COMMITTENTE:

PROGETTAZIONE:

DIRETTRICE FERROVIARIA MESSINA - CATANIA - PALERMO NUOVO COLLEGAMENTO PALERMO - CATANIA

11	\cap	INIC	DVG.	LDII.	TTII	DE		ITRO
U.	U.		CAZ	IRU	\mathbf{I}	RE	しヒい	IIRU

PROGETTO DEFINITIVO

TRATTA CALTANISSETTA XIRBI - NUOVA ENNA (LOTTO 4A)

IDROLOGIA E IDRAULICA

Drenaggio piattaforma

Relazione idraulica Smaltimento Acque di Piazzale, Aree di Soccorso e Fabbricati

SCALA:
-

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

RS3U 40 D 29 RH ID0002 004 C

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	Gen-2020	Vol sici-Dorla ndo	Gen-2020	A.Barreca	Gen-2020	F.Arduini
В	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	Feb-2020	Vol siai-Borla ndo	Feb-2020	A.Barreca	Feb-2020	Apr-2020
С	Emissione Esecutiva	ATI Sintagma Rocksoil - Edin	Apr-2020	Vol sici D Orland o	Apr-2020	A.Barreca	Apr-2020	
								A
								•

File: RS3U.4.0.D.29.RH.ID.00.0.2.004.C

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA CALTANISETTA XIRBI – ENNA (LOTTO 4/A) IDROLOGIA E IDRAULICA

Drenaggio piattaforma Relazione idraulica Smaltimento Acque di Piazzale, Aree di Soccorso e Fabbricati
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 RH
 ID.00.0.2.004
 C
 1 di 23

1.	PREMESS	SA	3
2.	ANALISI	IDROLOGICA DELLE PIOGGE INTENSE	4
3.	STIMA D	ELLE PORTATE DI PIENA	5
	3.1	IL METODO DELL'INVASO	5
	3.	1.1 Sezioni chiuse	7
	3.	1.2 Sezioni aperte	9
	3.	1.3 Dimensionamento idraulico	12
4.	COMPON	NENTI DEL SISTEMA DI DRENAGGIO	14
	4.1	OPERE DI INTERCETTAZIONE	15
5.	DRENAG	GGIO PIATTAFORMA DEI PIAZZALI TECNOLOGICI	17
6.	APPENDI	ICE: FOGLI DI CALCOLO DEL SISTEMA DI DRENAGGIO	18
	6.1	PIAZZALE PT64 – PK 0+050	18
	6.2	PIAZZALE PT90 – PK 0+550	18
	6.3	PIAZZALE PT91 – PK 4+050	19
	6.4	PIAZZALE PT92 – PK 4+350	19
	6.5	PIAZZALE PT93 – PK 6+530	19
	6.6	PIAZZALE PT94 – PK 7+630	20
	6.7	PIAZZALE PT95 – PK 11+550	20
	6.8	PIAZZALE PT96 – PK 12+600	21
	6.9	PIAZZALE PT97 – PK 13+350	21
	6.10	PIAZZALE PT98 – PK 13+430	22

Drenaggio piattaforma Relazione idraulica Smaltimento Acque di Piazzale, Aree di Soccorso e Fabbricati COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
RS3U 40 D 29 RH ID.00.0.2.004 C 2 di 23

INDICE TABELLE

INDICE TABELLE	
Tabella 1- LSPP per durate d < 1 ora – Tr 25 anni – Lotto 4a	4
Tabella 2 - Valori di ζ in funzione di α .	11
Tabella 3 - Intestazione delle tabelle di verifica dei manufatti	14
Tabella 4 – Portata afferente alla caditoia	15
Tabella 5 – Portata smaltibile dalla caditoia	16
INDICE FIGURE	
	_
Figura 1 - Schema per il calcolo delle portate con il metodo dell'invaso	
Figura 2 - Andamento della portata in funzione della sezione liquida della condotta.	7

Drenaggio piattaforma Relazione idraulica Smaltimento Acque di Piazzale, Aree di Soccorso e Fabbricati
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 RH
 ID.00.0.2.004
 C
 3 di 23

1. PREMESSA

Scopo della presente relazione è il dimensionamento idraulico dei manufatti atti al collettamento ed allo smaltimento delle acque di drenaggio di piattaforma stradale dei piazzali realizzati in concomitanza al nuovo tracciato ferroviario.

I piazzali previsti nell'ambito del progetto ferroviario "Palermo – Catania" Lotto 4a sono i seguenti:

- PIAZZALE PT64 pk 0+050
- PIAZZALE PT90 pk 0+550
- PIAZZALE PT91 − pk 4+050
- PIAZZALE PT92 pk 4+350
- − PIAZZALE PT93 − pk 6+530
- PIAZZALE PT94 pk 7+630
- PIAZZALE PT95 pk 11+550
- PIAZZALE PT96 pk 12+600
- PIAZZALE PT97 pk 13+350
- PIAZZALE PT98 pk 13+430

In questa relazione vengono esposti i criteri che portano alla definizione degli eventi pluviometrici critici considerati per il dimensionamento dei manufatti e, successivamente, il dimensionamento idraulico degli stessi.

La fase di progettazione è stata svolta sulla base delle prescrizioni del Manuale di Progettazione RFI 2019 in riferimento alla portata di progetto (tempo di ritorno pari a 25 anni) ed al metodo di calcolo per il dimensionamento del sistema di drenaggio.

