COMMITTENTE: E FERROVIARIA ITALIANA **GRUPPO FERROVIE DELLO STATO ITALIANE** PROGETTAZIONE: GRUPPO FERROVIE DELLO STATO ITALIANE **U.O. INFRASTRUTTURE NORD PROGETTO DEFINITIVO** DIRETTRICE FERROVIARIA MESSINA – CATANIA – PALERMO **NUOVO COLLEGAMENTO PALERMO – CATANIA** RADDOPPIO TRATTA FIUME TORTO – LERCARA DIRAMAZIONE LOTTO 1 + 2**FABBRICATI STAZIONE** FV03 - Stazione di Lercara dir - km 29+147 Relazione di calcolo fondazioni pensiline SCALA:

RS3Z 00 D 26 CL FV0300 012 A								
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
А	EMISSIONE ESECUTIVA	C. INTEGRA	Maggio 2020	F.COPPINI	Maggio 2020	A. BARRECA	Maggio 2020	F. SACCHI
			2020	46	2020		2020	Maggio 2020

PROGR.

REV.

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA

File: RS3Z00D26CLFV0300012A	n. Elab.:

Relazione di calcolo fondazioni pensiline

 COMMESSA
 LOTTO
 FASE-ENTE
 DOCUMENTO
 REV.
 FOGLIO

 RS3Z
 00
 D 26
 CLFV0300012
 A
 0 di 44

INDICE

1.	PRE	MESSA	2
	1.1	DESCRIZIONE DELLE OPERE	2
2.	DOC	CUMENTI DI RIFERIMENTO	3
	2.1	NORMATIVA DI RIFERIMENTO	3
	2.2	SOFTWARE	3
3.	MA	TERIALI	4
	3.1	ACCIAIO	4
	3.1.1	Acciaio da carpenteria metallica	4
4.	CRI	ΓERI DI PROGETTAZIONE	5
5.	CAR	ATTERIZZAZIONE GEOTECNICA	8
	5.1	TERRENO IN SITO	8
	5.2	RILEVATO FERROVIARIO	10
6.	MOI	DELLO DI CALCOLO	11
	6.1	GEOMETRIA	11
	6.2	FASI REALIZZATIVE	12
7.	VER	IFICHE DI DEFORMABILITA'	13
8.	VER	IFICHE GEOTECNICHE	14
9.	VER	IFICHE STRUTTURALI	15
10	. VER	IFICA DEI CEDIMENTI SUPERFICIALI	17

Relazione di calcolo fondazioni pensiline

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLFV0300012	Α	1 di 44

11. ALLEGATO......21

Relazione di calcolo fondazioni pensiline

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLFV0300012	Α	2 di 44

1. PREMESSA

Nella presente relazione sono esposti i criteri generali di calcolo e le verifiche geotecniche e strutturali delle paratie che saranno utilizzate come opere provvisionali per la realizzazione delle fondazioni del ponte pedonale della Stazione di Lercara (FV03 - Stazione di Lercara dir - km 29+147).

1.1 DESCRIZIONE DELLE OPERE

L'opera di sostegno necessaria per gli scavi è costituita da paratie di palancole, del tipo Larssen 607 di lunghezza 5m.

La palancola deve sostenere uno scavo di altezza pari a 1 m.

Relazione di calcolo fondazioni pensiline

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLFV0300012	Α	3 di 44

2. DOCUMENTI DI RIFERIMENTO

2.1 NORMATIVA DI RIFERIMENTO

La progettazione è conforme alle normative vigenti.

Ferrovie dello Stato hanno emanato nel tempo varie normative e linee guida riguardanti sia i sovraccarichi che le prescrizioni relative ai ponti ferroviari.

Le normative rilevanti per la redazione del progetto di messa in sicurezza sono ovviamente le normative ora vigenti per le strutture, e per i ponti ferroviari in particolare, elencate nel seguito.

