COMMITTENTE:

PROGETTAZIONE:

U.O. INFRASTRUTTURE NORD

PROGETTO DEFINITIVO

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA

RADDOPPIO TRATTA FIUME TORTO – LERCARA DIRAMAZIONE LOTTO 1 + 2

VIABILITÀ

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto

						SCALA:
						-
COMMESSA	LOTTO FASE	ENTE TIPO DOC.	OPERA/DISCIPLINA	PROGR.	REV	7.
RS3Z	0 0 D	2 6 C L	N V 2 4 0 3	0 0 2	В	

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
А	EMISSIONE ESECUTIVA	C. INTEGRA	Gennaio 2020	M.SALLEOLINI	Gennaio 2020	A. BARFECA	Gennaio 2020	F. SAECHI Maggio 2020
В	1° AGG. A CONSEGNA CSLLPP	C. INTEGRA	Maggio 2020	M SALLEOLINI	Maggio 2020	A. BARTECA	Maggio 2020	MFRASTR Francesco Francesc
								ERR - 90 Dott. Ing degli Inge
								ITALFE Ordine

File: RS3Z00D26CLNV2403002B	n. Elab.:	

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403002 B 0 di 34

INDICE

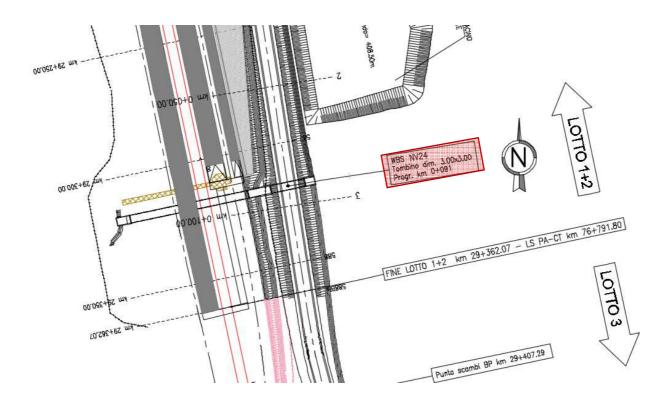
1.	PREMESSA	2
2.	DESCRIZIONE	3
2	NODMATINE DI DIEEDIMENTO	
3.	NORMATIVE DI RIFERIMENTO	4
4.	CARATTERISTICHE DEI MATERIALI	5
5.	PARAMETRI GEOTECNICI	7
	5.1 Profondità della falda	7
6.	ANALISI DEI CARICHI	8
	6.1 Pesi propri	8
	6.2 Permanenti non strutturali	8
	6.3 Carichi mobili (carico stradale)	8
	6.4 Azione di frenamento (Q ₃)	8
	6.5 Azione del sisma	8
	6.6 Ritiro del calcestruzzo	11
	6.7 Variazione termica	11
	6.8 Spinta statica del terreno	12
	6.9 Spinta dovuta al sovraccarico accidentale	12
	6.10 Sovraspinta dovuta all'azione sismica	12
7.	COMBINAZIONE DEI CARICHI	13
8.	VERIFICHE STRUTTURALI	15
	8.1 Verifiche per gli stati limite ultimi a flessione-pressoflessione	15
	8.2 Verifica agli stati limite ultimi a taglio	15
	8.3 Verifica agli stati limite d'esercizio	17
9.	ANALISI STRUTTURALE	18
	9.1 Analisi dei carichi	21

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D26	NV2403002	В	1 di 34

9.2	Combinazioni	23
9.3	Verifiche strutturali	24
	9.3.1 Progetto armatura verticale - Mxvs	24
	9.3.2 Progetto armatura orizzontale - Myvs	28
94	INCIDENZA POZZETTO	32

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto


COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403002 B 2 di 34

1. PREMESSA

Il presente documento viene emesso nell'ambito della redazione degli elaborati tecnici relativi alla progettazione definitiva del collegamento Palermo-Catania, raddoppio tratta Fiumetorto-Lercara Diramazione, appartenente alla Direttrice ferroviaria Messina-Catania-Palermo.

Nella presente relazione è riportato il calcolo strutturale del pozzetto del tombino situato al km 0+091 della Viabilità di accesso SSE/Area Terna (NV24), prolungamento del tombino di linea IN55. Il pozzetto ha spessore dei piedritti di 0.3m e di soletta di fondazione di 0.4m ed altezza libera 1.90m.

Segue uno stralcio della planimetria di progetto con ubicazione dell'opera.

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403002 B 3 di 34

2. DESCRIZIONE

Nella seguente relazione, in particolare, vengono descritte le verifiche agli Stati Limite del pozzetto avente le caratteristiche riportate nella seguente tabella:

Geometria del pozzetto								
Larghezza totale	Ltot	3.60	m					
Altezza totale	Htot	2.30	m					
Spessore piedritti	sp	0.30	m					
Spessore soletta inferiore	sf	0.40	m					
Luce libera	Lint	3.00	m					
Altezza libera	Hint	1.90	m					

Si riporta, di seguito, la sezione trasversale della struttura.

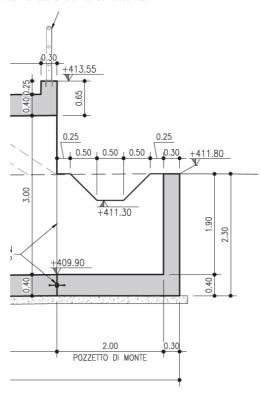


Figura 2.1– Sezione trasversale pozzetto

La struttura sarà realizzata in c.a. gettato in opera senza giunti intermedi.

Si trascura, a favore di sicurezza, l'eventuale presenza del riempimento interno.

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403002 B 4 di 34

3. NORMATIVE DI RIFERIMENTO

Il dimensionamento e la verifica degli elementi strutturali sono stati condotti nel rispetto delle seguenti normative:

- <u>Decreto Ministeriale 17 gennaio 2018</u>: Aggiornamento delle Norme tecniche per le costruzioni;
- <u>Circolare 21 gennaio 2019, n.7 C.S.LL.PP.</u>: Istruzioni per l'applicazione dell'"Aggiornamento delle Norme tecniche per le costruzioni di cui al D.M. 17 gennaio 2018;
- <u>Circolare 15 ottobre 1996, n.252 AA.GG./S.T.C..</u>: Istruzioni per l'applicazione delle "Nuove norme tecniche per il calcolo, l'esecuzione ed il collaudo delle opere in cemento armato normale e precompresso e per le strutture metalliche" di cui al decreto ministeriale 9 gennaio 1996;
- RFI DTC SI MA IFS 001 B: "Manuale di progettazione delle opere civili" del 22/12/2017.
- RFI DTC SI PS MA IFS 001 B: Sezione 2 Ponti e Strutture

Riferimenti STI:

 Regolamento (UE) N. 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019;

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403002 B 5 di 34

4. CARATTERISTICHE DEI MATERIALI

MAGRONE - C12/15									
Descrizione	Simbolo	Formula	Unità di misura	Valore					
Resistenza cubica a compressione	R _{ck}		N/mm ²	15					
Contenuto minimo cemento			kg/m ³	150					