2. ANALISI IDROLOGICA DELLE PIOGGE INTENSE

Lo studio delle piogge è stato affrontato applicando il confronto dei due principali metodi applicati nella Relazione idrologica generale dell'area, al il quale si rimanda per i dettagli della trattazione, ovvero quello basato sui dati degli Annali e quello basato sui dati della Protezione Civile.

Il modello probabilistico derivato dagli Annali fornisce dei valori dei parametri delle LSPP più cautelativi, pertanto nella presente relazione saranno adottati tali parametri.

L'adozione di tale metodo d'indagine idrologica è stata ritenuta più appropriata per l'area in oggetto, in quanto garantisce risultati già ampiamente testati e quindi ritenuti sufficientemente cautelativi rispetto a quelli desumibili dai metodi tradizionali di elaborazione statistica.

Per la definizione delle portate transitanti nei sistemi di drenaggio si utilizza il metodo dell'invaso, a partire linee segnalatrici di possibilità pluviometrica relative ad un tempo di ritorno pari a 25 anni.

I parametri caratteristici delle curve sono ottenuti seguendo l'analisi riportata nella relazione idrologica dove vengono definiti i seguenti coefficienti a ed n delle leggi di possibilità pluviometrica maggiormente rappresentativi dell'area in progetto, validi per tempi di pioggia inferiori l'ora.

L'analisi idrologica ha individuato tre zona pluviometriche distinte lungo l'asse ferroviario, e per ciascuna delle quali ha individuato i relativi parametri della linea segnalatrice.

Nella seguente tabella si riportano i parametri delle equazioni monomie di probabilità pluviometrica, espresse dall'equazione ($h(t) = a t^n$), da utilizzare ai fini della determinazione delle portate di progetto in funzione del tempo di ritorno per il drenaggio di piattaforma dell'area in oggetto.

Per il Lotto 4a i parametri della LSPP per Tr 25 anni sono riportati nella tabella successiva in funzione della chilometrica di riferimento.

LSPP d < 1 ora – Tr 25 anni – Lotto 4a								
pk	a	n						
0+000 - 15+900	63.586	0.386						
15+900 – 26+957	67.154	0.386						

Tabella 1- LSPP per durate d < 1 ora - Tr 25 anni - Lotto 4a

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO CO	LLEGAME LTANISE	NTO PALERI TTA XIRBI – E	NA – CATANIA – 110 – CATANIA INNA (LOTTO 4a)		0
Drenaggio piattaforma Relazione idraulica Smaltimento Acque di Piazzale, Aree di Soccorso e Fabbricati	COMMESSA RS3U	LOTTO 40 D 29	CODIFICA RH	DOCUMENTO ID.00.0.2.004	REV.	FOGLIO 5 di 23

3. STIMA DELLE PORTATE DI PIENA

La verifica idraulica delle canalette e delle condotte per lo smaltimento delle acque meteoriche dei piazzali è stata condotta mediante il metodo dell'invaso a fronte dell'elevata affidabilità e della vasta diffusione di tale approccio semplificato.

3.1 IL METODO DELL'INVASO

Tale metodo tratta il problema del moto vario in maniera semplificata: assegna all'equazione del moto la semplice forma del moto uniforme ed assume come equazione di continuità quella detta "dei serbatoi" per simulare, concettualmente, l'effetto d'invaso.

Tale metodologia sfrutta per il calcolo delle portate le capacità d'invaso della rete.

Le ipotesi alla base del metodo sono stazionarietà e linearità, che comportano l'invarianza nel tempo delle trasformazioni che il bacino compie sugli input (afflussi) e la validità del principio di sovrapposizione degli effetti. In fase di calcolo si ipotizza che il riempimento delle condotte avvenga in modo sincrono e che nessun canale determini fenomeni di rigurgito in tratti di canale a monte. Il metodo si fonda sull'equazione di continuità.

Si ipotizza che la superficie scolante S sia solcata da un collettore avente sezione d'area A e pendenza i.

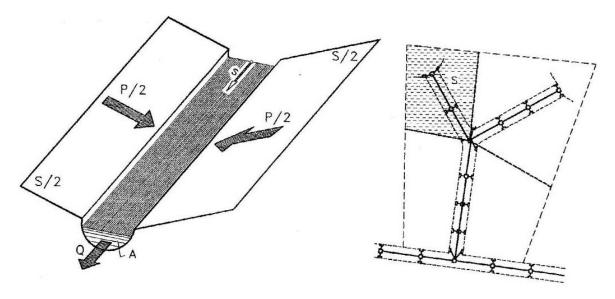


Figura 1 - Schema per il calcolo delle portate con il metodo dell'invaso.

La condizione di continuità si esprime scrivendo:

$$p - Q = \frac{dV}{dt}$$

dove:

 $p = \varphi j S$, con $j = a \tau^{n-1}$ intensità di pioggia costante sulla durata τ della precipitazione;

V = volume invasato a monte della sezione di chiusura;

Q = portata transitante nella sezione di chiusura.

L'integrazione dell'equazione di continuità e del moto fornisce una relazione tra Q e t ed in particolare permette di calcolare il tempo di riempimento t_r del collettore, cioè il tempo necessario per passare da Q=0 a $Q=Q_0$, essendo Q_0 il valore della portata massima che il canale può smaltire. Sulla base del confronto tra τ e t_r si può fare una verifica delle dimensioni del canale, risultando:

insufficiente se tr $< \tau$;

corretto se tr $\geq \tau$.

