COMMITTENTE: ERROVIARIA ITALIANA GRUPPO FERROVIE DELLO STATO ITALIANE PROGETTAZIONE: GRUPPO FERROVIE DELLO STATO ITALIANE U.O. COORDINAMENTO NO CAPTIVE E INGEGNERIA DI SISTEMA PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA **NAZIONALE** OOCC MINORI MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria - Relazione di calcolo SCALA: COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV. Α MU030 0 1 0 0 D 0 0

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
۸	- · ·	L.Dinelli	Maggio 2021	A.Ciavarella	Maggio 2021	T.Paoletti	Maggio 2021	L.Berardi
Α	Emissione Esecutiva			A				Maggio 2021
						14		(and
						, /		(反)(國)(之)
								(E(5) *
								(B) (S)
								1000
								1,1500

File: IA7L00D10CLMU0300001A.doc n. Elab.:

7

7.1

PROGETTO DEFINITIVO
NODO INTERMODALE DI BRINDISI
INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA
INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON
INFRASTRUTTURA FERROVIARIA NAZIONALE

COMMESSA

00 00 CODIFICA
D10

DOCUMENTO
CL MU0300 001

REV.

FOGLIO 2 di 57

MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria- Relazione di calcolo

Indice

IA7L

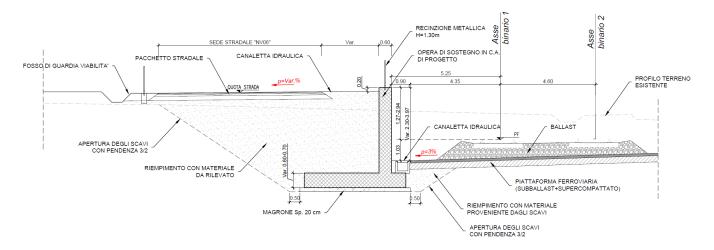
1	PF	REMESSA	4
2	NC	DRMATIVA E DOCUMENTI DI RIFERIMENTO	
2	2.1	NORMATIVA	6
2	2.2	ELABORATI DI RIFERIMENTO	8
3	LIK	IITA' DI MISURA	o
J	Ui	WIA DI WISONA	3
4	CA	ARATTERISTICHE DEI MATERIALI STRUTTURALI	9
	4.1	CALCESTRUZZO MURI DI SOSTEGNO	9
	4.2	ACCIAIO DI ARMATURA – BARRE	9
5	CA	ARATTERIZZAZIONE GEOTECNICA DEL SITO	11
6	CF	RITERI DI VERIFICA	12
(6.1	VERIFICHE GEOTECNICHE (SLU) IN CONDIZIONI STATICHE	12
•		.1 VERIFICA A SCORRIMENTO	
		.2 VERIFICA A RIBALTAMENTO	
		.3 VERIFICA A CARICO LIMITE DELLA FONDAZIONE	
		.4 VERIFICA A STABILITÀ GLOBALE	
(6.2	VERIFICHE GEOTECNICHE (SLV) IN CONDIZIONI SISMICHE	16
(6.3	VERIFICHE GEOTECNICHE (SLE)	
	6.3	.1 CALCOLO DEI CEDIMENTI (SLE)	
		.2 SPOSTAMENTI ATTESI IN CAMPO SLE	
(6.4	VERIFICHE STRUTTURALI SLU	19
	6.4	.1 CRITERI DI VERIFICA DELLE SEZIONI IN C.A	
	6.4	.2 VERIFICHE PER GLI STATI LIMITE ULTIMI A FLESSIONE - PRESSOFLESSIONE	19
	6.4	.3 VERIFICA AGLI STATI LIMITE ULTIMI A TAGLIO	19
(6.5	VERIFICHE STRUTTURALI (SLE)	22
	6.5	, ,	
	6.5	.2 VERIFICHE A FESSURAZIONE	23

PESI PROPRI24

PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE

MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria- Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO


IA7L 00 D10 CL MU0300 001 A 3 di 57

7.2	CARICHI PERMANENTI	25
7.2	2.1 PAVIMENTAZIONE STRADALE	25
7.2	2.2 SPINTA DEL TERRENO	25
7.3	CARICHI VARIABILI	26
7.4	VALUTAZIONE DELL'AZIONE SISMICA	26
7.4	4.1 VITA NOMINALE	26
7.4	4.2 CLASSE D'USO	26
7.4	4.3 PERIODO DI RIFERIMENTO	26
7.4	4.4 PARAMETRI SISMICI	26
8 C(OMBINAZIONI DI CARICO	29
9 PF	ROGETTO E VERIFICA DEL MURO DI SOSTEGNO SEZ 1	32
9.1	DATI DI INPUT	32
9.2	CALCOLO DELLE AZIONI	35
9.3	VERIFICHE GEOTECNICHE	40
9.3	3.1 VERIFICA STATICA - CONDIZIONI DRENATE	40
9.3	3.2 VERIFICA SISMICA - CONDIZIONI DRENATE	42
9.3	3.3 VERIFICA STATICA - CONDIZIONI NON DRENATE	46
9.3	3.4 VERIFICA SISMICA - CONDIZIONI NON DRENATE	48
9.4	VERIFICHE STRUTTURALI	52
9.4	4.1 CALCOLO DELLE SOLLECITAZIONI	52
9.4	4.2 VERIFICHE SLU	54
9.4	4.3 VERIFICHE SLE TENSIONE	56
9.4	4.4 VERIFICHE SLE FESSURAZIONE	56
10 IN	CIDENZE	57

GRUPPO FERROVIE DELLO STATO ITALIANE	INFRASTR INDUSTRIA	RMODAI UTTURA LE RETR	LE DI BRIND DI COLLEG O-PORTUA	DISI AMENTO DELL'A LE DI BRINDISI CO RIA NAZIONALE		
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria- Relazione di calcolo	IA7L	00	D10	CL MU0300 001	Α	4 di 57

1 PREMESSA

La presente relazione riporta le analisi e le verifiche relative ai muri di contenimento del corpo ferroviario di cui si riporta di seguito le sezioni tipologiche.

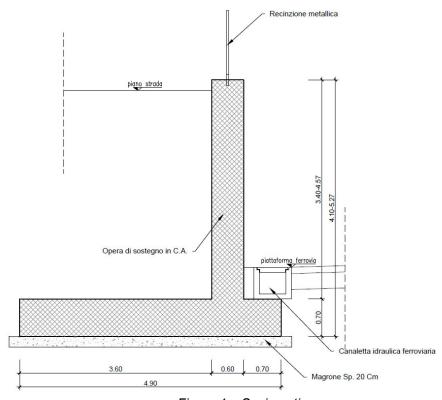


Figura 1 – Sezione tipo

GRUPPO FERROVIE DELLO STATO ITALIANE	INDUSTRIA	ERMODAI UTTURA LE RETR	LE DI BRIND DI COLLEG RO-PORTUA	DISI AMENTO DELL'A LE DI BRINDISI C RIA NAZIONALE		
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e ferroviaria- Relazione di calcolo	sede IA7L	00	D10	CL MU0300 001	Α	5 di 57

Il muro presenta un'altezza massima dallo spiccato delle fondazioni pari a 4.57 m, spessore del paramento pari a 60 cm e della zattera di fondazione pari a 70 cm. Sono state verificate anche le sezioni di altezza minore in cui gli spessori di paramento e zattera diminuiscono ma si riportano le verifiche del muro più alto avente condizione peggiore.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE COMMESSA LOTTO CODIFICA DOCUMENTO REV. 15					
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria- Relazione di calcolo	IA7L	00	D10	CL MU0300 001	Α	6 di 57

2 NORMATIVA E DOCUMENTI DI RIFERIMENTO

2.1 Normativa

Le analisi strutturali e le verifiche di sicurezza sono state effettuate in accordo con le seguenti normative.

- Legge 5-1-1971 n° 1086: Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica";
- Legge. 2 febbraio 1974, n. 64. Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche;
- D.M. 17 gennaio 2018 Norme Tecniche per le Costruzioni;
- Circolare 21 gennaio 2019 n.7 " Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018";
- RFI DTC SI MA IFS 001 E del 31.12.2020- "MANUALE DI PROGETTAZIONE DELLE OPERE CIVILI".
- Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea
- Eurocodice 1 Azioni sulle strutture, Parte 1-4: Azioni in generale Azioni del vento (UNI EN 1991-1-4)
- UNI 11104: Calcestruzzo: Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1

Si è tenuto inoltre conto dei seguenti documenti:

- UNI EN 1990 Aprile 2006: Eurocodice: Criteri generali di progettazione strutturale.
- UNI EN 1991-1-1 Agosto 2004: Eurocodice 1 Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi variabili.
- UNI EN 1991-1-4 Luglio 2005: Eurocodice 1. Azioni sulle strutture. Parte 1-4: Azioni in generale Azioni del vento.
- UNI EN 1992-1-1 Novembre 2005: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici.
- UNI EN 1992-2 Gennaio 2006: Eurocodice 2. Progettazione delle strutture di calcestruzzo. Parte 2: Ponti di calcestruzzo Progettazione e dettagli costruttivi.

GRUPPO FERROVIE DELLO STATO ITALIANE	INDUSTRIA	ERMODAI UTTURA LE RETR	LE DI BRINE DI COLLEG RO-PORTUA	DISI AMENTO DELL'A LE DI BRINDISI C RIA NAZIONALE		
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria- Relazione di calcolo	IA7L	00	D10	CL MU0300 001	Α	7 di 57

- UNI-EN 1997-1 Febbraio 2005: Eurocodice 7. Progettazione geotecnica. Parte 1: Regole generali.
- UNI-EN 1998-5 Gennaio 2005: Eurocodice 8: Progettazione delle strutture per la resistenza sismica. Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.
- Legge 5-1-1971 n° 1086: "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica".
- Legge. 2 febbraio 1974, n. 64.: "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".
- UNI EN 206-1-2016: Calcestruzzo. "Specificazione, prestazione, produzione e conformità".
- Calcestruzzo Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1 UNI 11104/2016;
- RFI DTC SI MA IFS 001 D Dicembre 2019: Manuale di progettazione delle opere civili;
- RFI DTC SI SP IFS 001 D Dicembre 2019: Capitolato Generale Tecnico di Appalto delle Opere Civili RFI;
- Regolamento (UE) N. 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019;

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE COMMESSA LOTTO CODIFICA DOCUMENTO REV.					
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria- Relazione di calcolo	IA7L	00	D10	CL MU0300 001	Α	8 di 57

2.2 Elaborati di riferimento

Costituiscono parte integrante di quanto esposto nel presente documento, l'insieme degli elaborati di progetto specifici relativi all'opera in esame e riportati in elenco elaborati.

MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria									,						<u>.</u>									
Relazione di calcolo	-	A4	SINTAGMA	I	Α	7	L	0	0	. D	1	0	С	L	M	U	0	3	0	0	. 0	0	1,	Α
Piante e sezioni di carpenteria	1:50	A0	SINTAGMA	I	Α	7	L	0	0	D	1	0	В	В	! M	U	0	3	0	0	0	0	1	Α

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE COMMESSA LOTTO CODIFICA DOCUMENTO REV.					
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria- Relazione di calcolo	IA7L	00	D10	CL MU0300 001	Α	9 di 57

3 UNITA' DI MISURA

Le unità di misura usate nella presente relazione sono:

- lunghezze [m]
- forze [kN]
- momenti [kNm]
- tensioni [MPa]

4 CARATTERISTICHE DEI MATERIALI STRUTTURALI

4.1 CALCESTRUZZO MURI DI SOSTEGNO

Fondazione:

Classe di resistenza = C30/37

 γ_c = peso specifico = 25.00 kN/m³

 R_{ck} = resistenza cubica = 37.00 N/mm²

 f_{ck} = resistenza cilindrica caratteristica = 0.83·R_{ck} = 30.71 N/mm²

 f_{cm} = resistenza cilindrica media = f_{ck} + 8 = 38.71 N/mm²

 f_{ctm} = resistenza a trazione media = 0.30· $f_{ck}^{2/3}$ = 2.94 N/mm²

f_{cfm} = resistenza a traz. per flessione media = 1.20·f_{ctm} = 3.53 N/mm²

f_{cfk} = resistenza a traz. per flessione caratt. = 0.70·fcfm = 2.47 N/mm²

 E_{cm} = modulo elast. tra 0 e 0.40 f_{cm} = 22000·(fcm/10)^{0.3} = 33019.43 N/mm²

Elevazione:

Classe di resistenza = C32/40

 γ_c = peso specifico = 25.00 kN/m³

 R_{ck} = resistenza cubica = 40.00 N/mm²

f_{ck} = resistenza cilindrica caratteristica = 0.83·R_{ck} = 33.2 N/mm²

 f_{cm} = resistenza cilindrica media = f_{ck} + 8 = 41.2 N/mm²

 f_{ctm} = resistenza a trazione media = $0.30 \cdot f_{ck}^{2/3}$ = 3.10 N/mm^2

 f_{cfm} = resistenza a traz. per flessione media = 1.20· f_{ctm} = 3.72 N/mm²

f_{cfk} = resistenza a traz. per flessione caratt. = 0.70·fcfm = 2.60 N/mm²

 E_{cm} = modulo elast. tra 0 e 0.40 f_{cm} = 22000·(fcm/10)^{0.3} = 33642.8 N/mm²

4.2 ACCIAIO DI ARMATURA - BARRE

PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA7I	00	D10	CL MU0300 001	Α	10 di 57

MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria- Relazione di calcolo

 γ_a = peso specifico = 78.50 kN/m³

 $f_{y \text{ nom}}$ = tensione nominale di snervamento = 450 N/mm²

 $f_{t nom}$ = tensione nominale di rottura = 540 N/mm²

f_{vk min} = minima tensione caratteristica di snervamento = 450 N/mm²

 $f_{tk min}$ = minima tensione caratteristica di rottura = 540 N/mm²

 $(f_t/f_v)_{k \text{ min}}$ = minimo rapporto tra i valori caratteristici = 1.15

 $(f_t/f_y)_{k \text{ max}}$ = massimo rapporto tra i valori caratteristici = 1.35

 $(f_v/f_{v \text{ nom}})_k$ = massimo rapporto tra i valori nominali = 1.25

 $(A_{gt})_k$ = allungamento caratteristico sotto carico massimo = 7.5 %

E = modulo di elasticità dell'acciaio = 206000 N/mm²

Diametro del mandrino per prove di piegamento a 90° e successivo raddrizzamento senza cricche:

 \emptyset < 12 mm \rightarrow 4 \emptyset ; $12 \le \emptyset \le 16 \text{ mm} \rightarrow 5 \emptyset$; $16 < \emptyset \le 25 \text{ mm} \rightarrow 8 \emptyset$; $25 < \emptyset \le 40 \text{ mm} \rightarrow 10 \emptyset$.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria- Relazione di calcolo	IA7L	00	D10	CL MU0300 001	Α	11 di 57

5 CARATTERIZZAZIONE GEOTECNICA DEL SITO

L'interpretazione delle prove in sito e di laboratorio ha condotto alla definizione dei seguenti valori dei parametri meccanici per i terreni tipo individuati:

Unità	γ	φ .	c'	Cu	OCR	Cs	Cc	G ₀	E	k _v
	kN/m³	(°)	(kPa)	(kPa)				(MPa)	E _{op} (MPa)	(m/s)
Ls(ms)	19	26÷30	0÷5	60÷120	3,0	0,035	0,190	35÷45	9÷11	1E-07
SL	19	32÷35	0	-	1,0	-	-	0 ÷ 100 fino a 4.5 m da pc 85 ÷ 110 oltre 4.5 m da pc	18 ÷ 25 fino a 4.5 m da pc 21 ÷ 28 oltre 4.5 m da pc	1E-06
LS(ga)	19.5	28÷30	5÷10	50÷100	2,0÷3,0	0,036	0,228	110÷150	28÷38	1E-07
AL	20	24÷28	10÷20	0,22σ' _v OCR ^{0.8} (OCR=2)	1,0÷2,0	0,045	0,183	$G_0 = 85 \cdot (\sigma'_{V0}/p_a)^{0.65}$ (falda considerata al p.c.)	(2.5 · G ₀) / 10	1E-09
Cal	21	32÷35	0	-	-	-	•		100	1E-06

I dati della falda libera che sono stati rilevati indicano un livello piezometrico che si attesta a circa 6.0 m dal piano campagna, pertanto la stessa non interferisce con la fondazione dei muri.