CALCESTRUZZO CLASSE 30/37				
Descrizione	Simbolo	Formula	Unità di misura	Valore
Resistenza cubica a compressione	R _{ck}		N/mm ²	37.0
Resistenza cilindrica a compressione	f _{ck}	0.83 * R _{ck}	N/mm ²	30.7
Resistenza cilindrica media a compressione	f _{cm}	f _{ck} +8	N/mm ²	38.7
Coefficiente per effetti a lungo termine e sfavorevoli	a _{cc} (t>28gg)		-	0.85
Coefficiente parziale di sicurezza relativo al calcestruzzo	Υ _c		-	1.5
Resistenza di calcolo a compressione	f _{cd}	$(a_{cc} * f_{ck}) / \Upsilon c$	N/mm ²	17.4
Resistenza cilindrica media a trazione	f _{ctm}	0.3 * (fck) ^{2/3}	N/mm ²	2.9
Resistenza cilindrica media a trazione	f _{ctk}	0.7 * f _{ctm}	N/mm ²	2.1
Resistenza di calcolo a trazione	f _{ctd}	f_{ctk} / Υ_c	N/mm ²	1.4
Resistenza media a trazione per flessione	f _{cfm}	1.2 * f _{ctm}	N/mm ²	3.5
Resistenza cilindrica caratteristica a trazione	f _{cfk}	0.7 * f _{ctm}	N/mm ²	2.5
Modulo elastico	E _{cm}	$22000 * (f_{cm}/10)^{0.3}$	N/mm ²	33019
Peso proprio	Ϋ́c		N/m ³	25000
Coefficiente di Poisson	ν		-	0.2
Coefficiente di aderenza	η		-	1.0
Resistenza tangenziale caratteristica di aderenza	f _{bk}	2.25 * η * f _{ctk}	N/mm ²	4.6
Resistenza tangenziale di aderenza di calcolo	f _{bd}	f _{bk} / Υ _c	N/mm ²	3.1

Acciaio ad aderenza migliorata B450C									
Descrizione	Simbolo	Formula	Unità di misura	Valore					
Resistenza caratteristica di rottura	f _{t nom}		N/mm ²	540					
Resistenza caratteristica a snervamento	f _{y nom}		N/mm ²	450					
Coefficiente parziale di sicurezza relativo all'acciaio	Ϋ́s		-	1.15					
Resistenza di calcolo	f _{yd}	f _{yk} / Y _s	N/mm ²	391.3					
Modulo elastico	E _s		N/mm ²	206000					
Tensioni di progetto del cls allo S.L.E.									
Tensione massima di esercizio per l'acciaio	σ_{s}	0.75 * f _{yk}	N/mm ²	337.5					

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403002 B 6 di 34

Con riferimento al punto 4.1.6.1.3 delle NTC, al fine della protezione delle armature dalla corrosione il valore minimo dello strato di ricoprimento di calcestruzzo (copriferro) deve rispettare quanto indicato nella tabella C4.1.IV della Circolare 21.01.2019, riportata di seguito, nella quale sono distinte le tre condizioni ambientali di Tabella 4.1.III delle NTC.

		barre da c.a.		barre da c.a.		cavi da c.a.p		cavi da c.a.p		
		elementi a piastra		altri elementi		elementi a piastra		altri elementi		
Cmin	Co	ambiente	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<></td></co<></td></co<>	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<></td></co<>	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<>	C≥Co	Cmin≤C <co< td=""></co<>
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35
C30/37	C40/50	aggressivo	25	30	30	35	35	40	40	45
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportata nel prospetto seguente:

Classe di esposizione: XA1

Copriferro di progetto: 50 mm

Condizioni ambientali: Aggressive

Il valore limite di apertura delle fessure calcolato secondo le combinazioni agli SLE (frequente e quasi permanente) è pari ad uno dei seguenti valori nominali:

$$w_1 = 0.2 \text{ mm}$$

$$w_2 = 0.3 \text{ mm}$$

$$w_3 = 0.4 \text{ mm}$$

pi Ize	Condizioni	Combinazione di	Armatura					
Gruppi di Esigenze	ambientali	azioni	Sensibile		Poco sensibile			
Gr Esi			Stato limite	w_k	Stato limite	$\mathbf{w}_{\mathbf{k}}$		
Δ.	Ordinarie	frequente	apertura fessure	$\leq w_2$	apertura fessure	$\leq w_3$		
Α	Ordinarie	quasi permanente	apertura fessure	$\leq w_1$	apertura fessure	$\leq w_2$		
В	Ai	frequente	apertura fessure	$\leq w_1$	apertura fessure	$\leq w_2$		
D	Aggressive	quasi permanente	decompressione	-	apertura fessure	$\leq w_1$		
С.	Molto	frequente	formazione fessure	-	apertura fessure	$\leq w_1$		
	aggressive	quasi permanente	decompressione	-	apertura fessure	$\leq w_1$		

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403002 B 7 di 34

5. PARAMETRI GEOTECNICI

Gli elaborati di riferimento sono:

Planimetria e Sezioni geotecniche viabilità - Tav. 1/7	R	S	3	Z	0	0	D	2	6	P	Z	G	Е	0	0	0	0	0	0	1
Planimetria e Sezioni geotecniche viabilità - Tav. 2/7	R	S	3	Z	0	0	D	2	6	P	Z	G	Е	0	0	0	0	0	0	2
Planimetria e Sezioni geotecniche viabilità - Tav. 3/7	R	S	3	Z	0	0	D	2	6	P	Z	G	Е	0	0	0	0	0	0	3
Planimetria e Sezioni geotecniche viabilità - Tav. 4/7	R	S	3	Z	0	0	D	2	6	P	Z	G	Е	0	0	0	0	0	0	4
Planimetria e Sezioni geotecniche viabilità - Tav. 5/7	R	S	3	Z	0	0	D	2	6	P	Z	G	Е	0	0	0	0	0	0	5
Planimetria e Sezioni geotecniche viabilità - Tav. 6/7	R	S	3	Z	0	0	D	2	6	P	Z	G	Е	0	0	0	0	0	0	6
Planimetria e Sezioni geotecniche viabilità - Tav. 7/7	R	S	3	Z	0	0	D	2	6	P	Z	G	Е	0	0	0	0	0	0	7
Profilo longitudinale geotecnico viabilità - Tav. 1/7	R	S	3	Z	0	0	D	2	6	F	9	G	Е	0	0	0	0	0	0	1
Profilo longitudinale geotecnico viabilità - Tav. 2/7	R	S	3	Z	0	0	D	2	6	F	9	G	Е	0	0	0	0	0	0	2
Profilo longitudinale geotecnico viabilità - Tav. 3/7	R	S	3	Z	0	0	D	2	6	F	9	G	Е	0	0	0	0	0	0	3
Profilo longitudinale geotecnico viabilità - Tav. 4/7	R	S	3	Z	0	0	D	2	6	F	9	G	Е	0	0	0	0	0	0	4
Profilo longitudinale geotecnico viabilità - Tav. 5/7	R	S	3	Z	0	0	D	2	6	F	9	G	Е	0	0	0	0	0	0	5
Profilo longitudinale geotecnico viabilità - Tav. 6/7	R	S	3	Z	0	0	D	2	6	F	9	G	Е	0	0	0	0	0	0	6
Profilo longitudinale geotecnico viabilità - Tav. 7/7	R	S	3	Z	0	0	D	2	6	F	9	G	Е	0	0	0	0	0	0	7

A titolo cautelativo si assumono i seguenti parametri geotecnici:

- Angolo di attrito (rinterro), φ ': 35°

- Modulo elastico terreno, E': 25 MPa

- Coefficiente di Poisson, v': 0.3

- Categoria di sottosuolo: C

- Condizione topografica: T1

5.1 Profondità della falda

Ai fini dell'analisi dell'opera non si è considerata la presenza della falda idrica in quanto il livello di falda è al di sotto del piano di fondazione.

