COMMITTENTE:

PROGETTAZIONE:

U.O. INFRASTRUTTURE NORD

PROGETTO DEFINITIVO

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA

RADDOPPIO TRATTA FIUME TORTO – LERCARA DIRAMAZIONE LOTTO 1 + 2

SINGOLE OPERE DI LINEA

IN54 – Nuovo tombino al km 28+986

Relazione di calcolo scatolare 3x3

					SCALA:
					-
COMMESSA	LOTTO FASE	ENTE TIPO DOC.	OPERA/DISCIPLINA	PROGR.	REV.
RS3Z	0 0 D	2 6 C L	I N 5 4 0 0	0 0 1	В

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
	EMICOLONIE ECECLITIVA	C. INTEGRA	Gennaio	M.SALLEOLINI	Gennaio	A. BARRECA	Gennaio	R. SEAÇĞHI
Α	EMISSIONE ESECUTIVA		2020	Moad !	2020		2020	Mag pi & 2 020
В	1° AGG. A CONSEGNA	C. INTEGRA	Maggio 2020	M.SALLEOLINI	Maggio 2020	A. BARPECA	Maggio 2020	Frances Frances SYZ Se
	CSLLPP		2020	Mollas	2020	645	2020	9 1
								FERR Do
								Ordir

File: RS3Z00D26CLIN5400001B n. Elab.:

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLIN5400001 B 1 di 57

INDICE

1.	PREMESSA	3
2.	DESCRIZIONE	5
3.	NORMATIVE DI RIFERIMENTO	6
4.	CARATTERISTICHE DEI MATERIALI	7
5.	STRATIGRAFIA E PARAMETRI GEOTECNICI	9
	5.1 Profondità della falda	9
6.	ANALISI DEI CARICHI	10
	6.1 Pesi propri	10
	6.2 Permanenti non strutturali	10
	6.3 Carichi mobili (traffico ferroviario)	11
	6.4 Azione di avviamento / frenatura	14
	6.5 Azione di serpeggio	14
	6.6 Azione del sisma	14
	6.7 Ritiro del calcestruzzo	17
	6.8 Variazione termica	17
	6.9 Spinta statica del terreno	17
	6.10 Spinta dovuta al sovraccarico accidentale	18
	6.11 Incremento di Spinta in condizione sismiche	18
7.	COMBINAZIONE DEI CARICHI	19
8.	VERIFICHE STRUTTURALI	21
	8.1 Verifiche per gli stati limite ultimi a flessione-pressoflessione	21
	8.2 Verifica agli stati limite ultimi a taglio.	21
	8.3 Verifica agli stati limite d'esercizio	23
9.	ANALISI STRUTTURALE	24
	9.1 Modellazione strutturale : Scatolare	24

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLIN5400001	В	2 di 57

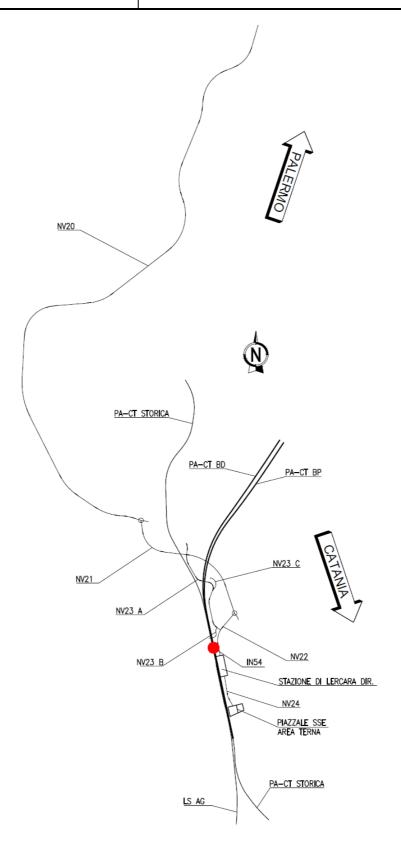
9.2	Analisi dei carichi	. 26
9.3	Combinazioni	. 29
9.4	Sollecitazioni	. 32
9.5	Verifiche strutturali	. 36
	9.5.1 Verifica piedritti	. 36
	9.5.2 Verifica soletta superiore	
	9.5.3 Verifica soletta inferiore	. 48
10.INC	CIDENZA SCATOLARE	. 54
11.DIC	CHIARAZIONI SECONDO D.M. 17/01/2018 (P.TO 10.2)	. 55
11.1	Tipo di analisi svolte	. 55
11.2	Porigine e caratteristiche dei Codici di Calcolo	. 55
11 2	Giudizio motivato di accettabilità dai risultati	55

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSALOTTOFASE-ENTEDOCUMENTOREV.FOGLIORS3Z00D 26CLIN5400001B3 di 57

1. PREMESSA

Il presente documento viene emesso nell'ambito della redazione degli elaborati tecnici relativi alla progettazione definitiva del collegamento Palermo-Catania, raddoppio tratta Fiumetorto-Lercara Diramazione, appartenente alla Direttrice ferroviaria Messina-Catania-Palermo.


La presente relazione descrive il tombino di linea IN54 alla progr. 28+986 avente sezione interna 3.0x3.0m.

Segue l'ubicazione dell'opera.

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLIN5400001 B 4 di 57

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLIN5400001 B 5 di 57

2. DESCRIZIONE

La presente relazione ha per oggetto la verifica della sezione trasversale dell'opera scatolare IN54 alla progressiva 28+986, utilizzabile per attraversamenti ferroviari, avente le caratteristiche riportate nella seguente tabella:

Geometria del tombino								
Larghezza totale	Ltot	3.60	m					
Altezza totale	Htot	3.60	m					
Spessore soletta superiore	SS	0.40	m					
Spessore piedritti	sp	0.40	m					
Spessore soletta inferiore	sf	0.40	m					
Luce libera	Lint	3.00	m					
Altezza libera	Hint	3.00	m					

Il tombino presenta un ricoprimento di circa 3.77 m in asse binario di progetto.

La struttura sarà realizzata in c.a. gettato in opera senza giunti intermedi.

Geometria del Ricoprimento							
Ballast+Armamento	Hb	0.77	m				
Ricoprimento	Hsc	3.72	m				
Imperm. più massetto cls sp. 5 cm	Hr	0.05	m				

Si trascura a favore di sicurezza la presenza del riempimento interno.

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLIN5400001 B 6 di 57

3. NORMATIVE DI RIFERIMENTO

Il dimensionamento e la verifica degli elementi strutturali sono stati condotti nel rispetto delle seguenti normative:

- <u>Decreto Ministeriale 17 gennaio 2018</u>: Aggiornamento delle Norme tecniche per le costruzioni;
- <u>Circolare 21 gennaio 2019, n.7 C.S.LL.PP.</u>: Istruzioni per l'applicazione dell'"Aggiornamento delle Norme tecniche per le costruzioni di cui al D.M. 17 gennaio 2018;
- <u>Circolare 15 ottobre 1996, n.252 AA.GG./S.T.C.</u>: Istruzioni per l'applicazione delle "Nuove norme tecniche per il calcolo, l'esecuzione ed il collaudo delle opere in cemento armato normale e precompresso e per le strutture metalliche" di cui al decreto ministeriale 9 gennaio 1996;
- RFI DTC SI MA IFS 001 B: "Manuale di progettazione delle opere civili" del 22/12/2017.
- RFI DTC SI PS MA IFS 001 B: Sezione 2 Ponti e Strutture

Riferimenti STI:

 Regolamento (UE) N. 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019;

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSALOTTOFASE-ENTEDOCUMENTOREV.FOGLIORS3Z00D 26CLIN5400001B7 di 57

4. CARATTERISTICHE DEI MATERIALI

MAGRONE - C12/15								
Descrizione	Simbolo	Formula	Unità di misura	Valore				
Resistenza cubica a compressione	R _{ck}		N/mm ²	15				
Contenuto minimo cemento			kg/m ³	150				

CALCESTRUZZO CLASSE 30/37										
Descrizione	Simbolo	Formula	Unità di misura	Valore						
Resistenza cubica a compressione	R _{ck}		N/mm ²	37.0						
Resistenza cilindrica a compressione	f _{ck}	0.83 * R _{ck}	N/mm ²	30.7						
Resistenza cilindrica media a compressione	f _{cm}	f _{ck} +8	N/mm ²	38.7						
Coefficiente per effetti a lungo termine e sfavorevoli	a _{cc} (t>28gg)		-	0.85						
Coefficiente parziale di sicurezza relativo al calcestruzzo	Υ _c		-	1.5						
Resistenza di calcolo a compressione	f _{cd}	$(a_{cc} * f_{ck}) / \Upsilon c$	N/mm ²	17.4						
Resistenza cilindrica media a trazione	f _{ctm}	0.3 * (fck) ^{2/3}	N/mm ²	2.9						
Resistenza cilindrica media a trazione	f _{ctk}	0.7 * f _{ctm}	N/mm ²	2.1						
Resistenza di calcolo a trazione	f _{ctd}	f_{ctk} / γ_c	N/mm ²	1.4						
Resistenza media a trazione per flessione	f _{cfm}	1.2 * f _{ctm}	N/mm ²	3.5						
Resistenza cilindrica caratteristica a trazione	f _{cfk}	0.7 * f _{ctm}	N/mm ²	2.5						
Modulo elastico	E _{cm}	$22000 * (f_{cm}/10)^{0.3}$	N/mm ²	33019						
Peso proprio	Ϋ́c		N/m ³	25000						
Coefficiente di Poisson	ν		-	0.2						
Coefficiente di aderenza	n		-	1.0						
Resistenza tangenziale caratteristica di aderenza	f _{bk}	2.25 * η * f _{ctk}	N/mm ²	4.6						
Resistenza tangenziale di aderenza di calcolo	f _{bd}	f_{bk} / Υ_c	N/mm ²	3.1						

Acciaio ad aderenza migliorata B450C				
Descrizione	Simbolo	Formula	Unità di misura	Valore
Resistenza caratteristica di rottura	f _{t nom}		N/mm ²	54 0
Resistenza caratteristica a snervamento	f _{y nom}		N/mm ²	4 50
Coefficiente parziale di sicurezza relativo all'acciaio	Ϋ́s		-	1.15
Resistenza di calcolo	f _{yd}	f_{yk}/Υ_s	N/mm ²	391.3
Modulo elastico	E _s		N/mm ²	206000
Tensioni di progetto del cls allo S.L.E.				
Tensione massima di esercizio per l'acciaio	σ_{s}	0.75 * f _{yk}	N/mm ²	337.5

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLIN5400001 B 8 di 57

Con riferimento al punto 4.1.6.1.3 delle NTC, al fine della protezione delle armature dalla corrosione il valore minimo dello strato di ricoprimento di calcestruzzo (copriferro) deve rispettare quanto indicato nella tabella C4.1.IV della Circolare 21.01.2019, riportata di seguito, nella quale sono distinte le tre condizioni ambientali di Tabella 4.1.III delle NTC.

DIRAMAZIONE - LOTTO 1+2

		barre da c.a.		barre d	a c.a.	cavi da	c.a.p	cavi da c.a.p			
			elementi a piastra		altri ele	ementi	elemen	ti a piastra	altri elementi		
Cmin	Co	ambiente	C≥Co	Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""><td colspan="2">C≥Co Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<></td></co<></td></co<>	C≥Co	Cmin≤C <co< td=""><td colspan="2">C≥Co Cmin≤C<co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<></td></co<>	C≥Co Cmin≤C <co< td=""><td>C≥Co</td><td>Cmin≤C<co< td=""></co<></td></co<>		C≥Co	Cmin≤C <co< td=""></co<>	
C25/30	C35/45	ordinario	15	20	20	25	25 30		30	35	
C30/37	C40/50	aggressivo	25	30	30	35	35 40		40	45	
C35/45	C45/55	molto ag.	35	40	40	40 45		45 50		50	

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

Classe di esposizione: XA1 Copriferro di progetto: 50 mm Condizioni ambientali: Aggressive

L'apertura convenzionale delle fessure, calcolata con la combinazione caratteristica RARA per gli SLE dovrà risultare:

- a) $\delta_f \leq w_1$ per strutture in condizioni ambientali aggressive e molto aggressive, così come identificate nel par. 4.1.2.2.4.2 del DM 17.01.2018, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture;
- b) $\delta_f \leq w_2$ per strutture in condizioni ambientali ordinarie secondo il citato paragrafo del DM 17.01.2018.

Con δ_f apertura delle fessure e w_1 valore limite dell'apertura delle fessure.

 $w_1 = 0.2 \text{ mm}$

 $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLIN5400001 B 9 di 57

5. STRATIGRAFIA E PARAMETRI GEOTECNICI

Gli elaborati di riferimento sono:

GEOTECNICA																				
Relazione geotecnica generale linea ferroviaria	R	S	3	Z	0	0	D	2	6	G	Е	О	C	0	0	0	0	0	0	1
Profilo longitudinale geotecnico linea ferroviaria - Tav. 1/2	R	S	3	Z	0	0	D	2	6	F	7	O	C	0	0	0	0	0	0	1
Profilo longitudinale geotecnico linea ferroviaria - Tav. 2/2	R	S	3	Z	0	0	D	2	6	F	7	О	C	0	0	0	0	0	0	2

Sulla base delle indagini svolte, sintetizzate nei profili geotecnici lungo linea, in corrispondenza della progressiva si evince la seguente stratigrafia:

Terreno di fondazione

ZONA		SONDAGGIO	PROFONDITA' UNITA'	UNITA' γ _{sat} [kN/m³]	φ' [°]		Cu [kPa]		c'[kPa]	Vs[m/s]		n/s]	Vs.ea	Categoria di	G ₀ [MPa]		Ei/Eu [MPa]	Ei[MPa]				
21	UNA	RIFERIMENTO	PROFONDITA	TERRENO			min	di prog.	max	min	di prog.	di prog.	max	min	di prog.	[m/s]	sottosuolo	max	min	di prog.	di prog.	di prog.
		2SNV02 2SNV03	da 0 a 6m	C sup	21	35	24	30	350	7	80	27	489	129	324	460	В	488	34	70	64	61
			da 6 a 12m	C sup	21	35	24	30	350	7	150	27	489	129	324	460	В	488	34	100	120	87
	2		da 12 a 18m	C sup	21	35	24	30	350	7	280	27	489	129	324	460	В	488	34	180	224	156
			da 18 a 24m	Sa,2	21	35	21	31	0	0	0	0	385	226	338	460	В	302	104	200	173	173
			da 24 in poi	C inf	22	35	24	25	350	7	280	30	489	129	324	460	В	488	34	220	224	191

5.1 Profondità della falda

Ai fini dell'analisi dell'opera non si è considerata la presenza della falda idrica in quanto il livello di falda è posto al di sotto del piano di fondazione dell'opera.

PROGETTO DEFINITIVO

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO NUOVO COLLEGAMENTO PALERMO-CATANIA RADDOPPIO TRATTA FIUMETORTO – LERCARA

DIRAMAZIONE – LOTTO 1+2

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLIN5400001 B 10 di 57

6. ANALISI DEI CARICHI

Nel seguente paragrafo si descrivono i carichi elementari che agiscono sulla struttura in oggetto. Tali azioni sono definite secondo le normative e sono utilizzate per la generazione delle combinazioni di carico nell'ambito delle verifiche di resistenza, in esercizio e in presenza dell'evento sismico. Tutti i carichi elementari si riferiscono a un concio longitudinale di larghezza unitaria, pertanto sono tutti definiti rispetto all'unità di lunghezza.

6.1 Pesi propri

Il peso dei differenti elementi strutturali viene calcolato automaticamente dal programma di calcolo utilizzato.

- Soletta di copertura;
- Soletta di fondazione;
- Piedritti.

Per i materiali si assumono i seguenti pesi specifici:

Calcestruzzo armato: $\gamma_{c.a.} = 25.00 \text{ kN/m}^3$

Rilevato: $\gamma_{ril} = 20.00 \text{ kN/m}^3$

Ballast + armamento: $\gamma_{\text{ballast}} = 18.00 \text{ kN/m}^3$

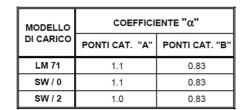
6.2 Permanenti non strutturali

Il peso dei carichi permanenti in copertura è stato calcolato considerando i differenti spessori di ballast e supercompattato, ciascuno per il suo peso dell'unità di volume:

$$q_{pp} = h_b \gamma_b + h_{sc} \gamma_{sc}$$

dove:

- h_b = spessore del ballast;
- γ_b = peso specifico del ballast;
- H_{sc} = spessore del super compattato;
- γ_b = peso specifico del super compattato.


IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLIN5400001	В	11 di 57

6.3 Carichi mobili (traffico ferroviario)

Per quanto attiene il sovraccarico ferroviario si applica il peggiore tra il carico verticale dovuto al treno SW/2 pari a $150 \text{ kN/m} \times 1$ e il carico verticale dovuto al treno LM71 pari a $250 \text{ kN} / 1.6 \text{ m} \times 1.1 = 172.0 \text{ kN/m}$ uniformemente distribuito su una larghezza trasversale di calcolo fino a livello del piano d'asse della soletta di copertura.

Per ponti di categoria A si hanno i seguenti valori del coefficiente di adattamento.

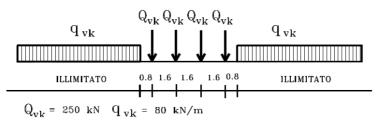
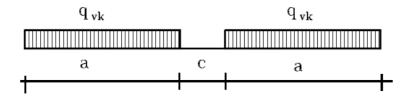



Figura 6.1 – Treno di carico LM71

Tipo di Carico	q _{vk} [kN/m]	a [m]	c [m]		
SW/0	133	15,0	5,3		
SW/2	150	25,0	7,0		

Figura 6.2- Treno di carico SW

PROGETTO DEFINITIVO

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO NUOVO COLLEGAMENTO PALERMO-CATANIA RADDOPPIO TRATTA FIUMETORTO – LERCARA DIRAMAZIONE – LOTTO 1+2

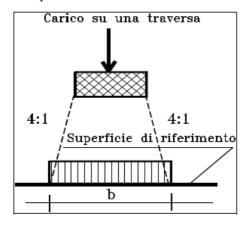
IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLIN5400001	В	12 di 57

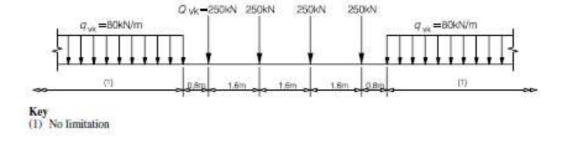
Coefficiente di amplificazione dinamica Φ :

Le sollecitazioni e gli spostamenti determinati sulle strutture dall'applicazione statica dei treni di carico debbono essere incrementati per tener conto della natura dinamica del transito dei convogli.

Per linee a ridotto standard manutentuvo Φ sarà:


$$\Phi_3 = \frac{2,16}{\sqrt{L_\phi} - 0,2} + 0,73 \text{ con la limitazione } 1,00 \le \Phi_3 \le 2,00$$

Dove:


 L_{Φ} rappresenta la lunghezza "caratteristica" in metri.

Determinazione delle larghezze di diffusione dei carichi mobili:

La diffusione dei carichi attraverso ballast avviene con pendenza 4:1, attraverso il ricoprimento con angolo di attrito mentre, nella soletta in cls con pendenza 1:1.

Il modello di carico LM71 citato dalle S.T.I. è definito nella norma EN 1991-2:2003/AC:2010.

Il carico equivalente si ricava dalla ripartizione trasversale e longitudinale dei carichi per effetto delle traverse e del ballast previsti dalla stessa norma EN 1991-2:2003/AC:2010.

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

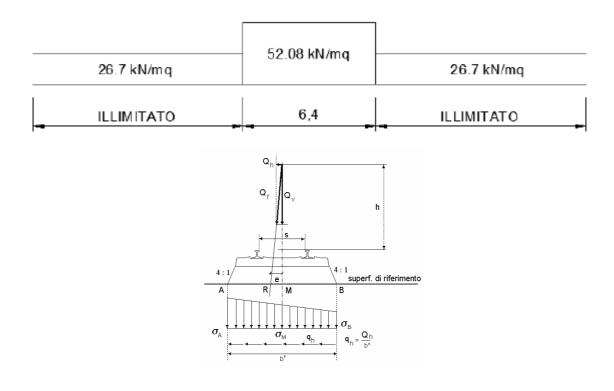
COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLIN5400001 B 13 di 57

Considerando i 4 carichi assiali da 250 kN e la relativa distribuzione longitudinale, il carico verticale equivalente a metro lineare agente alla quota della piattaforma ferroviaria (convenzionalmente a 70 cm dal piano del ferro) risulta pari a:

$$p = \frac{4 \times 250}{4 \times 1.60} = 156.25 \text{ kN/m}$$

80 kN/m

156.25 kN/m


80 kN/m

ILLIMITATO

6,4

ILLIMITATO

Considerando la distribuzione trasversale dei carichi su una larghezza di 3.0 m secondo quanto previsto da EN 1991 – 2:2003/AC:2010, si ricava il carico equivalente unitario agente alla quota della piattaforma ferroviaria:

PROGETTO DEFINITIVO
DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO

NUOVO COLLEGAMENTO PALERMO-CATANIA
RADDOPPIO TRATTA FIUMETORTO – LERCARA

DIRAMAZIONE - LOTTO 1+2

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLIN5400001	В	14 di 57

6.4 Azione di avviamento / frenatura

Per ogni treni di carico si associano le azioni di avviamento e frenatura agenti sulla sommità del binario, nella direzione longitudinale dello stesso. Dette forze si considerano uniformemente distribuite sulla lunghezza di binario.

I valori caratteristici considerati sono i seguenti:

- Avviamento Q1a,k = 33 [kN/m] * L [m] per LM71 ed SW2

6.5 Azione di serpeggio

La forza laterale indotta dal serpeggio si considera come una forza concentrata agente orizzontalmente, applicata alla sommità della rotaia più alta, perpendicolarmente all'asse del binario. Tale azione si applicherà sia in rettifilo che in curva. Il valore caratteristico di tale forza sarà assunto pari a Qsk=100 kN. Tale valore deve essere moltiplicato per a, (se a>1), ma non per il coefficiente F. Questa forza laterale deve essere sempre combinata con i carichi verticali.

Tale azione viene trascurata in quanto con un modello piano non si possono considerare gli effetti trasversali.

6.6 Azione del sisma

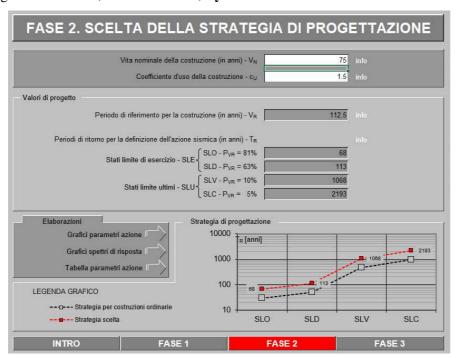
Per tutte le opere d'arte di progetto vengono utilizzati, a vantaggio di sicurezza, i seguenti valori: V_N =75 anni e classe d'uso III a cui corrisponde un coefficiente d'uso C_U = 1.5.

La vita di riferimento V_R è quindi pari a 112.5 anni.

I parametri utilizzati per la definizione dell'azione sismica sono riportati di seguito.

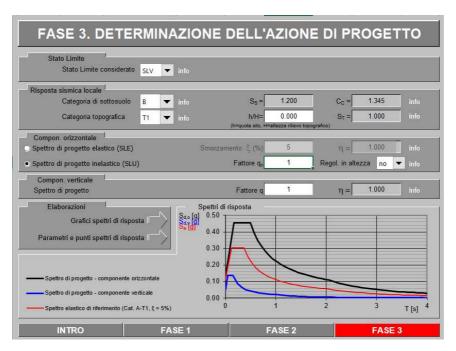
- Classe d'uso: III
- Coefficiente d'uso $C_U = 1.5$
- Vita nominale $V_N = 75$ anni
- Categoria di suolo: B
- Condizione topografica: T1
- Fattore di struttura q = 1

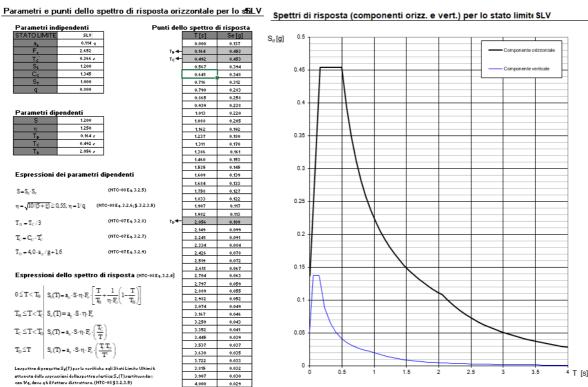
L'azione sismica è stata calcolata per mezzo del foglio di calcolo Spettri-NTCver.1.0.3 messo a disposizione dal Consiglio Superiore dei Lavori Pubblici.


IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSALOTTOFASE-ENTEDOCUMENTOREV.FOGLIORS3Z00D 26CLIN5400001B15 di 57

I parametri per la determinazione dei punti dello spettro di risposta orizzontale e verticale sono riportati :


Di seguito si riportano gli spettri di risposta orizzontale e verticale allo Stato limite di salvaguardia della vita SLV utilizzati per il calcolo dell'azione sismica. Con tale azione sismica agente, le forze risultanti trasmesse dall'impalcato al piano appoggi della spalla in corrispondenza della sommità del muro di testata sono riportate al paragrafo successivo, sotto le voci **Ex**, **Ey** ed **Ez**.



IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLIN5400001	В	16 di 57

Di seguito si riporta a titolo di esempio lo **spettro di progetto** per lo **Stato Limite di salvaguardia della Vita SLV** relativamente alle componenti **orizzontali**, con coefficiente di smorzamento strutturale canonico pari al 5%.

PROGETTO DEFINITIVO

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO
NUOVO COLLEGAMENTO PALERMO-CATANIA
RADDOPPIO TRATTA FIUMETORTO – LERCARA
DIRAMAZIONE – LOTTO 1+2

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLIN5400001	В	17 di 57

6.7 Ritiro del calcestruzzo

Gli effetti del ritiro del calcestruzzo sono valutati impiegando i coefficienti indicati al punto 11.2.10.6 delle NTC2018. La deformazione totale da ritiro è data dalla somma della deformazione per ritiro da essiccamento e della deformazione da ritiro autogeno. Il ritiro è stato applicato mediante una variazione termica equivalente pari a 10°, ed un umidità relativa del 75% a 7 gg.

Il fenomeno del ritiro è stato applicato solo alla soletta di copertura nel caso dello scatolare mentre viene trascurato nel muro.

6.8 Variazione termica

La variazione termica applicata sulla struttura è pari a ΔT = +15°C, con un variazione termica a aggiuntiva a farfalla pari a ΔT = +5°C applicata sulla soletta di copertura. Per ricoprimenti superiori ad 1,5m non si applica alcuna variazione termica.

Per il coefficiente di dilatazione termica si assume:

$$\alpha = 10 \times 10^{-6} = 0.00001$$

6.9 Spinta statica del terreno

Le spinte del terreno a monte degli elementi verticali sono calcolate con la teoria di Rankine, con distribuzione triangolare delle tensioni e conseguente risultante della spinta al metro pari a $S=1/2 \cdot k_0 \cdot \gamma \cdot H^2$, applicata ad 1/3 dal basso.

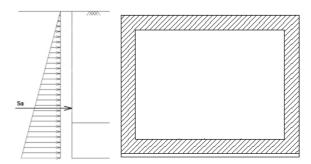


Figura 6.3 – Schema per il calcolo degli effetti della spinta statica del terreno

La spinta in condizioni di esercizio viene calcolata con il coefficiente di spinta a riposo k_0 =1-sin ϕ ', dove ϕ ' è l'angolo di attrito assunto. In caso di falda il peso specifico del terreno è stato sostituito da quello efficace.

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLIN5400001	В	18 di 57

6.10 Spinta dovuta al sovraccarico accidentale

Per considerare la presenza di un sovraccarico da traffico gravante a tergo, si considera un carico uniformemente distribuito. Il valore della spinta risultante al metro è dunque pari a $S=k_0\cdot q\cdot H$, con punto di applicazione posizionato a metà dell'altezza dell'elemento su cui insiste.

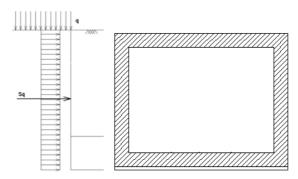


Figura 6.4– Schema per il calcolo degli effetti della spinta dovuta al sovraccarico accidentale

6.11 Incremento di Spinta in condizione sismiche

In condizione sismica si considera un incremento della spinta del terreno rispetto alla condizione statica in esercizio. La sovraspinta sismica è calcolata con la teoria di Wood, risultando in un valore di spinta al metro, distribuito uniformemente sull'intera altezza del piedritto, da applicare ad una quota pari ad H/2.

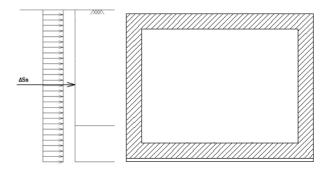


Figura 6.5– Schema per il calcolo degli effetti della sovraspinta sismica

PROGETTO DEFINITIVO

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO NUOVO COLLEGAMENTO PALERMO-CATANIA RADDOPPIO TRATTA FIUMETORTO – LERCARA

DIRAMAZIONE - LOTTO 1+2

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLIN5400001	В	19 di 57

7. COMBINAZIONE DEI CARICHI

In linea con quanto riportato nel quadro normativo vigente, le azioni descritte nei paragrafi precedenti, sono combinate nel modo seguente:

combinazione fondamentale (SLU):

$$\gamma_{\scriptscriptstyle G1} \cdot G_{\scriptscriptstyle 1} + \gamma_{\scriptscriptstyle G2} \cdot G_{\scriptscriptstyle 2} + \gamma_{\scriptscriptstyle p} \cdot P + \gamma_{\scriptscriptstyle Q1} \cdot Q_{\scriptscriptstyle k1} + \gamma_{\scriptscriptstyle Q2} \cdot \psi_{\scriptscriptstyle 02} \cdot Q_{\scriptscriptstyle k2} + \gamma_{\scriptscriptstyle Q3} \cdot \psi_{\scriptscriptstyle 03} \cdot Q_{\scriptscriptstyle k3} + \ldots$$

combinazione sismica:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

combinazione eccezionale:

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

combinazione Rara (SLE irreversibile):

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

combinazione Frequente (SLE reversibile):

$$\boldsymbol{G_{1}} + \boldsymbol{G_{2}} + \boldsymbol{P} + \boldsymbol{\psi_{11}} \cdot \boldsymbol{Q_{k1}} + \boldsymbol{\psi_{22}} \cdot \boldsymbol{Q_{k2}} + \boldsymbol{\psi_{23}} \cdot \boldsymbol{Q_{k3}} + ...$$

combinazione Quasi Permanente (SLE per gli effetti a lungo termine):

$$G_{1}+G_{2}+P+\psi_{21}\cdot Q_{k1}+\psi_{22}\cdot Q_{k2}+\psi_{23}\cdot Q_{k3}+...$$

Gli effetti dei carichi verticali dovuti alla presenza dei convogli vanno sempre combinati con le altre azioni derivanti dal traffico ferroviario, adottando i coefficienti indicati nella tabella seguente.

TIPO DI CARICO	Azioni v	erticali	A	zioni orizzont	ali			
Gruppo di carico	Carico verticale (1) Treno scarico		Frenatura e avviamento	Centrifuga	Serpeggio	Commenti		
Gruppo 1 (2)	1,00	-	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale		
Gruppo.2 (2)	-	1,00	0,00	1,0 (0,0)	1,0(0,0)	stabilità laterale		
Gruppo 3 (2)	1,0 (0,5)	-	1,00	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale		
Gruppo 4	0,8 (0,6; 0,4)	4	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	fessurazione		
Azione dominante (i) Includendo tutti i fattori ad essi relativi (Φ,α, ecc) (2) La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1, 2, 3 senza che ciò abbia significative conseguenze propertuali								

Tab. 1 – Valutazione dei carichi da traffico

Per le verifiche agli stati limite ultimi si adottano i valori dei coefficienti parziali ed i coefficienti di combinazione ψ delle tabelle seguenti.

IN54 - Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLIN5400001	В	20 di 57

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γο	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	γp	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori

Tab. 2 – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU, Eccezionali e Sismica

Azioni		Ψο	ψ_1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr ₁	0,80 ⁽²⁾	0,80(1)	0,0
Gruppi di	gr ₂	0,80 ⁽²⁾	0,80(1)	-
carico	gr ₃	0,80 ⁽²⁾	0,80 ⁽¹⁾	0,0
	gr ₄	1,00	1,00(1)	0,0
Azioni del vento	F _{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T _k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Tab. 3 – Coefficienti di combinazione ψ delle azioni

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

(3) Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente

nelle verifiche

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

⁽⁵⁾ Aliquota di carico da traffico da considerare.
(6) 1,30 per instabilità in strutture con precompressione esterna
(7) 1,20 per effetti locali

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

PROGETTO DEFINITIVO
DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO
NUOVO COLLEGAMENTO PALERMO-CATANIA

RADDOPPIO TRATTA FIUMETORTO – LERCARA DIRAMAZIONE – LOTTO 1+2

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLIN5400001	В	21 di 57

8. VERIFICHE STRUTTURALI

Le verifiche di resistenza delle sezioni sono eseguite secondo il metodo semiprobabilistico agli stati limite. I coefficienti di sicurezza adottati sono i seguenti:

- coefficiente parziale di sicurezza per il calcestruzzo: 1.50;
- coefficiente parziale di sicurezza per l'acciaio in barre: 1.15.

