COMMITTENTE:

PROGETTAZIONE:

U.O. INFRASTRUTTURE NORD

PROGETTO DEFINITIVO

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA

RADDOPPIO TRATTA FIUME TORTO – LERCARA DIRAMAZIONE LOTTO 1 + 2

VIABILITÀ

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

							SCALA:
							-
COMMESSA	LOTTO FASE	ENTE	TIPO DOC.	OPERA/DISCIPLINA	PROGR.	REV	<i>I</i> .
RS3Z	0 0 D	2 6	CL	N V 2 4 0 3	0 0 1	В	

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
А	EMISSIONE ESECUTIVA	C. INTEGRA	Gennaio 2020	M.SALLEOLINI	Gennaio 2020	A. BARFECA	Gennaio 2020	F. SACCHI
В	1° AGG. A CONSEGNA CSLLPP	C. INTEGRA	Maggio 2020	M.SALLEOLINI	Maggio 2020	A. BARI ECA	Maggio 2020	NFRASTRED Francesco Sciences (Sept. 1987)
	OOLLI 1			TOWARD TO THE TOWARD TOWARD TO THE TOWARD TO				ERR - bO Jo Dott. Ing- degii Ingest
								TTALFE Ordine

File: RS3Z00D26CLNV2403001B	n. Elab.:	

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3 COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 0 di 54

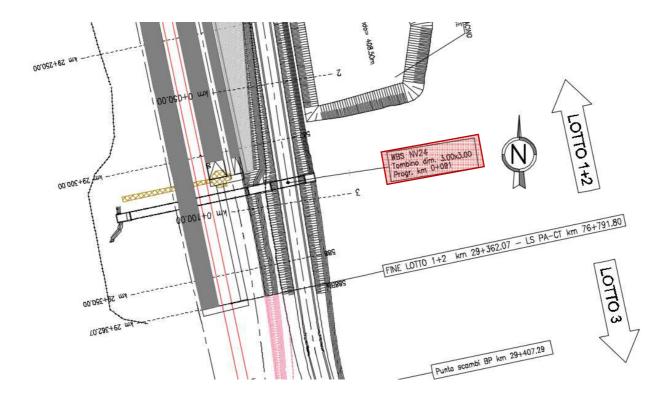
INDICE

1.	PRI	EMESSA	2
2.	DES	SCRIZIONE	3
3.	NO	RMATIVE DI RIFERIMENTO	5
4.	CA	RATTERISTICHE DEI MATERIALI	6
5.	PAI	RAMETRI GEOTECNICI	8
	5.1	Profondità della falda	8
6.	AN	ALISI DEI CARICHI	9
	6.1	Pesi propri	9
	6.2	Permanenti non strutturali	9
	6.3	Carichi mobili (carico stradale)	9
	6.4	Azione di frenamento (Q ₃)	10
	6.5	Azione del sisma	10
	6.6	Ritiro del calcestruzzo	13
	6.7	Variazione termica	13
	6.8	Spinta statica del terreno	13
	6.9	Spinta dovuta al sovraccarico accidentale	13
7.	CO	MBINAZIONE DEI CARICHI	15
8.	VE	RIFICHE STRUTTURALI	17
	8.1	Verifiche per gli stati limite ultimi a flessione-pressoflessione	17
	8.2	Verifica agli stati limite ultimi a taglio	17
	8.3	Verifica agli stati limite d'esercizio	19
9.	AN	ALISI STRUTTURALE	20
	9.1	Modellazione strutturale : Scatolare	20
	92	Analisi dei carichi	22

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D26	NV2403001	В	1 di 54

	9.3	Combinazioni	25
	9.4	Sollecitazioni	27
	9.5	Verifiche strutturali	32
		9.5.1 Verifica piedritti	32
		9.5.2 Verifica soletta superiore	38
		9.5.3 Verifica soletta inferiore	44
10.	INC	CIDENZA SCATOLARE	50
11.	DIC	CHIARAZIONI SECONDO D.M. 17/01/2018 (P.TO 10.2)	51
	11.1	1 Tipo di analisi svolte	51
	11.2	2 Origine e caratteristiche dei Codici di Calcolo	51
	11.3	3 Giudizio motivato di accettabilità dei risultati	51


NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3 COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 2 di 54

1. PREMESSA

Il presente documento viene emesso nell'ambito della redazione degli elaborati tecnici relativi alla progettazione definitiva del collegamento Palermo-Catania, raddoppio tratta Fiumetorto-Lercara Diramazione, appartenente alla Direttrice ferroviaria Messina-Catania-Palermo.

Nella presente relazione è riportato il calcolo strutturale dei tombini di geometria 3.0x3.0x0.4m situato al km 0+091 della Viabilità di accesso SSE/Area Terna (NV24), prolungamento del tombino di linea IN55.

Segue uno stralcio della planimetria di progetto con ubicazione dell'opera.

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 3 di 54

2. DESCRIZIONE

Nella seguente relazione, in particolare, vengono descritte le verifiche agli Stati Limite del Tombino idraulico utilizzabile per attraversamenti stradali. avente le caratteristiche riportate nella seguente tabella:

Geometria del tombino			
Larghezza totale	Ltot	3.80	m
Altezza totale	Htot	3.80	m
Spessore soletta superiore	SS	0.40	m
Spessore piedritti	sp	0.40	m
Spessore soletta inferiore	sf	0.40	m
Luce libera	Lint	3.00	m
Altezza libera	Hint	3.00	m

Si riporta, di seguito, la sezione trasversale della struttura.

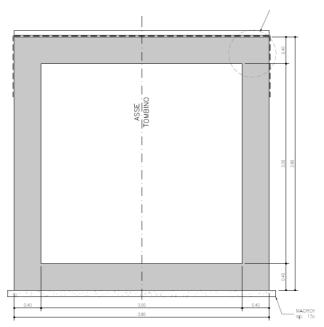


Figura 2.1– Sezione trasversale tombino idraulico

Il tombino presenta un ricoprimento di 1.57 m.

La struttura sarà realizzata in c.a. gettato in opera senza giunti intermedi.

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 4 di 54

Geometria del Ricoprimento			
Pacchetto stradale	Нр	0.12	m
Ricoprimento	Hr	1.57	m
Imperm. più massetto cls sp. 5 cm	Hr	0.05	m

Si trascura, a favore di sicurezza, l'eventuale presenza del riempimento interno.

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 5 di 54

3. NORMATIVE DI RIFERIMENTO

Il dimensionamento e la verifica degli elementi strutturali sono stati condotti nel rispetto delle seguenti normative:

- <u>Decreto Ministeriale 17 gennaio 2018</u>: Aggiornamento delle Norme tecniche per le costruzioni;
- <u>Circolare 21 gennaio 2019, n.7 C.S.LL.PP.</u>: Istruzioni per l'applicazione dell'"Aggiornamento delle Norme tecniche per le costruzioni di cui al D.M. 17 gennaio 2018;
- <u>Circolare 15 ottobre 1996, n.252 AA.GG./S.T.C..</u>: Istruzioni per l'applicazione delle "Nuove norme tecniche per il calcolo, l'esecuzione ed il collaudo delle opere in cemento armato normale e precompresso e per le strutture metalliche" di cui al decreto ministeriale 9 gennaio 1996;
- RFI DTC SI MA IFS 001 B: "Manuale di progettazione delle opere civili" del 22/12/2017.
- RFI DTC SI PS MA IFS 001 B: Sezione 2 Ponti e Strutture

Riferimenti STI:

 Regolamento (UE) N. 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019;

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3 COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 6 di 54

4. CARATTERISTICHE DEI MATERIALI

MAGRONE - C12/15								
Descrizione	Simbolo	Formula	Unità di misura	Valore				
Resistenza cubica a compressione	R _{ck}		N/mm ²	15				
Contenuto minimo cemento			kg/m ³	150				

CALCESTRUZZO CLASSE 30/37				
Descrizione	Simbolo	Formula	Unità di misura	Valore
Resistenza cubica a compressione	R _{ck}		N/mm ²	37.0
Resistenza cilindrica a compressione	f _{ck}	0.83 * R _{ck}	N/mm ²	30.7
Resistenza cilindrica media a compressione	f _{cm}	f _{ck} +8	N/mm ²	38.7
Coefficiente per effetti a lungo termine e sfavorevoli	a _{cc} (t>28gg)		-	0.85
Coefficiente parziale di sicurezza relativo al calcestruzzo	Ϋ́c			1.5
Resistenza di calcolo a compressione	f _{cd}	$(a_{cc} * f_{ck}) / \Upsilon c$	N/mm ²	17.4
Resistenza cilindrica media a trazione	f _{ctm}	$0.3 * (fck)^{2/3}$	N/mm ²	2.9
Resistenza cilindrica media a trazione	f _{ctk}	0.7 * f _{ctm}	N/mm ²	2.1
Resistenza di calcolo a trazione	f _{ctd}	f_{ctk} / Υ_c	N/mm ²	1.4
Resistenza media a trazione per flessione	f _{cfm}	1.2 * f _{ctm}	N/mm ²	3.5
Resistenza cilindrica caratteristica a trazione	f _{cfk}	0.7 * f _{ctm}	N/mm ²	2.5
Modulo elastico	E _{cm}	$22000 * (f_{cm}/10)^{0.3}$	N/mm ²	33019
Peso proprio	Ϋ́c		N/m ³	25000
Coefficiente di Poisson	v			0.2
Coefficiente di aderenza	η		_	1.0
Resistenza tangenziale caratteristica di aderenza	f _{bk}	2.25 * η * f _{ctk}	N/mm ²	4.6
Resistenza tangenziale di aderenza di calcolo	f _{bd}	f_{bk} / Υ_c	N/mm ²	3.1

Acciaio ad aderenza migliorata B450C				
Descrizione	Simbolo	Formula	Unità di misura	Valore
Resistenza caratteristica di rottura	f _{t nom}		N/mm ²	54 0
Resistenza caratteristica a snervamento	f _{y nom}		N/mm ²	450
Coefficiente parziale di sicurezza relativo all'acciaio	Ϋ́s		-	1.15
Resistenza di calcolo	f _{yd}	f_{yk}/Υ_s	N/mm ²	391.3
Modulo elastico	E _s		N/mm ²	206000
Tensioni di progetto del cls allo S.L.E.				
Tensione massima di esercizio per l'acciaio	σ_{s}	0.75 * f _{vk}	N/mm ²	337.5

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 7 di 54

Con riferimento al punto 4.1.6.1.3 delle NTC, al fine della protezione delle armature dalla corrosione il valore minimo dello strato di ricoprimento di calcestruzzo (copriferro) deve rispettare quanto indicato nella tabella C4.1.IV della Circolare 21.01.2019, riportata di seguito, nella quale sono distinte le tre condizioni ambientali di Tabella 4.1.III delle NTC.

		barre da c.a.		barre da c.a.		cavi da c.a.p		cavi da c.a.p		
		elementi a piastra		altri elementi		elementi a piastra		altri elementi		
Cmin	Co	ambiente	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<></td></co<></td></co<>	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<></td></co<>	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<>	C≥Co	Cmin≤C <co< td=""></co<>
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35
C30/37	C40/50	aggressivo	25	30	30	35	35	40	40	45
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportata nel prospetto seguente:

Classe di esposizione: XA1

Copriferro di progetto: 50 mm

Condizioni ambientali: Aggressive

Il valore limite di apertura delle fessure calcolato secondo le combinazioni agli SLE (frequente e quasi permanente) è pari ad uno dei seguenti valori nominali:

$$w_1 = 0.2 \text{ mm}$$

$$w_2 = 0.3 \text{ mm}$$

$$w_3 = 0.4 \text{ mm}$$

pi Ize	Condizioni	Combinazione di		Arma	tura	
Gruppi di Esigenze	ambientali	azioni	Sensibile		Poco sensibile	
Gr Esi			Stato limite	w _k	Stato limite	$\mathbf{w}_{\mathbf{k}}$
Λ.	Ordinarie	frequente	apertura fessure	$\leq w_2$	apertura fessure	$\leq w_3$
A	Ordinarie	quasi permanente	apertura fessure	$\leq w_1$	apertura fessure	$\leq w_2$
В	Λ	frequente	apertura fessure	$\leq w_1$	apertura fessure	$\leq w_2$
D	Aggressive	quasi permanente	decompressione	-	apertura fessure	$\leq w_1$
С	Molto	frequente	formazione fessure	-	apertura fessure	$\leq w_1$
	aggressive	quasi permanente	decompressione	-	apertura fessure	$\leq w_1$

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3 COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 8 di 54

5. PARAMETRI GEOTECNICI

Gli elaborati di riferimento sono:

Planimetria e Sezioni geotecniche viabilità - Tav. 1/7	R	S	3	Z	0	0	D	2	6	P	Z	G	Е	0	0	0	0	0	0	1
Planimetria e Sezioni geotecniche viabilità - Tav. 2/7	R	S	3	Z	0	0	D	2	6	P	Z	G	Е	0	0	0	0	0	0	2
Planimetria e Sezioni geotecniche viabilità - Tav. 3/7	R	S	3	Z	0	0	D	2	6	P	Z	G	Е	0	0	0	0	0	0	3
Planimetria e Sezioni geotecniche viabilità - Tav. 4/7	R	S	3	Z	0	0	D	2	6	P	Z	G	Е	0	0	0	0	0	0	4
Planimetria e Sezioni geotecniche viabilità - Tav. 5/7	R	S	3	Z	0	0	D	2	6	P	Z	G	Е	0	0	0	0	0	0	5
Planimetria e Sezioni geotecniche viabilità - Tav. 6/7	R	S	3	Z	0	0	D	2	6	P	Z	G	Е	0	0	0	0	0	0	6
Planimetria e Sezioni geotecniche viabilità - Tav. 7/7	R	S	3	Z	0	0	D	2	6	P	Z	G	Е	0	0	0	0	0	0	7
Profilo longitudinale geotecnico viabilità - Tav. 1/7	R	S	3	Z	0	0	D	2	6	F	9	G	Е	0	0	0	0	0	0	1
Profilo longitudinale geotecnico viabilità - Tav. 2/7	R	S	3	Z	0	0	D	2	6	F	9	G	Е	0	0	0	0	0	0	2
Profilo longitudinale geotecnico viabilità - Tav. 3/7	R	S	3	Z	0	0	D	2	6	F	9	G	Е	0	0	0	0	0	0	3
Profilo longitudinale geotecnico viabilità - Tav. 4/7	R	S	3	Z	0	0	D	2	6	F	9	G	Е	0	0	0	0	0	0	4
Profilo longitudinale geotecnico viabilità - Tav. 5/7	R	S	3	Z	0	0	D	2	6	F	9	G	Е	0	0	0	0	0	0	5
Profilo longitudinale geotecnico viabilità - Tav. 6/7	R	S	3	Z	0	0	D	2	6	F	9	G	Е	0	0	0	0	0	0	6
Profilo longitudinale geotecnico viabilità - Tav. 7/7	R	S	3	Z	0	0	D	2	6	F	9	G	Е	0	0	0	0	0	0	7

A titolo cautelativo si assumono i seguenti parametri geotecnici:

- Angolo di attrito (rinterro), φ': 35°

- Modulo elastico terreno, E': 25 MPa

- Coefficiente di Poisson, v': 0.3

Categoria di sottosuolo: C

Condizione topografica: T1

5.1 Profondità della falda

Ai fini dell'analisi dell'opera non si è considerata la presenza della falda idrica in quanto il livello di falda è al di sotto del piano di fondazione.

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 9 di 54

6. ANALISI DEI CARICHI

Nel seguente paragrafo si descrivono i carichi elementari che agiscono sulla struttura in oggetto. Tali azioni sono definite secondo le normative e sono utilizzate per la generazione delle combinazioni di carico nell'ambito delle verifiche di resistenza, in esercizio e in presenza dell'evento sismico. Tutti i carichi elementari si riferiscono a un concio longitudinale di larghezza unitaria, pertanto sono tutti definiti rispetto all'unità di lunghezza.

6.1 Pesi propri

Il peso dei differenti elementi strutturali viene calcolato automaticamente dal programma di calcolo utilizzato.

- Soletta di fondazione;
- Piedritti;
- Soletta di copertura.

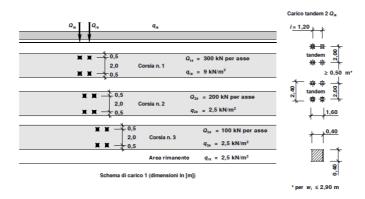
Per i materiali si assumono i seguenti pesi specifici:

Calcestruzzo armato: $\gamma_{c.a.} = 25.00 \text{ kN/m}^3$ Rilevato: $\gamma_{ril} = 19.00 \text{ kN/m}^3$ Pacchetto stradale: $\gamma_{pac} = 24.00 \text{ kN/m}^3$

6.2 Permanenti non strutturali

Sono stati considerati i seguenti carichi permanenti sulla soletta superiore:

- Strato di usura;
- Binder:
- Strato di base;
- Strato di fondazione di inerti stabilizzati all'acqua e compattati.


6.3 Carichi mobili (carico stradale)

Utilizzato sia per le verifiche globali che per quelle locali, considerando un solo carico tandem per corsia, disposto in asse alla corsia stessa. Esso è costituito da carichi concentrati su due assi in tandem (applicati su impronte di pneumatico di forma quadrata e lato 0,40 m) e da carichi uniformemente distribuiti secondo le seguenti colonne di carico:

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 10 di 54

In senso trasversale i carichi Q_{ik} e q_{ik} sono distribuiti su corsie convenzionali di larghezza pari a 3,00 m in modo tale da ottenere la distribuzione trasversale più gravosa.

6.4 Azione di frenamento (Q₃)

La forza di frenamento o accelerazione è funzione del carico verticale totale agente sulla corsia convenzionale n.1 e per i ponti di 1^a categoria è uguale a:

$$180 \text{ kN} \le Q_3 = 0.6 \cdot (2 \cdot Q_{1k}) + 0.10 \cdot q_{1k} \cdot w_1 \cdot L \le 900 \text{ kN}$$

Tale azione deve essere applicata all'impalcato a quota pavimentazione.

6.5 Azione del sisma

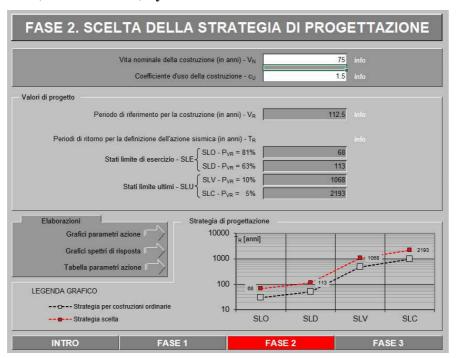
Per tutte le opere d'arte di progetto vengono utilizzati, a vantaggio di sicurezza, i seguenti valori: V_N =50 anni e classe d'uso III a cui corrisponde un coefficiente d'uso C_U = 1.50.

