IMPIANTO AGRI-NATURALISTICO-VOLTAICO (ANaV) CERIGNOLA SAN GIOVANNI IN FONTE

REGIONE PUGLIA PROVINCIA DI FOGGIA COMUNE di CERIGNOLA

Progetto per la realizzazione dell'impianto (ANaV) per la produzione di energia elettrica da fonte solare della potenza complessiva di 99,42 MW, sito nel comune di Cerignola, località "San Giovanni in Fonte" e relative opere di connessione nei comuni di Stornarella, Orta Nova e Stornara (FG)

PROGETTO DEFINITIVO

Elaborato:

Titolo:

Rel. 11a.2 Relazione di calcolo preliminare e verifica delle strutture - Impianto ANaV

Scala:	Formato Stampa:	Codice Identificatore Elaborato
n.a.	A4	Y1CRT40_CalcoliPrelStrutture_11a.2

Progettazione:

Università degli Studi di Firenze

Dr. Enrico Palchetti
Piazzale delle Cascine, 18 - 50121 Firenze
Centralino +39 055 2755800
enrico.palchetti@unifi.it - dagri@pec.unifi.it

ALIA SOCIETA' SEMPLICE

Prof. Arch. Giovanni Campeol Piazza delle Istituzioni, 22 - 31100 Treviso Tel. 0422 235343 alia@aliavalutazioni.it - aliasocieta@pec.it

Studio Tecnico Calcarella

Dott. ing. Fabio Calcarella Via Bartolomeo Ravenna, 14 - 73100 Lecce Mob. 340 9243575 fabio calcarella@gmail.com - fabio calcarella@ingpec.eu

SE.ARCH - S.r.I.

Dott. Stefano Di Stefano Via del Vigneto, 21 - 39100 Bolzano (BZ) - Italia serviziarcheologia@pec.it

Industrial service S.r.I.

Via Aliano, 25 - 71042 Bolzano (BZ) - Italia Tel. 0885 542 07 74 info@industrial-service.it

Consulenza Scientifica:

Politecnico di Bari

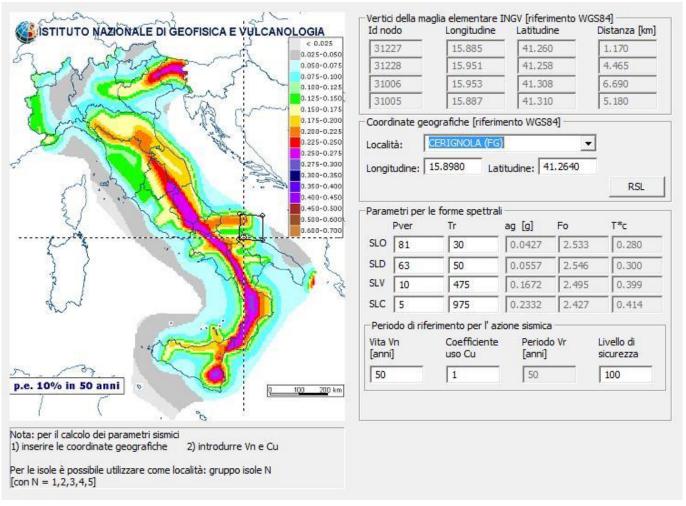
Dip. Meccanica Matematica e Management Prof. Ing. Riccardo Amirante via Orabona 4 - 70126 Bari amirante@poliba.it

Committente:

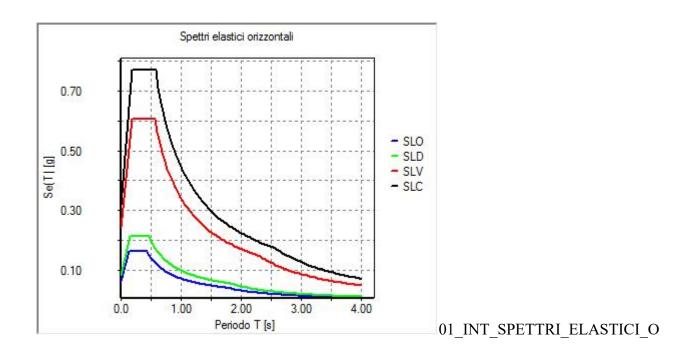
TOZZI GREEN S.p.a.

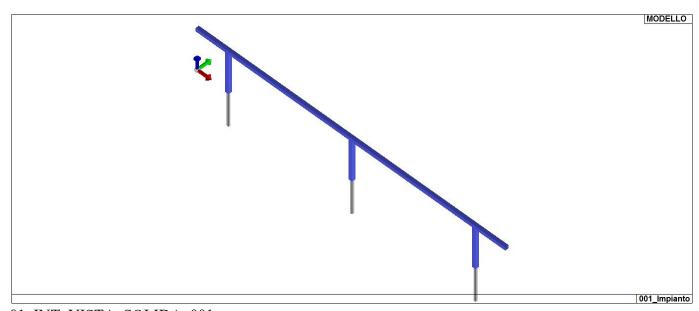
Via Brigata Ebraica, 50 - 48123 Mezzano (RA) Tel 0544 525311 Fax 0544 525319 info@tozzigreen.com - tozzi.re@legalmail.it www.tozzigreen.com

Data	Motivo della revisione:	Redatto:	Controllato:	Approvato:
Marzo 2021	Prima emissione	STC	FC	Tozzi Green

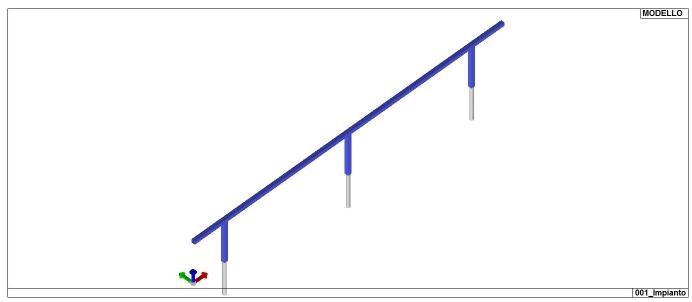

NORMATIVA DI RIFERIMENTO	2
CARATTERISTICHE MATERIALI UTILIZZATI	7
LEGENDA TABELLA DATI MATERIALI	7
MODELLAZIONE DELLE SEZIONI	10
LEGENDA TABELLA DATI SEZIONI	10
MODELLAZIONE STRUTTURA: NODI	12
LEGENDA TABELLA DATI NODI	12
TABELLA DATI NODI	12
MODELLAZIONE STRUTTURA: ELEMENTI TRAVE	14
TABELLA DATI TRAVI	14
MODELLAZIONE DELLE AZIONI	17
LEGENDA TABELLA DATI AZIONI	17
SCHEMATIZZAZIONE DEI CASI DI CARICO	19
LEGENDA TABELLA CASI DI CARICO	19
DEFINIZIONE DELLE COMBINAZIONI	28
LEGENDA TABELLA COMBINAZIONI DI CARICO	28
AZIONE SISMICA	32
VALUTAZIONE DELL' AZIONE SISMICA	32
Parametri della struttura	32
RISULTATI ANALISI SISMICHE	35
LEGENDA TABELLA ANALISI SISMICHE	35
RISULTATI NODALI	43
LEGENDA RISULTATI NODALI	43
RISULTATI OPERE DI FONDAZIONE	49
LEGENDA RISULTATI OPERE DI FONDAZIONE	49
RISULTATI ELEMENTI TIPO TRAVE	51
LEGENDA RISULTATI ELEMENTI TIPO TRAVE	51

NORMATIVA DI RIFERIMENTO

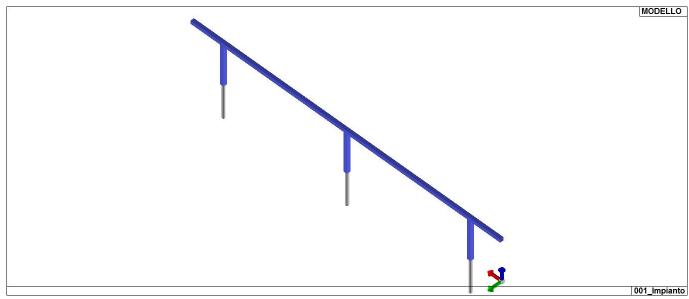

- 1. D.Min. Infrastrutture Min. Interni e Prot. Civile 17 Gennaio 2018 e allegate "Norme tecniche per le costruzioni".
- 2. Circolare 21/01/19, n. 7 C.S.LL.PP "Istruzioni per l'applicazione dell'aggiornamento delle Norme Tecniche delle Costruzioni di cui al decreto ministeriale 17 gennaio 2018"
- 3. D.Min. Infrastrutture e trasporti 14 Settembre 2005 e allegate "Norme tecniche per le costruzioni".
- 4. D.M. LL.PP. 9 Gennaio 1996 "Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche".
- 5. D.M. LL.PP. 16 Gennaio 1996 "Norme tecniche relative ai << Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi>>".
- 6. D.M. LL.PP. 16 Gennaio 1996 "Norme tecniche per le costruzioni in zone sismiche".
- 7. Circolare 4/07/96, n.156AA.GG./STC. istruzioni per l'applicazione delle "Norme tecniche relative ai <<Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi>>" di cui al D.M. 16/01/96.
- 8. Circolare 10/04/97, n.65AA.GG. istruzioni per l'applicazione delle "Norme tecniche per le costruzioni in zone sismiche" di cui al D.M. 16/01/96.
- 9. D.M. LL.PP. 20 Novembre 1987 "Norme tecniche per la progettazione, esecuzione e collaudo degli edifici in muratura e per il loro consolidamento".
- 10. Circolare 4 Gennaio 1989 n. 30787 "Istruzioni in merito alle norme tecniche per la progettazione, esecuzione e collaudo degli edifici in muratura e per il loro consolidamento".
- 11. D.M. LL.PP. 11 Marzo 1988 "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione".
- 12. D.M. LL.PP. 3 Dicembre 1987 "Norme tecniche per la progettazione, esecuzione e collaudo delle costruzioni prefabbricate".
- 13. UNI 9502 Procedimento analitico per valutare la resistenza al fuoco degli elementi costruttivi di conglomerato cementizio armato, normale e precompresso edizione maggio 2001
- 14. Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20 marzo 2003 "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica" e successive modificazioni e integrazioni.
- 15. UNI EN 1990:2006 13/04/2006 Eurocodice 0 Criteri generali di progettazione strutturale.
- 16. UNI EN 1991-1-1:2004 01/08/2004 Eurocodice 1 Azioni sulle strutture Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici.
- 17. UNI EN 1991-2:2005 01/03/2005 Eurocodice 1 Azioni sulle strutture Parte 2: Carichi da traffico sui ponti.
- 18. UNI EN 1991-1-3:2004 01/10/2004 Eurocodice 1 Azioni sulle strutture Parte 1-3: Azioni in generale Carichi da neve.
- 19. UNI EN 1991-1-4:2005 01/07/2005 Eurocodice 1 Azioni sulle strutture Parte 1-4: Azioni in generale Azioni del vento.
- 20. UNI EN 1991-1-5:2004 01/10/2004 Eurocodice 1 Azioni sulle strutture Parte 1-5: Azioni in generale Azioni termiche.
- 21. UNI EN 1992-1-1:2005 24/11/2005 Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici.
- 22. UNI EN 1992-1-2:2005 01/04/2005 Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-2: Regole generali Progettazione strutturale contro l'incendio.
- 23. UNI EN 1993-1-1:2005 01/08/2005 Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-1: Regole generali e regole per gli edifici.
- 24. UNI EN 1993-1-8:2005 01/08/2005 Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-8: Progettazione dei collegamenti.
- 25. UNI EN 1994-1-1:2005 01/03/2005 Eurocodice 4 Progettazione delle strutture composte acciaio-calcestruzzo Parte 1-1: Regole generali e regole per gli edifici.
- 26. UNI EN 1994-2:2006 12/01/2006 Eurocodice 4 Progettazione delle strutture composte acciaio-calcestruzzo Parte 2: Regole generali e regole per i ponti.
- 27. UNI EN 1995-1-1:2005 01/02/2005 Eurocodice 5 Progettazione delle strutture di legno Parte 1-1: Regole generali Regole comuni e regole per gli edifici.
- 28. UNI EN 1995-2:2005 01/01/2005 Eurocodice 5 Progettazione delle strutture di legno Parte 2: Ponti.
- 29. UNI EN 1996-1-1:2006 26/01/2006 Eurocodice 6 Progettazione delle strutture di muratura Parte 1-1: Regole generali per strutture di muratura armata e non armata.

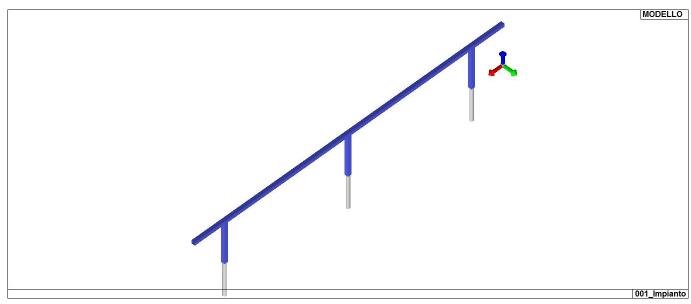

- 30. UNI EN 1996-3:2006 09/03/2006 Eurocodice 6 Progettazione delle strutture di muratura Parte 3: Metodi di calcolo semplificato per strutture di muratura non armata.
- 31. UNI EN 1997-1:2005 01/02/2005 Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali.
- 32. UNI EN 1998-1:2005 01/03/2005 Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 1: Regole generali, azioni sismiche e regole per gli edifici.
- 33. UNI EN 1998-3:2005 01/08/2005 Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 3: Valutazione e adequamento degli edifici.
- 34. UNI EN 1998-5:2005 01/01/2005 Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.

NOTA il capitolo "normativa di riferimento": riporta l' elenco delle normative implementate nel software. Le norme utilizzate per la struttura oggetto della presente relazione sono indicate nel precedente capitolo "RELAZIONE DI CALCOLO STRUTTURALE" "ANALISI E VERIFICHE SVOLTE CON L'AUSILIO DI CODICI DI CALCOLO". Laddove nei capitoli successivi vengano richiamate norme antecedenti al DM 17.01.18 è dovuto o a progettazione simulata di edifico esistente.



01 INT PERICOLOSITA




01_INT_VISTA_SOLIDA_001

01_INT_VISTA_SOLIDA_002

01_INT_VISTA_SOLIDA_003

01_INT_VISTA_SOLIDA_004

CARATTERISTICHE MATERIALI UTILIZZATI

LEGENDA TABELLA DATI MATERIALI

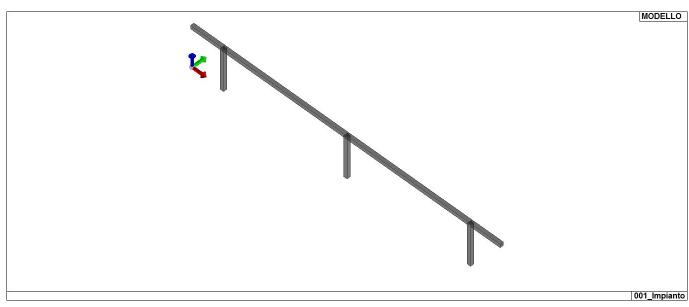
Il programma consente l'uso di materiali diversi. Sono previsti i seguenti tipi di materiale:

1	materiale tipo cemento armato
2	materiale tipo acciaio
3	materiale tipo muratura
4	materiale tipo legno
5	materiale tipo generico

I materiali utilizzati nella modellazione sono individuati da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni materiale vengono riportati in tabella i seguenti dati:

Young	modulo di elasticità normale E
Poisson	coefficiente di contrazione trasversale ni
G	modulo di elasticità tangenziale
Gamma	peso specifico
Alfa	coefficiente di dilatazione termica
Fattore di confidenza FC	Fattore di confidenza specifico per materiale; (è
m	riportato solo se diverso da quello globale della
	struttura)
Fattore di confidenza FC	Fattore di confidenza specifico per l'armatura (è
а	riportato solo se diverso da quello globale della
	struttura)
Elasto-plastico	Materiale elastico perfettamente plastico per aste
	non lineari
Massima compressione	Massima tensione di compressione per aste non
	lineari
Massima trazione	Massima tensione di trazione per aste non lineari
Fattore attrito	Coefficinete di attrito per aste non lineari
Rapporto HRDb	Rapporto di hardening a flessione
Rapporto HRDv	Rapporto di hardening a taglio

I dati soprariportati vengono utilizzati per la modellazione dello schema statico e per la determinazione dei carichi inerziali e termici. In relazione al tipo di materiale vengono riportati inoltre:


1	c.a.		
		Resistenza Rc	resistenza a cmpressione cubica
		Resistenza fctm	resistenza media a trazione semplice
		Coefficiente ksb	Coefficiente di riduzione della resistenza a compressione da utilizzare nello stress block
2	acciaio		CALIFECTION OF SECURITY
		Tensione ft	Valore della tensione di rottura
		Tensione fy	Valore della tensione di snervamento
		Resistenza fd	Resistenza di calcolo per SL CNR-UNI 10011
		Resistenza fd (>40)	Resistenza di calcolo per SL CNR-UNI 10011 per spessori > 40mm
		Tensione ammissibile	Tensione ammissibile CNR-UNI 10011
		Tensione	Tensione ammissibile CNR-UNI 10011 per spessori > 40mm
		ammissibile(>40)	
3	muratur		

	<u>а</u>		
	а	Muratura consolidata	Muratura per la quale si prevedono interventi di rinforzo"
		Incremento	Incremento conseguito in termini di resistenza
		resistenza	moremente conseguite in termini di resistenza
		Incremento rigidezza	Incremento conseguito in termini di rigidezza
		Resistenza f	Valore della resistenza a compressione
		Resistenza fv0	Valore della resistenza a taglio in assenza di tensioni normali
		Resistenza fh	Valore della resistenza a compressione orizzontale
		Resistenza fb	Valore della resistenza a compressione dei blocchi
		Resistenza fbh	Valore della resistenza a compressione dei blocchi in direzione
		redictoriza ibri	orizzontale
		Resistenza fv0h	Valore della resistenza a taglio in assenza di tensioni normali per le
		D	travi
		Resistenza f	Valore della resistenza a trazione per fessurazione diagonale
		Resistenza fvlim	Valore della massima resistenza a taglio
		Resistenza fbt	Valore della resistenza a trazione dei blocchi
		Coefficiente mu	Coefficiente d'attrito utilizzato per la resistenza a taglio (tipicamente 0.4)
		Coefficiente fi	Coefficiente d'ingranamento utilizzato per la resistenza a taglio
		Coefficiente ksb	Coefficiente di riduzione della resistenza a compressione da utilizzare nello stress block
4	legno		
		E0,05	Modulo di elasticità corrispondente ad un frattile del 5%
		Resistenza fc0	Valore della resistenza a compressione parallela
		Resistenza ft0	Valore della resistenza a trazione parallela
		Resistenza fm	Valore della resistenza a flessione
		Resistenza fv	Valore della resistenza a taglio
		Resist. ft0k	Resistenza caratteristica (tensione amm. per REGLES) per trazione
		Resist. fmk	Resistenza caratteristica (tensione amm. per REGLES) per flessione
		Resist. fvk	Resistenza caratteristica (tensione amm. per REGLES) per taglio
		Modulo E0,05	Modulo elastico parallelo caratteristico
		Lamellare	lamellare o massiccio

Nel tabulato si riportano sia i valori caratteristici che medi utilizzando gli uni e/o gli altri in relazione alle richieste di normativa ed alla tipologia di verifica. (Cap.7 NTC18 per materiali nuovi, Cap.8 NTC18 e relativa circolare 21/01/2019 per materiali esistenti, Linee Guida Reluis per incamiciatura CAM, CNR-DT 200 per interventi con FRP)

Vengono inoltre riportate le tabelle contenenti il riassunto delle informazioni assegnate nei criteri di progetto in uso.

ld	Tipo / Note	V. caratt.	V. medio	Young	Poisson	G	Gamma	Alfa	Altri
		daN/cm2	daN/cm2	daN/cm2		daN/cm2	daN/cm3		
11	Acciaio Fe360 - S235-acciaio Fe360-S235			2.100e+06	0.30	8.077e+05	7.85e-03	1.20e-05	
	Tensione ft	3600.0							
	Resistenza fd	5000.0							
	Resistenza fd (>40)	2100.0							
	Tensione ammissibile	1600.0							
	Tensione ammissibile (>40)	1400.0							
	Rapporto HRDb								1.00e-05
	Rapporto HRDv								1.00e-05

11_MOD_MATERIALI_D2

Pilastri acc.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Lunghezze libere						
Metodo di calcolo 2-2	Assegnato					
2-2 Beta assegnato	2.00					
2-2 Beta * L assegnato [cm]	0.0					
Metodo di calcolo 3-3	Assegnato					
3-3 Beta assegnato	2.00					
3-3 Beta * L assegnato [cm]	0.0					
1-1 Beta assegnato	1.00					
1-1 Beta * L assegnato [cm]	0.0					
Generalità						
Coefficiente gamma M0	1.05					
Coefficiente gamma M1	1.05					
Coefficiente gamma M2	1.25					
Effetti del 2 ordine	SI					
Momenti equivalenti	SI					
Usa condizioni I e II	SI					

Travi acc.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Lunghezze libere						
3-3 Beta * L automatico	SI					
3-3 Beta assegnato	1.00					
3-3 Beta assegnato [cm]	0.0					
2-2 Beta * L automatico	SI					
2-2 Beta assegnato	1.00					
2-2 Beta * L assegnato [cm]	0.0					
1-1 Beta * L automatico	SI					
1-1 Beta assegnato	1.00					
1-1 Beta * L assegnato [cm]	0.0					
Generalità						
Coefficiente gamma M0	1.05					
Coefficiente gamma M1	1.05					
Coefficiente gamma M2	1.25					
Luce di taglio per GR [cm]	1.00					
Usa condizioni I e II	SI					
Momenti equivalenti	SI					

MODELLAZIONE DELLE SEZIONI

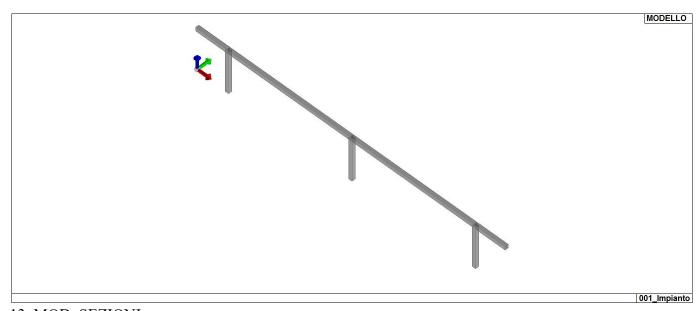
LEGENDA TABELLA DATI SEZIONI

Il programma consente l'uso di sezioni diverse. Sono previsti i seguenti tipi di sezione:

- 1. sezione di tipo generico
- 2. profilati semplici
- 3. profilati accoppiati e speciali

Le sezioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni sezione vengono riportati in tabella i seguenti dati:

Area	area della sezione
A V2	area della sezione/fattore di taglio (per il taglio in direzione 2)
A V3	area della sezione/fattore di taglio (per il taglio in direzione 3)
Jt	fattore torsionale di rigidezza
J2-2	momento d'inerzia della sezione riferito all'asse 2
J3-3	momento d'inerzia della sezione riferito all'asse 3
W2-2	modulo di resistenza della sezione riferito all'asse 2
W3-3	modulo di resistenza della sezione riferito all'asse 3
Wp2-2	modulo di resistenza plastico della sezione riferito all'asse 2
Wp3-3	modulo di resistenza plastico della sezione riferito all'asse 3


I dati sopra riportati vengono utilizzati per la determinazione dei carichi inerziali e per la definizione delle rigidezze degli elementi strutturali; qualora il valore di Area V2 (e/o Area V3) sia nullo la deformabilità per taglio V2 (e/o V3) è trascurata. La valutazione delle caratteristiche inerziali delle sezioni è condotta nel riferimento 2-3 dell'elemento.