Se si assume che il fenomeno di trasformazione di piogge in portate possa considerarsi in lenta evoluzione nel tempo e nello spazio, il moto vario può essere descritto da una successione di stati di moto uniforme. L'equazione del moto è data, allora, dalla nota espressione di Gauckler-Strickler:

$$v = K_{s} R_{H}^{\frac{2}{3}} \sqrt{i}$$

dove: K_s = coefficiente di attrito di Gauckler-Strickler;

 $R_{\rm H}$ = raggio idraulico;

i = pendenza del canale.

Dall'identità Q = Av si ottiene poi la scala delle portate:

$$Q = cA^{\alpha}$$

Tale equazione insieme con quella di continuità descrive il processo di riempimento e di svuotamento di un serbatoio ideale controllato da una speciale luce di scarico che trae dal moto uniforme la sua legge di deflusso.

Per poter procedere all'integrazione, occorre esprimere il volume V in funzione della variabile Q. Il problema è trattato assumendo che il volume V sia linearmente legato all'area A della sezione bagnata, come d'altronde impone l'ipotesi del moto uniforme. Si assume cioè, con un certo errore nel confronto con la realtà, che il volume d'invaso sia concentrato unicamente nel collettore e non sulla superficie scolante.

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	NUOVO COLLEGAMENTO PALERMO – CATANIA TRATTA CALTANISETTA XIRBI – ENNA (LOTTO 4a) OPERE DI SOSTEGNO DI LINEA COMMESSA LOTTO CODIFICA DOCUMENTO REV. RS3U 40 D 29 RH ID.00.0.2.004 C					
Drenaggio piattaforma Relazione idraulica Smaltimento Acque di Piazzale, Aree di Soccorso e Fabbricati						FOGLIO 7 di 23

In queste ipotesi, detti V₀ e A₀ rispettivamente il volume massimo e la massima area, si può scrivere:

$$\frac{V}{V_0} = \frac{A}{A_0}$$

Inoltre, dalla scala delle portate ottenuta, si ha:

$$\frac{Q}{Q_0} = \left(\frac{A}{A_0}\right)^{\alpha}$$

Da cui si ottiene:

$$V = V_0 \left(\frac{Q}{Q_0}\right)^{1/\alpha}$$

Andando ad inserire quest'espressione nell'equazione di continuità si ottiene l'espressione integrabile:

$$dt = \frac{V_0}{\alpha Q_0^{1/\alpha}} \cdot \frac{Q^{(1-\alpha)/\alpha}}{p - Q} dQ$$

3.1.1 Sezioni chiuse

Per le sezioni chiuse è ammissibile una relazione lineare fra volume e portata, assumendo $\alpha=1.0$.

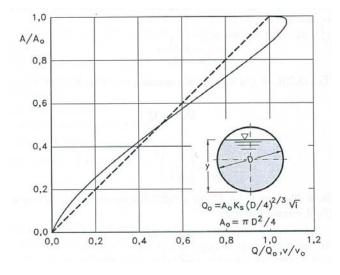


Figura 2 - Andamento della portata in funzione della sezione liquida della condotta.

Quindi l'equazione precedente, avendo fatto la classica definizione:

$$dt = \frac{V_0}{Q_0} \cdot \frac{dQ}{p - Q}$$

Posto p costante, l'equazione integrata nell'intervallo t₂ - t₁ dà:

$$t_2 - t_1 = \frac{V_0}{Q_0} \cdot \ln \frac{p - Q_1}{p - Q_2}$$

Per t_1 =0 e Q_1 =0, si ha il tempo di riempimento t_r necessario, a partire dalle condizioni di condotta vuota, per raggiungere il valore massimo Q_0 :

$$t_r = \frac{V_0}{Q_0} \cdot \ln \frac{p}{p - Q_2} = \frac{V_0}{Q_0} \cdot \ln \frac{\varepsilon}{\varepsilon - 1}$$

con

$$\varepsilon = \frac{p}{Q_0}$$

Nota la relazione $h = a \tau^n$, per una prefissata intensità $j = a \tau^{n-1}$, si ha:

$$\varepsilon = \frac{p}{Q_0} = \frac{\varphi j S}{Q_0} = \varphi \frac{Sa\tau^{n-1}}{Q_0} \Rightarrow \tau = \left(\frac{\varepsilon Q_0}{\varphi Sa}\right)^{\frac{1}{(n-1)}}$$

La condizione $t_r = \tau$ dà modo di ottenere:

$$V_0 = Q_0 \left(\frac{\varepsilon Q_0}{\varphi Sa}\right)^{1/(n-1)} \cdot \left(\ln \frac{\varepsilon}{\varepsilon - 1}\right)^{-1}$$

Ed anche, ricordando che $u = Q_0 / S$,

$$V_0 = \frac{S}{\ln \frac{\varepsilon}{\varepsilon - 1}} \cdot u \cdot \left(\frac{\varepsilon \cdot u}{\varphi \cdot a}\right)^{\frac{1}{(n-1)}}$$

dalla quale, definito $v_0 = V_0 / S$ come volume specifico si ha:

$$u = \varepsilon^{-1/n} \cdot \left(\ln \frac{\varepsilon}{\varepsilon - 1} \right)^{(n-1)/n} \cdot \frac{\left(\varphi \cdot a \right)^{1/n}}{v_0^{(1-n)/n}}$$