- DM 17 gennaio 2018: Aggiornamento delle "Norme Tecniche per le Costruzioni" (NTC18);
- Circolare Applicativa delle NTC 2018, 27/07/2018 (Circ n.7)
- Eurocodice 8: *Progettazione delle strutture per la resistenza sismica parte 5 Fondazioni, strutture di contenimento ed aspetti geotecnici*;
- RFICTCSIMAIFS001_C: Manuale di progettazione delle opere civili, 21/12/2018
- Regolamento (UE) N. 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019;
- Regolamento (UE) 2016/919 della Commissione del 27 maggio 2016 relativo alla specifica tecnica di interoperabilità per i sottosistemi "controllo-comando e segnalamento" del sistema ferroviario nell'Unione europea.
- RFITCARSTAR01001D: Standard di qualità geometrica del binario e parametri di dinamica di marcia per velocità fino a 300 km/h

2.2 SOFTWARE

1] CeAS S.r.l. – Paratie Plus 2018

Relazione di calcolo fondazioni pensiline

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO

RS3Z 00 D 26 CLFV0300012 A 4 di 44

3. MATERIALI

3.1 ACCIAIO

3.1.1 Acciaio da carpenteria metallica

Si prescrive l'utilizzo di profilati in acciaio laminati a caldo S275:

 $\begin{array}{lll} - & \text{Tensione di snervamento} & & f_{yk} \leq 275 \text{ N/mm}^2; \\ - & \text{Tensione di rottura} & & f_{tk} \leq 430 \text{ N/mm}^2; \\ - & \text{Modulo elastico} & & E = 210.000 \text{ N/mm}^2; \end{array}$

- Coefficiente di Poisson v = 0.3;

- Modulo di elasticità trasversale $G = E / [2 (1 + v)] = 80769.23 \text{ N/m}^2;$

- Coefficiente di espansione termica lineare $\alpha = 12 \cdot 10^{-6}$ per °C-1 (per T fino a 100 °C);

– Densità $\rho = 7.850 \text{ kg/m}^3$.

PROGETTO DEFINITIVO
DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO
NUOVO COLLEGAMENTO PALERMO-CATANIA
RADDOPPIO TRATTA FIUMETORTO – LERCARA DIRAMAZIONE
- LOTTO 1+2

Relazione di calcolo fondazioni pensiline

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO

RS3Z 00 D 26 CLFV0300012 A 5 di 44

4. CRITERI DI PROGETTAZIONE

In accordo con quanto definito nel par. 6.2.3. delle NTC-18, devono essere svolte le seguenti verifiche di sicurezza e delle prestazioni attese:

- Verifiche agli stati limite ultimi (SLU);
- Verifiche agli stati limite d'esercizio (SLE).

Per ogni Stato Limite Ultimo (SLU) deve essere rispettata la condizione:

$$E_d \leq R_d$$

La verifica della condizione ($E_d \le R_d$) deve essere effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3).

Per ogni Stato Limite d'Esercizio (SLE) deve essere rispettata la condizione

$$Ed \leq Cd$$
 (Eq. 6.2.7 delle NTC-18)

dove

E_d è il valore di progetto dell'effetto dell'azione, e

C_d è il valore limite dell'effetto delle azioni.

All'interno del progetto devono essere quindi definite le prescrizioni relative agli spostamenti compatibili per l'opera e le prestazioni attese.

Relazione di calcolo fondazioni pensiline

 COMMESSA
 LOTTO
 FASE-ENTE
 DOCUMENTO
 REV.
 FOGLIO

 RS3Z
 00
 D 26
 CLFV0300012
 A
 6 di 44

Tabella 4-1. Coefficienti parziali sulle azioni (A1 ed A2)

CARICHI	EFFETTO	Coefficiente parziale γ_F (o γ_E)	(A1) STR	(A2) GEO
Damaonouti	Favorevole		1.0	1.0
Permanenti	Sfavorevole	γ _G ι	1.3	1.0
Demonstration of the second of	Favorevole	γ _{G2}	0.0	0.0
Permanenti non strutturali (1)	Sfavorevole		1.5	1.3
X7	Favorevole	γ _{Qi}	0.0	0.0
Variabili	Sfavorevole		1.5	1.3

(1) = Nel caso in cui i carichi permanenti non strutturali (ad es. i carichi permanenti portati) siano completamente definiti, si potranno adottare gli stessi coefficienti validi per le azioni permanenti

Tabella 4-2. Coefficienti parziali sui terreni (M1 ed M2)

PARAMETRO	Coefficiente parziale	(M1)	(M2)
Tangente dell'angolo di resistenza al taglio	γ_{ϕ} ,	1.0	1.25
Coesione efficace	$\gamma_{c'}$	1.0	1.25
Resistenza non drenata	γCu	1.0	1.4
Peso dell'unità di volume	γ_{γ}	1.0	1.0

