COMMITTENTE:

PROGETTAZIONE:

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

PROGETTO DEFINITIVO

TRATTA CALTANISSETTA XIRBI - NUOVA ENNA (LOTTO 4A)

VI00 - ELABORATI GENERALI

Impalcato in c.a.p. L=25 m Doppio Binario

Relazione di Calcolo Impalcato

SCALA:	
_	

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

R S 3 U 4 0 D 0 9 C L V I 0 0 0 7 0 0 8 A

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Augrizzato Data
Α	Emissione definitiva	M.Franchinotti	Gennaio 2020	A. Feri	Gennaio 2020	A.Barroca	Gennaio 2020	A Vittozzi Segnati 2020
								A S.p. A stione geology of the Property of the
								TALPER viii e Gi fing. An egneri N° A2
			<i>হ</i>]					l Dpere Ci Dott. fegli Ing

File: RS3U40D09CLVI0007008A.doc n. Elab.: 909_004_6

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 2 di 75

INDICE

1	S	COPO DEL DOCUMENTO	4
2	N	ORMATIVA DI RIFERIMENTO	6
3	Ca	aratteristiche dei materiali	8
;	3.1	Calcestruzzo per travi in c.a.p. e traversi	8
;	3.2	Calcestruzzo per getti in opera impalcato e predalles	8
;	3.3	Acciao per c.a	
;	3.4	Acciao per c.a.p.	9
4	Ar	nalisi dei carichi	10
4	4.1	Pesi propri (G1t e G1s)	10
4	4.2	Permanenti portati (G2)	12
4	4.3	Viscosità e ritiro	12
4	4.4	Carichi verticali da traffico (Qvk)	13
	4.4	4.1 Treni di carico	13
	4.4	4.2 Carichi sui marciapiedi	17
	4.4	4.3 Forza centrifuga	17
	4.4	1.4 Serpeggio	19
	4.4	4.5 Avviamento e frenatura	19
4	4.5	Azioni dinamiche	20
4	4.6	Azioni dovute al deragliamento	22
4	4.7	Vento (Q5q)	25
4	4.8	Azione sismica (SX,SY,SZ)	26
5	Si	imbologia e convenzioni	28
6	Ar	nalisi impalcato	29
(6.1	Modello di calcolo	29
•	6.2	Sollecitazioni	35
(6.3	Combinazioni	38
(6.4	Effetti globali sull'impalcato – Verifica tensionale trave in mezzeria	41
(6.5	Verifiche a fessurazione	50
(6.6	Effetti globali sull'impalcato – Verifiche agli SLU	51
	6.6	S.1 Sollecitazioni	51

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario
RELAZIONE DI CALCOLO

PROGETTO	LOTTO	FASE	ENTE	COD	DOC.	PROG.	REV.	FOGLIO
RS3U	40	D	09	CL	VI0007	800	Α	3 di 75

6.6.2	Verifiche	53
6.7 Trav	versi – Verifiche Tensionali agli SLE	57
6.8 Veri	ifica soletta	63
6.8.1	Inviluppo sollecitazioni	63
6.8.2	Verifiche SLU	66
6.8.3	Verifiche SLE	69
7 VERIF	FICA AL SOLLEVAMENTO	72
8 VERIF	FICHE DI DEFORMAZIONE	74
	ifica deformazioni torsionali (sghembo)	
8.2 Veri	ifica stato limite di confort	74
9 Riepilo	ogo appoggi e giunti	75

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS3U 40 D 09 CL VI0007 008 A 4 di 75

1 SCOPO DEL DOCUMENTO

Nel presente documento di calcolo è riportata l'analisi strutturale relativa agli impalcati ferroviari in c.a.p., costituiti da 4 travi a cassoncino accostate e soletta di completamento gettata in opera. Le analisi strutturali anzidette inviluppano cautelativamente le peggiori condizioni di impiego, in termini di della tipologia strutturale in questione.

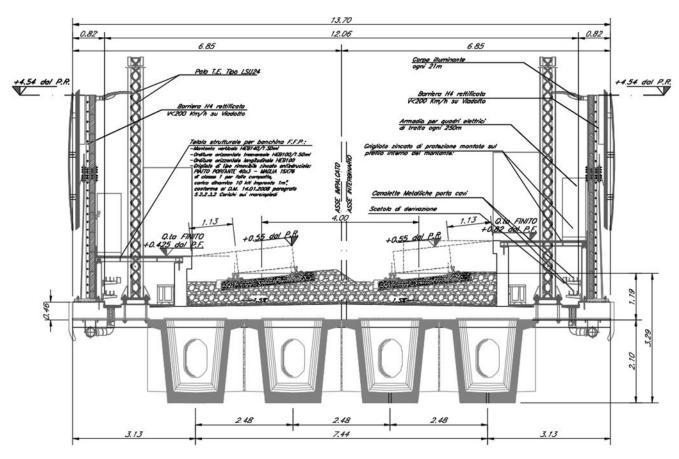


Figura 1 –sezione trasversale

La luce è pari a 25.00 m misurata dall'asse delle pile. La lunghezza complessiva delle travi prefabbricate è pari a 24.30 m. La luce tra gli appoggi (portata teorica) è pari a 22.80 m. Lo schema di calcolo è di trave in semplice appoggio. Lo schema degli appoggi, riportato di seguito, prevede un dispositivo sotto ogni trave. La larghezza dell'impalcato è pari a 13.70 m, necessaria al fine di ospitare il *tipologico RFI* per le barriere antirumore. L'armamento è di tipo tradizionale su ballast e l'interasse tra i binari è pari a 4.0 m. Oltre i traversi di testata, sono previsti due traversi intermedi; i traversi saranno solidarizzati mediante trefoli post-tesi iniettati. Di seguito si

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

PROGETTO	LOTTO	FASE	ENTE	COD	. DOC.	PROG.	REV.	FOGLIO
RS3U	40	D	09	CL	VI0007	800	Α	5 di 75

riportano delle viste in pianta, prospetto e sezione dell'impalcato tipologico, oltre che lo schema di disposizione dei vincoli previsto.

Su entrambi i lati della sezione dell'impalcato è presente una banchina F.F.P. (Fire Fighting Point) con relativo telaio strutturale.

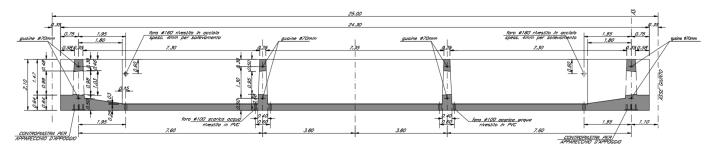


Figura 2 –sezione longitudinale

Lo schema appoggi prevede la presenza di 2 appoggi fissi su un lato e 1 unidirezionale longitudinale sul lato opposto. Tutti gli altri sono appoggi multidirezionali.

Appoggio fisso a rigidezza variabile

Appoggio unidirezionale

Appoggio multidirezionale

Figura 3 – Schema appoggi

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO
 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 6 di 75

2 NORMATIVA DI RIFERIMENTO

Le principali Normative nazionali ed internazionali vigenti alla data di redazione del presente documento e prese a riferimento sono le seguenti:

- [N1] **Legge 05/01/1971 n°1086:** Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica;
- [N2] **Legge 02/02/1974 n°64:** Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche;
- [N3] D.M. del 17 gennaio 2018: Nuove norme tecniche per le costruzioni;
- [N4] C.M. 21/01/2019 n.7: Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni;
- [N5] RFI DTC SI PS MA IFS 001 C: Manuale di progettazione delle Opere Civili. Emissione per applicazione del 21/12/2018;
- [N6] RFI DTC SI PS SP IFS 001 C del 21/12/2018: Capitolato generale tecnico di appalto delle opere civili Parte II Sezione 6 Opere in conglomerato cementizio e in acciaio;

Nella redazione dei progetti e nelle verifiche strutturali si è inoltre fatto riferimento alla normativa Europea di seguito specificata:

- [N1] **UNI EN 1991-1-4:2005:** Eurocodice 1 Azioni sulle strutture Parte 1-4: Azioni in generale Azioni del vento:
- [N2] **UNI EN 1992-1-1:2005**: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici;
- [N3] UNI EN 1992-2:2006: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 2: Ponti;
- [N4] **UNI EN 1993-1-1:2005:** Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-1: Regole generali e regole per gli edifici;
- [N5] UNI EN 1993-2:2007: Eurocodice 3 Progettazione delle strutture di acciaio Parte 2: Ponti;
- [N6] **UNI EN 1998-1:2005:** Eurocodice 8 Progettazione delle struttura per la resistenza sismica Parte 1: Regole generali, azioni sismiche e regole per gli edifici;
- [N7] **UNI EN 1998-2:2006:** Eurocodice 8 Progettazione delle struttura per la resistenza sismica Parte 2: Ponti;
- [N7] STI 2014 REGOLAMENTO UE N.1299/2014 della commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019;

Tutti gli elementi lavorati dovranno essere controllati ed accettati in accordo al capitolato generale tecnico delle opere civili di RFI e alla UNI EN 1090-2 (classe di esecuzione exc4 eccetto camminamenti e grigliati per i quali, come previsto sull'appendice b, si può utilizzare la classe di esecuzione exc2).

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV.
RS3U 40 D 09 CL VI0007 008 A

FOGLIO 7 di 75

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 8 di 75

3 Caratteristiche dei materiali

Si riportano di seguito i materiali previsti per la realizzazione delle strutture, suddivisi per elemento costruttivo.

3.1 Calcestruzzo per travi in c.a.p. e traversi

Classe	C45/55		
R _{ck} =	55	MPa	resistenza caratteristica cubica
$f_{ck} =$	45	MPa	resistenza caratteristica cilindrica
$f_{\text{cm}} =$	53	MPa	valor medio resistenza cilindrica
$\alpha_{cc}=$	0,85		coeff. rid. Per carichi di lunga durata
дм=	1,5	-	coefficiente parziale di sicurezza SLU
$f_{\text{cd}} =$	25,50	MPa	resistenza di progetto
$f_{\text{ctm}} =$	3,80	MPa	resistenza media a trazione semplice
$f_{\text{cfm}} =$	4,55	MPa	resistenza media a trazione per flessione
$f_{ctk} =$	2,66	MPa	valore caratteristico resistenza a trazione
E _{cm} =	36283	MPa	Modulo elastico di progetto
v =	0,2		Coefficiente di Poisson
$G_c =$	15118	MPa	Modulo elastico Tangenziale di progetto

3.2 Calcestruzzo per getti in opera impalcato e predalles

Classe	C32/40		
$R_{ck} =$	40	MPa	resistenza caratteristica cubica
$f_{ck} =$	32	MPa	resistenza caratteristica cilindrica
$f_{\text{cm}} =$	40	MPa	valor medio resistenza cilindrica
α_{cc} =	0,85		coeff. rid. Per carichi di lunga durata
дм=	1,5	-	coefficiente parziale di sicurezza SLU
$f_{cd} =$	18,13	MPa	resistenza di progetto
$f_{\text{ctm}} =$	3,02	MPa	resistenza media a trazione semplice
$f_{\text{cfm}} =$	3,63	MPa	resistenza media a trazione per flessione
$f_{ctk} =$	2,12	MPa	valore caratteristico resistenza a trazione
E _{cm} =	33346	MPa	Modulo elastico di progetto
v =	0,2		Coefficiente di Poisson
$G_c =$	13894	MPa	Modulo elastico Tangenziale di progetto

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 9 di 75

3.3 Acciao per c.a.

450	MPa	tensione caratteristica di snervamento
540	MPa	tensione caratteristica di rottura
1,15		
1,35		
1,15	-	coefficiente parziale di sicurezza SLU
391,3	MPa	tensione caratteristica di snervamento
200000	MPa	Modulo elastico di progetto
0,196%		deformazione di progetto a snervamento
7,50%		deformazione caratteristica ultima
	540 1,15 1,35 1,15 391,3 200000 0,196%	540 MPa 1,15 1,35 1,15 - 391,3 MPa 200000 MPa 0,196%

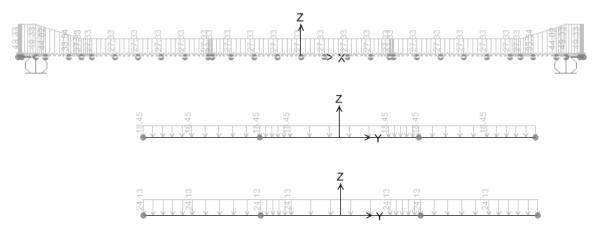
3.4 Acciao per c.a.p.

Ф0.6"A=140mmq

f _{pk} ≥			1860	MPa	tensione caratteristica di rottura
$f_{p(0,1)k} \ge$			-	MPa	tensione caratteristica allo 0,1% di def. Residua
$f_{p(1)k} \ge$			1670	MPa	tensione caratteristica allo 1% di def. Totale
Allung.	Per	carico	3,50%	-	
max.					
E _p =			195.000	MPa	Modulo elastico di progetto
$\gamma_s =$			1,15	-	coefficiente parziale di sicurezza SLU
$f_{pd} =$			1456	MPa	tensione caratteristica di snervamento
$\varepsilon_{\text{ypd}} = f_{\text{pd}} / E$	Ξp		0,75%		deformazione di progetto a snervamento
$\epsilon_{ud} = 0.9 x$	εuk		3,15%		deformazione caratteristica ultima

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO


PROGETTO	LOTTO	FASE	ENTE	COD	DOC.	PROG.	REV.	FOGLIO
RS3U	40	D	09	CL	VI0007	800	Α	10 di 75

4 Analisi dei carichi

4.1 Pesi propri (G1t e G1s)

Travi impalcato									
	Parti simili	Ripetizioni	Spessore	Larghezza	Area	Lunghezza	Volume (KN	/mc-mq)	Peso (kN)
Sezione corrente	4				1.0932	18.9	82.65	25	2066.1
Sezione in testata	4				1.9730	1.50	11.84	25	296.0
Sezione media	4				1.5331	3.90	23.92	25	597.9
sommano						24.30	118.40		2960.0
Trasversi									
	Parti simili	Ripetizioni	Spessore	Larghezza	Area	Lunghezza	Volume (KN	/mc-mq)	Peso (kN)
Trasversi interni	2		0.325	2.48		9.88	15.93	25	398.2
Trasversi di testata	2		0.425	2.48		9.88	20.83	25	520.7
Fori a detrarre trasversi interni	-4	2	0.325		0.5167		-1.34	25	-33.6
Fori a detrarre trasversi testata	-4	2	0.425		0.5167		-1.76	25	-43.9
sommano							33.65		841.3
Soletta									
	Parti simili	Ripetizioni	Spessore	Larghezza	Area	Lunghezza	Volume (KN	/mc-mq)	Peso (kN)
Soletta	1		0.365	13.7		25.00	125.01	25	3125.3
sommano							125.01		3125.3
Riepilogo	Peso (kN)	ez (m)	Sz (kNm/m)	L(m)?	eso (kN/ml)				
Travi	2960.0			25.00	118.40				
Trasversi	841.3	0.00	0.0	25.00	33.65				
Soletta	3125.3	0.00	0.0	25.00	125.01				
sommano	6926.7	0.00	0.0		277.1				
	≈ 6927.0								

I carichi derivanti dal peso proprio di travi e traversi (G1t) sono stati schematizzati secondo carichi uniformemente distribuiti lungo i frame.

I carichi derivanti dalla soletta (G1s) sono stati schematizzati secondo carichi e momenti uniformemente distribuiti lungo i frame delle travi, secondo le aree di influenza di ogni trave.

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO
 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 11 di 75

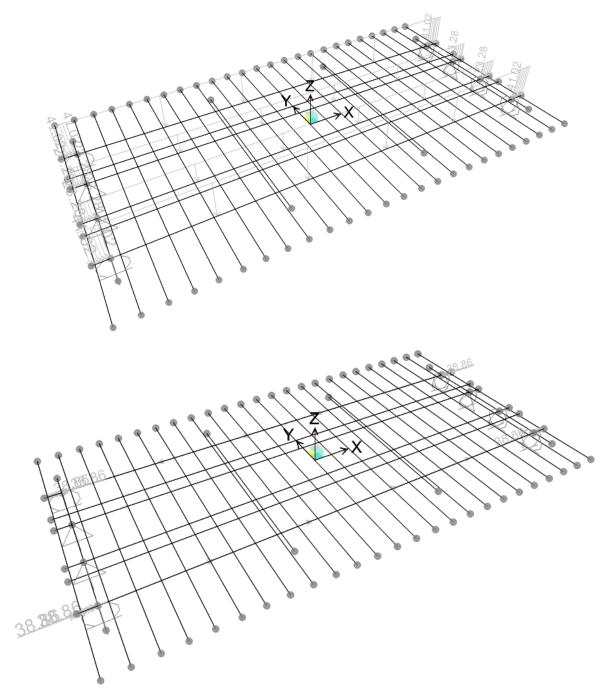


Figura 4 – Carichi soletta

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

PROGETTO	LOTTO	FASE	ENTE	COD	DOC.	PROG.	REV.	FOGLIO
RS3U	40	D	09	CL	VI0007	800	Α	12 di 75

4.2 Permanenti portati (G2)

Si assumono i seguenti valori di pesi portati in accordo con la sezione trasversale dell'impalcato.