Il sottovia si fonda sul primo strato L(s).

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'ARE INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria- Relazione di calcolo	IA7L	00	D10	CL MU0300 001	Α	12 di 57

6 CRITERI DI VERIFICA

6.1 VERIFICHE GEOTECNICHE (SLU) IN CONDIZIONI STATICHE

Nelle verifiche di sicurezza si è preso in considerazione tutti i meccanismi di stato limite ultimo sia a breve termine sia a lungo termine. Gli stati limite ultimi delle opere di sostegno si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno, e al raggiungimento della resistenza degli elementi strutturali che compongono le opere stesse.

Per i muri di sostegno su fondazione diretta si considerano i seguenti Stati Limite Ultimi:

SLU di tipo geotecnico (GEO)

- Scorrimento sul piano di posa;
- Collasso per carico limite del complesso fondazione-terreno;
- · Ribaltamento;
- Stabilità globale del complesso opera di sostegno-terreno.

SLU di tipo strutturale (STR)

Raggiungimento della resistenza negli elementi strutturali.

La verifica di stabilità globale del complesso opera di sostegno – terreno deve essere effettuata, analogamente a quanto previsto al §6.8 delle NTC2018, secondo l'Approccio 1 – Combinazione 2 (A2+M2+R2), tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.8.I delle NTC18.

Le rimanenti verifiche devono essere effettuate secondo l'Approccio 2 con la combinazione (A1+M1+R3), tenendo conto dei valori dei coefficienti parziali riportati nelle 6.2.I, 6.2.II, 6.4.II e 6.4.VI delle NTC18.

Il progetto e la verifica dei muri di sostegno sono stati effettuati con l'ausilio di fogli di calcolo nei quali vengono implementate tutte le caratteristiche geometriche dei muri insieme ai parametri di resistenza geotecnica.

Per ogni tipologia di muro di sostegno studiata, si è verificato che le caratteristiche geometriche siano tali che il muro possa essere considerato a mensola con suola lunga, così come previsto al §3.10.3.3. del Manuale di Progettazione delle Opere Civili (RFI DTC SI MA IFS 001 C).

Si è considerato, pertanto, che la spinta sull'opera di sostegno agisca sul piano verticale cd, assunto come il paramento virtuale del muro.

GRUPPO FERROVIE DELLO STATO ITALIANE	INFRASTR INDUSTRIA	ERMODAI UTTURA LE RETR	LE DI BRIND DI COLLEG O-PORTUA	DISI AMENTO DELL'A LE DI BRINDISI CO RIA NAZIONALE		
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e s ferroviaria- Relazione di calcolo	sede IA7L	00	D10	CL MU0300 001	Α	13 di 57

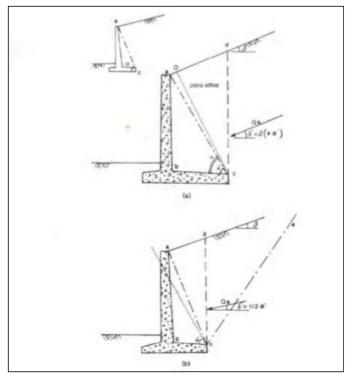
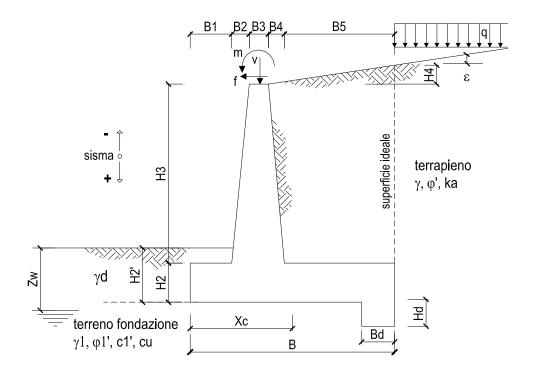


Figura 2 – Spinta sui muri di sostegno a mensola con suola lunga (caso a) e con suola corta (caso b).


Su tale paramento l'angolo di inclinazione δ della risultante della spinta (applicata ad 1/3 dell'altezza del paramento virtuale) si potrà assumere uguale all'angolo di inclinazione β del terrapieno, a meno che β non sia superiore all'angolo di resistenza al taglio del terreno ϕ ', nel qual caso si potrà assumere δ = ϕ '.

Il terreno al di sopra della suola (abcd) è stato considerato stabilizzante nelle verifiche, e ad esso sono da applicarsi le forze d'inerzia in fase sismica.

Inoltre nella verifica a scorrimento e a ribaltamento dei muri di sostegno viene trascurata la resistenza passiva antistante il muro.

Nel nostro caso l'angolo di attrito fondazione-terreno nelle verifiche a scorrimento è pari a φ 'cv = arctan (tan φ ') Le caratteristiche geometriche sono riportate sinteticamente nel seguente schema:

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'ARE, INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e sede	IA7L	00	D10	CL MU0300 001	Α	14 di 57

6.1.1 VERIFICA A SCORRIMENTO

La verifica dell'equilibrio allo stato limite di scorrimento viene condotta confrontando l'azione resistente Rh, pari al prodotto della risultante delle forze verticali per il coefficiente d'attrito con l'azione instabilizzante, pari alla risultante di tutte le componenti orizzontali delle forze agenti sul muro.

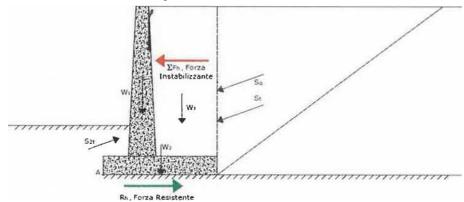


Figura 3 – Verifica a scorrimento.

In condizioni sismiche, ai fini del dimensionamento, si fa riferimento ad un sisma agente da monte verso valle del muro, in direzione orizzontale, dal basso verso l'alto e dall'alto verso il basso, in direzione verticale.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DE INDUSTRIALE RETRO-PORTUALE DI BRIND INFRASTRUTTURA FERROVIARIA NAZIONA		AMENTO DELL'A LE DI BRINDISI C			
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria- Relazione di calcolo	IA7L	00	D10	CL MU0300 001	Α	15 di 57

6.1.2 VERIFICA A RIBALTAMENTO

L'equilibrio allo stato limite è condotto confrontando il momento delle forze stabilizzanti e quello delle forze ribaltanti, entrambi rispetto all'estremo A di valle della fondazione.

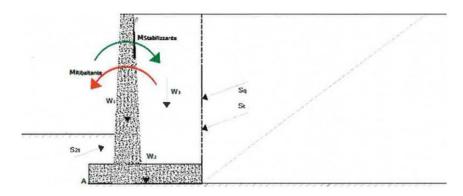


Figura 4 – Verifica a ribaltamento.

6.1.3 VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Per il calcolo della capacità portante della fondazione si è fatto riferimento alla formula di Brinch-Hansen (1970) integrata dai coefficienti sismici di Paolucci e Pecker (1995), di seguito riportata:

qlim = c' Nc sc dc ic bc gc zc + q Nq sq dq iq bq gq zq +0.5 y B N sy dy iy by gy zy

Fs = qlim / qes

con ges = N / (B'*L') la pressione dovuta al carico verticale.

6.1.4 VERIFICA A STABILITÀ GLOBALE

Per le verifiche di stabilità dei pendii naturali si ricorre, nell'ambito dei metodi all'equilibrio limite, ai cosiddetti metodi delle strisce, in particolare il metodo di Bishop. Si ipotizza una superficie cilindrica di scorrimento potenziale, S, si suddivide idealmente la porzione di terreno delimitato da questa e dalla superficie topografica in n conci e si analizza l'equilibrio limite di ciascun concio.

6.2 VERIFICHE GEOTECNICHE (SLV) IN CONDIZIONI SISMICHE

L'analisi della sicurezza dei muri di sostegno in condizioni sismiche può essere eseguita mediante i metodi pseudo-statici e i metodi degli spostamenti.

L'analisi pseudo-statica si esegue mediante i metodi dell'equilibrio limite. Il modello di calcolo deve comprendere l'opera di sostegno, il volume di terreno a tergo dell'opera, che si suppone in stato di equilibrio limite attivo, e gli eventuali sovraccarichi agenti sul volume suddetto.

Nell'analisi pseudo-statica, l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

Nelle verifiche, i valori dei coefficienti sismici orizzontale kh e verticale kv possono essere valutati mediante le espressioni

$$k_h = \beta_m \frac{a_g}{g}$$

$$k_v = \pm 0.5 \, k_h$$

dove:

βm = coefficiente di riduzione dell'accelerazione massima attesa al sito;

amax = accelerazione orizzontale massima attesa al sito;

g = accelerazione di gravità.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione

$$a_{max} = S \cdot a_g = (S_S \cdot S_T) \cdot a_g$$

dove:

S = coefficiente che comprende l'effetto dell'amplificazione stratigrafica (SS) e dell'amplificazione topografica (ST) di cui al paragrafo 3.2.3.2 delle NTC18.

Nella precedente espressione, il coefficiente di riduzione dell'accelerazione massima attesa al sito è pari a:

 β m = 0.38 nelle verifiche allo stato limite ultimo (SLV)

βm = 0.47 nelle verifiche allo stato limite di esercizio (SLD)

Per muri non liberi di subire spostamenti relativi rispetto al terreno, il coefficiente β m assume valore unitario.

Nel caso di muri liberi di traslare o di ruotare intorno al piede, si può assumere che l'incremento di spinta dovuta al sisma agisca nello stesso punto di quella statica. Negli altri casi, in assenza di studi specifici, si deve assumere che tale incremento sia applicato a metà altezza del muro.

Lo stato limite di ribaltamento deve essere trattato impiegando coefficienti parziali unitari sulle azioni e sui parametri geotecnici (paragrafo 7.11.1 delle NTC18) e utilizzando valori di □m incrementati del 50% rispetto a quelli innanzi indicati e comunque non superiori all'unità.

In condizioni sismiche deve essere soddisfatta la verifica di stabilità del complesso muro – terreno con i criteri indicati al paragrafo 7.11.4 delle NTC2018.

Il calcolo della spinta in condizioni sismiche è stato effettuato impiegando la Teoria di Mononobe – Okabe.

La teoria di Mononobe – Okabe fa uso del metodo dell'equilibrio limite e può essere considerata una estensione della teoria di Coulomb, in cui, alle usuali spinte al contorno del cuneo instabile di terreno, sono sommate anche le azioni inerziali orizzontali e verticali dovute all'accelerazione delle masse.

Le spinte Attiva e Passiva si calcolano come:

$$S_{a,c} = \frac{1}{2} \gamma \cdot k_{as} \cdot h^2 \cdot (1 \mp k_s)$$

Il coefficiente kas è valutato, quindi, secondo tale formulazione, in cui i simboli usati sono:

- ϕ = angolo di attrito interno del terrapieno;
- ψ = angolo di inclinazione rispetto all'orizzontale della parete interessata del muro;
- β = angolo di inclinazione rispetto all'orizzontale del profilo del terrapieno;
- δ = angolo di attrito terrapieno muro;
- θ = angolo di rotazione addizionale definito come segue.

$$tan\theta = \frac{k_h}{1 \mp k_n}$$

Il coefficiente per stati di spinta attiva si divide in due casi:

$$\beta \leq \phi - \theta \rightarrow k_{as} = \frac{\sin^2(\psi + \phi - \theta)}{\cos\theta \cdot \sin^2\psi \cdot \sin(\psi - \theta - \delta) \left[1 + \sqrt{\frac{\sin(\phi + \delta) \cdot \sin(\phi - \beta - \theta)}{\sin(\psi - \theta - \delta) \cdot \sin(\psi + \beta)}}\right]^2}$$

$$\beta > \phi - \theta \rightarrow k_{as} = \frac{\sin^2(\psi + \phi - \theta)}{\cos\theta \cdot \sin^2\psi \cdot \sin(\psi - \theta - \delta)}$$

Il coefficiente per stati di spinta passiva è invece:

$$k_{ps} = \frac{\sin^2(\psi + \phi - \theta)}{\cos\theta \cdot \sin^2\psi \cdot \sin(\psi + \theta) \left[1 - \sqrt{\frac{\sin\phi \cdot \sin(\phi + \beta - \theta)}{\sin(\psi + \beta) \cdot \sin(\psi + \theta)}}\right]^2}$$

GRUPPO FERROVIE DELLO STATO ITALIANE	INFRASTR INDUSTRIA	ERMODAI UTTURA LE RETR	LE DI BRIND DI COLLEG RO-PORTUA	DISI AMENTO DELL'A LE DI BRINDISI CO RIA NAZIONALE		
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria- Relazione di calcolo	IA7L	00	D10	CL MU0300 001	Α	18 di 57

6.3 VERIFICHE GEOTECNICHE (SLE)

Per ciascun stato limite di esercizio deve essere rispettata la condizione [6.2.7] delle NTC 2018:

Ed ≤ Cd

essendo Ed e Cd rispettivamente il valore di progetto dell'effetto delle azioni e il prescritto valore limite dell' effetto delle azioni (spostamenti, rotazioni, distorsioni, ecc.).

In particolare, dovranno essere valutati gli spostamenti delle opere di sostegno e del terreno circostante per verificarne la compatibilità con la funzionalità delle opere stesse e con la sicurezza e funzionalità dei manufatti adiacenti, anche a seguito di modifiche indotte sul regime delle pressioni interstiziali.

Per i lavori e le opere da realizzare in prossimità di linee ferroviarie già in esercizio, le verifiche agli SLE dovranno essere condotte assumendo come limite degli spostamenti indotti durante la costruzione sui binari in esercizio i valori limite dei difetti riferiti al secondo livello di qualità descritti nella specifica tecnica RFI TCAR ST AR 01 001 D "Standard di qualità geometrica del binario con velocità fino a 300 km/h" e relativi allegati.

Qualora vengano superati i limiti riferiti al primo livello di qualità, il progetto dovrà prevedere l'esecuzione di un monitoraggio del binario durante la costruzione al fine di controllare l'effettivo andamento delle deformazioni.

6.3.1 CALCOLO DEI CEDIMENTI (SLE)

Per quanto riguarda la valutazione dei cedimenti, è stata impiegata la teoria dell'elasticità, ipotizzando il terreno come un mezzo omogeneo elastico ed isotropo. In tal modo il cedimento immediato è dovuto ad una distorsione del terreno sottostante il carico, che si deforma e cambia forma a volume costante.

