



GRE.EEC.R.24.IT.W.15228.00.049.02

PAGE

1 di/of 18

TITLE: AVAILABLE LANGUAGE: IT

## "IMPIANTO EOLICO SERRACAPRIOLA"

# Calcoli preliminari impianti

File: GRE.EEC.R.24.IT.W.15228.00.049.02

| CLASSIFICATION |             |        |                              |           | UTIL   | IZATI | ON SC | OPE   |            |           |     |                |            |   |                |                  |          |      |                |      |      |
|----------------|-------------|--------|------------------------------|-----------|--------|-------|-------|-------|------------|-----------|-----|----------------|------------|---|----------------|------------------|----------|------|----------------|------|------|
| GRE EEC F      |             |        | R                            | 2         | 4      | I     | Т     | W     | 1          | 5         | 2   | 2              | 8          | 0 | 0              | 0                | 4        | 9    | 0              | 2    |      |
|                | ANTO EOLICO | GROUP  | FUNCION                      | TYPE      | ISS    | UER   | CO    | UNTRY | TEC        |           |     | PLANT          | -          |   | SYSTE          | М                | PRO      | GRES | SIVE           | REVI | SION |
| PROJEC1        | T/PLANT     |        |                              |           |        |       |       | GF    | RE-CO      | OD        | E   |                |            |   |                |                  |          |      |                |      |      |
|                | COLLABO     | RATORS |                              |           |        | VE    | RIFIE | D BY  |            |           |     |                |            |   | VAL            | IDA <sup>.</sup> | TED      | ВΥ   |                |      |      |
|                | PORCE       | LLINI  |                              |           |        | Р     | ROV   | ASI   |            |           |     |                |            |   | E.             | PAI              | NSIN     | I    |                |      |      |
|                |             |        |                              |           |        | GRE \ | /ALII | DATIO | N          |           |     | ı              |            |   |                |                  |          |      |                |      |      |
| REV.           | DATE        |        |                              | DESCI     | RIPTIO | N     |       |       |            |           | PR  | PREPARED       |            |   | VERIFIED       |                  | APPROVED |      | D              |      |      |
|                | 01/02/2021  |        |                              | EMISSIONE |        |       |       |       | V. D       | DECAROLIS |     |                | S. MICCOLI |   |                | A. SERGI         |          |      |                |      |      |
| 00             | 01/02/2021  |        | SECONDA EMISSIONE  EMISSIONE |           |        |       |       | scs   | Ingegneria |           |     | SCS Ingegneria |            | 9 | SCS Ingegneria |                  |          |      |                |      |      |
| 01             | 18/02/2021  |        |                              |           |        |       |       |       |            | DECAROLIS |     |                | S. MICCOLI |   |                | A. SERGI         |          |      |                |      |      |
| 0.4            | 40/00/0004  |        | SECONDA EMISSIONE            |           |        |       |       |       |            |           | scs | Ingeg          | neria      |   | SCS Ing        | egne             | eria     | 5    | SCS Ingegneria |      |      |
| 02             | 11/03/2021  |        |                              |           |        |       |       |       | ECAR       |           |     | S. MICCOLI     |            |   |                | A. SERGI         |          |      |                |      |      |
|                | 44/00/0004  |        | 250                          | ONDA      |        |       |       |       |            |           | scs | Ingeg          | neria      |   | SCS Ingegneria |                  |          |      | SCS Ingegneria |      |      |
|                |             |        |                              |           |        |       |       |       |            |           |     |                |            |   |                |                  |          |      |                |      |      |
|                |             |        |                              |           |        |       |       |       |            |           |     |                |            |   |                |                  |          |      |                |      |      |

This document is property of Enel Green Power S.p.A. It is strictly forbidden to reproduce this document, in whole or in part, and to provide to others any related information without the previous written consent by Enel Green PowerS.p.A.





## GRE.EEC.R.24.IT.W.15228.00.049.02

PAGE

2 di/of 18

## INDICE

| 1. | PREMESSA 3                                                         |  |
|----|--------------------------------------------------------------------|--|
| 2. | OOCUMENTI DI RIFERIMENTO4                                          |  |
| 3. | NORMATIVA DI RIFERIMENTO4                                          |  |
| 4. | INQUADRAMENTO TERRITORIALE5                                        |  |
|    | DESCRIZIONE DEL PROGETTO8                                          |  |
| 6. | CALCOLO DELLA RETE DI MEDIA TENSIONE9                              |  |
|    | 5.1. CALCOLO DELLA MASSIMA CORRENTE AMMISSIBILE9                   |  |
|    | 5.2. CALCOLO DELLA CADUTA DI TENSIONE E DELLE PERDITE DI POTENZA14 |  |
| 7. | CALCOLO DELLA RETE DI ALTA TNSIONE                                 |  |





GRE.EEC.R.24.IT.W.15228.00.049.02

PAGE

3 di/of 18

#### 1. PREMESSA

La società "Enel Green Power Italia S.r.l." è promotrice di un progetto per l'installazione di un impianto eolico nel territorio comunale di Serracapriola. Il progetto, cui la presente relazione fa riferimento, riguarda la realizzazione di un impianto di produzione di energia rinnovabile fa fonte eolica composta da 8 aerogeneratori, con potenza unitaria pari a 6 MW ciascuno, per una potenza complessiva di 48 MW.

La potenza generata da parco eolico sarà distribuita alla sottostazione utente di Enel Green Power Italia S.r.l. di nuova realizzazione dove verrà eseguita una elevazione di tensione di sistema (150/33 kV) per il collegamento in antenna AT a 150 kV all'ampliamento della sottostazione della Rete Elettrica Nazionale (RTN) 380/150 kV di TERNA S.p.A. di Rotello.

Come indicato nella S.T.M.G trasmessa da Terna (Codice Pratica:202001617) alla suddetta società, al fine di razionalizzare l'utilizzo delle strutture di rete, il nuovo stallo a 150 kV da realizzare nella nuova Stazione Elettrica (SE) della RTN 380/150 kV, dovrà essere condiviso con altri produttori.

L'obiettivo del presente documento è di presentare i calcoli preliminari degli impianti elettrici relativi all'impianto eolico, in particolare il dimensionamento dei cavi in media tensione in relazione alle condizioni di posa scelte e verificare che quest'ultima sia maggiore della corrente di impiego dei circuiti in tutte le condizioni d'esercizio d'impianto.

