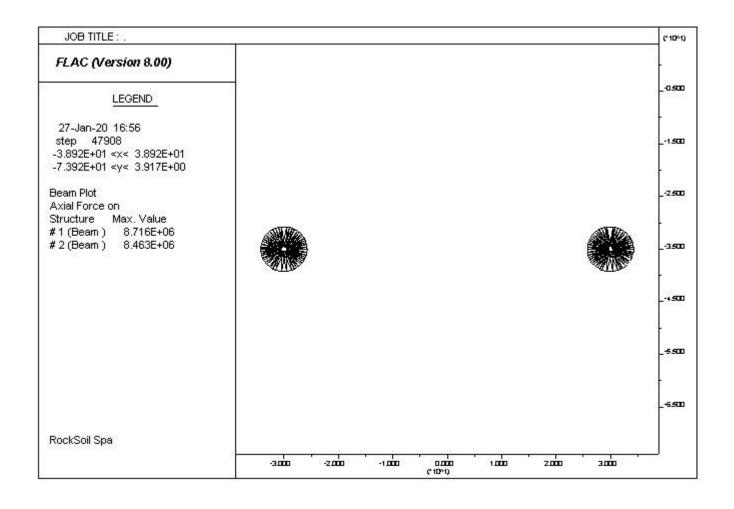


Figura 53 – Sollecitazioni N

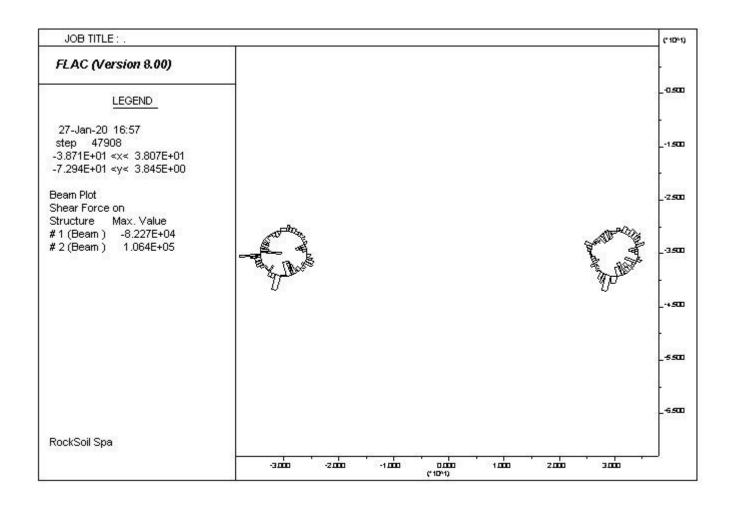


Figura 54 – Sollecitazioni T

- - - - - - - -	Elem	ID	Nod1	Nod2	Prop		F-shear	F-axial	Mom-1	Mom-2	strain
104	_	_		_	_	-					_
103	104	2		53	1						-0.0004435
1002 2 1002 103											
101 2 101 102											
100 2 100 101											
99 2 99 100 1 beam -16260 8303000 -25830 17590 -0.000437 98 2 98 99 1 beam -19030 8365000 -33640 26160 -0.0004403 97 2 97 98 1 beam -12650 8306000 -33430 34610 -0.0004372 95 2 95 96 97 1 beam 50320 8219000 -18240 40270 -0.0004326 94 2 94 95 1 beam 50320 8219000 -18240 40270 -0.0004326 93 2 93 94 1 beam 1305 827000 -10240 19270 -0.0004353 93 2 93 94 1 beam 1305 827000 10930 -10270 -0.0004353 91 2 91 92 1 beam -16140 8266000 3473 -11530 -0.0004353 90 2 90 91 1 beam -29990 8257000 -10590 -3878 -0.0004354 88 2 88 89 1 beam -40620 8206000 -43560 26240 -0.0004318 88 2 88 89 1 beam -15340 8258000 -43560 26240 -0.0004318 86 2 86 87 1 beam -15340 8268000 -43560 26240 -0.0004358 86 2 86 87 1 beam -15340 8268000 -43590 37790 -0.0004368 88 4 2 84 85 1 beam -14680 8295000 -49020 43640 -0.0004368 88 4 2 84 85 1 beam -14680 8295000 -49020 43640 -0.0004368 88 4 2 84 85 1 beam -14680 8295000 -49020 43640 -0.0004368 88 4 2 84 85 1 beam -14680 8295000 -37180 -0.0004376 88 3 2 83 84 1 beam -14680 8295000 -37180 -0.0004376 88 3 2 83 84 1 beam -1740 8315000 -37180 40490 -0.0004376 88 3 2 83 84 1 beam -1740 8315000 -37180 40490 -0.0004376 89 2 79 80 1 beam -78170 8339000 90090 -20950 -0.0004378 77 2 77 78 1 beam -78170 8339000 91520 -89810 -0.0004376 78 2 76 77 1 beam -78170 8308000 -13210 -91470 -0.0004376 75 2 75 76 1 beam -31260 8259000 -16610 37380 -0.0004376 75 2 76 77 1 beam -78170 8308000 -13210 -91470 -0.0004376 76 2 76 77 1 beam -78170 8308000 -1310 -91470 -0.0004376 77 2 77 78 1 beam -78170 8308000 -1310 -91470 -0.0004376 78 2 76 77 1 beam -78170 8308000 -13190 15540 -0.0004376 76 2 76 77 1 beam -32180 8195000 -16610 -1977 -0.0004308 76 2 76 77 1 beam -32180 8195000 -15610 -1977 -0.0004308 77 2 77 78 1 beam -3010 8186000 -1572 -5318 -0.0004287 78 2 76 66 1 beam -10040 8089000 -6377 -8705 -0.0004287 79 2 79 80 1 beam -18600 8180000 -1572 -5318 -0.0004376 66 2 66 67 1 beam -29680 8170000 -46680 94550 -0.0004376 66 2 66 67 1 beam -30400 8180000 -17120 -31650 -0.0004375 66 2 66 67 1 beam -30400 8180000 -17120 -31650 -0.0004375											
98 2 98 99 1 beam											
97 2 97 98 1 beam											
96 2 96 97 1 beam -12650 8306000 -39850 34430 -0.0004372 95 2 95 96 1 beam 50320 8219000 -18240 40270 -0.0004326 94 2 94 95 1 beam 36770 8245000 -2016 19270 -0.0004326 93 2 93 94 1 beam 36770 8245000 -2016 19270 -0.0004326 93 2 93 94 1 beam 1305 8270000 10930 -10270 -0.0004353 99 2 99 2 91 beam -16140 8266000 3473 -11530 -0.000435 99 2 99 91 1 beam -37140 8235000 -26900 9990 -0.0004346 88 2 88 89 1 beam -40620 8206000 -43560 26240 -0.0004346 86 2 86 87 1 beam -15840 8258000 -37400 42800 -0.0004346 86 2 86 87 1 beam -14680 8258000 -37400 42800 -0.0004346 86 2 86 87 1 beam -14680 8295000 -49020 43640 -0.0004376 83 2 83 84 1 beam -14680 8295000 -49020 43640 -0.0004376 83 2 83 84 1 beam -40620 8206000 -37180 49610 -0.0004376 83 2 83 84 1 beam -49220 8353000 -11610 37380 -0.0004346 84 2 84 85 1 beam -49220 8353000 -11610 37380 -0.0004346 85 2 86 87 1 beam -78740 8315000 -39940 49610 -0.0004374 82 2 82 83 1 beam -49220 8353000 -11610 37380 -0.0004378 80 2 80 81 1 beam -63050 8341000 -37180 40490 -0.0004374 82 2 77 8 1 beam -78170 8308000 13210 -91470 -0.0004377 87 2 777 78 1 beam -78170 8308000 13210 -91470 -0.0004377 87 2 777 78 1 beam -78170 8308000 13210 -91470 -0.0004377 87 2 777 78 1 beam -21420 8275000 -10300 -2087 -0.0004387 87 2 77 77 1 beam -21420 8275000 -10300 -2087 -0.0004387 87 2 77 77 1 beam -21420 8275000 -10300 -2087 -0.0004387 87 2 77 77 1 beam -21420 8275000 -152.2 10510 -0.000428 87 1 beam -3000 8186000 -152.2 10510 -0.000428 87 1 beam -3000 8186000 -152.2 10510 -0.000428 87 1 beam -3000 8186000 -152.2 10510 -0.000438 97 2 70 70 71 1 beam -31280 8195000 -31190 15540 -0.000438 97 2 70 70 71 1 beam -31280 8195000 -31190 15540 -0.000438 97 2 70 70 71 1 beam -31280 8195000 -31190 15540 -0.000438 97 2 70 70 71 1 beam -31280 8195000 -31190 15540 -0.000438 97 2 70 70 71 1 beam -31280 8195000 -3190 15540 -0.000438 97 2 70 77 1 beam -31280 8195000 -3190 15540 -0.000438 97 2 70 70 71 1 beam -31280 8195000 -3190 15540 -0.000438 97 2 70 70 71 1 beam -31280 8195000 -3190 15540 -0.000438 97 2 70 70 71 1 beam -31											
95 2 95 96 1 beam 50320 8219000 -18240 40270 -0.0004326 94 2 94 95 1 beam 36770 8245000 -2016 19270 -0.000434 93 2 93 94 1 beam 22980 8264000 9698 1606 -0.000435 92 2 92 93 1 beam -16140 8266000 3473 -11530 -0.000435 91 2 91 92 1 beam -16140 8266000 3473 -11530 -0.000435 89 2 89 90 1 beam -29990 8257000 -10590 -3878 -0.000436 89 2 89 90 1 beam -37140 8235000 -26900 9990 -0.0004348 88 2 88 89 1 beam -40620 8206000 -43560 26240 -0.0004346 86 2 86 87 1 beam -15340 8268000 -37400 42800 -0.000436 86 2 85 86 1 beam -15340 8268000 -43590 37090 -0.000436 85 2 85 86 1 beam -16480 8295000 -49020 43640 -0.000436 83 2 83 84 1 beam 19740 8315000 -39940 49610 -0.0004376 83 2 83 84 1 beam 6760 8310000 -37180 40490 -0.0004376 83 2 83 84 1 beam 6760 8310000 -37180 40490 -0.0004376 83 2 83 84 1 beam 6760 8310000 -37180 40490 -0.0004376 83 2 80 81 1 beam 6760 8310000 -37180 40490 -0.0004376 83 2 80 81 1 beam 72730 8339000 90090 -20950 -0.0004389 80 2 80 81 1 beam 72730 8339000 90090 -20950 -0.0004376 82 79 80 1 beam 72730 8339000 91520 -89810 -0.0004376 75 2 77 78 1 beam 72730 8339000 91520 -89810 -0.0004376 75 2 77 78 1 beam 33790 8167000 -15122 10510 -0.0004376 75 2 77 78 1 beam 32750 8398000 13210 -91470 -0.0004376 75 2 77 78 1 beam 32750 8398000 13210 -91470 -0.0004376 75 2 77 78 1 beam 32750 8398000 13210 -91470 -0.0004376 75 2 77 78 1 beam 32750 8149000 1584 184 -0.0004287 77 2 77 78 1 beam 32750 8149000 1584 184 -0.0004287 77 2 77 78 1 beam 32750 8149000 1584 184 -0.0004287 77 2 77 77 1 beam 3225 8149000 1584 184 -0.0004287 77 2 77 77 1 beam 3225 8149000 1584 184 -0.0004287 77 2 77 77 1 beam 3225 8149000 -15610 1977 -0.0004376 77 2 77 77 1 beam 3225 8149000 -15610 1977 -0.0004376 77 2 77 77 1 beam 3225 8149000 -15610 1977 -0.0004376 77 2 77 77 1 beam 3225 8149000 -15600 -1570 -0.0004287 77 2 77 77 1 beam 3225 8149000 -1584 184 -0.0004287 77 2 77 77 1 beam 3256 8149000 -15600 -1570 -0.0004287 77 2 77 77 1 beam 3256 8149000 -15600 -1570 -0.0004257 78 50 50 66 67 1 beam 34000 -0.00000 -0.000000 -0.000000 -0.00000000											
94 2 94 95 1 beam 36770 8245000 -2016 19270 -0.000434 93 2 93 94 1 beam 22980 8264000 9698 1606 -0.000435 92 2 92 93 1 beam 1305 8270000 10930 -10270 -0.0004353 91 2 91 92 1 beam -16140 8266000 3473 -11530 -0.000436 83 2 83 90 1 beam -37140 8235000 -26900 9990 -0.000434 88 2 88 89 1 beam -40620 8206000 -43560 26240 -0.000434 88 2 88 89 1 beam -40620 8206000 -43560 26240 -0.000434 86 2 86 87 1 beam -15340 8268000 -37400 42800 -0.000434 86 2 86 87 1 beam -15340 8268000 -343500 37090 -0.0004346 86 2 86 87 1 beam -15340 8268000 -343500 37090 -0.0004352 85 2 85 86 1 beam -154680 8295000 -49020 43640 -0.0004376 83 2 83 84 1 beam 6760 8310000 -37180 40490 -0.0004376 83 2 83 84 1 beam 6760 8310000 -37180 40490 -0.0004376 83 2 83 84 1 beam 6760 8310000 -37180 40490 -0.0004376 83 2 83 84 1 beam 6760 8310000 -37180 40490 -0.0004378 85 2 85 86 81 1 beam 72730 8339000 90090 -20950 -0.0004378 85 2 85 86 81 1 beam 72730 8339000 90090 -20950 -0.0004378 80 2 80 81 1 beam 72730 8339000 90090 -20950 -0.0004378 77 2 77 78 1 beam 768170 8308000 13210 -91470 -0.0004376 77 2 77 78 1 beam -78170 8308000 13210 -91470 -0.0004376 77 2 77 78 1 beam -20310 8259000 -152.2 10510 -0.0004376 77 2 77 78 1 beam -21420 8276000 -10030 -2087 -0.0004328 77 2 77 77 1 beam -21420 8276000 -10030 -2087 -0.0004328 77 2 77 77 1 beam -21420 8276000 -10300 -2087 -0.0004328 77 2 77 77 1 beam -21420 8276000 -10300 -2087 -0.0004328 77 2 77 77 1 beam -21420 8276000 -10300 -2087 -0.0004287 71 2 71 72 1 beam -31280 8195000 -31190 15540 -0.0004287 71 2 71 72 1 beam -31280 8195000 -31190 15540 -0.0004286 67 2 66 67 1 beam 31280 8195000 -34680 94520 -0.0004286 68 2 68 69 1 beam -48800 8083000 -66800 94520 -0.0004287 66 2 66 67 1 beam -21408 8180000 -32300 43250 -0.0004287 66 2 66 67 1 beam -21408 8180000 -32300 43250 -0.0004287 66 2 66 67 1 beam -21408 8180000 -32300 43250 -0.0004287 66 2 66 67 1 beam -21408 8180000 -32300 43250 -0.0004281 66 2 66 67 1 beam -21408 8180000 -32300 43250 -0.0004281 68 2 68 69 1 beam -406400 8134000 -66080 94520 -0.0004281 66 2 66 67 1											