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403002 B 8 di 34

6. ANALISI DEI CARICHI

Nel seguente paragrafo si descrivono i carichi elementari che agiscono sulla struttura in oggetto. Tali azioni sono definite secondo le normative e sono utilizzate per la generazione delle combinazioni di carico nell'ambito delle verifiche di resistenza, in esercizio e in presenza dell'evento sismico. Tutti i carichi elementari si riferiscono a un concio longitudinale di larghezza unitaria, pertanto sono tutti definiti rispetto all'unità di lunghezza.

6.1 Pesi propri

Il peso dei differenti elementi strutturali viene calcolato automaticamente dal programma di calcolo utilizzato.

- Soletta di fondazione;
- Piedritti;

Per i materiali si assumono i seguenti pesi specifici:

Calcestruzzo armato: $\gamma_{c.a.} = 25.00 \text{ kN/m}^3$

Rilevato: $\gamma_{ril} = 19.00 \text{ kN/m}^3$

6.2 Permanenti non strutturali

Non sono stati considerati i carichi permanenti sulla soletta di fondazione.

6.3 Carichi mobili (carico stradale)

Non sono stati considerati i carichi da traffico stradale.

6.4 Azione di frenamento (Q₃)

Non è stata considerata la forza di frenamento o accelerazione.

6.5 Azione del sisma

Per tutte le opere d'arte di progetto vengono utilizzati, a vantaggio di sicurezza, i seguenti valori: V_N =50 anni e classe d'uso III a cui corrisponde un coefficiente d'uso C_U = 1.50.

La vita di riferimento V_R è quindi pari a 75 anni.

I parametri utilizzati per la definizione dell'azione sismica sono riportati di seguito.

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403002 B 9 di 34

Classe d'uso: III

• Coefficiente d'uso $C_U = 1.5$

• Vita nominale $V_N = 50$ anni

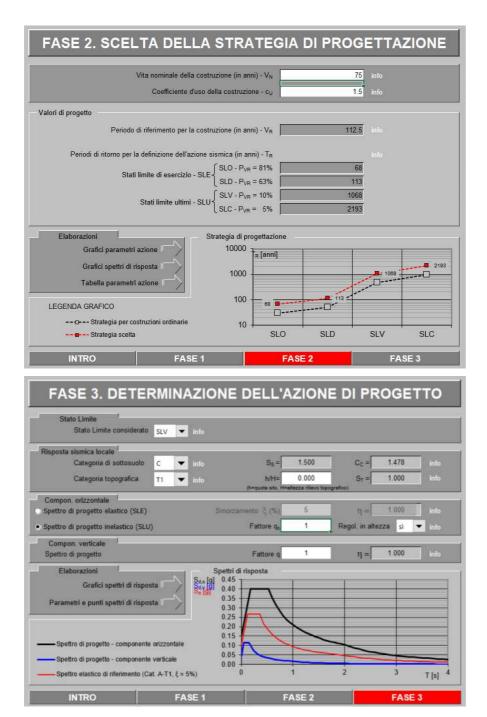
Categoria di suolo: C

Condizione topografica: T1

■ Fattore di struttura q = 1

L'azione sismica è stata calcolata per mezzo del foglio di calcolo Spettri-NTCver.1.0.3 messo a disposizione dal Consiglio Superiore dei Lavori Pubblici.

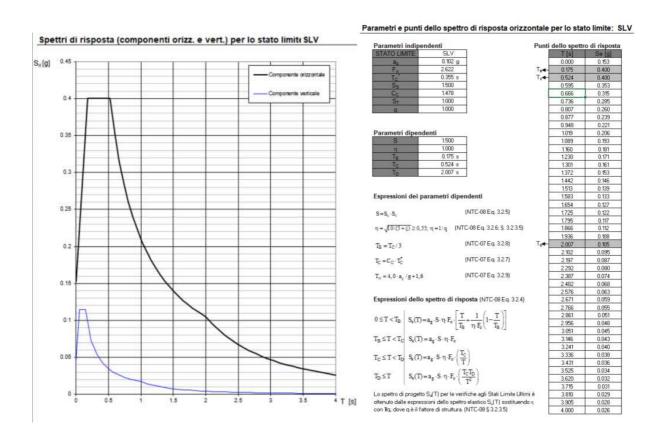
I parametri per la determinazione dei punti dello spettro di risposta orizzontale e verticale sono riportati :



Di seguito si riportano gli spettri di risposta orizzontale e verticale allo Stato limite di salvaguardia della vita SLV utilizzati per il calcolo dell'azione sismica. Con tale azione sismica agente, le forze risultanti trasmesse dall'impalcato al piano appoggi della spalla in corrispondenza della sommità del muro di testata sono riportate al paragrafo successivo, sotto le voci **Ex**, **Ey** ed **Ez**.

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403002 B 10 di 34



Di seguito si riporta a titolo di esempio lo **spettro di progetto** per lo **Stato Limite di salvaguardia della Vita SLV** relativamente alle componenti **orizzontali**, con coefficiente di smorzamento strutturale canonico pari al 5%.

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403002 B 11 di 34

6.6 Ritiro del calcestruzzo

Gli effetti del ritiro del calcestruzzo sono valutati impiegando i coefficienti indicati al punto 11.2.10.6 delle NTC2018. La deformazione totale da ritiro è data dalla somma della deformazione per ritiro da essiccamento e della deformazione da ritiro autogeno. Il ritiro è stato applicato mediante una variazione termica equivalente pari a 10°, ed un umidità relativa del 75% a 7 gg.

Il fenomeno del ritiro è stato applicato solo alla soletta di copertura nel caso dello scatolare mentre viene trascurato nel pozzetto.

6.7 Variazione termica

La variazione termica applicata sulla struttura è pari a $\Delta T = +15$ °C, con un variazione termica a aggiuntiva a farfalla pari a $\Delta T = +5$ °C applicata sulla soletta di copertura.

Per il coefficiente di dilatazione termica si assume:

$$\alpha = 10 \times 10^{-6} = 0.00001$$

Nel caso in esame viene trascurata.

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403002 B 12 di 34

6.8 Spinta statica del terreno

Le spinte del terreno a monte degli elementi verticali sono calcolate con la teoria di Rankine, con distribuzione triangolare delle tensioni e conseguente risultante della spinta al metro pari a $S=1/2 \cdot k_0 \cdot \gamma \cdot H^2$, applicata ad 1/3 dal basso.

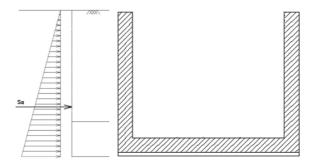


Figura 6.1 – Schema per il calcolo degli effetti della spinta statica del terreno

La spinta in condizioni di esercizio viene calcolata con il coefficiente di spinta a riposo k₀.

