COMMITTENTE:

PROGETTAZIONE:

U.O. COORDINAMENTO NO CAPTIVE E INGEGNERIA DI SISTEMA

PROGETTO DEFINITIVO

NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE

OPERE IDRAULICHE

IN11 - Recapito al Canale di Levante: relazione di calcolo

SCAL	_A:	
	_	

COMMESSA	LOTTO	FASE	ENIE	TIPO DOC.	OPERA/DISCIPLINA	PROGR.	REV
I A 7 L	0 0	D	1 0	CL	I N 1 1 0 0	0 0 1	Α

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione esecutiva	L.Dinelli	Maggio 2020	A.Ciavarella	Maggio 2020	T.Paoletti	Maggio 2020	L.Berardi Maggio 2020
		272000				14		BERARD
								* (2) *
								100 mod

File: IA7L00D10CLIN1100001A.doc n. Elab.:

PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI

INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA

NAZIONALE

OPERE IDRAULICHE

IN11 - Recapito al Canale di Levante: relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IA7L 00 D10CL IN1100001 A 2 di 72

INDICE

1.	PRI	EMESSA	5
2.	NO	RMATIVA E DOCUMENTI DI RIFERIMENTO	7
	2.1.	DOCUMENTAZIONE DI PROGETTO	7
	2.2.	NORMATIVA E STANDARD DI RIFERIMENTO	7
	2.3.	SOFTWARE	8
3.	MA	TERIALI	9
	3.1.	CALCESTRUZZO CANALI	9
	3.2.	ACCIAIO D'ARMATURA	9
;	3.3.	VERIFICA S.L.E.	10
	3.3.	1. Verifica tensioni	10
	3.3.	2. Verifica a fessurazione	11
4.	ING	QUADRAMENTO GEOTECNICO	13
5.	CAI	RATTERIZZAZIONE SISMICA	14
	5.1.	VITA NOMINALE E CLASSE D'USO	14
	5.2.	PARAMETRI DI PERICOLOSITÀ SISMICA	14
6.	DES	SCRIZIONE DELLE OPERE	18
7.	CAI	NALE A U	20
	7.1.	MODELLAZIONE ADOTTATA	20
,	7.2.	Analisi dei carichi	23
	7.2.	1. Peso proprio della struttura	23
	7.2.	2. Spinta del terreno	23

PROGETTO DEFINITIVO

NODO INTERMODALE DI BRINDISI

INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE

OPERE IDRAULICHE

IN11 - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA7L	00	D10CL	IN1100001	Α	3 di 72

7.2.3. Spinta sovraccarico accidentale a tergo dell'opera	24
7.2.4. Azione sismica	24
7.3. COMBINAZIONI DI CALCOLO	26
7.4. RISULTATI E VERIFICHE	28
7.4.1. Verifica piedritti s.0.3 m	29
7.4.1. Verifica soletta s.0.3 m	32
7.4.2. Incidenza	35
8. CANALE A U – RACCORDO SCATOLARE	36
8.1. MODELLAZIONE ADOTTATA	36
8.2. ANALISI DEI CARICHI	39
8.2.1. Peso proprio della struttura	39
8.2.2. Spinta del terreno	39
8.2.3. Spinta sovraccarico accidentale a tergo dell'opera	40
8.2.4. Azione sismica	40
8.3. COMBINAZIONI DI CALCOLO	42
8.4. RISULTATI E VERIFICHE	44
8.4.1. Verifica piedritti s.0.3 m	45
8.4.2. Verifica soletta s.0.3 m	48
8.4.3. Incidenza	51
9. SCATOLARE	52
9.1. MODELLAZIONE ADOTTATA	52
9.2. ANALISI DEI CARICHI	55
9.2.1 Peso proprio della struttura	55

PROGETTO DEFINITIVO

NODO INTERMODALE DI BRINDISI

INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE

OPERE IDRAULICHE

IN11 - Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA7L	00	D10Cl	IN1100001	Α	4 di 72

9.2.1.	Carichi permanenti e accidentali	55
9.2.1.	Spinta del terreno	56
9.2.2.	Spinta sovraccarico permanente e accidentale	57
9.2.3.	Azione sismica	58
9.3. C	COMBINAZIONI DI CALCOLO	60
9.4. R	RISULTATI E VERIFICHE	62
9.4.1.	Verifica piedritti s.0.3 m	63
9.4.2.	Verifica soletta inferiore s.0.3 m	66
9.4.1.	Verifica soletta superiore s.0.3 m	69
942	Incidenza	72

GRUPPO FERROVIE DELLO STATO ITALIANE	NODO INTER	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	5 di 72	

1. PREMESSA

Nelle immediate vicinanze della stazione di Brindisi è presente una complessa realtà industriale principalmente legata al Porto e al polo petrolchimico. Il collegamento tra l'aera portuale e la stazione di Brindisi, ad oggi, è fortemente penalizzato da una moltitudine di intersezioni a raso all'interno di un'area fortemente urbanizzata.

Obiettivo della presente progettazione consiste nell'incentivare il traffico merci su ferro integrando il sistema portuale con il sistema ferroviario riducendo in questo modo le interferenze tra le attività di terminalizzazione ed il traffico urbano. Tale intervento presenta elevati vantaggi in termini di sicurezza in quanto, oltre ad allontanare il traffico merci da un tessuto urbano costituito da numerosi passaggi a livello, concentra le operazioni di manovra dei treni merci all'interno della nuova "stazione elementare".

Scopo della presente progettazione è la realizzazione del completamento dell'infrastruttura di collegamento dell'area industriale retro-portuale di Brindisi con l'Infrastruttura Ferroviaria Nazionale.

Il progetto si compone di due lotti:

GRUPPO FERROVIE DELLO STATO ITALIANE	NODO INTER	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	6 di 72	

Lotto 1: opere a carico del Comune di Brindisi (a cura del Comune e in corso di realizzazione):

- Binario di corretto tracciato (Binario III) e precedenza in sinistra (Binario IV) della suddetta nuova Stazione Elementare;
- Nuova tratta ferroviaria di collegamento tra la Dorsale del Consorzio ASI di Brindisi (Porto di Brindisi) e la nuova Stazione Elementare per l'arrivo/partenza di treni merci a modulo 750m (circa 1,78 Km)

Lotto 2: opere a carico di RFI, oggetto della presente progettazione:

- Binari I e II della nuova stazione per l'arrivo/partenza treni di merci a modulo 750m
- Nuova tratta ferroviaria di collegamento tra la suddetta nuova Stazione Elementare e la linea Bari – Lecce (OO.CC. + armamento)
- Posto di comunicazione e bivio di collegamento della nuova tratta con la Linea Adriatica (al km 764+230 circa della linea Bari Lecce)
- Impianti di trazione elettrica e apparati tecnologici della nuova stazione merci, della tratta di collegamento tra questa e la Linea Adriatica e del bivio sulla Linea Adriatica per l'allaccio della nuova linea.

Pertanto, il progetto risponde ai seguenti obbiettivi:

- Realizzazione di una stazione a modulo 750 m, coerentemente con gli standard europei di trasporto merci;
- Velocizzazione delle attività di manovra e terminalizzazione, per accesso diretto dei treni provenienti da nord in una stazione dedicata a traffico merci, con itinerari di arrivo a 60 km/h;
- Integrazione del sistema ferroviario con quello portuale;
- Riduzione delle interferenze tra le attività di terminalizzazione su ferro e il traffico urbano, con vantaggi soprattutto in termini di sicurezza;
- Incentivo al traffico merci su ferro;
- Separazione del traffico merci, in parte altamente pericolose, dal traffico viaggiatori in stazione di Brindisi centrale.

La presente relazione riporta le verifiche strutturali del canale IN11.

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	NODO INTER	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	7 di 72	

2. NORMATIVA E DOCUMENTI DI RIFERIMENTO

2.1. DOCUMENTAZIONE DI PROGETTO

Si riporta di seguito l'elenco dei documenti utilizzati per la stesura della presente relazione:

- [1] ITALFERR Progetto Definitivo Infrastruttura di collegamento dell'area industriale retro-portuale di Brindisi con infrastruttura ferroviaria nazionale Relazione Geotecnica Generale (Doc. IA7L00D10GEGE0006001)
- [2] ITALFERR Progetto Definitivo Infrastruttura di collegamento dell'area industriale retro-portuale di Brindisi con infrastruttura ferroviaria nazionale Profilo geotecnico di linea (Doc. IA7L00D10F7GE0006002)
- [3] ITALFERR Progetto Definitivo Infrastruttura di collegamento dell'area industriale retro-portuale di Brindisi con infrastruttura ferroviaria nazionale Profilo geotecnico stazione (Doc. IA7L00D10F7GE0006001)
- [4] ITALFERR Progetto Definitivo Infrastruttura di collegamento dell'area industriale retro-portuale di Brindisi con infrastruttura ferroviaria nazionale IN11 Recapito al Canale di Levante Planimetria, Pianta scavi e Profilo longitudinale (Doc. IA7L00D10PZIN1100001)
- [5] ITALFERR Progetto Definitivo Infrastruttura di collegamento dell'area industriale retro-portuale di Brindisi con infrastruttura ferroviaria nazionale IN11 Recapito al Canale di Levante Sezioni trasversali, Sezione tipo e Dettagli (Doc. IA7L00D10PZIN1100002)

2.2. NORMATIVA E STANDARD DI RIFERIMENTO

Si riporta di seguito l'elenco delle normative a cui si è fatto riferimento per la stesura della presente relazione:

[6] Decreto Ministeriale del 17 gennaio 2018: "Approvazione delle Nuove Norme Tecniche per le Costruzioni", G.U. n.29 del 20.2.2018, Supplemento Ordinario n.30.

GRUPPO FERROVIE DELLO STATO ITALIANE	NODO INTER	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	8 di 72	

- [7] Circolare del Ministero delle infrastrutture e dei trasporti 21 gennaio 2019, n. 7 del Consiglio superiore del Lavori Pubblici recante "Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018"
- [8] RFI DTC SI MA IFS 001 D del 20.12.2019 "MANUALE DI PROGETTAZIONE DELLE OPERE CIVILI".

2.3. SOFTWARE

[9] SAP 2000 – Computers and Structures Inc. (http://www.csi-italia.eu/software/sap2000/)

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE						
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	9 di 72	

3. MATERIALI

3.1. CALCESTRUZZO CANALI

Classe di resistenza C30/37 R_{ck}≥ 37 N/mm²

Classe di esposizione ambientale XA1

Copriferro nominale minimo 40 mm

Resistenza di calcolo del calcestruzzo per la verifica agli SLU (γ_C =1.5):

Resistenza di calcolo a rottura per compressione:

	0
$f_{ak} = 0.83 \cdot R_{ak}$	30.7N/mm ²
	DU / IN/11111

$$f_{cm} = f_{ck} + 8$$
 38.7 N/mm²

$$f_{cd} = \alpha_{cc} \cdot f_{ck} / \gamma_c$$
 17.4 N/mm²

Resistenza di calcolo a rottura per trazione:

$f_{ctm} = 0.3 \cdot f_{ck}^{2/3}$	2.94 N/mm ²

$$f_{ctk,5\%} = 0.70 \cdot f_{ctm}$$
 2.06 N/mm²

$$f_{ctd} = f_{ctk}/\gamma_c$$
 1.37 N/mm²

$$f_{cfm} = 1.2 \cdot f_{ctm} \qquad \qquad 3.53 \text{ N/mm}^2$$

$$f_{cfk,5\%} = 0.70 \cdot f_{cfm}$$
 2.47 N/mm²

$$E_{cm}$$
=22.000 $[f_{cm}/10]^{0.3}$ 330169 N/mm²

3.2. ACCIAIO D'ARMATURA

L'acciaio utilizzato è ad aderenza migliorata tipo B450C ed è caratterizzato dai seguenti valori nominali delle tensioni di snervamento e rottura:

f_{y, nom} 450 N/mm²

 $f_{t, nom}$ 540 N/mm²

Resistenza di calcolo dell'acciaio per la verifica agli SLU (ys=1.15):

Resistenza di calcolo a rottura per trazione e deformazione corrispondente:

 $f_{vd} = f_{vk}/\gamma_s \qquad 391.3 \text{ N/mm}^2$

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE							
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	10 di 72		

 $\varepsilon_{\rm vd} = f_{\rm vd}/E_{\rm s} \qquad \qquad 0.186\%$

3.3. VERIFICA S.L.E.

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio, il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato.

3.3.1. Verifica tensioni

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento quelli indicati nel documento "Manuale di progettazione Opere Civili".

Strutture in c.a.

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 $f_{\rm ek}\!,$
- per combinazioni di carico quasi permanente: 0,40 f_{ck};
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75~f_{yk}$.

Nel caso in esame pertanto si ha:

CALCESTRUZZO

Massima tensione allo SLE per combinazione caratteristica (rara):

$$\sigma_{\rm c} = 0.55 \cdot f_{\rm ck}$$
 16.89 N/mm²

Massima tensione allo SLE per combinazione quasi permanente:

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE							
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	11 di 72		

 $\sigma_{c} = 0.40 \cdot f_{ck}$ 12.28 N/mm²

ACCIAIO

Massima tensione allo SLE per combinazione caratteristica (rara):

 $\sigma_s = 0.75 \text{ f}_{yk}$ 337.5 N/mm²

3.3.2. Verifica a fessurazione

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente [NTC – Tabella 4.1.IV]:

Gruppi	Condizioni	Combinazione di	Ar	matura	3	
di	ambientali	azione	Sensibile		Poco sensi	bile
esigenza	ambientali	azione	Stato limite	W _d	Stato limite	W _d
а	Ordinarie	frequente	ap. fessure	≤w ₂	ap. fessure	≤w ₃
a	Ordinane	quasi permanente	ap. fessure	≤w ₁	ap. fessure	≤w ₂
b	Aggressive	frequente	ap. fessure	≤w ₁	ap. fessure	≤w ₂
5	Aggressive	quasi permanente	decompressione	-	ap. fessure	≤w ₁
	Molto Aggressive	frequente	formazione fessure	-	ap. fessure	≤w ₁
c Molto Aggressive		Molto Aggressive quasi permanente		-	ap. fessure	≤w ₁

Tabella 3.1: criteri di scelta dello stato limite di fessurazione e Condizioni Ambientali.

Tabella 4.1.III – Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Risultando $w_1 = 0.2 \text{ mm}$ $w_2 = 0.3 \text{ mm}$ $w_3 = 0.4 \text{ mm}$

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE							
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	12 di 72		

Alle prescrizioni normative presenti in NTC si aggiungono in tal caso quelle fornite dal "Manuale di Progettazione delle Opere Civili" secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per strutture in condizioni ambientali aggressive o molto aggressive, così come identificate nel par. 4.1.2.2.4.2 del DM 14.1.2018, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

 $\delta_f \leq w_1 = 0.2 \ mm$

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE							
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	13 di 72		

4. INQUADRAMENTO GEOTECNICO

Il terreno di fondazione è costituito dall'unità geotecnica Ls(ms) per la quale, in accordo con quanto riportato nella relazione geotecnica, si assume:

Unità	Υ	φ	c'	E
	kN/m ³	0	kPa	MPa
Ls(ms)	19.0	28	3	9

La falda non risulta interferente con l'opera in esame.