La soluzione più largamente usata è quella di Jambu et al. (1956):

$$\delta = \mu_0 \cdot \mu_1 \cdot q_m \cdot B/E$$

dove:

B = larghezza caratteristica della fondazione

qm = carico unitario medio;

E = modulo di deformazione impiegato nel calcolo dei cedimenti = E0 / 10

 μ 0 e μ 1 = coefficienti correttivi di forma, dipendenti dalla geometria del problema e dallo spessore dello strato compressibile (abachi di Christian e Carrier, 1964).

6.3.2 SPOSTAMENTI ATTESI IN CAMPO SLE

Gli spostamenti attesi in campo SLE dell'opera di sostegno, con le impostazioni di calcolo assunte (spinta attiva) sono di esigua entità, dell'ordine dei millimetri. Lo spostamento necessario per sviluppare lo stato limite di spinta attiva è legato anche al tipo di cinematismo della parete. Per terreni non coesivi con grado di addensamento medio - alto l'EC7 da spostamenti del seguente ordine di grandezza:

- Rotazione intorno alla sommità 0.002H
- Rotazione intorno alla base 0.005H
- Moto di traslazione 0.001H

In cui H è l'altezza del paramento del muro. Altri valori di riferimento sono stati ottenuti da Terzaghi.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AR INDUSTRIALE RETRO-PORTUALE DI BRINDISI CO INFRASTRUTTURA FERROVIARIA NAZIONALE					
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria- Relazione di calcolo	IA7L	00	D10	CL MU0300 001	Α	19 di 57

Infine, un'altra fonte presa a riferimento è quella del NAFVAC 7.02 (DESIGN MANUAL). La figura riportata nel suddetto manuale mostra anche la curva di sviluppo della spinta in funzione dello spostamento. Anche in questo caso, per sabbia media, risulta ragionevole assumere uno spostamento atteso dell'ordine di 0.001H.

Gli spostamenti dei muri in progetto, quindi, in funzione dell'altezza massima del paramento risultano dell'ordine di pochi cm. Non si riscontrano quindi criticità sulle strutture presenti a monte del muro stesso, in quanto, vista la loro distanza dalla testa del paramento, non subiranno influenze significative.

Per quanto riguarda le distorsioni del muro, l'opera di sostegno risulta lineare in pianta e caricata in modo simmetrico a monte. Non verranno quindi a manifestarsi spinte dissimmetriche che possano generare distorsioni.

6.4 VERIFICHE STRUTTURALI SLU

Le verifiche di resistenza delle sezioni sono eseguite secondo il metodo semiprobabilistico agli stati limite. I coefficienti di sicurezza adottati sono i seguenti:

coefficiente parziale di sicurezza per il calcestruzzo: 1.50;

coefficiente parziale di sicurezza per l'acciaio in barre: 1.15;

Il paragrafo in oggetto illustra nel dettaglio i criteri generali adottati per le verifiche strutturali e geotecniche condotte nel progetto. Ulteriori dettagli di carattere specifico, laddove impiegati, sono dichiarati e motivati nelle relative risultanze delle verifiche.

6.4.1 CRITERI DI VERIFICA DELLE SEZIONI IN C.A.

Per le sezioni in cemento armato si effettuano:

- verifiche per gli stati limite ultimi a presso-flessione;
- · verifiche per gli stati limite ultimi a taglio;
- verifiche per gli stati limite di esercizio.

6.4.2 VERIFICHE PER GLI STATI LIMITE ULTIMI A FLESSIONE - PRESSOFLESSIONE

Allo stato limite ultimo, le verifiche a flessione o presso-flessione sono condotte confrontando (per le sezioni più significative) le resistenze ultime e le sollecitazioni massime agenti, valutando di conseguenza il corrispondente fattore di sicurezza.

6.4.3 VERIFICA AGLI STATI LIMITE ULTIMI A TAGLIO

La verifica allo stato limite ultimo per azioni di taglio è condotta secondo quanto prescritto dal DM17/01/2018, per elementi con armatura a taglio verticali.

Si fa, pertanto, riferimento ai seguenti valori della resistenza di calcolo:

- resistenza di calcolo dell'elemento privo di armatura a taglio:

$$V_{Rd} = \max \left\{ \left[0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \cdot \sigma_{cp} \right] b_w \cdot d; \ (v_{\min} + 0.15 \cdot \sigma_{cp}) \cdot b_w d \right\}$$

- valore di progetto dello sforzo di taglio che può essere sopportato dall'armatura a taglio alla tensione di snervamento:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot sin \alpha$$

- valore di progetto del massimo sforzo di taglio che può essere sopportato dall'elemento, limitato dalla rottura delle bielle compresse:

$$V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c v \cdot f_{cd} (ctg\alpha + ctg\theta)/(1 + ctg^2 \theta)$$

Nelle espressioni precedenti, i simboli hanno i seguenti significati:

$$k = 1 + \sqrt{\frac{200}{d}} \le 2$$
 con d in mm;

$$\rho_1 = \frac{A_{\rm sl}}{b_{\rm sc} \cdot d} \le 0.02;$$

♣₁ è l'area dell'armatura tesa;

bw è la larghezza minima della sezione in zona tesa;

$$\sigma_{\rm op} = \frac{N_{\rm Ed}}{A_{\rm c}} < 0.2 \cdot f_{\rm cd}$$

Nad è la forza assiale nella sezione dovuta ai carichi;

Ac è l'area della sezione di calcestruzzo;

$$v_{\min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$$

1 ≤ cot0 ≤ 2.5 è l'inclinazione dei puntoni di calcestruzzo rispetto all'asse della trave;

 Λ_{sw} è l'area della sezione trasversale dell'armatura a taglio; s è il passo delle staffe;

¹wd è la tensione di snervamento di progetto dell'armatura a taglio;

 $\mathbf{f^f}_{ad} = 0.5 \cdot \mathbf{f}_{ad}$ è la resistenza ridotta a compressione del calcestruzzo d'anima;

 $\alpha_{cw} = 1$ è un coefficiente che tiene conto dell'interazione tra la tensione nel corrente compresso e qualsiasi tensione di compressione assiale.

Nel primo caso, si esegue il controllo delle tensioni nei materiali supponendo una legge costitutiva tensionideformazioni di tipo lineare. In particolare si controlla la tensione massima di compressione del calcestruzzo e di trazione dell'acciaio, verificando che:

σc < 0.55 fck per combinazione di carico caratteristica (rara);

σc < 0.40 fck per combinazione di carico quasi permanente;

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL' INDUSTRIALE RETRO-PORTUALE DI BRINDISI INFRASTRUTTURA FERROVIARIA NAZIONALE		AMENTO DELL'A LE DI BRINDISI C			
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e s ferroviaria- Relazione di calcolo	sede IA7L	00	D10	CL MU0300 001	Α	21 di 57

σs < 0.75 f k per combinazione di carico caratteristica (rara).

Nel secondo caso, si assume che le condizioni ambientali del sito in cui sorge l'opera siano ordinarie e aggressive, rispettivamente per la zattera di fondazione e per il paramento verticale, e si verifica che il valore limite di apertura della fessura, calcolato per armature poco sensibili, sia al più pari ai seguenti valori nominali:

w1 = 0.2 mm per condizioni ambientali aggressive (comb. Frequente e quasi permanente);
 w2= 0.3 mm per condizioni ambientali ordinarie (comb. Frequente e quasi permanente).

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
MU02 Muno di cananagiana tua viakilità NV06 a cada	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria- Relazione di calcolo	IA7L	00	D10	CL MU0300 001	Α	22 di 57

6.5 VERIFICHE STRUTTURALI (SLE)

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

6.5.1 VERIFICHE ALLE TENSIONI

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "Manuale di progettazione opere civili"

Strutture in c.a.

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 f.,
- per combinazioni di carico quasi permanente: 0,40 f_{ek};
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75 \, f_{sk}$.

Per il caso in esame risulta in particolare :

• Muro di sostegno:

CALCESTRUZZO ELEVAZIONE

σ _{cmax QP} =	$(0,40 \; f_{cK}) =$	13.28 MPa	(Combinazione di Carico Quasi Permanente)
$\sigma_{cmax R}$ = CALCESTRUZZO	(0,55 f _{cK}) = FONDAZIONE	18.26 MPa	(Combinazione di Carico Caratteristica - Rara)
σ _{cmax QP} =	$(0,40 \; f_{cK}) =$	12.28 MPa	(Combinazione di Carico Quasi Permanente)
$\sigma_{cmax R}$ = ACCIAIO	$(0.55 f_{cK}) =$	16.89 MPa	(Combinazione di Carico Caratteristica - Rara)
$\sigma_{\text{s max}} = 0$),75 f _{vK}) =	337.5 MPa	Combinazione di Carico Caratteristica(Rara)

GRUPPO FERROVIE DELLO STATO ITALIANE	INFRASTR INDUSTRIA	ERMODAI UTTURA LE RETR	LE DI BRIND DI COLLEG RO-PORTUA	DISI AMENTO DELL'A LE DI BRINDISI CO RIA NAZIONALE		
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria- Relazione di calcolo	IA7L	00	D10	CL MU0300 001	Α	23 di 57

6.5.2 VERIFICHE A FESSURAZIONE

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

Cruppi di			Armatura			
Gruppi di	Condizioni ambientali Combinazione di azione Sensibile			Poco sensibil	le	
esigenza			Stato limite	wd	Stato limite	wd
a Ordinarie	Ordinario	frequente	ap. fessure	≤w ₂	ap. fessure	≤w ₃
а	Ordinarie	quasi permanente	ap. fessure	≤w ₁	ap. fessure	≤w ₂
b	Aggressive	frequente	ap. fessure	≤w ₁	ap. fessure	≤w ₂
b	Aggressive	quasi permanente	decompressione	-	ap. fessure	≤w ₁
С	Molto Aggressive	frequente	formazione fessure	-	ap. fessure	≤w ₁
	Wollo Aggressive	quasi permanente	decompressione	-	ap. fessure	≤w ₁

Tabella 4.1.III - Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tabella 1 - Criteri di scelta dello stato limite di fessurazione e condizioni ambientali

Risultando:

w1 = 0.2 mm

w2 = 0.3 mm

w3= 0.4 mm

Alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dalle specifiche RFI (Manuale di progettazione delle opere civili parte II sezione 2 – Requisiti concernenti la fessurazione per strutture in c.a., c.a.p. e miste acciaio-calcestruzzo) secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

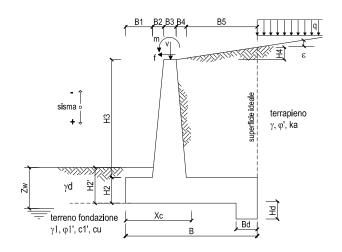
Combinazione Caratteristica (Rara)

$$\delta_f \le w_4 = 0.2 \, mm$$

Riguardo infine il valore di calcolo delle fessure da confrontare con i valori limite fissati dalla norma, si è è utilizzata la procedura prevista al punto "C4.1.2.2.4.5 Verifica allo stato limite di fessurazione" della Circolare n.7/19.

GRUPPO FERROVIE DELLO STATO ITALIANE	INDUSTRIA	RMODAL UTTURA LE RETR	LE DI BRIND DI COLLEG O-PORTUA	DISI AMENTO DELL'A LE DI BRINDISI CO LIA NAZIONALE		
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria- Relazione di calcolo	IA7L	00	D10	CL MU0300 001	Α	24 di 57

7 ANALISI DEI CARICHI


Nel seguente paragrafo si descrivono i carichi elementari che agiscono sulla struttura in oggetto. Tali azioni sono definite secondo le normative e sono utilizzate per la generazione delle combinazioni di carico nell'ambito delle verifiche di resistenza, in esercizio ed in presenza dell'evento sismico.

Tutti i carichi elementari si riferiscono all'unità di sviluppo del muro, pertanto sono tutti definiti rispetto all'unità di lunghezza.

7.1 PESI PROPRI

Il peso proprio del muro è calcolato in automatico dal foglio di calcolo elettronico.

I dati di input per i muri su fondazione diretta sono i seguenti:

Geometri	ia del	Muro
----------	--------	------

Geometra del maro			
Elevazione	H3	= 4.57	(m)
Aggetto Valle	B2	= 0.00	(m)
Spessore del Muro in Testa	B3	= 0.60	(m)
Aggetto monte	B4	= 0.00	(m)

Geometria della Fondazione

Larghezza Fondazione	В	=	4.90	(m)
Spessore Fondazione	H2	=	0.70	(m)
Suola Lato Valle	B1	=	0.70	(m)
Suola Lato Monte	B5	=	3.60	(m)
Altezza dente	Hd	=	0.00	(m)
Larghezza dente	Bd	=	0.00	(m)
Mezzeria Sezione	Xc	=	2.45	(m)

Peso Specifico del Calcestruzzo	γcls =	25.00	(kN/m³)

Il peso proprio del parapetto è assunto pari a 50 kg/m e viene applicato come carico verticale in testa al muro.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e sede	IA7L	00	D10	CL MU0300 001	Α	25 di 57

7.2 CARICHI PERMANENTI

7.2.1 PAVIMENTAZIONE STRADALE

A tergo del muro si assume che agisca un sovraccarico permamente dovuto alla pavimentazione stradale pari a

p=21.0 kN/m3 x 0.30 m =6.3 kPa

7.2.2 SPINTA DEL TERRENO

A tergo del muro agisce la spinta del terreno del rilevato.

La spinta in condizioni di esercizio viene calcolata con il coefficiente di spinta attiva ka.

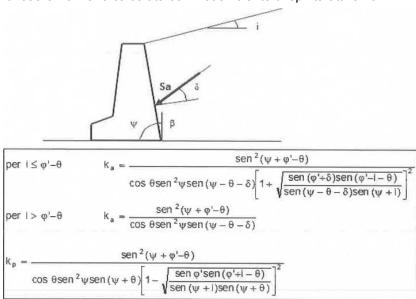


Figura 5 - Coefficiente di spinta attiva e passiva.

La spinta sull'opera di sostegno dovrà essere applicata sul piano verticale, assunto come paramento virtuale del muro, definito a partire dall'estremo a monte della scarpa di fondazione.

Su tale paramento l'angolo di inclinazione δ della risultante della spinta (applicata ad 1/3 dell'altezza del paramento virtuale) si potrà assumere uguale all'angolo di inclinazione β del terrapieno, a meno che β non sia superiore all'angolo di resistenza al taglio del terreno ϕ ', nel qual caso si assumerà $\delta = \phi$ '.

				valori caratteristici	valori di p	rogetto
Dati G	Geotecnici			SLE	STR/GEO	EQU
eno	Angolo di attrito del terrapieno	(°)	φ'	38.00	38.00	38.00
	Peso Unità di Volume del terrapieno	(kN/m³)	7	20.00	20.00	20.00
	Angolo di attrito terreno-superficie ideale	(°)	δ	0.00	0.00	0.00

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria- Relazione di calcolo	IA7L	00	D10	CL MU0300 001	Α	26 di 57

7.3 CARICHI VARIABILI

Cautelativamente si assume un sovraccarico uniformemente distribuito agente a tergo del muro pari a 20 kN/mq ed una spinta orizzontale associata al carico accidentale sul parapetto pari a 3 kN/m.

7.4 VALUTAZIONE DELL'AZIONE SISMICA

7.4.1 VITA NOMINALE

La vita nominale di un'opera strutturale VN è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata. Nel presente caso l'opera viene inserita nella seguente tipologia di costruzione:

2) Opere ordinarie, ponti, opere infrastrutturali e dighe di dimensioni contenute o di importanza normale La cui vita nominale è pari a: 75 anni.