Il paragrafo in oggetto illustra nel dettaglio i criteri generali adottati per le verifiche strutturali e geotecniche condotte nel progetto. Ulteriori dettagli di carattere specifico, laddove impiegati, sono dichiarati e motivati nelle relative risultanze delle verifiche.

Per le sezioni in cemento armato si effettuano:

- verifiche per gli stati limite ultimi a presso-flessione;
- verifiche per gli stati limite ultimi a taglio;
- verifiche per gli stati limite di esercizio.

8.1 Verifiche per gli stati limite ultimi a flessione-pressoflessione

Allo stato limite ultimo, le verifiche a flessione o presso-flessione sono condotte confrontando (per le sezioni più significative) le resistenze ultime e le sollecitazioni massime agenti, valutando di conseguenza il corrispondente fattore di sicurezza.

8.2 Verifica agli stati limite ultimi a taglio

La verifica allo stato limite ultimo per azioni di taglio è condotta secondo quanto prescritto dal DM17/01/2018, per elementi con armatura a taglio verticali.

Si fa, pertanto, riferimento i seguenti valori della resistenza di calcolo:

- Resistenza di progetto dell'elemento privo di armatura a taglio:

$$V_{Rd} = max \left\{ \left[0.18 \cdot k \cdot (100 \cdot \rho_l \cdot f_{ck})^{\frac{1}{3}} / \gamma_c + 0.15 \cdot \sigma_{cp} \right] b_w \cdot d; (v_{min} + 0.15 \cdot \sigma_{cp}) \cdot b_w d \right\}$$

- Resistenza di progetto a "taglio trazione":

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (\cot \alpha + \cot \theta) \cdot \sin \alpha$$

- Resistenza di progetto a "taglio compressione":

$$V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot \nu f_{cd} \cdot (\cot \alpha + \cot \theta) / (1 + \cot^2 \theta)$$

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLIN5400001 B 22 di 57

Nelle espressioni precedenti i simboli hanno i seguenti significati:

$$k=1+\sqrt{\frac{200}{d}}\leq 2 \ \ \text{con d in mm;}$$

$$\rho_1 = \frac{A_{sl}}{b_w \cdot d} \le 0.02;$$

 A_{sl} è l'area dell'armatura tesa;

b, è la larghezza minima della sezione in zona tesa;

$$\sigma_{\text{cp}} = \frac{N_{\text{Ed}}}{A_c} < 0.2 \cdot f_{\text{cd}}; \label{eq:sigma_cp}$$

 $N_{\rm Ed}$ è la forza assiale nella sezione dovuta ai carichi;

A è l'area della sezione di calcestruzzo;

$$v_{min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2};$$

 $1 \le \cot \theta \le 2.5$ è l'inclinazione dei puntoni di calcestruzzo rispetto all'asse della trave

A sw è l'area della sezione trasversale dell'armatura a taglio;

S è il passo delle staffe;

 α è l'angolo d'inclinazione dell'armatura trasversale rispetto all'asse della trave;

 vf_{cd} è la resistenza di progetto a compressione ridotta del calcestruzzo d'anima (v=0.5);

 $\alpha_c = 1$ coefficiente maggiorativo per membrature non compresse.

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLIN5400001 B 23 di 57

8.3 Verifica agli stati limite d'esercizio

Si effettuano le seguenti verifiche agli stati limite di esercizio:

- stato limite delle tensioni in esercizio;
- stato limite di fessurazione.

Nel primo caso, si esegue il controllo delle tensioni nei materiali supponendo una legge costitutiva tensionideformazioni di tipo lineare. In particolare si controlla la tensione massima di compressione del calcestruzzo e di trazione dell'acciaio, verificando che:

 $\sigma_c < 0.55 \, f_{ck}$ per combinazione di carico caratteristica (rara);

 $\sigma_c < 0.40 \, f_{ck}$ per combinazione di carico quasi permanente;

 $\sigma_s < 0.75 \, f_{vk}$ per combinazione di carico caratteristica (rara).

Nel secondo caso, si verifica che le aperture delle fessure siano inferiori al valore limite dell'apertura delle fessure nella combinazione caratteristica Rara. I valori nominali di riferimento sono:

 $w_1 = 0.2 \text{ mm}$

 $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

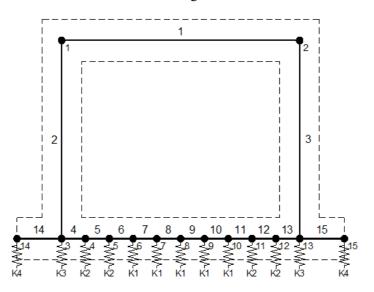
COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLIN5400001 B 24 di 57

9. ANALISI STRUTTURALE

Le analisi sono state condotte mediante l'ausilio del SAP2000, un Codice di calcolo F.E.M. (Finite Element Method) capace di gestire analisi lineari e non lineari ed analisi sismiche con integrazione al passo delle equazioni nel tempo. Dal modello sono state dedotte, per le combinazioni di calcolo statiche e sismiche descritte in precedenza, le sollecitazioni complessive agenti sugli elementi strutturali al fine di procedere con le verifiche di sicurezza previste dalle Normative di riferimento.

Il calcolo della struttura è stato effettuato considerando una striscia di calcolo pari ad 1m disposta ortogonalmente all'asse longitudinale dello scatolare. In caso di obliquità Ø dello scatolare rispetto alla linea ferroviaria il calcolo è stato eseguito analizzando sempre una striscia di larghezza unitaria, assumendo però come luce di calcolo quella misurata in parallelo alla linea ferroviaria tra gli assi dei piedritti valutati lungo lo "spessore corrente" (spessore corrente=spessore piedritto/cosØ). In tal caso le stesse verifiche di resistenza sono state condotte con riferimento allo spessore corrente.

Convenzione assi


 \mathbf{x} = asse trasversale dello scatolare

y = asse longitudinale dello scatolare

z = asse verticale dello scatolare

9.1 Modellazione strutturale : Scatolare

Il modello di calcolo attraverso il quale viene discretizzata la struttura è quello di telaio chiuso. Per simulare il comportamento del terreno di fondazione vengono inserite molle alla Winkler.

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLIN5400001 B 25 di 57

La soletta inferiore viene divisa in elementi per poter schematizzare, tramite molle applicate, l'interazione terreno- struttura.

Per la definizione delle precedenti costanti si è fatto riferimento alla caratterizzazione geotecnica a disposizione.

I valori di resistenza del terreno assunti nei calcoli che seguono sono quelli riferiti al primo strato della tabella riportata al paragrafo 5.

Per la rigidezza delle molle, nell'opera in esame si considera un modulo di reazione verticale Kw pari a 2500 kN/m³. Tale valore viene valutato tramite la teoria di Bowles, note le dimensioni della fondazione dell'opera e il modulo elastico del terreno di fondazione:

$$k_{\rm h} = \frac{E}{(1 - v^2) \cdot B \cdot c_{\rm h}}$$

Dove:

E modulo elastico del terreno

v coefficiente di Poisson

B larghezza della fondazione

L lato maggiore della fondazione

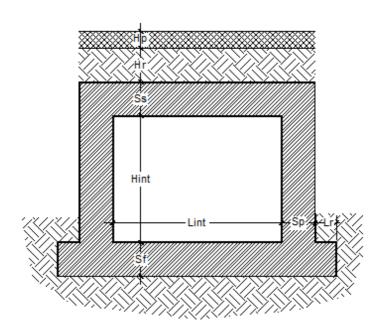
Ct fattore di forma (Bowles, 1960)

Kw coefficiente di sottofondo alla Winkler

Con questo valore si ricavano i valori delle singole molle:

Interasse molle	i	(0.40/2 + 3.00 + 0.40/2) / 10 =	0.34	m
Molle centrali	K1	1600 · 0.34 =	544	kN/m
Molle intermedie	K2	1.5 · 1600 · 0.34 =	816	kN/m
Molle laterali	K3	2.0 · 1600 · (0.34/2 + 0.40/2) =	1 184	kN/m
Molle risvolto	K4	-	0	kN/m

La rigidezza delle molle in corrispondenza dei piedritti è stata aumentata, seguendo le indicazioni riportate nella letteratura tecnica, al fine di tenere in conto l'irrigidimento apportato dai piedritti al solettone di fondo.


IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLIN5400001 B 26 di 57

9.2 Analisi dei carichi

Geometria

Caratteristiche materiali e terreno				
Calcestruzzo armato - Peso specifico	γ		25	kN/m³
Calcestruzzo armato - Tipo			C30/37	
Calcestruzzo armato - Res. caratt. cubica	R_{ck}		37	N/mm²
Calcestruzzo armato - Res. caratt. cilindrica	f_{ck}	0.83 · 37 =	30.7	N/mm ²
Calcestruzzo armato - Modulo elastico	•E		33000	N/mm ²
Ballast - Peso specifico	Yb		18	kN/m³
Terreno del rilevato - Peso specifico	γ		20	kN/m³
Terreno del rilevato - Angolo di attrito	φ		35	0
Terreno di fondazione	Kw		1600	kN/m³
Condizioni ambientali per ver. a fessurazione	*		aggressive	
Ricoprimento				
Spessore ballast+armamento	Hb		0.77	m
Spessore medio traversina+binario	Ht		0.40	m
Spessore ballast sotto la traversina			0.37	m
Spessore del rinterro	Hr		3.77	m
Geometria				
Spessore soletta superiore	Ss		0.40	m
Spessore soletta di fondazione	Sf		0.40	m
Spessore piedritti	Sp		0.40	m
Altezza netta	Hint		3.00	m
Larghezza netta	Lint		3.00	m
Lunghezza risvolti sol. inf.	Lr		0.00	m

Tab. 4: Geometria del modello

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSALOTTOFASE-ENTEDOCUMENTOREV.FOGLIORS3Z00D 26CLIN5400001B27 di 57

Azioni elementari applicate

Carichi permanenti (Condizione PERM)

Totale			89.26	kN/m²
Peso del rinterro	Pr	3.77 · 20 =	75.40	kN/m ²
Peso ballast	Ps	0.77 · 18 =	13.86	kN/m²
Soletta superiore				

Risvolti soletta inferiore

Totale			0.00	kN/m²
Peso del rinterro	Pr	-	0.00	kN/m ²
Peso ballast	Ps	-	0.00	kN/m²
Risvolti soletta inferiore				

Carichi accidentali sulla copertura LM71 (Condizioni ACC-M71 e ACC-T71)

Coefficiente dinamico	•	•		
Lunghezza caratteristica per coeff. din.	$L_{\!\scriptscriptstyle{\Phi}}$	= 1.3 · 1/3 · (3.20 + 3.40 + 3.20)	4.25	m
Coefficiente dinamico	Φ_3	= 1.35 se Lint \leq 8 m e Hint \leq 5 m	1.00	
Qvk				
Coefficiente di adattamento	α		1.10	
Larghezza traversa	Lt		2.40	m
Impronta di carico y	Ld1	$2.40 + 2 \times (0.37/4 + 3.77 \times TAN(35^{\circ}) + 0.40/2) =$	8.26	m
Impronta di carico x	Ld2	0.8+1.6+1.6+1.6+0.8=	6.40	m
Carico Qvk (totale)			1000	kN
Carico Qvk (ripartito)		1.1 · 1.00 · 1000 / (8.26 · 6.40) =	20.80	kN/m²
qvk				
Carico qvk			80	kN/m
Carico qvk (ripartito)		1.1 · 1.00 · 80 / 8.26 =	10.65	kN/m²

Carichi accidentali sulla copertura SW/2 (Condizioni ACC-MSW e ACC-TSW)

Carichi accidentali sulla copertura SV			
Coefficiente di adattamento	α	1.00	
Carico qvk		150	kN/m
Carico qvk (ripartito)	1 · 1.00 · 150 / 8.26 =	18.15	kN/m²

Per il calcolo della lunghezza caratteristica si fa riferimento a:

Caso 5.3 pag. 41 di 481 Manuale Parte II - Sezione II - Ponti

PROGETTO DEFINITIVO

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO NUOVO COLLEGAMENTO PALERMO-CATANIA RADDOPPIO TRATTA FIUMETORTO – LERCARA **DIRAMAZIONE – LOTTO 1+2**

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLIN5400001	В	28 di 57

Avviamento e frenatura (Condizione AV Q1ak (= 33 / Ld1)	V)	33 / 8.26 =	3.99	kN/m²
Azione termica (Condizione <i>TERM</i>)				
Variazione termica uniforme	ΔT_U		0	0
Variazione termica a farfalla	$\Delta T_{\rm F}$		0	0
Variazione termica uniforme di calcolo	•	0/2 =	0.00	0
Variazione termica a farfalla di calcolo	-	0/2 =	0.00	0
Ritiro (Condizione <i>RITIRO</i>)				
Ritiro applicato alla sol. Superiore	ΔT_R		-10	0
Spinta del terreno (Condizioni <i>SPTSX</i> e	SPTDX)			
KO	_	1 - sen (35°) =	0.426	1.01/ 2
Spinta alla quota di estradosso sol. sup.	p1	0.426 · 89.26 =	38.06	kN/m²
Spinta in asse sol. sup.	p2	0.426 · (89.26 + 20·0.40/2) =	39.77	kN/m²
Spinta in asse sol. inf. Spinta alla quota di intradosso sol. inf.	p3	0.426 · [89.26 + 20·(0.40+3.00+0.40/2)] = 0.426 · [89.26 + 20·(0.40+3.00+0.40)] =	68.77 70.47	kN/m² kN/m²
Spinta and quota di intradosso soi. ini. Spinta semispessore sol. sup.	p4 F1	(38.06+39.77)/2 · 0.40/2	70.47 7.78	kN/m
Spinta semispessore sol. inf.	F2	(68.77+70.47)/2 · 0.40/2	13.92	-
				•
Spinta del carico accidentale LM71 (Con		0.426 · 1.1 · 1000 / (8.26 · 6.40) =	0.07	IsBI /ma2
Spinta dovuta al q1	р	0.426 * 1.1 * 1000 / (8.26 * 6.40) =	8.87	kN/m²
Spinta del carico accidentale SW/2 (Con	dizioni	SPACCSX e SPACCDX)		
Spinta dovuta al q1	р	0.426 · 1 · 150 / (8.26 · 6.40) =	1.21	kN/m²
Sisma orizzontale (Condizione SISMAH))			
Stato limite	_	Salvaguardia della vita - SLU -	SLV	
Vita nominale	V_N		75	anni
Classe d'uso	₹		III	
Coefficiente C _U	C_U		1.5	
Periodo di riferimento	V_R		112.5	anni
Accelerazione orizzontale	a _g /g		0.114	
Amplificazione spettrale	Fo		2.652	
Categoria sottosuolo		A, B, C, D, E	В	
Coeff. Amplificazione stratigrafica	Ss	, , , ,	1.200	
Coeff. Amplificazione topografica	St		1	
Coefficiente S	S	=Ss·St	1.200	
accellerazione orizzontale max	a _{max} /g	=ag/g·S	0.137	
Fattore di struttura	q		1.00	
Coeff. sismico orizzontale	k_h	$=a_{max}/g$	0.137	
Coeff. sismico verticale	k_{v}	$=\pm 0.5^{\cdot}k_{h}$	0.068	
Carico accidentale totale gravante sulla cop.		1.1·1000/(8.26·6.40)·3.80 + 1.1·80/8.26·3.80 =	119.5	kN/m
Forza orizz. sulla sol. di cop.	FHs	0.137 · (0.40·25 + 89.26 + 0.2·119.5/3.40) / 1.00 =	14.54	kN/m²
Forza orizz. sui piedritti	FHp	0.137 · (0.40 · 25) / 1.00 =	1.37	kN/m²
Sisma verticale (Condizione SISMAV)				
Forza vert. sulla sol. di cop.	FVs	0.068 · (0.40·25 + 89.26 + 0.2·119.5/3.40) / 1.00 =	7.27	kN/m²
Spinta del terreno in fase sismica (Cond	izione <i>S</i>	EPSDX)		
Risultante della spinta sismica	ΔS_{E}	= $(amax/g) \cdot y \cdot (Hint+Ss+Sf+Hb+Hr)^2 = 0.137 \cdot 20 \cdot 8.34^2$	190.3	kN/m
		, , , , ,	55.97	kN/m²
Pressione risultante	Δp_{E}	$= \Delta SE / H = 190.3 / 3.40$	35.9 /	KN/M²