La verifica è stata realizzata in maniera conforme alla norma IEC 60502-2 – "Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um=1.2 kV) up to 30 kV (Um=36 kV) – Part 2: Cables for rated voltages from 6 kV (Um=7.2 kV) up to 30 kV (Um=36 kV) (Um=

| <u>Progetto Serracapriola</u> |        |  |  |  |  |  |  |  |
|-------------------------------|--------|--|--|--|--|--|--|--|
| Numero Turbine                | 8      |  |  |  |  |  |  |  |
| Potenza Installata            | 48 MW  |  |  |  |  |  |  |  |
| Potenza Nominale Turbina      | 6 MW   |  |  |  |  |  |  |  |
| Altezza Mozzo                 | 135 m  |  |  |  |  |  |  |  |
| Tensione sistema MT           | 33 kV  |  |  |  |  |  |  |  |
| Tensione Sistema AT           | 150 kV |  |  |  |  |  |  |  |

Tabella 1: Caratteristiche impianto





GRE.EEC.R.24.IT.W.15228.00.049.02

PAGE

4 di/of 18

Come da tabella precedente, gli aerogeneratori che verranno installati nel nuovo impianto oggetto della presente relazione tecnica, saranno selezionati sulla base delle più innovative tecnologie disponibili sul mercato. La potenza nominale delle turbine previste sarà pari a massimo 6,0 MW. Il tipo e la taglia esatta dell'aerogeneratore saranno comunque individuati a seguito della fase di acquisto della macchina e verranno descritti in dettaglio in fase di progettazione esecutiva.

#### 2. DOCUMENTI DI RIFERIMENTO

Nella redazione del presente documento, sono di riferimento i seguenti documenti tecnici di progetto:

- GRE.EEC.D.24.IT.W.15228.00.090.00 Schema elettrico Unifilare;
- GRE.EEC.D.25.IT.W.15228.00.085.00 Schema Tipo Scavi per l'Alloggiamento cavidotti;
- GRE.EEC.D.24.IT.W.15228.00.094.00 Inquadramento Catastale cavidotto MT Esterno;

#### 3. NORMATIVA DI RIFERIMENTO

Nella redazione del presente progetto sono state e dovranno essere osservate anche in fase esecutiva dei lavori, le disposizioni di legge vigenti in materia e le norme tecniche CEI EN. Si riportano di seguito, un elenco delle principali specifiche tecniche e norme di riferimento. S'intendono comprese nello stesso tutte le varianti, le modifiche ed integrazioni:

- IEC 60502-2: Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um=1.2 kV) up to 30 kV (Um=36 kV) Part 2: Cables for rated voltages from 6 kV (Um=7.2 kV) up to 30 kV (Um=36 kV) (03/2005);
- CEI EN 60909 (11-25) Calcolo di cortocircuito nei sistemi trifasi in corrente alternata (12/2001);
- IEC 60287: Electric cables Calculation of the current rating (12/2006);
- CEI 11-17: Impianti di produzione, trasmissione e distribuzione pubblica di energia elettrica Linee in cavo (07/2006);
- GRE.EEC.S.73.XX.W.00000.00.064.00 Design Engineering Services For Wind Energy Installations;
- EGP.EEC.S.73.XX.X.00000.00.014.00 Engineering Services New Countries.





GRE.EEC.R.24.IT.W.15228.00.049.02

PAGE

5 di/of 18

## 4. INQUADRAMENTO TERRITORIALE

L'impianto in progetto è costituito da n. 8 aerogeneratori distribuiti su un'area ubicata a circa 50 km a nord-ovest di Foggia, nel territorio del Comune di Serracapriola, Regione Puglia. L'area interessata si sviluppa in un'area collinare, a circa 12 km dalla costa Adriatica. L'area di progetto è adibita principalmente a seminativo, con orografia collinare. Si rimanda alla relazione tecnica e agli elaborati grafici di progetto per i dettagli relativi alla localizzazione catastale e geografica di ogni singola torre eolica.



Figura 1: Localizzazione dell'area di impianto nel contesto nazionale





#### GRE.EEC.R.24.IT.W.15228.00.049.02

PAGE

6 di/of 18

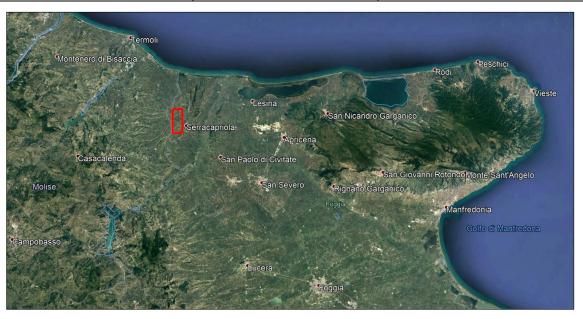



Figura 2 - Individuazione su ortofoto a livello regionale dell'area impianto



Figura 3 - Layout finale su ortofoto





#### GRE.EEC.R.24.IT.W.15228.00.049.02

PAGE

7 di/of 18

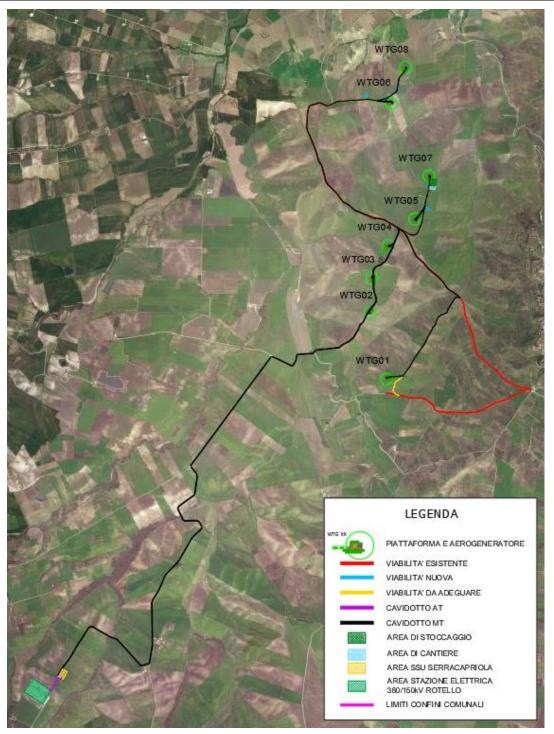



Figura 4 - Layout

L'installazione degli 8 aerogeneratori è prevista nel comune di Serracapriola, la sottostazione utente di trasformazione (SSU) sarà realizzata nel comune di Rotello, in provincia di Campobasso, nei pressi della stazione elettrica di connessione della RTN di Rotello appunto. Di seguito si riporta l'individuazione, in forma tabellare, della localizzazione geografica e catastale degli aerogeneratori proposti.