La vita di riferimento V_R è quindi pari a 75 anni.

I parametri utilizzati per la definizione dell'azione sismica sono riportati di seguito.

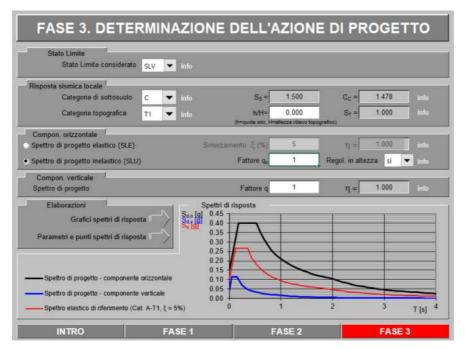
- Classe d'uso: III
- Coefficiente d'uso $C_U = 1.5$
- Vita nominale $V_N = 50$ anni
- Categoria di suolo: C
- Condizione topografica: T1
- Fattore di struttura q = 1

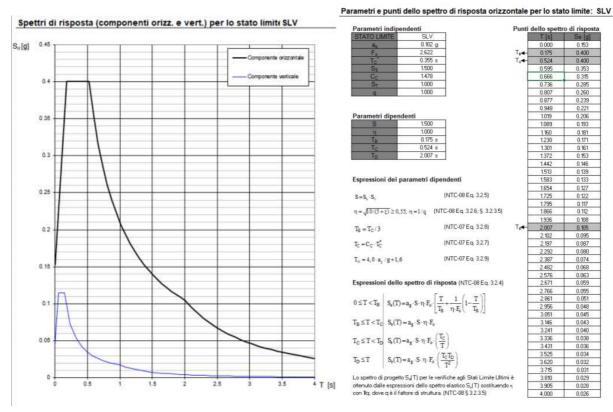
L'azione sismica è stata calcolata per mezzo del foglio di calcolo Spettri-NTCver.1.0.3 messo a disposizione dal Consiglio Superiore dei Lavori Pubblici.


NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 11 di 54

I parametri per la determinazione dei punti dello spettro di risposta orizzontale e verticale sono riportati :


Di seguito si riportano gli spettri di risposta orizzontale e verticale allo Stato limite di salvaguardia della vita SLV utilizzati per il calcolo dell'azione sismica. Con tale azione sismica agente, le forze risultanti trasmesse dall'impalcato al piano appoggi della spalla in corrispondenza della sommità del muro di testata sono riportate al paragrafo successivo, sotto le voci **Ex**, **Ey** ed **Ez**.



NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D26	NV2403001	В	12 di 54

Di seguito si riporta a titolo di esempio lo **spettro di progetto** per lo **Stato Limite di salvaguardia della Vita SLV** relativamente alle componenti **orizzontali**, con coefficiente di smorzamento strutturale canonico pari al 5%.

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 13 di 54

6.6 Ritiro del calcestruzzo

Gli effetti del ritiro del calcestruzzo sono valutati impiegando i coefficienti indicati al punto 11.2.10.6 delle NTC2018. La deformazione totale da ritiro è data dalla somma della deformazione per ritiro da essiccamento e della deformazione da ritiro autogeno. Il ritiro è stato applicato mediante una variazione termica equivalente pari a 10°, ed un umidità relativa del 75% a 7 gg.

Il fenomeno del ritiro è stato applicato solo alla soletta di copertura nel caso dello scatolare mentre viene trascurato nel muro.

6.7 Variazione termica

La variazione termica applicata sulla struttura è pari a $\Delta T = +15$ °C, con un variazione termica a aggiuntiva a farfalla pari a $\Delta T = +5$ °C applicata sulla soletta di copertura.

Per il coefficiente di dilatazione termica si assume:

$$\alpha = 10 \times 10^{-6} = 0.00001$$

6.8 Spinta statica del terreno

Le spinte del terreno a monte degli elementi verticali sono calcolate con la teoria di Rankine, con distribuzione triangolare delle tensioni e conseguente risultante della spinta al metro pari a $S=1/2 \cdot k_0 \cdot \gamma \cdot H^2$, applicata ad 1/3 dal basso.

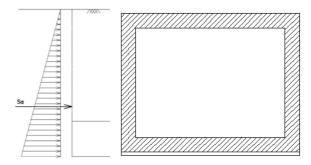


Figura 6.1 – Schema per il calcolo degli effetti della spinta statica del terreno

La spinta in condizioni di esercizio viene calcolata con il coefficiente di spinta a riposo k₀.

6.9 Spinta dovuta al sovraccarico accidentale

Per considerare la presenza di un sovraccarico da traffico gravante a tergo, si considera un carico uniformemente distribuito. Il valore della spinta risultante al metro è dunque pari a $S=k_0 \cdot q \cdot H$, con punto di applicazione posizionato a metà dell'altezza dell'elemento su cui insiste.

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 14 di 54

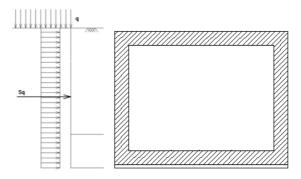


Figura 6.2- Schema per il calcolo degli effetti della spinta dovuta al sovraccarico accidentale

In condizione sismica si considera un incremento della spinta del terreno rispetto alla condizione statica in esercizio. La sovraspinta sismica è calcolata con la teoria di Wood, risultando in un valore di spinta al metro, distribuito uniformemente sull'intera altezza del piedritto, da applicare ad una quota pari ad H/2.

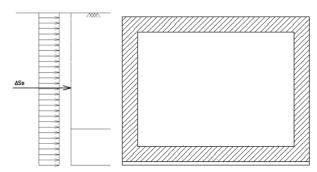


Figura 6.3– Schema per il calcolo degli effetti della sovraspinta sismica

NV24 - Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA **FASE-ENTE** REV. **FOGLIO** LOTTO **DOCUMENTO** RS3Z 00 D26 NV2403001 В 15 di 54

7. **COMBINAZIONE DEI CARICHI**

In linea con quanto riportato nel quadro normativo vigente, le azioni descritte nei paragrafi precedenti, sono combinate nel modo seguente:

combinazione fondamentale (SLU):

$$\gamma_{\text{G1}} \cdot G_{\text{1}} + \gamma_{\text{G2}} \cdot G_{\text{2}} + \gamma_{\text{p}} \cdot P + \gamma_{\text{O1}} \cdot Q_{\text{k1}} + \gamma_{\text{O2}} \cdot \psi_{\text{02}} \cdot Q_{\text{k2}} + \gamma_{\text{O3}} \cdot \psi_{\text{03}} \cdot Q_{\text{k3}} + \dots$$

combinazione sismica:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

combinazione eccezionale:

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

combinazione Rara (SLE irreversibile):

$$\boldsymbol{G_{1}} + \boldsymbol{G_{2}} + \boldsymbol{P} + \boldsymbol{Q_{k1}} + \boldsymbol{\psi_{02}} \cdot \boldsymbol{Q_{k2}} + \boldsymbol{\psi_{03}} \cdot \boldsymbol{Q_{k3}} + ...$$

combinazione Frequente (SLE reversibile):

$$G_{1} + G_{2} + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + ...$$

combinazione Quasi Permanente (SLE per gli effetti a lungo termine):

$$\boldsymbol{G_{1}} + \boldsymbol{G_{2}} + \boldsymbol{P} + \boldsymbol{\psi_{21}} \cdot \boldsymbol{Q_{k1}} + \boldsymbol{\psi_{22}} \cdot \boldsymbol{Q_{k2}} + \boldsymbol{\psi_{23}} \cdot \boldsymbol{Q_{k3}} + ...$$

Ai fini della determinazione dei valori caratteristici delle azioni dovute al traffico, si devono considerare, generalmente, le combinazioni riportate in TAb. 5.1.IV.

		Carich	i sulla superfic	Carichi su marciapiedi e piste ciclabili non sormontabili		
Gruppo di azioni		Carichi vertical	i	Carichi	orixxontali	Carichi verticali
	Modello principale (schemi di carico 1, 2, 3, 4 e 6)	Veicoli spe- ciali	Folla (Schema di carico	Frenatura	Forza centrifuga	Carico uniformemente distribuito
1	Valore carat- teristico	j				Schema di carico 5 con valore di combinazione 2,5KN/m ²
2a	Valore fre- quente			Valore carat- teristico		
2b.	Valore fre- quente				Valore caratteri- stico	
3 (*)						Schema di carico 5 con valore caratteristico 5,0KN/m²
4 (**)			Schema di carico 5 con valore carat- teristico 5,0KN/m²			Schema di carico 5 con valore caratterístico 5,0kN/m²
5 (***)	Da definirsi per il singo- lo progetto	Valore carat- teristico o nominale				

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 16 di 54

Per le verifiche agli stati limite ultimi si adottano i valori dei coefficienti parziali ed i coefficienti di combinazione ψ delle tabelle seguenti.

		Coefficiente	EQU ⁽¹⁾	A1	A2
Azioni permanenti \mathbf{g}_1 e \mathbf{g}_3	favorevoli sfavorevoli	γ _{G1} e γ _{G3}	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾ g ₂	favorevoli sfavorevoli	YG2	0,00 1,50	0,00 1,50	0,00 1,30
Azioni variabili da traffico	favorevoli sfavorevoli	ΥQ	0,00 1,35	0,00 1,35	0,00 1,15
Azioni variabili	favorevoli sfavorevoli	YQI	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecita- zioni di progetto	favorevoli sfavorevoli	Ye1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Cedimenti vincolari	favorevoli sfavorevoli	Ye2, Ye3, Ye4	0,00 1,20	0,00 1,20	0,00 1,00

Tab. 2 – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU, eccezionali e sismica

Azioni	Gruppo di azioni (Tab. 5.1.IV)	Coefficiente V ₀ di combi-	Coefficiente V1 (valori	Coefficiente ψ_2 (valori quasi
		nazione	frequenti)	permanenti)
	Schema 1 (carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0
Azioni da traffico	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
(Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0
	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	a ponte scarico SLU e SLE	0,6	0,2	0,0
Vento	in esecuzione	0,8	0,0	0,0
	a ponte carico SLU e SLE	0,6	0,0	0,0
Neve	SLU e SLE	0,0	0,0	0,0
	in esecuzione	0,8	0,6	0,5
Temperatura	SLU e SLE	0,6	0,6	0,5

Tab. 3 – Coefficienti di combinazione ψ delle azioni

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 17 di 54

8. VERIFICHE STRUTTURALI

Le verifiche di resistenza delle sezioni sono eseguite secondo il metodo semiprobabilistico agli stati limite. I coefficienti di sicurezza adottati sono i seguenti:

- coefficiente parziale di sicurezza per il calcestruzzo: 1.50;
- coefficiente parziale di sicurezza per l'acciaio in barre: 1.15.

Il paragrafo in oggetto illustra nel dettaglio i criteri generali adottati per le verifiche strutturali e geotecniche condotte nel progetto. Ulteriori dettagli di carattere specifico, laddove impiegati, sono dichiarati e motivati nelle relative risultanze delle verifiche.

Per le sezioni in cemento armato si effettuano:

- verifiche per gli stati limite ultimi a presso-flessione;
- verifiche per gli stati limite ultimi a taglio;
- verifiche per gli stati limite di esercizio.

8.1 Verifiche per gli stati limite ultimi a flessione-pressoflessione

Allo stato limite ultimo, le verifiche a flessione o presso-flessione sono condotte confrontando (per le sezioni più significative) le resistenze ultime e le sollecitazioni massime agenti, valutando di conseguenza il corrispondente fattore di sicurezza.

8.2 Verifica agli stati limite ultimi a taglio

La verifica allo stato limite ultimo per azioni di taglio è condotta secondo quanto prescritto dal DM17/01/2018, per elementi con armatura a taglio verticali.

Si fa, pertanto, riferimento i seguenti valori della resistenza di calcolo:

- Resistenza di progetto dell'elemento privo di armatura a taglio:

$$V_{Rd} = max \left\{ \left[0.18 \cdot k \cdot (100 \cdot \rho_l \cdot f_{ck})^{\frac{1}{2}} / \gamma_c + 0.15 \cdot \sigma_{cp} \right] b_w \cdot d; (v_{min} + 0.15 \cdot \sigma_{cp}) \cdot b_w d \right\}$$

Resistenza di progetto a "taglio trazione":

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (\cot \alpha + \cot \theta) \cdot \sin \alpha$$

- Resistenza di progetto a "taglio compressione":

$$V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot v f_{cd} \cdot (\cot \alpha + \cot \theta) / (1 + \cot^2 \theta)$$

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 18 di 54

Nelle espressioni precedenti i simboli hanno i seguenti significati:

$$k=1+\sqrt{\frac{200}{d}}\leq 2 \ \ \text{con d in mm;}$$

$$\rho_{_{1}} = \frac{A_{_{sl}}}{b_{_{w}} \cdot d} \leq 0.02 \, ;$$

 A_{sl} è l'area dell'armatura tesa;

b, è la larghezza minima della sezione in zona tesa;

$$\sigma_{\text{cp}} = \frac{N_{\text{Ed}}}{A_{\text{c}}} < 0.2 \cdot f_{\text{cd}}; \label{eq:sigma_cp}$$

 $N_{\rm Ed}$ è la forza assiale nella sezione dovuta ai carichi;

A è l'area della sezione di calcestruzzo;

$$v_{min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2};$$

 $1 \le \cot \vartheta \le 2.5$ è l'inclinazione dei puntoni di calcestruzzo rispetto all'asse della trave

A sw è l'area della sezione trasversale dell'armatura a taglio;

S è il passo delle staffe;

 α è l'angolo d'inclinazione dell'armatura trasversale rispetto all'asse della trave;

 vf_{cd} è la resistenza di progetto a compressione ridotta del calcestruzzo d'anima (v=0.5);

 $\alpha_c=1$ coefficiente maggiorativo per membrature non compresse.

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 19 di 54

8.3 Verifica agli stati limite d'esercizio

Si effettuano le seguenti verifiche agli stati limite di esercizio:

- stato limite delle tensioni in esercizio;
- stato limite di fessurazione.

Nel primo caso, si esegue il controllo delle tensioni nei materiali supponendo una legge costitutiva tensionideformazioni di tipo lineare. In particolare si controlla la tensione massima di compressione del calcestruzzo e di trazione dell'acciaio, verificando che:

 $\sigma_c < 0.60 \, f_{ck}$ per combinazione di carico caratteristica (rara);

 $\sigma_c < 0.45 \, f_{ck}$ per combinazione di carico quasi permanente;

 σ_{s} < 0.80 f_{vk} per combinazione di carico caratteristica (rara).

Nel secondo caso, si verifica che le aperture delle fessure siano inferiori al valore limite dell'apertura delle fessure nella combinazione caratteristica Frequente e Quasi Permanente. I valori nominali di riferimento sono:

 $w_1 = 0.2 \text{ mm}$

 $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

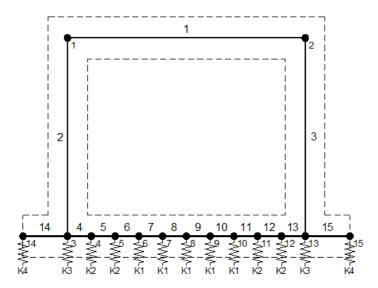
NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 20 di 54

9. ANALISI STRUTTURALE

Le analisi sono state condotte mediante l'ausilio del SAP2000, un Codice di calcolo F.E.M. (Finite Element Method) capace di gestire analisi lineari e non lineari ed analisi sismiche con integrazione al passo delle equazioni nel tempo. Dal modello sono state dedotte, per le combinazioni di calcolo statiche e sismiche descritte in precedenza, le sollecitazioni complessive agenti sugli elementi strutturali al fine di procedere con le verifiche di sicurezza previste dalle Normative di riferimento. Dallo stesso modello sono state poi ricavate le sollecitazioni agenti all'intradosso della soletta di fondazione necessarie ai fini delle verifiche geotecniche del sistema terreno-fondazione e delle verifiche strutturali.

Convenzione assi


 \mathbf{x} = asse trasversale dello scatolare

y = asse longitudinale dello scatolare

z = asse verticale dello scatolare

9.1 Modellazione strutturale : Scatolare

Il modello di calcolo attraverso il quale viene discretizzata la struttura è quello di telaio chiuso. Per simulare il comportamento del terreno di fondazione vengono inserite molle alla Winkler.

La soletta inferiore viene divisa in elementi per poter schematizzare, tramite molle applicate, l'interazione terreno- struttura.

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3 COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 21 di 54

Per la rigidezza delle molle, nell'opera in esame si considera un modulo di reazione verticale Kw pari a 5000 kN/m³. Tale valore viene valutato tramite la teoria di Bowles, note le dimensioni della fondazione dell'opera e il modulo elastico del terreno di fondazione:

$$k_{_{\rm h}} = \frac{E}{(1 - v^2) \cdot B \cdot c_{_{\rm h}}}$$

Dove:

E modulo elastico del terreno

v coefficiente di Poisson

B larghezza della fondazione

L lato maggiore della fondazione

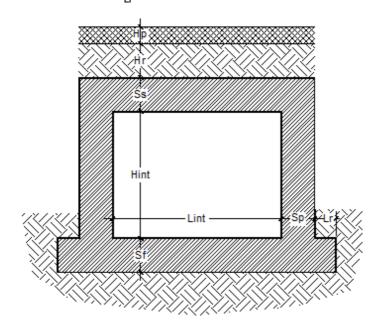
Ct fattore di forma (Bowles, 1960)

Kw coefficiente di sottofondo alla Winkler

Con questo valore si ricavano i valori delle singole molle:

Interasse molle	i	(0.40/2 + 3.00 + 0.40/2) / 10 =	0.34	m
Molle centrali	K1	5000 · 0.34 =	1 700	kN/m
Molle intermedie	K2	1.5 · 5000 · 0.34 =	2 550	kN/m
Molle laterali	K3	$2.0 \cdot 5000 \cdot (0.34/2 + 0.40/2) =$	3 700	kN/m
Molle risvolto	K4	-	0	kN/m

La rigidezza delle molle in corrispondenza dei piedritti è stata aumentata, seguendo le indicazioni riportate nella letteratura tecnica, al fine di tenere in conto l'irrigidimento apportato dai piedritti al solettone di fondo.


NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 22 di 54

9.2 Analisi dei carichi

Geometria

Caratteristiche materiali e terreno			
Calcestruzzo armato - Peso specifico	γ	25	kN/m³
Calcestruzzo armato - Tipo		C30/37	
Calcestruzzo armato - Res. caratt. cubica	R_{ck}	37	N/mm²
Calcestruzzo armato - Res. caratt. cilindrica	$_{\rm c}$ ${\sf f}_{\sf ck}$	30.7	N/mm²
Calcestruzzo armato - Modulo elastico	E	33000	N/mm²
Pacchetto stradale - Peso specifico	γ	24	kN/m³
Terreno del rilevato - Peso specifico	γ	19	kN/m³
Terreno del rilevato - Angolo di attrito	φ	35	0
Terreno di fondazione	_ Kw	5000	kN/m³
Condizioni ambientali per ver. a fessurazione		aggressive	
Ricoprimento Spessore pacchetto stradale	Нр	0.12	m
Spessore del rinterro	Hr	1.57	m
Geometria			
Spessore soletta superiore	Ss	0.40	m
Spessore soletta di fondazione	Sf	0.40	m
Spessore piedritti	Sp	0.40	m
Altezza netta	Hint	3.00	m
Larghezza netta	Lint	3.00	m
Lunghezza risvolti sol. inf.	Lr .	0.00	m

Tab. 4: Geometria del modello

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 23 di 54

Azioni elementari applicate

Carichi	permanenti
Calatta	

Soletta superiore				
Peso pacchetto stradale	Ps	0.12 · 24 =	2.88	kN/m²
Peso del rinterro	Pr	1.57 · 19 =	29.83	kN/m ²
Totale				kN/m²
Diametri aslatta inferiore				
Risvolti soletta inferiore	_			
Peso pacchetto stradale	Ps	-	0.00	kN/m²
Peso del rinterro	Pr	-	0.00	kN/m²
Totale			0.00	kN/m²
Carichi accidentali sulla copertura				
Tandem				
			1.00	
Ldiffusione x			1.60	m
Ldiffusione y			2.40	m
Impronta di carico x	Ld1	$1.60 + 2 \cdot (0.12 + (1.57) \cdot TAN(35^{\circ}) + 0.40/2) =$	4.37	m
Impronta di carico y	Ld2	$2.40 + 2 \cdot (0.12 + (1.57) \cdot TAN(35^{\circ}) + 0.40/2) =$	5.17	m
Impronta sull'impalcato		4.37 · 5.17 =	22.56	m²
carico q1 (totale)			600	kN
carico q1 (ripartito)	0	600 / 22.56 =	26.59	kN/m²
canco q1 (ripartito)	Q_{1K}	000 / 22.30 =	20.59	KIN/ III-
Carico distribuito				
	Ld3	$3.00 + 2 \cdot (0.12 + (1.57) \cdot TAN(35^{\circ}) + 0.40/2) =$	5.77	m
	q_{1K}	9.00 · (3.00 / 5.77) =	4.68	kN/m²
	-JTK	(/ /		,

Per il calcolo della lunghezza caratteristica si fa riferimento a:

Caso 5.3 pag. 41 di 481 Manuale Parte II - Sezione II - Ponti

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3 COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO
RS3Z 00 D26 NV2403001 B 24 di 54

Frenamento q3				
q3	q3	$180 < 0.6(2Q_{1k}) + 0.10q_{1k}$ ·w·L < 900 kN	64.21	kN/m
Azione termica				
Variazione termica uniforme	ΔT_U		0	0
Variazione termica di iliornie Variazione termica a farfalla	$\Delta T_{\rm F}$		0	0
Variazione termica uniforme di calcolo	•	0 / 2 =	0	0
Variazione termica di iliornie di calcolo Variazione termica a farfalla di calcolo	ΔT_{F*}	0/2=	0.00	0
variazione termica a farfalla di calcolo	Δ 1F*	0 / 2 -	0.00	
Ritiro (applicato alla soletta superiore)	ΔT_{R}		-10	0
Spinta del terreno				
K0		1 - sen (35°) =	0.426	
Spinta alla quota di estradosso sol. sup.	p1	0.426 · 32.71 =	13.95	kN/m²
Spinta in asse sol. sup.	p2	0.426 · (32.71 + 19·0.40/2) =	15.57	kN/m²
Spinta in asse sol. inf.	p3	$0.426 \cdot [32.71 + 19 \cdot (0.40/2 + 3.00 + 0.40/2)] =$	43.12	kN/m²
Spinta alla quota di intradosso sol. inf.	p4	0.426 · [32.71 + 19·(0.40/2+3.00+0.40)] =	44.74	kN/m²
Spinta semispessore sol. sup.	F1	(13.95+15.57)/2 · 0.40/2	2.95	kN/m
Spinta semispessore sol. inf.	F2	(43.12+44.74)/2 · 0.40/2	8.79	kN/m
Spinta del carico accidentale				
Spinta dovuta al q1	p	0.426 · (26.59+4.68) =	13.34	kN/m²
Sisma orizzontale				
Stato limite		Salvaguardia della vita - SLU -	SLV	
Vita nominale	V_N		50	anni
Classe d'uso	Cu		III	
Coefficiente C _U	C_U		1.5	
Periodo di riferimento	V_R		75	anni
accelerazione orizzontale	a _g /g		0.102	
amplificazione spettrale	Fo		2.622	
Categoria sottosuolo		A, B, C, D, E	С	
Coeff. Amplificazione stratigrafica	Ss		1.500	
Coeff. Amplificazione topografica	St		1	
Coefficiente S	S	=Ss·St	1.500	
accellerazione orizzontale max	a _{max} /g	=ag/g·S	0.153	
Fattore di struttura	q		1.00	
Forza orizz. sul s. di cop. dovuta a perm+0.2acc.	FHs	0.153 · (0.40·25 + 32.71 + 0.2·31.28) / 1.00 =	7.49	kN/m²
Forza orizz. sui piedritti	FHp	0.153 · (0.40 · 25) / 1.00 =		kN/m ²
Spinta del terreno in fase sismica				
Coefficiente sismico orizzontale	k_h	=a _{max} /g	0.153	
Coefficiente sismico verticale	k _v	$=\pm 0.5$ ·k _h	0.077	
	v	191	3.0,7	
Risultante della spinta sismica	ΔS_{E}	= $(amax/g) \cdot \gamma \cdot [(Hint+Ss+Sf+Hr)^2]$	83.8	kN/m
Pressione risultante	Δp_{E}	= $\Delta SE / [(Hint+Ss/2+Sf/2)]$	16.9	kN/m²

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 25 di 54

9.3 Combinazioni

N		PERM	PERM-G2	Q1-M	Q1-T	Q2	Q3	SPTSX	SPTDX	SPACCSX	SPACCDX	TERM	RITIRO	SISMAH	SPSDX
01	01S1-11M	1.35	1.50	1.35	0.0	1.35	0.0	1.00	1.00	0.0	0.0	0.9	0.0	0.0	0.0
02	02S1-11T	1.35	1.50	0.0	1.35	1.35	0.0	1.00	1.00	0.0	0.0	0.9	0.0	0.0	0.0
03	03S1-12M	1.35	1.50	1.35	0.0	1.35	0.0	1.35	1.35	1.35	1.35	0.9	0.0	0.0	0.0
04	04S1-12T	1.35	1.50	0.00	1.35	1.35	0.0	1.35	1.35	1.35	1.35	0.9	0.0	0.0	0.0
05	05S1-13M	1.35	1.50	1.35	0.0	1.35	0.0	1.00	1.35	0.0	1.35	0.9	0.0	0.0	0.0
06	06S1-13T	1.35	1.50	0.0	1.35	1.35	0.0	1.00	1.35	0.0	1.35	0.9	0.0	0.0	0.0
07	07S1-14-	1.35	1.50	0.0	0.0	0.0	0.0	1.35	1.35	1.35	1.35	0.9	0.0	0.0	0.0
08	08S1-15-	1.35	1.50	0.0	0.0	0.0	0.0	1.00	1.35	0.0	1.35	0.9	0.0	0.0	0.0
09	09S1-21M	1.35	1.50	1.35	0.0	1.35	0.0	1.00	1.00	0.0	0.0	-0.9	1.2	0.0	0.0
10	10S1-21T	1.35	1.50	0.0	1.35	1.35	0.0	1.00	1.00	0.0	0.0	-0.9	1.2	0.0	0.0
11	11S1-22M	1.35	1.50	1.35	0.0	1.35	0.0	1.35	1.35	1.35	1.35	-0.9	1.2	0.0	0.0
12	12S1-22T	1.35	1.50	0.0	1.35	1.35	0.0	1.35	1.35	1.35	1.35	-0.9	1.2	0.0	0.0
13	13S1-23M	1.35	1.50	1.35	0.0	1.35	0.0	1.00	1.35	0.0	1.35	-0.9	1.2	0.0	0.0
14	14S1-23T	1.35	1.50	0.0	1.35	1.35	0.0	1.00	1.35	0.0	1.35	-0.9	1.2	0.0	0.0
15	15S1-24-	1.35	1.50	0.0	0.0	0.00	0.0	1.35	1.35	1.35	1.35	-0.9	1.2	0.0	0.0
16	16S1-25-	1.35	1.50	0.0	0.0	0.00	0.0	1.00	1.35	0.0	1.35	-0.9	1.2	0.0	0.0
17	17S1T11M	1.35 1.35	1.50 1.50	1.01 0.0	0.0	0.54 0.54	0.0 0.0	1.00 1.00	1.00	0.0 0.0	0.0	1.5	0.0 0.0	0.0 0.0	0.0
18	18S1T11T	1.35	1.50	1.01	1.01	0.54	0.0	1.00	1.00 1.35	1.01	1.01	1.5 1.5	0.0	0.0	0.0
19 20	19S1T12M 20S1T12T	1.35	1.50	0.00	1.01	0.54	0.0	1.35	1.35	1.01	1.01	1.5	0.0	0.0	0.0
21	21S1T12T	1.35	1.50	1.01	0.0	0.54	0.0	1.00	1.35	0.0	1.01	1.5	0.0	0.0	0.0
22	22S1T13F	1.35	1.50	0.0	1.01	0.54	0.0	1.00	1.35	0.0	1.01	1.5	0.0	0.0	0.0
23	23S1T14-	1.35	1.50	0.0	0.0	0.0	0.0	1.35	1.35	1.01	1.01	1.5	0.0	0.0	0.0
24	24S1T15-	1.35	1.50	0.0	0.0	0.0	0.0	1.00	1.35	0.0	1.01	1.5	0.0	0.0	0.0
25	25S1T21M	1.35	1.50	1.01	0.0	0.54	0.0	1.00	1.00	0.0	0.0	-1.5	1.2	0.0	0.0
26	26S1T21T	1.35	1.50	0.0	1.01	0.54	0.0	1.00	1.00	0.0	0.0	-1.5	1.2	0.0	0.0
27	27S1T22M	1.35	1.50	1.01	0.0	0.54	0.0	1.35	1.35	1.01	1.01	-1.5	1.2	0.0	0.0
28	28S1T22T	1.35	1.50	0.0	1.01	0.54	0.0	1.35	1.35	1.01	1.01	-1.5	1.2	0.0	0.0
29	29S1T23M	1.35	1.50	1.01	0.0	0.54	0.0	1.00	1.35	0.0	1.01	-1.5	1.2	0.0	0.0
30	30S1T23T	1.35	1.50	0.0	1.01	0.54	0.0	1.00	1.35	0.0	1.01	-1.5	1.2	0.0	0.0
31	31S1T24-	1.35	1.50	0.0	0.0	0.0	0.0	1.35	1.35	1.01	1.01	-1.5	1.2	0.0	0.0
32	32S1T25-	1.35	1.50	0.0	0.0	0.0	0.0	1.00	1.35	0.0	1.01	-1.5	1.2	0.0	0.0
33	33S2-11M	1.35	1.50	1.01	0.0	0.54	1.35	1.00	1.00	0.0	0.0	0.9	0.0	0.0	0.0
34	34S2-11T	1.35	1.50	0.0	1.01	0.54	1.35	1.00	1.00	0.0	0.0	0.9	0.0	0.0	0.0
35	35S2-12M	1.35	1.50	1.01	0.0	0.54	1.35	1.35	1.35	1.01	1.01	0.9	0.0	0.0	0.0
36	36S2-12T	1.35	1.50	0.0	1.01	0.54	1.35	1.35	1.35	1.01	1.01	0.9	0.0	0.0	0.0
37	37S2-13M	1.35	1.50	1.01	0.0	0.54	1.35	1.00	1.35	0.0	1.01	0.9	0.0	0.0	0.0
38	38S2-13T	1.35	1.50	0.0	1.01	0.54	1.35	1.00	1.35	0.0	1.01	0.9	0.0	0.0	0.0
39	39S2-21M	1.35	1.50	1.01	0.0	0.54	1.35	1.00	1.00	0.0	0.0	-0.9	1.2	0.0	0.0
40	40S2-21T	1.35	1.50	0.0	1.01	0.54	1.35	1.00	1.00	0.0	0.0	-0.9	1.2	0.0	0.0
41	41S2-22M	1.35	1.50	1.01	0.0	0.54	1.35	1.35	1.35	1.01	1.01	-0.9	1.2	0.0	0.0
42	42S2-22T	1.35	1.50	0.0	1.01	0.54	1.35	1.35	1.35	1.01	1.01	-0.9	1.2	0.0	0.0
43	43S2-23M	1.35	1.50	1.01	0.0	0.54	1.35	1.00	1.35	0.0	1.01	-0.9	1.2	0.0	0.0
44	44S2-23T	1.35	1.50	0.0	1.01	0.54	1.35	1.00	1.35	0.0	1.01	-0.9	1.2	0.0	0.0
45	45S2T11M	1.35	1.50	1.01	0.0	0.54	0.0	1.00	1.00	0.0	0.0	1.5	0.0	0.0	0.0
46	46S2T11T	1.35	1.50	0.0	1.01	0.54	0.0	1.00	1.00	0.0	0.0	1.5	0.0	0.0	0.0
47	47S2T12M	1.35	1.50	1.01	0.0	0.54	0.0	1.35	1.35	1.01	1.01	1.5	0.0	0.0	0.0
48	48S2T12T	1.35	1.50	0.0	1.01	0.54	0.0	1.35	1.35	1.01	1.01	1.5	0.0	0.0	0.0
49	49S2T13M	1.35	1.50	1.01	0.0	0.54	0.0	1.00	1.35	0.0	1.01	1.5	0.0	0.0	0.0
50	50S2T13T	1.35	1.50	0.0	1.01	0.54	0.0	1.00	1.35	0.0	1.01	1.5	0.0	0.0	0.0
51	51S2T21M	1.35	1.50	1.01	0.0	0.54	0.0	1.00	1.00	0.0	0.0	-1.5	1.2	0.0	0.0
52	52S2T21T	1.35	1.50	0.0	1.01	0.54	0.0	1.00	1.00	0.0	0.0	-1.5	1.2	0.0	0.0
53	53S2T22M	1.35	1.50	1.01	0.0	0.54	0.0	1.35	1.35	1.01	1.01	-1.5	1.2	0.0	0.0
54	54S2T22T	1.35	1.50	0.0	1.01	0.54	0.0	1.35	1.35	1.01	1.01	-1.5	1.2	0.0	0.0
55	55S2T23M	1.35	1.50	1.01	0.0	0.54	0.0	1.00	1.35	0.0	1.01	-1.5	1.2	0.0	0.0
56	56S2T23T	1.35	1.50	0.0	1.01	0.54	0.0	1.00	1.35	0.0	1.01	-1.5	1.2	0.0	0.0
57	57SED1-	1.00	1.00	0.20	0.00	0.20	0.0	0.70	1.00	0.0	0.2	0.5	0.0	1.0	1.0
58	58SED2-	1.00	1.00	0.20	0.00	0.20	0.0	0.70	1.00	0.0	0.2	-0.5	1.0	1.0	1.0
•															

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 26 di 54

N		PERM	PERM-G2	Q1-M	Q1-T	Q2	Q3	SPTSX	SPTDX	SPACCSX	SPACCDX	TERM	RITIRO	SISMAH	SPSDX
59	59Q1-11-	1.00	1.00	0.0	0.0	0.0	0.0	0.70	0.70	0.0	0.0	0.5	0.0	0.0	0.0
60	60Q1-12-	1.00	1.00	0.0	0.0	0.0	0.0	1.00	1.00	0.0	0.0	0.5	0.0	0.0	0.0
61	61Q1-13-	1.00	1.00	0.0	0.0	0.0	0.0	0.70	1.00	0.0	0.0	0.5	0.0	0.0	0.0
62	62Q1-21-	1.00	1.00	0.0	0.0	0.0	0.0	0.70	0.70	0.0	0.0	-0.5	1.0	0.0	0.0
63	63Q1-22-	1.00	1.00	0.0	0.0	0.0	0.0	1.00	1.00	0.0	0.0	-0.5	1.0	0.0	0.0
64	64Q1-23-	1.00	1.00	0.0	0.0	0.0	0.0	0.70	1.00	0.0	0.0	-0.5	1.0	0.0	0.0
65	65F1-11M	1.00	1.00	0.75	0.0	0.40	0.0	0.70	0.70	0.0	0.0	0.5	0.0	0.0	0.0
66	66F1-11T	1.00	1.00	0.0	0.75	0.40	0.0	0.70	0.70	0.0	0.0	0.5	0.0	0.0	0.0
67	67F1-12M	1.00	1.00	0.75	0.0	0.40	0.0	1.00	1.00	0.75	0.75	0.5	0.0	0.0	0.0
68	68F1-12T	1.00	1.00	0.0	0.75	0.40	0.0	1.00	1.00	0.75	0.75	0.5	0.0	0.0	0.0
69	69F1-13M	1.00	1.00	0.75	0.0	0.40	0.0	0.70	1.00	0.0	0.75	0.5	0.0	0.0	0.0
70	70F1-13T	1.00	1.00	0.0	0.75	0.40	0.0	0.70	1.00	0.0	0.75	0.5	0.0	0.0	0.0
71	71F1-14-	1.00	1.00	0.0	0.0	0.0	0.0	1.00	1.00	0.75	0.75	0.5	0.0	0.0	0.0
72	72F1-15-	1.00	1.00	0.0	0.0	0.0	0.0	0.70	1.00	0.0	0.75	0.5	0.0	0.0	0.0
73	73F1-21M	1.00	1.00	0.75	0.0	0.40	0.0	0.70	0.70	0.0	0.0	-0.5	1.0	0.0	0.0
74	74F1-21T	1.00	1.00	0.0	0.75	0.40	0.0	0.70	0.70	0.0	0.0	-0.5	1.0	0.0	0.0
75	75F1-22M	1.00	1.00	0.75	0.0	0.40	0.0	1.00	1.00	0.75	0.75	-0.5	1.0	0.0	0.0
76	76F1-22T	1.00	1.00	0.0	0.75	0.40	0.0	1.00	1.00	0.75	0.75	-0.5	1.0	0.0	0.0
77	77F1-23M	1.00	1.00	0.75	0.0	0.40	0.0	0.70	1.00	0.0	0.75	-0.5	1.0	0.0	0.0
78	78F1-23T	1.00	1.00	0.0	0.75	0.40	0.0	0.70	1.00	0.0	0.75	-0.5	1.0	0.0	0.0
79	79F1-24-	1.00	1.00	0.0	0.0	0.0	0.0	1.00	1.00	0.75	0.75	-0.5	1.0	0.0	0.0
80	80F1-25-	1.00	1.00	0.0	0.0	0.0	0.0	0.70	1.00	0.0	0.75	-0.5	1.0	0.0	0.0
81	81C025-	1.00	1.00	1.00	0.0	1.00	0.0	1.00	1.00	0.00	1.00	0.6	1.0	0.0	0.0
82	82C025-	1.00	1.00	1.00	0.0	1.00	0.0	1.00	1.00	0.00	1.00	-0.6	1.0	0.0	0.0
83	83C025-	1.00	1.00	0.75	0.0	0.40	1.0	1.00	1.00	0.00	0.75	0.6	1.0	0.0	0.0
84	84C025-	1	1.00	0.75	0	0.4	1	1	1	0	0.75	-0.6	1	0	0

dove:

PERM : carichi permanenti strutturali PERM-G2 : carichi permanenti non strutturali

Q1k-M : carichi da traffico concentrato (disposizione per massimizzare il momento)
Q1K-T : carichi da traffico concentrato (disposizione per massimizzare il taglio)
Q2-M : carichi da traffico distribuito (disposizione per massimizzare il momento)
Q2-T : carichi da traffico distribuito (disposizione per massimizzare il taglio)

Q3 : azione longitudinale di frenamento
SPTSx : spinta del terreno sulla parete sx
SPTDx : spinta del terreno sulla parete dx

SPACCSx : spinta del carico accidentale sulla parete sx **SPACCD**x : spinta del carico accidentale sulla parete sx

TERM : termica **RITIRO** : ritiro

SISMAH : azione sismica

SISDX : incremento sismico della spinta del terreno

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 27 di 54

9.4 Sollecitazioni

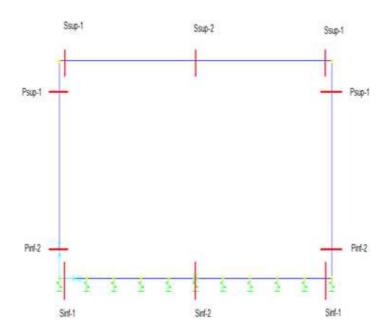


Figura 9.1 - Sezioni di verifica

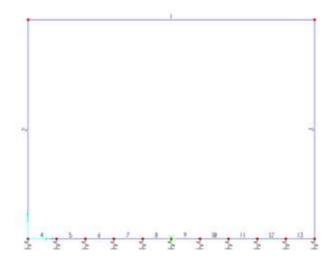


Figura 9.2 - Nomenclatura frame

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 28 di 54

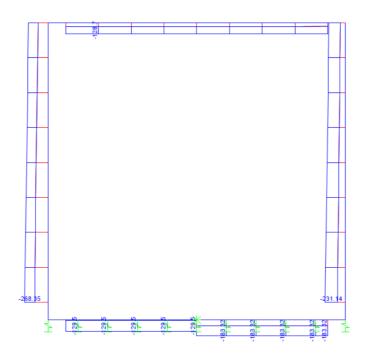


Figura 9.3 - Sforzo Normale – Inviluppo SLU

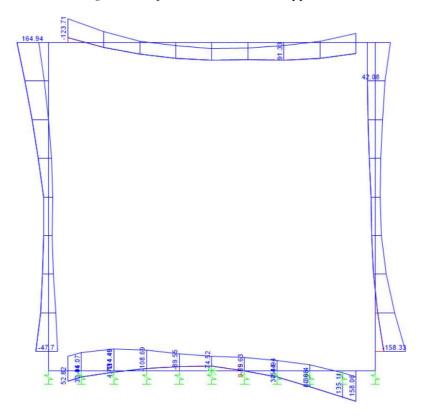


Figura 9.4 - Momento flettente – Inviluppo SLU

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 29 di 54

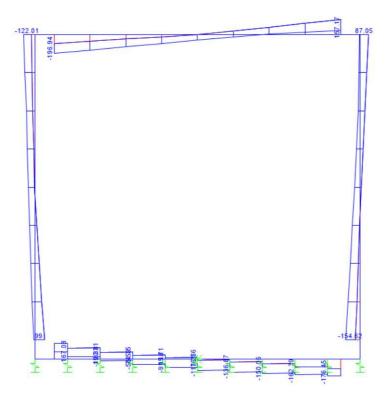


Figura 9.5 - Taglio - Inviluppo SLU

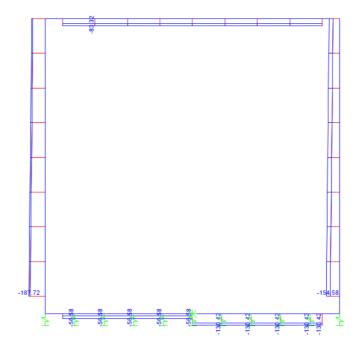


Figura 9.6 - Sforzo Normale – Inviluppo SLE-Rara

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 30 di 54

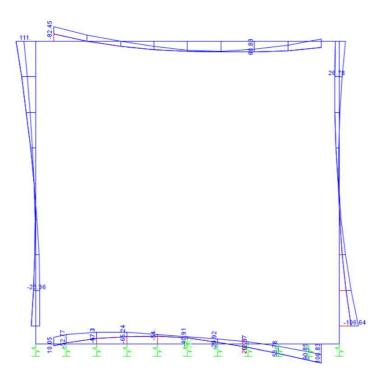


Figura 9.7 - Momento flettente – Inviluppo SLE-Rara

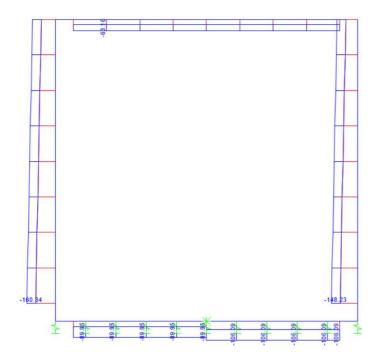


Figura 9.8 - Sforzo Normale – Inviluppo SLE-Frequente

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 31 di 54

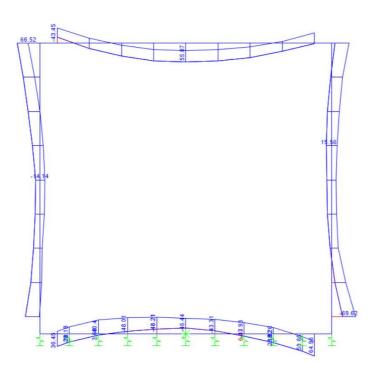


Figura 9.9 - Momento flettente – Inviluppo SLE-Frequente

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 32 di 54

9.5 Verifiche strutturali

9.5.1 Verifica piedritti

Sezione: 40 x 100 cm

Armatura a flessione:

• Sommità (Pied-Sommità)

Armatura tesa

\$ 20/20 cm

Armatura compressa

\$ 20/20 cm

• Spiccato (Pied-Spicc)

Armatura tesa

\$ 20/20 cm

Armatura compressa

\$ 20/20 cm

Armatura a taglio:

Spille \(\psi \) 12/20x40 cm.

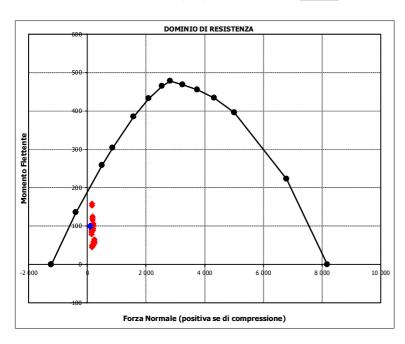
NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 33 di 54

• Verifica a pressoflessione spiccato (Pied-Spicc)

Acciaio				
Tensione car. di rottura	f_{tk}	=	540	N/mm ²
Tensione car. di snervamento	f_{yk}	=	450	N/mm ²
Coeff. parziale di sicurezza	Ϋ́s	=	1.15	
Resistenza di calcolo	f_{yd}	=	391	N/mm ²
Modulo elastico	E_s	=	200000	N/mm ²
	ϵ_{yd}	=	0.00196	

Calcestruz:	Calcestruzzo						
Tipo	C30/37						
R_{ck}	37	N/mm ²					
f_{ck}	30.71	N/mm ²					
Ϋ́c	1.5						
f_{cd}	20.5	N/mm ²					
f_{cc}	17.4	N/mm ²					


copriferro	50	mm
staffe	12	mm
armat. sec	12	mm

Geometria della sezione				
Altezza geometrica della sezio	nh	=	40	cm
Base della sezione	b	=	100	cm
Copriferro	ď'	=	8.4	cm
Altezza utile della sezione	d	=	31.6	cm

Armatura 1	tesa		
Nº ferri	Diametro	Area	
5	20	15.71	cm ²
		0.00	cm ²
		0.00	cm ²
		15.71	cm ²

Armatura	compressa		
Nº ferri	Diametro	Area	
5	20	15.71	cm ²
		0.00	cm ²
		0.00	cm ²
		15.71	cm ²

	Caratteristi	Caratteristiche di sollecitazione					
	Comb.	Comb. Nsd Msd					
(Nmax)	11M_0.2	231	55				
(Nmin)	10.2	90	98				
(Mmax)	23M_0.2	0	158				
(Mmin)	140.2	0	45				

Caratteristi	che di solle	itazione
Comb.	Nsd	Msd
01S1-11M	231	55
02S1-11T	231	55
	231	
03S1-12M	231	61
04S1-12T 05S1-13M	212	61
		101
06S1-13T	212	101
07S1-14-	159	46
08S1-15-	141	86
09S1-21M	231	60
10S1-21T	231	60
11S1-22M	231	65
12S1-22T	231	65
13S1-23M	212	106
14S1-23T	212	106
15S1-24-	159	50
16S1-25-	141	91
17S1T11M	209	51
18S1T11T	209	51
19S1T12M	209	55
20S1T12T	209	55
21S1T13M	194	89
22S1T13T	194	89
23S1T14-	159	45
24S1T15-	144	79
25S1T21M	209	55
26S1T21T	209	55
27S1T22M	209	60
28S1T22T	209	60
29S1T23M	194	93
30S1T23T	194	93
31S1T24-	159	49
32S1T25-	144	83
	_	_
33S2-11M	166	116
34S2-11T	166	116
35S2-12M	166	120
36S2-12T	166	120
37S2-13M	151	154
38S2-13T	151	154
39S2-21M	166	120
40S2-21T	166	120
41S2-22M	166	125
42S2-22T	166	125
43S2-23M	151	158
14S2-23T	151	158
45S2T11M	209	51
46S2T11T	209	51
47S2T12M	209	55
48S2T12T	209	55
49S2T13M	194	89
50S2T13T	194	89
51S2T21M	209	55
52S2T21T	209	55
53S2T22M	209	60
54S2T22T	209	60
55S2T23M	194	93
		93
56S2T23T	194	
56S2T23T 57SED1- 58SED2-	90 90	98 102

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 34 di 54

• Verifica a pressoflessione sommità (Pied-Sommità)

Acciaio				
Tensione car. di rottura	f_{tk}	=	540	N/mm ²
Tensione car. di snervamento	f_{yk}	=	450	N/mm²
Coeff. parziale di sicurezza	Υs	=	1.15	
Resistenza di calcolo	f_{yd}	=	391	N/mm²
Modulo elastico	E_s	=	205000	N/mm²
	ϵ_{vd}	=	0.00191	

Calcestruzzo						
Tipo	C30/37					
R_{ck}	37	N/mm ²				
f_{ck}	30.71	N/mm ²				
Yc	1.5					
f_{cd}	20.5	N/mm ²				
f_{cc}	17.4	N/mm ²				

copriferro	50	mm
staffe	12	mm
armat. sec	12	mm

Geometria della sezione				
Altezza geometrica della sezio	nh	=	40	cm
Base della sezione	b	=	100	cm
Copriferro	ď'	=	8.4	cm
Altezza utile della sezione	d	=	31.6	cm

Armatura tesa				
Nº ferri	Diametro	Area		
5	20	15.71	cm ²	
		0.00	cm ²	
		0.00	cm ²	
,		15.71	cm ²	

Armatura compressa					
Nº ferri	Diametro	Area			
5	20	15.71	cm ²		
		0.00	cm ²		
		0.00	cm ²		
		15.71	cm²		

	Caratterist	Caratteristiche di sollecitazione			
	Comb.	Nsd	Msd		
(Nmax)	13M_3.4	225	165		
(Nmin)	143.4	116	57		
(Mmax)	13M_3.4	0	165		
(Mmin)	243.4	0	50		

r	600-	T	DOMINI	O DI RESISTEN	ZA		
-	500		200	•			***************************************
	400			1			
ettente	300	-			\downarrow		
Momento Flettente	200						
Mor					\		
	100						
-20	00	2	000	4 000	6 000	8 doo	10 000
L	100	Forza	a Normale (po	sitiva se di con	npressione)		

	che di solle	
Comb.	Nsd	Msd
01S1-11M	188	66
02S1-11T	188	66
03S1-12M	188	80
04S1-12T	188	80
05S1-13M	207	105
06S1-13T	207	105
07S1-14-	116	57
08S1-15-	135	82
09S1-21M	188	61
10S1-21T	188	61
11S1-22M	188	75
12S1-22T	188	75
13S1-23M	207	100
14S1-23T	207	100
15S1-24-	116	53
16S1-25-	135	78
17S1T11M	166	59
18S1T11T	166	59
19S1T12M	166	71
20S1T12T	166	71
21S1T13M	182	91
22S1T13T	182	91
23S1T14-	116	55
24S1T15-	132	76
25S1T21M	166	54
26S1T21T	166	54
27S1T22M	166	66
28S1T22T	166	66
29S1T23M	182	86
30S1T23T	182	86
31S1T24-	116	50
32S1T25-	132	71
33S2-11M	210	133
	210	133
34S2-11T 35S2-12M	210	144
		144
	210	
37S2-13M 38S2-13T	225	165
	225	165
39S2-21M	210	128
40S2-21T	210	128
41S2-22M	210	140
42S2-22T	210	140
43S2-23M	225	160
44S2-23T	225	160
45S2T11M	166	59
46S2T11T	166	59
47S2T12M	166	71
48S2T12T	166	71
49S2T13M	182	91
50S2T13T	182	91
51S2T21M	166	54
52S2T21T	166	54
53S2T22M	166	66
54S2T22T	166	66
55S2T23M	182	86
56S2T23T	182	86
57SED1-	122	95
58SED2-	122	91

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D26	NV2403001	В	35 di 54

• Verifica a taglio

La verifica a taglio viene condotta nel seguente modo:

- 1. Verifica della sezione senza armatura al taglio → se VEd<VRd1 la verifica è soddisfatta;
- 2. Altrimenti si verifica la sezione con armatura a taglio → se VEd<VRd2 la verifica è soddisfatta.

Calces	Calcestruzzo				
Tipo	C30/37				
R_{ck}	37	N/mm ²			
R _{ck} f _{ck} γ _c	30.7	N/mm ²			
Yc	1.5				
α_{cc}	0.85				
$egin{array}{c} lpha_{cc} \ f_{cd} \end{array}$	17.4	N/mm²			

Acciaio		
f_{tk}	540	N/mm ²
f_{yk}	450	N/mm ²
Ϋ́s	1.15	
f_{yd}	391	N/mm²

Sollecitazioni			Piedritto sx	Piedritto da
V_{Ed}		kN	122	155
N_{Ed}	1	kN	0	(
Armatura a taglio		-		
Diametro		mm	12	17
Numero barre			2.5	2.
A_{sw}		cm ²	2.83	2.83
Passo s		cm	20	2
Angolo α	_	0	90	9
Armatura longitudinale	e			
າ ₁			5	5
\mathfrak{I}_1		mm	20	20
n ₂				
\emptyset_2		mm		
Asl		cm ²	15.71	15.71
		<u> </u>		
Sezione				
b_{w}	_	cm	100	10
Н	•	cm	40	4
2	•	cm	8.4	8.4
d		cm	31.6	31.
<		N/mm²	1.80	1.8
V _{min}		N/mm²	0.47	0.4
0			0.0050	0.005
эср		N/mm ²	0.00	0.0
a _c			1.00	1.0
Resistenza senza arma	ıtu	ra a tag	lio	
V_{Rd}		kN	169	169
		- 4"		
Resistenza con armatu Inclinazione puntone θ	ıra	a taglic	21.8	21.
V _{RSd}		kN	393	393
* K50		IM V		33.
V _{RCd}		kN	853	853

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

Valore medio dell'apertura delle fessure

Valore di calcolo dell'apertura delle fessure

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 36 di 54

• Verifica a fessurazione spiccato (Pied-Spicc)

= 8.4 cr
= 9.4 cr
= 8.4 cr
= `9.4 cr
zata
zata
1

0.08 mm

0.14 mm

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

Valore di calcolo dell'apertura delle fessure

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 37 di 54

Verifica a fessurazione sommità (Pied-Sommità)