93 2 93 94 1 beam 22980 8264000 9698 1606 -0.000435 92 2 92 93 1 beam 1305 8270000 10930 -10270 -0.0004353 91 2 91 92 1 beam -16140 8266000 3473 -11530 -0.0004354 90 2 99 91 1 beam -37140 8235000 -10590 -3878 -0.0004346 88 2 88 89 1 beam -40620 8206000 -43560 26240 -0.0004319 87 2 87 88 1 beam 12680 8258000 -37400 42800 -0.0004346 86 2 86 87 1 beam -14680 8258000 -37400 42800 -0.0004346 86 2 86 87 1 beam -14680 8258000 -3990 37090 -0.0004346 88 4 2 84 85 1 beam 19740 8315000 -39940 49610 -0.0004376 83 2 83 84 1 beam 6760 8310000 -37180 40490 -0.0004374 83 2 83 84 1 beam 6760 8310000 -37180 40490 -0.0004374 83 2 83 84 1 beam 63050 8341000 21250 11770 -0.000439 80 2 80 81 1 beam 63050 8341000 21250 11770 -0.0004378 81 2 81 82 1 beam 63050 8341000 21250 11770 -0.0004373 87 2 77 78 1 beam -78170 8308000 13210 -91470 -0.0004377 87 2 77 78 1 beam -78170 8308000 13210 -91470 -0.0004373 87 2 77 78 1 beam -20140 8276000 -10030 -2087 -0.0004397 87 2 77 78 1 beam -21420 8276000 -10030 -2087 -0.0004397 87 2 77 78 1 beam -31867000 -152.2 10510 -0.0004397 87 2 77 78 1 beam -31867000 -152.2 10510 -0.0004397 87 2 77 78 1 beam -16260 8146000 -1272 -5318 -0.0004289 87 3 2 73 74 1 beam -31280 8195000 -31190 15540 -0.0004287 87 2 77 77 1 beam -31280 8195000 -31190 15540 -0.0004287 88 2 68 69 1 beam -16260 8146000 -1272 -5318 -0.0004287 89 2 69 70 1 beam -29680 8170000 -46760 30800 -0.0004313 89 2 69 60 1 beam -10040 8089000 -62520 48050 -0.0004287 80 2 66 66 67 1 beam -20680 8170000 -46760 30800 -0.0004287 80 2 68 69 1 beam -10040 8089000 -62520 48050 -0.0004287 80 3 66 66 67 1 beam -20680 8170000 -46760 30800 -0.0004287 80 4 6 6 6 6 7 1 beam -21420 8276000 -10300 -2087 -0.0004287 80 5 6 6 6 6 7 1 beam -30010 8186000 -15710 -1570 -0.0004289 80 6 7 6 6 8 1 beam -10040 8089000 -62520 48050 -0.0004287 80 6 8 2 6 6 6 7 1 beam -30010 8186000 -3510 -3570 -0.0004287 80 7 1 1 beam -31280 8195000 -31190 -3540 -0.0004287 80 8 9 1 beam -4800 8083000 -55711 -5500 -0.0004281 80 9 2 6 9 70 1 beam -25540 8358000 -3600 -3600 -0.0004373 80 9 2 5 9											
92 2 92 93 1 beam 1305 827000 10930 -10270 -0.0004353 91 2 91 92 1 beam -16140 8266000 3473 -11530 -0.000435 90 2 90 91 1 beam -29990 8257000 -10590 -3878 -0.0004346 89 2 89 90 1 beam -37140 8235000 -26900 9990 -0.0004334 88 2 88 89 1 beam -40620 8266000 -43560 26240 -0.000431 87 2 87 88 1 beam 12680 8258000 -37400 42800 -0.0004346 86 2 86 87 1 beam -15340 8268000 -43590 37090 -0.0004356 84 2 84 85 1 beam 19740 8315000 -39940 49610 -0.0004376 83 2 83 84 1 beam 19740 8315000 -39940 49610 -0.0004376 83 2 85 86 1 beam 49220 8353000 -11610 37380 -0.000436 84 2 84 85 1 beam 6760 8310000 -37180 40490 -0.0004376 83 2 85 80 81 1 beam 6760 8310000 -37180 40490 -0.0004376 83 2 85 86 81 beam 6760 8310000 -37180 40490 -0.0004376 83 2 85 85 86 1 beam 6760 8310000 -37180 40490 -0.0004376 83 2 85 85 86 1 beam 6760 8310000 -37180 40490 -0.0004376 83 2 85 85 86 1 beam 6760 8310000 -37180 40490 -0.0004376 85 2 85 85 86 1 beam 6760 8310000 -37180 40490 -0.0004374 82 2 82 83 1 beam 6760 8310000 -37180 40490 -0.0004378 80 2 80 81 1 beam 63050 8341000 21250 11770 -0.000439 80 2 80 81 1 beam 63050 8341000 21250 11770 -0.000439 80 2 80 81 1 beam 72730 83389000 9090 -20950 -0.0004387 77 2 77 78 1 beam 72730 8308000 13210 -91470 -0.0004373 77 2 77 78 1 beam 721420 8276000 -10030 -2087 -0.0004374 78 2 74 75 1 beam 33790 8167000 -152.2 10510 -0.0004289 74 2 74 75 1 beam 3225 8149000 1584 184 -0.0004289 73 2 73 74 1 beam 3225 8149000 1584 184 -0.0004287 72 72 73 1 beam -16260 8146000 -1272 -5318 -0.0004287 72 77 77 1 beam 3280 8195000 -31190 15540 -0.0004287 72 70 71 1 beam 3280 8195000 -31190 15540 -0.0004286 68 2 68 69 1 beam 48800 8083000 -62520 48050 -0.0004286 66 2 66 67 1 beam 3259 8059000 -94680 94750 -0.0004286 68 2 68 69 1 beam 48800 8083000 -62520 48050 -0.0004286 66 2 66 67 1 beam 235.9 8059000 -94680 94750 -0.0004286 68 2 66 67 1 beam 30470 8186000 -17120 31650 -0.0004375 60 2 60 61 1 beam 106400 8134000 -60800 94520 -0.0004375 60 2 60 61 1 beam 30470 8180000 -3500 -3200 -0.0004375 60 2 60 61 1 beam 30470 836000 -3500 -3200 -0.											
91 2 91 92 1 beam -16140 8266000 3473 -11530 -0.000435 90 2 90 91 1 beam -29990 8257000 -10590 -3878 -0.0004346 89 2 89 90 1 beam -37140 8235000 -26900 9990 -0.0004334 88 2 88 89 1 beam -40620 8206000 -43560 26240 -0.0004319 87 2 87 88 1 beam -12680 8258000 -37400 42800 -0.0004346 86 2 86 87 1 beam -15340 8268000 -43590 37090 -0.0004356 84 2 84 85 1 beam -14680 8295000 49020 43640 -0.0004366 84 2 84 85 1 beam -174680 8295000 -37180 40490 -0.0004376 83 2 83 84 1 beam -174680 8295000 -37180 40490 -0.0004376 83 2 83 84 1 beam -174680 8315000 -37180 40490 -0.0004376 83 2 83 84 1 beam -174680 8315000 -37180 40490 -0.0004376 83 2 83 84 1 beam -17460 8315000 -37180 40490 -0.0004376 83 2 83 84 1 beam -17460 8315000 -37180 40490 -0.0004376 83 2 83 84 1 beam -17460 8315000 -37180 40490 -0.0004376 83 2 80 81 1 beam -17470 8315000 -37180 40490 -0.0004376 83 2 80 81 1 beam -17470 8315000 -37180 40490 -0.0004376 83 2 80 81 1 beam -17470 8315000 -37180 40490 -0.0004376 83 2 80 81 1 beam -17470 8315000 -37180 40490 -0.0004376 83 2 80 81 1 beam -17470 8315000 -37180 40490 -0.0004376 83 2 80 81 1 beam -1858 8398000 91520 -89810 -0.0004389 80 2 80 81 1 beam -1858 8398000 91520 -89810 -0.0004387 82 78 79 1 beam -18170 8308000 13210 -91470 -0.0004373 83 83000 8310 -91470 -0.0004373 83 83000 8310 -91470 -0.0004373 83 83000 8310 -91470 -0.0004373 83 83000 8310 -91470 -0.0004373 83 83000 83000 -2087 -0.0004373 83 83000 83000 -2087 -0.0004373 83 83000 83000 -2087 -0.0004373 83 83000 83000 -2087 -0.0004389 83 83 83 83 83 83 83 83 83 83 83 83 83											
90 2 90 91 1 beam -29990 8257000 -10590 -3878 -0.0004346 89 2 89 90 1 beam -37140 8235000 -26900 9990 -0.0004334 88 2 88 89 1 beam -40620 8206000 -43560 26240 -0.0004319 87 2 87 88 1 beam 12680 8258000 -37400 42800 -0.0004346 86 2 86 87 1 beam -15340 8268000 -43559 37090 -0.0004352 85 2 85 86 1 beam -14680 8295000 -49020 43640 -0.0004356 84 2 84 85 1 beam 19740 8315000 -39940 49610 -0.0004374 83 2 83 84 1 beam 6760 8310000 -37180 40490 -0.0004374 83 2 83 84 1 beam 6760 8310000 -37180 40490 -0.0004374 83 2 82 83 3 1 beam 49220 8353000 -11610 37380 -0.0004396 81 2 81 82 1 beam 63050 8341000 21250 11770 -0.000438 80 2 80 81 1 beam 72730 8339000 90090 -20950 -0.0004389 79 2 79 80 1 beam 1658 8398000 91520 -89810 -0.000442 78 2 78 79 1 beam -78170 8308000 13210 -91470 -0.0004374 76 2 76 77 1 beam -21420 8276000 -10030 -2087 -0.0004356 75 2 75 76 1 beam 33790 8167000 -152.2 10510 -0.0004287 77 2 77 78 1 beam 3225 8149000 1584 184 -0.0004289 78 2 79 70 71 beam 3225 8149000 1584 184 -0.0004289 79 2 79 70 71 beam 3225 8149000 -152.2 10510 -0.0004287 71 2 77 77 1 beam -16260 8146000 -1272 -5318 -0.0004287 72 2 72 73 71 beam -16260 8146000 -152.2 10510 -0.0004287 73 2 77 71 beam -1040 8089000 6377 -870.5 -0.0004257 74 2 77 71 beam -12600 8146000 -15610 1977 -0.0004308 70 2 70 71 beam -3010 8186000 -15610 1977 -0.0004308 70 2 70 71 beam -3020 8083000 -32087 -0.0004254 66 2 66 67 1 beam -3020 8083000 -32087 -0.0004254 66 2 67 68 1 beam -102700 8078000 -93500 63040 -0.0004287 66 2 67 68 1 beam -102700 8078000 -93500 63040 -0.0004281 66 2 66 67 1 beam -10400 8089000 -5711 17150 -0.000439 66 2 66 67 1 beam -10400 8180000 -5711 17150 -0.000439 67 2 60 61 1 beam -10400 8180000 -5711 17150 -0.000437 68 2 69 60 61 1 beam -10400 8180000 -5711 17150 -0.000437 68 2 69 60 61 1 beam -10400 8180000 -5711 17150 -0.000437 69 2 69 70 1 beam -25600 813000 -5711 17150 -0.000437 60 2 60 61 1 beam -10400 8130000 902.6 3519 -0.000437											