GRE.EEC.R.24.IT.W.15228.00.049.02

PAGE

8 di/of 18

| SISTEM | A DI RIFERIMENTO UTM \ | WGS 84 - FUSO 33N | RIFERIMENTI CATASTALI |    |        |  |  |
|--------|------------------------|-------------------|-----------------------|----|--------|--|--|
| WTG    | EST [m]                | NORD [m]          | COMUNE                | FG | P.LLA  |  |  |
| 1      | 510904                 | 4627367           | SERRACAPRIOLA         | 22 | 56/251 |  |  |
| 2      | 510662                 | 4628319           | SERRACAPRIOLA         | 22 | 35     |  |  |
| 3      | 510693                 | 4628832           | SERRACAPRIOLA         | 22 | 32/322 |  |  |
| 4      | 510934                 | 4629296           | SERRACAPRIOLA         | 14 | 26     |  |  |
| 5      | 511310                 | 4629677           | SERRACAPRIOLA         | 15 | 84     |  |  |
| 6      | 510982                 | 4631344           | SERRACAPRIOLA         | 15 | 48     |  |  |
| 7      | 511515                 | 4630298           | SERRACAPRIOLA         | 15 | 17     |  |  |
| 8      | 511179                 | 4631868           | SERRACAPRIOLA         | 15 | 120    |  |  |

Tabella 2: Elenco degli aerogeneratori

#### 5. DESCRIZIONE DEL PROGETTO

L'impianto eolico di progetto interessa il territorio nel Comune di Serracapriola nella provincia di Foggia. L'intervento prevede l'installazione di n. 8 aerogeneratori, ognuno della potenza nominale di 6 MW per una potenza complessiva di 48 MW. Il tipo e la taglia esatta dell'aerogeneratore saranno comunque individuati a seguito della fase di acquisto della macchina e verranno descritti in dettaglio in fase di progettazione esecutiva

Il parco eolico da 48 MW sarà collegato all'ampliamento della Stazione Elettrica 380/150 kV di Rotello di proprietà di Terna S.p.A. e l'energia prodotta sarà immessa sulla Rete di Trasmissione Nazionale (RTN).

Le opere elettriche necessarie per il trasporto dell'energia prodotta dal parco eolico alla nuova Stazione Elettrica 380/150 kV sono le seguenti:

- 1. Rete in cavo interrato interno al parco, esercita in media tensione a 33 kV, per il collegamento di tutti gli aerogeneratori previsti da progetto;
- 2. Sottostazione utente 30/150 kV;
- 3. Rete in cavo interrato esterna al parco, esercita in media tensione a 33 kV, per il collegamento di quest'ultimo alla nuova sottostazione Utenze (SSU);
- 4. Collegamento in cavo interrato, esercita in alta tensione a 150 kV, per il collegamento della sottostazione utente (SSU) al futuro stallo a 150 kV dell'ampliamento della stazione elettrica (S.E.) della RTN a 380/150 kV.





GRE.EEC.R.24.IT.W.15228.00.049.02

PAGE

9 di/of 18

Per maggiori dettagli tecnici delle suddette opere si rimanda al documento GRE.EEC.D.73.IT.W.15228.00.030.00 – Relazione tecnica generale.

Il progetto in questione prevede che ciascun aerogeneratore sia elettricamente interconnesso mediante un collegamento di tipo "entra-esce" attraverso un cavo MT all'aerogeneratore successivo, secondo quanto riportato nello schema unifilare presentato nel documento GRE.EEC.D.24.IT.W.15228.00.090.00 – Schema Elettrico Unifilare.

Sia i cavidotti d'interconnessione (cavidotti interni) fra gli aerogeneratori che i cavidotti di vettoriamento (esterno) seguiranno un tracciato sia su strada esistente (strade comunali e/o provinciali) sia su nuova viabilità a servizio degli aerogeneratori di progetto.

La configurazione elettrica d'impianto prevede la realizzazione di 3 cluster di media tensione caratterizzati rispettivamente da n.2, n.3 e n.3 WTG collegate in entra-esce tra loro. Il quadro MT dell'ultima WTG di ciascun cluster sarà connesso al quadro MT in sottostazione utente dove avverrà l'innalzamento di tensione per la connessione alla rete a 150 kV. L'energia prodotta verrà convogliata, per mezzo di un cavo AT, all'ampliamento della stazione elettrica (S.E.) della RTN a 380/150 kV:

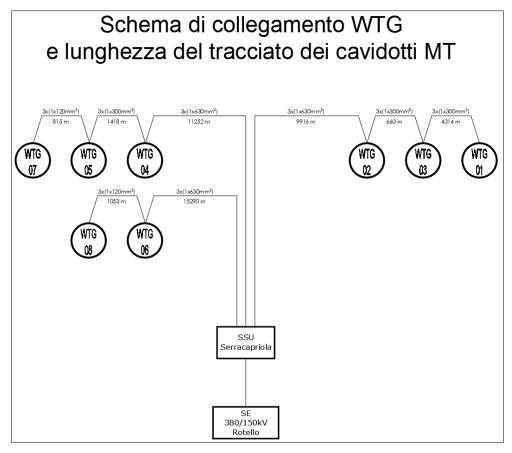



Figura 5 - Schema di collegamento tra WTG - SSU - SE

#### 6. CALCOLO DELLA RETE DI MEDIA TENSIONE

#### 6.1. CALCOLO DELLA MASSIMA CORRENTE AMMISSIBILE





#### GRE.EEC.R.24.IT.W.15228.00.049.02

PAGE

10 di/of 18

Le linee MT interna al parco eolico di interconnessione tra gli aerogeneratori e tra questi e la sottostazione utente, saranno realizzate con cavi eserciti a 33 kV direttamente interrati e posati a trifoglio.