H	Ht	Ht Ht Hti	Ht Bs	Ht Bs ↓Hi	Hi] Ht
rettangolare	аТ	a T rovescia	a T di colmo	aL	a L specchiata
HS. BS Ht	Ht Ht Ht Hts	Bs ** AH	Ht Ht Hi	HnŢ,ŢHs Bi Bi	HnŢ, ☐ Hs Bi Hi Bi
a L specchiata	a L rovescia	a L di colmo	a doppio T	a quattro	a quattro
rovescia				specchiata	
Hŧ Bi → Thi	Ht Bs IHi	He	R	H Bi Hi Hi	Re Ri
a U	аС	a croce	circolare	rettangolare cava	circolare cava

Per quanto concerne i profilati semplici ed accoppiati l'asse 2 del riferimento coincide con l'asse x riportato nei più diffusi profilatari.

Per quanto concerne le sezioni di tipo generico (tipo 1.): i valori dimensionali con prefisso B sono riferiti all'asse 2 i valori dimensionali con prefisso H sono riferiti all'asse 3

ld	Tipo	Area	A V2	A V3	Jt	J 2-2	J 3-3	W 2-2	W 3-3	Wp 2-2	Wp 3-3
		cm2	cm2	cm2	cm4	cm4	cm4	cm3	cm3	cm3	cm3
1	T.QU 200x200x10	72.57	0.0	0.0	7071.73	4251.06	4251.06	425.11	425.11	508.08	508.08

13_MOD_SEZIONI

MODELLAZIONE STRUTTURA: NODI

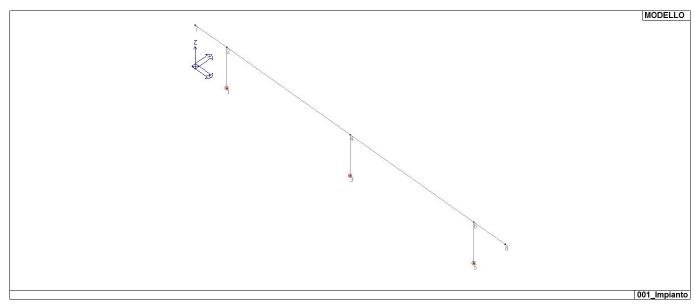
LEGENDA TABELLA DATI NODI

Il programma utilizza per la modellazione nodi strutturali.

Ogni nodo è individuato dalle coordinate cartesiane nel sistema di riferimento globale (X Y Z).

Ad ogni nodo è eventualmente associato un codice di vincolamento rigido, un codice di fondazione speciale, ed un set di sei molle (tre per le traslazioni, tre per le rotazioni). Le tabelle sottoriportate riflettono le succitate possibilità. In particolare per ogni nodo viene indicato in tabella:

Nodo	numero del nodo.
X	valore della coordinata X
Υ	valore della coordinata Y
Z	valore della coordinata Z


Per i nodi ai quali sia associato un codice di vincolamento rigido, un codice di fondazione speciale o un set di molle viene indicato in tabella:

Nodo	numero del nodo.
X	valore della coordinata X
Υ	valore della coordinata Y
Z	valore della coordinata Z
Note	eventuale codice di vincolo (es. v=110010 sei valori relativi ai sei gradi di libertà previsti per il nodo TxTyTzRxRyRz, il valore 1 indica che lo spostamento o rotazione relativo è impedito, il valore 0 indica che lo spostamento o rotazione relativo è libero).
Note	(FS = 1, 2,) eventuale codice del tipo di fondazione speciale (1, 2, fanno riferimento alle tipologie: plinto, palo, plinto su pali,) che è collegato al nodo. (ISO = "id SIGLA") indice e sigla identificativa dell' eventuale isolatore sismico assegnato al nodo
Rig. TX	valore della rigidezza dei vincoli elastici eventualmente applicati al nodo, nello specifico TX (idem per TY, TZ, RX, RY, RZ).

Per strutture sismicamente isolate viene inoltre inserita la tabella delle caratteristiche per gli isolatori utilizzati; le caratteristiche sono indicate in conformità al cap. 7.10 del D.M. 17/01/18

TABELLA DATI NODI

No	do	X	Υ	z	Nodo	X	Y	Z	Nodo		ΥZ
		cm	cm	cm		cm	cm	cm		cm	cm cm
	2	190.0	0.0	250.0	4	940.0	0.0	250.0	6	1690.0	0.0 250
.0											
	7	0.0	0.0	250.0	8	1880.0	0.0	250.0			
	odo	X	Y	Z		Note	Rig. TX	Rig. TY	Rig. TZ	Rig. RX	Rig. RY Rig.
RΖ											
		cm	cm	cm			daN/cm	daN/cm	daN/cm	daN cm/rad	daN cm/rad daN
cm/ra	ad										
	1	190.0	0.0	0.0		FS=1					
	3	940.0	0.0	0.0		FS=1					
	5	1690.0	0.0	0.0		FS=1					
	-	.000.0	0.0	0.0							

14_MOD_NUMERAZIONE_NODI

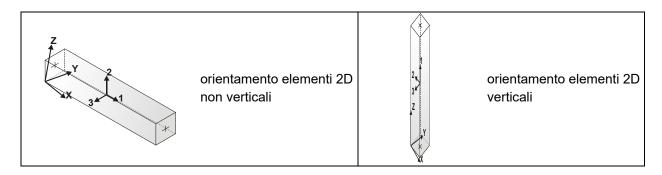
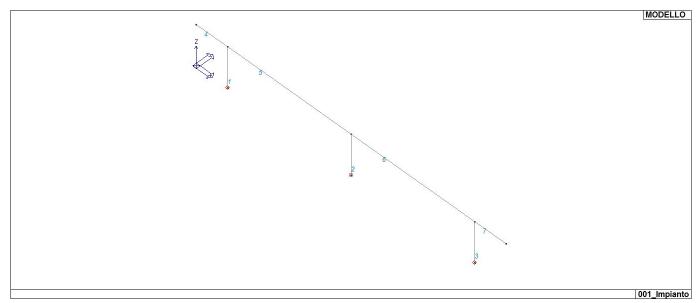
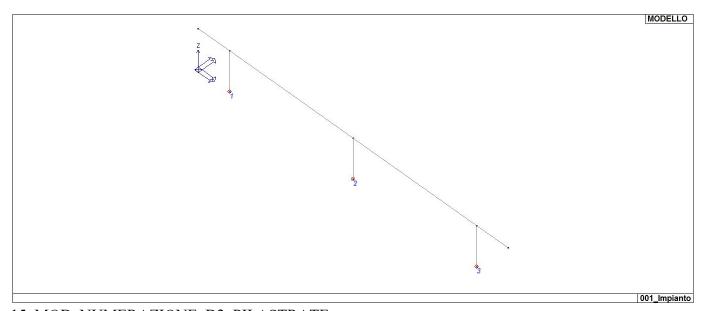

MODELLAZIONE STRUTTURA: ELEMENTI TRAVE

TABELLA DATI TRAVI

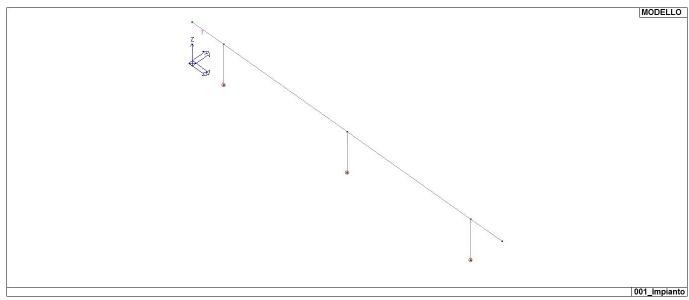
Il programma utilizza per la modellazione elementi a due nodi denominati in generale travi.

Ogni elemento trave è individuato dal nodo iniziale e dal nodo finale.


Ogni elemento è caratterizzato da un insieme di proprietà riportate in tabella che ne completano la modellazione.

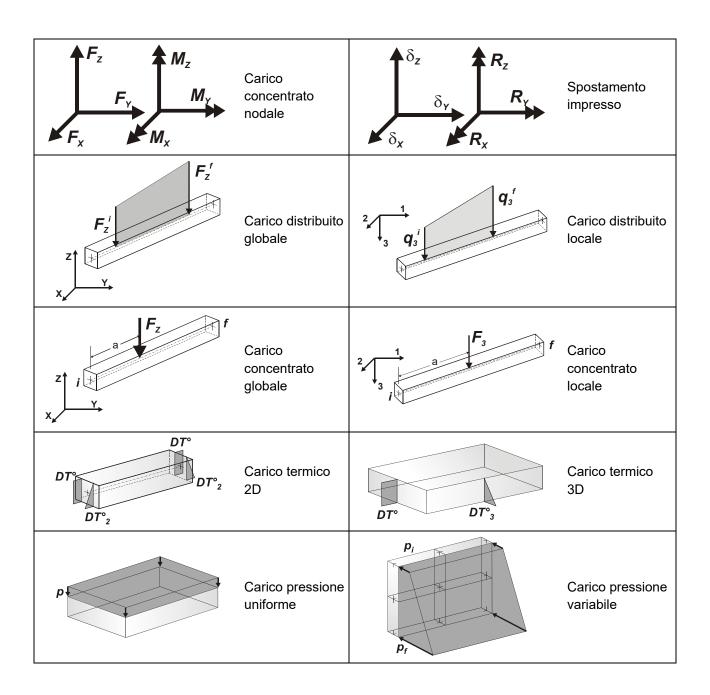

In particolare per ogni elemento viene indicato in tabella:

Flam	numana dall'alamanta
Elem.	numero dell'elemento
Note	codice di comportamento: trave, trave di fondazione, pilastro, asta, asta tesa,
	asta compressa,
Nodo I (J)	numero del nodo iniziale (finale)
Mat.	codice del materiale assegnato all'elemento
Sez.	codice della sezione assegnata all'elemento
Rotaz.	valore della rotazione dell'elemento, attorno al proprio asse, nel caso in cui
	l'orientamento di default non sia adottabile; l'orientamento di default prevede
	per gli elementi non verticali l'asse 2 contenuto nel piano verticale e l'asse 3
	orizzontale, per gli elementi verticali l'asse 2 diretto secondo X negativo e
	l'asse 3 diretto secondo Y negativo
Svincolo I (J)	codici di svincolo per le azioni interne; i primi sei codici si riferiscono al nodo
	iniziale, i restanti sei al nodo finale (il valore 1 indica che la relativa azione
	interna non è attiva)
Wink V	costante di sottofondo (coefficiente di Winkler) per la modellazione della trave
	su suolo elastico
Wink O	costante di sottofondo (coefficiente di Winkler) per la modellazione del suolo
	elastico orizzontale


Elem. VWink O	Note	Nodo I	Nodo J	Mat.	Sez.	Crit.	Rotaz.	Svincolo I Svincolo J	Wink
							gradi		daN/cm3daN/
cm3							_		
1	Pilas.	1	2	11	1	1			
2	Pilas.	3	4	11	1	1			
3	Pilas.	5	6	11	1	1			
4	Trave	7	2	11	1	1			
5	Trave	2	4	11	1	1			
6	Trave	4	6	11	1	1			
7	Trave	6	8	11	1	1			

15_MOD_NUMERAZIONE_D2

15_MOD_NUMERAZIONE_D2_PILASTRATE


 $15_MOD_NUMERAZIONE_D2_TRAVATE$

MODELLAZIONE DELLE AZIONI

LEGENDA TABELLA DATI AZIONI

Il programma consente l'uso di diverse tipologie di carico (azioni). Le azioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni azione applicata alla struttura viene di riportato il codice, il tipo e la sigla identificativa. Le tabelle successive dettagliano i valori caratteristici di ogni azione in relazione al tipo. Le tabelle riportano infatti i seguenti dati in relazione al tipo:

1	carico concentrato nodale
•	6 dati (forza Fx, Fy, Fz, momento Mx, My, Mz)
2	spostamento nodale impresso
_	6 dati (spostamento Tx,Ty,Tz, rotazione Rx,Ry,Rz)
3	carico distribuito globale su elemento tipo trave
3	7 dati (fx,fy,fz,mx,my,mz,ascissa di inizio carico)
_	7 dati (fx,fy,fz,mx,my,mz,ascissa di fine carico)
4	carico distribuito locale su elemento tipo trave
	7 dati (f1,f2,f3,m1,m2,m3,ascissa di inizio carico)
	7 dati (f1,f2,f3,m1,m2,m3,ascissa di fine carico)
5	carico concentrato globale su elemento tipo trave
	7 dati (Fx,Fy,Fz,Mx,My,Mz,ascissa di carico)
6	carico concentrato locale su elemento tipo trave
	7 dati (F1, F2, F3, M1, M2, M3, ascissa di carico)
7	variazione termica applicata ad elemento tipo trave
	7 dati (variazioni termiche: uniforme, media e differenza in altezza e larghezza al nodo
	iniziale e finale)
8	carico di pressione uniforme su elemento tipo piastra
	1 dato (pressione)
9	carico di pressione variabile su elemento tipo piastra
	4 dati (pressione, quota, pressione, quota)
10	variazione termica applicata ad elemento tipo piastra
	2 dati (variazioni termiche: media e differenza nello spessore)
11	carico variabile generale su elementi tipo trave e piastra
	1 dato descrizione della tipologia
	4 dati per segmento (posizione, valore, posizione, valore)
	la tipologia precisa l'ascissa di definizione, la direzione del carico, la modalità di carico
	e la larghezza d'influenza per gli elementi tipo trave
12	gruppo di carichi con impronta su piastra
	9 dati (numero di ripetizioni in direzione X e Y, valore di ciascun carico, posizione
	centrale del primo, dimensioni dell' impronta, interasse tra i carichi
L	

Tipo carico distribuito globale su trave

ld	Tipo	Pos.	fx	fy	fz	mx	my	mz
		cm	daN/cm	daN/cm	daN/cm	daN	daN	daN
1	Peso moduli-DG:Fzi=-0.60 Fzf=-0.60	0.0	0.0	0.0	-0.60	0.0	0.0	0.0
		0.0	0.0	0.0	-0.60	0.0	0.0	0.0
2	Vento su moduli-DG:Fyi=13.00 Fyf=13.00	0.0	0.0	13.00	0.0	0.0	0.0	0.0
		0.0	0.0	13.00	0.0	0.0	0.0	0.0

SCHEMATIZZAZIONE DEI CASI DI CARICO

LEGENDA TABELLA CASI DI CARICO

Il programma consente l'applicazione di diverse tipologie di casi di carico.

Sono previsti i seguenti 11 tipi di casi di carico:

	Sigla	Tipo	Descrizione
1	Ggk	Α	caso di carico comprensivo del peso proprio struttura
2	Gk	NA	caso di carico con azioni permanenti
3	Qk	NA	caso di carico con azioni variabili
4	Gsk	Α	caso di carico comprensivo dei carichi permanenti sui solai e sulle coperture
5	Qsk	Α	caso di carico comprensivo dei carichi variabili sui solai
6	Qnk	Α	caso di carico comprensivo dei carichi di neve sulle coperture
7	Qtk	SA	caso di carico comprensivo di una variazione termica agente sulla struttura
8	Qvk	NA	caso di carico comprensivo di azioni da vento sulla struttura
9	Esk	SA	caso di carico sismico con analisi statica equivalente
10	Edk	SA	caso di carico sismico con analisi dinamica
11	Etk	NA	caso di carico comprensivo di azioni derivanti dall' incremento di spinta delle terre
			in condizione sismica
12	Pk	NA	caso di carico comprensivo di azioni derivanti da coazioni, cedimenti e
			precompressioni

Sono di <u>tipo automatico A</u> (ossia non prevedono introduzione dati da parte dell'utente) i seguenti casi di carico: 1-Ggk; 4-Gsk; 5-Qsk; 6-Qnk.

Sono di <u>tipo semi-automatico SA</u> (ossia prevedono una minima introduzione dati da parte dell'utente) i seguenti casi di carico:

7-Qtk, in quanto richiede solo il valore della variazione termica;

9-Esk e 10-Edk, in quanto richiedono il valore dell'angolo di ingresso del sisma e l'individuazione dei casi di carico partecipanti alla definizione delle masse.

Sono di tipo <u>non automatico NA</u> ossia prevedono la diretta applicazione di carichi generici agli elementi strutturali (si veda il precedente punto Modellazione delle Azioni) i restanti casi di carico.

Nella tabella successiva vengono riportati i casi di carico agenti sulla struttura, con l'indicazione dei dati relativi al caso di carico stesso:

Numero Tipo e Sigla identificativa, Valore di riferimento del caso di carico (se previsto).

In successione, per i casi di carico non automatici, viene riportato l'elenco di nodi ed elementi direttamente caricati con la sigla identificativa del carico.

Per i casi di carico di tipo sismico (9-Esk e 10-Edk), viene riportata la tabella di definizione delle masse: per ogni caso di carico partecipante alla definizione delle masse viene indicata la relativa aliquota (partecipazione) considerata. Si precisa che per i caso di carico 5-Qsk e 6-Qnk la partecipazione è prevista localmente per ogni elemento solaio o copertura presente nel modello (si confronti il valore Sksol nel capitolo relativo agli elementi solaio) e pertanto la loro partecipazione è di norma pari a uno.