7.4.2 CLASSE D'USO

In presenza di azioni sismiche, con riferimento alle conseguenze di un'interruzione di operatività o di un eventuale collasso, l'opera appartiene alla seguente classe d'uso:

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze dì un loro eventuale collasso.

Il coefficiente d'uso è pari a 1.50.

7.4.3 PERIODO DI RIFERIMENTO

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione al periodo di riferimento VR ricavato, per ciascun tipo di costruzione, moltiplicandone la vita nominale VN per il coefficiente d'uso Cu.

Pertanto VR = 75 x 1.5 = 112.5 anni.

7.4.4 PARAMETRI SISMICI

Fissata la vita di riferimento VR, i due parametri TR e PVR sono immediatamente esprimibili, l'uno in funzione dell'altro, mediante l'espressione:

$$T_R = -\frac{V_R}{\ln(1 - P_{VR})} = -\frac{C_u V_N}{\ln(1 - P_{VR})}$$

Stati Limite	$P_{V_{\overline{R}}}$: Probabilità di superamento nel periodo di riferimento $V_{\overline{R}}$					
Stati limite di esercizio	SLO	81%				
Stati limite di esercizio	SLD	63%				
Stati limite ultimi	SLV	10%				
Stati limite ultimi	SLC	5%				

Tabella 2 - Probabilità di superamento al variare dello stato limite considerato.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AR INDUSTRIALE RETRO-PORTUALE DI BRINDISI CO INFRASTRUTTURA FERROVIARIA NAZIONALE					
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria- Relazione di calcolo	IA7L	00	D10	CL MU0300 001	Α	27 di 57

Da cui si ottiene:

P_{VR}	0.10	probabilità di superamento
T _R (annl)	1068	tempo di ritorno per SLV
$a_g(g)$	0.056	accelerazione su sito riferimento rigido
F _O (-)	2.606	
$T_C^{^*}(s)$	0.519	

Ai fini della definizione dell'azione sismica di progetto, si rende necessario valutare l'effetto della risposta sismica locale. Per la definizione dell'azione sismica si può fare riferimento a un approccio semplificato, che si basa sull'individuazione delle categorie di sottosuolo di riferimento in accordo a quanto indicato nel § 3.2.2 delle NTC2018. I terreni di progetto possono essere caratterizzati come appartenenti a terreni di Categoria C. In condizioni topografiche superficiali semplici si può adottare la seguente classificazione.

Categoria	Caratteristiche della superficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°
T2	Pendii con inclinazione media i > 15°
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $15^{\circ} \le i \le 30^{\circ}$
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°

Tabella 3 - Categorie topografiche.

L'area interessata risulta classificabile come T1.

In riferimento a quanto indicato nel §3.2.3.2.1 delle NTC2018 per la definizione dello spettro elastico in accelerazione è necessario valutare il valore del coefficiente S = SSST e di CC in base alla categoria di sottosuolo e alle condizioni topografiche; si fa riferimento nella valutazione dei coefficienti alle tabelle di seguito riportate:

Categoria sottosuolo	S _S	c _c
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10\cdot(T_{C}^{*})^{-0,20}$
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0,33}$
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80$	$1,25 \cdot (T_C^*)^{-0,50}$
Е	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	1,15 · (T _C *) ^{-0,40}

Tabella 4 - Espressioni di SS e CC.

Categoria topografica	Ubicazione dell'opera o dell'intervento	S _T
T1	-	1,0
T2	In corrispondenza della sommità del pendio	1,2
T3	In corrispondenza della cresta di un rilievo con	1,2
	pendenza media minore o uguale a 30°	
T4	In corrispondenza della cresta di un rilievo con	1,4
	pendenza media maggiore di 30°	

Tabella 5 - Valori massimi dei coefficienti di amplificazione topografica ST.

GRUPPO FERROVIE DELLO STATO ITALIANE	NODO INTI INFRASTR INDUSTRIA	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
MU03-Muro di separazione tra viabilità NV06 e se ferroviaria- Relazione di calcolo	de IA7L	00	D10	CL MU0300 001	Α	28 di 57	

valori del coefficiente di amplificazione stratigrafica sono pari a Ss =1.5 valore del coefficiente di amplificazione topografica è posto pari a ST = 1.0

Da cui si ottiene quindi:

$$a_{max}(g)$$
 0.084 $a_{max}(g) = S_S S_T a_q(g)$

Il calcolo viene eseguito con il metodo pseudostatico. In queste condizioni l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

I valori dei coefficienti sismici orizzontali kh e verticale kv possono essere valutati mediante le espressioni:

0.016 coefficiente sismico verticale

$$k_h = \beta_m \frac{a \max}{g}$$
; $k_v = \pm 0.50 \cdot k_h$

dove

 $a_{\text{max}}\text{= }S_{S}\text{\cdot}S_{T}\text{\cdot}a_{g}\text{ accelerazione orizzontale massima attesa al sito;}$

g= accelerazione di gravità;

Allo SLV i due coefficienti sismici valgono:

SLV

 k_v

β_{m}	0.38
\mathbf{k}_{h}	0.032 coefficiente sismico orizzontale

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e sede	IA7L	00	D10	CL MU0300 001	Α	29 di 57

8 COMBINAZIONI DI CARICO

Le combinazioni di carico prese in considerazione nelle verifiche sono state definite in base a quanto prescritto dalle NTC-2018 al par.2.5.3:

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi ($\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{O2} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{O3} \cdot Q_{k3} + \dots$ [2.5.1]

- Combinazione caratteristica, cosiddetta rara, generalmente impiegata per gli stat e di esercizio (SLE) irreversibili:

 $G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$ [2.5.2]

- Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (כבב) reversibili:

 $G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$ [2.5.3]

Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:
 G₁ + G₂ + P + ψ₂₁ · Q_{k1} + ψ₂₂ · Q_{k2} + ψ₂₃ · Q_{k3} + ...
 [2.5.4]

– Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'agione sismica E:

 $E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$ [2.5.5]

- Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azio zionali A: $G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$ [2.5.6]

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \sum_i \psi_{2i} Q_{ki}$$
. [2.5.7]

Per i muri di sostegno o per altre strutture miste ad essi assimilabili devono essere effettuate le verifiche con riferimento almeno ai seguenti stati limite:

SLU di tipo geotecnico (GEO)

Scorrimento sul piano di posa;

Collasso per carico limite del complesso fondazione-terreno;

Ribaltamento;

Stabilità globale del complesso opera di sostegno-terreno;

SLU di tipo strutturale (STR)

Raggiungimento della resistenza negli elementi strutturali.

La verifica di stabilità globale del complesso opera di sostegno-terreno deve essere effettuata secondo l'Approccio 1, con la Combinazione 2 (A2+M2+R2).

Le rimanenti verifiche devono essere effettuate secondo l'Approccio 2, con la combinazione (A1+M1+R3).

Per ciascuna verifica si deve tenere conto dei coefficienti parziali per le azioni, dei parametri geotecnici e dei coefficienti di amplificazione per le verifiche di sicurezza, tutti riportati nelle seguenti tabelle.

Nella verifica a ribaltamento i coefficienti R3 si applicano agli effetti delle azioni stabilizzanti.

Coefficie	Coefficiente			A1	A2
Azioni permanenti	favorevoli	YG1	0,90	1,00	1,00
	sfavorevoli		1,10	1,35	1,00
Azioni permanenti non	favorevoli	YG2	0,00	0,00	0,00
strutturali ⁽²⁾	sfavorevoli		1,50	1,50	1,30
Ballast(3)	favorevoli	ΥВ	0,90	1,00	1,00
	sfavorevoli		1,50	1,50	1,30
Azioni variabili da traffi-	favorevoli	γο	0,00	0,00	0,00
CO ⁽⁴⁾	sfavorevoli	~	1,45	1,45	1,25
Azioni variabili	favorevoli	γQi	0,00	0,00	0,00
	sfavorevoli	~	1,50	1,50	1,30
Precompressione	favorevole	γP	0,90	1,00	1,00
	sfavorevo-		1,00(5)	1,00(6)	1,00
	le				
Ritiro, viscosità e cedi-	favorevole	γCe	0,00	0,00	0,00
menti non imposti appo-	sfavorevo-	d	1,20	1,20	1,00
sitamente	1e				

Tabella 6 - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU.

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_{M}	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$ an {f \phi}'_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	γc	1,0	1,25
Resistenza non drenata	c _{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Tabella 7 - Coefficienti parziali per i parametri geotecnici del terreno.

Verifica	Coefficiente parziale (R3)
Capacità portante della fondazione	$\gamma_R = 1.4$
Scorrimento	$\gamma_R = 1.1$
Ribaltamento	$\gamma_R = 1.15$
Resistenza del terreno a valle	$\gamma_R = 1.4$

Tabella 8 - Coefficienti parziali yR per le verifiche agli stati limite ultimi dei muri di sostegno.

COEFFICIENTE	R2
$\gamma_{ m R}$	1,1

Tabella 9 - Coefficienti parziali per le verifiche do sicurezza di opere di materiali sciolti e fronti di scavo.

Le combinazioni sismiche, in maniera del tutto analoga alle combinazioni statiche, sono effettuate con l'approccio 2, ponendo però pari all'unità i coefficienti parziali sulle azioni e sui parametri geotecnici e impiegando le resistenze di progetto con i coefficienti parziali γR indicati nella seguente tabella.

Verifica	Coefficiente parziale γR
Carico limite	1.2
Scorrimento	1.0
Ribaltamento	1.0

IA7L

ferroviaria- Relazione di calcolo

00

D10

1.2

CL MU0300 001

Α

31 di 57

Tabella 10 - Coefficienti parziali yR per le verifiche agli stati limite (SLV) dei muri di sostegno.

Resistenza del terreno a valle

Le verifiche pseudo-statiche di sicurezza dei fronti di scavo e dei rilevati in condizioni sismiche si eseguono adottando valori unitari dei coefficienti parziali del gruppo A e M per il calcolo delle azioni e dei parametri geotecnici di progetto e un coefficiente parziale γR pari a 1.2.

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e sede	IA7L	00	D10	CL MU0300 001	Α	32 di 57

9 PROGETTO E VERIFICA DEL MURO DI SOSTEGNO SEZ 1

9.1 DATI DI INPUT

Condizioni drenate

					valori caratteristici SLE		valori di	progetto
Dati (<u>Geotecnici</u>						STR/GEO	EQU
Dati Terrapieno	Angolo di attrito del terrapieno		(°)	φ	38.00		38.00	38.00
Dati rrapie	Peso Unità di Volume del terrapieno		(kN/m³)	Ý		20.00	20.00	20.00
	Angolo di attrito terreno-superficie ideale		(°)	δ		0.00	0.00	0.00
Dati Terreno Fondazione	Condizioni			drena	te 🔘	Non Drenate		
daz	Coesione Terreno di Fondazione		(kPa)	c1'		2.50	2.50	2.50
Fa.	Angolo di attrito del Terreno di Fondazione		(°)	φ1		26.00	26.00	26.00
2	Peso Unità di Volume del Terreno di Fondazione		(kN/m³)	γ1		19.00	19.00	19.00
ere	Peso Unità di Volume del Rinterro della Fondazione		(kN/m³)	γd	_	19.00	19.00	19.00
∓	Profondità "Significativa" (n.b.: consigliata H = 2*B)		(m)	Hs		9.80		
	Modulo di deformazione		(kN/m²)	E		10000		
	A			- /-	0.050		7	
	Accelerazione sismica			a _g /g		(-)		
.0	Coefficiente Amplificazione Stratigrafico			Ss		(-)	5/5// 7/	
Dati Sismici	Coefficiente Amplificazione Topografico			Sī		(-)	RIBALTA	
Ö	Coefficiente di riduzione dell'accelerazione massima			βs		(-)	βs	0.57
Dati	Coefficiente sismico orizzontale			kh			kh	0.04788
_	Coefficiente sismico verticale			kv		- '	kv	0.02394
	Muro libero di traslare o ruotare			(si	○no		
					S	TR/GEO	R	IB
	Coeff. di Spinta Attiva Statico	ka	0.238		0.238		0.238	
∓ ⊕	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.254		0.254		0.262	
Coefficienti di Spinta	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.254		0.254		0.263	
Spi	Coeff. Di Spinta Passiva	kp	2.561		2.561		2.561	
Ö	Coeff. Di Spinta Passiva Sismica sisma +	kps+	2.510		2.510		2.485	
	Coeff. Di Spinta Passiva Sismica sisma -	kps-	2.509		2.509		2.481	

			Γ	valori caratteristici	rogetto	
Carichi	<u>Agenti</u>		SLE - sisma	STR/GEO	EQU	
=	Sovraccarico permanente	(kN/m²)	qp	6.30	8.19	8.19
ie je	Sovraccarico su zattera di monte si no					
Carichi ermanen	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00	0.00
Carichi permanenti	Forza Verticale in Testa permanente	(kN/m)	vp	0.50	0.50	0.50
	Momento in Testa permanente	(kNm/m)	mp	0.00	0.00	0.00
Sovraccarico Accidentale in condizioni statiche		(kN/m²)	q	20.00	29.00	29.00
Condizioni Statiche	Forza Orizzontale in Testa accidentale in condizioni statich	(kN/m)	f	3.00	4.35	4.35
Statiche	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	V	0.00	0.00	0.00
S &	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	3.00	4.35	4.35
	Coefficienti di combinazione condizione freque	nte Ψ1	1.00	condizione quasi permane	nte Ψ2	0.00
.⊑ a	Sovraccarico Accidentale in condizioni sismiche	(kN/m ²)	qs	4.00		
izio Pich	Forza Orizzontale in Testa accidentale in condizioni sismicl	(kN/m)	fs	0.00		
Condizioni Sismiche	Forza Verticale in Testa accidentale in condizioni sismiche	(kN/m)	VS	0.00		
0 0	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0.00		

Condizioni non drenate

						valori caratteristici SLE		valori di progetto		
Dati (<u>Geotecnici</u>							STR/GEO	EQU	
-i	Angolo di attrito del terrapieno		(°)		φ'	38	8.00	38.00	38.00	
Dati errapieno	Peso Unità di Volume del terrapieno		(kN/m³)		7	20	0.00	20.00	20.00	
-	Angolo di attrito terreno-superficie ideale		(°)		δ	0	.00	0.00	0.00	
Dati Terreno Fondazione	Condizioni			Od	renate	● Nor	n Drenate			
ıdaz	Resistenza a Taglio non drenata		(kPa)		cu	7!	5.00	75.00	75.00	
F	Angolo di attrito Terreno-Fondazione		(°)		φ1'	20	6.00	26.00	26.00	
2	Peso Unità di Volume del Terreno di Fondazione		(kN/m³)		γ1	19	9.00	19.00	19.00	
erre	Peso Unità di Volume del Rinterro della Fondazione		(kN/m³)		γd	19	9.00	19.00	19.00	
≒	Profondità "Significativa" (n.b.: consigliata H = 2*B)		(m)		Hs	9	.80			
Da	Modulo di deformazione		(kN/m²)		Е	10000				
	T							1		
	Accelerazione sismica			i	a _g /g	0.056	(-)			
	Coefficiente Amplificazione Stratigrafico				S_S	1.5	(-)			
Jati Sismici	Coefficiente Amplificazione Topografico				S_T	1	(-)	RIBALTA	MENTO	
S	Coefficiente di riduzione dell'accelerazione massima				β_s	0.38	(-)	βs	0.57	
at	Coefficiente sismico orizzontale				kh	0.03192	(-)	kh	0.04788	
	Coefficiente sismico verticale			_	kv	0.0160	(-)	kv	0.02394	
	Muro libero di traslare o ruotare				•	si (⊃no			
						STF	R/GEO	RI	В	
	Coeff. di Spinta Attiva Statico	ka	0.238			0.238		0.238		
Coefficienti di Spinta	Coeff. Di Spinta Attiva Sismica sisma +	kas+	0.254			0.254		0.262		
fficien Spinta	Coeff. Di Spinta Attiva Sismica sisma -	kas-	0.254			0.254		0.263		
Spi	Coeff. Di Spinta Passiva	kp	1.000			1.000		1.000		
Ö	Coeff. Di Spinta Passiva Sismica sisma +	kps+	1.000			1.000		1.000		
	Coeff. Di Spinta Passiva Sismica sisma -	kps-	1.000			1.000		1.000		

