COMMITTENTE:

PROGETTAZIONE:

U.O. INFRASTRUTTURE NORD

PROGETTO DEFINITIVO

DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO NUOVO COLLEGAMENTO PALERMO – CATANIA

RADDOPPIO TRATTA FIUME TORTO – LERCARA DIRAMAZIONE LOTTO 1 + 2

FABBRICATI STAZIONE

FV03 - Stazione di Lercara dir - km 29+147

Relazione di calcolo fondazioni fabbricato IS-PP/ACC/Energia Tipo 3

							<u> </u>
							SCALA:
							-
COMMESSA	LOTTO FASE	ENTE	TIPO DOC.	OPERA/DISCIPLINA	PROGR.	REV	7.

RS3Z	0 0	D	2 6	CL	F V 0 3 0 0 0 0 3	В

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	EMISSIONE ESECUTIVA	C. INTEGRA	Gennaio 2020	COPPINI	Gennaio 2020	A.BARMECA	Gennaio 2020	F. SAECHI Maoki 672020
В	1° AGG. A CONSEGNA CSLLPP	C. INTEGRA	Maggio 2020	F.COPPINI	Maggio 2020	A.BARREC	Maggio 2020	WFRASTREE Francesco andredglia Pre- 2377 Spr. 2
								ERR - 50 Dott. In degli Inger
								TALF Ordine

File: RS3Z00D26CLFV0300003B	n. Elab.:

Relazione di calcolo fondazioni fabbricato IS-PP/ACC/Energia Tipo 3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLFV0300003 B 0 di 27

INDICE

1.	PREMESSA	2
2.	NORMATIVE DI RIFERIMENTO	3
3.	CARATTERISTICHE DEI MATERIALI IMPIEGATI	4
3	3.1 CALCESTRUZZO	4
	3.1.1 CALCESTRUZZO STRUTTURE DI FONDAZIONE	4
	3.1.2 CALCESTRUZZO STRUTTURE IN ELEVAZIONE	4
(3.2 ACCIAIO	5
	3.2.1 ACCIAIO PER CEMENTO ARMATO	5
4.	ANALISI DEI CARICHI	6
5.	COMBINAZIONI DI CARICO	6
6.	MODELLAZIONE DELLA STRUTTURA	g
7.	STRATIGRAFIA E PARAMETRI GEOTECNICI	g
8.	VERIFICA GEOTECNICA DELLA FONDAZIONE	9
	8.1 AZIONI TRASFERITE DALLA SOVRASTRUTTURA	11
	8.2 VERIFICHE PER CARICO LIMITE DELLA FONDAZIONE	12
	8.2.1 SLV – Nmax	13
	8.2.2 SLV – M1max intorno a B	15
	8.2.3 SLV – M2max intorno a L	17
	8.2.4 SLV – M1max intorno a L	19
	8.2.5 SLV – M2max intorno a B	21

Relazione di calcolo fondazioni fabbricato IS-PP/ACC/Energia Tipo 3

COMMESSA LOTTO FASE-ENTE RS3Z 00

D 26

DOCUMENTO CLFV0300003

REV. В

FOGLIO 1 di 27

8.2.6	5 SLU – Nmax	23
8.3	CALCOLO DEL CEDIMENTO	25

Relazione di calcolo fondazioni fabbricato IS-PP/ACC/Energia Tipo 3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLFV0300003 B 2 di 27

1. PREMESSA

La presente relazione ha per oggetto le verifiche di natura geotecnica del fabbricato Energia Tipo 3 e IS-PP/ACC, nell'ambito del raddoppio della tratta ferroviaria Fiumetorto – Lercara. Il fabbricato in parola fa parte dei fabbricati della stazione di Lercara Diramazione.

L'edificio ha dimensione rettangolare in pianta di circa 46.75m x 7.2m.

La copertura è del tipo piano con un'altezza da terra di circa 3.9m.

Gli elementi strutturali verticali sono costituiti da 24 pilastri di dimensioni 30cm x 50cm.

Le travi hanno dimensioni 30cm x 50cm in entrambe le direzioni.

Il solaio di copertura è realizzato con lastre parzialmente prefabbricate di tipo predalles, con blocchi di alleggerimento in polistirolo e getto di completamento realizzato in opera, per uno spessore totale di 24cm (4+16+4). La tessitura del solaio è secondo il lato lungo del fabbricato.

La fondazione è realizzata con travi rovesce di dimensioni 150cm x 50cm + 70cm x 50cm.

FOGLIO

3 di 27

Relazione di calcolo fondazioni fabbricato IS-PP/ACC/Energia Tipo 3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. RS3Z 00 D 26 CLFV0300003 B

2. NORMATIVE DI RIFERIMENTO

- DM 17 gennaio 2018: Aggiornamento delle "Norme Tecniche per le Costruzioni";
- Circolare 21 gennaio 2019, n.7 C.S.LL.PP: istruzioni per l'applicazione delle NTC 2018;
- RFICTCSIMAIFS001_C: Manuale di progettazione delle opere civili, 21/12/2018
- Regolamento (UE) N. 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019

PROGETTO DEFINITIVO

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO

NUOVO COLLEGAMENTO PALERMO-CATANIA

RADDOPPIO TRATTA FIUMETORTO LERCARA

DIRAMAZIONE - LOTTO 1+2

Relazione di calcolo fondazioni fabbricato

IS-PP/ACC/Energia Tipo 3

COMMESSA RS3Z

LOTTO FASE-ENTE 00 D 26

DOCUMENTO CLFV0300003 REV. **FOGLIO** В

4 di 27

CARATTERISTICHE DEI MATERIALI IMPIEGATI **3.**

I materiali utilizzati nella realizzazione delle strutture in funzione della utilizzazione sono descritti in seguito.

3.1 **CALCESTRUZZO**

3.1.1 CALCESTRUZZO STRUTTURE DI FONDAZIONE

Classe C25/30

 $R_{ck} = 30 \text{ N/mm}^2$

 $f_{ck} = 0.83 \cdot R_{ck} = 24.9 \text{ N/mm}^2$

Resistenza di calcolo a compressione: $f_{cd} = f_{ck} \cdot \alpha_{cc}/\gamma_{c} = 24.9 \cdot 0.85/1.5 = 14.17 \text{ N/mm}^2$

Resistenza di calcolo a trazione: $f_{ctm} = 0.30 \cdot f_{ck}^{(2/3)} = 2.56 \text{ N/mm}^2$

Classe di esposizione: XC2 (condizioni ambientali ordinarie)

Per gli elementi strutturali della fondazione si assume un copriferro di 40 mm (valutato al netto della staffa). Per quanto riguarda la scelta degli stati limite di fessurazione, si fa riferimento a quanto riportato nella Tabella 4.1.IV delle NTC 2018, assumendo di trovarsi in condizioni ambientali ordinarie (vedi Tab. 4.1.III NTC 2018) con armatura poco sensibile; i limiti adottati per la verifica nei confronti di tale stato limite sono riportati di seguito:

combinazione delle Azioni Frequente: $w_d \le w_3 = 0.4 \text{ mm}$ combinazione delle Azioni Quasi Permanente $w_d \le w_2 = 0.3 \text{ mm}$

3.1.2 CALCESTRUZZO STRUTTURE IN ELEVAZIONE

Classe C28/35

 $R_{ck} = 35 \text{ N/mm}^2$

 $f_{ck} = 0.83 \cdot R_{ck} = 29.05 \text{ N/mm}^2$

Resistenza di calcolo a compressione: $f_{cd} = f_{ck} \cdot \alpha_c / \gamma_c = 29.05 \cdot 0.85 / 1.5 = 16.46 \text{ N/mm}^2$

 $f_{ctm} = 0.30 \cdot f_{ck}^{(2/3)} = 2.83 \text{ N/mm}^2$ Resistenza di calcolo a trazione:

Classe di esposizione: XC3 (condizioni ambientali ordinarie)

Per gli elementi strutturali della elevazione si assume un copriferro di 35 mm (valutato al netto della staffa).