Per le caratteristiche del terreno di rinterro a tergo dell'opera invece si considera:

 γ =19 kN/m³

c'=0 kPa

φ'=30°

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE						
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	14 di 72	

5. CARATTERIZZAZIONE SISMICA

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 17 gennaio 2018 e relativa circolare applicativa.

5.1. VITA NOMINALE E CLASSE D'USO

Per la valutazione dei parametri di pericolosità sismica è necessario definire, oltre alla localizzazione geografica del sito, la Vita nominale dell'opera strutturale (V_N) , intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata, e la Classe d'Uso a cui è associato un coefficiente d'uso (C_U)

Per l'opera in oggetto si considera una vita nominale V_N = 75 anni e una classe d'uso III a cui è associato un coefficiente d'uso pari a C_U = 1.5.

I parametri di pericolosità sismica vengono quindi valutati in relazione ad un periodo di riferimento V_R che si ricava per ciascun tipo di costruzione, moltiplicando la vita nominale V_N per il coefficiente d'uso C_U , ovvero:

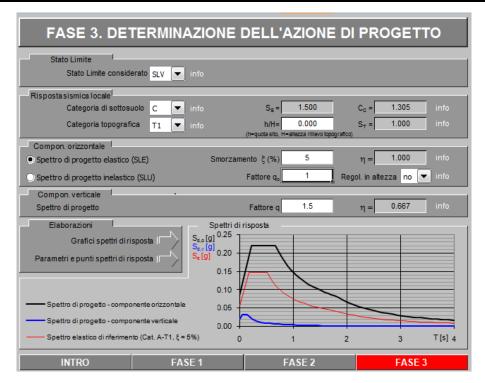
$$V_R = V_N \cdot C_U$$

Pertanto, per l'opera in oggetto, il periodo di riferimento è pari a $V_R = 75x1.5 = 112.5$ anni.

5.2. PARAMETRI DI PERICOLOSITÀ SISMICA

La valutazione dei parametri di pericolosità sismica, che costituiscono il dato base per la determinazione delle azioni sismiche di progetto su una costruzione (forme spettrali e/o forze inerziali), dipendono, dalla localizzazione geografica del sito, dalle caratteristiche della costruzione (periodo di riferimento per valutazione azione sismica) oltre che dallo Stato Limite di riferimento/Periodo di ritorno dell'azione sismica.

Categoria sottosuolo: C


In accordo a quanto riportato in Allegato A delle Norme Tecniche per le costruzioni DM 14.01.08, si ottiene per il sito in esame:

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE						
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	15 di 72	

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE							
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	16 di 72		

I valori delle caratteristiche sismiche (ag, F0, T*C) per gli stati limite di normativa sono dunque:

SLATO	T _R	a _g	F _o	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0.021	2.318	0.237
SLD	113	0.027	2.331	0.322
SLV	1068	0.056	2.621	0.518
SLC	2193	0.067	2.768	0.534

- $a_g \rightarrow accelerazione orizzontale massima del terreno, espressa come frazione dell'accelerazione di gravità;$
- $F_0 \rightarrow valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;$
- T*_C→ periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE						
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	17 di 72	

Il calcolo viene eseguito con il metodo pseudostatico. In queste condizioni l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

Parametri e punti dello spettro di risposta orizzontale per lo stato limite SLV

Parametri indipendenti

STATO LIMITE	SLV
a _n	0.056 g
F _o	2.621
T _C *	0.518 s
Ss	1.500
Cc	1.305
S _T	1.000
q	1.000

Parametri dipendenti

S	1.500
η	1.000
T _B	0.225 s
Tc	0.675 s
Tn	1.823 s

Espressioni dei parametri dipendenti

(NTC-08 Eq. 3.2.5)
(NTC-08 Eq. 3.2.6; §. 3.2.3.5)
(NTC-07 Eq. 3.2.8)
(NTC-07 Eq. 3.2.7)
(NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq T < T_B & S_e(T) \!=\! a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} \!+\! \frac{1}{\eta \cdot F_o} \! \left(1 \!-\! \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & S_e(T) \!=\! a_g \cdot S \cdot \eta \cdot F_o \\ T_C \leq T < T_D & S_e(T) \!=\! a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D \leq T & S_e(T) \!=\! a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_{\alpha}(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_{\alpha}(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

mu	aeno spettr	o di risposta
	T [s]	Se [g]
	0.000	0.084
в◀	0.225	0.220
c◀	0.675	0.220
	0.730	0.203
	0.785	0.189
	0.839	0.177
	0.894	0.166
	0.949	0.156
	1.003	0.148
	1.058	0.140
	1.113	0.133
	1.167	0.127
	1.222	0.121
	1.277	0.116
	1.331	0.111
	1.386	0.107
	1.441	0.103
	1.495	0.099
	1.550	0.096
	1.605	0.092
	1.659	0.089
	1.714	0.087
	1.769	0.084
-	1.823	0.081
	1.927	0.073
	2.031	0.066
	2.134	0.059
	2.238	0.054
	2.342	0.049
	2.445	0.045
	2.549	0.042
	2.653	0.038
	2.756	0.036
	2.860	0.033
	2.964	0.031
	3.067	0.029
	3.171	0.027
	3.274	0.025
	3.378	0.024
	3.482	0.022
	3.585	0.021
	3.689	0.020
	3.793	0.019
	3.896	0.018
	4.000	0.017

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE						
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	18 di 72	

6. DESCRIZIONE DELLE OPERE

La particolare conformazione morfologica dell'area compresa fra la pk 1+830 e la pk 2+900, unitamente agli elevati livelli idrici previsti nel Canale di Levante, non rendono possibile il recapito delle acque afferenti alla piattaforma ferroviaria mediante un semplice tombino di attraversamento del rilevato ferroviario. È pertanto prevista la realizzazione di una vasca di laminazione alla pk 1+850 in grado di accogliere le acque provenienti dal versante situato a nord della linea, e recapitarle al canale di Levante mediante un canale in c.a. con sezione rettangolare. Il canale in uscita dalla vasca di laminazione ha una lunghezza di circa 500 m ed una sezione ad U con dimensioni 1.5x1.5 m nella parte iniziale, e 1.5x1.7 m nella parte finale.

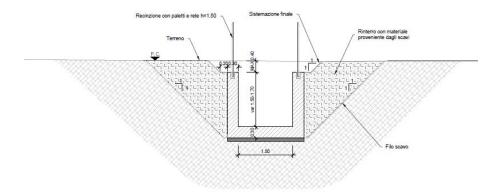


Figura 6.1: IN11 – sezioni tipo.

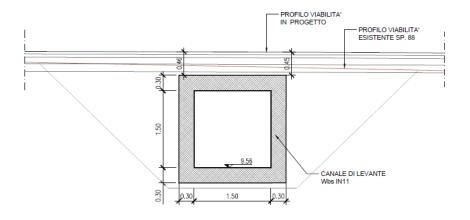


Figura 6.2: IN11 – sezione in corrispondenza SP88.

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE						
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	19 di 72	

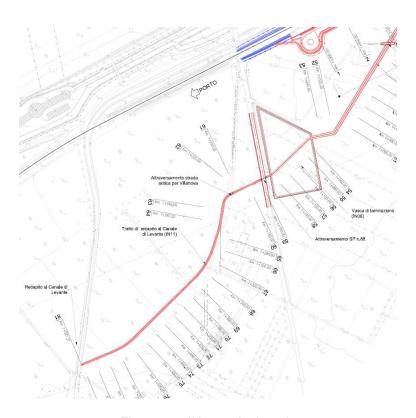


Figura 6.3: IN11 – planimetria.

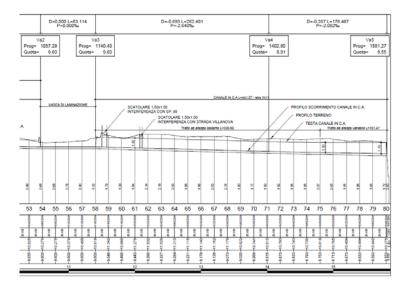


Figura 6.4: IN11 – profilo.

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	20 di 72

7. CANALE A U

7.1. MODELLAZIONE ADOTTATA

Lo schema statico prevede la soletta a contatto con il terreno schematizzata come una trave su molle alla Winkler, il cui valore è stato valutato nel seguito.

La costante di Winkler si calcola tramite la formula:

$$k = \frac{1}{B' \cdot E' \cdot 4 \cdot I_s \cdot I_F}$$
 (formulazione di Vesic, rif. "Fondazioni" – Bowles)

con:

B'=B/2 (B= larghezza della soletta di fondo)

E modulo elastico del terreno

V Coefficiente di Poisson del terreno

$$E' = \frac{1 - v^2}{F}$$

$$I_s = I_1 + \frac{1 - 2\nu}{1 - \nu}I_2$$
 Coefficiente di Steinbrenner

IF Coefficiente di forma (vedi Figura 7.1)

$$I_{1} = \frac{1}{\pi} \left[M \ln \frac{\left(1 + \sqrt{M^{2} + 1}\right)\sqrt{M^{2} + N^{2}}}{M\left(1 + \sqrt{M^{2} + N^{2} + 1}\right)} + \ln \frac{\left(M + \sqrt{M^{2} + 1}\right)\sqrt{1 + N^{2}}}{M + \sqrt{M^{2} + N^{2} + 1}} \right]$$

$$I_2 = \frac{N}{2\pi} \tan^{-1} \frac{M}{N\sqrt{M^2 + N^2 + 1}}$$

Nel caso in esame si ha:

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE							
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	21 di 72		

B = 2.1 m

E = 9 MPa

v = 0.3

N = H/B' = 2.0

M = L'/B' = 14.3

IF = 0.8

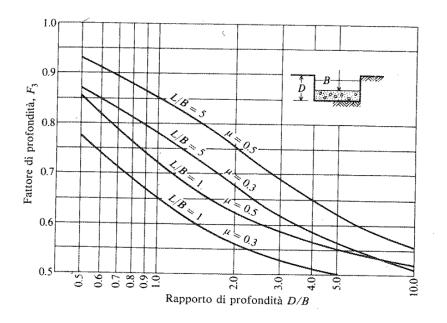


Figura 7.1: coefficiente di influenza IF per una fondazione collocata a profondità D.

E quindi k \approx 10000 kN/m³.

La costante elastica viene applicata ai nodi dell'elemento frame con cui viene modellata la soletta di fondo differenziando la rigidezza delle molle dei nodi centrali da quelli laterali e da quelli di spigolo.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE						
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	22 di 72	

n	5	numero di elementi di divisione della soletta inf.
ks	10000 kN/m ³	
Lint	1.5 m	larghezza interna dello scatolare
Sp	0.3 m	spessore dei piedritti
RIGIDEZZA MOLLE CENTRAL	!	
K _{centrali}	3600 kN/m	
RIGIDEZZA MOLLE DI SPIGOL	<u>o</u>	
$K_{spigolo}$	6600 kN/m	
RIGIDEZZA MOLLE INTERMEL	<u>DIE</u>	
K _{intermedie}	5400 kN/m	

L'analisi delle strutture è stata condotta mediante il programma di calcolo agli elementi finiti SAP2000, prodotto dalla Computer and Structures inc. di Berkeley, California, USA.

Lo schema statico impiegato è quello di telaio costituito da elementi frame; in corrispondenza della intersezione tra tali elementi il programma genera in automatico dei nodi per garantire la continuità strutturale. Ad ogni elemento è assegnata la corrispondente sezione rettangolare in calcestruzzo, la cui geometria è definita dallo spessore dell'elemento stesso per una larghezza unitaria, dal momento che la struttura è risolta come piana.

Per le verifiche delle sezioni si è adottato il programma RC-SEC – Autore GEOSTRU.

La dimensione interna è di 1.5 m, l'altezza interna massima è pari a 1.7 m, lo spessore della soletta e dei piedritti è pari a 0.3 m. Il piano campagna è a +0.4 m dalla testa del piedritto. In figura si riporta schematicamente la geometria dell'opera .

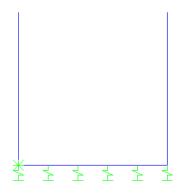


Figura 7.2: modello di calcolo.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE							
OPERE IDRAULICHE IN11 - Relazione di calcolo	COMMESSA IA7L	00	CODIFICA D10CL	DOCUMENTO IN1100001	REV.	FOGLIO 23 di 72		

7.2. ANALISI DEI CARICHI

7.2.1. Peso proprio della struttura

Il peso proprio della struttura è valutato automaticamente dal programma di calcolo attribuendo al c.a. un peso dell'unità di volume di 25 kN/m³.

7.2.2. Spinta del terreno

Per la valutazione della spinta esercitata dal terreno quest'ultimo è stato considerato in condizioni di riposo pertanto il coefficiente di spinta è dato dalla relazione $k_0 = 1 - \text{sen}\phi$ '.

SPINTA RIPOSO)		
Υt	19.00	kN/m³	peso specifico terreno
Ф' _k	30	0	angolo attrito caratteristico
Φ' _d	30	0	angolo attrito di progetto
\mathbf{k}_0	0.50	-	
σ' _{h1} (z=0.4 m)	3.8	kN/m²	tensione orizzontale quota testa piedritto
σ' _{h2} (z=2.25 m)	21.8	kN/m ²	tensione orizzontale quota mezzeria soletta

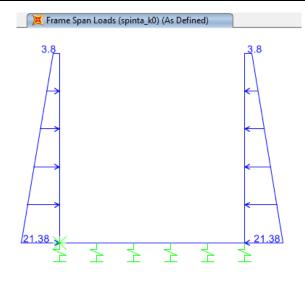
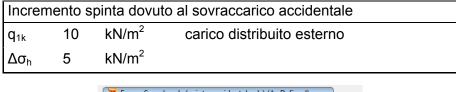



Figura 7.3: spinta del terreno.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE							
OPERE IDRAULICHE IN11 - Relazione di calcolo	COMMESSA	00	CODIFICA D10CL	DOCUMENTO IN1100001	REV.	FOGLIO 24 di 72		
INTT - Relazione di Calcolo								

7.2.3. Spinta sovraccarico accidentale a tergo dell'opera

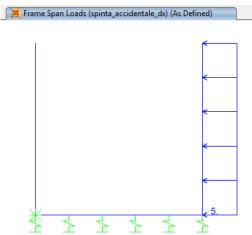


Figura 7.4: spinta sovraccarico accidentale sul piedritto destro.

