COMMITTENTE: ĒRROVIARIA ITALIANA SRUPPO FERROVIE DELLO STATO ITALIANE PROGETTAZIONE: U.O. OPERE CIVILI E GESTIONE DELLE VARIANTI PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA **NAZIONALE** VIADOTTI VI01 – Viadotto ferroviario su SS613 – Relazione geotecnica e di cacolo delle fondazioni SCALA: COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV. | A | 7 | L 0 0 0 9 R|H|

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorio zato Data
Α	Emissione esecutiva	Dinelli	Maggio 2020	A.F. Rotunno	Maggio 2020	T. Paoletti	Maggio 2020	A vittozzi I angio 2020
				740		14		FTA Ere Civil Dott. In
								U.O. Op dine dey
								δ

File: IA7L 00 D 09 RH VI0103 001 A.doc n. Elab.:

PROGETTO DEFINITIVO

INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE

VI01 - Viadotto ferroviario su SS613 - Relazione geotecnica e di calcolo fondazioni

COMMESSA IA7L LOTTO CODIFICA

00 D 09 RH

DOCUMENTO VI0103001 REV.

FOGLIO 2 di 42

INDICE

1.	PREMESSA	4
2.	NORMATIVA E DOCUMENTI DI RIFERIMENTO	7
2.1	NORMATIVA DI RIFERIMENTO	7
2.2	DOCUMENTI DI RIFERIMENTO	8
3.	INQUADRAMENTO GEOTECNICO	9
4.	METODOLOGIE DI CALCOLO CAPACITA' PORTANTE DEI PALI	11
4.1	Premessa	11
4.2	Analisi agli stati limite	11
4.3	METODOLOGIA DI CALCOLO CAPACITÀ PORTANTE AI CARICHI VERTICALI	13
4.4	DETERMINAZIONE DELLA RESISTENZA DI PROGETTO A TRAZIONE	16
4.5	VERIFICA A CARICO LIMITE VERTICALE DI UNA PALIFICATA	17
5.	METODOLOGIA PER LA DETERMINAZIONE DEL CARICO LIMITE ORIZZONTALE DEI PALI	18
5.1	Premessa	18
5.2	Analisi agli stati limite	18
5.3	VERIFICA A CARICO LIMITE ORIZZONTALE - BROMS	18
6.	METODOLOGIA PER L'ANALISI DELLE PALIFICATE	22
6.1	COMPORTAMENTO DEL PALO SOGGETTO AI CARICHI ORIZZONTALI - MODULO DI REAZIONE ORIZZONTALE DEL TER	reno22
6.2	VALUTAZIONE DEL MOMENTO ADIMENSIONALE LUNGO IL PALO	24
6.3	Analisi palificata spalla e stima deformazioni	25
7.	SOLLECITAZIONI SUI PALI	27
8.	VERIFICA STRUTTURALE DEL PALO	29
8.1	DETERMINAZIONE MOMENTO FLETTENTE	29
	8.1.1 Momento flettente SLU/SLV	29
	8.1.2 Momento flettente SLE rara	31

PROGETTO DEFINITIVO

INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE

VI01 - Viadotto ferroviario su SS613 - Relazione geotecnica e di calcolo fondazioni

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA7L 00 D 09 RH VI0103001 A 3 di 42

	8.1.3 Momento flettente SLE quasi permanente	32
8.2	VERIFICA PRESSO-FLESSIONE E TAGLIO	33
8.3	Incidenze	37
9.	VERIFICA A CARICO LIMITE VERTICALE	38
9.1	VERIFICA A CAPACITÀ PORTANTE DEL SINGOLO PALO	38
9.2	VERIFICA A CARICO LIMITE VERTICALE DELLA PALIFICATA	39
10.	VERIFICA A CARICO LIMITE ORIZZONTALE	39
11.	ALLEGATI	42

PROGETTO DEFINITIVO INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE **RETRO-PORTUALE** DI BRINDISI CON **INFRASTRUTTURA** FERROVIARIA NAZIONALE GRUPPO FERROVIE DELLO STATO ITALIANE COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO VI01 - Viadotto ferroviario su SS613 - Relazione geotecnica e di calcolo fondazioni IA7L D 09 RH VI0103001 4 di 42

1. PREMESSA

Nelle immediate vicinanze della stazione di Brindisi è presente una complessa realtà industriale principalmente legata al Porto e al polo petrolchimico. Il collegamento tra l'aera portuale e la stazione di Brindisi, ad oggi, è fortemente penalizzato da una moltitudine di intersezioni a raso all'interno di un'area fortemente urbanizzata.

Obiettivo della presente progettazione consiste nell'incentivare il traffico merci su ferro integrando il sistema portuale con il sistema ferroviario riducendo in questo modo le interferenze tra le attività di terminalizzazione ed il traffico urbano. Tale intervento presenta elevati vantaggi in termini di sicurezza in quanto, oltre ad allontanare il traffico merci da un tessuto urbano costituito da numerosi passaggi a livello, concentra le operazioni di manovra dei treni merci all'interno della nuova "stazione elementare".

Scopo della presente progettazione è la realizzazione del completamento dell'infrastruttura di collegamento dell'area industriale retro-portuale di Brindisi con l'Infrastruttura Ferroviaria Nazionale.

Il progetto si compone di due lotti:

Lotto 1: opere a carico del Comune di Brindisi (a cura del Comune e in corso di realizzazione):

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO INFRASTRI RETRO-PO FERROVIA	UTTURA RTUALE	DI COLLEGA DI BRIN	MENTO DELL'A DISI CON		JSTRIALE RUTTURA
VI01 - Viadotto ferroviario su SS613 - Relazione geotecnica e di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo fondazioni	IA7L	00	D 09 RH	VI0103001	Α	5 di 42

- Binario di corretto tracciato (Binario III) e precedenza in sinistra (Binario IV) della suddetta nuova Stazione Elementare;
- Nuova tratta ferroviaria di collegamento tra la Dorsale del Consorzio ASI di Brindisi (Porto di Brindisi) e la nuova Stazione Elementare per l'arrivo/partenza di treni merci a modulo 750m (circa 1,78 Km)

Lotto 2: opere a carico di RFI, oggetto della presente progettazione:

- Binari I e II della nuova stazione per l'arrivo/partenza treni di merci a modulo 750m
- Nuova tratta ferroviaria di collegamento tra la suddetta nuova Stazione Elementare e la linea Bari Lecce (OO.CC. + armamento)
- Posto di comunicazione e bivio di collegamento della nuova tratta con la Linea Adriatica (al km 764+230 circa della linea Bari Lecce)
- Impianti di trazione elettrica e apparati tecnologici della nuova stazione merci, della tratta di collegamento tra questa e la Linea Adriatica e del bivio sulla Linea Adriatica per l'allaccio della nuova linea.

Pertanto, il progetto risponde ai seguenti obbiettivi:

- Realizzazione di una stazione a modulo 750 m, coerentemente con gli standard europei di trasporto merci;
- Velocizzazione delle attività di manovra e terminalizzazione, per accesso diretto dei treni provenienti da nord in una stazione dedicata a traffico merci, con itinerari di arrivo a 60 km/h;
- Integrazione del sistema ferroviario con quello portuale;
- Riduzione delle interferenze tra le attività di terminalizzazione su ferro e il traffico urbano, con vantaggi soprattutto in termini di sicurezza;
- Incentivo al traffico merci su ferro;
- Separazione del traffico merci, in parte altamente pericolose, dal traffico viaggiatori in stazione di Brindisi centrale.

	PROGETTO DEFINITIVO INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIAL RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTUR. FERROVIARIA NAZIONALE						
VI01 – Viadotto ferroviario su SS613 – Relazione geotecnica e di calcolo fondazioni	COMMESSA IA7L	LOTTO	CODIFICA D 09 RH	DOCUMENTO VI0103001	REV.	FOGLIO 6 di 42	

Nella presente relazione si riporta la verifica delle fondazioni profonde delle spalle del viadotto VI01 su SS613 presente nell'ambito del Progetto Definitivo dell'infrastruttura di collegamento dell'area industriale retro-portuale di Brindisi con l'infrastruttura ferroviaria nazionale.

In particolare, verranno affrontati i seguenti aspetti:

- metodologie per la valutazione della capacità portante dei pali e per l'esecuzione delle relative verifiche (portata singolo palo a compressione, a trazione e portata di gruppo);
- metodologie per la determinazione del carico limite orizzontale dei pali per l'esecuzione delle relative verifiche;
- valutazioni per l'analisi delle palificate: comportamento del palo soggetto ai carichi orizzontali e determinazione del modulo di reazione orizzontale palo – terreno; valutazione del parametro alfa (= Mo/To) e del momento adimensionale lungo il palo;
- verifiche geotecniche e strutturali del singolo palo.

Tutte le analisi svolte nel seguito sono eseguite in conformità alla normativa italiana vigente sulle opere civili ([N.1]).

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO INFRASTRI RETRO-PO FERROVIA	JTTURA I RTUALE	DI COLLEGA DI BRIN	MENTO DELL'AI IDISI CON I		JSTRIALE RUTTURA
VI01 – Viadotto ferroviario su SS613 – Relazione geotecnica e di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo fondazioni	IA7L	00	D 09 RH	VI0103001	Α	7 di 42

2. NORMATIVA E DOCUMENTI DI RIFERIMENTO

2.1 Normativa di riferimento

- [N.1]. Norme Tecniche per le Costruzioni, DM del 17/01/2018.
- [N.2]. Legge 05/01/1971 n°1086: Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica.
- [N.3]. Legge 02/02/1974 n°64: Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.
- [N.4]. C.M. 21/01/2019 n.7: Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni.
- [N.5]. RFI DTC SI PS MA IFS 001 D: Manuale di progettazione delle opere civili 2020– Parte II Sezione 2
 Ponti e Strutture.
- [N.6]. RFI DTC SI PS SP IFS 001 D: Capitolato generale tecnico di appalto delle opere civili 2020– Parte II
 Sezione 6 Opere in conglomerato cementizio e in acciaio.
- [N.7]. UNI EN 1991-1-4:2005: Eurocodice 1 Azioni sulle strutture Parte 1-4: Azioni in generale Azioni del vento.
- [N.8]. UNI EN 1992-1-1:2005: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici.
- [N.9]. UNI EN 1992-2:2006: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 2: Ponti.
- [N.10]. UNI EN 1993-1-1:2005: Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-1: Regole generali e regole per gli edifici.
- [N.11]. UNI EN 1993-2:2007: Eurocodice 3 Progettazione delle strutture di acciaio Parte 2: Ponti.
- [N.12]. UNI EN 1998-1:2005: Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 1: Regole generali, azioni sismiche e regole per gli edifici.
- [N.13]. UNI EN 1998-2:2006: Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 2: Ponti.
- [N.14]. STI 2014 –Regolamento (UE) N. 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «infrastruttura» del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019.

