IMPIANTO DI PRODUZIONE DI ENERGIA DA FONTE SOLARE "ASCOLI SATRIANO MASSERIA SAN POTITO" - POTENZA NOMINALE IMPIANTO FOTOVOLTAICO 47,5 MVA POTENZA NOMINALE SISTEMA DI ACCUMULO ENERGIA 90 MVA

REGIONE PUGLIA PROVINCIA di FOGGIA COMUNE di ASCOLI SATRIANO Località: Masseria San Potito

PROGETTO DEFINITIVO Id AU 82BKAH2

Tav.:

Titolo:

R₁₈a rev1-All Relazione di Calcolo Geotecnico SSE

Scala:	Formato Stampa:	Codice Identificatore Elaborato
n.a.	A4	82BKAH2_RelazioneGeotecnica_18a-rev1-All

DOTT. ING. Fabio CALCARELLA

Via Bartolomeo Ravenna, 14 - 73100 Lecce Mob. +39 340 9243575 fabio.calcarella@gmail.com - fabio.calcarella@ingpec.eu P. IVA 04433020759

Whysol-E Sviluppo S.r.l. Via Meravigli, 3 - 20123 - MILANO Tel: +39 02 359605 info@whysol.it - whysol-e.sviluppo@legalmail.it P. IVA 10692360968

Progettazione:

D. E. A. ING. GIOVANNI LUCA D'AMATO

VIA BENEDETTO CROCE, 23 - 73100 LECCE ENGINEERING
ARCHITECTURE
EL 0832 1940701 - FAX, 0832 1940702
Email: gl.damato@associatidea.com
PEC: giovanniluca.damato@ingpec.eu

Data	Motivo della revisione:	Redatto:	Controllato:	Approvato:
Aprile 2020	Prima emissione	GdA	FC	WHYSOL-E Sviluppo s.r.l.
Giugno 2020	Richiesta Integrazioni - RP Ufficio Energia	GdA	FC	WHYSOL-E Sviluppo s.r.l.

Relazione di calcolo e verifica geotecnica

Sommario

Criteri di analisi geotecnica e progetto delle fondazioni Fondazioni superficiali

•	
Generali	
55.02.02.2	
Generali	
Condizioni di calcolo per terreni coesivi	Sia drenate che non drenate
Calcolo di a' dal rapporto con c'	1.00
Calcolo di au dal rapporto con cu	1.00
Calcolo di σ'dal rapporto con φ'	1.00
Considera l'angolo di attrito in deformazione piana per fondazioni	No
nastriformi	
Calcolo dei parametri rappresentativi per terreni stratificati	Media pesata
-Calcola i valori medi dell'angolo di attrito secondo la sua tangente	No
Capacità portante in condizioni statiche	
Calcolo della capacità portante per rottura generale	Indicazioni EC7 (Allegato D)
-Combinazione dei fattori di forma e di inclinazione del carico	Considera solo i fattori di forma
-Considera il fattore di riduzione per platee	No
-Considera gli effetti dell'eccentricità del carico con un unico fattore	No
riduttivo	
Considera eccentricità e inclinazione dei carichi attraverso domini di	No
interazione	
-Parametro correttivo del momento	0.00
-Parametro correttivo del carico orizzontale	0.00
Calcolo della capacità portante per rottura locale	No
	Vesic (1975)
Calcolo della capacità portante per rottura per punzonamento	No
Calcolo della capacità portante per scorrimento	No
-Percentuale di carico orizzontale assorbito dai cordoli <%>	0.00
-Percentuale di spinta passiva mobilitata <%>	0.00
Calcolo della capacità portante per sollevamento	No
Capacità portante in condizioni sismiche	
Calcolo della capacità portante per rottura generale	Metodo scelto per le condizioni
	statiche
Riduzione dell'angolo d'attrito per terreni incoerenti ben addensati	No
Calcolo della capacità portante per scorrimento	No
-Percentuale di carico orizzontale assorbito dai cordoli <%>	0.00
-Percentuale di spinta passiva mobilitata <%>	0.00
Cedimenti	
Cedimenti	Bowles
-Spessore del terreno responsabile del cedimento	BOWIES
-Dal rapporto con le dimensioni della fondazione pari a	5.00
Considera pressioni di esercizio al netto delle tensioni litostatiche	No
Calcola costante di sottofondo per pressioni di esercizio	No
Limita costante di sottofondo ad un valore	No No
minita costance at Sociotoniao au un varore	INO

Fondazioni profonde

P	
Generali	
Generali	
Calcolo capacità portante per carichi verticali	Secondo formule statiche
Considera capacità portante	Entrambe
Condizioni di calcolo per terreni coesivi	Sia drenate che non drenate
Calcolo della profondità critica	No
Effettua calcolo elasto-plastico per cedimenti	Si
Effettua calcolo elasto-plastico per spostamenti orizzontali	Si
Rapporto di elasticità trazione/compressione pari a	1.00
Fattori di correlazione	1.70
Considera fattori di correlazione anche per carichi orizzontali	No
Considera peso del palo	No
Divisore del raggio del palo per lunghezza conci	1.00
Max numero conci palo	50.00
Attrito laterale limite da prove in sito	
Correlato con prove CPT	No
Correlato con prove SPT	No
Fattore di riduzione attrito laterale per pali trivellati	No
Pressione limite alla base da prove in sito	
Correlata con prove CPT	No
Correlata con prove SPT	No
Fattore di riduzione pressione limite alla base per pali	No

trivellati	
Spostamenti orizzontali	
Spostamenti orizzontali	Risposta elastica in funzione della stratigrafia