6.9 Spinta dovuta al sovraccarico accidentale

Non si considera la presenza di un sovraccarico da traffico gravante a tergo.

6.10 Sovraspinta dovuta all'azione sismica

In condizione sismica si considera un incremento della spinta del terreno rispetto alla condizione statica in esercizio. La sovraspinta sismica è calcolata con la teoria di Wood, risultando in un valore di spinta al metro, distribuito uniformemente sull'intera altezza del piedritto, da applicare ad una quota pari ad H/2.

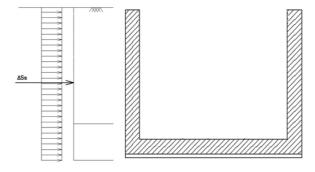


Figura 6.2– Schema per il calcolo degli effetti della sovraspinta sismica

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403002 B 13 di 34

7. COMBINAZIONE DEI CARICHI

In linea con quanto riportato nel quadro normativo vigente, le azioni descritte nei paragrafi precedenti, sono combinate nel modo seguente:

combinazione fondamentale (SLU):

$$\gamma_{\text{G1}} \cdot G_{\text{1}} + \gamma_{\text{G2}} \cdot G_{\text{2}} + \gamma_{\text{p}} \cdot P + \gamma_{\text{Q1}} \cdot Q_{\text{k1}} + \gamma_{\text{Q2}} \cdot \psi_{\text{02}} \cdot Q_{\text{k2}} + \gamma_{\text{Q3}} \cdot \psi_{\text{03}} \cdot Q_{\text{k3}} + \dots$$

combinazione sismica:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

combinazione eccezionale:

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

combinazione Rara (SLE irreversibile):

$$G_{1}+G_{2}+P+Q_{k1}+\psi_{02}\cdot Q_{k2}+\psi_{03}\cdot Q_{k3}+...$$

combinazione Frequente (SLE reversibile):

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + ...$$

combinazione Quasi Permanente (SLE per gli effetti a lungo termine):

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Ai fini della determinazione dei valori caratteristici delle azioni dovute al traffico, si devono considerare, generalmente, le combinazioni riportate in TAb. 5.1.IV.

		Carich	i sulla superfic	ie carrabile		Carichi su marciapiedi e piste ciclabili non sormontabili
	- 8	Carichi vertical		Carichi	orixxontali	Carichi verticali
Gruppo di azioni	Modello principale (schemi di carico 1, 2, 3, 4 e 6)	Veicoli spe- ciali	Folla (Sche- ma di carico 5)	Frenatura	Forza centrifuga	Carico uniformemente distribuito
1	Valore carat- teristico	į				Schema di carico 5 con valore di combinazione 2,5KN/m ²
2a	Valore fre- quente			Valore carat- teristico		5
2b	Valore fre- quente				Valore caratteri- stico	
3 (*)						Schema di carico 5 con valore caratteristico 5,0KN/m²
4 (**)			Schema di carico 5 con valore carat- teristico 5,0KN/m²			Schema di carico 5 con valore caratterístico 5,0KN/m²
5 (***)	Da definirsi per il singo- lo progetto	Valore carat- teristico o nominale				

Tab. 1 – Valutazione dei carichi da traffico

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D26	NV2403002	В	14 di 34

Per le verifiche agli stati limite ultimi si adottano i valori dei coefficienti parziali ed i coefficienti di combinazione ψ delle tabelle seguenti.

		Coefficiente	EQU ⁽¹⁾	A1	A2
Azioni permanenti \mathbf{g}_1 e \mathbf{g}_3	favorevoli sfavorevoli	γ _{G1} e γ _{G3}	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾ g ₂	favorevoli sfavorevoli	Ϋ́G2	0,00 1,50	0,00 1,50	0,00 1,30
Azioni variabili da traffico	favorevoli sfavorevoli	ΥQ	0,00 1,35	0,00 1,35	0,00 1,15
Azioni variabili	favorevoli sfavorevoli	YQI	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecita- zioni di progetto	favorevoli sfavorevoli	Ye1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Cedimenti vincolari	favorevoli sfavorevoli	Ye2 Ye3 Ye4	0,00 1,20	0,00 1,20	0,00 1,00

Tab. 2 – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU, eccezionali e sismica

Azioni	Gruppo di azioni (Tab. 5.1.IV)	Coefficiente \$\psi_0\$ di combi- nazione	Coefficiente V1 (valori frequenti)	Coefficiente \(\psi_2\) (valori quasi permanenti)
	Schema 1 (carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0
Azioni da	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
(Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0
	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	a ponte scarico SLU e SLE	0,6	0,2	0,0
Vento	in esecuzione	0,8	0,0	0,0
	a ponte carico SLU e SLE	0,6	0,0	0,0
Neve	SLU e SLE	0,0	0,0	0,0
Iveve	in esecuzione	0,8	0,6	0,5
Temperatura	SLU e SLE	0,6	0,6	0,5

Tab. 3 – Coefficienti di combinazione ψ delle azioni

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403002 B 15 di 34

8. VERIFICHE STRUTTURALI

Le verifiche di resistenza delle sezioni sono eseguite secondo il metodo semiprobabilistico agli stati limite. I coefficienti di sicurezza adottati sono i seguenti:

- coefficiente parziale di sicurezza per il calcestruzzo: 1.50;
- coefficiente parziale di sicurezza per l'acciaio in barre: 1.15.

Il paragrafo in oggetto illustra nel dettaglio i criteri generali adottati per le verifiche strutturali e geotecniche condotte nel progetto. Ulteriori dettagli di carattere specifico, laddove impiegati, sono dichiarati e motivati nelle relative risultanze delle verifiche.

Per le sezioni in cemento armato si effettuano:

- verifiche per gli stati limite ultimi a presso-flessione;
- verifiche per gli stati limite ultimi a taglio;
- verifiche per gli stati limite di esercizio.

8.1 Verifiche per gli stati limite ultimi a flessione-pressoflessione

Allo stato limite ultimo, le verifiche a flessione o presso-flessione sono condotte confrontando (per le sezioni più significative) le resistenze ultime e le sollecitazioni massime agenti, valutando di conseguenza il corrispondente fattore di sicurezza.

8.2 Verifica agli stati limite ultimi a taglio

La verifica allo stato limite ultimo per azioni di taglio è condotta secondo quanto prescritto dal DM17/01/2018, per elementi con armatura a taglio verticali.