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

 COMMESSA
 LOTTO
 FASE-ENTE
 DOCUMENTO
 REV.
 FOGLIO

 RS3Z
 00
 D 26
 CLIN5400001
 B
 29 di 57

9.3 Combinazioni

N		PERM	PERM-G2	ACC-M 71	ACC-T71	AVV	SPTSX	SPTDX	SPQSX71	SPQDX71	TERM	RITIRO	SISM AH	SISMAV	SPSDX	ACC-SW	SPQSXSW	SPQDXSW
	01S1-11M	1.35	1.50	1.45	0	0.73	1.00	1.00	0	0	0.9	0	0	0	0	0	0	0
_		1.35 1.35	1.50 1.50	0 1.45	1.45	0.73 0.73	1.00 1.35	1.00 1.35	0 1.45	0 1.45	0.9	0	0	0	0	0	0	0
03	03S1-12M 04S1-12T	1.35	1.50	0	1.45	0.73	1.35	1.35	1.45	1.45	0.9	0	0	0	0	0	0	0
	05S1-13M	1.35	1.50	1.45	0	0.73	1.00	1.35	0	1.45	0.9	0	0	0	0	0	0	0
06		1.35	1.50	0	1.45	0.73	1.00	1.35	0	1.45	0.9	0	0	0	0	0	0	0
07 08	07S1-14- 08S1-15-	1.35 1.35	1.50 1.50	0	0	0	1.35 1.00	1.35 1.35	1.45 0	1.45 1.45	0.9	0	0	0	0	0	0	0
09	09S1-16S	1.35	1.5	0	0	0.73	1.00	1.00	0.00	0.00	0.90	0.00	0.00	0.00	0.00	1.45	0	0
		1.35	1.5	0	0	0.73	1.35	1.35	0.00	0.00	0.90	0.00	0.00	0.00	0.00	1.45	1.45	1.45
_	11S1-18S	1.35	1.5	0	0	0.73	1.00	1.35	0.00	0.00	0.90	0.00	0.00	0.00	0.00	1.45	0	1.45
	12S1-19S 13S1-20S	1.35 1.35	1.5 1.5	0	0	0.00	1.35	1.35 1.35	0.00	0.00	0.90	0.00	0.00	0.00	0.00	0	1.45 0	1.45 1.45
-		1.35	1.50	1.45	0	0.73	1.00	1.00	0	0	-0.9	1.35	0	0	0	0	0	0
		1.35	1.50	0	1.45	0.73	1.00	1.00	0	0	-0.9	1.35	0	0	0	0	0	0
	16S1-22M 17S1-22T	1.35 1.35	1.50 1.50	1.45 0	1.45	0.73 0.73	1.35 1.35	1.35 1.35	1.45 1.45	1.45 1.45	-0.9 -0.9	1.35 1.35	0	0	0	0	0	0
-		1.35	1.50	1.45	0	0.73	1.00	1.35	0	1.45	-0.9	1.35	0	0	0	0	0	0
	19S1-23T	1.35	1.50	0	1.45	0.73	1.00	1.35	0	1.45	-0.9	1.35	0	0	0	0	0	0
20 21	20S1-24-	1.35	1.50	0	0	0	1.35	1.35	1.45	1.45	-0.9	1.35	0	0	0	0	0	0
21	21S1-25- 22S1-26S	1.35	1.50	0	0	0.73	1.00	1.35	0	1.45	-0.9	1.35	0	0	0	1.45	0	0
		1.35	1.5	0	0	0.73	1.35	1.35	0	0	-0.9	1.35	0	0	0	1.45	1.45	1.45
24	24S1-28S	1.35	1.5	0	0	0.73	1.00	1.35	0	0	-0.9	1.35	0	0	0	1.45	0	1.45
25 26	25S1-29S 26S1-30S	1.35 1.35	1.5 1.5	0	0	0.00	1.35	1.35 1.35	0	0	-0.9 -0.9	1.35 1.35	0	0	0	0	1.45 0	1.45 1.45
27	2651-305 27S1T11M	1.35	1.50	1.16	0	1.16	1.00	1.00	0	0	1.5	0	0	0	0	0.00	0.00	0.00
28	28S1T11T	1.35	1.50	0	1.16	1.16	1.00	1.00	0	0	1.5	0	0	0	0	0.00	0.00	0.00
29	29S1T12M	1.35	1.50	1.16	0	1.16	1.35	1.35	1.16	1.16	1.5	0	0	0	0	0.00	0.00	0.00
30 31	30S1T12T 31S1T13M	1.35 1.35	1.50 1.50	0 1.16	1.16	1.16 1.16	1.35 1.00	1.35 1.35	1.16	1.16 1.16	1.5 1.5	0	0	0	0	0.00	0.00	0.00
32	32S1T13H	1.35	1.50	0	1.16	1.16	1.00	1.35	0	1.16	1.5	0	0	0	0	0.00	0.00	0.00
33	33S1T14-	1.35	1.50	0	0	0	1.35	1.35	1.16	1.16	1.5	0	0	0	0	0.00	0.00	0.00
34 35	34S1T15- 35S1T16S	1.35	1.50	0 0	0	1.16	1.00	1.35	0 0	1.16	1.5	0	0	0	0	0.00	0.00	0.00
7 36	36S1T17S	1.35	1.5		0	1.16	1.35	1.35	0	0	1.5	0	0	0	0	1.16	1.16	1.16
37	37S1T18S	1.35	1.5	0	0	1.16	1.00	1.35	0	0	1.5	0	0	0	0	1.16	0	1.16
38	38S1T19S	1.35			0	0	1.35	1.35	0	0	1.5	0	0	0	0	0.00	1.16	1.16
39 40	39S1T20S 40S1T21M	1.35	1.50	1.16	0	1.16	1.00	1.35	0	0	1.5 -1.5	1.35	0	0	0	0.00	0.00	1.16 0.00
41		1.35	1.50	0	1.16	1.16	1.00	1.00	0	0	-1.5	1.35	0	0	0	0.00	0.00	0.00
		1.35	1.50	1.16	0	1.16	1.35	1.35	1.16	1.16	-1.5	1.35	0	0	0	0.00	0.00	0.00
43 44	43S1T22T 44S1T23M	1.35 1.35	1.50 1.50	0 1.16	1.16	1.16 1.16	1.35 1.00	1.35 1.35	1.16	1.16 1.16	-1.5 -1.5	1.35 1.35	0	0	0	0.00	0.00	0.00
45		1.35	1.50	0	1.16	1.16	1.00	1.35	0	1.16	-1.5	1.35	0	0	0	0.00	0.00	0.00
4 6	46S1T24-	1.35	1.50	0	0	0	1.35	1.35	1.16	1.16	-1.5	1.35	0	0	0	0.00	0.00	0.00
47	47S1T25-	1.35	1.50	0	0	0	1.00	1.35	0	1.16	-1.5	1.35	0	0	0	0.00	0.00	0.00
48	48S1T26S	1.35	1.5	0	0	1.16	1.00	1.00	0	0	-1.5	1.35	0	0	0	1.16	0	0
4 9	49S1T27S	1.35	1.5	0		1.16	1.35	1.35	0	0	-1.5	1.35	0	0	0	1.16	1.16	1.16
	50S1T28S	1.35	1.5	0	0	1.16	1.00	1.35	0	0	-1.5	1.35	0	0	0	1.16	0	1.16
	51S1T29S 52S1T30S	1.35 1.35	1.5 1.5	0	0	0	1.35	1.35 1.35	0	0	-1.5 -1.5	1.35 1.35	0	0	0	0	1.16 0	1.16 1.16
	53S3-11M	1.35	1.50	1.45	0	1.45	1.00	1.00	0	0	0.9	0	0	0	0	0	0	
	54S3-11T	1.35	1.50	0	1.45	1.45	1.00	1.00	0	0	0.9	0	0	0	0	0	0	
	55S3-12M 56S3-12T	1.35 1.35	1.50 1.50	1.45 0	1.45	1.45 1.45	1.35 1.35	1.35 1.35	1.45 1.45	1.45 1.45	0.9	0	0	0	0	0	0	
	57S3-13M	1.35	1.50	1.45	0	1.45	1.00	1.35	0	1.45	0.9	0	0	0	0	0	0	
58	58S3-13T	1.35	1.50	0	1.45	1.45	1.00	1.35	0	1.45	0.9	0	0	0	0	0	0	0
	59S3-14S	1.35	1.5	0	0	1.45	1.00	1.00	0	0	0.9	0	0	0	0	1.45	0	0
	60S3-15S 61S3-16S	1.35 1.35	1.5 1.5	0	0	1.45 1.45	1.35 1.00	1.35 1.35	0	0	0.9	0	0	0	0	1.45 1.45	1.45 0	1.45 1.45
	62S3-21M	1.35	1.50	1.45	0	1.45	1.00	1.00	0	0	-0.9	1.35	0	0	0	0	0	0
63	63S3-21T	1.35	1.50	0	1.45	1.45	1.00	1.00	0	0	-0.9	1.35	0	0	0	0	0	0
	64S3-22M 65S3-22T	1.35 1.35	1.50 1.50	1.45	1.45	1.45 1.45	1.35 1.35	1.35 1.35	1.16 1.16	1.16 1.16	-0.9 -0.9	1.35 1.35	0	0	0	0	0	0
	65S3-22T 66S3-23M	1.35	1.50	1.45	0	1.45	1.00	1.35	0	1.16	-0.9	1.35	0	0	0	0	0	0
	67S3-23T	1.35	1.50	0	1.45	1.45	1.00	1.35	0	1.16	-0.9	1.35	0	0	0	0	0	0

PROGETTO DEFINITIVO

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO NUOVO COLLEGAMENTO PALERMO-CATANIA RADDOPPIO TRATTA FIUMETORTO – LERCARA DIRAMAZIONE – LOTTO 1+2

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

 COMMESSA
 LOTTO
 FASE-ENTE
 DOCUMENTO
 REV.
 FOGLIO

 RS3Z
 00
 D 26
 CLIN5400001
 B
 30 di 57

N 68	68S3-24S	PERM 1.35	PERM-G2 1.5	ACC-M71	ACC-T71	1.45	1.00	1.00	SPQSX71	SPQDX71	-0.9	1.35	SISMAH 0	SISMAV 0	SPSDX 0	ACC-SW 1.45	sposxsw 0	SPQDXSW 0
69	69S3-24S 69S3-25S	1.35	1.5	0	0	1.45	1.35	1.35	0	0	-0.9	1.35	0	0	0	1.45	1.16	1.16
	70S3-26S	1.35	1.5	0	0	1.45	1.00	1.35	0	0	-0.9	1.35	0	0	0	1.45	0	1.16
	71SSS1	1	1	0.2	0	0	0.6	1	0	0.2	0.5	0	1	0.3	1	0	0	0
72	72SSS2	1	1	0.2	0	0	0.6	1	0	0.2	0.5	0	1	-0.3	1	0	0	0
73	73SSS3	1	1	0.2	0	0	0.6	1	0	0.2	0.5	0	0.3	1	0.3	0	0	0
74	74SSS4	1	1	0.2	0	0	0.6	1	0	0.2	0.5	0	0.3	-1	0.3	0	0	0
75	75SSS5	1	1	0.2	0	0	0.6	1	0	0.2	-0.5	1	1	0.3	1	0	0	0
76	76SSS6	1	1	0.2	0	0	0.6	1	0	0.2	-0.5	1	1	-0.3	1	0	0	0
77	77SSS7	1	1	0.2	0	0	0.6	1	0	0.2	-0.5	1	0.3	1	0.3	0	0	0
78	78SSS8	1	1	0.2	0	0	0.6	1	0	0.2	-0.5	1	0.3	-1	0.3	0	0	0
79	79SSS9S	1	1	0	0	0	0.6	1	0	0	0.5	0	1	0.3	1	0.2	0	0.2
80	80SSS10S	1	1	0	0	0	0.6	1	0	0	0.5	0	1	-0.3	1	0.2	0	0.2
81	81SSS11S	1	1	0	0	0	0.6	1	0	0	0.5	0	0.3 0.3	1 -1	0.3	0.2	0	0.2 0.2
82 83	82SSS12S 83SSS13S	1	1	0	0	0	0.6 0.6	1	0	0	0.5 -0.5	1	1	0.3	1	0.2 0.2	0	0.2
84	84SSS14S	1	1	0	0	0	0.6	1	0	0	-0.5	1	1	-0.3	1	0.2	0	0.2
85	85SSS15S	1	1	0	0	0	0.6	1	0	0	-0.5	1	0.3	1	0.3	0.2	0	0.2
86	86SSS16S	1	1	0	0	0	0.6	1	0	0	-0.5	1	0.3	-1	0.3	0.2	0	0.2
87	87R3-11M	1	1	0.8	0	0.8	0.6	0.6	0	0	0.6	0	0	0	0	0	0	0
88	88R3-11T	1	1	0	0.8	0.8	0.6	0.6	0	0	0.6	0	0	0	0	0	0	0
89	89R3-12M	1	1	0.8	0	8.0	1	1	8.0	8.0	0.6	0	0	0	0	0	0	0
90	90R3-12T	1	1	0	8.0	0.8	1	1	0.8	0.8	0.6	0	0	0	0	0	0	0
91	91R3-13M	1	1	0.8	0	0.8	0.6	1	0	0.8	0.6	0	0	0	0	0	0	0
92	92R3-13T	1	1	0	0.8	0.8	0.6	1	0	0.8	0.6	0	0	0	0	0	0	0
93 94	93R3-14S 94R3-15S	1	1	0	0	0.8 0.8	0.6 1	0.6 1	0	0	0.6	0	0	0 0	0	0.8	0	0
95	95R3-16S	1	1	0	0	0.8	0.6	1	0	0	0.6	0	0	0	0	0.8	0.8	0.8
96	96R3-21M	1	1	0.8	0	0.8	0.6	0.6	0	0	-0.6	1	0	0	0	0	0	0
97	97R3-21T	1	1	0	0.8	0.8	0.6	0.6	0	0	-0.6	1	0	0	0	0	0	0
98	98R3-22M	1	1	0.8	0	0.8	1	1	0.8	0.8	-0.6	1	0	0	0	0	0	0
99	99R3-22T	1	1	0	8.0	0.8	1	1	0.8	0.8	-0.6	1	0	0	0	0	0	0
100		1	1	0.8	0	0.8	0.6	1	0	0.8	-0.6	1	0	0	0	0	0	0
	101R3-23T	1	1	0	0.8	0.8	0.6	1	0	0.8	-0.6	1	0	0	0	0	0	0
	102R3-24S	1	1	0	0	0.8	0.6	0.6 1	0	0	-0.6 -0.6	1	0	0	0	0.8	0	0
	103R3-25S 104R3-26S	1	1	0	0	0.8	1 0.6	1	0	0	-0.6	1	0	0	0	0.8	0.8	0.8
_	105R1T11M	1	1	0.8	0	0.8	0.6	0.6	0	0	1	0	0	0	0	0.0	0	0
_	106R1T11T	1	1	0	0.8	0.8	0.6	0.6	0	0	1	0	0	0	0	0	0	0
107	107R1T12M	1	1	0.8	0	0.8	1	1	0.8	0.8	1	0	0	0	0	0	0	0
	108R1T12T	1	1	0	0.8	0.8	1	1	0.8	0.8	1	0	0	0	0	0	0	0
	109R1T13M	1	1	0.8	0	8.0	0.6	1	0	8.0	1	0	0	0	0	0	0	0
_	110R1T13T	1	11	0	0.8	0.8	0.6	1	0	0.8	1	0	0	0	0	0	0	0
	111R1T14S	1	1	0	0	0.8	0.6	0.6	0	0	1	0	0	0	0	0.8	0	0
	112R1T15S 113R1T16S	1	1	0	0	0.8	1 0.6	1	0	0	1	0	0	0	0	0.8	0.8	0.8 0.8
	114R1T21M	1	1	0.8	0	0.8	0.6	0.6	0	0	-1	1	0	0	0	0.0	0	0.0
115	115R1T21T	1	1	0.0	0.8	0.8	0.6	0.6	0	0	-1	1	0	0	0	0	0	0
	116R1T22M	1	1	0.8	0	0.8	1	1	0.8	0.8	-1	1	0	0	0	0	0	0
_	117R1T22T	1	1	0	0.8	0.8	1	1	0.8	0.8	-1	1	0	0	0	0	0	0
118	118R1T23M	1	1	0.8	0	0.8	0.6	1	0	0.8	-1	1	0	0	0	0	0	0
	119R1T23T	1	1	0	0.8	0.8	0.6	1	0	0.8	-1	1	0	0	0	0	0	0
	120R1T24S	1	1	0	0	0.8	0.6	0.6	0	0	-1	1	0	0	0	0.8	0	0
_	121R1T25S	1	1	0	0	0.8	1	1	0	0	-1	1	0	0	0	0.8	0.8	8.0
122	122R1T26S	1	1	0	0	0.8	0.6	1	0	0	-1	1	0	0	0	8.0	0	0.8

dove:

PERM : carichi permanenti

PERM-G2 : carichi permanenti non strutturali

ACC-M71 : carichi da traffico concentrato LM71 (disposizione per massimizzare il momento) ACC-T71 : carichi da traffico concentrato LM71(disposizione per massimizzare il taglio)

ACC-SW: carichi da traffico concentrato SW/2

AVV : avviamento

SPTSx : spinta del terreno sulla parete sx

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLIN5400001 B 31 di 57

SPTDx : spinta del terreno sulla parete dx

SPQSx71 : spinta del carico accidentale LM71 sulla parete sxSPQDx71 : spinta del carico accidentale LM71 sulla parete dx

TERM : termica **RITIRO** : ritiro

SISMAH : azione sismica

SISDX : incremento sismico della spinta del terreno SPQSxSW : spinta del carico accidentale SW/2 sulla parete sx SPQDxSW : spinta del carico accidentale SW/2 sulla parete dx

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLIN5400001 B 32 di 57

9.4 Sollecitazioni

Nella successiva figura vengono rappresentate le sezioni dimensionate e verificate dello scatolare.