			Γ	valori caratteristici	valori di p	rogetto
Carichi Agenti				SLE - sisma	STR/GEO	EQU
=	Sovraccarico permanente	(kN/m ²)	qp	6.30	8.19	8.19
i ii.	Sovraccarico su zattera di monte Osi 💿 no					
Carichi ermanen	Forza Orizzontale in Testa permanente	(kN/m)	fp	0.00	0.00	0.00
Carichi permanenti	Forza Verticale in Testa permanente	(kN/m)	vp	0.50	0.50	0.50
Momento in Testa permanente			mp	0.00	0.00	0.00
Sovraccarico Accidentale in condizioni statiche		(kN/m^2)	q	20.00	29.00	29.00
Condizioni Statiche	Forza Orizzontale in Testa accidentale in condizioni statich	(kN/m)	f	3.00	4.35	4.35
atio	Forza Verticale in Testa accidentale in condizioni statiche	(kN/m)	V	0.00	0.00	0.00
S &	Momento in Testa accidentale in condizioni statiche	(kNm/m)	m	3.00	4.35	4.35
	Coefficienti di combinazione condizione frequer	ite Ψ1	1.00	condizione quasi permane	nte Ψ2	0.00
<u> </u>	Sovraccarico Accidentale in condizioni sismiche	(kN/m^2)	qs	4.00		
lizio Pich	Forza Orizzontale in Testa accidentale in condizioni sismicl	(kN/m)	fs	0.00		
Condizioni Sismiche	Forza Verticale in Testa accidentale in condizioni sismiche	(kN/m)	VS	0.00		
00	Momento in Testa accidentale in condizioni sismiche	(kNm/m)	ms	0.00		

CARATTERISTICHE DEI MATERIALI STRUTTURALI ELEVAZIONE

<u>Calcestruzzo</u>			<u>Acciaio</u>
classe cls			tipo di acciaio B450C 💌
Rck	40	(MPa)	
fck	32	(MPa)	fyk = 450 (MPa)
fcm	40	(MPa)	
Ec	33346	(MPa)	γ s = 1.15
ασο	0.85		
γС	1.50		fyd = fyk / γ s / γ E = 391.30 (MPa)
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma c$	18.13	(MPa)	Es = 210000 (MPa)
$f_{ctm} = 0.30*f_{ck}^{2/3}$	3.02	(MPa)	$\varepsilon_{ys} = 0.19\%$
Tensioni limite (tensioni condizioni statiche Gc 12	2.8 Mpa		coefficiente omogeneizzazione acciaio n = 15
condizioni sismiche			<u>Copriferro</u> (distanza asse armatura-bordo)
σ _c 12	2.8 Mpa		c = 8.00 (cm)
of 337	7.5 Mpa		
			<u>Copriferro minimo di normativa</u> (ricoprimento armatura)
			$c_{min} = 4.00 (cm)$
Valore limite di apertura	delle fessure		Interferro tra <u>I</u> e <u>II</u> strato
Frequente	w1 🔻	0.2 mm	i _{I-II} 5.00 (cm)
Quasi Permanente	w1 🔻	0.2 mm	

CARATTERISTICHE DEI MATERIALI STRUTTURALI FONDAZIONE

Calcestruzzo			<u>Acciaio</u>
classe cls C30/37 🔻			tipo di acciaio B450C ▼
Rck	37	(MPa)	
fck	30	(MPa)	fyk = 450 (MPa)
fcm	38	(MPa)	
Ec	32837	(MPa)	γ s = 1.15
αcc	0.85		
γС	1.50		fyd = fyk / γ s / γ E = 391.30 (MPa)
$f_{cd} = \alpha_{cc} * f_{ck} / \gamma c$	17.00	(MPa)	Es = 210000 (MPa)
$f_{ctm} = 0.30*f_{ck}^{2/3}$	2.90	(MPa)	ε _{ys} = 0.19%
$ \begin{array}{c c} \underline{\text{condizioni statiche}} \\ \sigma_c & & & & & & & & & & \\ \hline \sigma_c & & & & & & & & & & & & & \\ \hline \sigma_f & & & & & & & & & & & & & & $	Мра Мра		coefficiente omogeneizzazione acciaio n = 15
and the state of a state of			<u>Copriferro</u> (distanza asse armatura-bordo)
$ \begin{array}{c c} \underline{\text{condizioni sismiche}} \\ \hline \sigma_c & 12 \\ \hline \sigma_f & 337.5 \\ \end{array} $	Мра Мра		c = 8.00 (cm)
			<u>Copriferro minimo di normativa</u> (ricoprimento armatura)
			$c_{\min} = 4.00 (cm)$
Valore limite di apertura delle	fessure		Interferro tra <u>I</u> e <u>II</u> strato
Frequente w1		0.2 mm	i_{I-II} 5.00 (cm)
Quasi Permanente w1	•	0.2 mm	

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'ARE INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE						
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria- Relazione di calcolo	IA7L	00	D10	CL MU0300 001	Α	35 di 57	

9.2 CALCOLO DELLE AZIONI

FORZE VERTICALI

- Peso del Muro (Pm)			SLE	STR/GEO	EQU/RIB
Pm1 =	(B2*H3*γcls)/2	(kN/m)	0.00	0.00	0.00
Pm2 =	(B3*H3*γcls)	(kN/m)	68.55	68.55	68.55
Pm3 =	(B4*H3*γcls)/2	(kN/m)	0.00	0.00	0.00
Pm4 =	(B*H2*γcls)	(kN/m)	85.75	85.75	85.75
Pm5 =	(Bd*Hd*γcls)	(kN/m)	0.00	0.00	0.00
Pm =	Pm1 + Pm2 + Pm3 + Pm4 + Pm5	(kN/m)	154.30	154.30	154.30
- Peso del terreno e sovr. perm. sulla scarpa di Pt1 = Pt2 = Pt3 = Sovr = Pt =	monte del muro (Pt) (B5*H3*γ') (0,5*(B4+B5)*H4*γ') (B4*H3*γ')/2 qp * (B4+B5) Pt1 + Pt2 + Pt3 + Sovr	(kN/m) (kN/m) (kN/m) (kN/m) (kN/m)	329.04 0.00 0.00 0.00 329.04	329.04 0.00 0.00 0.00 329.04	329.04 0.00 0.00 0.00 329.04
- Sovraccarico accidentale sulla scarpa di mont	e del muro				
Sovr acc. Stat	q * (B4+B5)	(kN/m)	72	104.4	
Sovr acc. Sism	qs * (B4+B5)	(kN/m)	14.4		

MOMENTI DELLE FORZE VERT. RISPETTO AL PIEDE DI VALLE DEL MURO

- Muro (Mm)			SLE	STR/GEO	EQU/RIB
Mm1 =	Pm1*(B1+2/3 B2)	(kNm/m)	0.00	0.00	0.00
Mm2 =	Pm2*(B1+B2+0,5*B3)	(kNm/m)	68.55	68.55	68.55
Mm3 =	,	(kNm/m)	0.00	0.00	0.00
Mm4 =	,	(kNm/m)	210.09	210.09	210.09
Mm5 =	Pm5*(B - Bd/2)	(kNm/m)	0.00	0.00	0.00
Mm =	Mm1 + Mm2 + Mm3 + Mm4 + Mm5	(kNm/m)	278.64	278.64	278.64
- Terrapieno e sovr. perm. sulla scarpa di monte	del muro				
Mt1 =	Pt1*(B1+B2+B3+B4+0,5*B5)	(kNm/m)	1020.02	1020.02	1020.02
Mt2 =	Pt2*(B1+B2+B3+2/3*(B4+B5))	(kNm/m)	0.00	0.00	0.00
Mt3 =	Pt3*(B1+B2+B3+2/3*B4)	(kNm/m)	0.00	0.00	0.00
Msovr =	Sovr*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	0.00	0.00	0.00
Mt =	Mt1 + Mt2 + Mt3 + Msovr	(kNm/m)	1020.02	1020.02	1020.02
- Sovraccarico accidentale sulla scarpa di monte	del muro				
Sovr acc. Stat	*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	223.2	323.64	
Sovr acc. Sism	*(B1+B2+B3+1/2*(B4+B5))	(kNm/m)	44.64		
INERZIA DEL MURO E DEL TERRAPIENO					
- Inerzia orizzontale e verticale del muro (Ps)					
Ps h =	Pm*kh	(kN/m)		4.93	7.39
Ps v =	Pm*kv	(kN/m)		2.46	3.69
rs v-	FIII NV	(KIN/III)		2.40	3.09

⁻ Inerzia orizzontale e verticale del terrapieno a tergo del muro (Pts)

PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE

MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria- Relazione di calcolo

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA7L
 00
 D10
 CL MU0300 001
 A
 36 di 57

Ptsh =	Pt*kh	(kN/m)	10.50	15.75
Ptsv =	Pt*kv	(kN/m)	5.25	7.88
- Incremento orizzontale di momento dovuto	all'inerzia del muro (MPs h)			
MPs1 h=	kh*Pm1*(H2+H3/3)	(kNm/m)	0.00	0.00
MPs2 h=	kh*Pm2*(H2 + H3/2)	(kNm/m)	6.53	9.80
MPs3 h=	kh*Pm3*(H2+H3/3)	(kNm/m)	0.00	0.00
MPs4 h=	kh*Pm4*(H2/2)	(kNm/m)	0.96	1.44
MPs5 h=	-kh*Pm5*(Hd/2)	(kNm/m)	0.00	0.00
MPs h=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)	7.49	11.23
- Incremento verticale di momento dovuto all	'inerzia del muro (MPs v)			
MPs1 v=	kv*Pm1*(B1+2/3*B2)	(kNm/m)	0.00	0.00
MPs2 v=	kv*Pm2*(B1+B2+B3/2)	(kNm/m)	1.09	1.64
MPs3 v=	kv*Pm3*(B1+B2+B3+B4/3)	(kNm/m)	0.00	0.00
MPs4 v=	kv*Pm4*(B/2)	(kNm/m)	3.35	5.03
MPs5 v=	kv*Pm5*(B-Bd/2)	(kNm/m)	0.00	0.00
MPs v=	MPs1+MPs2+MPs3+MPs4+MPs5	(kNm/m)	4.45	6.67
- Incremento orizzontale di momento dovuto	• • • •	(181 ()	04.05	47.00
MPts1 h=	kh*Pt1*(H2 + H3/2)	(kNm/m)	31.35	47.03
MPts2 h=	kh*Pt2*(H2 + H3 + H4/3)	(kNm/m)	0.00	0.00
MPts3 h=	kh*Pt3*(H2+H3*2/3)	(kNm/m)	0.00	0.00
MPts h=	MPts1 + MPts2 + MPts3	(kNm/m)	31.35	47.03
- Incremento verticale di momento dovuto all	,			
MPts1 v=	kv*Pt1*((H2 + H3/2) - (B - B5/2)*0.5)	(kNm/m)	16.28	24.42
MPts2 v=	kv*Pt2*((H2 + H3 + H4/3) - (B - B5/3)*0.5)	(kNm/m)	0.00	0.00
MPts3 v=	kv*Pt3*((H2+H3*2/3)-(B1+B2+B3+2/3*B4)*0.5)	(kNm/m)	0.00	0.00
MPts v=	MPts1 + MPts2 + MPts3	(kNm/m)	16.28	24.42

CONDIZIONE STATICA

SPINTE DEL TERRENO E DEL SOVR	SLE	STR/GEO	EQU/RIB			
- Spinta totale condizione statica				OTTOOLO	LQO/ICID	
St =	0,5* ₇ '*(H2+H3+H4+Hd) ² *ka	(kN/m)	66.07	85.89	85.89	
Sq perm =	q*(H2+H3+H4+Hd)*ka	(kN/m)	7.90	10.27	10.27	
Sq acc =	q*(H2+H3+H4+Hd)*ka	(kN/m)	25.07	36.36	36.36	
- Componente orizzontale condizione sta	ntion					
'						
Sth =	St*cosδ	(kN/m)	66.07	85.89	85.89	
Sqh perm =	Sq perm* $cos\delta$	(kN/m)	7.90	10.27	10.27	
Sqh acc =	Sq acc*cosδ	(kN/m)	25.07	36.36	36.36	

⁻ Componente verticale condizione statica

PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE

MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria- Relazione di calcolo

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA7L	00	D10	CL MU0300 001	Α	37 di 57

Stv =	St*sen δ	(kN/m)	0.00	0.00	0.00
Sqv perm=	Sq perm*senδ	(kN/m)	0.00	0.00	0.00
Sqv acc =	Sq acc*senδ	(kN/m)	0.00	0.00	0.00
- Spinta passiva sul dente					
Sp=½*g1'*Hd2*kp+(2*c1'*kp0.5+g1'*	'kp*H2')*Hd ½*γ ₁ '*Hd ² *kp+(2*c ₁ '*kp ^{0.5} +γ1'*kp*H2')*Hd	(kN/m)	0.00	0.00	0.00

MOMENTI DELLA SPINTA DEL TE	RRENO E DEL SOVRACCARICO		SLE	STR/GEO	EQU/RIB	
MSt1 =	Sth*((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	116.06	150.88	150.88	
MSt2 =	Stv*B	(kNm/m)	0.00	0.00	0.00	
MSq1 perm=	Sqh perm*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	20.81	27.05	27.05	
MSq1 acc =	Sqh acc*((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	66.07	95.80	95.80	
MSq2 perm=	Sqv perm*B	(kNm/m)	0.00	0.00	0.00	
MSq2 acc =	Sqv acc*B	(kNm/m)	0.00	0.00	0.00	
MSp = $\gamma 1'* Hd^{3*} kp/3 + (2*c1'* kp^{0.5} + \gamma^{0.5})$	¹ 1*kp*H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00	
MOMENTI DOVUTI ALLE FORZE E	STERNE					
Mfext1 =	mp + m	(kNm/m)	3.00	4.35	4.35	
Mfext2 =	$(fp + f)^*(H3 + H2)$	(kNm/m)	15.81	22.92	22.92	
Mfext3 =	(vp+v)*(B1 +B2 + B3/2)	(kNm/m)	0.50	0.50	0.50	