LOCALIZZAZIONE DELL'INTERVENTO

Località: CERIGNOLA Provincia: FOGGIA Regione: PUGLIA

Coordinate GPS:

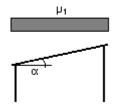
Latitudine: 41,26400 N Longitudine: 15,89800 E

Altitudine s.l.m.: 120,0 m

CALCOLO DELLE AZIONI DELLA NEVE E DEL VENTO

Normativa di riferimento:

D.M. 17 gennaio 2018 - NORME TECNICHE PER LE COSTRUZIONI Cap. 3 - AZIONI SULLE COSTRUZIONI - Par. 3.3 e 3.4


NEVE:

Zona Neve = II
Periodo di ritorno, Tr = 50 anni
Ctr = 1 per Tr = 50 anni
Ce (coeff. di esposizione al vento) = 0,90
Valore caratteristico del carico al suolo = qsk Ce Ctr = 90 daN/mq

Copertura ad una falda:

Angolo di inclinazione della falda α = 0,0° - Copertura piana W = 4.7 m, L = 18.7 m => Lc = 8.2, Cef = 1.000 μ 1 = 0,80 => Q1 = 72 daN/mg

Schema di carico:

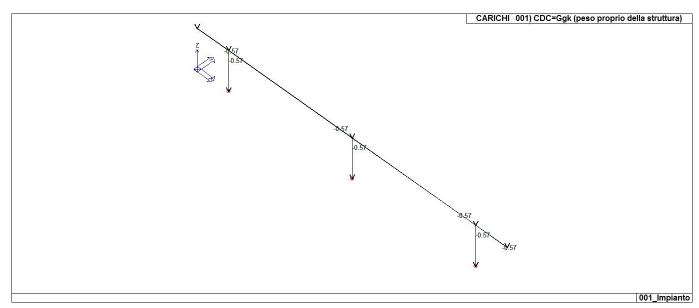
VENTO:

Zona vento = 3 Velocità base della zona, Vb.o = 27 m/s (Tab. 3.3.I) Altitudine base della zona, Ao = 500 m (Tab. 3.3.I) Altitudine del sito, As = 120 m Velocità di riferimento, Vb = 27,00 m/s (Vb = Vb.o per As \leq Ao) Periodo di ritorno, Tr = 50 anni Cr = 1 per Tr = 50 anni Velocità riferita al periodo di ritorno di progetto, Vr = Vb Cr = 27,00 m/s Classe di rugosità del terreno: D

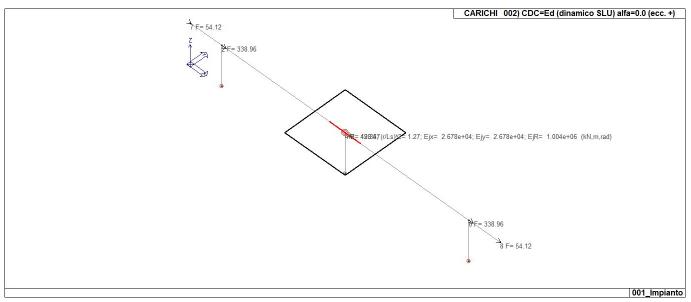
[Aree prive di ostacoli o con al di più rari ostacoli isolati (aperta campagna, aeroporti, aree agricole, zone paludose o sabbiose, superfici innevate o ghiacciate, mare, laghi,..)]

Esposizione: Cat. II - Entroterra fino a 30 km dal mare (Kr = 0,19; Zo = 0,05 m; Zmin = 4 m)
Pressione cinetica di riferimento, qb = 46 daN/mq

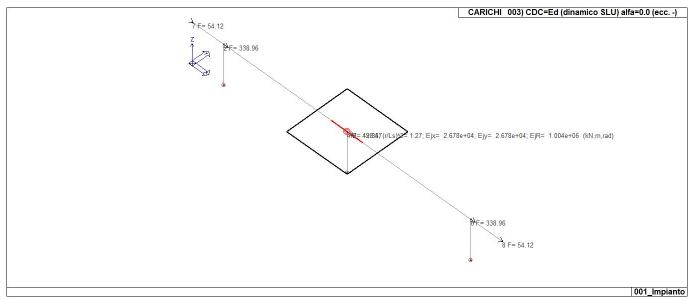
Coefficiente di forma, Cp = 1,00 Coefficiente dinamico, Cd = 1,00 Coefficiente di esposizione, Ce = 1,85 Coefficiente di esposizione topografica, Ct = 1,00 Altezza dell'edificio, h = 4,33 m

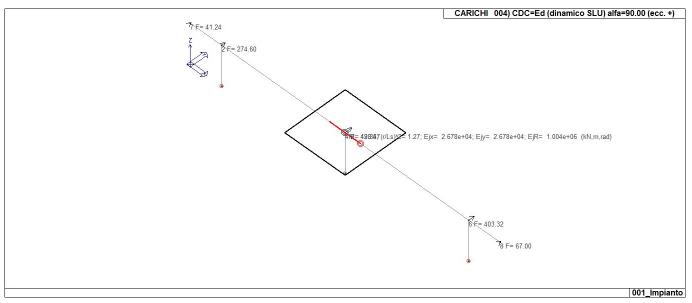

Pressione del vento, p = qb Ce Cp Cd = 84 daN/mq

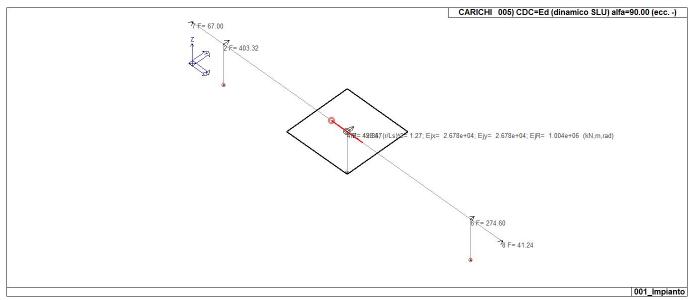
TEMPERATURA DELL'ARIA ESTERNA:

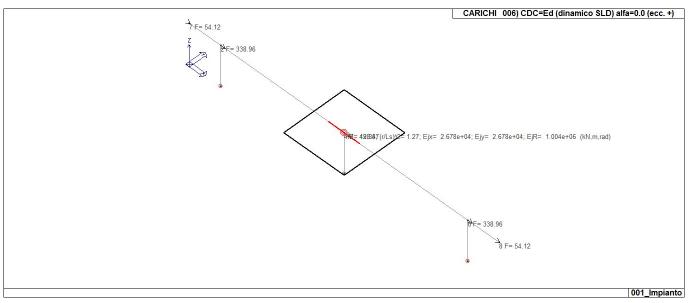

Zona: III

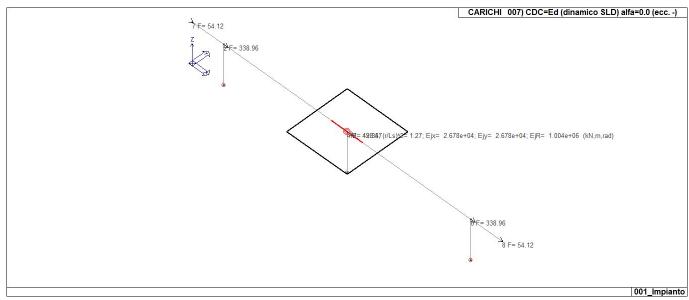
T min = -8.84° [NTC 3.5.5] T max = 41.96° [NTC 3.5.6]

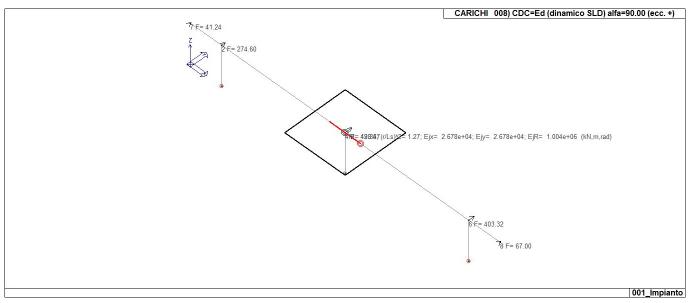

CDC	Tipo	Sigla Id	Note
1	Ggk	CDC=Ggk (peso proprio della struttura)	
2	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc. +)	partecipazione:1.00 per 1 CDC=Ggk (peso proprio della struttura)
3	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc)	come precedente CDC sismico
4	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc. +)	come precedente CDC sismico
5	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc)	come precedente CDC sismico
6	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc. +)	come precedente CDC sismico
7	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc)	come precedente CDC sismico
8	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc. +)	come precedente CDC sismico
9	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc)	come precedente CDC sismico
10	Gk	Peso moduli	Azioni applicate:
			D2 :da 4 a 7 Azione : Peso moduli-DG:Fzi=-0.60 Fzf=-0.60
11	Qvk	CDC=Qvk (carico da vento) Vento sui moduli	Azioni applicate:
			D2 :da 4 a 7 Azione : Vento su moduli-DG:Fyi=13.00 Fyf=13.00

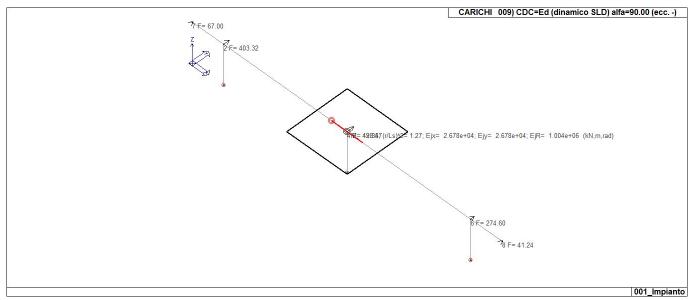

22_CDC_001_CDC=Ggk (peso proprio della struttura)

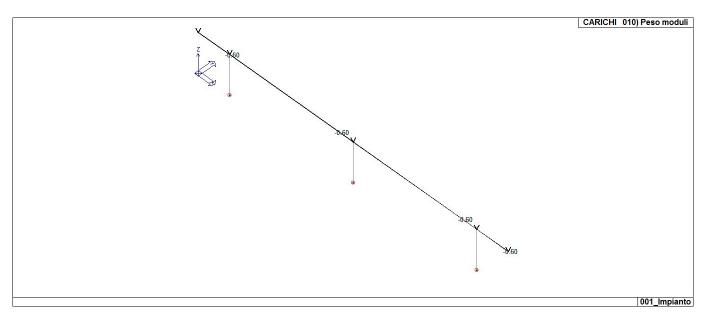

22_CDC_002_CDC=Ed (dinamico SLU) alfa=0.0 (ecc. +)

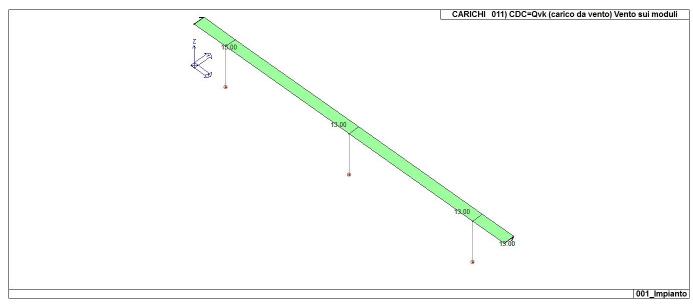

22_CDC_003_CDC=Ed (dinamico SLU) alfa=0.0 (ecc. -)


22_CDC_004_CDC=Ed (dinamico SLU) alfa=90.00 (ecc. +)


22_CDC_005_CDC=Ed (dinamico SLU) alfa=90.00 (ecc. -)


22_CDC_006_CDC=Ed (dinamico SLD) alfa=0.0 (ecc. +)


22_CDC_007_CDC=Ed (dinamico SLD) alfa=0.0 (ecc. -)


22_CDC_008_CDC=Ed (dinamico SLD) alfa=90.00 (ecc. +)

22_CDC_009_CDC=Ed (dinamico SLD) alfa=90.00 (ecc. -)

22_CDC_010_Peso moduli

22_CDC_011_CDC=Qvk (carico da vento) Vento sui moduli

DEFINIZIONE DELLE COMBINAZIONI

LEGENDA TABELLA COMBINAZIONI DI CARICO

Il programma combina i diversi tipi di casi di carico (CDC) secondo le regole previste dalla normativa vigente. Le combinazioni previste sono destinate al controllo di sicurezza della struttura ed alla verifica degli spostamenti e delle sollecitazioni.

La prima tabella delle combinazioni riportata di seguito comprende le seguenti informazioni: Numero, Tipo, Sigla identificativa. Una seconda tabella riporta il peso nella combinazione assunto per ogni caso di carico.

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni:

Combinazione fondamentale SLU

$$\gamma G1 \cdot G1 + \gamma G2 \cdot G2 + \gamma P \cdot P + \gamma Q1 \cdot Qk1 + \gamma Q2 \cdot \psi 02 \cdot Qk2 + \gamma Q3 \cdot \psi 03 \cdot Qk3 + \dots$$

Combinazione caratteristica (rara) SLE

$$G1 + G2 + P + Qk1 + \psi02\cdot Qk2 + \psi03\cdot Qk3 + ...$$

Combinazione frequente SLE

$$G1 + G2 + P + \psi 11 \cdot Qk1 + \psi 22 \cdot Qk2 + \psi 23 \cdot Qk3 + ...$$

Combinazione quasi permanente SLE

$$G1 + G2 + P + \psi_{21}Qk_1 + \psi_{22}Qk_2 + \psi_{23}Qk_3 + ...$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica $E + G_1 + G_2 + P + \psi_{21} \cdot Qk_1 + \psi_{22} \cdot Qk_2 + ...$

Combinazione eccezionale, impiegata per gli stati limite connessi alle azioni eccezionali

$$G1 + G2 + Ad + P + \psi 21 \cdot Qk1 + \psi 22 \cdot Qk2 + ...$$

Dove:

NTC 2018 Tabella 2.5.I

Destinazione d'uso/azione	ψ0	ψ1	Ψ2
Categoria A residenziali	0,70	0,50	0,30
Categoria B uffici	0,70	0,50	0,30
Categoria C ambienti suscettibili di affollamento	0,70	0,70	0,60
Categoria D ambienti ad uso commerciale	0,70	0,70	0,60
Categoria E biblioteche, archivi, magazzini,	1,00	0,90	0,80
Categoria F Rimesse e parcheggi (autoveicoli <= 30kN)	0,70	0,70	0,60
Categoria G Rimesse e parcheggi (autoveicoli > 30kN)	0,70	0,50	0,30
Categoria H Coperture	0,00	0,00	0,00
Vento	0,60	0,20	0,00
Neve a quota <= 1000 m	0,50	0,20	0,00
Neve a quota > 1000 m	0,70	0,50	0,20
Variazioni Termiche	0,60	0,50	0,00

Nelle verifiche possono essere adottati in alternativa due diversi approcci progettuali:

- per l'approccio 1 si considerano due diverse combinazioni di gruppi di coefficienti di sicurezza parziali per le azioni, per i materiali e per la resistenza globale (combinazione 1 con coefficienti A1 e combinazione 2 con coefficienti A2),
- per l'approccio 2 si definisce un'unica combinazione per le azioni, per la resistenza dei materiali e per la resistenza globale (con coefficienti A1).

NTC 2018 Tabella 2.6.I

		Coefficiente	EQU	A1	A2
		γf			
Carichi permanenti	Favorevoli	γG1	0,9	1,0	1,0
	Sfavorevoli	, -	1,1	1,3	1,0

Carichi permanenti non strutturali (Non compiutamente definiti)	Favorevoli Sfavorevoli	γ G 2	0,8 1,5	0,8 1,5	0,8 1,3
Carichi variabili	Favorevoli Sfavorevoli	γQi	0,0 1,5	0,0 1,5	0,0 1,3

Cmb	Tipo	Sigla Id	effetto P-delta
1	SLU	Comb. SLU A1 1	
2	SLU	Comb. SLU A1 2	
3	SLU	Comb. SLU A1 (SLV sism.) 3	
4	SLU	Comb. SLU A1 (SLV sism.) 4	
5	SLU	Comb. SLU A1 (SLV sism.) 5	
6	SLU	Comb. SLU A1 (SLV sism.) 6	
7	SLU	Comb. SLU A1 (SLV sism.) 7	
8 9	SLU SLU	Comb. SLU A1 (SLV sism.) 8 Comb. SLU A1 (SLV sism.) 9	
10	SLU	Comb. SLU A1 (SLV sism.) 10	
11	SLU	Comb. SLU A1 (SLV sism.) 11	
12	SLU	Comb. SLU A1 (SLV sism.) 12	
13	SLU	Comb. SLU A1 (SLV sism.) 13	
14	SLU	Comb. SLU A1 (SLV sism.) 14	
15	SLU	Comb. SLU A1 (SLV sism.) 15	
16	SLU	Comb. SLU A1 (SLV sism.) 16	
17	SLU	Comb. SLU A1 (SLV sism.) 17	
18	SLU	Comb. SLU A1 (SLV sism.) 18	
19	SLU	Comb. SLU A1 (SLV sism.) 19	
20	SLU	Comb. SLU A1 (SLV sism.) 20	
21	SLU	Comb. SLU A1 (SLV sism.) 21	
22	SLU	Comb. SLU A1 (SLV sism.) 22	
23	SLU	Comb. SLU A1 (SLV sism.) 23	
24	SLU	Comb. SLU A1 (SLV sism.) 24	
25	SLU	Comb. SLU A1 (SLV sism.) 25	
26	SLU	Comb. SLU A1 (SLV sism.) 26	
27	SLU	Comb. SLU A1 (SLV sism.) 27	
28	SLU	Comb. SLU A1 (SLV sism.) 28	
29	SLU	Comb. SLU A1 (SLV sism.) 29	
30	SLU	Comb. SLU A1 (SLV sism.) 30	
31	SLU	Comb. SLU A1 (SLV sism.) 31	
32	SLU	Comb. SLU A1 (SLV sism.) 32	
33	SLU	Comb. SLU A1 (SLV sism.) 33	
34	SLU	Comb. SLU A1 (SLV sism.) 34	
35	SLD(sis)	Comb. SLE (SLD Danno sism.) 35	
36	SLD(sis)	Comb. SLE (SLD Danno sism.) 36	
37	SLD(sis)	Comb. SLE (SLD Danno sism.) 37	
38	SLD(sis)	Comb. SLE (SLD Danno sism.) 38	
39	SLD(sis)	Comb. SLE (SLD Danno sism.) 39	
40 41	SLD(sis)	Comb. SLE (SLD Danno sism.) 40 Comb. SLE (SLD Danno sism.) 41	
42	SLD(sis)	Comb. SLE (SLD Danno sism.) 42	
42 43	SLD(sis) SLD(sis)	Comb. SLE (SLD Danno sism.) 43	
43 44	SLD(sis)	Comb. SLE (SLD Danno sism.) 44	
45	SLD(sis)	Comb. SLE (SLD Danno sism.) 45	
46	SLD(sis)	Comb. SLE (SLD Danno sism.) 46	
47	SLD(sis)	Comb. SLE (SLD Danno sism.) 47	
48	SLD(sis)	Comb. SLE (SLD Danno sism.) 48	
49	SLD(sis)	Comb. SLE (SLD Danno sism.) 49	
50	SLD(sis)	Comb. SLE (SLD Danno sism.) 50	
51	SLD(sis)	Comb. SLE (SLD Danno sism.) 51	
52	SLD(sis)	Comb. SLE (SLD Danno sism.) 52	
53	SLD(sis)	Comb. SLE (SLD Danno sism.) 53	
54	SLD(sis)	Comb. SLE (SLD Danno sism.) 54	
55	SLD(sis)	Comb. SLE (SLD Danno sism.) 55	
56	SLD(sis)	Comb. SLE (SLD Danno sism.) 56	
57	SLD(sis)	Comb. SLE (SLD Danno sism.) 57	
58	SLD(sis)	Comb. SLE (SLD Danno sism.) 58	
59	SLD(sis)	Comb. SLE (SLD Danno sism.) 59	
60	SLD(sis)	Comb. SLE (SLD Danno sism.) 60	
61	SLD(sis)	Comb. SLE (SLD Danno sism.) 61	
62	SLD(sis)	Comb. SLE (SLD Danno sism.) 62	
63	SLD(sis)	Comb. SLE (SLD Danno sism.) 63	

Cmb	Tipo	Sigla Id	effetto P-delta
64	SLD(sis)	Comb. SLE (SLD Danno sism.) 64	
65	SLD(sis)	Comb. SLE (SLD Danno sism.) 65	
66	SLD(sis)	Comb. SLE (SLD Danno sism.) 66	
67	SLU(acc.)	Comb. SLU (Accid.) 67	