Permanenti portati	Ripetizioni	Spessore	Larghezza	Area L	Lunghezza	Volume	p	Peso
	-	m	m	mq	m	mc	kN/mc-mq	kN/ml
Muri paraballast	0			0.1433		0.0000	25.0	0.0
Muri banchina FFPP - in sx	1			0.4000		0.4000	25.0	10.0
Muri banchina FFPP - in dx	1			0.5000		0.5000	25.0	12.5
Muri banchina stazione	0			1.8100		0.0000	25.0	0.0
Cordolo in sx	1	0.14	0.82			0.1148	25.0	2.9
Cordolo in dx	1	0.14	0.82			0.1148	25.0	2.9
Velette	2			0.09		0.1800	25.0	4.5
Ballast+ impermab. sottoballast + armamento	1	0.8	7.9			6.3200	18.0	113.8
Incremento per rialzo in curva	2			0.250		0.5000	20.0	10.0
Canalette	2			0.085		0.1700	25.0	4.3
Impermeabilizzazione marciapiedi	2	0.05	1.78			0.1780	20.0	3.6
Impermeabilizzazione banchina stazione	0	0.05	4.47			0.0000	20.0	0.0
Impermeabilizzazione soletta sotto banchina	0	0.05	3.67			0.0000	20.0	0.0
Barriere antirumore	2	1	4			8.0000	4.0	32.0
Telaio FFPP	2					2.0000	1.5	3.0
Impianti	2					2.0000	1.5	3.0
Impianti banchina stazione	0					0.0000	3.0	0.0
					Т	otale perman	enti portati G2	202.3

I carichi puntuali e distribuiti dei permanenti portati sono stati posizionati sui frame di soletta di larghezza unitaria.

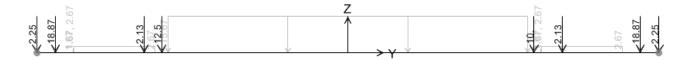


Figura 5 – Permanenti portati

4.3 Viscosità e ritiro

Gli effetti della viscosità e del ritiro sono stati calcolati considerando un'umidità relativa del 75% ed un tempo di applicazione del carico t0=7 giorni.

E' stato considerato inoltre un ritiro differenziale trave – soletta pari al 10% del ritiro totale della sola trave.

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 13 di 75

4.4 Carichi verticali da traffico (Qvk)

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

4.4.1 Treni di carico

I carichi verticali sono definiti per mezzo dei modelli di carico elencati nella seguente tabella. I valori caratteristici dei carichi attribuiti ai modelli di carico debbono moltiplicarsi per il coefficiente " α " che deve assumersi come da tabella seguente:

MODELLO DI CARICO	COEFFICIENTE "a"
LM71	1.1
SW/0	1.1
SW/2	1.0

Tabella 1 – coefficienti α per modelli di carico

Non si considera il modello di carico SW/0 perché l'impalcato non è continuo.

4.4.1.1 Treno di carico LM71

Il Treno di carico LM71 è schematizzato nella figura seguente.

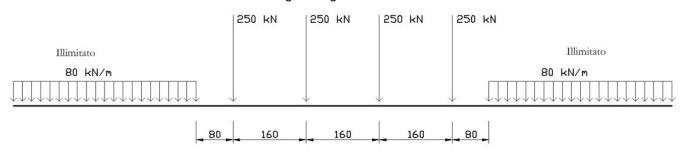


Figura 6 – Treno di carico LM71

Per questo modello di carico è prevista una eccentricità del carico rispetto all'asse del binario pari a s/18, con s=1435 mm. Quindi, l'eccentricità considerata nel modo più sfavorevole per le strutture è pari a: e = ~80 mm

4.4.1.2 Treno di carico SW/2

Il Treno di carico SW/2 è schematizzato nella figura seguente.

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV.
 FOGLIO

 RS3U 40 D 09 CL VI0007 008 A 14 di 75

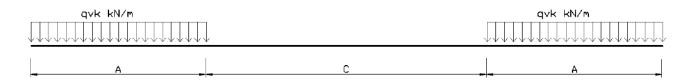


Figura 7 – Treno di carico SW

Tipo di carico	Qvk	Α	С
	[kN/m]	[m]	[m]
SW/0	133	15.0	5.3
SW/2	150	25.0	7.0

Tabella 2 – caratterizzazione treni di carico SW

Nel presente documento, si è considerato solo il modello di carico SW/2.

4.4.1.3 Ripartizione locale dei carichi

4.4.1.3.1 Ripartizione longitudinale

Nelle analisi si sono considerati i seguenti meccanismi di ripartizione longitudinale dei carichi.

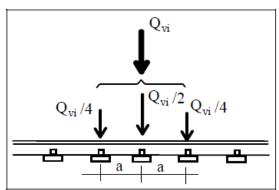


Figura 8 – meccanismo di ripartizione longitudinale per mezzo del binario

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 15 di 75

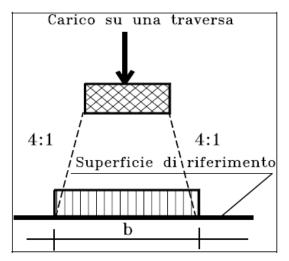


Figura 9 – meccanismo di ripartizione longitudinale per mezzo di traversa e ballast

La superficie di riferimento è la superficie di appoggio del ballast.

Nel caso specifico, la ripartizione viene valutata a partire dai seguenti parametri medi:

Larghezza traversine: B = 0.26 mInterasse traversine: i = 0.60 mAltezza di diffusione: h = 0.40 m

Larghezza di diffusione: b = B + 2 x h/4 = 0.46 m < i

Il valore appena calcolato per la larghezza di ripartizione sarà impiegato per la valutazioni degli effetti locali trasversali.

4.4.1.3.2 Ripartizione trasversale

Nelle analisi si sono considerati il seguenti meccanismi di ripartizione trasversale dei carichi.

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario
RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI00007
 008
 A
 16 di 75

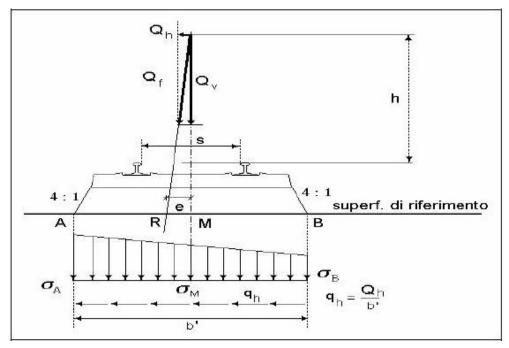


Figura 10 – meccanismo di ripartizione longitudinale per mezzo di traversa e ballast – ponte in rettifilo

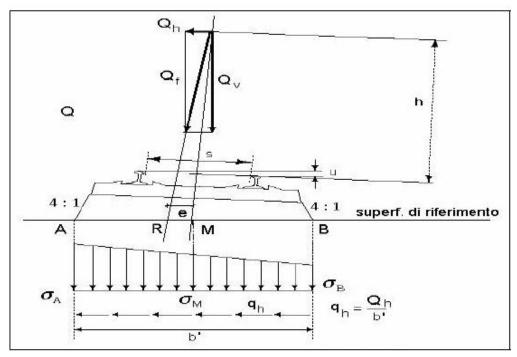


Figura 11 – meccanismo di ripartizione longitudinale per mezzo di traversa e ballast – ponte in curva

La superficie di riferimento è la superficie di appoggio del ballast.

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG. REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI00007
 008
 A
 17 di 75

Nel caso specifico, la ripartizione viene valutata a partire dai seguenti parametri medi. A vantaggio di sicurezza si adotta lo schema di ponte in rettifilo.

Larghezza traversine: B = 2.40 mAltezza di diffusione: h = 0.40 m

Larghezza di diffusione: b = B + 2 x h/4 = 2.60 m

Il valore appena calcolato per la larghezza di diffusione sarà impiegato per la definizione del modello di calcolo globale e per la valutazioni degli effetti locali trasversali.

4.4.2 Carichi sui marciapiedi

I marciapiedi non aperti al pubblico sono utilizzati solo dal personale autorizzato. I carichi accidentali sono schematizzati da un carico uniformemente ripartito del valore di 10 kN/mq.

Questo carico non deve considerarsi contemporaneo al transito dei convogli ferroviari e deve essere applicato sopra i marciapiedi in modo da dare luogo agli effetti locali più sfavorevoli. Per questo tipo di carico distribuito non deve applicarsi l'incremento dinamico.

4.4.3 Forza centrifuga

La forza centrifuga si considera agente verso l'esterno della curva, in direzione orizzontale ed applicata alla quota di 1,80 m al di sopra del P.F.

Le azioni centrifughe sono state valutate secondo le seguenti espressioni:

$$Q_{tk} = \frac{v^2}{g \cdot r} (f \cdot Q_{vk}) = \frac{V^2}{127 \cdot r} (f \cdot Q_{vk})$$

$$q_{uk} = \frac{v^2}{g \cdot r} (f \cdot q_{vk}) = \frac{V^2}{127 \cdot r} (f \cdot q_{vk})$$

Le azioni centrifughe sono state valutate secondo quanto riportato nella seguente tabella.

Valore di α	Massima velocità		Azi	one cent	rifuga basata su:	traffico verticale
valore di a	della linea [Km/h]	v	α	f		associato
	≥ 100	100	1	1	1 x 1 x SW/2	
SW/2	< 100	V	1	1	1 x 1 x SW/2	Φ x 1 x SW/2
		V	1	f	1 x f x (LM71"+"SW/0)	Φ x 1 x 1 x (LM71"+"SW/0)
LM71 e SW/0	> 120	120	α	1	α x 1 x (LM71"+"SW/0)	Φκακ1κ
	≤ 120	V	α	1	α x 1 x (LM71"+"SW/0)	(LM71"+"SW/0)

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 18 di 75

Tabella 3 – Parametri per determinazione della forza centrifuga

Si ottengono quindi i seguenti valori caratteristici dell'azione centrifuga. I valori massimi sono impiegati nelle analisi.

AZIONE C	ENTRIFUGA	4						
Categoria	ponte		А					
Lunghezza	a di influenza	a	25	m				
Velocità d	i progetto		160	Km/h				
Raggio pla	nimetrico m	inimo	1300	m				
					assi (kN)	uni (kN)		
				Modello LM 71	250	80		
				Modello SW 2		150		
centrifuga	per LM71	LM71 V>120		V>120	forza cer	ntrifuga	traffico vertica	ale associato
caso	V(Km/h)	alfa	f	C=V^2/127/r*f*alfa	Qtk(assi)=C*250	qtk(uni)=C*80	Qvk(assi)	qvk(uni)
1	160	1	0.82	0.127	31.8	10.2	250	80
2	120	1.1	1	0.096	24.0	7.7	275	88
contrifugo	por LM71			V≤120	forza cer	atrifuga	traffico vertica	lo accasiata
centrifuga caso	V(Km/h)	alfa	f	C=V^2/127/r*f*alfa	Qtk(assi)=C*250		Qvk(assi)	qvk(uni)
4	160	1.1	4	0.171	42.6	418.6	275	988 88
•	.30		•	3.171	0	.3.0		30
centrifuga	per SW2				forza cer	ntrifuga	traffico vertica	ale associato
	V(Km/h)	alfa	f	C=V^2/127/r*f*alfa		qtk(uni)=C*150		qvk(uni)
	100	1	1	0.061		9.1		150

Al fine di massimizzare gli effetti sulle travi, il carico verticale caratteristico, così moltiplicato per il relativo coefficiente C, è stato disposto, per il carico LM71, su due configurazioni differenti al fine di massimizzare gli effetti all'appoggio e in mezzeria

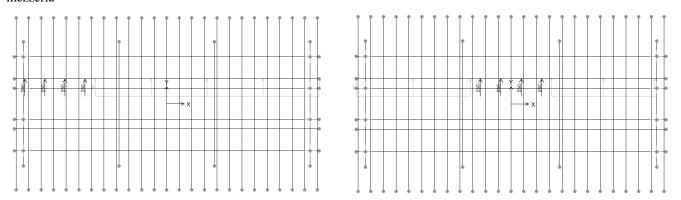


Figura 12 – Forza Centriuga nelle due configurazioni (LM71)

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 19 di 75

4.4.4 Serpeggio

La forza laterale indotta dal serpeggio si considera come una forza concentrata agente orizzontalmente, applicata alla sommità della rotaia più alta, perpendicolarmente all'asse del binario. Tale azione si applicherà sia in rettifilo che in curva.

Il valore caratteristico di tale forza è stato assunto pari a Qsk=100 kN. Tale valore deve essere moltiplicato per α , ma non per il coefficiente di incremento dinamico.

Questa forza laterale deve essere sempre combinata con i carichi verticali.

Al fine di massimizzare gli effetti sulle travi, il carico, è stato disposto, su due configurazioni differenti, si veda ad esempio le posizioni per il serpeggio derivante dal modello di carico LM71.

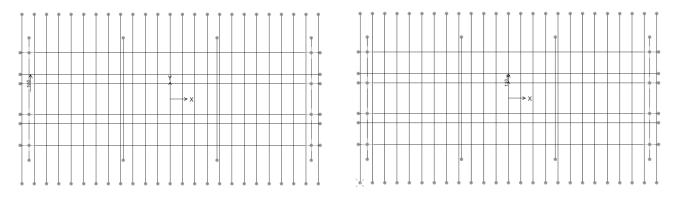


Figura 13 – Serpeggio nelle due configurazioni (LM71)

4.4.5 Avviamento e frenatura

Le forze di frenatura e di avviamento si considera come azione agente sulla sommità del binario, nella direzione longitudinale dello stesso, come carico uniformemente distribuito. A vantaggio di sicurezza si trascurano gli effetti di interazione binario struttura.

Si considerano i seguenti valori delle azioni:

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 20 di 75

FRENATUR	RA / AVVI	AMENTO							
Categoria p	onte		Α						
numero bin			2						
Lunghezza	parte cari	cata	25	m					
<u>awiamento</u>									
	(kN/m)	L(m)	Qla,k (kN)	α	Qla,k (kN)				
LM 71	33x	25.0=	825x	1.10=	908				
SW 0	33x	19.7=	650x	1.10=	715				
SW 2	33x	25.0=	825x	1.00=	825				
<u>frenatura</u>									
	(kN/m)	L(m)	Qlb,k (kN)	α	Qlb,k (kN)				
LM 71	20x	25.0=	500x	1.10=	550				
SW 0	20x	19.7=	394x	1.10=	433				
SW 2	35x	25.0=	875x	1.00=	875				
Combinazio	<u>oni</u>								
aw	LM 71	LM 71	LM 71	SW 0	SW 0	SW 0	SW 2	SW 2	SW 2
fren	LM 71	SW 0	SW 2	LM 71	SW 0	SW 2	LM 71	SW 0	SW 2
Qla,k (kN)	908	908	908	715	715	715	825	825	825
Qlb,k (kN)	550	433	875	550	433	875	550	433	875
QI,k (kN)	1458	1341	1783	1265	1149	1590	1375	1258	1700
Qlk,max	1783	kN							

Come previsto dalla normativa, si considerano due treni in transito in versi opposti, uno in fase di avviamento, l'altro in fase di frenatura. Le azioni di frenatura ed avviamento si combinano con i relativi carichi da traffico verticali.

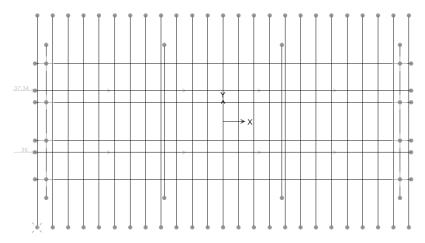


Figura 14 – Avviamento e frenatura

4.5 Azioni dinamiche

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 21 di 75

In riferimento a quanto previsto per linee a normale standard manutentivo, si calcolano i seguenti coefficienti di amplificazione dinamica:

$$\Phi_3 = \frac{2,16}{\sqrt{L_{\phi}} - 0,2} + 0,73$$
 con la limitazione $1,00 \le \Phi_3 \le 2,00$

Per effetti globali L_φ=22.80m da cui φ₃= **1.202**

Pe effetti locali $L_{\phi}=3*1.5=4.50$ m da cui $\phi_3=$ **1.854**

avendo considerato per gli effetti globali la luce tra gli appoggi delle travi principali, mentre per gli effetti locali la luce della soletta tra le nervature delle travi principali pari a 1.50 m.

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO **NUOVO COLLEGAMENTO PALERMO - CATANIA**

TRATTA CALTANISSETTA XIRBI - NUOVA ENNA (LOTTO 4A)

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

PROGETTO	LOTTO	FASE	ENTE	COD	DOC.	PROG	REV.	FOGLIO
RS3U	40	D	09	CL	VI0007	800	Α	22 di 75

4.6 Azioni dovute al deragliamento

In alternativa ai modelli di carico verticale da traffico ferroviario, ai fini della verifica della struttura si dovrà tenere conto della possibilità che un locomotore o un carro pesante deragli. La normativa propone due diverse situazioni di progetto;

Caso 1

Si considerano due carichi verticali lineari q_{A1d}= 60 kN/m (comprensivo dell'effetto dinamico) ciascuno. Trasversalmente i carichi distano fra loro di S (scartamento del binario) e possono assumere tutte le posizioni comprese entro i limiti indicati in Fig. 5.2.12.