I ITALFERA	7
GRUPPO FERROVIE DELLO STATO ITALIAN	

PROGETTO DEFINITIVO						
DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO						
NUOVO COLLEGAMENTO PALERMO-CATANIA						
RADDOPPIO TRATTA FIUMETORTO – LERCARA						
DIRAMAZIONE – LOTTO 1+2						

Relazione di calcolo fondazioni fabbricato IS-PP/ACC/Energia Tipo 3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLFV0300003 B 5 di 27

 $E_s = 206.000 \text{ N/mm}^2$.

Per quanto riguarda la scelta degli stati limite di fessurazione, si fa riferimento a quanto riportato nella Tabella 4.1.IV delle NTC 2018, assumendo di trovarsi in condizioni ambientali ordinarie (vedi Tab. 4.1.III NTC 2018) con armatura poco sensibile; i limiti adottati per la verifica nei confronti di tale stato limite sono riportati di seguito:

combinazione delle Azioni Frequente: $w_d \le w_3 = 0,4 \text{ mm}$ combinazione delle Azioni Quasi Permanente $w_d \le w_2 = 0,3 \text{ mm}$

3.2 ACCIAIO

modulo elastico

3.2.1 ACCIAIO PER CEMENTO ARMATO

Si utilizzano barre ad aderenza migliorata in acciaio con le seguenti caratteristiche meccaniche:

acciaio $\begin{array}{ccc} \text{B450C} \\ \text{tensione caratteristica di snervamento} & f_{yk} = 450 \text{ N/mm}^2; \\ \text{tensione caratteristica di rottura} & f_{tk} = 540 \text{ N/mm}^2; \\ \text{resistenza di calcolo a trazione} & f_{yd} = 391,30 \text{ N/mm}^2; \\ \end{array}$

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	ROGETTO DEFINITIVO RETTRICE FERROVIARIA MESSINA-CA IOVO COLLEGAMENTO PALERMO-CAT ADDOPPIO TRATTA FIUMETORTO RAMAZIONE – LOTTO 1+2	ANIA
Relazione di calcolo fondazioni fabbricato	DMMESSA LOTTO FASE-ENTE DOCUMENT	O REV. FOGLIO
IS-PP/ACC/Energia Tipo 3	RS3Z 00 D 26 CLFV030000	

4. ANALISI DEI CARICHI

Per l'analisi dei carichi della struttura si rimanda al §4 dell'elaborato RS3Z00D26CLFV0300004.

5. COMBINAZIONI DI CARICO

Per le verifiche nei confronti dei diversi stati limite si adottano le combinazioni delle azioni tratte dal § 2.5.3 NTC 2018:

• Combinazione fondamentale SLU:

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3}..$$

• Combinazione caratteristica (rara):

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

• Combinazione frequente:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

• Combinazione quasi permanente:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

• Combinazione sismica:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

I valori dei coefficienti parziali dei carichi variabili sono pari a:

	Accidentale copertura	Neve
Ψ0	0.0	0.5
Ψ1	0.0	0.2
Ψ2	0.0	0.0

Per le verifiche nei confronti degli stati limite ultimi strutturali (STR) si adotta l'Approccio Progettuale 2, in cui si impiega un'unica combinazione dei gruppi di coefficienti parziali definiti per le Azioni (A), per la resistenza dei materiali (M) e, eventualmente, per la resistenza globale (R). In tale approccio, per le azioni si impiegano i coefficienti γ_F riportati nella colonna A1 della Tabella 2.6.I delle NTC 2018, di seguito riportata.

FOGLIO

7 di 27

Relazione di calcolo fondazioni fabbricato IS-PP/ACC/Energia Tipo 3

 COMMESSA
 LOTTO
 FASE-ENTE
 DOCUMENTO
 REV.

 RS3Z
 00
 D 26
 CLFV0300003
 B

Tabella 6.2.I - Coefficienti parziali relativi alle azioni per le verifiche agli SLU

Azione		Coefficiente γ _F	A1 STR	A2 GEO
Coninhi Domonouti	Favorevoli	2225	1,00	1,00
Carichi Permanenti	Sfavorevoli	γGI	1,30	1,00
Contain Democratic and Australia	Favorevoli		0,00	0,00
Carichi Permanenti non strutturali	Sfavorevoli	γ _{G2}	1,50	1,30
Carlahi Wariahii	Favorevoli		0,00	0,00
Carichi Variabili	Sfavorevoli	γQi	1,50	1,30

In accordo ai coefficienti delle precedenti tabelle sono state definite le seguenti combinazioni di carico.

Combinazioni allo SLU

	Permanenti	Permanenti non strutturali	Accidentale copertura	Neve
SLU STR 1	1.3	1.5	1.5	0.75
SLU STR 2	1.3	1.5	0	1.5

Combinazioni allo SLE RARA

	Permanenti	Permanenti	Accidentale	Neve
	remanenti	non strutturali	copertura	Neve
SLE RARA 1	1	1	1	0.5
SLU RARA 2	1	1	0	1

Combinazioni allo SLE FREQUENTE

	Permanenti	Permanenti non strutturali	Accidentale copertura	Neve
SLE FREQ. 1	1	1	0	0
SLE FREQ. 2	1	1	0	0.2

Combinazioni allo SLE QUASI PERMANENE

	Permanenti	Permanenti non strutturali	Accidentale copertura	Neve
SLE Q.P. 1	1	1	0	0
SLE Q.P. 2	1	1	0	0

	PROGETTO DEFINITIVO
7	DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO NUOVO COLLEGAMENTO PALERMO-CATANIA
ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPPIO TRATTA FIUMETORTO – LERCARA DIRAMAZIONE – LOTTO 1+2
Relazione di calcolo fondazioni fabbricato	COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO
IS-PP/ACC/Energia Tipo 3	RS3Z 00 D 26 CLFV0300003 B 8 di 27

Combinazioni SISMICHE

	Permanenti	Permanenti	Accidentale	Neve	Spettro	Spettro
	remanenti	non strutturali	copertura	neve	orizz. X	orizz. Y
SISMA X SLV	1	1	0	0	1	0.3
SISMA Y SLV	1	1	0	0	0.3	1

6. MODELLAZIONE DELLA STRUTTURA

Per la modellazione della struttura si rimanda al §6 dell'elaborato RS3Z00D26CLFV0300004.

7. STRATIGRAFIA E PARAMETRI GEOTECNICI

L'opera in esame ricade nella zona 3 individuata lungo il tracciato.