GRUPPO FERROVIE DELLO STATO ITALIANE	INFRASTRI RETRO-PO FERROVIA	UTTURA PRTUALE	DI COLLEGA DI BRIN	MENTO DELL'A IDISI CON		JSTRIALE RUTTURA
VI01 – Viadotto ferroviario su SS613 – Relazione geotecnica e di		LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo fondazioni	IA7L	00	D 09 RH	VI0103001	Α	8 di 42

2.2 Documenti di riferimento

- [DC1]. ITALFERR Progetto Definitivo Infrastruttura di collegamento dell'area industriale retroportuale di Brindisi con infrastruttura ferroviaria nazionale – Relazione Geotecnica Generale (Doc. IA7L00D10GEGE0006001)
- [DC2]. ITALFERR Progetto Definitivo Infrastruttura di collegamento dell'area industriale retroportuale di Brindisi con infrastruttura ferroviaria nazionale – Profilo geotecnico di linea (Doc. IA7L00D10F7GE0006002)
- [DC3]. ITALFERR Progetto Definitivo Infrastruttura di collegamento dell'area industriale retroportuale di Brindisi con infrastruttura ferroviaria nazionale – VI01 - Relazione di calcolo spalle (Doc. IA7L00D09CLVI0104001)

3. INQUADRAMENTO GEOTECNICO

La stratigrafia di calcolo è stata definita sulla base dei sondaggi BH04 e BH08. In Tabella 1 si riportano la stratigrafia e i alori caratteristici dei parametri geotecnici assunti in accordo a quanto riportato nella Relazione Geotecnica [DC1].

Dal profilo geotecnico la falda risulta essere a circa -7.5 m da piano campagna; nei calcoli si assume cautelativamente che si trovi alla stessa quota della testa dei pali ovvero a -3.0 m dal piano campagna.

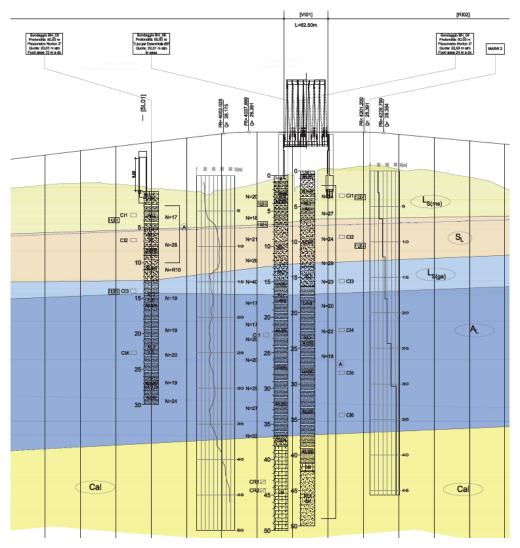


Figura 1 – Profilo geotecnico in corrispondenza del VI01.

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE

PROGETTO DEFINITIVO

INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE

VI01 – Viadotto ferroviario su SS613 – Relazione geotecnica e di calcolo fondazioni

COMMESSA LOTTO CODIFICA
IA7L 00 D 09 RH

DOCUMENTO VI0103001 REV. FOGLIO A 10 di 42

Tabella 1 – Stratigrafia di calcolo e valori dei parametri geotecnici caratteristici.

	da	a	γ	ϕ_k '	c_k	c_{uk}	k_h
	(m p.c.)	(m p.c).	(kN/m^3)	(°)	(kPa)	(kPa)	kN/m ³
LS(ms)	0.0	7.0	19.0	26-30	0-5	60-120	1
SL	7.0	12.50	19.0	32-35	0	-	8000
LS(ga)	12.5	17.0	19.5	28-30	5-10	50-100	-
AL	17.0	37.0	20.0	24-28	15-20	0.22·σ' _v OCR 0.8 (OCR=2)	-
Cal	37.0		21.0	32-35	0	-	8000

essendo:

 γ = peso di volume naturale

φ_k'= valore caratteristico dell'angolo di attrito

c_k' = valore caratteristico della resistenza al taglio in condizioni drenate

 c_{uk} = valore caratteristico della coesione non drenata

 k_{h} = gradiente del modulo di reazione del terreno per i materiali a grana grossa

	PROGETTO DEFINITIVO							
GRUPPO FERROVIE DELLO STATO ITALIANE	INFRASTRI RETRO-PC FERROVIA	RTUALE	DI BRIN	MENTO DELL'A IDISI CON		JSTRIALE RUTTURA		
VI01 – Viadotto ferroviario su SS613 – Relazione geotecnica e di calcolo fondazioni		LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Calcolo Ionidazioni	IA7L	00	D 09 RH	VI0103001	Α	11 di 42		

4. METODOLOGIE DI CALCOLO CAPACITA' PORTANTE DEI PALI

4.1 Premessa

Nel presente capitolo si riportano le metodologie di calcolo della capacità portante per i pali trivellati di grande diametro previsti per le opere in progetto.

La lunghezza palo di progetto è quella che soddisfa tutte le verifiche di capacità portante, anche in presenza di scalzamento. Si verificherà inoltre che la risposta del palo in esercizio sia di tipo "elastico"; verificando un adeguato coefficiente di sicurezza sulla portata ultima per attrito laterale:

 N_{max,SLE} < Qll / 1.25 la massima sollecitazione assiale allo SLE RARA dovrà essere inferiore alla portata laterale limite del palo (Qll, riportata nelle seguenti tabelle) con un fattore di sicurezza di 1.25.

Il carico di progetto sul palo dovrà essere compatibile con le caratteristiche resistenti della sezione del palo.

4.2 Analisi agli stati limite

Le verifiche di capacità portante dei pali vengono svolte secondo la metodologia degli stati limite ultimi, in accordo alla normativa vigente. La verifica della capacità portante dei pali è soddisfatta se:

Fcd < Rcd

essendo

 $Rcd = Rk / \gamma R$

dove:

Fcd = carico assiale di compressione di progetto;

Rcd = capacità portante di progetto nei confronti dei carichi assiali;

Rk = valore caratteristico della capacità portante limite del palo.

In particolare le verifiche di capacità portante dei pali agli stati limite ultimi (SLU) vengono condotte secondo l'Approccio (A1+M1+R3) tenendo conto dei valori dei coefficienti parziali delle tabelle di normativa 6.2.I, 6.2.II e 6.4.VI.

La resistenza di progetto a compressione $R_{c,d}$ è calcolata applicando al valore caratteristico della resistenza $R_{c,k}$ i coefficienti parziali γ_R riportati in tabella seguente (tabella di normativa 6.4.II), relativi alla condizione di pali trivellati.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	INFRASTRU RETRO-PO FERROVIAI	JTTURA I RTUALE	DI COLLEGAI DI BRIN	MENTO DELL'A DISI CON		JSTRIALE RUTTURA
VI01 – Viadotto ferroviario su SS613 – Relazione geotecnica e di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo fondazioni	ΙΔ7Ι	00	D 00 PH	VI0103001		12 di 42

Il valore caratteristico della resistenza $R_{c,k}$ a compressione del palo (o a trazione Rtk) è ottenuto applicando i fattori di correlazione ξ_3 e ξ_4 (vedasi tabella seguente) alle resistenze di calcolo Rc,cal (o Rt,cal); tali fattori di correlazione sono funzione del numero di verticali d'indagine rappresentative (tabella di normativa 6.4.IV).

Per ogni opera verrà assunto un coefficiente ξ_3 in funzione delle verticali di indagine eseguite, sufficientemente rappresentative per la caratterizzazione geotecnica, secondo quanto indicato da normativa.

In condizioni sismiche le verifiche di capacità portante dei pali agli stati limite ultimi vanno condotte con riferimento allo stesso approccio utilizzato per le condizioni statiche (A1+M1+R3), tenendo conto dei coefficienti parziali riportati nella successiva tabella e ponendo i coefficienti parziali sulle azioni tutti pari all'unità.

Tabella 2 Coefficienti parziali γ_R da applicare alle resistenze caratteristiche a carico verticale dei pali

Resistenza	Simbolo	Pali	Pali	Pali ad elica
		infissi	trivellati	continua
	γ_{R}	(R3)	(R3)	(R3)
Base	γъ	1,15	1,35	1,3
Laterale in compressione	Υs	1,15	1,15	1,15
Totale (*)	γ	1,15	1,30	1,25
Laterale in trazione	Υst	1,25	1,25	1,25

⁽¹) da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

$$R_{\text{c,k}} = Min\left\{ \frac{\left(R_{\text{c,cal}}\right)_{\text{media}}}{\xi_{3}}; \frac{\left(R_{\text{c,cal}}\right)_{\text{min}}}{\xi_{4}} \right\}$$

$$R_{\mathrm{t,k}} = Min\left\{\frac{\left(R_{\mathrm{t,cal}}\right)_{media}}{\xi_{3}}; \frac{\left(R_{\mathrm{t,cal}}\right)_{min}}{\xi_{4}}\right\}$$

Tabella 3 Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali d'indagine

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE

PROGETTO DEFINITIVO

INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE

VI01 – Viadotto ferroviario su SS613 – Relazione geotecnica e di calcolo fondazioni

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA7L	00	D 09 RH	VI0103001	Α	13 di 42

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ ₃	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ ₄	1,70	1,55	1,48	1,42	1,34	1,28	1,21

4.3 Metodologia di calcolo capacità portante ai carichi verticali

La portata di progetto di un palo trivellato (eseguito con completa asportazione del terreno) "Qd" può essere espressa dalla seguente relazione:

$$Qd = Q_{ll} / F_{SL} + Q_{bl} / F_{SB} - W'p$$

dove:

Qll = portata laterale limite,

Qbl = portata di base limite,

W'p = peso efficace del palo (al netto del peso del terreno asportato: peso calcestruzzo-peso terreno),

 F_{SL} = fattore di sicurezza per la portata laterale a compressione (= $\xi_3 \cdot \gamma_s$).