89 2 89 90 1 beam -37140 8235000 -26900 9990 -0.0004314 88 2 88 89 1 beam -40620 8206000 -43560 26240 -0.0004319 87 2 87 88 1 beam 12680 8258000 -37400 42800 -0.0004366 86 2 86 87 1 beam -14680 8295000 -49020 43640 -0.0004356 84 2 84 85 1 beam 19740 8315000 -39940 49610 -0.0004376 83 2 83 84 1 beam 6760 831000 -37180 40490 -0.0004376 81 2 81 2 1 beam 63050 8341000 21250 11770 -0.000439 80 2 80 81 1 beam 72730 8339000 91520 8											
88 2 88 89 1 beam -40620 8206000 -43560 26240 -0.0004346 86 2 86 87 1 beam -15340 8258000 -37400 42800 -0.0004346 86 2 86 87 1 beam -15340 8268000 -43590 37090 -0.0004366 84 2 84 85 1 beam 19740 8315000 -39940 49610 -0.0004376 83 2 83 84 1 beam 6760 8310000 -37180 40490 -0.0004374 82 2 82 83 1 beam 63050 8341000 21250 11770 -0.000439 81 2 81 82 1 beam 63050 8341000 21250 11770 -0.000439 80 2 80 81 1 beam 63050 8339000 909090 <td< td=""><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>					_						
87 2 87 88 1 beam 12680 8258000 -37400 42800 -0.0004346 86 2 86 87 1 beam -15340 8268000 -43590 37090 -0.0004352 85 2 85 86 1 beam -14680 8295000 -49020 43640 -0.0004376 84 2 84 85 1 beam 6760 8310000 -37180 40490 -0.0004374 82 2 82 83 1 beam 63050 8341000 21250 11770 -0.0004396 81 2 81 82 1 beam 63050 8341000 21250 11770 -0.000439 80 2 80 81 1 beam 63050 8341000 21250 11770 -0.000439 80 2 80 81 beam 63050 8389000 91520 -89810 <											
86 2 86 87 1 beam -15340 8268000 -43590 37090 -0.0004352 85 2 85 86 1 beam -14680 8295000 -49020 43640 -0.0004366 84 2 84 85 1 beam 19740 8315000 -39940 49610 -0.0004376 83 2 83 84 1 beam 6760 831000 -37180 40490 -0.0004374 82 2 82 83 1 beam 63050 8341000 21250 11770 -0.000439 80 2 80 81 1 beam 63050 8341000 21250 11770 -0.000439 80 2 80 81 1 beam 763050 898000 91520 -89810 -0.0004389 79 2 79 80 1 beam -78170 8308000 13210 -						beam					
85 2 85 86 1 beam -14680 8295000 -49020 43640 -0.0004366 84 2 84 85 1 beam 19740 8315000 -39940 49610 -0.0004376 83 2 83 84 1 beam 6760 831000 -37180 40490 -0.0004374 82 2 82 83 1 beam 69050 8341000 21250 11770 -0.0004396 81 2 81 82 1 beam 63050 8341000 21250 11770 -0.0004399 80 2 80 81 1 beam 72730 8339000 90909 -20950 -0.0004389 79 2 79 80 1 beam 1658 8398000 91520 -89810 -0.0004442 78 2 76 77 1 beam -2310 8259000 2161 -13					1	beam			-37400		-0.0004346
84 2 84 85 1 beam 19740 8315000 -39940 49610 -0.0004376 83 2 83 84 1 beam 6760 8310000 -37180 40490 -0.0004374 82 2 82 83 1 beam 63050 8353000 -11610 37380 -0.0004396 81 2 81 82 1 beam 63050 8341000 21250 11770 -0.0004396 80 2 80 81 1 beam 63050 8341000 21250 11770 -0.0004389 79 2 79 80 1 beam 1658 8398000 91520 -89810 -0.0004442 78 2 78 79 1 beam -78170 8308000 13210 -91470 -0.0004373 77 2 76 77 1 beam -2310 8259000 2161 -1		2	86	87	1		-15340	8268000	-43590	37090	-0.0004352
83 2 83 84 1 beam 6760 8310000 -37180 40490 -0.0004374 82 2 82 83 1 beam 49220 8353000 -11610 37380 -0.0004396 81 2 81 82 1 beam 63050 8341000 21250 11770 -0.0004399 80 2 80 81 1 beam 72730 8339000 90090 -20950 -0.00044389 79 2 79 80 1 beam 1658 8398000 91520 -89810 -0.0004442 78 2 78 79 1 beam -78170 8308000 13210 -91470 -0.0004373 77 2 77 78 1 beam -20310 8259000 2161 -13650 -0.0004373 76 2 76 77 1 beam -21420 8276000 -10030 <	85	2	85	86	1	beam	-14680	8295000	-49020	43640	-0.0004366
82 2 82 83 1 beam 49220 8353000 -11610 37380 -0.0004396 81 2 81 82 1 beam 63050 8341000 21250 11770 -0.000439 80 2 80 81 1 beam 72730 8339000 90090 -20950 -0.0004389 79 2 79 80 1 beam 1658 8398000 91520 -89810 -0.000442 78 2 78 79 1 beam -78170 8308000 13210 -91470 -0.0004373 76 2 76 77 1 beam -20310 8259000 2161 -13650 -0.0004373 76 2 76 77 1 beam -21420 8276000 -10030 -2087 -0.0004375 75 2 75 76 1 beam 3225 8149000 1584 18	84	2	84	85	1	beam	19740	8315000	-39940	49610	-0.0004376
81 2 81 82 1 beam 63050 8341000 21250 11770 -0.0004389 80 2 80 81 1 beam 72730 8339000 90090 -20950 -0.0004389 79 2 79 80 1 beam 1658 8398000 91520 -89810 -0.000442 78 2 78 79 1 beam -78170 8308000 13210 -91470 -0.0004373 76 2 76 77 1 beam -21420 8276000 -10030 -2087 -0.0004356 75 2 75 76 1 beam 32790 8167000 -152.2 10510 -0.0004356 75 2 75 76 1 beam 3275 8149000 1584 184 -0.0004289 73 2 73 74 1 beam 3089000 6377 -870.5 -0.0	83	2	83	84	1	beam	6760	8310000	-37180	40490	-0.0004374
80 2 80 81 1 beam 72730 8339000 90090 -20950 -0.0004482 79 2 79 80 1 beam 1658 8398000 91520 -89810 -0.000442 78 2 78 79 1 beam -78170 8308000 13210 -91470 -0.0004373 77 2 77 78 1 beam -20310 8259000 2161 -13650 -0.0004375 76 2 76 77 1 beam -21420 8276000 -10030 -2087 -0.0004356 75 2 75 76 1 beam 33790 8167000 -152.2 10510 -0.0004289 74 2 74 75 1 beam 3225 8149000 1584 184 -0.0004289 73 2 73 74 1 beam 10040 8089000 6377 -870	82	2	82	83	1	beam	49220	8353000	-11610	37380	-0.0004396
79 2 79 80 1 beam 1658 8398000 91520 -89810 -0.000442 78 2 78 79 1 beam -78170 8308000 13210 -91470 -0.0004373 77 2 77 78 1 beam -20310 8259000 2161 -13650 -0.0004376 76 2 76 77 1 beam -21420 8276000 -10030 -2087 -0.0004356 75 2 75 76 1 beam 33790 8167000 -152.2 10510 -0.0004289 74 2 74 75 1 beam 3225 8149000 1584 184 -0.0004289 73 2 73 74 1 beam 10040 8089000 6377 -870.5 -0.0004287 71 2 71 72 1 beam -16260 8146000 -15610 19	81	2	81	82	1	beam	63050	8341000	21250	11770	-0.000439
78 2 78 79 1 beam -78170 8308000 13210 -91470 -0.0004373 77 2 77 78 1 beam -20310 8259000 2161 -13650 -0.0004347 76 2 76 77 1 beam -21420 8276000 -10030 -2087 -0.0004356 75 2 75 76 1 beam 33790 8167000 -152.2 10510 -0.0004289 74 2 74 75 1 beam 3225 8149000 1584 184 -0.0004289 73 2 73 74 1 beam 10040 8089000 6377 -870.5 -0.0004287 72 2 72 73 1 beam -16260 8146000 -1272 -5318 -0.0004287 71 2 71 72 1 beam -30010 8186000 -15610	80	2	80	81	1	beam	72730	8339000	90090	-20950	-0.0004389
77 2 77 78 1 beam -20310 8259000 2161 -13650 -0.0004347 76 2 76 77 1 beam -21420 8276000 -10030 -2087 -0.0004356 75 2 75 76 1 beam 33790 8167000 -152.2 10510 -0.0004298 74 2 74 75 1 beam 3225 8149000 1584 184 -0.0004289 73 2 73 74 1 beam 1040 8089000 6377 -870.5 -0.0004287 72 2 72 73 1 beam -16260 8146000 -1272 -5318 -0.0004287 71 2 71 72 1 beam -30010 8186000 -15610 1977 -0.0004308 70 2 70 71 1 beam -31280 8195000 -31190 15	79	2	79	80	1	beam	1658	8398000	91520	-89810	-0.000442
76 2 76 77 1 beam -21420 8276000 -10030 -2087 -0.0004356 75 2 75 76 1 beam 33790 8167000 -152.2 10510 -0.0004298 74 2 74 75 1 beam 3225 8149000 1584 184 -0.0004289 73 2 73 74 1 beam 10040 8089000 6377 -870.5 -0.0004287 72 2 72 73 1 beam -16260 8146000 -1272 -5318 -0.0004287 71 2 71 72 1 beam -30010 8186000 -15610 1977 -0.0004287 70 2 70 71 1 beam -31280 8195000 -31190 15540 -0.0004313 69 2 69 70 1 beam -29680 8170000 -46760	78	2	78	79	1	beam	-78170	8308000	13210	-91470	-0.0004373