I parametri geotecnici di riferimento sono i seguenti:

ZONA	SONDAGGIO DI RIFERIMENTO	PROFONDITA'	UNITA' TERRENO	γ _{sat} [kN/m ³]		\psi '	[°]		Cu [k	Pa]	c'[kPa]		Vs[m	1/S]	Vs,eq [m/s]	Categoria di sottosuolo		G _o [N	1Pa]	Ei/Eu [MPa]	Ei[MPa]
	KIFEKIIVIENTO		TERREINO		max	min	di prog.	max	min	di prog.	di prog.	max	min	di prog.			max	min	di prog.	di prog.	di prog.
		da 0 a 17m	С	22	35	29	25	147	29	100	42	265	155	155	363	В	143	49	70	80	61
3	2SR03	da 17m a 31m	Sb,1	22	35	35	35	0	0	0	0	420	263	263	363	В	359	141	150	130	130
		da 31m in poi	Sb,2	22	35	35	35	0	0	0	0	420	263	263	363	В	359	141	200	173	173

Per i dettagli si rimanda ai seguenti elaborati:

Relazione geotecnica generale linea ferroviaria RS3Z00D26GEOC0000001

Profilo longitudinale geotecnico linea ferroviaria - Tav. 1/2 RS3Z00D26F7OC0000001

Profilo longitudinale geotecnico linea ferroviaria - Tav. 2/2 RS3Z00D26F7OC0000002

8. VERIFICA GEOTECNICA DELLA FONDAZIONE

In questo capitolo sono riportate le verifiche geotecniche allo stato limite ultimo del sistema terrenofondazione.

Tale verifica, secondo quanto riportato al $\S6.4.2.1$ delle NTC-18, "[...] Le rimanenti verifiche devono essere effettuate applicando la combinazione (A1+M1+R3) di coefficienti parziali prevista dall'Approccio 2, tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.4.I. Nelle verifiche nei confronti di SLU di tipo strutturale (STR), il coefficiente γ_R non deve essere portato in conto."

Per quanto riguarda i coefficienti sulle azioni si è fatto riferimento alla tab. 6.2.I delle NTC-18 (§6.2.4.1.1), mentre relativamente ai coefficienti sui parametri geotecnici si è fatto riferimento alla tabella 6.2.II delle NTC-18.

Relazione di calcolo fondazioni fabbricato IS-PP/ACC/Energia Tipo 3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLFV0300003 B 10 di 27

Tab. 6.2.I - Coefficienti parziali per le azioni o per l'effetto delle azioni

	Effetto	Coefficiente Parziale $\gamma_F \ (o \ \gamma_E)$	EQU	(A1)	(A2)
Carichi permanenti Gı	Favorevole	γ _{G1}	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G2(1)	Favorevole	γ _{G2}	0,8	0,8	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	Υ _Q	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

⁽i) Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γG1

Tab. 6.2.II - Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ _M	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$\tan {\phi'}_k$	Υφ΄	1,0	1,25
Coesione efficace	c' _k	Υc	1,0	1,25
Resistenza non drenata	c _{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γγ	Υγ	1,0	1,0

Nel caso in esame, trattandosi di <u>fondazioni superficiali</u>, le verifiche eseguite sono conformi a quanto richiesto dalle **NTC-18** al §6.4.2.1, in particolare è stato verificato il seguente meccanismo di collasso:

• Collasso per carico limite dell'insieme fondazione-terreno;

Il rispetto del precedente stato limite è stato verificato secondo l'<u>Approccio 2</u> con la combinazione (A1+M1+R3).

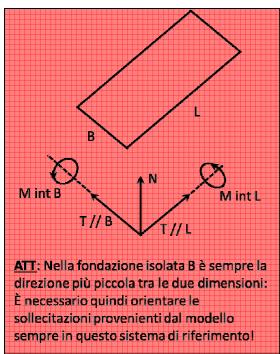
In particolare i coefficienti di combinazione delle azioni esterne (A1) coincidono con quelli impiegati nelle combinazioni STR con cui sono state fatte le verifiche strutturali, i coefficienti parziali sui parametri di resistenza del terreno (M1) sono unitari (tab. 6.2.II NTC-18) e la resistenza globale del sistema è ridotta tramite i coefficienti (R3) riportati nella tab. 6.4.I delle NTC-18 (§6.4.2.1), in particolare:

collasso per carico limite della fondazione, $\gamma_R = 2.3$

Di seguito si riporta un estratto della tab. 6.4.I delle NTC-18.

 $\textbf{Tab. 6.4.I} - \textit{Coefficienti parziali } \gamma_{R} \ \textit{per le verifiche agli stati limite ultimi di fondazioni superficiali}$

Verifica	Coefficiente
	parziale
	(R3)
Carico limite	$\gamma_R = 2.3$
Scorrimento	$\gamma_R = 1.1$



Relazione di calcolo fondazioni fabbricato IS-PP/ACC/Energia Tipo 3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLFV0300003 B 11 di 27

8.1 AZIONI TRASFERITE DALLA SOVRASTRUTTURA

Nelle verifiche si assume la seguente convenzione:

Facendo riferimento alle reazioni vincolari del modello SAP della sovrastruttura si a:

M1: momento con vettore attorno all'asse X

M2: momento con vettore attorno all'asse Y

F1: forza orizzonate secondo X

F2: forza orizzontale secondo Y

F3: forza verticale

Pertanto:

- per i pilastri con il lato maggiore disposto secondo la direzione lunga dell'edificio (dir X) il momento
 M1 coincide con il momento intorno a L e la forza F1 con la forza parallela a L;
- per i pilastri con il lato maggiore disposto secondo la direzione corta dell'edificio (dir Y pilastri di angolo) il momento M1 coincide con intorno a B e la forza F1 con la forza parallela a B.

Nelle verifiche sono stati considerati i seguenti casi:

SLV: max F3 (max N)

SLV: max M1 (sia intorno a B che intorno a L)

SLV: max M2 (sia intorno a B che intorno a L)

SLU: max F3 (max N)

Per i pilastri con il lato maggiore disposto secondo la direzione lunga dell'edificio la dimensione "L" della fondazione è stata assunta pari alla rispettiva lunghezza di influenza del pilastro.

Per i pilastri d'angolo la verifica è stata condotta considerando la coppia dei pilastri e pertanto la dimensione "L" risulta coincidente con la lunghezza della trave di fondazione in direzione Y.

Alle azioni provenienti dal modello di calcolo sono stati aggiunti i momenti di trasporto delle forze orizzontali fino all'intradosso della fondazione, il peso proprio della fondazione ed il carico verticale dovuto alle tamponature esterne.

8.2 VERIFICHE PER CARICO LIMITE DELLA FONDAZIONE

Nelle verifiche di portanza lo stato limite è rappresentato dal collasso per raggiungimento del carico limite della fondazione. La verifica è condotta confrontando il carico limite N_u della porzione di fondazione reagente con il carico di progetto N_{Ed} . In accordo con le NTC-18, la verifica è soddisfatta se il carico agente è minore del carico ultimo questo ultimo ridotto del coefficiente $R_3 = 2.3$ come già in precedenza commentato. In particolare:

$$N_{Ed} \leq N_{ult}$$
.

Il carico agente di progetto (la domanda) è la componente della risultante delle forze trasferite alla fondazione in direzione normale al piano di posa, comprendente il peso proprio della fondazione ed eventuali ricoprimenti (Circ. 7 §C6.4.2.1). Il carico ultimo di progetto (capacità) è il valore della forza normale al piano di posa ottenuta come prodotto fra il carico limite nel terreno e l'area di fondazione reagente (Meyerhof):

$$N_{ult} = q_{lim} \cdot B' \cdot L'$$

Dove:

q_{lim} è la pressione limite ammissibile o carico limite del sistema terreno-fondazione

$$B' = B - 2e_B$$

$$L' = L - 2e_L$$

Nelle precedenti e_b ed e_L sono l'eccentricità della risultante del carico agente rispettivamente lungo i lati B e L della fondazione.

