**COMMITTENTE:** 



PROGETTAZIONE:



## **U.O. INFRASTRUTTURE NORD**

## **PROGETTO DEFINITIVO**

# DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA

# RADDOPPIO TRATTA FIUME TORTO – LERCARA DIRAMAZIONE LOTTO 1 + 2

**VIABILITÀ** 

NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

|      |             |      |           |          |              |          |            |         | SCALA:           |
|------|-------------|------|-----------|----------|--------------|----------|------------|---------|------------------|
|      |             |      |           |          |              |          |            |         | -                |
| COM  | MESSA LOTTO | FASE | ENTE      | TIPO DOC | . OPERA/DI   | SCIPLINA | PROGR.     | REV     |                  |
| RS   | 3 Z 0 0     | D    | 2 6       | CL       | NV2          | 1 0 8    | 0 0 2      | В       |                  |
| Rev. | Descrizione |      | Redatto   | Data     | Verificato   | Data     | Approvato  | Data    | Autorizzato Data |
|      |             | С    | . INTEGRA | Connoio  | M.SALLEOLINI | Connois  | A. BARFECA | Connois | E N              |

| Rev. | Descrizione         | Redatto    | Data    | Verificato   | Data    | Approvato  | Data    | Autorizzato Data                          |
|------|---------------------|------------|---------|--------------|---------|------------|---------|-------------------------------------------|
| Α    | EMISSIONE ESECUTIVA | C. INTEGRA | Gennaio | M.SALLEOLINI | Gennaio | A. BARFECA | Gennaio | F. \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |
|      | EMIGGIONE EGEGGIVA  |            | 2020    | Molden       | 2020    | ~A         | 2020    | Mag <b>g</b> io 2020                      |
| В    | 1° AGG. A CONSEGNA  | C. INTEGRA | Maggio  | M.SALLEOLINI | Maggio  | A. BARPECA | Maggio  | RAST<br>Y Gella                           |
|      | CSLLPP              |            | 2020    | Bollas       | 2020    |            | 2020    |                                           |
|      |                     |            |         |              |         |            |         | RR - B<br>Dott. 1                         |
|      |                     |            |         |              |         |            |         | ALFEI<br>dine d                           |
|      |                     |            |         |              |         |            |         | E &                                       |

File: RS3Z00D26CLNV2108002B n. Elab.:



NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2108002 B 0 di 43

# **INDICE**

| 1. | PRI | EMESSA                                                            | 2  |
|----|-----|-------------------------------------------------------------------|----|
| 2. | DES | SCRIZIONE                                                         | 3  |
|    |     |                                                                   |    |
| 3. | NO  | RMATIVE DI RIFERIMENTO                                            | 4  |
| 4. | CA  | RATTERISTICHE DEI MATERIALI                                       | 5  |
| 5. | PAI | RAMETRI GEOTECNICI                                                | 7  |
|    | 5.1 | Profondità della falda                                            | 7  |
| 6. | AN  | ALISI DEI CARICHI                                                 | 8  |
|    | 6.1 | Pesi propri                                                       | 8  |
|    | 6.2 | Permanenti non strutturali                                        | 8  |
|    | 6.3 | Carichi mobili (carico stradale)                                  | 8  |
|    | 6.4 | Azione di frenamento (Q <sub>3</sub> )                            | 9  |
|    | 6.5 | Azione del sisma                                                  | 9  |
|    | 6.6 | Ritiro del calcestruzzo                                           | 12 |
|    | 6.7 | Variazione termica                                                | 12 |
|    | 6.8 | Spinta statica del terreno                                        | 12 |
|    | 6.9 | Spinta dovuta al sovraccarico accidentale                         | 12 |
| 7. | CO  | MBINAZIONE DEI CARICHI                                            | 14 |
| 8. | VE  | RIFICHE STRUTTURALI                                               | 16 |
|    | 8.1 | Verifiche per gli stati limite ultimi a flessione-pressoflessione | 16 |
|    | 8.2 | Verifica agli stati limite ultimi a taglio                        | 16 |
|    | 8.3 | Verifica agli stati limite d'esercizio                            | 18 |
| 9. | AN  | ALISI STRUTTURALE                                                 | 19 |
|    | 9.1 | Modellazione strutturale : Muro a U                               | 19 |
|    | 9.2 | Analisi dei carichi                                               | 21 |



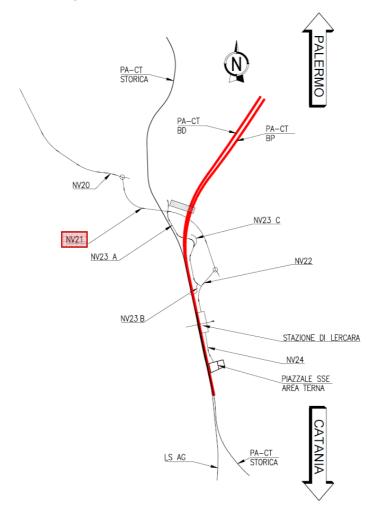
NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

| COMMESSA | LOTTO | FASE-ENTE | DOCUMENTO | REV. | FOGLIO  |
|----------|-------|-----------|-----------|------|---------|
| RS3Z     | 00    | D26       | NV2108002 | В    | 1 di 43 |

|     | 9.3  | Combinazioni                                    | 23 |
|-----|------|-------------------------------------------------|----|
|     | 9.4  | Sollecitazioni                                  | 25 |
|     | 9.5  | Verifiche strutturali                           | 29 |
|     |      | 9.5.1 Verifica piedritti                        | 29 |
|     |      | 9.5.2 Verifica soletta inferiore                |    |
| 10. | INC  | CIDENZA MURO A U                                | 39 |
| 11. | DIC  | CHIARAZIONI SECONDO D.M. 17/01/2018 (P.TO 10.2) | 40 |
|     |      |                                                 |    |
|     | 11.1 | 1 Tipo di analisi svolte                        |    |
|     |      |                                                 | 40 |



Sottopasso 0+311 – Relazione di calcolo muri di imbocco


PROGETTO DEFINITIVO
DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO
NUOVO COLLEGAMENTO PALERMO-CATANIA
RADDOPPIO TRATTA FIUMETORTO – LERCARA
DIRAMAZIONE – LOTTO 1+2

| COMMESSA | LOTTO | FASE-ENTE | DOCUMENTO | REV. | FOGLIO  |
|----------|-------|-----------|-----------|------|---------|
| RS3Z     | 00    | D26       | NV2108002 | В    | 2 di 43 |

## 1. PREMESSA

Il presente documento viene emesso nell'ambito della redazione degli elaborati tecnici relativi alla progettazione definitiva del collegamento Palermo-Catania, raddoppio tratta Fiumetorto-Lercara Diramazione, appartenente alla Direttrice ferroviaria Messina-Catania-Palermo.

Nella presente relazione è riportato il calcolo strutturale dei muri di imbocco del sottopasso stradale al km 0+311 della nuova viabilità di collegamento Lercara-Nuova Fermata Lercara (NV21).



Il muro ha soletta di fondazione di spessore 1.0m e piedritti di spessore 0.7m. Si è considerata l'altezza massima del muro a U, pari a 5.50m (esclusa la fondazione).



## 2. DESCRIZIONE

Nella seguente relazione, in particolare, vengono descritte le verifiche agli Stati Limite del muro di imbocco a U utilizzabile per attraversamenti stradali avente le caratteristiche riportate nella seguente tabella:

| Geometria del muro a U     |      |       |   |
|----------------------------|------|-------|---|
| Larghezza totale           | Ltot | 10.40 | m |
| Altezza totale             | Htot | 6.50  | m |
| Spessore piedritti         | sp   | 0.70  | m |
| Spessore soletta inferiore | sf   | 1.00  | m |
| Luce libera                | Lint | 9.00  | m |
| Altezza libera             | Hint | 5.50  | m |

Si riporta, di seguito, la sezione trasversale della struttura.

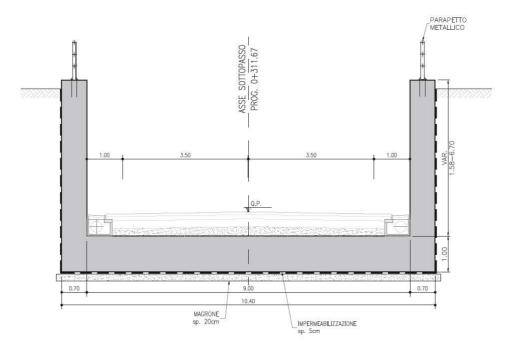



Figura 2.1– Sezione trasversale muro di imbocco

La struttura sarà realizzata in c.a. gettato in opera senza giunti intermedi.

| Geometria del Ricoprimento Interno |    |      |   |
|------------------------------------|----|------|---|
| Pacchetto stradale                 | Нр | 0.12 | m |
| Ricoprimento                       | Hr | 0.30 | m |



NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO
RS3Z 00 D26 NV2108002 B 4 di 43

### 3. NORMATIVE DI RIFERIMENTO

Il dimensionamento e la verifica degli elementi strutturali sono stati condotti nel rispetto delle seguenti normative:

- <u>Decreto Ministeriale 17 gennaio 2018</u>: Aggiornamento delle Norme tecniche per le costruzioni;
- <u>Circolare 21 gennaio 2019, n.7 C.S.LL.PP.</u>: Istruzioni per l'applicazione dell'"Aggiornamento delle Norme tecniche per le costruzioni di cui al D.M. 17 gennaio 2018;
- <u>Circolare 15 ottobre 1996, n.252 AA.GG./S.T.C..</u>: Istruzioni per l'applicazione delle "Nuove norme tecniche per il calcolo, l'esecuzione ed il collaudo delle opere in cemento armato normale e precompresso e per le strutture metalliche" di cui al decreto ministeriale 9 gennaio 1996;
- RFI DTC SI MA IFS 001 B: "Manuale di progettazione delle opere civili" del 22/12/2017.
- RFI DTC SI PS MA IFS 001 B: Sezione 2 Ponti e Strutture

### Riferimenti STI:

 Regolamento (UE) N. 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019;



NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2108002 B 5 di 43

## 4. CARATTERISTICHE DEI MATERIALI

| MAGRONE - C12/15                 |                 |         |                   |        |
|----------------------------------|-----------------|---------|-------------------|--------|
| Descrizione                      | Simbolo         | Formula | Unità di misura   | Valore |
| Resistenza cubica a compressione | R <sub>ck</sub> |         | N/mm <sup>2</sup> | 15     |
| Contenuto minimo cemento         |                 |         | kg/m <sup>3</sup> | 150    |

| CALCESTRUZZO CLASSE 30/37                                   |                          |                                              |                   |        |
|-------------------------------------------------------------|--------------------------|----------------------------------------------|-------------------|--------|
| Descrizione                                                 | Simbolo                  | Formula                                      | Unità di misura   | Valore |
| Resistenza cubica a compressione                            | R <sub>ck</sub>          |                                              | N/mm <sup>2</sup> | 37.0   |
| Resistenza cilindrica a compressione                        | f <sub>ck</sub>          | 0.83 * R <sub>ck</sub>                       | N/mm <sup>2</sup> | 30.7   |
| Resistenza cilindrica media a compressione                  | f <sub>cm</sub>          | f <sub>ck</sub> +8                           | N/mm <sup>2</sup> | 38.7   |
| Coefficiente per effetti a lungo termine e sfavorevoli      | a <sub>cc</sub> (t>28gg) |                                              | _                 | 0.85   |
| Coefficiente parziale di sicurezza relativo al calcestruzzo | Υ <sub>c</sub>           |                                              | -                 | 1.5    |
| Resistenza di calcolo a compressione                        | f <sub>cd</sub>          | $(a_{cc} * f_{ck}) / \Upsilon c$             | N/mm <sup>2</sup> | 17.4   |
| Resistenza cilindrica media a trazione                      | f <sub>ctm</sub>         | 0.3 * (fck) <sup>2/3</sup>                   | N/mm <sup>2</sup> | 2.9    |
| Resistenza cilindrica media a trazione                      | f <sub>ctk</sub>         | 0.7 * f <sub>ctm</sub>                       | N/mm <sup>2</sup> | 2.1    |
| Resistenza di calcolo a trazione                            | f <sub>ctd</sub>         | f <sub>ctk</sub> / γ <sub>c</sub>            | N/mm <sup>2</sup> | 1.4    |
| Resistenza media a trazione per flessione                   | f <sub>cfm</sub>         | 1.2 * f <sub>ctm</sub>                       | N/mm <sup>2</sup> | 3.5    |
| Resistenza cilindrica caratteristica a trazione             | f <sub>cfk</sub>         | 0.7 * f <sub>ctm</sub>                       | N/mm <sup>2</sup> | 2.5    |
| Modulo elastico                                             | E <sub>cm</sub>          | 22000 * (f <sub>cm</sub> /10) <sup>0.3</sup> | N/mm <sup>2</sup> | 33019  |
| Peso proprio                                                | Υ <sub>c</sub>           |                                              | N/m <sup>3</sup>  | 25000  |
| Coefficiente di Poisson                                     | v                        |                                              | -                 | 0.2    |
| Coefficiente di aderenza                                    | ŋ                        |                                              | -                 | 1.0    |
| Resistenza tangenziale caratteristica di aderenza           | f <sub>bk</sub>          | 2.25 * η * f <sub>ctk</sub>                  | N/mm <sup>2</sup> | 4.6    |
| Resistenza tangenziale di aderenza di calcolo               | f <sub>bd</sub>          | $f_{bk} / \Upsilon_c$                        | N/mm <sup>2</sup> | 3.1    |

| Acciaio ad aderenza migliorata B450C                    |                                         |                                  |                   |                 |
|---------------------------------------------------------|-----------------------------------------|----------------------------------|-------------------|-----------------|
| Descrizione                                             | Simbolo                                 | Formula                          | Unità di misura   | Valore          |
| Resistenza caratteristica di rottura                    | f <sub>t nom</sub>                      |                                  | N/mm <sup>2</sup> | <del>54</del> 0 |
| Resistenza caratteristica a snervamento                 | f <sub>y nom</sub>                      |                                  | N/mm <sup>2</sup> | 450             |
| Coefficiente parziale di sicurezza relativo all'acciaio | Ϋ́s                                     |                                  | -                 | 1.15            |
| Resistenza di calcolo                                   | f <sub>yd</sub>                         | f <sub>yk</sub> / Υ <sub>s</sub> | N/mm <sup>2</sup> | 391.3           |
| Modulo elastico                                         | E <sub>s</sub>                          |                                  | N/mm <sup>2</sup> | 206000          |
| Tensioni di progetto del cls allo S.L.E.                | *************************************** |                                  |                   |                 |
| Tensione massima di esercizio per l'acciaio             | $\sigma_{s}$                            | 0.75 * f <sub>vk</sub>           | N/mm <sup>2</sup> | 337.5           |



| NV21 - Nuova viabilità di collegamento Lercara- |  |  |
|-------------------------------------------------|--|--|
| Nuova Fermata Lercara                           |  |  |
| Sottopasso 0+311 – Relazione di calcolo muri di |  |  |
| imbocco                                         |  |  |

| COMMESSA | LOTTO | FASE-ENTE | DOCUMENTO | REV. | FOGLIO  |
|----------|-------|-----------|-----------|------|---------|
| RS3Z     | 00    | D26       | NV2108002 | В    | 6 di 43 |
|          |       |           |           |      |         |

Con riferimento al punto 4.1.6.1.3 delle NTC, al fine della protezione delle armature dalla corrosione il valore minimo dello strato di ricoprimento di calcestruzzo (copriferro) deve rispettare quanto indicato nella tabella C4.1.IV della Circolare 21.01.2019, riportata di seguito, nella quale sono distinte le tre condizioni ambientali di Tabella 4.1.III delle NTC.

