

REGIONE PUGLIA

COMUNE di ASCOLI SATRIANO

COMUNE di CANDELA

COMUNE di DELICETO

PROVINCIA di FOGGIA

think energy

wpd Italia s.r.l.

Corso d'Italia, 83 00198 - Roma Tel: +39 06 960 353-10 e-mail: info@wpd-italia.it

Progettazione

Viale Michelangelo, 71 80129 Napoli TEL.081 579 7998 mail: tecnico.inse@gmail.com

Nome Elaborato:

RELAZIONE GEOTECNICA E SISMICA

Vittorio Emanuele IERVOLINO

ш.				xo N° / ₹/	
			1000	e Campania	
		Hon	Fand de	2	
00	Aprile 2021	Prima Emissione	geol. Iervoline	o Inse srl.	WPD Italia srl
Rev.	Data	Oggetto della revisione	Elaborazione	Verifica	Approvazione
Scala:		S217		S217-GE-RT-02A	
Formato	0	Codice Pratica Codice I	Elaborato	3217-GE-NT-UZA	

Sommario

1	Premessa	3
	Inquadramento Territoriale e Geomorfologia	
3	Geologia	7
4	Caratterizzazione Geotecnica	10
5	Caratterizzazione sismica	18
5.1	Sismicità Storica	18
5.2	2 Mappa di Pericolosità Sismica	21
5.3	3 Curva di Pericolosità	22
5.4	Spettri a Pericolosità Uniforme	23
5.5	5 Grafico di Disaggregazione	24
į	Caratterizzazione Sismica del Sito	26

1 Premessa

La società WPD Daunia Srl vuole costruire un impianto eolico tra i comuni di Ascoli Satriano (FG) e Candela (FG) con opere di connessione nel comune di Deliceto (FG). L'ipotesi progettuale prevede l'installazione di n°12 aerogeneratori della potenza nominale di 4,8MW per una potenza complessiva di impianto pari a 57MW, collegati tramite un cavidotto interrato di circa 22km ad una stazione di trasformazione utente 30/150kV da realizzare in Ascoli Satriano e alla rete di trasmissione nazionale dalla stazione elettrica esistente in Deliceto.

La presente Relazione Geotecnica e Sismica viene redatta dal geol. V.E.Iervolino, con sede in via P.P.Pasolini, 47 Caserta, Codice Fiscale RVLVTR75M11F839S, Partita IVA 05311761216, iscritto all'Albo Professionale dell'Ordine dei Geologi della Regione Campania con n° 2392 ed all'Ente di Previdenza e Assistenza Pluricategoriale EPAP con n° 025223. Il lavoro in oggetto prende a riferimento le seguenti fonti specialistiche:

Topografia

- Carta Topografia dell'Istituto Geografico Militare 1:25.000 Foglio 175 III-NE "CANESTRELLO"
 1954 e Foglio 175 II-NO "SAN CARLO" 1954;
- Carta Topografica dell'Istituto Geografico Militare 1: 100.000;
- Carta Tecnica Regionale 1:5.000 del Portale Cartografico Regione Puglia;
- Modello Digitale del Terreno Lidar del Portale Cartografico della Regione Puglia.

Geologia, Geotecnica e Idrogeologia

- Carta Geologica d'Italia 1:100.000 Foglio n°175 "Cerignola" (1960);
- Carta Geologica d'Italia 1:50.000 Foglio 421 "Ascoli Satriano" (2011);
- N°20 Sondaggi Profondi nell'immediato intorno della zona di studio, messi a disposizione dalla Società Geologica Italiana e dall'Istituto Superiore per la Protezione e Ricerca Ambientale (ISPRA);
- N° 40 sondaggi geognostici, molti corredati da indagini in situ e in laboratorio, realizzati nell'intorno della zona di studio per la costruzione di impianti eolici da Privati, lavori messi a disposizione dal Ministero dell'Ambiente sul portale di Valutazione di Impatto Ambientale;
- Carta Idrogeologica dell'Italia Meridionale 1:250.000 dell'Agenzia per la Protezione dell'Ambiente
 e per i Servizi Tecnici e il Dipartimento di Geofisica e Vulcanologia dell'Università di Napoli
 Federico II (Allocca, et al., 2007);

 Le acque sotterrane e l'intrusione marina in Puglia: dalla ricerca all'emergenza nella salvaguardia della risorsa – Memoria descrittive della Carta Geologica d'Italia (2014) – con tavola cartografica "Carta Idrogeologica Regione Puglia".

Dissesto Idrogeologico

- Piano Stralcio per l'Assetto Idrogeologico dell'Autorità di Bacino della Puglia;
- Inventario Fenomeni Franosi in Italia Progetto IFFI (ISPRA, Inventario Fenomeni Franosi, 2007);

Sismicità

- Mappa di Pericolosità Sismica del Territorio Nazionale (INGV, Mappa di pericolosità sismica, 2004);
- Catalogo Parametrico dei Terremoti Italiani dal 1000 al 2014 (INGV, Catalogo Parametrico dei Terremoti Italiani 2015 - CPTI15, 2016);
- Catalogo delle Sorgenti Sismogenetiche Italiane (DISS) (INGV, Database of Individual Seismogenic Sources, 2015);
- Esecuzione di n° 3 MASW in prossimità delle pale eoliche WTG 9 WTG 10 e WTG 11 per la caratterizzazione sismica di sito

NORMATIVA PRESA A RIFERIMENTO

D.M. 17/01/2018 Ministero delle Infrastrutture e Trasporti - Norme Tecniche per le Costruzioni.

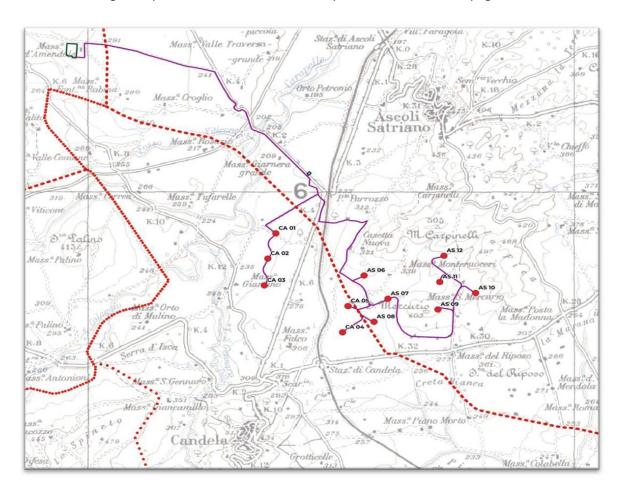
Piano Stralcio per l'Assetto Idrogeologico – Autorità di Bacino Regionale della Puglia - 2004

Ordinanza n. 3274 del 20 marzo 2003: "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica"

DPR n. 554/99: "Regolamento di attuazione della legge quadro in materia di lavori pubblici";

Legge 109/94: "Legge quadro in materia di lavori pubblici";

D.M. 11/03/1988 "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno e delle opere di fondazione" e successive modifiche ed integrazioni



2 Inquadramento Territoriale e Geomorfologia

La società WPD Daunia srl intende costruire un parco eolico tra i comuni di Ascoli Satriano e Candela, costituito da n°12 aerogeneratori dislocati tra il versante occidentale di Serra Giardino e la porzione meridionale di Monte Carpinelli, collegati alla stazione elettrica di nuova costruzione in località Giarnera e alla rete elettrica nazionale con la stazione elettrica Terna in località Serra Campanile, nel comune di Deliceto.

Nella foto che segue, inquadramento territoriale dell'impianto eolico su carta topografica IGM 1:25.000.

L'incisione torrentizia La Manara, affluente di sinistra del Torrente Carapelle, divide il campo eolico in due parti: una porzione Ovest con tre pale (CA01 – CA02 – CA03) impostate su Serra Giardino e una porzione EST con le restanti pale nel settore sudoccidentale di Monte Carpinelli.