La condizione $du / d\varepsilon = 0$ consente di calcolare il valore di $\varepsilon = p / Q_0$ relativo all'evento che sollecita, noto l'esponente n, in maggior misura la rete. Si ottiene:

$$n = 1 + (\varepsilon - 1) \cdot \ln \frac{\varepsilon - 1}{\varepsilon}$$

da cui può dedursi, con un'approssimazione sufficiente nell'intervallo 0.25 - 0.50 dei valori di n, il desiderato valore di ϵ :

$$\varepsilon = 3.94 - 8.21n + 6.23n^2 + \dots$$

Esprimendo v_0 in m^3/ha , S in ha, a in mm/ora^n e u in l/s ha si ha:

$$u = 10^{\frac{1}{n}} \cdot 0.278 \varepsilon^{-\frac{1}{n}} \cdot \left(\ln \frac{\varepsilon}{\varepsilon - 1} \right)^{\frac{(n-1)}{n}} \cdot \frac{(\varphi \cdot a)^{\frac{1}{n}}}{v_0}$$

Raggruppando con la posizione:

$$K_{c} = \left(\frac{10\varphi \cdot a}{\varepsilon \cdot 3.6^{n}}\right)^{\frac{1}{(1-n)}} \cdot \frac{1}{\ln \frac{\varepsilon}{\varepsilon - 1}}$$

le grandezze legate al carattere climatico del luogo (a e n), direttamente e nel parametro ε , e allo stato della superficie scolante (ϕ), l'equazione diventa:

$$u = \left(\frac{K_c}{v_0}\right)^{(1-n)/n}$$

L'equazione, per l'evidenza accordata al volume specifico v₀, si presta principalmente allo svolgimento pratico del calcolo.

3.1.2 Sezioni aperte

Per le sezioni aperte è ammissibile una relazione lineare fra volume e portata, assumendo $\alpha=1.5$.

Quindi l'equazione precedente, avendo fatto la classica definizione:

$$z = \frac{Q}{p}$$

Soccorso e Fabbricati

integrata tra t₁ e q₁, effettuando uno sviluppo in serie della funzione z (variabile tra 0 e 0,98):

REV.

FOGLIO

10 di 23

$$t_{2} - t_{1} = \frac{V_{0} \cdot p^{(1-\alpha)/\alpha}}{\alpha Q_{0}^{1/\alpha}} \cdot \int_{z_{2}}^{z_{2}} \frac{z^{(1-\alpha)/\alpha}}{1-z} dz = \frac{V_{0} p^{(1-\alpha)/\alpha}}{Q_{0}^{1/\alpha}} \cdot \left[z_{2}^{1/\alpha} \zeta_{\alpha}(z_{2}) - z_{1}^{1/\alpha} \zeta_{\alpha}(z_{1}) \right]$$

avendo posto:

$$\zeta_{\alpha}(z) = \sum_{k=0}^{\infty} \frac{z^{k}}{k\alpha + 1}$$

serie sicuramente convergente per z<1.

In particolare, per $t_1 = 0$, $z_1 = 0$ (cioè $Q_1 = 0$) e $z_2 = Q_0/p$, si ottiene il tempo di riempimento t_r :

$$t_{r} = \frac{V_{0}}{p} \left(\frac{p}{Q_{0}}\right)^{1/\alpha} \cdot z^{1/\alpha} \cdot \zeta_{\alpha}(z) = \frac{V_{0}}{p} \cdot \zeta_{\alpha}(z) = \frac{V_{0}}{Q_{0}} \cdot \zeta_{\alpha}(z)$$

I valori della funzione $\zeta_{\alpha}(z)$ sono stati riassunti nella seguente tabella al variare di α .

Drenaggio piattaforma Relazione idraulica Smaltimento Acque di Piazzale, Aree di Soccorso e Fabbricati
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 RH
 ID.00.0.2.004
 C
 11 di 23

z	$\xi_1(z)$	$\xi_{1,25}(z)$	$\xi_{1,5}(z)$	$\xi_{1,75}(z)$	$\xi_{2}(z)$	
0	1	1	1	1	1	
0,10	1,0536	1,0475	1,0427	1,0388	1,0355	
0,20	1,1157	1,1023	1,0917	1,0831	1,0760	
0,30	1,1889	1,1665	1,1489	1,1347	1,1230	
0,40	1,2770	1,2435	1,2171	1,1960	1,1787	
0,50	1,3862	1,3379	1,3006	1,2708	1,2464	
0,60	1,5271	1,4589	1,4068	1,3655	1,3318	
0,70	1,7198	1,6231	1,5499	1,4924	1,4460	
0,75	1,8482	1,7317	1,6440	1,5756	1,5205	
0,80	2,0116	1,8690	1,7627	1,6800	1,6138	
0,84	2,1814	2,0109	1,8847	1,7871	1,7093	
0,87	2,3447	2,1468	2,0011	1,8889	1,7998	
0,90	2,5579	2,3231	2,1516	2,0203	1,9164	
0,92	2,7447	2,4769	2,2824	2,1342	2,0172	
0,94	2,9922	2,6798	2,4545	2,2836	2,1493	
0,96	3,3518	2,9733	2,7024	2,4983	2,3387	
0,98	3,9895	3,4903	3,1375	2,8738	2,6691	

Tabella 2 - Valori di ζ in funzione di α .