Cmb	CDC 1/15	CDC 2/16	CDC 3/17	CDC 4/18	CDC 5/19	CDC 6/20	CDC 7/21	CDC 8/22	CDC 9/23	CDC 10/24	CDC 11/25	CDC 12/26	CDC 13/27	CDC 14/28
1 2	1.30 1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.30 1.00	1.50 1.50			
3	1.00	-1.00	0.0	-0.30	0.0	0.0	0.0	0.0	0.0	1.00	0.0			
4	1.00	-1.00	0.0	0.30	0.0	0.0	0.0	0.0	0.0	1.00	0.0			
5	1.00	1.00	0.0	-0.30	0.0	0.0	0.0	0.0	0.0	1.00	0.0			
6	1.00	1.00	0.0	0.30	0.0	0.0	0.0	0.0	0.0	1.00	0.0			
7	1.00	-1.00 -1.00	0.0	0.0	-0.30 0.30	0.0	0.0	0.0	0.0	1.00	0.0			
8 9	1.00	1.00	0.0	0.0	-0.30	0.0	0.0	0.0	0.0	1.00	0.0			+
10	1.00	1.00	0.0	0.0	0.30	0.0	0.0	0.0	0.0	1.00	0.0			
11	1.00	0.0	-1.00	-0.30	0.0	0.0	0.0	0.0	0.0	1.00	0.0			
12	1.00	0.0	-1.00	0.30	0.0	0.0	0.0	0.0	0.0	1.00	0.0			
13	1.00	0.0	1.00	-0.30	0.0	0.0	0.0	0.0	0.0	1.00	0.0			
14	1.00	0.0	1.00	0.30	0.0	0.0	0.0	0.0	0.0	1.00	0.0			
15	1.00	0.0	-1.00	0.0	-0.30	0.0	0.0	0.0	0.0	1.00	0.0			
16	1.00	0.0	-1.00	0.0	0.30	0.0	0.0	0.0	0.0	1.00	0.0			
17 1Ω	1.00	0.0	1.00	0.0	-0.30	0.0	0.0	0.0	0.0	1.00	0.0	+	1	
18 19	1.00	-0.30	0.0	-1.00	0.30	0.0	0.0	0.0	0.0	1.00	0.0	-	+	
20	1.00	-0.30	0.0	1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.0	+	+	
21	1.00	0.30	0.0	-1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.0	+	1	+
22	1.00	0.30	0.0	1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.0	+	1	+
23	1.00	0.0	-0.30	-1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.0		1	1
24	1.00	0.0	-0.30	1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.0			
25	1.00	0.0	0.30	-1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.0			
26	1.00	0.0	0.30	1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.0			
27	1.00	-0.30	0.0	0.0	-1.00	0.0	0.0	0.0	0.0	1.00	0.0			
28	1.00	-0.30	0.0	0.0	1.00	0.0	0.0	0.0	0.0	1.00	0.0			
29	1.00	0.30	0.0	0.0	-1.00	0.0	0.0	0.0	0.0	1.00	0.0			
30 31	1.00	0.30	0.0 -0.30	0.0	1.00	0.0	0.0	0.0	0.0	1.00	0.0			
32	1.00	0.0	-0.30	0.0	1.00	0.0	0.0	0.0	0.0	1.00	0.0			
33	1.00	0.0	0.30	0.0	-1.00	0.0	0.0	0.0	0.0	1.00	0.0			
34	1.00	0.0	0.30	0.0	1.00	0.0	0.0	0.0	0.0	1.00	0.0			
35	1.00	0.0	0.0	0.0	0.0	-1.00	0.0	-0.30	0.0	1.00	0.0			
36	1.00	0.0	0.0	0.0	0.0	-1.00	0.0	0.30	0.0	1.00	0.0			
37	1.00	0.0	0.0	0.0	0.0	1.00	0.0	-0.30	0.0	1.00	0.0			
38	1.00	0.0	0.0	0.0	0.0	1.00	0.0	0.30	0.0	1.00	0.0			
39	1.00	0.0	0.0	0.0	0.0	-1.00	0.0	0.0	-0.30	1.00	0.0			
40	1.00	0.0	0.0	0.0	0.0	-1.00	0.0	0.0	0.30	1.00	0.0			
41 42	1.00	0.0	0.0	0.0	0.0	1.00	0.0	0.0	-0.30 0.30	1.00	0.0			
43	1.00	0.0	0.0	0.0	0.0	0.0	-1.00	-0.30	0.30	1.00	0.0			+
44	1.00	0.0	0.0	0.0	0.0	0.0	-1.00	0.30	0.0	1.00	0.0			
45	1.00	0.0	0.0	0.0	0.0	0.0	1.00	-0.30	0.0	1.00	0.0		1	+
46	1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.30	0.0	1.00	0.0			
47	1.00	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	-0.30	1.00	0.0			
48	1.00	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	0.30	1.00	0.0			
49	1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.0	-0.30	1.00	0.0		1	
50	1.00	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.30	1.00	0.0		1	
51	1.00	0.0	0.0	0.0	0.0	-0.30	0.0	-1.00	0.0	1.00	0.0	-	1	
52 53	1.00	0.0	0.0	0.0	0.0	-0.30 0.30	0.0	1.00	0.0	1.00	0.0		1	
53 54	1.00	0.0	0.0	0.0	0.0	0.30	0.0	1.00	0.0	1.00	0.0		+	+
55	1.00	0.0	0.0	0.0	0.0	0.0	-0.30	-1.00	0.0	1.00	0.0	+	+	
56	1.00	0.0	0.0	0.0	0.0	0.0	-0.30	1.00	0.0	1.00	0.0		1	
57	1.00	0.0	0.0	0.0	0.0	0.0	0.30	-1.00	0.0	1.00	0.0		1	+
58	1.00	0.0	0.0	0.0	0.0	0.0	0.30	1.00	0.0	1.00	0.0		1	
59	1.00	0.0	0.0	0.0	0.0	-0.30	0.0	0.0	-1.00	1.00	0.0			
60	1.00	0.0	0.0	0.0	0.0	-0.30	0.0	0.0	1.00	1.00	0.0			
61	1.00	0.0	0.0	0.0	0.0	0.30	0.0	0.0	-1.00	1.00	0.0			
62	1.00	0.0	0.0	0.0	0.0	0.30	0.0	0.0	1.00	1.00	0.0		1	
63	1.00	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	-1.00	1.00	0.0			
64	1.00	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	1.00	1.00	0.0			

Cmb	CDC	CDC	CDC	CDC	CDC	CDC								
	1/15	2/16	3/17	4/18	5/19	6/20	7/21	8/22	9/23	10/24	11/25	12/26	13/27	14/28
65	1.00	0.0	0.0	0.0	0.0	0.0	0.30	0.0	-1.00	1.00	0.0			
66	1.00	0.0	0.0	0.0	0.0	0.0	0.30	0.0	1.00	1.00	0.0			
67	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.00	0.0			

AZIONE SISMICA

VALUTAZIONE DELL' AZIONE SISMICA

L'azione sismica sulle costruzioni è valutata a partire dalla "pericolosità sismica di base", in condizioni ideali di sito di riferimento rigido con superficie topografica orizzontale.

Allo stato attuale, la pericolosità sismica su reticolo di riferimento nell'intervallo di riferimento è fornita dai dati pubblicati sul sito http://esse1.mi.ingv.it/. Per punti non coincidenti con il reticolo di riferimento e periodi di ritorno non contemplati direttamente si opera come indicato nell' allegato alle NTC (rispettivamente media pesata e interpolazione).

L' azione sismica viene definita in relazione ad un periodo di riferimento Vr che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale per il coefficiente d'uso (vedi tabella Parametri della struttura). Fissato il periodo di riferimento Vr e la probabilità di superamento Pver associata a ciascuno degli stati limite considerati, si ottiene il periodo di ritorno Tr e i relativi parametri di pericolosità sismica (vedi tabella successiva):

ag: accelerazione orizzontale massima del terreno;

Fo: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

T*c: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;

Parametri della struttura							
Classe d'uso	Vita Vn [anni]	Coeff. Uso	Periodo Vr [anni]	Tipo di suolo	Categoria topografica		
II	50.0	1.0	50.0	С	T1		

Individuati su reticolo di riferimento i parametri di pericolosità sismica si valutano i parametri spettrali riportati in tabella:

S è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la relazione seguente S = Ss*St (3.2.3)

Fo è il fattore che quantifica l'amplificazione spettrale massima, su sito di riferimento rigido orizzontale

Fv è il fattore che quantifica l'amplificazione spettrale massima verticale, in termini di accelerazione orizzontale massima del terreno ag su sito di riferimento rigido orizzontale

Tb è il periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante.

Tc è il periodo corrispondente all'inizio del tratto dello spettro a velocità costante.

Td è il periodo corrispondente all'inizio del tratto dello spettro a spostamento costante.

Lo spettro di risposta elastico in accelerazione della componente orizzontale del moto sismico, Se, è definito dalle seguenti espressioni:

$$\begin{split} 0 &\leq T < T_B & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C \cdot T_D}{T^2} \right) \end{split}$$

Dove per sottosuolo di categoria $\bf A$ i coefficienti S_S e C_C valgono 1; mentre per le categorie di sottosuolo B, C, D, E i coefficienti S_S e C_C vengono calcolati mediante le espressioni riportane nella seguente Tabella

Categoria sottosuolo	S _s	C _c
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10\cdot(T_{\rm C}^*)^{-0,20}$
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0,33}$
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80$	1,25 · (T _C *) ^{-0,50}
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	1,15 · (T _C *) ^{-0,40}

Per tenere conto delle condizioni topografiche e in assenza di specifiche analisi di risposta sismica locale, si utilizzano i valori del coefficiente topografico S_T riportati nella seguente Tabella

Categoria topografica	Ubicazione dell'opera o dell'intervento	S _T
T1	-	1,0
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta di un rilievo con	1,2
	pendenza media minore o uguale a 30°	
T4	In corrispondenza della cresta di un rilievo con	1,4
	pendenza media maggiore di 30°	

Lo spettro di risposta elastico in accelerazione della componente verticale del moto sismico, Sve, è definito dalle espressioni:

$$\begin{split} 0 &\leq T < T_B & S_{_{ve}}\left(T\right) = a_{_g} \cdot S \cdot \eta \cdot F_{_v} \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B}\right)\right] \\ T_B &\leq T < T_C & S_{_{ve}}\left(T\right) = a_{_g} \cdot S \cdot \eta \cdot F_{_v} \\ T_C &\leq T < T_D & S_{_{ve}}\left(T\right) = a_{_g} \cdot S \cdot \eta \cdot F_{_v} \cdot \left(\frac{T_C}{T}\right) \\ T_D &\leq T & S_{_{ve}}\left(T\right) = a_{_g} \cdot S \cdot \eta \cdot F_{_v} \cdot \left(\frac{T_C \cdot T_D}{T^2}\right) \end{split}$$

I valori di S_S, T_B, T_C e T_D, sono riportati nella seguenteTabella

Categoria di sottosuolo	S _S	T _B	T _C	T _D
A, B, C, D, E	1,0	0,05 s	0,15 s	1,0 s

ld nodo	Longitudine	Latitudine	Distanza
			Km
Loc.	15.898	41.264	
31227	15.885	41.260	1.170
31228	15.951	41.258	4.465
31006	15.953	41.308	6.690
31005	15.887	41.310	5.180

SL	Pver	Tr	ag	Fo	T*c
		Anni	g		sec
SLO	81.0	30.0	0.043	2.533	0.280
SLD	63.0	50.0	0.056	2.546	0.300
SLV	10.0	475.0	0.167	2.495	0.399
SLC	5.0	975.0	0.233	2.427	0.414

SL	ag	S	Fo	Fv	Tb	Тс	Td
	g				sec	sec	sec
SLO	0.043	1.500	2.533	0.707	0.149	0.447	1.771
SLD	0.056	1.500	2.546	0.811	0.156	0.469	1.823
SLV	0.167	1.450	2.495	1.377	0.189	0.567	2.269
SLC	0.233	1.360	2.427	1.582	0.194	0.582	2.533

RISULTATI ANALISI SISMICHE

LEGENDA TABELLA ANALISI SISMICHE

Il programma consente l'analisi di diverse configurazioni sismiche.

Sono previsti, infatti, i seguenti casi di carico:

9. Esk caso di carico sismico con analisi statica equivalente

10. Edk caso di carico sismico con analisi dinamica

Ciascun caso di carico è caratterizzato da un angolo di ingresso e da una configurazione di masse determinante la forza sismica complessiva (si rimanda al capitolo relativo ai casi di carico per chiarimenti inerenti questo aspetto).

Nella colonna Note, in funzione della norma in uso sono riportati i parametri fondamentali che caratterizzano l'azione sismica: in particolare possono essere presenti i sequenti valori:

Angolo di	Angolo di ingresso dell'azione sismica orizzontale
ingresso	
Fattore di	Fattore di importanza dell'edificio, in base alla categoria di appartenenza
importanza	
Zona sismica	Zona sismica
Accelerazione	Accelerazione orizzontale massima sul suolo
ag	
Categoria suolo	Categoria di profilo stratigrafico del suolo di fondazione
Fattore q	Fattore di struttura/di comportamento. Dipendente dalla tipologia strutturale
Fattore di sito S	Fattore dipendente dalla stratigrafia e dal profilo topografico
Classe di	Classe di duttilità della struttura – "A" duttilità alta, "B" duttilità bassa
duttilità CD	
Fattore riduz.	Fattore di riduzione dello spettro elastico per lo stato limite di danno
SLD	
Periodo proprio	Periodo proprio di vibrazione della struttura
T1	
Coefficiente	Coefficiente dipendente dal periodo proprio T1 e dal numero di piani della struttura
Lambda	
Ordinata	Valore delle ordinate dello spettro di progetto per lo stato limite ultimo, componente orizzontale
spettro Sd(T1)	(verticale Svd)
Ordinata	Valore delle ordinate dello spettro elastico ridotta del fattore SLD per lo stato limite di danno,
spettro Se(T1)	componente orizzontale (verticale Sve)
Ordinata	Valore dell' ordinata dello spettro in uso nel tratto costante
spettro S (Tb-	
Tc)	
numero di modi	Numero di modi di vibrare della struttura considerati nell'analisi dinamica
considerati	

Per ciascun caso di carico sismico viene riportato l'insieme di dati sotto riportati (le masse sono espresse in unità di forza):

a) analisi sismica statica equivalente:

- quota, posizione del centro di applicazione e azione orizzontale risultante, posizione del baricentro delle rigidezze, rapporto r/Ls (per strutture a nucleo), indici di regolarità e/r secondo EC8 4.2.3.2
- azione sismica complessiva
- b) analisi sismica dinamica con spettro di risposta:

- quota, posizione del centro di massa e massa risultante, posizione del baricentro delle rigidezze, rapporto r/Ls (per strutture a nucleo), indici di regolarità e/r secondo EC8 4.2.3.2
- frequenza, periodo, accelerazione spettrale, massa eccitata nelle tre direzioni globali per tutti i modi
- massa complessiva ed aliquota di massa complessiva eccitata.

Per ciascuna combinazione sismica definita SLD o SLO viene riportato il livello di deformazione etaT (dr) degli elementi strutturali verticali. Per semplicità di consultazione il livello è espresso anche in unità 1000*etaT/h da confrontare direttamente con i valori forniti nella norma (es. 5 per edifici con tamponamenti collegati rigidamente alla struttura, 10.0 per edifici con tamponamenti collegati elasticamente, 3 per edifici in muratura ordinaria, 4 per edifici in muratura armata).

Qualora si applichi il D.M. 96 (vedi NOTA sul capitolo "normativa di riferimento") l'analisi sismica dinamica può essere comprensiva di sollecitazione verticale contemporanea a quella orizzontale, nel qual caso è effettuata una sovrapposizione degli effetti in ragione della radice dei quadrati degli effetti stessi. Per ciascuna combinazione sismica - analisi effettuate con il D.M. 96 (vedi NOTA sul capitolo "normativa di riferimento") - viene riportato il livello di deformazione etaT, etaP e etaD degli elementi strutturali verticali. Per semplicità di consultazione il livello è espresso in unità 1000*etaT/h da confrontare direttamente con il valore 2 o 4 per la verifica.

Per gli edifici sismicamente isolati si riportano di seguito le verifiche condotte sui dispositivi di isolamento. Le verifiche sono effettuate secondo la circolare n.7/2019 del C.S.LL.PP nelle combinazioni in SLC come previsto dal DM 17-01-2018. Per ogni combinazione è riportato il codice di verifica ed i valori utilizzati per la verifica: spostamento dE, area ridotta e dimensione A2, azione verticale, deformazioni di taglio dell'elastomero e tensioni nell'acciaio.

Qualora si applichi l'Ordinanza 3274 e s.m.i. le verifiche sono eseguite in accordo con l'allegato 10.A. In particolare la tabella, per ogni combinazione di calcolo, riporta:

Nodo	Nodo di appoggio dell' isolatore
Cmb	Combinazione oggetto della verifica
Verif.	Codice di verifica ok – verifica positiva , NV – verifica negativa, ND – verifica non completata
dE	Spostamento relativo tra le due facce (amplificato del 20% per Ordinanza 3274 e smi)
	combinato con la regola del 30%
Ang fi	Angolo utilizzato per il calcolo dell' area ridotta Ar (per dispositivi circolari)
V	Azione verticale agente
Ar	Area ridotta efficace
Dim A2	Dimensione utile per il calcolo della deformazione per rotazione
Sig s	Tensione nell' inserto in acciaio
Gam c(a,s,t)	Deformazioni di taglio dell' elestomero
Vcr	Carico critico per instabilità

Affinché la verifica sia positiva deve essere:

- 1) V > 0
- 2) Sig s < fyk
- 3) Gam t < 5
- 4) Gam s < Gam * (caratteristica dell' elastomero)
- 5) Gam s < 2
- 6) V < 0.5 Vcr

CDC	Tipo	Sigla Id	Note
2	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc. +)	
			categoria suolo: C
			fattore di sito S = 1.450

CDC	Tipo	Sigla Id	Note
			ordinata spettro (tratto Tb-Tc) = 0.605 g
			angolo di ingresso:0.0
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.143 sec.
			fattore q: 1.000
			fattore per spost. mu d: 1.000
			classe di duttilità CD: B
			numero di modi considerati: 9
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
250.00	1284.62	940.00	0.0	0.0	0.0	940.00	0.0	1.273	0.0	0.0
Risulta	1284.62									

Modo	Frequenza	Periodo	Acc.	M efficace X	%	M efficace Y	%	M efficace Z	%	Energia	Energia x v
			Spettrale	x g		x g		x g			
	Hz	sec	g	daN		daN		daN			
1	4.442	0.225	0.605	0.0	0.0	1282.22	99.8	0.0	0.0	0.0	0.0
2	6.649	0.150	0.531	0.0	0.0	2.27	0.2	0.0	0.0	0.0	0.0
3	6.978	0.143	0.517	1267.13	98.6	0.0	0.0	0.0	0.0	0.0	0.0
4	27.143	0.037	0.313	0.0	0.0	0.12	9.64e-03	0.0	0.0	0.0	0.0
5	29.040	0.034	0.308	17.49	1.4	0.0	0.0	0.0	0.0	0.0	0.0
6	29.213	0.034	0.308	0.0	0.0	0.0	0.0	112.91	8.8	0.0	0.0
7	160.443	0.006	0.254	0.0	0.0	0.0	0.0	497.19	38.7	0.0	0.0
8	192.718	0.005	0.252	7.20e-04	5.60e-05	0.0	0.0	0.0	0.0	0.0	0.0
9	194.944	0.005	0.252	0.0	0.0	0.0	0.0	674.41	52.5	0.0	0.0
Risulta				1284.62		1284.62		1284.51			
In				100.00		100.00		99.99			
percentuale											

CDC	Tipo	Sigla Id	Note
3	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc)	
			categoria suolo: C
			fattore di sito S = 1.450
			ordinata spettro (tratto Tb-Tc) = 0.605 g
			angolo di ingresso:0.0
			eccentricità aggiuntiva: negativa
			periodo proprio T1: 0.143 sec.
			fattore q: 1.000
			fattore per spost. mu d: 1.000
			classe di duttilità CD: B
			numero di modi considerati: 9
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
250.00	1284.62	940.00	0.0	0.0	0.0	940.00	0.0	1.273	0.0	0.0
Risulta	1284.62									

Modo	Frequenza	Periodo	Acc.	M efficace X	%	M efficace Y	%	M efficace Z	%	Energia	Energia x v
			Spettrale	x g		x g		x g			
	Hz	sec	g	daN		daN		daN			
1	4.442	0.225	0.605	0.0	0.0	1282.22	99.8	0.0	0.0	0.0	0.0
2	6.649	0.150	0.531	0.0	0.0	2.27	0.2	0.0	0.0	0.0	0.0
3	6.978	0.143	0.517	1267.13	98.6	0.0	0.0	0.0	0.0	0.0	0.0
4	27.143	0.037	0.313	0.0	0.0	0.12	9.64e-03	0.0	0.0	0.0	0.0
5	29.040	0.034	0.308	17.49	1.4	0.0	0.0	0.0	0.0	0.0	0.0
6	29.213	0.034	0.308	0.0	0.0	0.0	0.0	112.91	8.8	0.0	0.0
7	160.443	0.006	0.254	0.0	0.0	0.0	0.0	497.19	38.7	0.0	0.0
8	192.718	0.005	0.252	7.20e-04	5.60e-05	0.0	0.0	0.0	0.0	0.0	0.0
9	194.944	0.005	0.252	0.0	0.0	0.0	0.0	674.41	52.5	0.0	0.0

Modo	Frequenza	Periodo	Acc.	M efficace X	%	M efficace Y	%	M efficace Z	%	Energia	Energia x v
			Spettrale	x g		x g		хg			
Risulta				1284.62		1284.62		1284.51			
ln				100.00		100.00		99.99			
percentuale											

CDC	Tipo	Sigla Id	Note
4	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc. +)	
			categoria suolo: C
			fattore di sito S = 1.450
			ordinata spettro (tratto Tb-Tc) = 0.605 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.231 sec.
			fattore q: 1.000
			fattore per spost. mu d: 1.000
			classe di duttilità CD: B
			numero di modi considerati: 9
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
250.00	1284.62	940.00	0.0	94.00	0.0	940.00	0.0	1.273	0.0	0.0
Risulta	1284.62									