Serra Giardino costituisce da un modesto rilievo collinare con altimetrie modeste che toccano appena i 250m sul livello del mare. L'alto morfologico è caratterizzato da una porzione orientale planare, senza forme morfologiche particolari con valori di acclività che decrescono gradualmente verso la piana alluvionale del

Torrente La Morana ed una porzione occidentale in cui una cresta a sviluppo regolare e con pendenze di quasi 10° decrescono progressivamente a valori subpianeggianti verso la piana del Torrente San Gennaro, Carapelle più a valle.

Nella foto Serra Giardino: lo Scrivente si trova nella posizione precisa della WTG 2, sulla destra è evidente la morfologia che da pianeggiante passa salendo di quota a zona di cresta.

Monte Carpinelli costituisce un alto morfologico, caratterizzato da un'altimetria massima di 500m sul livello del mare e con valori di acclività che in testata arrivano a toccare i 25° ma che si attesta su valori medi compresi tra i 5° - 15°. Procedendo verso valle le pendenze decrescono a raccordo con la piana alluvionale da un'ampia fascia pedemontana. Numerosi fossi e incisioni torrentizie dissecano la blanda collina, con profondità di anche 1-2m per la presenza di terreni facilmente erodibili dal passaggio delle acque meteoriche durante il periodo autunnale ed invernale.

Nella foto ripresa da WTG 10, in primo piano Monte la Fica e sullo sfondo a sinistra Monte Carpinelli.

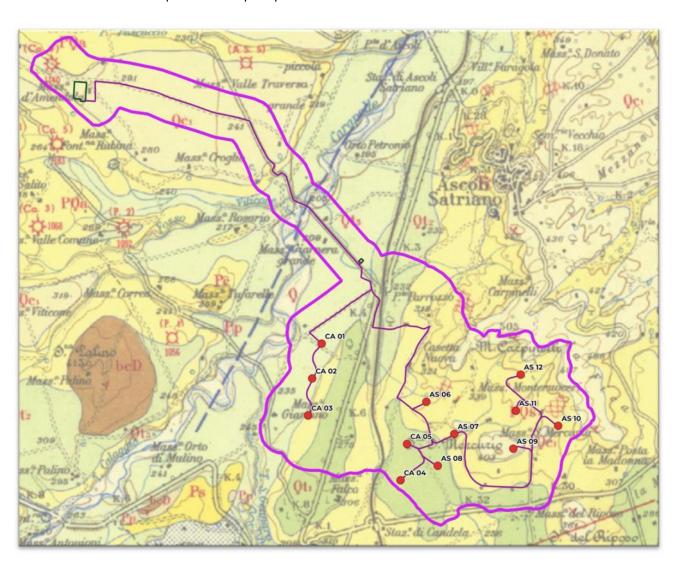
Il cavidotto che collegherà le pale eoliche alla stazione elettrica di Deliceto, dovrà essere posato su strade di nuova costruzione o da adeguare per circa 8,5km e per le restanti parti su strade esistenti.

La stazione elettrica di Deliceto si trova a circa 8km in direzione NordOvest dal campo eolico, sulle falde meridionali di Serra Campanile.

Di seguito l'ubicazione degli aerogeneratori in coordinate UTM 33N, nel prosieguo ogni aerogeneratore verrà identificato in maniera semplificata (ID Rel. Geologica).

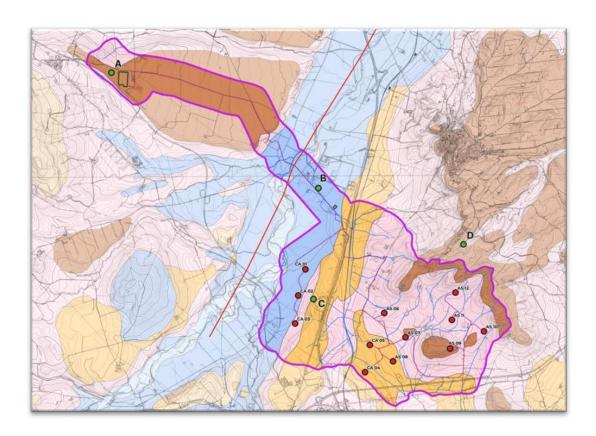
ID	ID	Coor	dinate
Progetto	Rel. Geologica	UTM 33	3 WGS84
		EST	NORD
CA01	WTG 1	543797,72	4558828,96
CA02	WTG 2	543633,00	4558225,00
CA03	WTG 3	543580,00	4557602,00
CA04	WTG 4	545163,00	4556455,00
CA05	WTG 5	545252,95	4557086,60
AS06	WTG 6	545606,78	4557817,15
AS07	WTG 7	546103,48	4557264,33
AS08	WTG 8	545815,00	4556711,00
AS09	WTG 9	547129,00	4557006,00
AS10	WTG 10	547902,37	4557406,73
AS11	WTG 11	547157,00	4557669,00
AS12	WTG 12	547254,00	4558294,00

3 Geologia

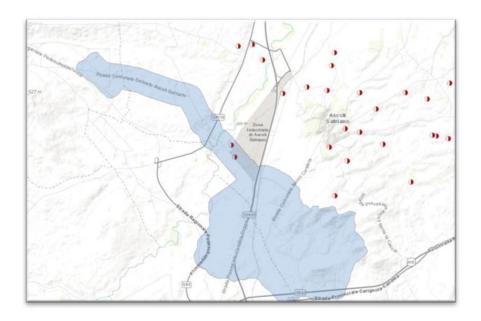


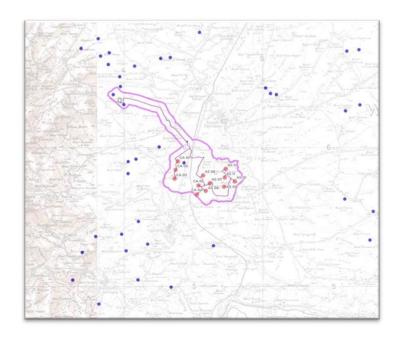
La Carta Geologica d'Italia in scala 1:100.000 Foglio 175 "Cerignola" è stata presa a riferimento per la definizione delle caratteristiche geolitologiche dell'area, unita alla fotointerpretazione di foto aeree e satellitari, anche a diverse annate, oltre che all'interpretazione della Carta Topografica Regionale. In aggiunta sono stati raccolti numerosi sondaggi geognostici nell'immediato intorno della zona di studio, dettagliati nel capitolo che segue.

Nella figura si riporta il layout dell'impianto eolico sovrapposto allo stralcio cartografico della carta geologica F.175 "Cerignola", in cui è possibile differenziare, procedendo stratigraficamente dall'alto verso il basso e cioè da terreni più recenti a quelli più antichi:



Nella figura che segue lo stralcio della carta geolitologica prodotta, che prende a riferimento i dati già disponibili nella carta 1:100.000 ma aggiunge ulteriori approfondimenti dalla presa visione di circa 20 sondaggi profondi del SGI e ISPRA e di circa 40 indagini geognostiche eseguite da privati nell'immediato intorno.

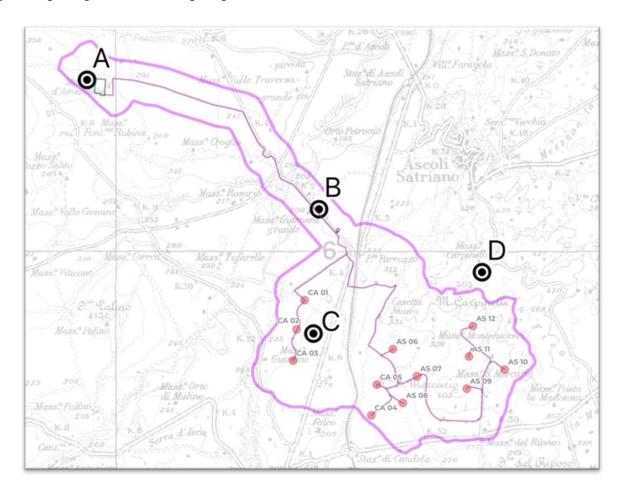




4 Caratterizzazione Geotecnica

Per avere un quadro più dettagliato dei terreni di fondazione sono stati visionati nell'immediato intorno della zona di studio: n°20 sondaggi profondi messi a disposizione da ISPRA sul suo portale cartografico,

e n°40 sondaggi eseguiti per altri progetti di impianti eolici, messi a disposizione dal Ministero dell'Interno sul portale di Valutazione di Impatto Ambientale; lavori che per problemi di privacy non possono essere meglio dettagliati nelle specifiche tecniche e nella posizione precisa.