 F_{SB} = fattore di sicurezza per la portata di base (= $\xi_3 \cdot \gamma_b$).

Portata laterale

La portata laterale limite viene valutata con la seguente relazione:

$$Qll = \pi \cdot D \cdot \Sigma i (\tau i \cdot hi)$$

dove:

D = diametro palo,

 τi = tensione di adesione laterale limite nello strato i-esimo,

hi = altezza dello strato i-esimo.

Depositi incoerenti

Per i depositi incoerenti, la tensione tangenziale ultima lungo il fusto del palo, in accordo ad esempio a Burland [1973], Reese & O'Neill [1988], Chen & Kulhawy [1994], O'Neill & Hassan [1994], può essere valutata con riferimento alla seguente espressione:

$$\tau i = \beta \cdot \sigma `v \le \tau_{l,max}$$

dove:

 σ 'v = tensione verticale efficace litostatica,

PROGETTO DEFINITIVO INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE **RETRO-PORTUALE** DI BRINDISI **INFRASTRUTTURA** CON FERROVIARIA NAZIONALE GRUPPO FERROVIE DELLO STATO ITALIANE COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO VI01 - Viadotto ferroviario su SS613 - Relazione geotecnica e di calcolo fondazioni IA7L 00 D 09 RH VI0103001 14 di 42 Α

 $\tau_{l,max}$ = valore massimo dell'adesione laterale limite palo-terreno (pari a 150 kPa per terreni incoerenti).

 β = coefficiente empirico β = k · tan ϕ , essendo

k = coefficiente di pressione laterale = 0.7 a compressione e 0.5 a trazione;

 ϕ = angolo di resistenza al taglio.

Depositi coesivi

Per i terreni coesivi superficiali (alluvionali) la tensione tangenziale è stata valutata con la seguente espressione:

$$\tau i = \alpha \cdot cu \leq \tau_{l,max}$$

Dove:

cu = resistenza al taglio in condizioni non drenate

 α = parametro empirico assunto come da Indicazione AGI:

 $\alpha = 0.90$ per cu ≤ 25 kPa;

 $\alpha = 0.80$ per $25 \le cu \le 50$ kPa;

 $\alpha = 0.60$ per $50 \le cu \le 75$ kPa;

 $\alpha = 0.40$ per cu ≥ 75 kPa.

 $\tau_{l,max}$ = valore massimo dell'adesione laterale limite palo-terreno (pari a 100 kPa per terreni coesivi alluvionali).

Inoltre, per i terreni coesivi alluvionali è stata anche eseguita una verifica in tensioni efficaci; in particolare si è controllato che:

$$\tau i > 0.23 * \sigma' v$$

$$\tau i < 0.25 * \sigma' v$$

Per i depositi coesivi del substrato la tensione tangenziale può essere valutata con la correlazione di Burland (1993):

$$\tau i = \beta \cdot \sigma' v \leq \tau_{l.max}$$

Dove

$$\beta = 0.1 + 0.4 \cdot \text{Cu} / \sigma' \text{v}$$
 (con $\beta > 0.23$, AGI dicembre 1984)).

cu = resistenza al taglio in condizioni non drenate;

 $\sigma'v$ = tensioni verticali efficaci;

PROGETTO DEFINITIVO INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE **RETRO-PORTUALE** DI BRINDISI CON **INFRASTRUTTURA** FERROVIARIA NAZIONALE GRUPPO FERROVIE DELLO STATO ITALIANE COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO VI01 - Viadotto ferroviario su SS613 - Relazione geotecnica e di calcolo fondazioni IA7L 00 D 09 RH VI0103001 15 di 42

 $\tau_{l,max}$ = valore massimo dell'adesione laterale limite palo-terreno (pari a 120 kPa per terreni coesivi del substrato).

Portata di base

Per la valutazione della portata di base limite sono state utilizzate le seguenti relazioni:

$$Qbl = Ap \cdot qbl$$

dove:

Ap = area della base del palo,

qbl = portata limite specifica di base.

Depositi incoerenti

Nei terreni incoerenti la pressione di base del palo associabile a cedimenti pari al 10% del diametro del palo viene valutata con la relazione di Berezantzev (1965) indicata nelle Raccomandazioni AGI:

$$qb = Nq* \cdot \sigma'v \le qb$$
, lim

essendo:

Nq* = coefficiente in funzione dell'angolo di resistenza al taglio del terreno (Raccomandazioni AGI);

 $\sigma'v$ = tensione verticale efficace;

qb,lim = pressione ultima di base massima consigliabile. Nel caso in esame si è fatto riferimento a quanto indicato da Gwidzala,1984, vedasi seguente tabella.

Tabella 4 – Valori di qblim secondo Gwizdala [1984]

	qb,lim (kPa)
GHIAIE	7300
SABBIE	5800
SABBIE LIMOSE	4300

Depositi coesivi

La portata di base limite nei terreni coesivi viene valutata con la seguente relazione:

$$qb = 9 \cdot cu + \sigma v \le qb, lim$$

dove:

cu = resistenza al taglio non drenata [kPa];

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO INFRASTRI RETRO-PO FERROVIA	UTTURA RTUALE	DI COLLEGA DI BRIN	MENTO DELL'A DISI CON		JSTRIALE RUTTURA
VI01 - Viadotto ferroviario su SS613 - Relazione geotecnica e di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo fondazioni	IA7L	00	D 09 RH	VI0103001	Α	16 di 42

 $\sigma v = tensione totale verticale;$

qb,lim = pressione ultima di base massima consigliabile (3800 kPa in accordo a Engling e Reese, 1974).

4.4 Determinazione della resistenza di progetto a trazione

La portata a trazione di progetto di un palo trivellato (eseguito con completa asportazione del terreno) " Q_d " può essere espressa dalla seguente relazione:

$$Q_d = Q_{LL} / FS_L + W'_P$$

dove:

Q_{LL} = portata laterale limite (da determinarsi in conformità a quanto già descritto nel precedente paragrafo),

W'_P = peso efficace del palo (alleggerito se sotto falda),

 F_{SL} = fattore di sicurezza per la portata laterale a trazione (= $\gamma_{st} \cdot \xi_3$).

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO INFRASTRI RETRO-PO FERROVIA	UTTURA PRTUALE	DI COLLEGA DI BRIN	MENTO DELL'A DISI CON I		JSTRIALE RUTTURA
VI01 – Viadotto ferroviario su SS613 – Relazione geotecnica e di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo fondazioni	IA7L	00	D 09 RH	VI0103001	Α	17 di 42

4.5 Verifica a carico limite verticale di una palificata

Il carico limite verticale di una palificata viene valutato come:

$$R_{d,G} = N \cdot E \cdot R_{d, \text{ singolo palo}}$$

La resistenza a carico verticale della palificata è data dal prodotto della resistenza del palo singolo per il numero N di pali del gruppo e per il fattore E di efficienza della palificata.

L'esperienza (Vesic, 1968) ha mostrato che per palificate in terreni incoerenti, l'efficienza risulta non minore dell'unità, quindi si può assumere E = 1 (per terreni incoerenti).

Per palificate in terreni coesivi, invece, l'efficienza risulta minore dell'unità e può essere valutata ad esempio con la formulazione empirica di Converse Labarre, di seguito esplicitata.

$$E = 1 - (\Phi / 90) \cdot [(n-1) \cdot m + (m-1) \cdot n] / (m \cdot n)$$

Dove:

E = efficienza della palificata

N = numero di pali per fila

M= numero di file

 $\Phi = \operatorname{arctg} (D/i) \operatorname{con} D = \operatorname{diametro pali}, i = \operatorname{interasse pali}.$

GRUPPO FERROVIE DELLO STATO ITALIANE	INFRASTRI RETRO-PO FERROVIA	JTTURA RTUALE	DI COLLEGA DI BRIN	MENTO DELL'A IDISI CON		JSTRIALE RUTTURA
VI01 – Viadotto ferroviario su SS613 – Relazione geotecnica e d	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo fondazioni	IA7L	00	D 09 RH	VI0103001	Α	18 di 42

5. METODOLOGIA PER LA DETERMINAZIONE DEL CARICO LIMITE ORIZZONTALE DEI PALI

5.1 Premessa

In linea generale, per la verifica del carico limite orizzontale si fa riferimento alla teoria di Broms per il caso di pali con rotazione in testa impedita. Le metodologie di calcolo sono riportate nel paragrafo seguente.

5.2 Analisi agli stati limite

Per la determinazione del valore di progetto della resistenza dei pali soggetti a carichi trasversali valgono le indicazioni di normativa [N.1] al paragrafo 6.4.3.1.1, applicando il coefficiente parziale (γ_T) della seguente tabella (vedasi tabella di normativa 6.4.VI) ed i coefficienti ξ_3 e ξ_4 , fattori di correlazione in funzione del numero di verticali d'indagine rappresentative (tabella di normativa 6.4.IV).

La valutazione è stata eseguita tenendo conto di effetto gruppo, cautelativamente assunto pari a 0.8.

Tabella 5 Coefficiente parziale γ_T per le verifiche agli stati limite ultimi di pali soggetti a carichi trasversali

Coefficiente parziale (R3)
$\gamma_T = 1.3$

5.3 Verifica a carico limite orizzontale - Broms

Per la verifica del carico limite orizzontale si fa riferimento alla teoria di Broms per il caso di pali con rotazione in testa impedita.

Le equazioni con cui si determina il carico limite a forze orizzontali dei pali sono definite di seguito al variare del tipo di meccanismo considerato.