Per questa condizione sono tollerati danni locali, purché possano essere facilmente riparati, mentre sono da evitare danneggiamenti delle strutture portanti principali.

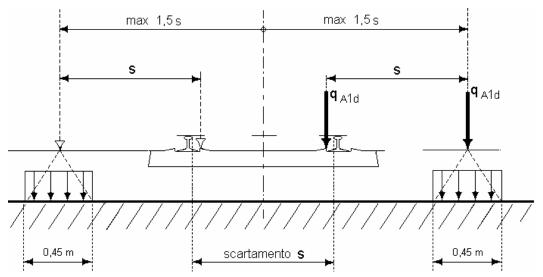


Figura 15 – posizione azioni da deragliamento – caso 1

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO
 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG. REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 23 di 75

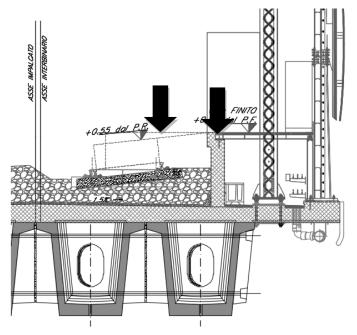


Figura 16 – posizione azioni da deragliamento – caso 1

Caso 2

Si considera un unico carico lineare q_{A2d}=80 x1.4 kN/m esteso per 20 m e disposto con una eccentricità massima, lato esterno, di 1.5 s rispetto all'asse del binario. Tale caso deve essere applicato solo per effetti globali.

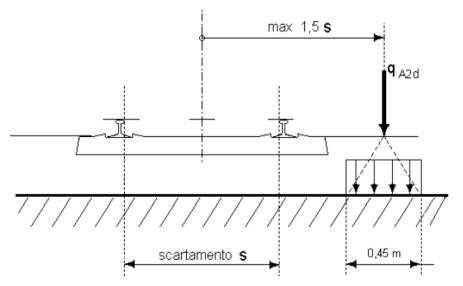


Figura 17 – posizione azioni da deragliamento – caso 2

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO
 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG. REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 24 di 75

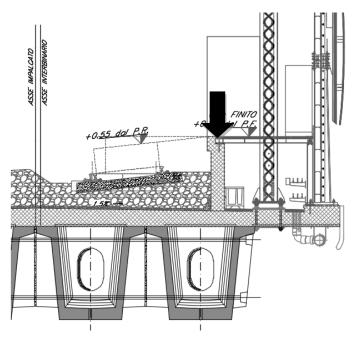


Figura 18 – posizione azioni da deragliamento – caso 2

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI00007
 008
 A
 25 di 75

4.7 Vento (Q5q)

Viene effettuato un calcolo del vento a ponte carico (Q5q).La velocità di riferimento del vento a ponte carico viene calcolata con la normativa nazionale viene assunta pari a 25 m/s.

Azione del vento - generale - NTC08 e EC 1-1-4:2005	•	
Condizione (ponte carico o scarico)		carico
Altitudine sul livello del mare	as	30 m
Zona	Z	4 -
Parametri	$V_{b,0}$	25 m/s
Parametri	a_0	500 m
Parametri	k _a	0.020 1/s
Velocità di riferimento (Tr=50 anni)	$v_b = v_{b0} + k_a^* (a_s - a_0)$	25 m/s
Periodo di ritorno considerato	T_R	75 anni
	$lpha_{f}$	1.02 -
Velocità di riferimento	V_{b}	25.6 m/s
Densità dell'aria	ρ	1.25 kg/m3
pressione cinetica di riferimento	$q_b = 0.5^* \rho^* v_b^2$	0.41 kN/m2
Classe di rugosità del terreno		D
Distanza dalla costa		
Altitudine sul livello del mare		< 500 m
Categoria di esposizione del sito	Cat	2
Vento su impalcato	*	
Altezza di riferimento per l'impalcato (EC punto 8.3.1(6))	Z	13 m
parametri	k _r	0.19
parametri	z_0	0.05 m
parametri	z_{min}	4 m
parametri	Z _{max}	200 m
Coefficiente di topografia	Ct	1
coefficiente di esposizione (z≤z_min)	$c_{e}(z_{min})$	1.80 -
coefficiente di esposizione (z)	c _e (z)	2.52 -
Coefficiente di esposizione	c_{e}	2.52 -
Larghezza impalcato	b	13.7 m
Altezza totale impalcato (comprese le barriere o treno)	dtot	7.83 m
Rapporto di forma	b/dtot	1.75 -
Coefficiente di forza (figura 8.3 EC)	cfx	1.91 -
Riepilogo		
Pressione cinetica di riferimento	q_b	0.41 kN/m2
Coefficiente di esposizione	C _e	2.52 -
Coefficiente di forza	cfx	1.91 -
Altezza di riferimento (EC punto 8.3.1 (4) e (5))	d	7.83 -

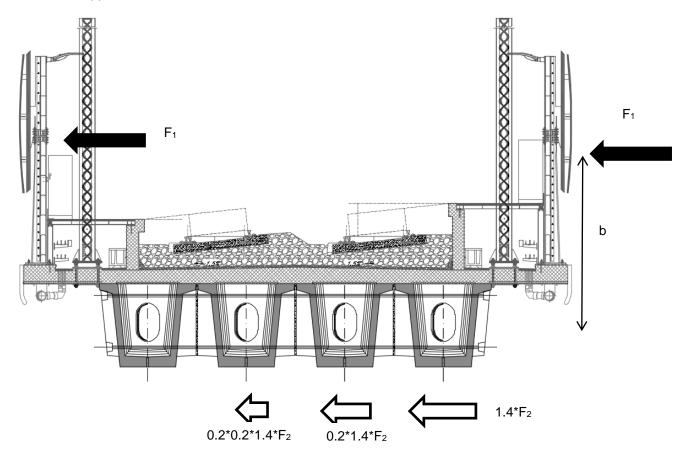
F_w =0.41 kN/m^{2*}2.52=1.033 kN/m

L'azione del vento viene applicata considerando due distinte risultanti. La prima applicata a metà dell'altezza delle strutture dell'impalcato, la seconda a metà dell'altezza di barriera considerata, secondo lo schema riportato

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO


 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 26 di 75

di seguito. Per semplicità di calcolo, è stata trascurata l'eccentricità della forza F1 rispetto al baricentro dell'impalcato.

 $F_1=F_w^*h_{barriera+cordolo+soletta}=1.033^*5.73=5.91 \text{ kN}$

 $F_2=F_w^*h_{trave}=1.033^*2.1=2.17 \text{ kN}$

Il contributo dell'azione del vento incidente sulla prima trave è moltiplicato per un fattore 1.4 (travi isolate) in accordo con quanto descritto al punto "C3.3.10.4.1 Travi isolate" della Circolare Esplicativa 2 febbraio 2009, n. 617. Analogamente il contributo così calcolato viene considerato anche sulle rimanenti travi in una percentuale pari al 20% rispetto alla trave precedente, in direzione del vento incidente, considerata. Si trascura il contributo del vento della trave opposta alla direzione del vento incidente.

ione dell'azione del vento

Azione sismica (SX,SY,SZ)

Figura

Le azioni sismiche non sono dimensionanti ai fini delle verifiche relative all'impalcato e non vengono quindi considerate nelle analisi dello stesso. Le azioni sismiche considerate per la progettazione delle sottostrutture (pile, spalle e fondazioni) sono riportate nelle corrispondenti relazioni di calcolo.

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV.

RS3U 40 D 09 CL VI0007 008 A

FOGLIO 27 di 75

27

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO
 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 28 di 75

5 Simbologia e convenzioni

Se non diversamente specificato, nel seguito le sollecitazioni e le tensioni rispondono ai seguenti simboli e convenzioni:

- Sollecitazioni
 - \circ P = sforzo assiale
 - o V2 = sforzo di taglio longitudinale
 - o M3 = momento flettente longitudinale
 - o V3 = sforzo di taglio trasversale
 - \circ M2 = momento flettente trasversale
 - \circ T = momento torcente

Le sollecitazioni sono espresse in kN,m e le tensioni in MPa.

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

PROGETTO	LOTTO	FASE	ENTE	COD	. DOC.	PROG.	REV.	FOO	GLIO
RS3U	40	D	09	CL	VI0007	800	Α	29	di 75

6 Analisi impalcato

6.1 Modello di calcolo

E' stato realizzato un modello di calcolo agli elementi finiti con elementi tipo frame. Il modello costituisce il graticcio dell'impalcato realizzato con le quattro travi, i quattro traversi e gli elementi della soletta posti ad interasse 1m.

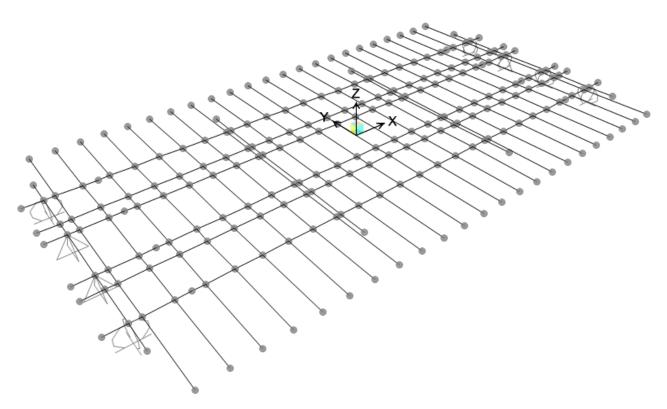
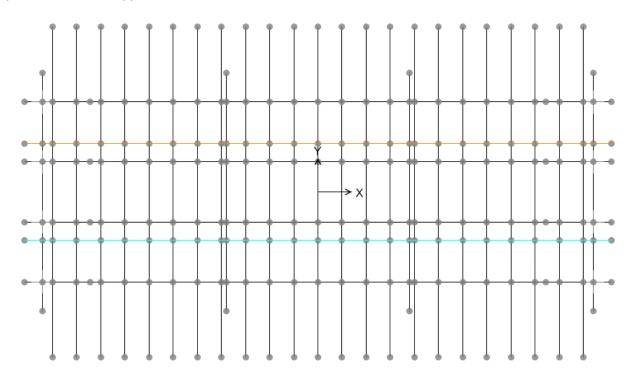
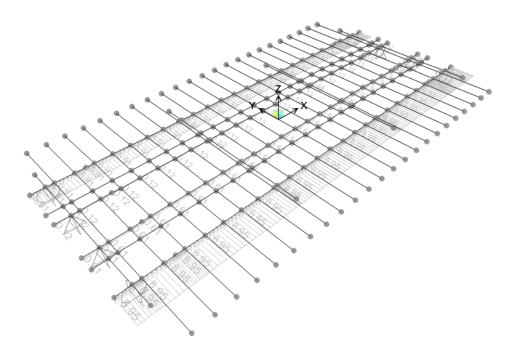


Figura 20 – Modello a graticcio


U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

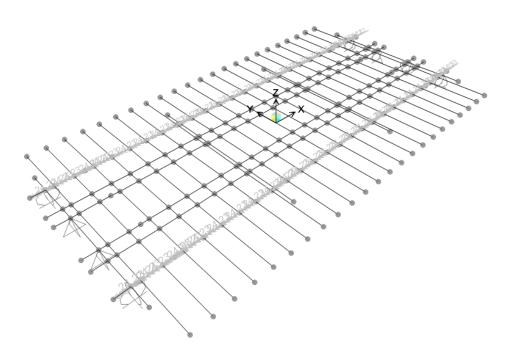
Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO


 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI00007
 008
 A
 30 di 75

Si riportano le linee di applicazione del carico mobile.

Il vento è stato applicato come carichi e momenti uniformemente distribuiti sulle travi.



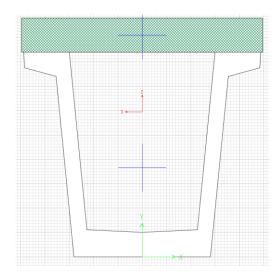
U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

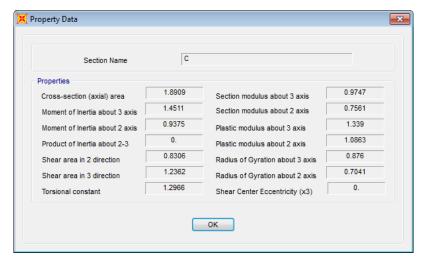
Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO
 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG. REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 31 di 75

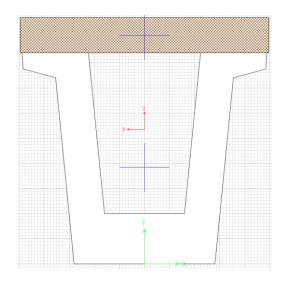
Di seguito si riportano le caratteristiche inerziali degli elementi. Come da prassi, agli elementi frame della soletta è stata dimezzata la rigidezza torsionale.

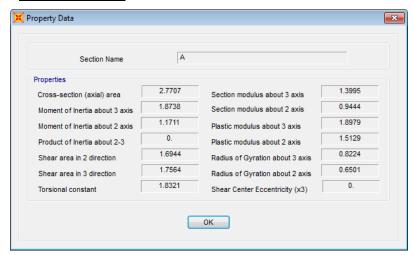
Sezione corrente




U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

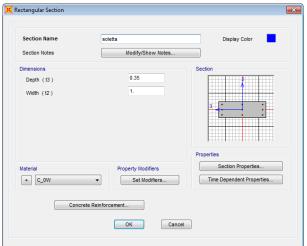
Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

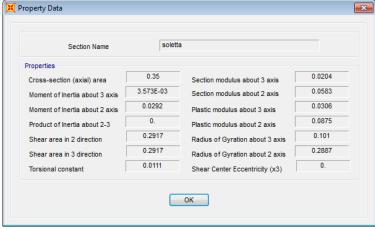

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG. REV.
 FOGLIO


 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 32 di 75

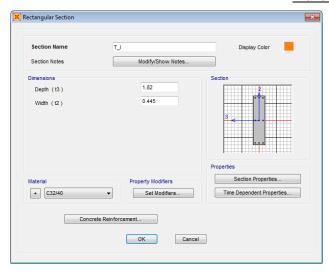
Sezione di testata

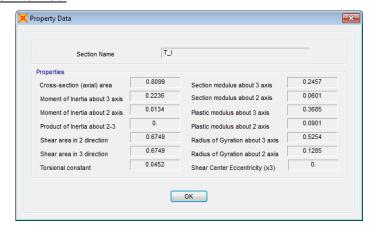
Caratteristiche dell'elemento di soletta B=1.00m



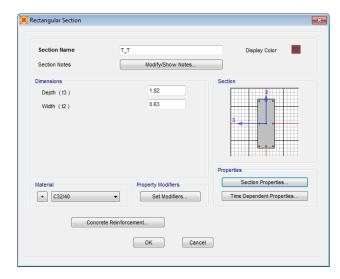

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

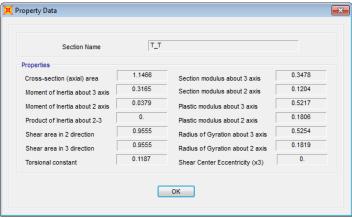
Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO


 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG. REV.
 FOGLIO


 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 33 di 75

Traversi intermedi


Traversi di testata

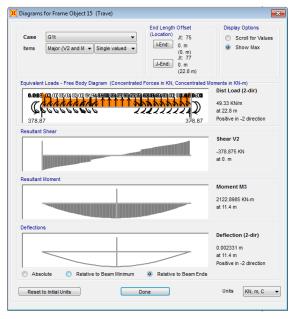


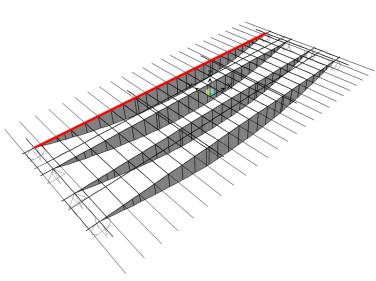
U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO
 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

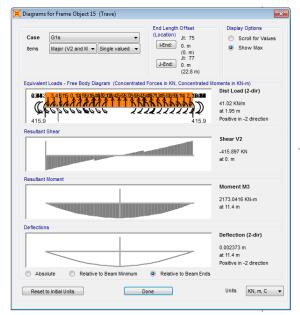
 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 34 di 75

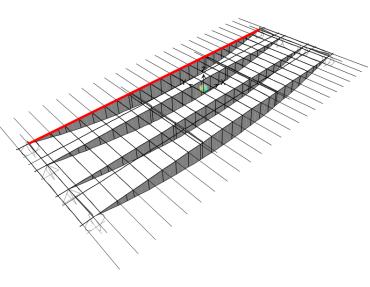
U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI


Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

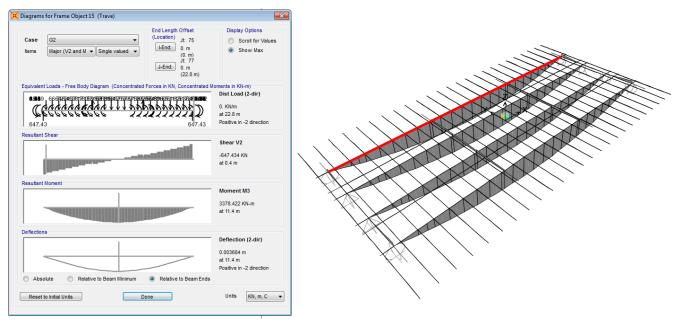

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG. REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 35 di 75