Momento flettente - Combinazione rara	M _R	111.00	kNm	
Sforzo normale - Combinazionre rara	N _R	155.72	kN	_
Momento flettente - Combinazione frequente Sforzo normale - Combinazione frequente	M _F N _F	66.52 128.34	kNm kN	
3ioi 20 Hormale - Combinazione frequente	INF	120.54	NIN	_
Materiali				7
Resistenza caratteristica cubica calcestruzzo	R _{ck}	37	N/mm²	
Resistenza caratteristica cilindrica calcestruzzo Modulo elastico del calcestruzzo	f _{ck} E _{cm}	30.71 33019.43	N/mm ² N/mm ²	
Tensione ammissibile di compressione calcestruzzo	σ _{camm}	18.43	N/mm²	
Resistena media a trazione calcestruzzo	f _{ctm}	3.36	N/mm²	
Resistenza caratteristica a trazione calcestruzzo	f _{ctk}	2.35	N/mm²	
Tensione ammissibile di trazione calcestruzzo	σ_{tamm}	2.80	N/mm²	
Tensione di snervamento acciaio	f_{yk}	450.00	N/mm ²	
Modulo elastico dell'acciaio	E _s	205000.00	N/mm²	
Tensione ammissibile acciaio	σ_{samm}	360.00	N/mm²	
Coefficiente omogeneizzazione acciaio-calcestruzzo	n	15.00	-	_
Caratteristiche geometriche	ш	40.00	-cm	
Altezza sezione Larghezza sezione	H B	40.00 100.00	cm cm	
Armatura compressa (1º strato)	As ₁ '	15.71	cm ²	5 Ø 20 c _{s1} = 8.4
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²	0 Ø 0 c _{c2} = 9.4
Armatura tesa (1º strato)	As ₁	15.71	cm ²	5 Ø 20 c _{i1} = 8.4
Armatura tesa (2º strato)	As ₂	0.00	cm ²	0 Ø 0 c _{i2} = 9.4
Proprietà sezione in combinazione rara				
Eccentricità dello sfrozo normale	e (M)	71.28	cm	> H/6 Sez. parzializzata
Distanza sforzo N dal bordo sezione	u (M)	51.28	cm	
Posizione asse neutro	y (M)	11.34 4439.82	cm cm²	
Area ideale (sezione interamente reagente) Momento di inerzia ideale (sez. int. reag.)	A _{id}	596743.24	cm ⁴	
Momento di inerzia ideale (sez. inc. reag.)	J _{id} J _{id*}	147372.90	cm ⁴	
Fiornerico di merzia lacale (3cz. parz. N=0)	ji₫∗	147372.30	CIII	
Tensioni nei materiali Compressione max nel cls.	σ.	7.51	N/mm²	< OCamm
Trazione nell'acciaio (1º strato)	σ_c σ_s	201.07	N/mm²	< σc _{amm} < σa _{amm}
	-		-	
Proprietà sezione in combinazione frequente Eccentricità dello sfrozo normale	e (M)	51.83	cm	> H/6 Sez. parzializzata
Distanza sforzo N dal bordo sezione	u (M)	31.83	cm	> 11/0 Scz. parzianzzata
Posizione asse neutro	y (M)	12.01	cm	
Area ideale (sez. int. reagente)	A _{id}	4439.82	cm ²	
Momento di inerzia ideale (sez. int. reag.)	J_{id}	596743.24	cm ⁴	
Momento di inerzia ideale (sez. parz. N=0)	J _{id*}	151250.49	cm ⁴	
Verifica a fessurazione				
Momento di fessurazione (σ _{tamm})	M_{fess}	92.08	kNm	La sezione è fessurata
Eccentricità per M=M _{fess}	e (M _{fess})	71.75	cm	
Distanza sforzo N dal bordo sezione per M=M _{fess}	u (M _{fess})	51.75	cm	
Posizione asse neutro per M=M _{fess}	y (M _{fess})	11.33	cm	
Compressione massima nel cls. per M=M _{fess}	σ_{cf}	6.23 167.08	N/mm ² N/mm ²	
Trazione nell'acciaio (1° str.) per M=M _{fess} Coefficiente dipendente dalla durata del carico	σ _{sf} k _t	0.40	-	
·		0.50		
Altezza efficace Rapporto tra moduli elastici	h _{c,eff}	9.56 6.21	cm -	
Armatura nell'area efficace	α_e As _{eff}	15.71	- cm²	
Armatura nen area enicace Area efficace	AS _{eff} AC _{eff}	955.61	cm ²	
Rapporto geometrico di armatura	Peff	0.0164	-	
	Esm	0.0004	-	
		5.00	cm	
Deformazione unitaria media dell'armatura Copriferro netto	c'	5.00		
Deformazione unitaria media dell'armatura Copriferro netto	c' K ₁	0.80	-	
Deformazione unitaria media dell'armatura Copriferro netto Coefficiente dipendente dall'aderenza dell'acciaio		*	-	
Deformazione unitaria media dell'armatura Copriferro netto Coefficiente dipendente dall'aderenza dell'acciaio Coefficiente dipendente dal diagramma tensioni	K_1	0.80	- - -	
Deformazione unitaria media dell'armatura	K ₁ K ₂	0.80 0.50	- - -	
Deformazione unitaria media dell'armatura Copriferro netto Coefficiente dipendente dall'aderenza dell'acciaio Coefficiente dipendente dal diagramma tensioni Coefficiente adimensionale Coefficiente adimensionale Diametro equivalente delle barr edi armatura	K ₁ K ₂ K ₃	0.80 0.50 3.40 0.425 20.00	- - - mm	
Deformazione unitaria media dell'armatura Copriferro netto Coefficiente dipendente dall'aderenza dell'acciaio Coefficiente dipendente dal diagramma tensioni Coefficiente adimensionale Coefficiente adimensionale Diametro equivalente delle barr edi armatura Distanza massima tra le fessure	$egin{array}{l} K_1 \\ K_2 \\ K_3 \\ K_4 \\ \Phi_{eq} \\ \Delta s_{max} \end{array}$	0.80 0.50 3.40 0.425 20.00 376.84	- - - mm mm	
Deformazione unitaria media dell'armatura Copriferro netto Coefficiente dipendente dall'aderenza dell'acciaio Coefficiente dipendente dal diagramma tensioni Coefficiente adimensionale Coefficiente adimensionale Diametro equivalente delle barr edi armatura	$egin{array}{c} K_1 \\ K_2 \\ K_3 \\ K_4 \\ \varphi_{eq} \end{array}$	0.80 0.50 3.40 0.425 20.00	- - - mm	

0.14 mm

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 38 di 54

9.5.2 Verifica soletta superiore

Sezione: 40 x 100 cm

Armatura a flessione:

• Appoggio (Solsup-App)

Armatura tesa

\$ 20/20 cm

Armatura compressa

\$ 20/20 cm

• Campata (Solsup-Camp)

Armatura tesa

ф 20/20 cm

Armatura compressa

ф 20/20 cm

Armatura a taglio:

Spille \(\psi \) 12/20x40 cm.

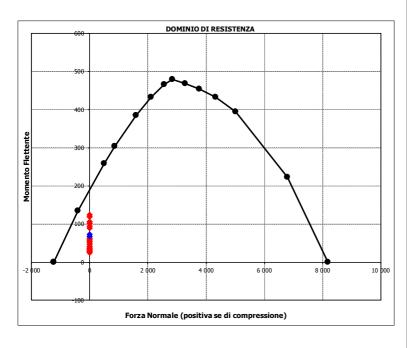
NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 39 di 54

• Verifica a pressoflessione appoggio (Solsup-App)

Acciaio				
Tensione car. di rottura	f_{tk}	=	540	N/mm ²
Tensione car. di snervamento	f_{yk}	=	450	N/mm ²
Coeff. parziale di sicurezza	Ϋ́s	=	1.15	
Resistenza di calcolo	f_{yd}	=	391	N/mm ²
Modulo elastico	Ės	=	205000	N/mm ²
	ϵ_{vd}	=	0.00191	

Calcestruzzo					
Tipo	C30/37				
R _{ck}	37	N/mm ²			
f_{ck}	30.71	N/mm ²			
Ϋ́c	1.5				
f_{cd}	20.5	N/mm ²			
f_{cc}	17.4	N/mm ²			


copriferro	50	mm
staffe	12	mm
armat. sec	. 12	mm

Geometria della sezione				
Altezza geometrica della sezio	nh	=	40	cm
Base della sezione	b	=	100	cm
Copriferro	ď'	=	8.4	cm
Altezza utile della sezione	d	=	31.6	cm

Armatura tesa					
Nº ferri	Diametro	Area			
5	20	15.71	cm ²		
		0.00	cm ²		
		0.00	cm ²		
		15.71	cm ²		

		15.71	cm ²		
		0.00	cm ²		
		0.00	cm ²		
5	20	15.71	cm ²		
Nº ferri	Diametro	Area			
Armatura compressa					

	Caratterist	Caratteristiche di sollecitazione				
	Comb.	Comb. Nsd Msd				
(Nmax)	11M_0.2	0	32			
(Nmin)	11M_0.2	0	32			
(Mmax)	13M_0.2	0	124			
(Mmin)	21M_0.2	0	25			

Caratteristi	che di solle	citazione
Comb.	Nsd	Msd
01S1-11M	0	32
02S1-11T	0	32
03S1-12M	0	46
04S1-12T	0	46
05S1-13M	0	67
06S1-13T	0	67
07S1-14-	0	37
08S1-15-	0	59
09S1-21M	0	27
10S1-21T	0	27
11S1-22M	0	41
12S1-22T	0	41
13C1-22I	0	62
13S1-23M 14S1-23T	0	62
15S1-24- 16S1-25-	0	33
	0	54
17S1T11M	0	30
18S1T11T	0	30
19S1T12M	0	41
20S1T12T	0	41
21S1T13M	0	59
22S1T13T	0	59
23S1T14-	0	35
24S1T15-	0	53
25S1T21M	0	25
26S1T21T	0	25
27S1T22M	0	36
27S1T22M 28S1T22T	0	36
29S1T23M	0	54
30S1T23T	0	54
31S1T24-	0	30
32S1T25-	0	48
33S2-11M	0	95
34S2-11T	0	95
35S2-12M	0	106
36S2-12T	0	106
37S2-13M	0	124
38S2-13T	0	124
39S2-21M	0	90
40S2-21T	0	90
	0	101
41S2-22M 42S2-22T	0	101
43S2-23M	-	_
4352-2314	0	119
44S2-23T	0	119
45S2T11M	0	30
46S2T11T	0	30
47S2T12M	0	41
48S2T12T	0	41
49S2T13M	0	59
50S2T13T	0	59
51S2T21M	0	25
52S2T21T	0	25
53S2T22M	0	36
54S2T22T	0	36
55S2T23M	0	54
56S2T23T	0	54
57SED1-	0	73
58SED2-	0	69
		-

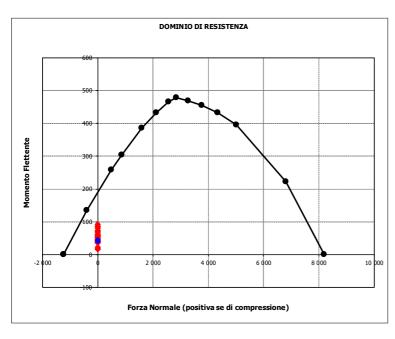
NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D26	NV2403001	В	40 di 54

• Verifica a pressoflessione campata (Solsup-Camp)

Acciaio				
Tensione car. di rottura	f_{tk}	=	540	N/mm ²
Tensione car. di snervamento	f_{yk}	=	450	N/mm²
Coeff. parziale di sicurezza	Ϋ́s	=	1.15	
Resistenza di calcolo	f_{yd}	=	391	N/mm²
Modulo elastico	Ės	=	205000	N/mm²
	Evd	=	0.00191	

Calcestruzzo						
Tipo	C30/37					
R_{ck}	37	N/mm ²				
f_{ck}	30.7	N/mm ²				
Yc	1.5					
f_{cd}	20.5	N/mm ²				
f_{cc}	17.4	N/mm²				


copriferro	50	mm
staffe	12	mm
armat. sec	12	mm

Geometria della sezione				
Altezza geometrica della sezio	nh	=	40	cm
Base della sezione	b	=	100	cm
Copriferro	ď'	=	8.4	cm
Altezza utile della sezione	d	=	31.6	cm

		15.71	cm ²
		0.00	cm ²
		0.00	cm ²
5	20	15.71	cm ²
Nº ferri	Diametro	Area	
Armatura	tesa		

		15.71	cm ²
		0.00	cm ²
		0.00	cm ²
5	20	15.71	cm ²
Nº ferri	Diametro	Area	
Armatura d	compressa		

	Caratteristi	Caratteristiche di sollecitazione				
	Comb.	Comb. Nsd Msd				
(Nmax)	11M_2.45	0	56			
(Nmin)	11M_2.45	0	56			
(Mmax)	23M_2.45	0	91			
(Mmin)	142.45	0	15			