7.2.4. Azione sismica

L'azione sismica agente sulle masse strutturali è stata considerata con un approccio di tipo pseudostatico. Esso consente di rappresentare il sisma mediante una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k. Le forze sismiche sono pertanto:

 $F_h = k_h \cdot W$

 $F_v = k_v \cdot W$

con kh e kv, rispettivamente, coefficiente sismico orizzontale e verticale, pari a

 $k_h = \beta_m \cdot a_{max}/g$ coefficiente sismico orizzontale

 $k_v = \pm 0.5 \cdot k_h$ coefficiente sismico verticale

GRUPPO FERROVIE DELLO STATO ITALIANE	NODO INTER	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE							
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO			
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	25 di 72			

Nelle espressioni precedenti a_{max} rappresenta l'accelerazione orizzontale massima attesa al sito mentre β_m è il coefficiente di riduzione di tale accelerazione valutato in funzione della capacità dell'opera di subire spostamenti relativi rispetto al terreno. Per l'analisi della struttura in esame β_m è stato posto pari ad 1. L'accelerazione orizzontale massima è stata valutata con la relazione:

$$a_{max} = S \cdot a_g = S_S \cdot S_T \cdot a_g$$

in cui a_g è l'accelerazione orizzontale massima attesa su sito di riferimento rigido e S un coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T).

Gli effetti dell'azione sismica sono stati valutati tenendo conto, della massa associata al peso proprio e delle masse associate al carico permanente.

Inoltre, l'incremento di spinta dovuto al sisma è stato valutato utilizzando la teoria di Wood. Secondo tale teoria la risultante dell'incremento di spinta per effetto del sisma, su una parete di altezza Hs, viene determinato attraverso la relazione $\Delta S_E = (a_{max}/g) \cdot \gamma \cdot H_{tot} \cdot H_m$ (H_{tot} = distanza p.c. – intradosso soletta inferiore; H_m = altezza muro).

a _g	0.056 g
Ss	1.5
S _T	1
a _{max}	0.084 g
β_{m}	1
k _h	0.084

INERZIA ORIZZONTALE						
Piedritti						
k _h ·w _{P1}	$k_h \cdot w_{P1}$ 0.63 kN/m ² peso proprio s. 0.3m					
SOVRASPINTA SISMICA (WOOD)						
h _{tot}	2.4	m	altezza complessiva			
Δp_d	3.83	kN/m²	incremento di spinta			

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE							
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	26 di 72		

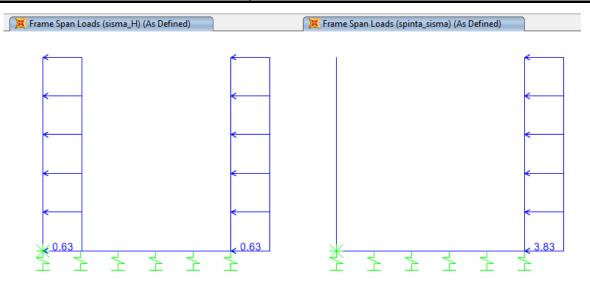


Figura 7.5: sisma orizzontale (sx) - incremento di spinta dovuto al sisma (dx).

7.3. COMBINAZIONI DI CALCOLO

Ai fini delle verifiche degli stati limite si è fatto riferimento alle seguenti combinazioni delle azioni.

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE							
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	27 di 72		

dove:

$$E = \pm 1.00 \times E_{Y} \pm 0.3 \times E_{Z}$$

avendo indicato con E_Y e E_Z rispettivamente le componenti orizzontale e verticale dell'azione sismica.

I coefficienti parziali γ_F relativi alle azioni sono indicati nella Tabella 7.1.

Tabella 7.1: coefficienti parziali per le azioni o per l'effetto delle azioni.

	Effetto	Coefficiente Parziale γ_F (o γ_E)	EQU	(A1)	(A2)
Carichi permanenti G1	Favorevole	γ_{G1}	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G2(1)	Favorevole	γ ₆₂	0,8	8,0	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	γ_{Q_i}	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

⁽¹⁾ Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γG1

Le azioni impiegate nella definizione delle combinazioni di carico sono riepilogate nella Tabella 7.2.

Tabella 7.2: riepilogo carichi.

azione	Load Case Name
peso proprio	DEAD
spinta a riposo del terreno	spinta_ k0
incremento di spinta dovuta al carico accidentale sul piedritto destro	spinta_acc_dx
azione sismica orizzontale dovuta al peso proprio	sisma_H
incremento di spinta sul piedritto destro dovuto al sisma	sovraspinta_sismic
moremente di opinta dai picantio destro dovato di sisina	a

Nella tabella che segue sono elencate le combinazioni di carico impiegate nelle verifiche.

GRUPPO FERROVIE DELLO STATO ITALIANE	NODO INTER	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE							
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO			
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	28 di 72			

Tabella 7.3: combinazioni di carico.

	slu1	slu2	slu3	rar1	qpe 1	sis1
DEAD	1.3	1	1.3	1	1	1
spinta_ k0	1	1.3	1.3	1	1	1
spinta_acc_dx	0	1.5	1.5	1	0	0
sisma_H	-	-	-	-	-	1
sovraspinta_sismic a	-	-	-	-	-	1

7.4. RISULTATI E VERIFICHE

Nelle immagini a seguire si riportano i digrammi di inviluppo delle sollecitazioni per gli stati limite ultimi statici e sismici e per gli stati limite d'esercizio.

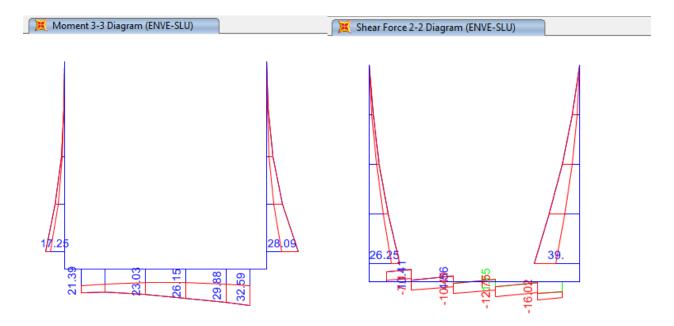


Figura 7.6: momento flettente (sx) e taglio (dx) – enve SLU.

GRUPPO FERROVIE DELLO STATO ITALIANE	INFRASTRU	NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA				
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	29 di 72

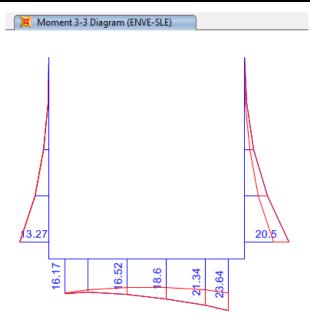


Figura 7.7: momento flettente enve SLE.

7.4.1. Verifica piedritti s.0.3 m

Nella tabella seguente si riportano le sollecitazioni massime derivanti dalle analisi utilizzate nelle successive verifiche.

	N	М	Т
	(kN)	(kNm)	(kN)
SLU	12.75	28.09	39.00
SLE	12.75	20.50	1

L'armatura tesa è superiore allo 0.2% dell'area della sezione come indicato nelle NTC18.

DATI GENERALI SEZIONE RETTANGOLARE DI PILASTRO IN C.A.

NOME SEZIONE: U-pied

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi

Normativa di riferimento: N.T.C.

Tipologia sezione: Sezione predefinita di trave (solette, nervature solai)senza staffe

Forma della sezione: Rettangolare

Percorso sollecitazione: A Sforzo Norm. costante

Condizioni Ambientali: Poco aggressive

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

PROGETTO DEFINITIVO

NODO INTERMODALE DI BRINDISI

INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA

NAZIONALE

OPERE IDRAULICHE

IN11 - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO RFV FOGLIO IA7L 00 D10CL IN1100001 Α 30 di 72

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -Classe: C30/37

Resistenza compress, di progetto fcd: 158.60 daN/cm²

Deform. unitaria max resistenza ec2: 0.0020 Deformazione unitaria ultima ecu: 0.0035 Diagramma tensioni-deformaz.: Parabola-Rettangolo

Modulo Elastico Normale Ec: 323080 daN/cm²

Resis. media a trazione fctm: 27.60 daN/cm²

Coeff.Omogen. S.L.E.: 15.00

Sc limite S.L.E. comb. Rare: 154.00 daN/cm² Sc limite S.L.E. comb. Q.Permanenti: daN/cm² 112.00 Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO -Tipo: B450C

> Resist. caratt. a snervamento fyk: 4500.0 daN/cm² Resist. caratt. a rottura ftk: 4500.0 daN/cm² Resist. a snerv. di progetto fyd: daN/cm² 3913.0 Resist. ultima di progetto ftd: 3913.0 daN/cm²

Deform. ultima di progetto Epu: 0.068

Modulo Elastico Ef: 2000000 daN/cm²

Diagramma tensioni-deformaz.: Bilineare finito Coeff. Aderenza istant. B1*B2: 1.00 Coeff. Aderenza differito B1*B2: 0.50

Comb.Rare - Sf Limite: 3375.0 daN/cm²

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Base: 100.0 30.0 Altezza: cm Barre inferiori: 5Ø14 (7.7 cm^2) Barre superiori: 5Ø14 (7.7 cm^2) Coprif.Inf.(dal baric. barre): 5.9 cm Coprif.Sup.(dal baric. barre): 5.9 cm Coprif.Lat. (dal baric.barre): 10.0 cm

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [daN] applicato nel baricentro (posit. se di compress.) Mx Momento flettente [daNm] intorno all'asse x baric. della sezione con verso positivo se tale da comprimere il lembo sup. della sezione Taglio [daN] in direzione parallela all'asse y baric. della sezione ٧v

MT Momento torcente [daN m]

MT N°Comb. Ν Vy Mx 1275 2809 3900 0 1

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [daN] applicato nel baricentro (positivo se di compress.) Ν

Coppia [daNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx 1275 2050 1

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [daN] applicato nel baricentro (positivo se di compress.)

Coppia [daNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Ν Mx

PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA

NAZIONALE

OPERE IDRAULICHE
IN11 - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IA7L 00 D10CL IN1100001 A 31 di 72

1 1075

1 1275 2050 (4637)

RISULTATI DEL CALCOLO

Sezione verificata

Copriferro netto minimo barre longitudinali: 5.2 cm Interferro netto minimo barre longitudinali: 16.8 cm Copriferro netto minimo staffe: 5.2 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale [daN] applicato nel Baricentro (positivo se di compressione)
Mx Momento flettente assegnato [daNm] riferito all'asse x baricentrico
N Ult Sforzo normale ultimo [daN] nella sezione (positivo se di compress.)
Mx rd Momento flettente ultimo [daNm] riferito all'asse x baricentrico
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N rd,Mx rd) e (N,Mx)

Verifica positiva se tale rapporto risulta >=1.000

Yn Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez.

x/d Rapp. di duttilità (travi e solette)[§ 4.1.1.1 NTC]: deve essere < 0.45 C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

As Tesa Area armature long. trave [cm²] in zona tesa. (tra parentesi l'area minima di normativa)

Mx rd Mis.Sic. N°Comb Ver N Mx N rd Yn x/d C.Rid. As Tesa S 1275 2809 1270 7827 2.786 25.8 0.17 0.70 15.4 (3.8)

DEFORMAZIONI UNITARIE ALLO STATO LIMITE ULTIMO

ec max Deform. unit. massima del conglomerato a compressione

Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)

es min Deform. unit. minima nell'acciaio (negativa se di trazione)

Ys min
Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max
Deform. unit. massima nell'acciaio (positiva se di compressione)
Ys max
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb ec max Yc max es min Ys min es max Ys max 1 0.00350 30.0 -0.00144 24.1 -0.01668 5.9

VERIFICHE A TAGLIO SENZA ARMATURE TRASVERSALI (§ 4.1.2.1.3.1 NTC)

Ver S = comb.verificata a taglio/ N = comb. non verificata

Ved Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta)

Vwct Taglio trazione resistente [daN] in assenza di staffe [formula (4.1.23)NTC]

d Altezza utile sezione [cm] bw Larghezza minima sezione [cm]

Ro Rapporto geometrico di armatura longitudinale [<0.02] Scp Tensione media di compressione nella sezione [daN/cm²]

N°Comb Ver Ved Vwct d bw Ro Scp 1 S 3900 14606 24.1 100.0 0.0064 0.0

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

Ver S = combinazione verificata / N = combin. non verificata

Sc max Massima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²]

Yc max Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)

Sc min Minima tensione di compress. (+) nel conglom. in fase fessurata ([daN/cm²]

Yc min

Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O)

Sf min

Minima tensione di trazione (-) nell'acciaio [daN/cm²]

Ys min

Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)

Dw Eff. Spessore di conglomerato [cm] in zona tesa considerata aderente alle barre Ac eff. Area di congl. [cm²] in zona tesa aderente alle barre (verifica fess.)
As eff. Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.)

D barre Distanza in cm tra le barre tese efficaci.

(D barre = 0 indica spaziatura superiore a $5(c+\emptyset/2)$ e nel calcolo di fess. si usa la (C4.1.11)NTC/(7.14)EC2)

N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	Ac Eff.	As Eff.	D barre
1	S	28.8	30.0	0.0	23.3	-1129	24.1	7.8	778	7.7	22.1

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA APERTURA FESSURE (NTC/EC2)

Ver Esito verifica
e1 Minima deformazione unitaria (trazione: segno -) nel calcestruzzo in sez. fessurata
e2 Massima deformazione unitaria (compress.: segno +) nel calcestruzzo in sez. fessurata
K2 = 0.5 per flessione; =(e1 + e2)/(2*e2)in trazione eccentrica per la (7.13)EC2 e la (C4.1.11)NTC

Kt fattore di durata del carico di cui alla (7.9) dell'EC2

e sm Deformazione media acciaio tra le fessure al netto di quella del cls. Tra parentesi il valore minimo = 0.6 Ss/Es

srm Distanza massima in mm tra le fessure

wk Apertura delle fessure in mm fornito dalla (7.8)EC2 e dalla (C4.1.7)NTC. Tra parentesi è indicato il valore limite.

M fess. Momento di prima fessurazione [daNm]

Κ2 N°Comb Ver e2 Κt M Fess e1 wk e sm srm -0.00076 0.00022 0.50 1 S 0.60 0.000339 (0.000339) 417 0.141 (0.20) 4637

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

N°Comb Ver Ac Eff. Sc max Yc max Sc min Yc min Sf min Ys min Dw Fff As Eff. D barre S 28.8 30.0 0.0 23.3 -1129 24.1 7.8 778 7.7 22.1

7.4.1. Verifica soletta s.0.3 m

Nella tabella seguente si riportano le sollecitazioni massime derivanti dalle analisi utilizzate nelle successive verifiche.

	N	М	Т
	(kN)	(kNm)	(kN)
SLU	44.15	32.59	16.02
SLE	32.54	23.64	-

L'armatura tesa è superiore allo 0.2% dell'area della sezione come indicato nelle NTC18.

DATI GENERALI SEZIONE RETTANGOLARE DI PILASTRO IN C.A.

NOME SEZIONE: U-sol

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi

Normativa di riferimento: N.T.C.