								001	acigi	arra
Specifici	1	2	3	4	5	6	7	8	9	10
Attrito laterale limite										
Calcolo dell'attrito laterale limite	Si	Si								
-Condizioni non drenate				01						
-Calcolo di α										
-Pari a									+	
-A.G.I. (1984)	х	Х	х	х	Х	х	Х	х	х	x
-A.P.I. (1984)										
-Viggiani (1999)										
-Olson e Dennis (1982)									-	
-Stas e Kulhavy (1984)										
-Skempton (1986)										
-Reese e O'Neill (1989)										
-Metodo di Bustamente e Doix (1985) per micropali	No	No								
-Iniezioni ripetute	Х	Х	Х	х	Х	х	Х	х	х	Х
-Unica iniezione										
-Condizioni drenate										
-Calcolo di β										
-Pari a	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
-Reese e O'Neill (1989)										
-Calcolato										
-Calcolo di k										
-Pari a										
-Dal rapporto con k₀ pari a	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-Fleming (1985)										
-Calcolo di δ										
-Pari a <grad></grad>										
-Dal rapporto con ¢' pari a	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-Calcolo di a' dal rapporto con c'						1.00				
Calcolo dell'attrito laterale limite per trazione	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
-Considera i risultati del calcolo per l'attrito laterale limite	0 66	0 66	0 66	0 66	0 66	0.66	0 66	0 66	0 66	0 66
percompressione con un fattore di riduzione pari a	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-Sowa (1970)	No	No								
-Bowles (1991)	No					-				
Considera l'effetto dell'attrito negativo	No				-		No			
-Coefficiente di Lambe	INO	140	INO	INO	INO	110	INO	110	110	140
-coefficience of Lambe										
Pressione limite alla base										
Calcolo della pressione limite alla base del palo	Si	Si								
-Terzaghi (1943)	X			_	X		X	X	X	
-Meyerhof (1963)										
-Hansen (1970)									-	
-Vesic (1975)									-	
-Berezantzev (1961)										
-Berezantzev (1965)										
-Stagg e Zienkiewicz (1968)										
-Relazione generale, coefficienti di capacità portante										
-In condizioni drenate										
$-N_{q}$									-	
-N _C										
-In condizioni non drenate										
-N _c										
-Fattore di riduzione per terreni coesivi sovraconsolidati	No	No								
-										
Cedimenti										
Risposta elastica laterale										
-Calcolata dalla rigidezza dello strato	х									
-Coefficiente di influenza	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
-Pari a <dan mq=""></dan>										
Risposta elastica alla base										
-Calcolata dalla rigidezza dello strato	Х	Х	Х	Х	Х	Х	Х	Х	Х	х
-Pari a <dan mq=""></dan>										
Spostamenti orizzontali										
Risposta elastica										
-Vesic (1961)										
-Broms (1964)										
-Glick (1948)										
-Chen (1978)										
-Pari a <dan mq=""></dan>										
-Dal modulo elastico	х	Х	Х	х	Х	Х	Х	Х	х	х
	•	•								

-Coefficiente effetto tridimensionale	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
Resistenza limite										
-Calcolata dai parametri plastici	Х	Х	х	Х	Х	Х	Х	Х	Х	Х
-Coefficiente effetto tridimensionale resistenza per attrito	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
-Coefficiente effetto tridimensionale resistenza per coesione	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
-Pari a <dan mq=""></dan>										