Alla luce di tutto il materiale raccolto lo Scrivente ha individuato 4 sondaggi geognostici nell'immediato intorno del campo eolico, che possono dare un quadro generale sulle caratteristiche stratigrafiche, geolitologiche, geotecniche e idrogeologiche dei terreni di fondazione.

Seguono nelle pagine successive le stratigrafie geologico-geotecniche delle formazioni riconosciute e schematizzate.

tiferimen	to: W	/PD Daunia	Srl: Camp	o E	olico A	sco	li Satriano	- Car	nde	ela			SCALA 1:125 Pagina Sondaggio: A
ocalità:	Stazio	ne Elettrica	in Delicet	0									Quota: 310
npresa e	secut	rice: da Pri	vato - nell'	imm	nediato	o int	orno						Data:
coordinat erforazio		,4692218 4	41,220637	8								U	Redattore: geol. V.E. lervolino
		LITOLOGIA	Campioni	DD	VT Pr	el. %	S.P.T.	—	RQ	D %	pro	2	DESCRIZIONE
V r s	batt.	LITOLOGIA	Campion	Kr	V 1 0 -	100	S.P.T.	N () 	- 100) m	Terreno vege	
	1 8	A									1		etale
	1 8					Ш	Ī			Ш	ľ		i limi sabbiosi e limi argillosi
	2_	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										peso natural	e: 18-20 KN/m3 10KN/m2
	3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										coesione: 8-	10KN/m2 rito: 20° - 25°
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										modulo edor	rito: 20° - 25° netrico: 4000 KN/m2
	4_8	0 0 0 0 0 0 0 0 0 0 0											
	5	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									5		
	3	1 - 6 - 6 - 6 - 6				Ш		11	Ш	Ш	9		azzurre appenniniche
	6_											peso natural	e: 18-20 KN/m3
	8											coesione: 20	-50 KN/m2 rito: 15°-25° n drenata: 65-210KN/m2
	7_6		1 11									coesione nor	n drenata: 65-210KN/m2 netrico: 5200KN/m2
	8_											modulo edor	netrico: 5200kin/m2
	. 8												
	9.3												
	10_												
	8												
	11_8												
	12_												
	8												
	13_												
	14_												
	3												
	15_6												
	16_												
	3												
	17_6												
	18												
	18_												
	19_												
	20_												
	8												
	21_												
	22_												
	8												
	23_												
	24_												
	8												
	25_												
	26_												
	27_												
	28_												
	2°_												
1 1 1 1 1	29_					Ш	[]		111	ш	11	1	

STRATIGRAFIA

D:			•					The state of the s	STRATIGRAFIA SCALA 1:125 Pagina 1
Riferimento: WPD Daur Località: Pianura alluvio	nia Srl: Campo nale T. Carane	Eolico	Asco lasser	oli Satriano ia Giarner	- Cande a Grand	ela le			Sondaggio: B Quota: 215
Impresa esecutrice: Str	atigrafia da Da	ti ISPF	RA - G	eotecnica	da lavo	ri pr	ivati	nell'immediato	Data
Coordinate: 15,5258707 Perforazione:	7 15,5258707								Redattore: geol. V.E. lervolino
R A Pz metri LITOLOG	HA Campioni I	RP VT	Prel. %	6 S.P.T.	N 0	D %	prof		DESCRIZIONE
III V I S Call.	- W		0 10	0 5.7.1	18 0	100	in	Terreno vege	
1					444		1.0	Ct-	
2 0	0:							calcari immer	o poligenico costituito da ciottoli arenacei si in matrice sabbiosa giallastra
	0.0							peso naturale	e: 19-20 KN/m3
3	···							angolo di attr	KN/m2 ito: 30°-35° netrico: 8000KN/m2
4	0.1							modulo edon	ietrico. 6000KN/HIZ
5									
	O								
6_1 - 6	0.0								
7	0000								
8 0 0 0 0	000					Ш	8.0		
									azzurre appenniniche
9_								coesione: 20	e: 18-20 KN/m3 -50 KN/m2
10_								angolo di attri coesione non	ito: 15°-25° drenata: 65-210KN/m2
11_								modulo edom	netrico: 5200KN/m2 netrico: 5200KN/m2
12_									
13_									
14_									
15_									
16_									
17_									
18_									
19_									
20_									
21_									
20. 21. 22. 23. 24. 25. 26. 27. 28.									
24_									
25									
26_									
27_									
29_									
30							30.0		

STRATIGRAFIA

													STRATIGRAFI SCALA 1:125 Pagina
			/PD Daunia			co Ascoli	Satriano	- Ca	and	ela	(1		Sondaggio: C
			Giardino - (trice: da Pri		·G)								Quota: 240m Data: Stratigrafia 1993
			5,5243436		16								Redattore: geol. V.E. lervolino
		ione:	,3243430	41,175422	.0								Redattore. geol. V.L. lervolino
R		z metr	LITOLOGIA	Campioni	RP V	Γ Prel. %	S.P.T. S.P.T.	N	RÇ	D % - 100	pro:		DESCRIZIONE
	T		***************************************	1					Ī			Terreno vegeta	ale
		1_							Н	₩	1.		imi sabbiosi e limi argillosi
		2	444440505054404 444440505054404 44444050506									No. 1	
			40 - D + D + D + D + D + D + D + D + D + D									peso naturale: coesione: 8-10	OKN/m2
		3_	**************************************									angolo di attrit	o: 20° - 25° etrico: 4000 KN/m2
												Triodulo edorne	ethco. 4000 KN/III2
		4_	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
		5_											
		6											
		7_											
		8_	40404030304030										
		9_	4 4 4 4 4 5 1 3 6 4 6 4 6 4 6 4 6 4 6 6 6 6 6 6 6 6 6										
		10											
		10_	4000 0000000000000000000000000000000000										
		11_									11.		
		1.00	· · · · · · · · · · · · · · · · · · ·						Ш	Ш			tre debolmente limose con intercalazio osi e limosi grigiastri
		12_	0 0 0 0 0 0 0 0 0									di livelli ciottolo	osi e limosi grigiastri
			0 0 0 0 0 0 0 0	9								peso naturale:	17-19 KN/m3
		13_	0 0 0 0 0 0 0 0									coesione: 2-5	KN/m2
			0-									modulo edome	o: 20-30° etrico: 3700KN/m2
		14_	0-	8									
		15	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
		15_	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0									
		16	0 0 0 0 0 0 0 0 0										
			0-0-0-0-0-0	•									
		17_	0 0 0 0 0 0 0 0 0	0									
			0 0 0 0 0 0 0 0										
Н	Н	18_	******	Ď					Ш	Ш	18.		
П												Argille grigio a	zzurre appenniniche
		19_										peso naturale:	18-20 KN/m3
												coesione: 20-5 angolo di attrit	50 KN/m2 o: 15°-25°
П		20_										coesione non	drenata: 65-210KN/m2
П		21_											etrico: 5200KN/m2 drenata: 105KN/m2
П		177.11										coesione non	drenata. 100/4//112
Ш		22_											
П													
		23_											
		1233											
		24_											
		25_											
П		26_											
		27_											
		28_											
		29_											
						1111111111			OUL	шШ	11	1	