PROGETTO DEFINITIVO

INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE

VI01 - Viadotto ferroviario su SS613 - Relazione geotecnica e di calcolo fondazioni

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA7L	00	D 09 RH	VI0103001	Α	19 di 42

In terreni coesivi si ha:

Palo corto:
$$H = 9c_u d^2 \left(\frac{L}{d} - 1.5\right)$$

$$\begin{split} & \underline{\textit{Palo intermedio:}} & \qquad \qquad H = -9c_ud^2\Bigg(\frac{L}{d} + 1.5\Bigg) + 9c_ud^2\sqrt{2}\Bigg(\frac{L}{d}\Bigg)^2 + \frac{4}{9}\frac{M_y}{c_ud^3} + 4.5 \\ & \qquad \qquad \\ & \underline{\textit{Palo lungo:}} & \qquad \qquad H = -13.5c_ud^2 + c_ud^2\sqrt{182.25 + 36\frac{M_y}{c_ud^3}} \end{split}$$

Palo lungo:
$$H = -13.5c_{u}d^{2} + c_{u}d^{2}\sqrt{182.25 + 36\frac{M_{y}}{c_{u}d^{3}}}$$

dove:

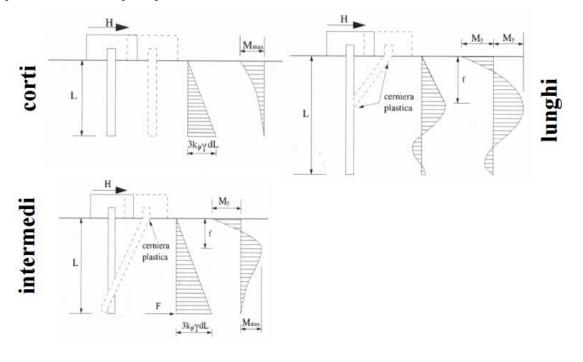
H = carico limite orizzontale del palo;

cu = resistenza non drenata del terreno;

My = momento di plasticizzazione del palo;

L = lunghezza del palo;

d = diametro del palo.


PROGETTO DEFINITIVO INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE **RETRO-PORTUALE** DI **BRINDISI** CON **INFRASTRUTTURA** FERROVIARIA NAZIONALE GRUPPO FERROVIE DELLO STATO ITALIANE COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO VI01 - Viadotto ferroviario su SS613 - Relazione geotecnica e di calcolo fondazioni IA7L D 09 RH VI0103001 Α 20 di 42

In <u>terreni incoerenti</u> si ha (vedasi figura seguente):

$$\begin{array}{ll} \underline{\textit{Palo corto:}} & H = 1.5 k_p \gamma d^3 \left(\frac{L}{d}\right)^2 \\ \\ \underline{\textit{Palo intermedio:}} & H = \frac{1}{2} k_p \gamma d^3 \left(\frac{L}{d}\right)^2 + \frac{M_y}{L} \\ \\ \underline{\textit{Palo lungo:}} & H = k_p \gamma d^3 \sqrt[3]{\left(3.676 \, \frac{M_y}{k_p \gamma d^4}\right)^2} \end{array}$$

Dove, oltre ai termini già definiti,

kp = coefficiente di spinta passiva.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	INFRASTRI RETRO-PO FERROVIA	JTTURA I RTUALE	DI COLLEGA DI BRIN	MENTO DELL'A IDISI CON		JSTRIALE RUTTURA
VI01 - Viadotto ferroviario su SS613 - Relazione geotecnica e di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo fondazioni	IA7L	00	D 09 RH	VI0103001	Α	21 di 42

Il valore di carico resistente di progetto (Hd) dovrà essere confrontato con il massimo valore del taglio agente sul palo al variare delle combinazioni (Vpd).

Il valore determinato con la teoria di Broms (Hk) dovrà essere ridotto secondo quanto prevede la normativa vigente.

$$Hd = Hk / (\xi_3 \cdot \gamma_T) > Vpd$$

dove:

Hk = valore limite in funzione del meccanismo attivato valutato con teoria di Broms;

 ξ_3 = fattore di correlazione in funzione delle verticali indagate;

 γ_T = fattore parziale per pali soggetti a carichi orizzontali.

Vpd = massima sollecitazione orizzontale di progetto.

Per le verifiche a carico limite orizzontale si considera cautelativamente un coefficiente di gruppo 0.8.

Quindi per le palificate si verificherà:

Hd *0.8 = (Hk *0.8) /
$$(\xi_3 \cdot \gamma_T) > Vpd$$

	PROGETTO DEFINITIVO							
GRUPPO FERROVIE DELLO STATO ITALIANE	INFRASTRI RETRO-PC FERROVIA	RTUALE	DI BRIN	MENTO DELL'A IDISI CON		JSTRIALE RUTTURA		
VI01 – Viadotto ferroviario su SS613 – Relazione geotecnica e di calcolo fondazioni		LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Calcolo Iolidazioni	IA7L	00	D 09 RH	VI0103001	Α	22 di 42		

6. METODOLOGIA PER L'ANALISI DELLE PALIFICATE

6.1 Comportamento del palo soggetto ai carichi orizzontali - Modulo di reazione orizzontale del terreno

Lo studio dell'interazione tra palo soggetto ai carichi orizzontali ed il terreno viene effettuato ricorrendo alla teoria di Matlock e Reese che si basa sul noto modello di suolo alla Winkler (elastico-lienare), caratterizzato da un modulo di reazione orizzontale del terreno (E_{MR}) definito come il rapporto fra la reazione del terreno per unità di lunghezza del palo (p) ed il corrispondente spostamento orizzontale (y):

$$E_{MR} = p / y$$
 [FL⁻²]

Si osservi che, definito K_W [FL⁻³] il coefficiente di sottofondo di Winkler, per un palo di diametro D si ha:

$$E_{MR} = K_W \cdot D$$

L'andamento del modulo di reazione orizzontale con la profondità è funzione principalmente del tipo di terreno.

Per i terreni incoerenti si assume in genere una legge di variazione lineare caratterizzata dai seguenti parametri:

$$E_{MR} = E_{MR.0} + k_h \cdot z \qquad [FL^{-2}]$$

dove:

E_{MR,0} = valore del modulo di reazione a testa palo;

kh = gradiente del modulo di reazione del terreno funzione principalmente della Dr;

z = profondità a partire dalla sommità del palo.

Nella seguente figura si riportano i valori di riferimento del gradiente kh corrispondente a valori secanti del modulo E_{MR} per pali isolati con basse deformazioni ($y \le 0.005 \cdot D$) per terreni sotto falda; in quanto per le palificate del presente lotto la configurazione dei pali è sempre sotto falda.

Per i terreni coesivi si assume in genere una legge del tipo:

$$E_{MR} = \xi \cdot cu, con \xi = 300 \div 450,$$

corrispondenti a valori secanti del modulo E_{MR} per pali isolati con basse deformazioni (y $\leq 0.005 \cdot D$).

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO INFRASTRI RETRO-PO FERROVIA	JTTURA I RTUALE	DI COLLEGA DI BRIN	MENTO DELL'A IDISI CON		JSTRIALE RUTTURA
VI01 - Viadotto ferroviario su SS613 - Relazione geotecnica e d	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo fondazioni	IA7L	00	D 09 RH	VI0103001	Α	23 di 42

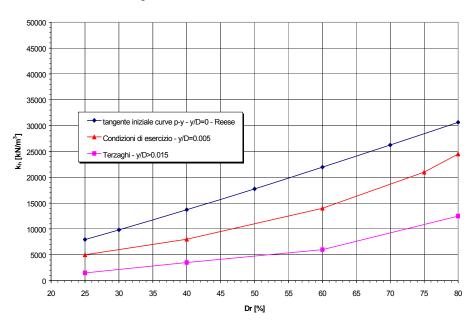


Figura 2. Andamento del gradiente del modulo di reazione orizzontale - Terreni sotto falda

Per le fondazioni delle opere in esame generalmente i terreni intercettati sono coesivi, sotto falda e quindi il modulo di reazione orizzontale palo-terreno viene valutato con i seguenti parametri:

- Per terreni coesivi: ξ = 350, il valore della resistenza al taglio non drenata è assunta come da stratigrafia di riferimento per l'opera;
- Per terreni incoerenti: $k_h = 8000 \text{ kN/m}^3$ in relazione alla densità relativa degli strati.

Inoltre al modulo di reazione orizzontale palo-terreno, viene applicato un coefficiente di riduzione per effetto gruppo della rigidezza del terreno kh, ai fini dell'analisi delle sollecitazioni sui pali. Cautelativamente si introduce lo stesso coefficiente di riduzione per effetto gruppo (0.8) applicato per la verifica del carico limite orizzontale dei pali (valutato con Broms).

GRUPPO FERROVIE DELLO STATO ITALIANE	INFRASTRI RETRO-PO FERROVIA	UTTURA RTUALE	DI COLLEGA DI BRIN	MENTO DELL'A DISI CON		JSTRIALE RUTTURA
VI01 - Viadotto ferroviario su SS613 - Relazione geotecnica e		LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo fondazioni	IA7L	00	D 09 RH	VI0103001	Α	24 di 42

6.2 Valutazione del momento adimensionale lungo il palo

Per ricavare il momento adimensionalizzato lungo il fusto del palo si ricorre al metodo di Matlock e Reese (1956), che utilizzando il metodo delle differenze finite, hanno risolto il problema del palo soggetto ad un carico orizzontale, mediante l'impiego di parametri adimensionali, ottenuti esprimendo l'equazione della linea elastica attraverso equazioni differenziali funzione del tipo di sollecitazione agente.

Nel caso in esame, considerando l'andamento del modulo di reazione orizzontale palo-terreno (E_{MR}, valutato in accordo al precedente paragrafo), si ricorre al metodo degli elementi finiti, adimensionalizzando la soluzione come segue:

$$M_0 = \alpha_m \cdot H_0$$

$$M(z) = M_0 \cdot M_{ad}(z)$$

essendo:

Ho = azione tagliante in testa palo [F];

Mo = azione flettente, conseguente ad Ho, in testa al palo;

 \mathcal{Q}_m = rapporto momento taglio in testa palo nell'ipotesi di rotazione impedita [L];

Mad = momento flettente adimensionale lungo il fusto del palo.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO INFRASTRI RETRO-PO FERROVIA	JTTURA I RTUALE	DI COLLEGA DI BRIN	MENTO DELL'A IDISI CON I		JSTRIALE RUTTURA
VI01 – Viadotto ferroviario su SS613 – Relazione geotecnica e di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo fondazioni	IA7L	00	D 09 RH	VI0103001	Α	25 di 42

6.3 Analisi palificata spalla e stima deformazioni

Relativamente alle palificate delle spalle, in accordo alle linee guida Italferr, si è adottato il seguente criterio progettuale:

- Azioni inerziali calcolate in condizioni sismiche con l'accelerazione massima al suolo sia per le spalle mobili che per le spalle fisse;
- Spinta del terreno in condizioni sismiche valutata in condizioni di equilibrio limite attivo (spinta attiva + Mononobe-Okabe), purchè sia verificata la condizione per la mobilitazione della spinta attiva sugli spostamenti dei pali di fondazione (ai sensi dell'Eurocodice EC7).