Dall'equazione sopra ricavata, imponendo la condizione critica per cui il tempo di pioggia sia uguale al tempo di riempimento ($\tau = t_r$), si deduce, con semplici passaggi, l'espressione del coefficiente udometrico:

$$u = \frac{Q_0}{S} = z [\zeta_{\alpha}(z)]^{(n-1)/n} \cdot \frac{(\varphi \cdot a)^{1/n}}{v_0^{(1-n)/n}}$$

avendo assunto come volume specifico $v_0 = V_0/S$ cioè il volume d'invaso dell'intero sistema, pari alla somma del volume contenuto nei collettori e diffuso sulla superficie scolante (fossi minori, avvallamenti, ecc..), immaginato distribuito sull'intera superficie del bacino.

Si può allora determinare, con la condizione du/dz = 0 (essendo z l'unica variabile), quale sia il valore di z (dipendente dall'intensità di precipitazione j) che rende massimo il coefficiente udometrico u. Lo svolgimento dei passaggi porta ad una espressione implicita di z di non agevole manipolazione. Alcuni calcoli offrono la possibilità di dare, con un'approssimazione più che soddisfacente, la seguente forma alla funzione di z:

$$z[\zeta_{\alpha}(z)]^{(n-1)/n} = (\lambda_1 \alpha + \lambda_2)n$$

e di fornire, quindi, un'espressione semplificata dell'equazione che definisce il coefficiente udometrico. Esprimendo [a]= metri \cdot giorniⁿ e [v₀]= metri, e il coefficiente udometrico [u]= litri / secondo \cdot ettaro, l'equazione che definisce il coefficiente udometrico diventa:

$$u = (26\alpha + 66)n \cdot \frac{(\varphi \cdot a)^{1/n}}{v_0^{(1-n)/n}}$$

3.1.3 Dimensionamento idraulico

Il dimensionamento idraulico delle condotte di drenaggio delle acque meteoriche dei piazzali è stato eseguito mediante il metodo del volume d'invaso precedentemente esposto.

La determinazione delle portate all'interno di ciascun tratto è stata eseguita imponendo per il coefficiente udometrico, in favore di sicurezza, un tempo di riempimento della singola canaletta pari al tempo di pioggia ($t_r = t_p$).

Nell'applicazione del metodo dell'invaso viene definito il coefficiente udometrico

$$u = \frac{Q_0}{S} = z [\zeta_{\alpha}(z)]^{(n-1)/n} \cdot \frac{(\varphi \cdot a)^{1/n}}{v_0^{(1-n)/n}}$$

per il quale vengono utilizzati i seguenti parametri:

- Volume specifico piccoli invasi per la piattaforma $W_p = 0.003$ m;
- Coefficiente di afflusso per la piattaforma $\varphi_p = 0.9$;
- Coefficiente di scabrezza di Manning delle condotte in PVC $n = 0.0125 \text{ s}/\text{m}^{1/3}$;
- Larghezza piattaforma L = variabile;

La portata lungo la condotta viene quindi calcolata moltiplicando il coefficiente udometrico per la superficie del bacino afferente alle varie sezioni prese in esame.

Determinata la portata defluente, il tirante idrico che s'instaura all'interno delle condotte è calcolato mediante l'equazione del moto uniforme secondo Gauckler-Strickler:

$$Q_d = \frac{1}{n} \cdot A \cdot R_h^{2/3} \cdot \sqrt{i}$$

dove: n – coefficiente di scabrezza secondo Manning [s /m^{1/3}];

A – area bagnata [m²];

Rh - raggio idraulico [m];

i – pendenza del fondo.

Noto il tirante idrico si può verificare il grado di riempimento ed il franco di sicurezza.

4. COMPONENTI DEL SISTEMA DI DRENAGGIO

Sui piazzali tecnologici è previsto un sistema di drenaggio con raccolta puntuale delle acque, costituito da caditoie grigliate afferenti alla condotta principale in PVC.

I collettori che ricevono i contributi meteorici dalle caditoie sono delle condotte in PVC di diametro variabile da un minimo di DN 250 ad un massimo di DN 800 con rigidità anulare SN 8 (8 kN/m2), sono ispezionabili mediante i pozzetti d'ispezione in calcestruzzo aventi interasse massimo di 25 m.

Per le condotte disposte al di sotto dei piazzali carrabili, gli spessori di ricoprimento minimi sono pari ad 1 m. Le condotte disposte al di sotto dei piazzali pedonali hanno ricoprimenti inferiori. Per tutte le condotte è previsto un rinfianco in ghiaietto spezzato.

Le griglie hanno luce netta pari a 60x60 cm e sono realizzate in ghisa sferoidale classe di resistenza D400.

Il dimensionamento idraulico delle condotte di drenaggio delle acque di piattaforma dei piazzali della stazione e della viabilità connessa è stato eseguito mediante l'utilizzo del metodo dell'invaso i cui fondamenti teorici sono stati precedentemente esposti.

La verifica eseguita è volta a rispettare le seguenti condizioni:

- Grado di Riempimento:
 - o per DN< 500mm: grado di riempimento \le 50\%
 - o per DN≥500mm: grado di riempimento ≤70%
- Velocità: 0,50 < veff < 5,00 m/s al fine di preservare l'integrità delle tubazioni aumentandone di fatto la durabilità.

Nell'appendice del presente documento sono riportate le tabelle di verifica dei rami principali delle reti di drenaggio.