I cavi saranno installati in trincee della profondità variabile tra 1 metro o superiore, in relazione alle interferenze presenti in sito secondo il tracciato indicato negli elaborati grafici:

- GRE.EEC.D.25.IT.W.15228.00.091.00 Inquadramento IGM cavidotto MT esterno;
- GRE.EEC.D.25.IT.W.15228.00.092.00 Inquadramento CTR cavidotto MT esterno;
- GRE.EEC.D.25.IT.W.15228.00.093.00 Inquadramento ORTOFOTO cavidotto MT esterno;
- GRE.EEC.D.25.IT.W.15228.00.094.00 Inquadramento CATASTALE cavidotto MT esterno;
- GRE.EEC.D.24.IT.W.15228.00.085.00 Schema tipo scavi per l'alloggiamento di cavidotti;
- GRE.EEC.D.24.IT.W.15228.00.095.00 Planimetria interferenze cavidotto MT esterno.

Le corrette condizioni di esercizio delle diverse tratte della linea MT intera al parco eolico e di collegamento tra l'ultimo aerogeneratore del cluster e la sottostazione utente 150/33 kV, sono state verificate con cavi unipolari di sezione 120, 300 e 630 mm² caratterizzati da conduttore in alluminio e tensione nominale Uo/U: 18/30 kV (Um:36 kV).

Le condizioni di installazione dei cavi saranno le seguenti:

• Temperatura di funzionamento: 90 ° C

• Temperatura del terreno: 30 ° C

• Resistenza termica del terreno: 2 K m / W (specificato dal cliente)

• Profondità di installazione: 1 (specificato dal cliente)

Separazione tra circuiti: 200 mm.

• Fattore di potenza: 0,90

Frequenza: 50 Hz.

• Tensione nominale: 33 kV (specificato dal cliente)

Per il calcolo dei circuiti sono state considerate le caratteristiche elettriche del cavo tipo ARE4H5E avente grado di isolamento 18/30 kV, conduttore in alluminio e portata Io in corrente come di seguito indicate nella tabella 2:





GRE.EEC.R.24.IT.W.15228.00.049.02

PAGE

11 di/of 18

|          | Conductor | Insul     | ation    | Sheath    | Ca       | ble        | Electrical      | resistance      |          |       | Current   | capacity    | Short circuit current |          |
|----------|-----------|-----------|----------|-----------|----------|------------|-----------------|-----------------|----------|-------|-----------|-------------|-----------------------|----------|
| Type     | diameter  | thickness | diameter | thickness | diameter | weight     | at 20 °C - d.c. | at 90 °C - a.c. | X        | С     | in ground | in free air | conductor             | screen   |
|          | nominal   | min       | nominal  | nominal   | approx   | indicative | max             |                 | at 50 Hz |       | at 20 °C  | at 30 °C    | Tmax 250°C            | Tmax 150 |
| n° x mm² | mm        | mm        | mm       | mm        | mm       | kg/km      | Ω/km            | Ω/km            | Ω/km     | μF/km | A         | A           | kA x 1,0 s            | kA x 0,5 |
| 1x50     | 8,2       | 7,1       | 24,7     | 2,0       | 32,0     | 800        | 0,641           | 0,822           | 0,142    | 0,147 | 175       | 189         | 4,7                   | 1,9      |
| 1x70     | 9,8       | 7,1       | 25,8     | 2,0       | 33,2     | 880        | 0,443           | 0,568           | 0,133    | 0,166 | 214       | 235         | 6,6                   | 2,0      |
| 1x95     | 11,5      | 6,6       | 26,5     | 2,0       | 33,9     | 960        | 0,320           | 0,411           | 0,124    | 0,193 | 256       | 284         | 9,0                   | 2,0      |
| 1x120    | 13,1      | 6,4       | 27,7     | 2,1       | 35,4     | 1.070      | 0,253           | 0,325           | 0,119    | 0,215 | 291       | 329         | 11,3                  | 2,0      |
| 1x150    | 14,3      | 6,2       | 28,5     | 2,1       | 36,2     | 1.160      | 0,206           | 0,265           | 0,115    | 0,233 | 326       | 371         | 14,2                  | 2,1      |
| 1x185    | 16,0      | 6,0       | 29,8     | 2,1       | 37,6     | 1.280      | 0,164           | 0,211           | 0,110    | 0,258 | 369       | 426         | 17,5                  | 2,1      |
| 1x240    | 18,5      | 5,8       | 31,9     | 2,2       | 40,0     | 1.510      | 0,1250          | 0,161           | 0,105    | 0,294 | 428       | 505         | 22,7                  | 2,3      |
| 1x300    | 20,7      | 5,9       | 34,3     | 2,3       | 42,6     | 1.740      | 0,1000          | 0,130           | 0,102    | 0,316 | 483       | 580         | 28,3                  | 2,4      |
| 1x400    | 23,5      | 6,0       | 37,3     | 2,4       | 46,0     | 2.070      | 0,0778          | 0,102           | 0,098    | 0,344 | 552       | 677         | 37,8                  | 2,5      |
| 1x500    | 26,5      | 6,1       | 40,8     | 2,5       | 49,8     | 2.495      | 0,0605          | 0,080           | 0,095    | 0,373 | 630       | 788         | 47,2                  | 2,7      |
| 1x630    | 30,0      | 6,2       | 44,6     | 2,6       | 54,0     | 3.040      | 0,0469          | 0,063           | 0,093    | 0,411 | 715       | 915         | 59,5                  | 3,0      |

Tabella 3 - Caratteristiche cavo ARE4H5E

I valori della portata di corrente (A), indicati nella tabella precedente, corrispondono ai valori di corrente massima consentiti ai conduttori in condizioni di installazione standard (temperatura a 20°C, profondità 1 m e resistività del terreno 1 k m/W).