CONDIZIONE SISMICA +

SPINTE DEL TERRENO	E DEL SOVRACCARICO		SLE	STR/GEO	EQU/RIB
- Spinta condizione sismi	ca +		OLL	OTTOCO	EQUALID
Sst1 stat =	0,5*γ'*(H2+H3+H4+Hd) ² *ka	(kN/m)	66.07	66.07	66.07
Sst1 sism =	0,5*γ'*(1+kv)*(H2+H3+H4+Hd) ² *kas ⁺ -Sst1 stat	(kN/m)	5.49	5.49	8.33
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas ⁺	(kN/m)	8.42	8.42	8.69
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas [*]	(kN/m)	5.35	5.35	5.51
- Componente orizzontale	e condizione sismica +				
Sst1h stat =	Sst1 stat*cosδ	(kN/m)	66.07	66.07	66.07
Sst1h sism =	Sst1 sism*cosδ	(kN/m)	5.49	5.49	8.33
Ssq1h perm=	Ssq1 perm*cosδ	(kN/m)	8.42	8.42	8.69
Ssq1h acc=	Ssq1 acc*cosδ	(kN/m)	5.35	5.35	5.51
- Componente verticale c	ondizione sismica +				
Sst1v stat =	Sst1 stat*senδ	(kN/m)	0.00	0.00	0.00
Sst1v sism =	Sst1 sism*senδ	(kN/m)	0.00	0.00	0.00
Ssq1v perm=	Ssq1 perm*senδ	(kN/m)	0.00	0.00	0.00
Ssq1v acc=	Ssq1 acc*senδ	(kN/m)	0.00	0.00	0.00
- Spinta passiva sul dente	9				
$Sp=\frac{1}{2}*\gamma_1'(1+kv) Hd^2*kps^+$	+(2*c ₁ '*kps ^{+0.5} +γ1' (1+kv) kps ⁺ *H2')*Hd	(kN/m)	0.00	0.00	0.00

	MOMENTI DELLA SPINTA DEL TERRENO E DEL SOVRACCARICO - Condizione sismica +		SLE	STR/GEO	EQU/RIB
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	116.06	116.06	116.06
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	9.65	9.65	14.63
MSst2 stat =	Sst1v stat* B	(kNm/m)	0.00	0.00	0.00
MSst2 sism =	Sst1v sism* B	(kNm/m)	0.00	0.00	0.00
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	36.27	36.27	37.42
MSsq2 =	Ssq1v * B	(kNm/m)	0.00	0.00	0.00
MSp =	γ_1 '*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} + γ 1'*kps ⁺ *H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
MOMENTI DOVUTI	ALLE FORZE ESTERNE				
Mfext1 =	mp+ms	(kNm/m)		0.00	
Mfext2 =	(fp+fs)*(H3 + H2)	(kNm/m)		0.00	
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)		0.50	

CONDIZIONE SISMICA -

SPINTE DEL TERRENO - Spinta condizione sismic	E DEL SOVRACCARICO a -		SLE	STR/GEO	EQU/RIB
Sst1 stat =	0,5*γ'*(H2+H3+H4+Hd) ² *ka	(kN/m)	66.07	66.07	66.07
Sst1 sism =	0,5* ₇ '*(1-kv)*(H2+H3+H4+Hd) ² *kas ⁻ -Sst1 stat	(kN/m)	3.39	3.39	5.18
Ssq1 perm=	qp*(H2+H3+H4+Hd)*kas ⁻	(kN/m)	8.44	8.44	8.73
Ssq1 acc =	qs*(H2+H3+H4+Hd)*kas ⁻	(kN/m)	5.36	5.36	5.54
- Componente orizzontale	condizione sismica -				
Sst1h stat =	Sst1 stat*cosδ	(kN/m)	66.07	66.07	66.07
Sst1h sism =	Sst1 sism*cosδ	(kN/m)	3.39	3.39	5.18
Ssq1h perm=	Ssq1 perm*cosδ	(kN/m)	8.44	8.44	8.73
Ssq1h acc=	Ssq1 acc*cos∂	(kN/m)	5.36	5.36	5.54
- Componente verticale co	ondizione sismica -				
Sst1v stat =	Sst1 stat*senδ	(kN/m)	0.00	0.00	0.00
Sst1v sism =	Sst1 sism*senδ	(kN/m)	0.00	0.00	0.00
Ssq1v perm=	Ssq1 perm*senδ	(kN/m)	0.00	0.00	0.00
Ssq1v acc=	Ssq1 acc*senδ	(kN/m)	0.00	0.00	0.00
- Spinta passiva sul dente					
$Sp=\frac{1}{2}*\gamma_1'(1-kv) Hd^2*kps^-+($	2*c ₁ '*kps ^{-0.5} +γ1' (1-kv) kps ⁻ *H2')*Hd	(kN/m)	0.00	0.00	0.00

PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE

MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria- Relazione di calcolo

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IA7L 00 D10 CL MU0300 001 A 39 di 57

MOMENTI DELLA S	SPINTA DEL TERRENO E DEL SOVRACCARICO -		SLE	STR/GEO	EQU/RIB
MSst1 stat =	Sst1h stat * ((H2+H3+H4+hd)/3-hd)	(kNm/m)	116.06	116.06	116.06
MSst1 sism=	Sst1h sism* ((H2+H3+H4+Hd)/3-Hd)	(kNm/m)	5.95	5.95	9.10
MSst2 stat =	Sst1v stat* B	(kNm/m)	0.00	0.00	0.00
MSst2 sism =	Sst1v sism* B	(kNm/m)	0.00	0.00	0.00
MSsq1 =	Ssq1h * ((H2+H3+H4+Hd)/2-Hd)	(kNm/m)	36.35	36.35	37.59
MSsq2 =	Ssq1v * B	(kNm/m)	0.00	0.00	0.00
MSp =	γ_1 '*Hd ³ *kps ⁺ /3+(2*c1'*kps ^{+0.5} + γ 1'*kps ⁺ *H2')*Hd ² /2	(kNm/m)	0.00	0.00	0.00
MOMENTI DOVUTI	ALLE FORZE ESTERNE				
Mfext1 =	mp+ms	(kNm/m)		0.00	
Mfext2 =	$(fp+fs)^*(H3 + H2)$	(kNm/m)		0.00	
Mfext3 =	(vp+vs)*(B1 +B2 + B3/2)	(kNm/m)		0.50	

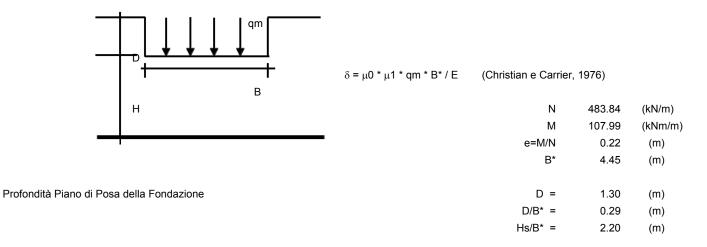
GRUPPO FERROVIE DELLO STATO ITALIANE	INFRASTE INDUSTRIA	ERMODAI RUTTURA ALE RETR	LE DI BRINE DI COLLEG RO-PORTUA	DISI AMENTO DELL'A LE DI BRINDISI C RIA NAZIONALE		
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e sed ferroviaria- Relazione di calcolo	e IA7L	00	D10	CL MU0300 001	Α	40 di 57

9.3 VERIFICHE GEOTECNICHE

9.3.1 VERIFICA STATICA - CONDIZIONI DRENATE

VERIFICA ALLO SCORRIMENTO (STR/GEO)

Risultante forze verticali (N) Pm + Pt + v + Stv + Sqv perm + Sqv acc	483.84		(kN/m)	
Risultante forze orizzonta	ıli (T)				
T =	Sth + Sqh + f	136.86		(kN/m)	
Coefficiente di attrito alla	base (f)				
f =	$tg\phi 1'$	0.49		(-)	
Fs scorr.	(N*f + Sp) / T	1.72		>	1.1
VERIFICA AL RIBALTAI	MENTO (EQU)				
Momento stabilizzante (M	ls)				
Ms =	Mm + Mt + Mfext3	1299.16		(kNm/m)	
Momento ribaltante (Mr)					
Mr =	MSt + MSq + Mfext1+ Mfext2 + MSp	301.00		(kNm/m)	
Fs ribaltamento	Ms / Mr	4.32		>	1.15
VERIFICA CARICO LIM	ITE DELLA FONDAZIONE (STR/GEO)				
Risultante forze verticali (N)		Nmin	Nmax	
N =	Pm + Pt + v + Stv + Sqv (+ Sovr acc)		483.84	588.24	(kN/m)
Risultante forze orizzonta	ıli (T)				
T =	Sth + Sqh + f - Sp		136.86	136.86	(kN/m)
Risultante dei momenti ri	spetto al piede di valle (MM)				
MM =	ΣM		998.16	1321.80	(kNm/m)
Momento rispetto al bario	entro della fondazione (M)				
M =	Xc*N - MM		187.25	119.39	(kNm/m)


Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

GRUPPO FERROVIE DELLO STATO ITALIANE	INFRASTR INDUSTRIA	ERMODAI UTTURA LE RETR	LE DI BRIND DI COLLEG O-PORTUA	DISI AMENTO DELL'AI LE DI BRINDISI CO IIA NAZIONALE		
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria- Relazione di calcolo	IA7L	00	D10	CL MU0300 001	Α	41 di 57

qlim = c'Nc*ic + q ₀ *Nq*ic	η + 0,5*γ1*Β*Νγ*iγ					
c1'	coesione terreno di fondaz.			2.50		(kPa)
φ1'	angolo di attrito terreno di fond	laz.		26.00		(°)
γ1	peso unità di volume terreno fo	ondaz.		18.59		(kN/m³)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante			24.70		(kN/m ²)
e = M / N	eccentricità			0.39	0.20	(m)
B*= B - 2e	larghezza equivalente			4.13	4.49	(m)
I valori di Nc, Nq e Ng soi	no stati valutati con le espressior	ni suggerite da Vo	esic (1975)			
Nq = $tg^2(45 + \phi'/2)^*e^{(\pi^*tg(\phi')}$) (1 in cond. nd)			11.85		(-)
$Nc = (Nq - 1)/tg(\phi')$	(2+ π in cond. nd)			22.25		(-)
$N\gamma = 2*(Nq + 1)*tg(\phi')$	(0 in cond. nd)			12.54		(-)
I valori di ic, iq e iγ sono s	tati valutati con le espressioni su	uggerite da Vesic	(1975)			
iq = (1 - T/(N + B*c'cotgφ')) ^m (1 in cond. nd)			0.53	0.60	(-)
ic = iq - (1 - iq)/(Nq - 1)				0.49	0.49	(-)
$i\gamma = (1 - T/(N + B*c'cotg\phi'))$) ^{m+1}			0.39	0.39	(-)
(fondazione nastriforme n	1 = 2)					
qlim	(carico limite unitario)			369.07	390.61	(kN/m²)
FS carico limite	F=	qlim*B*/ N	Nmin	3.15	>	1.4
	•	•	Nmax	2.98	>	

CEDIMENTO DELLA FONDAZIONE

GRUPPO FERROVIE DELLO STATO ITALIANE	INFRASTE INDUSTRIA	ERMODA RUTTURA ALE RETR	LE DI BRIND DI COLLEG RO-PORTUA	DISI AMENTO DELL'A LE DI BRINDISI C RIA NAZIONALE		
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e sec ferroviaria- Relazione di calcolo	le IA7L	00	D10	CL MU0300 001	Α	42 di 57

Carico unitario medio (qm)	qm = N / (B - 2*e) = N / B* =	108.64	(kN/mq)
Coefficiente di forma μ 0 = f(D/B)	μ0 =	0.948	(-)
Coefficiente di profondità µ1 = f(H/B)	μ1 =	0.70	(-)
Cedimento della fondazione	$\delta = \mu 0 * \mu 1 * am * B* / E =$	32.32	(mm)

9.3.2 VERIFICA SISMICA - CONDIZIONI DRENATE

Sismica +

VERIFICA ALLO SCORRIMENTO

Risultante forze ver	ticali (N)			
N =	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	491.55	(kN/m)	
Risultante forze oriz	zzontali (T)			
T =	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	100.76	(kN/m)	
Coefficiente di attrit	o alla base (f)			
f =	tgφ1'	0.49	(-)	
Fs =	(N*6 + Co) / T	2.38	>	1
г э -	(N*f + Sp) / T	2.30		

VERIFICA AL RIBALTAMENTO

Mom	nento stabilizzante (Ms)			
Ms	=	Mm + Mt + Mfext3	1299.16	(kNm/m)	
Mom Mr	nento ribaltante (Mrj	MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	195.28	(kNm/m)	
Fr	=	Ms / Mr	6.65	>	1

VERIFICA A CARICO	LIMITE DELLA FONDAZIONE			
Risultante forze vertica	ali (N)	Nmin	Nmax	
N =	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc)	491.55	505.95	(kN/m)
Risultante forze orizzo	ontali (T)			
T =	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	100.76		(kN/m)
Risultante dei moment	ti rispetto al piede di valle (MM)			
MM =	ΣΜ	1119.06	1163.70	(kNm/m)

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e sed ferroviaria- Relazione di calcolo	e IA7L	00	D10	CL MU0300 001	Α	43 di 57

Momento ricnotto al har	ricentro della fendazione (M)					
M =	ricentro della fondazione (M) Xc*N - MM			85.24	75.88	(kNm/m)
Formula Generale per	il Calcolo del Carico Limite Unitr	rario (Brinch-Hansen,	1970)			
Fondazione Nastriforme	9					
qlim = c'Nc*ic + q ₀ *Nq	*iq + 0,5*γ1*Β*Νγ*iγ					
c1'	coesione terreno di fondaz.			2.50		(kN/mq)
φ1′	angolo di attrito terreno di fondaz			26.00		(°)
γ1	peso unità di volume terreno fond	laz.		18.59		(kN/m ³)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante			24.70		(kN/m ²)
e = M / N	eccentricità			0.17	0.15	(m)
B*= B - 2e	larghezza equivalente			4.55	4.60	(m)
I valori di Nc, Nq e Ng s	sono stati valutati con le espression	i suggerite da Vesic (19	975)			
Nq = $tg^2(45 + \phi'/2)^*e^{(\pi^*tg)}$	(1 in cond. nd)			11.85		(-)
$Nc = (Nq - 1)/tg(\varphi')$	$(2+\pi \text{ in cond. nd})$			22.25		(-)
$N\gamma = 2^*(Nq + 1)^*tg(\phi')$	(0 in cond. nd)			12.54		(-)
I valori di ic, iq e iγ sono	stati valutati con le espressioni su	ggerite da Vesic (1975))			
iq = (1 - T/(N + B*c'cotg	φ')) ^m (1 in cond. nd)			0.65	0.66	(-)
ic = iq - (1 - iq)/(Nq - 1)	,			0.61	0.62	(-)
$i\gamma = (1 - T/(N + B*c'cotg))$	φ')) ^{m+1}			0.52	0.52	(-)
(fondazione nastriforme	e m = 2)					
qlim	(carico limite unitario)			499.75	505.78	(kN/m²)
FS carico limite		F = qlim*B*/ N	Nmin	4.63	>	1.2
		4 2 /	Nmax	4.60	>	
VERIFICA ALLO SCOP	RRIMENTO	Sismica -				
Risultante forze vertical						
N =	Pm+ Pt + vp + vs + Sst1v + Ssq1v	v + Ps v + Ptsv		476.13 (kh	N/m)	
Risultante forze orizzon	tali (T)				., .	