STRATIGRAFIA

Riferim	nento: WPD Daunia	Srl: Camp	οЕ	olico	o As	scoli :	Satriano	- C	and	dela	a		SCALA 1:162 Pagina 1/
Localita	à: Monte Carpinelli												Quota: 450
				SPF	RA	- Geo	otecnica	da	lav	ori	pri	vati	ati nell'immediato Dati anoStratigrafia 1993
	nate: 15,5656646 4	11,184591	U										Redattore: geol. V.E. lervolino
	azione:	a	I		Pre	1 %	S.P.T.		R	OD	%	prof	f DECCRICATE
R A m v r s	Pz metri LITOLOGIA	Campioni	RP	VT	0	- 100	S.P.T.	1	1 0	1	00	prof. m	
	1_				e e e e e e				- 44		nga ng	1.0	
												14.0	Conglomerato poligenico costituito da ciottoli arenacei calcari immersi in matrice sabbiosa giallastra peso naturale: 19-20 KN/m3 coesione: 2-5 KN/m2 angolo di attrito: 30°-35° modulo edometrico: 8000KN/m2
	15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 20 31 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 30												di livelli ciottolosi e limosi grigiastri peso naturale: 17-19 KN/m3 coesione: 2-5 KN/m2 angolo di attrito: 20-30° modulo edometrico: 3700KN/m2
	32 33 34 35 36 37 38 39											32.0	Argille grigio azzurre appenniniche peso naturale: 18-20 KN/m3 coesione: 20-50 KN/m2 angolo di attrito: 15°-25° coesione non drenata: 65-210KN/m2 modulo edometrico: 5200KN/m2

Alla luce delle indagini geognostiche disponibili i terreni di fondazione della zona di studio possono essere così caratterizzati:

- Coltre superficiale: terreno vegetale limo-sabbioso dello spessore di massimo 2 metri, al cui interno si rinvengono clasti calcarei centimetrici.
 - $\gamma = 19-20 \text{ KN/m}^3$
 - $\phi = 28-35^{\circ}$
 - $c' = 3-5 \text{ KN/m}^2$
 - $E = 7-10 \text{ KN/m}^2$
- Limi con argilla sabbiosi alterati frequenti intercalazioni di strati calcarei o sabbiosi più o meno addensati.
 - $\gamma = 18-21 \text{ KN/m}^3$
 - $\phi = 15-30^{\circ}$
 - $c' = 5-40 \text{ KN/m}^2$
 - $cu = 15-200 \text{ KN/m}^2$
- Ghiaie in matrice sabbiosa, costituite da ghiaie etero metriche subarrotondate, del diametro
 massimo di 5-10cm in abbondante matrice sabbiosa con frequenti intercalazioni sabbiose, da
 mediamente a molto addensate.
 - $y = 19-20 \text{ KN/m}^3$
 - $\phi = 30-35^{\circ}$
 - $c' = 2-5 \text{ KN/m}^2$
 - $cu = 15-200 \text{ KN/m}^2$
- Sabbie limoso argillose con frequenti intercalazioni di sabbia e con stato di addensamento da medio a duro.
 - $y = 18-20 \text{ KN/m}^3$
 - $\phi = 20-35^{\circ}$
 - $c' = 1-6 \text{ KN/m}^2$
 - $cu = 50 \text{ KN/m}^2$

Argille con limo grigio azzurro, da dure a molto dure. Tutte le prove penetrometriche SPT fatte
in questo spessore guida sono andate a rifiuto a caratterizzate uno stato di addensamento molto
alto.

 $y = 15-20 \text{ KN/m}^3$

 $\phi = 15-25^{\circ}$

 $c' = 15-60 \text{ KN/m}^2$

 $cu = 50-220 \text{ KN/m}^2$

Questo lavoro si basa su indagini geognostiche in situ e in laboratorio eseguite nell'intorno del parco eolico. E' doveroso precisare che questo lavoro rientra in un iter autorizzativo con molte incognite e per tale motivo – non avendo in questa fase dei lavori autorizzazione dei privati ad eseguire indagini geognostiche in situ - viene rimandata la realizzazione di indagini geognostiche in situ e in laboratorio nella fase successiva di progetto esecutivo.

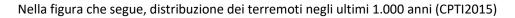
5 Caratterizzazione sismica

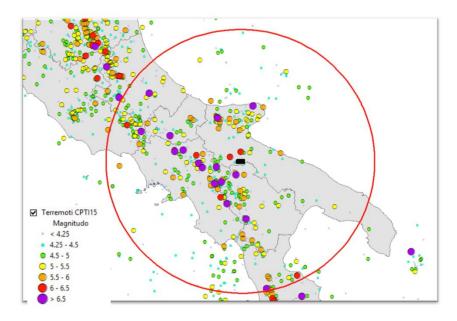
5.1 Sismicità Storica

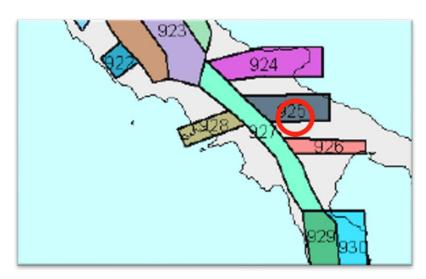
Utili indizi alla storia sismica del sito in esame possono essere ricavati dal Catalogo Parametrico dei Terremoti Italiani (CPTI15), dove l'Istituto Nazionale di Geofisica e Vulcanologia elenca tutti i terremoti dell'intero territorio nazionale dall'anno 1000 al 2014 (INGV, 2016).

Considerando un intorno di 100km di raggio dal parco eolico, escludendo tutti gli eventi sismici con valore di magnitudo inferiore a 5 e ordinandoli in funzione della distanza dal futuro impianto eolico, è possibile elencare 68 terremoti con valori di magnitudo media pari a 5.7, con numerosi eventi catastrofici che hanno superato magnitudo 6.

Anno	Mese	Giorno	Epicentro	Magnitudo	Distanza Km
1731	3	20	Tavoliere delle Puglie	6,3	15
1361	7	17	Subappennino dauno	6,0	18
1720	6	7	Tavoliere delle Puglie	5,2	19
1851	8	14	Vulture	5,5	19
1625	8	0	Vulture	5,8	21
1851	8	14	Vulture	6,5	22
1930	7	23	Irpinia	6,7	38
1981	1	16	Irpinia-Basilicata	5,2	39
1910	6	7	Irpinia-Basilicata	5,8	40
1948	8	22	Gargano	5,4	41
1954	8	6	Potentino	5,2	42
1694	9	8	Irpinia-Basilicata	6,7	43
1990	5	5	Potentino	5,8	45
1948	8	18	Gargano	5,6	48
1517	3	29	Irpinia	5,3	49
1991	5	26	Potentino	5,1	51
1948	8	21	Gargano	5,4	51
1980	11	23	Irpinia-Basilicata	6,8	52
1963	2	13	Potentino	5,2	54
1692	3	4	Irpinia	5,9	55
1841	2	21	Gargano	5,2	55
1466	1	15	Irpinia-Basilicata	6,0	55
1980	11	24	Irpinia-Basilicata	5,0	56
1982	8	15	Irpinia	5,3	56
1273	12	18	Potenza	5,8	56
1853	4	9	Irpinia	5,6	58
1962	8	21	Irpinia	5,3	58
1962	8	21	Irpinia	5,7	59
1732	11	29	Irpinia	6,8	60