Poiché le condizioni di installazione dei cavi saranno quelle riportate ad inizio del presente paragrafo, le portate di corrente dei cavi selezionati non saranno quelle che si determinano in condizioni di installazione standard come sopra riportate. Pertanto, alla portata nominale, sono applicati dei fattori di correzione che tengono conto delle condizioni di posa dei cavi al fine di calcolare appunto, la portata effettiva di corrente di ciascun cavo I'z.

$$I'_z = I_0 \times K = I_0 \times K_1 \times K_2 \times K_3 \times K_4$$

I fattori di correzione su citati sono standardizzati dalla norma IEC 60502-2: Nello specifico, sono stati utilizzati i seguenti fattori di correzione:

 k<sub>1</sub> - Fattore di correzione della corrente nominale per temperatura del terreno diverse da 20°C:

| Temperatura del terreno (°C) | Fattore<br>K <sub>1</sub> |
|------------------------------|---------------------------|
| 30                           | 0,93                      |

K<sub>2</sub> - Fattore di correzione per differenti valori di profondità di posa diversi da
 0,8 m:

| Profondità | Fatto     | re K₂     |
|------------|-----------|-----------|
| (m)        | < 185 mm2 | > 185 mm2 |





GRE.EEC.R.24.IT.W.15228.00.049.02

PAGE

12 di/of 18

| 1 | 0,98 | 0,97 |
|---|------|------|
|---|------|------|

• K₃ Fattore di correzione per differenti valori di resistività termica del terreno:

| Resistività del terreno<br>pari a 2 (k*m/W)   |      |  |  |  |  |  |  |  |
|-----------------------------------------------|------|--|--|--|--|--|--|--|
| Sezione del cavo [mm²] Fattore K <sub>3</sub> |      |  |  |  |  |  |  |  |
| 120                                           | 0,88 |  |  |  |  |  |  |  |
| 300                                           | 0,88 |  |  |  |  |  |  |  |
| 630                                           | 0,88 |  |  |  |  |  |  |  |

 K<sub>4</sub> - Fattore di correzione per gruppi di più circuiti installati sullo stesso piano (distanza 200mm):

| Numero di circuiti<br>per gruppi | Fattore<br>K <sub>4</sub> |
|----------------------------------|---------------------------|
| 2                                | 0,83                      |
| 3                                | 0,73                      |
| 5                                | 0,63                      |

La portata effettiva I'z del cavo scelto, nelle condizioni d'installazione previste, è stata confrontata con la corrente d'impiego dei cavi a utilizzarsi. Il valore della corrente d'impiego è indicato come corrente nominale nella tabella n.5 di seguito riportata. Pertanto:

$$I'_z{\geq}\ I_b$$

$$I'_z = I_0 \cdot K_1 \cdot K_2 \cdot K_3 \cdot K_4 \ge I_b$$

Di seguito si riportano due tabelle che mostrano rispettivamente per ciascuna linea di media tensione:

- i valori dei coefficienti di correzione applicati alla portata nominale dei cavi (Tabella 4);
- il valore della portata effettiva dei cavi a utilizzarsi (Tabella 4);
- la verifica della relazione sopra riportata, ossia che per ciascun circuito, la portata effettiva dei cavi a utilizzarsi è maggiore della corrente di impiego del circuito stesso (Tabella 5).





## GRE.EEC.R.24.IT.W.15228.00.049.02

PAGE

13 di/of 18

| LINEA 1                  |              |                                                                              | Derating            | Factors |              |                                               |                                                          |
|--------------------------|--------------|------------------------------------------------------------------------------|---------------------|---------|--------------|-----------------------------------------------|----------------------------------------------------------|
| Connection WTGa-<br>WTGb | temperatures | For dephts of laying<br>other than 0,8 m for<br>direct buried cables<br>(K2) | than 1,5 K m /W for | "       | TOTAL (Ktot) | Conductor<br>nominal current<br>capacity - Io | Adjusted<br>conductor<br>current<br>capacity - Iz<br>(A) |
| 08 - 06                  | 0,93         | 0,98                                                                         | 0,88                | 0,83    | 0,67         | 291                                           | 194                                                      |
| 06- SSU                  | 0,93         | 0,93                                                                         | 0,88                | 0,73    | 0,56         | 715                                           | 397                                                      |

| LINEA 2                  |                                                               |                                                                     | Derating                                   |      |              |                                               |                                                          |
|--------------------------|---------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------|------|--------------|-----------------------------------------------|----------------------------------------------------------|
| Connection WTGa-<br>WTGb | For ambient<br>temperatures<br>different from<br>20°C<br>(K1) | For dephts of laying other than 0,8 m for direct buried cables (K2) | resistivities other<br>than 1,5 K m /W for | "    | TOTAL (Ktot) | Conductor<br>nominal current<br>capacity - I0 | Adjusted<br>conductor<br>current<br>capacity - Iz<br>(A) |
| 07 - 05                  | 0,93                                                          | 0,98                                                                | 0,88                                       | 0,83 | 0,67         | 291                                           | 194                                                      |
| 05 -04                   | 0,93                                                          | 0,97                                                                | 0,88                                       | 0,73 | 0,58         | 483                                           | 280                                                      |
| 04 - SSU                 | 0,93                                                          | 0,93                                                                | 0,88                                       | 0,73 | 0,56         | 715                                           | 397                                                      |

| LINEA 3                                                                  |      |                                                                                                                                                                                          | Derating | Factors |      |                                               |                                                          |
|--------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|------|-----------------------------------------------|----------------------------------------------------------|
| Connection WTGa-WTGb  For ambient temperatures different from 20 °C (K1) |      | For soil thermal resistivities other other than 0,8 m for direct buried cables (K2)  For soil thermal resistivities other than 1,5 K m /W for direct buried single core-cables (K3) (**) |          | _       |      | Conductor<br>nominal current<br>capacity - I0 | Adjusted<br>conductor<br>current<br>capacity - Iz<br>(A) |
| 01 - 03                                                                  | 0,93 | 0,97                                                                                                                                                                                     | 0,88     | 0,73    | 0,58 | 483                                           | 280                                                      |
| 03 - 02                                                                  | 0,93 | 0,97                                                                                                                                                                                     | 0,88     | 0,73    | 0,58 | 483                                           | 280                                                      |
| 02 - SSU 0,93                                                            |      | 0,93                                                                                                                                                                                     | 0,88     | 0,73    | 0,56 | 715                                           | 397                                                      |

Tabella 4 - Valori coefficienti di riduzione applicati alla portata nominale dei cavi a utilizzarsi