Le tabelle di verifica sono suddivise per recapito della rete di drenaggio e contengono la progressiva iniziale e finale del generico tratto, il tipo di canaletta previsto, la lunghezza, la progressiva del tratto, la pendenza del tratto, la quota iniziale e finale, le cumulate della superficie equivalente, la portata di dimensionamento, il livello idrico all'interno del manufatto, il grado di riempimento e la velocità.

Pozzetto	Pozzetto	Condotta	L	Риски	İf	Quota inizio	Quota fine	Superficie equivalente	Q	y	g.r.	v
iniziale	finale	Condotta	m	Progr.	m/m	m.s.l.m.	m.s.l.m.	m2	l/s	cm	%	m/s

Tabella 3 - Intestazione delle tabelle di verifica dei manufatti.

4.1 Opere di intercettazione

L'intercettazione delle acque meteoriche sui piazzali e le viabilità è garantita dalla realizzazione di caditoie a griglia, griglia quadra 60x60, con un'area drenata massima di 300 m².

La portata di deflusso è stimata applicando il metodo razionale o della corrivazione.

In particolare:

$$Q = \frac{\varphi \cdot at^{n-1} \cdot s}{360}$$

con

- φ, coefficiente di deflusso pari a 0.90 [Manuale di Progettazione Italferr];
- S, superficie drenata [ha];
- a, n parametri della curva probabilità pluviometrica più gravosa pari rispettivamente a 67.15 mm/h e 0.386;
- t, tempo di corrivazione considerato pari al tempo di ruscellamento pari a 10 min.

BACI	NO	PORTATA IDROLOGICA								
	S a		n	φ	tc	U	Q			
NOME	(mq)	(mm/h ⁿ)			(min)	lt/s/ha	l/s			
Piazzale	300.00	67.15	0.386	0.90	10	503.33	15.1			

Tabella 4 – Portata afferente alla caditoia

Per determinare la portata che le singole opere di intercettazione sono in grado di intercettare si è assunta un'altezza d'acqua massima accettabile in corrispondenza della griglia pari a 3.5 cm.

La portata che la caditoia in progetto è in grado di intercettare è stata calcolata con la relazione seguente (ASCE e WEF, 1992):

$$Q_{opere} = 1.66 \cdot P \cdot h^{3/2}$$
 [m³/s]

dove h è il tirante nell'impluvio e P il perimetro attivo della griglia pari a:

$$P = 2 \cdot (L + W - n \cdot s) \quad [m]$$

W ed L sono larghezza e lunghezza della griglia [m]; n ed s, numero e spessore delle barre.

Drenaggio piattaforma Relazione idraulica Smaltimento Acque di Piazzale, Aree di Soccorso e Fabbricati
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 RH
 ID.00.0.2.004
 C
 16 di 23

	W	L		s	P	h	Qs	Qs eff.
Riferimento	(m)	(m)	n	(m)	(m)	(m)	(l/s)	(l/s)
PIAZZALE	0.6	0.6	11	0.02	1.96	0.035	21.30	17.04

Tabella 5 – Portata smaltibile dalla caditoia.

La verifica è soddisfatta anche considerando, Q_{s,eff}, una efficienza pari al 80%.

Drenaggio piattaforma Relazione idraulica Smaltimento Acque di Piazzale, Aree di Soccorso e Fabbricati
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 RH
 ID.00.0.2.004
 C
 17 di 23

5. DRENAGGIO PIATTAFORMA DEI PIAZZALI TECNOLOGICI

I piazzali previsti nell'ambito del progetto ferroviario della tratta "Palermo – Catania" Lotto 4a sono i seguenti:

- PIAZZALE PT64 pk 0+050
- PIAZZALE PT90 pk 0+550
- PIAZZALE PT91 − pk 4+050
- PIAZZALE PT92 pk 4+350
- PIAZZALE PT93 pk 6+530
- PIAZZALE PT94 pk 7+630
- PIAZZALE PT95 pk 11+550
- PIAZZALE PT96 pk 12+600
- PIAZZALE PT97 pk 13+350
- PIAZZALE PT98 pk 13+430

In appendice vengono riportate le verifiche idrauliche per il sistema di drenaggio sopra descritto.

Drenaggio piattaforma Relazione idraulica Smaltimento Acque di Piazzale, Aree di Soccorso e Fabbricati COMMESSA LOTTO CODIFICA DOCUMENTO

RS3U 40 D 29 RH ID.00.0.2.004

UMENTO REV. FOGLIO 0.0.2.004 C 18 di 23

6. APPENDICE: FOGLI DI CALCOLO DEL SISTEMA DI DRENAGGIO

6.1 PIAZZALE PT64 – pk 0+050 (eliminare nel 4a°)

Pk	Pk		L		Pendenza	Quota inizio	Quota fine	Sup. Eq.	Q	у	g.r.	v
inizia		Tipo	m	Progr.	m/m	m s.m.m.	m s.m.m.	m2	l/s	cm	%	m/s

PT64 - PIAZZALE KM 0+050

P1	P2	DN315	13	13	1.00%	407.20	407.07	159	39	12	41%	1.4
P2	scarico	DN400	25	38	1.00%	<mark>407.07</mark>	<mark>406.94</mark>	399	91	18	49%	1.7

6.2 PIAZZALE PT90 - pk 0+550

Pk	Pk		L		Pendenza	Quota inizio	Quota fine	Sup. Eq.	Q	у	g.r.	v	
iniziale	finale	Tipo	m	Progr.	m/m	m s.m.m.	m s.m.m.	m2	l/s	cm	%	m/s	