Quindi per le fondazioni delle spalle dei ponti/viadotti è stata svolta una analisi della palificata considerando i pali collegati (incastrati) in testa ad un plinto di fondazione assimilabile ad un corpo infinitamente rigido. I valori massimi delle sollecitazioni agenti su ciascun palo e gli spostamenti della fondazione conseguenti ai carichi applicati sono stati determinati con l'ausilio del codice (dichiarare codice di calcolo).

Questa analisi è stata svolta considerando solo le combinazioni di carico sismiche, in quanto è finalizzata alla stima delle deformazioni massime in fondazione per la scelta dell'uso del coefficiente di spinta (k0, a riposo) o ka (attiva) in condizioni sismiche per l'analisi delle palificate delle spalle. Infatti, in accordo alle linee guida Italferr relative alla valutazione della spinta del terreno sui muri di sostegno e sulle spalle di ponti fondati su pali, per il calcolo della spinta del terreno sulle opere di sostegno, occorre tenere presente che la mobilitazione della spinta attiva avviene per spostamenti di entità contenuta, come si evince dalla tabella desunta dall'EC7 - Parte 1 - Annesso C (C.3 "Movements to mobilise limit earth pressures), di seguito riportata.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE

PROGETTO DEFINITIVO

INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE

VI01 – Viadotto ferroviario su SS613 – Relazione geotecnica e di calcolo fondazioni

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA7L
 00
 D 09 RH
 VI0103001
 A
 26 di 42

Table C.1 — Ratios v_s/h

Kind	l of	v _a /h	v₀/h
wall	movement	loose soil	dense soil
		%	%
a)	Va U	0,4 to 0,5	0,1 to 0,2
b)	V ₀ =	0,2	0,05 to 0,1
c)	V _a	0,8 to 1,0	0,2 to 0,5
d)	V ₂	0,4 to 0,5	0,1 to 0,2
where v _a	is the wall motion to mobilise act is the height of the wall	ive earth pressure	

Quindi per ogni palificata delle spalle sono state stimate le deformazioni massime a quota testa palo in funzione della geometria della palificata, dei carichi, della rigidezza assiale dei pali e del modulo di reazione orizzontale palo-terreno. Poi è stato stimato il rapporto Vs / h (della precedente tabella) in funzione dell'altezza complessiva della spalla. La scelta dell'uso del coefficiente di spinta (k0, a riposo) o ka (attiva) in condizioni sismiche per l'analisi delle palificate delle spalle è nella relazione di calcolo strutturale delle spalle.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO INFRASTRI RETRO-PO FERROVIA	UTTURA RTUALE	DI COLLEGA DI BRIN	MENTO DELL'A IDISI CON		JSTRIALE RUTTURA
VI01 - Viadotto ferroviario su SS613 - Relazione geotecnica e di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo fondazioni	IA7L	00	D 09 RH	VI0103001	Α	27 di 42

7. SOLLECITAZIONI SUI PALI

La fondazione della spalla poggia su 12 pali di diametro 1500 mm e lunghezza 35.0 m; nelle tabelle seguenti si riportano gli scarichi ottenuti in testa ai pali maggiormente sollecitati nelle combinazioni SLU (statiche e sismiche), GEO e SLE ([DC3]).

_		F1	F2	Fh	F3	Joint	OutputCase
SLU/SLV		KN	KN	kN	KN	Text	Text
F3	max	-948.65	304.32	996.26	5933.36	63	STR1
F3	min	-607.61	306.68	680.62	1187.23	6	STR8
F2	max	-877.55	956.79	1298.28	4788.22	60	STR1
F2	min	-268.79	-1128.61	1160.18	5477.44	65	STR5
F1	max	549.51	-881.13	1038.44	3396.61	46	STR13
F1	min	-1628.86	463.89	1693.63	4392.02	41	STR6

GEO		F1	F2	Fh	F3	Joint	OutputCase
		KN	KN	kN	KN	Text	Text
F3	max	-893.84	318.22	948.80	5721.12	63	GEO1
F3	min	-486.45	330.01	587.83	1295.60	6	GEO4
F2	max	-830.96	927.89	1245.58	4611.42	60	GEO1
F2	min	173.64	-1027.11	1041.69	3861.28	46	GEO1
F1	max	485.32	-830.96	962.30	3270.70	46	GEO13
F1	min	-1397.36	518.46	1490.45	4416.41	41	GEO5

		F1	F2	Fh	F3	Joint	OutputCase
RARA		KN	KN	kN	KN	Text	Text
F3	max	-678.94	213.64	711.75	4006.06	63	RAR1
F3	min	-303.94	379.09	485.89	1583.37	6	RAR1
F2	max	-601.03	646.42	882.66	3240.92	60	RAR1
F2	min	88.34	-718.81	724.21	2733.02	46	RAR1
F1	max	218.57	-577.36	617.35	2452.88	46	RAR2
F1	min	-996.20	420.89	1081.46	3302.95	41	RAR1

PROGETTO DEFINITIVO

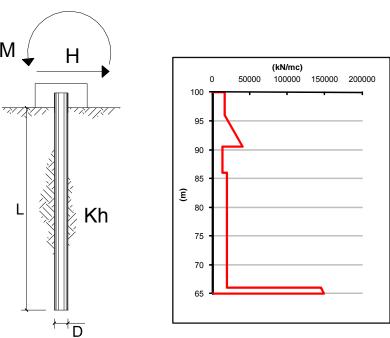
INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE

VI01 - Viadotto ferroviario su SS613 - Relazione geotecnica e di calcolo fondazioni

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA7L
 00
 D 09 RH
 VI0103001
 A
 28 di 42

	QUASI	F1	F2	Fh	F3	Joint	OutputCase
PERMANENTE		KN	KN	kN	KN	Text	Text
F3	max	-317.78	343.41	467.88	3187.29	63	QP
F3	min	3.49	-454.28	454.29	2039.52	34	QP
F2	max	-75.39	593.14	597.91	2505.84	38	QP
F2	min	-75.44	-593.08	597.86	2505.31	46	QP
F1	max	3.55	454.30	454.31	2039.80	6	QP
F1	min	-453.00	489.04	666.61	3054.64	41	QP


TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO INFRASTRI RETRO-PO FERROVIA	JTTURA RTUALE	DI COLLEGA DI BRIN	MENTO DELL'A IDISI CON		JSTRIALE RUTTURA
VI01 - Viadotto ferroviario su SS613 - Relazione geotecnica e di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo fondazioni	IA7L	00	D 09 RH	VI0103001	Α	29 di 42

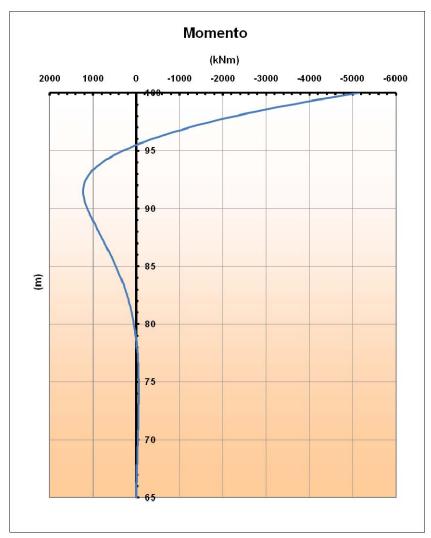
8. VERIFICA STRUTTURALE DEL PALO

8.1 Determinazione momento flettente

A partire dal valore massimo del taglio sul singolo palo per ciascun gruppo di combinazioni di carico (SLU/SLV, SLE rara e SLE quasi permanente) è stato determinato l'andamento del momento flettente lungo il fusto del palo stesso, come di seguito riportato. Per la metodologia utilizzata si rimanda al paragrafo 6.1.

8.1.1 Momento flettente SLU/SLV

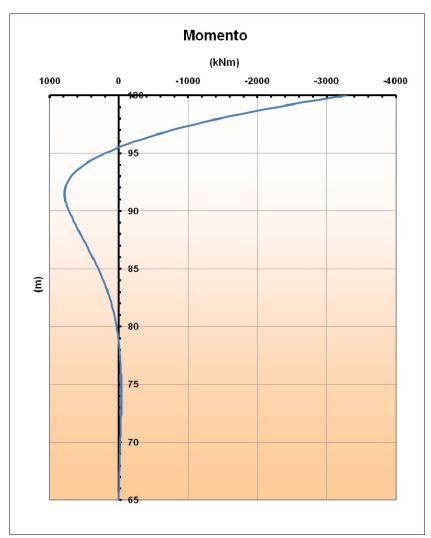
		4-	1.	
strati terreno	descrizione	quote	k _h	n _h
Stratt terreno	descrizione	(m)	(kN/m ³)	(kN/m ³)
p.c.=strato 1	Ls(ms)	100.00	16800	
✓ strato 2	SL	96.00		6400
✓ strato 3	Ls(ga)	90.50	14000	
✓ strato 4	AL	86.00	20000	
✓ strato 5	Cal	66.00		6400
□ strato 6				


PROGETTO DEFINITIVO

INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE

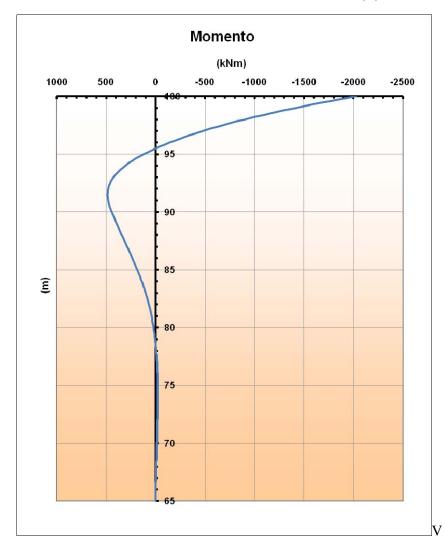
VI01 – Viadotto ferroviario su SS613 – Relazione geotecnica e di calcolo fondazioni