|        |        |                    | barre da c.a. |                                                                                                                                                                 | barre da c.a. |                                                                                                                    | cavi da | c.a.p                                                                 | cavi da c.a.p |                          |  |
|--------|--------|--------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------|---------------|--------------------------|--|
|        |        | elementi a piastra |               | altri elementi                                                                                                                                                  |               | elementi a piastra                                                                                                 |         | altri elementi                                                        |               |                          |  |
| Cmin   | Co     | ambiente           | C≥Co          | Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<></td></co<></td></co<> | C≥Co          | Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<></td></co<> | C≥Co    | Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<> | C≥Co          | Cmin≤C <co< td=""></co<> |  |
| C25/30 | C35/45 | ordinario          | 15            | 20                                                                                                                                                              | 20            | 25                                                                                                                 | 25      | 30                                                                    | 30            | 35                       |  |
| C30/37 | C40/50 | aggressivo         | 25            | 30                                                                                                                                                              | 30            | 35                                                                                                                 | 35      | 40                                                                    | 40            | 45                       |  |
| C35/45 | C45/55 | molto ag.          | 35            | 40                                                                                                                                                              | 40            | 45                                                                                                                 | 45      | 50                                                                    | 50            | 50                       |  |

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportata nel prospetto seguente:

Classe di esposizione: XA1

Copriferro di progetto: 50 mm

Condizioni ambientali: Aggressive

Il valore limite di apertura delle fessure calcolato secondo le combinazioni agli SLE (frequente e quasi permanente) è pari ad uno dei seguenti valori nominali:

$$w_1 = 0.2 \text{ mm}$$

$$w_2 = 0.3 \text{ mm}$$

$$w_3 = 0.4 \text{ mm}$$

| pi<br>ıze                | Condizioni | Combinazione di  | Armatura                            |                           |                  |                           |  |  |  |  |  |
|--------------------------|------------|------------------|-------------------------------------|---------------------------|------------------|---------------------------|--|--|--|--|--|
| Gruppi<br>di<br>Esigenze | ambientali | azioni           | Sensibile                           |                           | Poco sensibile   |                           |  |  |  |  |  |
| Gr<br>Esi                |            |                  | Stato limite                        | $\mathbf{w}_{\mathbf{k}}$ | Stato limite     | $\mathbf{w}_{\mathbf{k}}$ |  |  |  |  |  |
| Δ                        | Ordinarie  | frequente        | apertura fessure                    | $\leq w_2$                | apertura fessure | $\leq w_3$                |  |  |  |  |  |
| A                        | Ordinarie  | quasi permanente | quasi permanente   apertura fessure |                           | apertura fessure | $\leq w_2$                |  |  |  |  |  |
| D                        | Accusaires | frequente        | apertura fessure                    | $\leq w_1$                | apertura fessure | $\leq w_2$                |  |  |  |  |  |
| В                        | Aggressive | quasi permanente | decompressione                      | -                         | apertura fessure | $\leq w_1$                |  |  |  |  |  |
| С                        | Molto      | frequente        | formazione fessure                  | -                         | apertura fessure | $\leq w_1$                |  |  |  |  |  |
|                          | aggressive | quasi permanente | decompressione                      | -                         | apertura fessure | $\leq w_1$                |  |  |  |  |  |



NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2108002 B 7 di 43

## 5. PARAMETRI GEOTECNICI

Gli elaborati di riferimento sono:

| Planimetria e Sezioni geotecniche viabilità - Tav. 1/7 | R | S | 3 | Z | 0 | 0 | D | 2 | 6 | P | Z | G | Е | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
|--------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Planimetria e Sezioni geotecniche viabilità - Tav. 2/7 | R | S | 3 | Z | 0 | 0 | D | 2 | 6 | P | Z | G | Е | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| Planimetria e Sezioni geotecniche viabilità - Tav. 3/7 | R | S | 3 | Z | 0 | 0 | D | 2 | 6 | P | Z | G | Е | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
| Planimetria e Sezioni geotecniche viabilità - Tav. 4/7 | R | S | 3 | Z | 0 | 0 | D | 2 | 6 | P | Z | G | Е | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
| Planimetria e Sezioni geotecniche viabilità - Tav. 5/7 | R | S | 3 | Z | 0 | 0 | D | 2 | 6 | P | Z | G | Е | 0 | 0 | 0 | 0 | 0 | 0 | 5 |
| Planimetria e Sezioni geotecniche viabilità - Tav. 6/7 | R | S | 3 | Z | 0 | 0 | D | 2 | 6 | P | Z | G | Е | 0 | 0 | 0 | 0 | 0 | 0 | 6 |
| Planimetria e Sezioni geotecniche viabilità - Tav. 7/7 | R | S | 3 | Z | 0 | 0 | D | 2 | 6 | P | Z | G | Е | 0 | 0 | 0 | 0 | 0 | 0 | 7 |
| Profilo longitudinale geotecnico viabilità - Tav. 1/7  | R | S | 3 | Z | 0 | 0 | D | 2 | 6 | F | 9 | G | Е | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| Profilo longitudinale geotecnico viabilità - Tav. 2/7  | R | S | 3 | Z | 0 | 0 | D | 2 | 6 | F | 9 | G | Е | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| Profilo longitudinale geotecnico viabilità - Tav. 3/7  | R | S | 3 | Z | 0 | 0 | D | 2 | 6 | F | 9 | G | Е | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
| Profilo longitudinale geotecnico viabilità - Tav. 4/7  | R | S | 3 | Z | 0 | 0 | D | 2 | 6 | F | 9 | G | Е | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
| Profilo longitudinale geotecnico viabilità - Tav. 5/7  | R | S | 3 | Z | 0 | 0 | D | 2 | 6 | F | 9 | G | Е | 0 | 0 | 0 | 0 | 0 | 0 | 5 |
| Profilo longitudinale geotecnico viabilità - Tav. 6/7  | R | S | 3 | Z | 0 | 0 | D | 2 | 6 | F | 9 | G | Е | 0 | 0 | 0 | 0 | 0 | 0 | 6 |
| Profilo longitudinale geotecnico viabilità - Tav. 7/7  | R | S | 3 | Z | 0 | 0 | D | 2 | 6 | F | 9 | G | Е | 0 | 0 | 0 | 0 | 0 | 0 | 7 |

A titolo cautelativo si assumono i seguenti parametri geotecnici:

- Angolo di attrito (rinterro), φ': 35°

- Modulo elastico terreno, E': 25 MPa

- Coefficiente di Poisson, v': 0.3

- Categoria di sottosuolo: C

- Condizione topografica: T1

### 5.1 Profondità della falda

Ai fini dell'analisi dell'opera non si è considerata la presenza della falda idrica in quanto il livello di falda è al di sotto del piano di fondazione.



NV21 – Nuova viabilità di collegamento Lercara Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2108002 B 8 di 43

### 6. ANALISI DEI CARICHI

Nel seguente paragrafo si descrivono i carichi elementari che agiscono sulla struttura in oggetto. Tali azioni sono definite secondo le normative e sono utilizzate per la generazione delle combinazioni di carico nell'ambito delle verifiche di resistenza, in esercizio e in presenza dell'evento sismico. Tutti i carichi elementari si riferiscono a un concio longitudinale di larghezza unitaria, pertanto sono tutti definiti rispetto all'unità di lunghezza.

### 6.1 Pesi propri

Il peso dei differenti elementi strutturali viene calcolato automaticamente dal programma di calcolo utilizzato.

- Soletta di fondazione;
- Piedritti;

Per i materiali si assumono i seguenti pesi specifici:

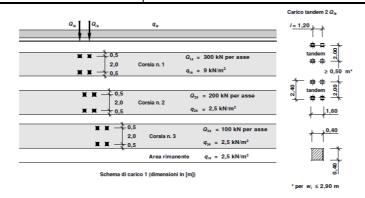
Calcestruzzo armato:  $\gamma_{c.a.} = 25.00 \text{ kN/m}^3$ 

Rilevato:  $\gamma_{ril} = 19.00 \text{ kN/m}^3$ 

### 6.2 Permanenti non strutturali

Sono stati considerati i seguenti carichi permanenti sulla soletta superiore:

- Strato di usura:
- Binder:
- Strato di base;
- Strato di fondazione di inerti stabilizzati all'acqua e compattati.


## 6.3 Carichi mobili (carico stradale)

Utilizzato sia per le verifiche globali che per quelle locali, considerando un solo carico tandem per corsia, disposto in asse alla corsia stessa. Esso è costituito da carichi concentrati su due assi in tandem (applicati su impronte di pneumatico di forma quadrata e lato 0,40 m) e da carichi uniformemente distribuiti secondo le seguenti colonne di carico:



NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO
RS3Z 00 D26 NV2108002 B 9 di 43



In senso trasversale i carichi  $Q_{ik}$  e  $q_{ik}$  sono distribuiti su corsie convenzionali di larghezza pari a 3,00 m in modo tale da ottenere la distribuzione trasversale più gravosa.

### 6.4 Azione di frenamento (Q<sub>3</sub>)

La forza di frenamento o accelerazione è funzione del carico verticale totale agente sulla corsia convenzionale n.1 e per i ponti di 1<sup>a</sup> categoria è uguale a:

$$180 \text{ kN} \le Q_3 = 0.6 \cdot (2 \cdot Q_{1k}) + 0.10 \cdot q_{1k} \cdot w_1 \cdot L \le 900 \text{ kN}$$

Tale azione deve essere applicata all'impalcato a quota pavimentazione.

### 6.5 Azione del sisma

Per tutte le opere d'arte di progetto vengono utilizzati, a vantaggio di sicurezza, i seguenti valori:  $V_N$ =50 anni e classe d'uso III a cui corrisponde un coefficiente d'uso  $C_U$  = 1.50.

La vita di riferimento V<sub>R</sub> è quindi pari a 75 anni.

I parametri utilizzati per la definizione dell'azione sismica sono riportati di seguito.

- Classe d'uso: III
- Coefficiente d'uso  $C_U = 1.5$
- Vita nominale  $V_N = 50$  anni
- Categoria di suolo: C
- Condizione topografica: T1
- Fattore di struttura q = 1

L'azione sismica è stata calcolata per mezzo del foglio di calcolo Spettri-NTCver.1.0.3 messo a disposizione dal Consiglio Superiore dei Lavori Pubblici.

I parametri per la determinazione dei punti dello spettro di risposta orizzontale e verticale sono riportati :



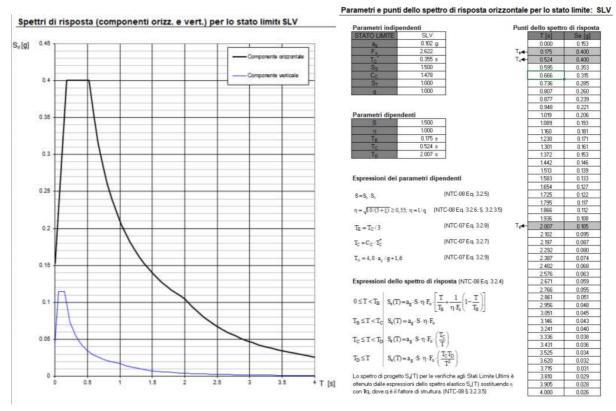
NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2108002 B 10 di 43




Di seguito si riportano gli spettri di risposta orizzontale e verticale allo Stato limite di salvaguardia della vita SLV utilizzati per il calcolo dell'azione sismica. Con tale azione sismica agente, le forze risultanti trasmesse dall'impalcato al piano appoggi della spalla in corrispondenza della sommità del muro di testata sono riportate al paragrafo successivo, sotto le voci **Ex**, **Ey** ed **Ez**.






NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2108002 B 11 di 43



Di seguito si riporta a titolo di esempio lo **spettro di progetto** per lo **Stato Limite di salvaguardia della Vita SLV** relativamente alle componenti **orizzontali**, con coefficiente di smorzamento strutturale canonico pari al 5%.





NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

| COMMESSA | LOTTO | FASE-ENTE | DOCUMENTO | REV. | FOGLIO   |
|----------|-------|-----------|-----------|------|----------|
| RS3Z     | 00    | D26       | NV2108002 | В    | 12 di 43 |

### 6.6 Ritiro del calcestruzzo

Gli effetti del ritiro del calcestruzzo sono valutati impiegando i coefficienti indicati al punto 11.2.10.6 delle NTC2018. La deformazione totale da ritiro è data dalla somma della deformazione per ritiro da essiccamento e della deformazione da ritiro autogeno. Il ritiro è stato applicato mediante una variazione termica equivalente pari a 10°, ed un umidità relativa del 75% a 7 gg.

Il fenomeno del ritiro è stato applicato solo alla soletta di copertura nel caso dello scatolare mentre viene trascurato nel muro.

### 6.7 Variazione termica

La variazione termica applicata sulla struttura è pari a  $\Delta T$ = +15°C, con un variazione termica a aggiuntiva a farfalla pari a  $\Delta T$ = +5°C applicata sulla soletta di copertura.

Per il coefficiente di dilatazione termica si assume:

$$\alpha = 10 \times 10^{-6} = 0.00001$$

## 6.8 Spinta statica del terreno

Le spinte del terreno a monte degli elementi verticali sono calcolate con la teoria di Rankine, con distribuzione triangolare delle tensioni e conseguente risultante della spinta al metro pari a  $S=1/2 \cdot k_0 \cdot \gamma \cdot H^2$ , applicata ad 1/3 dal basso.

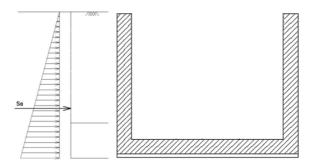



Figura 6.1 – Schema per il calcolo degli effetti della spinta statica del terreno

La spinta in condizioni di esercizio viene calcolata con il coefficiente di spinta a riposo k<sub>0</sub>.

### 6.9 Spinta dovuta al sovraccarico accidentale



Per considerare la presenza di un sovraccarico da traffico gravante a tergo, si considera un carico uniformemente distribuito. Il valore della spinta risultante al metro è dunque pari a  $S=k_0\cdot q\cdot H$ , con punto di applicazione posizionato a metà dell'altezza dell'elemento su cui insiste.

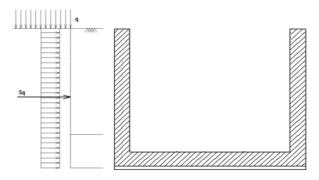



Figura 6.2– Schema per il calcolo degli effetti della spinta dovuta al sovraccarico accidentale

In condizione sismica si considera un incremento della spinta del terreno rispetto alla condizione statica in esercizio. La sovraspinta sismica è calcolata con la teoria di Wood, risultando in un valore di spinta al metro, distribuito uniformemente sull'intera altezza del piedritto, da applicare ad una quota pari ad H/2.