75 2 75 76 1 beam 33790 8167000 -152.2 10510 -0.0004298 74 2 74 75 1 beam 3225 8149000 1584 184 -0.0004289 73 2 73 74 1 beam 10040 8089000 6377 -870.5 -0.0004257 72 2 72 73 1 beam -16260 8146000 -1272 -5318 -0.0004287 71 2 71 72 1 beam -30010 8186000 -15610 1977 -0.0004308 70 2 70 71 1 beam -31280 8195000 -31190 15540 -0.0004313 69 2 69 70 1 beam -29680 8170000 -46760 30800 -0.000431 68 2 68 69 1 beam -48800 8083000 -93500 6	77	2	77	78	1	beam	-20310	8259000	2161	-13650	-0.0004347
74 2 74 75 1 beam 3225 8149000 1584 184 -0.0004289 73 2 73 74 1 beam 10040 8089000 6377 -870.5 -0.0004257 72 2 72 73 1 beam -16260 8146000 -1272 -5318 -0.0004287 71 2 71 72 1 beam -30010 8186000 -15610 1977 -0.0004308 70 2 70 71 1 beam -31280 8195000 -31190 15540 -0.0004313 69 2 69 70 1 beam -29680 8170000 -46760 30800 -0.000431 68 2 68 69 1 beam -48800 8083000 -62520 48050 -0.0004254 67 2 67 68 1 beam -102700 8078000 -93500 <td< td=""><td>76</td><td>2</td><td>76</td><td>77</td><td>1</td><td>beam</td><td>-21420</td><td>8276000</td><td>-10030</td><td>-2087</td><td>-0.0004356</td></td<>	76	2	76	77	1	beam	-21420	8276000	-10030	-2087	-0.0004356
73 2 73 74 1 beam 10040 8089000 6377 -870.5 -0.0004257 72 2 72 73 1 beam -16260 8146000 -1272 -5318 -0.0004287 71 2 71 72 1 beam -30010 8186000 -15610 1977 -0.0004308 70 2 70 71 1 beam -31280 8195000 -31190 15540 -0.0004313 69 2 69 70 1 beam -29680 8170000 -46760 30800 -0.000431 68 2 68 69 1 beam -48800 8083000 -62520 48050 -0.0004254 67 2 67 68 1 beam -102700 8078000 -93500 63040 -0.0004252 66 2 66 67 1 beam 235.9 8059000 -94680	75	2	75	76	1	beam	33790	8167000	-152.2	10510	-0.0004298
72 2 72 73 1 beam -16260 8146000 -1272 -5318 -0.0004287 71 2 71 72 1 beam -30010 8186000 -15610 1977 -0.0004308 70 2 70 71 1 beam -31280 8195000 -31190 15540 -0.0004313 69 2 69 70 1 beam -29680 8170000 -46760 30800 -0.00043 68 2 68 69 1 beam -48800 8083000 -62520 48050 -0.0004254 67 2 67 68 1 beam -102700 8078000 -93500 63040 -0.0004252 66 2 66 67 1 beam 235.9 8059000 -94680 94750 -0.0004241 65 2 65 66 1 beam 106400 8134000 -66080	74	2	74	75	1	beam	3225	8149000	1584	184	-0.0004289
71 2 71 72 1 beam -30010 8186000 -15610 1977 -0.0004308 70 2 70 71 1 beam -31280 8195000 -31190 15540 -0.0004313 69 2 69 70 1 beam -29680 8170000 -46760 30800 -0.00043 68 2 68 69 1 beam -48800 8083000 -62520 48050 -0.0004254 67 2 67 68 1 beam -102700 8078000 -93500 63040 -0.0004252 66 2 66 67 1 beam 235.9 8059000 -94680 94750 -0.0004251 65 2 65 66 1 beam 106400 8134000 -66080 94520 -0.0004281 64 2 64 65 1 beam 41760 8165000 -43470	73	2	73	74	1	beam	10040	8089000	6377	-870.5	-0.0004257
70 2 70 71 1 beam -31280 8195000 -31190 15540 -0.0004313 69 2 69 70 1 beam -29680 8170000 -46760 30800 -0.00043 68 2 68 69 1 beam -48800 8083000 -62520 48050 -0.0004254 67 2 67 68 1 beam -102700 8078000 -93500 63040 -0.0004252 66 2 66 67 1 beam 235.9 8059000 -94680 94750 -0.0004241 65 2 65 66 1 beam 106400 8134000 -66080 94520 -0.0004241 65 2 64 65 1 beam 41760 8165000 -43470 66480 -0.0004297 63 2 63 64 1 beam 21080 8282000 -32300	72	2	72	73	1	beam	-16260	8146000	-1272	-5318	-0.0004287
69 2 69 70 1 beam -29680 8170000 -46760 30800 -0.00043 68 2 68 69 1 beam -48800 8083000 -62520 48050 -0.0004254 67 2 67 68 1 beam -102700 8078000 -93500 63040 -0.0004252 66 2 66 67 1 beam 235.9 8059000 -94680 94750 -0.0004241 65 2 65 66 1 beam 106400 8134000 -66080 94520 -0.0004281 64 2 64 65 1 beam 41760 8165000 -43470 66480 -0.0004297 63 2 63 64 1 beam 21080 8282000 -32300 43250 -0.0004379 61 2 61 62 1 beam 26690 8313000 -5711	71	2	71	72	1	beam	-30010	8186000	-15610	1977	-0.0004308
68 2 68 69 1 beam -48800 8083000 -62520 48050 -0.0004254 67 2 67 68 1 beam -102700 8078000 -93500 63040 -0.0004252 66 2 66 67 1 beam 235.9 8059000 -94680 94750 -0.0004241 65 2 65 66 1 beam 106400 8134000 -66080 94520 -0.0004281 64 2 64 65 1 beam 41760 8165000 -43470 66480 -0.0004297 63 2 63 64 1 beam 21080 8282000 -32300 43250 -0.0004359 62 2 62 63 1 beam 30470 8316000 -17120 31650 -0.0004377 61 2 61 62 1 beam 26690 8313000 -5711	70	2	70	71	1	beam	-31280	8195000	-31190	15540	-0.0004313
67 2 67 68 1 beam -102700 8078000 -93500 63040 -0.0004252 66 2 66 67 1 beam 235.9 8059000 -94680 94750 -0.0004241 65 2 65 66 1 beam 106400 8134000 -66080 94520 -0.0004281 64 2 64 65 1 beam 41760 8165000 -43470 66480 -0.0004297 63 2 63 64 1 beam 21080 8282000 -32300 43250 -0.0004359 62 2 62 63 1 beam 30470 8316000 -17120 31650 -0.0004377 61 2 61 62 1 beam 26690 8313000 -5711 17150 -0.0004375 60 2 60 61 1 beam 25540 8358000 15880	69	2	69	70	1	beam	-29680	8170000	-46760	30800	-0.00043
66 2 66 67 1 beam 235.9 8059000 -94680 94750 -0.0004241 65 2 65 66 1 beam 106400 8134000 -66080 94520 -0.0004281 64 2 64 65 1 beam 41760 8165000 -43470 66480 -0.0004297 63 2 63 64 1 beam 21080 8282000 -32300 43250 -0.0004359 62 2 62 63 1 beam 30470 8316000 -17120 31650 -0.0004377 61 2 61 62 1 beam 26690 8313000 -5711 17150 -0.0004375 60 2 60 61 1 beam 25540 8358000 15880 -2203 -0.0004373 59 2 59 60 1 beam 25540 8358000 18590 <td< td=""><td>68</td><td>2</td><td>68</td><td>69</td><td>1</td><td>beam</td><td>-48800</td><td>8083000</td><td>-62520</td><td>48050</td><td>-0.0004254</td></td<>	68	2	68	69	1	beam	-48800	8083000	-62520	48050	-0.0004254
65 2 65 66 1 beam 106400 8134000 -66080 94520 -0.0004281 64 2 64 65 1 beam 41760 8165000 -43470 66480 -0.0004297 63 2 63 64 1 beam 21080 8282000 -32300 43250 -0.0004359 62 2 62 63 1 beam 30470 8316000 -17120 31650 -0.0004377 61 2 61 62 1 beam 26690 8313000 -5711 17150 -0.0004375 60 2 60 61 1 beam 11640 8310000 902.6 3519 -0.0004373 59 2 59 60 1 beam 25540 8358000 15880 -2203 -0.0004399 58 2 58 59 1 beam 4704 8374000 18590 -1	67	2	67	68	1	beam	-102700	8078000	-93500	63040	-0.0004252
65 2 65 66 1 beam 106400 8134000 -66080 94520 -0.0004281 64 2 64 65 1 beam 41760 8165000 -43470 66480 -0.0004297 63 2 63 64 1 beam 21080 8282000 -32300 43250 -0.0004359 62 2 62 63 1 beam 30470 8316000 -17120 31650 -0.0004377 61 2 61 62 1 beam 26690 8313000 -5711 17150 -0.0004375 60 2 60 61 1 beam 11640 8310000 902.6 3519 -0.0004373 59 2 59 60 1 beam 25540 8358000 15880 -2203 -0.0004399 58 2 58 59 1 beam 4704 8374000 18590 -1		2			1						-0.0004241
64 2 64 65 1 beam 41760 8165000 -43470 66480 -0.0004297 63 2 63 64 1 beam 21080 8282000 -32300 43250 -0.0004359 62 2 62 63 1 beam 30470 8316000 -17120 31650 -0.0004377 61 2 61 62 1 beam 26690 8313000 -5711 17150 -0.0004375 60 2 60 61 1 beam 11640 8310000 902.6 3519 -0.0004373 59 2 59 60 1 beam 25540 8358000 15880 -2203 -0.0004399 58 2 58 59 1 beam 4704 8374000 18590 -16070 -0.0004408											
63 2 63 64 1 beam 21080 8282000 -32300 43250 -0.0004359 62 2 62 63 1 beam 30470 8316000 -17120 31650 -0.0004377 61 2 61 62 1 beam 26690 8313000 -5711 17150 -0.0004375 60 2 60 61 1 beam 11640 8310000 902.6 3519 -0.0004373 59 2 59 60 1 beam 25540 8358000 15880 -2203 -0.0004399 58 2 58 59 1 beam 4704 8374000 18590 -16070 -0.0004408											
62 2 62 63 1 beam 30470 8316000 -17120 31650 -0.0004377 61 2 61 62 1 beam 26690 8313000 -5711 17150 -0.0004375 60 2 60 61 1 beam 11640 8310000 902.6 3519 -0.0004373 59 2 59 60 1 beam 25540 8358000 15880 -2203 -0.0004399 58 2 58 59 1 beam 4704 8374000 18590 -16070 -0.0004408											
61 2 61 62 1 beam 26690 8313000 -5711 17150 -0.0004375 60 2 60 61 1 beam 11640 8310000 902.6 3519 -0.0004373 59 2 59 60 1 beam 25540 8358000 15880 -2203 -0.0004399 58 2 58 59 1 beam 4704 8374000 18590 -16070 -0.0004408											
60 2 60 61 1 beam 11640 8310000 902.6 3519 -0.0004373 59 2 59 60 1 beam 25540 8358000 15880 -2203 -0.0004399 58 2 58 59 1 beam 4704 8374000 18590 -16070 -0.0004408					_						
59 2 59 60 1 beam 25540 8358000 15880 -2203 -0.0004399 58 2 58 59 1 beam 4704 8374000 18590 -16070 -0.0004408											
58 2 58 59 1 beam 4704 8374000 18590 -16070 -0.0004408											
	57	2	57	58	1	beam	6583	8417000	22530	-18640	-0.0004408