Relazione di calcolo fondazioni pensiline

 COMMESSA
 LOTTO
 FASE-ENTE
 DOCUMENTO
 REV.
 FOGLIO

 RS3Z
 00
 D 26
 CLFV0300012
 A
 7 di 44

Tabella 4-3. Coefficienti parziali sulle resistenze (R1, R2 ed R3)

VERIFICA	Coefficiente parziale	(R1)	(R2)	(R3)
Capacità portante della fondazione	$\gamma_{ m R}$	1.0	1.0	1.4
Scorrimento	$\gamma_{ m R}$	1.0	1.0	1.1
Resistenza del terreno a valle	$\gamma_{ m R}$	1.0	1.0	1.4

PROGETTO DEFINITIVO
DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO
NUOVO COLLEGAMENTO PALERMO-CATANIA
RADDOPPIO TRATTA FIUMETORTO – LERCARA DIRAMAZIONE
- LOTTO 1+2

Relazione di calcolo fondazioni pensiline

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLFV0300012	Α	8 di 44

5. CARATTERIZZAZIONE GEOTECNICA

5.1 TERRENO IN SITO

Per la caratterizzazione geotecnica del terreno in sito si rimanda alla "*Relazione geotecnica generale linea ferroviaria* (Rif: RS3Z00D26GEOC000001).

L'opera in esame ricade nella zona omogenea "3" che presenta le seguenti caratteristiche:

Tabella 5-1: Riepilogo parametri del terreno per la Zona omogenea "3"

Geotecnica terreno

Unità Geotecnica	Descrizione Unità	Profondità	γ (kN/m3)	φ'(°)	c' [kPa]	Spessori
Strato 1	С	Da 0 a 17m	22	25	42	17
Strato 2	Sb,1	Da 17 a 31m	22	35	0	14

La falda si trova a 3m da p.c.

Per quanto concerne la definizione dei coefficienti di spinta "a riposo", attiva e passiva per ogni strato costituente la stratigrafia del sito, sono state assunte le ipotesi di calcolo descritte qui di seguito:

- L'angolo d'attrito terreno-paratia è assunto pari a 1/2 dell'angolo di resistenza al taglio del residuo terreno.
- Il coefficiente di spinta a riposo K₀, essendo in presenza di terreni normalmente consolidati, è valutato con la seguente formula:

$$K_0 = 1 - sen(\varphi')$$

Relazione di calcolo fondazioni pensiline

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLFV0300012	Α	9 di 44

• Il coefficiente di spinta attiva K_A è valutato mediante la soluzione analitica di Muller-Breslau (1924) riferita a superfici di rottura piane.

$$K_{A} = \frac{\cos^{2}(\phi' - \beta)}{\cos^{2}\beta \cdot \cos(\beta + \delta) \cdot \left[1 + \sqrt{\frac{\sin(\delta + \phi') \cdot \sin(\phi' - i)}{\cos(\beta + \delta) \cdot \cos(\beta - i)}}\right]^{2}}$$

con:

φ: angolo di attrito del terreno

β: inclinazione del paramento

δ: angolo di attrito terra-muro

i: inclinazione del terreno a monte

Nel caso particolare di piano campagna orizzontale, paramento verticale considerando cautelativamente un attrito terra-muro nullo, la correlazione citata si riduce alla formulazione originariamente proposta da Rankine:

$$K_A = tan^2 \left(45 - \frac{\varphi'}{2} \right)$$

• Il coefficiente di spinta passiva K_P è valutato mediante la teoria di Lancellotta (2007).

Relazione di calcolo fondazioni pensiline

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLFV0300012	Α	10 di 44

5.2 RILEVATO FERROVIARIO

Per la caratterizzazione del terreno costituente il rilevato ferroviario sono stati assunti i seguenti parametri:

$$c' = 0 kPa$$

$$\varphi' = 38^{\circ}$$

$$\gamma_s = 20 \ kN/m^3$$

$$\gamma_d = 19 \, kN/m^3$$

$$E_{CV} = 40000 \, kPa$$

6. MODELLO DI CALCOLO

È stato utilizzato il software Paratie Plus v.2018 di CeAS S.r.l..