Caratterizzazione

	1	2	3	4	5	6	7	8	9	10
Specifici				_			•			
Informazioni preliminari										
Coefficiente di uniformità	No	No	No	No	No	No	No	No	No	No
-Pari a	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Definizione della composizione granulometrica, per terreni	No	No	No	No	No	No	No	No	No	No
incoerenti										
-Sabbia fine uniforme	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
-Sabbia fine ben gradata - sabbia media uniforme										
-Sabbia media ben gradata - sabbia grossa uniforme										
-Sabbia e ghiaia - ghiaia media Definizione indici compressibilità edometrica, per terreni coesivi	No	No	No	No	No	No	No	No	No	No
-Indice di compressione (Cc)						0.00			-	
-Indice di compressione (CC) -Indice di ricompressione (Cr)						0.00				
-Considera incremento preconsolidazione costante	No.00		No.00		No.00		No.			No.00
-Pari a						0.00				
Correggi NSPT se la misura è sottofalda	No		No	No	No		No		No	No
Densità relativa										
Correlata con prove SPT	+									
-Terzaghi e Peck (1948)	Si	Si	Si	Si	Si	Si	Si	Si	Si	Si
-Gibbs e Holtz (1957)	No		No	No	No	No	No		No	No
-Meyerhof (1957)	No	No	No	No	No	No	No	No	No	No
-Schultze e Menzenbach (1961)	No	No	No	No	No	No	No	No	No	No
-Bazaara (1967)	No	No	No	No	No		No	No	No	No
-Marcuson e Bieganousky (1977)	No	No	No	No	No	No	No	No	No	No
-Skempton (1986)	No	No	No	No	No	No	No	No	No	No
Correlata con prove CPT										
-Schmertmann (1976)	Si		Si	Si	Si	Si	Si	Si	Si	Si
-Jamiolkowski et al. (1985)	No	_	No	No	No	No	No		No	No
-Baldi et al. (1986)	No	No	No	No	No	No	No	No	No	No
Elaborazione dei risultati -Valore medio	х	х	x	х	х	х	x	х	х	
-Valore minore	_ X	A				Α.			Α.	Х
Angolo d'attrito										
Correlato con prove SPT										
-Terzaghi e Peck (1948)	Si	_	Si	Si	Si	Si	Si	Si	Si	Si
-Schmertmann (1975)	No		No	No	No	-	No	_	No	No
-Wolff (1989)	No	-	No	No	No	No	No	-	No	No
-Hatanaka e Uchida (1996)	No	_	No	No	No		No		No	No
-Road Bridge Specification	No	-	No	No	No	No	No		No	No
-Owasaki e Iwasaki -Japanese National Railway	No		No	No	No		No			No
-Dapanese National Raliway -Peck-Hanson e Thornburn	No No		No No	No No	No No		No No		No No	No No
-De Mello	No	_	No	No	No		No		No	No
Correlato con prove CPT	110	140	140	140	140	140	140	140	110	140
-Robertson e Campanella (1983)	Si	Si	Si	Si	Si	Si	Si	Si	Si	Si
-Durgunoglu e Mitchell	No		No	No	No		No			No
-Caguot	No		No	No	No		No			No
Correlata con proprietà indice										
-In funzione della densità relativa, per terreni incoerenti			No	No	No	No	No	No	No	No
	No	No					No	No	No	No
-In funzione dell'indice di plasticità, per terreni coesivi	No No		No	No	No	No	110	_	2.0	
-In funzione dell'indice di plasticità, per terreni coesivi Elaborazione dei risultati			No	No	No	No	110		1.0	
-In funzione dell'indice di plasticità, per terreni coesivi		No	No	No			х		х	х
-In funzione dell'indice di plasticità, per terreni coesivi Elaborazione dei risultati	No	No								х
-In funzione dell'indice di plasticità, per terreni coesivi Elaborazione dei risultati -Valore medio	No	No								Х
-In funzione dell'indice di plasticità, per terreni coesivi Elaborazione dei risultati -Valore medio -Valore minore	No	No								х
-In funzione dell'indice di plasticità, per terreni coesivi Elaborazione dei risultati -Valore medio -Valore minore Coesione non drenata	No	No						х		x
-In funzione dell'indice di plasticità, per terreni coesivi Elaborazione dei risultati -Valore medio -Valore minore Coesione non drenata Correlata con prove SPT -Hara et al. (1971) -Stroud (1974)	No	No x Si	Х	х	X	x	Х	x	x	
-In funzione dell'indice di plasticità, per terreni coesivi Elaborazione dei risultati -Valore medio -Valore minore Coesione non drenata Correlata con prove SPT -Hara et al. (1971) -Stroud (1974) Correlata con prove CPT	No x Si No	No x Si No	si No	x Si No	x Si No	x Si No	x Si No	x Si No	x Si No	Si No
-In funzione dell'indice di plasticità, per terreni coesivi Elaborazione dei risultati -Valore medio -Valore minore Coesione non drenata Correlata con prove SPT -Hara et al. (1971) -Stroud (1974) Correlata con prove CPT -Mayne e Kemper (1988)	No x Si No Si	No x Si No	Si No	Si No	x Si No	x Si No	x Si No	Si No	x Si No	Si No Si
-In funzione dell'indice di plasticità, per terreni coesivi Elaborazione dei risultati -Valore medio -Valore minore Coesione non drenata Correlata con prove SPT -Hara et al. (1971) -Stroud (1974) Correlata con prove CPT -Mayne e Kemper (1988) -Lunne e Eide	No x Si No	No x Si No	si No	x Si No	x Si No	x Si No	x Si No	Si No	x Si No	Si No
-In funzione dell'indice di plasticità, per terreni coesivi Elaborazione dei risultati -Valore medio -Valore minore Coesione non drenata Correlata con prove SPT -Hara et al. (1971) -Stroud (1974) Correlata con prove CPT -Mayne e Kemper (1988) -Lunne e Eide Correlata con proprietà indice	No x Si No No	No x Si No	Si No Si	Si No Si No	x Si No Si	x Si No	Si No Si	Si No Si No	x Si No	Si No Si No
-In funzione dell'indice di plasticità, per terreni coesivi Elaborazione dei risultati -Valore medio -Valore minore Coesione non drenata Correlata con prove SPT -Hara et al. (1971) -Stroud (1974) Correlata con prove CPT -Mayne e Kemper (1988) -Lunne e Eide Correlata con proprietà indice -Bjerrum e Simons (1960)	No x Si No No	No x Si No Si No	Si No Si No	Si No Si No	Si No Si No	Si No Si No	Si No Si No	Si No Si No	Si No Si No	Si No Si No
-In funzione dell'indice di plasticità, per terreni coesivi Elaborazione dei risultati -Valore medio -Valore minore Coesione non drenata Correlata con prove SPT -Hara et al. (1971) -Stroud (1974) Correlata con prove CPT -Mayne e Kemper (1988) -Lunne e Eide Correlata con proprietà indice -Bjerrum e Simons (1960) -Skempton (1953)	No x Si No No No	No x Si No Si No	Si No Si No	Si No Si No	Si No Si No	Si No Si No	Si No Si No	Si No Si No	Si No Si No	Si No Si No
-In funzione dell'indice di plasticità, per terreni coesivi Elaborazione dei risultati -Valore medio -Valore minore Coesione non drenata Correlata con prove SPT -Hara et al. (1971) -Stroud (1974) Correlata con prove CPT -Mayne e Kemper (1988) -Lunne e Eide Correlata con proprietà indice -Bjerrum e Simons (1960)	No X Si No No No	No X Si No No No No	Si No Si No No	Si No Si No No	Si No Si No No	Si No Si No	Si No Si No No	Si No Si No No	Si No Si No No	Si No Si No No