6.2 Sollecitazioni


Peso proprio (G1t)

Soletta (G1s)


Permanenti portati (G2)

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO
 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 36 di 75

Carichi accidentali - inviluppo (SLEr acc)

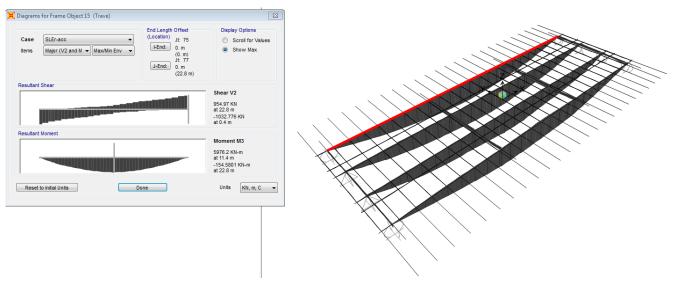
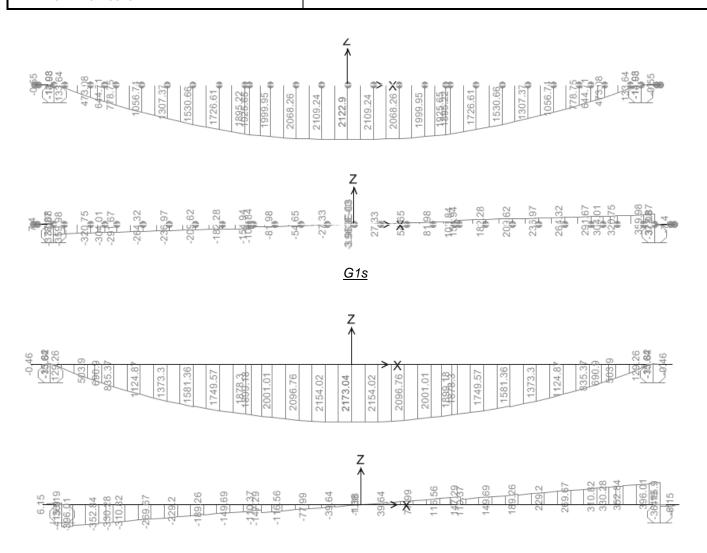
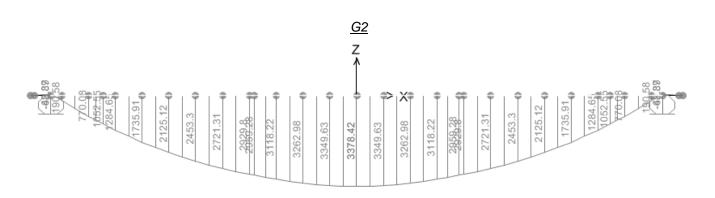


Figure 1 – sollecitazioni caratteristiche

Nelle figure seguenti sono rappresentati i digrammi di momento e taglio sulla trave più sollecitata.

<u>G1t</u>

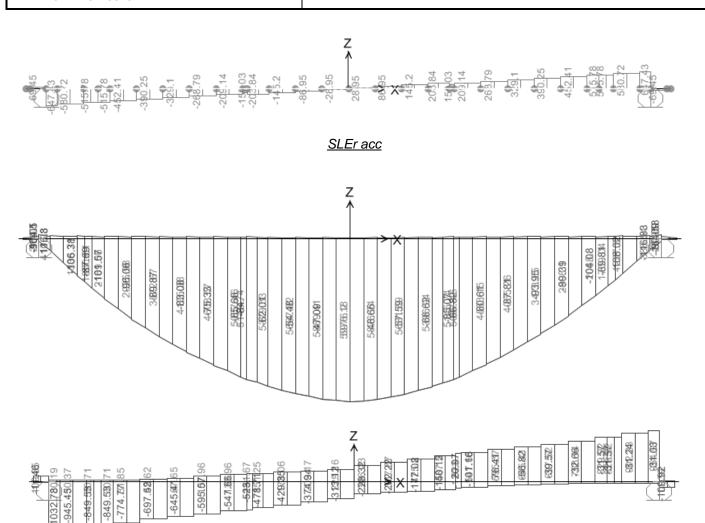



U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 37 di 75



U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 38 di 75

6.3 Combinazioni

Gli effetti dei carichi verticali dovuti alla presenza dei convogli vanno sempre combinati con le altre azioni derivanti dal traffico ferroviario, adottando i coefficienti indicati nella seguente tabella:

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI00007
 008
 A
 39 di 75

TIPO DI CARICO	Azioni v	erticali	A	Azioni orizzontali			
Gruppo di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti	
Gruppo 1 (2)	1,00		0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale	
Gruppo.2 (2)		1,00	0,00	1,0 (0,0)	1,0(0,0)	stabilità laterale	
Gruppo 3 (2)	1,0 (0,5)	-	1,00	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale	
Gruppo 4	0,8 (0,6; 0,4)	4	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	fessurazione	

Includendo tutti i fattori ad essi relativi (Φ,α, ecc..)

Tabella 4 - Valutazione dei carichi da traffico (da "Istruzioni per la progettazione e l'esecuzione dei ponti ferroviari")

Le azioni di cui ai paragrafi precedenti sono combinate tra loro, al fine di ottenere le sollecitazioni di progetto relative agli elementi strutturali di volta in volta considerati in base a quanto prescritto dal D.M. 17 Gennaio 2018 al paragrafo § 2.5.3, §3.2.4 e paragrafo §5.2.3.

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.1)

 Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

 Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

 Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

 Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto A_d (v. § 3.6):

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

⁽²⁾ La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1, 2, 3 senza che ciò abbia significative conseguenze progettuali.

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO
 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 40 di 75

L'analisi ragionata delle combinazioni di carico previste dalla normativa ha consentito di ridurre il numero di combinazioni considerate. Nella tabella seguente si riportano i valori di combinazioni adottati per analisi e verifiche. I valori riportati in tabella considerano già i coefficienti di combinazione previsti dalla normativa.

						·			
Tipo Combinazione	Combinazione	Azione principale	G1_pp	G1_perm	P_Precompr	gr_traffico	Fw_Vento	Ritiro	Viscosità
SLU	A1STR_gr1	gr1	1.35	1.5	1	1.45	0.9	1.2	1.2
SLU	A1STR_gr2	gr2	1.35	1.5	1	1.45	0.9	1.2	1.2
SLU	A1STR_gr3	gr3	1.35	1.5	1	1.45	0.9	1.2	1.2
SLU	A1STR_gr1_Fw	Fw	1.35	1.5	1	1.16	1.5	1.2	1.2
SLU	A1STR_gr2_Fw	Fw	1.35	1.5	1	1.16	1.5	1.2	1.2
SLU	A1STR_gr3_Fw	Fw	1.35	1.5	1	1.16	1.5	1.2	1.2
SLU	A1STR_gr1_Tk	Tk	1.35	1.5	1	1.45	0.9	1.2	1.2
SLU	A1STR_gr2_Tk	Tk	1.35	1.5	1	1.45	0.9	1.2	1.2
SLU	A1STR_gr3_Tk	Tk	1.35	1.5	1	1.45	0.9	1.2	1.2
RARA (Caratteristica)	RARA_gr1	gr1	1	1	1	1	0.6	1	1
RARA (Caratteristica)	RARA_gr2	gr2	1	1	1	1	0.6	1	1
RARA (Caratteristica)	RARA_gr3	gr3	1	1	1	1	0.6	1	1
RARA (Caratteristica)	RARA_gr1_Fw	Fw	1	1	1	0.8	1	1	1
RARA (Caratteristica)	RARA_gr2_Fw	Fw	1	1	1	0.8	1	1	1
RARA (Caratteristica)	RARA_gr3_Fw	Fw	1	1	1	0.8	1	1	1
RARA (Caratteristica)	RARA_gr1_Tk	Tk	1	1	1	0.8	0.6	1	1
RARA (Caratteristica)	RARA_gr2_Tk	Tk	1	1	1	0.8	0.6	1	1
RARA (Caratteristica)	RARA_gr3_Tk	Tk	1	1	1	0.8	0.6	1	1
FREQUENTE	FR_gr1	gr1	1	1	1	0.8	0	1	1
FREQUENTE	FR_gr2	gr2	1	1	1	0.8	0	1	1
FREQUENTE	FR_gr3	gr3	1	1	1	0.8	0	1	1
FREQUENTE	FR_gr1_Fw	Fw	1	1	1	0	0.5	1	1
FREQUENTE	FR_gr1_Tk	Tk	1	1	1	0	0	1	1
QP	QP_Tk	Tk	1	1	1	0	0	1	1

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO
RS3U 40 D 09 CL VI0007 008 A 41 di 75

6.4 Effetti globali sull'impalcato – Verifica tensionale trave in mezzeria

Per ogni fase sono verificate le tensioni ai lembi superiore ed inferiore della trave e, una volta che la soletta diventa collaborante, anche la tensione ai lembi superiore ed inferiore della soletta stessa. I limiti tensionali per l'acciaio da precompressione e per il calcestruzzo nelle varie fasi, sono definiti nel D.M. 17 Gennaio 2018 al §4.1.8.1 e nella Istruzione RFI DTC INC PO SP IFS 001 "Specifica per la progettazione e l'esecuzione dei ponti ferroviari e di altre opere minori sotto binario" del 21 Gennaio 2011. I limiti tensionali considerati, tengono conto del livello di maturazione del cls, secondo quanto di seguito definito.

Fase 0 e 1:

- test cls sup. : si verifica che il lembo superiore della sezione non sia in trazione per i carichi considerati
- test cls inf. : si verifica che la tensione di compressione al lembo inferiore della sezione non sia superiore al limite 0.6 x fck
- ullet test precompr. : si verifica che la tensione di trazione nell'armatura di precompressione non sia superiore al limite 0.75 x f_{pk}

Fase 2 e 3:

- test cls sup.soletta : si verifica che la tensione di compressione al lembo inferiore della sezione non sia superiore al limite 0.55 x f_{ck} per combinazioni rare, 0.40 x f_{ck} per combinazioni quasi permanenti.
- test cls inf.soletta : si verifica che la tensione di compressione al lembo inferiore della sezione non sia superiore al limite 0.55 x f_{ck} per combinazioni rare, 0.40 x f_{ck} per combinazioni quasi permanenti.
- test cls sup. : si verifica che la tensione di compressione al lembo superiore della sezione non sia superiore al limite 0.55 x f_{ck} per combinazioni rare, 0.40 x f_{ck} per combinazioni quasi permanenti.
- test cls inf.compr. : si verifica che la tensione di compressione al lembo inferiore della sezione non sia superiore al limite 0.55 x f_{ck} per combinazioni rare, 0.40 x f_{ck} per combinazioni quasi permanenti.
- test cls inf.trazione. : si verifica che il lembo inferiore della sezione non sia in trazione per i carichi considerati.
- ullet test precompr. : si verifica che la tensione di trazione nell'armatura di precompressione non sia superiore al limite 0.75 x f_{pk}

Tali verifiche sono state effettuate in corrispondenza della sezione di seguito indicata.

sezione corrente in mezzeria (x=12.15 m), 72 trefoli

Oltre che per la geometria della sezione in c.a., le sezioni considerate differiscono anche per la precompressione agente.

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO **NUOVO COLLEGAMENTO PALERMO - CATANIA**

TRATTA CALTANISSETTA XIRBI - NUOVA ENNA (LOTTO 4A)

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS3U 40 D 09 CL VI0007 008 A 42 di 75

fcfm(MPa)

Ec(MPa)

fcm(MPa)

Materiali

caratteristiche trave al rilascio trefoli	t=0	40	48	4.21	35 220
caratteristiche trave	t=inf	45	53	4.55	36 283
caratteristiche soletta	t=inf	32	40	3.63	33 346
modulo elastico	Ep =	195000.00 MPa			
resistenza a rottura	fptk =	1860.00 MPa			

fck(MPa)

1670.00 MPa fp1k = resistenza a snervamento sigma-spi = n = tensione iniziale 1350.00 MPa coef. di omogeneizzazione acciaio 5.37 caduta a 1000h 2.50 % di 0.75 fptk

Viscosità

umidità relativa UR = 75 % tempo di applicazione della precompressione t0 = 7 giorni

calcolo perdite 1 1=somma; 2=interdipendeza EC

Parametri	Normativa =	1
Normativa		NTC - Istruz. FS
Compressione trave t=0		0.60
Compressione trave t=inf (G+P+Q)		0.55
Compressione trave t=inf (G+P)		-
Compressione soletta t=inf (G+P+Q)		0.55
Trazione trave t=0/t=inf		0.00
Trazione trave t=0		0.00
Trazione trave t=inf		0.00
Trazione soletta t=inf		0.00
coeff combinazione accidentale		1.00
coeff combinazione termica		0.60
coeff di viscosità		2.65
ritiro a tempo infinito (essiccamentox1000)		-0.23
ritiro a tempo infinito (autogenox1000)		-0.09
ritiro a tempo infinito (totalex1000)		-0.32

Dati geometrici trave

Dati geometrior trave			
Nome geometria sezione	NS =	-	E
valida per distanza da asse appoggi (x)	X >	m	2.000000
valida per distanza da asse appoggi (x)	x ≤	m	11.400000
Altezza	h1 =	m	2.100000
Area	A1 =	m^2	1.093200
Baricentro dal lembo inferiore	y1i =	m	0.915000
Momento statico rispetto lemb. inf	S1 =	m^3	1.000278
Momento di inerzia	I1 =	m^4	0.589900
Perimetro bagnato	u =	m	11.846600
Dimensione fittizia	h0 =	m	0.184559

Dati geometrici soletta

Spessore		SS	=		0.295000
Larghezza efficace	•	bs	=	m	2.480000
Area		As	=	m^2	0.731600
Dist. baricentro lembo inferiore trave		уi	=	m T	2.307500
Perimetro bagnato		u	=	m	2.480000
Dimensione fittizia		h0	=	m	0.590000

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 43 di 75

numero trefoli strato 1:	nt = -	14
strato 2:	nt = -	14
strato 3:	nt = -	12
strato 4:	nt = -	2
strato 5:	nt = -	2
strato 6: strato 7:	nt = - nt = -	2
strato 7.	nt = -	0
strato 9:	nt = -	0
strato 10:	nt = -	0
strato 11:	nt = -	2
strato 12:	nt = -	2
strato 13:	nt = -	2
strato 14: strato 15:	nt = - nt = -	2
strato 15.	nt = -	2
strato 17:	nt = -	2
strato 18:	nt = -	2
strato 19:	nt = -	2
strato 20:	nt = -	2
strato 21:	nt = -	2
strato 22:	nt = -	2
distanza da lembo inferiore trave		
strato 1:	yi = m	0.06
strato 2:	yi = m	0.11
strato 3:	yi = m	0.16
strato 4: strato 5:	yi = m yi = m	0.21 0.26
strato 5.	yi = m yi = m	0.20
strato 7:	yi = m	0.36
strato 8:	yi = m	0.45
strato 9:	yi = m	0.51
strato 10:	yi = m	0.57
strato 11:	yi = m	0.63
strato 12:	yi = m	0.68
strato 13: strato 14:	yi= m yi= m	0.73 0.78
strato 14:	yi = m	0.78
strato 16:	yi = m	0.88
strato 17:	yi = m	0.93
strato 18:	yi = m	0.98
strato 19:	yi = m	1.03
strato 20:	yi = m	1.08
strato 21: strato 22:	yi= m yi= m	1.13 2.04
oti ato EE	y± ""	2.04
area singolo trefolo		
strato 1:	At = mm^2	140
strato 2:	At = mm^2	140
strato 3: strato 4:	At = mm^2 At = mm^2	140 140
strato 4:	At = mm^2	140
strato 6:	At = mm^2	140
strato 7:	At = mm^2	140
strato 8:	At = mm^2	140
strato 9:	$At = mm^2$	140
strato 10:	$At = mm^2$	140
strato 11:	$At = mm^2$	140
strato 12:	$At = mm^2$	140
strato 13:	$At = mm^2$	140
strato 14:	$At = mm^2$	140
strato 15:	$At = mm^2$	140
strato 16:	At = mm^2	140
strato 17:	At = mm^2	140
strato 18:	At = mm^2	140
strato 19:	At = mm^2	140
strato 20: strato 21:	At = mm^2 At = mm^2	140
strato 21: strato 22:	At = mm^2	140 140
01,410 221	AC - IIIII Z	140

Analisi dei carichi trave.

Il momento del carico da traffico è stato calcolato con il modello a graticcio precedentemente descritto.