PT90 - PIAZZALE KM 0+550

P1	P2	DN400	20	20	1,00%	407,50	407,30	280	61	14	36%	1,5
P2	Р3	DN500	20	40	1,00%	407,30	407,10	560	103	16	34%	1,7
P3	P4	DN500	20	60	1,00%	407,10	406,90	840	136	20	42%	1,8
P4	scarico	DN500	25	85	1,00%	406,90	406,65	1190	171	23	48%	2,0

Drenaggio piattaforma Relazione idraulica Smaltimento Acque di Piazzale, Aree di Soccorso e Fabbricati COMMESSA LOTTO CODIFICA

RS3U 40 D 29 RH

DOCUMENTO ID.00.0.2.004

REV. FOGLIO

C 19 di 23

6.3 PIAZZALE PT91 - pk 4+050

Pk	Pk		٦		Pendenza	Quota inizio	Quota fine	Sup. Eq.	Q	у	g.r.	v
iniziale	finale	Tipo	m	Progr.	m/m	m s.m.m.	m s.m.m.	m2	l/s	cm	%	m/s

PT91 - PIAZZALE KM 4+050

P1	P2	DN315	10	10	1.00%	360.95	360.85	185	52	15	50%	1.5
P2	P3	DN500	10	20	1.00%	360.85	360.75	451	118	18	38%	1.8
P3	P4	DN500	10	30	1.00%	360.75	360.65	717	169	23	48%	2.0
P4	P5	DN500	10	40	1.00%	360.65	360.55	983	213	27	57%	2.1
P5	scarico	DN500	45	85	1.00%	360.55	360.10	1328	251	31	66%	2.2

6.4 PIAZZALE PT92 - pk 4+350

Pk	Pk		L		Pendenza	Quota inizio	Quota fine	Sup. Eq.	Q	у	g.r.	v
iniziale	finale	Tipo	m	Progr.	m/m	m s.m.m.	m s.m.m.	m2	l/s	cm	%	m/s

PT92 - PIAZZALE KM 4+350

P1	P2	DN315	12	12	1.00%	376.70	376.58	168	44	13	44%	1.5
P2	P3	DN400	12	24	1.00%	376.58	376.46	412	91	18	49%	1.8
P3	scarico	DN500	10	34	1.00%	376.46	376.36	553	113	17	37%	1.8

6.5 PIAZZALE PT93 - pk 6+530

Pk iniziale	Pk finale	Tipo	L	Progr.	Pendenza	Quota inizio	Quota fine	Sup. Eq.	Q	у	g.r.	v
IIIIZIAIE	imale		m		m/m	m s.m.m.	m s.m.m.	m2	l/s	cm	%	m/s

Drenaggio piattaforma Relazione idraulica Smaltimento Acque di Piazzale, Aree di Soccorso e Fabbricati
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 RS3U
 40 D 29
 RH
 ID.00.0.2.004
 C
 20 di 23

PT93 - PIAZZALE KM 6+530

P1	P2	DN315	10	10	0.50%	324.20	324.15	149	37	15	49%	1.1
P2	P3	DN400	10	20	0.50%	324.15	324.10	316	68	19	49%	1.2
Р3	P4	DN500	10	30	0.50%	324.10	324.05	560	115	22	47%	1.4
P4	P5	DN500	10	40	0.50%	324.05	324.00	826	158	29	61%	1.5
P5	scarico	DN500	19	59	0.47%	324.00	323.91	1092	165	29	62%	1.5

6.6 PIAZZALE PT94 - pk 7+630

Pk	Pk		L		Pendenza	Quota inizio	Quota fine	Sup. Eq.	Q	у	g.r.	v
iniziale	finale	Tipo	m	Progr.	m/m	m s.m.m.	m s.m.m.	m2	l/s	cm	%	m/s

PT94 - PIAZZALE KM 7+630

P1	P2	DN315	13	13	1.00%	317.20	317.07	194	50	14	48%	1.5
P2	P3	DN400	13	26	1.00%	317.07	316.94	410	91	19	49%	1.7
P3	P4	DN500	10	36	1.00%	316.94	316.84	685	149	21	44%	2.0
P4	P5	DN500	10	46	1.00%	316.84	316.74	933	191	25	53%	2.1
P6	P7	DN315	13	13	1.00%	317.20	317.07	194	50	14	48%	1.5
P7	P5	DN400	13	26	1.00%	317.07	316.94	410	91	19	49%	1.7
P5	scarico	DN500	80	80	1.00%	316.74	315.94	1605	263	33	69%	2.2

6.7 PIAZZALE PT95 - pk 11+550

Pk	Pk		L		Pendenza	Quota inizio	Quota fine	Sup. Eq.	Q	у	g.r.	v
iniziale	finale	Tipo	m	Progr.	m/m	m s.m.m.	m s.m.m.	m2	l/s	cm	%	m/s

Drenaggio piattaforma Relazione idraulica Smaltimento Acque di Piazzale, Aree di Soccorso e Fabbricati
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.