Comb. Nsd Msd 01S1-11M 0 56 02S1-11T 0 56 03S1-12M 0 42 04S1-12T 0 42 05S1-13M 0 63 07S1-14- 0 15 08S1-15- 0 36 09S1-21M 0 61 10S1-21T 0 61 11S1-22M 0 47 12S1-22T 0 47 12S1-22T 0 47 13S1-23M 0 68 14S1-23T 0 68 15S1-24- 0 20 16S1-25- 0 41 17S1T11M 0 48 18S1T12M 0 36 20S1T12T 0 36 21S1T13M 0 54 22S1T13T 0 54 22S1T12T 0 35 25S1T21M 0 53 26S1T2T	Caratteristi	che di solle	citazione
02S1-11T 0 56 03S1-12M 0 42 04S1-12T 0 42 05S1-13M 0 63 06S1-13T 0 63 07S1-14- 0 15 08S1-15- 0 36 09S1-21M 0 61 11S1-22M 0 47 12S1-22T 0 47 13S1-23M 0 68 14S1-23T 0 68 15S1-24- 0 20 16S1-25- 0 41 17S1T11M 0 48 18S1T11T 0 48 18S1T11T 0 36 20S1T12T 0 36 21S1T13M 0 54 22S1T13T 0 35 25S1T21M 0 53 25S1T21M 0 53 25S1T21M 0 53 25S1T21M 0 53 25S1T21	Comb.	Nsd	Msd
03S1-12M 0 42 04S1-12T 0 42 05S1-13M 0 63 05S1-13T 0 63 07S1-14- 0 15 08S1-15- 0 66 09S1-21M 0 61 10S1-21T 0 61 11S1-22M 0 47 12S1-22T 0 47 13S1-23M 0 68 14S1-23T 0 68 14S1-23T 0 48 15S1-24-/- 0 20 16S1-25-/- 0 41 17S1T11M 0 48 18S1T11T 0 48 18S1T12T 0 36 21S1T13M 0 54 22S1T12T 0 36 21S1T13M 0 54 22S1T14T 0 18 24S1T15- 0 35 25S1T21M 0 53 25S	01S1-11M	0	56
04S1-12T 0 42 05S1-13M 0 63 06S1-13T 0 63 07S1-14+ 0 15 08S1-15- 0 36 09S1-21M 0 61 10S1-21T 0 61 11S1-22M 0 47 12S1-23T 0 68 14S1-23T 0 68 15S1-24+ 0 20 16S1-25- 0 41 17S1T11M 0 48 18S1T12M 0 36 20S1T12T 0 36 20S1T12T 0 36 21S1T13M 0 54 22S1T13T 0 54 23S1T14- 0 18 24S1T15- 0 35 25S1T21M 0 53 26S1T21T 0 35 25S1T21M 0 59 30S1T23T 0 59 30S1T24	02S1-11T	0	56
0551-13M	03S1-12M	0	42
06S1-13T 0 63 07S1-14- 0 15 08S1-15- 0 36 09S1-21M 0 61 10S1-21T 0 61 11S1-22M 0 47 12S1-22T 0 47 13S1-23M 0 68 14S1-23T 0 68 15S1-24- 0 20 16S1-25- 0 41 17S1T11M 0 48 18S1T11T 0 36 20S1T12T 0 36 21S1T13M 0 54 22S1T13T 0 54 23S1T14- 0 18 24S1T15- 0 35 25S1T21M 0 53 27S1T22M 0 41 28S1T2T 0 41 28S1T2T 0 41 28S1T2T 0 40 33S2-11M 0 59 31S1T24- </td <td>04S1-12T</td> <td>0</td> <td>42</td>	04S1-12T	0	42
06S1-13T 0 63 07S1-14- 0 15 08S1-15- 0 36 09S1-21M 0 61 10S1-21T 0 61 11S1-22M 0 47 12S1-22T 0 47 13S1-23M 0 68 14S1-23T 0 68 15S1-24- 0 20 16S1-25- 0 41 17S1T11M 0 48 18S1T11T 0 36 20S1T12T 0 36 21S1T13M 0 54 22S1T13T 0 54 23S1T14- 0 18 24S1T15- 0 35 25S1T21M 0 53 27S1T22M 0 41 28S1T2T 0 41 28S1T2T 0 41 28S1T2T 0 40 33S2-11M 0 59 31S1T24- </td <td>05S1-13M</td> <td>0</td> <td>63</td>	05S1-13M	0	63
0851-15- 0 36 0851-21M 0 61 1051-21T 0 61 1151-22M 0 47 1251-22T 0 47 1251-22T 0 47 1351-23M 0 68 1451-23T 0 68 1551-24- 0 20 1651-25- 0 41 1751T11M 0 48 1851T11T 0 48 1851T12T 0 36 2051T12T 0 36 2151T13M 0 54 2251T13T 0 54 2251T14 0 18 2451T15- 0 35 2551T21M 0 53 2551T21M 0 53 2551T21M 0 53 2551T22M 0 41 2851T22T 0 41 2851T22M 0 41 2851T24-		0	63
0851-15- 0 36 0851-21M 0 61 1051-21T 0 61 1151-22M 0 47 1251-22T 0 47 1251-22T 0 47 1351-23M 0 68 1451-23T 0 68 1551-24- 0 20 1651-25- 0 41 1751T11M 0 48 1851T11T 0 48 1851T12T 0 36 2051T12T 0 36 2151T13M 0 54 2251T13T 0 54 2251T14 0 18 2451T15- 0 35 2551T21M 0 53 2551T21M 0 53 2551T21M 0 53 2551T22M 0 41 2851T22T 0 41 2851T22M 0 41 2851T24-	07S1-14-	0	15
0951-21M 0 61 10S1-21T 0 61 11S1-22M 0 47 12S1-22T 0 47 13S1-23M 0 68 14S1-23T 0 68 14S1-23T 0 68 15S1-24- 0 20 16S1-25- 0 41 17SIT11M 0 48 18SIT11T 0 36 20SIT12T 0 36 20SIT12T 0 36 21SIT13M 0 54 23SIT14- 0 18 24SIT15- 0 35 25SIT21M 0 53 27SIT22M 0 41 28SIT2T 0 41 28SIT2T 0 41 28SIT2T 0 41 28SIT2T 0 41 28SIT2M 0 59 31SIT24- 0 22 33S2-11M <td>08S1-15-</td> <td>0</td> <td>36</td>	08S1-15-	0	36
11S1-22M 0 47 12S1-22T 0 47 12S1-23M 0 68 14S1-23T 0 68 14S1-23T 0 68 15S1-24- 0 20 16S1-25- 0 41 17S1T11M 0 48 18S1T12T 0 36 20S1T12T 0 36 21S1T13M 0 54 22S1T14- 0 18 23S1T14- 0 35 25S1T21M 0 53 25S1T21M 0 53 25S1T21M 0 53 25S1T22M 0 41 28S1T22T 0 41 29S1T23M 0 59 30S1T23T 0 59 31S1T24- 0 22 32S21D 0 69 35S2-1M 0 69 35S2-1M 0 69 36S2-1T <td></td> <td>0</td> <td></td>		0	
1251-22T	10S1-21T	0	61
1251-22T	11S1-22M	0	47
14S1-23T 0 68 15S1-24- 0 20 16S1-25- 0 41 17S1T11M 0 48 18S1T11T 0 48 18S1T11T 0 36 20S1T12T 0 36 21S1T13M 0 54 22S1T14- 0 18 24S1T15- 0 35 25S1T21M 0 53 26S1T21T 0 35 25S1T21M 0 53 26S1T22T 0 41 28S1T22T 0 41 29S1T23M 0 59 30S1T23T 0 59 31S1T24- 0 22 32S211D 0 69 36S2-12T 0 69 36S2-12T 0 69 36S2-12T 0 69 36S2-13T 0 86 39S2-21M 0 85 40S2-21T	12S1-22T	0	47
15S1-24	13S1-23M	0	68
15S1-24	14S1-23T	0	68
16S1-25- 0 41 17SIT11M 0 48 17SIT11M 0 48 18SIT1TI 0 36 20SIT12M 0 36 21SIT13M 0 54 22SIT13T 0 54 23SIT14- 0 18 24SIT15- 0 35 25S1T21M 0 53 27SIT22M 0 41 28SIT2T 0 41 28SIT23M 0 59 30SIT23T 0 59 31SIT24- 0 22 32S211M 0 81 34S2-11T 0 81 35S2-12M 0 69 36S2-12T 0 69 36S2-13T 0 86 39S2-21M 0 85 40S2-21T 0 85 40S2-21T 0 85 41S2-22M 0 74 42S2-22T<	15S1-24-	0	20
1751T11M		0	
18S1T11T 0 48 19S1T12M 0 36 20S1T12T 0 36 21S1T13M 0 54 22S1T13T 0 54 23S1T14- 0 18 23S1T15- 0 35 25S1T21M 0 53 26S1T21T 0 33 27S1T22M 0 41 29S1T23M 0 59 30S1T23T 0 59 31S1T24- 0 22 32S211D 0 81 34S2-11T 0 81 34S2-11T 0 81 35S2-12M 0 69 36S2-13T 0 69 36S2-13T 0 86 39S2-21M 0 85 40S2-21T 0 85 40S2-21T 0 85 40S2-21T 0 85 41S2-22M 0 74 43S2-23M	17S1T11M	0	48
1951T12M			48
20S1T12T 0 36			
21S1T13M 0 54 22S1T13T 0 54 22S1T14+ 0 18 24S1T15- 0 35 25S1T21M 0 53 26S1T21T 0 41 28S1T22M 0 41 28S1T23M 0 59 30S1T23T 0 59 31S1T24+ 0 22 32S1T25- 0 40 33S2-11M 0 81 35S2-12T 0 69 36S2-12T 0 69 37S2-13M 0 86 39S2-21M 0 85 40S2-21T 0 85 40S2-21T 0 86 39S2-21M 0 85 40S2-21T 0 85 40S2-21T 0 85 40S2-22T 0 74 42S2-22T 0 74 42S2-22T 0 74 45S2T11		0	36
2251T13T 0			
23S1T14+	22S1T13T	_	
24S1T15- 0 35 25S1T21M 0 53 25S1T21T 0 53 27S1T22M 0 41 28S1T22T 0 41 28S1T22T 0 41 28S1T23T 0 59 31S1T24- 0 22 33S2-11M 0 81 34S2-11T 0 81 35S2-12M 0 69 36S2-12T 0 69 36S2-13T 0 86 39S2-21M 0 85 40S2-21T 0 85 40S2-22T 0 74 42S2-22T 0 74 45S2-11M 0 48 45S2T1IM 0 48 46S2T1IT 0 48 48S2T12			
25S1T21M 0 53 26S1T21T 0 53 26S1T21T 0 53 27S1T22M 0 41 28S1T22T 0 41 29S1T23M 0 59 30S1T23T 0 59 30S1T23T 0 59 31S1T24- 0 22 32S1T25- 0 40 33S2-11M 0 81 34S2-11T 0 81 34S2-11T 0 89 36S2-12T 0 69 36S2-12T 0 69 37S2-13M 0 86 39S2-21M 0 85 40S2-21T 0 85 41S2-22M 0 74 42S2-22T 0 74 43S2-23M 0 91 44S2-23T 0 91 45S2T11M 0 48 46S2T11T 0 48 47S2T12M 0 36 48S2T12T 0 36 48S2T12T 0 36 48S2T12T 0 36 48S2T12T 0 55 55S2T21M 0 53 55S2T21M 0 54 55S2T21M 0 53 55S2T21M 0 53 55S2T21M 0 54 55S2T21M 0 53 55S2T22M 0 59 57SED1- 0 41			
26S1T21T 0 53 27S1T22M 0 41 28S1T22T 0 41 28S1T22T 0 41 29S1T23M 0 59 30S1T23T 0 59 31S1T24- 22 32S2S1T25- 0 40 33S2-11M 0 81 34S2-11T 0 81 35S2-12M 0 69 37S2-13M 0 69 38S2-13T 0 86 38S2-13T 0 86 39S2-21M 0 85 40S2-21T 0 85 41S2-22M 0 74 42S2-22T 0 74 42S2-22T 0 91 44S2-23T 0 91 45S2T11M 0 48 47S2T12M 0 36 48S2T11T 0 48 47S2T12M 0 54 50S2T13T 0 54 50S2T13M 0 54 50S2T2M 0 41			
2751T22M			
28S1T22T 0 41 29S1T23M 0 59 30S1T23T 0 59 31S1T24- 0 22 32S1T25- 0 40 33S2-11M 0 81 35S2-12M 0 69 36S2-12T 0 69 36S2-13M 0 86 39S2-21M 0 85 40S2-21T 0 85 40S2-21T 0 85 41S2-22M 0 74 42S2-22T 0 74 43S2-23M 0 91 44S2-22T 0 74 45S2-11M 0 48 47S2T1M 0 36 48S2T1D 0 36 48S2T1T 0 36 49S2T13M 0 54 50S2T13T 0 54 50S2T2D 0 41 54S2T2D 0 41 54S2T2D			
2951T23M 0 59 3051T23T 0 59 3051T23T 0 59 3151T24+ 0 22 3251T25- 0 40 3352-11M 0 81 3452-11T 0 81 3552-12M 0 69 3652-12T 0 69 3652-12T 0 85 4052-21T 0 85 4052-21T 0 85 4152-22M 0 74 4252-22T 0 74 4252-22T 0 74 4252-22T 0 91 4452-23T 0 91 4452-23T 0 91 4452-23T 0 91 4552T11M 0 48 4752T12M 0 36 4852T12T 0 36 4852T12T 0 54 5152T21M 0 53 5252T21M 0 53 5252T21M 0 53 5252T21M 0 53 5252T21M 0 53 5252T23M 0 41 5452T22T 0 59 575ED1- 0 41			
3051723T 0 59	29S1T23M		
31S1T24			
32S1725- 0 40 33S2-11M 0 81 33S2-11M 0 81 35S2-12M 0 69 36S2-12T 0 69 37S2-13M 0 86 38S2-13T 0 86 39S2-21M 0 85 40S2-21T 0 74 42S2-22T 0 74 43S2-23M 0 91 44S2-23T 0 91 44S2-23T 0 36 48S2T11T 0 48 46S2T11T 0 48 46S2T11T 0 48 47S2T12M 0 36 48S2T12T 0 36 48S2T12T 0 54 55S2T21M 0 53 55S2T21M 0 59 57SED1- 0 41			
33S2-11M 0 81 34S2-11T 0 81 34S2-11T 0 81 35S2-12M 0 69 36S2-12T 0 69 37S2-13M 0 86 38S2-13T 0 86 39S2-21M 0 85 41S2-22M 0 74 42S2-22T 0 74 43S2-23M 0 91 45S2T11M 0 48 46S2T11T 0 48 46S2T11T 0 48 47S2T12M 0 36 49S2T13M 0 54 50S2T13T 0 54 51S2T21M 0 53 53S2T22M 0 41 55S2T22M 0 59 57SED1- 0 41			
34S2-11T 0 81 35S2-12M 0 69 36S2-12T 0 69 36S2-13M 0 86 38S2-13T 0 86 39S2-21M 0 85 40S2-21T 0 85 41S2-22M 0 74 42S2-21T 0 74 43S2-23M 0 91 44S2-23T 0 91 45S2T11M 0 48 46S2T11T 0 48 47S2T12M 0 36 49S2T13M 0 54 50S2T13T 0 54 51S2T21M 0 53 52S2T21T 0 53 53S2T22M 0 41 54S2T22T 0 41 55S2T23T 0 59 57SED1- 0 41			
35S2-12M 0 69 36S2-12T 0 69 36S2-12T 0 69 37S2-13M 0 86 38S2-13T 0 86 39S2-21M 0 85 40S2-21T 0 85 40S2-21T 0 74 42S2-22T 0 74 42S2-22M 0 91 44S2-23T 0 91 44S2-23T 0 91 44S2-23T 0 91 44S2-23T 0 36 48S2T12T 0 36 48S2T12T 0 36 48S2T12T 0 54 51S2T21M 0 53 53S2T22M 0 54 51S2T21M 0 53 53S2T22M 0 41 54S2T22T 0 41 55S2T23M 0 59 57SED1- 0 41			
36S2-12T 0 69 37S2-13M 0 86 37S2-13M 0 86 39S2-21M 0 85 40S2-21T 0 85 41S2-22M 0 74 42S2-22T 0 74 43S2-23M 0 91 44S2-23T 0 91 44S2-23T 0 91 44S2-23T 0 48 46S2T11T 0 48 46S2T11T 0 48 47S2T12M 0 36 48S2T12T 0 36 48S2T12T 0 54 51S2T21M 0 53 52S2T21T 0 53 53S2T22M 0 41 54S2T22T 0 41 54S2T22T 0 59 57SED1- 0 41			
3752-13M 0 86 3852-13T 0 86 3852-13T 0 86 3952-21M 0 85 4052-21T 0 85 4152-22M 0 74 4252-22T 0 74 4352-23M 0 91 4452-23T 0 91 4552T11M 0 48 465ZT11T 0 48 475ZT12M 0 36 495ZT13M 0 54 505ZT13T 0 54 505ZT13T 0 53 535ZT22M 0 41 545ZT2ZT 0 41 555ZT2ZM 0 59 57SED1- 0 41			
38S2-13T 0 86 39S2-21M 0 85 40S2-21T 0 85 40S2-21T 0 74 41S2-22M 0 74 42S2-22T 0 74 43S2-23M 0 91 45S2T1IM 0 48 46S2T1T 0 48 48S2T1ZD 0 36 49S2T13M 0 54 50S2T13T 0 54 51S2T21M 0 53 52S2T21T 0 53 53S2T22M 0 41 54S2T22T 0 41 55S2T23M 0 59 56S2T23T 0 59 57SED1- 0 41			
39S2-21M 0 85 40S2-21T 0 85 41S2-22M 0 74 42S2-22T 0 74 43S2-23M 0 91 44S2-23T 0 91 44S2-23T 0 91 44S2-11M 0 48 46S2T11T 0 48 47S2T12M 0 36 48S2T12T 0 36 48S2T12T 0 54 51S2T21M 0 53 53S2T22M 0 54 51S2T21M 0 53 53S2T22M 0 41 54S2T22T 0 41 54S2T22T 0 59 57SED1- 0 41			
40S2-21T 0 85 41S2-22M 0 74 42S2-22T 0 74 43S2-23M 0 91 44S2-23T 0 91 44S2-23T 0 91 45S2T11M 0 48 46SZT11T 0 48 47SZT12M 0 36 48SZT12T 0 36 49SZT13M 0 54 50SZT13T 0 54 51SZT21M 0 53 53SZT22M 0 41 55SZT2ZT 0 41 55SZT2ZT 0 59 56SZT2ZT 0 59 57SED1- 0 41			
41S2-22M			
42S2-22T 0 74 43S2-23M 0 91 44S2-23T 0 91 44S52T11M 0 48 46S2T11T 0 48 46S2T12T 0 36 49S2T12M 0 54 50S2T13M 0 54 51S2T21M 0 53 53S2T22M 0 41 54S2T22T 0 41 55S2T23M 0 59 57SED1- 0 41			
4352-23M 0 91 4452-23T 0 91 4452-21T 0 48 4652T11T 0 48 4652T12T 0 36 4852T12T 0 36 4852T12T 0 54 5052T13T 0 54 5152T21M 0 53 5252T21T 0 53 5352T22M 0 41 5452T22T 0 41 5552T23M 0 59 575ED1- 0 41			
4452-23T 0 91 4552T11M 0 48 4652T11T 0 48 4752T12M 0 36 4852T12T 0 36 4952T13M 0 54 5052T13T 0 54 5152T21M 0 53 5352T22M 0 41 5452T22T 0 41 5552T23M 0 59 5652T23T 0 59 57SED1- 0 41	43S2-23M		
45S2T11M 0 48 46SZT11T 0 48 47SZT12M 0 36 48SZT12T 0 36 49SZT13M 0 54 50SZT13T 0 54 51SZT21M 0 53 53SZT22M 0 41 54SZT2ZT 0 41 55SZT2ZM 0 59 57SED1- 0 41	44S2-23T		_
46S2T11T 0 48 47S2T12M 0 36 48S2T12T 0 36 49S2T13M 0 54 50S2T13T 0 54 51S2T21M 0 53 52S2T21T 0 53 53S2T22M 0 41 54S2T22T 0 41 55S2T23M 0 59 56S2T23T 0 59 57SED1- 0 41			_
47S2T12M 0 36 48S2T12T 0 36 49S2T13M 0 54 50S2T13T 0 54 51S2T2IM 0 53 52S2T21T 0 53 53S2T22M 0 41 54S2T22T 0 41 55S2T23M 0 59 56S2T23T 0 59 57SED1- 0 41			
48S2T12T 0 36 49S2T13M 0 54 50S2T13T 0 54 51S2T21M 0 53 52S2T21T 0 53 53S2T22M 0 41 54S2T22T 0 41 55S2T23M 0 59 56S2T23T 0 59 57SED1- 0 41			
4952T13M 0 54 5052T13T 0 54 5052T13T 0 53 5152T21M 0 53 5252T21T 0 53 5352T22M 0 41 5452T22T 0 41 5552T23M 0 59 5662T23T 0 59 575ED1- 0 41			
5052T13T 0 54 5152T21M 0 53 5252T21T 0 53 5352T22M 0 41 5452T22T 0 41 5552T23M 0 59 5652T23T 0 59 57SED1- 0 41			
51S2T21M 0 53 52S2T21T 0 53 53S2T22M 0 41 54S2T22T 0 41 55S2T23M 0 59 56S2T23T 0 59 57SED1- 0 41			٠.
52S2T21T 0 53 53S2T22M 0 41 54S2T22T 0 41 55S2T23M 0 59 56S2T23T 0 59 57SED1- 0 41			
53S2T22M 0 41 54S2T22T 0 41 55S2T23M 0 59 56S2T23T 0 59 57SED1- 0 41			
54S2T22T 0 41 55S2T23M 0 59 56S2T23T 0 59 57SED1- 0 41			
55S2T23M 0 59 56S2T23T 0 59 57SED1- 0 41			
56S2T23T 0 59 57SED1- 0 41			
57SED1- 0 41			
JUJED2- U 45			
• •	J0JEDZ-	U	40

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D26	NV2403001	В	41 di 54

• Verifica a taglio

La verifica a taglio viene condotta nel seguente modo:

- 1. Verifica della sezione senza armatura al taglio → se VEd<VRd1 la verifica è soddisfatta;
- 2. Altrimenti si verifica la sezione con armatura a taglio → se VEd<VRd2 la verifica è soddisfatta.