Tipologia sezione: Sezione predefinita di trave (solette, nervature solai)senza staffe

Forma della sezione: Rettangolare

Percorso sollecitazione:

Condizioni Ambientali:

Riferimento Sforzi assegnati:

Riferimento alla sismicità:

A Sforzo Norm. costante
Poco aggressive
Assi x,y principali d'inerzia
Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C30/37

Resistenza compress. di progetto fcd: 158.60 daN/cm²

Deform. unitaria max resistenza ec2: 0.0020

ACCIAIO -

PROGETTO DEFINITIVO

NODO INTERMODALE DI BRINDISI

0.50

3375.0 daN/cm²

INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA **NAZIONALE**

OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	33 di 72

Deformazione unitaria ultima ecu:	0.0035	
Diagramma tensioni-deformaz.:	Parabola-Rettangolo	
Modulo Elastico Normale Ec:	323080	daN/cm ²
Resis. media a trazione fctm:	27.60	daN/cm ²
Coeff.Omogen. S.L.E.:	15.00	
Sc limite S.L.E. comb. Rare:	154.00	daN/cm ²
Sc limite S.L.E. comb. Q.Permanenti:	112.00	daN/cm ²
Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
Tipo:	B450C	
Resist. caratt. a snervamento fyk:	4500.0	daN/cm ²
Resist. caratt. a rottura ftk:	4500.0	daN/cm ²
Resist. a snerv. di progetto fyd:	3913.0	daN/cm ²
Resist. ultima di progetto ftd:	3913.0	daN/cm ²
Deform. ultima di progetto Epu:	0.068	
Modulo Elastico Ef:	2000000	daN/cm ²
Diagramma tensioni-deformaz.:	Bilineare finito	
Coeff. Aderenza istant. B1*B2:	1.00	

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Base: 100.0 Altezza: 30.0 cm Barre inferiori: 5Ø14 (7.7 cm^2) Barre superiori: 5Ø14 (7.7 cm^2) Coprif.Inf.(dal baric. barre): 5.9 5.9 Coprif.Sup.(dal baric. barre): cm Coprif.Lat. (dal baric.barre): 10.0 cm

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Coeff. Aderenza differito B1*B2:

Comb.Rare - Sf Limite:

Sforzo normale [daN] applicato nel baricentro (posit. se di compress.) Mx Momento flettente [daNm] intorno all'asse x baric. della sezione con verso positivo se tale da comprimere il lembo sup. della sezione Taglio [daN] in direzione parallela all'asse y baric. della sezione ٧v

MT Momento torcente [daN m]

N°Comb. Ν MT Mx 4415 3259 1602 0

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [daN] applicato nel baricentro (positivo se di compress.) Ν

Coppia [daNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Ν Mx 3254 2364 1

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [daN] applicato nel baricentro (positivo se di compress.) N

Coppia [daNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Ν 3254 2364 (4826)

RISULTATI DEL CALCOLO

Sezione verificata

Copriferro netto minimo barre longitudinali: 5.2 cm Interferro netto minimo barre longitudinali: 16.8 cm Copriferro netto minimo staffe: 5.2 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale [daN] applicato nel Baricentro (positivo se di compressione)
Mx Momento flettente assegnato [daNm] riferito all'asse x baricentrico
N Ult Sforzo normale ultimo [daN] nella sezione (positivo se di compress.)
Mx rd Momento flettente ultimo [daNm] riferito all'asse x baricentrico
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N rd,Mx rd) e (N,Mx)

Verifica positiva se tale rapporto risulta >=1.000

Yn Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez.

x/d Rapp. di duttilità (travi e solette)[§ 4.1.1.1 NTC]: deve essere < 0.45 C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

As Tesa Area armature long. trave [cm²] in zona tesa. (tra parentesi l'area minima di normativa)

Mx rd Mis.Sic. N°Comb Ver C Rid As Tesa N Mχ N rd Yn h/x 4415 3259 4431 8145 2.499 25.7 0.18 0.70 15.4 (3.8) 1

DEFORMAZIONI UNITARIE ALLO STATO LIMITE ULTIMO

ec max Deform. unit. massima del conglomerato a compressione

Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)

es min Deform. unit. minima nell'acciaio (negativa se di trazione)

Ys min
ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max
Deform. unit. massima nell'acciaio (positiva se di compressione)
Ys max
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

VERIFICHE A TAGLIO SENZA ARMATURE TRASVERSALI (§ 4.1.2.1.3.1 NTC)

VerS = comb.verificata a taglio/ N = comb. non verificata

Ved Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta)

Vwct Taglio trazione resistente [daN] in assenza di staffe [formula (4.1.23)NTC]

d Altezza utile sezione [cm] bw Larghezza minima sezione [cm]

Ro Rapporto geometrico di armatura longitudinale [<0.02] Scp Tensione media di compressione nella sezione [daN/cm²]

N°Comb Ver Ved Vwct d bw Ro Scp 1 S 1602 14985 24.1 100.0 0.0064 0.1

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

Ver S = combinazione verificata / N = combin. non verificata

Sc max Massima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²]

Yc max Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)

Sc min Minima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²]

Yc min Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O) Sf min Minima tensione di trazione (-) nell'acciaio [daN/cm²]

Ys min Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)

Dw Eff. Spessore di conglomerato [cm] in zona tesa considerata aderente alle barre Ac eff. Area di congl. [cm²] in zona tesa aderente alle barre (verifica fess.)
As eff. Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.)

D barre Distanza in cm tra le barre tese efficaci.

(D barre = 0 indica spaziatura superiore a 5(c+0/2) e nel calcolo di fess. si usa la (C4.1.11)NTC/(7.14)EC2)

N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	St min	Ys min	Dw Eff.	Ac Eff.	As Eff.	D barre
1	S	32.9	30.0	0.0	22.9	-1181	24.1	7.6	763	7.7	22.1

GRUPPO FERROVIE DELLO STATO ITALIANE	INFRASTRU	NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA				
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	35 di 72

SS.
326
j
8

7.4.2. Incidenza

Nel calcolo dell'incidenza è stata considerata l'armatura principale, con cui si sono svolte le verifiche riportate ai paragrafi precedenti, e l'armatura di ripartizione costitutita da φ12/20. Il valore così ottenuto è stato incrementato del 10-15% per tenere in conto degli elementi accessori (legature, cavallotti,...).

	l (kg/m³)
Piedritti	80
Soletta inferiore	80

GRUPPO FERROVIE DELLO STATO ITALIANE		RMODALE ITURA DI (DI BRINDISI COLLEGAMEN	ITO DELL'AREA II I INFRASTRUTTUI		
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	36 di 72

8. CANALE A U - RACCORDO SCATOLARE

8.1. MODELLAZIONE ADOTTATA

Lo schema statico prevede la soletta a contatto con il terreno schematizzata come una trave su molle alla Winkler, il cui valore è stato valutato nel seguito.

La costante di Winkler si calcola tramite la formula:

$$k = \frac{1}{B' \cdot E' \cdot 4 \cdot I_s \cdot I_F}$$
 (formulazione di Vesic, rif. "Fondazioni" – Bowles)

con:

B'=B/2 (B= larghezza della soletta di fondo)

E modulo elastico del terreno

V Coefficiente di Poisson del terreno

$$E' = \frac{1 - v^2}{F}$$

$$I_s = I_1 + \frac{1 - 2\nu}{1 - \nu}I_2$$
 Coefficiente di Steinbrenner

IF Coefficiente di forma (vedi Figura 8.1)

$$I_{1} = \frac{1}{\pi} \left[M \ln \frac{\left(1 + \sqrt{M^{2} + 1}\right)\sqrt{M^{2} + N^{2}}}{M\left(1 + \sqrt{M^{2} + N^{2} + 1}\right)} + \ln \frac{\left(M + \sqrt{M^{2} + 1}\right)\sqrt{1 + N^{2}}}{M + \sqrt{M^{2} + N^{2} + 1}} \right]$$

$$I_2 = \frac{N}{2\pi} \tan^{-1} \frac{M}{N\sqrt{M^2 + N^2 + 1}}$$

Nel caso in esame si ha:

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	37 di 72

B = 2.1 m

E = 9 MPa

v = 0.3

N = H/B' = 2.0

M = L'/B' = 1.0

IF = 0.7

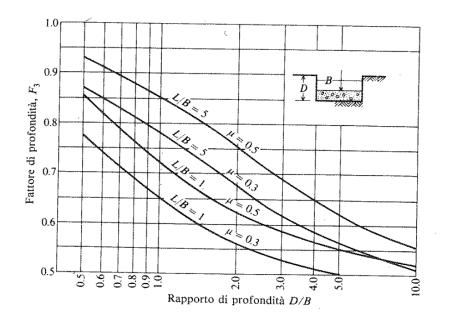


Figura 8.1: coefficiente di influenza IF per una fondazione collocata a profondità D.

E quindi k \approx 10000 kN/m³.

La costante elastica viene applicata ai nodi dell'elemento frame con cui viene modellata la soletta di fondo differenziando la rigidezza delle molle dei nodi centrali da quelli laterali e da quelli di spigolo.

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	38 di 72

n	5	numero di elementi di divisione della soletta inf.
ks	10000 kN/m ³	
Lint	1.5 m	larghezza interna dello scatolare
Sp	0.3 m	spessore dei piedritti
RIGIDEZZA MOLLE CENTRAL	<u> </u>	
K _{centrali}	3600 kN/m	
RIGIDEZZA MOLLE DI SPIGO	<u>LO</u>	
$K_{spigolo}$	6600 kN/m	
RIGIDEZZA MOLLE INTERME	DIE	
K _{intermedie}	5400 kN/m	

L'analisi delle strutture è stata condotta mediante il programma di calcolo agli elementi finiti SAP2000, prodotto dalla Computer and Structures inc. di Berkeley, California, USA.

Lo schema statico impiegato è quello di telaio costituito da elementi frame; in corrispondenza della intersezione tra tali elementi il programma genera in automatico dei nodi per garantire la continuità strutturale. Ad ogni elemento è assegnata la corrispondente sezione rettangolare in calcestruzzo, la cui geometria è definita dallo spessore dell'elemento stesso per una larghezza unitaria, dal momento che la struttura è risolta come piana.

Per le verifiche delle sezioni si è adottato il programma RC-SEC – Autore GEOSTRU.

La dimensione interna è di 1.5 m, l'altezza interna massima è pari a 2.25 m, lo spessore della soletta e dei piedritti è pari a 0.3 m. In figura si riporta schematicamente la geometria dell'opera .

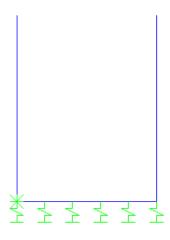


Figura 8.2: modello di calcolo.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	39 di 72

8.2. ANALISI DEI CARICHI

8.2.1. Peso proprio della struttura

Il peso proprio della struttura è valutato automaticamente dal programma di calcolo attribuendo al c.a. un peso dell'unità di volume di 25 kN/m³.

8.2.2. Spinta del terreno

Per la valutazione della spinta esercitata dal terreno quest'ultimo è stato considerato in condizioni di riposo pertanto il coefficiente di spinta è dato dalla relazione $k_0 = 1 - \text{sen}\phi$ '.

SPINTA RIPOSO)		
Yt	19.00	kN/m³	peso specifico terreno
Ф' _k	30	0	angolo attrito caratteristico
Φ' _d	30	0	angolo attrito di progetto
k_0	0.50	-	
σ' _{h1} (z=0.0 m)	0.0	kN/m²	tensione orizzontale quota testa piedritto
σ' _{h2} (z=2.4 m)	22.8	kN/m ²	tensione orizzontale quota mezzeria soletta

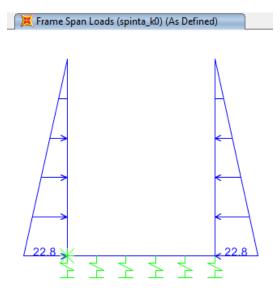


Figura 8.3: spinta del terreno.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	40 di 72

8.2.3. Spinta sovraccarico accidentale a tergo dell'opera

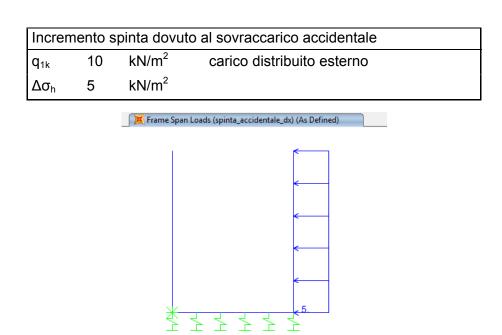


Figura 8.4: spinta sovraccarico accidentale sul piedritto destro.

8.2.4. Azione sismica

L'azione sismica agente sulle masse strutturali è stata considerata con un approccio di tipo pseudostatico. Esso consente di rappresentare il sisma mediante una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k. Le forze sismiche sono pertanto:

 $F_h = k_h \cdot W$

 $F_v = k_v \cdot W$

con kh e kv, rispettivamente, coefficiente sismico orizzontale e verticale, pari a

 k_h = $\beta_m \cdot a_{max}/g$ coefficiente sismico orizzontale

 $k_v = \pm 0.5 \cdot k_h$ coefficiente sismico verticale

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	41 di 72

Nelle espressioni precedenti a_{max} rappresenta l'accelerazione orizzontale massima attesa al sito mentre β_m è il coefficiente di riduzione di tale accelerazione valutato in funzione della capacità dell'opera di subire spostamenti relativi rispetto al terreno. Per l'analisi della struttura in esame β_m è stato posto pari ad 1. L'accelerazione orizzontale massima è stata valutata con la relazione:

$$a_{max} = S \cdot a_g = S_S \cdot S_T \cdot a_g$$

in cui a_g è l'accelerazione orizzontale massima attesa su sito di riferimento rigido e S un coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T).

Gli effetti dell'azione sismica sono stati valutati tenendo conto, della massa associata al peso proprio e delle masse associate al carico permanente.

Inoltre, l'incremento di spinta dovuto al sisma è stato valutato utilizzando la teoria di Wood. Secondo tale teoria la risultante dell'incremento di spinta per effetto del sisma, su una parete di altezza Hs, viene determinato attraverso la relazione $\Delta S_E = (a_{max}/g) \cdot \gamma \cdot H_{tot} \cdot H_m$ (H_{tot} = distanza p.c. – intradosso soletta inferiore; H_m = altezza muro).

a _g	0.056 g
Ss	1.5
S _T	1
a _{max}	0.084 g
a_{max} β_{m}	0.084 g

INERZIA ORIZZONTALE					
Piedritti					
k _h ·w _{P1}	$k_h \cdot w_{P1}$ 0.63 kN/m ² peso proprio s. 0.3m				
S	OVRA	SPINTA SIS	SMICA (WOOD)		
h _{tot}	h _{tot} 2.55 m altezza complessiva				
Δp _d 4.07 kN/m ² incremento di spinta					

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	42 di 72

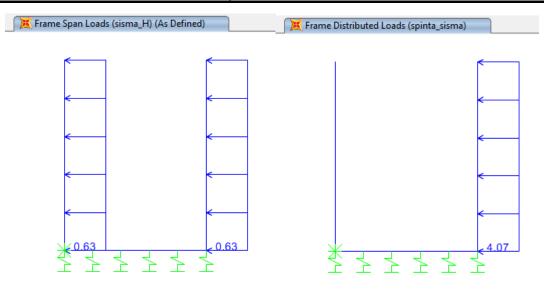


Figura 8.5: sisma orizzontale (sx) - incremento di spinta dovuto al sisma (dx).