 RS3U
 40 D 29
 RH
 ID.00.0.2.004
 C

FOGLIO

21 di 23

Die	Pk Pk Tipo		L		Pendenza	Quota inizio	Quota fine	Sup. Eq.	Q	у	g.r.	v
iniziale	finale	Tipo	m	Progr.	m/m	m s.m.m.	m s.m.m.	m2	l/s	cm	%	m/s
P1	P2	DN315	11	11	1.00%	337.75	337.64	184	50	14	48%	1.5
P2	P3	DN400	11	22	1.00%	337.64	337.53	410	91	19	49%	1.7
P3	P4	DN500	12	34	1.00%	337.53	337.41	72 4	163	22	46%	2.0
P4	P5		12							24		
P 4	P5	DN500	12	46	1.00%	337.41	337.29	925	181	24	50%	2.0
P6	P7	DN315	11	11	1.00%	337.75	337.64	184	50	14	48%	1.5
P7	P5	DN400	11	22	1.00%	337.64	337.53	410	91	19	49%	1.7
P5	scarico	DN500	90	90	1.00%	337.29	336.39	1532	260	32	68%	2.2

6.8 PIAZZALE PT96 - pk 12+600

Pk	Pk		L		Pendenza	Quota inizio	Quota fine	Sup. Eq.	Q	у	g.r.	v
iniziale	finale	Tipo	m	Progr.	m/m	m s.m.m.	m s.m.m.	m2	l/s	cm	%	m/s

PT96 - PIAZZALE KM 12+600

P1	P2	DN315	15	15	1.00%	339.05	338.90	197	47	14	48%	1.4
P2	P3	DN400	15	30	1.00%	338.90	338.75	444	90	18	49%	1.6
P3	P4	DN500	15	45	1.00%	339.75	339.60	752	144	21	44%	1.9
P4	P5	DN500	15	60	1.00%	339.65	339.50	1029	181	24	50%	2.0
P5	scarico	DN500	305	365	1.00%	339.50	336.45	1399	224	28	59%	2.1

6.9 PIAZZALE PT97 - pk 13+350

Pk	Pk		L		Pendenza	Quota inizio	Quota fine	Sup. Eq.	Q	у	g.r.	v
iniziale	finale	Tipo	m	Progr.	m/m	m s.m.m.	m s.m.m.	m2	l/s	cm	%	m/s

Drenaggio piattaforma Relazione idraulica Smaltimento Acque di Piazzale, Aree di Soccorso e Fabbricati COMMESSA LOTTO CODIFICA

ICA DOCUMENTO

REV. FOGLIO

22 di 23

a Smaltimento Acque di Piazzale, Aree di Rssu 40 d 29 RH Id.00.0.2.004 c cati

Pk	Pk		L		Pendenza	Quota inizio	Quota fine	Sup. Eq.	Q	у	g.r.	v
iniziale	finale	Tipo	m	Progr.	m/m	m s.m.m.	m s.m.m.	m2	l/s	cm	%	m/s

PT97 - PIAZZALE KM 13+350

P1	P2	DN400	12	12	1.00%	339.95	339.83	287	78	16	44%	1.6
P2	P3	DN500	12	24	1.00%	339.83	339.71	596	141	21	44%	1.9
P3	P4	DN500	12	36	1.00%	339.71	339.59	904	194	25	54%	2.1
P8	P4	DN315	15	15	1.00%	339.95	339.80	143	33	10	34%	1.4
P9	P10	DN400	15	15	1.00%	339.95	339.80	238	58	13	35%	1.5
P10	P4	DN500	15	30	1.00%	339.80	339.65	637	143	21	44%	1.9
P4	P5	DN630	14	14	1.00%	339.59	339.45	1917	353	31	53%	2.4
P5	P6	DN630	14	28	1.00%	339.45	339.31	2239	373	33	56%	2.4
P11	P12	DN400	12	12	1.00%	339.95	339.83	287	78	16	44%	1.6
P12	P13	DN500	12	24	1.00%	339.83	339.71	596	141	21	44%	1.9
P13	P6	DN500	12	36	1.00%	339.71	339.59	904	194	25	54%	2.1
P6	P7	DN800	6	6	1.00%	339.31	339.25	3255	550	34	46%	2.7
P14	P15	DN400	15	15	1.00%	339.95	339.80	305	75	16	44%	1.6
P15	P7	DN500	15	30	1.00%	339.80	339.65	637	137	21	43%	1.9
P7	scarico	DN800	20	20	1.00%	339.25	339.05	4261	637	39	52%	2.8

6.10 PIAZZALE PT98 - pk 13+430

Pk	Pk		L		Pendenza	Quota inizio	Quota fine	Sup. Eq.	Q	у	g.r.	v
iniziale	finale	Tipo	m	Progr.	m/m	m s.m.m.	m s.m.m.	m2	l/s	cm	%	m/s

PT98 - PIAZZALE KM 13+430

P1	P2	DN400	10	10	1.00%	339.95	339.85	212	60	14	36%	1,5
P2	P3	DN500	10	20	1.00%	339.85	339.75	514	134	20	42%	1,8
P3	P4	DN500	10	30	1.00%	339.75	339.65	816	194	25	54%	2.1

Drenaggio piattaforma Relazione idraulica Smaltimento Acque di Piazzale, Aree di Soccorso e Fabbricati COMMESSA LOTTO CODIFICA

RS3U 40 D 29 RH

ID.00.0.2.004

REV. FOGLIO

C 23 di 23

Pk	Pk		L		Pendenza	Quota inizio	Quota fine	Sup. Eq.	Q	у	g.r.	v
iniziale	finale	Tipo	m	Progr.	m/m	m s.m.m.	m s.m.m.	m2	l/s	cm	%	m/s
P4	P5	DN500	10	40	1.00%	339.65	339.55	1118	243	30	65%	2.2
P5	scarico	DN500	38	78	1.00%	339.55	339.17	1428	260	32	68%	2.2