Elem	ID	Nod1	Nod2	Prop		F-shear	F-axial	Mom-1	Mom-2	strain
_	_	-	-	-	-	[N]	[N]	[N m]	[N m]	-
56	2	56	57	1	beam	17810	8458000	33750	-23200	-0.0004451
55	2	55	56	1	beam	27590	8463000	49990	-34530	-0.0004454
54	2	54	55	1	beam	13190	8457000	57300	-49920	-0.0004451
53	2	53	54	1	beam	-12890	8397000	44940	-57460	-0.0004431
52	1	52	1	1	beam	-14230	8262000	60600	-68340	-0.0004419
51	1	51	52	1		-8606	8291000	55830	-60510	-0.0004349
	1	50	51		beam					
50				1	beam	-31580	8374000	37380	-56100	-0.0004407
49	1	49	50	1	beam	-25290	8365000	22390	-37380	-0.0004402
48	1	48	49	1	beam	-38230	8442000	1052	-22180	-0.0004443
47	1	47	48	1	beam	-34800	8406000	-18230	-1001	-0.0004424
46	1	46	47	1	beam	-47450	8494000	-36730	18260	-0.000447
45	1	45	46	1	beam	-36490	8565000	-53230	36990	-0.0004508
44	1	44	45	1	beam	-13030	8501000	-59020	53380	-0.0004474
43	1	43	44	1	beam	-43250	8492000	-77710	58990	-0.000447
42	1	42	43	1	beam	42510	8395000	-58970	77630	
41	1	41	42	1	beam	29940	8387000	-45300	58980	-0.0004414
40	1	40	41	1	beam	15950	8374000	-37490	44910	-0.0004408
39	1	39	40	1	beam	1039	8342000	-37030	37510	-0.0004391
38	1	38	39	1	beam	-10580	8301000	-41690	36940	-0.0004369
37	1	37	38	1	beam	-25050	8264000	-52070	41580	-0.0004349
36	1	36	37	1	beam	57970	8315000	-27980	52230	-0.0004376
35	1	35	36	1	beam	13680	8268000	-21200	27700	-0.0004352
34	1	34	35	1	beam	13880	8284000	-15380	21180	-0.000436
33	1	33	34	1	beam	-6314	8163000	-17570	15270	-0.0004296
32	1	32	33	1	beam	47110	8226000	7501	17780	-0.0004329
31	1	31	32	1	beam	25770	8153000	21190	-7361	-0.0004291
30	1	30	31	1	beam	11410	8090000	27060	-20620	-0.0004258
29	1	29	30	1	beam	66680	8115000	64040	-26430	-0.0004271
28	1	28	29	1	beam	48360	8170000	111700	-64000	-0.00043
27	1	27	28	1	beam	-37310	8324000	74760	-112000	-0.0004381
26	1	26	27	1	beam	-82270	8410000	283.3	-74980	-0.0004426
25	1	25	26	1	beam	-46850	8520000	-23470	-252.4	-0.0004484
24	1	24	25	1	beam	-36080	8610000	-41920	23660	-0.0004531
23	1	23	24	1	beam	2607	8606000	-40720	41960	-0.0004529
22	1	22	23	1	beam	-9891	8652000	-45140	40450	-0.0004554
21	1	21	22	1	beam	14780	8660000	-39790	45190	-0.0004558
20	1	20	21	1	beam	11410	8659000	-34870	39690	-0.0004557
19	1	19	20	1	beam	-13220	8671000	-40890	35390	
18	1	18	19	1	beam	31890	8637000	-27580	40850	
17	1	17	18	1	beam	23350	8676000	-16840	27420	-0.0004566
16	1	16	17	1	beam	18190	8706000	-8135	16860	-0.0004582
15	1	15	16	1	beam	5967	8716000	-4963	7924	
14	1	14	15	1	beam	-7553	8711000	-8758	4986	-0.0004585
13	1	13	14	1	beam	-18220	8689000	-17270	8356	
12	1	12	13	1		-25390	8639000	-29240	17390	
	1		13		beam					
11		11		1	beam	-37920	8570000	-45630	29110	-0.0004511
10	1	10	11	1	beam	15430	8605000	-39010	45460	-0.0004529
9	1	9	10	1	beam	10420	8567000	-34610	38960	-0.0004509
8	1	8	9	1	beam	27030	8542000	-23940	34520	-0.0004496