8.3. COMBINAZIONI DI CALCOLO

Ai fini delle verifiche degli stati limite si è fatto riferimento alle seguenti combinazioni delle azioni.

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	43 di 72

dove:

$$E = \pm 1.00 \times E_{Y} \pm 0.3 \times E_{Z}$$

avendo indicato con E_Y e E_Z rispettivamente le componenti orizzontale e verticale dell'azione sismica.

I coefficienti parziali γ_F relativi alle azioni sono indicati nella Tabella 8.1.

Tabella 8.1: coefficienti parziali per le azioni o per l'effetto delle azioni.

Coefficiente Parziale Effetto EQU (A1) (A2) γ_F (o γ_E) Carichi permanenti G1 Favorevole γ_{G1} 0,9 1,0 1,0 Sfavorevole 1,3 1,0 1,1 Carichi permanenti G2(1) Favorevole γ_{G2} 0,8 0,8 0,8 Sfavorevole 1,5 1,5 1,3 Azioni variabili Q Favorevole γ_{Qi} 0,0 0,0 0,0 Sfavorevole 1,5 1,5 1,3

Le azioni impiegate nella definizione delle combinazioni di carico sono riepilogate nella Tabella 8.2.

Tabella 8.2: riepilogo carichi.

azione	Load Case Name
peso proprio	DEAD
spinta a riposo del terreno	spinta_ k0
incremento di spinta dovuta al carico accidentale sul piedritto destro	spinta_acc_dx
azione sismica orizzontale dovuta al peso proprio	sisma_H
incremento di spinta sul piedritto destro dovuto al sisma	sovraspinta_sismic a

Nella tabella che segue sono elencate le combinazioni di carico impiegate nelle verifiche.

⁽¹⁾ Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γοι

GRUPPO FERROVIE DELLO STATO ITALIANE		RMODALE ITURA DI (DI BRINDISI COLLEGAMEN	ITO DELL'AREA II I INFRASTRUTTUI		
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	44 di 72

Tabella 8.3: combinazioni di carico.

	slu1	slu2	slu3	rar1	qpe 1	sis1
DEAD	1.3	1	1.3	1	1	1
spinta_ k0	1	1.3	1.3	1	1	1
spinta_acc_dx	0	1.5	1.5	1	0	0
sisma_H	-	-	-	-	-	1
sovraspinta_sismic a	-	-	-	-	-	1

8.4. RISULTATI E VERIFICHE

Nelle immagini a seguire si riportano i digrammi di inviluppo delle sollecitazioni per gli stati limite ultimi statici e sismici e per gli stati limite d'esercizio.

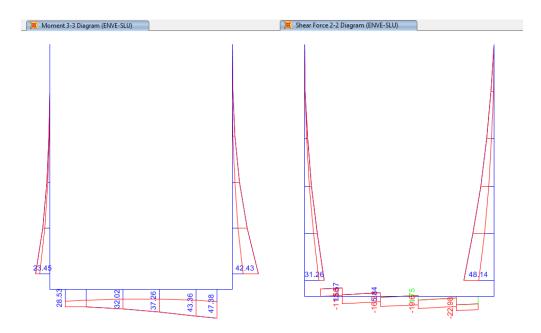


Figura 8.6: momento flettente (sx) e taglio (dx) – enve SLU.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVI NAZIONALE					
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	45 di 72

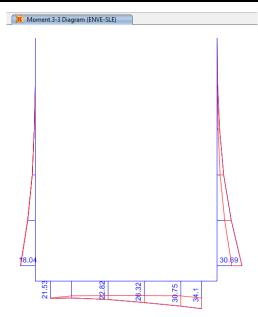


Figura 8.7: momento flettente enve SLE.

8.4.1. Verifica piedritti s.0.3 m

Nella tabella seguente si riportano le sollecitazioni massime derivanti dalle analisi utilizzate nelle successive verifiche.

	N	М	Т
	(kN)	(kNm)	(kN)
SLU	16.87	42.43	48.14
SLE	16.87	30.69	-

L'armatura tesa è superiore allo 0.2% dell'area della sezione come indicato nelle NTC18.

DATI GENERALI SEZIONE RETTANGOLARE DI PILASTRO IN C.A.

NOME SEZIONE: IN11-U-pied-raccordo

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi

Normativa di riferimento: N.T.C.

Tipologia sezione: Sezione predefinita di trave (solette, nervature solai)senza staffe

Forma della sezione: Rettangolare

Percorso sollecitazione: A Sforzo Norm. costante
Condizioni Ambientali: Poco aggressive
Riferimento Sforzi assegnati: Assi x,y principali d'inerzia
Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C30/37

Resistenza compress. di progetto fcd: 158.60 daN/cm²

IN11 - Relazione di calcolo

PROGETTO DEFINITIVO

NODO INTERMODALE DI BRINDISI

INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE

OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IA7L	00	D10CL	IN1100001	Α	46 di 72

Deform. unitaria max resistenza ec2: 0.0020
Deformazione unitaria ultima ecu: 0.0035
Diagramma tensioni-deformaz.: Parabola-Rettangolo

Modulo Elastico Normale Ec:323080daN/cm²Resis. media a trazione fctm:27.60daN/cm²Coeff.Omogen. S.L.E.:15.00

Sc limite S.L.E. comb. Rare: 154.00 daN/cm²
Sc limite S.L.E. comb. Q.Permanenti: 112.00 daN/cm²
Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO - Tipo: B450C

Resist. caratt. a snervamento fyk: 4500.0 daN/cm² Resist. caratt. a rottura ftk: 4500.0 daN/cm² Resist. a snerv. di progetto fyd: 3913.0 daN/cm² Resist. ultima di progetto ftd: 3913.0 daN/cm²

Deform. ultima di progetto Epu: 0.068

Modulo Elastico Ef: 2000000 daN/cm²

Diagramma tensioni-deformaz.:

Coeff. Aderenza istant. B1*B2:

Coeff. Aderenza differito B1*B2:

0.50

Coeff. Aderenza differito B1*B2:

2375.0

Comb.Rare - Sf Limite: 3375.0 daN/cm²

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Base: 100.0 Altezza: 30.0 cm Barre inferiori: 5Ø16 (10.1 cm^2) Barre superiori: 5Ø16 (10.1 cm²) Coprif.Inf.(dal baric. barre): 6.0 cm Coprif.Sup.(dal baric. barre): 6.0 cm 10.0 Coprif.Lat. (dal baric.barre): cm

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [daN] applicato nel baricentro (posit. se di compress.)

Mx Momento flettente [daNm] intorno all'asse x baric. della sezione
con verso positivo se tale da comprimere il lembo sup. della sezione

Vy Taglio [daN] in direzione parallela all'asse y baric. della sezione

MT Momento torcente [daN m]

N°Comb. N Mx Vy MT 1 1687 4243 4814 0

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [daN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [daNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx 1 1687 3069


COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [daN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [daNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx 1 1687 3069 (4720)

RISULTATI DEL CALCOLO

Sezione verificata

Copriferro netto minimo barre longitudinali: 5.2 cm Interferro netto minimo barre longitudinali: 16.4 cm Copriferro netto minimo staffe: 5.2 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale [daN] applicato nel Baricentro (positivo se di compressione)
Mx Momento flettente assegnato [daNm] riferito all'asse x baricentrico
N Ult Sforzo normale ultimo [daN] nella sezione (positivo se di compress.)
Mx rd Momento flettente ultimo [daNm] riferito all'asse x baricentrico
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N rd,Mx rd) e (N,Mx)

Verifica positiva se tale rapporto risulta >=1.000

Yn Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez.

x/d Rapp. di duttilità (travi e solette)[§ 4.1.1.1 NTC]: deve essere < 0.45 C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

As Tesa Area armature long. trave [cm²] in zona tesa. (tra parentesi l'area minima di normativa)

As Tesa N°Comb Ver Mx N rd Mx rd Mis.Sic. Yn x/d C.Rid. ς 1687 4243 1714 9675 2 280 25.3 0.20 0.70 20.1 (3.8)

DEFORMAZIONI UNITARIE ALLO STATO LIMITE ULTIMO

ec max Deform. unit. massima del conglomerato a compressione

Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)

es min Deform. unit. minima nell'acciaio (negativa se di trazione)

Ys min
ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max
Deform. unit. massima nell'acciaio (positiva se di compressione)
Ys max
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb ec max Yc max es min Ys min es max Ys max 1 0.00350 30.0 -0.00096 24.0 -0.01434 6.0

VERIFICHE A TAGLIO SENZA ARMATURE TRASVERSALI (§ 4.1.2.1.3.1 NTC)

Ver S = comb.verificata a taglio/ N = comb. non verificata

Ved Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta)

Vwct Taglio trazione resistente [daN] in assenza di staffe [formula (4.1.23)NTC]

d Altezza utile sezione [cm] bw Larghezza minima sezione [cm]

Ro Rapporto geometrico di armatura longitudinale [<0.02] Scp Tensione media di compressione nella sezione [daN/cm²]

N°Comb Ver Ved Vwct d bw Ro Scp 1 S 4814 15973 24.0 100.0 0.0084 0.1

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

Ver S = combinazione verificata / N = combin. non verificata

Sc max Massima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²]

Yc max Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)

Sc min Minima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²]

Yc min

Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O)

Sf min

Minima tensione di trazione (-) nell'acciaio [daN/cm²]

Ys min

Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)

Dw Eff. Spessore di conglomerato [cm] in zona tesa considerata aderente alle barre Ac eff. Area di congl. [cm²] in zona tesa aderente alle barre (verifica fess.)
As eff. Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.)

D barre Distanza in cm tra le barre tese efficaci.

(D barre = 0 indica spaziatura superiore a 5(c+Ø/2) e nel calcolo di fess. si usa la (C4.1.11)NTC/(7.14)EC2)

N°Comb Ver Sc max Yc max Sc min Yc min Sf min Ys min Dw Eff. Ac Eff. As Eff. D barre

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE					PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE							
ODEDE	DDAIII	ICHE				COMMESSA	LOTTO	CODIFICA	DOC	JMENTO	REV.	FOGLIO
	OPERE IDRAULICHE IN11 - Relazione di calcolo		IA7L	00	D10CL	IN11	00001	Α	48 di 72			
11411 - 140	Juziono	di calcon										
1	S	38.7	30.0	0.0	22.7	-1334	24.0	7.6	757	10.1	22.0	

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA APERTURA FESSURE (NTC/EC2)

Ver Esito verifica
e1 Minima deformazione unitaria (trazione: segno -) nel calcestruzzo in sez. fessurata
e2 Massima deformazione unitaria (compress.: segno +) nel calcestruzzo in sez. fessurata
K2 = 0.5 per flessione; =(e1 + e2)/(2*e2)in trazione eccentrica per la (7.13)EC2 e la (C4.1.11)NTC
Kt fattore di durata del carico di cui alla (7.9) dell'EC2

e sm Deformazione media acciaio tra le fessure al netto di quella del cls. Tra parentesi il valore minimo = 0.6 Ss/Es

srm Distanza massima in mm tra le fessure

wk Apertura delle fessure in mm fornito dalla (7.8)EC2 e dalla (C4.1.7)NTC. Tra parentesi è indicato il valore limite.

M fess. Momento di prima fessurazione [daNm]

N°Comb Ver K2 Κt M Fess. e1 e2 e sm srm wk S -0.00091 0.00029 0.50 0.60 0.000400 (0.000400) 382 0.153 (0.20) 4720

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

N°Comb Ver Sc max Yc max Sc min Yc min Sf min Ys min Dw Eff. Ac Eff. As Eff. D barre S 38.7 30.0 22.7 -1334 24.0 757 10.1 22.0 7.6

8.4.2. Verifica soletta s.0.3 m

Nella tabella seguente si riportano le sollecitazioni massime derivanti dalle analisi utilizzate nelle successive verifiche.

	N	М	Т
	(kN)	(kNm)	(kN)
SLU	53.57	47.38	22.98
SLE	39.36	34.10	-

L'armatura tesa è superiore allo 0.2% dell'area della sezione come indicato nelle NTC18.

DATI GENERALI SEZIONE RETTANGOLARE DI PILASTRO IN C.A.

NOME SEZIONE: IN11-U-sol-raccordo

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi

Normativa di riferimento: N.T.C.

Tipologia sezione: Sezione predefinita di trave (solette, nervature solai)senza staffe

Forma della sezione: Rettangolare

Percorso sollecitazione:

Condizioni Ambientali:

Riferimento Sforzi assegnati:

Riferimento alla sismicità:

A Sforzo Norm. costante
Poco aggressive
Assi x,y principali d'inerzia
Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C30/37

Resistenza compress. di progetto fcd: 158.60 daN/cm²

Deform. unitaria max resistenza ec2: 0.0020
Deformazione unitaria ultima ecu: 0.0035
Diagramma tensioni-deformaz.: Parabola-Rettangolo

ACCIAIO -

PROGETTO DEFINITIVO

NODO INTERMODALE DI BRINDISI

323080 daN/cm²

3375.0 daN/cm²

INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE

OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IA7L	00	D10CL	IN1100001	Α	49 di 72
IN11 - Relazione di calcolo						

Modulo Elastico Mormale Ec:	323080	uaiv/ciii²
Resis. media a trazione fctm:	27.60	daN/cm ²
Coeff.Omogen. S.L.E.:	15.00	
Sc limite S.L.E. comb. Rare:	154.00	daN/cm ²
Sc limite S.L.E. comb. Q.Permanenti:	112.00	daN/cm ²
Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
Tipo:	B450C	
Resist. caratt. a snervamento fyk:	4500.0	daN/cm ²
Resist. caratt. a rottura ftk:	4500.0	daN/cm ²
Resist. a snerv. di progetto fyd:	3913.0	daN/cm ²
Resist. ultima di progetto ftd:	3913.0	daN/cm ²
Deform. ultima di progetto Epu:	0.068	
Modulo Elastico Ef:	2000000	daN/cm ²
Diagramma tensioni-deformaz.:	Bilineare finito	
Coeff. Aderenza istant. B1*B2:	1.00	
Coeff. Aderenza differito 81*82:	0.50	

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Base: 100.0 cm Altezza: 30.0 cm Barre inferiori: 5Ø16 (10.1 cm^2) Barre superiori: 5Ø16 (10.1 cm²) Coprif.Inf.(dal baric. barre): 6.0 cm Coprif.Sup.(dal baric. barre): 6.0 cm Coprif.Lat. (dal baric.barre): 10.0 cm

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Comb.Rare - Sf Limite:

Modulo Flastico Normale Ec-

N Sforzo normale [daN] applicato nel baricentro (posit. se di compress.)