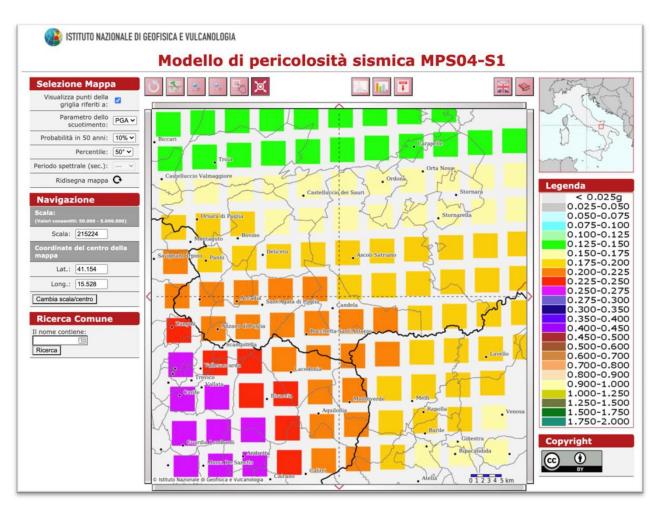

1980	11	25	Irpinia-Basilicata	5,4	60
1627	9	6	Capitanata	5,8	61
1975	6	19	Gargano	5,0	61
1875	12	6	Gargano	5,9	61
1919	10	21	Gargano	5,0	62
1905	11	26	Irpinia	5,2	62
1560	5	11	Costa pugliese centrale	5,7	62
1955	3	18	Gargano	5,2	63
1561	7	31	Vallo di Diano	6,3	63
1955	2	9	Gargano	5,1	65
1702	3	14	Sannio-Irpinia	6,6	65
1741	8	6	Irpinia	5,4	67
1647	5	5	Gargano	5,7	68
1561	8	19	Vallo di Diano	6,7	68
1627	7	30	Capitanata	5,8	68
1893	8	10	Gargano	5,4	68
1962	8	21	Irpinia	6,2	69
1826	2	1	Potentino	5,7	69
1688	7	23	Capitanata	5,3	70
1794	6	12	Irpinia	5,3	70
1657	1	29	Capitanata	6,0	72
1995	9	30	Gargano	5,2	74
1892	4	20	Gargano	5,0	74
1627	7	30	Capitanata	6,7	75
1951	1	16	Gargano	5,2	75
1846	8	8	Potentino	5,2	76
1889	12	8	Gargano	5,5	76
1627	8	7	Capitanata	6,0	77
1893	1	25	Vallo di Diano	5,2	78
1125	10	11	Benevento	5,3	83
1646	5	31	Gargano	6,7	87
1885	12	24	Basilicata	5,1	88
1857	12	16	Basilicata	7,1	88
1414	0	0	Gargano	5,8	89
1456	12	5	Appennino centro-meridionale	7,2	90
1737	3	31	Monti di Avella	5,1	96
1857	12	26	Basilicata	5,3	96
2002	10	31	Molise	5,7	97
1913	10	4	Molise	5,4	97





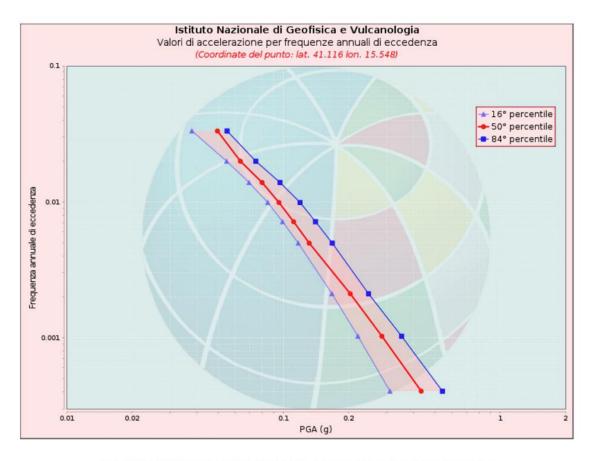
La zona risulta essere prossima al settore meridionale dell'Appennino Meridionale, contraddistinta da una tettonica attiva e quindi con alta sismicità, caratterizzata da una profondità ipocentrale generalmente superficiale compresa entro i 15km di profondità e con meccanismi focali di tipo estensionale.

L'area oggetto di studio è da considerarsi pertanto ad elevata sismicità, come risulta dalle analisi condotte dall'INGV e facendo riferimento alla pubblicazione del Gruppo di Lavoro (2004) per redazione della mappa di pericolosità sismica prevista dall'Ordinanza PCM 3274 del 20 marzo 2003 "Rapporto Conclusivo per il Dipartimento della Protezione Civile, INGV, Milano-Roma, aprile 2004, appendice 2", in cui il territorio italiano è stato suddiviso in zone sismogenetiche, l'area rientra nella zona sismogenetica ZS 925.



5.2 Mappa di Pericolosità Sismica

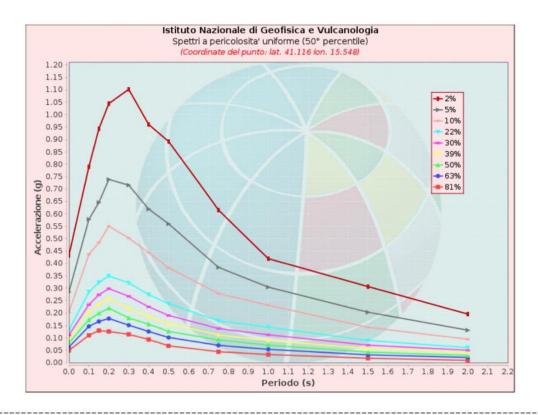
La mappa rappresenta il modello di pericolosità sismica per l'Italia e i diversi colori indicano il valore di scuotimento (PGA = Peak Ground Acceleration; accelerazione di picco del suolo, espressa in termini di g, l'accelerazione di gravità) atteso con una probabilità di eccedenza pari al 10% in 50 anni su suolo rigido (classe A, Vs30 > 800 m/s) e pianeggiante. Le coordinate selezionate individuano un nodo della griglia di calcolo identificato con l'ID 31888 (posto al centro della mappa). Per ogni nodo della griglia sono disponibili numerosi parametri che descrivono la pericolosità sismica, riferita a diversi periodi di ritorno e diverse accelerazioni spettrali.



5.3 Curva di Pericolosità

La pericolosità è l'insieme dei valori di scuotimento (in questo caso per la PGA) per diverse frequenze annuali di eccedenza (valore inverso del periodo di ritorno). La tabella riporta i valori mostrati nel grafico, relativi al valore mediano (50mo percentile) ed incertezza, espressa attraverso il 16° e l'84° percentile.

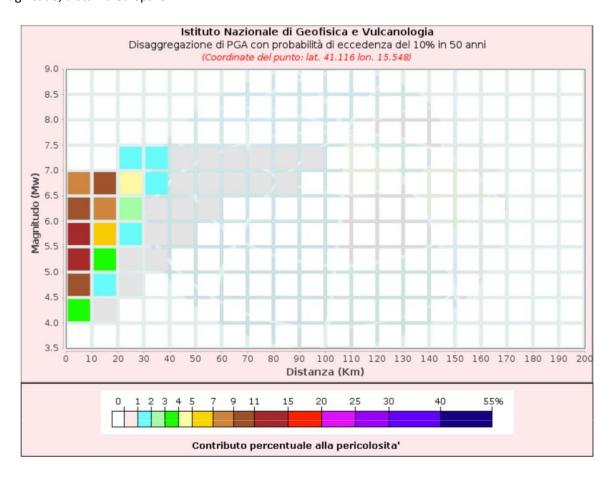
Frequenza	ļ	PGA (g)	
annuale di ecc.	16° percentile	50° percentile	84° percentile
0.0004	0.310	0.433	0.542
0.0010	0.221	0.285	0.351
0.0021	0.168	0.204	0.247
0.0050	0.117	0.132	0.168
0.0071	0.099	0.112	0.141
0.0099	0.085	0.095	0.119
0.0139	0.069	0.080	0.097
0.0199	0.055	0.063	0.075
0.0332	0.038	0.050	0.055



5.4 Spettri a Pericolosità Uniforme

Gli spettri indicano i valori di scuotimento calcolati per 11 periodi spettrali, compresi tra 0 e 2 secondi. La PGA corrisponde al periodo pari a 0 secondi. Il grafico relativo alle stime mediane (50mo percentile) proposte dal modello di pericolosità. I diversi spettri nel grafico sono relativi a diverse probabilità di eccedenza (PoE) in 50 anni. La tabella riporta i valori mostrati nel grafico.

PoE	Accelerazione (g)											
in 50	Periodo (s)											
anni	0.0	0.1	0.15	0.2	0.3	0.4	0.5	0.75	1.0	1.5	2.0	
2%	0.433	0.790	0.943	1.044	1.102	0.960	0.892	0.616	0.419	0.307	0.19	
5%	0.285	0.578	0.646	0.738	0.715	0.619	0.560	0.384	0.304	0.203	0.13	
10%	0.204	0.436	0.485	0.550	0.503	0.444	0.382	0.278	0.232	0.142	0.09	
22%	0.132	0.285	0.323	0.349	0.321	0.274	0.238	0.169	0.143	0.090	0.06	
30%	0.112	0.234	0.273	0.298	0.268	0.225	0.190	0.138	0.113	0.071	0.05	
39%	0.095	0.201	0.234	0.258	0.218	0.187	0.157	0.112	0.090	0.056	0.04	
50%	0.080	0.173	0.199	0.220	0.180	0.156	0.126	0.092	0.071	0.042	0.02	
63%	0.063	0.147	0.166	0.178	0.151	0.126	0.102	0.070	0.054	0.032	0.02	
81%	0.050	0.111	0.130	1 0 126	1 0 114	0.094	0.068	0.044	0.033	0.018	0.00	



5.5 Grafico di Disaggregazione

Il grafico rappresenta il contributo percentuale delle possibili coppie di valori di magnitudo-distanza epicentrale alla pericolosità del nodo, rappresentata in questo caso dal valore della PGA mediana, per una probabilità di eccedenza del 10% in 50 anni. La tabella riporta i valori mostrati nel grafico ed i valori medi di magnitudo, distanza ed epsilon.