Elem	ID	Nod1	Nod2	Prop		F-shear	F-axial	Mom-1	Mom-2	strain
-	-	-	-	-	-	[N]	[N]	[N m]	[N m]	-
7	1	7	8	1	beam	17040	8400000	-15540	23880	-0.0004421
6	1	6	7	1	beam	45940	8378000	6854	15650	-0.000441
5	1	5	6	1	beam	13880	8279000	14320	-6948	-0.0004358
4	1	4	5	1	beam	45070	8276000	38490	-14540	-0.0004356
3	1	3	4	1	beam	-9567	8171000	33690	-38630	-0.0004301
2	1	2	3	1	beam	40070	8187000	54530	-33850	-0.0004309
1	1	1	2	1	beam	14200	8155000	67810	-54480	-0.0004292

<u>Analisi numerica per la verifica dell'anello da 0.5 m - Analisi n°19</u>

Per comodità di lettura del presente allegato, nella tabella che segue è riportata una sintesi delle fasi di calcolo previste per l'analisi numerica:

La seguente figura schematizza la successione delle fasi di calcolo delle due differenti analisi condotte:

Tabella 3 - Fasi di analisi (sollecitazioni massime sui rivestimenti)

Fase	Descrizione	Rilascio forze di scavo
0	Creazione della geometria del modello	-
1	Inizializzazione dello stato tensionale geostatico in condizioni elastiche	-
2	Inizializzazione dello stato tensionale geostatico in condizioni plastiche (modello costitutivo di Mohr-Coulomb)	-
	SCAVO CANNA DESTRA	.1
3	Rilascio delle forze al contorno (da assialsimmetrici) TRV: in condizioni non drenate (Cu)	varie
4	Installazione dell'anello universale	1.0
	SCAVO CANNA SINISTRA	
5	Rilascio delle forze al contorno (da assialsimmetrici) (come per canna destra)	varie
6	Installazione dell'anello universale	1.0
	LUNGO TERMINE	
7	Ipotesi di drenaggio totale della falda al contorno del cavo – parateri drenati	1.0

Le unità di misura principali attraverso le quali sono rappresentati i risultati dell'analisi nelle figure contenute nel presente documento sono le seguenti:

- m per le grandezze egli spostamenti;
- N per le forze.