Mx Momento flettente [daNm] intorno all'asse x baric. della sezione
con verso positivo se tale da comprimere il lembo sup. della sezione

Vy Taglio [daN] in direzione parallela all'asse y baric. della sezione

MT Momento torcente [daN m]

N°Comb. N Mx Vy MT 1 5357 4738 2298 0

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [daN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [daNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx 1 3936 3410

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [daN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [daNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx 1 3936 3410 (4873)

RISULTATI DEL CALCOLO

Sezione verificata

Copriferro netto minimo barre longitudinali: 5.2 cm Interferro netto minimo barre longitudinali: 16.4 cm Copriferro netto minimo staffe: 5.2 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale [daN] applicato nel Baricentro (positivo se di compressione)
Mx Momento flettente assegnato [daNm] riferito all'asse x baricentrico
N Ult Sforzo normale ultimo [daN] nella sezione (positivo se di compress.)
Mx rd Momento flettente ultimo [daNm] riferito all'asse x baricentrico
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N rd,Mx rd) e (N,Mx)

Verifica positiva se tale rapporto risulta >= 1.000

Yn Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez.

x/d Rapp. di duttilità (travi e solette)[§ 4.1.1.1 NTC]: deve essere < 0.45 C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

As Tesa Area armature long. trave [cm²] in zona tesa. (tra parentesi l'area minima di normativa)

N°Comb Ver N Mx N rd Mx rd Mis.Sic. Υn x/d C.Rid. As Tesa S 5357 4738 5335 10031 25.2 20.1 (3.8) 1 2.117 0.20 0.70

DEFORMAZIONI UNITARIE ALLO STATO LIMITE ULTIMO

ec max Deform. unit. massima del conglomerato a compressione

Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)

es min Deform. unit. minima nell'acciaio (negativa se di trazione)

Ys min
Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max
Deform. unit. massima nell'acciaio (positiva se di compressione)
Ys max
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb ec max Yc max es min Ys min es max Ys max 1 0.00350 30.0 -0.00085 24.0 -0.01392 6.0

VERIFICHE A TAGLIO SENZA ARMATURE TRASVERSALI (§ 4.1.2.1.3.1 NTC)

Ver S = comb.verificata a taglio/ N = comb. non verificata

Ved Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta)

Vwct Taglio trazione resistente [daN] in assenza di staffe [formula (4.1.23)NTC]

d Altezza utile sezione [cm] bw Larghezza minima sezione [cm]

Ro Rapporto geometrico di armatura longitudinale [<0.02] Scp Tensione media di compressione nella sezione [daN/cm²]

N°Comb Ver Ved Vwct d bw Ro Scp 1 S 2298 16413 24.0 100.0 0.0084 0.2

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

Ver S = combinazione verificata / N = combin. non verificata

Sc max Massima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²]

Yc max Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)

Sc min Minima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²]

Yc min Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O) Sf min Minima tensione di trazione (-) nell'acciaio [daN/cm²]

Ys min Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)

Dw Eff. Spessore di conglomerato [cm] in zona tesa considerata aderente alle barre

Ac eff. Area di congl. [cm²] in zona tesa aderente alle barre (verifica fess.)
As eff. Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.)

D barre Distanza in cm tra le barre tese efficaci.

(D barre = 0 indica spaziatura superiore a 5(c+Ø/2) e nel calcolo di fess. si usa la (C4.1.11)NTC/(7.14)EC2)

N°Comb Ver Sc min Yc min Sf min Ys min Dw Eff. Ac Eff. As Eff. Sc max Yc max D barre S 42.9 30.0 22.4 -1376 24.0 7.5 10.1 22.0 0.0 745

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA APERTURA FESSURE (NTC/EC2)

Ver Esito verifica

e1 Minima deformazione unitaria (trazione: segno -) nel calcestruzzo in sez. fessurata

GRUPPO FERROVIE DELLO STATO ITALIANE	DETEC PORTUAL E DI					TO DELL'AREA INDUSTRIALE INFRASTRUTTURA FERROVIARIA				
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO				
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	51 di 72				

e2 K2 Kt e sm srm wk M fess	S.	= 0.5 pe fattore o Deform Distanz Apertur	na deformazione er flessione; =(e di durata del car azione media a ca massima in m a delle fessure i to di prima fess	e1 + e2)/(2*e2)ir rico di cui alla (7 cciaio tra le fess nm tra le fessure in mm fornito da	n trazione eco 7.9) dell'EC2 sure al netto e alla (7.8)EC2	centrica per la (di quella del cls	7.13)EC2 e la : s. Tra parentesi	(C4.1.11)NTC				
N°Comb 1	Ver S	e1 -0.00094	e2 0.00032		K2 0.50	Kt 0.60	0.000413	e sm (0.000413)	srm 378	0.15	wk 56 (0.20)	M Fess. 4873
COMBINA N°Comb 1	AZION Ver S	II QUASI PE Sc max 42.9	RMANENTI IN Yc max 30.0	Sc min 0.0	Yc min 22.4	CA MASSIME Sf min -1376	Ys min 24.0	NORMALI Dw Eff. 7.5	Ac	Eff. 745	As Eff. 10.1	D barre 22.0

8.4.3. Incidenza

Nel calcolo dell'incidenza è stata considerata l'armatura principale, con cui si sono svolte le verifiche riportate ai paragrafi precedenti, e l'armatura di ripartizione costitutita da ϕ 12/20. Il valore così ottenuto è stato incrementato del 10-15% per tenere in conto degli elementi accessori (legature, cavallotti,...).

	l (kg/m³)
Piedritti	90
Soletta inferiore	90

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	52 di 72

9. SCATOLARE

9.1. MODELLAZIONE ADOTTATA

Lo schema statico prevede la soletta a contatto con il terreno schematizzata come una trave su molle alla Winkler, il cui valore è stato valutato nel seguito.

La costante di Winkler si calcola tramite la formula:

$$k = \frac{1}{B' \cdot E' \cdot 4 \cdot I_S \cdot I_F}$$
 (formulazione di Vesic, rif. "Fondazioni" – Bowles)

con:

B'=B/2 (B= larghezza della soletta di fondo)

E modulo elastico del terreno

V Coefficiente di Poisson del terreno

$$E' = \frac{1 - v^2}{F}$$

$$I_s = I_1 + \frac{1 - 2\nu}{1 - \nu}I_2$$
 Coefficiente di Steinbrenner

IF Coefficiente di forma (vedi Figura 9.1)

$$I_{1} = \frac{1}{\pi} \left[M \ln \frac{\left(1 + \sqrt{M^{2} + 1}\right) \sqrt{M^{2} + N^{2}}}{M\left(1 + \sqrt{M^{2} + N^{2} + 1}\right)} + \ln \frac{\left(M + \sqrt{M^{2} + 1}\right) \sqrt{1 + N^{2}}}{M + \sqrt{M^{2} + N^{2} + 1}} \right]$$

$$I_2 = \frac{N}{2\pi} \tan^{-1} \frac{M}{N\sqrt{M^2 + N^2 + 1}}$$

Nel caso in esame si ha:

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	53 di 72

B = 2.1 m

E = 9 MPa

v = 0.3

N = H/B' = 2.0

M = L'/B' = 3.0

IF = 0.7

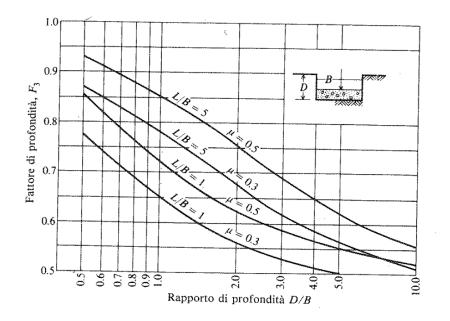


Figura 9.1: coefficiente di influenza IF per una fondazione collocata a profondità D.

E quindi k \approx 10000 kN/m³.

La costante elastica viene applicata ai nodi dell'elemento frame con cui viene modellata la soletta di fondo differenziando la rigidezza delle molle dei nodi centrali da quelli laterali e da quelli di spigolo.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	54 di 72

n	5	numero di elementi di divisione della soletta inf.
ks	10000 kN/m ³	
Lint	1.5 m	larghezza interna dello scatolare
Sp	0.3 m	spessore dei piedritti
RIGIDEZZA MOLLE CENTRAL	<u>I</u>	
K _{centrali}	3600 kN/m	
RIGIDEZZA MOLLE DI SPIGOL	<u>.0</u>	
K _{spigolo}	6600 kN/m	
RIGIDEZZA MOLLE INTERMEI	DIE .	
K _{intermedie}	5400 kN/m	

L'analisi delle strutture è stata condotta mediante il programma di calcolo agli elementi finiti SAP2000, prodotto dalla Computer and Structures inc. di Berkeley, California, USA.

Lo schema statico impiegato è quello di telaio costituito da elementi frame; in corrispondenza della intersezione tra tali elementi il programma genera in automatico dei nodi per garantire la continuità strutturale. Ad ogni elemento è assegnata la corrispondente sezione rettangolare in calcestruzzo, la cui geometria è definita dallo spessore dell'elemento stesso per una larghezza unitaria, dal momento che la struttura è risolta come piana.

Per le verifiche delle sezioni si è adottato il programma RC-SEC – Autore GEOSTRU.

Il tombino ha dimensioni interne 1.5 m*1.5 m, lo spessore deli elementi strutturali, solette e piedritti, è pari a 0.3 m. In figura si riporta schematicamente la geometria dell'opera .

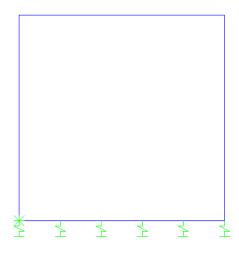


Figura 9.2: modello di calcolo.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	55 di 72

9.2. ANALISI DEI CARICHI

9.2.1. Peso proprio della struttura

Il peso proprio della struttura è valutato automaticamente dal programma di calcolo attribuendo al c.a. un peso dell'unità di volume di 25 kN/m³.

9.2.1. Carichi permanenti e accidentali

Nella Tabella sottostante si riportano i carichi permanenti considerati nel modello di calcolo.

SOLETTA SUPERIORE								
permanenti portati								
Y _{g2}	20.00	kN/m³						
S _{g2}	0.5	m	pacchetto stradale					
W_{g2}	10.0	kN/m²	Strauale					
	ac	ccidentali						
q _{1k}	20.0	kN/m²	sovraccarico stradale					

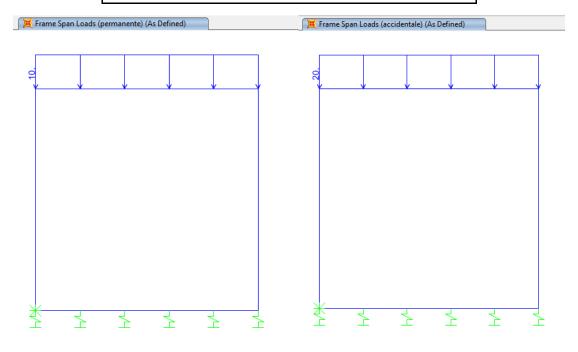


Figura 9.3 :carico permanente portato (sx), accidentale (dx).

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE						
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	56 di 72	

9.2.1. Spinta del terreno

Per la valutazione della spinta esercitata dal terreno quest'ultimo è stato considerato in condizioni di riposo pertanto il coefficiente di spinta è dato dalla relazione $k_0 = 1 - \text{sen}\phi$ '.

SPINTA RIPOSO)	
Yt	19.00 kN/m ³	peso specifico terreno
Ф' _k	30 °	angolo attrito caratteristico
Ф' _d	30 °	angolo attrito di progetto
\mathbf{k}_{0}	0.50 -	
σ' _{h1} (z=0.15 m)	1.43 kN/m ²	tensione orizzontale quota mezzeria soletta superiore
σ' _{h2} (z=1.95 m)	18.53 kN/m ²	tensione orizzontale quota mezzeria soletta inferiore

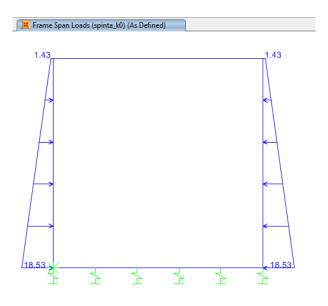


Figura 9.4: spinta del terreno.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE						
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	57 di 72	

9.2.2. Spinta sovraccarico permanente e accidentale

Incre	Incremento di spinta dovuto al sovraccarico permanente								
W_{g2}	10	kN/m ²	carico distribuito esterno						
$\Delta\sigma_h$	5	kN/m ²							
Incre	Incremento di spinta dovuto al sovraccarico accidentale								
q _{1k}	20	kN/m ²	carico distribuito esterno						
$\Delta\sigma_h$	10	kN/m ²							

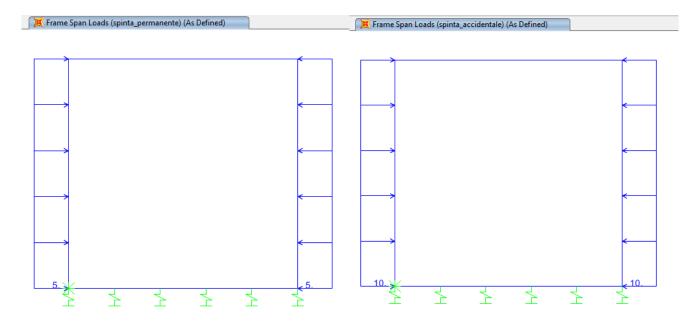


Figura 9.5: spinta sovraccarico permanente (sx), spinta accidentale (dx).

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	58 di 72

9.2.3. Azione sismica

L'azione sismica agente sulle masse strutturali è stata considerata con un approccio di tipo pseudostatico. Esso consente di rappresentare il sisma mediante una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k. Le forze sismiche sono pertanto:

$$F_h = k_h \cdot W$$

$$F_v = k_v \cdot W$$

con kh e kv, rispettivamente, coefficiente sismico orizzontale e verticale, pari a

 $k_h = \beta_m \cdot a_{max}/g$ coefficiente sismico orizzontale

 $k_v = \pm 0.5 \cdot k_h$ coefficiente sismico verticale

Nelle espressioni precedenti a_{max} rappresenta l'accelerazione orizzontale massima attesa al sito mentre β_m è il coefficiente di riduzione di tale accelerazione valutato in funzione della capacità dell'opera di subire spostamenti relativi rispetto al terreno. Per l'analisi della struttura in esame β_m è stato posto pari ad 1. L'accelerazione orizzontale massima è stata valutata con la relazione:

$$a_{\text{max}} = S \cdot a_{\text{g}} = S_{\text{S}} \cdot S_{\text{T}} \cdot a_{\text{g}}$$

in cui a_g è l'accelerazione orizzontale massima attesa su sito di riferimento rigido e S un coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T).

Gli effetti dell'azione sismica sono stati valutati tenendo conto, della massa associata al peso proprio e delle masse associate al carico permanente.