Calcestruzzo

Tipo	C30/37	
R _{ck}	37	N/mm ²
$\begin{aligned} &\text{Tipo} \\ &R_{ck} \\ &f_{ck} \\ &Y_{c} \\ &\alpha_{cc} \\ &f_{cd} \end{aligned}$	30.7	N/mm²
Yc	1.5	
α_{cc}	0.85	
f_{cd}	17.4	N/mm²

Acciaio

f_{tk}	540	N/mm²
f_{yk}	450	N/mm²
Ϋ́s	1.15	
f _{yk} Ys f _{yd}	391	N/mm²

Sollecitazioni		Soletta sup
V_{Ed}	kN	197
N_{Ed}	kN	0

Armatura a taglio

Diametro	mm	12
Numero barre		2.5
A_{sw}	cm²	2.83
Passo s	cm	20
Angolo α	• 0	90

Armatura longitudinale

n_1		5
\emptyset_1	mm	20
n_2		
Ø ₂ Asl	mm	
Asl	cm ²	15.71

Sezione

b_w	cm	100
Н	cm	40
c d	cm	8.4
d	cm	31.6
k	N/mm ²	1.80
V _{min}	N/mm ²	0.47
ρ		0.0050
σср	N/mm ²	0.00
α_{c}		1.00

Resistenza senza armatura a taglio

V	kΝ	169
♥Rd	NIN	109

Resistenza con armatura a taglio

Inclinazione puntone θ	0	21.8
V_{RSd}	kN	393
V_{RCd}	kN	853
V_{Rd}	kN	393

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 42 di 54

• Verifica a fessurazione appoggio (Solsup-App)

lecita	

Momento flettente - Combinazione	rara M _R	82.45	kNm
Sforzo normale - Combinazionre rar	a N _R	0.00	kN
Momento flettente - Combinazione	frequente M _F	43.45	kNm
Sforzo normale - Combinazione fred	uente N₅	0.00	kN

Materiali

Materiali			
Resistenza caratteristica cubica calcestruzzo	R_{ck}	37	N/mm ²
Resistenza caratteristica cilindrica calcestruzzo	f_{ck}	30.71	N/mm ²
Modulo elastico del calcestruzzo	E_{cm}	33019.43	N/mm ²
Tensione ammissibile di compressione calcestruzzo	σ_{camm}	18.43	N/mm ²
Resistena media a trazione calcestruzzo	f_{ctm}	3.36	N/mm ²
Resistenza caratteristica a trazione calcestruzzo	f_{ctk}	2.35	N/mm ²
Tensione ammissibile di trazione calcestruzzo	σ_{tamm}	2.80	N/mm ²
Tensione di snervamento acciaio	f_{yk}	450.00	N/mm ²
Modulo elastico dell'acciaio	Ė _s	205000.00	N/mm ²
Tensione ammissibile acciaio	σ_{samm}	360.00	N/mm ²
Coefficiente omogeneizzazione acciaio-calcestruzzo	n	15.00	-

Caratteristiche geometriche

Altezza sezione	Н	40.00	cm					
Larghezza sezione	В	100.00	cm					
Armatura compressa (1º strato)	As ₁ '	15.71	cm ²	5	Ø	20	$c_{s1} = 8.4$	cm
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²	0	Ø	0	c _{s2} = 9.4	cm
Armatura tesa (1º strato)	As_1	15.71	cm ²	5	Ø	20	c _{i1} = 8.4	cm
Armatura tesa (2º strato)	As_2	0.00	cm ²	0	Ø	0	$c_{12} = 9.4$	cm

Proprietà sezione in combinazione rara

Eccentricità dello sfrozo normale	e (M)	8	cm	> H/6 Sez. parzializzata
Distanza sforzo N dal bordo sezione	u (M)	00	cm	
Posizione asse neutro	y (M)	9.80	cm	
Area ideale (sezione interamente reagente)	A_{id}	4439.82	cm ²	
Momento di inerzia ideale (sez. int. reag.)	J_id	596743.24	cm ⁴	
Momento di inerzia ideale (sez. parz. N=0)	${\sf J}_{\sf id^*}$	143810.65	cm ⁴	

Tensioni nei materiali

Compressione max nel cls.	σ_{c}	5.62	N/mm²	< σc _{amm}
Trazione nell'acciaio (1º strato)	$\sigma_{\!\scriptscriptstyle S}$	187.46	N/mm²	< σa _{amm}

Proprietà sezione in combinazione frequente

-	. reprieta sezione in combinazione ricquente						
ſ	Eccentricità dello sfrozo normale	e (M)	8	cm	>	H/6	Sez. parzializzata
	Distanza sforzo N dal bordo sezione	u (M)	∞	cm			
	Posizione asse neutro	y (M)	10.48	cm			
	Area ideale (sez. int. reagente)	A_{id}	4439.82	cm ²			
	Momento di inerzia ideale (sez. int. reag.)	${\sf J}_{\sf id}$	596743.24	cm ⁴			
	Momento di inerzia ideale (sez. parz. N=0)	J_{id^*}	144492.09	cm ⁴			

Verifica a fessurazione

Momento di fessurazione (σ _{tamm})	M_{fess}	83.46 kNm	La sezione non è fessurata
--	------------	-----------	----------------------------

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 43 di 54

Verifica a fessurazione campata (Solsup-Camp)

SAII	ecita	7i0	ni

Soliccitazioni		
Momento flettente - Combinazione rara	M_R	60.83 kNm
Sforzo normale - Combinazionre rara	N_R	0.00 kN
Momento flettente - Combinazione frequente	M _F	55.87 kNm
Sforzo normale - Combinazione frequente	Nr	0.00 kN

Materiali

riateriali			
Resistenza caratteristica cubica calcestruzzo	R _{ck}	37	N/mm²
Resistenza caratteristica cilindrica calcestruzzo	f_{ck}	30.71	N/mm²
Modulo elastico del calcestruzzo	E_{cm}	33019.43	N/mm²
Tensione ammissibile di compressione calcestruzzo	σ_{camm}	18.43	N/mm²
Resistena media a trazione calcestruzzo	f_{ctm}	3.36	N/mm²
Resistenza caratteristica a trazione calcestruzzo	f_{ctk}	2.35	N/mm²
Tensione ammissibile di trazione calcestruzzo	σ_{tamm}	2.80	N/mm²
Tensione di snervamento acciaio	f_{yk}	450.00	N/mm²
Modulo elastico dell'acciaio	E_s	205000.00	N/mm ²
Tensione ammissibile acciaio	σ_{samm}	360.00	N/mm²
Coefficiente omogeneizzazione acciaio-calcestruzzo	n	15.00	-

Caratteristiche geometriche

caratteriotiche geometriene								
Altezza sezione	Н	40.00	cm					
Larghezza sezione	В	100.00	cm					
Armatura compressa (1º strato)	As ₁ '	15.71	cm ²	5	Ø	20	$c_{s1} = 8.4$	cm
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²	0	Ø	0	c _{s2} = 9.4	cm
Armatura tesa (1º strato)	As_1	15.71	cm ²	5	Ø	20	c _{i1} = 8.4	cm
Armatura tesa (2º strato)	As_2	0.00	cm ²	0	Ø	0	$c_{i2} = 9.4$	cm

Proprietà sezione in combinazione rara

1 Topricta sezione in combinazione fara							
Eccentricità dello sfrozo normale	e (M)	8	cm	>	H/6	Sez. parzializzata	
Distanza sforzo N dal bordo sezione	u (M)	∞	cm				
Posizione asse neutro	y (M)	9.80	cm				
Area ideale (sezione interamente reagente)	A_{id}	4439.82	cm ²				
Momento di inerzia ideale (sez. int. reag.)	J_id	596743.24	cm ⁴				
Momento di inerzia ideale (sez. parz. N=0)	J_id*	143810.65	cm ⁴				

Tensioni nei materiali

Compressione max nel cls.	σ_{c}	4.15	N/mm²	<	σc_{amm}
Trazione nell'acciaio (1º strato)	$\sigma_{\rm s}$	138.30	N/mm ²	<	σa_{amm}

Proprietà sezione in combinazione frequente

Eccentricità dello sfrozo normale	e (M)	∞	cm	>	H/6	Sez. parzializzata
Distanza sforzo N dal bordo sezione	u (M)	00	cm			
Posizione asse neutro	y (M)	10.33	cm			
Area ideale (sez. int. reagente)	A_{id}	4439.82	cm ²			
Momento di inerzia ideale (sez. int. reag.)	${\sf J}_{\sf id}$	596743.24	cm ⁴			
Momento di inerzia ideale (sez. parz. N=0)	J_{id^*}	144212.88	cm ⁴			

Verifica a fessurazione

Momento di fessurazione (σ_{tamm}) M_{fess}	83.46 kNm La sezione non è fessurata
--	--------------------------------------

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 44 di 54

9.5.3 Verifica soletta inferiore

Sezione: 40 x 100 cm

Armatura a flessione:

• Appoggio (Solinf-App)

Armatura tesa

\$ 20/20 cm

Armatura compressa

\$ 20/20 cm

• Campata (Solinf-Camp)

Armatura tesa

ф 20/20 cm

Armatura compressa

\$ 20/20 cm

Armatura a taglio:

Spille \(\psi \) 12/20x40 cm.

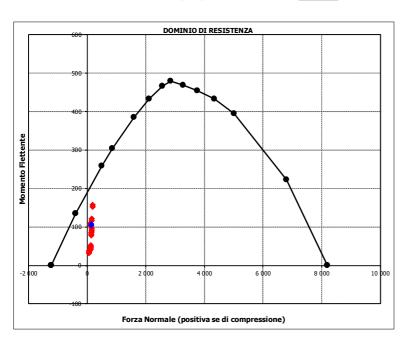
NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 45 di 54

• Verifica a pressoflessione appoggio (Solinf-App)

Acciaio				
Tensione car. di rottura	f_{tk}	=	540	N/mm ²
Tensione car. di snervamento	f_{yk}	=	450	N/mm ²
Coeff. parziale di sicurezza	Υs	=	1.15	
Resistenza di calcolo	f_{yd}	=	391	N/mm ²
Modulo elastico	Ės	=	205000	N/mm ²
	ϵ_{vd}	=	0.00191	

Calcestruz:	ZO O	_
Tipo	C30/37	
R_{ck}	37	N/mm ²
f_{ck}	30.71	N/mm ²
Yc	1.5	
f_{cd}	20.5	N/mm ²
f_{cc}	17.4	N/mm ²


copriferro	50	mm
staffe	12	mm
armat. sec	12	mm

Geometria della sezione		_		
Altezza geometrica della sezio	nh	=	40	cm
Base della sezione	b	=	100	cm
Copriferro	ď'	= "	8.4	cm
Altezza utile della sezione	d	=	31.6	cm

		15 71	cm ²
		0.00	cm ²
		0.00	cm ²
5	20	15.71	cm ²
Nº ferri	Diametro	Area	
Armatura 1	tesa		

Armatura	compressa		
Nº ferri	Diametro	Area	
5	20	15.71	cm ²
		0.00	cm ²
		0.00	cm ²
		15.71	cm ²

	Caratteristi	Caratteristiche di sollecitazione				
	Comb.	Nsd	Msd			
(Nmax)	23M_0.14	183	158			
(Nmin)	11M_0.14	67	33			
(Mmax)	23M_0.14	0	158			
(Mmin)	11M_0.14	0	32			

Caratteristi	che di solle	ritazione
Comb.	Nsd	Msd
01S1-11M	67	33
02S1-11T	67 124	33 48
03S1-12M 04S1-12T	124	48
05S1-13M	149	92
06S1-13T	149	92
	127	92 44
07S1-14- 08S1-15-		
08S1-15-	151	87 38
09S1-21M	69	38
10S1-21T	69 127	53
11S1-22M		
12S1-22T	127	53
13S1-23M	152	97
14S1-23T	152	97
15S1-24-	129	49
16S1-25-	154	92
17S1T11M	67	32
18S1T11T	67	32
19S1T12M	116	44
20S1T12T	116	44
21S1T13M	137	81
22S1T13T	137	81
23S1T14-	118	41
24S1T15-	139	78
25S1T21M	70	37
26S1T21T	70	37
27S1T22M	119	49
28S1T22T	119	49
29S1T23M	140	86
30S1T23T	140	86
31S1T24-	121	46
32S1T25-	141	83
33S2-11M	111	104
34S2-11T	111	104
35S2-12M	160	117
36S2-12T	160	117
37S2-13M	180	153
20C2 12T	180	153
39S2-21M	114	109
40S2-21T	114	109
41S2-22M	163	122
42S2-22T	163	122
43S2-23M	183	158
44S2-23T	183	158
45S2T11M	67	32
46S2T11T	67	32
47S2T12M	116	44
48S2T12T	116	44
49S2T13M	137	81
50S2T13T	137	81
51S2T21M	70	37
52S2T21T	70	37
53S2T22M	119	49
54S2T22T	119	49
55S2T23M	140	86
	140	
56S2T23T 57SED1-		86
5/SED1- 58SED2-	143	104
303ED2-	146	108

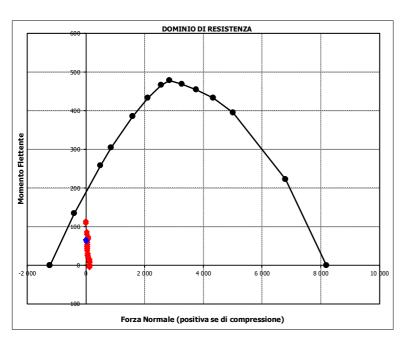
NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 46 di 54

• Verifica a pressoflessione campata (Solinf-Camp)

Acciaio				
Tensione car. di rottura	f_{tk}	=	540	N/mm ²
Tensione car. di snervamento	f_{yk}	=	450	N/mm ²
Coeff. parziale di sicurezza	Ϋ́s	=	1.15	
Resistenza di calcolo	f_{yd}	=	391	N/mm ²
Modulo elastico	E_s	=	205000	N/mm ²
	ϵ_{yd}	=	0.00191	

Calcestruz	zo	_
Tipo	C30/37	
R_{ck}	37	N/mm ²
f_{ck}	30.71	N/mm ²
Yc	1.5	
f_{cd}	20.5	N/mm ²
f_{cc}	17.4	N/mm ²


copriferro	50	mm
staffe	12	mm
armat. sec	12	mm

Geometria della sezione				
Altezza geometrica della sezio	nh	=	40	cm
Base della sezione	b	=	100	cm
Copriferro	ď'	=	8.4	cm
Altezza utile della sezione	d	=	31.6	cm

Armatura tesa			
Nº ferri	Diametro	Area	
5	20	15.71	cm ²
		0.00	cm ²
		0.00	cm ²
		15.71	cm ²

Armatura compressa				
Nº ferri	Diametro	Area		
5	20	15.71	cm ²	
		0.00	cm ²	
		0.00	cm ²	
		15.71	cm²	

	Caratteristiche di sollecitazione		
	Comb.	Nsd	Msd
(Nmax)	240.34	129	-5
(Nmin)	13M_0.34	3	114
(Mmax)	13M_0.34	0	114
(Mmin)	240.34	0	-5

	che di solle	
Comb.	Nsd	Msd
01S1-11M	67	30
02S1-11T	67	30
03S1-12M	124	16
04S1-12T	124	16
05S1-13M	42	64
06S1-13T	42	64
07S1-14-	127	0
08S1-15-	44	49
09S1-21M	69	25
10S1-21T	69	25
11S1-22M	127	11
12S1-22T	127	11
13S1-23M	45	59
14S1-23T	45	59
15S1-24-	129	-5
16S1-25-	47	44
17S1T11M	67	26
18S1T11T	67	26
19S1T12M	116	13
20S1T12T	116	13
21S1T13M	47	54
22S1T13T	47	54
23S1T14-	118	3
24S1T15-	48	43
25S1T21M	70	21
26S1T21T	70	21
27S1T22M	119	8
28S1T22T	119	8
29S1T23M	50	49
30S1T23T	50	49
31S1T24-	121	-2
32S1T25-	51	38
33S2-11M	24	86
34S2-11T	24	86
35S2-12M	73	74
36S2-12T	73	74
37S2-13M	3	114
38S2-13T	3	114
39S2-21M	27	81
40S2-21T	27	81
41S2-22M	76	69
42S2-22T	76	69
43S2-23M	6	110
44S2-23T	6	110
45S2T11M	67	26
46S2T11T	67	26
47S2T12M	116	13
48S2T12T	116	13
49S2T13M	47	54
50S2T13T	47	54
51S2T21M		21
52S2T21T	70	21
53S2T22M	119	8
54S2T22T	119	8
55S2T23M	50	49
56S2T23T	50	49
57SED1-	7	67
58SED2-	9	63
JOSEDZ-	צ	UJ

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D26	NV2403001	В	47 di 54

• Verifica a taglio

La verifica a taglio viene condotta nel seguente modo:

- 1. Verifica della sezione senza armatura al taglio → se VEd<VRd1 la verifica è soddisfatta;
- 2. Altrimenti si verifica la sezione con armatura a taglio → se VEd<VRd2 la verifica è soddisfatta.

Calcestruzzo

Tipo	C30/37	
R_{ck}	37	N/mm ²
Tipo R _{ck} f _{ck} Y _c	30.7	N/mm²
Yc	1.5	
α_{cc}	0.85	
a_{cc} f_{cd}	17.4	N/mm ²

Acciaio

f _{tk}	540	N/mm ²
$egin{aligned} f_{tk} \ f_{yk} \ Y_s \ f_{yd} \end{aligned}$	450	N/mm²
Ϋ́s	1.15	
f_{yd}	391	N/mm ²

Sollecitazioni		Soletta inf
V_{Ed}	kN	176
N_{Ed}	kN	0

Armatura a taglio

Diametro	mm	12
Numero barre		2.5
A_{sw}	cm ²	2.83
Passo s	cm	20
Angolo α	• 0	90

Armatura longitudinale

n_1		5
\emptyset_1	mm	20
n_2		
\emptyset_2	mm	
Q_2	cm ²	15.71

Sezione

b _w	cm	100
Н	cm	40
С	cm	8.4
c d k	cm	31.6
k	N/mm²	1.80
V _{min}	N/mm²	0.47
ρ		0.0050
σcp	N/mm²	0.00
σcp $α$ c		1.00

Resistenza senza armatura a taglio

Resistenza con armatura a taglio

		•
Inclinazione puntone θ	0	21.8
V_{RSd}	kN	393
V_{RCd}	kN	853
V_{Rd}	kN	393

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 48 di 54

Verifica a fessurazione appoggio (Solinf-App)