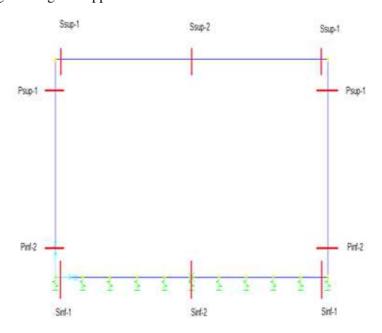


Figura 9.1 - Sezioni di verifica

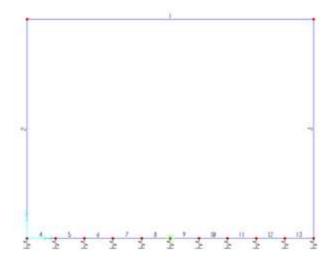


Figura 9.2 - Nomenclatura frame

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLIN5400001 B 33 di 57

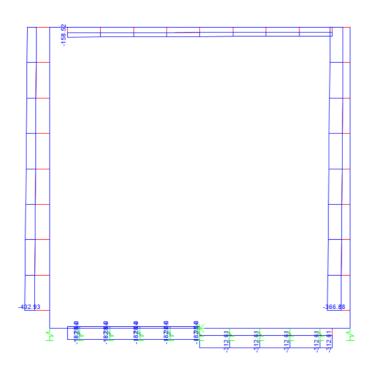


Figura 9.3 - Sforzo Normale – Inviluppo SLU

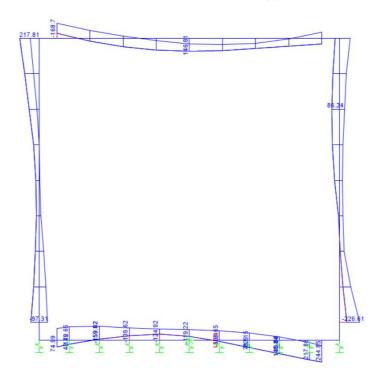


Figura 9.4 - Momento flettente – Inviluppo SLU

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSALOTTOFASE-ENTEDOCUMENTOREV.FOGLIORS3Z00D 26CLIN5400001B34 di 57

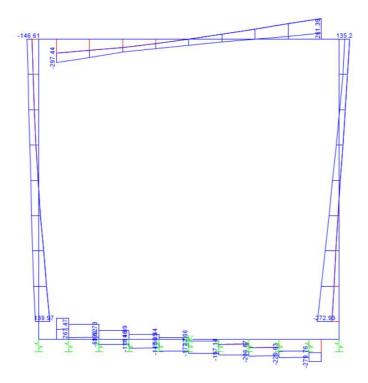


Figura 9.5 - Taglio - Inviluppo SLU

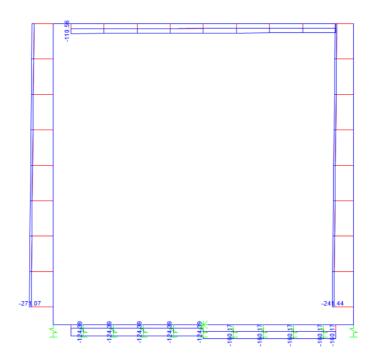


Figura 9.6 - Sforzo Normale – Inviluppo SLE-Rara

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLIN5400001 B 35 di 57

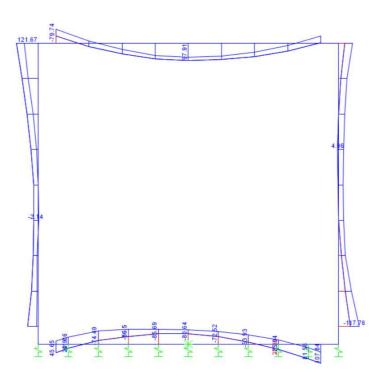


Figura 9.7 - Momento flettente – Inviluppo SLE-Rara

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLIN5400001 B 36 di 57

9.5 Verifiche strutturali

9.5.1 Verifica piedritti

Sezione: 40 x 100 cm

Armatura a flessione:

• Sommità (Pied-Sommità)

Armatura tesa

\$\phi\$ 24/20 cm

Armatura compressa

\$\phi\$ 24/20 cm

• Spiccato (Pied-Spicc)

Armatura tesa

\$\phi\$ 24/20 cm

Armatura compressa

\$\phi\$ 24/20 cm

Armatura a taglio:

Spille \(\phi \) 12/20x20 cm.

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLIN5400001	В	37 di 57

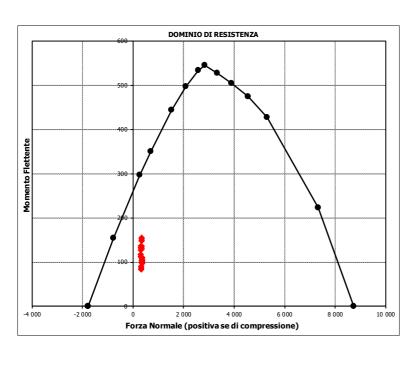
Verifica a pressoflessione spiccato (Pied-Spicc)

Acciaio			
Tensione car. di rottura	f _{tk} =	540	N/mm ²
Tensione car. di snervamento	f _{yk} =	450	N/mm ²
Coeff. parziale di sicurezza	γ _s =	1.15	
Resistenza di calcolo	f _{vd} =	391	N/mm ²
Modulo elastico	E _s =	200000	N/mm ²
	ε _{vd} =	0.00196	

alcestruz	ZO	
Tipo	C30/37	
R_{ck}	37	N/mm ²
f_{ck}	30.71	N/mm ²
Ϋ́c	1.5	
f_{cd}	20.5	N/mm ²
f_{cc}	17.4	N/mm²

copriferro	50	mm
staffe	10	mm
armat. sec	. 10	mm

Geometria della sezione				
Altezza geometrica della sezio	nh	=	40	cm
Base della sezione	b	=	100	cm
Copriferro	ď'	=	8.2	cm
Altezza utile della sezione	d	=	31.8	cm


Armatura	tesa		
Nº ferri	Diametro	Area	
5	24	22.62	cm ²
		0.00	cm ²
		0.00	cm ²
		22.62	cm ²

Armatura (compressa		
Nº ferri	Diametro	Area	
5	24	22.62	cm ²
		0.00	cm ²
		0.00	cm ²
		22.62	cm ²

49S1T27S

	Caratteristi	Caratteristiche di sollecitazione					
	Comb.	Nsd [kN]	Msd [kNm]				
(Nmax)	Fr_3St_019	367	98				
(Nmin)	Fr_3St_725	145	221				
(Mmax)	Fr_3St_755	153	227				
(Mmin)	Fr_3St_385	321	84				

Caracteristi	caracteristicite ar somecitazione						
Comb.	Nsd [kN]	Msd [kNm]					
Fr_3St_015	367	98					
Fr_3St_725	145	221					
Fr_3St_759	153	227					
Fr_3St_385	321	84					

Complete	ala alta alla				
	che di solle		1		
Comb.	Nsd	Msd			
01S1-11M	367	98	53S3-11M	362	105
02S1-11T	367	98	54S3-11T	362	105
03S1-12M	367	104	55S3-12M	362	111
04S1-12T	367	104	56S3-12T	362	111
05S1-13M	346	150	57S3-13M	341	157
06S1-13T	346	150	58S3-13T	341	157
07S1-14-	321	86	59S3-14S	355	104
08S1-15-	299	132	60S3-15S	355	108
09S1-16S	360	97	61S3-16S	342	137
10S1-17S	360	100	62S3-21M	362	110
11S1-18S	347	129	63S3-21T	362	110
12S1-19S	321	84	64S3-22M	362	116
13S1-20S	307	113	65S3-22T	362	116
14S1-21M	367	103	66S3-23M	343	158
15S1-21T	367	103	67S3-23T	343	158
16S1-22M	367	109	68S3-24S	355	109
17S1-22T	367	109	69S3-25S	355	113
18S1-23M	346	155	70S3-26S	343	141
19S1-23T	346	155	71SSS1	153	223
20S1-24-	321	91	72SSS2	145	221
21S1-25-	299	137	73SSS3	205	134
22S1-26S	360	102	74SSS4	180	129
23S1-27S	360	105	75SSS5	153	227
24S1-28S	347	134	76SSS6	145	225
25S1-29S	321	89	77SSS7	205	138
26S1-30S	307	118	78SSS8	180	132
27S1T11M	354	100	79SSS9S	153	220
28S1T11T	354	100	80SSS10S	146	219
29S1T12M	354	106	81SSS11S	205	131
30S1T12T	354	106	82SSS12S	180	126
31S1T13M	334	148	83SSS13S	153	224
32S1T13T	334	148	84SSS14S	146	222
33S1T14-	321	85	85SSS15S	205	135
34S1T15-	301	127	86SSS16S	180	129
35S1T16S	348	99			
36S1T17S	348	103	1		
37S1T18S	336	131	1		
38S1T19S	321	84	1		
39S1T20S	308	112	1		
40S1T21M	354	105	1		
41S1T21T	354	105	1		
42S1T22M	354	111	1		

IN54 - Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

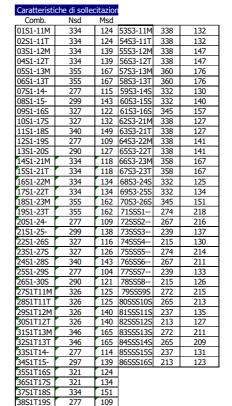
COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLIN5400001	В	38 di 57

Verifica a pressoflessione sommità (Pied-Sommità)

Acciaio			
Tensione car. di rottura	f _{tk} =	540	N/mm ²
Tensione car. di snervamento	f _{yk} =	450	N/mm ²
Coeff. parziale di sicurezza	γ _s =	1.15	
Resistenza di calcolo	f _{yd} =	391	N/mm ²
Modulo elastico	Ė _s =	200000	N/mm ²
	ε _{vd} =	0.00196	

Calcestruz	zo	
Tipo	C30/37	
R_{ck}	37	N/mm ²
f_{ck}	30.71	N/mm ²
Yc	1.5	
f_{cd}	20.5	N/mm ²
f_{cc}	17.4	N/mm ²

copriferro	50	mm
staffe	10	mm
armat. sec	10	mm


Geometria della sezione				
Altezza geometrica della sezio	=	40	cm	
Base della sezione	b	=	100	cm
Copriferro	ď'	=	8.2	cm
Altezza utile della sezione	d	=	31.8	cm

Armatura tesa							
Nº ferri	Diametro	Area					
5	24	22.62	cm ²				
		0.00	cm ²				
		0.00	cm ²				
		22.62	cm ²				

		22.62	cm ²			
		0.00	cm ²			
		0.00	cm ²			
5	24	22.62	cm ²			
Nº ferri	Diametro	Area				
Armatura compressa						

	Caratteris
	Comb.
Nmax)	Fr_2St_57
Nmin)	Fr_2St_82
Mmax)	Fr_2St_7:
Mmin)	Fr_2St_5:
1.111111)	11_23(_3

Caratteristiche di sollecitazione							
Comb.	Nsd [kN]	Msd [kNm]					
Fr_2St_579	360	176					
Fr_2St_825	213	127					
Fr_2St_715	274	218					
Fr_2St_51S	277	104					

109

126

120 120

134

134

160

160

108

134

118

128

145 104

326

346

39S1T20S

40S1T21M 41S1T21T

42S1T22M

43S1T22T 44S1T23M

45S1T23T

46S1T24-

47S1T25-

48S1T26S

49S1T27S

50S1T28S

51S1T29S 52S1T30S

			DOMINIO	DI RESISTENZA			
		500	نعر	••			
			1	A	\		
lettente		400	/				
Momento Flettente		300				₹	
		Forza N	lormale (pos	sitiva se di com	pressione)		
-4 000	-2 000	0	2 000	4 000	6 000	8 000	10 00

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLIN5400001 B 39 di 57

• Verifica a taglio

La verifica a taglio viene condotta nel seguente modo:

- 1. Verifica della sezione senza armatura al taglio → se VEd<VRd1 la verifica è soddisfatta;
- 2. Altrimenti si verifica la sezione con armatura a taglio → se VEd<VRd2 la verifica è soddisfatta.

-	truzzo		Sollecitazioni		Piedritto
Tipo	C30/37		V_{Ed}	kN	273
R_{ck}	37	N/mm²	N_{Ed}	kN	0
f_{ck}	30.7	N/mm²			
Yc	1.5		Armatura a taglio		
α_{cc}	0.85		Diametro	mm	12
f_{cd}	17.4	N/mm²	Numero barre		5
			A_{sw}	cm²	5.65
Acciaio)		Passo s	cm	20
f _{tk}	540	N/mm²	Angolo α	•	90
f_{yk}	450	N/mm ²	-		
Ϋ́s	1.15		Armatura longitudina	ale	
f_{yd}	391	N/mm ²	n_1		5
-			\emptyset_1	mm	24
			n ₂		-
			\emptyset_2	mm	-
			Asl	cm ²	22.62
			Sezione		
			b _w	cm	100
			н	cm	40
			c	cm	8.2
			d	cm	31.8
			k	N/mm²	
					1.79
			V_{min}	N/mm²	1.79 0.47
			ρ	N/mm²	1.79 0.47 0.0071
					1.79 0.47 0.0071 0.00
			ρ	N/mm²	1.79 0.47 0.0071 0.00
			ρ σ c p	N/mm² N/mm²	1.79 0.47 0.0071 0.00 1.00
			$ρ$ σcp $α_c$	N/mm² N/mm²	1.79 0.47 0.0071 0.00 1.00
			$ρ$ $σcp$ $α_c$ Resistenza senza arn V_{Rd}	N/mm² N/mm² natura a taglio	1.79 0.47 0.0071 0.00 1.00
			ρ σ cp α_c Resistenza senza arn V_{Rd} Resistenza con arma	N/mm² N/mm² natura a taglio	1.79 0.47 0.0071 0.00 1.00
			ρ σcp αc Resistenza senza arn V _{Rd} Resistenza con arma Inclinazione puntone θ	N/mm² N/mm² natura a taglio kN tura a taglio °	1.79 0.47 0.0071 0.00 1.00 1.00
			ρ σ cp α_c Resistenza senza arn V_{Rd} Resistenza con arma	N/mm² N/mm² natura a taglio kN tura a taglio	1.79 0.47 0.0071 0.00 1.00

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

Coefficiente adimensionale

Coefficiente adimensionale

Distanza massima tra le fessure

Distanza media tra le fessure

Diametro equivalente delle barr edi armatura

Valore medio dell'apertura delle fessure

Valore di calcolo dell'apertura delle fessure

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLIN5400001 B 40 di 57

• Verifica a fessurazione spiccato (Pied-Spicc)