Per la valutazione della pressione limite ammissibile, avendo a che fare con fondazioni superficiali (plinti, travi rovesce e platea) è stata impiegata la formula trinomia di Terzaghi nella sua espressione più completa riportata di seguito. L'espressione utilizzata tiene conto della forma della fondazione, degli effetti delle azioni tangenziali (inclinazione del carico agente), della inclinazione e profondità del piano di posa, nonché dell'inclinazione del terreno a valle della fondazione.

FOGLIO

13 di 27

Relazione di calcolo fondazioni fabbricato

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV.

RS3Z 00 D 26 CLFV0300003 B

DIRAMAZIONE - LOTTO 1+2

In particolare si assume:

 $q_{lim} = c' \cdot N_c \cdot s_c \cdot d_c \cdot i_c \cdot b_c \cdot g_c + \gamma'_{valle} \cdot D \cdot N_q \cdot s_q \cdot d_q \cdot i_q \cdot b_q \cdot g_q + 0.5 \cdot \gamma' \cdot B' \cdot N_\gamma \cdot s_\gamma \cdot d_\gamma \cdot i_\gamma \cdot b_\gamma \cdot g_\gamma \cdot d_\gamma \cdot i_\gamma \cdot b_\gamma \cdot g_\gamma \cdot d_\gamma \cdot i_\gamma \cdot g_\gamma \cdot d_\gamma \cdot i_\gamma \cdot g_\gamma \cdot d_\gamma \cdot g_\gamma \cdot g_\gamma \cdot d_\gamma \cdot g_\gamma \cdot g_\gamma$

dove:

γ' =Peso di volume del terreno di progetto;

c' =Coesione efficace di progetto del terreno;

D =Approfondimento del piano di posa;

N_c, N_q, N_γ =Coefficienti di capacità portante;

 s_c , s_q , s_γ =Coefficienti correttivi di forma della fondazione (Meyerhof);

d_c, d_q, d_γ =Coefficienti correttivi di profondità del piano di posa (Brinch-Hansen);

 i_c , i_q , i_γ =Coefficienti correttivi di inclinazione del carico (Vesic);

b_c, b_q, b_γ =Coefficienti correttivi di inclinazione del piano di posa (Brinch-Hansen);

 g_c, g_q, g_γ =Coefficienti correttivi di inclinazione del terreno (Vesic).

Nelle precedenti espressioni i valori di progetto dei parametri geotecnici (ottenuti dividendo i valori riportati al $\S7$ per i coefficienti M1) sono stati impiegati sia per la determinazione dei fattori di capacità portante (N_c , N_q , N_γ) sia per la determinazione dei coefficienti correttivi.

8.2.1 SLV - Nmax

Combinazione: SISMA Y SLV

F1	F2	F3	M1	M2	M3
KN	KN	KN	KN-m	KN-m	KN-m
12.7	59.6	182.1	17.7	24.0	0.1

Peso tamponature: 70 kN Peso fondazione: 125.8 kN

Lungh tot fond (B)	Larghezza totale fondazione	1.5	m
Largh tot fond (L)	Lunghezza totale fondazione	4.575	m
H fond	Altezza della fondazione	1	m
α fond	Inclinazione del piano di posa della fondazione	0	o
Ricopr. valle	Ricoprimento sulla mensola di valle	0	m
ω terreno valle	Inclinazione del terreno a valle	0	o

φ'	Angolo di attrito del terreno di fondazione	25.0	0

Relazione di calcolo fondazioni fabbricato IS-PP/ACC/Energia Tipo 3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLFV0300003 B 14 di 27

γ	Peso per unità di volume del terreno di fondazione	22.0	kN/m3
δ	Angolo di attrito terra-fondazione	25.0	
c'	Coesione efficace	42	kPa (kN/m2)
γc' M1	Coefficiente parziale di c' per la condizione M1	1	
c' M1	Coesione efficace per la condizione M1	42	kPa (kN/m2)
cu	Coesione non drenata	100	kPa (kN/m2)
γcu M1	Coefficiente parziale di cu per la condizione M1		
cu M1	Coesione non drenata per la condizione M1		kPa (kN/m2)
tan(δ)	Coefficiente d'attrito terra-fondazione		
γδ(γφ') Μ1	Coefficiente parziale di tanφ' per la condizione M1		
tan(δ) M1	Coefficiente d'attrito terra-fondazione per la condizione M1	0.466	
tan(φ')	Tang. dell'angolo di resistenza al taglio del terreno di fond.	0.466	
φ' M1	Angolo d'attrito del terreno di fond. per la condizione M1	0.436	radianti
tan(φ') M1	Tang. ang. di resist. al taglio terr. di fond. per la cond. M1	0.466	

Nq	1° Fattore di capacità portante	10.66	
Nc	2° Fattore di capacità portante	20.72	
Νγ	3° Fattore di capacità portante	10.88	
N	Carico assiale, riferito a baricentro fondazione, >0 verso il basso	378	kN
T// B	Taglio long., riferito a baric. fond.	60	kN
T// L	Taglio trasv., riferito a baric. fond.	13	kN
M attorno all'asse // a L			
M attorno all'asse // a B	Momento attorno asse x, riferito a baric. fond.	37	kNm
e secondo B	Eccentricità del carico in fondazione in direzione longitudinale	0.205	m
e secondo L	Eccentricità del carico in fondazione in direzione trasversale	0.097	m
В'	Lunghezza ridotta della fondazione	1.09	m
L'	Prof. ridotta della fondazione	4.38	m
sq	1° Fattore corrett. che tiene conto della forma della fond.	1.06	
sc	2° Fattore corrett. che tiene conto della forma della fond.	1.12	
sγ	3° Fattore corrett. che tiene conto della forma della fond.	1.06	
D	Approfond. del piano di posa (altezza fond.+ricopr. a valle)	1.00	m
dq	1° Fattore che tiene conto dell'approfond. del piano di posa	1.28	
dc	2° Fattore che tiene conto dell'approfond. del piano di posa	1.31	
m	(2+B'/L')/(1+B'/L')	1.80	
iq	1° Fattore che tiene conto dell'inclinaz. del carico in fond.	0.87	
ic	2° Fattore che tiene conto dell'inclinaz. del carico in fond.	0.86	
ίγ	3° Fattore che tiene conto dell'inclinaz. del carico in fond.	0.81	
bq	1° Fatt. che tiene conto dell'incl. piano di posa della fond.	1	
bc	2° Fatt. che tiene conto dell'incl. piano di posa della fond.	1	
bγ	3° Fatt. che tiene conto dell'incl. piano di posa della fond.	1	_
gq	1° Fattore che tiene conto dell'inclin. del terreno a valle	1	
gc	2° Fattore che tiene conto dell'inclin. del terreno a valle	1	
gγ	3° Fattore che tiene conto dell'inclin. del terreno a valle	1	_

γ terreno valle	γ del terreno a valle	22	kN/m3
γ terreno fond.	γ del terreno di fondazione	22	kN/m3
hw	Altezza della falda da intrad. fond., positiva se sta verso l'alto	-1	m
γ* terreno valle	γ del terr. a valle che tiene conto della event. pres. della falda	22.00	
H'	Prof. del cuneo al di sotto della fond. in regime di spinta attiva	0.79	m
γ∗ terreno fond.	γ del terr. di fond. che tiene conto della event. pres. della falda	22.00	kN/m3
q lim	Carico limite	1272	kN/m2
q lim risultante	Carico limite risultante sull'area efficace (B'xL')	6079	kN
R3	Coefficiente parziale R3	2.3	
q lim risult fatt	Carico limite risultante sull'area efficace (B'xL') diviso per R3	2643	kN
N per verifica	Carico assiale agente ad intrad. fond. calcolato per la verifica	378	kN
Verifica	VERIFICA SODDISFATTA		

tasso di sfruttamento

0.143

8.2.2 SLV - M1max intorno a B

Combinazione: SISMA Y SLV

Considero entrambi i pilastri d'angolo:

F1	F2	F3	M1	M2	M3
KN	KN	KN	KN-m	KN-m	KN-m
6.4	29.2	131.1	171.3	10.9	0.1
6.4	91.7	131.1	98.4	10.9	0.1

Sommando le sollecitazioni si ha:

F1	F2	F3	M1	M2	M3
KN	KN	KN	KN-m	KN-m	KN-m
12.7	121.0	262.2	269.7	21.7	0.1

Peso tamponature: 128.5 kN Peso fondazione: 231 kN

Lungh tot fond (B)	Larghezza totale fondazione	1.5	m	
Largh tot fond (L)	Lunghezza totale fondazione	8.4	m	
H fond	Altezza della fondazione	1	m	
α fond	Inclinazione del piano di posa della fondazione			
Ricopr. valle	Ricoprimento sulla mensola di valle	0	m	
ω terreno valle	Inclinazione del terreno a valle	0	0	

φ' Angolo di attrito del terreno di fondazione 25.0 °	φ'	Angolo di attrito del terreno di fondazione	25.0	0
---	----	---	------	---

Relazione di calcolo fondazioni fabbricato IS-PP/ACC/Energia Tipo 3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO
RS3Z 00 D 26 CLFV0300003 B 16 di 27

γ	Peso per unità di volume del terreno di fondazione	22.0	kN/m3	
δ	Angolo di attrito terra-fondazione	25.0		
c'	Coesione efficace	42	kPa (kN/m2)	
γc' M1	Coefficiente parziale di c' per la condizione M1	1		
c' M1	Coesione efficace per la condizione M1	42	kPa (kN/m2)	
cu	Coesione non drenata	100	kPa (kN/m2)	
γcu M1	Coefficiente parziale di cu per la condizione M1	1		
cu M1	Coesione non drenata per la condizione M1	100	kPa (kN/m2)	
tan(δ)	Coefficiente d'attrito terra-fondazione	0.466		
γδ(γφ') Μ1	1 Coefficiente parziale di tanφ' per la condizione M1			
tan(δ) M1	Coefficiente d'attrito terra-fondazione per la condizione M1	0.466		
tan(φ')	Tang. dell'angolo di resistenza al taglio del terreno di fond.	0.466		
φ' M1	Angolo d'attrito del terreno di fond. per la condizione M1	0.436	radianti	
tan(φ') M1	Tang. ang. di resist. al taglio terr. di fond. per la cond. M1	0.466		

Nq	1° Fattore di capacità portante	10.66		
Nc	2° Fattore di capacità portante	20.72		
Νγ	3° Fattore di capacità portante	10.88		
N	Carico assiale, riferito a baricentro fondazione, >0 verso il basso	622	kN	
T// B	Taglio long., riferito a baric. fond.	13	kN	
T// L	Taglio trasv., riferito a baric. fond.	121	kN	
M attorno all'asse // a L				
M attorno all'asse // a B	Momento attorno asse x, riferito a baric. fond.	391	kNm	
e secondo B	Eccentricità del carico in fondazione in direzione longitudinale	0.055	m	
e secondo L	Eccentricità del carico in fondazione in direzione trasversale	0.628	m	
B'	Lunghezza ridotta della fondazione	1.39	m	
L'	Prof. ridotta della fondazione	7.14	m	
sq	1° Fattore corrett. che tiene conto della forma della fond.	1.05		
sc	2° Fattore corrett. che tiene conto della forma della fond.	1.10		
sγ	3° Fattore corrett. che tiene conto della forma della fond.	1.05		
D	Approfond. del piano di posa (altezza fond.+ricopr. a valle)	1.00	m	
dq	1° Fattore che tiene conto dell'approfond. del piano di posa	1.22		
dc	2° Fattore che tiene conto dell'approfond. del piano di posa	1.25		
m	(2+B'/L')/(1+B'/L')	1.84		
iq	1° Fattore che tiene conto dell'inclinaz. del carico in fond.	0.98		
ic	2° Fattore che tiene conto dell'inclinaz. del carico in fond.	0.98		
ίγ	3° Fattore che tiene conto dell'inclinaz. del carico in fond.	0.98		
bq	1° Fatt. che tiene conto dell'incl. piano di posa della fond.	1		
bc	2° Fatt. che tiene conto dell'incl. piano di posa della fond.	1		
bγ	3° Fatt. che tiene conto dell'incl. piano di posa della fond.	1		
gq	1° Fattore che tiene conto dell'inclin. del terreno a valle	1		
gc	2° Fattore che tiene conto dell'inclin. del terreno a valle	1		
gγ	3° Fattore che tiene conto dell'inclin. del terreno a valle	1		

γ terreno valle	γ del terreno a valle	22	kN/m3
γ terreno fond.	γ del terreno di fondazione	22	kN/m3
hw	Altezza della falda da intrad. fond., positiva se sta verso l'alto	-1	m
γ* terreno valle	γ del terr. a valle che tiene conto della event. pres. della falda	22.00	
H'	Prof. del cuneo al di sotto della fond. in regime di spinta attiva	1.00	m
γ* terreno fond.	γ del terr. di fond. che tiene conto della event. pres. della falda	22.00	kN/m3
q lim	Carico limite	1401	kN/m2
q lim risultante	Carico limite risultante sull'area efficace (B'xL')	13907	kN
R3	Coefficiente parziale R3	2.3	
q lim risult fatt	Carico limite risultante sull'area efficace (B'xL') diviso per R3	6047	kN
N per verifica	Carico assiale agente ad intrad. fond. calcolato per la verifica	622	kN
Verifica	VERIFICA SODDISFATTA		

tasso di sfruttamento

0.103

8.2.3 SLV - M2max intorno a L

Combinazione: SISMA X SLV

Considero entrambi i pilastri d'angolo:

F1	F2	F3	M1	M2	M3
KN	KN	KN	KN-m	KN-m	KN-m
16.6	49.4	123.6	4.0	30.4	0.0
16.6	-13.1	123.6	76.9	30.4	0.0

Sommando le sollecitazioni si ha:

F1	F2	F3	M1	M2	М3
KN	KN	KN	KN-m	KN-m	KN-m
33.2	36.3	247.2	80.9	60.9	0.0

Peso tamponature: 128.5 kN Peso fondazione: 231.0 kN

Lungh tot fond (B)	Larghezza totale fondazione	1.5	m
Largh tot fond (L)	Lunghezza totale fondazione	8.4	m
H fond	Altezza della fondazione	1	m
α fond	Inclinazione del piano di posa della fondazione	0	0
Ricopr. valle	Ricoprimento sulla mensola di valle	0	m
ω terreno valle	Inclinazione del terreno a valle	0	0

φ' Angolo di attrito del terreno di fondazione 25.0 °

Relazione di calcolo fondazioni fabbricato IS-PP/ACC/Energia Tipo 3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLFV0300003 B 18 di 27