#### GRE.EEC.R.24.IT.W.15228.00.049.02

PAGE

14 di/of 18

| LINEA 1                  |                               |                       |                        |                                   |                        |                                                   |                                                          |                                                   |
|--------------------------|-------------------------------|-----------------------|------------------------|-----------------------------------|------------------------|---------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|
| Connection WTGa-<br>WTGb | size                          | Voltage level<br>(kV) | N° of WTG<br>connected | DISTANCE<br>BETWEEN WTG's<br>(km) | Nominal<br>current (A) | Conductor<br>nominal<br>current<br>capacity - I 0 | Adjusted<br>conductor<br>current<br>capacity - Iz<br>(A) | Admissible<br>Current<br>Verification<br>Criteria |
| 08 - 06                  | 3 x (1 x 120mm²)              | 33,0                  | 1                      | 1,053                             | 116,64                 | 291                                               | 194                                                      | OK                                                |
| 06- SSU                  | 3 x (1 x 630mm <sup>2</sup> ) | 33,0                  | 2                      | 15,290                            | 233,27                 | 715                                               | 397                                                      | ок                                                |

| LINEA 2                  |                               |                       |                        |                                   |                        |                                                  |                                                          |                                                   |
|--------------------------|-------------------------------|-----------------------|------------------------|-----------------------------------|------------------------|--------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|
| Connection WTGa-<br>WTGb | size                          | Voltage level<br>(kV) | N° of WTG<br>connected | DISTANCE<br>BETWEEN WTG's<br>(km) | Nominal<br>current (A) | Conductor<br>nominal<br>current<br>capacity - 10 | Adjusted<br>conductor<br>current<br>capacity - Iz<br>(A) | Admissible<br>Current<br>Verification<br>Criteria |
| 07 - 05                  | 3 x (1 x 120mm <sup>2</sup> ) | 33,0                  | 1                      | 0,815                             | 116,64                 | 291                                              | 194                                                      | ОК                                                |
| 05 -04                   | 3 x (1 x 300mm <sup>2</sup> ) | 33,0                  | 2                      | 1,418                             | 233,27                 | 483                                              | 280                                                      | OK                                                |
| 04 - SSU                 | 3 x (1 x 630mm <sup>2</sup> ) | 33,0                  | 3                      | 11,252                            | 349,91                 | 715                                              | 397                                                      | OK                                                |

| LINEA 3                  |                               |                       |                        |                                   |                        |                                                  |                                                          |                                                   |
|--------------------------|-------------------------------|-----------------------|------------------------|-----------------------------------|------------------------|--------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|
| Connection WTGa-<br>WTGb | size                          | Voltage level<br>(kV) | N° of WTG<br>connected | DISTANCE<br>BETWEEN WTG's<br>(km) | Nominal<br>current (A) | Conductor<br>nominal<br>current<br>capacity - 10 | Adjusted<br>conductor<br>current<br>capacity - Iz<br>(A) | Admissible<br>Current<br>Verification<br>Criteria |
| 01 - 03                  | 3 x (1 x 300mm <sup>2</sup> ) | 33,0                  | 1                      | 4,314                             | 116,64                 | 483                                              | 280                                                      | ОК                                                |
| 03 - 02                  | 3 x (1 x 300mm <sup>2</sup> ) | 33,0                  | 2                      | 0,660                             | 233,27                 | 483                                              | 280                                                      | ОК                                                |
| 02 - SSU                 | 3 x (1 x 630mm²)              | 33,0                  | 3                      | 9,916                             | 349,91                 | 715                                              | 397                                                      | OK                                                |

Tabella 5 – Verifica della relazione tra corrente d'impiego e portata effettiva dei cavi

#### 6.2. CALCOLO DELLA CADUTA DI TENSIONE E DELLE PERDITE DI POTENZA

Il fenomeno di abbassamento di tensione tra due punti, uno a monte e l'altro a valle, in una rete elettrica di distribuzione, viene denominato caduta di tensione. In tutti gli impianti elettrici occorre valutare che la differenza tra la tensione del punto d'origine dell'alimentazione e la tensione all'utilizzatore d'energia sia adeguatamente contenuta, nei limiti normativi e nei limiti di funzionamento delle apparecchiature utilizzatrici.

La formula da applicare per determinare la caduta di tensione sarà:

$$AV\% = \frac{\sqrt{3xLxI(Rcos\varphi + Xsen\varphi)x100}}{II}$$

La formula da applicare per determinare le perdite di potenza sarà:

$$Pp = 3xLxRxI^2$$





GRE.EEC.R.24.IT.W.15228.00.049.02

PAGE

15 di/of 18

#### Dove

AV% = caduta di tensione in %

L = lunghezza della linea in km

I = corrente nominale (A)

R = resistenza elettrica della linea in  $\Omega/km$ 

X = reattanza elettrica della linea in  $\Omega/km$ 

 $\cos \varphi = 0.90$ 

 $sen \varphi = 0,44$ 

In merito a quanto indicato, si riporta di seguito la tabella di calcolo in cui sono state verificate le cadute di tensione sulle linee MT:

| Connection WTGa-<br>WTGb | size                                 | Voltage level<br>(kV) | N° of WTG<br>connected | DISTANCE<br>BETWEEN WTG's<br>(km)<br>linear distance<br>from dwg | DISTANCE<br>BETWEEN WTG's<br>(km) | Power<br>Factor (*) | sen ф         | Accumulated<br>active power<br>(MW) | Nominal<br>current (A) | TOTAL (Ktot) | Conductor<br>nominal<br>current<br>capacity - 10 | Adjusted<br>conductor<br>current<br>capacity - Iz<br>(A) | Admissible<br>Current<br>Verification<br>Criteria | cables /<br>phase | Resistance R<br>[Ω/km]<br>90°C | Inductive<br>reactance X<br>[Ω/km]      | Overall<br>Impedance Z [Ω] | ΔV<br>Voltage drop<br>(%) | Admissible Voltag<br>Drop Verification<br>Criteria |
|--------------------------|--------------------------------------|-----------------------|------------------------|------------------------------------------------------------------|-----------------------------------|---------------------|---------------|-------------------------------------|------------------------|--------------|--------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|-------------------|--------------------------------|-----------------------------------------|----------------------------|---------------------------|----------------------------------------------------|
| 08 - 06                  | 3 x (1 x 120mm²)                     | 33,0                  | 1                      | 0,954                                                            | 1,053                             | 0,9                 | 0.44          | 6                                   | 116,64                 | 0.67         | 291                                              | 194                                                      | OK                                                | - 1               | 0,325                          | 0,119                                   | 0.3626                     | 0.22%                     | ОК                                                 |
| 06- SSU                  | 3 x (1 x 630mm²)                     | 33.0                  | 2                      | 14.28                                                            | 15.290                            | 0.9                 | 0.44          | 12                                  | 233.27                 | 0.56         | 715                                              | 397                                                      | ОК                                                | 1                 | 0.063                          | 0.093                                   | 1,4868                     | 1.82%                     | OK                                                 |
|                          | 2(                                   |                       |                        |                                                                  | ,                                 |                     |               |                                     |                        | .,           | . 10                                             |                                                          | , Jn                                              |                   |                                | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                            | 2,04%                     | - OK                                               |
| Connection WTGa-<br>WTGb | size                                 | Voltage level<br>(kV) | Nº of WTG<br>connected | DISTANCE<br>BETWEEN WTG's<br>(km)<br>linear distance             | DISTANCE<br>BETWEEN WTG's<br>(km) | Power<br>Factor (*) | sen ф         | Accumulated active power (MW)       | Nominal current (A)    | TOTAL (Ktot) | Conductor<br>nominal<br>current<br>capacity - 10 | Adjusted<br>conductor<br>current<br>capacity - Iz        | Admissible<br>Current<br>Verification<br>Criteria | cables / phase    | Resistance R<br>[Ω/km]<br>90°C | Inductive<br>reactance X<br>[Ω/km]      | Overall<br>Impedance Z [Ω] | ΔV<br>Voltage drop<br>(%) | Admissible Volta Drop Verificatio                  |
| 07 - 05                  | 3 x (1 x 120mm²)                     | 33.0                  | 1                      | from dwg                                                         | 0.815                             | 0.9                 | 0.44          | 6                                   | 116.64                 | 0.67         | 291                                              | (A)                                                      | OK                                                |                   | 0,325                          | 0.119                                   | 0,2808                     | 0.17%                     | 911                                                |
| 05 -04                   | 3 x (1 x 120mm²)<br>3 x (1 x 300mm²) | 33,0                  | 2                      | 1,295                                                            | 1,418                             | 0,9                 | 0,44          | 12                                  | 233,27                 | 0,67         | 291<br>483                                       | 194<br>280                                               | OK<br>OK                                          | 1 1               | 0,325                          | 0,119                                   | 0,2006                     | 0,17%                     | OK OK                                              |
| 04 - SSU                 | 3 x (1 x 300mm²)                     | 33.0                  | 3                      | 10,506                                                           | 11,252                            | 0,9                 | 0.44          | 18                                  | 349.91                 | 0,58         | 483<br>715                                       | 397                                                      | OK                                                | - 1               | 0.063                          | 0,102                                   | 1.0941                     | 2.01%                     | OK OK                                              |
| 04 - 330                 | 3 X (1 X 630HHII)                    | 30,0                  | ,                      | 10,500                                                           | 11,202                            | 0,0                 | 0,44          | 10                                  | 340,01                 | 0,30         | 710                                              | 391                                                      | UK                                                |                   | 0,000                          | 0,033                                   | 1,0041                     | 2,46%                     | UK                                                 |
| IEA 3                    |                                      |                       |                        |                                                                  |                                   |                     |               |                                     |                        |              |                                                  |                                                          |                                                   |                   |                                |                                         |                            | 2,4070                    |                                                    |
|                          |                                      |                       |                        | DISTANCE                                                         |                                   |                     |               |                                     |                        |              |                                                  | Adjusted                                                 | l                                                 |                   |                                | Inductive                               |                            | ΔV                        | Admissible Volta                                   |
| connection WTGa-<br>WTGb | size                                 | Voltage level<br>(kV) | N° of WTG<br>connected | BETWEEN WTG's                                                    | DISTANCE<br>BETWEEN WTG's<br>(km) | Power<br>Factor (*) | sen ф         | Accumulated<br>active power<br>(MW) | Nominal<br>current (A) | TOTAL (Ktot) | Conductor<br>nominal<br>current<br>capacity - 10 | conductor<br>current<br>capacity - Iz<br>(A)             | Admissible<br>Current<br>Verification<br>Criteria | cables /<br>phase | Resistance R<br>[Ω/km]<br>90°C | reactance X<br>[Ω/km]                   | Overall<br>Impedance Z [Ω] | Voltage drop<br>(%)       | Drop Verification<br>Criteria                      |
|                          | size                                 |                       |                        | BETWEEN WTG's<br>(km)<br>linear distance                         | BETWEEN WTG's                     |                     | sen ф<br>0,44 | active power                        |                        | TOTAL (Ktot) | nominal<br>current                               | conductor<br>current<br>capacity - Iz                    | Current<br>Verification                           |                   | [Ω/km]                         |                                         |                            |                           |                                                    |
| WTGb                     |                                      | (KV)                  | connected              | BETWEEN WTG's<br>(km)<br>linear distance<br>from dwg             | BETWEEN WTG's<br>(km)             | Factor (*)          |               | active power<br>(MW)                | current (A)            |              | nominal<br>current<br>capacity - 10              | conductor<br>current<br>capacity - Iz<br>(A)             | Current<br>Verification<br>Criteria               | phase             | [Ω/km]<br>90°C                 | [Ω/km]                                  | Impedance Z [Ω]            | (%)                       | Criteria                                           |

Tabella 6 - Calcolo delle cadute di tensioni sulle linee MT

Dalla suddetta tabella si evince che il valore massimo di caduta di tensione riscontra per le singole linee MT è pari a:

Linea 1: 2,04%Linea 2: 2,46%

Linea 3: 2,32%

Le perdite di energia sono stata calcolate in condizioni di funzionamento nominale dell'impianto. Di seguito si riporta la tabella riassuntiva:





#### GRE.EEC.R.24.IT.W.15228.00.049.02

PAGE

16 di/of 18

| LINEA 1                  |                               |                       |                     |                                   |                     |                                     |                                        |                        |                                |                                    | ΔP Losses(tota | l) -cluster |
|--------------------------|-------------------------------|-----------------------|---------------------|-----------------------------------|---------------------|-------------------------------------|----------------------------------------|------------------------|--------------------------------|------------------------------------|----------------|-------------|
| Connection WTGa-<br>WTGb | size                          | Voltage level<br>(kV) | N° of WTG connected | DISTANCE<br>BETWEEN WTG's<br>(km) | Power<br>Factor (*) | Accumulated<br>active power<br>(MW) | Accumulated<br>apparent power<br>(MVA) | Nominal<br>current (A) | Resistance R<br>[Ω/km]<br>90°C | Inductive<br>reactance X<br>[Ω/km] | w              | %           |
| 08 - 06                  | 3 x (1 x 120mm <sup>2</sup> ) | 33,0                  | 1                   | 1,053                             | 0,9                 | 6                                   | 6,667                                  | 116,64                 | 0,325                          | 0,119                              | 164431         | 4 220/      |
| 06- SSU                  | 3 x (1 x 630mm <sup>2</sup> ) | 33,0                  | 2                   | 14,630                            | 0,9                 | 12                                  | 13,333                                 | 233,27                 | 0,063                          | 0,093                              | 104431         | 1,23%       |