Momento flettente	M	117.76	kN m							
Sforzo normale	N	223	kN							
Materiali										
Resistenza caratteristica cubica calcestruzzo	R_{ck}	37	N/mm ²							
Resistenza caratteristica cilindrica calcestruzzo	fck	30.71	N/mm ²							
Modulo elastico del calcestruzzo	E_{cm}	33019.43	N/mm ²							
Tensione ammissibile cls	σc_{amm}	16.9	N/mm²							
Res. media a trazione cls	f_{ctm}	3.4	N/mm ²							
Res. caratteristica a trazione cls	f_{ctk}	2.3	N/mm²							
Tensione di snervamento acciaio	f_{yk}	450.00	N/mm ²							
Modulo elastico dell'acciaio	E_s	200000.00	N/mm²							
Tensione ammissibile acciaio	σs_{amm}	337.5	N/mm ²							
Coefficiente omog. acciaio-cls	n	15								
Caratteristiche geometriche										
Altezza sezione	Н	40	cm							
Larghezza sezione	В	100	cm						_	
Armatura compressa (1º strato)	As ₁ '	22.62	cm ²		5	Ø	24	c _{s1} =	8.2	cm
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²		0	Ø	0	c _{s2} =	9.4	cm
Armatura tesa (2º strato)	As_2	0.00	cm ²		0	Ø	0	c _{i2} =	9.4	cm
Armatura tesa (1º strato)	As ₁	22.62	cm ²		5	Ø	24	c _{i1} =	8.2	cm
Tensioni nei materiali										
Compressione max nel cls.	σc	6.7	N/mm²	<	σc _a	mm				
Trazione nell'acciaio (1º strato)	σs	139.7	N/mm²	<	σa _a	mm]		
Eccentricità	e (M)	52.9	cm	>	H/6	Se	z. pa	arziali	zzata	
	u (M)	32.9	cm		.,, -					
Posizione asse neutro	y (M)	13.4	cm							
Area ideale (sez. int. reagente)	A _{id}	4633	cm ²							
Mom. di inerzia ideale (sez. int. reag.)	J_{id}	627819.3713	cm ⁴							
Mom. di inerzia ideale (sez. parz. N=0)	J _{id*}	203850.6436	cm ⁴							
Verifica a fessurazione										
Momento di fessurazione (f _{ctk})	M _{fess} *	89	kN m	La s	ezior	ne è	fess	urata		1
Momento di fessurazione (f _{ctm})	M _{fess}	120	kN m							
Eccentricità per M=M _{fess}	e (M _{fess})	54.1	cm							
	u (M _{fess})	34.1	cm							
Compressione max nel cls. per M=M _{fess}	σcr	6.9								
Traz. nell'acciaio (1° str.) per M=M _{fess}	σsr	144.0	N/mm ²							
Posizione asse neutro per M=M _{fess}	y (M _{fess})	13.3	cm							
Coefficiente dipendente dalla durata del carico	k _t	0.6								
Altezza efficace	$h_{c,eff}$	8.90	cm							
Rapporto tra moduli elastici	α _e	6.1	-							
Armatura nell'area efficace	As _{eff}	22.62	cm ²							
Area efficace	Ac _{eff}	890.11	cm ²							
Rapporto geometrico di armatura	ρ _{eff}	0.0254	-							
Deformazione unitaria media dell'armatura	Esm	0.000288078	_							
Copriferro netto	c'	5.0	cm							
Coefficiente dipendente dall'aderenza dell'acciai	-	0.80	_							
•	•									
Coefficiente dipendente dal diagramma tensioni	K ₂	0.50	-							

 K_3

 K_4

 ϕ_{eq}

 Δs_{max}

 Δs_{m}

 \mathbf{W}_{m}

 w_{d}

3.40 -

24.00 mm

0.10 mm

0.425

330.5546191 mm

194.4438936 mm

0.06

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLIN5400001 B 41 di 57

• Verifica a fessurazione sommità (Pied-Sommità)

Momento flettente	M	121.67	kN m
Sforzo normale	N	239	kN
Materiali			
Resistenza caratteristica cubica calcestruzzo	R _{ck}	37	N/mm ²
Resistenza caratteristica cilindrica calcestruzzo	fck	30.71	N/mm ²
Modulo elastico del calcestruzzo	E _{cm}	33019.43	N/mm ²
Tensione ammissibile cls	σc_{amm}	16.9	N/mm ²
Res. media a trazione cls	f_{ctm}	3.4	N/mm ²
Res. caratteristica a trazione cls	f _{ctk}	2.3	N/mm ²
Tensione di snervamento acciaio	f_{vk}	450.00	N/mm ²
Modulo elastico dell'acciaio	És	200000.00	N/mm ²
Tensione ammissibile acciaio	σs_{amm}	337.5	N/mm ²
Coefficiente omog. acciaio-cls	n	15	

Caratteristiche geoi	metriche									
Altezza sezione		Н	40	cm						1
Larghezza sezione		В	100	cm						
Armatura compressa (1° strato)	As ₁ '	22.62	cm ²				= 8.2		
Armatura compressa (2° strato)	As ₂ '	0.00	cm ²	0	Ø	C _{s2}	= 9.4	cm	
Armatura tesa (2º stra	ato)	As_2	0.00	cm ²	0	Ø) C _{i2}	= 9.4	cm	
Armatura tesa (1º stra	ato)	As_1	22.62	cm ²	5	Ø 2	4 C ₁₁	= 8.2	cm	

Tensioni nei materiali					
Compressione max nel cls.	σς	7.0	N/mm ²	<	σc _{amm}
Trazione nell'acciaio (1º strato)	σs	142.5	N/mm²	<	σa _{amm}
Eccentricità	e (M)	50.9	cm	_	H/6 Sez. parzializzata
Lecentricità	u (M)	30.9	cm		11/0 Sez. parzializzata
Posizione asse neutro	y (M)	13.5	cm		
Area ideale (sez. int. reagente)	A_{id}	4633	cm ²		
Mom. di inerzia ideale (sez. int. reag.)	J_{id}	627819.3713	cm ⁴		
Mom. di inerzia ideale (sez. parz. N=0)	J_{id*}	204780.42	cm ⁴		

Momento di fessurazione (f _{ctk})	M _{fess} *	90	kN m	La sezione è fessurata
Momento di fessurazione (f _{ctm})	M _{fess}	122	kN m	
Eccentricità per M=M _{fess}	e (M _{fess})	50.8	cm	
Tess	u (M _{fess})	30.8	cm	
Compressione max nel cls. per M=M _{fess}	σcr	7.0		
Traz. nell'acciaio (1° str.) per M=M _{fess}	σsr	142.3	N/mm ²	
Posizione asse neutro per M=M _{fess}	y (M _{fess})	13.5	cm	
Coefficiente dipendente dalla durata del carico	\mathbf{k}_{t}	0.6		
Altezza efficace	h _{c,eff}	8.85	cm	
Rapporto tra moduli elastici	α_{e}	6.1	-	
Armatura nell'area efficace	As_{eff}	22.62	cm ²	
Area efficace	Ac_{eff}	884.64	cm ²	
Rapporto geometrico di armatura	$ ho_{\text{eff}}$	0.0256	-	
Deformazione unitaria media dell'armatura	Esm	0.00028457	-	
Copriferro netto	c'	5.0	cm	
Coefficiente dipendente dall'aderenza dell'acciaio	o K ₁	0.80	-	
Coefficiente dipendente dal diagramma tensioni	K ₂	0.50	-	
Coefficiente adimensionale	K_3	3.40	-	
Coefficiente adimensionale	K ₄	0.425	-	
Diametro equivalente delle barr edi armatura	Φ_{eq}	24.00	mm	
Distanza massima tra le fessure	$\Delta s_{\sf max}$	329.5681665	mm	
Distanza media tra le fessure	Δs_{m}	193.8636273	mm	
Valore medio dell'apertura delle fessure	W _m	0.06	mm	_
Valore di calcolo dell'apertura delle fessure	W _d	0.09	mm	

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLIN5400001 B 42 di 57

9.5.2 Verifica soletta superiore

Sezione: 40 x 100 cm

Armatura a flessione:

Appoggio (Solsup-App)

Armatura tesa

\$ 24/20 cm

Armatura compressa

- ф 24/20 cm
 - Campata (Solsup-Camp)

Armatura tesa

ф 24/20 cm

Armatura compressa

ф 24/20 cm

Armatura a taglio:

Spille \(\psi \) 12/20x20 cm.

IN54 - Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLIN5400001	В	43 di 57

• Verifica a pressoflessione appoggio (Solsup-App)

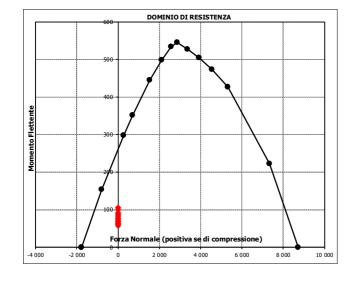
Acciaio			
Tensione car. di rottura	f _{tk} =	540	N/mm ²
Tensione car. di snervamento	f _{yk} =	450	N/mm ²
Coeff. parziale di sicurezza	γ _s =	1.15	
Resistenza di calcolo	f _{yd} =	391	N/mm ²
Modulo elastico	$E_s =$	205000	N/mm ²
	$\epsilon_{yd} =$	0.00191	

Calcestruzzo					
Tipo	C30/37				
R_{ck}	37	N/mm ²			
f_{ck}	30.71	N/mm ²			
Yc	1.5				
f_{cd}	20.5	N/mm ²			
f_{cc}	17.4	N/mm ²			

copriferro	50	mm
staffe	10	mm
armat. sec	. 10	mm

Geometria della sezione			
Altezza geometrica della sezion h =			40 cm
Base della sezione b			100 cm
Copriferro	ď'	=	8.2 cm
Altezza utile della sezione	d	=	31.8 cm

Armatura tesa						
Nº ferri	Diametro	Area				
5	24	22.62	cm ²			
		0.00	cm ²			
		0.00	cm ²			
		22.62	cm ²			


Armatura compressa						
Nº ferri	Diametro	Area				
5	24	22.62	cm ²			
		0.00	cm ²			
		0.00	cm ²			
		22.62	cm ²			

	Co
(Nmax)	Fr_1
(Nmin)	Fr_1
(Mmax)	Fr_1
(Mmin)	Fr_1

Caratteristiche di sollecitazione					
Comb.	Nsd [kN]	Msd [kNm]			
Fr_1St_015	0	66			
Fr_1St_015	0	66			
Fr_1St_715	0	169			
Fr_1St_515	0	57			

Caracteristicité di soliccitazioi					
	Comb.	Nsd	Msd		
	01S1-11M	0	66		
	02S1-11T	Λ	66		

COITID.	INSU	MSu			
01S1-11M	0	66	53S3-11M	0	73
02S1-11T	0	66	54S3-11T	0	73
03S1-12M	0	81	55S3-12M	0	89
04S1-12T	0	81	56S3-12T	0	89
05S1-13M	0	105	57S3-13M	0	113
06S1-13T	0	105	58S3-13T	0	113
07S1-14-	0	68	59S3-14S	0	72
08S1-15-	0	92	60S3-15S	0	82
09S1-16S	0	65	61S3-16S	0	97
10S1-17S	0	75	62S3-21M	0	68
11S1-18S	0	90	63S3-21T	0	68
12S1-19S	0	62	64S3-22M	0	82
13S1-20S	0	77	65S3-22T	0	82
14S1-21M	0	60	66S3-23M	0	104
15S1-21T	0	60	67S3-23T	0	104
16S1-22M	0	76	68S3-24S	0	67
17S1-22T	0	76	69S3-25S	0	77
18S1-23M	0	100	70S3-26S	0	91
19S1-23T	0	100	71SSS1	0	169
20S1-24-	0	62	72SSS2	0	168
21S1-25-	0	86	73SSS3	0	95
22S1-26S	0	60	74SSS4	0	92
23S1-27S	0	70	75SSS5	0	165
24S1-28S	0	84	76SSS6	0	164
25S1-29S	0	57	77SSS7	0	91
26S1-30S	0	72	78SSS8	0	88
27S1T11M		69	79SSS9S	0	167
28S1T11T	0	69	80SSS10S	0	166
29S1T12M	0	83	81SSS11S	0	93
30S1T12T	0	83	82SSS12S	0	90
31S1T13M	0	105	83SSS13S	0	163
32S1T13T	0	105	84SSS14S	0	162
33S1T14-	0	66	85SSS15S	0	89
34S1T15-	0	88	86SSS16S	0	86
35S1T16S	0	68	1		
36S1T17S	0	78			

303111/3	U	70
37S1T18S	0	93
38S1T19S	0	62
39S1T20S	0	76
40S1T21M	0	64
41S1T21T	0	64
42S1T22M	0	78
43S1T22T	0	78
44S1T23M	0	100
45S1T23T	0	100
46S1T24-	0	61
47S1T25-	0	83
48S1T26S	0	63
49S1T27S	0	73
50S1T28S	0	87
51S1T29S	0	57
52S1T30S	0	71

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLIN5400001 B 44 di 57

• Verifica a pressoflessione campata (Solsup-Camp)

Acciaio				
Tensione car. di rottura	f_{tk}	=	540	N/mm ²
Tensione car. di snervamento	f_{yk}	=	450	N/mm²
Coeff. parziale di sicurezza	Ϋ́s	=	1.15	
Resistenza di calcolo	f_{yd}	=	391	N/mm²
Modulo elastico	E_s	=	205000	N/mm ²
	ϵ_{yd}	=	0.00191	

Calcestruzzo						
C30/37						
37	N/mm ²					
30.71	N/mm ²					
1.5						
20.5	N/mm ²					
17.4	N/mm ²					
	C30/37 37 30.71 1.5 20.5					

copriferro	50	mm
staffe	10	mm
armat. sec.	10	mm

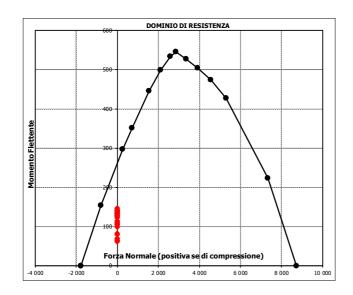
Geometria della sezione				
Altezza geometrica della sezio	on h	=	40	cm
Base della sezione	b	=	100	cm
Copriferro	ď'	=	8.2	cm
Altezza utile della sezione	d	=	31.8	cm

Armatura tesa						
Nº ferri	Diametro	Area				
5	24	22.62	cm ²			
		0.00	cm ²			
		0.00	cm ²			
		22.62	cm ²			

		0.00 22.62	cm ²				
		0.00	cm ²				
5	24	22.62	cm ²				
Nº ferri	Diametro	Area					
Armatura compressa							

38S1T19S 39S1T20S 40S1T21M

41S1T21T


42S1T22M 43S1T22T 44S1T23M 45S1T23T 46S1T24-

47S1T25-48S1T26S

49S1T27S 50S1T28S

51S1T29S 52S1T30S

	Caratteristiche di sollecitazione					
	Comb.	Nsd [kN]	Msd [kNm]			
(Nmax)	Fr_1St_015	0	141			
(Nmin)	Fr_1St_015	0	141			
(Mmax)	Fr_1St_149	0	147			
(Mmin)	Fr 1St 805	0	61			

Caratteristi	che di solle	ritazione			
Comb.	Nsd	Msd			
01S1-11M	0	141	53S3-11M	0	141
02S1-11T	0	141	54S3-11T	0	141
03S1-12M	0	126	55S3-12M	0	126
04S1-12T	0	126	56S3-12T	0	126
05S1-13M	0	134	57S3-13M	0	134
06S1-13T	0	134	58S3-13T	0	134
07S1-14-	0	98	59S3-14S	0	138
08S1-15-	0	106	60S3-15S	0	128
09S1-16S	0	138	61S3-16S	0	133
10S1-17S	0	128	62S3-21M	0	147
11S1-18S	0	133	63S3-21T	0	147
12S1-19S	0	104	64S3-22M	0	133
13S1-20S	0	109	65S3-22T	0	133
14S1-21M	0	147	66S3-23M	0	140
15S1-21T	0	147	67S3-23T	0	140
16S1-22M	0	131	68S3-24S	0	143
17S1-22T	0	131	69S3-25S	0	133
18S1-23M	0	139	70S3-26S	0	138
19S1-23T	0	139	71SSS1	0	65
20S1-24-	0	104	72SSS2	0	61
21S1-25-	0	111	73SSS3	0	79
22S1-26S	0	143	74SSS4	0	66
23S1-27S	0	133	75SSS5	0	69
24S1-28S	0	138	76SSS6	0	65
25S1-29S	0	109	77SSS7	0	83
26S1-30S	0	114	78SSS8	0	70
27S1T11M	0	136	79SSS9S	0	65
28S1T11T	0	136	80SSS10S	0	61
29S1T12M	0	122	81SSS11S	0	79
30S1T12T	0	122	82SSS12S	0	66
31S1T13M	0	129	83SSS13S	0	69
32S1T13T	0	129	84SSS14S	0	65
33S1T14-	0	99	85SSS15S	0	83
34S1T15-	0	106	86SSS16S	0	70
35S1T16S	0	133			
36S1T17S	0	123			
37S1T18S	0	128			

141 141

127 127 134

134 105

129 134

109

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLIN5400001	В	45 di 57

• Verifica a taglio

La verifica a taglio viene condotta nel seguente modo:

- 1. Verifica della sezione senza armatura al taglio → se VEd<VRd1 la verifica è soddisfatta;
- 2. Altrimenti si verifica la sezione con armatura a taglio → se VEd<VRd2 la verifica è soddisfatta.