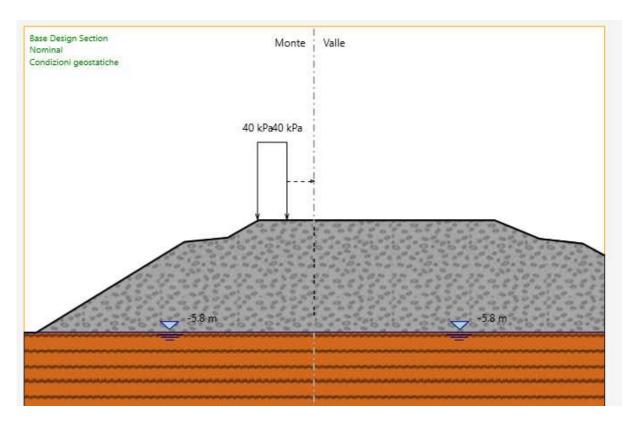
È stato predisposto un modello di calcolo bidimensionale La definizione del problema in esame prevede la definizione di più fasi, ognuna delle quali è contraddistinta da una differente configurazione della geometria, dei carichi, dei vincoli ecc.

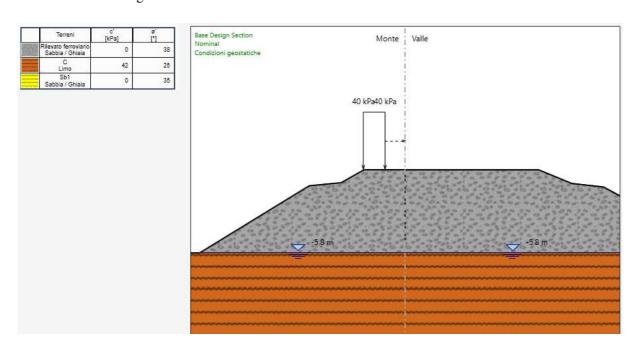
6.1 GEOMETRIA

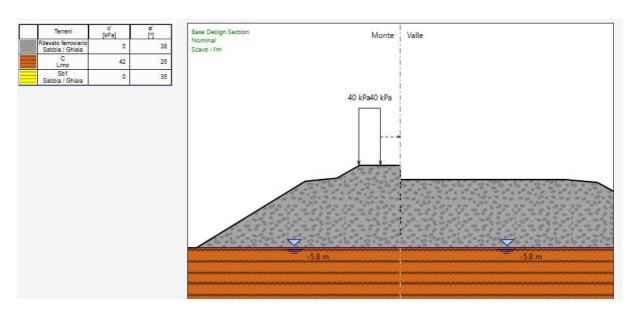
Le caratteristiche geometriche del modello sono quelle riportate ai paragrafi 1.1, 5.1 e 5.2.

Sono stati considerati i seguenti carichi:

 Secondo quanto riportato al paragrafo 3.5.2.3.4 (Carichi variabili) del Manuale di progettazione, per il carico da traffico va considerato un treno di carico SW/2 (pari a 150 kN/m). A favore di sicurezza si utilizza un carico distribuito di 40 kN/m² su una larghezza di 1.50 m.



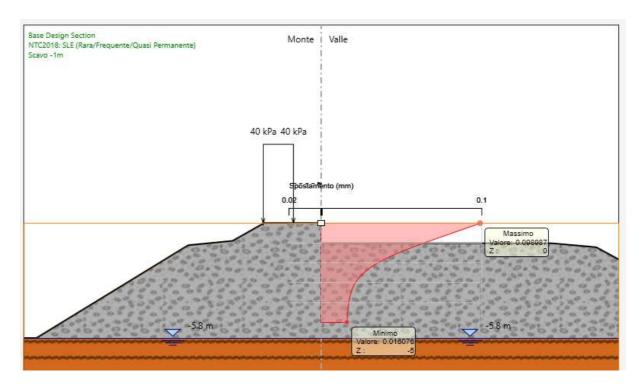

Figura 6-1: Geometria del modello


6.2 FASI REALIZZATIVE

Le verifiche sono state condotte in relazione alle varie fasi realizzative:

• Condizione geostatica

• Realizzazione dello scavo -1m



7. VERIFICHE DI DEFORMABILITA'

Gli spostamenti sono stati determinati in accordo con quanto riportato al §6.5.3.2 delle NTC18 e §C6.5.3.2 della Circ n.7.

La combinazione utilizzata è la SLE – Rara.

Nel seguito si riportano i massimi spostamenti attesi per la paratia in oggetto.

Il valore massimo dello spostamento è pari a circa 0.09 mm, valore del tutto accettabile.