| Ι. | LINEA 2                  |                               |                       |                        |                                   |                     |                                     |                                        |                        |                                |                                    | ΔP Losses(tota | al) -cluster |
|----|--------------------------|-------------------------------|-----------------------|------------------------|-----------------------------------|---------------------|-------------------------------------|----------------------------------------|------------------------|--------------------------------|------------------------------------|----------------|--------------|
|    | Connection WTGa-<br>WTGb | size                          | Voltage level<br>(kV) | N° of WTG<br>connected | DISTANCE<br>BETWEEN WTG's<br>(km) | Power<br>Factor (*) | Accumulated<br>active power<br>(MW) | Accumulated<br>apparent power<br>(MVA) | Nominal<br>current (A) | Resistance R<br>[Ω/km]<br>90°C | Inductive<br>reactance X<br>[Ω/km] | w              | %            |
|    | 07 - 05                  | 3 x (1 x 120mm <sup>2</sup> ) | 33,0                  | 1                      | 0,815                             | 0,9                 | 6                                   | 6,667                                  | 116,64                 | 0,325                          | 0,119                              |                |              |
|    | 05 -04                   | 3 x (1 x 300mm <sup>2</sup> ) | 33,0                  | 2                      | 1,394                             | 0,9                 | 12                                  | 13,333                                 | 233,27                 | 0,129                          | 0,102                              | 285278         | 1,43%        |
|    | 04 - SSU                 | 3 x (1 x 630mm <sup>2</sup> ) | 33,0                  | 3                      | 10,592                            | 0,9                 | 18                                  | 20,000                                 | 349,91                 | 0,063                          | 0,093                              |                |              |

| ١. | LINEA 3                  |                               |                       |                        |                                   |                     |                               |                                        |                        |                                |                                    | ΔP Losses(tota | al) -cluster |
|----|--------------------------|-------------------------------|-----------------------|------------------------|-----------------------------------|---------------------|-------------------------------|----------------------------------------|------------------------|--------------------------------|------------------------------------|----------------|--------------|
|    | Connection WTGa-<br>WTGb | size                          | Voltage level<br>(kV) | N° of WTG<br>connected | DISTANCE<br>BETWEEN WTG's<br>(km) | Power<br>Factor (*) | Accumulated active power (MW) | Accumulated<br>apparent power<br>(MVA) | Nominal<br>current (A) | Resistance R<br>[Ω/km]<br>90°C | Inductive<br>reactance X<br>[Ω/km] | w              | %            |
|    | 01 - 03                  | 3 x (1 x 120mm <sup>2</sup> ) | 33,0                  | 1                      | 4,219                             | 0,9                 | 6                             | 6,667                                  | 116,64                 | 0,325                          | 0,119                              |                |              |
| П  | 03 - 02                  | 3 x (1 x 300mm <sup>2</sup> ) | 33,0                  | 2                      | 0,660                             | 0,9                 | 12                            | 13,333                                 | 233,27                 | 0,129                          | 0,102                              | 283991         | 1,42%        |
|    | 02 - SSU                 | 3 x (1 x 630mm <sup>2</sup> ) | 33,0                  | 3                      | 9,253                             | 0,9                 | 18                            | 20,000                                 | 349,91                 | 0,063                          | 0,093                              |                |              |

Tabella 7 - Calcolo delle perdite sulle linee MT

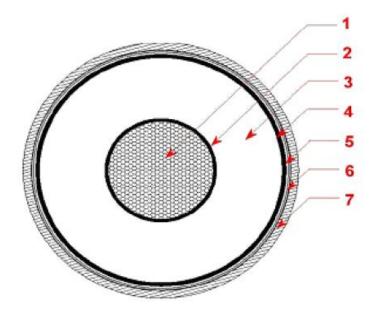
Dai calcoli effettuati per l'ottenimento delle sezioni dei cavi riportate nelle precedenti tabelle, si può asserire che:

- La corrente d'impiego dei circuiti MT dell'impianto eolico è inferiore alla portata effettiva stimata per i circuiti stessi sulla base delle condizioni di posa considerate;
- In considerazione delle ipotesi adottate per il calcolo, la tensione che si trova ai morsetti degli aerogeneratori a installarsi all'interno del parco eolico, è compresa all'interno del range di tensione ammesso dal costruttore dell'aerogeneratore stesso in tutte le condizioni di esercizio.





GRE.EEC.R.24.IT.W.15228.00.049.02


PAGE

17 di/of 18

## 7. CALCOLO DELLA RETE DI ALTA TNSIONE

L'elettrodotto a 150 kV sarà realizzato con una terna di cavi unipolari realizzati con conduttore in alluminio, isolamento in polietilene reticolato (XLPE), schermatura in alluminio e guaina esterna in polietilene.

Di seguito si riporta a titolo illustrativo la tipologia di cavo che verrà utilizzato:



- 1. Conduttore
- 2. Strato semiconduttivo interno
- 3. Isolante
- 4. Strato semiconduttivo esterno
- 5. Rivestimento impermeabile
- 6. Guaina metallica
- 7. Guaina protettiva esterna

Figura 6 - Sezione tipo cavo AT

Di seguito si riportano le caratteristiche elettriche principali:

| Tensione nominale      | 150 kV          |
|------------------------|-----------------|
| Frequenza nominale     | 50 Hz           |
| Potenza trasportata    | 220 MVA         |
| Isolamento             | XLPE            |
| Sezione del conduttore | 1200 mm²        |
| Portata in corrente    | Circa 950 A (*) |

<sup>(\*)</sup> per una potenza di circa 220 MV,  $\cos \varphi$  0,90





GRE.EEC.R.24.IT.W.15228.00.049.02

PAGE

18 di/of 18

La sezione impegnata è stata scelta sulla base della potenza trasportabile prevista in relazione agli scenari di condivisione dello stallo AT con altri produttori come indicato nella STMG ricevuto da terna. Tali dati potranno subire adattamenti dovuti alla successiva fase di progettazione esecutiva e di cantierizzazione, anche in funzione delle soluzioni tecnologiche adottate dai fornitori e/o appaltatori.