Calcest	ruzzo		Sollecitazioni			Soletta sup
Tipo	C30/37		V_{Ed}		kN	297
R_{ck}	37	N/mm ²	N_{Ed}	•	kN	0
f_{ck}	30.7	N/mm²				
Yc	1.5		Armatura a tagli	0		
α_{cc}	0.85		Diametro		mm	12
f_{cd}	17.4	N/mm ²	Numero barre			5
			A_{sw}		cm ²	5.65
Acciaio			Passo s		cm	20
f_{tk}	540	N/mm ²	Angolo α	•	0	90
f_{yk}	450	N/mm ²	•			
Ϋ́s	1.15		Armatura longitu	udinale		
f_{yd}	391	N/mm ²	n_1			5
			\emptyset_1		mm	24
			n_2			-
			\emptyset_2		mm	-
			Asl		cm ²	22.62
			Sezione			
			b_w	_	cm	100
			Н	•	cm	40
			С	•	cm	8.2
			d		cm	31.8
			k		N/mm ²	1.79
			V _{min}		N/mm²	0.47
			ρ			0.0071
			σср		N/mm²	0.00
			α_{c}			1.00
			Resistenza senza	a armatı	ıra a tagli	io
			V_{Rd}		kN	191
			Resistenza con a Inclinazione puntor		a taglio 。	21.8
			V _{RSd}	ic 0	kN	792
			V_{RCd}		kN	859
			V _{Rd}		kN	792
			- Kū			

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

Valore di calcolo dell'apertura delle fessure

COMMESSALOTTOFASE-ENTEDOCUMENTOREV.FOGLIORS3Z00D 26CLIN5400001B46 di 57

• Verifica a fessurazione appoggio (Solsup-App)

Momento flettente	М	79.74	kN m	1						
Sforzo normale	N	0	kN							
Materiali										
Resistenza caratteristica cubica calcestruzzo	R _{ck}	37	N/mm²	1						
Resistenza caratteristica cilindrica calcestruzzo	fck	30.71	N/mm²							
Modulo elastico del calcestruzzo	E _{cm}	33019.43	N/mm²							
Tensione ammissibile cls	σc _{amm}	16.9	N/mm²							
Res. media a trazione cls	f _{ctm}	3.4	N/mm²							
Res. caratteristica a trazione cls	f _{ctk}	2.3	N/mm²							
Tensione di snervamento acciaio	f _{yk}	450.00	N/mm²							
Modulo elastico dell'acciaio	E _s	205000.00	N/mm²							
Tensione ammissibile acciaio	σs _{amm}	337.5	N/mm²							
Coefficiente omog. acciaio-cls	n	15	,							
Countitouistisko saasuustuiska										
Caratteristiche geometriche Altezza sezione	Н	40	cm							
Larghezza sezione	В	100	cm							
Armatura compressa (1º strato)	As ₁ '	22.62	cm ²		5	Ø	24	c _{s1} =	8.2	c
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²		0	Ø		C _{s2} =		c
Armatura tesa (2º strato)	As ₂	0.00	cm ²		0	ø		C ₁₂ =	9.4	c
Armatura tesa (1º strato)	As ₁	22.62	cm ²					c _{i1} =		c
Tensioni nei materiali										
Compressione max nel cls.	σς	4.5	N/mm²	<	σca			1		
Trazione nell'acciaio (1º strato)	σs	128.2	N/mm²		-					
Trazione nen acciaio (1 Strato)	03	120.2	14/111111	_	oaa	mm		J		
Eccentricità	e (M)	∞	cm	>	H/6	Se	z. pa	arzializz	ata	
	u (M)	∞	cm		•		•			
Posizione asse neutro	y (M)	11.0	cm							
Area ideale (sez. int. reagente)	A _{id}	4633	cm ²							
Mom. di inerzia ideale (sez. int. reag.)	J _{id}	627819.3713	cm ⁴							
Mom. di inerzia ideale (sez. parz. N=0)	J _{id*}	193816.1677	cm ⁴							
Vorifica a fossurazione										
Verifica a fessurazione Momento di fessurazione (f _{ctk})	M _{fess} *	74	kN m	La	ezior	ne è	fess	urata		1
Momento di fessurazione (f _{ctm})	M _{fess}	105	kN m		2_101					
Eccentricità per M=M _{fess}	e (M _{fess})	± 103 ∞	cm							
2000. Arriotta por 11-11gess	u (M _{fess})	∞	cm							
Compressione max nel cls. per M=M _{fess}	σcr	6.0	CIII							
	σsr	169.4	N/mm²							
Traz. nell'acciaio (1º str.) per M=M _{fess}		11.0	cm							
Posizione asse neutro per M=M _{fess} Coefficiente dipendente dalla durata del carico	y (M _{fess}) k _t	0.6	CIII							
and the diperiodictic during during der Carles	•4	0.0								
Altezza efficace	$h_{c,eff}$	9.66	cm							
Rapporto tra moduli elastici	α_{e}	6.2	-							
Armatura nell'area efficace	As_{eff}	22.62	cm ²							
Area efficace	Ac_{eff}	965.59	cm ²							
Rapporto geometrico di armatura	ρ_{eff}	0.0234	-							
Deformazione unitaria media dell'armatura	Esm	0.000345744	-							
Copriferro netto	c'	5.0	cm							
Coefficiente dipendente dall'aderenza dell'acciai	o K ₁	0.80	-							
Coefficiente dipendente dal diagramma tensioni	K ₂	0.50	-							
Coefficiente adimensionale	K ₃	3.40	-							
Coefficiente adimensionale	K ₄	0.425	_							
Diametro equivalente delle barr edi armatura	φ _{eq}	24.00	mm							
Distanza massima tra le fessure	Ψeq Δs _{max}	344.1696743	mm							
Distanza media tra le fessure	Δs_{max} Δs_{m}	202.4527496	mm							
Valore medio dell'apertura delle fessure	ΔS _m W _m	0.07								
	VV ma	1111/	mm							1

0.12 mm

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

Valore di calcolo dell'apertura delle fessure

 \mathbf{w}_{d}

0.12 mm

 COMMESSA
 LOTTO
 FASE-ENTE
 DOCUMENTO
 REV.
 FOGLIO

 RS3Z
 00
 D 26
 CLIN5400001
 B
 47 di 57

• Verifica a fessurazione campata (Solsup-Camp)

Momento flettente	М	97.91	kN m							
Sforzo normale	N	0	kN							
Materiali										
Resistenza caratteristica cubica calcestruzzo	R _{ck}	37	N/mm²	1						
Resistenza caratteristica cilindrica calcestruzzo	fck	30.71	N/mm ²							
Modulo elastico del calcestruzzo	E_{cm}	33019.43	N/mm ²							
Tensione ammissibile cls	σc_{amm}	16.9	N/mm ²							
Res. media a trazione cls	f_{ctm}	3.4	N/mm ²							
Res. caratteristica a trazione cls	f_{ctk}	2.3	N/mm ²							
Tensione di snervamento acciaio	f_{yk}	450.00	N/mm ²							
Modulo elastico dell'acciaio	E_s	205000.00	N/mm ²							
Tensione ammissibile acciaio	σs_{amm}	337.5	N/mm ²							
Coefficiente omog. acciaio-cls	n	15								
Caratteristiche geometriche										
Altezza sezione	Н	40	cm							_
Larghezza sezione	В	100	cm					_		
Armatura compressa (1º strato)	As ₁ '	22.62	cm ²		5	Ø	24	c _{s1} =	8.2	C
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²		0	Ø	0	c _{s2} =	9.4	C
Armatura tesa (2º strato)	As ₂	0.00	cm ²		0	Ø	0	c _{i2} =	9.4	С
Armatura tesa (1º strato)	As ₁	22.62	cm ²		5	Ø	24	c _{i1} =	8.2	С
Tensioni nei materiali										
Compressione max nel cls.	σς	5.6	N/mm²	<	σca	mm		Ī		
Trazione nell'acciaio (1º strato)	σs	157.4	N/mm²	<	u.					
- contricità	o (M)	•			ши					
Eccentricità	e (M)	∞ ∞	cm	>	H/ C	56	z. pa	ırzializz	ata	
Posizione asse neutro	u (M)	11.0	cm							
Area ideale (sez. int. reagente)	y (M)	4633	cm cm²							
	A _{id}		cm ⁴							
Mom. di inerzia ideale (sez. int. reag.) Mom. di inerzia ideale (sez. parz. N=0)	J _{id} J _{id∗}	627819.3713 193816.1677	cm ⁴							
nom: di merzia lucale (Sez. parz. N=0)	JØ∗	193010.1077	CIII							
Verifica a fessurazione	M ¥	74	I-NI	1	!		£			7
Momento di fessurazione (f _{ctk})	M _{fess} *	74	kN m	La s	ezior	ie e	ress	urata		
Momento di fessurazione (f _{ctm})	M _{fess}	105	kN m							
Eccentricità per M=M _{fess}	e (M _{fess})	∞	cm							
0	u (M _{fess})	∞	cm							
Compressione max nel cls. per M=M _{fess}	σcr	6.0								
Traz. nell'acciaio (1° str.) per M=M _{fess}	σsr	169.4	N/mm ²							
Posizione asse neutro per M=M _{fess}	y (M _{fess})	11.0	cm							1
Coefficiente dipendente dalla durata del carico	k _t	0.6								
Altezza efficace	$h_{c,eff}$	9.66	cm							
Rapporto tra moduli elastici	α_{e}	6.2	-							
Armatura nell'area efficace	As _{eff}	22.62	cm ²							
Area efficace	Ac_{eff}	965.59	cm ²							
Rapporto geometrico di armatura	ρ_{eff}	0.0234	-							
Deformazione unitaria media dell'armatura	£sm	0.000345744	-							
Copriferro netto	c'	5.0	cm							
Coefficiente dipendente dall'aderenza dell'acciai	o K ₁	0.80	-							
Coefficiente dipendente dal diagramma tensioni	K ₂	0.50	-							
Coefficiente adimensionale	K ₃	3.40	-							
Coefficiente adimensionale	K ₄	0.425	-							
Diametro equivalente delle barr edi armatura	ϕ_{eq}	24.00	mm							
Distanza massima tra le fessure	Δs_{max}	344.1697	mm							
Distanza media tra le fessure	Δs _m	202.4527647	mm							
Valore medio dell'apertura delle fessure	W _m	0.07	mm							1
	100	0.07								

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLIN5400001 B 48 di 57

9.5.3 Verifica soletta inferiore

Sezione: 40 x 100 cm

Armatura a flessione:

• Appoggio (Solinf-App)

Armatura tesa

\$ 24/20 cm

Armatura compressa

- ф 24/20 cm
 - Campata (Solinf-Camp)

Armatura tesa

ф 24/20 cm

Armatura compressa

ф 24/20 cm

Armatura a taglio:

Spille \(\psi \) 12/20x20 cm.

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLIN5400001	В	49 di 57

• Verifica a pressoflessione appoggio (Solinf-App)

Acciaio			
Tensione car. di rottura	$f_{tk} =$	540	N/mm ²
Tensione car. di snervamento	f _{yk} =	450	N/mm ²
Coeff. parziale di sicurezza	γ _s =	1.15	
Resistenza di calcolo	f _{vd} =	391	N/mm ²
Modulo elastico	Ė _s =	200000	N/mm ²
	$\epsilon_{vd} =$	0.00196	

Calcestruz	ZO .	
Tipo	C30/37	
R_{ck}	37	N/mm ²
f_{ck}	30.71	N/mm ²
Ϋ́c	1.5	
f_{cd}	20.5	N/mm ²
f_{cc}	17.4	N/mm ²

copriferro	50	mm
	10	
staffe	10	mm
armat. sec	10	mm

Geometria della sezione				
Altezza geometrica della sezion	h	=	40	cm
Base della sezione	b	=	100	cm
Copriferro	ď	=	8.2	cm
Altezza utile della sezione	d	=	31.8	cm

Armatura tesa							
Nº ferri	Diametro	Area					
5	24	22.62	cm ²				
		0.00	cm ²				
		0.00	cm ²				
		22.62	cm ²				

		22.62	cm ²				
		0.00	cm ²				
		0.00	cm ²				
5	24	22.62	cm ²				
Nº ferri	Diametro	Area					
Armatura compressa							

43S1T22T 44S1T23M

45S1T23T 46S1T24-

47S1T25-48S1T26S

49S1T27S 50S1T28S 51S1T29S

52S1T30S

Caratteristiche di sollecitazion

Caratter
Comb.
Fr_13St_
Fr_13St_
Fr_13St_
Fr_13St_

Caratteristiche di sollecitazione						
Comb.	Nsd [kN]	Msd [kNm]				
Fr_13St_76	313	244				
Fr_13St_01	118	64				
Fr_13St_75	312	245				
Fr_13St_38	157	63				

Comb.	Nsd	Msd	_		
01S1-11M	118	64	53S3-11M	122	72
02S1-11T	118	64	54S3-11T	122	72
03S1-12M	182	81	55S3-12M	187	89
04S1-12T	182	81	56S3-12T	187	89
05S1-13M	210	130	57S3-13M	215	139
06S1-13T	210	130	58S3-13T	215	139
07S1-14-	179	69	59S3-14S	123	72
08S1-15-	207	119	60S3-15S	166	83
09S1-16S	118	64	61S3-16S	184	114
10S1-17S	161	75	62S3-21M	126	78
11S1-18S	179	106	63S3-21T	126	78
12S1-19S	158	64	64S3-22M	186	93
13S1-20S	175	95	65S3-22T	186	93
14S1-21M	121	70	66S3-23M	211	139
15S1-21T	121	70	67S3-23T	211	139
16S1-22M	186	86	68S3-24S	126	78
17S1-22T	186	86	69S3-25S	169	88
18S1-23M	214	136	70S3-26S	186	119
19S1-23T	214	136	71SSS1	310	241
20S1-24-	182	75	72SSS2	310	240
21S1-25-	210	125	73SSS3	189	130
22S1-26S	121	69	74SSS4	190	129
23S1-27S	165	80	75SSS5	312	245
24S1-28S	182	111	76SSS6	313	244
25S1-29S	161	69	77SSS7	192	134
26S1-30S	179	100	78SSS8	192	133
27S1T11M	121	68	79SSS9S	306	237
28S1T11T	121	68	80SSS10S	306	237
29S1T12M	181	84	81SSS11S	185	127
30S1T12T	181	84	82SSS12S	186	125
31S1T13M	206	129	83SSS13S	308	241
32S1T13T	206	129	84SSS14S	308	241
33S1T14-	174	68	85SSS15S	187	131
34S1T15-	200	113	86SSS16S	188	129
35S1T16S	121	68			
36S1T17S	164	79			
37S1T18S	181	109			
38S1T19S	157	63			
39S1T20S	174	94			
40S1T21M	124	74			
41S1T21T	124	74			
A2C1T22M	10/	90	1		

89

184 210

210 177

203 124

184 160

		600	MOD	IINIO DI RESI	STENZA		
		500 -		معر			
		400	•		1		
Flettente			•				
Momento Flettente		300-	7			1	
		1 00					
		100					
-4 000	-2 000		orza Normale				000 10 00

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

FASE-ENTE FOGLIO COMMESSA LOTTO DOCUMENTO REV. RS3Z 00 D 26 CLIN5400001 В 50 di 57

• Verifica a pressoflessione campata (Solinf-Camp)

Acciaio			
Tensione car. di rottura	f _{tk} =	540	N/mm ²
Tensione car. di snervamento	f _{yk} =	450	N/mm ²
Coeff. parziale di sicurezza	γ _s =	1.15	
Resistenza di calcolo	f _{yd} =	391	N/mm ²
Modulo elastico	$E_s =$	200000	N/mm ²
	$\epsilon_{yd} =$	0.00196	

Calcestruzzo					
Tipo	C30/37				
R_{ck}	37	N/mm ²			
f_{ck}	30.71	N/mm ²			
Yc	1.5				
f_{cd}	20.5	N/mm ²			
f_{cc}	17.4	N/mm ²			

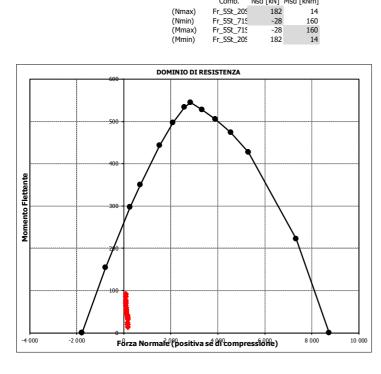
copriferro	50	mm
staffe	10	mm
armat. sec	10	mm

Geometria della sezione				
Altezza geometrica della sezior	۱h	=	40	cm
Base della sezione	b	=	100	cm
Copriferro	ď'	=	8.2	cm
Altezza utile della sezione	d	=	31.8	cm

Armatura tesa						
Nº ferri	Diametro	Area				
5	24	22.62	cm ²			
		0.00	cm ²			
		0.00	cm ²			
		22.62	cm ²			

Armatura compressa						
Nº ferri	Diametro	Area				
5	24	22.62	cm ²			
		0.00	cm ²			
		0.00	cm ²			
		22.62	cm ²			