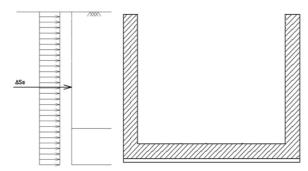



Figura 6.3– Schema per il calcolo degli effetti della sovraspinta sismica



NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2108002 B 14 di 43

## 7. COMBINAZIONE DEI CARICHI

In linea con quanto riportato nel quadro normativo vigente, le azioni descritte nei paragrafi precedenti, sono combinate nel modo seguente:

combinazione fondamentale (SLU):

$$\gamma_{\text{G1}} \cdot G_{\text{1}} + \gamma_{\text{G2}} \cdot G_{\text{2}} + \gamma_{\text{p}} \cdot P + \gamma_{\text{O1}} \cdot Q_{\text{k1}} + \gamma_{\text{O2}} \cdot \psi_{\text{02}} \cdot Q_{\text{k2}} + \gamma_{\text{O3}} \cdot \psi_{\text{03}} \cdot Q_{\text{k3}} + \dots$$

combinazione sismica:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

combinazione eccezionale:

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

combinazione Rara (SLE irreversibile):

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

combinazione Frequente (SLE reversibile):

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

combinazione Quasi Permanente (SLE per gli effetti a lungo termine):

$$G_{_{1}}+G_{_{2}}+P+\psi_{_{21}}\cdot Q_{_{k1}}+\psi_{_{22}}\cdot Q_{_{k2}}+\psi_{_{23}}\cdot Q_{_{k3}}+...$$

Ai fini della determinazione dei valori caratteristici delle azioni dovute al traffico, si devono considerare, generalmente, le combinazioni riportate in TAb. 5.1.IV.

|                     |                                                                  | Carich                                   | i sulla superfic                                                    | ie carrabile               |                            | Carichi su marciapiedi e piste ciclabili non<br>sormontabili          |
|---------------------|------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------|----------------------------|----------------------------|-----------------------------------------------------------------------|
|                     | - 8                                                              | Carichi vertical                         | i                                                                   | Carichi                    | orixxontali                | Carichi verticali                                                     |
| Gruppo di<br>azioni | Modello<br>principale<br>(schemi di<br>carico 1, 2, 3,<br>4 e 6) | Veicoli spe-<br>ciali                    | Folla (Sche-<br>ma di carico<br>5)                                  | Frenatura                  | Forza centrifuga           | Carico uniformemente distribuito                                      |
| 1                   | Valore carat-<br>teristico                                       | j                                        |                                                                     |                            |                            | Schema di carico 5 con valore di combinazione<br>2,5KN/m <sup>2</sup> |
| 2a                  | Valore fre-<br>quente                                            |                                          |                                                                     | Valore carat-<br>teristico |                            | 5                                                                     |
| 2b.                 | Valore fre-<br>quente                                            |                                          |                                                                     |                            | Valore caratteri-<br>stico |                                                                       |
| 3 (*)               |                                                                  |                                          |                                                                     |                            |                            | Schema di carico 5 con valore caratteristico<br>5,0KN/m²              |
| 4 (**)              |                                                                  |                                          | Schema di<br>carico 5 con<br>valore carat-<br>teristico<br>5,0KN/m² |                            |                            | Schema di carico 5 con valore caratterístico<br>5,0KN/m²              |
| 5 (***)             | Da definirsi<br>per il singo-<br>lo progetto                     | Valore carat-<br>teristico o<br>nominale |                                                                     |                            |                            |                                                                       |

Tab. 1 – Valutazione dei carichi da traffico



NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

| COMMESSA | LOTTO | FASE-ENTE | DOCUMENTO | REV. | FOGLIO   |
|----------|-------|-----------|-----------|------|----------|
| RS3Z     | 00    | D26       | NV2108002 | В    | 15 di 43 |

Per le verifiche agli stati limite ultimi si adottano i valori dei coefficienti parziali ed i coefficienti di combinazione  $\psi$  delle tabelle seguenti.

|                                                                    |                           | Coefficiente                             | EQU <sup>(1)</sup>          | A1                          | A2           |
|--------------------------------------------------------------------|---------------------------|------------------------------------------|-----------------------------|-----------------------------|--------------|
| Azioni permanenti $\mathbf{g}_1$ e $\mathbf{g}_3$                  | favorevoli<br>sfavorevoli | γ <sub>G1</sub> <b>e</b> γ <sub>G3</sub> | 0,90<br>1,10                | 1,00<br>1,35                | 1,00<br>1,00 |
| Azioni permanenti non<br>strutturali <sup>(2)</sup> g <sub>2</sub> | favorevoli<br>sfavorevoli | YG2                                      | 0,00<br>1,50                | 0,00<br>1,50                | 0,00<br>1,30 |
| Azioni variabili da traffico                                       | favorevoli<br>sfavorevoli | ΥQ                                       | 0,00<br>1,35                | 0,00<br>1,35                | 0,00<br>1,15 |
| Azioni variabili                                                   | favorevoli<br>sfavorevoli | YQI                                      | 0,00<br>1,50                | 0,00<br>1,50                | 0,00<br>1,30 |
| Distorsioni e presollecita-<br>zioni di progetto                   | favorevoli<br>sfavorevoli | Ye1                                      | 0,90<br>1,00 <sup>(3)</sup> | 1,00<br>1,00 <sup>(4)</sup> | 1,00<br>1,00 |
| Ritiro e viscosità, Cedimenti<br>vincolari                         | favorevoli<br>sfavorevoli | Ye2 Ye3 Ye4                              | 0,00<br>1,20                | 0,00<br>1,20                | 0,00<br>1,00 |

Tab. 2 – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU, eccezionali e sismica

| Azioni        | Gruppo di azioni<br>(Tab. 5.1.IV)    | Coefficiente<br>\$\psi_0\$ di combi-<br>nazione | Coefficiente<br>\$\psi_1\$ (valori<br>frequenti) | Coefficiente $\psi_2$<br>(valori quasi<br>permanenti) |
|---------------|--------------------------------------|-------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|
|               | Schema 1 (carichi tandem)            | 0,75                                            | 0,75                                             | 0,0                                                   |
|               | Schemi 1, 5 e 6 (carichi distribuiti | 0,40                                            | 0,40                                             | 0,0                                                   |
| Azioni da     | Schemi 3 e 4 (carichi concentrati)   | 0,40                                            | 0,40                                             | 0,0                                                   |
| (Tab. 5.1.IV) | Schema 2                             | 0,0                                             | 0,75                                             | 0,0                                                   |
|               | 2                                    | 0,0                                             | 0,0                                              | 0,0                                                   |
|               | 3                                    | 0,0                                             | 0,0                                              | 0,0                                                   |
|               | 4 (folla)                            |                                                 | 0,75                                             | 0,0                                                   |
|               | 5                                    | 0,0                                             | 0,0                                              | 0,0                                                   |
|               | a ponte scarico<br>SLU e SLE         | 0,6                                             | 0,2                                              | 0,0                                                   |
| Vento         | in esecuzione                        | 0,8                                             | 0,0                                              | 0,0                                                   |
|               | a ponte carico<br>SLU e SLE          | 0,6                                             | 0,0                                              | 0,0                                                   |
| Neve          | SLU e SLE                            | 0,0                                             | 0,0                                              | 0,0                                                   |
| 11000         | in esecuzione                        | 0,8                                             | 0,6                                              | 0,5                                                   |
| Temperatura   | SLU e SLE                            | 0,6                                             | 0,6                                              | 0,5                                                   |

Tab. 3 – Coefficienti di combinazione ψ delle azioni



NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

| COMMESSA | LOTTO | FASE-ENTE | DOCUMENTO | REV. | FOGLIO   |
|----------|-------|-----------|-----------|------|----------|
| RS3Z     | 00    | D26       | NV2108002 | В    | 16 di 43 |
|          |       |           |           |      |          |

### 8. VERIFICHE STRUTTURALI

Le verifiche di resistenza delle sezioni sono eseguite secondo il metodo semiprobabilistico agli stati limite. I coefficienti di sicurezza adottati sono i seguenti:

- coefficiente parziale di sicurezza per il calcestruzzo: 1.50;
- coefficiente parziale di sicurezza per l'acciaio in barre: 1.15.

Il paragrafo in oggetto illustra nel dettaglio i criteri generali adottati per le verifiche strutturali e geotecniche condotte nel progetto. Ulteriori dettagli di carattere specifico, laddove impiegati, sono dichiarati e motivati nelle relative risultanze delle verifiche.

Per le sezioni in cemento armato si effettuano:

- verifiche per gli stati limite ultimi a presso-flessione;
- verifiche per gli stati limite ultimi a taglio;
- verifiche per gli stati limite di esercizio.

## 8.1 Verifiche per gli stati limite ultimi a flessione-pressoflessione

Allo stato limite ultimo, le verifiche a flessione o presso-flessione sono condotte confrontando (per le sezioni più significative) le resistenze ultime e le sollecitazioni massime agenti, valutando di conseguenza il corrispondente fattore di sicurezza.

### 8.2 Verifica agli stati limite ultimi a taglio

La verifica allo stato limite ultimo per azioni di taglio è condotta secondo quanto prescritto dal DM17/01/2018, per elementi con armatura a taglio verticali.

Si fa, pertanto, riferimento i seguenti valori della resistenza di calcolo:

- Resistenza di progetto dell'elemento privo di armatura a taglio:

$$V_{Rd} = max \left\{ \left[ 0.18 \cdot k \cdot (100 \cdot \rho_l \cdot f_{ck})^{\frac{1}{3}} / \gamma_c + 0.15 \cdot \sigma_{cp} \right] b_w \cdot d; (v_{min} + 0.15 \cdot \sigma_{cp}) \cdot b_w d \right\}$$

- Resistenza di progetto a "taglio trazione":

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (\cot \alpha + \cot \theta) \cdot \sin \alpha$$

- Resistenza di progetto a "taglio compressione":



NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO
RS3Z 00 D26 NV2108002 B 17 di 43

$$V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot v f_{cd} \cdot (\cot \alpha + \cot \theta) / (1 + \cot^2 \theta)$$

Nelle espressioni precedenti i simboli hanno i seguenti significati:

$$k=1+\sqrt{\frac{200}{d}}\leq 2 \ \ con \ d \ in \ mm;$$

$$\rho_{1} = \frac{A_{sl}}{b_{w} \cdot d} \leq 0.02;$$

A si è l'area dell'armatura tesa;

b w è la larghezza minima della sezione in zona tesa;

$$\sigma_{\text{cp}} = \frac{N_{\text{Ed}}}{A_{\text{c}}} < 0.2 \cdot f_{\text{cd}}; \label{eq:sigma_cp}$$

N<sub>Ed</sub> è la forza assiale nella sezione dovuta ai carichi;

A e l'area della sezione di calcestruzzo;

$$v_{min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$$
;

 $1 \le \cot \theta \le 2.5$  è l'inclinazione dei puntoni di calcestruzzo rispetto all'asse della trave

 $A_{sw}$  è l'area della sezione trasversale dell'armatura a taglio;

S è il passo delle staffe;

 $\alpha$  è l'angolo d'inclinazione dell'armatura trasversale rispetto all'asse della trave;

 $vf_{cd}$  è la resistenza di progetto a compressione ridotta del calcestruzzo d'anima (v=0.5);

 $\alpha_c = 1$  coefficiente maggiorativo per membrature non compresse.



NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

| COMMESSA | LOTTO | FASE-ENTE | DOCUMENTO | REV. | FOGLIO   |
|----------|-------|-----------|-----------|------|----------|
| RS3Z     | 00    | D26       | NV2108002 | В    | 18 di 43 |
|          |       |           |           |      |          |

## 8.3 Verifica agli stati limite d'esercizio

Si effettuano le seguenti verifiche agli stati limite di esercizio:

- stato limite delle tensioni in esercizio;
- stato limite di fessurazione.

Nel primo caso, si esegue il controllo delle tensioni nei materiali supponendo una legge costitutiva tensionideformazioni di tipo lineare. In particolare si controlla la tensione massima di compressione del calcestruzzo e di trazione dell'acciaio, verificando che:

 $\sigma_c < 0.60 \, f_{ck}$  per combinazione di carico caratteristica (rara);

 $\sigma_{_{\! c}} < 0.45\,f_{_{ck}}$  per combinazione di carico quasi permanente;

 $\sigma_{s} < 0.80 \, f_{vk}$  per combinazione di carico caratteristica (rara).

Nel secondo caso, si verifica che le aperture delle fessure siano inferiori al valore limite dell'apertura delle fessure nella combinazione caratteristica Frequente e Quasi Permanente. I valori nominali di riferimento sono:

 $w_1 = 0.2 \text{ mm}$ 

 $w_2 = 0.3 \text{ mm}$ 

 $w_3 = 0.4 \text{ mm}$ 



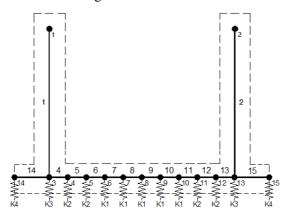
NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

| COMMESSA | LOTTO | FASE-ENTE | DOCUMENTO | REV. | FOGLIO   |
|----------|-------|-----------|-----------|------|----------|
| RS3Z     | 00    | D26       | NV2108002 | В    | 19 di 43 |
|          |       |           |           |      |          |

## 9. ANALISI STRUTTURALE

Le analisi sono state condotte mediante l'ausilio del SAP2000, un Codice di calcolo F.E.M. (Finite Element Method) capace di gestire analisi lineari e non lineari ed analisi sismiche con integrazione al passo delle equazioni nel tempo. Dal modello sono state dedotte, per le combinazioni di calcolo statiche e sismiche descritte in precedenza, le sollecitazioni complessive agenti sugli elementi strutturali al fine di procedere con le verifiche di sicurezza previste dalle Normative di riferimento. Dallo stesso modello sono state poi ricavate le sollecitazioni agenti all'intradosso della soletta di fondazione necessarie ai fini delle verifiche geotecniche del sistema terreno-fondazione e delle verifiche strutturali.

Convenzione assi


 $\mathbf{x}$  = asse trasversale dello scatolare

y = asse longitudinale dello scatolare

z = asse verticale dello scatolare

### 9.1 Modellazione strutturale : Muro a U

Il modello di calcolo attraverso il quale viene discretizzata la struttura è quello di telaio chiuso. Per simulare il comportamento del terreno di fondazione vengono inserite molle alla Winkler.



La soletta inferiore viene divisa in elementi per poter schematizzare, tramite molle applicate, l'interazione terreno- struttura.

Per la rigidezza delle molle, nell'opera in esame si considera un modulo di reazione verticale Kw pari a 5000 kN/m<sup>3</sup>. Tale valore viene valutato tramite la teoria di Bowles, note le dimensioni della fondazione dell'opera e il modulo elastico del terreno di fondazione:

$$k_{u} = \frac{E}{(1 - v^{2}) \cdot B \cdot c_{s}}$$



NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

| COMMESSA | LOTTO | FASE-ENTE | DOCUMENTO | REV. | FOGLIO   |
|----------|-------|-----------|-----------|------|----------|
| RS3Z     | 00    | D26       | NV2108002 | В    | 20 di 43 |

Dove:

E modulo elastico del terreno

v coefficiente di Poisson

B larghezza della fondazione

L lato maggiore della fondazione

Ct fattore di forma (Bowles, 1960)

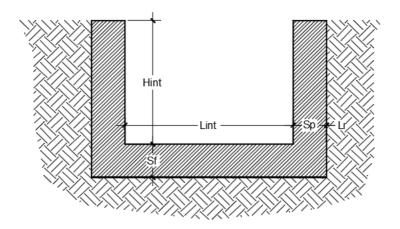
Kw coefficiente di sottofondo alla Winkler

Con questo valore si ricavano i valori delle singole molle:

| Interasse molle  | i  | (0.70/2 + 9.00 + 0.70/2) / 10 =  | 0.97  | m    |
|------------------|----|----------------------------------|-------|------|
| Molle centrali   | K1 | 5000 · 0.97 =                    | 4 850 | kN/m |
| Molle intermedie | K2 | 1.5 · 5000 · 0.97 =              | 7 275 | kN/m |
| Molle laterali   | K3 | 2.0 · 5000 · (0.97/2 + 0.70/2) = | 8 350 | kN/m |
| Molle risvolto   | K4 | -                                | 0     | kN/m |

La rigidezza delle molle in corrispondenza dei piedritti è stata aumentata, seguendo le indicazioni riportate nella letteratura tecnica, al fine di tenere in conto l'irrigidimento apportato dai piedritti al solettone di fondo.




NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO
RS3Z 00 D26 NV2108002 B 21 di 43

## 9.2 Analisi dei carichi

## Geometria

| Caratteristiche materiali e terreno           |          |            |                   |
|-----------------------------------------------|----------|------------|-------------------|
| Calcestruzzo armato - Peso specifico          | γ        | 25         | kN/m³             |
| Calcestruzzo armato - Tipo                    |          | C30/37     |                   |
| Calcestruzzo armato - Res. caratt. cubica     | $R_{ck}$ | 37         | N/mm²             |
| Calcestruzzo armato - Res. caratt. cilindrica | $f_{ck}$ | 30.7       | N/mm <sup>2</sup> |
| Calcestruzzo armato - Modulo elastico         | `E       | 33000      | N/mm²             |
| Pacchetto stradale - Peso specifico           | γ        | 24         | kN/m³             |
| Terreno del rilevato - Peso specifico         | γ        | 19         | kN/m³             |
| Terreno del rilevato - Angolo di attrito      | φ        | 35         | 0                 |
| Terreno di fondazione                         | Kw       | 5000       | kN/m³             |
| Condizioni ambientali per ver. a fessurazione |          | aggressive |                   |
| Geometria                                     |          |            |                   |
| Spessore soletta superiore                    | Ss       | 0.00       | m                 |
| Spessore soletta di fondazione                | Sf       | 1.00       | m                 |
| Spessore piedritti                            | Sp       | 0.70       | m                 |
| Altezza netta                                 | Hint     | 5.50       | m                 |
| Larghezza netta                               | Lint     | 9.00       | m                 |
| Lunghezza risvolti sol. inf.                  | Lr       | 0.00       | m                 |



Tab. 4: Geometria del modello

| J ITALFERR                           |  |
|--------------------------------------|--|
| GRUPPO FERROVIE DELLO STATO ITALIANE |  |

| NV21 - Nuova viabilità di collegamento Lercara- |
|-------------------------------------------------|
| Nuova Fermata Lercara                           |
| Sottopasso 0+311 - Relazione di calcolo muri di |
| imbocco                                         |

| COMMESSA | LOTTO | FASE-ENTE | DOCUMENTO | REV. | FOGLIO   |
|----------|-------|-----------|-----------|------|----------|
| RS3Z     | 00    | D26       | NV2108002 | В    | 22 di 43 |
|          |       |           |           |      |          |

| Spinta del terreno                        |       |                                                            |       |       |
|-------------------------------------------|-------|------------------------------------------------------------|-------|-------|
| K0                                        |       | 1 - sen (35°) =                                            | 0.426 |       |
| Spinta alla quota di estradosso sol. sup. | p1    | 0.426 · 0.00 =                                             | 0.00  | kN/m² |
| Spinta in asse sol. sup.                  | p2    | $0.426 \cdot (0.00 + 19.0.00/2) =$                         | 0.00  | kN/m² |
| Spinta in asse sol. inf.                  | р3    | $0.426 \cdot [0.00 + 19 \cdot (0.00/2 + 5.50 + 1.00/2)] =$ | 48.61 | kN/m² |
| Spinta alla quota di intradosso sol. inf. | p4    | $0.426 \cdot [0.00 + 19 \cdot (0.00/2 + 5.50 + 1.00)] =$   | 52.66 | kN/m² |
| Spinta semispessore sol. sup.             | F1    | (0.00+0.00)/2 · 0.00/2                                     | 0.00  | kN/m  |
| Spinta semispessore sol. inf.             | F2    | (48.61+52.66)/2 · 1.00/2                                   | 25.32 | kN/m  |
| Spinta del carico accidentale             |       |                                                            |       |       |
| Spinta dovuta al q1                       | p     | 0.426 · 20=                                                | 8.53  | kN/m² |
| Sisma orizzontale                         |       |                                                            |       |       |
| Stato limite                              | _     | Salvaguardia della vita - SLU -                            | SLV   |       |
| Vita nominale                             | $V_N$ |                                                            | 50    | anni  |
| Classe d'uso                              | Cu    |                                                            | III   |       |
| Coefficiente C <sub>U</sub>               | $C_U$ |                                                            | 1.5   |       |
| Periodo di riferimento                    | $V_R$ |                                                            | 75    | anni  |

| Periodo di filerimento              | $\mathbf{v}_{R}$           | /5 dilil |
|-------------------------------------|----------------------------|----------|
| accelerazione orizzontale           | a <sub>g</sub> /g          | 0.102    |
| amplificazione spettrale            | Fo                         | 2.622    |
|                                     |                            |          |
| Categoria sottosuolo                | A, B, C, D, E              | C        |
| Coeff. Amplificazione stratigrafica | Ss                         | 1.500    |
| Coeff. Amplificazione topografica   | St                         | 1        |
| Coefficiente S                      | S =Ss · St                 | 1.500    |
| accellerazione orizzontale max      | $a_{max}/g = ag/g \cdot S$ | 0.153    |
| Fattore di struttura                | q                          | 1.00     |
|                                     |                            |          |
|                                     |                            |          |

| Forza orizz. sul s. di cop. dovuta a perm+0.2acc. | FHs | $0.153 \cdot (0.00.25 + 0.00 + 0.2.0.00) / 1.00 =$ | 0.00 | kN/m²             |
|---------------------------------------------------|-----|----------------------------------------------------|------|-------------------|
| Forza orizz. sui piedritti                        | FHp | 0.153 · (0.70 · 25) / 1.00 =                       | 2.68 | kN/m <sup>2</sup> |

## Spinta del terreno in fase sismica

| Coefficiente sismico orizzontale<br>Coefficiente sismico verticale | k <sub>h</sub><br>k <sub>v</sub> | $=a_{\text{max}}/g$ $= \pm 0.5 \cdot k_h$           | 0.153<br>0.077 |              |
|--------------------------------------------------------------------|----------------------------------|-----------------------------------------------------|----------------|--------------|
| Risultante della spinta sismica                                    | $\Delta S_E$                     | = $(amax/g) \cdot \gamma \cdot [(Hint+Ss+Sf+Hr)^2]$ |                | kN/m         |
| Pressione risultante                                               | $\Delta p_E$                     | = $\Delta SE / [(Hint+Ss/2+Sf/2)]$                  |                | <b>kN/m²</b> |



NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2108002 B 23 di 43

## 9.3 Combinazioni

| N  |          | PERM | PERM-G2 | Q1-M | Q1-T | Q2   | Q3   | SPTSX | SPTDX | SPACCSX | SPACCDX | TERM         | RITIRO | SISMAH | SPSDX |
|----|----------|------|---------|------|------|------|------|-------|-------|---------|---------|--------------|--------|--------|-------|
| 01 | 01S1-11M | 1.35 | 1.50    | 1.35 | 0.0  | 1.35 | 0.0  | 1.00  | 1.00  | 0.0     | 0.0     | 0.9          | 0.0    | 0.0    | 0.0   |
| 02 | 02S1-11M | 1.35 | 1.50    | 0.0  | 1.35 | 1.35 | 0.0  | 1.00  | 1.00  | 0.0     | 0.0     | 0.9          | 0.0    | 0.0    | 0.0   |
| 03 | 03S1-12M | 1.35 | 1.50    | 1.35 | 0.0  | 1.35 | 0.0  | 1.35  | 1.35  | 1.35    | 1.35    | 0.9          | 0.0    | 0.0    | 0.0   |
| 04 | 04S1-12T | 1.35 | 1.50    | 0.00 | 1.35 | 1.35 | 0.0  | 1.35  | 1.35  | 1.35    | 1.35    | 0.9          | 0.0    | 0.0    | 0.0   |
| 05 | 05S1-13M | 1.35 | 1.50    | 1.35 | 0.0  | 1.35 | 0.0  | 1.00  | 1.35  | 0.0     | 1.35    | 0.9          | 0.0    | 0.0    | 0.0   |
| 06 | 06S1-13T | 1.35 | 1.50    | 0.0  | 1.35 | 1.35 | 0.0  | 1.00  | 1.35  | 0.0     | 1.35    | 0.9          | 0.0    | 0.0    | 0.0   |
| 07 | 07S1-14- | 1.35 | 1.50    | 0.0  | 0.0  | 0.0  | 0.0  | 1.35  | 1.35  | 1.35    | 1.35    | 0.9          | 0.0    | 0.0    | 0.0   |
| 08 | 08S1-15- | 1.35 | 1.50    | 0.0  | 0.0  | 0.0  | 0.0  | 1.00  | 1.35  | 0.0     | 1.35    | 0.9          | 0.0    | 0.0    | 0.0   |
| 09 | 09S1-21M | 1.35 | 1.50    | 1.35 | 0.0  | 1.35 | 0.0  | 1.00  | 1.00  | 0.0     | 0.0     | -0.9         | 1.2    | 0.0    | 0.0   |
| 10 | 10S1-21T | 1.35 | 1.50    | 0.0  | 1.35 | 1.35 | 0.0  | 1.00  | 1.00  | 0.0     | 0.0     | -0.9         | 1.2    | 0.0    | 0.0   |
| 11 | 11S1-22M | 1.35 | 1.50    | 1.35 | 0.0  | 1.35 | 0.0  | 1.35  | 1.35  | 1.35    | 1.35    | -0.9         | 1.2    | 0.0    | 0.0   |
| 12 | 12S1-22T | 1.35 | 1.50    | 0.0  | 1.35 | 1.35 | 0.0  | 1.35  | 1.35  | 1.35    | 1.35    | -0.9         | 1.2    | 0.0    | 0.0   |
| 13 | 13S1-23M | 1.35 | 1.50    | 1.35 | 0.0  | 1.35 | 0.0  | 1.00  | 1.35  | 0.0     | 1.35    | -0.9         | 1.2    | 0.0    | 0.0   |
| 14 | 14S1-23T | 1.35 | 1.50    | 0.0  | 1.35 | 1.35 | 0.0  | 1.00  | 1.35  | 0.0     | 1.35    | -0.9         | 1.2    | 0.0    | 0.0   |
| 15 | 15S1-24- | 1.35 | 1.50    | 0.0  | 0.0  | 0.00 | 0.0  | 1.35  | 1.35  | 1.35    | 1.35    | -0.9         | 1.2    | 0.0    | 0.0   |
| 16 | 16S1-25- | 1.35 | 1.50    | 0.0  | 0.0  | 0.00 | 0.0  | 1.00  | 1.35  | 0.0     | 1.35    | -0.9         | 1.2    | 0.0    | 0.0   |
| 17 | 17S1T11M | 1.35 | 1.50    | 1.01 | 0.0  | 0.54 | 0.0  | 1.00  | 1.00  | 0.0     | 0.0     | 1.5          | 0.0    | 0.0    | 0.0   |
| 18 | 18S1T11T | 1.35 | 1.50    | 0.0  | 1.01 | 0.54 | 0.0  | 1.00  | 1.00  | 0.0     | 0.0     | 1.5          | 0.0    | 0.0    | 0.0   |
| 19 | 19S1T12M | 1.35 | 1.50    | 1.01 | 0.0  | 0.54 | 0.0  | 1.35  | 1.35  | 1.01    | 1.01    | 1.5          | 0.0    | 0.0    | 0.0   |
| 20 | 20S1T12T | 1.35 | 1.50    | 0.00 | 1.01 | 0.54 | 0.0  | 1.35  | 1.35  | 1.01    | 1.01    | 1.5          | 0.0    | 0.0    | 0.0   |
| 21 | 21S1T13M | 1.35 | 1.50    | 1.01 | 0.0  | 0.54 | 0.0  | 1.00  | 1.35  | 0.0     | 1.01    | 1.5          | 0.0    | 0.0    | 0.0   |
| 22 | 22S1T13T | 1.35 | 1.50    | 0.0  | 1.01 | 0.54 | 0.0  | 1.00  | 1.35  | 0.0     | 1.01    | 1.5          | 0.0    | 0.0    | 0.0   |
| 23 | 23S1T14- | 1.35 | 1.50    | 0.0  | 0.0  | 0.0  | 0.0  | 1.35  | 1.35  | 1.01    | 1.01    | 1.5          | 0.0    | 0.0    | 0.0   |
| 24 | 24S1T15- | 1.35 | 1.50    | 0.0  | 0.0  | 0.0  | 0.0  | 1.00  | 1.35  | 0.0     | 1.01    | 1.5          | 0.0    | 0.0    | 0.0   |
| 25 | 25S1T21M | 1.35 | 1.50    | 1.01 | 0.0  | 0.54 | 0.0  | 1.00  | 1.00  | 0.0     | 0.0     | -1.5         | 1.2    | 0.0    | 0.0   |
| 26 | 26S1T21T | 1.35 | 1.50    | 0.0  | 1.01 | 0.54 | 0.0  | 1.00  | 1.00  | 0.0     | 0.0     | -1.5         | 1.2    | 0.0    | 0.0   |
| 27 | 27S1T22M | 1.35 | 1.50    | 1.01 | 0.0  | 0.54 | 0.0  | 1.35  | 1.35  | 1.01    | 1.01    | -1.5         | 1.2    | 0.0    | 0.0   |
| 28 | 28S1T22T | 1.35 | 1.50    | 0.0  | 1.01 | 0.54 | 0.0  | 1.35  | 1.35  | 1.01    | 1.01    | -1.5         | 1.2    | 0.0    | 0.0   |
| 29 | 29S1T23M | 1.35 | 1.50    | 1.01 | 0.0  | 0.54 | 0.0  | 1.00  | 1.35  | 0.0     | 1.01    | -1.5         | 1.2    | 0.0    | 0.0   |
| 30 | 30S1T23T | 1.35 | 1.50    | 0.0  | 1.01 | 0.54 | 0.0  | 1.00  | 1.35  | 0.0     | 1.01    | -1.5         | 1.2    | 0.0    | 0.0   |
| 31 | 31S1T24- | 1.35 | 1.50    | 0.0  | 0.0  | 0.0  | 0.0  | 1.35  | 1.35  | 1.01    | 1.01    | -1.5         | 1.2    | 0.0    | 0.0   |
| 32 | 32S1T25- | 1.35 | 1.50    | 0.0  | 0.0  | 0.0  | 0.0  | 1.00  | 1.35  | 0.0     | 1.01    | -1.5         | 1.2    | 0.0    | 0.0   |
| 33 | 33S2-11M | 1.35 | 1.50    | 1.01 | 0.0  | 0.54 | 1.35 | 1.00  | 1.00  | 0.0     | 0.0     | 0.9          | 0.0    | 0.0    | 0.0   |
| 34 | 34S2-11T | 1.35 | 1.50    | 0.0  | 1.01 | 0.54 | 1.35 | 1.00  | 1.00  | 0.0     | 0.0     | 0.9          | 0.0    | 0.0    | 0.0   |
| 35 | 35S2-12M | 1.35 | 1.50    | 1.01 | 0.0  | 0.54 | 1.35 | 1.35  | 1.35  | 1.01    | 1.01    | 0.9          | 0.0    | 0.0    | 0.0   |
| 36 | 36S2-12T | 1.35 | 1.50    | 0.0  | 1.01 | 0.54 | 1.35 | 1.35  | 1.35  | 1.01    | 1.01    | 0.9          | 0.0    | 0.0    | 0.0   |
| 37 | 37S2-13M | 1.35 | 1.50    | 1.01 | 0.0  | 0.54 | 1.35 | 1.00  | 1.35  | 0.0     | 1.01    | 0.9          | 0.0    | 0.0    | 0.0   |
| 38 | 38S2-13T | 1.35 | 1.50    | 0.0  | 1.01 | 0.54 | 1.35 | 1.00  | 1.35  | 0.0     | 1.01    | 0.9          | 0.0    | 0.0    | 0.0   |
| 39 | 39S2-21M | 1.35 | 1.50    | 1.01 | 0.0  | 0.54 | 1.35 | 1.00  | 1.00  | 0.0     | 0.0     | -0.9         | 1.2    | 0.0    | 0.0   |
| 40 | 40S2-21T | 1.35 | 1.50    | 0.0  | 1.01 | 0.54 | 1.35 | 1.00  | 1.00  | 0.0     | 0.0     | -0.9         | 1.2    | 0.0    | 0.0   |
| 41 | 41S2-22M | 1.35 | 1.50    | 1.01 | 0.0  | 0.54 | 1.35 | 1.35  | 1.35  | 1.01    | 1.01    | -0.9         | 1.2    | 0.0    | 0.0   |
| 42 | 42S2-22T | 1.35 | 1.50    | 0.0  | 1.01 | 0.54 | 1.35 | 1.35  | 1.35  | 1.01    | 1.01    | -0.9         | 1.2    | 0.0    | 0.0   |
| 43 | 43S2-23M | 1.35 | 1.50    | 1.01 | 0.0  | 0.54 | 1.35 | 1.00  | 1.35  | 0.0     | 1.01    | -0.9<br>-0.9 | 1.2    | 0.0    | 0.0   |
| 44 | 44S2-23T | 1.35 | 1.50    | 0.0  | 1.01 | 0.54 | 1.35 | 1.00  | 1.35  | 0.0     | 1.01    | -0.9         | 1.2    | 0.0    | 0.0   |
| 45 | 45S2T11M | 1.35 | 1.50    | 1.01 | 0.0  | 0.54 | 0.0  | 1.00  | 1.00  | 0.0     | 0.0     | 1.5          | 0.0    | 0.0    | 0.0   |
| 46 | 46S2T11T | 1.35 | 1.50    | 0.0  | 1.01 | 0.54 | 0.0  | 1.00  | 1.00  | 0.0     | 0.0     | 1.5          | 0.0    | 0.0    | 0.0   |
| 47 | 47S2T12M | 1.35 | 1.50    | 1.01 | 0.0  | 0.54 | 0.0  | 1.35  | 1.35  | 1.01    | 1.01    | 1.5          | 0.0    | 0.0    | 0.0   |
| 48 | 48S2T12T | 1.35 | 1.50    | 0.0  | 1.01 | 0.54 | 0.0  | 1.35  | 1.35  | 1.01    | 1.01    | 1.5          | 0.0    | 0.0    | 0.0   |
| 49 | 49S2T13M | 1.35 | 1.50    | 1.01 | 0.0  | 0.54 | 0.0  | 1.00  | 1.35  | 0.0     | 1.01    | 1.5          | 0.0    | 0.0    | 0.0   |
| 50 | 50S2T13T | 1.35 | 1.50    | 0.0  | 1.01 | 0.54 | 0.0  | 1.00  | 1.35  | 0.0     | 1.01    | 1.5          | 0.0    | 0.0    | 0.0   |
| 51 | 51S2T21M | 1.35 | 1.50    | 1.01 | 0.0  | 0.54 | 0.0  | 1.00  | 1.00  | 0.0     | 0.0     | -1.5         | 1.2    | 0.0    | 0.0   |
| 52 | 52S2T21T | 1.35 | 1.50    | 0.0  | 1.01 | 0.54 | 0.0  | 1.00  | 1.00  | 0.0     | 0.0     | -1.5         | 1.2    | 0.0    | 0.0   |
| 53 | 53S2T22M | 1.35 | 1.50    | 1.01 | 0.0  | 0.54 | 0.0  | 1.35  | 1.35  | 1.01    | 1.01    | -1.5         | 1.2    | 0.0    | 0.0   |
| 54 | 54S2T22T | 1.35 | 1.50    | 0.0  | 1.01 | 0.54 | 0.0  | 1.35  | 1.35  | 1.01    | 1.01    | -1.5         | 1.2    | 0.0    | 0.0   |
| 55 | 55S2T23M | 1.35 | 1.50    | 1.01 | 0.0  | 0.54 | 0.0  | 1.00  | 1.35  | 0.0     | 1.01    | -1.5         | 1.2    | 0.0    | 0.0   |
| 56 | 56S2T23T | 1.35 | 1.50    | 0.0  | 1.01 | 0.54 | 0.0  | 1.00  | 1.35  | 0.0     | 1.01    | -1.5         | 1.2    | 0.0    | 0.0   |
| 57 | 57SED1-  | 1.00 | 1.00    | 0.20 | 0.00 | 0.20 | 0.0  | 0.70  | 1.00  | 0.0     | 0.2     | 0.5          | 0.0    | 1.0    | 1.0   |
| 58 | 58SED2-  | 1.00 | 1.00    | 0.20 | 0.00 | 0.20 | 0.0  | 0.70  | 1.00  | 0.0     | 0.2     | -0.5         | 1.0    | 1.0    | 1.0   |
| •  |          | -    |         |      |      |      |      |       |       |         |         |              |        |        |       |



NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di

imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2108002 B 24 di 43

| N  |          | PERM | PERM-G2 | Q1-M | Q1-T | Q2   | Q3  | SPTSX | SPTDX | SPACCSX | SPACCDX | TERM | RITIRO | SISMAH | SPSDX |
|----|----------|------|---------|------|------|------|-----|-------|-------|---------|---------|------|--------|--------|-------|
| 59 | 59Q1-11- | 1.00 | 1.00    | 0.0  | 0.0  | 0.0  | 0.0 | 0.70  | 0.70  | 0.0     | 0.0     | 0.5  | 0.0    | 0.0    | 0.0   |
| 60 | 60Q1-12- | 1.00 | 1.00    | 0.0  | 0.0  | 0.0  | 0.0 | 1.00  | 1.00  | 0.0     | 0.0     | 0.5  | 0.0    | 0.0    | 0.0   |
| 61 | 61Q1-13- | 1.00 | 1.00    | 0.0  | 0.0  | 0.0  | 0.0 | 0.70  | 1.00  | 0.0     | 0.0     | 0.5  | 0.0    | 0.0    | 0.0   |
| 62 | 62Q1-21- | 1.00 | 1.00    | 0.0  | 0.0  | 0.0  | 0.0 | 0.70  | 0.70  | 0.0     | 0.0     | -0.5 | 1.0    | 0.0    | 0.0   |
| 63 | 63Q1-22- | 1.00 | 1.00    | 0.0  | 0.0  | 0.0  | 0.0 | 1.00  | 1.00  | 0.0     | 0.0     | -0.5 | 1.0    | 0.0    | 0.0   |
| 64 | 64Q1-23- | 1.00 | 1.00    | 0.0  | 0.0  | 0.0  | 0.0 | 0.70  | 1.00  | 0.0     | 0.0     | -0.5 | 1.0    | 0.0    | 0.0   |
| 65 | 65F1-11M | 1.00 | 1.00    | 0.75 | 0.0  | 0.40 | 0.0 | 0.70  | 0.70  | 0.0     | 0.0     | 0.5  | 0.0    | 0.0    | 0.0   |
| 66 | 66F1-11T | 1.00 | 1.00    | 0.0  | 0.75 | 0.40 | 0.0 | 0.70  | 0.70  | 0.0     | 0.0     | 0.5  | 0.0    | 0.0    | 0.0   |
| 67 | 67F1-12M | 1.00 | 1.00    | 0.75 | 0.0  | 0.40 | 0.0 | 1.00  | 1.00  | 0.75    | 0.75    | 0.5  | 0.0    | 0.0    | 0.0   |
| 68 | 68F1-12T | 1.00 | 1.00    | 0.0  | 0.75 | 0.40 | 0.0 | 1.00  | 1.00  | 0.75    | 0.75    | 0.5  | 0.0    | 0.0    | 0.0   |
| 69 | 69F1-13M | 1.00 | 1.00    | 0.75 | 0.0  | 0.40 | 0.0 | 0.70  | 1.00  | 0.0     | 0.75    | 0.5  | 0.0    | 0.0    | 0.0   |
| 70 | 70F1-13T | 1.00 | 1.00    | 0.0  | 0.75 | 0.40 | 0.0 | 0.70  | 1.00  | 0.0     | 0.75    | 0.5  | 0.0    | 0.0    | 0.0   |
| 71 | 71F1-14- | 1.00 | 1.00    | 0.0  | 0.0  | 0.0  | 0.0 | 1.00  | 1.00  | 0.75    | 0.75    | 0.5  | 0.0    | 0.0    | 0.0   |
| 72 | 72F1-15- | 1.00 | 1.00    | 0.0  | 0.0  | 0.0  | 0.0 | 0.70  | 1.00  | 0.0     | 0.75    | 0.5  | 0.0    | 0.0    | 0.0   |
| 73 | 73F1-21M | 1.00 | 1.00    | 0.75 | 0.0  | 0.40 | 0.0 | 0.70  | 0.70  | 0.0     | 0.0     | -0.5 | 1.0    | 0.0    | 0.0   |
| 74 | 74F1-21T | 1.00 | 1.00    | 0.0  | 0.75 | 0.40 | 0.0 | 0.70  | 0.70  | 0.0     | 0.0     | -0.5 | 1.0    | 0.0    | 0.0   |
| 75 | 75F1-22M | 1.00 | 1.00    | 0.75 | 0.0  | 0.40 | 0.0 | 1.00  | 1.00  | 0.75    | 0.75    | -0.5 | 1.0    | 0.0    | 0.0   |
| 76 | 76F1-22T | 1.00 | 1.00    | 0.0  | 0.75 | 0.40 | 0.0 | 1.00  | 1.00  | 0.75    | 0.75    | -0.5 | 1.0    | 0.0    | 0.0   |
| 77 | 77F1-23M | 1.00 | 1.00    | 0.75 | 0.0  | 0.40 | 0.0 | 0.70  | 1.00  | 0.0     | 0.75    | -0.5 | 1.0    | 0.0    | 0.0   |
| 78 | 78F1-23T | 1.00 | 1.00    | 0.0  | 0.75 | 0.40 | 0.0 | 0.70  | 1.00  | 0.0     | 0.75    | -0.5 | 1.0    | 0.0    | 0.0   |
| 79 | 79F1-24- | 1.00 | 1.00    | 0.0  | 0.0  | 0.0  | 0.0 | 1.00  | 1.00  | 0.75    | 0.75    | -0.5 | 1.0    | 0.0    | 0.0   |
| 80 | 80F1-25- | 1.00 | 1.00    | 0.0  | 0.0  | 0.0  | 0.0 | 0.70  | 1.00  | 0.0     | 0.75    | -0.5 | 1.0    | 0.0    | 0.0   |
| 81 | 81C025-  | 1.00 | 1.00    | 1.00 | 0.0  | 1.00 | 0.0 | 1.00  | 1.00  | 0.00    | 1.00    | 0.6  | 1.0    | 0.0    | 0.0   |
| 82 | 82C025-  | 1.00 | 1.00    | 1.00 | 0.0  | 1.00 | 0.0 | 1.00  | 1.00  | 0.00    | 1.00    | -0.6 | 1.0    | 0.0    | 0.0   |
| 83 | 83C025-  | 1.00 | 1.00    | 0.75 | 0.0  | 0.40 | 1.0 | 1.00  | 1.00  | 0.00    | 0.75    | 0.6  | 1.0    | 0.0    | 0.0   |
| 84 | 84C025-  | 1    | 1.00    | 0.75 | 0    | 0.4  | 1   | 1     | 1     | 0       | 0.75    | -0.6 | 1      | 0      | 0     |

### dove:

PERM : carichi permanenti strutturali PERM-G2 : carichi permanenti non strutturali

Q1k-M : carichi da traffico concentrato (disposizione per massimizzare il momento)
Q1K-T : carichi da traffico concentrato (disposizione per massimizzare il taglio)
Q2-M : carichi da traffico distribuito (disposizione per massimizzare il momento)
Q2-T : carichi da traffico distribuito (disposizione per massimizzare il taglio)

Q3 : azione longitudinale di frenamento SPTSx : spinta del terreno sulla parete sx SPTDx : spinta del terreno sulla parete dx

**SPACCS**x : spinta del carico accidentale sulla parete sx **SPACCD**x : spinta del carico accidentale sulla parete sx

**TERM** : termica **RITIRO** : ritiro

**SISMAH** : azione sismica

**SISDX** : incremento sismico della spinta del terreno



NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2108002 B 25 di 43

## 9.4 Sollecitazioni

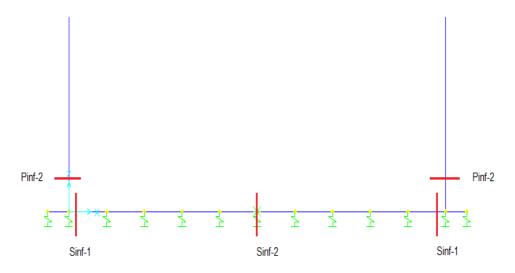



Figura 9.1 - Sezioni di verifica

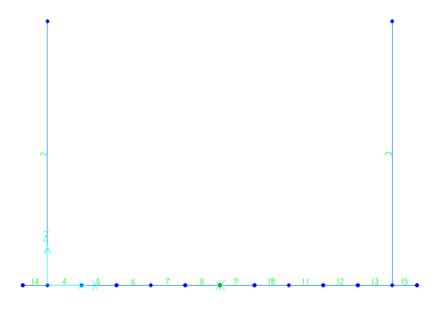



Figura 9.2 - Nomenclatura frame



NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2108002 B 26 di 43

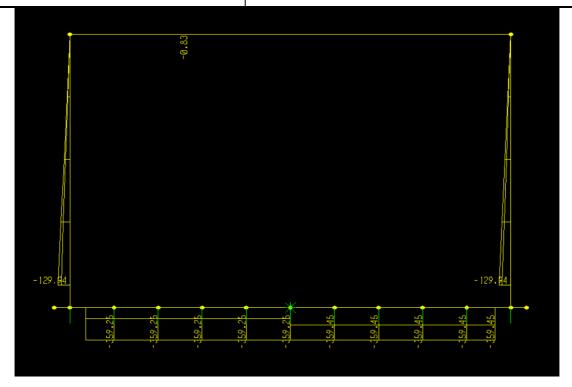



Figura 9.3 - Sforzo Normale - Inviluppo SLU

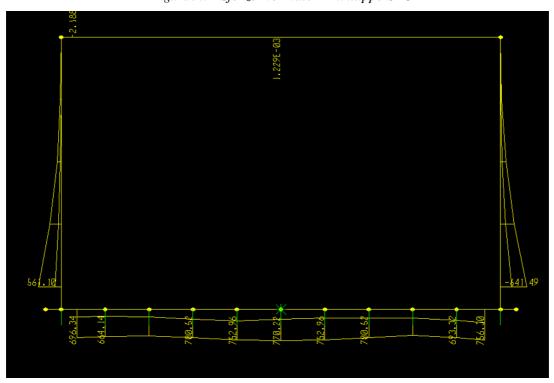



Figura 9.4 - Momento flettente – Inviluppo SLU



NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2108002 B 27 di 43

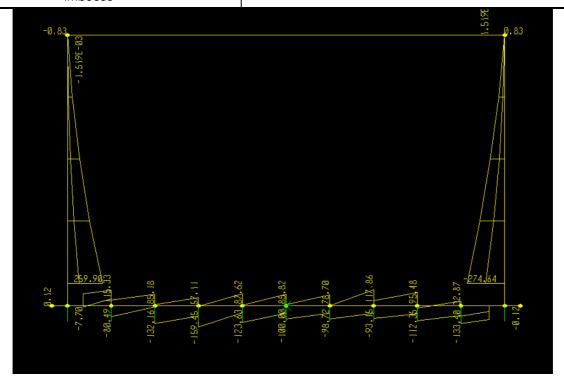



Figura 9.5 - Taglio - Inviluppo SLU

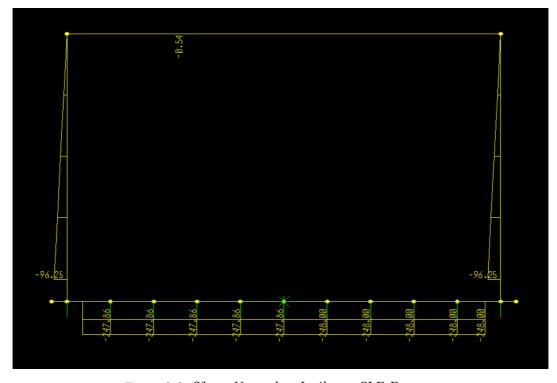



Figura 9.6 - Sforzo Normale – Inviluppo SLE-Frequente



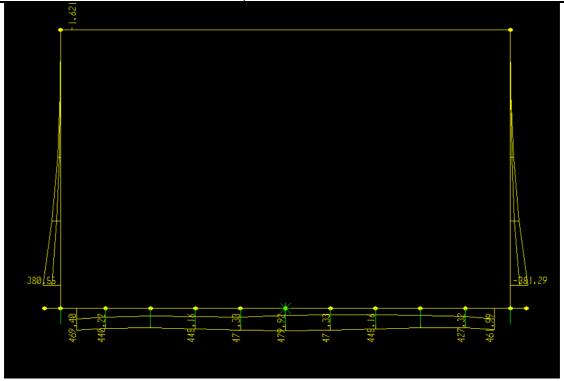



Figura 9.7 - Momento flettente – Inviluppo SLE-Frequente



NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2108002 B 29 di 43

## 9.5 Verifiche strutturali

## 9.5.1 Verifica piedritti

Sezione: 70 x 100 cm

## Armatura a flessione:

• Spiccato (Pied-Spicc)

Armatura tesa

\$\phi\$ 26/20 +\$\phi\$ 26/40 cm

Armatura compressa

\$\phi\$ 26/20 +\$\phi\$ 26/40 cm

## Armatura a taglio:

Spille \( \phi \) 12/40x40 cm.



NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

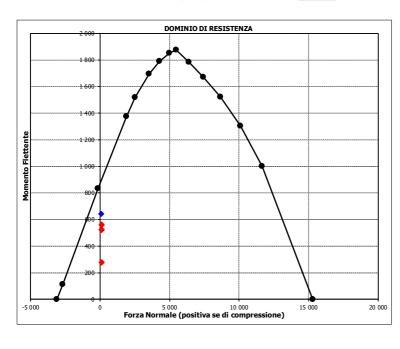
COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2108002 B 30 di 43

## • Verifica a pressoflessione spiccato (Pied-Spicc)

| Acciaio                      |                   |         |                   |
|------------------------------|-------------------|---------|-------------------|
| Tensione car. di rottura     | $f_{tk} =$        | 540     | N/mm <sup>2</sup> |
| Tensione car. di snervamento | f <sub>yk</sub> = | 450     | N/mm <sup>2</sup> |
| Coeff. parziale di sicurezza | γ <sub>s</sub> =  | 1.15    |                   |
| Resistenza di calcolo        | f <sub>yd</sub> = | 391     | N/mm <sup>2</sup> |
| Modulo elastico              | $E_s =$           | 200000  | N/mm <sup>2</sup> |
|                              | $\epsilon_{yd} =$ | 0.00196 |                   |

| Calcestruz | zo     |                   |
|------------|--------|-------------------|
| Tipo       | C30/37 |                   |
| $R_{ck}$   | 37     | N/mm <sup>2</sup> |
| $f_{ck}$   | 30.71  | N/mm <sup>2</sup> |
| Yc         | 1.5    |                   |
| $f_{cd}$   | 20.5   | N/mm <sup>2</sup> |
| $f_{cc}$   | 17.4   | N/mm <sup>2</sup> |
|            |        |                   |

| copriferro | 50 | mm |
|------------|----|----|
| staffe     | 12 | mm |
| armat. sec | 12 | mm |
|            |    |    |


| Geometria della sezione       |      |   |         |
|-------------------------------|------|---|---------|
| Altezza geometrica della sezi | on h | = | 70 cm   |
| Base della sezione            | b    | = | 100 cm  |
| Copriferro                    | ď'   | = | 8.7 cm  |
| Altezza utile della sezione   | d    | = | 61.3 cm |

| Armatura | tesa     |       |                 |
|----------|----------|-------|-----------------|
| Nº ferri | Diametro | Area  |                 |
| 5        | 26       | 26.55 | cm <sup>2</sup> |
| 2.5      | 26       | 13.27 | cm <sup>2</sup> |
|          |          | 0.00  | cm <sup>2</sup> |
|          |          | 39.82 | cm <sup>2</sup> |

| Armatura compressa |          |       |                 |  |  |  |
|--------------------|----------|-------|-----------------|--|--|--|
| Nº ferri           | Diametro | Area  |                 |  |  |  |
| 5                  | 26       | 26.55 | cm <sup>2</sup> |  |  |  |
| 2.5                | 26       | 13.27 | cm <sup>2</sup> |  |  |  |
|                    |          | 0.00  | cm <sup>2</sup> |  |  |  |
|                    |          | 39.82 | cm <sup>2</sup> |  |  |  |

Caratteristiche di sollecitazione

|        | Caratteristi | Caratteristiche di sollecitazione |     |  |  |  |  |
|--------|--------------|-----------------------------------|-----|--|--|--|--|
|        | Comb.        | Comb. Nsd Msd                     |     |  |  |  |  |
| (Nmax) | 01S1-11M     | 130                               | 278 |  |  |  |  |
| (Nmin) | 57SED1-      | 96                                | 641 |  |  |  |  |
| (Mmax) | 57SED1-      | 96                                | 641 |  |  |  |  |
| (Mmin) | 01S1-11M     | 130                               | 278 |  |  |  |  |



|                                | cne di solle | itazione |
|--------------------------------|--------------|----------|
| Comb.                          | Nsd          | Msd      |
| 01S1-11M                       | 130          | 278      |
| 02S1-11T                       | 130          | 278      |
| 03S1-12M                       | 130          | 561      |
| 04S1-12T                       | 130          | 561      |
| 05S1-13M                       | 130          | 562      |
| 06S1-13T                       | 130          | 562      |
|                                | 130          |          |
| 07S1-14-                       | 130          | 561      |
| 08S1-15-                       | 130          | 562      |
| 09S1-21M                       | 130          | 278      |
| 10S1-21T                       | 130          | 278      |
| 11S1-22M                       | 130          | 561      |
| 12S1-22T                       | 130          | 561      |
| 13S1-23M                       | 130          | 562      |
| 14S1-23T                       | 130          | 562      |
| 15S1-24-                       | 130          | 561      |
|                                | •            |          |
| 16S1-25-                       | 130          | 562      |
| 17S1T11M                       | 130          | 278      |
| 18S1T11T                       | 130          | 278      |
| 19S1T12M                       | 130          | 524      |
| 20S1T12T                       | 130          | 524      |
| 21S1T13M                       | 130          | 525      |
| 22S1T13T                       | 130          | 525      |
| 23S1T14-                       | 130          | 524      |
| 24S1T15-                       | 130          | 525      |
| 25S1T21M                       | 130          | 278      |
|                                | •            |          |
| 26S1T21T                       | 130          | 278      |
| 27S1T22M                       | 130          | 524      |
| 28S1T22T                       | 130          | 524      |
| 29S1T23M                       | 130          | 525      |
| 30S1T23T                       | 130          | 525      |
| 31S1T24-                       | 130          | 524      |
| 32S1T25-                       | 130          | 525      |
| 33S2-11M                       | 130          | 278      |
| 34S2-11T                       | 130          | 278      |
|                                |              |          |
| 35S2-12M                       | 130          | 524      |
| 36S2-12T                       | 130          | 524      |
| 37S2-13M                       | 130          | 525      |
| 38S2-13T                       | 130          | 525      |
| 39S2-21M                       | 130          | 278      |
| 40S2-21T                       | 130          | 278      |
| 41S2-22M                       | 130          | 524      |
| 42S2-22T                       | 130          | 524      |
| 43S2-23M                       | 130          | 525      |
| 44S2-23T                       | 130          | 525      |
|                                |              |          |
| 45S2T11M                       | 130          | 278      |
| 46S2T11T                       | 130          | 278      |
| 47S2T12M                       | 130          | 524      |
| 48S2T12T                       | 130          | 524      |
| 49S2T13M                       | 130          | 525      |
| 50S2T13T                       | 130          | 525      |
| 51S2T21M                       | 130          | 278      |
| 52S2T21T                       | 130          | 278      |
| DESCRIPTION A                  |              |          |
| 53S2T22M                       | 130          | 524      |
| 54S2T22T                       | 130          | 524      |
| 55S2T23M                       | 130          | 525      |
| 56S2T23T                       | 130          | 525      |
| 30321231                       |              |          |
| 56S2T23T<br>57SED1-<br>58SED2- | 96           | 641      |



## • Verifica a taglio

La verifica a taglio viene condotta nel seguente modo:

- 1. Verifica della sezione senza armatura al taglio → se VEd<VRd1 la verifica è soddisfatta;
- 2. Altrimenti si verifica la sezione con armatura a taglio → se VEd<VRd2 la verifica è soddisfatta.

| Calcestr      | uzzo   |                   | Sollecitazioni         |                   | Piedritto dx |
|---------------|--------|-------------------|------------------------|-------------------|--------------|
| Tipo          | C30/37 |                   | $V_{Ed}$               | kN                | 275          |
| $R_{ck}$      | 37     | N/mm²             | $N_{Ed}$               | kN                | 0            |
| $f_{ck}$      | 30.7   | N/mm²             |                        |                   |              |
| Υc            | 1.5    |                   | Armatura a taglio      |                   |              |
| $\alpha_{cc}$ | 0.85   |                   | Diametro               | mm                | 12           |
| $f_{cd}$      | 17.4   | N/mm²             | Numero barre           |                   | 2.5          |
|               |        |                   | $A_sw$                 | cm <sup>2</sup>   | 2.83         |
| Acciaio       |        |                   | Passo s                | cm                | 40           |
| $f_{tk}$      | 540    | N/mm <sup>2</sup> | Angolo α               | 0                 | 90           |
| $f_{yk}$      | 450    | N/mm²             | -                      | _                 |              |
| Ϋ́s           | 1.15   |                   | Armatura longitudinal  | e                 |              |
| $f_{yd}$      | 391    | N/mm²             | $n_1$                  |                   | 5            |
|               |        |                   | $\varnothing_1$        | mm                | 26           |
|               |        |                   | $n_2$                  |                   |              |
|               |        |                   | $\varnothing_2$        | mm                |              |
|               |        |                   | Asl                    | cm <sup>2</sup>   | 26.55        |
|               |        |                   |                        |                   |              |
|               |        |                   | Sezione                | _                 |              |
|               |        |                   | $b_w$                  | cm                | 100          |
|               |        |                   | Н                      | cm                | 70           |
|               |        |                   | С                      | cm                | 8.7          |
|               |        |                   | d                      | cm                | 61.3         |
|               |        |                   | k                      | N/mm²             | 1.57         |
|               |        |                   | $v_{min}$              | N/mm²             | 0.38         |
|               |        |                   | ρ                      |                   | 0.0043       |
|               |        |                   | σср                    | N/mm²             | 0.00         |
|               |        |                   | $\alpha_{c}$           |                   | 1.00         |
|               |        |                   | Resistenza senza arma  | itura a tagli     | io           |
|               |        |                   | $V_{Rd}$               | kN                | 274          |
|               |        |                   |                        |                   |              |
|               |        |                   | Resistenza con armatu  | ıra a taglio<br>° | 34.0         |
|               |        |                   | Inclinazione puntone θ |                   | 21.8         |
|               |        |                   | $V_{RSd}$              | kN                | 382          |
|               |        |                   | $V_{RCd}$              | kN                | 1655         |
|               |        |                   | $V_{Rd}$               | kN                | 382          |



NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2108002 B 32 di 43

• Verifica a fessurazione spiccato (Pied-Spicc)

| _   |     |      | -    |    |
|-----|-----|------|------|----|
| Sol | lle | cita | IZIO | nı |

| Momento flettente - Combinazione frequente | M <sub>F</sub> | <b>381.00</b> kNr | n |
|--------------------------------------------|----------------|-------------------|---|
| Sforzo normale - Combinazione frequente    | $N_{F}$        | <b>96.00</b> kN   |   |

### Materiali

| Materiali                                          |                        |           |       |
|----------------------------------------------------|------------------------|-----------|-------|
| Resistenza caratteristica cubica calcestruzzo      | $R_{ck}$               | 37        | N/mm² |
| Resistenza caratteristica cilindrica calcestruzzo  | $f_{ck}$               | 30.71     | N/mm² |
| Modulo elastico del calcestruzzo                   | $E_{cm}$               | 33019.43  | N/mm² |
| Tensione ammissibile di compressione calcestruzzo  | $\sigma_{\text{camm}}$ | 18.43     | N/mm² |
| Resistena media a trazione calcestruzzo            | $f_{ctm}$              | 3.36      | N/mm² |
| Resistenza caratteristica a trazione calcestruzzo  | $f_{ctk}$              | 2.35      | N/mm² |
| Tensione ammissibile di trazione calcestruzzo      | $\sigma_{tamm}$        | 2.80      | N/mm² |
| Tensione di snervamento acciaio                    | $f_{yk}$               | 450.00    | N/mm² |
| Modulo elastico dell'acciaio                       | E <sub>s</sub>         | 200000.00 | N/mm² |
| Tensione ammissibile acciaio                       | $\sigma_{\text{samm}}$ | 360.00    | N/mm² |
| Coefficiente omogeneizzazione acciaio-calcestruzzo | n                      | 15.00     | -     |

Caratteristiche geometriche

| Altezza sezione                | Н                 | 70.00  | cm              |        |                                 |
|--------------------------------|-------------------|--------|-----------------|--------|---------------------------------|
| Larghezza sezione              | В                 | 100.00 | cm              |        |                                 |
| Armatura compressa (1º strato) | As <sub>1</sub> ' | 26.55  | cm <sup>2</sup> | 5 Ø 26 | c <sub>s1</sub> = <b>8.7</b> cm |
| Armatura compressa (2º strato) | As <sub>2</sub> ' | 13.27  | cm <sup>2</sup> |        | $c_{s2} = 11.3$ cm              |
| Armatura tesa (1º strato)      | $As_1$            | 26.55  | cm <sup>2</sup> | 5 Ø 26 | c <sub>i1</sub> = <b>8.7</b> cm |
| Armatura tesa (2º strato)      | As₂               | 13.27  | cm <sup>2</sup> |        | $c_{i2} = 11.3$ cm              |

Proprietà sezione in combinazione rara

| p                                           |           |            |                 |   |     |                    | _ |
|---------------------------------------------|-----------|------------|-----------------|---|-----|--------------------|---|
| Eccentricità dello sfrozo normale           | e (M)     | 233.64     | cm              | > | H/6 | Sez. parzializzata | 1 |
| Distanza sforzo N dal bordo sezione         | u (M)     | 198.64     | cm              |   |     |                    |   |
| Posizione asse neutro                       | y (M)     | 21.20      | cm              |   |     |                    |   |
| Area ideale (sezione interamente reagente)  | $A_{id}$  | 8114.95    | cm <sup>2</sup> |   |     |                    |   |
| Momento di inerzia ideale (sez. int. reag.) | $J_id$    | 3632854.12 | cm <sup>4</sup> |   |     |                    |   |
| Momento di inerzia ideale (sez. parz. N=0)  | $J_{id*}$ | 1319681.43 | cm <sup>4</sup> |   |     |                    |   |

### Tensioni nei materiali

| Compressione max nel cls.         | $\sigma_{\!\scriptscriptstyle c}$ | 0.64  | N/mm <sup>2</sup> | < | $\sigma c_{\text{amm}}$ |
|-----------------------------------|-----------------------------------|-------|-------------------|---|-------------------------|
| Trazione nell'acciaio (1º strato) | $\sigma_{\!\scriptscriptstyle S}$ | 18.04 | N/mm <sup>2</sup> | < | $\sigma a_{amm}$        |

Proprietà sezione in combinazione frequente

|                                             |                    |            |                 |   |     |                    | _ |
|---------------------------------------------|--------------------|------------|-----------------|---|-----|--------------------|---|
| Eccentricità dello sfrozo normale           | e (M)              | 396.88     | cm              | > | H/6 | Sez. parzializzata | 1 |
| Distanza sforzo N dal bordo sezione         | u (M)              | 361.88     | cm              |   |     |                    |   |
| Posizione asse neutro                       | y (M)              | 20.42      | cm              |   |     |                    |   |
| Area ideale (sez. int. reagente)            | $A_{id}$           | 8114.95    | cm <sup>2</sup> |   |     |                    |   |
| Momento di inerzia ideale (sez. int. reag.) | ${\sf J}_{\sf id}$ | 3632854.12 | cm <sup>4</sup> |   |     |                    |   |
| Momento di inerzia ideale (sez. parz. N=0)  | $J_{id^*}$         | 1312286.53 | cm <sup>4</sup> |   |     |                    |   |

### Verifica a fessurazione

| Momento di fessurazione (σ <sub>1</sub> | <sub>ramm</sub> ) M | $I_{\text{fess}}$ 302. | .61 kNm | La sezione non è fessurata |
|-----------------------------------------|---------------------|------------------------|---------|----------------------------|
|                                         |                     |                        |         |                            |



NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO
RS3Z 00 D26 NV2108002 B 33 di 43

## 9.5.2 Verifica soletta inferiore

**Sezione: 100 x 100 cm** 

### Armatura a flessione:

• Appoggio (Solinf-App)

Armatura tesa

\$ 26/20 cm

Armatura compressa

\$ 26/20 cm

• Campata (Solinf-Camp)

Armatura tesa

\$ 26/20 cm

Armatura compressa

\$ 26/20 cm

Armatura a taglio:

Spille \( \psi \) 12/40x40 cm.



NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2108002 B 34 di 43

• Verifica a pressoflessione appoggio (Solinf-App)

| Acciaio                      |                 |   |         |                   |
|------------------------------|-----------------|---|---------|-------------------|
| Tensione car. di rottura     | $f_{tk}$        | = | 540     | N/mm <sup>2</sup> |
| Tensione car. di snervamento | $f_{yk}$        | = | 450     | N/mm <sup>2</sup> |
| Coeff. parziale di sicurezza | Ϋ́s             | = | 1.15    |                   |
| Resistenza di calcolo        | $f_{yd}$        | = | 391     | N/mm <sup>2</sup> |
| Modulo elastico              | $E_s$           | = | 205000  | N/mm <sup>2</sup> |
|                              | $\epsilon_{yd}$ | = | 0.00191 |                   |

| .aicestruzz | .0     |                   |
|-------------|--------|-------------------|
| Tipo        | C30/37 |                   |
| $R_{ck}$    | 37     | N/mm <sup>2</sup> |
| $f_{ck}$    | 30.71  | N/mm <sup>2</sup> |
| Yc          | 1.5    |                   |
| $f_{cd}$    | 20.5   | N/mm <sup>2</sup> |
| $f_{cc}$    | 17.4   | N/mm <sup>2</sup> |
|             |        |                   |

| copriferro | 50   | mm |
|------------|------|----|
| staffe     | 12   | mm |
| armat. sec | . 12 | mm |

| Geometria della sezione         |   |   |         |
|---------------------------------|---|---|---------|
| Altezza geometrica della sezion | h | = | 100 cm  |
| Base della sezione              | b | = | 100 cm  |
| Copriferro                      | ď | = | 8.7 cm  |
| Altezza utile della sezione     | d | = | 91.3 cm |

| Armatura tesa |          |       |                 |  |  |
|---------------|----------|-------|-----------------|--|--|
| Nº ferri      | Diametro | Area  |                 |  |  |
| 5             | 26       | 26.55 | cm <sup>2</sup> |  |  |
|               |          | 0.00  | cm <sup>2</sup> |  |  |
|               |          | 0.00  | cm <sup>2</sup> |  |  |
|               |          | 26.55 | cm <sup>2</sup> |  |  |

| Armatura compressa |          |       |                 |  |  |
|--------------------|----------|-------|-----------------|--|--|
| Nº ferri           | Diametro | Area  |                 |  |  |
| 5                  | 26       | 26.55 | cm <sup>2</sup> |  |  |
|                    |          | 0.00  | cm <sup>2</sup> |  |  |
|                    |          | 0.00  | cm <sup>2</sup> |  |  |
|                    |          | 26.55 | cm <sup>2</sup> |  |  |

|        | Caratteristiche di sollecitazione |     |     |  |  |
|--------|-----------------------------------|-----|-----|--|--|
|        | Comb.                             | Nsd | Msd |  |  |
| (Nmax) | 08S1-15-                          | 359 | 666 |  |  |
| (Nmin) | 01S1-11M                          | 195 | 340 |  |  |
| (Mmax) | 57SED1-                           | 339 | 756 |  |  |
| (Mmin) | 18S1T11T                          | 195 | 328 |  |  |
|        |                                   |     |     |  |  |

|                   | 3 500   |          | DOMINIC                                      | DI RESISTEN                     | ZA                   | -      |      |
|-------------------|---------|----------|----------------------------------------------|---------------------------------|----------------------|--------|------|
|                   | 3 000 - |          | - Page                                       |                                 |                      |        |      |
|                   | 2-500 - |          | •                                            |                                 |                      |        |      |
| Momento Flettente | 2 000 • |          |                                              |                                 |                      |        |      |
| Moment            | 1 500   | /        |                                              |                                 |                      |        |      |
| ************      | 1 000   | <b>/</b> |                                              |                                 |                      |        |      |
|                   |         |          |                                              |                                 |                      |        |      |
| -5 000            | 0       | Forza    | ,<br><sub>000</sub><br><b>Normale (pos</b> i | 10 000<br><b>tiva se di com</b> | 15 000<br>pressione) | 20 000 | 25 0 |

| Caratteristi | che di solle | ritazione |
|--------------|--------------|-----------|
| Comb.        | Nsd          | Msd       |
| 01S1-11M     | 195          | 340       |
| 02S1-11T     | 195          | 329       |
| 03S1-12M     | 359          | 683       |
| 04S1=12T     | 359          | 672       |
| 05S1-13M     | 359          | 679       |
| 06S1-13T     | 359          | 667       |
| 07S1-131     | 359          | 670       |
| 08S1-15-     | 359          | 666       |
| 09S1-13-     | 195          | 340       |
| 10S1-21T     | 195          | 329       |
| 11S1-22M     | 359          | 683       |
| 12C1 22T     | 359          | 672       |
| 13S1-23M     | 359          | 679       |
| 14S1-23T     | 359          | 667       |
| 15S1-24-     | 359          |           |
|              |              | 670       |
| 16S1-25-     | 359          | 666       |
| 17S1T11M     | 195          | 337       |
| 18S1T11T     | 195          | 328       |
| 19S1T12M     | 340          | 636       |
| 20S1T12T     | 340          | 628       |
| 21S1T13M     | 340          | 633       |
| 22S1T13T     | 340          | 624       |
| 23S1T14-     | 340          | 627       |
| 24S1T15-     | 340          | 623       |
| 25S1T21M     | 195          | 337       |
| 26S1T21T     | 195          | 328       |
| 27S1T22M     | 340          | 636       |
| 28S1T22T     | 340          | 628       |
| 29S1T23M     | 340          | 633       |
| 30S1T23T     | 340          | 624       |
| 31S1T24-     | 340          | 627       |
| 32S1T25-     | 340          | 623       |
| 33S2-11M     | 195          | 337       |
| 34S2-11T     | 195          | 328       |
| 35S2-12M     | 340          | 636       |
| 36S2-12T     | 340          | 628       |
| 37S2-13M     | 340          | 633       |
| 38S2-13T     | 340          | 624       |
| 39S2-21M     | 195          | 337       |
| 40S2-21T     | 195          | 328       |
| 41S2-22M     | 340          | 636       |
| 42S2-22T     | 340          | 628       |
| 43S2-23M     | 340          | 633       |
| 44S2-23T     | 340          | 624       |
| 45S2T11M     | 195          | 337       |
| 46S2T11T     | 195          | 328       |
| 47S2T12M     | 340          | 636       |
| 48S2T12T     | 340          | 628       |
| 49S2T13M     | 340          | 633       |
| 50S2T13T     | 340          | 624       |
| 51S2T21M     | 195          | 337       |
| 52S2T21T     | 195          | 328       |
| 53S2T22M     | 340          | 636       |
| 54S2T22T     | 340          | 628       |
| 55S2T23M     | 340          | 633       |
| 56S2T23T     | 340          | 624       |
| 57SED1-      | 339          | 756       |
| 58SED2-      | 339          | 756       |
| JUJEDZ*      | 223          | / 30      |
|              |              |           |



NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

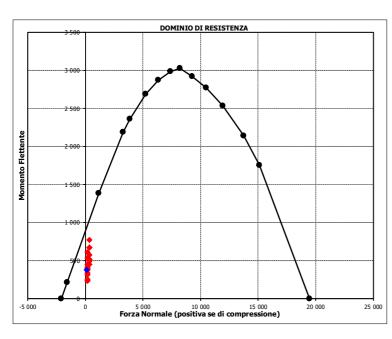
COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2108002 B 35 di 43

• Verifica a pressoflessione campata (Solinf-Camp)

| Acciaio                      |                        |   |         |                   |
|------------------------------|------------------------|---|---------|-------------------|
| Tensione car. di rottura     | $f_{tk}$               | = | 540     | N/mm <sup>2</sup> |
| Tensione car. di snervamento | $f_{yk}$               | = | 450     | N/mm <sup>2</sup> |
| Coeff. parziale di sicurezza | Ϋ́s                    | = | 1.15    |                   |
| Resistenza di calcolo        | $f_{yd}$               | = | 391     | N/mm <sup>2</sup> |
| Modulo elastico              | $E_s$                  | = | 205000  | N/mm <sup>2</sup> |
|                              | $\epsilon_{\text{yd}}$ | = | 0.00191 |                   |

| Calcestruz: | ZO     |                   |
|-------------|--------|-------------------|
| Tipo        | C30/37 |                   |
| $R_{ck}$    | 37     | N/mm <sup>2</sup> |
| $f_{ck}$    | 30.71  | N/mm <sup>2</sup> |
| Ϋ́c         | 1.5    |                   |
| $f_{cd}$    | 20.5   | N/mm <sup>2</sup> |
| $f_{cc}$    | 17.4   | N/mm <sup>2</sup> |
|             |        |                   |

| copriferro | 50 | mm |
|------------|----|----|
| staffe     | 12 | mm |
| armat. sec | 12 | mm |
|            |    |    |


| Geometria della sezione          |   |         |
|----------------------------------|---|---------|
| Altezza geometrica della sezionh | = | 100 cm  |
| Base della sezione b             | = | 100 cm  |
| Copriferro d'                    | = | 8.7 cm  |
| Altezza utile della sezione di   | = | 91.3 cm |

| Armatura tesa |          |       |                 |  |  |
|---------------|----------|-------|-----------------|--|--|
| Nº ferri      | Diametro | Area  |                 |  |  |
| 5             | 26       | 26.55 | cm <sup>2</sup> |  |  |
|               |          | 0.00  | cm <sup>2</sup> |  |  |
|               |          | 0.00  | cm <sup>2</sup> |  |  |
|               | •        | 26.55 | cm <sup>2</sup> |  |  |

| Armatura compressa |          |       |                 |  |  |  |
|--------------------|----------|-------|-----------------|--|--|--|
| Nº ferri           | Diametro | Area  |                 |  |  |  |
| 5                  | 26       | 26.55 | cm <sup>2</sup> |  |  |  |
|                    |          | 0.00  | cm <sup>2</sup> |  |  |  |
|                    |          | 0.00  | cm <sup>2</sup> |  |  |  |
|                    |          | 26.55 | cm²             |  |  |  |

Caratteristiche di sollecitazione

|        | Caratteristiche di sollecitazione |     |     |  |  |
|--------|-----------------------------------|-----|-----|--|--|
|        | Comb.                             | Msd |     |  |  |
| (Nmax) | 07S1-14-                          | 359 | 495 |  |  |
| (Nmin) | 57SED1-                           | 120 | 381 |  |  |
| (Mmax) | 03S1-12M                          | 359 | 770 |  |  |
| (Mmin) | 18S1T11T                          | 195 | 239 |  |  |



| Comb.                | Nsd        | Msd        |
|----------------------|------------|------------|
| 01S1-11M             | 195        | 451        |
| 02S1-11T             | 195        | 255        |
| 03S1-12M             | 359        | 770        |
| 04S1-12T             | 359        | 575        |
| 05S1-13M             | 194        | 610        |
| 06S1-13T             | 194        | 415        |
| 07S1-14-             | 359        | 495        |
| 08S1-15-             | 194        | 336        |
| 09S1-21M             | 195        | 451        |
| 10S1-21T             | 195        | 255        |
| 11S1-22M             | 359        | 770        |
| 12S1-22T             | 359        | 575        |
| 13S1-23M             | 194        | 610        |
| 14S1-23T             | 194        | 415        |
| 15S1-24-             | 359        | 495        |
| 16S1-25-             | 194        | 336        |
| 17S1T11M             | 195        | 396        |
| 18S1T11T             | 195        | 239        |
| 19S1T12M             | 340        | 674        |
| 20S1T12T             | 340        | 518        |
| 21S1T13M             | 194        | 535        |
| 22S1T13T             | 194        | 379        |
| 23S1T14-             | 340        | 454        |
| 24S1T15-             | 194        | 315        |
| 25S1T21M             | 195        | 396        |
| 26S1T21T             | 195        | 239        |
| 27S1T22M             | 340        | 674        |
| 28S1T22T             | 340        | 518        |
| 29S1T23M             | 194        | 535        |
| 30S1T23T             | 194        | 379        |
| 31S1T24-             | 340        | 454        |
| 32S1T25-             | 194        | 315        |
| 33S2-11M             | 195<br>195 | 396<br>239 |
| 34S2-11T             | 340        |            |
| 35S2-12M<br>36S2-12T | 340        | 674<br>518 |
| 37S2-13M             | 194        | 535        |
| 38S2-13T             | 194        | 379        |
| 39S2-21M             | 195        | 396        |
| 40S2-21T             | 195        | 239        |
| 41S2-22M             | 340        | 674        |
| 42S2-22T             | 340        | 518        |
| 43S2-23M             | 194        | 535        |
| 44S2-23T             | 194        | 379        |
| 45S2T11M             | 195        | 396        |
| 46S2T11T             | 195        | 239        |
| 47S2T12M             | 340        | 674        |
| 48S2T12T             | 340        | 518        |
| 49S2T13M             | 194        | 535        |
| 50S2T13T             | 194        | 379        |
| 51S2T21M             | 195        | 396        |
| 52S2T21T             | 195        | 239        |
| 53S2T22M             | 340        | 674        |
| 54S2T22T             | 340        | 518        |
| 55S2T23M             | 194        | 535        |
| 56S2T23T             | 194        | 379        |
| 57SED1-              | 120        | 381        |
| 58SED2-              | 120        | 381        |
|                      |            |            |



NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2108002 B 36 di 43

## • Verifica a taglio

La verifica a taglio viene condotta nel seguente modo:

- 1. Verifica della sezione senza armatura al taglio → se VEd<VRd1 la verifica è soddisfatta;
- 2. Altrimenti si verifica la sezione con armatura a taglio → se VEd<VRd2 la verifica è soddisfatta.