Inoltre, l'incremento di spinta dovuto al sisma è stato valutato utilizzando la teoria di Wood. Secondo tale teoria la risultante dell'incremento di spinta per effetto del sisma, su una parete di altezza Hs, viene determinato attraverso la relazione $\Delta S_E = (a_{max}/g) \cdot \gamma \cdot H_{tot} \cdot H_m$ (H_{tot} = distanza p.c. – intradosso soletta inferiore; H_m = altezza muro).

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	59 di 72

ag	0.056 g
Ss	1.5
S _T	1
a _{max}	0.084 g
β_{m}	1
k _h	0.084

	INERZIA VERTICALE					
	Soletta superiore					
k _V ·w _{PP} 0.74 kN/m ² peso proprio s. 0.3m+ permanenti portati						
		INER	ZIA ORIZZONTALE			
			Piedritti			
k _h ·w _{P1}	0.63	kN/m ²	peso proprio s. 0.3m			
		SOVRASF	PINTA SISMICA (WOOD)			
h _{tot}	h _{tot} 2.60 m altezza complessiva					
Δp_d	Δp_d 4.15 kN/m ² incremento di spinta					

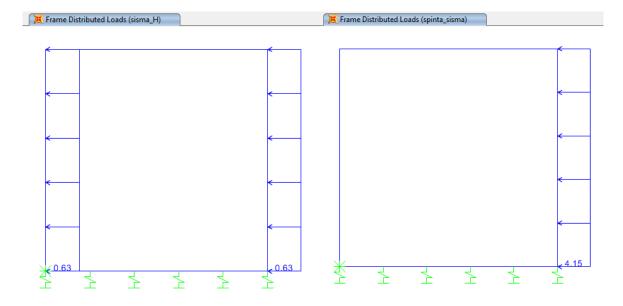


Figura 9.6: sisma orizzontale (sx), incremento spinta dovuto al sisma (dx).

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	60 di 72

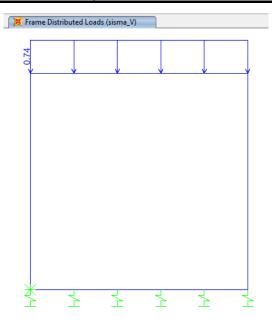


Figura 9.7: sisma verticale.

9.3. COMBINAZIONI DI CALCOLO

Ai fini delle verifiche degli stati limite si è fatto riferimento alle seguenti combinazioni delle azioni.

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	61 di 72

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

dove:

$$E = \pm 1.00 \times E_{Y} \pm 0.3 \times E_{Z}$$

avendo indicato con E_Y e E_Z rispettivamente le componenti orizzontale e verticale dell'azione sismica.

I coefficienti parziali γ_F relativi alle azioni sono indicati nella Tabella 9.1.

Tabella 9.1: coefficienti parziali per le azioni o per l'effetto delle azioni.

	Effetto	Coefficiente Parziale γ_F (o γ_E)	EQU	(A1)	(A2)
Carichi permanenti G1	Favorevole	γ_{G1}	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G2(1)	Favorevole	γ _{G2}	8,0	8,0	8,0
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	γ_{Q_i}	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

⁽¹⁾ Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γοι

Le azioni impiegate nella definizione delle combinazioni di carico sono riepilogate nella Tabella 9.2.

Tabella 9.2: riepilogo carichi.

azione	Load Case Name	
peso proprio	DEAD	
spinta a riposo del terreno	spinta_ k0	
carico permanente sulla soletta superiore	perm	
incremento di spinta dovuta al carico accidentale	spinta_perm	
carico accidentale sulla soletta superiore	acc	
incremento di spinta dovuta al carico accidentale	spinta_acc	
azione sismica verticale dovuta al peso proprio e ai carichi permanenti	sisma_V	
azione sismica orizzontale dovuta al peso proprio	sisma_H	
incremento di spinta sul piedritto sinistro dovuto al sisma	sovraspinta_sismic	
moremente di apinta dai picantito difficito dovato di sisma	а	

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	62 di 72

Tabella 9.3: combinazioni di carico.

Nella tabella che segue sono elencate le combinazioni di carico impiegate nelle verifiche.

	slu1	slu2	slu3	rar1	qpe 1	sis1	sis2
DEAD	1.3	1	1.3	1	1	1	1
spinta_ k0	1	1.3	1.3	1	1	1	1
perm	1.3	1	1.3	1	1	1	1
spinta_perm	1	1.5	1.3	1	1	1	1
acc	1.5	0	1.5	1	0	0	0
spinta_acc	0	1.5	1.5	1	0	0	0
sisma_V	-	-	-	-	-	0.3	1
sisma_H	-	-	-	-	-	1	0.3
sovraspinta_sismic a	-	-	-	-	-	1	0.3

9.4. RISULTATI E VERIFICHE

Nelle immagini a seguire si riportano i digrammi di inviluppo delle sollecitazioni per gli stati limite ultimi statici e sismici e per gli stati limite d'esercizio.

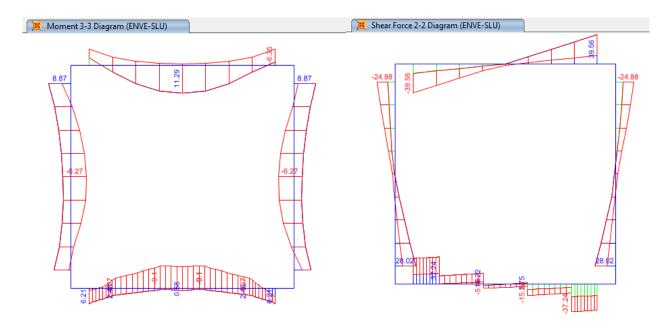


Figura 9.8: momento flettente (sx), taglio (dx) – enve SLU.

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	63 di 72

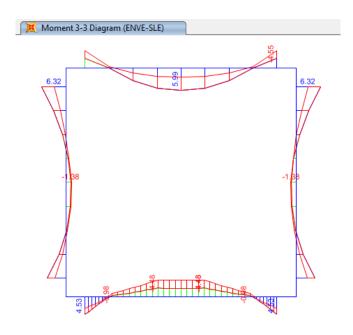


Figura 9.9: momento flettente enve SLE.

9.4.1. Verifica piedritti s.0.3 m

Nella tabella seguente si riportano le sollecitazioni massime derivanti dalle analisi utilizzate nelle successive verifiche.

	N	М	Т
	(kN)	(kNm)	(kN)
SLU	48.93	8.87	28.02
SLE	34.87	6.32	-

L'armatura tesa è superiore allo 0.2% dell'area della sezione come indicato nelle NTC18.

DATI GENERALI SEZIONE RETTANGOLARE DI PILASTRO IN C.A. NOME SEZIONE: IN11-scatolare-pied

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi Normativa di riferimento: N.T.C.

Tipologia sezione: Sezione predefinita di trave (solette, nervature solai)senza staffe

PROGETTO DEFINITIVO

NODO INTERMODALE DI BRINDISI

INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA **NAZIONALE**

OPERE IDRAULICHE

IN11 - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO RFV FOGLIO IA7L 00 D10CL IN1100001 Α 64 di 72

Forma della sezione: Rettangolare

A Sforzo Norm. costante Percorso sollecitazione:

Condizioni Ambientali: Poco aggressive

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -Classe: C30/37

> Resistenza compress. di progetto fcd: 158.60 daN/cm² Deform. unitaria max resistenza ec2: 0.0020

Deformazione unitaria ultima ecu: 0.0035 Diagramma tensioni-deformaz.: Parabola-Rettangolo

Modulo Elastico Normale Ec: daN/cm² 323080 Resis. media a trazione fctm: 27.60 daN/cm²

Coeff.Omogen. S.L.E.: 15.00

Sc limite S.L.E. comb. Rare: 154.00 daN/cm² Sc limite S.L.E. comb. Q.Permanenti: 112.00 daN/cm² Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO -B450C Tipo:

4500.0 Resist. caratt. a snervamento fyk: daN/cm² Resist. caratt. a rottura ftk: 4500.0 daN/cm² Resist. a snerv. di progetto fyd: 3913.0 daN/cm² Resist. ultima di progetto ftd: 3913.0 daN/cm²

Deform. ultima di progetto Epu: 0.068

Modulo Elastico Ef: 2000000 daN/cm²

Diagramma tensioni-deformaz.: Bilineare finito Coeff. Aderenza istant. B1*B2: 1.00 Coeff. Aderenza differito B1*B2: 0.50

Comb.Rare - Sf Limite: 3375.0 daN/cm²

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Base: 100.0 cm Altezza: 30.0 Barre inferiori: 5Ø14 (7.7 cm^2) Barre superiori: 5Ø14 (7.7 cm^2) Coprif.Inf.(dal baric. barre): 5.9 cm Coprif.Sup.(dal baric. barre): 5.9 cm Coprif.Lat. (dal baric.barre): 10.0

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [daN] applicato nel baricentro (posit. se di compress.) Momento flettente [daNm] intorno all'asse x baric. della sezione Mx con verso positivo se tale da comprimere il lembo sup. della sezione Vy Taglio [daN] in direzione parallela all'asse y baric. della sezione

Momento torcente [daN m] ΜT

N°Comb. Ν Mx Vy MT 1 4893 887 2802 0

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [daN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [daNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Ν Mx 3487 632

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [daN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [daNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx 1 3487 632 (6221)

RISULTATI DEL CALCOLO

Sezione verificata

Copriferro netto minimo barre longitudinali: 5.2 cm Interferro netto minimo barre longitudinali: 16.8 cm Copriferro netto minimo staffe: 5.2 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale [daN] applicato nel Baricentro (positivo se di compressione)
Mx Momento flettente assegnato [daNm] riferito all'asse x baricentrico
N Ult Sforzo normale ultimo [daN] nella sezione (positivo se di compress.)
Mx rd Momento flettente ultimo [daNm] riferito all'asse x baricentrico
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N rd,Mx rd) e (N,Mx)

Verifica positiva se tale rapporto risulta >=1.000

Yn Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez.

x/d Rapp. di duttilità (travi e solette)[§ 4.1.1.1 NTC]: deve essere < 0.45 C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

As Tesa Area armature long. trave [cm²] in zona tesa. (tra parentesi l'area minima di normativa)

N°Comb Ver Mx N rd Mx rd Mis.Sic. Yn x/d C.Rid. As Tesa 4893 4909 1 S 887 8194 9.238 25.7 0.18 0.70 15.4 (3.8)

DEFORMAZIONI UNITARIE ALLO STATO LIMITE ULTIMO

ec max Deform. unit. massima del conglomerato a compressione

Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)

es min Deform. unit. minima nell'acciaio (negativa se di trazione)

Ys min Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) es max Deform. unit. massima nell'acciaio (positiva se di compressione) Ys max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

VERIFICHE A TAGLIO SENZA ARMATURE TRASVERSALI (§ 4.1.2.1.3.1 NTC)

Ver S = comb.verificata a taglio/ N = comb. non verificata

Ved Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta)

Vwct Taglio trazione resistente [daN] in assenza di staffe [formula (4.1.23)NTC]

d Altezza utile sezione [cm] bw Larghezza minima sezione [cm]

Ro Rapporto geometrico di armatura longitudinale [<0.02] Scp Tensione media di compressione nella sezione [daN/cm²]

N°Comb Ver Ved Vwct d bw Ro Scp 1 S 2802 15042 24.1 100.0 0.0064 0.2

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

Ver S = combinazione verificata / N = combin. non verificata

Sc max Massima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²]

Yc max Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)

Sc min Minima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²]

Yc min

Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O)

Sf min

Minima tensione di trazione (-) nell'acciaio [daN/cm²]

Ys min

Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)

Dw Eff. Spessore di conglomerato [cm] in zona tesa considerata aderente alle barre Ac eff. Area di congl. [cm²] in zona tesa aderente alle barre (verifica fess.)
As eff. Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.)

D barre Distanza in cm tra le barre tese efficaci.

(D barre = 0 indica spaziatura superiore a 5(c+Ø/2) e nel calcolo di fess. si usa la (C4.1.11)NTC/(7.14)EC2)

N°Comb Ver Sc max Yc max Sc min Yc min Sf min Ys min Dw Eff. Ac Eff. As Eff. D barre S 8.0 30.0 0.0 19.4 -153 24.1 6.5 646 7.7 22.1

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA APERTURA FESSURE (NTC/EC2)

Ver Esito verifica
e1 Minima deformazione unitaria (trazione: segno -) nel calcestruzzo in sez. fessurata
e2 Massima deformazione unitaria (compress.: segno +) nel calcestruzzo in sez. fessurata
K2 = 0.5 per flessione; =(e1 + e2)/(2*e2)in trazione eccentrica per la (7.13)EC2 e la (C4.1.11)NTC
Kt fattore di durata del carico di cui alla (7.9) dell'EC2

e sm Deformazione media acciaio tra le fessure al netto di quella del cls. Tra parentesi il valore minimo = 0.6 Ss/Es

srm Distanza massima in mm tra le fessure

wk Apertura delle fessure in mm fornito dalla (7.8)EC2 e dalla (C4.1.7)NTC. Tra parentesi è indicato il valore limite.

M fess. Momento di prima fessurazione [daNm]

N°Comb Ver e1 e2 K2 Kt e sm srm M Fess. -0.00011 0.000046 (0.000046) 0.017 (0.20) S 0.00006 0.50 0.60 377 6221

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

N°Comb Ver Sc max Sc min Yc min Sf min Ys min Dw Eff. Ac Eff. As Eff. D barre Yc max 1 S 8.0 30.0 0.0 19.4 -153 24.1 6.5 646 7.7 22.1

9.4.2. Verifica soletta inferiore s.0.3 m

Nella tabella seguente si riportano le sollecitazioni massime derivanti dalle analisi utilizzate nelle successive verifiche.

	Ν	М	T
	(kN)	(kNm)	(kN)
SLU	15.17	9.10	37.24
SLE	24.53	4.48	-

L'armatura tesa è superiore allo 0.2% dell'area della sezione come indicato nelle NTC18.

DATI GENERALI SEZIONE RETTANGOLARE DI PILASTRO IN C.A.

NOME SEZIONE: IN11-scatolare-sol inf

Descrizione Sezione:

Metodo di calcolo resistenza:

Stati Limite Ultimi

Normativa di riferimento: N.T.C.