38S1T19S 39S1T20S


40S1T21M 41S1T21T 42S1T22M 43S1T22T

44S1T23M

45S1T23T 46S1T24-47S1T25-48S1T26S 49S1T27S

50S1T28S 51S1T29S

	Caratteristi	che di solle	citazi
	Comb.	Nsd [kN]	Msd [
(Nmax)	Fr_5St_205	182	
(Nmin)	Fr_5St_715	-28	
(Mmax)	Fr_5St_715	-28	
(Mmin)	Fr_5St_205	182	

Caratteristi	che di sollec	itazione			
Comb.	Nsd	Msd		_	
01S1-11M	108	54	53S3-11M	103	61
02S1-11T	108	54	54S3-11T	103	61
03S1-12M	172	37	55S3-12M	168	44
04S1-12T	172	37	56S3-12T	168	44
05S1-13M	80	92	57S3-13M	75	99
06S1-13T	80	92	58S3-13T	75	99
07S1-14-	179	19	59S3-14S	103	59
08S1-15-	86	74	60S3-15S	147	48
09S1-16S	108	52	61S3-16S	85	83
10S1-17S	152	41	62S3-21M	106	55
11S1-18S	90	76	63S3-21T	106	55
12S1-19S	158	25	64S3-22M	166	40
13S1-20S	97	60	65S3-22T	166	40
14S1-21M	111	48	66S3-23M	80	90
15S1-21T	111	48	67S3-23T	80	90
16S1-22M	176	32	68S3-24S	106	54
17S1-22T	176	32	69S3-25S	149	43
18S1-23M	83	87	70S3-26S	89	77
19S1-23T	83	87	71SSS1	-28	160
20S1-24-	182	14	72SSS2	-28	158
21S1-25-	89	69	73SSS3	25	89
22S1-26S	111	47	74SSS4	26	84
23S1-27S	155	36	75SSS5	-26	156
24S1-28S	94	71	76SSS6	-26	154
25S1-29S	161	19	77SSS7	28	85
26S1-30S	100	54	78SSS8	28	80
27S1T11M	105	56	79SSS9S	-27	158
28S1T11T	105	56	80SSS10S	-27	156
29S1T12M	165	40	81SSS11S	27	87
30S1T12T	165	40	82SSS12S	27	82
31S1T13M	79	91	83SSS13S	-24	153
32S1T13T	79	91	84SSS14S	-24	152
33S1T14-	174	20	85SSS15S	29	83
34S1T15-	88	71	86SSS16S	30	77
35S1T16S	105	54			
36S1T17S	148	44	•		
37S1T18S	88	78	•		
20C1T10C	157	25	•		

59

49 38

73 19 54

108 168

83

108 151

91 160 100

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLIN5400001	В	51 di 57

• Verifica a taglio

La verifica a taglio viene condotta nel seguente modo:

- 1. Verifica della sezione senza armatura al taglio → se VEd<VRd1 la verifica è soddisfatta;
- 2. Altrimenti si verifica la sezione con armatura a taglio → se VEd<VRd2 la verifica è soddisfatta.

Calcest	ruzzo		Sollecitazioni		Soletta inf
Tipo	C30/37		V_{Ed}	kN	280
R_{ck}	37	N/mm²	N_{Ed}	kN	0
f_{ck}	30.7	N/mm²			
Yc	1.5		Armatura a taglio		
α_{cc}	0.85		Diametro	mm	12
f_{cd}	17.4	N/mm²	Numero barre		5
		<u> </u>	A _{sw}	cm²	5.65
Acciaio			Passo s	cm	20
f_{tk}	540	N/mm²	Angolo α	• 0	90
f_{yk}	450	N/mm²	-		
Ϋ́s	1.15		Armatura longitudina	ale	
f_{yd}	391	N/mm²	n_1		5
,		<u> </u>	\emptyset_1	mm	24
			n ₂		-
			$\overline{\emptyset}_2$	mm	-
			Asl	cm²	22.62
			Sezione		
			b _w	cm	100
			Н	cm	40
			С	cm	8.2
			d	cm	31.8
			k	N/mm²	1.79
			V _{min}	N/mm²	0.47
			ρ		0.0071
			σср	N/mm²	0.00
			α_{c}		1.00
			Resistenza senza arn	natura a tagli	0
			V_{Rd}	kN	191
			Resistenza con arma	tura a taglio	
			Inclinazione puntone θ	°	21.8
			V_{RSd}	kN	792
			V_{RCd}	kN	859
			V _{Rd}	kN	792

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLIN5400001 B 52 di 57

• Verifica a fessurazione appoggio (Solinf-App)

Sollecitazioni Momento flettente	М	107.84	kN m
Sforzo normale	N	160	kN
oronzo mormano			
Materiali			
Resistenza caratteristica cubica calcestruzzo	R _{ck}	37	N/mm ²
Resistenza caratteristica cilindrica calcestruzzo	fck	30.71	N/mm ²
Modulo elastico del calcestruzzo	E _{cm}	33019.43	N/mm ²
Tensione ammissibile cls	σc_{amm}	16.9	N/mm ²
Res. media a trazione cls	f_{ctm}	3.4	N/mm ²
Res. caratteristica a trazione cls	f_{ctk}	2.3	N/mm ²
Tensione di snervamento acciaio	f_{vk}	450.00	N/mm ²
Modulo elastico dell'acciaio	Ė _s	200000.00	N/mm ²
Tensione ammissibile acciaio	σs_{amm}	337.5	N/mm ²
Coefficiente omog. acciaio-cls	n	15	
	•		
Caratteristiche geometriche			
Altezza sezione	Н	40	cm
Larghezza sezione	В	100	cm
A (40 -1 -1-)	A - 1	22.62	2

caracteristicine geometricine									
Altezza sezione	Н	40	cm						
Larghezza sezione	В	100	cm						
Armatura compressa (1º strato)	As ₁ '	22.62	cm ²				c _{s1} =		
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²	0	Ø	0	$c_{s2} =$	9.4	cm
Armatura tesa (2º strato)	As_2	0.00	cm ²	0	Ø	0	c _{i2} =	9.4	cm
Armatura tesa (1º strato)	As_1	22.62	cm ²	5	Ø	24	c _{i1} =	8.2	cm

Tensioni nei materiali					
Compressione max nel cls.	σς	6.2	N/mm ²	<	σc _{amm}
Trazione nell'acciaio (1º strato)	σs	137.5	N/mm²	<	σa _{amm}
Eccentricità	e (M)	67.3	cm	>	H/6 Sez. parzializzata
	u (M)	47.3	cm		
Posizione asse neutro	y (M)	12.8	cm		
Area ideale (sez. int. reagente)	A_{id}	4633	cm ²		
Mom. di inerzia ideale (sez. int. reag.)	J_{id}	627819.3713	cm ⁴		
Mom. di inerzia ideale (sez. parz. N=0)	J_{id^*}	199613.6452	cm ⁴		

Momento di fessurazione (f _{ctk})	M _{fess} *	85	kN m	La sezione è fessurata
Momento di fessurazione (f _{ctm})	M_{fess}	116	kN m	
Eccentricità per M=M _{fess}	e (M _{fess})	72.6	cm	
	u (M _{fess})	52.6	cm	
Compressione max nel cls. per M=M _{fess}	σcr	6.7		
Traz. nell'acciaio (1° str.) per M=M _{fess}	σsr	150.9	N/mm ²	
Posizione asse neutro per M=M _{fess}	y (M _{fess})	12.7	cm	
Coefficiente dipendente dalla durata del carico	\mathbf{k}_{t}	0.6		
Altezza efficace	$h_{c,eff}$	9.11	cm	
Rapporto tra moduli elastici	α_{e}	6.1	-	
Armatura nell'area efficace	As_{eff}	22.62	cm ²	
Area efficace	Ac_{eff}	911.10	cm ²	
Rapporto geometrico di armatura	$ ho_{\text{eff}}$	0.0248	-	
Deformazione unitaria media dell'armatura	Esm	0.000301756	-	
Copriferro netto	c'	5.0	cm	
Coefficiente dipendente dall'aderenza dell'acciaio	ο K ₁	0.80	-	
Coefficiente dipendente dal diagramma tensioni	K ₂	0.50	-	
Coefficiente adimensionale	K ₃	3.40	-	
Coefficiente adimensionale	K ₄	0.425	-	
Diametro equivalente delle barr edi armatura	φ _{eq}	24.00	mm	
Distanza massima tra le fessure	Δs_{max}	334.3397247	mm	
Distanza media tra le fessure	Δs_{m}	196.6704263	mm	
Valore medio dell'apertura delle fessure	W _m	0.06	mm	_
Valore di calcolo dell'apertura delle fessure	W_d	0.10	mm	

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

Diametro equivalente delle barr edi armatura

Valore di calcolo dell'apertura delle fessure

Distanza massima tra le fessure

Distanza media tra le fessure Valore medio dell'apertura delle fessure COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLIN5400001 B 53 di 57

Sollecitazioni										
Momento flettente Sforzo normale	M N	86.50 37	kN m kN							
Materiali				-						
Resistenza caratteristica cubica calcestruzzo	R _{ck}	37	N/mm²	1						
Resistenza caratteristica cilindrica calcestruzzo	fck	30.71	N/mm²							
Modulo elastico del calcestruzzo	E _{cm}	33019.43	N/mm²							
Tensione ammissibile cls	σc _{amm}	16.9	N/mm²							
Res. media a trazione cls	f _{ctm}	3.4	N/mm ²							
Res. caratteristica a trazione cls	f _{ctk}	2.3	N/mm ²							
Tensione di snervamento acciaio	f_{yk}	450.00	N/mm ²							
Modulo elastico dell'acciaio	Es	200000.00	N/mm ²							
Tensione ammissibile acciaio	σs_{amm}	337.5	N/mm ²							
Coefficiente omog. acciaio-cls	n	15								
Caratteristiche geometriche										
Altezza sezione	Н	40	cm							
Larghezza sezione	В	100	cm		_	~				
Armatura compressa (1º strato)	As ₁ '	22.62	cm ²		5			$c_{s1} =$		cm
Armatura compressa (2º strato)	As ₂ '	0.00	cm ²		0	Ø	0	c _{s2} =	9.4	cm
Armatura tesa (2º strato)	As ₂	0.00	cm ²		0	Ø		$c_{i2} = c_{i1} = c_{i1}$	9.4	cm
Armatura tesa (1º strato)	As ₁	22.62	cm ²			Ø	24	C _{i1} =	8.2	cm
Tensioni nei materiali		4.0	N/2					1		
Compressione max nel cls.	σς	4.9	N/mm²		u					
Trazione nell'acciaio (1º strato)	σs	130.5	N/mm²	<	σa _a	mm		j		
Eccentricità	e (M)	230.9	cm	>	H/6	Se	z. pa	ırzializz	ata	
	u (M)	210.9	cm							
Posizione asse neutro	y (M)	11.5	cm							
Area ideale (sez. int. reagente)	A _{id}	4633 627819.3713	cm² cm⁴							
Mom. di inerzia ideale (sez. int. reag.) Mom. di inerzia ideale (sez. parz. N=0)	J _{id} J _{id*}	194236.5791	cm ⁴							
` ' '	- 10									
Verifica a fessurazione Momento di fessurazione (f _{ctk})	M _{fess} *	76	kN m	las	ezior	ne è	fecc	urata		1
Momento di fessurazione (f _{ctm})	M _{fess}	108	kN m	Lu J	CZIOI	ic c	1033	uiutu		
Eccentricità per M=M _{fess}	e (M _{fess})	288.0	cm							
Eccentricità per i i rifess	u (M _{fess})	268.0	cm							
Compressione max nel cls. per M=M _{fess}	σcr	6.2	····							
Traz. nell'acciaio (1° str.) per M=M _{fess}	σsr	164.9	N/mm²							
Posizione asse neutro per M=M _{fess}	y (M _{fess})	11.4	cm							
Coefficiente dipendente dalla durata del carico	k _t	0.6								
Altezza efficace	$h_{c,eff}$	9.53	cm							
Rapporto tra moduli elastici	α _e	6.1	-							1
Armatura nell'area efficace	As _{eff}	22.62	cm ²							
Area efficace	Ac _{eff}	952.74	cm ²							
Rapporto geometrico di armatura	ρ _{eff}	0.0237	-							
Deformazione unitaria media dell'armatura	Esm	0.000339438	-							
Copriferro netto	c'	5.0	cm							1
Coefficiente dipendente dall'aderenza dell'acciai	o K ₁	0.80	-							1
Coefficiente dipendente dal diagramma tensioni	•	0.50	_							
Coefficiente adimensionale	K ₃	3.40	_							
Coefficiente adimensionale	K ₄	0.425	_							
Commence administration	. 4	0.123								1

24.00 mm

0.12 mm

mm

341.8513133 mm

201.0890078 mm

0.07

 φ_{eq}

 w_{m}

 W_d

 $\begin{array}{l} \Delta s_{max} \\ \Delta s_{m} \end{array}$

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLIN5400001 B 54 di 57

10. INCIDENZA SCATOLARE

I valori delle incidenze di armatura lenta sono indicati nella seguente tabella:

Piedritti 130 kg/mc
Soletta superiore 130 kg/mc
Soletta inferiore 130 kg/mc

Come previsto dall' Eurocodice (UNI EN 1992-1-1) per le piastre a portanza unidirezionale si raccomanda di prevedere un'armatura secondaria in quantità non minore del 20% dell'armatura principale.

Pertanto nel calcolo è stata considerata un' armatura longitudinale diffusa $\phi 12/20$ ed un incremento del 15% per tener conto della presenza di legature e spille.

PROGETTO DEFINITIVO

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO NUOVO COLLEGAMENTO PALERMO-CATANIA RADDOPPIO TRATTA FIUMETORTO – LERCARA

DIRAMAZIONE - LOTTO 1+2

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLIN5400001 B 55 di 57

11. DICHIARAZIONI SECONDO D.M. 17/01/2018 (P.TO 10.2)

11.1 Tipo di analisi svolte

L'analisi strutturale e le verifiche sono condotte con l'ausilio di un codice di calcolo automatico. L'analisi strutturale è condotta con l'analisi statica, utilizzando il metodo degli spostamenti per la valutazione dello stato limite indotto dai carichi statici. L'analisi strutturale sotto le azioni sismiche è condotta con il metodo dell'analisi statica equivalente secondo le disposizioni del capitolo 7 del DM 17/01/2018.

L'analisi strutturale viene effettuata con il metodo degli elementi finiti, schematizzando la struttura in elementi lineari e nodi. Le incognite del problema sono le componenti di spostamento in corrispondenza di ogni nodo (2 spostamenti e 1 rotazioni).

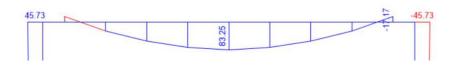
La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

11.2 Origine e caratteristiche dei Codici di Calcolo

Titolo: SAP2000 Ultimate

Versione: 21.0.2

Produttore: CSI Computers and Structures, Inc.


11.3 Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni sono stati sottoposti a valutazione che ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali.

In particolare, è stato confrontato il valore del momento flettente in campata del solettone superiore con i rispettivi valori ottenuti per uno schema statico a trave appoggiata (limite superiore) e per uno schema a trave doppiamente incastrata (limite inferiore).

Come carico di confronto è stato utilizzato il carico permanente non strutturale G2=89.26 kN/m.

La figura seguente mostra il momento flettente ottenuto dal modello agli elementi finiti utilizzato per le verifiche:

IN54 – Nuovo tombino al km 28+986 Relazione di calcolo scatolare 3x3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLIN5400001 B 56 di 57

Calcolo analitico_trave appoggiata			
Carico uniformemente distrubuito	G_2	89.26	kN/m
Luce di calcolo	L	3.4	m
Momento in campata	M _{I/2}	128.98	kNm/m
Calcolo analitico_trave incastrata			
Carico uniformemente distrubuito	G ₂	89.26	kN/m
Luce di calcolo	L	3.4	m
Momento in campata	M _{I/2}	42.99	kNm/m
SAP2000			
Momento in campata	M _{I/2}	83.25	kNm/m
Momento in campata_trave incastrata	Lim.Inf.	42.99	kNm/m
Momento in campata_SAP2000		83.25	kNm/m
Momento in campata_trave appoggiata	Lim.Sup.	128.98	kNm/m
Momento in campata_trave semi-incastrata	M _{I/2}	85.99	kNm/m
Errore	е	3.2%	

Come si nota, il valore del momento restituito dal programma di calcolo cade all'interno dei valori limite ottenuti dai due schemi statici adottati. Il vincolo effettivo è quindi assimilabile ad un semi-incastro. Nella tabella precedente è riportato anche l'errore percentuale, in valore assoluto, tra il modello agli elementi finiti adottato e lo schema statico di trave con semi-incastri alle estremità.

Dal confronto numerico delle deformate e dello stato sollecitativo, si ritengono i risultati del calcolo congrui con le azioni applicate e la geometria del problema.

In base a quanto sopra, si asserisce che l'elaborazione è corretta ed idonea al caso specifico, pertanto, i risultati di calcolo sono da ritenersi validi ed accettabili.