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS3U 40 D 09 CL VI0007 008 A 44 di 75

SOLLECITAZIONI DI INPUT	Sezione n° ascissa x = ome geometria sezione =	5 11.40 m E -			
TIC.	luce calcolo =	22.80 m			
	N(kN)	M(kNm)	c(-)	M*c(kNm)	p-eq(kN/ml)
0) Peso proprio trave	0	2 123	1.00	2 123	32.67
C) Getto soletta e trasversi	0	2 173	1.00	2 173	33.44
E) Sovraccarichi permanenti	0	3 378	1.00	3 378	51.99
H) Carichi accidentali	0	5 976	1.00	5 976	91.97
G) Ritiro diff. trave - soletta	10% riti	ro totale	1.00	10%	
I) Termica diff. trave - soletta	-10.00 [°] °C		0.60	-6.00	

CALCOLO DI SEZIONI IN C.A.P. PRETESO

Definizione della simbologia adottata:

Altezza: h (m) Area: A (m^2)

Momenti statici: S (m^3) (rispetto al lembo inferiore)

Momenti d'inerzia: I (m^4) (rispetto al baricentro della sezione)

Distanze dal bar:: y (m) (positive verso il lembo inf.)
Modulo di resist.: W (m^3)

Nome lavoro:

Titolo: ascissa x =11.400m

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 45 di 75

) Caratteristiche sezione sola trave in cal			
fck al taglio dei trefoli= fck finale=	fck fcm 40 48.00 45 53.00	Ec 35 220 36 283	
limiti tensionali sono quindi (valori in N	Pa):		
	a tempo T=0	in esercizio	
TRAVE - trazione TRAVE - compressione SOLETTA - compressione OLETTA - trazione	0.00 0.00 -0.60*fck = -24.00	0.00 -0.55*fck = -0.55*fck = 0.00	0.00 -24.75 -17.60 0.00
Sezione: h1= A1= S1= I1=	5 2.100000 m 1.093200 m^2 1.000278 m^3 0.589900 m^4	y1s del lembo superiore= y1i del lembo inferiore= W1s= W1i=	-1.185000 m 0.915000 m -0.497806 m^3 0.644699 m^3
?) Armatura di precompressione a fili aderen			
modulo elastico = resistenza a rottura: fptk = resistenza a snervamento: fptk = tensione iniziale: sigma-spi = coef. di omogeneiz. Acciaio =	195000.00 MPa 1860.00 MPa 1670.00 MPa 1350.00 MPa 5.37	cadute a ore 1000	2.50% di 0.75 fptH
strato 1: numero trefoli=" strato 2: " " = " strato 3: " " = " strato 4: " " = " strato 5: " " = " strato 6: " " = " strato 7: " " = " strato 7: " " = " strato 9: " " = " strato 10: " = " strato 11: " " = " strato 12: " = " strato 13: " = " strato 13: " = " strato 16: " = " strato 16: " = " strato 16: " = " strato 17: " = " strato 18: " = " strato 19: " = " strato 19: " = " strato 20: " = " strato 21: " = " strato 22: " = " Totale trefoli = " Soletta collaborante fck = spessore = larghezza efficace = Area = dist. bar. risp. lembo inf. = Momento d'inerzia bar. =	32 MPa 0.295000 m 2.480000 m 0.731600 m^2 2.307500 m 0.005306 m^4 fck fcm	dist. dal lembo inferiore = "	0.06 m 0.11 m 0.16 m 0.21 m 0.26 m 0.31 m 0.36 m 0.45 m 0.51 m 0.57 m 0.63 m 0.63 m 0.78 m 0.78 m 0.83 m 0.98 m 1.03 m 1.08 m 1.03 m 1.08 m 1.13 m 2.04 m
fck trave = fck soletta = coeff. omogeneizzazione =	45.00 53.00 32.00 40.00	36 283 33 346 0.92	
;) Caratteristiche delle sezioni di verifica			
5.1) Caratteristiche sezione trave+trefoli a	derenti:		
A2 = S2 = I2 = W2s = W2i = W2t =	1.137294 m^2 1.018663 m^3 0.609352 m^4 -0.505976 m^3 0.680316 m^3 1.272810 m^3	y2s del lembo superiore = y2i del lembo inferiore = e2t del baricentro trefoli =	-1.20 m 0.90 m 0.48 m
5.2) Caratteristiche sezione trave+trefoli+s A3 = S3 = I3 =	oletta collaborante: 1.809665 m^2 2.570159 m^3 1.456468 m^4	y3s del lembo superiore = y3i del lembo inferiore = e3t del baricentro trefoli = e3ss del lembo sup. soletta =	-0.68 m 1.42 m 1.00 m -0.97 m
W3s = W3i = W3t = W3ss = W3si =	-2.142622 m^3 1.025509 m^3 1.451684 m^3 -1.625804 m^3 -2.331365 m^3	e3si del lembo inf. Soletta =	-0.68 m

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG. REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 46 di 75

D.	Cadute	di	tensione:	fase	2
υ.	, ouuute	u_	CCHSTOHC.	lusc	_

viscosità = 30 % perdite tot. per ritiro = 61.44 MPa perdite tot. viscosità trefoli = 164.08 MPa perdite fase 2: ai trefoli = **67.65** MPa N = 681.96 kN M = 684.21 kNm Tensioni parziali: sigma s = 0.06 MPa 1.04 MPa sigma_i = sigma_t = 0.85 MPa sigma_ss = -0.04 MPa sigma_si = 0.08 MPa

ritiro =

Tensioni:	sigma_s =	-7.64	MPa
	sigma_i =	-11.40	MPa
	sigma_t =	-10.66	MPa
	sigma_ss =	-0.04	MPa
	sigma ss =	0.08	MPa

E) Sovraccarichi permanenti

N = 0.00 kNM = 3378.00 kNm

30 %

Tensioni parziali: sigma_s = -1.58 MPa sigma_i = 3.29 MPa sigma_t = 2.33 MPa sigma_ss = -2.08 MPa sigma_si = -1.45 MPa

Tensioni: sigma_s	-9	0.22 MPa
sigma_i	. = -8	3.11 MPa
sigma_t	- 8	3.33 MPa
sigma_ss	: = -2	2.12 MPa
ei ama ee		37 MPa

F) Cadute di tensione: fase 3

 $\begin{array}{lll} \text{ritiro =} & 30 \, \% \\ \text{viscosità =} & 30 \, \% \\ \end{array}$

perdite tot. per ritiro = 61.44 MPa perdite tot. viscosità trefoli = 118.79 MPa

perdite fase 3: ai trefoli = 54.07 MPa

tensione finale ai trefoli = 968.69 MPa perdita applicata: trefoli = 54.07 MPa

> N = 545.01 kNM = 546.81 kNm

> > 0.07 MPa

Tensioni parziali: sigma_s = 0.05 MPa sigma_i = 0.83 MPa sigma_t = 0.68 MPa sigma_ss = -0.04 MPa

sigma_si =

Tensioni:	sigma_s =	-9.17	MPa
	sigma_i =	-7.27	MPa
	siama t =	-7 65	MPa

sigma ss =

sigma ss =

-2.16 MPa

-1.30 MPa

G) Ritiro diff. trave - soletta

percentuale su ritiro totale = 10% eps_c,diff = -0.032 x1000

> N = e*Ec*Ac = 768.63 kN N = -768.63 kN M = 681.98 kNm

Tensioni parziali: sigma_s = -0.74 MPa sigma_i = 0.24 MPa sigma_t = 0.05 MPa sigma_ss = 0.21 MPa sigma_si = 0.33 MPa Trazione sulla sola soletta Compressione sulla sezione omogeneizzata Momento sulla sezione omogeneizzata

<= 1336 MPa

Tensioni: sigma_s =	-9.91	MPa
sigma_i =	-7.03	MPa
sigma_t =	-7.61	MPa
sigma_ss =	-1.95	MPa
sigma_si =	-0.97	MPa

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV. FOGLIO RS3U 40 D 09 CL VI0007 008 A 47 di 75

sigma i =

sigma_t =

sigma_ss =

sigma_si =

H) Carichi accidentali

0.00 kN N = M = 5976.00 kNm

Tensioni parziali: sigma_s = -2.79 MPa sigma i = 5.83 MPa sigma_t = 4.12 MPa

sigma_ss = -3.68 MPa

sigma_si = -2.56 MPa

Tensioni: sigma_s =

I) Termica diff. trave - soletta

-6.00 °C Delta termico trave soletta = coeff. di dilatazione termica = 0.000010 (°C)^-1

N = e*Ec*Ac =

deformazione termica diff. = -0.060 x1000

> -1463.75 kN 1298.72 kNm

1463.75 kN

Tensioni parziali: sigma_s = -1.41 MPa sigma_i = 0.46 MPa sigma_t = 0.09 MPa sigma_ss = 0.39 MPa sigma_si = 0.63 MPa

negativo se soletta più calda rispetto alla trave

Trazione sulla sola soletta Compressione sulla sezione omogeneizzata Momento sulla sezione omogeneizzata

Tensioni: s	igma_s =	-14.12	MPa
S	igma_i =	-0.75	MPa
s	igma_t =	-3.40	MPa
si	.gma_ss =	-5.23	MPa
si	.ama si =	-2.89	MPa

-12.70 MPa

-1.21 MPa

-3.49 MPa

-5.63 MPa

-3.53 MPa

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

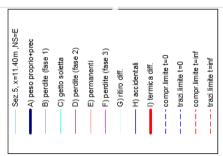
 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

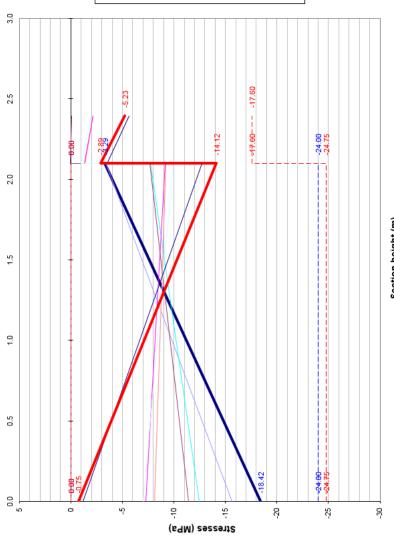
 RS3U
 40
 D
 09
 CL
 VI00007
 008
 A
 48 di 75

<u>Riepilogo</u>

Tutte le tensioni rientrano all'interno dei limiti da normativa e pertanto la sezione è verificata.

		•			
SOLLECITAZIONI DI INPUT	Sezione n°	5			
	ascissa x =	11.40 m			
no	me geometria sezione =	E -			
	luce calcolo =	22.80 m			
	N(kN)	M(kNm)	c(-)	M*c(kNm)	p-eq(kN/ml)
0) Peso proprio trave	0	2 123	1.00	2 123	32.67
C) Getto soletta e trasversi	0	2 173	1.00	2 173	33.44
E) Sovraccarichi permanenti	0	3 378	1.00	3 378	51.99
H) Carichi accidentali	0	5 976	1.00	5 976	91.97
G) Ritiro diff. trave - soletta	10% rit	iro totale	1.00	10%	
I) Termica diff. trave - soletta	-10.00 [°] °C		0.60	-6.00	


			Sezion	e n°5 - x=11.	40m		
	SOLLECITAZIONI	PARZIALI	(kN;kNm)	7	TENSIONI PARZ	IALI (MPa)	
FASE	N	N	М	sigma_i	sigma_s	sigma_si	sigma_ss
0) precompressione		-13 608	-6 515	-21.54	0.91		
0) peso proprio trave			2 123	3.12	-4.20		
A) peso proprio+prec		-13 608	-4 392	-18.42	-3.29		
B) perdite (fase 1)		1 756	841	2.78	-0.12		
C) getto soletta			2 173	3.19	-4.29		
D) perdite (fase 2)		682	684	1.04	0.06	0.08	-0.04
E) permanenti			3 378	3.29	-1.58	-1.45	-2.08
F) perdite (fase 3)		545	547	0.83	0.05	0.07	-0.04
G) ritiro diff.	769	-769	682	0.24	-0.74	0.33	0.21
H) accidentali		0	5 976	5.83	-2.79	-2.56	-3.68
I) termica diff.	1 464	-1 464	1 299	0.46	-1.41	0.63	0.39
0 5 44 40 110 5							
Sez.5, x=11.40m ,NS=E					TENSIONI TOTA	` ,	
FASE				sigma_i	sigma_s	sigma_si	sigma_ss
h(m)				0.00	2.10	2.10	2.40
A) peso proprio+prec				-18.42	-3.29		
B) perdite (fase 1)				-15.64	-3.40		
C) getto soletta				-12.45	-7.70	0.08	0.04
D) perdite (fase 2)				-11.40	-7.64		-0.04
E) permanenti				-8.11	-9.22	-1.37	-2.12
F) perdite (fase 3)				-7.27	-9.17	-1.30	-2.16
G) ritiro diff.				-7.03	-9.91	-0.97	-1.95
H) accidentali				-1.21	-12.70	-3.53	-5.63
I) termica diff.				-0.75	-14.12	-2.89	-5.23
LIMITI TENSIONALI							
h(m)				0.00	2.10	2.10	2.40
compr.limite t=0				-24.00	-24.00		
trazi.limite t=0				0.00	0.00		
compr.limite t=inf				-24.75	-24.75	-17.60	-17.60
trazi.limite t=inf				0.00	0.00	0.00	0.00



U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO
 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 49 di 75

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG. REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 50 di 75

6.5 Verifiche a fessurazione

Le combinazioni SLE Frequenti presentano sollecitazioni inferiori a quelle delle combinazioni Rare analizzate nelle verifiche tensionali sopra riportate.

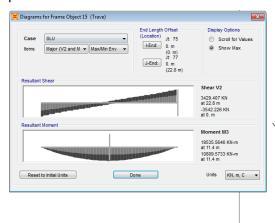
Secondo il §4.1.2.2.4.1 delle Norme Tecniche lo stato limite di formazione delle fessure si ha quando la tensioni massima di trazione della sezione supera

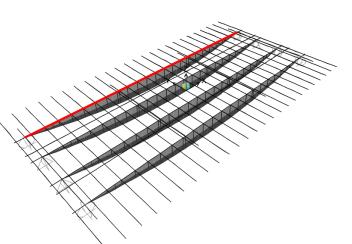
$$\frac{f_{ctm}}{1.2}\,=\,3.16\;\text{MPa}$$

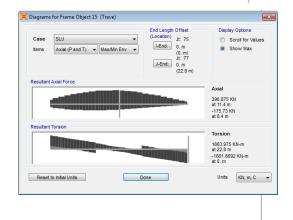
Si ha quindi che le combinazioni frequenti non portano mai alla formazione di fessure in quanto già nelle combinazioni RARE la tensione massima non supera il valore sopra riportato.

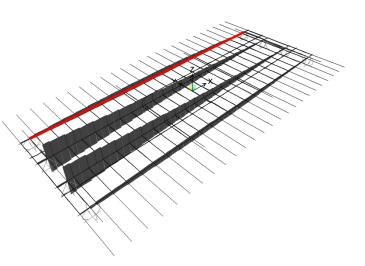
U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO


 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO


 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 51 di 75


6.6 Effetti globali sull'impalcato – Verifiche agli SLU


6.6.1 Sollecitazioni

Si riportano di seguito le sollecitazioni riscontrate nella sezione di verifica, dovute ai carichi elementari precedentemente descritti.

M_{Ed,SLU} = 19356 kNm (mezzeria)

 $V_{Ed,SLU} = 3542 \text{ kN (appoggio)}$

N_{Ed,SLU} = 396 kN (mezzeria)

 $T_{Ed,SLU} = 1662 \text{ kNm (appoggio)}$

Alle sollecitazioni appena calcolate devono essere sommati gli effetti della precompressione, considerata come carico esterno, al netto delle perdite di precompressione totali. Tali sollecitazioni sono valutate di seguito.

 $N_{prec} = \sigma_p \ x \ A_p = 1350x \ 10080 \ / \ 1000 = 13608 \ kN$

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG. REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 52 di 75

$$M_{prec} = N_{prec} x e_p = -13557 x (0.92 - 0.42) = -8165 kN-m$$

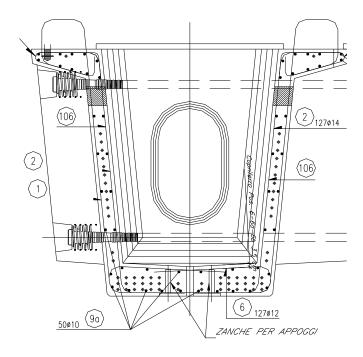
Di seguito si valutano momento e sforzo assiale complessivo nella condizione più gravosa.

 $M_{Ed,SLU} = 19356 - 8165 = 11191 \text{ kN-m}$

 $N_{Ed,SLU} = 13608 + 396 = 14004 \text{ kN}$

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO


 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 53 di 75

6.6.2 Verifiche

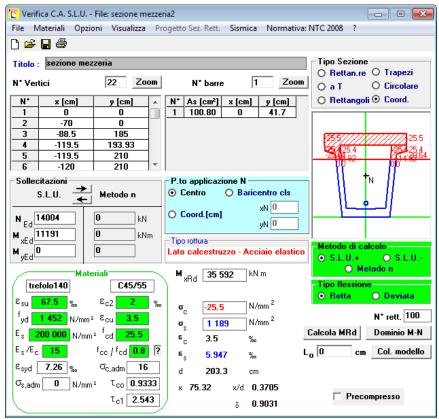
Verifica a pressoflessione

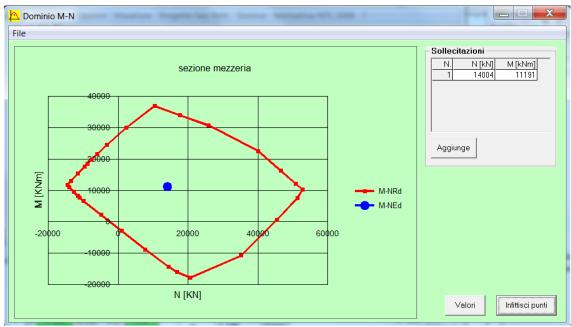
Si riporta lo schema di armatura per la trave esterna (più sollecitata).