γ	Peso per unità di volume del terreno di fondazione	22.0	kN/m3
δ	Angolo di attrito terra-fondazione	25.0	
c'	Coesione efficace	42	kPa (kN/m2)
γc' M1	Coefficiente parziale di c' per la condizione M1	1	
c' M1	Coesione efficace per la condizione M1	42	kPa (kN/m2)
cu	Coesione non drenata	100	kPa (kN/m2)
γcu M1	Coefficiente parziale di cu per la condizione M1	1	
cu M1	Coesione non drenata per la condizione M1	100	kPa (kN/m2)
tan(δ)	Coefficiente d'attrito terra-fondazione	0.466	
γδ(γφ') Μ1	Coefficiente parziale di tanφ' per la condizione M1	1	
tan(δ) M1	Coefficiente d'attrito terra-fondazione per la condizione M1	0.466	
tan(φ')	Tang. dell'angolo di resistenza al taglio del terreno di fond.	0.466	
φ' M1	Angolo d'attrito del terreno di fond. per la condizione M1	0.436	radianti
tan(φ') M1	Tang. ang. di resist. al taglio terr. di fond. per la cond. M1	0.466	

Nq	1° Fattore di capacità portante	10.66	
Nc	2° Fattore di capacità portante	20.72	
Νγ	3° Fattore di capacità portante	10.88	
N	Carico assiale, riferito a baricentro fondazione, >0 verso il basso	607	kN
T// B	Taglio long., riferito a baric. fond.	33	kN
T// L	Taglio trasv., riferito a baric. fond.	36	kN
M attorno all'asse // a L	Momento attorno asse y, riferito a baric. fond.	94	kNm
M attorno all'asse // a B	Momento attorno asse x, riferito a baric. fond.	117	kNm
e secondo B	Eccentricità del carico in fondazione in direzione longitudinale	0.155	m
e secondo L	Eccentricità del carico in fondazione in direzione trasversale	0.193	m
В'	Lunghezza ridotta della fondazione	1.19	m
L'	Prof. ridotta della fondazione	8.01	m
sq	1° Fattore corrett. che tiene conto della forma della fond.	1.04	
sc	2° Fattore corrett. che tiene conto della forma della fond.	1.07	
sγ	3° Fattore corrett. che tiene conto della forma della fond.	1.04	
D	Approfond. del piano di posa (altezza fond.+ricopr. a valle)	1.00	m
dq	1° Fattore che tiene conto dell'approfond. del piano di posa	1.26	
dc	2° Fattore che tiene conto dell'approfond. del piano di posa	1.29	
m	(2+B'/L')/(1+B'/L')	1.87	
iq	1° Fattore che tiene conto dell'inclinaz. del carico in fond.	0.96	
ic	2° Fattore che tiene conto dell'inclinaz. del carico in fond.	0.95	
ίγ	3° Fattore che tiene conto dell'inclinaz. del carico in fond.	0.94	
bq	1° Fatt. che tiene conto dell'incl. piano di posa della fond.	1	
bc	2° Fatt. che tiene conto dell'incl. piano di posa della fond.	1	
bγ	3° Fatt. che tiene conto dell'incl. piano di posa della fond.	1	
gq	1° Fattore che tiene conto dell'inclin. del terreno a valle	1	
gc	2° Fattore che tiene conto dell'inclin. del terreno a valle	1	
gγ	3° Fattore che tiene conto dell'inclin. del terreno a valle	1	

Relazione di calcolo fondazioni fabbricato IS-PP/ACC/Energia Tipo 3

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLFV0300003	В	19 di 27

γ terreno valle	γ del terreno a valle	22	kN/m3
γ terreno fond.	γ del terreno di fondazione	22	kN/m3
hw	Altezza della falda da intrad. fond., positiva se sta verso l'alto	-1	m
γ* terreno valle	γ del terr. a valle che tiene conto della event. pres. della falda	22.00	
H'	Prof. del cuneo al di sotto della fond. in regime di spinta attiva	0.86	m
γ* terreno fond.	γ del terr. di fond. che tiene conto della event. pres. della falda	22.00	kN/m3
q lim	Carico limite	1350	kN/m2
q lim risultante	Carico limite risultante sull'area efficace (B'xL')	12874	kN
R3	Coefficiente parziale R3	2.3	
q lim risult fatt	Carico limite risultante sull'area efficace (B'xL') diviso per R3	5597	kN
N per verifica	Carico assiale agente ad intrad. fond. calcolato per la verifica	607	kN
Verifica	VERIFICA SODDISFATTA		

tasso di sfruttamento

0.108

8.2.4 SLV - M1max intorno a L

Combinazione: SISMA Y SLV

F1	F2	F3	M1	M2	M3
KN	KN	KN	KN-m	KN-m	KN-m
12.7	-3.9	182.1	93.2	24.0	0.1

Peso tamponature: 70 kN Peso fondazione: 125.8 kN

Lungh tot fond (B)	Larghezza totale fondazione	1.5	m
Largh tot fond (L)	Lunghezza totale fondazione	4.575	m
H fond	Altezza della fondazione	1	m
α fond	Inclinazione del piano di posa della fondazione	0	o
Ricopr. valle	Ricoprimento sulla mensola di valle	0	m
ω terreno valle	Inclinazione del terreno a valle	0	0

φ'	Angolo di attrito del terreno di fondazione	25.0	o
γ	Peso per unità di volume del terreno di fondazione	22.0	kN/m3
δ	Angolo di attrito terra-fondazione	25.0	
c'	Coesione efficace	42	kPa (kN/m2)
γc' M1	Coefficiente parziale di c' per la condizione M1	1	
c' M1	Coesione efficace per la condizione M1	42	kPa (kN/m2)
cu	Coesione non drenata	100	kPa (kN/m2)
γcu M1	Coefficiente parziale di cu per la condizione M1	1	-
cu M1	Coesione non drenata per la condizione M1	100	kPa (kN/m2)

R3

PROGETTO DEFINITIVO

DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO

NUOVO COLLEGAMENTO PALERMO-CATANIA

RADDOPPIO TRATTA FIUMETORTO – LERCARA

DIRAMAZIONE – LOTTO 1+2

Relazione di calcolo fondazioni fabbricato IS-PP/ACC/Energia Tipo 3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLFV0300003 B 20 di 27