Elaborazione dei risultati										
-Valore medio	Х	Х	Х	X	Х	Х	Х	Х	Х	Х
-Valore minore										
Caratteristiche litostatiche			ı							
Grado di sovraconsolidazione										
-Correlato con prove SPT			1							
-Mayne e Kemper (1988)	No	No	No	No	No	No	No	No	No	No
-Correlato con prove CPT										
-Mayne e Kemper (1988)	No	No	No	No	No	No	No	No	No	No
-Elaborazione dei risultati										
-Valore medio	х	х	Х	х	х	х	Х	х	х	Х
-Valore minore										
Coefficiente di spinta a riposo										
-Calcolo di k ₀ (NC)										
-Jaky (1936)	х	х	Х	х	х	Х	Х	х	х	Х
-Brooker e Ireland (1965)										
-Alpan (1967)										
-Massarsch (1979)										
-Correlato con Dr										
-Calcolato dal coefficiente di Poisson										
-Calcolo di α										
-Pari a										
-Kulhawy (1989)	х	x	х	х	х	х	х	х	х	Х
-Alpan (1967) per terreni coesivi										
-Alpan (1967) per terreni incoerenti										
-Correlato con Dr										
Parametri elastici			<u> </u>							
Correlati con prove GFS										
Correlati con prove SPT										
-Stroud e Butler (1975)										
-Stroud (1989)	Х	х	Х	х	х	Х	Х	х	Х	Х
-Schmertmann (1978)			1							
-Farrent										
-Menzenbach e Malcev										
-D'Appolonia										
-Schulze e Menzenbach			1							
-Crespellani e Vannucchi										
-Ohsaki e Iwasaki, per sabbie										
-Ohsaki e Iwasaki, per sabbie con fini										
Correlati con prove CPT										
-Schmertmann (1977)										
-Robertson e Campanella (1983)										
-Kulhawy e Mayne (1990)										
-Rix e Stokoe (1992)										
-Mayne e Rix (1993)										
				1.00						

Geotecnica

Elenco unità geotecniche

1 sabbie mediamente addensate:

Classificazione: Incoerente

Pesi:

- Peso specifico del terreno naturale: γ = 1800.00 daN/mc
- Peso specifico del terreno saturo: γ_{sat} = 2200.00 daN/mc Parametri plastici:
- Angolo di attrito efficace: ϕ' = 30.00 grad
- Coesione efficace: c' = 0.00 daN/mq
- Caratteristiche litostatiche:
- Grado di sovraconsolidazione: OCR = 1.00
- Coeff. di spinta a riposo: κ_{0} = 0.50

Parametri elastici:

- Modulo elastico normale: E = 15000000.00 daN/mq
- Modulo elastico tangenziale: G = 5680000.00 daN/mq
- Esponente del parametro tensionale: $k_{\rm j}$ = 1.00
- Coeff. di Poisson: v = 0.32
- Modulo edometrico: E_{ed} = 11360000.00 daN/mq
- Modulo elastico non drenato: E_u = 0.00 daN/mq

2 sabbie ben addensate:

Classificazione: Incoerente

Pesi: - Peso specifico del terreno naturale: γ = 1900.00 daN/mc - Peso specifico del terreno saturo: γ_{sat} = 2300.00 daN/mc Parametri plastici: Angolo di attrito efficace: $\phi' = 20.00$ grad - Coesione efficace: c' = 0.00 daN/mq Caratteristiche litostatiche: Grado di sovraconsolidazione: OCR = 1.00 - Coeff. di spinta a riposo: κ_0 = 0.66 Parametri elastici: - Modulo elastico normale: E = 4000000.00 daN/mg - Modulo elastico tangenziale: G = 1430000.00 daN/mq - Esponente del parametro tensionale: $k_j = 1.00$ - Coeff. di Poisson: v = 0.40- Modulo edometrico: E_{ed} = 2860000.00 daN/mq - Modulo elastico non drenato: Eu = 0.00 daN/mq 3 Argilla: Classificazione: Coesivo Pesi: - Peso specifico del terreno naturale: γ = 2050.00 daN/mc - Peso specifico del terreno saturo: γ_{sat} = 2100.00 daN/mc Parametri plastici: - Angolo di attrito efficace: ϕ' = 24.00 grad - Coesione efficace: c' = 3000.00 daN/mq - Coesione non drenata: cu = 22000.00 daN/mq Caratteristiche litostatiche: - Grado di sovraconsolidazione: OCR = 1.00 - Coeff. di spinta a riposo: $\kappa_0 = 0.59$ Parametri elastici: - Modulo elastico normale: E = 800000.00 daN/mq - Modulo elastico tangenziale: G = 150000.00 daN/mq - Esponente del parametro tensionale: $k_j = 1.00$ - Coeff. di Poisson: v = 0.37- Modulo edometrico: Eed = 1000000.00 daN/mg - Modulo elastico non drenato: E_u = 180000.00 daN/mq 4 Riporto: Classificazione: Incoerente - Peso specifico del terreno naturale: γ = 2200.00 daN/mc - Peso specifico del terreno saturo: γ_{sat} = 2250.00 daN/mc Parametri plastici: - Angolo di attrito efficace: 0' = 40.00 grad - Coesione efficace: c' = 0.00 daN/mq Caratteristiche litostatiche: - Grado di sovraconsolidazione: OCR = 1.00 - Coeff. di spinta a riposo: κ_0 = 0.35 Parametri elastici: - Modulo elastico normale: E = 1500000.00 daN/mg - Modulo elastico tangenziale: G = 576923.00 daN/mq - Esponente del parametro tensionale: $k_j = 1.00$ - Coeff. di Poisson: v = 0.30- Modulo edometrico: Eed = 2019230.00 daN/mq - Modulo elastico non drenato: $E_u = 0.00 \text{ daN/mq}$ 5 umificato: Classificazione: Incoerente - Peso specifico del terreno naturale: γ = 1750.00 daN/mc - Peso specifico del terreno saturo: γ_{sat} = 1900.00 daN/mc Parametri plastici: - Angolo di attrito efficace: 0' = 18.00 grad - Coesione efficace: c' = 0.00 daN/mq Caratteristiche litostatiche:

Parametri elastici:

- Grado di sovraconsolidazione: OCR = 1.00 - Coeff. di spinta a riposo: κ_0 = 0.69

- Modulo elastico normale: E = 250000.00 daN/mq
 Modulo elastico tangenziale: G = 103306.00 daN/mq
- Esponente del parametro tensionale: k_j = 1.00
- Coeff. di Poisson: v = 0.21
- Modulo edometrico: E_{ed} = 281419.00 daN/mq
- Modulo elastico non drenato: $E_u = 0.00 \text{ daN/mq}$

Elenco colonne stratigrafiche

Colonna stratigrafica numero 1

Posizione: X=0.00 <m> Y=0.00 <m> Z=4.60 <m>

Falda non presente

Simbologia

=Strato St.

=Profondità della superficie superiore dello strato

Unità geotecnica = Unità geotecnica Class. =Classificazione Coes. = Coesivo Inc. = Incoerente

Roc. = Roccia N. c. = Non classificato

=Peso specifico del terreno naturale γ =Peso specifico del terreno saturo γ_{sat}

=Densità relativa ${\tt D}_{\tt r}$ = Indice di plasticità I_p = Angolo di attrito efficace φ'

c **'** =Coesione efficace =Coesione non drenata Cu

OCR =Grado di sovraconsolidazione =Coeff. di spinta a riposo κ0

=Criterio di progetto Crit.

St.	z <m></m>	Unità geotecnica	Class.	γ <dan mc=""></dan>	, 545	D_r		c' <dan ma=""></dan>	Cu <dan mq=""></dan>	OCR	κ ₀	Crit.
	~			\uan/iic>	<dan mc=""></dan>		\grau>	vaart/ mg-	·uait/inq			
1	0.00	2 sabbie ben addensate	Inc.	1900.00	2300.00		20.00	0.00		1.00	0.66	1

Simbologia

St. = Strato

=Profondità della superficie superiore dello strato

Ε =Modulo elastico normale G =Modulo elastico tangenziale

=Esponente del parametro tensionale kј

= Coeff. di Poisson E_{ed} = Modulo edometrico

=Modulo elastico non drenato

Crit. = Criterio di progetto

St	т	z	E	G	k,	ν	$\mathbf{E}_{\mathtt{ed}}$	E _u	Crit.
		<m></m>	<dan mq=""></dan>	<dan mq=""></dan>			<dan mq=""></dan>	<dan mq=""></dan>	
	1	0.00	4000000.00	1430000.00	1.00	0.40	2860000.00	0.00	1

Strati

Commenti

0 100 200 300 400 sabbie 500 ben addensate 600 700 800 900 1000 1.33 1.71 1.52 0 . 57 . 95 19 Legenda pressioni litostatiche: $\begin{smallmatrix}\sigma&&&&0\\\sigma&'&&&0\\\sigma&&&&1\end{smallmatrix}$ $\begin{smallmatrix}\sigma&_{h&0}\\\sigma&'_{h&0}\end{smallmatrix}$

Pressioni litostatiche

Figura numero 1: Colonna stratigrafica numero 1 str_01

Le verifiche degli elementi di fondazione sono state effettuate utilizzando l'approccio 2.

```
Coefficienti parziali per le azioni, per verifiche in condizioni statiche:
Permanenti strutturali, sicurezza a favore
                                                   \gamma_A = 1.00;
Permanenti strutturali, sicurezza a sfavore
                                                     \gamma_{A} = 1.30;
Permanenti non strutturali, sicurezza a favore \gamma_A = 0.00;
Permanenti non strutturali, sicurezza a sfavore \gamma_A = 1.50;
Variabili, sicurezza a favore
                                                     \gamma_{A} = 0.00;
Variabili, sicurezza a sfavore
                                                     \gamma_{\rm A} = 1.50.
I coefficienti parziali per le azioni sono posti pari all'unità per le verifiche in condizioni sismiche.
Tali coefficienti sono comunque desumibili dalla tabella delle combinazioni delle CCE (Parametri di calcolo).
Coefficienti parziali per i parametri geotecnici:
Tangente dell'angolo di attrito \gamma_M = 1.00;
Coesione efficace
                                   \gamma_{\rm M} = 1.00;
                                   \gamma_{\text{M}} = 1.00;
Coesione non drenata
Coefficienti parziali per la resistenza delle fondazioni superficiali:
Capacità portante \gamma_R = 2.30;
Scorrimento
                   \gamma_{R} = 1.10;
```