Modo	Frequenza	Periodo	Acc. Spettrale	M efficace X	%	M efficace Y	%	M efficace Z	%	Energia	Energia x v
				x g		x g		x g			
	Hz	sec	g	daN		daN		daN			
1	4.336	0.231	0.605	0.0	0.0	1171.89	91.2	0.0	0.0	0.0	0.0
2	5.352	0.187	0.601	0.0	0.0	105.00	8.2	0.0	0.0	0.0	0.0
3	6.870	0.146	0.521	0.0	0.0	7.62	0.6	0.0	0.0	0.0	0.0
4	6.978	0.143	0.517	1267.13	98.6	0.0	0.0	0.0	0.0	0.0	0.0
5	29.040	0.034	0.308	17.49	1.4	0.0	0.0	0.0	0.0	0.0	0.0
6	29.213	0.034	0.308	0.0	0.0	0.0	0.0	112.91	8.8	0.0	0.0
7	160.443	0.006	0.254	0.0	0.0	0.0	0.0	497.19	38.7	0.0	0.0
8	192.718	0.005	0.252	7.20e-04	5.60e-05	0.0	0.0	0.0	0.0	0.0	0.0
9	194.944	0.005	0.252	0.0	0.0	0.0	0.0	674.41	52.5	0.0	0.0
Risulta				1284.62		1284.52		1284.51			
In percentuale				100.00		99.99		99.99			

CDC	Tipo	Sigla Id	Note
5	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc)	
			categoria suolo: C
			fattore di sito S = 1.450
			ordinata spettro (tratto Tb-Tc) = 0.605 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: negativa
			periodo proprio T1: 0.231 sec.
			fattore q: 1.000
			fattore per spost. mu d: 1.000
			classe di duttilità CD: B
			numero di modi considerati: 9
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
250.00	1284.62	940.00	0.0	-94.00	0.0	940.00	0.0	1.273	0.0	0.0
Risulta	1284.62									

Modo	Frequenza	Periodo	Acc. Spettrale	M efficace X	%	M efficace Y	%	M efficace Z	%	Energia	Energia x v
				x g		хg		хg			
	Hz	sec	g	daN		daN		daN			
1	4.336	0.231	0.605	0.0	0.0	1171.89	91.2	0.0	0.0	0.0	0.0
2	5.352	0.187	0.601	0.0	0.0	105.00	8.2	0.0	0.0	0.0	0.0
3	6.870	0.146	0.521	0.0	0.0	7.62	0.6	0.0	0.0	0.0	0.0
4	6.978	0.143	0.517	1267.13	98.6	0.0	0.0	0.0	0.0	0.0	0.0
5	29.040	0.034	0.308	17.49	1.4	0.0	0.0	0.0	0.0	0.0	0.0
6	29.213	0.034	0.308	0.0	0.0	0.0	0.0	112.91	8.8	0.0	0.0
7	160.443	0.006	0.254	0.0	0.0	0.0	0.0	497.19	38.7	0.0	0.0
8	192.718	0.005	0.252	7.20e-04	5.60e-05	0.0	0.0	0.0	0.0	0.0	0.0
9	194.944	0.005	0.252	0.0	0.0	0.0	0.0	674.41	52.5	0.0	0.0
Risulta				1284.62		1284.52		1284.51			
In percentuale				100.00		99.99		99.99			

CDC	Tipo	Sigla Id	Note
6	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc. +)	
			categoria suolo: C
			fattore di sito S = 1.500
			ordinata spettro (tratto Tb-Tc) = 0.213 g
			angolo di ingresso:0.0
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.143 sec.
			numero di modi considerati: 9
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
250.00	1284.62	940.00	0.0	0.0	0.0	940.00	0.0	1.273	0.0	0.0
Risulta	1284.62									

Modo	Frequenza	Periodo	Acc.	M efficace X	%	M efficace Y	%	M efficace Z	%	Energia	Energia x v
			Spettrale	x g		x g		x g			
	Hz	sec	g	daN		daN		daN			
1	4.442	0.225	0.213	0.0	0.0	1282.22	99.8	0.0	0.0	0.0	0.0
2	6.649	0.150	0.208	0.0	0.0	2.27	0.2	0.0	0.0	0.0	0.0
3	6.978	0.143	0.202	1267.13	98.6	0.0	0.0	0.0	0.0	0.0	0.0
4	27.143	0.037	0.114	0.0	0.0	0.12	9.64e-03	0.0	0.0	0.0	0.0
5	29.040	0.034	0.112	17.49	1.4	0.0	0.0	0.0	0.0	0.0	0.0
6	29.213	0.034	0.112	0.0	0.0	0.0	0.0	112.91	8.8	0.0	0.0
7	160.443	0.006	0.089	0.0	0.0	0.0	0.0	497.19	38.7	0.0	0.0
8	192.718	0.005	0.088	7.20e-04	5.60e-05	0.0	0.0	0.0	0.0	0.0	0.0
9	194.944	0.005	0.088	0.0	0.0	0.0	0.0	674.41	52.5	0.0	0.0
Risulta				1284.62		1284.62		1284.51			
In				100.00		100.00		99.99			
percentuale											

CDC	Tipo	Sigla Id	Note
7	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc)	
			categoria suolo: C
			fattore di sito S = 1.500
			ordinata spettro (tratto Tb-Tc) = 0.213 g
			angolo di ingresso:0.0
			eccentricità aggiuntiva: negativa
			periodo proprio T1: 0.143 sec.
			numero di modi considerati: 9
			combinaz. modale: CQC

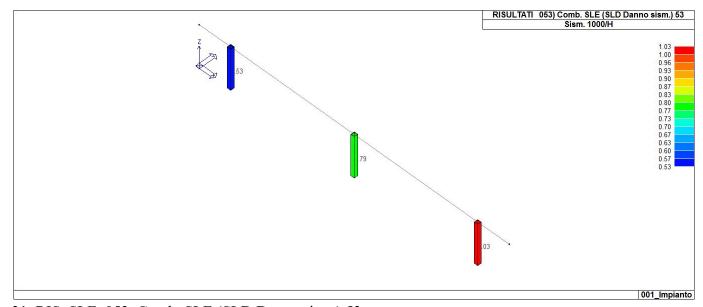
Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
250.00	1284.62	940.00	0.0	0.0	0.0	940.00	0.0	1.273	0.0	0.0
Risulta	1284.62									

Modo	Frequenza	Periodo	Acc.	M efficace X	%	M efficace Y	%	M efficace Z	%	Energia	Energia x v
			Spettrale	x g		x g		хg			
	Hz	sec	g	daN		daN		daN			
1	4.442	0.225	0.213	0.0	0.0	1282.22	99.8	0.0	0.0	0.0	0.0
2	6.649	0.150	0.208	0.0	0.0	2.27	0.2	0.0	0.0	0.0	0.0
3	6.978	0.143	0.202	1267.13	98.6	0.0	0.0	0.0	0.0	0.0	0.0
4	27.143	0.037	0.114	0.0	0.0	0.12	9.64e-03	0.0	0.0	0.0	0.0
5	29.040	0.034	0.112	17.49	1.4	0.0	0.0	0.0	0.0	0.0	0.0
6	29.213	0.034	0.112	0.0	0.0	0.0	0.0	112.91	8.8	0.0	0.0
7	160.443	0.006	0.089	0.0	0.0	0.0	0.0	497.19	38.7	0.0	0.0
8	192.718	0.005	0.088	7.20e-04	5.60e-05	0.0	0.0	0.0	0.0	0.0	0.0
9	194.944	0.005	0.088	0.0	0.0	0.0	0.0	674.41	52.5	0.0	0.0
Risulta				1284.62		1284.62		1284.51			
In				100.00		100.00		99.99			
percentuale											

CDC	Tipo	Sigla Id	Note
8	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc. +)	
			categoria suolo: C
			fattore di sito S = 1.500
			ordinata spettro (tratto Tb-Tc) = 0.213 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.231 sec.
			numero di modi considerati: 9
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
250.00	1284.62	940.00	0.0	94.00	0.0	940.00	0.0	1.273	0.0	0.0
Risulta	1284.62									

Modo	Frequenza	Periodo	Acc. Spettrale	M efficace X	%	M efficace Y	%	M efficace Z	%	Energia	Energia x v
				x g		x g		x g			
	Hz	sec	g	daN		daN		daN			
1	4.336	0.231	0.213	0.0	0.0	1171.89	91.2	0.0	0.0	0.0	0.0
2	5.352	0.187	0.213	0.0	0.0	105.00	8.2	0.0	0.0	0.0	0.0
3	6.870	0.146	0.204	0.0	0.0	7.62	0.6	0.0	0.0	0.0	0.0
4	6.978	0.143	0.202	1267.13	98.6	0.0	0.0	0.0	0.0	0.0	0.0
5	29.040	0.034	0.112	17.49	1.4	0.0	0.0	0.0	0.0	0.0	0.0
6	29.213	0.034	0.112	0.0	0.0	0.0	0.0	112.91	8.8	0.0	0.0
7	160.443	0.006	0.089	0.0	0.0	0.0	0.0	497.19	38.7	0.0	0.0
8	192.718	0.005	0.088	7.20e-04	5.60e-05	0.0	0.0	0.0	0.0	0.0	0.0
9	194.944	0.005	0.088	0.0	0.0	0.0	0.0	674.41	52.5	0.0	0.0
Risulta				1284.62		1284.52		1284.51			
In percentuale				100.00		99.99		99.99			


CDC	Tipo	Sigla Id	Note
9	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc)	
			categoria suolo: C
			fattore di sito S = 1.500
			ordinata spettro (tratto Tb-Tc) = 0.213 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: negativa
			periodo proprio T1: 0.231 sec.
			numero di modi considerati: 9
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
250.00	1284.62	940.00	0.0	-94.00	0.0	940.00	0.0	1.273	0.0	0.0
Risulta	1284 62									

Modo	Frequenza	Periodo	Acc. Spettrale	M efficace X	%	M efficace Y	%	M efficace Z	%	Energia	Energia x v
				x g		x g		x g			
	Hz	sec	g	daN		daN		daN			
1	4.336	0.231	0.213	0.0	0.0	1171.89	91.2	0.0	0.0	0.0	0.0
2	5.352	0.187	0.213	0.0	0.0	105.00	8.2	0.0	0.0	0.0	0.0
3	6.870	0.146	0.204	0.0	0.0	7.62	0.6	0.0	0.0	0.0	0.0
4	6.978	0.143	0.202	1267.13	98.6	0.0	0.0	0.0	0.0	0.0	0.0
5	29.040	0.034	0.112	17.49	1.4	0.0	0.0	0.0	0.0	0.0	0.0
6	29.213	0.034	0.112	0.0	0.0	0.0	0.0	112.91	8.8	0.0	0.0
7	160.443	0.006	0.089	0.0	0.0	0.0	0.0	497.19	38.7	0.0	0.0
8	192.718	0.005	0.088	7.20e-04	5.60e-05	0.0	0.0	0.0	0.0	0.0	0.0
9	194.944	0.005	0.088	0.0	0.0	0.0	0.0	674.41	52.5	0.0	0.0
Risulta				1284.62		1284.52		1284.51			
In percentuale				100.00		99.99		99.99			

	mb /hetaT	Pilas. 100	0 etaT/h	etaT	inter. h	Pilas. 100	0 etaT/h	etaT	inter. h	Pilas.	1000	
cm	/iieta i	inter. II		cm	cm			cm	cm			cm
0.0	35	1	0.37	0.09	250.0	2	0.36	0.09	250.0	3	0.39	0.10 25
0.0	36	1	0.37	0.09	250.0	2	0.36	0.09	250.0	3	0.39	0.10 25
0.0	37	1	0.29	0.07	250.0	2	0.36	0.09	250.0	3	0.46	0.11 25
0.0	38	1	0.29	0.07	250.0	2	0.36	0.09	250.0	3	0.46	0.11 25
0.0	39	1	0.46	0.11	250.0	2	0.36	0.09	250.0	3	0.29	0.07 25
0.0	40	1	0.46	0.11	250.0	2	0.36	0.09	250.0	3	0.29	0.07 25
0.0	41	1	0.39	0.10	250.0	2	0.36	0.09	250.0	3	0.37	0.09 25
0.0	42	1	0.39	0.10	250.0	2	0.36	0.09	250.0	3	0.37	0.09 25
0.0	43	1	0.37	0.09	250.0	2	0.36	0.09	250.0	3	0.39	0.10 25
0.0	44	1	0.37	0.09	250.0	2	0.36	0.09	250.0	3	0.39	0.10 25
0.0	45	1	0.29	0.07	250.0	2	0.36	0.09	250.0	3	0.46	0.11 25
0.0	46	1	0.29	0.07	250.0	2	0.36	0.09	250.0	3	0.46	0.11 25
0.0	47	1	0.46	0.11	250.0	2	0.36	0.09	250.0	3	0.29	0.07 25
0.0	48	1	0.46	0.11	250.0	2	0.36	0.09	250.0	3	0.29	0.07 25
0.0	49	1	0.39	0.10	250.0	2	0.36	0.09	250.0	3	0.37	0.09 25
0.0	50	1	0.39	0.10	250.0	2	0.36	0.09	250.0	3	0.37	0.09 25
0.0	51	1	0.54	0.14	250.0	2	0.79	0.20	250.0	3	1.03	0.26 25
0.0	52	1	0.54	0.14	250.0	2	0.79	0.20	250.0	3	1.03	0.26 25
0.0	53	1	0.53	0.13	250.0	2	0.79	0.20	250.0	3	1.03	0.26 25
	54	1	0.53	0.13	250.0	2	0.79	0.20	250.0	3	1.03	0.26 25
0.0	55	1	0.54	0.14	250.0	2	0.79	0.20	250.0	3	1.03	0.26 25
0.0	56	1	0.54	0.14	250.0	2	0.79	0.20	250.0	3	1.03	0.26 25
0.0	57	1	0.53	0.13	250.0	2	0.79	0.20	250.0	3	1.03	0.26 25
0.0	58	1	0.53	0.13	250.0	2	0.79	0.20	250.0	3	1.03	0.26 25

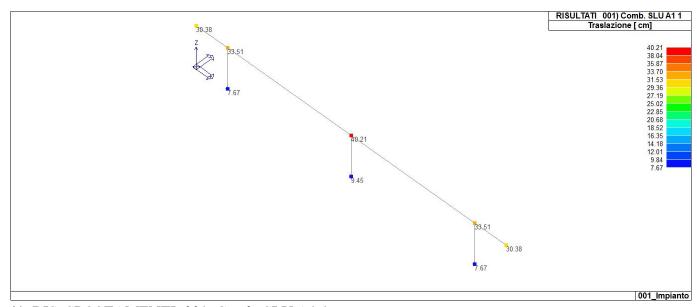
0.0												
0.0	59	1	1.03	0.26	250.0	2	0.79	0.20	250.0	3	0.53	0.13 25
0.0	60	1	1.03	0.26	250.0	2	0.79	0.20	250.0	3	0.53	0.13 25
0.0	61	1	1.03	0.26	250.0	2	0.79	0.20	250.0	3	0.54	0.14 25
	62	1	1.03	0.26	250.0	2	0.79	0.20	250.0	3	0.54	0.14 25
0.0	63	1	1.03	0.26	250.0	2	0.79	0.20	250.0	3	0.53	0.13 25
0.0	64	1	1.03	0.26	250.0	2	0.79	0.20	250.0	3	0.53	0.13 25
0.0	65	1	1.03	0.26	250.0	2	0.79	0.20	250.0	3	0.54	0.14 25
0.0	66	1	1.03	0.26	250.0	2	0.79	0.20	250.0	3	0.54	0.14 25
C	mb	1000 e	etaT/h 1.03									

31_RIS_SLE_053_Comb. SLE (SLD Danno sism.) 53

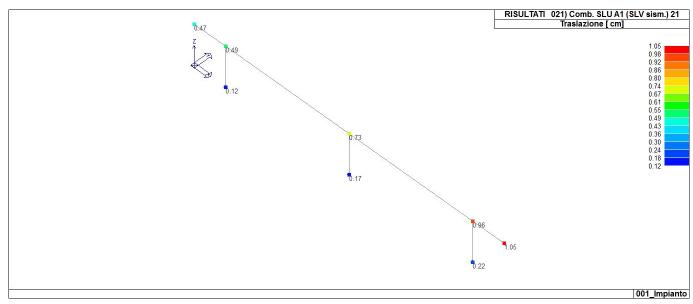
RISULTATI NODALI

LEGENDA RISULTATI NODALI

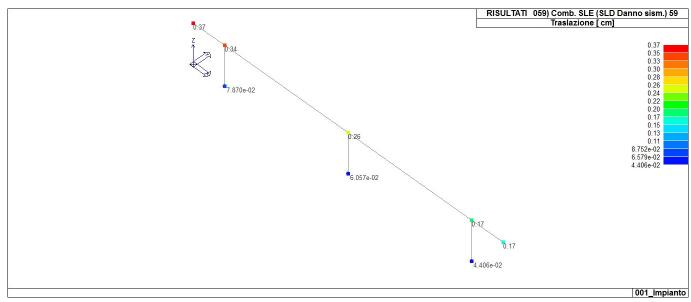
Il controllo dei risultati delle analisi condotte, per quanto concerne i nodi strutturali, è possibile in relazione alle tabelle sottoriportate.

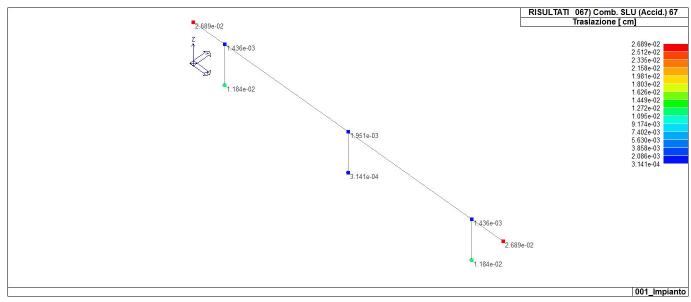

Una prima tabella riporta infatti per ogni nodo e per ogni combinazione (o caso di carico) gli spostamenti nodali.

Una <u>seconda tabella</u> riporta per ogni nodo a cui sia associato un vincolo rigido e/o elastico o una fondazione speciale e per ogni combinazione (o caso di carico) i valori delle azioni esercitate dalla struttura sui vincoli (reazioni vincolari cambiate di segno).

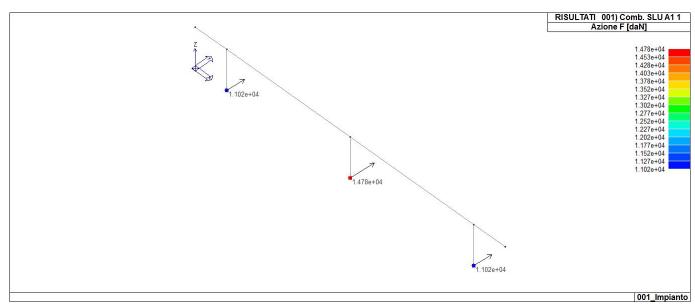

Una <u>terza tabella</u>, infine riassume per ogni nodo le sei combinazioni in cui si attingono i valori minimi e massimi della reazione Fz, della reazione Mx e della reazione My.