98.68

(kN/m)

= Sst1h + Ssq1h + fp + fs +Ps h + Ptsh

Coefficiente di attrito alla base (f)									
f	=	tgφ1'	0.49	(-)					
Fs	=	(N*f + Sp) / T	2.35	>	1				
<u>VER</u>	VERIFICA AL RIBALTAMENTO								
Mon	nento stabilizzante	(Ms)							
Ms	=	Mm + Mt + Mfext3	1299.16	(kNm/m)					
Mom	nento ribaltante (Mr	•)							
Mr	=	MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpts	252.10	(kNm/m)					
Fr	=	Ms / Mr	5.15	>	1				
VER	VERIFICA A CARICO LIMITE DELLA FONDAZIONE								

VERIFICA A	CARICO LIM	ITE DELLA F	ONDAZIONE

N	=	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	476.13	490.53	(kN/m)
Ris	ultante forze orizzoi	ntali (T)			
Т	=	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	98.68		(kN/m)
Ris	ultante dei momenti	rispetto al piede di valle (MM)			
MM	1 =	Σ M	1081.23	1125.87	(kNm/m)
Мо	mento rispetto al ba	ricentro della fondazione (M)			
М	=	Xc*N - MM	85.27	75.91	(kNm/m)

Nmin

Nmax

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

Risultante forze verticali (N)

qlim = c'Nc*ic + q_0 *Nq*iq + 0,5* γ 1*B*N γ *i γ

c1'	coesione terreno di fondaz.	2.50		(kN/mq)
φ1′	angolo di attrito terreno di fondaz.	26.00		(°)
γ1	peso unità di volume terreno fondaz.	18.59		(kN/m³)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante	24.70		(kN/m ²)
e = M / N B*= B - 2e	eccentricità larghezza equivalente	0.18 4.54	0.15 4.59	(m) (m)

I valori di Nc, Nq e Ng sono stati valutati con le espressioni suggerite da Vesic (1975)

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
MUO2 M	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria- Relazione di calcolo	IA7L	00	D10	CL MU0300 001	Α	45 di 57

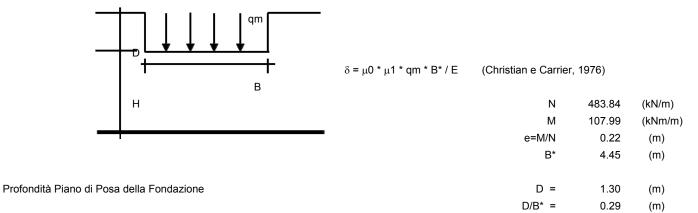
$N\gamma = 2*(Nq + 1)*tg(\phi')$	 (1 in cond. nd) (2+π in cond. nd) (0 in cond. nd) o stati valutati con le espressioni suggineration.	gerite da Vesic (1975)		11.85 22.25 12.54		(-) (-) (-)
$iq = (1 - T/(N + B*c'cotg))$ $ic = iq - (1 - iq)/(Nq - 1)$ $i\gamma = (1 - T/(N + B*c'cotg))$ (fondazione nastriforme	φ')) ^{m+1}			0.64 0.61 0.52	0.65 0.62 0.52	(-) (-) (-)
qlim	(carico limite unitario)			496.02	502.26	(kN/m²)
FS carico limite	ı	F = qlim*B*/ N	Nmin Nmax	4.73 4.70	> >	1.2

GRUPPO FERROVIE DELLO STATO ITALIANE	INFRASTR INDUSTRIA	ERMODAI RUTTURA ALE RETR	LE DI BRIND DI COLLEG O-PORTUA	DISI AMENTO DELL'A LE DI BRINDISI CO RIA NAZIONALE		
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e se ferroviaria- Relazione di calcolo	le IA7L	00	D10	CL MU0300 001	Α	46 di 57

9.3.3 VERIFICA STATICA - CONDIZIONI NON DRENATE

VERIFICA ALLO SCORRIMENTO (STR/GEO)

Risult	tante forze verticali (I	N)				
N	=	Pm + Pt + v + Stv + Sqv perm + Sqv acc	483.84		(kN/m)	
Risult	tante forze orizzontal	i (T)				
Т	=	Sth + Sqh + f	136.86		(kN/m)	
Coeff	ficiente di attrito alla l	pase (f)				
f	=	tgφ1'	0.49		(-)	
Fs s	scorr.	(N*f + Sp) / T	1.72		>	1.1
VERI	FICA AL RIBALTAN	IENTO (EQU)				
Mome	ento stabilizzante (M	s)				
Ms	=	Mm + Mt + Mfext3	1299.16		(kNm/m)	
Mome	ento ribaltante (Mr)					
Mr	=	MSt + MSq + Mfext1+ Mfext2 + MSp	301.00		(kNm/m)	
Fs r	ibaltamento	Ms / Mr	4.32		>	1.15
VERI	FICA CARICO LIMI	TE DELLA FONDAZIONE (STR/GEO)				
Risult	tante forze verticali (I	N)		Nmin	Nmax	
N	=	Pm + Pt + v + Stv + Sqv (+ Sovr acc)		483.84	588.24	(kN/m)
Risult	tante forze orizzontal	i (T)				
Т	=	Sth + Sqh + f - Sp		136.86	136.86	(kN/m)
Risult	tante dei momenti ris	petto al piede di valle (MM)				
Risult MM		petto al piede di valle (MM) ΣM		998.16	1321.80	(kNm/m)
ММ	=			998.16	1321.80	(kNm/m)


GRUPPO FERROVIE DELLO STATO ITALIANE	INFRASTE INDUSTRIA	ERMODAI RUTTURA ALE RETR	LE DI BRIND DI COLLEG RO-PORTUA	DISI AMENTO DELL'A LE DI BRINDISI CO RIA NAZIONALE		
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e se ferroviaria- Relazione di calcolo	de IA7L	00	D10	CL MU0300 001	Α	47 di 57

Fondazione Nastriforme

alim =	c'Nc*ic	+	a.*Na*ia	+	0.5*v1*B*Nv*iv
uiiii –	CINCIC	т	un Nu lu	-	U.S VI D 14V IV

$q_1 m = c \cdot Nc^* \cdot c + q_0^* Nq^* \cdot c$	+ 0,5*γ1*Β*Νγ* ι γ						
cu	res. al taglio nd terreno di fon	ndaz.		75.0	00		(kPa)
γ1	peso unità di volume terreno	fondaz.		19.0	00		(kN/m ³)
q ₀ =γd*H2'	sovraccarico stabilizzante			24.7	70		(kN/m ²)
e = M / N B*= B - 2e	eccentricità larghezza equivalente				0.39 4.13	0.20 4.49	(m) (m)
			. (4075)		4.13	4.49	(111)
I valori di Nc, Nq e Ng sor	no stati valutati con le espression	oni suggerite da Ve	esic (1975)				
Nq = $tg^2(45 + \phi'/2)^*e^{(\pi^*tg(\phi'))}$	(1 in cond. nd)			1.0	0		(-)
$Nc = (Nq - 1)/tg(\phi')$	$(2+\pi \text{ in cond. nd})$			5.1	4		(-)
$N\gamma = 2*(Nq + 1)*tg(\phi')$	(0 in cond. nd)			0.0	0		(-)
I valori di ic, iq e iγ sono s	tati valutati con le espressioni s	suggerite da Vesic	(1975)				
$iq = (1 - T/(N + B*c'cotg\phi'))$) ^m (1 in cond. nd)				1.00	1.00	(-)
ic = (1 - m T / (B* cu*Nc))					0.83	0.84	(-)
$i\gamma = (1 - T/(N + B*c'cotg\phi')$) ^{m+1}						(-)
(fondazione nastriforme m	1 = 2)						
qlim	(carico limite unitario)			:	343.98	349.41	(kN/m²)
FS carico limite	F:	= qlim*B*/ N	Nmin	2.93		>	1.4
			Nmax	2.67		>	

CEDIMENTO DELLA FONDAZIONE

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria- Relazione di calcolo	IA7L	00	D10	CL MU0300 001	Α	48 di 57

	Hs/B* =	2.20	(m)
Carico unitario medio (qm)	$qm = N / (B - 2^*e) = N / B^* =$	108.64	(kN/mq)
Coefficiente di forma μ 0 = f(D/B)	μ0 =	0.948	(-)
Coefficiente di profondità $\mu 1 = f(H/B)$	μ1 =	0.70	(-)
Cedimento della fondazione	$\delta = \mu 0 * \mu 1 * qm * B* / E =$	32.32	(mm)

9.3.4 VERIFICA SISMICA - CONDIZIONI NON DRENATE

Sismica +

VERIFICA ALLO SCORRIMENTO

Fs =	(N*f + Sp) / T	2.38	>	
Coefficiente di attrite f =	o alla base (f) tgφ1'	0.49	(-)	
Risultante forze oriz T =	zontali (T) Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	100.76	(kN/m)	
Risultante forze ver N =	ticali (N) Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	491.55	(kN/m)	

VERIFICA AL RIBALTAMENTO

Fr	=	Ms / Mr	6.65	>	
Mr	=	MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpt s	195.28	(kNm/m)	
Mom	ento ribaltante	(Mr)			
Ms	=	Mm + Mt + Mfext3	1299.16	(kNm/m)	
Mom	ento stabilizzar	ite (Ms)			

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Rist	ıltante forze v	erticali (N)	Nmin	Nmax	
Ν	=	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv + (Sovr acc)	491.55	505.95	(kN/m)
Rist	ıltante forze o	rizzontali (T)			
T	=	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	100.76	;	(kN/m)

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria- Relazione di calcolo	IA7L	00	D10	CL MU0300 001	Α	49 di 57

Risultante dei mome	enti rispetto al piede di valle $\Sigma { m M}$	(MM)		1119.06	1163.70	(kNm/m)				
				1110.00	. 100.70	(13. 311/111)				
Momento rispetto al M =	baricentro della fondazione Xc*N - MM	e (M)		85.24	75.88	(kNm/m)				
Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)										
Fondazione Nastrifo	orme									
qlim = c'Nc*ic + q ₀ *	*Nq*iq + 0,5*γ1*B*Nγ*iγ									
cu	res. al taglio nd terreno di	fondaz.		75.00		(kN/mq)				
γ1	peso unità di volume terre	no fondaz.		19.00		(kN/m ³)				
q ₀ =γd*H2'	sovraccarico stabilizzante	e		24.70		(kN/m ²)				
e = M / N B*= B - 2e	eccentricità larghezza equivalente			0.17 4.55	0.15 4.60	(m) (m)				
l valori di Nc, Nq e N	Ng sono stati valutati con le	espressioni suggerite o	da Vesic (1975)							
Nq = $tg^2(45 + \phi'/2)^*\epsilon$ Nc = (Nq - 1)/ $tg(\phi')$ N γ = 2*(Nq + 1)* $tg(\phi')$	$(2+\pi \text{ in cond. nd})$			1.00 5.14 0.00		(-) (-) (-)				
I valori di ic, iq e iγ s	ono stati valutati con le esp	ressioni suggerite da V	/esic (1975)							
iq = (1 - T/(N + B*c'c ic = (1 - m T / (B* cu iγ = (1 - T/(N + B*c'c	(*Nc))			1.00 0.89	1.00 0.89	(-) (-) (-)				
(fondazione nastrifo	rme m = 2)									
qlim	(carico limite unitario)			366.06	366.51	(kN/m ²)				
FS carico limite		F = qlim*B*/ N	Nmin Nmax	3.39 3.33	> >	1.2				

GRUPPO FERROVIE DELLO STATO ITALIANE	NODO INTI INFRASTR INDUSTRIA	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE				
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e sed ferroviaria- Relazione di calcolo	e IA7L	00	D10	CL MU0300 001	Α	50 di 57

VERIFICA ALLO SCORRIMENTO

Risul	tante forze vert	icali (N)		
N	=	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	476.13	(kN/m)
Risul	tante forze oriz	zontali (T)		
Т	=	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh	98.68	(kN/m)
Coef	ficiente di attrito	alla base (f)		
f	=	tgφ1'	0.49	(-)
Fs	=	(N*f + Sp) / T	2.35	>

VERIFICA AL RIBALTAMENTO

Fr	=	Ms / Mr	5.15	>	
Mr	=	S	252.10	(kNm/m)	
Mom	nento ribaltante	(Mr) MSst+MSsq+Mfext1+Mfext2+MSp+MPs+Mpt			
Ms	=	Mm + Mt + Mfext3	1299.16	(kNm/m)	
Mom	nento stabilizzai	nte (Ms)			

VERIFICA A CARICO LIMITE DELLA FONDAZIONE

Momento rispetto al baricentro della fondazione (M) Xc*N - MM

Risu	Itante forze ver	ticali (N)	Nmin	Nmax		
N	=	Pm+ Pt + vp + vs + Sst1v + Ssq1v + Ps v + Ptsv	Sst1v + Ssq1v + Ps v + Ptsv 476.13 490.53			
Risu	Itante forze oriz	zontali (T)				
Т	=	Sst1h + Ssq1h + fp + fs +Ps h + Ptsh - Sp	98.68			
Risu	Itante dei mome	enti rispetto al piede di valle (MM)				
MM	=	Σ M	1081.23	1125.87	(kNm/m)	

85.27

75.00

75.91

(kNm/m)

(kN/mq)

Formula Generale per il Calcolo del Carico Limite Unitrario (Brinch-Hansen, 1970)

Fondazione Nastriforme

M =

qlim = c'Nc*ic +
$$q_0$$
*Nq*iq + 0,5* γ 1*B*N γ *i γ
cu res. al taglio nd terreno di fondaz.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE					
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria- Relazione di calcolo	IA7L	00	D10	CL MU0300 001	Α	51 di 57

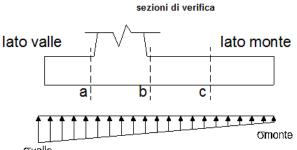
γ1	peso unità di volume terreno fondaz.			19.00		(kN/m ³)
$q_0 = \gamma d^*H2'$	sovraccarico stabilizzante			24.70		(kN/m ²)
e = M / N B*= B - 2e	eccentricità larghezza equivalente			0.18 4.54	0.15 4.59	(m) (m)
I valori di Nc, Nq e N	lg sono stati valutati con le espressioni	suggerite da	a Vesic (1975)			
, , , , , ,	$e^{(\pi^* \operatorname{tg}(\phi'))}$ (1 in cond. nd) (2+ π in cond. nd) ') (0 in cond. nd)			1.00 5.14 0.00		(-) (-) (-)
I valori di ic, iq e iγ s	ono stati valutati con le espressioni sug	gerite da Ve	esic (1975)			
iq = (1 - T/(N + B*c'c)) ic = (1 - m T / (B*cu)) $i\gamma = (1 - T/(N + B*c'c))$	*Nc))			1.00 0.89	1.00 0.89	(-) (-) (-)
(fondazione nastrifo	rme m = 2)					
qlim	(carico limite unitario)			366.87	367.33	(kN/m ²)
FS carico limite	F = qlin	า*B*/ N	Nmin Nmax	3.50 3.44	> >	1.2

9.4 VERIFICHE STRUTTURALI

9.4.1 CALCOLO DELLE SOLLECITAZIONI

CALCOLO SOLLECITAZIONI SOLETTA DI FONDAZIONE

Reazione del terreno


ovalle = N / A + M / Wgg

omonte = N / A - M / Wgg

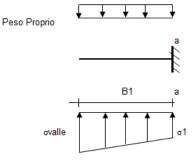
A = 1.0*B4.90

 $Wgg = 1.0*B^2/6$ 4.00 (m³)

0000	N	M	σvalle	σmor
caso	[kN]	[kNm]	[kN/m ²]	[kN/m
statico	483.84	187.25	145.54	51.98
statico	588.24	119.39	149.88	90.21
oiomo+	491.55	85.24	121.62	79.02
sisma+	505.95	75.88	122.22	84.29
oiomo	476.13	85.27	118.48	75.86
sisma-	490.53	75.91	119.08	81.14

σvalle

Mensola Lato Valle


Peso Proprio.