Relazione di calcolo fondazioni pensiline

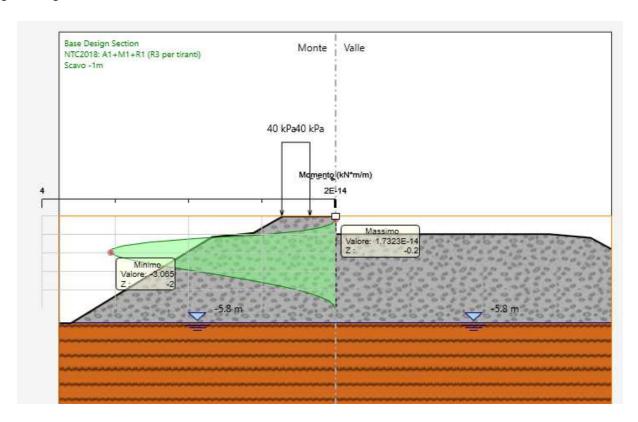
COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLFV0300012	Α	14 di 44

8. VERIFICHE GEOTECNICHE

La scelta della lunghezza d'infissione (LI) delle paratie è stata effettuata sulla base della resistenza passiva mobilitata a valle in campo statico e del seguente criterio:

 $R_{p,amm}$ / $R_{p,mob} \ge 1$ in condizioni M2, ossia con i parametri geotecnici del terreno ridotti

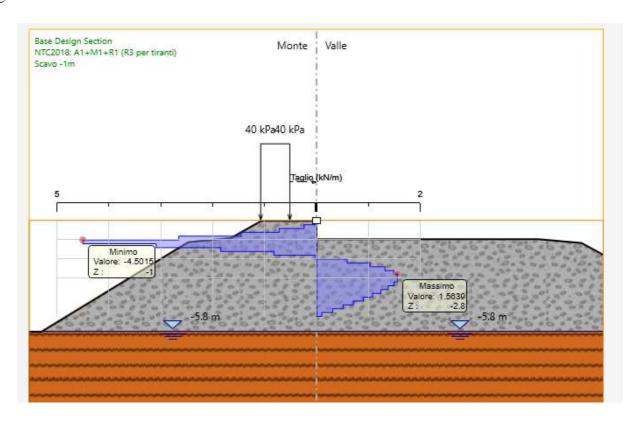
in cui $R_{p,amm}$ è la resistenza passiva disponibile e $R_{p,mob}$ è la resistenza passiva mobilitata, entrambe valutate a valle della paratia.


Il minimo rapporto Massima spinta ammissibile/Spinta reale totale si raggiunge nello step 3 ed è pari a 736.74/92.55=7.96. La verifica risulta soddisfatta.

9. VERIFICHE STRUTTURALI

Nel seguito si riportano le verifiche strutturali della palancola effettuate in condizioni A1+M1.

Il massimo momento nella combinazione A1+M1 vale $M_{\rm A1+M1}$ = -3.06 kNm, come riportato nella seguente figura:



Relazione di calcolo fondazioni pensiline

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO	
RS3Z	00	D 26	CLFV0300012	Α	16 di 44	

Il massimo taglio nella combinazione A1+M1 vale T_{A1+M1} = 4.50 kN, come riportato nella seguente figura:

E' stata adottata una palancola del tipo Larssen 607. Tale palancola ha un modulo di resistenza pari a $W = 0.00320 \text{ m}^3/\text{m}$, un'altezza h = 435 mm e uno spessore s = 9.8 mm.

Si ha:

$$\sigma_{s-max} = M_{A1+M1}/W = (3.06)/(0.00320) / 1000 = 0.95MPa < 262 MPa$$

 $\tau_{max} = T_{A1+M1}/AreaTaglio = (4.50)/(2\cdot s\cdot h) = (4.50)/(2\cdot 0.0098\cdot 0.435) \ / \ 1000 = 0.52 \ MPa \ (a favore di sicurezza, sono state considerate solo 2 parti laterali)$

$$\sigma_{id} = (\sigma_{s-max}^2 + 3\tau_{max}^2)^{1/2} = (0.95^2 + 3*0.52^2)^{1/2} = 1.32 \text{ MPa} \le 262 \text{ MPa}$$

Relazione di calcolo fondazioni pensiline

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLFV0300012	Α	17 di 44

10. VERIFICA DEI CEDIMENTI SUPERFICIALI

Le caratteristiche di deformabilità delle opere di sostegno della trincea devono essere tali da garantire che al passaggio dei convogli sul binario a monte delle paratie la geometria dell'armamento risponda ai livelli qualitativi fissati dagli standard di cui al documento RFI TCAR ST AR 01 001 D.