Fondazioni superficiali

Simbologia

```
=Base della fondazione
В
      =Lunghezza della fondazione (L>B)
L
D
     =Profondità del piano di posa della fondazione
      = Inclinazione del piano di campagna
β
     =Inclinazione del piano di posa della fondazione
η
     =Peso specifico rappresentativo del terreno di fondazione
\gamma_r
     =Pressione verticale alla profondità del piano di posa della fondazione
\sigma_{\text{v0,f}}
     =Angolo di attrito rappresentativo del terreno di fondazione
φ'r
     =Coesione efficace rappresentativa del terreno di fondazione
      =Coefficiente di capacità portante relativo al sovraccarico laterale
N_{\alpha}
N_c
     = Coefficiente di capacità portante relativo alla coesione del terreno di fondazione
N_g
     =Coefficiente di capacità portante relativo al peso del terreno di fondazione
b_q
     =Fattore di inclinazione del piano di fondazione relativo a sovraccarico laterale
     =Fattore di inclinazione del piano di fondazione relativo a coesione
bc
     =Fattore di inclinazione del piano di fondazione relativo a peso del terreno
b<sub>a</sub>
CC
     =Numero della combinazione delle condizioni di carico elementari
N
     =Sforzo normale
Тx
     = Taglio in dir. X
     = Taglio in dir. Y
Τv
     =Momento intorno all'asse X
Μx
Му
     =Momento intorno all'asse Y
В'
     =Base della fondazione reagente
L'
     = Lunghezza della fondazione reagente
Sq
     =Fattore di forma relativo al sovraccarico laterale
Sc
     =Fattore di forma relativo alla coesione
Sg
     =Fattore di forma relativo al peso del terreno
     =Fattore di inclinazione relativo al sovraccarico laterale
iα
     =Fattore di inclinazione relativo alla coesione
ic
iq
     =Fattore di inclinazione relativo al peso del terreno
qlim
     =Pressione limite
      =Resistenza di progetto (Carico limite)
Rd
Sic. = Sicurezza a rottura
```

Verifiche capacità portante

Verifiche di capacità portante per rottura generale in condizioni statiche

С	:C	N	Tx	Ту	Mx	My	B'	L'	$\mathbf{s}_{ ext{q}}$	sc	Sg	i_q	ic	ig	$\mathbf{q}_{\mathtt{lim}}$	R_d	Sic.
		<dan></dan>	<dan></dan>	<dan></dan>	<danm></danm>	<danm></danm>	<m></m>	<m></m>							<dan mq=""></dan>	<dan></dan>	
3	33	415744.00	7403.07	-9715.01	98.96	782705.00	6.64	21.70	1.10	1.12	0.91	1.00	1.00	1.00	92374.50	5790230.00	13.93

Verifiche di capacità portante per rottura generale in condizioni statiche

Metodo utilizzato: Indicazioni EC7

Platea n. 504

B=5.25 <m> L=9.85 <m> D=6.70 <m> β =0.00 <grad> η =0.00 <grad> γ_r =1900.00 <daN/mc> $\sigma_{v_0,\,f}$ =12730.00 <daN/mq>

Verifiche in condizioni drenate

 ϕ '_r=20.00 <grad> c'_r=0.00 <daN/mq>

N_q=6.40 N_c=14.83 N_g=3.93 b_q=1.00 b_c=1.00 b_g=1.00

CC	n N	Tx	Ty	Мж	My	B'	L'	sq	sc	Sg	i_q	i _c	ig	$\mathbf{q}_{\mathtt{lim}}$	R _d	Sic.
	<dan></dan>	<dan></dan>	<dan></dan>	<danm></danm>	<danm></danm>	<m></m>	<m></m>							<dan mq=""></dan>	<dan></dan>	
33		-7403.06	9714.99	127.86	-4.52	5.25			1.22	0.84	1.00	1.00	1.00	112779.00	2535290.00	7.88

Verifiche di capacità portante per rottura generale in condizioni sismiche

Metodo utilizzato: Condizioni statiche

Platea n. 503

B=6.64 <m> L=25.46 <m> D=5.20 <m> β =0.00 <grad> η =0.00 <grad> γ_r =1900.00 <daN/mc> $\sigma_{\text{v0,f}}$ =9880.00 <daN/mq>

Verifiche in condizioni drenate

 $\phi^{+}{}_{\rm r}\!\!=\!\!20.00$ <grad> $c^{+}{}_{\rm r}\!\!=\!\!0.00$ <daN/mq> $N_{\rm q}\!\!=\!\!6.40$ $N_{\rm c}\!\!=\!\!14.83$ $N_{\rm g}\!\!=\!\!3.93$ $b_{\rm q}\!\!=\!\!1.00$ $b_{\rm c}\!\!=\!\!1.00$ $b_{\rm g}\!\!=\!\!1.00$

CC	N	Tx	Ty	Mx	My	B'	L'	Sa	S.	Sa	iσ	ic	iσ	q _{lim}	R _d	Sic.
	<dan></dan>	<dan></dan>	<dan></dan>	<danm></danm>	<danm></danm>	<m></m>	<m></m>	3	_	,	•	_	,	<dan mq=""></dan>	<dan></dan>	
1	317414.00	-102460.00	-64069.80	2819.79	529062.00	6.63	22.13	1.10	1.12	0.91	1.00	1.00	1.00	92220.00	5880210.00	18.53
3	317420.00	-102513.00	46566.90	-4225.48	529118.00	6.62	22.13	1.10	1.12	0.91	1.00	1.00	1.00	92184.30	5869990.00	18.49
5	324786.00	135174.00	-64142.80	2722.25	721386.00	6.63	21.02	1.11	1.13	0.91	1.00	1.00	1.00	92448.30	5600320.00	17.24
7	324791.00	135121.00	46493.90	-4323.02	721442.00	6.62	21.02	1.11	1.13	0.91	1.00	1.00	1.00	92408.40	5589500.00	17.21
9	319988.00	-19227.20	-193171.00	11005.10	596309.00	6.58	21.74	1.10	1.12	0.91	1.00	1.00	1.00	92090.40	5723140.00	17.89
11	322199.00	52063.00	-193193.00	10975.90	654006.00	6.58	21.41	1.11	1.12	0.91	1.00	1.00	1.00	92160.10	5640400.00	17.51
13	320007.00	-19402.50	175617.00	-12479.10	596498.00	6.57	21.74	1.10	1.12	0.91	1.00	1.00	1.00	92053.30	5712570.00	17.85
15	322218.00	51887.70	175596.00	-12508.40	654195.00	6.57	21.40	1.10	1.12	0.91	1.00	1.00	1.00	92121.70	5629660.00	17.47
17	317412.00	-102431.00	-62944.30	4475.60	529028.00	6.62	22.13	1.10	1.12	0.91	1.00	1.00	1.00	92177.80	5868310.00	18.49
19	317418.00	-102484.00	47692.30	-2569.68	529085.00	6.63	22.13	1.10	1.12	0.91	1.00	1.00	1.00	92226.40	5881990.00	18.53
21	324784.00	135203.00	-63017.30	4378.05	721352.00	6.62	21.02	1.11	1.13	0.91	1.00	1.00	1.00	92406.90	5589250.00	17.21
23	324789.00	135150.00	47619.30	-2667.22	721409.00	6.63	21.02	1.11	1.13	0.91	1.00	1.00	1.00	92449.70	5600670.00	17.24
25	319986.00	-19197.70	-192046.00	12660.90	596276.00	6.57	21.74	1.10	1.12	0.91	1.00	1.00	1.00	92048.50	5711570.00	17.85
27	322197.00	52092.50	-192068.00	12631.70	653973.00	6.57	21.41	1.10	1.12	0.91	1.00	1.00	1.00	92118.40	5629090.00	17.47
29	320005.00	-19373.00	176743.00	-10823.30	596464.00	6.58	21.74	1.10	1.12	0.91	1.00	1.00	1.00	92095.20	5724220.00	17.89
31	322216.00	51917.20	176721.00	-10852.60	654161.00	6.58	21.40	1.11	1.12	0.91	1.00	1.00	1.00	92163.40	5641070.00	17.51