17.50 (kN/m)

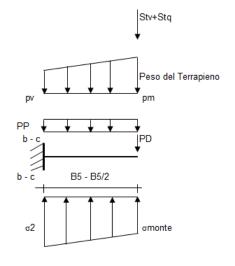
 $Ma = \sigma 1*B1^2/2 + (\sigma valle - \sigma 1)*B1^2/3 - PP*B1^2/2*(1±kv)$

 $Va = \sigma 1*B1 + (\sigma valle - \sigma 1)*B1/2 - PP*B1*(1±kv)$

0000	σvalle	σ1	Ma	Va
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]
statico	145.54	132.17	30.28	84.95
statico	149.88	141.36	31.74	89.68
-i1	121.62	115.53	24.94	71.47
sisma+	122.22	116.80	25.21	72.02
sisma-	118.48	112.39	24.31	69.27
	119.08	113.66	24.44	69.83

Mensola Lato Monte

PP	=	17.50	(kN/m ²)
PD	=	0.00	(kN/m)


peso proprio soletta fondazione peso proprio dente

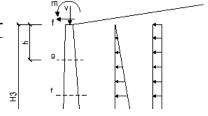
		Nmin	N max stat	N max sism	
pm	=	91.40	120.40	95.40	(kN/m^2)
pvb	=	91.40	120.40	95.40	(kN/m ²)
DVC	=	91.40	120.40	95.40	(kN/m ²)

 $Mb = (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5^2/2 + (\sigma 2b - \sigma_{monte})^*B5^2/6 - (pm-pvb))^*(1 \pm kv)^*B5^2/3 + (pvb + PP)^*(1 \pm kv)^*B5^2/3 + (pvb + PP)^*($ -(Stv+Sqv)*B5-PD*(1±kv)*(B5-Bd/2)-PD*kh*(Hd+H2/2)+Msp+Sp*H2/2

 $Mc = (\sigma_{monte} - (pvc + PP)^*(1 \pm kv))^*(B5/2)^2/2 + (\sigma_2 c - \sigma_{monte})^*(B5/2)^2/6 + (pm-pvc)^*(1 \pm kv)^*(B5/2)^2/3 + (pvc + PP)^*(1 \pm kv)^2/3 + (pvc + PP)^2/3 +$ -(Stv+Sqv)*(B5/2)-PD*(1±kv)*(B5/2-Bd/2)-PD*kh*(Hd+H2/2)+Msp+Sp*H2/2

 $Vb = (\sigma_{monte} - (pvb + PP)^*(1 \pm kv))^*B5 + (\sigma 2b - \sigma_{monte})^*B5/2 - (pm-pvb))^*(1 \pm kv)^*B5/2 - (Stv + Sqv) - PD^*(1 \pm kv)$

 $Vc = (\sigma_{monte} - (pvc + PP)^*(1 \pm kv))^*(B5/2) + (\sigma_{monte})^*(B5/2)/2 - (pm-pvc)^*(1 \pm kv)^*(B5/2)/2 - (Stv + Sqv) - PD^*(1 \pm kv)$


PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA7L
 00
 D10
 CL MU0300 001
 A
 53 di 57

MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria- Relazione di calcolo

0000	σmonte	σ2b	Mb	Vb	σ2с
caso	[kN/m ²]	[kN/m ²]	[kNm]	[kN]	[kN/m ²]
statico	51.95	120.71	-220.52	-81.26	86.33
	90.21	134.05	-214.31	-92.76	112.13
sisma+	79.02	110.32	-137.31	-57.50	94.67
	84.29	112.16	-136.86	-59.32	98.22
	75.86	107.17	-135.21	-56.33	91.51
sisma-	81.14	109.01	-133.94	-57.69	95.07

CALCOLO SOLLECITAZIONI PARAMENTO VERTICALE DEL MURO

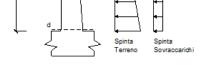
Azioni sulla parete e Sezioni di Calcolo

Mt stat = $\frac{1}{2} \text{Ka}_{\text{orizz.}}^* \gamma^* (1 \pm \text{kv})^* h^2 * h/3$

Mt sism = $\frac{1}{2}$ * γ *(Kas_{orizz.}*(1±kv)-Ka_{orizz.})*h²*h/2 o *h/3

 $\begin{array}{ll} Mq &= 1\!\!\!/_2 \; Ka_{orizz} \!\!\!\!\!^* q^* h^2 \\ M_{ext} &= m \!\!\!\!\!^+ f^* h \\ M_{inerzia} &= \Sigma P m_i \!\!\!\!^* b_i \!\!\!^* k h \end{array}$

N_{ext} = v


 $N_{pp+inerzia} = \Sigma Pm_i^*(1\pm kv)$

Vt stat = $\frac{1}{2}$ Ka_{orizz.}* γ *(1±kv)*h²

Vt sism = $\frac{1}{2} * \gamma * (Kas_{orizz.} * (1\pm kv)-Ka_{orizz.})*h^2$

 $Vq = Ka_{orizz}*q*h$ $V_{ext} = f$

 $V_{inerzia} = \Sigma Pm_i^*kh$

condizione statica

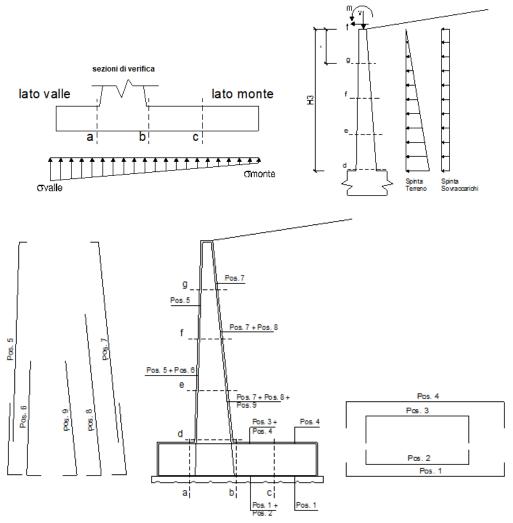
sezione	h	Mt	Mq	M _{ext}	M _{tot}	N _{ext}	N _{pp}	N _{tot}
Sezione	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.57	98.39	92.38	24.23	215.00	0.50	68.55	69.05
e-e	3.43	41.51	51.97	19.26	112.73	0.50	51.41	51.91
f-f	2.29	12.30	23.10	14.29	49.68	0.50	34.28	34.78
g-g	1.14	1.54	5.77	9.32	16.63	0.50	17.14	17.64

sezione	h	Vt	Vq	V_{ext}	V _{tot}
SEZIONE	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.57	64.59	40.43	4.35	109.37
e-e	3.43	36.33	30.32	4.35	71.00
f-f	2.29	16.15	20.22	4.35	40.71
g-g	1.14	4.04	10.11	4.35	18.49

condizione sismica +

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.57	75.68	6.29	27.28	0.00	5.00	114.25	0.50	69.64	70.14
e-e	3.43	31.93	2.65	15.34	0.00	2.81	52.74	0.50	52.23	52.73
f-f	2.29	9.46	0.79	6.82	0.00	1.25	18.32	0.50	34.82	35.32
g-g	1.14	1.18	0.10	1.70	0.00	0.31	3.30	0.50	17.41	17.91

	L .	1/4	1/4	1/-	1/		
sezione	n	Vt stat	Vt sism	Vq	V_{ext}	V _{inerzia}	V _{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.57	49.68	4.13	11.94	0.00	2.19	67.94
e-e	3.43	27.95	2.32	8.95	0.00	1.64	40.86
f-f	2.29	12.42	1.03	5.97	0.00	1.09	20.52
g-g	1.14	3.11	0.26	2.98	0.00	0.55	6.89


GRUPPO FERROVIE DELLO STATO ITALIANE	INFRASTR INDUSTRIA	ERMODAI RUTTURA ALE RETR	LE DI BRIND DI COLLEG O-PORTUA	DISI AMENTO DELL'A LE DI BRINDISI CO RIA NAZIONALE		
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e se ferroviaria- Relazione di calcolo	de IA7L	00	D10	CL MU0300 001	Α	54 di 57

condizione sismica -

sezione	h	Mt stat	Mt sism	Mq	M _{ext}	M _{inerzia}	M _{tot}	N _{ext}	N _{pp+inerzia}	N _{tot}
	[m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.57	75.68	3.88	27.33	0.00	5.00	111.90	0.50	67.46	67.96
e-e	3.43	31.93	1.64	15.38	0.00	2.81	51.75	0.50	50.59	51.09
f-f	2.29	9.46	0.49	6.83	0.00	1.25	18.03	0.50	33.73	34.23
g-g	1.14	1.18	0.06	1.71	0.00	0.31	3.26	0.50	16.86	17.36

sezione	h	Vt stat	Vt sism	Vq	V _{ext}	V _{inerzia}	V _{tot}
	[m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]	[kN/m]
d-d	4.57	49.68	2.55	11.96	0.00	2.19	66.38
e-e	3.43	27.95	1.43	8.97	0.00	1.64	39.99
f-f	2.29	12.42	0.64	5.98	0.00	1.09	20.13
g-g	1.14	3.11	0.16	2.99	0.00	0.55	6.80

9.4.2 VERIFICHE SLU

Armatura minima

L'armatura minima principale in fondazione deve essere in percentuale non inferiore allo 0.20% dell'area di conglomerato.

L'armatura minima principale presente in zona tesa deve essere in percentuale non inferiore allo 0.15% dell'area di conglomerato per l'intera lunghezza.

L'armatura secondaria, ortogonale a quella principale, deve essere pari al massimo delle seguenti percentuali:

- 0.10% dell'area di conglomerato in entrambi i lembi;
- 20% dell'armatura principale.

ARMATURE

pos	n°/ml	ф	II strato	pos	n°/ml	ф	II strato
1	5.0	16		5	5.0	16	
2	0.0	0		6	0.0	0	
3	0.0	0		7	10.0	16	
4	10.0	16		8	0.0	0	
				9	0.0	0	

Sez.	M	N	h	Af	A'f	Mu
(-)	(kNm)	(kN)	(m)	(cm²)	(cm²)	(kNm)
a - a	31.74	0.00	0.70	10.05	20.11	252.50
b - b	-220.52	0.00	0.70	20.11	10.05	467.27
C - C	-73.69	0.00	0.70	20.11	10.05	467.27
d - d	215.00	69.05	0.60	20.11	10.05	404.43
е -е	112.73	51.91	0.60	20.11	10.05	400.51
f-f	49.68	34.78	0.60	20.11	10.05	396.58
g - g	16.63	17.64	0.60	20.11	10.05	392.65

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

Sez.	V_{Ed}	h	V_{rd}	ø staffe	i orizz.	i vert.	θ	V_{Rsd}	_
(-)	(kN)	(m)	(kN)	(mm)	(cm)	(cm)	(°)	(kN)	_
a - a	89.68	0.70	233.36	10	20	20	21.8	1071.81	Armatura
b - b	92.76	0.70	249.04	10	20	20	21.8	1071.81	Armatura :
C - C	71.57	0.70	249.04	10	20	20	21.8	1071.81	Armatura :
d - d	109.37	0.60	237.83	10	20	20	21.8	898.94	Armatura :
e -e	71.00	0.60	235.60	10	20	20	21.8	898.94	Armatura :
f-f	40.71	0.60	233.38	10	20	20	21.8	898.94	Armatura :
q-q	18.49	0.60	231.15	10	20	20	21.8	898.94	Armatura :

GRUPPO FERROVIE DELLO STATO ITALIANE	INFRASTR INDUSTRIA	ERMODAI RUTTURA ALE RETR	LE DI BRIND DI COLLEG O-PORTUA	DISI AMENTO DELL'A LE DI BRINDISI C RIA NAZIONALE		
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
MU03-Muro di separazione tra viabilità NV06 e se ferroviaria- Relazione di calcolo	ede IA7L	00	D10	CL MU0300 001	Α	56 di 57

9.4.3 VERIFICHE SLE TENSIONE

Condizione Statica

Sez.	M	N	h	Af	A'f	σc	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	26.89	0.00	0.70	10.05	20.11	0.70	46.44
b - b	-155.04	0.00	0.70	20.11	10.05	3.15	136.58
C - C	-49.47	0.00	0.70	20.11	10.05	1.00	43.58
d - d	157.72	69.05	0.60	20.11	10.05	4.33	150.47
e -e	81.96	51.91	0.60	20.11	10.05	2.26	74.38
f-f	35.65	34.78	0.60	20.11	10.05	0.99	29.51
g - g	11.69	17.64	0.60	20.11	10.05	0.33	8.27

Condizione Sismica

Sez.	M	N	h	Af	A'f	σC	σf
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)
a - a	25.15	0.00	0.70	10.05	20.11	0.66	43.42
b - b	-137.31	0.00	0.70	20.11	10.05	2.79	120.96
C - C	-42.78	0.00	0.70	20.11	10.05	0.87	37.69
d - d	114.25	67.96	0.60	20.11	10.05	3.15	104.73
e -e	52.74	51.09	0.60	20.11	10.05	1.46	43.74
f-f	18.32	34.23	0.60	20.11	10.05	0.51	11.54
g - g	3.30	17.36	0.60	20.11	10.05	0.09	0.41

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

9.4.4 VERIFICHE SLE FESSURAZIONE

condizione Frequente

Sez.	M	N	h	Af	A'f	σC	σf	wk	\mathbf{w}_{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	26.89	0.00	0.70	10.05	20.11	0.70	46.44	0.103	0.200
b - b	-155.04	0.00	0.70	20.11	10.05	3.15	136.58	0.191	0.200
C - C	-49.47	0.00	0.70	20.11	10.05	1.00	43.58	0.061	0.200
d - d	157.72	69.05	0.60	20.11	10.05	4.33	150.47	0.191	0.200
e -e	81.96	51.91	0.60	20.11	10.05	2.26	74.38	0.094	0.200
f-f	35.65	34.78	0.60	20.11	10.05	0.99	29.51	0.037	0.200
g - g	11.69	17.64	0.60	20.11	10.05	0.33	8.27	0.010	0.200

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO NODO INTERMODALE DI BRINDISI INFRASTRUTTURA DI COLLEGAMENTO DELL'AREA INDUSTRIALE RETRO-PORTUALE DI BRINDISI CON INFRASTRUTTURA FERROVIARIA NAZIONALE							
	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
MU03-Muro di separazione tra viabilità NV06 e sede ferroviaria- Relazione di calcolo	IA7L	00	D10	CL MU0300 001	Α	57 di 57		

condizione Quasi Permanente

Sez.	М	N	h	Af	A'f	σC	σf	wk	W _{amm}
(-)	(kNm)	(kN)	(m)	(cm ²)	(cm ²)	(N/mm ²)	(N/mm ²)	(mm)	(mm)
a - a	22.23	0.00	0.70	10.05	20.11	0.58	38.38	0.085	0.200
b - b	-100.46	0.00	0.70	20.11	10.05	2.04	88.50	0.124	0.200
C - C	-29.27	0.00	0.70	20.11	10.05	0.59	25.79	0.036	0.200
d - d	91.33	69.05	0.60	20.11	10.05	2.53	80.25	0.101	0.200
e -e	40.73	51.91	0.60	20.11	10.05	1.13	30.94	0.038	0.200
f-f	13.37	34.78	0.60	20.11	10.05	0.37	6.46	0.008	0.200
g - g	2.16	17.64	0.60	20.11	10.05	0.06	-0.04	0.000	0.200

(n.b.: M+ tende le fibre di intradosso, M- tende le fibre di estradosso)

10 INCIDENZE

Fondazione 45 kg/mc Elevazione 55 kg/mc