Tipologia sezione: Sezione predefinita di trave (solette, nervature solai)senza staffe

Forma della sezione: Rettangolare

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive

PROGETTO DEFINITIVO

IA7L

NODO INTERMODALE DI BRINDISI

00

INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA **NAZIONALE**

OPERE IDRAULICHE

IN11 - Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO RFV FOGLIO

IN1100001

Α

67 di 72

D10CL

Riferimento Sforzi assegnati: Assi x,y principali d'inerzia

Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -Classe: C30/37

> Resistenza compress. di progetto fcd: 158.60 daN/cm² Deform, unitaria max resistenza ec2: 0.0020 Deformazione unitaria ultima ecu: 0.0035 Diagramma tensioni-deformaz.: Parabola-Rettangolo

> Modulo Elastico Normale Ec: 323080 daN/cm² Resis. media a trazione fctm: 27.60 daN/cm²

Coeff.Omogen. S.L.E.: 15.00

Sc limite S.L.E. comb. Rare: 154.00 daN/cm² Sc limite S.L.E. comb. Q.Permanenti: 112.00 daN/cm² Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO -B450C Tipo:

> Resist. caratt. a snervamento fyk: 4500.0 daN/cm² Resist. caratt. a rottura ftk: 4500.0 daN/cm² Resist. a snerv. di progetto fyd: 3913.0 daN/cm² Resist. ultima di progetto ftd: 3913.0 daN/cm²

Deform. ultima di progetto Epu: 0.068

Modulo Elastico Ef: 2000000 daN/cm²

Diagramma tensioni-deformaz.: Bilineare finito Coeff. Aderenza istant. B1*B2: 1.00 Coeff. Aderenza differito B1*B2: 0.50

Comb.Rare - Sf Limite: 3375.0 daN/cm²

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Base: 100.0 cm Altezza: 30.0 cm Barre inferiori: 5Ø14 (7.7 cm^2) Barre superiori: 5Ø14 (7.7 cm^2) Coprif.Inf.(dal baric. barre): 5.9 cm Coprif.Sup.(dal baric. barre): 5.9 cm Coprif.Lat. (dal baric.barre): 10.0 cm

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [daN] applicato nel baricentro (posit. se di compress.) Mx Momento flettente [daNm] intorno all'asse x baric. della sezione con verso positivo se tale da comprimere il lembo sup. della sezione Vy Taglio [daN] in direzione parallela all'asse y baric. della sezione

ΜT Momento torcente [daN m]

N°Comb. N Vy MT Mx 1517 910 3724 0

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [daN] applicato nel baricentro (positivo se di compress.) N

Mx Coppia [daNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Ν Mx 2453 448

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [daN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [daNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx 1 2453 448 (6203)

RISULTATI DEL CALCOLO

Sezione verificata

Copriferro netto minimo barre longitudinali: 5.2 cm
Interferro netto minimo barre longitudinali: 16.8 cm
Copriferro netto minimo staffe: 5.2 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale [daN] applicato nel Baricentro (positivo se di compressione)
Mx Momento flettente assegnato [daNm] riferito all'asse x baricentrico
N Ult Sforzo normale ultimo [daN] nella sezione (positivo se di compress.)
Mx rd Momento flettente ultimo [daNm] riferito all'asse x baricentrico
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N rd,Mx rd) e (N,Mx)

Verifica positiva se tale rapporto risulta >= 1.000

Yn Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez.

x/d Rapp. di duttilità (travi e solette)[§ 4.1.1.1 NTC]: deve essere < 0.45 C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

As Tesa Area armature long. trave [cm²] in zona tesa. (tra parentesi l'area minima di normativa)

N°Comb Ver Mx N rd Mx rd Mis.Sic. Yn x/d C.Rid. As Tesa 1 S 1517 910 1517 7852 8.628 25.8 0.17 0.70 15.4 (3.8)

DEFORMAZIONI UNITARIE ALLO STATO LIMITE ULTIMO

ec max Deform. unit. massima del conglomerato a compressione

Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)

es min Deform. unit. minima nell'acciaio (negativa se di trazione)

Ys min
Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max
Deform. unit. massima nell'acciaio (positiva se di compressione)
Ys max
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb ec max Yc max es min Ys min es max Ys max 1 0.00350 30.0 -0.00143 24.1 -0.01664 5.9

VERIFICHE A TAGLIO SENZA ARMATURE TRASVERSALI (§ 4.1.2.1.3.1 NTC)

Ver S = comb.verificata a taglio/ N = comb. non verificata

Ved Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta)

Vwct Taglio trazione resistente [daN] in assenza di staffe [formula (4.1.23)NTC]

d Altezza utile sezione [cm] bw Larghezza minima sezione [cm]

Ro Rapporto geometrico di armatura longitudinale [<0.02] Scp Tensione media di compressione nella sezione [daN/cm²]

N°Comb Ver Ved Vwct d bw Ro Scp 1 S 3724 14635 24.1 100.0 0.0064 0.1

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

Ver S = combinazione verificata / N = combin. non verificata

Sc max Massima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²]

Yc max Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)

Sc min Minima tensione di compress. (+) nel conglom. in fase fessurata ([daN/cm²]

Yc min Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O) Sf min Minima tensione di trazione (-) nell'acciaio [daN/cm²]

Ys min Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)

Spessore di conglomerato [cm] in zona tesa considerata aderente alle barre Dw Eff. Area di congl. [cm²] in zona tesa aderente alle barre (verifica fess.) Ac eff. Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.) As eff.

D barre Distanza in cm tra le barre tese efficaci.

(D barre = 0 indica spaziatura superiore a 5(c+Ø/2) e nel calcolo di fess. si usa la (C4.1.11)NTC/(7.14)EC2)

Sc min As Eff. N°Comb Ver Yc max Yc min Sf min Ys min Dw Eff. Ac Eff. D barre Sc max 5.7 30.0 0.0 7.7 1 S 19.4 -109 24.1 6.5 648 22.1

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA APERTURA FESSURE (NTC/EC2)

Ver Esito verifica

e1 Minima deformazione unitaria (trazione: segno -) nel calcestruzzo in sez. fessurata e2 Massima deformazione unitaria (compress.: segno +) nel calcestruzzo in sez. fessurata K2 = 0.5 per flessione; =(e1 + e2)/(2*e2)in trazione eccentrica per la (7.13)EC2 e la (C4.1.11)NTC

Κt fattore di durata del carico di cui alla (7.9) dell'EC2

Deformazione media acciaio tra le fessure al netto di quella del cls. Tra parentesi il valore minimo = 0.6 Ss/Es e sm Distanza massima in mm tra le fessure srm

Apertura delle fessure in mm fornito dalla (7.8)EC2 e dalla (C4.1.7)NTC. Tra parentesi è indicato il valore limite. wk

M fess. Momento di prima fessurazione [daNm]

N°Comb Ver e1 e2 K2 Κt e sm srm wk M Fess. 1 S -0.00008 0.00004 0.50 0.60 0.000033 (0.000033) 377 0.012 (0.20) 6203

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

Yc min N°Comb Ver Sc min Sf min Dw Eff. As Eff. D barre Sc max Yc max Ys min Ac Eff. 5.7 30.0 0.0 19.4 1 S -10924.1 6.5 648 7.7 22.1

9.4.1. Verifica soletta superiore s.0.3 m

Nella tabella seguente si riportano le sollecitazioni massime derivanti dalle analisi utilizzate nelle successive verifiche.

	Ν	М	T
	(kN)	(kNm)	(kN)
SLU	11.79	11.29	39.56
SLE	20.43	5.99	-

L'armatura tesa è superiore allo 0.2% dell'area della sezione come indicato nelle NTC18.

DATI GENERALI SEZIONE RETTANGOLARE DI PILASTRO IN C.A.

NOME SEZIONE: IN11-scatolare-sol_sup

Descrizione Sezione:

Metodo di calcolo resistenza: Stati Limite Ultimi

Normativa di riferimento: N.T.C.

Tipologia sezione: Sezione predefinita di trave (solette, nervature solai)senza staffe

Forma della sezione: Rettangolare

Percorso sollecitazione: A Sforzo Norm. costante Condizioni Ambientali: Poco aggressive Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -Classe: C30/37

PROGETTO DEFINITIVO

NODO INTERMODALE DI BRINDISI

INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA **NAZIONALE**

OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	70 di 72

Resistenza compress. di progetto fcd: 158.60 daN/cm²

Deform. unitaria max resistenza ec2: 0.0020 Deformazione unitaria ultima ecu: 0.0035 Parabola-Rettangolo Diagramma tensioni-deformaz.:

Modulo Elastico Normale Ec: 323080 daN/cm² Resis. media a trazione fctm: 27.60 daN/cm²

Coeff.Omogen. S.L.E.: 15.00

Sc limite S.L.E. comb. Rare: 154.00 daN/cm² Sc limite S.L.E. comb. Q.Permanenti: 112.00 daN/cm² Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 mm

ACCIAIO -B450C

> Resist. caratt. a snervamento fyk: 4500.0 daN/cm² Resist. caratt. a rottura ftk: 4500.0 daN/cm² Resist. a snerv. di progetto fyd: 3913.0 daN/cm² Resist. ultima di progetto ftd: 3913.0 daN/cm²

Deform. ultima di progetto Epu: 0.068

Modulo Elastico Ef: 2000000 daN/cm² Diagramma tensioni-deformaz.: Bilineare finito

Coeff. Aderenza istant. B1*B2: 1.00 Coeff. Aderenza differito B1*B2: 0.50

Comb.Rare - Sf Limite: 3375.0 daN/cm²

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Base: 100.0 Altezza: 30.0 cm Barre inferiori: 5Ø14 (7.7 cm^2) Barre superiori: 5Ø14 (7.7 cm^2) Coprif.Inf.(dal baric. barre): 5.9 cm 5.9 Coprif.Sup.(dal baric. barre): cm Coprif.Lat. (dal baric.barre): 10.0 cm

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [daN] applicato nel baricentro (posit. se di compress.) Ν Momento flettente [daNm] intorno all'asse x baric. della sezione Mx con verso positivo se tale da comprimere il lembo sup. della sezione Taglio [daN] in direzione parallela all'asse y baric. della sezione Vy

Momento torcente [daN m] MT

N°Comb. Ν Mx MT Vy 1179 1129 3956 0 1

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [daN] applicato nel baricentro (positivo se di compress.)

Coppia [daNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx 2043 599

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [daN] applicato nel baricentro (positivo se di compress.) Ν

Coppia [daNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N 2043 599 (5424) 1

RISULTATI DEL CALCOLO

Sezione verificata

Copriferro netto minimo barre longitudinali: 5.2 cm Interferro netto minimo barre longitudinali: 16.8 cm Copriferro netto minimo staffe: 5.2 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata
N Sforzo normale [daN] applicato nel Baricentro (positivo se di compressione)
Mx Momento flettente assegnato [daNm] riferito all'asse x baricentrico
N Ult Sforzo normale ultimo [daN] nella sezione (positivo se di compress.)
Mx rd Momento flettente ultimo [daNm] riferito all'asse x baricentrico
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N rd,Mx rd) e (N,Mx)

Verifica positiva se tale rapporto risulta >= 1.000

Yn Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez.

x/d Rapp. di duttilità (travi e solette)[§ 4.1.1.1 NTC]: deve essere < 0.45 C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

As Tesa Area armature long. trave [cm²] in zona tesa. (tra parentesi l'area minima di normativa)

N°Comb Ver Ν Mx N rd Mx rd Mis.Sic. Yn x/d C.Rid. As Tesa S 1179 1129 1171 7817 6.924 25.8 0.17 0.70 15.4 (3.8)

DEFORMAZIONI UNITARIE ALLO STATO LIMITE ULTIMO

ec max Deform, unit, massima del conglomerato a compressione

Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)

es min Deform. unit. minima nell'acciaio (negativa se di trazione)

Ys min
ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max
Deform. unit. massima nell'acciaio (positiva se di compressione)
Ys max
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

VERIFICHE A TAGLIO SENZA ARMATURE TRASVERSALI (§ 4.1.2.1.3.1 NTC)

Ver S = comb.verificata a taglio/ N = comb. non verificata

Ved Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta)

Vwct Taglio trazione resistente [daN] in assenza di staffe [formula (4.1.23)NTC]

d Altezza utile sezione [cm] bw Larghezza minima sezione [cm]

Ro Rapporto geometrico di armatura longitudinale [<0.02] Scp Tensione media di compressione nella sezione [daN/cm²]

N°Comb Ver Ved Vwct d bw Ro Scp 1 S 3956 14595 24.1 100.0 0.0064 0.0

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

Ver S = combinazione verificata / N = combin. non verificata

Sc max Massima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²]

Yc max Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)

Sc min Minima tensione di compress. (+) nel conglom. in fase fessurata ([daN/cm²]

Yc min

Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O)

Sf min

Minima tensione di trazione (-) nell'acciaio [daN/cm²]

Ys min Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
Dw Eff. Spessore di conglomerato [cm] in zona tesa considerata aderente alle barre
Ac eff. Area di congl. [cm²] in zona tesa aderente alle barre (verifica fess.)

As eff. Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.)

D barre Distanza in cm tra le barre tese efficaci.

(D barre = 0 indica spaziatura superiore a 5(c+Ø/2) e nel calcolo di fess. si usa la (C4.1.11)NTC/(7.14)EC2)

N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	Ac Eff.	As Eff.	D barre
1	S	8.1	30.0	0.0	21.4	-220	24.1	7.1	715	7.7	22.1

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
OPERE IDRAULICHE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN11 - Relazione di calcolo	IA7L	00	D10CL	IN1100001	Α	72 di 72

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA APERTURA FESSURE (NTC/EC2)

COMBINAZION	NI KAKE IN I	ESERCIZIO -	VERIFICA A	PERTURA	LESSOKE (I	VIC/ECZ)					
Ver	Esito v	Esito verifica									
e1	Minima	Minima deformazione unitaria (trazione: segno -) nel calcestruzzo in sez. fessurata									
e2	Massin	Massima deformazione unitaria (compress.: segno +) nel calcestruzzo in sez. fessurata									
K2	= 0.5 per flessione; =(e1 + e2)/(2*e2)in trazione eccentrica per la (7.13)EC2 e la (C4.1.11)NTC										
Kt	fattore	di durata del car	ico di cui alla (7	'.9) dell'EC2	·						
e sm	Deformazione media acciaio tra le fessure al netto di quella del cls. Tra parentesi il valore minimo = 0.6 Ss/Es										
srm	Distanz	Distanza massima in mm tra le fessure									
wk	Apertura delle fessure in mm fornito dalla (7.8)EC2 e dalla (C4.1.7)NTC. Tra parentesi è indicato il valore limite.										
M fess.											
N°Comb Ver	e1	e2		K2	Kt		e sm	srm		wk	M Fess.
1 S	-0.00015	0.00006		0.50	0.60	0.000066	(0.000066)	398	0.0	26 (0.20)	5424
	3.32.000 (0.000000) 0.000000 (0.0000000)										
COMBINAZION	NI QUASI PE	RMANENTI IN	I ESERCIZIO	- VERIFIC	CA MASSIM	E TENSIONI I	NORMALI				
N°Comb Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	Ac	Eff.	As Eff.	D barre
1 S	8.1	30.0	0.0	21.4	-220	24.1	7.1		715	7.7	22.1

9.4.2. Incidenza

Nel calcolo dell'incidenza è stata considerata l'armatura principale, con cui si sono svolte le verifiche riportate ai paragrafi precedenti, e l'armatura di ripartizione costitutita da ϕ 12/20. Il valore così ottenuto è stato incrementato del 10-15% per tenere in conto degli elementi accessori (legature, cavallotti,...).

	l (kg/m³)
Piedritti	80
Soletta inferiore	80
Soletta superiore	80