Verifiche di capacità portante per rottura generale in condizioni sismiche

Metodo utilizzato: Condizioni statiche

Platea n. 504

B=5.25 <m> L=9.85 <m> D=6.70 <m> β =0.00 <grad> η =0.00 <grad> γ_r =1900.00 <daN/mc> $\sigma_{v_0,f}$ =12730.00 <daN/mq>

Verifiche in condizioni drenate

 $\phi^{+}_{\rm r}\!\!=\!\!20.00$ <grad> $c^{+}_{\rm r}\!\!=\!\!0.00$ <daN/mq> $N_{\rm q}\!\!=\!\!6.40$ $N_{\rm c}\!\!=\!\!14.83$ $N_{\rm g}\!\!=\!\!3.93$ $b_{\rm q}\!\!=\!\!1.00$ $b_{\rm c}\!\!=\!\!1.00$ $b_{\rm g}\!\!=\!\!1.00$

		_	_													
CC	N	Tx	Тy	Мx	My	B'	L'	s_q	sc	\mathbf{s}_{g}	iq	i_c	ig	$\mathbf{q}_{\mathtt{lim}}$	R_d	Sic.
	<dan></dan>	<dan></dan>	<dan></dan>	<danm></danm>	<danm></danm>	<m></m>	<m></m>							<dan mq=""></dan>	<dan></dan>	
1	249941.00	45224.80	46899.10	243.72	-231.30	5.25	9.85	1.18	1.22	0.84	1.00	1.00	1.00	112774.00	2534170.00	10.14
3	249936.00	45277.40	-29396.20	-22.80	-230.79	5.25	9.85	1.18	1.22	0.84	1.00	1.00	1.00	112784.00	2535240.00	10.14
5	242570.00	-77937.90	46972.10	233.99	335.40	5.25	9.85	1.18	1.22	0.84	1.00	1.00	1.00	112776.00	2533970.00	10.45
7	242564.00	-77885.30	-29323.20	-32.53	335.92	5.25	9.85	1.18	1.22	0.84	1.00	1.00	1.00	112785.00	2534970.00	10.45
9	247368.00	2056.51	135936.00	551.24	-33.56	5.25	9.85	1.18	1.22	0.84	1.00	1.00	1.00	112759.00	2533020.00	10.24
11	245157.00	-34892.30	135958.00	548.33	136.45	5.25	9.85	1.18	1.22	0.84	1.00	1.00	1.00	112760.00	2532820.00	10.33
13	247349.00	2231.83	-118382.00	-337.14	-31.84	5.25	9.85	1.18	1.22	0.84	1.00	1.00	1.00	112768.00	2534070.00	10.24
15	245138.00	-34717.00	-118360.00	-340.06	138.17	5.25	9.85	1.18	1.22	0.84	1.00	1.00	1.00	112769.00	2533840.00	10.34
17	249943.00	45195.30	45773.60	241.56	-234.61	5.25	9.85	1.18	1.22	0.84	1.00	1.00	1.00	112775.00	2534170.00	10.14
19	249938.00	45247.90	-30521.70	-24.95	-234.10	5.25	9.85	1.18	1.22	0.84	1.00	1.00	1.00	112784.00	2535220.00	10.14
21	242572.00	-77967.40	45846.60	231.83	332.10	5.25	9.85	1.18	1.22	0.84	1.00	1.00	1.00	112776.00	2533990.00	10.45
23	242566.00	-77914.90	-30448.70	-34.69	332.61	5.25	9.85	1.18	1.22	0.84	1.00	1.00	1.00	112784.00	2534970.00	10.45

25	247370.00	2027.01	134810.00	549.09	-36.87	5.25 9.85	1.18 1.2	20.84	1.00 1.00	1.00	112759.00	2533020.00 10.24
27	245159.00	-34921.80	134832.00	546.17	133.15	5.25 9.85	1.18 1.2	2 0.84	1.00 1.00	1.00	112760.00	2532830.00 10.33
29	247351.00	2202.33	-119507.00	-339.29	-35.15	5.25 9.85	1.18 1.2	20.84	1.00 1.00	1.00	112768.00	2534050.00 10.24
31	245140.00	-34746.50	-119485.00	-342.21	134.86	5.25 9.85	1.18 1.2	2 0.84	1.00 1.00	1.00	112769.00	2533830.00 10.34