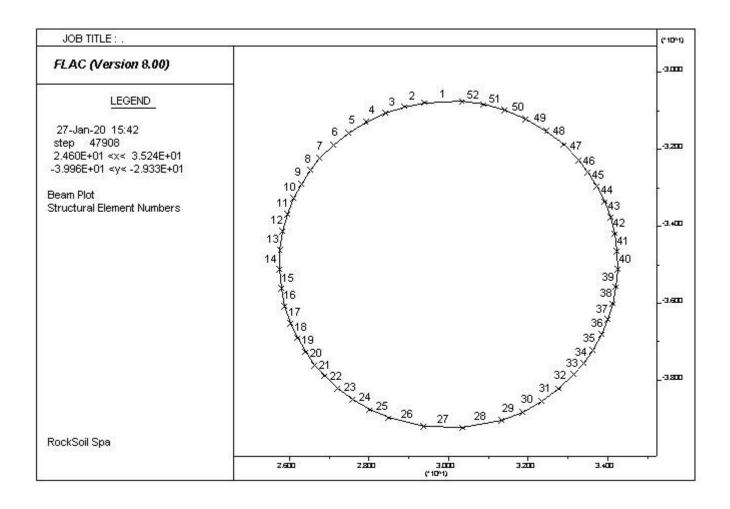


Figura 55 - Numerazione elementi beam canna Destra

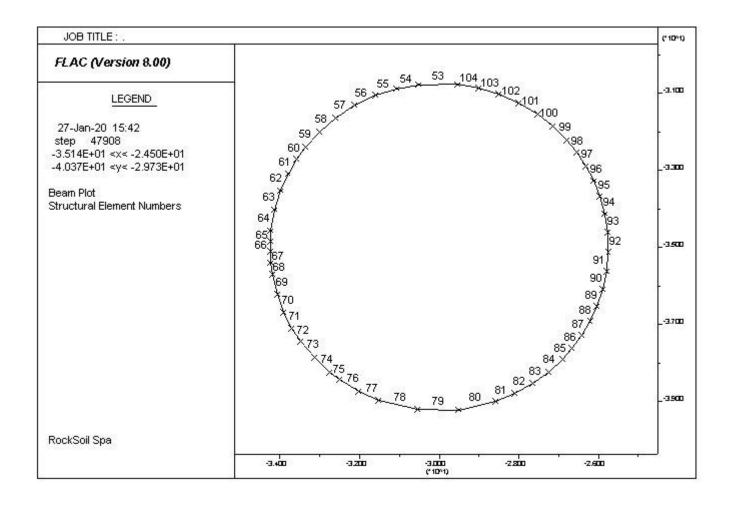


Figura 56 - Numerazione elementi beam canna Sinistra

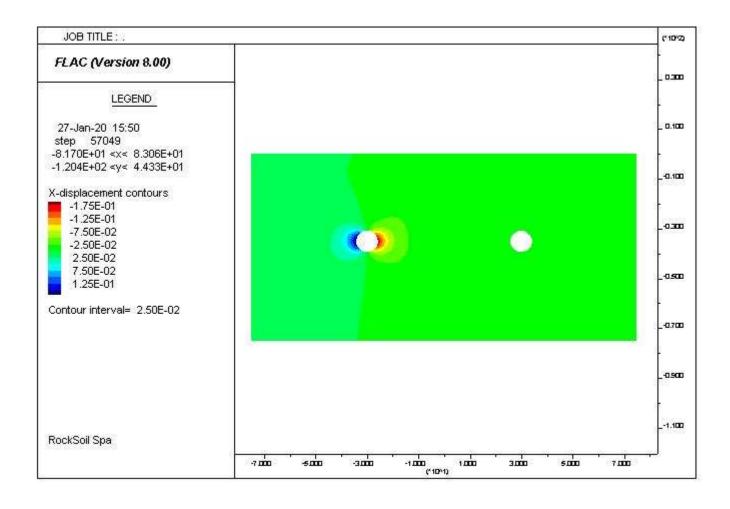


Figura 57 - Spostamenti x

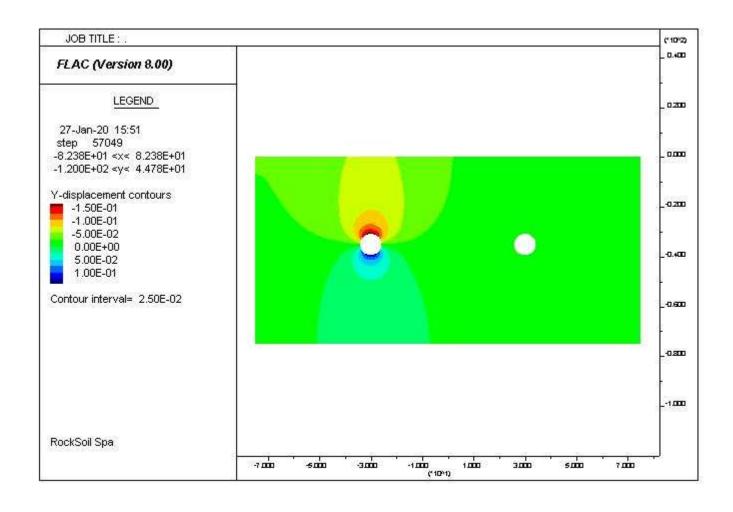


Figura 58 - Spostamenti y

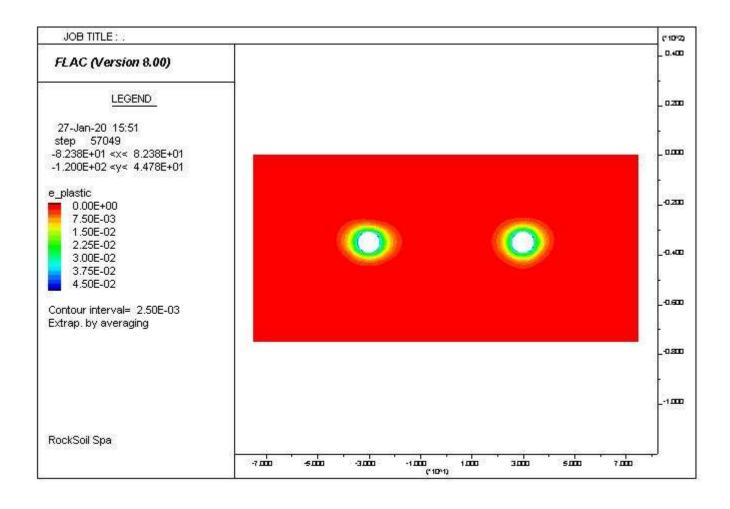


Figura 59 – Plasticizzazioni

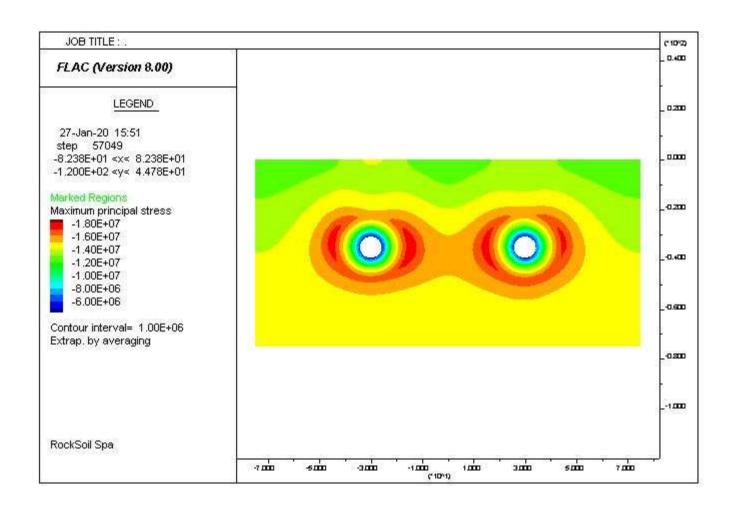


Figura 60 – Tensioni principali totali sigma1

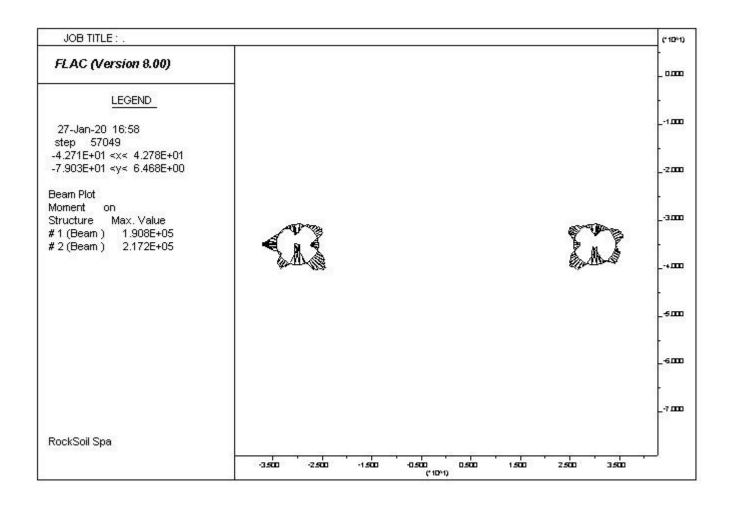


Figura 61 – Sollecitazioni M

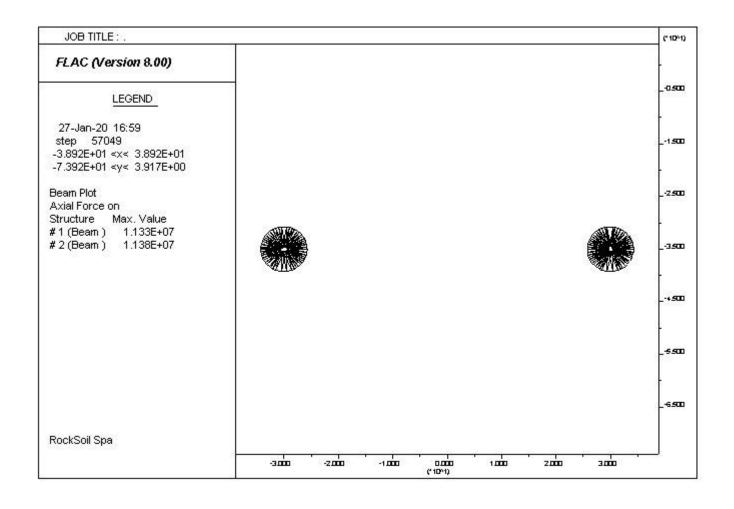


Figura 62 – Sollecitazioni N

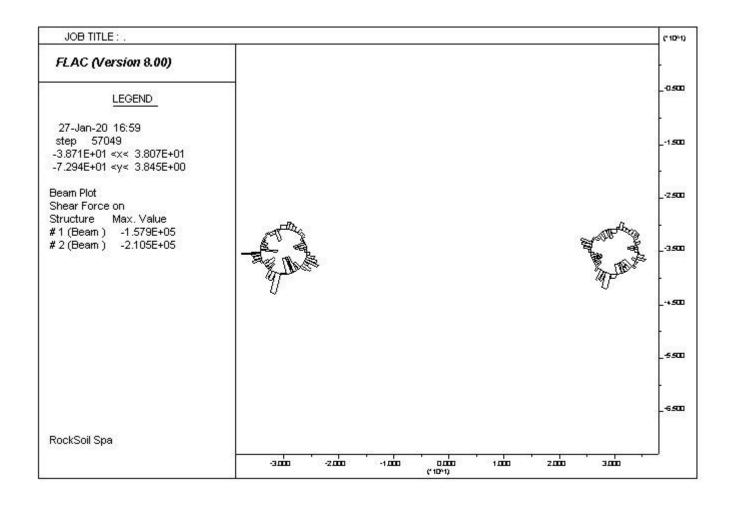


Figura 63 – Sollecitazioni T

Elem	ID	Nod1	Nod2	Prop		F-shear	F-axial	Mom-1	Mom-2	strain
-	-	-	-	-	-	[N]	[N]	[N m]	[N m]	-
104	2	104	53	1	beam	-72100	11270000	38860	-77160	-0.0005932
103	2	103	104	1	beam	-63920	11230000	5105	-39060	-0.0005908
102	2	102	103	1	beam	-48100	11200000	-21420	-5048	-0.0005895
101	2	101	102	1	beam	-4492	11080000	-24120	21650	-0.0005833
100	2	100	101	1	beam	-49900	11060000	-49710	24440	-0.0005819
99	2	99	100	1	beam	-33670	10950000	-66700	49650	-0.0005763
98	2	98	99	1	beam	-33900	11030000	-80690	67370	-0.0005806
97	2	97	98	1	beam	22450	10920000	-71820	81440	-0.0005749
96	2	96	97	1	beam	11280	10850000	-68070	72910	-0.000571
95	2	95	96	1	beam	121900	10690000	-14760	68130	-0.0005625
94	2	94	95	1	beam	107300	10710000	35550	14810	-0.0005634
93	2	93	94	1	beam	69540	10710000	69140	-34940	-0.0005638
92	2	92	93	1	beam	22410	10710000	79600	-68340	-0.000563
	2			1						
91		91	92		beam	-29650	10680000	64480	-79270	-0.0005619
90	2	90	91	1	beam	-78020	10650000	26830	-64470	-0.0005605
89	2	89	90	1	beam	-113400	10600000	-24640	-26990	-0.0005579
88	2	88	89	1	beam	-141700	10550000	-84550	24110	-0.0005554
87	2	87	88	1	beam	-52540	10590000	-106800	84380	-0.0005575
86	2	86	87	1	beam	-95670	10600000	-147000	106500	-0.0005579
85	2	85	86	1	beam	-61250	10620000	-168600	146200	-0.0005592
84	2	84	85	1	beam	73610	10660000	-132600	168600	-0.0005612
83	2	83	84	1	beam	38150	10650000	-113400	132100	-0.0005607
82	2	82	83	1	beam	164900	10780000	-25910	112300	-0.0005675
81	2	81	82	1	beam	158100	10830000	57330	25460	-0.0005699
80	2	80	81	1	beam	162300	10990000	211700	-57430	-0.0005785
79	2	79	80	1	beam	4857	11200000	217100	-212100	-0.0005893
78	2	78	79	1	beam	-210500	10910000	6390	-217200	-0.0005741
77	2	77	78	1	beam	-92920	10670000	-46620	-5952	-0.0005614
76	2	76	77	1	beam	-87200	10640000	-96060	46720	-0.0005601
75	2	75	76	1	beam	79420	10410000	-72200	96550	-0.0005478
74	2	74	75	1	beam	20570	10390000	-61520	72800	-0.0005466
73	2	73	74	1	beam	117600	10340000	2854	61650	-0.0005443
72	2	72	73	1	beam	57270	10440000	24660	-1446	-0.0005493
71	2	71	72	1	beam	-21590	10450000	14440	-24250	-0.00055
70	2	70	71	1	beam	-85860	10390000	-28210	-14740	-0.0005469
69	2	69	70	1	beam	-70440	10330000	-66000	28120	-0.0005435
68	2	68	69	1	beam	-82340	10140000	-90610	66200	-0.0005335
67	2	67	68	1	beam	-182200	10120000	-145100	91090	-0.0005325
66	2	66	67	1	beam	3111	10130000	-144200	145000	-0.0005333
65	2	65	66	1	beam	177600	10200000	-96070	143600	-0.0005371
64	2	64	65	1	beam	63880	10320000	-60900	96100	-0.000543
63	2	63	64	1	beam	48340	10600000	-35570	60690	-0.0005577
62	2	62	63	1	beam	58690	10710000	-7153	35130	-0.0005638
61	2	61	62	1	beam	25080	10800000	3332	7419	-0.0005682
60	2	60	61	1	beam	7218	10850000	6294	-3551	-0.0005709
59	2	59	60	1	beam	10860	10960000	12040	-6228	-0.0005766