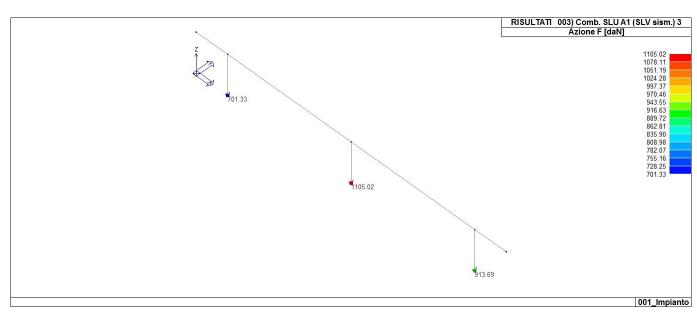
	Nodo	Cmb	Traslazione X	Traslazione Y	Traslazione Z	Rotazione X	Rotazione Y	Rotazione
Z								
			cm	cm	cm			
	1	1_	-0.02	7.67	-2.97e-04	-0.08	-1.00e-04	3.98e-03
	1	5	-0.09	0.03	-2.55e-04	-3.28e-04	-7.80e-04	1.95e-05
	1	27	0.01	0.22	-2.21e-04	-2.19e-03		-1.01e-04
	1	37	-0.04	0.01	-2.39e-04	-1.16e-04	-3.52e-04	6.92e-06
	1	59	-2.81e-03	0.08	-2.26e-04	-7.71e-04		-3.57e-05
	1	67	-0.01	0.0	-2.29e-04	0.0	-7.73e-05	0.0
	2	1	4.73e-04	33.51	-1.81e-03	-0.12	3.40e-04	0.02
	2	3	0.26	0.15	-1.22e-03	-5.26e-04	8.00e-04	9.00e-05
	2	5	-0.26	0.15	-1.56e-03	-5.26e-04	-2.77e-04	9.00e-05
	2	27	0.08	0.95	-1.34e-03	-3.23e-03		-4.67e-04
	2	35	0.10	0.05	-1.32e-03	-1.85e-04	4.72e-04	3.19e-05
	2	37	-0.10	0.05	-1.46e-03	-1.85e-04	5.06e-05	3.19e-05
	2	59	0.03	0.33	-1.37e-03	-1.14e-03		-1.65e-04
	2	67	3.64e-04	0.0	-1.39e-03	0.0	2.61e-04	0.0
	3	1	0.0	9.45	-4.08e-04	-0.09	0.0	0.0
	3	3	0.09	0.05	-3.14e-04	-5.00e-04	7.82e-04	2.27e-05
	3	19	0.03	0.17	-3.14e-04	-1.67e-03	2.35e-04	7.56e-05
	3	27	0.03	0.17	-3.14e-04	-1.67e-03		-7.56e-05
	3	35	0.03	0.02	-3.14e-04	-1.76e-04	3.06e-04	7.99e-06
	3	51	0.01	0.06	-3.14e-04	-5.87e-04	9.17e-05	2.66e-05
	3	59	0.01	0.06	-3.14e-04	-5.87e-04		-2.66e-05
	3	67	0.0	0.0	-3.14e-04	0.0	0.0	0.0
	4	1	0.0	40.21	-2.54e-03	-0.14	0.0	0.0
	4	3	0.26	0.22	-1.95e-03	-7.55e-04	2.74e-04	1.05e-04
	4	19	0.08	0.73	-1.95e-03	-2.52e-03	8.23e-05	3.49e-04
	4	27	0.08	0.73	-1.95e-03	-2.52e-03		-3.49e-04
	4	35	0.10	0.08	-1.95e-03	-2.65e-04	1.07e-04	3.68e-05
	4	51	0.03	0.26	-1.95e-03	-8.85e-04	3.22e-05	1.23e-04
	4	59	0.03	0.26	-1.95e-03	-8.85e-04		-1.23e-04
	4	67	0.0	0.0	-1.95e-03	0.0	0.0	0.0
	5	1	0.02	7.67	-2.97e-04	-0.08		-3.98e-03
	5	3	0.09	0.07	-2.55e-04	-6.57e-04	7.80e-04	3.04e-05
	5	7	0.09	0.03	-2.55e-04	-3.28e-04		-1.95e-05
	5	19	0.03	0.22	-2.37e-04	-2.19e-03	2.88e-04	1.01e-04
	5	35	0.04	0.02	-2.39e-04	-2.31e-04	3.52e-04	1.07e-05
	5	39	0.04	0.01	-2.39e-04	-1.16e-04	3.52e-04	-6.92e-06
	5	51 67	0.02	0.08	-2.32e-04	-7.71e-04	1.60e-04	3.57e-05
	5	67	0.01	0.0	-2.29e-04	0.0	7.73e-05	0.0
	6	1	-4.73e-04	33.51	-1.81e-03	-0.12	-3.40e-04	-0.02
	6	5	-0.26	0.29	-1.22e-03	-9.70e-04	-8.00e-04	1.40e-04
	6	7	0.26	0.15	-1.56e-03	-5.26e-04	2.77e-04	-9.00e-05
	6	19	0.08	0.95	-1.44e-03	-3.23e-03	-9.96e-05	4.67e-04
	6	37	-0.10	0.10	-1.32e-03	-3.41e-04	-4.72e-04	4.94e-05
	6	39	0.10	0.05	-1.46e-03	-1.85e-04	-5.06e-05	
	6	51 67	0.03	0.33	-1.41e-03	-1.14e-03	-1.98e-04	1.65e-04
	6	67	-3.64e-04	0.0	-1.39e-03	0.0	-2.61e-04	0.0
	7	1	4.73e-04	30.38	0.03	-0.12	1.45e-04	0.02


7	3	0.26	0.14	0.13	-5.26e-04	6.73e-04	8.74e-05
7	4	0.26	-0.14	0.13	5.26e-04	6.73e-04	-8.74e-05
7	27	0.08	1.04	0.06	-3.23e-03	2.80e-04	-5.61e-04
7	35	0.10	0.05	0.07	-1.85e-04	3.31e-04	3.10e-05
7	36	0.10	-0.05	0.07	1.85e-04	3.31e-04	-3.10e-05
7	59	0.03	0.37	0.04	-1.14e-03	1.77e-04	-1.98e-04
7	67	3.64e-04	0.0	0.03	0.0	1.11e-04	0.0
8	1	-4.73e-04	30.38	0.03	-0.12	-1.45e-04	-0.02
8	5	-0.26	0.31	0.13	-9.70e-04	-6.73e-04	1.68e-04
8	6	-0.26	-0.31	0.13	9.70e-04	-6.73e-04	-1.68e-04
8	19	0.08	1.04	-4.73e-03	-3.23e-03	5.71e-05	5.61e-04
8	37	-0.10	0.11	0.07	-3.41e-04	-3.31e-04	5.93e-05
8	38	-0.10	-0.11	0.07	3.41e-04	-3.31e-04	-5.93e-05
8	51	0.03	0.37	0.01	-1.14e-03	-4.55e-05	1.98e-04
8	67	-3.64e-04	0.0	0.03	0.0	-1.11e-04	0.0
do		Traslazione X	Traslazione Y	Traslazione Z	Rotazione X	Rotazione Y	Rotazione
		-0.26	-0.31	-4.73e-03	-0.14	-8.00e-04	-0.02
		0.26	40.21	0.13	9.70e-04	8.00e-04	0.02
•	7 7 7 7 7 7 8 8 8 8 8 8	7 4 7 27 7 35 7 36 7 59 7 67 8 1 8 5 8 6 8 19 8 37 8 38 8 51 8 67	7 4 0.26 7 27 0.08 7 35 0.10 7 36 0.10 7 59 0.03 7 67 3.64e-04 8 1 -4.73e-04 8 5 -0.26 8 6 -0.26 8 19 0.08 8 37 -0.10 8 38 -0.10 8 38 -0.10 8 51 0.03 8 67 -3.64e-04 ddo Traslazione X -0.26	7 4 0.26 -0.14 7 27 0.08 1.04 7 35 0.10 0.05 7 36 0.10 -0.05 7 59 0.03 0.37 7 67 3.64e-04 0.0 8 1 -4.73e-04 30.38 8 5 -0.26 0.31 8 6 -0.26 -0.31 8 19 0.08 1.04 8 37 -0.10 0.11 8 38 -0.10 -0.11 8 38 -0.10 -0.11 8 51 0.03 0.37 8 67 -3.64e-04 0.0 do Traslazione X Traslazione Y	7 4 0.26 -0.14 0.13 7 27 0.08 1.04 0.06 7 35 0.10 0.05 0.07 7 36 0.10 -0.05 0.07 7 59 0.03 0.37 0.04 7 67 3.64e-04 0.0 0.03 8 1 -4.73e-04 30.38 0.03 8 5 -0.26 0.31 0.13 8 6 -0.26 -0.31 0.13 8 19 0.08 1.04 -4.73e-03 8 37 -0.10 0.11 0.07 8 38 -0.10 -0.11 0.07 8 38 -0.10 -0.11 0.07 8 51 0.03 0.37 0.01 8 67 -3.64e-04 0.0 0.33 cdo Traslazione X Traslazione Y Traslazione Z	7 4 0.26 -0.14 0.13 5.26e-04 7 27 0.08 1.04 0.06 -3.23e-03 7 35 0.10 0.05 0.07 -1.85e-04 7 36 0.10 -0.05 0.07 1.85e-04 7 59 0.03 0.37 0.04 -1.14e-03 7 67 3.64e-04 0.0 0.03 0.0 8 1 -4.73e-04 30.38 0.03 -0.12 8 5 -0.26 0.31 0.13 -9.70e-04 8 6 -0.26 -0.31 0.13 9.70e-04 8 19 0.08 1.04 -4.73e-03 -3.23e-03 8 37 -0.10 0.11 0.07 -3.41e-04 8 38 -0.10 -0.11 0.07 3.41e-04 8 38 -0.10 -0.11 0.07 3.41e-04 8 51 0.03 0.37 0.01 -1.14e-03 8 51 0.03 0.37 0.01 -1.14e-03 8 67 -3.64e-04 0.0 0.0 0.03 0.0 ddo Traslazione X Traslazione Y Traslazione Z Rotazione X	7 4 0.26 -0.14 0.13 5.26e-04 6.73e-04 7 27 0.08 1.04 0.06 -3.23e-03 2.80e-04 7 35 0.10 0.05 0.07 -1.85e-04 3.31e-04 7 36 0.10 -0.05 0.07 1.85e-04 3.31e-04 7 59 0.03 0.37 0.04 -1.14e-03 1.77e-04 7 67 3.64e-04 0.0 0.03 0.0 1.11e-04 8 1 -4.73e-04 30.38 0.03 -0.12 -1.45e-04 8 5 -0.26 0.31 0.13 -9.70e-04 -6.73e-04 8 6 -0.26 -0.31 0.13 9.70e-04 -6.73e-04 8 19 0.08 1.04 -4.73e-03 -3.23e-03 5.71e-05 8 37 -0.10 0.11 0.07 -3.41e-04 -3.31e-04 8 38 -0.10 -0.11 0.07 -3.41e-04 -3.31e-04 8 38 -0.10 -0.11 0.07 3.41e-04 -3.31e-04 8 51 0.03 0.37 0.01 -1.14e-03 -4.55e-05 8 51 0.03 0.37 0.01 -1.14e-03 -4.55e-05 8 67 -3.64e-04 0.0 0.0 0.03 0.0 -1.11e-04

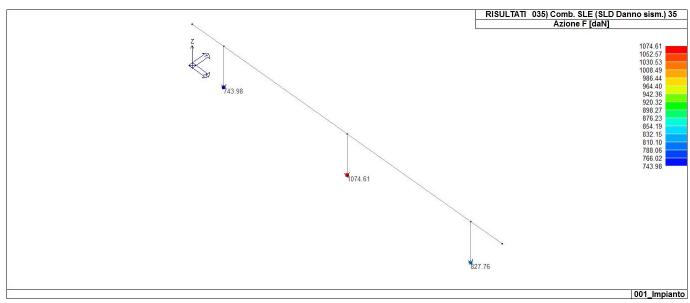

41_RIS_SPOSTAMENTI_001_Comb. SLU A1 1

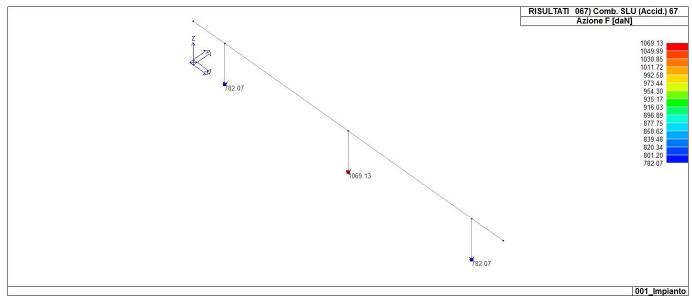
 $41_RIS_SPOSTAMENTI_021_Comb.\ SLU\ A1\ (SLV\ sism.)\ 21$


41_RIS_SPOSTAMENTI_059_Comb. SLE (SLD Danno sism.) 59


 $41_RIS_SPOSTAMENTI_067_Comb.\ SLU\ (Accid.)\ 67$

Nodo RZ	Cmb	Azione X	Azione Y	Azione Z	Azione RX	Azione RY	Azione
112		daN	daN	daN	daN cm	daN cm	daN cm
1	1	-96.19	1.097e+04	-1012.12	-2.882e+06		3.278e+05
1	2	-73.99	1.097e+04	-778.56	-2.882e+06		3.278e+05
1	3	119.35	45.05	-689.63	-1.268e+04	2.114e+04	1610.91
1	4	119.35	-45.05	-689.63	1.268e+04	2.114e+04	-1610.91
1	5	-267.34	45.05	-867.48	-1.268e+04	-1.547e+04	1610.91
1	27	-15.99	347.01	-751.88	-8.058e+04	8326.28	-8354.44
1	36	1.60	-15.91	-743.80	4471.48	9991.78	-570.84
1	37	-149.59	15.91	-813.31	-4471.48	-4320.09	570.84
1	59	-51.32	122.06	-768.13	-2.834e+04	4982.63	-2946.28
1	67	-73.99	0.0	-778.56	0.0	2835.85	0.0
3	1	0.0	1.471e+04	-1389.87	-3.400e+06	0.0	0.0
3	2	0.0	1.471e+04	-1069.13	-3.400e+06	0.0	0.0
3	3	268.65	76.54	-1069.13	-1.864e+04	1.545e+04	1871.09
3	19	80.59	255.13	-1069.13	-6.214e+04	4634.58	6236.98
3	20	80.59	-255.13	-1069.13	6.214e+04	4634.58	-6236.98
3	27	80.59	255.13	-1069.13	-6.214e+04	4634.58	-6236.98
3	35	105.04	26.93	-1069.13	-6558.61	6040.42	659.25
3	51	31.51	89.77	-1069.13	-2.186e+04	1812.13	2197.50
3	52	31.51	-89.77	-1069.13	2.186e+04	1812.13	-2197.50
3	59	31.51	89.77	-1069.13	-2.186e+04	1812.13	-2197.50
3	67	0.0	0.0	-1069.13	0.0	0.0	0.0
5	1	96.19	1.097e+04	-1012.12	-2.882e+06	-3686.60	-
3.278e+05							
5	2	73.99	1.097e+04	-778.56	-2.882e+06	-2835.85	-
3.278e+05							
5	5	-119.35	104.10	-689.63	-2.417e+04	-2.114e+04	2506.33
5	7	267.34	45.05	-867.48	-1.268e+04		
5	10	-119.35	-45.05	-689.63	1.268e+04	-2.114e+04	1610.91
5	19	132.00	347.01	-805.23	-8.058e+04	2654.59	8354.44
5	37	-1.60	36.62	-743.80	-8502.71	-9991.78	883.88
5	39	149.59	15.91	-813.31	-4471.48	4320.09	-570.84
5	42	-1.60	-15.91	-743.80	4471.48	-9991.78	570.84
5	51	96.67	122.06	-788.98	-2.834e+04	-689.06	2946.28
5	67	73.99	0.0	-778.56	0.0	-2835.85	0.0
Nodo RZ		Azione X	Azione Y	Azione Z	Azione RX	Azione RY	Azione
3.278e+05		-267.34	-255.13	-1389.87	-3.400e+06	-2.114e+04	-
0.2700.00		268.65	1.471e+04	-689.63	6.214e+04	2.114e+043	3.278e+05
Nodo RZ	Cmb	Azione X	Azione Y	Azione Z	Azione RX	Azione RY	Azione
RΔ		daN	daN	daN	dall am	daN cm	daN cm
1	4	daN -96.19	daN 1.097e+04	daN 1012 12	daN cm -2.882e+06		3.278e+05
ı	1 4	119.35	-45.05	-1012.12 -689.63	1.268e+04	2.114e+04	
	4	118.33	-40.00	-009.03	1.2006+04	∠.1146∓04	
							46


	1	-96.19	1.097e+04	-1012.12	-2.882e+06	3686.603	3.278e+05
	28	-15.99	-347.01	-751.88	8.058e+04	8326.28	8354.44
	6	-267.34	-45.05	-867.48	1.268e+04	-1.547e+04	-1610.91
	3	119.35	45.05	-689.63	-1.268e+04	2.114e+04	1610.91
3	1	0.0	1.471e+04	-1389.87	-3.400e+06	0.0	0.0
	20	80.59	-255.13	-1069.13	6.214e+04	4634.58	-6236.98
	1	0.0	1.471e+04	-1389.87	-3.400e+06	0.0	0.0
	28	80.59	-255.13	-1069.13	6.214e+04	4634.58	6236.98
	5	-268.65	76.54	-1069.13	-1.864e+04	-1.545e+04	1871.09
	3	268.65	76.54	-1069.13	-1.864e+04	1.545e+04	1871.09
5	1	96.19	1.097e+04	-1012.12	-2.882e+06	-3686.60	-
3.278e+05							
	10	-119.35	-45.05	-689.63	1.268e+04	-2.114e+04	1610.91
	1	96.19	1.097e+04	-1012.12	-2.882e+06	-3686.60	-
3.278e+05							
	20	132.00	-347.01	-805.23	8.058e+04	2654.59	-8354.44
	5	-119.35	104.10	-689.63	-2.417e+04	-2.114e+04	2506.33
	3	267.34	104.10	-867.48	-2.417e+04	1.547e+04	2506.33


 $42_RIS_REAZIONI_001_Comb. SLU A1 1$

42_RIS_REAZIONI_003_Comb. SLU A1 (SLV sism.) 3

42_RIS_REAZIONI_035_Comb. SLE (SLD Danno sism.) 35

42_RIS_REAZIONI_067_Comb. SLU (Accid.) 67

RISULTATI OPERE DI FONDAZIONE

LEGENDA RISULTATI OPERE DI FONDAZIONE

Il controllo dei risultati delle analisi condotte, per quanto concerne le opere di fondazione, è possibile in relazione alle tabelle sotto riportate.

La prima tabella è riferita alle fondazioni tipo palo e plinto su pali.

Per questo tipo di fondazione vengono riportate le sei componenti di sollecitazione (espresse nel riferimento globale della struttura) per ogni palo componente l'opera. In particolare viene riportato:

Nodo	numero del nodo a cui è applicato il plinto						
Tipo	codice corrispondente al nome assegnato al tipo di plinto di fondazione:						
	3) palo singolo (<i>PALO</i>)						
	4) plinto su palo						
	5) plinto su due pali (<i>PL.2P</i>)						
	6) plinto su tre pali (<i>PL.3P</i>)						
	7) plinto su quattro pali (<i>PL.4P</i>)						
	8) plinto su quattro pali (<i>PL.4P</i>) 8) plinto rettangolare su cinque pali (<i>PL.5P.R</i>)						
	9) plinto pentagonale su cinque pali (<i>PL.5P</i>)						
	10) plinto su sei pali (<i>PL.6P</i>)						
Palo	numero del palo						
Comb.	combinazione di carico in cui si verificano le sei componenti di sollecitazione.						
Quota	quota assoluta della sezione del palo per cui si riportano le sei componenti di sollecitazione.						

L'azione Fz (corrispondente allo sforzo normale nel palo) è costante poiché il peso del palo stesso non è considerato nella modellazione.

La <u>seconda tabella</u> è riferita alle fondazioni tipo plinto su suolo elastico.

Per questo tipo di fondazione vengono riportate le pressioni nei quattro vertici dell'impronta sul terreno. In particolare viene riportato:

Nodo		numero del nodo a cui è applicato il plinto
Tipo		Codice identificativo del nome assegnato al plinto
area		area dell'impronta del plinto
Wink O	Wink V	coefficienti di Winkler (orizzontale e verticale) adottati
Comb		Combinazione di carico in cui si verificano i valori riportati
Pt (P1 P2	P3 P4)	valori di pressione nei vertici

La terza tabella è riferita alle fondazioni tipo platea su suolo elastico.

Per questo tipo di fondazione vengono riportate le pressioni in ogni vertice (nodo) degli elementi costituenti la platea.

La guarta tabella è riferita alle fondazioni tipo trave su suolo elastico.

Per questo tipo di fondazione vengono riportate le pressioni alle estremità dell'elemento e la massima (in valore assoluto) pressione lungo lo sviluppo dell'elemento.

Vengono inoltre riportati, con funzione statistica, i valori massimo e minimo delle pressioni che compaiono nella tabella.