Ti // to o/ Energia Tipo o			
tan(δ)	Coefficiente d'attrito terra-fondazione	0.466	
γδ(γφ') M1	Coefficiente parziale di tanφ' per la condizione M1	1	
an(δ) M1	Coefficiente d'attrito terra-fondazione per la condizione M1	0.466	
an(φ')	Tang. dell'angolo di resistenza al taglio del terreno di fond.	0.466	
ρ' M1	Angolo d'attrito del terreno di fond, per la condizione M1	0.436	radianti
an(φ') M1	Tang. ang. di resist. al taglio terr. di fond. per la cond. M1	0.466	Taulanti
ап(ф) МП	Tang. ang. di resist. ai tagno terr. di lond. per la cond. ivi	0.400	
Nq	1° Fattore di capacità portante	10.66	
Nc	2° Fattore di capacità portante	20.72	
Νγ	3° Fattore di capacità portante	10.88	
N	Carico assiale, riferito a baricentro fondazione, >0 verso il basso	378	kN
Г// В	Taglio long., riferito a baric. fond.	4	kN
Γ// L	Taglio trasv., riferito a baric. fond.	13	kN
M attorno all'asse // a L	Momento attorno asse y, riferito a baric. fond.	89	kNm
M attorno all'asse // a B	Momento attorno asse x, riferito a baric. fond.	37	kNm
e secondo B	Eccentricità del carico in fondazione in direzione longitudinale	0.236	m
e secondo L	Eccentricità del carico in fondazione in direzione trasversale	0.097	m
3'	Lunghezza ridotta della fondazione		m
L'	Prof. ridotta della fondazione		m
sq	1° Fattore corrett. che tiene conto della forma della fond.	1.06	
SC	2° Fattore corrett. che tiene conto della forma della fond.	1.12	
s γ	3° Fattore corrett. che tiene conto della forma della fond.	1.06	
)	Approfond. del piano di posa (altezza fond.+ricopr. a valle)	1.00	m
pk	1° Fattore che tiene conto dell'approfond. del piano di posa	1.30	
dc	2° Fattore che tiene conto dell'approfond. del piano di posa	1.33	
n	(2+B'/L')/(1+B'/L')	1.81	
q	1° Fattore che tiene conto dell'inclinaz. del carico in fond.	0.99	
C	2° Fattore che tiene conto dell'inclinaz. del carico in fond.	0.99	
γ	3° Fattore che tiene conto dell'inclinaz. del carico in fond.	0.99	
bq	1° Fatt. che tiene conto dell'incl. piano di posa della fond.	1	
OC	2° Fatt. che tiene conto dell'incl. piano di posa della fond.	1	
ργ	3° Fatt. che tiene conto dell'incl. piano di posa della fond.	1	
99	1° Fattore che tiene conto dell'inclin. del terreno a valle	1	
gc	2° Fattore che tiene conto dell' inclin. del terreno a valle	1	
gγ	3° Fattore che tiene conto dell'inclin. del terreno a valle	1	
terreno valle	γ del terreno a valle	22	kN/m3
terreno fond.	γ del terreno di fondazione	22	kN/m3
1W	Altezza della falda da intrad. fond., positiva se sta verso l'alto	-1	m
r∗ terreno valle	γ del terr. a valle che tiene conto della event. pres. della falda	22.00	
H'	Prof. del cuneo al di sotto della fond. in regime di spinta attiva	0.74	m
γ* terreno fond.	γ del terr. di fond. che tiene conto della event. pres. della falda	22.00	kN/m3
q lim	Carico limite	1474	kN/m2
lim risultante	Carico limite risultante sull'area efficace (B'xL')	6638	kN
	0 (11)	1 0 0	

Coefficiente parziale R3

2.3

Relazione di calcolo fondazioni fabbricato IS-PP/ACC/Energia Tipo 3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO
RS3Z 00 D 26 CLFV0300003 B 21 di 27

q lim risult fatt	Carico limite risultante sull'area efficace (B'xL') diviso per R3	2886	kN
N per verifica	Carico assiale agente ad intrad. fond. calcolato per la verifica	378	kN
Verifica	VERIFICA SODDISFATTA		

tasso di sfruttamento

0.131

8.2.5 SLV – M2max intorno a B

Combinazione: SISMA X SLV

F1	F2	F3	M1	M2	M3
KN	KN	KN	KN-m	KN-m	KN-m
38.1	40.1	176.7	-21.1	74.2	0.0

Peso tamponature: 70 kN Peso fondazione: 125.8 kN

Lungh tot fond (B)	Larghezza totale fondazione	1.5	m
Largh tot fond (L)	Lunghezza totale fondazione	4.575	m
H fond	Altezza della fondazione	1	m
α fond	Inclinazione del piano di posa della fondazione	0	0
Ricopr. valle	Ricoprimento sulla mensola di valle	0	m
ω terreno valle	Inclinazione del terreno a valle	0	0

φ'	Angolo di attrito del terreno di fondazione	25.0	0
γ	Peso per unità di volume del terreno di fondazione	22.0	kN/m3
δ	Angolo di attrito terra-fondazione	25.0	
c'	Coesione efficace	42	kPa (kN/m2)
γc' M1	Coefficiente parziale di c' per la condizione M1	1	
c' M1	Coesione efficace per la condizione M1	42	kPa (kN/m2)
cu	Coesione non drenata	100	kPa (kN/m2)
γcu M1	Coefficiente parziale di cu per la condizione M1	1	
cu M1	Coesione non drenata per la condizione M1	100	kPa (kN/m2)
$tan(\delta)$	Coefficiente d'attrito terra-fondazione	0.466	
γδ(γφ') Μ1	Coefficiente parziale di tanφ' per la condizione M1	1	
tan(δ) M1	Coefficiente d'attrito terra-fondazione per la condizione M1	0.466	
tan(φ')	Tang. dell'angolo di resistenza al taglio del terreno di fond.	0.466	
φ' M1	Angolo d'attrito del terreno di fond. per la condizione M1	0.436	radianti
tan(φ') M1	Tang. ang. di resist. al taglio terr. di fond. per la cond. M1	0.466	

Nq	1° Fattore di capacità portante	10.66	
Nc	2° Fattore di capacità portante	20.72	

Relazione di calcolo fondazioni fabbricato IS-PP/ACC/Energia Tipo 3

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLFV0300003	В	22 di 27

Νγ	3° Fattore di capacità portante	10.88	
N	Carico assiale, riferito a baricentro fondazione, >0 verso il basso	373	kN
T// B	Taglio long., riferito a baric. fond.	40	kN
T// L	Taglio trasv., riferito a baric. fond.	38	kN
M attorno all'asse // a L	Momento attorno asse y, riferito a baric. fond.	19	kNm
M attorno all'asse // a B	Momento attorno asse x, riferito a baric. fond.	112	kNm
e secondo B	Eccentricità del carico in fondazione in direzione longitudinale	0.051	m
e secondo L	Eccentricità del carico in fondazione in direzione trasversale	0.301	m
B'	Lunghezza ridotta della fondazione	1.40	m
L'	Prof. ridotta della fondazione	3.97	m
sq	1° Fattore corrett. che tiene conto della forma della fond.	1.09	
sc	2° Fattore corrett. che tiene conto della forma della fond.	1.17	
sγ	3° Fattore corrett. che tiene conto della forma della fond.	1.09	
D	Approfond. del piano di posa (altezza fond.+ricopr. a valle)	1.00	m
dq	1° Fattore che tiene conto dell'approfond. del piano di posa	1.22	
dc	2° Fattore che tiene conto dell'approfond. del piano di posa	1.25	
m	(2+B'/L')/(1+B'/L')	1.74	
iq	1° Fattore che tiene conto dell'inclinaz. del carico in fond.	0.92	
ic	2° Fattore che tiene conto dell'inclinaz. del carico in fond.	0.91	
ίγ	3° Fattore che tiene conto dell'inclinaz. del carico in fond.	0.88	
bq	1° Fatt. che tiene conto dell'incl. piano di posa della fond.	1	
bc	2° Fatt. che tiene conto dell'incl. piano di posa della fond.	1	
bγ	3° Fatt. che tiene conto dell'incl. piano di posa della fond.	1	
gq	1° Fattore che tiene conto dell'inclin. del terreno a valle	1	
gc	2° Fattore che tiene conto dell'inclin. del terreno a valle	1	
gγ	3° Fattore che tiene conto dell'inclin. del terreno a valle	1	
γ terreno valle	γ del terreno a valle	22	kN/m3
γterreno fond.	γ del terreno di fondazione	22	kN/m3
hw	Altezza della falda da intrad. fond., positiva se sta verso l'alto	-1	m
γ* terreno valle	γ del terr. a valle che tiene conto della event. pres. della falda	22.00	
H'	Prof. del cuneo al di sotto della fond. in regime di spinta attiva	1.01	m
γ∗ terreno fond.	γ del terr. di fond. che tiene conto della event. pres. della falda	22.00	kN/m3
q lim	Carico limite	1376	kN/m2
q lim risultante	Carico limite risultante sull'area efficace (B'xL')	7641	kN
R3	Coefficiente parziale R3	2.3	
q lim risult fatt	Carico limite risultante sull'area efficace (B'xL') diviso per R3	3322	kN
N per verifica	Carico assiale agente ad intrad. fond. calcolato per la verifica	373	kN
Verifica	VERIFICA SODDISFATTA		