5.6 Caratterizzazione Sismica del Sito

Inse srl mette a disposizione tre indagini sismiche MASW eseguite nella porzione meridionale del versante di Monte Carpinelli, nelle posizioni dei futuri aerogeneratori WTG 9 – WTG 10 e WTG 11.

Per WTG 9: Vseq = 435.11 m/s (nella foto in basso a SX)

Categoria del suolo B: Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietàmeccaniche con la profondità da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.

Per WTG 10: Vseq = 391,43 m/s Suolo di tipo B (nella foto in basso a DX)

Per WTG 11: Vseq = 393,12 m/s Suolo di tipo B.

Analisi simiche eseguite da Privati nei pressi di Serra Giardino (in prossimità degli aerogeneratori WTG 1 – WTG 2 e WTG 3) hanno indicato invece suoli di categoria C: Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.

Alla luce della discordanza dei dati in nostro possesso, sono state fatte due caratterizzazioni sismiche diverse, una per Località Monte Carpinelli (Categoria Suoli B) e una per località Serra Giardino (Categoria Suoli C).

5.6.1 Caratterizzazione Sismica Monte Carpinelli

Data: 26/03/2021

Vita nominale (Vn): 50 [anni]

Classe d'uso: Il

Coefficiente d'uso (Cu): 1

Periodo di riferimento (Vr): 50 [anni]

Periodo di ritorno (Tr) SLO: 30 [anni] Periodo di ritorno (Tr) SLD: 50 [anni] Periodo di ritorno (Tr) SLV: 475 [anni] Periodo di ritorno (Tr) SLC: 975 [anni]

Tipo di interpolazione: Media ponderata

Coordinate geografiche del punto

Latitudine (WGS84): 41.1737442 [°]
Longitudine (WGS84):15.5636320 [°]
Latitudine (ED50): 41.1747246 [°]
Longitudine (ED50): 15.5644789 [°]

Coordinate dei punti della maglia elementare del reticolo di riferimento che contiene il sito e valori della distanza rispetto al punto in esame

Punto	ID	Latitudine (ED50)	Longitudine	Distanza
		[°]	(ED50)	[m]
			[°]	
1	31666	41.166390	15.549100	1586.21
2	31667	41.165160	15.615510	4401.90
3	31445	41.215150	15.617170	6296.19
4	31444	41.216370	15.550740	4771.21

Parametri di pericolosità sismica per TR diversi da quelli previsti nelle NTC, per i nodi della maglia elementare del reticolo di riferimento

Punto 1

Stato limite	Tr	ag	F0	Ţc*
	[anni]	[g]	[-]	[s]
SLO	30	0.049	2.455	0.288
SLD	50	0.062	2.545	0.316
	72	0.079	2.433	0.330
	101	0.093	2.442	0.339
	140	0.109	2.465	0.349
	201	0.128	2.499	0.362
SLV	475	0.198	2.455	0.405
SLC	975	0.278	2.389	0.417
	2475	0.426	2.316	0.440

Punto 2

Stato limite	Tr	ag	F0	Tc*	
	[anni]	[g]	[-]	[s]	
SLO	30	0.048	2.459	0.290	
SLD	50	0.062	2.513	0.316	
49.00	72	0.078	2.421	0.329	
	101	0.092	2.443	0.338	
	140	0.107	2.459	0.350	
	201	0.127	2.489	0.363	
SLV	475	0.197	2.451	0.404	
SLC	975	0.277	2.381	0.415	
	2475	0.425	2.307	0.438	

Punto 3

Punto 3				
Stato limite	Tr	ag	F0	Tc*
	[anni]	[g]	[-]	[s]
SLO	30	0.047	2.458	0.290
SLD	50	0.060	2.544	0.318
	72	0.075	2.439	0.331
	101	0.089	2.463	0.340
	140	0.103	2.477	0.354
	201	0.123	2.424	0.401
SLV	475	0.188	2.464	0.406
SLC	975	0.264	2.394	0.417
	2475	0.407	2.312	0.436

Punto 4

Stato limite	Tr	ag	F0	Tc*
	[anni]	[g]	[-]	[s]
SLO	30	0.048	2.443	0.290
SLD	50	0.060	2.576	0.318
	72	0.076	2.449	0.332
	101	0.090	2.464	0.340
	140	0.104	2.480	0.354
	201	0.123	2.442	0.401
SLV	475	0.189	2.468	0.408
SLC	975	0.264	2.402	0.418

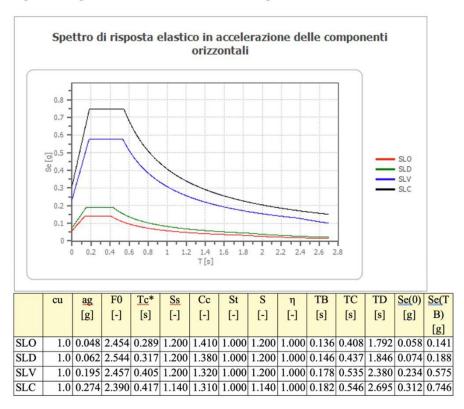
Punto d'indagine

Stato limite	Tr	ag	F0	Tc*	
	[anni]	[g]	[-]	[s]	
SLO	30	0.048	2.454	0.289	
SLD	50	0.062	2.544	0.317	
SLV	475	0.195	2.457	0.405	
SLC	975	0.274	2.390	0.417	

PERICOLOSITÀ SISMICA DI SITO

Coefficiente di smorzamento viscoso ξ: 5%

Fattore di alterazione dello spettro elastico $\eta = [10/(5+)\xi]^{(1/2)}$: 1.000

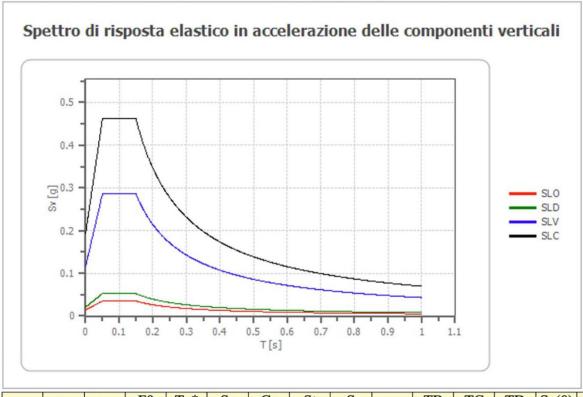

Categoria sottosuolo: B

Categoria topografica: T1: Superficie pianeggiante, pendii e rilievi isolati con inclinazione media minore o uguale a 15°

Stabilità di pendii e fondazioni

Coefficienti	SLO	SLD	SLV	SLC
kh	0.012	0.015	0.056	0.087
kv	0.006	0.007	0.028	0.044
amax [m/s²]	0.565	0.724	2.295	3.061
Beta	0.200	0.200	0.240	0.280

Spettro di risposta elastico in accelerazione delle componenti orizzontali


5 %

Spettro di risposta elastico in accelerazione delle componenti verticali

Coefficiente di smorzamento viscoso ξ:

Fattore di alterazione dello spettro elastico $\eta = [10/(5+)\xi]^{(1/2)}$: 1.000

	cu	ag	F0	Tc*	Ss	Cc	St	S	η	TB	TC	TD	Se(0)	Se(T
		[g]	[-]	[s]	[-]	[-]	[-]	[-]	[-]	[s]	[s]	[s]	[g]	B)
														[g]
SLO	1.0	0.048	2.454	0.289	1	1.410	1.000	1.000	1.000	0.050	0.150	1.000	0.014	0.035
SLD	1.0	0.062	2.544	0.317	1	1.380	1.000	1.000	1.000	0.050	0.150	1.000	0.021	0.052
SLV	1.0	0.195	2.457	0.405	1	1.320	1.000	1.000	1.000	0.050	0.150	1.000	0.116	0.286
SLC	1.0	0.274	2.390	0.417	1	1.310	1.000	1.000	1.000	0.050	0.150	1.000	0.193	0.462

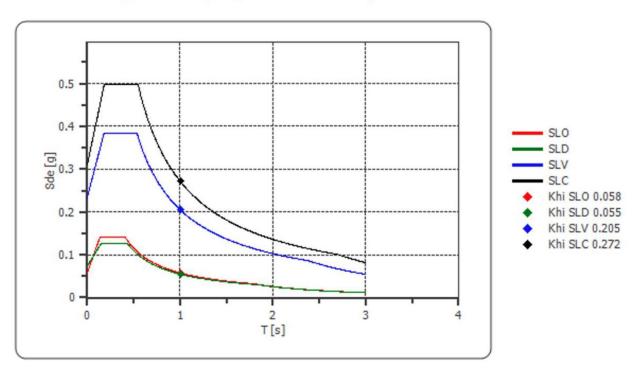
Spettro di progetto

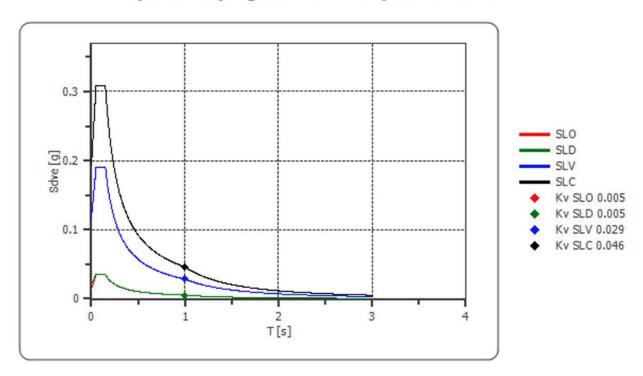
Fattore di struttura spettro orizzontale q:

Fattore di struttura spettro verticale q:

1.50
Periodo fondamentale T:

1.00 [s]


	SLO	SLD	SLV	SLC
$\underline{khi} = \underline{Sde}(T)$	0.058	0.055	0.205	0.272
Orizzontale [g]				
kv = Sdve(T)	0.005	0.005	0.029	0.046
Verticale [g]				



Spettro di progetto delle componenti orizzontali

Spettro di progetto delle componenti verticali

	cu	ag	F0	<u>Tc</u> *	Ss	Cc	St	S	q	TB	TC	TD	<u>Sd(0)</u>	Sd(T
		[g]	[-]	[s]	[-]	[-]	[-]	[-]	[-]	[s]	[s]	[s]	[g]	B)
												140.00		[g]
SLO	1.0	0.048	2.454	0.289	1.200	1.410	1.000	1.200	1.000	0.136	0.408	1.792	0.058	
orizz														
ontal														
e														
SLO	1.0	0.048	2.454	0.289	1.200	1.410	1.000	1.000	1.000	0.050	0.150	1.000	0.014	0.035
vertic														
ale														
SLD	1.0	0.062	2.544	0.317	1.200	1.380	1.000	1.200	1.500	0.146	0.437	1.846	0.074	0.125
orizz														
ontal														
e														
SLD	1.0	0.062	2.544	0.317	1.200	1.380	1.000	1.000	1.500	0.050	0.150	1.000	0.021	0.035
vertic														
ale														
SLV	1.0	0.195	2.457	0.405	1.200	1.320	1.000	1.200	1.500	0.178	0.535	2.380	0.234	0.383
orizz														
ontal														
e														
SLV	1.0	0.195	2.457	0.405	1.200	1.320	1.000	1.000	1.500	0.050	0.150	1.000	0.116	0.190
vertic														
ale														
SLC	1.0	0.274	2.390	0.417	1.140	1.310	1.000	1.140	1.500	0.182	0.546	2.695	0.312	0.497
orizz														
ontal														
e														
SLC	1.0	0.274	2.390	0.417	1.140	1.310	1.000	1.000	1.500	0.050	0.150	1.000	0.193	0.308
vertic														
ale	r													

5.6.2 Caratterizzazione Sismica Serra Giardino

Data: 26/03/2021

Vita nominale (Vn): 50 [anni]

Classe d'uso: Il

Coefficiente d'uso (Cu): 1

Periodo di riferimento (Vr): 50 [anni]

Periodo di ritorno (Tr) SLO: 30 [anni] Periodo di ritorno (Tr) SLD: 50 [anni] Periodo di ritorno (Tr) SLV: 475 [anni]

Periodo di ritorno (Tr) SLC: 975 [anni]

Tipo di interpolazione: Media ponderata

Coordinate geografiche del punto

Latitudine (WGS84): 41.1691284 [°] Longitudine (WGS84):15.5194426 [°] Latitudine (ED50): 41.1701126 [°] Longitudine (ED50): 15.5202904 [°]

Coordinate dei punti della maglia elementare del reticolo di riferimento che contiene il sito e valori della distanza rispetto al punto in esame

Punto	ID	Latitudine (ED50)	Longitudine	Distanza
		[°]	(ED50)	[m]
			[°]	
1	31665	41.167570	15.482720	3157.48
2	31666	41.166390	15.549100	2446.76
3	31444	41.216370	15.550740	5740.16
4	31443	41.217560	15.484270	6076.23

Parametri di pericolosità sismica per TR diversi da quelli previsti nelle NTC, per i nodi della maglia elementare del reticolo di riferimento.

Punto 1

unto 1				
Stato limite	Tr	ag	F0	Tc*
	[anni]	[g]	[-]	[s]
SLO	30	0.050	2.446	0.286
SLD	50	0.063	2.551	0.316
	72	0.079	2.468	0.328
	101	0.094	2.441	0.340
	140	0.110	2.468	0.350
	201	0.130	2.497	0.361
SLV	475	0.200	2.447	0.408
SLC	975	0.280	2.398	0.419
	2475	0.427	2.326	0.442

Punto 2

Punto 2	30			
Stato limite	Tr	ag	F0	Tc*
	[anni]	[g]	[-]	[s]
SLO	30	0.049	2.455	0.288
SLD	50	0.062	2.545	0.316
	72	0.079	2.433	0.330
	101	0.093	2.442	0.339
	140	0.109	2.465	0.349
	201	0.128	2.499	0.362
SLV	475	0.198	2.455	0.405
SLC	975	0.278	2.389	0.417
	2475	0.426	2.316	0.440

Punto 3

Stato limite	Tr	ag	F0	Tc*
	[anni]	[g]	[-]	[s]
SLO	30	0.048	2.443	0.290
SLD	50	0.060	2.576	0.318
	72	0.076	2.449	0.332
	101	0.090	2.464	0.340
	140	0.104	2.480	0.354
	201	0.123	2.442	0.401
SLV	475	0.189	2.468	0.408
SLC	975	0.264	2.402	0.418
	2475	0.406	2.319	0.438

Punto 4

unio 4				
Stato limite	Tr	ag	F0	Tc*
	[anni]	[g]	[-]	[s]
SLO	30	0.048	2.439	0.289
SLD	50	0.061	2.565	0.318
	72	0.076	2.476	0.331
	101	0.091	2.462	0.341
	140	0.106	2.484	0.353
	201	0.124	2.446	0.401
SLV	475	0.190	2.461	0.410
SLC	975	0.265	2.410	0.419
	2475	0.406	2.329	0.440