Sollecitazioni Momento flettente - Combinazione rara	M _R	106.83	kNm	7							
Sforzo normale - Combinazionre rara	N _R	130.42	kN								
Momento flettente - Combinazione frequente	M _E	64.96	kNm	1							
Sforzo normale - Combinazione frequente	I*I _F N _F	104.93	kN								
Materiali											
Resistenza caratteristica cubica calcestruzzo	R _{ck}	37	N/mm²	1							
Resistenza caratteristica cilindrica calcestruzzo	f_{ck}	30.71	N/mm ²								
Modulo elastico del calcestruzzo	E _{cm}	33019.43	N/mm ²								
Tensione ammissibile di compressione calcestruzzo	σ_{camm}	18.43	N/mm ²								
Resistena media a trazione calcestruzzo	f_{ctm}	3.36	N/mm ²								
Resistenza caratteristica a trazione calcestruzzo	f_{ctk}	2.35	N/mm ²								
Tensione ammissibile di trazione calcestruzzo	σ_{tamm}	2.80	N/mm ²								
Tensione di snervamento acciaio	f_{yk}	450.00	N/mm ²								
Modulo elastico dell'acciaio	E_s	205000.00	N/mm ²								
Tensione ammissibile acciaio	σ_{samm}	360.00	N/mm ²								
Coefficiente omogeneizzazione acciaio-calcestruzzo	n	15.00	-								
Caratteristiche geometriche											
Altezza sezione	H	40.00	cm								
Larghezza sezione	В	100.00	cm		_					,	
Armatura compressa (1º strato)	As ₁ '	15.71	cm ²		5	Q		20	C_{s1}	•	.4
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²		0	Q		0	C _{s2}		.4
Armatura tesa (1º strato)	As ₁	15.71	cm ²		5	Q		20	C _{i1}	•	.4
Armatura tesa (2º strato)	As ₂	0.00	cm ²		0	Q) (0	C _{i2}	= 9	.4
Proprietà sezione in combinazione rara											_
Eccentricità dello sfrozo normale	e (M)	81.91	cm	>	H/6	S	ez. p	parz	ializ	zzata	
Distanza sforzo N dal bordo sezione	u (M)	61.91	cm								
Posizione asse neutro	y (M)	11.12 4439.82	cm cm²								
Area ideale (sezione interamente reagente) Momento di inerzia ideale (sez. int. reaq.)	A _{id}	596743.24	cm ⁴								
` ' '	J _{id}										
Momento di inerzia ideale (sez. parz. N=0)	J _{id*}	146420.80	cm ⁴								
Tensioni nei materiali		7.24	N/mm²					_			
Compressione max nel cls. Trazione nell'acciaio (1º strato)	σ_c σ_s	199.80	N/mm²	<	σc _{an} σa _{ar}						
Dronvietà carione in combinazione frequente											
Proprietà sezione in combinazione frequente Eccentricità dello sfrozo normale	e (M)	61.91	cm	>	H/6	S	ez. p	parz	ializ	zzata	
Distanza sforzo N dal bordo sezione	u (M)	41.91	cm								
Posizione asse neutro	y (M)	11.61	cm								
Area ideale (sez. int. reagente)	A_{id}	4439.82	cm ²								
Momento di inerzia ideale (sez. int. reag.)	J_{id}	596743.24	cm ⁴								
Momento di inerzia ideale (sez. parz. N=0)	J_{id^*}	148722.35	cm ⁴								
Verifica a fessurazione											
Momento di fessurazione (σ_{tamm})	M _{fess}	90.51	kNm	La se	ezione	èè	fess	ura	ta		
Eccentricità per M=M _{fess}	e (M _{fess})	86.26	cm								
Distanza sforzo N dal bordo sezione per $M=M_{fess}$	u (M _{fess})	66.26	cm								
Posizione asse neutro per M=M _{fess}	y (M _{fess})	11.05	cm								
Compressione massima nel cls. per M=M _{fess}	y (M _{fess}) σ _{cf}	11.05 6.13	cm N/mm²								
		6.13 171.10									
Compressione massima nel cls. per M=M _{fess}	σ_{cf}	6.13	N/mm²								
Compressione massima nel cls. per M=M _{fess} Trazione nell'acciaio (1° str.) per M=M _{fess}	σ_{cf} σ_{sf}	6.13 171.10	N/mm²								
Compressione massima nel cls. per M=M _{fess} Trazione nell'acciaio (1° str.) per M=M _{fess} Coefficiente dipendente dalla durata del carico	σ_{cf} σ_{sf} k_t	6.13 171.10 0.40	N/mm² N/mm² -								
Compressione massima nel cls. per M=M _{ress} Trazione nell'acciaio (1º str.) per M=M _{ress} Coefficiente dipendente dalla durata del carico Altezza efficace	σ_{cf} σ_{sf} k_t $h_{c,eff}$	6.13 171.10 0.40 9.65	N/mm² N/mm² - cm								
Compressione massima nel cls. per M=M _{fess} Trazione nell'acciaio (1º str.) per M=M _{fess} Coefficiente dipendente dalla durata del carico Altezza efficace Rapporto tra moduli elastici	$\begin{aligned} &\sigma_{cf} \\ &\sigma_{sf} \\ &k_t \end{aligned}$ $&h_{c,eff} \\ &\alpha_e \end{aligned}$	6.13 171.10 0.40 9.65 6.21	N/mm² N/mm² - cm								
Compressione massima nel cls. per M=M _{ress} Trazione nell'acciaio (1º str.) per M=M _{ress} Coefficiente dipendente dalla durata del carico Altezza efficace Rapporto tra moduli elastici Armatura nell'area efficace Area efficace Rapporto geometrico di armatura	$\begin{aligned} &\sigma_{cf} \\ &\sigma_{sf} \\ &k_t \\ &h_{c,eff} \\ &\alpha_e \\ &As_{eff} \end{aligned}$	6.13 171.10 0.40 9.65 6.21 15.71 964.94 0.0163	N/mm² N/mm² - cm - cm²								
Compressione massima nel cls. per M=M _{fess} Trazione nell'acciaio (1º str.) per M=M _{fess} Coefficiente dipendente dalla durata del carico Altezza efficace Rapporto tra moduli elastici Armatura nell'area efficace Area efficace Rapporto geometrico di armatura Deformazione unitaria media dell'armatura	$\begin{aligned} &\sigma_{cf} \\ &\sigma_{sf} \\ &k_t \end{aligned}$ $&h_{c,eff} \\ &\alpha_e \\ &AS_{eff} \\ &AC_{eff} \\ &\rho_{eff} \\ &\epsilon_{sm} \end{aligned}$	6.13 171.10 0.40 9.65 6.21 15.71 964.94 0.0163 0.0004	N/mm² N/mm² - cm - cm² cm² -								
Compressione massima nel cls. per M=M _{fess} Trazione nell'acciaio (1º str.) per M=M _{fess} Coefficiente dipendente dalla durata del carico Altezza efficace Rapporto tra moduli elastici Armatura nell'area efficace Area efficace Rapporto geometrico di armatura Deformazione unitaria media dell'armatura Copriferro netto	$\begin{aligned} &\sigma_{cf}' \\ &\sigma_{sf} \\ &k_t \\ &h_{c,eff} \\ &\alpha_e \\ &AS_{eff} \\ &AC_{eff} \\ &\rho_{eff} \\ \\ &\rho_{eff} \\ \\ &\rho_{eff} \\ \\ &\rho_{ef$	6.13 171.10 0.40 9.65 6.21 15.71 964.94 0.0163 0.0004 5.00	N/mm² N/mm² - cm - cm² cm²								
Compressione massima nel cls. per M=M _{fess} Trazione nell'acciaio (1º str.) per M=M _{fess} Coefficiente dipendente dalla durata del carico Altezza efficace Rapporto tra moduli elastici Armatura nell'area efficace Area efficace Rapporto geometrico di armatura Deformazione unitaria media dell'armatura Copriferro netto Coefficiente dipendente dall'aderenza dell'acciaio	$\begin{split} &\sigma_{cf} \\ &\sigma_{sf} \\ &k_t \\ &h_{c,eff} \\ &\alpha_e \\ &AS_{eff} \\ &AC_{eff} \\ &AC_{eff} \\ &\rho_{eff} \\ &\epsilon_{ssm} \\ &c' \\ &K_1 \end{split}$	6.13 171.10 0.40 9.65 6.21 15.71 964.94 0.0163 0.0004	N/mm² N/mm² - cm - cm² - - -								
Compressione massima nel cls. per M=M _{fess} Trazione nell'acciaio (1º str.) per M=M _{fess} Coefficiente dipendente dalla durata del carico Altezza efficace Rapporto tra moduli elastici Armatura nell'area efficace Area efficace Rapporto geometrico di armatura Deformazione unitaria media dell'armatura Copriferro netto	$\begin{split} &\sigma_{cf} \\ &\sigma_{sf} \\ &k_t \\ &h_{c,eff} \\ &\alpha_e \\ &AS_{eff} \\ &AC_{eff} \\ &AC_{eff} \\ &Esm \\ &c' \\ &K_1 \\ &K_2 \end{split}$	6.13 171.10 0.40 9.65 6.21 15.71 964.94 0.0163 0.0004 5.00 0.80	N/mm² N/mm² - cm - cm² - - -								
Compressione massima nel cls. per M=M _{fess} Trazione nell'acciaio (1º str.) per M=M _{fess} Coefficiente dipendente dalla durata del carico Altezza efficace Rapporto tra moduli elastici Armatura nell'area efficace Area efficace Rapporto geometrico di armatura Deformazione unitaria media dell'armatura Copriferro netto Coefficiente dipendente dall'aderenza dell'acciaio Coefficiente dipendente dal diagramma tensioni	$\begin{split} &\sigma_{cf} \\ &\sigma_{sf} \\ &k_t \\ &h_{c,eff} \\ &\alpha_e \\ &AS_{eff} \\ &AC_{eff} \\ &AC_{eff} \\ &\rho_{eff} \\ &\epsilon_{ssm} \\ &c' \\ &K_1 \end{split}$	6.13 171.10 0.40 9.65 6.21 15.71 964.94 0.0163 0.0004 5.00 0.80	N/mm² N/mm² - cm - cm² - - -								
Compressione massima nel cls. per M=M _{fess} Trazione nell'acciaio (1º str.) per M=M _{fess} Coefficiente dipendente dalla durata del carico Altezza efficace Rapporto tra moduli elastici Armatura nell'area efficace Area efficace Rapporto geometrico di armatura Deformazione unitaria media dell'armatura Copriferro netto Coefficiente dipendente dall'aderenza dell'acciaio Coefficiente dipendente dal diagramma tensioni Coefficiente adimensionale	$\begin{split} &\sigma_{cf} \\ &\sigma_{sf} \\ &k_t \\ &h_{c,eff} \\ &\alpha_e \\ &AS_{eff} \\ &AC_{eff} \\ &\rho_{eff} \\ &\epsilon_{ssm} \\ &c' \\ &K_1 \\ &K_2 \\ &K_3 \\ &K_4 \end{split}$	6.13 171.10 0.40 9.65 6.21 15.71 964.94 0.0163 0.0004 5.00 0.80 0.50	N/mm² N/mm² - cm - cm² cm² - cm								
Compressione massima nel cls. per M=M _{fess} Trazione nell'acciaio (1º str.) per M=M _{fess} Coefficiente dipendente dalla durata del carico Altezza efficace Rapporto tra moduli elastici Armatura nell'area efficace Area efficace Rapporto geometrico di armatura Deformazione unitaria media dell'armatura Copriferro netto Coefficiente dipendente dall'aderenza dell'acciaio Coefficiente dipendente dal diagramma tensioni Coefficiente adimensionale	$\begin{array}{l} \sigma_{cf} \\ \sigma_{sf} \\ k_t \\ \\ h_{c,eff} \\ \alpha_e \\ AS_{eff} \\ AC_{eff} \\ AC_{eff} \\ Peff \\ Esm \\ c' \\ K_1 \\ K_2 \\ K_3 \\ K_4 \\ \Phi_{eq} \end{array}$	6.13 171.10 0.40 9.65 6.21 15.71 964.94 0.0163 0.0004 5.00 0.80 0.50 3.40	N/mm² N/mm² - cm - cm² - cm²								
Compressione massima nel cls. per M=M _{fess} Trazione nell'acciaio (1º str.) per M=M _{fess} Coefficiente dipendente dalla durata del carico Altezza efficace Rapporto tra moduli elastici Armatura nell'area efficace Area efficace Rapporto geometrico di armatura Deformazione unitaria media dell'armatura Copriferro netto Coefficiente dipendente dall'aderenza dell'acciaio Coefficiente dipendente dal diagramma tensioni Coefficiente adimensionale Coefficiente adimensionale	$\begin{split} &\sigma_{cf} \\ &\sigma_{sf} \\ &k_t \\ &h_{c,eff} \\ &\alpha_e \\ &AS_{eff} \\ &AC_{eff} \\ &\rho_{eff} \\ &\epsilon_{ssm} \\ &c' \\ &K_1 \\ &K_2 \\ &K_3 \\ &K_4 \end{split}$	6.13 171.10 0.40 9.65 6.21 15.71 964.94 0.0163 0.0004 5.00 0.80 0.50 3.40 0.425 20.00	N/mm² N/mm² - cm - cm² - cm² cm mm								

0.09 mm

0.15 mm

Valore medio dell'apertura delle fessure Valore di calcolo dell'apertura delle fessure

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 49 di 54

• Verifica a fessurazione campata (Solinf-Camp)

_		•	-	-
So	lle	cita	ZÍO	ni

Momento flettente - Combinazione rara	M _R	67.30 kNm
Sforzo normale - Combinazionre rara	N_R	28.19 kN
Momento flettente - Combinazione frequente	M _F	8.01 kNm
Sforzo normale - Combinazione freguente	N _E	31.03 kN

Materiali

Materiali			
Resistenza caratteristica cubica calcestruzzo	R_{ck}	37	N/mm ²
Resistenza caratteristica cilindrica calcestruzzo	f_{ck}	30.71	N/mm²
Modulo elastico del calcestruzzo	E_{cm}	33019.43	N/mm ²
Tensione ammissibile di compressione calcestruzzo	σ_{camm}	18.43	N/mm ²
Resistena media a trazione calcestruzzo	f_{ctm}	3.36	N/mm ²
Resistenza caratteristica a trazione calcestruzzo	f_{ctk}	2.35	N/mm ²
Tensione ammissibile di trazione calcestruzzo	σ_{tamm}	2.80	N/mm ²
Tensione di snervamento acciaio	f_{yk}	450.00	N/mm ²
Modulo elastico dell'acciaio	E_s	205000.00	N/mm ²
Tensione ammissibile acciaio	σ_{samm}	360.00	N/mm²
Coefficiente omogeneizzazione acciaio-calcestruzzo	n	15.00	-

Caratteristiche geometriche

earatteriorie geometriche								
Altezza sezione	Н	40.00	cm					
Larghezza sezione	В	100.00	cm					
Armatura compressa (1º strato)	As ₁ '	15.71	cm ²	5	Ø	20	c _{s1} = 8.4	cm
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²	0	Ø	0	c _{s2} = 9.4	cm
Armatura tesa (1º strato)	As_1	15.71	cm ²	5	Ø	20	c _{i1} = 8.4	cm
Armatura tesa (2º strato)	As_2	0.00	cm ²	0	Ø	0	C _D = 9.4	cm

Proprietà sezione in combinazione rara

r roprieta sezione in combinazione rara							
Eccentricità dello sfrozo normale	e (M)	238.73	cm	>	H/6	Sez. parzializzata	7
Distanza sforzo N dal bordo sezione	u (M)	218.73	cm				
Posizione asse neutro	y (M)	10.23	cm				
Area ideale (sezione interamente reagente)	A_{id}	4439.82	cm ²				
Momento di inerzia ideale (sez. int. reag.)	J_id	596743.24	cm ⁴				
Momento di inerzia ideale (sez. parz. N=0)	J_{id*}	144078.18	cm ⁴				

Tensioni nei materiali

Compressione max nel cls.	$\sigma_{\!\scriptscriptstyle c}$	4.58 N/mm ²	<	σc _{amm}
Trazione nell'acciaio (1º strato)	$\sigma_{\rm s}$	143.60 N/mm ²	<	σa_{amm}

Proprietà sezione in combinazione frequente

Eccentricità dello sfrozo normale	e (M)	25.82	cm	>	H/6	Sez. parzializzata
Distanza sforzo N dal bordo sezione	u (M)	5.82	cm			
Posizione asse neutro	y (M)	15.08	cm			
Area ideale (sez. int. reagente)	A_{id}	4439.82	cm ²			
Momento di inerzia ideale (sez. int. reag.)	${\sf J}_{\sf id}$	596743.24	cm ⁴			
Momento di inerzia ideale (sez. parz. N=0)	J_{id^*}	189116.53	cm⁴			

Verifica a fessurazione

Momento di fessurazione (σ_{tamm})	M_{fess}	85.54 kNm	La sezione non è fessurata
---	------------	-----------	----------------------------

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 50 di 54

10. INCIDENZA SCATOLARE

I valori delle incidenze di armatura lenta sono indicati nella seguente tabella:

Piedritti 100 kg/mc
Soletta superiore 100 kg/mc
Soletta inferiore 100 kg/mc

Come previsto dall' Eurocodice (UNI EN 1992-1-1) per le piastre a portanza unidirezionale si raccomanda di prevedere un'armatura secondaria in quantità non minore del 20% dell'armatura principale.

Pertanto nel calcolo è stata considerata un' armatura longitudinale diffusa \$\phi12/20\$ ed un incremento del 15% per tener conto della presenza di legature e spille.

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 51 di 54

11. DICHIARAZIONI SECONDO D.M. 17/01/2018 (P.TO 10.2)

11.1 Tipo di analisi svolte

L'analisi strutturale e le verifiche sono condotte con l'ausilio di un codice di calcolo automatico. L'analisi strutturale è condotta con l'analisi statica, utilizzando il metodo degli spostamenti per la valutazione dello stato limite indotto dai carichi statici. L'analisi strutturale sotto le azioni sismiche è condotta con il metodo dell'analisi statica equivalente secondo le disposizioni del capitolo 7 del DM 17/01/2018.

L'analisi strutturale viene effettuata con il metodo degli elementi finiti, schematizzando la struttura in elementi lineari e nodi. Le incognite del problema sono le componenti di spostamento in corrispondenza di ogni nodo (2 spostamenti e 1 rotazioni).

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

11.2 Origine e caratteristiche dei Codici di Calcolo

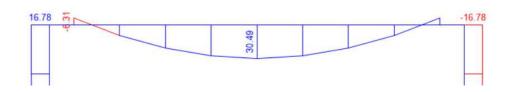
Titolo: SAP2000 Ultimate

Versione: 21.0.2

Produttore: CSI Computers and Structures, Inc.

11.3 Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni sono stati sottoposti a valutazione che ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali.


In particolare, è stato confrontato il valore del momento flettente in campata del solettone superiore con i rispettivi valori ottenuti per uno schema statico a trave appoggiata (limite superiore) e per uno schema a trave doppiamente incastrata (limite inferiore).

Come carico di confronto è stato utilizzato il carico permanente non strutturale G2=32.71 kN/m.

La figura seguente mostra il momento flettente ottenuto dal modello agli elementi finiti utilizzato per le verifiche:

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo tombino 3x3 COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403001 B 52 di 54

Calcolo analitico_trave appoggiata			
Carico uniformemente distrubuito	G_2	32.71	kN/m
Luce di calcolo	L	3.4	m
Momento in campata	M _{I/2}	47.27	kNm/m
Calcolo analitico_trave incastrata			
Carico uniformemente distrubuito	G_2	32.71	kN/m
Luce di calcolo	L	3.4	m
Momento in campata	M _{I/2}	15.76	kNm/m
SAP2000			
Momento in campata	M _{I/2}	30.49	kNm/m
Momento in campata_trave incastrata	Lim.Inf.	15.76	kNm/m
Momento in campata_SAP2000		30.49	kNm/m
Momento in campata_trave appoggiata	Lim.Sup.	47.27	kNm/m
Momento in campata_trave semi-incastrata	M _{I/2}	31.51	kNm/m
Errore	e	3.2%	

Come si nota, il valore del momento restituito dal programma di calcolo cade all'interno dei valori limite ottenuti dai due schemi statici adottati. Il vincolo effettivo è quindi assimilabile ad un semi-incastro. Nella tabella precedente è riportato anche l'errore percentuale, in valore assoluto, tra il modello agli elementi finiti adottato e lo schema statico di trave con semi-incastri alle estremità.

Dal confronto numerico delle deformate e dello stato sollecitativo, si ritengono i risultati del calcolo congrui con le azioni applicate e la geometria del problema.

In base a quanto sopra, si asserisce che l'elaborazione è corretta ed idonea al caso specifico, pertanto, i risultati di calcolo sono da ritenersi validi ed accettabili.