Si fa, pertanto, riferimento i seguenti valori della resistenza di calcolo:

- Resistenza di progetto dell'elemento privo di armatura a taglio:

$$V_{Rd} = max \left\{ \left[0.18 \cdot k \cdot (100 \cdot \rho_l \cdot f_{ck})^{\frac{1}{2}} / \gamma_c + 0.15 \cdot \sigma_{cp} \right] b_w \cdot d; (v_{min} + 0.15 \cdot \sigma_{cp}) \cdot b_w d \right\}$$

- Resistenza di progetto a "taglio trazione":

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (\cot \alpha + \cot \theta) \cdot \sin \alpha$$

- Resistenza di progetto a "taglio compressione":

$$V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot v f_{cd} \cdot (\cot \alpha + \cot \theta) / (1 + \cot^2 \theta)$$

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403002 B 16 di 34

Nelle espressioni precedenti i simboli hanno i seguenti significati:

$$k=1+\sqrt{\frac{200}{d}}\leq 2 \ \text{con d in mm};$$

$$\rho_{_{1}} = \frac{A_{_{sl}}}{b_{_{w}} \cdot d} \leq 0.02 \, ;$$

 A_{sl} è l'area dell'armatura tesa;

 $\boldsymbol{b}_{\mathrm{w}}$ è la larghezza minima della sezione in zona tesa;

$$\sigma_{\text{cp}} = \frac{N_{\text{Ed}}}{A_c} \!<\! 0.2 \!\cdot\! f_{\text{cd}}; \label{eq:sigma_cp}$$

 $N_{\rm Ed}$ è la forza assiale nella sezione dovuta ai carichi;

A è l'area della sezione di calcestruzzo;

$$v_{min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2};$$

 $1 \le \cot \vartheta \le 2.5$ è l'inclinazione dei puntoni di calcestruzzo rispetto all'asse della trave

A sw è l'area della sezione trasversale dell'armatura a taglio;

S è il passo delle staffe;

 α è l'angolo d'inclinazione dell'armatura trasversale rispetto all'asse della trave;

 vf_{cd} è la resistenza di progetto a compressione ridotta del calcestruzzo d'anima (v=0.5);

 $\alpha_c=1$ coefficiente maggiorativo per membrature non compresse.

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403002 B 17 di 34

8.3 Verifica agli stati limite d'esercizio

Si effettuano le seguenti verifiche agli stati limite di esercizio:

- stato limite delle tensioni in esercizio;
- stato limite di fessurazione.

Nel primo caso, si esegue il controllo delle tensioni nei materiali supponendo una legge costitutiva tensionideformazioni di tipo lineare. In particolare si controlla la tensione massima di compressione del calcestruzzo e di trazione dell'acciaio, verificando che:

 $\sigma_c < 0.60 \, f_{ck}$ per combinazione di carico caratteristica (rara);

 $\sigma_c < 0.45 \, f_{ck}$ per combinazione di carico quasi permanente;

 σ_{s} < 0.80 f_{vk} per combinazione di carico caratteristica (rara).

Nel secondo caso, si verifica che le aperture delle fessure siano inferiori al valore limite dell'apertura delle fessure nella combinazione caratteristica Frequente e Quasi Permanente. I valori nominali di riferimento sono:

 $w_1 = 0.2 \text{ mm}$

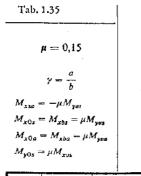
 $w_2 = 0.3 \text{ mm}$

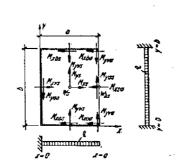
 $w_3 = 0.4 \text{ mm}$

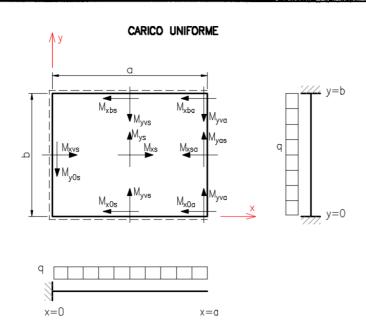
NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403002 B 18 di 34

9. ANALISI STRUTTURALE

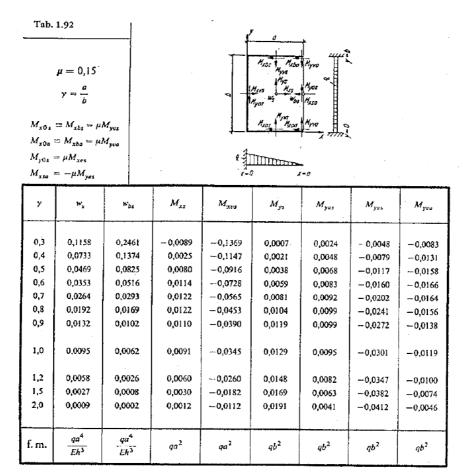
Le pareti del pozzetto sono state calcolate come piastre incastrate su tre lati. Le sollecitazioni sono state determinate facendo uso delle soluzioni note in letteratura per la teoria elastica della piastra. In particolare, sono state utilizzate le tabelle per l'analisi di piastre rettangolare dedotte da R. Bares in "Calcolo di lastre e piastre con la teoria elastica lineare" e mostrate nel seguito per comodità.

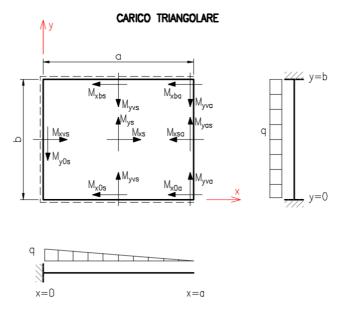

Simbologia adottata


M_{x00},M_{xs0},M_{xb0}	Momenti flettenti in direzione X per x=0 e y=0, b/2, b
M_{x0s},M_{xs},M_{xbs}	Momenti flettenti in direzione X per x=a/2 e y=0, b/2, b
M_{x0a} , M_{xsa} , M_{xba}	Momenti flettenti in direzione X per x=a e y=0, b/2, b
M_{xv0},M_{xvs},M_{xvb}	Momenti flettenti di incastro in direzione X per y=0, b/2, b
M_{y00},M_{ys0},M_{ya0}	Momenti flettenti in direzione Y per y=0 e x=0, a/2, a
M_{y0s},M_{ys},M_{yas}	Momenti flettenti in direzione Y per y=b/2 e x=0, a/2, a
M_{y0b},M_{ys},M_{yab}	Momenti flettenti in direzione Y per y=b e x=0, a/2, a
M_{yv0},M_{yvs},M_{yva}	Momenti flettenti di incastro in direzione Y per x=0, a/2, a
T_x , T_y	Forze di taglio in direzione z per unità di lunghezza della sezione trasversale della piastra perpendicolare all'asse X e all'asse Y rispettivamente


NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403002 B 19 di 34

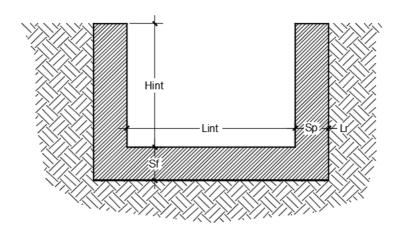
Carico uniforme


γ.	w _s	Wha	M _{xs}	M _{xvs}	M_{ys}	Myas	Myon	M_{yva}
0,3	0,3764	0,9700	-0,0489	-0,3833	0,0019	0,0078	-0,0131	-0, 0333
0,4	0,2565	0,5909	-0,0025	-0,2783	0,0068	0,0173	-0,0242	-0.0545
0,5	0,1613	0,3433	0,0132	0,2004	0,0120	0,0268	0,0335	-0,0709
0,6	0,1031	0,1981	0,0192	-0,1476	0,0177	0,0333	-0,0416	-0,0798
0,7	0,0674	0,1211	0,0190	-0,1106	0,0217	0,0384	-0,0493	-0,0837
0,8	40,0452	0,0753	0,0173	-0,0865	0,0247	0,0413	-0,0561	-0,0848
0,9	0,0315	0,0484	0,0154	-0,0691	0,0270	0,0426	-0,0616	0,0850
1,0	0,0226	0,0324	0,0125	-0,0559	0,0288	0,0435	0,0664	0,0851
1,2	0,0124	0,0159	0,0086	-0,0387	0,0327	0,0443	0,0734	0,0848
1,5	0,0055	0,0066	0,0047	-0,0248	0,0370	0,0449	-0,0793	-0,0846
2,0	0,0018	0,0021	0,0021	-0,0139	0,0406	0,0450	0,0830	0,0845
f.m.	qa ⁴ Eh ³	qa ⁴ Eh ³	qa²	qa²	qb^2	qb ²	qb²	qb²



NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403002 B 20 di 34

Carico triangolare


NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403002 B 21 di 34

9.1 Analisi dei carichi

Geometria

Caratteristiche materiali e terreno				
Calcestruzzo armato - Peso specifico	γ		25	kN/m³
Calcestruzzo armato - Tipo			C30/37	
Calcestruzzo armato - Res. caratt. cubica	R_{ck}		37	N/mm²
Calcestruzzo armato - Res. caratt. cilindrica	f_{ck}		30.7	N/mm²
Calcestruzzo armato - Modulo elastico	" E		33000	N/mm²
Pacchetto stradale - Peso specifico	γ		24	kN/m³
Terreno del rilevato - Peso specifico	Υ		19	kN/m³
Terreno del rilevato - Angolo di attrito	φ		35	0
Terreno di fondazione	Kw		5000	kN/m³
Condizioni ambientali per ver. a fessurazione	•	a	aggressive	
Geometria				
Spessore soletta superiore	Ss		0.00	m
Spessore soletta di fondazione	Sf		0.40	m
Spessore piedritti	Sp		0.30	m
Altezza netta	Hint		1.90	m
Larghezza netta	Lint		3.00	m
Lunghezza risvolti sol. inf.	Lr		0.00	m

Tab. 4: Geometria del modello

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403002 B 22 di 34

Spinta	del	terreno
VΛ		

К0		1 - sen (35°) =	0.426	
Spinta alla quota di estradosso sol. sup.	p1	0.426 · 0.00 =	0.00	kN/m ²
Spinta in asse sol. sup.	p2	$0.426 \cdot (0.00 + 19.0.00/2) =$	0.00	kN/m²
Spinta in asse sol. inf.	р3	$0.426 \cdot [0.00 + 19 \cdot (0.00/2 + 1.90 + 0.40/2)] =$	17.01	kN/m²
Spinta alla quota di intradosso sol. inf.	p4	$0.426 \cdot [0.00 + 19 \cdot (0.00/2 + 1.90 + 0.40)] =$	18.63	kN/m²
Spinta semispessore sol. sup.	F1	(0.00+0.00)/2 · 0.00/2	0.00	kN/m
Spinta semispessore sol. inf.	F2	(17.01+18.63)/2 · 0.40/2	3.56	kN/m

Sisma orizzontale

Stato limite	Salvaguardia della vita - SLU -	SLV
Vita nominale	$^{T}V_{N}$	50 anni
Classe d'uso	` Cu	III
Coefficiente C _U	C_U	1.5
Periodo di riferimento	V_R	75 anni
accelerazione orizzontale	a _g /g	0.102
amplificazione spettrale	Fo	2.622
Categoria sottosuolo	A, B, C, D, E	С
Coeff. Amplificazione stratigrafica	Ss	1.500
Coeff. Amplificazione topografica	St	1
Coefficiente S	S =Ss·St	1.500
accellerazione orizzontale max	$a_{max}/g = ag/g \cdot S$	0.153
Fattore di struttura	q	1.00

Forza orizz. sul s. di cop. dovuta a perm+0.2acc. FHs $0.153 \cdot (0.00 \cdot 25 + 0.00 + 0.2 \cdot 0.00) / 1.00 =$ **0.00 kN/m²** Forza orizz. sui piedritti FHp $0.153 \cdot (0.30 \cdot 25) / 1.00 =$ **1.15 kN/m²**

Spinta del terreno in fase sismica

Coefficiente sismico orizzontale	k_h	$=a_{max}/g*\beta_{m}$	0.058	
Coefficiente sismico verticale	k_v	$= \pm 0.5 \cdot k_h$	0.029	
Risultante della spinta sismica	ΔS_{E}		15.4	kN/m
Pressione risultante	Δp_E	= $\Delta SE / [(Hint+Ss/2+Sf/2)]$	7.3	kN/m²

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403002 B 23 di 34

9.2 Combinazioni

COMBINAZIONI	SPT	SISMAH	SPS
SLU	1.35	0	0
SISM	1	1	1
SLE	1	0	0

dove:

SPT : spinta del terreno sulla parete

SISMAH : azione sismica

SPS : incremento sismico della spinta del terreno

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403002 B 24 di 34

9.3 Verifiche strutturali

9.3.1 Progetto armatura verticale - Mxvs

Sezione: 30 x 100 cm

Armatura a flessione:

Armatura tesa

\$ 14/20 cm

Armatura compressa

ф 14/20 cm

Armatura a taglio:

Non necessarie ai fini del calcolo, si dispongono comunque Spille \phi 10/40x40 cm.

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto

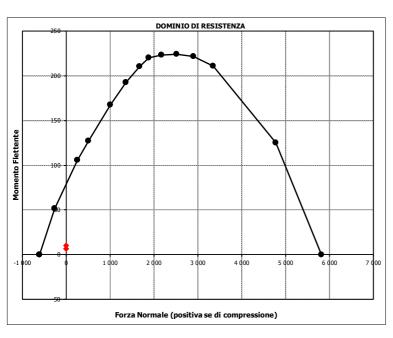
COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403002 B 25 di 34

Verifica a pressoflessione

Acciaio				
Tensione car. di rottura	f _{tk}	=	540	N/mm²
Tensione car. di snervamento	f_{yk}	=	450	N/mm²
Coeff. parziale di sicurezza	Ϋ́s	=	1.15	
Resistenza di calcolo	f_{yd}	=	391	N/mm²
Modulo elastico	E_s	=	200000	N/mm²
	ϵ_{vd}	=	0.00196	

Calcestruz:	zo	
Tipo	C30/37	
R_{ck}	37	N/mm ²
f_{ck}	30.71	N/mm ²
Yc	1.5	
f_{cd}	20.5	N/mm ²
f_{cc}	17.4	N/mm²

copriferro	50	mm
staffe	12	mm
armat. sec	12	mm


Geometria della sezione				
Altezza geometrica della sezion	1 h	=	30	cm
Base della sezione	b	=	100	cm
Copriferro	ď'	=	8.1	cm
Altezza utile della sezione	d	=	21.9	cm

		7.70	cm ²
		0.00	cm ²
		0.00	cm ²
5	14	7.70	cm ²
Nº ferri	Diametro	Area	
Armatura	tesa		

Armatura (compressa		
Nº ferri	Diametro	Area	
5	14	7.70	cm ²
		0.00	cm ²
		0.00	cm ²
		7.70	cm ²

C

Caratteristiche di sollecitazione			
Nsd	Msd		
0	7		
0	7		
0	10		
0	7		

	l
T	
ļ	l
- 1	
	-
J	
	
J	l
- 1	
	-
	 <u></u>
	-
	 <u> </u>

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D26	NV2403002	В	26 di 34

• Verifica a taglio

La verifica a taglio viene condotta nel seguente modo:

- 1. Verifica della sezione senza armatura al taglio → se VEd<VRd1 la verifica è soddisfatta;
- 2. Altrimenti si verifica la sezione con armatura a taglio → se VEd<VRd2 la verifica è soddisfatta.