58	2	58	59	1	beam	-13470	11040000	4423	-11630	-0.0005700
20		57	58		beam	32210	11140000	23910	-4839	-0.000381

Elem	ID	Nod1	Nod2	Prop		F-shear	F-axial	Mom-1	Mom-2	strain
_	_	-	_	-	_	[N]	[N]	[N m]	[N m]	_
56	2	56	57	1	beam	32250	11300000	43010	-23920	-0.0005948
55	2	55	56	1	beam	112300	11380000	105900	-43010	-0.0005987
54	2	54	55	1	beam	15500	11320000	114900	-106200	-0.000596
53	2	53	54	1	beam	-38870	11230000	77100	-114900	-0.0005913
52	1	52	1	1	_	-19570	10910000	108600	-114300	-0.0003913
51	1	51	52	1	beam	-70660	10910000	70410	-119300	-0.0005778
	1				beam					
50		50	51	1	beam	-36990	11040000	48490	-70410	-0.000581
49	1	49	50	1	beam	-31320	10950000	29910	-48480	-0.0005763
48	1	48	49	1	beam	-53600	11010000	483.8	-30110	-0.0005796
47	1	47	48	1	beam	-64110	10920000	-34640	-789.9	-0.0005748
46	1	46	47	1	beam	-70300	11020000	-61820	34460	-0.0005799
45	1	45	46	1	beam	-48360	11110000	-83000	61470	-0.0005848
44	1	44	45	1	beam	12660	10980000	-77310	82790	-0.000578
43	1	43	44	1	beam	-37970	10950000	-93590	77150	-0.0005765
42	1	42	43	1	beam	93740	10830000	-52440	93570	-0.0005698
41	1	41	42	1	beam	72900	10800000	-19220	52530	-0.0005686
40	1	40	41	1	beam	34760	10770000	-3307	19480	-0.0005667
39	1	39	40	1	beam	-9738	10700000	-8329	3823	-0.000563
38	1	38	39	1	beam	-58200	10590000	-34300	8140	-0.0005576
37	1	37	38	1	beam	-90380	10530000	-72180	34380	-0.000554
36	1	36	37	1	beam	42930	10550000	-54090	72050	-0.0005555
35	1	35	36	1	beam	-28550	10490000	-67440	53870	-0.0005523
34	1	34	35	1	beam	-9883	10530000	-71570	67440	-0.0005544
33	1	33	34	1	beam	-34530	10350000	-84140	71570	-0.0005446
32	1	32	33	1	beam	106100	10500000	-26880	83810	-0.0005525
31	1	31	32	1	beam	59010	10420000	4892	26770	-0.0005485
30	1	30	31	1	beam	46290	10410000	30650	-4547	-0.0005477
29	1	29	30	1	beam	104500	10570000	89630	-30700	-0.0005565
28	1	28	29	1	beam	102600	10770000	190800	-89540	-0.0005669
27	1	27	28	1	beam	-47580	11060000	143200	-190700	-0.0005823
26	1	26	27	1	beam	-157900	11000000	-30.84	-143300	-0.0005791
25	1	25	26	1	beam	-101800	11000000	-51540	6.642	-0.0005788
24	1	24	25	1	beam	-107900	11060000	-106400	51780	-0.000582
23	1	23	24	1	beam	2758	10990000	-105300	106600	-0.0005783
22	1	22	23	1	beam	-41210	11050000	-124900	105400	-0.0005817
21	1	21	22	1	beam	66220	11060000	-100700	124900	-0.0005821
20	1	20	21	1	beam	68510	11090000	-72050	100900	-0.0005835
19	1	19	20	1	beam	23950	11130000	-62130	72090	-0.0005856
18	1	18	19	1	beam	101900	11150000	-19380	61780	-0.000587
17	1	17	18	1	beam	92650	11240000	22500	19480	-0.0005917
16	1	16	17	1	beam	67220	11310000	54710	-22450	-0.0005917
15	1	15					11330000			-0.0005952
	1		16	1	beam	29420		69300	-54710	
14		14	15	1	beam	-22980	11320000	57790	-69270	-0.0005959
13	1	13	14	1	beam	-72490	11280000	22170	-57630	-0.0005937
12	1	12	13	1	beam	-102800	11210000	-25460	-22540	-0.00059
11	1	11	12	1	beam	-117000	11110000	-76480	25500	-0.0005845
10	1	10	11	1	beam	-17110	11170000	-83730	76580	-0.0005879
9	1	9	10	1	beam	-16390	11160000	-90890	84030	-0.0005871
8	1	8	9	1	beam	38480	11180000	-75860	90930	-0.0005886

Elem	ID	Nod1	Nod2	Prop		F-shear	F-axial	Mom-1	Mom-2	strain
-	-	-	-	-	-	[N]	[N]	[N m]	[N m]	-
7	1	7	8	1	beam	43300	11000000	-54630	75840	-0.000579
6	1	6	7	1	beam	88200	11020000	-11870	55080	-0.0005801
5	1	5	6	1	beam	-3507	10920000	-13860	11990	-0.0005749
4	1	4	5	1	beam	75500	10950000	26100	14020	-0.0005766
3	1	3	4	1	beam	5381	10810000	28540	-25760	-0.0005689
2	1	2	3	1	beam	95380	10820000	77790	-28560	-0.0005696
1	1	1	2	1	beam	43920	10760000	119100	-77810	-0.0005661