Relazione di calcolo fondazioni fabbricato IS-PP/ACC/Energia Tipo 3

 COMMESSA
 LOTTO
 FASE-ENTE
 DOCUMENTO

 RS3Z
 00
 D 26
 CLFV0300003

 CUMENTO
 REV.
 FOGLIO

 V0300003
 B
 23 di 27

8.2.6 SLU – Nmax

Combinazione: SLU STR1

F1	F2	F3	M1	M2	M3
KN	KN	KN	KN-m	KN-m	KN-m
1.9	49.5	251.9	-58.8	2.2	0.0

Peso tamponature: 70 kN Peso fondazione: 125.8 kN

Lungh tot fond (B)	Larghezza totale fondazione	1.5	m
Largh tot fond (L)	Lunghezza totale fondazione	4.575	m
H fond	Altezza della fondazione	1	m
α fond	Inclinazione del piano di posa della fondazione	0	0
Ricopr. valle	Ricoprimento sulla mensola di valle	0	m
ω terreno valle	Inclinazione del terreno a valle	0	0

φ'	Angolo di attrito del terreno di fondazione	25.0	0
γ	Peso per unità di volume del terreno di fondazione	22.0	kN/m3
δ	Angolo di attrito terra-fondazione	25.0	
c'	Coesione efficace	42	kPa (kN/m2)
γc' M1	Coefficiente parziale di c' per la condizione M1	1	
c' M1	Coesione efficace per la condizione M1	42	kPa (kN/m2)
cu	Coesione non drenata	100	kPa (kN/m2)
γcu M1	Coefficiente parziale di cu per la condizione M1	1	
cu M1	Coesione non drenata per la condizione M1	100	kPa (kN/m2)
tan(δ)	Coefficiente d'attrito terra-fondazione	0.466	
γδ(γφ') Μ1	Coefficiente parziale di tanφ' per la condizione M1	1	
tan(δ) M1	Coefficiente d'attrito terra-fondazione per la condizione M1	0.466	
tan(φ')	Tang. dell'angolo di resistenza al taglio del terreno di fond.	0.466	
φ' M1	Angolo d'attrito del terreno di fond. per la condizione M1	0.436	radianti
tan(φ') M1	Tang. ang. di resist. al taglio terr. di fond. per la cond. M1	0.466	

Nq	1° Fattore di capacità portante	10.66	
Nc	2° Fattore di capacità portante	20.72	
Νγ	3° Fattore di capacità portante	10.88	
N	Carico assiale, riferito a baricentro fondazione, >0 verso il basso	520	kN
T// B	Taglio long., riferito a baric. fond.	50	kN
T// L	Taglio trasv., riferito a baric. fond.	2	kN
M attorno all'asse // a L	Momento attorno asse y, riferito a baric. fond.	-9	kNm
M attorno all'asse // a B	Momento attorno asse x, riferito a baric. fond.	4	kNm
e secondo B	Eccentricità del carico in fondazione in direzione longitudinale	-0.018	m

Relazione di calcolo fondazioni fabbricato IS-PP/ACC/Energia Tipo 3

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLFV0300003	В	24 di 27

e secondo L	Eccentricità del carico in fondazione in direzione trasversale	0.008	m
B'	Lunghezza ridotta della fondazione	1.46	m
Ľ	Prof. ridotta della fondazione	4.56	m
sq	1° Fattore corrett. che tiene conto della forma della fond.	1.08	
sc	2° Fattore corrett. che tiene conto della forma della fond.	1.16	
sγ	3° Fattore corrett. che tiene conto della forma della fond.	1.08	
D	Approfond. del piano di posa (altezza fond.+ricopr. a valle)	1.00	m
dq	1° Fattore che tiene conto dell'approfond. del piano di posa	1.21	
dc	2° Fattore che tiene conto dell'approfond. del piano di posa	1.23	
m	(2+B'/L')/(1+B'/L')	1.76	
iq	1° Fattore che tiene conto dell'inclinaz. del carico in fond.	0.92	
ic	2° Fattore che tiene conto dell'inclinaz. del carico in fond.	0.92	
ίγ	3° Fattore che tiene conto dell'inclinaz. del carico in fond.	0.88	
bq	1° Fatt. che tiene conto dell'incl. piano di posa della fond.	1	
bc	2° Fatt. che tiene conto dell'incl. piano di posa della fond.	1	
bγ	3° Fatt. che tiene conto dell'incl. piano di posa della fond.	1	
gq	1° Fattore che tiene conto dell'inclin. del terreno a valle	1	
gc	2° Fattore che tiene conto dell'inclin. del terreno a valle	1	
gγ	3° Fattore che tiene conto dell'inclin. del terreno a valle	1	
γ terreno valle	γ del terreno a valle	22	kN/m3
γterreno fond.	γ del terreno di fondazione	22	kN/m3
hw	Altezza della falda da intrad. fond., positiva se sta verso l'alto	-1	m
γ* terreno valle	γ del terr. a valle che tiene conto della event. pres. della falda	22.00	
H'	Prof. del cuneo al di sotto della fond. in regime di spinta attiva	1.05	m
γ∗ terreno fond.	γ del terr. di fond. che tiene conto della event. pres. della falda	21.97	kN/m3
q lim	Carico limite	1362	kN/m2
q lim risultante	Carico limite risultante sull'area efficace (B'xL')	9090	kN
R3	Coefficiente parziale R3	2.3	
q lim risult fatt	Carico limite risultante sull'area efficace (B'xL') diviso per R3	3952	kN
N per verifica	Carico assiale agente ad intrad. fond. calcolato per la verifica	520	kN
Verifica	VERIFICA SODDISFATTA		

tasso di sfruttamento

0.132

Relazione di calcolo fondazioni fabbricato IS-PP/ACC/Energia Tipo 3

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO RS3Z 00 D 26 CLFV0300003 B 25 di 27

8.3 CALCOLO DEL CEDIMENTO

Viene calcolata la massima tensione media indotta sul terreno in condizioni di esercizio rare:

N_{max} = 180.8 kN (Comb SLE RARA 2 – Pilastri allineamento 10)

Peso fond = 125.8 kN

 $N_{TOT} = 306.6 \text{ kN}$

 $\sigma_{\text{media,max}} = 306.6/((5.1+4.05)/2\text{m x } 1.5\text{m}) = 306.6/(4.575\text{m x } 1.5\text{m}) = 0.044 \text{ MPa}$

A favore di sicurezza viene considerato il modulo elastico del primo strato di terreno:

E = 61 MPa

Deformazione unitaria del terreno:

 $\varepsilon = \sigma / E = 0.0007$

Assumendo come volume di terreno significativo quello fino ad una profondità di 4.6m, il cedimento risulta pari a:

 $d = \varepsilon \times H = 0.0007 \times 4.6 = 3.37 \text{ mm}$