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA7L	00	D 09 RH	VI0103001	Α	30 di 42


Diametro del palo	1.5	(m)
J palo	0.24850	(m ⁴)
Lunghezza del palo	35	(m)
Forza orizzontale in testa	1693.63	(kN)
Momento in testa	0	(kNm)
E cls	31475.8	(Mpa)
dimensione elementi	0.2	(m)

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	INFRASTRI RETRO-PO FERROVIA	JTTURA RTUALE	DI COLLEGA DI BRIN	MENTO DELL'A IDISI CON		USTRIALE RUTTURA
VI01 – Viadotto ferroviario su SS613 – Relazione geotecnica e di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo fondazioni	IA7L	00	D 09 RH	VI0103001	Α	31 di 42

8.1.2 Momento flettente SLE rara


Diametro del palo	1.5	(m)
J palo	0.24850	(m ⁴)
Lunghezza del palo	35	(m)
Forza orizzontale in testa	1081.46	(kN)
Momento in testa	0	(kNm)
E cls	31475.8	(Mpa)
dimensione elementi	0.2	(m)

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO INFRASTRI RETRO-PO FERROVIA	JTTURA RTUALE	DI COLLEGA DI BRIN	MENTO DELL'A IDISI CON		JSTRIALE RUTTURA
VI01 - Viadotto ferroviario su SS613 - Relazione geotecnica e di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo fondazioni	IA7L	00	D 09 RH	VI0103001	Α	32 di 42

8.1.3 Momento flettente SLE quasi permanente

Diametro del palo	1.5	(m)
J palo	0.24850	(m ⁴)
Lunghezza del palo	35	(m)
Forza orizzontale in testa	666.61	(kN)
Momento in testa	0	(kNm)
E cls	31475.8	(Mpa)
dimensione elementi	0.2	(m)

	ERROVIAR	RTUALE IA NAZIC	DI BRINI NALE	DISI CON I	NFRASTI	RUTTURA
VI01 – Viadotto ferroviario su SS613 – Relazione geotecnica e di calcolo fondazioni	COMMESSA	LOTTO 00	CODIFICA D 09 RH	DOCUMENTO VI0103001	REV.	FOGLIO 33 di 42

8.2 Verifica presso-flessione e taglio

Si riassumono di seguito le sollecitazioni ottenute per i diversi stati limite.

	z(M _{max})	$\mathbf{M}_{ ext{max}}$	T_{max}	N
	(m)	(kNm)	(kN)	(kN)
SLU/SLV	0.0	5152.14	1693.63	4392.02
SLE RARA	0.0	3289.87	-	3302.95
SLE Q.P.	0.0	2027.87	-	3054.64

Il palo è armato con un doppio strato di armatura longitudinale; il primo, più esterno, è costituito da 40 barre Φ 30mm e il secondo da 32 barre Φ 30mm. L'armatura trasversale è costituita da due eliche continue Φ 14/10.

DATI GENERALI SEZIONE GENERICA IN C.A. NOME SEZIONE: palo-VI01

Descrizione Sezione:

Metodo di calcolo resistenza: Resistenze agli Stati Limite Ultimi Tipologia sezione: Sezione generica di Pilastro

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante
Condizioni Ambientali: Poco aggressive
Riferimento Sforzi assegnati: Assi x,y principali d'inerzia
Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C25/30	
	Resis. compr. di progetto fcd:	141.60	daN/cm ²
	Resis. compr. ridotta fcd':	70.80	daN/cm ²
	Def.unit. max resistenza ec2:	0.0020	
	Def.unit. ultima ecu:	0.0035	
	Diagramma tensione-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	314750	daN/cm ²
	Resis. media a trazione fctm:	25.60	daN/cm ²
	Coeff. Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	137.50	daN/cm ²
	Sc limite S.L.E. comb. Q.Permanenti:	100.00	daN/cm ²
	Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	4500.0	daN/cm ²
	Resist. caratt. rottura ftk:	4500.0	daN/cm ²
	Resist. snerv. di progetto fyd:	3913.0	daN/cm ²
	Resist. ultima di progetto ftd:	3913.0	daN/cm ²
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm²

PROGETTO DEFINITIVO

INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE

VI01 – Viadotto ferroviario su SS613 – Relazione geotecnica e di calcolo fondazioni

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
1A7L 00 D 09 RH VI0103001 A 34 di 42

Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50

Sf limite S.L.E. Comb. Rare: 3375.0 daN/cm²

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Circolare Classe Conglomerato: C25/30

Raggio circ.: 75.0 cm X centro circ.: 0.0 cm Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate Ycentro Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate Raggio Raggio [cm] della circonferenza lungo cui sono disposte le barre generate N°Barre Numero di barre generate equidist. disposte lungo la circonferenza

Ø Diametro [mm] della singola barra generata

N°Barre Ø N°Gen. Xcentro Ycentro Raggio 30 0.0 40 0.0 65.1 1 2 0.0 0.0 57.6 32 30

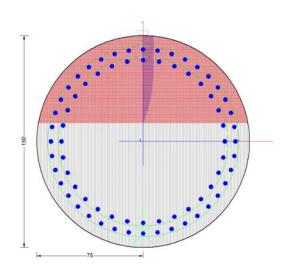
ARMATURE A TAGLIO

Diametro staffe: 14 mm Passo staffe: 10.0 cm N. bracci: 4

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baric. (+ se di compressione)
Mx Momento flettente [daNm] intorno all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo sup. della sez.
My Momento flettente [daNm] intorno all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.
Vy Componente del Taglio [daN] parallela all'asse princ.d'inerzia y
Vx Componente del Taglio [daN] parallela all'asse princ.d'inerzia x

N°Comb. N Mx My Vy Vx 1 439202 515214 0 169363 0


ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE

PROGETTO DEFINITIVO

INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE

VI01 – Viadotto ferroviario su SS613 – Relazione geotecnica e di calcolo fondazioni

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA7L	00	D 09 RH	VI0103001	Α	35 di 42

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [daNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom. Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [daNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My 1 330295 328987 0

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione)

Mx Momento flettente [daNm] intorno all'asse x princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

My Momento flettente [daNm] intorno all'asse y princ. d'inerzia (tra parentesi Mom.Fessurazione)

con verso positivo se tale da comprimere il lembo destro della sezione

N°Comb. N Mx My
1 305464 202787 (196151) 0 (0)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 8.4 cm Interferro netto minimo barre longitudinali: 4.5 cm Copriferro netto minimo staffe: 7.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sn Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione)

Mx Sn

Componente momento assegnato [daNm] riferito all'asse x princ. d'inerzia
My Sn

Componente momento assegnato [daNm] riferito all'asse y princ. d'inerzia
N Res

Sforzo normale resistente [daN] baricentrico (positivo se di compress.)
Mx Res

Momento flettente resistente [daNm] riferito all'asse x princ. d'inerzia
My res

Momento flettente resistente [daNm] riferito all'asse y princ. d'inerzia
Mis.Sic.

Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >= 1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

 $N^{\circ}Comb$ Ver N Mx My N Res Mx Res My Res Mis.Sic. As Totale

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE

PROGETTO DEFINITIVO

INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE

VI01 – Viadotto ferroviario su SS613 – Relazione geotecnica e di calcolo fondazioni

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
1A7L 00 D 09 RH VI0103001 A 36 di 42

1 S 439202 515214 0 439231 1045973 0 2.03 508.9(53.0)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform. unit. massima del conglomerato a compressione Deform. unit. massima del conglomerato a compressione

Xc max Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)

es min
Xs min
Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min
Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max
Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max
Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

10.00350 0.0 75.0 0.00294 0.0 65.1 -0.00444 0.0 -65.1

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, cCoeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.

x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

VERIFICHE A TAGLIO

bw

Ctg

Acw

Ast

A.Eff

Diam. Staffe: 14 mm

Passo staffe: 10.0 cm [Passo massimo di normativa = 25.0 cm]

N. bracci: 4

Ver S = comb. verificata a taglio / N = comb. non verificata

Ved Taglio di progetto [daN] = proiez. di Vx e Vy sulla normale all'asse neutro Vcd Taglio compressione resistente [daN] lato conglomerato [formula (4.1.28)NTC]

Vwd Taglio resistente [daN] assorbito dalle staffe

d | z Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm]

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce.

Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed.

Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Coefficiente maggiorativo della resistenza a taglio per compressione

Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]

Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]

Tra parentesi è indicata la quota dell'area relativa alle sole legature. L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

Ctg N°Comb Ver Ved Vcd A.Eff Vwd $d \mid z$ hw Acw Ast S 169363 558889 221958117.6 | 97.8 137.4 1.000 1.176 44.3 58.0(0.0)

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max
Massima tensione (positiva se di compressione) nel conglomerato [daN/cm²]
Xc max, Yc max
Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Sf min
Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²]
Xs min, Ys min
Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.
Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb Ver Sc max Xc max Yc max Sf min Xs min Ys min Ac eff. As eff.