Cedimenti

Metodo utilizzato: Bowles

Simbologia

- B = Base della fondazione
- L =Lunghezza della fondazione (L>B)
 D =Profondità del piano di posa della fondazione
- H = Spessore del terreno responsabile del cedimento
- $\mathtt{E}_{\mathtt{r}}$ =Modulo elastico rappresentativo del terreno di fondazione
- $\nu_{\rm r}$ =Coefficiente di Poisson rappresentativo del terreno di fondazione
- Is = Coefficiente di influenza
- I_f =Coefficiente di profondità
- kw =Costante di sottofondo
- CC =Numero della combinazione delle condizioni di carico elementari
- N = Sforzo normale
- q_{es} =Pressione di esercizio
- Ced = Cedimento calcolato

Platea n. 503

1 _s -	0.75 l _f -0.	01 KW-03/	29.10
CC	N	\mathbf{q}_{es}	Ced
	<dan></dan>	<daN/mq>	<cm></cm>
1	317414.00	1876.01	2.19
1	283195.00	1673.76	1.95
2	287962.00	1701.94	1.99
3	317420.00	1876.04	2.19
3	283208.00	1673.84	1.95
4	287968.00	1701.97	1.99
5	324786.00	1919.57	2.24
5	300618.00	1776.73	2.07
6	295855.00	1748.59	2.04
7	324791.00	1919.61	2.24
7	300631.00	1776.81	2.07
8	295861.00	1748.62	2.04
9	319988.00	1891.21	2.21
9	289277.00	1709.71	1.99
10	290718.00	1718.22	2.00
11	322199.00	1904.28	2.22
11	294504.00	1740.60	2.03
12	293086.00	1732.22	2.02
13	320007.00	1891.33	2.21
13	289322.00	1709.97	1.99
14	290738.00	1718.34	2.00
15	322218.00	1904.40	2.22
15	294549.00	1740.86	2.03
16	293106.00	1732.34	2.02
17	317412.00	1875.99	2.19
17	283190.00	1673.73	1.95
18	287960.00	1701.92	1.99
19	317418.00	1876.03	2.19
19	283204.00	1673.81	1.95
20	287966.00	1701.96	1.99
21	324784.00	1919.56	2.24
21	300613.00	1776.71	2.07
22	295853.00	1748.57	2.04
23	324789.00	1919.59	2.24
23	300627.00	1776.79	2.07
24	295859.00	1748.61	2.04
25	319986.00	1891.20	2.21
25	289273.00	1709.68	1.99
26	290716.00	1718.21	2.00
27	322197.00	1904.27	2.22
27	294500.00	1740.57	2.03
28	293084.00	1732.20	2.02
29	320005.00	1891.31	2.21
29	289317.00	1709.94	1.99
30	290736.00	1718.33	2.00
31	322216.00	1904.38	2.22
31	294544.00	1740.84	2.03
32	293104.00	1732.32	2.02

33	415744.00	2457.16	2.87
34	308387.00	1822.65	2.13
35	293140.00	1732.54	2.02
36	291911.00	1725.27	2.01

Platea n. 504

B=5.25 <m> L=9.85 <m> D=6.70 <m> H=26.25 <m> E_r=588000.00 <daN/mq> ν_r =0.40 I_s =0.64 I_f =0.67 kw=155561.00 <daN/mc>

CC	N	~	Ced
CC	<dan></dan>	q _{es} <dan mq=""></dan>	<cm></cm>
1	249941.00	4833.29	3.11
1	232583.00	4497.62	2.89
2	227816.00	4405.43	2.83
3	249936.00	4833.18	3.11
3	232570.00	4497.36	2.89
4	227810.00	4405.31	2.83
5	242570.00	4690.74	3.02
5	215160.00	4160.69	2.67
6	219923.00	4252.79	
7	010551.00	4.600.60	
7	242564.00	4160.44	2.67
8	219917.00	4252.68	
9			
9			
-			2.82
10	225060.00	4352.14	2.80
11	245157.00	4740.76	3.05
11	221274.00	4278.92	2.75
12	222692.00	4306.35	2.77
13	247349.00	4783.16	3.07
13	226456.00	4379.13	2.82
14	225040.00	4351.75	2.80
15	245138.00	4740.40	3.05
15	221229.00	4278.06	2.75
16	222672.00	4305.96	2.77
17	249943.00	4833.33	3.11
17	232588.00	4497.71	2.89
18	227818.00	4405.47	2.83
19	249938.00	4833.22	3.11
19	232574.00	4497.45	2.89
20	227812.00	4405.35	2.83
21	242572.00	4690.78	3.02
21	215165.00	4160.78	2.67
22	219925.00	4252.83	2.73
23	242566.00	4690.67	3.02
23	215151.00	4160.53	2.67
24	219919.00	4252.72	2.73
25	247370.00	4783.56	3.08
25	226505.00	4380.09	2.82
26	225062.00	4352.18	2.80
27	245159.00	4740.80	3.05
27	221278.00	4279.01	2.75
28	222694.00	4306.39	2.77
29	247351.00	4783.20	3.07
29	226461.00	4379.22	2.82
30	225042.00	4351.79	2.80
31	245140.00	4740.43	3.05
31	221234.00	4278.15	2.75
32	222674.00	4306.00	2.77
33	321906.00	6224.92	4.00
34	238818.00	4618.18	2.97
35	224768.00	4346.49	2.79
36	223867.00	4329.07	2.78