Nodo	Tipo	Palo	Cmb	Quota	Fx	Fy	Fz	Mx	My	Mz
				cm	daN	daN	daN	daN cm	daN cm	daN cm
1	Palo in acciaio infisso nel terreno-PALO D 20.00	1	1	0.0	-96.19	1.097e+04	-1012.12	2.882e+06	3686.60	3.278e+05
		1	2	0.0	-73.99	1.097e+04		2.882e+06	2835.85	3.278e+05
		1	3	0.0	119.35	45.05	-689.63	1.268e+04	2.114e+04	1610.91
		1	4	0.0	119.35	-45.05	-689.63	-1.268e+04	2.114e+04	-1610.91
		1	5	0.0	-267.34	45.05	-867.48	1.268e+04	-1.547e+04	1610.91
		1	27	0.0	-15.99	347.01		8.058e+04	8326.28	-8354.44
		1	36	0.0	1.60	-15.91		-4471.48	9991.78	-570.84
		1	37	0.0	-149.59	15.91		4471.48	-4320.09	570.84
		1	59	0.0	-51.32	122.06	-768.13	2.834e+04	4982.63	-2946.28
		1	67	0.0	-73.99	0.0		0.0	2835.85	0.0
3	Palo in acciaio infisso nel terreno-PALO D 20.00	1	1	0.0	0.0	1.471e+04	-1389.87	3.400e+06	0.0	0.0
		1	2	0.0	0.0	1.471e+04	-1069.13	3.400e+06	0.0	0.0
		1	3	0.0	268.65	76.54	-1069.13	1.864e+04	1.545e+04	1871.09
		1	19	0.0	80.59	255.13	-1069.13	6.214e+04	4634.58	6236.98
		1	20	0.0	80.59	-255.13	-1069.13	-6.214e+04	4634.58	-6236.98
		1	27	0.0	80.59	255.13	-1069.13	6.214e+04	4634.58	-6236.98
		1	35	0.0	105.04	26.93	-1069.13	6558.61	6040.42	659.25
		1	51	0.0	31.51	89.77	-1069.13	2.186e+04	1812.13	2197.50
		1	52	0.0	31.51	-89.77		-2.186e+04		-2197.50
		1	59	0.0	31.51	89.77	-1069.13	2.186e+04	1812.13	-2197.50
		1	67	0.0	0.0	0.0	-1069.13		0.0	0.0
5	Palo in acciaio infisso nel terreno-PALO D 20.00	1	1	0.0	96.19	1.097e+04		2.882e+06	-3686.60	-3.278e+05
		1	2	0.0	73.99	1.097e+04		2.882e+06	-2835.85	-3.278e+05
		1	5	0.0	-119.35	104.10		2.417e+04	-2.114e+04	2506.33
		1	7	0.0	267.34	45.05	-867.48	1.268e+04	1.547e+04	-1610.91
		1	10	0.0	-119.35			-1.268e+04	-2.114e+04	1610.91
		1	19	0.0	132.00	347.01		8.058e+04	2654.59	8354.44
		1	37	0.0	-1.60	36.62	-743.80	8502.71	-9991.78	883.88
		1	39	0.0	149.59	15.91	-813.31	4471.48	4320.09	-570.84
		1	42	0.0	-1.60	-15.91	-743.80	-4471.48	-9991.78	570.84
		1	51	0.0	96.67	122.06		2.834e+04	-689.06	2946.28
		1	67	0.0	73.99	0.0	-778.56	0.0	-2835.85	0.0
Nodo					Fx	Fy	Fz	Mx	My	Mz
					-267.34	-255.13				-3.278e+05
<u></u>					268.65	1.471e+04	-689.63	3.400e+06	2.114e+04	3.278e+05

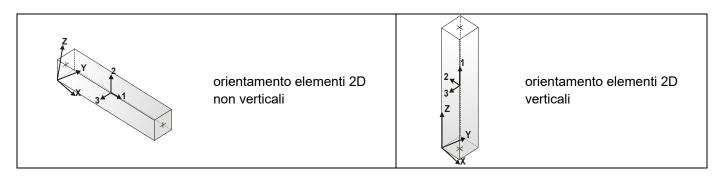
RISULTATI ELEMENTI TIPO TRAVE

LEGENDA RISULTATI ELEMENTI TIPO TRAVE

Il controllo dei risultati delle analisi condotte, per quanto concerne gli elementi tipo trave, è possibile in relazione alle tabelle sotto riportate.

Gli elementi vengono suddivisi in relazione alle proprietà in elementi:

- tipo pilastro
- tipo trave in elevazione
- tipo trave in fondazione


Per ogni elemento e per ogni combinazione (o caso di carico) vengono riportati i risultati più significativi.

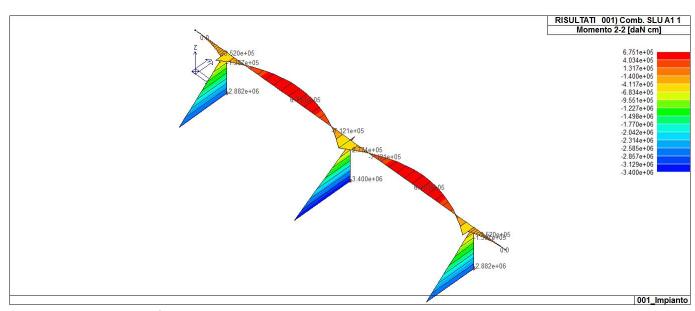
Per gli elementi tipo *pilastro* sono riportati in tabella i seguenti valori:

Pilas.	numero dell'elemento pilastro
Cmb	combinazione in cui si verificano i valori riportati
M3 mx/mn	momento flettente in campata M3 max (prima riga) / min (seconda riga)
M2 mx/mn	momento flettente in campata M2 max (prima riga) / min (seconda riga)
D2/D3	freccia massima in direzione 2 (prima riga) / direzione 3 (seconda riga)
Q2/Q3	carico totale in direzione 2 (prima riga) / direzione 3 (seconda riga)
Pos.	ascissa del punto iniziale e finale dell'elemento
N, V2, ecc	sei componenti di sollecitazione al piede ed in sommità dell'elemento

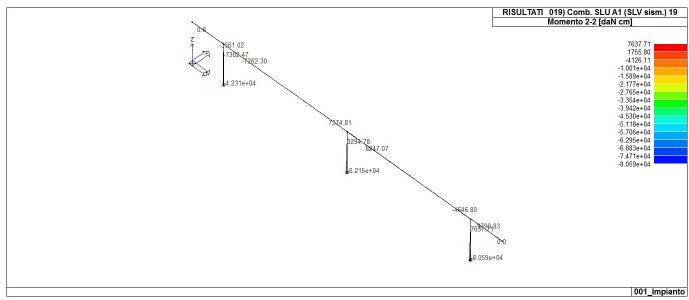
Per gli elementi tipo *trave in elevazione* sono riportati, oltre al numero dell'elemento, i medesimi risultati visti per i pilastri.

Per gli elementi tipo *trave in fondazione* (trave f.) sono riportati, oltre al numero dell'elemento, i medesimi risultati visti per i pilastri e la massima pressione sul terreno.

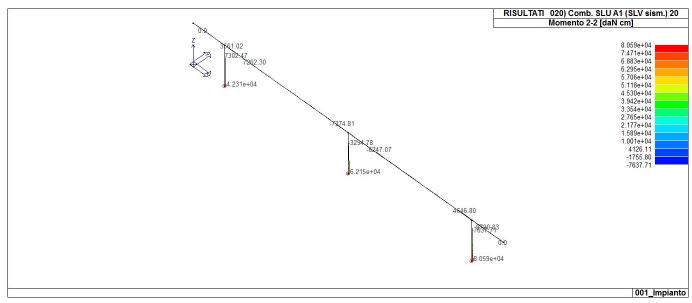
Pilas. Cmb M3 mx/mn M2 mx/mn daN cm daN cm	D 2 / D 3 cm	Q2/Q3 daN	Pos.	N daN	V 2 daN	V 3 daN	T M	2M 3 nN
cmdaN cm 1 1 -3686.60 -1.387e+05	-0.02	0.0	0.0	-1012.12	-96.19	1.097e+04	3.278e+05-2.882e+0	06 -
3686.60 -2.773e+04 -2.882e+06	-25.84	0.0	250.0	-826.98			3.278e+05-1.387e+	
2.773e+04 1 2 -2835.85 -1.387e+05	-0.01	0.0	0.0	-778.56	-73 99	1 097e+04	3.278e+05-2.882e+0	06 -
2835.85 -2.133e+04 -2.882e+06	-25.84	0.0	250.0	-636.14			3.278e+05-1.387e+0	
2.133e+04 1 4 8707.47 1.269e+04	-0.20	0.0	0.0	-689.64	119.36	-45.29	-1610.91 1.269e+(n4 -
2.114e+04 -2.114e+04 2190.74	0.11	0.0	250.0	-547.22	119.36	-45.29	-	7 T
1610.912190.74 8707.47 1 5 1.547e+04 -2190.74	0.17	0.0	0.0	-867.48	-267.34	45.29	1610.91	_
1.269e+041.547e+04								7.4
-5.138e+04 -1.269e+04 5.138e+04	-0.11	0.0	250.0	-725.06	-267.34	45.29	1610.91 -2190.	
1 27 -8326.62 7637.71 8326.62	-0.07	0.0	0.0	-751.88	-15.99	347.24	-8354.44 -8.059e+	
-1.232e+04 -8.059e+04 1.232e+04	-0.73	0.0	250.0	-609.46	-15.99	347.24	-8354.44 7637.	71 -
1 28 -8326.62 8.059e+04 8326.62	-0.07	0.0	0.0	-751.88	-15.99	-347.24	8354.44 8.059e+	04 -
-1.232e+04 -7637.71 1.232e+04	0.73	0.0	250.0	-609.46	-15.99	-347.24	8354.44 -7637.	71 -
1 36 -9588.68 4475.07 9992.17	-0.08	0.0	0.0	-743.80	1.61	-16.00	-570.84 4475.0	07 -
-9992.17 772.96 9588.68	0.04	0.0	250.0	-601.39	1.61	-16.00	-570.84 772.9	96 -
1 37 4320.48 -772.96 4475.074320.48	0.06	0.0	0.0	-813.31	-149.59	16.00	570.84	-
-3.308e+04 -4475.07 3.308e+04	-0.04	0.0	250.0	-670.89	-149.59	16.00	570.84 -772.9	96 -
1 38 4320.48 4475.07	0.06	0.0	0.0	-813.31	-149.59	-16.00	-	
570.844475.074320.48 -3.308e+04 772.96	0.04	0.0	250.0	-670.89	-149.59	-16.00	-570.84 772.9	96 -
3.308e+04 1 59 -4982.74 2694.32	-0.03	0.0	0.0	-768.13	-51.31	122.14	-2946.28 -2.835e+0	04 -
4982.74 -1.781e+04 -2.835e+04	-0.26	0.0	250.0	-625.71	-51.31	122.14	-2946.28 2694.3	32 -
1.781e+04 1 60 -4982.74 2.835e+04	-0.03	0.0	0.0	-768.13	-51.31	-122.14	2946.28 2.835e+	04 -
4982.74 -1.781e+04 -2694.32	0.26	0.0	250.0	-625.71	-51.31	-122.14	2946.28 -2694.3	32 -
1.781e+04 1 67 -2835.85 0.0	-0.01	0.0	0.0	-778.56	-73.99	0.0	0.0	.0 -
2835.85 -2.133e+04 0.0	0.0	0.0	250.0	-636.14	-73.99	0.0	0.0	.0 -
2.133e+04 2 1 0.0 2.774e+05	0.0	0.0	0.0	-1389.87	0.0	1.471e+04	0.0-3.400e+	0.0 0.0
0.0 -3.400e+06	-30.76	0.0	250.0	-1204.72		1.471e+04		
2 2 0.0 2.774e+05 0.0-3.400e+06	0.0 -30.76	0.0 0.0	0.0 250.0	-1069.13 -926.71		1.471e+04 1.471e+04		
2 3 5.171e+04 988.43	-0.17	0.0	0.0	-1069.13	268.65	76.58		
1.545e+04			250.0		200.00	. 0.00		
-1.545e+04 -1.864e+04 926.71268.6576.58 1871.09 988.43	-0.17 5.171e+04	0.0	230.0	-				
2 5 1.545e+04 988.43	0.17	0.0	0.0	-1069.13	-268.65	76.58	1871.09	-
1.864e+041.545e+04 -5.171e+04-1.864e+04	-0.17	0.0	250.0	-926.71	-268.65	76.58	1871.09 988.4	43 -
5.171e+04 2 19 1.551e+04 3294.78	-0.05	0.0	0.0	-1069.13	80.59	255.25	6236.98 -6.215e+	04 -
4634.60 -4634.60 -6.215e+04	-0.56	0.0	250.0	-				
926.7180.59255.25 6236.98 3294.78 2 20 1.551e+04 6.215e+04	1.551e+04 -0.05	0.0	0.0	-1069.13	80.59	-255.25	-6236.98 6.215e+	04 -
4634.60 -4634.60 -3294.78	0.56	0.0	250.0	-926.71	80.59	-255.25		_
3294.781.551e+04 2 35 2.022e+04 357.46	-0.07	0.0	0.0	-1069.13	105.04			28 -
6040.44 -6559.28	-0.06	0.0	250.0	. 300.10	100.04	20.04	223.20 0000.	
	2.022e+04	0.0	200.0	-				50

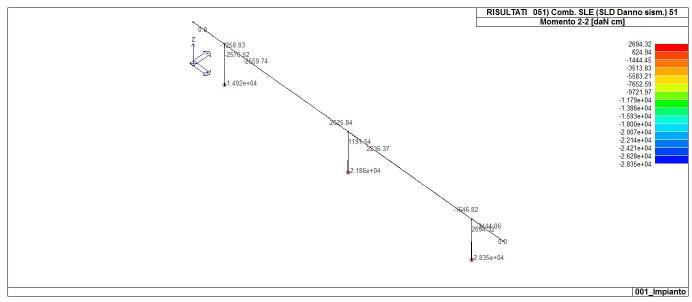

2 37 6040.44 6559.286040.44	357.46	0.07	0.0	0.0	-1069.13	-105.04	26.94	659.25	-	
-2.022e+04 2.022e+04	-6559.28	-0.06	0.0	250.0	-926.71	-105.04	26.94	659.25	357.46	-
2 51 6066.02 1812.13	1191.54	-0.02	0.0	0.0	-1069.13	31.51	89.82	2197.50	-2.186e+04	-
-1812.13 926.7131.5189.82 2197.50	-2.186e+04 1191.54	-0.20 6066.02	0.0	250.0	-					
2 52 6066.02 1812.13	2.186e+04	-0.02	0.0	0.0	-1069.13	31.51	-89.82	-2197.50	2.186e+04	-
-1812.13 1191.546066.02	-1191.54	0.20	0.0	250.0	-926.71	31.51	-89.82	-2197.50	-	
2 67 0.0	0.0	0.0	0.0	0.0	-1069.13	0.0	0.0	0.0	0.0 0	0.0
0.0		0.0	0.0	250.0	-926.71	0.0	0.0	0.0	0.0 (0.0
3 1 2.773e+04	-1.387e+05	0.02	0.0	0.0	-1012.12	96.19	1.097e+04 -	3.278e+05	-	
	-2.882e+06	-25.84	0.0	250.0	-826.98	96.19	1.097e+04 -	3.278e+05	-	
1.387e+052.773e+04 3 2 2.133e+04	-1.387e+05	0.01	0.0	0.0	-778.56	73.99	1.097e+04 -	3.278e+05	-	
	-2.882e+06	-25.84	0.0	250.0	-636.14	73.99	1.097e+04 -	3.278e+05	-	
1.387e+052.133e+04 3 3 5.138e+04	2291.31	-0.17	0.0	0.0	-867.48	267.34	104.17	2506.33	-2.418e+04	-
1.547e+04 -1.547e+04		-0.22	0.0	250.0	-					
725.06267.34104.172506.33 3 4 5.138e+04		5.138e+04 -0.17	0.0	0.0	-867.48	267.34	-104.17	-2506.33	2.418e+04	-
1.547e+04 -1.547e+04	-2291.31	0.22	0.0	250.0	-725.06	267.34	-104.17	-2506.33	-	
2291.315.138e+04 3 7 5.138e+04	-2190.74	-0.17	0.0	0.0	-867.48	267.34	45.29	-1610.91	-1.269e+04	-
1.547e+04 -1.547e+04	-1.269e+04	-0.11	0.0	250.0	-725.06	267.34	45.29	-1610.91	-	
2190.745.138e+04 3 10 2.114e+04		0.20	0.0	0.0	-689.64	-119.36	-			
45.291610.911.269e+042.11 -8707.47		0.11	0.0	250.0	-547.22	-119.36	-45.29	1610.91	2190.74	-
8707.47 3 19 3.035e+04	7637.71	-0.04	0.0	0.0	-805.23	132.00	347.24	8354.44	-8.059e+04	-
	-8.059e+04	-0.73	0.0	250.0	-					
662.82132.00347.248354.44 3 20 3.035e+04		3.035e+04 -0.04	0.0	0.0	-805.23	132.00	-347.24	-8354.44	8.059e+04	-
2654.93 -2654.93	-7637.71	0.73	0.0	250.0	-662.82	132.00	-347.24	-8354.44	-	
7637.713.035e+04 3 35 3.308e+04	808.30	-0.06	0.0	0.0	-813.31	149.59	36.64	883.88	-8503.92	-
4320.48 -4320.48			0.0	250.0	-					
670.89149.5936.64 883.88 3 39 3.308e+04			0.0	0.0	-813.31	149.59	16.00	E70 0 <i>1</i>	-4475.07	
4320.48									-4475.07	-
-4320.48 772.963.308e+04			0.0	250.0	-670.89 -743.80	149.59	16.00	-570.84	-	
3 42 9992.17 16.00570.844475.079992.17	•		0.0	0.0		-1.61	-			
9588.68 16.00570.84772.96 9588.68		0.04	0.0	250.0	-601.39	-1.61	400.44	20.40.20		
3 51 2.486e+04 2.835e+04688.95			0.0	0.0	-788.98	96.67	122.14	2946.28	-	
	-2.835e+04		0.0	250.0	-					
646.5696.67122.14 2946.28		2.486e+04	0.0	0.0	700.00	06.67	100 14			
3 52 2.486e+04 2946.282.835e+04 688.95			0.0	0.0	-788.98	96.67				
688.95 2694.322.486e+04	-2694.32		0.0	250.0	-646.56	96.67	-122.14	-2946.28	-	
3 67 2.133e+04 778.5673.99 0.0 0.0			0.0	0.0	-					
2835.85 636.1473.99 0.0 0.0		0.0 2.133e+04	0.0	250.0	-					
Dileo Mo/	M0	D0/D0	00/00					_		
		D 2 / D 3			N -1380 87		V 3			
-5.171e+04 5.171e+04	-3.400e+06 2.774e+05		0.0 0.0		-1389.87 -547.22		-347.24 - 1.471e+04			
J.17 16±0 4	2.77-0100	0.73	0.0		J T 1.22	200.00	, 10,04	5.2700103		

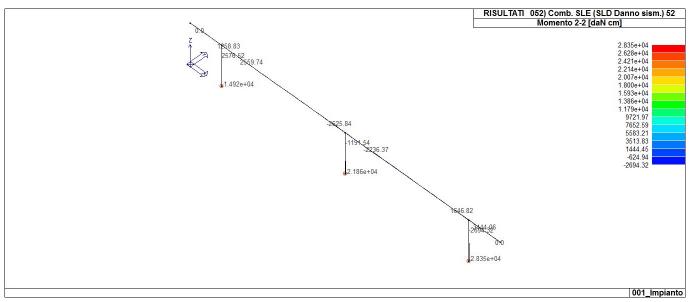
Trave Cmb M3 mx/mn M2 mx/mn D 2 / D 3 Q 2 / Q 3 Pos. N V 2 V 3 T