1	S	91.1	0.0	0.0	-1210	0.0	-65.1	1936	99.0
---	---	------	-----	-----	-------	-----	-------	------	------

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

OOMBII		TO ITE IT LOE!											
		La sezione v	riene assunta	a sempre f	essurata	anche nel ca	aso in cui la trazione	minima del c	alcestruz:	zo sia inferiore a fo	ctm		
Ver.		Esito della v	erifica										
e1		Massima de	Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata										
e2		Minima defo	rmazione un	itaria di tra	zione nel	calcestruzz	o (trazione -) valutata	a in sezione f	essurata				
k1		= 0.8 per ba	rre ad adere	nza miglio	rata [eq.([7.11)EC2]							
kt		= 0.4 per co	= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2]										
k2		= 0.5 per fles	= 0.5 per flessione; $=(e1 + e2)/(2*e1)$ per trazione eccentrica [eq.(7.13)EC2]										
k3		= 3.400 Coeff. in eq.(7.11) come da annessi nazionali											
k4		= 0.425 Coeff. in eq.(7.11) come da annessi nazionali											
Ø		Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]											
Cf		Copriferro [mm] netto calcolato con riferimento alla barra più tesa											
e sm	n - e cm	Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC]											
		Tra parentes	i: valore mir	imo = 0.6	Smax / E	s [(7.9)EC	2 e (C4.1.8)NTC]						
sr m	ах	Massima dis	tanza tra le t	essure [mr	n]								
wk		Apertura fes	sure in mm (calcolata =	sr max*(e_sm - e_cn	n) [(7.8)EC2 e (C4.1.	7)NTC]. Valo	re limite t	ra parentesi			
Mx f	ess.	Componente momento di prima fessurazione intorno all'asse X [daNm]											
My f	ess.	Componente	e momento d	i prima fes	surazione	e intorno all'	asse Y [daNm]						
•		•		•									
Comb.	Ver	e1	e2	k2	Ø	Cf	e	sm - e cm s	sr max	wk	Mx fess	My fess	
1	S	-0.00070	0	0.500	30.0	84	0.00041	(0.00036)	385	0.156 (0.20)	170255	0	
•		2.22070	ŭ	2.000	22.0		0.000	(2.22300)	- 50	(0.20)		ŭ	

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max '	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	ς	57.7	0.0	$\cap \cap$	-566	0.0	-65.1	1601	70.7

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

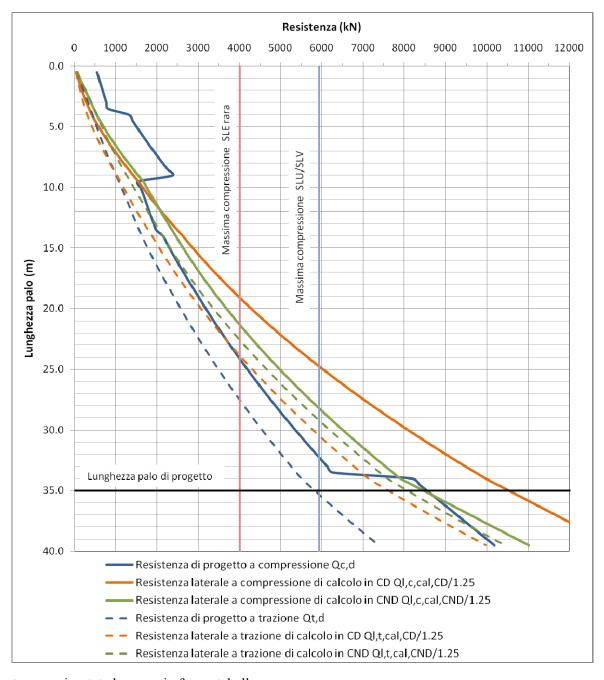
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm si	r max	wk	Mx fess	My fess
1	S	-0.00033	0	0.500	30.0	84	0.00017 (0.00017)	401	0.068 (0.20)	196151	0

8.3 Incidenze

Come riportato al paragrafo precedente, l'armatura in testa al palo è costituita da:

- armatura longitudinale: $40 \Phi 30 + 32 \Phi 30$

- armatura trasversale: 2Φ14/10


con un'incidenza di 300 kg/m³.

Si ritiene necessario che tale armatura venga mantenuta per i primi 15 m di palo mentre al di sotto può considerarsi un'armatura ridotta con un'incidenza di 170 kg/m^3 .

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE							
VI01 – Viadotto ferroviario su SS613 – Relazione geotecnica e di calcolo fondazioni	COMMESSA IA7L	LOTTO 00	CODIFICA D 09 RH	DOCUMENTO VI0103001	REV.	FOGLIO 38 di 42		

9. VERIFICA A CARICO LIMITE VERTICALE

9.1 Verifica a capacità portante del singolo palo

In allegato sono riportate le curve in forma tabellare.

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	INFRASTRI RETRO-PO FERROVIA	JTTURA I RTUALE	DI COLLEGA DI BRIN	MENTO DELL'A IDISI CON		USTRIALE RUTTURA
VI01 - Viadotto ferroviario su SS613 - Relazione geotecnica e di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
calcolo fondazioni	IA7L	00	D 09 RH	VI0103001	Α	39 di 42

9.2 Verifica a carico limite verticale della palificata

Lo sforzo assiale massimo sulla palificata si ha in combinazione STR1 ed è pari a E_d = 49438 kN.

L'efficienza della palificata, valutata come riportato al paragrafo 4.5, è pari a 0.71 mentre la resistenza del singolo palo è pari a 8900 kN. La resistenza della palificata è peranto pari a $R_d = 0.71*12*8500 = 72420$ kN e quindi la verifica risulta soddisfatta.

Η

10. VERIFICA A CARICO LIMITE ORIZZONTALE

opera VI01

	coefficier	nti parziali		A	1	N	1	R	quot	a strato 1	Ш	
	Metodo (di calcolo		permanenti γ _G	variabili γο	γ _φ '	γcu	γт		q. falda	7/	Z. Z
	A1+M1+R1		1.30	1.50	1.00	1.00	1.00		=			
\supset	A2+M1+R	2		1.00	1.30	1.00	1.00	1.60	quota	a strato 2		
SLU	A1+M1+R	3		1.30	1.50	1.00	1.00	1.30		Ž.		
	SISMA			1.00	1.00	1.00	1.00	1.30		\geq		
0M88				1.00	1.00	1.00	1.00	1.00				
lefiniti da	al progettista	a	•	1.00	1.00	1.00	1.00	1.30	quota	strato		
				-		-			- •			
n	1	2 •	3 □	4 □	5 □	7 □	≥10 □	T.A.	prog.			
ξ_3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.00			
ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.00	1		
										_		

						Parametri m	edi	Parametri minimi			
strati terreno	descrizione	quote	γ	γ'	φ	k _p	Cu	φ	k _p	c _u	
		(m)	(kN/m ³)	(kN/m ³)	(°)		(kPa)	(°)		(kPa)	
p.c.=strato 1	Ls(ms)	100.00	19	9		1.00	90		1.00	60	
✓ strato 2	SL	96.00	19	9	33.5	3.46		32	3.25		
✓ strato 3	Ls(ga)	90.50	19.5	9.5		1.00	75		1.00	50	
✓ strato 4	AL	86.00	20	10		1.00	100		1.00	75	
✓ strato 5	Cal	66.00	21	11	33.5	3.46		32	3.25		
□ strato 6					·	1.00			1.00		

nalo impedito di ruotare	0-	11-
Step di calcolo	0.5	(m)
Momento di plasticizzazione palo My	10474.69	(kNm)
Lunghezza del palo L	35.00	(m)
Diametro del palo D	1.50	(m)
Quota falda	100	(m)

c palo impedito di ruotare	Calcolo
□ palo libero	(ctrl+r)

	<u>H</u>	l medio			<u>H</u>	minimo		
Palo lungo		4998.8	(kN)			4528.1	(kN)	
Palo intermedio		15767.1	(kN)			12256.7	(kN)	
Palo corto		44396.1	(kN)			34689.0	(kN)	
	H_{med}	4998.8	(kN)	Palo lungo	H_{min}	4528.1	(kN)	Palo lungo
	H _k =	Min(H med	/ξ₃; R _m	_{in} /ξ ₄)	2921.	34	(kN)	
	H	$H_d = H_k/\gamma_T$			2247.18 (kN)			
	Carico Ass	siale Perma	inente (G	G): G =	1693.	63	(kN)	
	Carico Ass	siale variabi	ile (Q):	Q =	0		(kN)	
	F _d = G	i-γ _G + Q ·γ	Q =		1693.	63	(kN)	
	FS	= Hd / Fd	=		1.33	3		

Come specificato al parafrafo 5.3 per le verifiche a carico limite orizzontale si considera cautelativamente un coefficiente di gruppo 0.8.

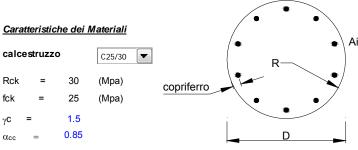
$$Hd~*0.8 = \left(Hk~*0.8\right)/\left(\xi_3\cdot\gamma_T\right) \,\geq\, Fd$$

Pertanto la verifica si ritiene soddisfatta se:

 $FS\text{=}Hd/Fd \geq 1.25$

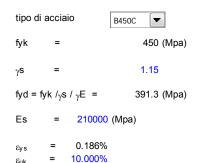
TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE

PROGETTO DEFINITIVO


INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE

VI01 – Viadotto ferroviario su SS613 – Relazione geotecnica e di calcolo fondazioni

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA7L	00	D 09 RH	VI0103001	Α	41 di 42


Calcolo del momento di plasticizzazione di una sezione circolare

fcd =
$$\alpha_{cc}$$
 fck / γ c = 14.17 (Mpa)

Acciaio

Armature

numero		diametro (mm)	area (mm²)	copriferro (mm)
40	• •	30	28274.33	99
32	• •	30	22619.47	174
0	φ φ	30	0.00	200

calcolo

Momento di Plasticizzazione

My = 10474.7 (kN m) Inserisci

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	RETRO-PO	INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE						
VI01 - Viadotto ferroviario su SS613 - Relazione geotecnica e di	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
calcolo fondazioni	IA7L	00	D 09 RH	VI0103001	Α	42 di 42		