Si riporta di seguito la verifica allo SLU per presso-flessione retta della sezione di mezzeria della trave composta di bordo, ovvero la più sollecitata.

Si omettono per sintesi i risultati delle verifiche condotte considerando le fasi intermedie di costruzione.

Per semplicità l'armatura di precompressione è stata definita come cavo risultante. Il contributo dell'armatura lenta è stato trascurato.


Si riporta inoltre la verifica a taglio con le sollecitazioni di taglio e torsione massime (zona di appoggio) dedotte dai modelli di calcolo.



U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO
 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG. REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 54 di 75

Verifica a Taglio

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO
 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 55 di 75

V_{Ed}	3542	kN	Taglio SLU agente sulla sezione		
T _{Ed}	1662	kNm	Torsione SLU agente sulla sezione		
	Verifica	a taglio - N	TC08 par #4.1.2.1.3.2		
f _{ck}	45	MPa	Resistenza cilindrica caratteristica		
f _{cd}	25.50	MPa	Resistenza cilindrica di progetto		
f_{yk}	450.00		tensione caratteristica di snervamento		
f_{yd}	391.3	MPa	tensione caratteristica di progetto		
Inc.staffe	90.0	0			
Φ_{staffe}	14	mm			
n.bracci	4	[-]	Disposizione armatura trasversale taglio		
S _{staffe}	125	mm			
A _{sw}	616	mm ²			
h _{anima}	2450	mm	altezza sezione		
b _{w,spanima}	348	mm	larghezza minima sezione		
С	50	mm	copriferro		
d=h-c	2400	mm	altezza sezione		
Elementi senza armature trasversali re			sistenti a taglio		
n _{barre arm long}	70	[-]			
$\Phi_{arm,long}$		mm	Disposizione armatura longitudinale		
A _{sl}	7917				
k	1.289				
ρ_{l}	0.0095				
V _{Rd} '	350	[kN]			
$v_{min}*b_w*d$	287	[kN]			
V _{Rd, anima}	350	[kN]	NTC08 4.1.2.1.3.1		
V _{Ed, anima}	1771	[kN]	Occorre Asw a taglio		
	$1 \le \operatorname{ctg} \theta \le 2,5$		NTC08 4.1.2.1.3.2		
	"taglio trazione				
A _{sw} /s			Armatura trasversale a taglio		
cot θ	1.0				
V _{Rds}	4164		NTC08 (4.1.18)		
V _{Rdc}	4792		NTC08 (4.1.19)		
V _{Rd, anima}	4164				
V _{Ed, anima}	1771		$V_{Ed, anima} = V_{Ed, sez}/2$		
FS	2.35				
V _{Rd, sezione}	8327	[kN]	V _{Rd, sezione} =2*V _{Rd,anima} (x verif. NTC08 4.1.32)		

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG. REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 56 di 75

Verifica a Torsione

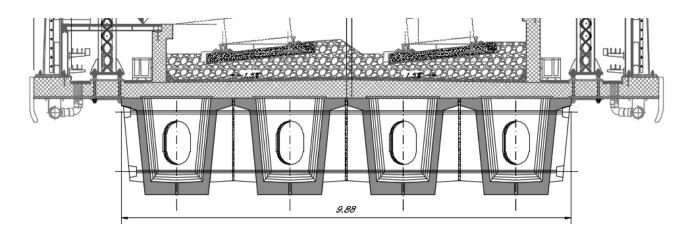
	Verifica a torsione								
0	$.4 \le \text{ctg } \theta \le 2,5$		NTC08 (4.1.30)						
cot θ	1.0	[-]							
Inc.staffe	90.0	0							
Φ_{staffe}	14	mm							
n.bracci	2	[-]	Armatura trasversale a torsione						
S _{staffe}	125	mm	Armatura trasversale a torsione						
A _{sw}	308	mm ²							
um	6.675	m	perimetro medio sezione cava						
A_c	2.6376	m ²	Area all'interno del perimetro medio						
t	348	mm	sp.sezione cava (min sp. Ala/anima)						
T _{Rcd}	11703	kNm	NTC08 (4.1.27)						
T _{Rsd}	5084	kNm	NTC08 (4.1.28)						
T _{RId}	2448	kNm	NTC08 (4.1.29)						
T_Rd	2448	kNm	NTC08 (4.1.31)						
T _{Ed}	1662	kNm							
FS	1.47								

Verifica a Torsione e Taglio

	Sollecitazioni composte - Torsione e Taglio						
	Verifica crisi lato calcestruzzo						
$\frac{T_{Ed}}{T_{Red}} + \frac{V_{Ed}}{V_{Red}} \le 1$			NTC08 (4.1.32)				
1662	+	3542					
11703 + 8327		8327	0.567				
			0.307				
0.142	+	0.425					

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO


 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 57 di 75

6.7 Traversi – Verifiche Tensionali agli SLE

Si riportano di seguito le verifiche di resistenza per i traversi. Si considera solamente il traverso di testata, nella condizione di sollevamento che è la più gravosa per questo elemento strutturale. Tale scenario è stato considerato come condizione eccezionale.

Per le analisi delle sollecitazioni si considera il seguente schema di posizionamento dei martinetti di sollevamento, ipotizzati in numero di 4 per fila, localizzati sotto il traverso.

Si riportano di seguito le caratteristiche principali del traverso:

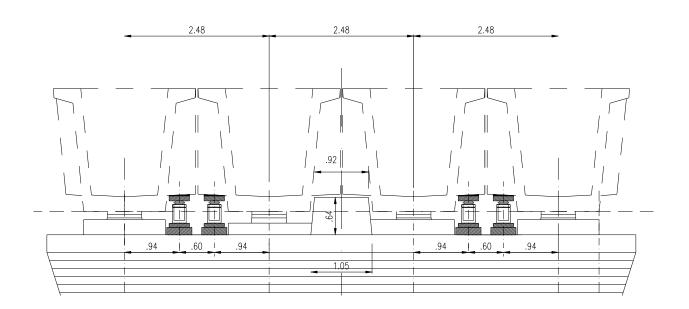
Altezza: 1.80 m Spessore soletta: 0.35 m Spessore minimo: 0.35 m

Precompressione superiore: 1 cavo da 9 trefoli da 0.6" Distanza cavo superiore da estradosso traverso: 0.3 m Precompressione inferiore: 1 cavo da 7 trefoli da 0.6" Distanza cavo inferiore da estradosso traverso: 1.6 m

Si riportano di seguito le verifiche relative alle seguenti fasi:

- T=0
- T=∞
- Esercizio

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

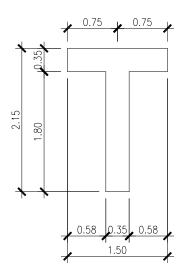

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI00007
 008
 A
 58 di 75

Nelle fasi T=0 e T=∞ si considera la sola porzione del traverso composta dal prefabbricato. In esercizio si considera anche il contributo della soletta. Nella figura seguente è riportata la geometria della sezione considerata in fase di esercizio. La verifica della sezione di traverso forata non viene considerata in fase di esercizio, in quanto lo scenario di progetto (sollevamento con martinetti) comporta sollecitazioni non significative nelle zone interne alle travi in c.a.p.

Il momento sollecitante complessivo esterno è relativo alla nuova configurazione di sollevamento su martinetti, in cui la quota parte derivante dai carichi accidentali è presa pari a una percentuale del 50% (rispetto al momento ricavato da modelli di treno teorici LM71, SW2).



U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI00007
 008
 A
 59 di 75

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 60 di 75

h traverso	1800	mm	
Sp. Traverso	350	mm	
Sp. Soletta	350	mm	
Verifica Trave	rso T=0		
Geometria			
A _{sez.piena}	630000	mm ²	area sezione piena
W_{sup}	189000000	mm ³	modulo di resistenza superiore
W _{inf}	189000000	mm ³	modulo di resistenza inferiore
^	207000	2	
A _{sez.cava}	287000	mm ²	area sezione cava
W _{sup}	170134639	mm ³	modulo di resistenza superiore
W _{inf}	141260163	mm ³	modulo di resistenza inferiore
σ_{p0}	1300	MPa	tensione cavi
A _{trefoli}	139	mm ²	area trefolo
	9	_	numero trefoli cavo sup
n _{trefoli,sup}	7	_	numero trefoli cavo inf
n _{trefoli,inf}	1251	mm ²	Area cavo sup
A _{cavo,sup}	-		
A _{cavo,inf}	973	mm ²	Area cavo inf
N _{cavo,sup}	1626.3	kN	tiro cavo sup
$N_{cavo,inf}$	1264.9	kN	tiro cavo inf
e _{cavo,sup}	610	mm	eccentricità cavo sup (>0)
e _{cavo,inf}	-710	mm	eccentricità cavo inf (<0)
Sollecitazioni a	a T=0		
N	2891.2	kN	N di precompressione totale
M	93.964	kNm	M di precompressione totale
M _{est}	0	kNm	M di precompressione esterno
Tensioni a T=0			
sezione piena			
$\sigma_{c,sup}$	5.09	MPa	tensione lembo sup.
$\sigma_{c,inf}$	4.09	MPa	tensione lembo inf.
sezione cava			
$\sigma_{c,sup}$	10.63	MPa	tensione lembo sup.
$\sigma_{c,inf}$	10.74	MPa	tensione lembo inf.

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG. REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 61 di 75

Verifica Trave	erso T=00		
Geometria			
A _{sez.piena}	630000	mm ²	area sezione piena
W_{sup}	189000000	mm ³	modulo di resistenza superiore
W _{inf}	189000000	mm ³	modulo di resistenza inferiore
A _{sez.cava}	287000	mm ²	area sezione cava
W_{sup}	170134639	mm ³	modulo di resistenza superiore
W _{inf}	141260163	mm ³	modulo di resistenza inferiore
σ_{p0}	1105	MPa	tensione cavi
$A_{trefoli}$	140	mm ²	area trefolo
n _{trefoli,sup}	9	-	numero trefoli cavo sup
n _{trefoli,inf}	7	-	numero trefoli cavo inf
A _{cavo,sup}	1260	mm ²	Area cavo sup
A _{cavo,inf}	980	mm ²	Area cavo inf
N _{cavo,sup}	1392.3	kN	tiro cavo sup
$N_{cavo,inf}$	1082.9	kN	tiro cavo inf
e _{cavo,sup}	610	mm	eccentricità cavo sup (>0)
e _{cavo,inf}	-710	mm	eccentricità cavo inf (<0)
Sollecitazioni	a T=∞		
N	2475.2	kN	N di precompressione totale
М	80.444	kNm	M di precompressione totale
M _{est}	0	kNm	M di precompressione esterno
Tensioni a T=	×		
sezione piena			
$\sigma_{c,sup}$	4.35	MPa	tensione lembo sup.
$\sigma_{c,inf}$	3.50	MPa	tensione lembo inf.
- c,IIII		1711 0	
sezione cava	-		
$\sigma_{c,sup}$	9.10	MPa	tensione lembo sup.
$\sigma_{c,inf}$	9.19	MPa	tensione lembo inf.

Le verifiche risultano soddisfatte.

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG. REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 62 di 75

Verifica Traver	so M _{est}					
h traverso	1800	mm				
Sp. Traverso	350	mm				
Sp. Soletta	350	mm				
Largh. Soletta	1500	mm				
Geometria						
$A_{sez.piena}$	1155000	mm^2	area sezione piena			
W _{sup,sol}	665 055 586.30	mm ³				
W_{sup}	1 230 822 875.11	mm ³	modulo di resistenza superiore			
W_{inf}	364 681 405.39	mm ³	modulo di resistenza inferiore			
Sollecitazioni a	T=0					
N	0	kN	N di precompressione totale			
M	0	kNm	M di precompressione totale			
M _{est}	-2602	kNm	M esterno			
Tensioni						
sezione piena						
$\sigma_{c,sup,sol}$	-3.912	MPa	tensione lembo sup.soletta			
$\sigma_{c,sup}$	-2.114	MPa	tensione lembo sup.			
$\sigma_{c,inf}$	-7.135	MPa	tensione lembo inf.			
Le tensioni tot	ali sono le seguenti.					
$\sigma_{c,sup,sol}$				=	-3.912	(trazione)
$\sigma_{c,sup}$	4.35	+	-2.114	=	2.240	(compressione)
$\sigma_{c,inf}$	9.19	+	-7.135	=	2.059	(compressione)

Le verifiche risultano soddisfatte.

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG. REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 63 di 75

6.8 Verifica soletta

Nelle verifiche della soletta le predalles non sono state considerate reagenti, a favore di sicurezza.

Per le verifiche in esercizio non è stata considerata l'azione di peso proprio della soletta, in quanto agente sulle predalles in fase di getto.

Il limite di apertura delle fessure, calcolate nella soletta in combinazione caratteristica delle azioni, è stato considerato pari a 0.20 mm.

6.8.1 Inviluppo sollecitazioni

Si riporta nel seguito l'analisi in dettaglio della sezione di incastro in corrispondenza dello sbalzo terminale, che rappresenta la situazione gravosa.

Si riportano di seguito i contributi dei singoli carichi in termini di momento flettente negativo all'incastro: Cautelativamente si è considerata una lunghezza di mensola pari a 2.1m.

Si riportano di seguito i contributi dei singoli carichi in termini di momento flettente negativo all'incastro:

	Carico	braccio	M	V	N
tipologia carico	[kN/m]	[m]	[kNm]	[kNm]	[kNm]
g1 soletta	8.75	2.1	-19.29	18.38	0.00
g2 cordolo+massetto	3.9	1.75	-6.83	3.90	0.00
g2 barriera	20.4	1.75	-35.70	20.40	0.00
g2 impermeab+impianti+ telaio FFP	3.3	0.4	-1.32	3.30	0.00
g2 veletta	2.23	2.1	-4.68	2.23	0.00
q 1 (marciapiede)	22	0.45	-9.90	22.00	0.00
q 6 (vento su barriera antirumore)	12.75	3.09	-39.40	0.00	12.75

Calcolo delle sollecitazioni per le verifiche delle tensioni in esercizio e di fessurazione:

Data la presenza di due carichi accidentali (carico sul marciapiede e vento) le possibili combinazioni da considerare sono due, in ciascuna delle quali uno dei due carichi è considerato come dominante.

In particolare per la combinazione caratteristica (rara) si hanno le seguenti due possibili combinazioni:

1)
$$1 \cdot g1 + 1 \cdot g2 + 1 \cdot q1 + 0.60 \cdot q6$$

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO
 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 64 di 75

2)
$$1 \cdot g1 + 1 \cdot g2 + 0.80 \cdot q1 + 1 \cdot q6$$

Per la combinazione <u>quasi permanente</u> invece esiste solo la seguente combinazione:

1)
$$1 \cdot g1 + 1 \cdot g2$$

Per la combinazione <u>frequente</u> invece esiste solo la seguente combinazione:

1)
$$1 \cdot g1 + 1 \cdot g2 + 0.7 \cdot q1$$

Per le verifiche in esercizio non è stata considerata l'azione di peso proprio della soletta, in quanto agente sulle predalles in fase di getto.

Si riassumono le combinazioni e le considerazioni sovraesposte nella seguente tabella.

	g ₁	g ₂	q ₁	q ₆	M _{Ed}	V_{Ed}	N _{Ed}
	[-]	[-]	[-]	[-]	[kNm]	[kN]	[kN]
Comb. rara 1	0	1	1	0.6	-82.07	51.83	7.65
Comb. rara 2	0	1	0.8	1	-95.85	47.43	12.75
Comb. quasi permanente	0	1	0	0	-48.53	29.83	0.00
Comb. frequente	0	1	0.7	0	-55.46	45.23	0.00
Comb. SLU	1.35	1.5	1.16	1.5	-169.42	95.07	19.13

Combinazione caratteristica rara

Nel caso in esame si ricava che:

Momento in esercizio negativo =-95.85 kNm (ottenuto per la combinazione caratteristica 2 di cui sopra)

Azione normale: -12.75 kN (trazione) azione del vento sulla barriera

Combinazione quasi permanente

Nel caso in esame si ricava che:

Momento in esercizio negativo =-48.53 kNm (ottenuto per la combinazione q. perm. 1 di cui sopra)

Combinazione frequente

Nel caso in esame si ricava che:

Momento in esercizio negativo =-55.46 kNm (ottenuto per la combinazione q. perm. 1 di cui sopra)

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI00007
 008
 A
 65 di 75

Calcolo delle sollecitazioni per le verifiche allo stato limite ultimo per flessione:

Il momento massimo allo SLU negativo si ottiene con riferimento alla seguente combinazione delle azioni:

 $1.35 \cdot g_1 + 1.50 \cdot g_2 + 1.16 \cdot q_1 + 1.50 \cdot q_6$

e vale pertanto M= -169.42 KN m

Si hanno le seguenti caratteristiche geometriche:

Larghezza soletta considerata B= 1.00 m

Altezza H = 0.295 m

Si riporta in seguito la verifica SLU disponendo

Armatura: $\varnothing 16/25 + \varnothing 20/25$ strato sup. I

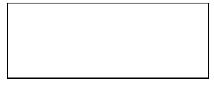
 \emptyset 16/25 strato sup. II

 \emptyset 16/25 strato inf.