Calcestruzzo				
Tipo	C30/37			
R_{ck}	37	N/mm ²		
f_{ck}	30.7	N/mm ²		
Yc	1.5			
	0.85			
f_{cd}	17.4	N/mm²		
$\begin{aligned} &\text{Tipo} \\ &R_{ck} \\ &f_{ck} \\ &\text{Y_c} \\ &\alpha_{cc} \\ &f_{cd} \end{aligned}$	1.5 0.85	·		

Acciaio		
f _{tk}	540	N/mm²
f_{yk}	450	N/mm ²
Υs	1.15	
f_{yd}	391	N/mm²

Sollecitazioni		Txs
V_{Ed}	kN	13
N_{Ed}	kN	0

Aimatura a tayno		
Diametro	mm	10
Numero barre		2.5
A_{sw}	cm ²	1.96
Passo s	cm	40
Angolo «	" o	00

Armatura longi		
n_1		5
\emptyset_1	mm	14
n_2		
\emptyset_2	mm	
Asl	cm ²	7.70

Sezione		
b _w	cm	100
Н	cm	30
с	cm	8.1
c d k	cm	21.9
k	N/mm ²	1.96
V _{min}	N/mm ²	0.53
ρ		0.0035
	N/mm ²	0.00
σcp $α$ c		1.00

α_c		1.00
Resistenza ser	nza armatura a tag	lio
V_{Rd}	kN	116

Resistenza con armatura a tagno				
Inclinazione puntone θ	0	21.8		
V_{RSd}	kN	95		
V_{RCd}	kN	591		
V_{Rd}	kN	95		

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403002 B 27 di 34

Verifica a fessurazione

lecita	

Soliccitazioni		
Momento flettente - Combinazione rara	M_R	5.00 kNm
Sforzo normale - Combinazionre rara	N_R	0.00 kN
Momento flettente - Combinazione frequente	M _F	5.00 kNm
Sforzo normale - Combinazione frequente	Nr	0.00 kN

Materiali

Pateriali			
Resistenza caratteristica cubica calcestruzzo	R_{ck}	37	N/mm ²
Resistenza caratteristica cilindrica calcestruzzo	f_{ck}	30.71	N/mm ²
Modulo elastico del calcestruzzo	E_{cm}	33019.43	N/mm ²
Tensione ammissibile di compressione calcestruzzo	σ_{camm}	18.43	N/mm ²
Resistena media a trazione calcestruzzo	f_{ctm}	3.36	N/mm ²
Resistenza caratteristica a trazione calcestruzzo	f_{ctk}	2.35	N/mm ²
Tensione ammissibile di trazione calcestruzzo	σ_{tamm}	2.80	N/mm ²
Tensione di snervamento acciaio	f_{yk}	450.00	N/mm ²
Modulo elastico dell'acciaio	E_s	200000.00	N/mm ²
Tensione ammissibile acciaio	σ_{samm}	360.00	N/mm ²
Coefficiente omogeneizzazione acciaio-calcestruzzo	n	15.00	-

Caratteristiche geometriche

caracteristicine geometricine									
Altezza sezione	Н	30.00	cm						l
Larghezza sezione	В	100.00	cm						l
Armatura compressa (1º strato)	As ₁ '	7.70	cm ²	5	Ø	14	$c_{s1} = 8.1$	cm	
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²	0	Ø	0	$c_{s2} = 8.8$	cm	l
Armatura tesa (1º strato)	As_1	7.70	cm ²	5	Ø	14	c _{i1} = 8.1	cm	
Armatura tesa (2º strato)	As_2	0.00	cm ²	0	Ø	0	$C_{i2} = 8.8$	cm	l

Proprietà sezione in combinazione rara

1 Topricta Scrione III combinazione fara							
Eccentricità dello sfrozo normale	e (M)	∞	cm	>	H/6	Sez. parzializzata	1
Distanza sforzo N dal bordo sezione	u (M)	∞	cm				
Posizione asse neutro	y (M)	6.33	cm				
Area ideale (sezione interamente reagente)	A_{id}	3215.51	cm ²				
Momento di inerzia ideale (sez. int. reag.)	J_id	235993.49	cm ⁴				
Momento di inerzia ideale (sez. parz. N=0)	J_{id*}	36805.05	cm ⁴				

Tensioni nei materiali

Compressione max nel cls.	σ_{c}	0.86 N/mm ²	<	σc _{amm}
Trazione nell'acciaio (1º strato)	σ_{s}	31.71 N/mm ²	<	σa _{amm}

Proprietà sezione in combinazione frequente

Eccentricità dello sfrozo normale	e (M)	8	cm	>	H/6	Sez. parzializzata
Distanza sforzo N dal bordo sezione	u (M)	∞	cm			
Posizione asse neutro	y (M)	6.33	cm			
Area ideale (sez. int. reagente)	A_{id}	3215.51	cm ²			
Momento di inerzia ideale (sez. int. reag.)	${\sf J}_{\sf id}$	235993.49	cm ⁴			
Momento di inerzia ideale (sez. parz. N=0)	J_{id^*}	36805.05	cm ⁴			

Verifica a fessurazione

Momento di fessurazione (σ_{tamm})	M_{fess}	44.01 kNm	La sezione non è fessurata	
---	------------	-----------	----------------------------	--

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto COMMESSALOTTOFASE-ENTEDOCUMENTOREV.FOGLIORS3Z00D26NV2403002B28 di 34

9.3.2 Progetto armatura orizzontale - Myvs

Sezione: 30 x 100 cm

Armatura a flessione:

Armatura tesa

ф 14/20 cm

Armatura compressa

ф 14/20 cm

Armatura a taglio:

Non necessarie ai fini del calcolo, si dispongono comunque Spille \phi 10/40x40 cm.