| Calcesti      | ruzzo  |       | Sollecitazioni                  | Soletta inf |
|---------------|--------|-------|---------------------------------|-------------|
| Tipo          | C30/37 |       | V <sub>Ed</sub> kN              | 159         |
| $R_{ck}$      | 37     | N/mm² | N <sub>Ed</sub> kN              | 0           |
| $f_{ck}$      | 30.7   | N/mm² | •                               |             |
| Υc            | 1.5    |       | Armatura a taglio               |             |
| $\alpha_{cc}$ | 0.85   |       | Diametro mm                     | 12          |
| $f_{cd}$      | 17.4   | N/mm² | Numero barre                    | 2.5         |
|               |        |       | A <sub>sw</sub> cm <sup>2</sup> | 2.83        |
| Acciaio       |        |       | Passo s cm                      | 40          |
| $f_{tk}$      | 540    | N/mm² | Angolo α °                      | 90          |
| $f_{yk}$      | 450    | N/mm² | _                               |             |
| Υs            | 1.15   |       | Armatura longitudinale          |             |
| $f_{yd}$      | 391    | N/mm² | $n_1$                           | 5           |
|               |        |       | $\emptyset_1$ mm                | 26          |
|               |        |       | $n_2$                           |             |
|               |        |       | $\emptyset_2$ mm                |             |
|               |        |       | Asl cm <sup>2</sup>             | 26.55       |
|               |        |       | Sociono                         |             |
|               |        |       | Sezione                         | 100         |
|               |        |       | b <sub>w</sub> cm               | 100         |
|               |        |       | H cm                            | 100         |
|               |        |       | c cm                            | 8.7         |
|               |        |       | d cm<br>k N/m                   | 91.3        |
|               |        |       | •                               |             |
|               |        |       | ν <sub>min</sub> N/m            | 0.0029      |
|               |        |       | σcp N/m                         |             |
|               |        |       | α <sub>c</sub>                  | 1.00        |
|               |        |       |                                 |             |
|               |        |       | Resistenza senza armatura a     |             |
|               |        |       | $\mathbf{V}_{\mathbf{Rd}}$ kN   | 334         |
|               |        |       | Resistenza con armatura a ta    | glio        |
|               |        |       | Inclinazione puntone θ °        | 21.8        |
|               |        |       | $V_{RSd}$ kN                    | 568         |
|               |        |       | V <sub>RCd</sub> kN             | 2465        |
|               |        |       | $\mathbf{V}_{\mathbf{Rd}}$ kN   | 568         |



NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2108002 B 37 di 43

• Verifica a fessurazione appoggio (Solinf-App)

|     |     | •   |     |   |
|-----|-----|-----|-----|---|
| Sol | lec | ıta | ZIC | n |

| Momento flettente - Combinazione frequente | M <sub>F</sub> | <b>459.00</b> kNm |
|--------------------------------------------|----------------|-------------------|
| Sforzo normale - Combinazione frequente    | $N_{F}$        | <b>248.00</b> kN  |

### Materiali

| Resistenza caratteristica cubica calcestruzzo      | R <sub>ck</sub>        | 37        | N/mm²             |
|----------------------------------------------------|------------------------|-----------|-------------------|
| Resistenza caratteristica cilindrica calcestruzzo  | $f_{ck}$               | 30.71     | N/mm <sup>2</sup> |
| Modulo elastico del calcestruzzo                   | $E_{cm}$               | 33019.43  | N/mm <sup>2</sup> |
| Tensione ammissibile di compressione calcestruzzo  | $\sigma_{\text{camm}}$ | 18.43     | N/mm <sup>2</sup> |
| Resistena media a trazione calcestruzzo            | $f_{ctm}$              | 3.36      | N/mm <sup>2</sup> |
| Resistenza caratteristica a trazione calcestruzzo  | $f_{ctk}$              | 2.35      | N/mm <sup>2</sup> |
| Tensione ammissibile di trazione calcestruzzo      | $\sigma_{\text{tamm}}$ | 2.80      | N/mm <sup>2</sup> |
| Tensione di snervamento acciaio                    | $f_{yk}$               | 450.00    | N/mm <sup>2</sup> |
| Modulo elastico dell'acciaio                       | E <sub>s</sub>         | 205000.00 | N/mm <sup>2</sup> |
| Tensione ammissibile acciaio                       | $\sigma_{\text{samm}}$ | 360.00    | N/mm²             |
| Coefficiente omogeneizzazione acciaio-calcestruzzo | n                      | 15.00     | -                 |

Caratteristiche geometriche

| Altezza sezione                | Н                 | 100.00 | cm              |   |   |    |                              |    |
|--------------------------------|-------------------|--------|-----------------|---|---|----|------------------------------|----|
| Larghezza sezione              | В                 | 100.00 | cm              |   |   |    |                              |    |
| Armatura compressa (1º strato) | As <sub>1</sub> ' | 26.55  | cm <sup>2</sup> | 5 | Ø | 26 | c <sub>s1</sub> = <b>8.7</b> | cm |
| Armatura compressa (2º strato) | As <sub>2</sub> ' | 0.00   | cm <sup>2</sup> | 0 | Ø | 0  | c <sub>s2</sub> = ##         | cm |
| Armatura tesa (1º strato)      | $As_1$            | 26.55  | cm <sup>2</sup> | 5 | Ø | 26 | c <sub>i1</sub> = <b>8.7</b> | cm |
| Armatura tesa (2º strato)      | $As_2$            | 0.00   | cm <sup>2</sup> | 0 | Ø | 0  | C <sub>22</sub> = ##         | cm |

Proprietà sezione in combinazione rara

| riopricta scrione in combinazione fara      |           |            |                 |   |     |                    |   |
|---------------------------------------------|-----------|------------|-----------------|---|-----|--------------------|---|
| Eccentricità dello sfrozo normale           | e (M)     | 88.05      | cm              | > | H/6 | Sez. parzializzata | 1 |
| Distanza sforzo N dal bordo sezione         | u (M)     | 38.05      | cm              |   |     |                    |   |
| Posizione asse neutro                       | y (M)     | 32.52      | cm              |   |     |                    |   |
| Area ideale (sezione interamente reagente)  | $A_{id}$  | 10743.30   | cm <sup>2</sup> |   |     |                    |   |
| Momento di inerzia ideale (sez. int. reag.) | $J_id$    | 9691734.17 | cm <sup>4</sup> |   |     |                    |   |
| Momento di inerzia ideale (sez. parz. N=0)  | $J_{id*}$ | 2747754.74 | cm <sup>4</sup> |   |     |                    | ı |

### Tensioni nei materiali

| Compressione max nel cls.         | $\sigma_{\rm c}$ | 0.43  | N/mm <sup>2</sup> | < | σc <sub>amm</sub> |
|-----------------------------------|------------------|-------|-------------------|---|-------------------|
| Trazione nell'acciaio (1º strato) | $\sigma_{\rm s}$ | 11.79 | N/mm <sup>2</sup> | < | $\sigma a_{amm}$  |

Proprietà sezione in combinazione frequente

| Tropricta sczione in combinazione rrequei   | itt                |            |                 |   |     |                    |   |
|---------------------------------------------|--------------------|------------|-----------------|---|-----|--------------------|---|
| Eccentricità dello sfrozo normale           | e (M)              | 185.08     | cm              | > | H/6 | Sez. parzializzata | 1 |
| Distanza sforzo N dal bordo sezione         | u (M)              | 135.08     | cm              |   |     |                    |   |
| Posizione asse neutro                       | y (M)              | 26.07      | cm              |   |     |                    |   |
| Area ideale (sez. int. reagente)            | $A_{id}$           | 10743.30   | cm <sup>2</sup> |   |     |                    |   |
| Momento di inerzia ideale (sez. int. reag.) | ${\sf J}_{\sf id}$ | 9691734.17 | cm <sup>4</sup> |   |     |                    |   |
| Momento di inerzia ideale (sez. parz. N=0)  | $J_{id*}$          | 2405061.01 | cm <sup>4</sup> |   |     |                    |   |

## Verifica a fessurazione

| Momento di fessurazione ( $\sigma_{tamm}$ ) | $M_{fess}$ | 586.93 kNm | La sezione non è fessurata |  |
|---------------------------------------------|------------|------------|----------------------------|--|
|---------------------------------------------|------------|------------|----------------------------|--|



NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2108002 B 38 di 43

• Verifica a fessurazione campata (Solinf-Camp)

| Sol |     |      | •- | :  |
|-----|-----|------|----|----|
| 50  | Hec | ITA7 | 'n | nı |

| Momento flettente - Combinazione frequente | M <sub>F</sub> | <b>471.00</b> kNm |
|--------------------------------------------|----------------|-------------------|
| Sforzo normale - Combinazione frequente    | $N_{F}$        | <b>248.00</b> kN  |

### Materiali

| Materiali                                          |                        |           |       |
|----------------------------------------------------|------------------------|-----------|-------|
| Resistenza caratteristica cubica calcestruzzo      | $R_{ck}$               | 37        | N/mm² |
| Resistenza caratteristica cilindrica calcestruzzo  | $f_{ck}$               | 30.71     | N/mm² |
| Modulo elastico del calcestruzzo                   | $E_{cm}$               | 33019.43  | N/mm² |
| Tensione ammissibile di compressione calcestruzzo  | $\sigma_{\text{camm}}$ | 18.43     | N/mm² |
| Resistena media a trazione calcestruzzo            | $f_{ctm}$              | 3.36      | N/mm² |
| Resistenza caratteristica a trazione calcestruzzo  | $f_{ctk}$              | 2.35      | N/mm² |
| Tensione ammissibile di trazione calcestruzzo      | $\sigma_{\text{tamm}}$ | 2.80      | N/mm² |
| Tensione di snervamento acciaio                    | $f_{yk}$               | 450.00    | N/mm² |
| Modulo elastico dell'acciaio                       | Ės                     | 205000.00 | N/mm² |
| Tensione ammissibile acciaio                       | $\sigma_{\text{samm}}$ | 360.00    | N/mm² |
| Coefficiente omogeneizzazione acciaio-calcestruzzo | n                      | 15.00     | -     |

Caratteristiche geometriche

| Altezza sezione                | Н                 | 100.00 | cm              |   |   |    |                               |    |
|--------------------------------|-------------------|--------|-----------------|---|---|----|-------------------------------|----|
| Larghezza sezione              | В                 | 100.00 | cm              |   |   |    |                               |    |
| Armatura compressa (1º strato) | As <sub>1</sub> ' | 26.55  | cm <sup>2</sup> | 5 | Ø | 26 | c <sub>s1</sub> = <b>8.7</b>  |    |
| Armatura compressa (2º strato) | As <sub>2</sub> ' | 0.00   | cm <sup>2</sup> | 0 | Ø | 0  | c <sub>s2</sub> = <b>10.0</b> | cm |
| Armatura tesa (1º strato)      | $As_1$            | 26.55  | cm <sup>2</sup> | 5 | Ø | 26 | c <sub>i1</sub> = <b>8.7</b>  | cm |
| Armatura tesa (2º strato)      | As <sub>2</sub>   | 0.00   | cm <sup>2</sup> | 0 | Ø | 0  | $C_{i2} = 10.0$               | cm |

Proprietà sezione in combinazione rara

| Eccentricità dello sfrozo normale           | e (M)     | 95.09      | cm              | > | H/6 | Sez. parzializzata |
|---------------------------------------------|-----------|------------|-----------------|---|-----|--------------------|
| Distanza sforzo N dal bordo sezione         | u (M)     | 45.09      | cm              |   |     |                    |
| Posizione asse neutro                       | y (M)     | 31.51      | cm              |   |     |                    |
| Area ideale (sezione interamente reagente)  | $A_{id}$  | 10743.30   | cm <sup>2</sup> |   |     |                    |
| Momento di inerzia ideale (sez. int. reag.) | $J_id$    | 9691734.17 | cm <sup>4</sup> |   |     |                    |
| Momento di inerzia ideale (sez. parz. N=0)  | $J_{id*}$ | 2673206.49 | cm <sup>4</sup> |   |     |                    |

### Tensioni nei materiali

| Compressione max nel cls.         | $\sigma_{\!\scriptscriptstyle c}$ | 0.26 | N/mm²             | < | $\sigma c_{amm}$ |
|-----------------------------------|-----------------------------------|------|-------------------|---|------------------|
| Trazione nell'acciaio (1º strato) | $\sigma_{\!\scriptscriptstyle S}$ | 7.48 | N/mm <sup>2</sup> | < | $\sigma a_{amm}$ |

Proprietà sezione in combinazione frequente

| Eccentricità dello sfrozo normale           | e (M)      | 189.92     | cm              | > | H/6 | Sez. parzializzata |
|---------------------------------------------|------------|------------|-----------------|---|-----|--------------------|
| Distanza sforzo N dal bordo sezione         | u (M)      | 139.92     | cm              |   |     |                    |
| Posizione asse neutro                       | y (M)      | 25.94      | cm              |   |     |                    |
| Area ideale (sez. int. reagente)            | $A_{id}$   | 10743.30   | cm <sup>2</sup> |   |     |                    |
| Momento di inerzia ideale (sez. int. reag.) | $J_id$     | 9691734.17 | cm <sup>4</sup> |   |     |                    |
| Momento di inerzia ideale (sez. parz. N=0)  | $J_{id^*}$ | 2401192.97 | cm⁴             |   |     |                    |

### Verifica a fessurazione

| Momento di fessurazione (σ <sub>tamm</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M <sub>fess</sub> | 586.93 kNm     | La sezione non è fessurata |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|----------------------------|
| INDITION OF THE PROPERTY OF TH | l'Ifecc           | JOUL JO KINIII | La sezione non e ressurata |



NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO
RS3Z 00 D26 NV2108002 B 39 di 43

## 10. INCIDENZA MURO A U

I valori delle incidenze di armatura lenta sono indicati nella seguente tabella:

Piedritti 110 kg/mc Soletta inferiore 70 kg/mc

Come previsto dall' Eurocodice (UNI EN 1992-1-1) per le piastre a portanza unidirezionale si raccomanda di prevedere un'armatura secondaria in quantità non minore del 20% dell'armatura principale.

Pertanto nel calcolo è stata considerata un' armatura longitudinale diffusa \$\phi16/20\$ ed un incremento del 15% per tener conto della presenza di legature e spille.



NV21 – Nuova viabilità di collegamento Lercara Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2108002 B 40 di 43

## 11. DICHIARAZIONI SECONDO D.M. 17/01/2018 (P.TO 10.2)

## 11.1 Tipo di analisi svolte

L'analisi strutturale e le verifiche sono condotte con l'ausilio di un codice di calcolo automatico. L'analisi strutturale è condotta con l'analisi statica, utilizzando il metodo degli spostamenti per la valutazione dello stato limite indotto dai carichi statici. L'analisi strutturale sotto le azioni sismiche è condotta con il metodo dell'analisi statica equivalente secondo le disposizioni del capitolo 7 del DM 17/01/2018.

L'analisi strutturale viene effettuata con il metodo degli elementi finiti, schematizzando la struttura in elementi lineari e nodi. Le incognite del problema sono le componenti di spostamento in corrispondenza di ogni nodo (2 spostamenti e 1 rotazioni).

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

### 11.2 Origine e caratteristiche dei Codici di Calcolo

Titolo: SAP2000 Ultimate

Versione: 21.0.2

Produttore: CSI Computers and Structures, Inc.

### 11.3 Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni sono stati sottoposti a valutazione che ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali.

In particolare, è stato confrontato il valore del momento flettente allo spiccato del piedritto con i rispettivi valori ottenuti per uno schema statico a mensola verticale.

Come carico di confronto è stato utilizzato la spinta triangolare del terreno a riposo SPTDX=47.8 kN/m.

La figura seguente mostra il momento flettente ottenuto dal modello agli elementi finiti utilizzato per le verifiche:



NV21 – Nuova viabilità di collegamento Lercara-Nuova Fermata Lercara Sottopasso 0+311 – Relazione di calcolo muri di imbocco

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2108002 B 41 di 43



| Calcolo analitico              |                  |        |       |
|--------------------------------|------------------|--------|-------|
| Carico triangolare distribuito | G <sub>2</sub>   | 47.8   | kN/m  |
| Luce di calcolo                | L                | 5.5    | m     |
| Momento all'incastro           | $M_{max}$        | 240.99 | kNm/m |
|                                |                  |        |       |
| SAP2000                        |                  |        |       |
| Momento al'incastro            | M <sub>I/2</sub> | 223.01 | kNm/m |
|                                |                  |        |       |
| Errore                         | е                | 8.1%   |       |

Dal confronto numerico delle deformate e dello stato sollecitativo, si ritengono i risultati del calcolo congrui con le azioni applicate e la geometria del problema.

In base a quanto sopra, si asserisce che l'elaborazione è corretta ed idonea al caso specifico, pertanto, i risultati di calcolo sono da ritenersi validi ed accettabili.