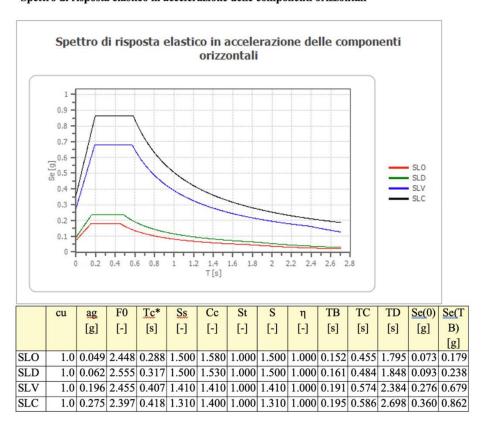
Punto d'indagine

Stato limite	Tr	ag	F0	Tc*
	[anni]	[g]	[-]	[s]
SLO	30	0.049	2.448	0.288
SLD	50	0.062	2.555	0.317
SLV	475	0.196	2.455	0.407
SLC	975	0.275	2.397	0.418

PERICOLOSITÀ SISMICA DI SITO

Coefficiente di smorzamento viscoso ξ: 5%

Fattore di alterazione dello spettro elastico $\eta=[10/(5+)\xi]^{(1/2)}$: 1.000

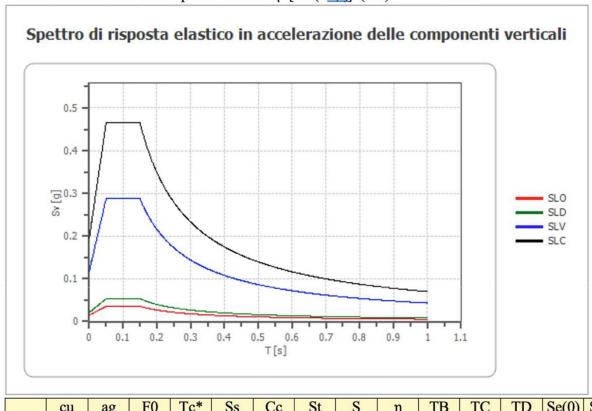

Categoria sottosuolo: C

Categoria topografica: T1: Superficie pianeggiante, pendii e rilievi isolati con inclinazione media minore o uguale a 15°

Stabilità di pendii e fondazioni

Coefficienti	Coefficienti SLO		SLV	SLC		
kh	0.015	0.019	0.066	0.101		
kv	0.007	0.009	0.033	0.050		
amax [m/s ²]	0.717	0.912	2.711	3.527		
Beta	0.200	0.200	0.240	0.280		

Spettro di risposta elastico in accelerazione delle componenti orizzontali


Spettro di risposta elastico in accelerazione delle componenti verticali

Coefficiente di smorzamento viscoso ξ:

5 %

Fattore di alterazione dello spettro elastico $\eta = [10/(5+)\xi]^{(1/2)}$:

1.000

	cu	ag	F0	Tc*	Ss	Cc	St	S	η	TB	TC	TD	<u>Se(0)</u>	Se(T
		[g]	[-]	[s]	[-]	[-]	[-]	[-]	[-]	[s]	[s]	[s]	[g]	B)
														[g]
SLO	1.0	0.049	2.448	0.288	1	1.580	1.000	1.000	1.000	0.050	0.150	1.000	0.015	0.036
SLD	1.0	0.062	2.555	0.317	1	1.530	1.000	1.000	1.000	0.050	0.150	1.000	0.021	0.053
SLV	1.0	0.196	2.455	0.407	1	1.410	1.000	1.000	1.000	0.050	0.150	1.000	0.117	0.288
SLC	1.0	0.275	2.397	0.418	1	1.400	1.000	1.000	1.000	0.050	0.150	1.000	0.194	0.466

Spettro di progetto

Fattore di struttura spettro orizzontale q:

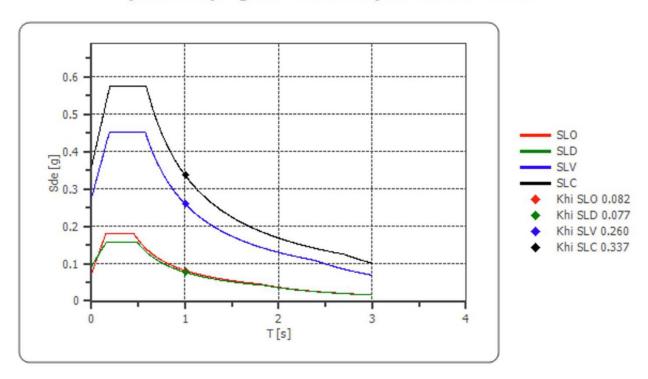
Fattore di struttura spettro verticale q:

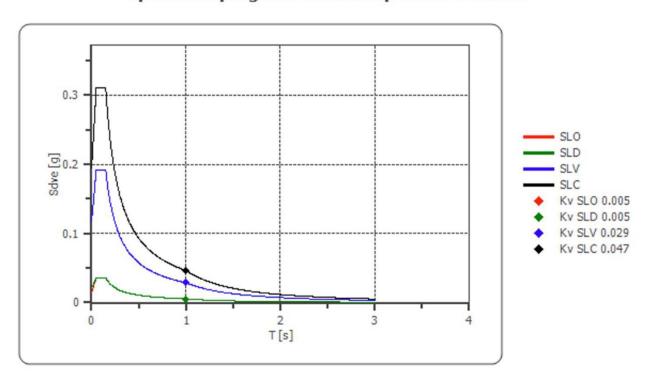
Periodo fondamentale T:

1.50

1.50

1.00 [s]


	SLO	SLD	SLV	SLC
$\underline{khi} = \underline{Sde}(T)$	0.082	0.077	0.260	0.337
Orizzontale [g]				
$\underline{kv} = \underline{Sdve}(T)$	0.005	0.005	0.029	0.047
Verticale [g]				



Spettro di progetto delle componenti orizzontali

Spettro di progetto delle componenti verticali

	cu	ag	F0	<u>Tc</u> *	Ss	Cc	St	S	q	TB	TC	TD	<u>Sd(0)</u>	Sd(T
		[g]	[-]	[s]	[-]	[-]	[-]	[-]	[-]	[s]	[s]	[s]	[g]	B)
														[g]
SLO	1.0	0.049	2.448	0.288	1.500	1.580	1.000	1.500	1.000	0.152	0.455	1.795	0.073	0.179
orizz														
ontal														
e														
SLO	1.0	0.049	2.448	0.288	1.500	1.580	1.000	1.000	1.000	0.050	0.150	1.000	0.015	0.036
vertic														
ale														
SLD	1.0	0.062	2.555	0.317	1.500	1.530	1.000	1.500	1.500	0.161	0.484	1.848	0.093	0.158
orizz														
ontal														
e														
SLD	1.0	0.062	2.555	0.317	1.500	1.530	1.000	1.000	1.500	0.050	0.150	1.000	0.021	0.036
vertic														
ale														
SLV	1.0	0.196	2.455	0.407	1.410	1.410	1.000	1.410	1.500	0.191	0.574	2.384	0.276	0.453
orizz														
ontal														
e	1.0	0.106	2.455	0.407	1 410	1 410	1 000	1 000	1.500	0.050	0.150	1 000	0.117	0.100
SLV	1.0	0.196	2.455	0.407	1.410	1.410	1.000	1.000	1.500	0.050	0.150	1.000	0.117	0.192
vertic														
ale	1.0	0.075	2 207	0.410	1 210	1 400	1 000	1 210	1.500	0.105	0.506	2 (00	0.260	0.575
SLC	1.0	0.275	2.397	0.418	1.310	1.400	1.000	1.310	1.500	0.195	0.586	2.698	0.360	0.575
orizz														
ontal														
e	1.0	0.275	2 207	0.410	1 210	1 400	1 000	1 000	1.500	0.050	0.150	1 000	0.104	0.210
SLC	1.0	0.275	2.397	0.418	1.310	1.400	1.000	1.000	1.500	0.050	0.150	1.000	0.194	0.310
vertic														
ale														

CASERTA, 13 APRILE 2021

GEOL. VITTORIO EMANUELE IERVOLINO

DEI GEORIA DE LA CONTRO DEL CONTRO DE LA CONTRO DE LA CONTRO DE LA CONTRO DEL CONTRO DE LA CONTRO DEL CO

37