NV24 - Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto

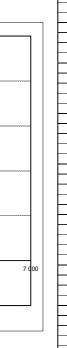
REV. COMMESSA LOTTO FASE-ENTE DOCUMENTO **FOGLIO** RS3Z 29 di 34 00 D26 NV2403002 В

Verifica a pressoflessione

Acciaio				
Tensione car. di rottura	f_{tk}	=	540	N/mm²
Tensione car. di snervamento	f_{yk}	=	450	N/mm²
Coeff. parziale di sicurezza	Ϋ́s	=	1.15	
Resistenza di calcolo	f_{yd}	=	391	N/mm ²
Modulo elastico	Ės	=	200000	N/mm²
	ϵ_{vd}	=	0.00196	

Calcestruzzo							
Tipo	C30/37						
R_{ck}	37	N/mm ²					
f_{ck}	30.71	N/mm ²					
Ϋ́c	1.5						
f_{cd}	20.5	N/mm ²					
f_{cc}	17.4	N/mm ²					

50	mm
12	mm
12	mm
	12


Geometria della sezione				
Altezza geometrica della sezion h	1	=	30	cm
Base della sezione b	•	=	100	cm
Copriferro d	ď	=	8.1	cm
Altezza utile della sezione d	i	=	21.9	cm

Armatura tesa								
Nº ferri	Diametro	Area						
5	14	7.70	cm ²					
		0.00	cm ²					
		0.00	cm ²					
`		7 70	cm ²					

Armatura compressa								
Nº ferri	Diametro	Area						
5	14	7.70	cm ²					
		0.00	cm ²					
	0.00	cm ²						

(Nmax)	
(Nmin)	
(Mmax)	
(Mmin)	

Caratteristiche di sollecitazione							
Comb.	Nsd	Msd					
	0	4					
	0	4					
	0	7					
	0	4					

	250	I		DOMINIO D	RESISTENZ	A	}	——————————————————————————————————————
	200 -		عو	•••	•			
	150 -		/					
Momento Flettente	100-	<i>y</i>				•		
Momento		/						
-10	000) 1(00 2.0	00 3 0	00 4 (00 5 (00 60	00 7 0 00
			Forza Norn	nale (positiv	a se di comp	oressione)		

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D26	NV2403002	В	30 di 34

• Verifica a taglio

La verifica a taglio viene condotta nel seguente modo:

- 1. Verifica della sezione senza armatura al taglio → se VEd<VRd1 la verifica è soddisfatta;
- 2. Altrimenti si verifica la sezione con armatura a taglio → se VEd<VRd2 la verifica è soddisfatta.

Calcestruzzo

Tipo	C30/37	
R_{ck}	37	N/mm ²
R _{ck} f _{ck} Yc	30.7	N/mm ²
Yc	1.5	
α_{cc}	0.85	
α_{cc} f_{cd}	17.4	N/mm ²

Acciaio

f_{tk}	540	N/mm²
f _{yk}	450	N/mm²
Ϋ́s	1.15	
$\begin{aligned} &f_{yk}\\ &Y_s\\ &f_{yd} \end{aligned}$	391	N/mm²

Sollecitazioni		Tys
V_{Ed}	kN	22
N_{Ed}	kN	0

Armatura a taglio

Diametro	mm	10
Numero barre		2.5
A_{sw}	cm ²	1.96
Passo s	cm	40
Angolo α	•	90

Armatura longitudinale

n_1		5
\emptyset_1	mm	14
n_2		
\emptyset_2	mm	
Asl	cm ²	7.70

Sezione

b_w	cm	100
Н	cm	30
c d	cm	8.1
d	cm	21.9
k	N/mm ²	1.96
V _{min}	N/mm²	0.53
ρ		0.0035
σcp	N/mm ²	0.00
α_{c}		1.00

Resistenza senza armatura a taglio

▼Rd NN 110

Resistenza con armatura a taglio

Inclinazione puntone θ	0	21.8
V_{RSd}	kN	95
V_{RCd}	kN	591
V_{Rd}	kN	95

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D26 NV2403002 B 31 di 34

Verifica a fessurazione

lecita	

Soliccitazioni		
Momento flettente - Combinazione rara	M_R	3.12 kNm
Sforzo normale - Combinazionre rara	N_R	0.00 kN
Momento flettente - Combinazione frequente	M _F	3.12 kNm
Sforzo normale - Combinazione frequente	Nr	0.00 kN

Materiali

Pateriali			
Resistenza caratteristica cubica calcestruzzo	R_{ck}	37	N/mm ²
Resistenza caratteristica cilindrica calcestruzzo	f_{ck}	30.71	N/mm ²
Modulo elastico del calcestruzzo	E_{cm}	33019.43	N/mm ²
Tensione ammissibile di compressione calcestruzzo	σ_{camm}	18.43	N/mm ²
Resistena media a trazione calcestruzzo	f_{ctm}	3.36	N/mm ²
Resistenza caratteristica a trazione calcestruzzo	f_{ctk}	2.35	N/mm ²
Tensione ammissibile di trazione calcestruzzo	σ_{tamm}	2.80	N/mm ²
Tensione di snervamento acciaio	f_{yk}	450.00	N/mm ²
Modulo elastico dell'acciaio	E_s	200000.00	N/mm ²
Tensione ammissibile acciaio	σ_{samm}	360.00	N/mm ²
Coefficiente omogeneizzazione acciaio-calcestruzzo	n	15.00	-

Caratteristiche geometriche

Caratteristicine geometricine								
Altezza sezione	Н	30.00	cm					
Larghezza sezione	В	100.00	cm					
Armatura compressa (1º strato)	As ₁ '	7.70	cm ²	5	Ø	14	$c_{s1} = 8.1$	cm
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²	0	Ø	0	$c_{s2} = 8.8$	cm
Armatura tesa (1º strato)	As_1	7.70	cm ²	5	Ø	14	c _{i1} = 8.1	cm
Armatura tesa (2º strato)	As_2	0.00	cm ²	0	Ø	0	$c_{i2} = 8.8$	cm

Proprietà sezione in combinazione rara

1 Topricta Scrione in combinazione fara							
Eccentricità dello sfrozo normale	e (M)	∞	cm	>	H/6	Sez. parzializzata	
Distanza sforzo N dal bordo sezione	u (M)	∞	cm				
Posizione asse neutro	y (M)	6.33	cm				
Area ideale (sezione interamente reagente)	A_{id}	3215.51	cm ²				
Momento di inerzia ideale (sez. int. reag.)	J_id	235993.49	cm ⁴				
Momento di inerzia ideale (sez. parz. N=0)	J_{id*}	36805.05	cm ⁴				

Tensioni nei materiali

Compressione max nel cls.	$\sigma_{\!\scriptscriptstyle c}$	0.54	N/mm ²	<	$\sigma_{C_{amm}}$
Trazione nell'acciaio (1º strato)	$\sigma_{\rm s}$	19.82	N/mm ²	<	σa_{amm}

Proprietà sezione in combinazione frequente

Eccentricità dello sfrozo normale	e (M)	∞	cm	>	H/6	Sez. parzializzata
Distanza sforzo N dal bordo sezione	u (M)	∞	cm			
Posizione asse neutro	y (M)	6.33	cm			
Area ideale (sez. int. reagente)	A_{id}	3215.51	cm ²			
Momento di inerzia ideale (sez. int. reag.)	J_id	235993.49	cm ⁴			
Momento di inerzia ideale (sez. parz. N=0)	J_{id^*}	36805.05	cm ⁴			

Verifica a fessurazione

Momento di fessurazione (σ_{tamm})	M_{fess}	44.01 kNm	La sezione non è fessurata	
---	------------	-----------	----------------------------	--

NV24 – Viabilità di accesso SSE/Area Terna Relazione di calcolo pozzetto COMMESSALOTTOFASE-ENTEDOCUMENTOREV.FOGLIORS3Z00D26NV2403002B32 di 34

9.4 INCIDENZA POZZETTO

I valori delle incidenze di armatura lenta sono indicati nella seguente tabella:

Pozzetto 90 kg/mc

Nel calcolo è stata considerato un incremento del 15% per tener conto della presenza di legature e spille.