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO


 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 66 di 75

6.8.2 Verifiche SLU

1 -

<u>DEFINIZIONE DEI MATERIALI</u>		
Calcestruzzo - Rif. UNI EN 1992 - 1 - 1 : 2005		
Resistenza caratteristica cubica	R_{ck}	40 [M
Resistenza caratteristica cilindrica	f_{ck}	32 [M
Coefficiente di sicurezza parziale per il calcestruzzo	$\gamma_{\rm c}$	1.5 [-]
Coefficiente che tiene conto degli effetti di lungo termine	α_{cc}	0.85 [-]
Valore medio della resistenza a compressione cilindrica	f_{cm}	40 [M
Valore medio della resistenza a trazione assiale del calcestruzzo	f_{ctm}	3.0 [M
Valore caratteristico della resistenza a trazione assiale (frattile 5%)	f _{ctk;0,05}	2.1 [M
Valore caratteristico della resistenza a trazione assiale (frattile 95%)	$f_{ctk;0,95}$	3.9 [M
Modulo di elasticità secante del calcestruzzo	E _{cm}	33346 [M
Deformazione di contrazione nel calcestruzzo alla tensione f _c	ϵ_{cl}	0.0020 [-]
Deformazione ultima di contrazione nel calcestruzzo	ϵ_{cu}	0.0035 [-]
Resistenza di progetto a compressione del calcestruzzo	f _{cd}	18.13 [M
Resistenza di progetto a trazione del calcestruzzo	f _{ctd}	1.41 [M
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	σ _{c,caratt.}	17.6 [M
Tensione ammissibile nel calcestruzzo nella combinazione quasi permanente	$\sigma_{c,q,p,}$	12.8 [M

Acciaio - Rif. UNI EN 1992 - 1 - 1 : 2005		
Resistenza a snervamento dell'acciaio	f _{yk}	450 [MPa]
Coefficiente di sicurezza parziale per l'acciaio	γ_{s}	1.15 [-]
Modulo di elasticità secante dell'acciaio	E_s	200000 [MPa]
Deformazione a snervamento dell'acciaio	ϵ_{yd}	0.001957 [-]
Deformazione ultima dell'acciaio	$\epsilon_{ ext{su}}$	0.01 [-]
Resistenza di progetto a trazione dell'acciaio	f yd	391.3 [MPa]
Tensione ammissibile nell'acciaio per le combinazioni a SLS	$\sigma_{\rm s}$	337.5 [MPa]

$f_{cm} = f_{ck} + 8$		
$f_{ctm} = 0.3 f_{ck}^{2/3}$	$f_{ck} \le 50 \text{ [MPa]}$	
f_{ctm} = 2,12 ln(1+ f_{cm} /10)	$f_{ck} > 50 \text{ [MPa]}$	
$f_{ctk;0,05} = 0.7 f_{ctm}$		
f _{ctk;0,95} = 1,3 f _{ctm}		
$E_{cm} = 22[f_{cm}/10]^{0,3}$	in [GPa]	
$\epsilon_{c1} = 2.0 + 0.085(f_{ck} - 50)^{0.53}$	$f_{ck} >= 50 [MPa]$	
$\varepsilon_{cu} = 2.6 + 35[(90 - f_{ck})/100]^4$	$f_{ck} >= 50 [MPa]$	
$f_{cd} = \alpha_{cc} f_{ck} / \gamma_c$		
$f_{ctd} = f_{ctk;0,05} / \gamma_c$		
$\sigma_{c,caratt.}$ = 0,55 f _{ck} (ex Istruzione FS par 1.8.3.2.1)		
$\sigma_{c,q,p.}$ = 0,45 f _{ck} (ex Istruzione FS par 1.8.3.2.1)		

$\varepsilon_{\rm yd} = f_{\rm yd} / Es$
$\varepsilon_{su} = 1\%$
$f_{yd} = f_{yk}/\gamma_s$
σ_s = 0,8 f _{yk} (ex Istruzione FS par 1.8.3.2.1)

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG. REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 67 di 75

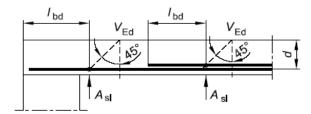
DEFINIZIONE DELLA GEOMETRIA		
SEZIONE TRASVERSALE		
Altezza della sezione trasversale di calcestruzzo	h	295 [mm]
Larghezza della sezione trasversale di calcestruzzo	b	1000 [mm]
Copriferro	d'	50 [mm]
Altezza utile della sezione	d	245 [mm]
ARMATURA TESA		
Diametro dei ferri correnti	ϕ_1	20 [mm]
Numero dei ferri correnti	n ₁	4 [-]
Diametro dei ferri di eventuale infittimento	ϕ_2	16 [mm]
Numero dei ferri di eventuale infittimento	n ₂	8 [-]
Area dell'armatura tesa	A _s	2865 [mm²
ARMATURA COMPRESSA Diametro dei ferri correnti	φ'1	16 [mm]
Numero dei ferri correnti	n' ₁	4 [-]
Diametro dei ferri di eventuale infittimento	φ' ₂	0 [mm]
Numero dei ferri di eventuale infittimento	Ψ ₂ n' ₂	0 [-]
Area dell'armatura compressa	A's	804 [mm ²
Area della marara compressa	/\s	
DETERMINAZIONE DEL MOMENTO RESISTE	NTE	
Determinazione della percentuale meccanica di armatura tesa	ω_{s}	0.2524 [-]
Rapporto tra copriferro e altezza utile	δ	0.2041 [-]
Rapporto tra armatura compressa e armatura tesa	ρ	0.2807 [-]
Posizione adimensionale dell'asse neutro per il Campo 2a	ξ_{2a}	0.1667 [-]
Posizione adimensionale dell'asse neutro per il Campo 2b	ξ _{2b}	0.2593 [-]
Posizione adimensionale dell'asse neutro per il Campo 3	ξ'3	0.4628 [-]
Coefficiente di riempimento per il Campo 2a	eta_{2a}	0.6667 [-]
Coefficiente di riempimento per il Campo 2b	eta_{2b}	0.8095 [-]
Coefficiente a', per il Campo 2a	$lpha'_{s(a)}$	-0.2295 [-]
Coefficiente a's per il Campo 2b	$lpha'_{s(b)}$	0.3807 [-]
Coefficiente a', per il Campo 3	$\alpha'_{s(3)}$	1.0000 [-]
Percentuale meccanica d'armatura per il Campo 2a	ω_{2a}	0.1044 [-]
Percentuale meccanica d'armatura per il Campo 2b	ω_{2b}	0.2350 [-]
Percentuale meccanica d'armatura per il Campo 3	ω_3	0.7209 [-]
	ω'3	0.4964 [-]
CAMPO 3a		
Posizione adimensionale dell'asse neutro	ξ	0.2747 [-]
Posizione dell'asse neutro	X	67.31 [mm]
Deformazione massima nel calcestruzzo	$\epsilon_{\text{c,max}}$	0.0035 [-]
Deformazione massima dell'acciaio	$\epsilon_{s,max}$	0.0092 [-]
Coefficiente di riempimento	β	0.8000 [-]
Coefficiente di baricentro	κ	0.4000 [-]
Coefficiente $\alpha'_s = \sigma'_s/f_{yd}$	α'_s	0.4600 [-]
Tensione nell'armatura compressa	σ'_{s}	179.99 [MPc
Deformazione dell'armatura compressa	ε'ς	0.0009 [-]
Momento resistente della sezione	M _{Rd}	241.15 [kNm
Momento sollecitante a SLU assunto in valore assoluto	M _{Ed}	169.4 [kNm

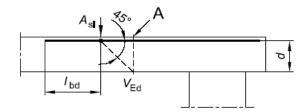
 M_{Rd} =241.15 kNm > $M_{Ed,SLU}$ = 169.4kNm: verifica soddisfatta.

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG. REV.
 FOGLIO


 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 68 di 75


Si riporta in seguito la verifica della resistenza a taglio della sezione.

DETERMINAZIONE DELLA RESISTENZA A TAGLIO DELLA	SEZIONE		
§ 4.1.2.1.3.1 - ELEMENTI SENZA ARMATURE TRASVERSALI RESISTEN	ITI A TAGLIC)	
Azione di Taglio sollecitante a Stato Limite Ultimo	V_{Ed}	95.07	[kN]
Considerare o meno il contributo dell'armatura tesa nel calcolo		NO	[-]
Coefficiente C _{Rd,c}	$C_{Rd,c}$	0.12	[-]
Coefficiente k	k	1.90	[-]
		1.90	[-]
Rapporto geometrico d'armatura che si estende per non meno di l_{bd} + d	ρ_{l}	0.0116944	[-]
		0	[-]

figura 6.3 **Definizione di A_{si} nella espressione (6.2)** Legenda

A Sezione considerata

Resistenza a taglio offerta dal calcestruzzo teso $V_{Rd,c}$ 0.00 [kN] Resistenza minima del calcestruzzo teso $V_{Rd,min}$ 127.39 [kN] Resistenza a taglio offerta dal calcestruzzo teso V_{Rd} 127.39 [kN]

Non occorre disporre armatura specifica a taglio.

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG. REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 69 di 75

6.8.3 Verifiche SLE

DETERMINAZIONE DELLE TENSIONI A SLS				
Controllo tensionale per la Combinazione Caratteristica				
Momento sollecitante assunto in valore assoluto	M_{Ed}	95.85 [kNm]		
Coefficiente di omogeneizzazione	n	15.0 [-]		
Altezza della sezione trasversale di calcestruzzo	h	295 [mm]		
Larghezza della sezione trasversale di calcestruzzo	b	1000 [mm]		
Copriferro	d'	50 [mm]		
Altezza utile della sezione	d	245 [mm]		
Area dell'armatura tesa	As	2865 [mm ²]		
Area dell'armatura compressa	A's	804 [mm²]		
Posizione dell'asse neutro	X	104.00 [mm]		
Momento d'inerzia della sezione rispetto a x	J	1264558048 [mm ⁴]		
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	$\sigma_{c,caratt.}$	17.6 [MPa]		
Tensione ammissibile nell'acciaio per le combinazioni a SLS	$\sigma_{\!\scriptscriptstyle S}$	337.5 [MPa]		
Tensione nel calcestruzzo	σ _c	7.88 [MPa]		
Tensione nell'armatura tesa	σ_{s}	160.31 [MPa]		

DETERMINAZIONE DELLE TENSIONI A SLS				
Controllo tensionale per la Combinazione Quasi Permanente				
Momento sollecitante assunto in valore assoluto	M_{Ed}	48.53 [kNm]		
Coefficiente di omogeneizzazione	n	15.0 [-]		
Altezza della sezione trasversale di calcestruzzo	j	295 [-]		
Larghezza della sezione trasversale di calcestruzzo	b	1000 [-]		
Copriferro	d'	50 [-]		
Altezza utile della sezione	d'	245 [-]		
Area dell'armatura tesa	As	2865 [mm²]		
Area dell'armatura compressa	A's	804 [mm²]		
Posizione dell'asse neutro	Χ	104.00 [mm]		
Momento d'inerzia della sezione rispetto a x	J	1264558048 [mm ⁴]		
Tensione ammissibile nel calcestruzzo nella combinazione quasi permanente	$\sigma_{\text{c,q.p.}}$	12.8 [MPa]		
Tensione ammissibile nell'acciaio per le combinazioni a SLS	$\sigma_{\scriptscriptstyle S}$	337.5 [MPa]		
Tensione nel calcestruzzo	σ _c	3.99 [MPa]		
Tensione nell'armatura tesa	σ_{s}	81.17 [MPa]		

DETERMINAZIONE DELLE TENSIONI	A SLS			
Controllo tensionale per la Combinazione Frequente				
Momento sollecitante assunto in valore assoluto	M_{Ed}	95.85 [kN	Nm]	
Coefficiente di omogeneizzazione	n	15.0 [-]		
Altezza della sezione trasversale di calcestruzzo	j	295 [M	1Pa]	
Larghezza della sezione trasversale di calcestruzzo	b	1000 [-]		
Copriferro	d'	50 [kN	Nm]	
Altezza utile della sezione	d'	245 [kN	Nm]	
Area dell'armatura tesa	As	2865 [mr	nm²]	
Area dell'armatura compressa	A's	804 [mi	nm²]	
Posizione dell'asse neutro	X	104.00 [mr	nm]	
Momento d'inerzia della sezione rispetto a x	J	1264558048 [mi	nm⁴]	
Tensione nel calcestruzzo	σ_{c}	7.88 [MI	NPa]	
Tensione nell'armatura tesa	σ_{s}	160.31 [MI	NPa]	