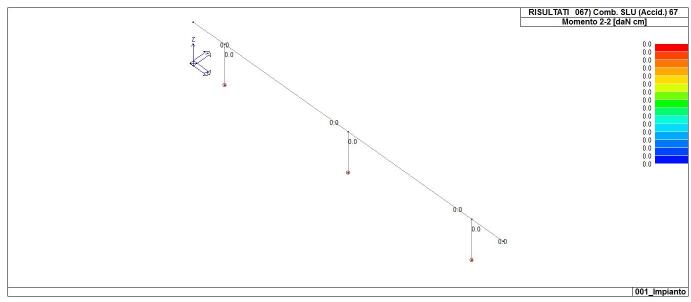

am daN am	daN cm	daN cm	cm	daN	cm	daN	daN	daN	daN cm	daN
cmdaN cm 4	1 0.0 -2.745e+04		-0.04 -3.13	-288.91 -3705.00	0.0 190.0	0.0 0.0	0.0 -288.91	0.0 -3705.00		0.0 0.0 3.520e+05 -
2.745e+04 4	4 71.79 -1.864e+04			-222.24 0.0	0.0 190.0	-27.61 -27.61	12.99 -209.25	5.62 5.62		0.0 0.0 1068.30 -
1.864e+04 4	5 0.0 -2.358e+04		0.08 -8.57e-03		0.0 190.0	27.61 27.61	-12.99 -235.23	-5.62 -5.62		0.0 0.0 -1068.30 -
2.358e+04 4	7 71.79 -1.864e+04		-0.13 0.03	-222.24 0.0	0.0 190.0	-27.61 -27.61	12.99 -209.25	-15.46 -15.46	0.0 0.0	0.0 0.0 -2937.25 -
1.864e+04 4	10 0.0 -2.358e+04		0.08 -0.03	-222.24 0.0	0.0 190.0	27.61 27.61	-12.99 -235.23	15.46 15.46	0.0 0.0	0.0 0.0 2937.25 -
2.358e+04 4	27 0.0 -2.037e+04	0.0	-0.06 0.09	-222.24 0.0	0.0 190.0	-8.28 -8.28	3.90 -218.34	-51.53 -51.53	0.0 0.0	0.0 0.0 -9790.83 -
2.037e+04 4	28 0.0 -2.037e+04	9790.83	-0.06 -0.09	-222.24 0.0	0.0 190.0	-8.28 -8.28	3.90 -218.34	51.53 51.53	0.0 0.0	0.0 0.0 9790.83 -
2.037e+04 4	37 0.0 -2.206e+04	0.0	0.01	-222.24 0.0	0.0	10.80 10.80	-4.99 -227.23	-1.99 -1.99	0.0	0.0 0.0 -377.65 -
2.206e+04 4	39 0.0 -2.016e+04	0.0	-0.07 9.50e-03	-222.24 0.0	0.0 190.0		4.99 -217.25	-5.44 -5.44	0.0	0.0 0.0
2.016e+04 4	42 0.0 -2.206e+04	1033.22	0.01	-222.24	0.0 190.0		-4.99 -227.23	5.44 5.44		0.0 0.0
2.206e+04 4	59 0.0 -2.083e+04	0.0	-0.04 0.03	-222.24 0.0	0.0 190.0	-3.24 -3.24	1.50 -220.74	-18.13 -18.13	0.0 0.0 0.0	0.0 0.0
2.083e+04 4	-2.083e+04 60 0.0 -2.083e+04	3444.06	-0.04	-222.24	0.0	-3.24	1.50	18.13	0.0	0.0 0.0
2.083e+04 4	-2.063e+04 67 0.0 -2.111e+04		-0.03	-222.24	0.0	-3.24 0.0 0.0	-220.74	18.13 0.0 0.0		3444.06 - 0.0 0.0 0.0 -
2.111e+04 5	-2.111e+04 1 3.968e+04			0.0 -1140 43	190.0	-96.19	-222.24 538.07			0.0 - 6.798e+05 -
5.518e+04	-7.929e+04			1.463e+04	750.0	-96.19				7.121e+05 -
7.929e+04 5	2 3.052e+04	6.751e+05	-0.13	-877.26	0.0	-73.99	413.90	7269.38 -	1.387e+05 <i>-</i>	6.798e+05 -
4.245e+04	-6.099e+04	-7.121e+05	-7.35 -	1.463e+04	750.0	-73.99	-463.36	-7355.63 -	1.387e+05 -	7.121e+05 -
6.099e+04 5 1.030e+04	3 3.810e+04	2212.44	-0.16	-877.26	0.0	-81.33	336.56	5.78	-2190.74	-2178.69 -
8.685e+04	-8.685e+04	-2178.69	-0.07	0.0	750.0	-81.33	-540.70	5.78	-2190.74	2212.44 -
5 1.030e+04	4 3.810e+04	2178.69	-0.16	-877.26	0.0	-81.33	336.56	-5.78	2190.74	2178.69 -
8.685e+04	-8.685e+04	-2212.44	0.07	0.0	750.0	-81.33	-540.70	-5.78	2190.74	-2212.44 -
5 1.030e+04	7 3.810e+04	1874.12	-0.16	-877.26	0.0	-81.33	336.56	4.22	2291.31	-1394.04 -
8.685e+04	-8.685e+04	-1394.04	0.07	0.0	750.0	-81.33	-540.70	4.22	2291.31	1874.12 -
5 7.460e+04	10 2.856e+04	1394.04	-0.11	-877.26	0.0	-66.66	491.24	-4.22	-2291.31	1394.04 -
3.514e+04	-7.460e+04	-1874.12	-0.07	0.0	750.0	-66.66	-386.01	-4.22	-2291.31	-1874.12 -
5 3.280e+04	19 3.243e+04	7374.81	-0.14	-877.26	0.0	-76.19	390.70	19.27	-7302.47	-7262.30 -
6.875e+04	-6.875e+04	-7262.30	-0.24	0.0	750.0	-76.19	-486.56	19.27	-7302.47	7374.81 -
5	20 3.243e+04	7262.30	-0.14	-877.26	0.0	-76.19	390.70	-19.27	7302.47	7262.30 -
3.280e+04 6.875e+04	-6.875e+04	-7374.81	0.24	0.0	750.0	-76.19	-486.56	-19.27	7302.47	-7374.81 -
5	35 3.305e+04	787.75	-0.14	-877.26	0.0	-76.85	383.66	2.05	-772.96	-767.92 -
2.988e+04	-7.110e+04	-767.92	-0.03	0.0	750.0	-76.85	-493.60	2.05	-772.96	787.75 -

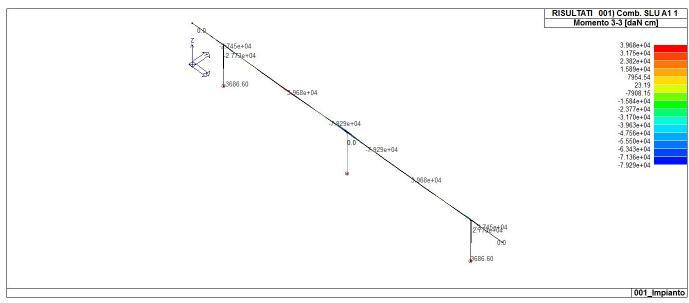
7.110e+04 5	39 3.305e+04	670.91	-0.14	-877.26	0.0	-76.85	383.66	1.50	808.30	-494.05	-
2.988e+04	-7.110e+04	-494.05	0.02	0.0	750.0	-76.85	-493.60	1.50	808.30	670.91	-
7.110e+04 5	42 2.929e+04	494.05	-0.12	-877.26	0.0	-71.13	444.14	-1.50	-808.30	494.05	-
5.502e+04	-5.502e+04	-670.91	-0.02	0.0	750.0	-71.13	-433.11	-1.50	-808.30	-670.91	-
5.088e+04 5	51 3.119e+04	2625.84	-0.13	-877.26	0.0	-74.85	404.83	6.82	-2576.52	-2559.74	-
3.868e+04	-6.403e+04	-2559.74	-0.08	0.0	750.0	-74.85	-472.43	6.82	-2576.52	2625.84	-
6.403e+04 5	52 3.119e+04	2559.74	-0.13	-877.26	0.0	-74.85	404.83	-6.82	2576.52	2559.74	-
3.868e+04	-6.403e+04	-2625.84	0.08	0.0	750.0	-74.85	-472.43	-6.82	2576.52	-2625.84	_
6.403e+04 5	67 3.052e+04	0.0	-0.13	-877.26	0.0	-73.99	413.90	0.0	0.0	0.0	-
4.245e+04	-6.099e+04	0.0	0.0	0.0	750.0	-73.99	-463.36	0.0	0.0	0.0	-
6.099e+04 6	1 3.968e+04	6.751e+05	-0.17	-1140.43	0.0	-96.19	602.36	7355.63	1.387e+05	7.121e+05	-
7.929e+04	-7.929e+04 -	7.121e+05	6.70 -	1.463e+04	750.0	-96.19	-538.07	-7269.38	1.387e+05	6.798e+05	-
5.518e+04 6	2 3.052e+04	6.751e+05	-0.13	-877.26	0.0	-73.99	463.36	7355.63	1.387e+05	7.121e+05	-
6.099e+04	-6.099e+04 -	7.121e+05	6.70 -	1.463e+04	750.0	-73.99	-413.90	-7269.38	1.387e+05	6.798e+05	-
4.245e+04 6	5 3.810e+04	1874.12	-0.16	-877.26	0.0	-81.33	540.70	-4.22	-2291.31	1874.12	-
8.685e+04	-8.685e+04	-1394.04	-0.07	0.0	750.0	-81.33	-336.56	-4.22	-2291.31	-1394.04	-
1.030e+04 6	8 2.856e+04	2178.69	-0.11	-877.26	0.0	-66.66	386.01	5.78	-2190.74	-2212.44	-
3.514e+04	-7.460e+04	-2212.44	-0.07	0.0	750.0	-66.66	-491.24	5.78	-2190.74	2178.69	-
7.460e+04 6	9 3.810e+04	2212.44	-0.16	-877.26	0.0	-81.33	540.70	-5.78	2190.74	2212.44	-
8.685e+04	-8.685e+04	-2178.69	0.07	0.0	750.0	-81.33	-336.56	-5.78	2190.74	-2178.69	-
1.030e+04 6	27 2.958e+04	7374.81	-0.12	-877.26	0.0	-71.79	440.15	-19.27	7302.47	7374.81	-
5.324e+04	-5.324e+04	-7262.30	0.24	0.0	750.0	-71.79	-437.10	-19.27	7302.47	-7262.30	-
5.209e+04 6	28 2.958e+04	7262.30	-0.12	-877.26	0.0	-71.79	440.15	19.27	-7302.47	-7374.81	-
5.324e+04	-5.324e+04	-7374.81	-0.24	0.0	750.0	-71.79	-437.10	19.27	-7302.47	7262.30	-
5.209e+04 6	37 3.305e+04	670.91	-0.14	-877.26	0.0	-76.85	493.60	-1.50	-808.30	670.91	-
7.110e+04	-7.110e+04	-494.05	-0.02	0.0	750.0	-76.85	-383.66	-1.50	-808.30	-494.05	-
2.988e+04 6	40 2.929e+04	767.92	-0.12	-877.26	0.0	-71.13	433.11	2.05	-772.96	-787.75	-
5.088e+04	-5.502e+04	-787.75	-0.03	0.0	750.0	-71.13	-444.14	2.05	-772.96	767.92	-
5.502e+04 6	41 3.305e+04	787.75	-0.14	-877.26	0.0	-76.85	493.60	-2.05	772.96	787.75	-
7.110e+04	-7.110e+04	-767.92	0.03	0.0	750.0	-76.85	-383.66	-2.05	772.96	-767.92	-
2.988e+04 6	59 3.015e+04	2625.84	-0.13	-877.26	0.0	-73.14	454.28	-6.82	2576.52	2625.84	-
5.796e+04	-5.796e+04	-2559.74	0.08	0.0	750.0	-73.14	-422.97	-6.82	2576.52	-2559.74	-
4.622e+04 6	60 3.015e+04	2559.74	-0.13	-877.26	0.0	-73.14	454.28	6.82	-2576.52	-2625.84	-
5.796e+04	-5.796e+04	-2625.84	-0.08	0.0	750.0	-73.14	-422.97	6.82	-2576.52	2559.74	-
4.622e+04 6	67 3.052e+04	0.0	-0.13	-877.26	0.0	-73.99	463.36	0.0	0.0	0.0	-
6.099e+04	-6.099e+04	0.0	0.0	0.0	750.0	-73.99	-413.90	0.0	0.0	0.0	-
4.245e+04 7	1 0.0	0.0	0.04	-288.91	0.0	0.0	288.91	3705.00	0.0	3.520e+05	-
2.745e+04	-2.745e+04 -	3.520e+05	3.13	-3705.00	190.0	0.0	-4.48e-06	0.0	0.0	0.0	0.0

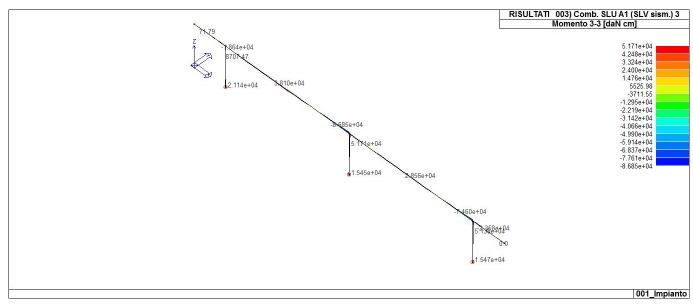

7 2.358e+04	3	0.0	0.0	-0.08	-222.24	0.0	27.61	235.23	15.46	0.0	-2937.25 -
2.3306+04	_2	3580+04	-2937.25	-0.03	0.0	100.0	27.61	12 00	15.46	0.0	0.0 0.0
7			2937.25	-0.03 0.13	-222.24	0.0	-27.61	209 25	-15.46		2937.25 -
1.864e+04	O	71.70	2007.20	0.10	222.27	0.0	27.01	200.20	10.40	0.0	2007.20
1.0010101	-1.	864e+04	0.0	0.03	0.0	190.0	-27.61	-12.99	-15.46	0.0	0.0 0.0
7	8	0.0	1068.30	-0.08	-222.24	0.0			-5.62	0.0	1068.30 -
2.358e+04											
	-2.	358e+04	0.0	-8.57e-03	0.0	190.0	27.61		-5.62	0.0	0.0 0.0
7	9	71.79	0.0	0.13	-222.24	0.0	-27.61	209.25	5.62	0.0	-1068.30 -
1.864e+04											
	-1.	864e+04	-1068.30	8.57e-03	0.0	190.0		-12.99			0.0 0.0
	19	0.0	0.0	-3.29e-03	-222.24	0.0	8.28	226.14	51.53	0.0	-9790.83 -
2.185e+04		105 .01	0700.00	0.00		400.0	0.00	0.00	E4 E0	0.0	0.000
7	-2.				0.0	190.0	8.28	3.90	51.53		0.0 0.0
7 2.185e+04	20	0.0	9790.83	-3.29e-03	-222.24	0.0	8.28	226.14	-51.53	0.0	9790.83 -
	2	1050+04	0.0	0.00	0.0	100.0	8.28	3.90	-51.53	0.0	0.0 0.0
7	-2. 35	100e+04	0.0	-0.09	0.0 -222.24	0.0	10.80	227.23			-1033.22 -
2.206e+04	33	0.0	0.0	-0.01	-222.24	0.0	10.00	221.23	5.44	0.0	-1000.22 -
2.2000.04	-2	206e+04	-1033 22	-9 50e-03	0.0	190 0	10.80	4.99	5.44	0.0	0.0 0.0
7					-222.24		10.80				377.65 -
2.206e+04										-	
	-2.	206e+04	0.0	-2.95e-03	0.0	190.0	10.80	4.99	-1.99	0.0	0.0 0.0
7	41	0.0	0.0	0.07	-222.24	0.0	-10.80	217.25	1.99	0.0	-377.65 -
2.016e+04											
					0.0				1.99		0.0 0.0
7	51	0.0	0.0	0.02	-222.24	0.0	3.24	223.73	18.13	0.0	-3444.06 -
2.140e+04	_					4000			40.40		
7	-2.	140e+04	-3444.06	-0.03	0.0 -222.24	190.0		1.50	18.13		0.0 0.0
7 2.140e+04	52	0.0	3444.06	0.02	-222.24	0.0	3.24	223.73	-18.13	0.0	3444.06 -
	2	1400+04	0.0	0.03	0.0	100.0	2 24	1.50	-18.13	0.0	0.0 0.0
7	-2. 67	1406+04	0.0		-222.24			222.24			0.0 0.0
2.111e+04	01	0.0	0.0	0.00	-222.24	0.0	0.0	222.24	0.0	0.0	0.0
2.1110.04	- 2.	111e+04	0.0	0.0	0.0	190.0	0.0	-3.45e-06	0.0	0.0	0.0 0.0
Trovo		2 max/ma 1	MO may/ma	D 2 / D 2	02/02		A.I	V 2	V 3	-	
Trave				-7.35			-06 10	-602.36	-7355.63 -1	I 387 <u>0</u> +05	
			6.751e+05				-90.19 27.61	-002.30 602.36	7355.63 1	1.307 E+05	
	٥.	3000 104	0.7316103	0.70	0.0		21.01	002.30	1000.00		

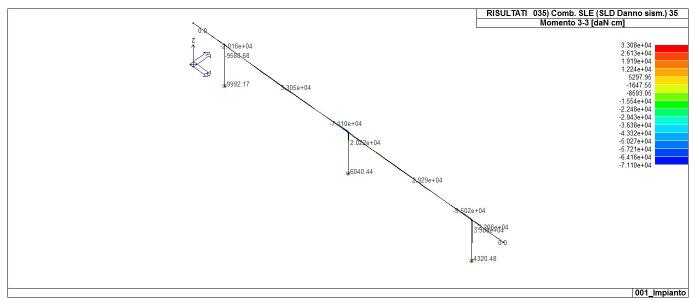

43_RIS_M2_001_Comb. SLU A1 1

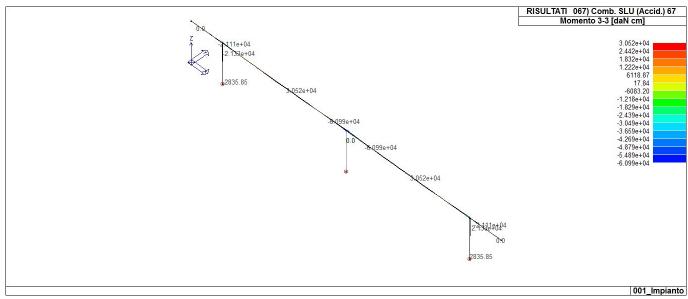

43_RIS_M2_019_Comb. SLU A1 (SLV sism.) 19

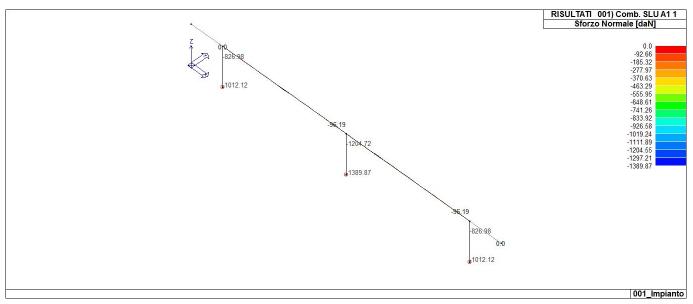

43_RIS_M2_020_Comb. SLU A1 (SLV sism.) 20

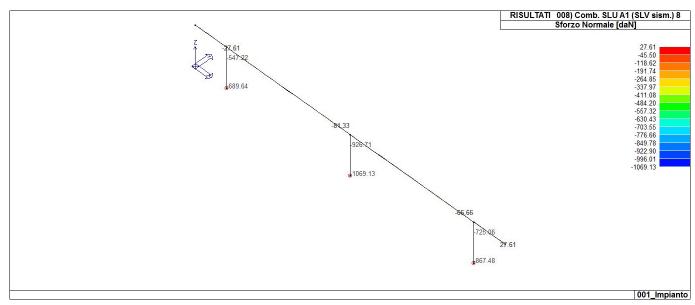

43_RIS_M2_051_Comb. SLE (SLD Danno sism.) 51

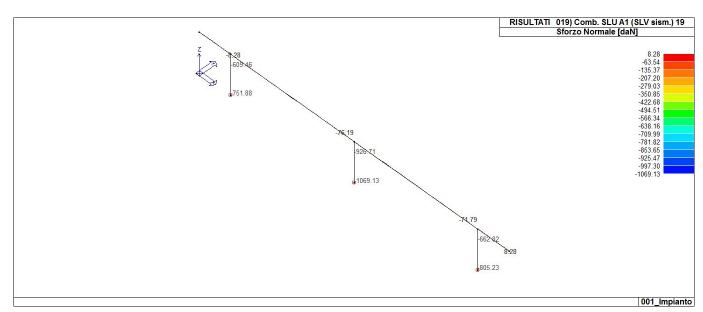

 $43_RIS_M2_052_Comb.$ SLE (SLD Danno sism.) 52

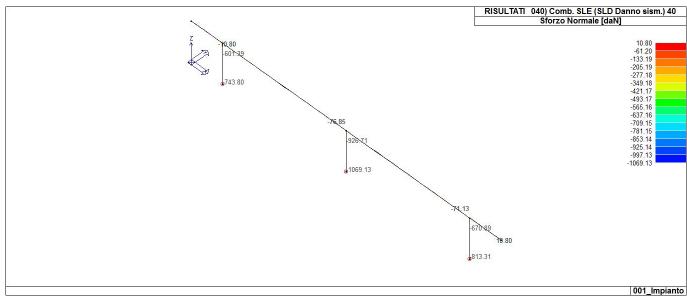

 $43_RIS_M2_067_Comb.\ SLU\ (Accid.)\ 67$

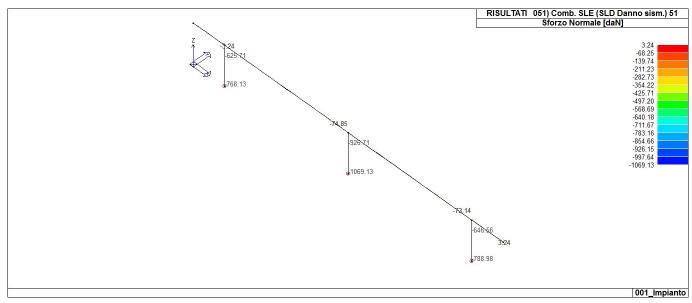

43_RIS_M3_001_Comb. SLU A1 1

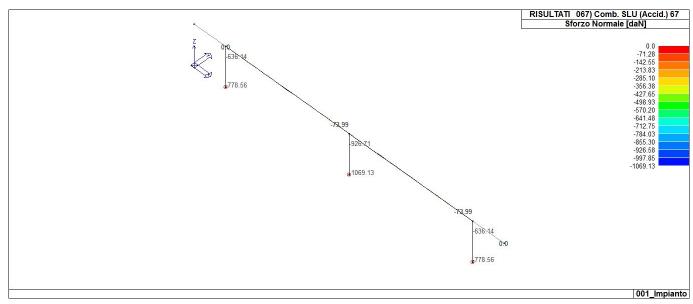

43_RIS_M3_003_Comb. SLU A1 (SLV sism.) 3


43_RIS_M3_035_Comb. SLE (SLD Danno sism.) 35


 $43_RIS_M3_067_Comb.\ SLU\ (Accid.)\ 67$


43_RIS_N_001_Comb. SLU A1 1


43_RIS_N_008_Comb. SLU A1 (SLV sism.) 8


43_RIS_N_019_Comb. SLU A1 (SLV sism.) 19

43_RIS_N_040_Comb. SLE (SLD Danno sism.) 40

43_RIS_N_051_Comb. SLE (SLD Danno sism.) 51

 $43_RIS_N_067_Comb.\ SLU\ (Accid.)\ 67$