11. ALLEGATI

ALLEGATO 1 - CURVE DI CAPACITÀ PORTANTE – TABULATI

				SLU - COM	PRESSIONE					SLE		
	parame	tri medi	paramet	ri minimi		compressione				COMPRESSIONE		
Lp	Qb,d	Ql,c,d	Qb,d	Ql,c,d	Qb,d	Qlat,d	w'p,d	Qd	Ql,c,cal,CD/ 1.25	Ql,c,cal,CND/ 1.25		
(m)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)		
0.5	695	45	512	48	512	45	7	550	42	68		
1.0	703	89	520	95	520	89	14	595	86	136		
1.5	710	134	528	143	528	134	21	641	134	204		
2.0	718	179	536	190	536	179	29	686	185	271		
2.5	726	224	544	238	544	224	36	732	239	339		
3.0	733	268	552	286	552	268	43	778	297	407		
3.5	741	313	560	333	560	313	50	823	357	475		
4.0	1156	358	1019	381	1019	358	57	1320	421	543		
4.5	1209	412	1067	436	1067	412	64	1415	504	626		
5.0	1262	470	1114	493	1114	470	72	1512	591	713		
5.5	1314	530	1160	554	1160	530	79	1611	682	804		
6.0	1367	592	1207	617	1207	592	86	1713	777	899		
6.5	1419	658	1253	682	1253	658	93	1818	876	998		
7.0	1471	725	1299	750	1299	725	100	1924	979	1101		
7.5	1522	796	1345	821	1345	796	107	2033	1086	1208		
8.0	1573	869	1391	894	1391	869	115	2145	1196	1318		
8.5	1625	944	1437	970	1437	944	122	2259	1311	1433		
9.0	1675	1022	1482	1048	1482	1022	129	2375	1430	1552		
9.5	724	1103	581	1130	581	1103	136	1547	1552	1674		
10.0	732	1158	589	1175	589	1158	143	1604	1658	1758		
10.5	739	1214	597	1221	597	1214	149	1662	1768	1843		
11.0	747	1270	605	1268	605	1268	156	1718	1880	1928		
11.5	755	1327	614	1317	614	1317	162	1768	1997	2015		
12.0	763	1385	622	1367	622	1367	169	1820	2117	2102		
12.5	770	1443	630	1418	630	1418	175	1873	2240	2191		
13.0	778	1502	638	1471	638	1471	182	1927	2367	2280		
13.5	786	1561	646	1525	646	1525	188	1983	2497	2370		
14.0	765	1621	814	1580	765	1580	195	2150	2631	2461		
14.5	786	1680	837	1643	786	1643	201	2229	2752	2551		
15.0	808	1741	860	1708	808	1708	207	2309	2876	2643		
15.5	829	1803	883	1774	829	1774	213	2391	3003	2737		
16.0	851	1867	906	1842	851	1842	219	2474	3133	2834		
16.5	873	1932	929	1911	873	1911	225	2559	3267	2933		
17.0	894	1999	952	1983	894	1983	231	2646	3404	3034		
17.5	916	2067	975	2055	916	2055	237	2735	3544	3138		

18.0	938	2138	998	2130	938	2130	243	2825	3688	3245
18.5	959		1021	2206	959	2206	249	2917	3834	3353
19.0	981	2209	1021	2284	981	2282	255	3008	3984	3465
19.5	1002	2357	1067	2364	1002	2357	261	3099	4137	3578
20.0	1024	2433	1090	2445	1024	2433	267	3191	4293	3694
20.5	1046	2511	1113	2528	1046	2511	273	3284	4453	3812
21.0	1040	2591	1113	2613	1040	2591	279	3379	4615	3933
21.5	1007	2672	1159	2699	1007	2672	284	3476	4781	4056
22.0	1110	2754	1182	2787	1110	2754	290	3574	4950	4181
22.5	1132	2839	1205	2876	1132	2839	296	3674	5123	4309
23.0	1154	2924	1228	2968	1154	2924	302	3776	5298	4439
23.5	1175	3012	1251	3061	1175	3012	308	3879	5477	4572
24.0	1197	3101	1274	3155	1173	3101	314	3983	5659	4707
24.0	1218	3191	1274	3252	1218	3191	314	4089	5844	4844
25.0	1218	3283	1320	3350	1218	3283	326	4197	6032	4984
25.5	1262	3377	1343	3449	1262	3377	332	4306	6224	5126
26.0	1283	3472	1366	3551	1283	3472	338	4417	6419	5270
26.5	1305	3569	1389	3654	1305	3569	344	4529	6617	5417
27.0	1326	3667	1412	3758	1326	3667	350	4643	6818	5567
27.5	1348	3767	1435	3865	1348	3767	356	4759	7023	5718
28.0	1370	3868	1458	3973	1370	3868	362	4876	7230	5872
28.5	1391	3971	1481	4082	1391	3971	368	4995	7441	6029
29.0	1413	4076	1504	4194	1413	4076	374	5115	7655	6188
29.5	1435	4182	1527	4307	1435	4182	380	5237	7873	6349
30.0	1456	4290	1550	4421	1456	4290	386	5360	8093	6512
30.5	1478	4399	1573	4538	1478	4399	392	5485	8317	6678
31.0	1499	4510	1596	4656	1499	4510	398	5612	8544	6847
31.5	1521	4623	1619	4776	1521	4623	404	5740	8774	7017
32.0	1543	4737	1642	4897	1543	4737	410	5870	9008	7191
32.5	1564	4853	1665	5020	1564	4853	416	6001	9244	7366
33.0	1586	4970	1688	5145	1586	4970	422	6134	9484	7544
33.5	1607	5088	1711	5271	1607	5088	428	6268	9727	7724
34.0	3411	5209	3631	5400	3411	5209	434	8187	9974	7907
34.5	3411	5395	3631	5598	3411	5395	438	8368	10256	8190
35.0	3411	5581	3631	5796	3411	5581	443	8550	10539	8473
35.5	3411	5768	3631	5994	3411	5768	448	8731	10822	8755
36.0	3411	5954	3631	6193	3411	5954	453	8913	11105	9038
36.5	3411	6140	3631	6391	3411	6140	457	9094	11387	9321
37.0	3411	6326	3631	6589	3411	6326	462	9276	11670	9603
37.5	3411	6513	3631	6787	3411	6513	467	9457	11953	9886

38.0	3411	6699	3631	6986	3411	6699	472	9638	12236	10169
38.5	3411	6885	3631	7184	3411	6885	477	9820	12518	10452
39.0	3411	7071	3631	7382	3411	7071	481	10001	12801	10734
39.5	3411	7258	3631	7581	3411	7258	486	10183	13084	11017
40.0	3411	7444	3631	7779	3411	7444	491	10364	13367	11300

		SL	U - TRAZIO	NE		SLE		
	p. medi	p.minimi		trazione		trazione		
Lp	Ql,t,d	Ql,t,d	Ql,t,d	w'p,d	Qt,d	Ql,t,cal,CD/ 1.25	Ql,t,cal,CND/ 1.25	
(m)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	
0.5	41	44	41	13	54	30	68	
1	82	88	82	27	109	62	136	
1.5	123	131	123	40	163	96	204	
2	165	175	165	53	218	132	271	
2.5	206	219	206	66	272	171	339	
3	247	263	247	80	326	212	407	
3.5	288	306	288	93	381	255	475	
4	329	350	329	106	435	301	543	
4.5	365	386	365	119	484	360	602	
5	403	424	403	133	535	422	665	
5.5	442	464	442	146	588	487	730	
6	483	505	483	159	642	555	797	
6.5	526	548	526	172	698	626	868	
7	571	593	571	186	756	699	941	
7.5	617	639	617	199	816	776	1018	
8	665	688	665	212	877	855	1097	
8.5	714	738	714	225	940	936	1179	
9	766	789	766	239	1004	1021	1263	
9.5	819	842	819	252	1071	1109	1351	
10	870	884	870	265	1135	1184	1435	
10.5	921	927	921	278	1199	1263	1519	
11	973	970	970	292	1262	1343	1605	
11.5	1025	1015	1015	305	1319	1426	1692	
12	1078	1060	1060	318	1379	1512	1779	
12.5	1132	1108	1108	331	1439	1600	1867	
13	1186	1156	1156	345	1501	1691	1957	
13.5	1240	1206	1206	358	1564	1784	2047	
14	1296	1257	1257	371	1628	1879	2138	
14.5	1350	1315	1315	384	1699	1965	2227	
15	1406	1374	1374	398	1772	2054	2319	
15.5	1463	1435	1435	411	1846	2145	2414	
16	1522	1498	1498	424	1922	2238	2511	
16.5	1582	1562	1562	437	1999	2334	2610	
17	1643	1627	1627	451	2078	2431	2711	
17.5	1706	1694	1694	464	2158	2532	2815	

-							
18	1771	1763	1763	477	2240	2634	2922
18.5	1837	1833	1833	490	2323	2739	3030
19	1904	1905	1904	504	2407	2846	3141
19.5	1973	1978	1973	517	2490	2955	3255
20	2043	2053	2043	530	2573	3067	3371
20.5	2115	2129	2115	543	2658	3180	3489
21	2188	2207	2188	557	2744	3297	3610
21.5	2262	2286	2262	570	2832	3415	3733
22	2338	2367	2338	583	2921	3536	3858
22.5	2416	2449	2416	596	3012	3659	3986
23	2495	2533	2495	610	3104	3784	4116
23.5	2575	2619	2575	623	3198	3912	4249
24	2657	2706	2657	636	3293	4042	4384
24.5	2740	2795	2740	649	3389	4174	4521
25	2825	2885	2825	663	3487	4309	4661
25.5	2911	2976	2911	676	3587	4446	4803
26	2998	3070	2998	689	3687	4585	4947
26.5	3087	3164	3087	702	3790	4726	5094
27	3178	3261	3178	716	3893	4870	5243
27.5	3270	3359	3270	729	3999	5016	5395
28	3363	3458	3363	742	4105	5164	5549
28.5	3458	3559	3458	755	4213	5315	5706
29	3554	3661	3554	769	4323	5468	5864
29.5	3652	3765	3652	782	4434	5623	6026
30	3751	3871	3751	795	4546	5781	6189
30.5	3852	3978	3852	808	4660	5941	6355
31	3954	4087	3954	822	4775	6103	6524
31.5	4057	4197	4057	835	4892	6267	6694
32	4162	4308	4162	848	5010	6434	6867
32.5	4268	4422	4268	861	5130	6603	7043
33	4376	4537	4376	875	5251	6775	7221
33.5	4486	4653	4486	888	5374	6948	7401
34	4596	4771	4596	901	5498	7124	7584
34.5	4743	4918	4743	914	5657	7366	7826
35	4892	5068	4892	928	5819	7612	8071
35.5	5043	5219	5043	941	5984	7861	8320
36	5195	5373	5195	954	6150	8113	8573
36.5	5351	5529	5351	968	6318	8369	8828
37	5508	5687	5508	981	6488	8628	9088
			1	1			

38	5828	6009	5828	1007	6835	9156	9616
38.5	5991	6173	5991	1021	7012	9426	9886
39	6157	6339	6157	1034	7191	9699	10159
39.5	6324	6507	6324	1047	7371	9975	10435
40	6494	6678	6494	1060	7554	10255	10715