Le verifiche sono soddisfatte

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 70 di 75

	Permanente	
Momento sollecitante per la combinazione Quasi Permanente	$M_{Ed,q,p.}$	48.53 [kNm]
Durata del carico		lunga [-]
Posizione dell'asse neutro dal lembo superiore	X	104.00 [mm]
Tensione indotta nell'armatura tesa considerando la sezione fessurata	σ_{s}	81.17 [MPa]
Valore medio della resistenza a trazione efficace del calcestruzzo	f _{ct,eff}	3.0 [MPa]
Fattore dipendente dalla durata del carico	k _t	0.4 [-]
Altezza efficace	$h_{c,eff}$	63.6660061 [mm]
Area efficace del calcestruzzo teso attorno all'armatura	$A_{c,eff}$	63666.0061 [mm ²]
Rapporto geometrico sull'area efficace	$ ho_{ m p,eff}$	0.04500 [-]
Rapporto tra E _s /E _{cm}	$lpha_{ extsf{e}}$	6.00 [-]
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	ϵ_{sm} - ϵ_{cm}	0.000235 [-] 0.000243 [-]
Determinazione del diametro equivalente delle barre tese	$\phi_{ m eq}$	17.54 [mm]
Coefficiente che tiene conto dell'aderenza migliorata delle barre	k_1	0.8 [-]
Coefficiente che tiene conto della flessione pura	k_2	0.5 [-]
	k_3	3.4 [-]
	k_4	0.425 [-]
Distanza massima tra le fessure	S _{r,max}	270.25 [mm] 270.25 [mm]
Ampiezza delle fessure	w _k	0.0658 [mm]
Ampiezza massima delle fessure	W _{max}	0.2 [mm]
Calcolo dell'ampiezza delle fessure - Combinazione Fi		
Momento sollecitante per la combinazione Frequente	$M_{Ed,freq.}$	48.53 [kNm]
Durata del carico		
		lunga [-]
Posizione dell'asse neutro dal lembo superiore	x	104.00 [mm]
Posizione dell'asse neutro dal lembo superiore Tensione indotta nell'armatura tesa considerando la sezione fessurata	$\sigma_{\scriptscriptstyle S}$	104.00 [mm] 160.31 [MPa]
Posizione dell'asse neutro dal lembo superiore Tensione indotta nell'armatura tesa considerando la sezione fessurata Valore medio della resistenza a trazione efficace del calcestruzzo	σ_s $f_{ct,eff}$	104.00 [mm] 160.31 [MPa] 3.0 [MPa]
Posizione dell'asse neutro dal lembo superiore Tensione indotta nell'armatura tesa considerando la sezione fessurata Valore medio della resistenza a trazione efficace del calcestruzzo Fattore dipendente dalla durata del carico	σ_s $f_{ct,eff}$ k_t	104.00 [mm] 160.31 [MPa] 3.0 [MPa] 0.4 [-]
Posizione dell'asse neutro dal lembo superiore Tensione indotta nell'armatura tesa considerando la sezione fessurata Valore medio della resistenza a trazione efficace del calcestruzzo Fattore dipendente dalla durata del carico Altezza efficace	σ_{s} $f_{ct,eff}$ k_{t} $h_{c,eff}$	104.00 [mm] 160.31 [MPa] 3.0 [MPa] 0.4 [-] 63.6660061 [mm]
Posizione dell'asse neutro dal lembo superiore Tensione indotta nell'armatura tesa considerando la sezione fessurata Valore medio della resistenza a trazione efficace del calcestruzzo Fattore dipendente dalla durata del carico Altezza efficace Area efficace del calcestruzzo teso attorno all'armatura	σ_s $f_{ct,eff}$ k_t	104.00 [mm] 160.31 [MPa] 3.0 [MPa] 0.4 [-] 63.6660061 [mm] 63666.0061 [mm²]
Posizione dell'asse neutro dal lembo superiore Tensione indotta nell'armatura tesa considerando la sezione fessurata Valore medio della resistenza a trazione efficace del calcestruzzo Fattore dipendente dalla durata del carico Altezza efficace Area efficace del calcestruzzo teso attorno all'armatura Rapporto geometrico sull'area efficace	σ_{s} $f_{ct,eff}$ k_{t} $h_{c,eff}$	104.00 [mm] 160.31 [MPa] 3.0 [MPa] 0.4 [-] 63.6660061 [mm] 63666.0061 [mm²] 0.04500 [-]
Posizione dell'asse neutro dal lembo superiore Tensione indotta nell'armatura tesa considerando la sezione fessurata Valore medio della resistenza a trazione efficace del calcestruzzo Fattore dipendente dalla durata del carico Altezza efficace Area efficace del calcestruzzo teso attorno all'armatura Rapporto geometrico sull'area efficace Rapporto tra E _s /E _{cm}	σ_{s} $f_{ct,eff}$ k_{t} $h_{c,eff}$ $A_{c,eff}$	104.00 [mm] 160.31 [MPa] 3.0 [MPa] 0.4 [-] 63.6660061 [mm] 63666.0061 [mm²] 0.04500 [-]
Posizione dell'asse neutro dal lembo superiore Tensione indotta nell'armatura tesa considerando la sezione fessurata Valore medio della resistenza a trazione efficace del calcestruzzo Fattore dipendente dalla durata del carico Altezza efficace Area efficace del calcestruzzo teso attorno all'armatura Rapporto geometrico sull'area efficace	σ_{s} $f_{\text{ct.eff}}$ k_{t} $h_{\text{c.eff}}$ $A_{\text{c.eff}}$ $\rho_{\text{p.eff}}$	104.00 [mm] 160.31 [MPa] 3.0 [MPa] 0.4 [-] 63.6660061 [mm] 63666.0061 [mm²] 0.04500 [-]
Posizione dell'asse neutro dal lembo superiore Tensione indotta nell'armatura tesa considerando la sezione fessurata Valore medio della resistenza a trazione efficace del calcestruzzo Fattore dipendente dalla durata del carico Altezza efficace Area efficace del calcestruzzo teso attorno all'armatura Rapporto geometrico sull'area efficace Rapporto tra E _s /E _{cm}	$\begin{aligned} &\sigma_s \\ &f_{ct,eff} \\ &k_t \\ &h_{c,eff} \\ &A_{c,eff} \\ &\rho_{p,eff} \\ &\alpha_e \end{aligned}$	104.00 [mm] 160.31 [MPa] 3.0 [MPa] 0.4 [-] 63.6660061 [mm] 63666.0061 [mm²] 0.04500 [-] 6.00 [-] 0.000631 [-]
Posizione dell'asse neutro dal lembo superiore Tensione indotta nell'armatura tesa considerando la sezione fessurata Valore medio della resistenza a trazione efficace del calcestruzzo Fattore dipendente dalla durata del carico Altezza efficace Area efficace del calcestruzzo teso attorno all'armatura Rapporto geometrico sull'area efficace Rapporto tra E_s/E_{cm} Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	σ_{s} $f_{ct,eff}$ k_{t} $h_{c,eff}$ $A_{c,eff}$ $\rho_{p,eff}$ α_{e} ϵ_{sm} - ϵ_{cm}	104.00 [mm] 160.31 [MPa] 3.0 [MPa] 0.4 [-] 63.6660061 [mm] 63666.0061 [mm²] 0.04500 [-] 6.00 [-] 0.000631 [-]
Posizione dell'asse neutro dal lembo superiore Tensione indotta nell'armatura tesa considerando la sezione fessurata Valore medio della resistenza a trazione efficace del calcestruzzo Fattore dipendente dalla durata del carico Altezza efficace Area efficace del calcestruzzo teso attorno all'armatura Rapporto geometrico sull'area efficace Rapporto tra E _s /E _{cm} Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo Determinazione del diametro equivalente delle barre tese	$\begin{split} \sigma_s \\ f_{ct,eff} \\ k_t \\ h_{c,eff} \\ A_{c,eff} \\ \rho_{p,eff} \\ \alpha_e \\ \epsilon_{sm} - \epsilon_{cm} \\ \end{split}$	104.00 [mm] 160.31 [MPa] 3.0 [MPa] 0.4 [-] 63.6660061 [mm] 63666.0061 [mm²] 0.04500 [-] 6.00 [-] 0.000631 [-] 17.54 [mm]
Posizione dell'asse neutro dal lembo superiore Tensione indotta nell'armatura tesa considerando la sezione fessurata Valore medio della resistenza a trazione efficace del calcestruzzo Fattore dipendente dalla durata del carico Altezza efficace Area efficace del calcestruzzo teso attorno all'armatura Rapporto geometrico sull'area efficace Rapporto tra E _s /E _{cm} Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo Determinazione del diametro equivalente delle barre tese Coefficiente che tiene conto dell'aderenza migliorata delle barre	$\begin{aligned} &\sigma_s \\ &f_{ct,eff} \\ &k_t \\ &h_{c,eff} \\ &A_{c,eff} \\ &\rho_{p,eff} \\ &\alpha_e \\ &\epsilon_{sm} - \epsilon_{cm} \\ \end{aligned}$ ϕ_{eq} k_1	104.00 [mm] 160.31 [MPa] 3.0 [MPa] 0.4 [-] 63.6660061 [mm] 63666.0061 [mm²] 0.04500 [-] 6.00 [-] 0.000631 [-] 17.54 [mm] 0.8 [-]
Posizione dell'asse neutro dal lembo superiore Tensione indotta nell'armatura tesa considerando la sezione fessurata Valore medio della resistenza a trazione efficace del calcestruzzo Fattore dipendente dalla durata del carico Altezza efficace Area efficace del calcestruzzo teso attorno all'armatura Rapporto geometrico sull'area efficace Rapporto tra E _s /E _{cm} Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo Determinazione del diametro equivalente delle barre tese Coefficiente che tiene conto dell'aderenza migliorata delle barre	$\begin{aligned} &\sigma_s \\ &f_{ct,eff} \\ &k_t \\ &h_{c,eff} \\ &A_{c,eff} \\ &\rho_{p,eff} \\ &\alpha_e \\ &\epsilon_{sm} - \epsilon_{cm} \\ \end{aligned}$ Φ_{eq} k_1 k_2	104.00 [mm] 160.31 [MPa] 3.0 [MPa] 0.4 [-] 63.6660061 [mm] 63666.0061 [mm²] 0.04500 [-] 6.00 [-] 0.000631 [-] 17.54 [mm] 0.8 [-] 0.5 [-]
Posizione dell'asse neutro dal lembo superiore Tensione indotta nell'armatura tesa considerando la sezione fessurata Valore medio della resistenza a trazione efficace del calcestruzzo Fattore dipendente dalla durata del carico Altezza efficace Area efficace del calcestruzzo teso attorno all'armatura Rapporto geometrico sull'area efficace Rapporto tra E _s /E _{cm} Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo Determinazione del diametro equivalente delle barre tese Coefficiente che tiene conto dell'aderenza migliorata delle barre	$\begin{aligned} &\sigma_s \\ &f_{ct,eff} \\ &k_t \\ &h_{c,eff} \\ &A_{c,eff} \\ &\rho_{p,eff} \\ &\alpha_e \\ &\epsilon_{sm} - \epsilon_{cm} \\ &\varphi_{eq} \\ &k_1 \\ &k_2 \\ &k_3 \end{aligned}$	104.00 [mm] 160.31 [MPa] 3.0 [MPa] 0.4 [-] 63.6660061 [mm] 63666.0061 [mm²] 0.04500 [-] 6.00 [-] 0.000631 [-] 17.54 [mm] 0.8 [-] 0.5 [-] 3.4
Posizione dell'asse neutro dal lembo superiore Tensione indotta nell'armatura tesa considerando la sezione fessurata Valore medio della resistenza a trazione efficace del calcestruzzo Fattore dipendente dalla durata del carico Altezza efficace Area efficace del calcestruzzo teso attorno all'armatura Rapporto geometrico sull'area efficace Rapporto tra E _s /E _{cm} Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo Determinazione del diametro equivalente delle barre tese Coefficiente che tiene conto dell'aderenza migliorata delle barre Coefficiente che tiene conto della flessione pura	$\begin{aligned} &\sigma_s \\ &f_{ct,eff} \\ &k_t \\ &h_{c,eff} \\ &A_{c,eff} \\ &\rho_{p,eff} \\ &\alpha_e \\ &\epsilon_{sm} - \epsilon_{cm} \\ &\phi_{eq} \\ &k_1 \\ &k_2 \\ &k_3 \\ &k_4 \end{aligned}$	104.00 [mm] 160.31 [MPa] 3.0 [MPa] 0.4 [-] 63.6660061 [mm] 63666.0061 [mm²] 0.04500 [-] 6.00 [-] 0.000631 [-] 17.54 [mm] 0.8 [-] 0.5 [-] 3.4 [-] 0.425 [-]
Posizione dell'asse neutro dal lembo superiore Tensione indotta nell'armatura tesa considerando la sezione fessurata Valore medio della resistenza a trazione efficace del calcestruzzo Fattore dipendente dalla durata del carico Altezza efficace Area efficace del calcestruzzo teso attorno all'armatura Rapporto geometrico sull'area efficace Rapporto tra E _s /E _{cm} Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo Determinazione del diametro equivalente delle barre tese Coefficiente che tiene conto dell'aderenza migliorata delle barre Coefficiente che tiene conto della flessione pura	$\begin{aligned} &\sigma_s \\ &f_{ct,eff} \\ &k_t \\ &h_{c,eff} \\ &A_{c,eff} \\ &\rho_{p,eff} \\ &\alpha_e \\ &\epsilon_{sm} - \epsilon_{cm} \\ &\phi_{eq} \\ &k_1 \\ &k_2 \\ &k_3 \\ &k_4 \end{aligned}$	104.00 [mm] 160.31 [MPa] 3.0 [MPa] 0.4 [-] 63.6660061 [mm] 63666.0061 [mm²] 0.04500 [-] 6.00 [-] 0.000631 [-] 17.54 [mm] 0.8 [-] 0.5 [-] 3.4 [-] 0.425 [-] 270.25 [mm]

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG. REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 71 di 75

Calcolo dell'ampiezza delle fessure - Combinazione Ca	ratteristica	
Momento sollecitante per la combinazione Caratteristica	$M_{Ed,caratt.}$	95.85
Durata del carico		lunga
Posizione dell'asse neutro dal lembo superiore	X	104.00
Tensione indotta nell'armatura tesa considerando la sezione fessurata	$\sigma_{\scriptscriptstyle S}$	160.31
Valore medio della resistenza a trazione efficace del calcestruzzo	$f_{\rm ct,eff}$	3.0
Fattore dipendente dalla durata del carico	k_{t}	0.4
Altezza efficace	$h_{c,eff}$	63.6660061
Area efficace del calcestruzzo teso attorno all'armatura	$A_{c,eff}$	63666.0061
Rapporto geometrico sull'area efficace	$ ho_{ extsf{p,eff}}$	0.04500
Rapporto tra E _s /E _{cm}	$lpha_{ extsf{e}}$	6.00
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	ϵ_{sm} - ϵ_{cm}	0.000631
Determinazione del diametro equivalente delle barre tese	$\phi_{ m eq}$	17.54
Coefficiente che tiene conto dell'aderenza migliorata delle barre	k_1	0.8
Coefficiente che tiene conto della flessione pura	k_2	0.5
	k ₃	3.4
	k_4	0.425
Distanza massima tra le fessure	S _{r,max}	270.25 270.25
Ampiezza delle fessure	W _k	0.1705
Ampiezza massima delle fessure	W _{max}	0.2

Le verifiche sono soddisfatte

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

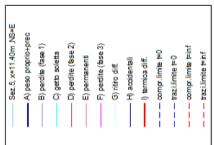
 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG.
 REV.
 FOGLIO

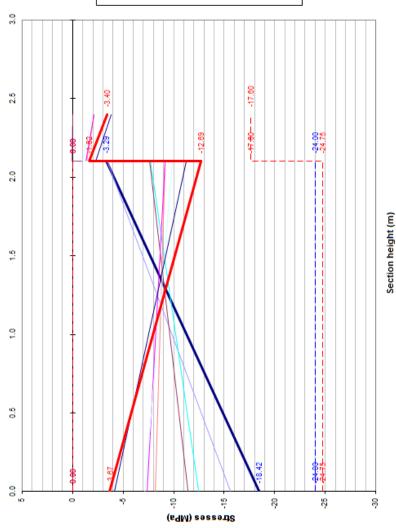
 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 72 di 75

7 VERIFICA AL SOLLEVAMENTO

Con riferimento alla disposizione dei martinetti di sollevamento, si riportano in breve le verifiche tensionali relative alla trave più sollecitata: rispetto alle verifiche condotte precedentemente, le sollecitazioni sono relative alla nuova configurazione di sollevamento su martinetti, il momento sollecitante derivante dai carichi accidentali è preso pari a una percentuale del 50%, rispetto a quello di esercizio.

	Sezione n°5 - x=11.40m						
	SOLLECITAZIONI PARZIALI (kN;kNm)			TENSIONI PARZIALI (MPa)			
FASE	N	N	M	sigma_i	sigma_s	sigma_si	sigma_ss
precompressione		-13 608	-6 515	-21.54	0.91		
0) peso proprio trave			2 123	3.12	-4.20		
A) peso proprio+prec		-13 608	-4 392	-18.42	-3.29		
B) perdite (fase 1)		1 756	841	2.78	-0.12		
C) getto soletta			2 154	3.17	-4.26		
D) perdite (fase 2)		683	685	1.05	0.06	0.08	-0.04
E) permanenti			3 348	3.26	-1.56	-1.44	-2.06
F) perdite (fase 3)		547	548	0.84	0.05	0.07	-0.04
G) ritiro diff.	769	-769	682	0.24	-0.74	0.33	0.21
H) accidentali		0	3 032	2.96	-1.42	-1.30	-1.86
I) termica diff.	1 464	-1 464	1 299	0.46	-1.41	0.63	0.39
Sez.5, x=11.40m ,NS=E				TENSIONI TOTALI (MPa)			
FASE				sigma_i	sigma_s	sigma_si	sigma_ss
h(m)				0.00	2.10	2.10	2.40
A) peso proprio+prec				-18.42	-3.29		
B) perdite (fase 1)				-15.64	-3.40		
C) getto soletta				-12.47	-7.66		
D) perdite (fase 2)				-11.43	-7.60	0.08	-0.04
E) permanenti				-8.16	-9.17	-1.35	-2.10
F) perdite (fase 3)				-7.33	-9.12	-1.29	-2.14
G) ritiro diff.				-7.09	-9.86	-0.95	-1.93
H) accidentali				-4.13	-11.28	-2.25	-3.80
I) termica diff.				-3.67	-12.69	-1.62	-3.40
LIMITI TENSIONALI							
h(m)				0.00	2.10	2.10	2.40
compr.limite t=0				-24.00	-24.00		
trazi.limite t=0				0.00	0.00		
compr.limite t=inf				-24.75	-24.75	-17.60	-17.60
trazi.limite t=inf				0.00	0.00	0.00	0.00




U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario
RELAZIONE DI CALCOLO

 PROGETTO
 LOTTO
 FASE
 ENTE
 COD.
 DOC.
 PROG. REV.
 FOGLIO

 RS3U
 40
 D
 09
 CL
 VI0007
 008
 A
 73 di 75

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV.

RS3U 40 D 09 CL VI0007 008 A

FOGLIO 74 di 75

8 VERIFICHE DI DEFORMAZIONE

8.1 Verifica deformazioni torsionali (sghembo)

La torsione dell'impalcato del ponte è calcolata considerando il treno di carico LM71 o SW/2 incrementato con il corrispondente coefficiente dinamico e con il coefficiente α .

La condizione più severa si realizza in corrispondenza della zona di appoggio dell'impalcato, durante il passaggio del convoglio LM71. Di seguito si riporta la verifica di sghembo, riferita agli abbassamenti massimi riscontrati nella soletta di impalcato. I valori degli abbassamenti massimi, rilevati in nodi posti in posizioni coerenti con quanto prevede la normativa per tale tipo di verifica, sono:

 $\delta_{1,LM71} = 1.11$ mm $\delta_{1,SW2} = 1.35$ mm

 $\delta_{2,LM71} = 1.23$ mm $\delta_{2,SW2} = 1.42$ mm

Lo sghembo massimo è pari a:

 $t \cong \delta_{2,\text{LM71}}$ - $\delta_{1,\text{LM71}}$ =(1.23 - 1.11)= 0.12mm /3m

Il valore di t appena calcolato è inferiore al valore limite previsto dalla normativa e pari a 3.0 mm /3m per il caso $120 < V_{max} < 200$ km/h.

8.2 Verifica stato limite di confort

Considerando la presenza dei treni di carico LM71,SW/2, incrementati con il corrispondente coefficiente dinamico ϕ_3 e con il coefficiente α , il massimo valore di inflessione per effetto di tali carichi ferroviari non deve eccedere il valore L/600.

L'abbassamento massimo per inflessione nel piano verticale dovuto al transito dei convogli è stato valutato sommando l'effetto del treno SW/2 e LM71 (amplificato per α =1.1). L'abbassamento massimo si rileva in mezzeria ed è pari a:

 $\delta = 6.08 \text{ mm}$

Il valore di δ appena calcolato è inferiore al valore limite previsto dalla normativa e pari a L/600 = 22800/600 = 38 mm.

U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI

Impalcato in c.a.p. L=25 m Doppio Binario RELAZIONE DI CALCOLO

PROGETTO LOTTO FASE ENTE COD. DOC. PROG. REV.
RS3U 40 D 09 CL VI0007 008 A

FOGLIO 75 di 75

9 Riepilogo appoggi e giunti

Si veda il relativo elaborato grafico.

2 -