Nel caso particolare, i parametri indicati dal suddetto documento sui quali ha influenza la deformazione della paratia sono il difetto di sopraelevazione ΔH , lo scarto di livello trasversale SCARTXL e lo sghembo γ , che devono rispettare i limiti indicati nei paragrafi 6 e 7 della parte III (livelli di qualità geometrica correnti) della RFI TCAR ST AR 01 001 D.

In dettaglio, per il 1° livello di qualità (geometria del binario che non richiede la programmazione di interventi correttivi) devono essere verificate le seguenti diseguaglianze:

$\Delta H \le 10 \text{ mm}$	SCARTXL ≤ 4 mm	per V > 160 km/h
$\gamma_{\rm 3m} < 4.5\%$	$\gamma_{9m} < 3.5\%$	per V ≤ 200 km/h

A vantaggio di sicurezza possiamo assumere che il binario subisca deformazioni nel punto ubicato in corrispondenza della sezione di calcolo della paratia e che tali deformazioni si esauriscano già 3 m prima e 3 m dopo tale punto. Con tale assunzione, neutralizzando l'eventuale contributo della sopraelevazione di progetto h, lo scarto di livello trasversale SCARTXL coincide con il livello trasversale XL e quest'ultimo coincide a sua volta con ΔH . In tali condizioni il vincolo da rispettare è quello di 4 mm sul valore di SCARTXL, le limitazioni su ΔH , γ_{3m} e γ_{9m} risultando soddisfatte di conseguenza.

In base alla definizione di XL, pertanto, occorre verificare che non superi i 4 mm la differenza di abbassamento del terreno a tergo della paratia fra due punti distanti fra loro 1.5 m ed ubicati in corrispondenza delle due rotaie del binario più vicino all'opera di sostegno.

Il software PARATIE PLUS offre, come strumento di post-processing, un collegamento tra i risultati prodotti dall'analisi del comportamento laterale e i cedimenti in superficie, sfruttando alcune delle correlazioni di letteratura. Il metodo utilizzato è quello di Boone & Westland (2005).

Dai risultati forniti dal software sono stati estrapolati i valori dei cedimenti superficiali nella fase di calcolo corrispondente all'applicazione del carico da traffico e quelli alla fase antecedente. Dalla

GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO DIRETTRICE FERROVIARIA MESSINA-CATANIA-PALERMO NUOVO COLLEGAMENTO PALERMO-CATANIA RADDOPPIO TRATTA FIUMETORTO – LERCARA DIRAMAZIONE – LOTTO 1+2						
Data in a disease for de incises and its	COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo fondazioni pensiline	RS3Z	00	D 26	CLFV0300012	Α	18 di 44	

differenza dei suddetti valori sono stati ottenuti i cedimenti relativi al solo carico da traffico, sui quali sono stati calcolati gli scarti tra punti a distanza 1.5 m.

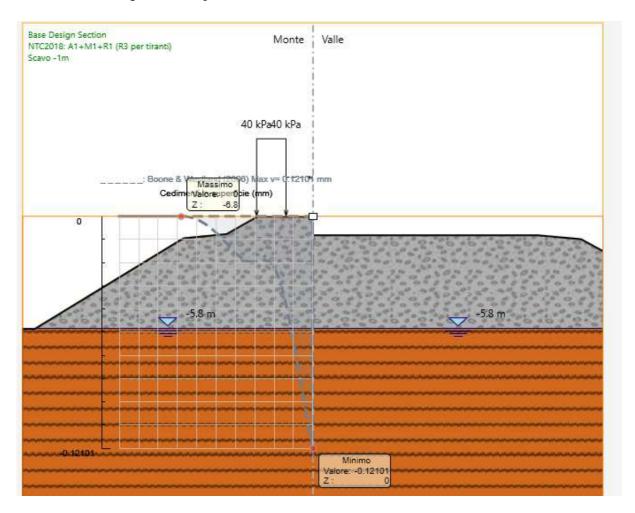


Figura 2: Cedimenti superficiali - Con carico da traffico

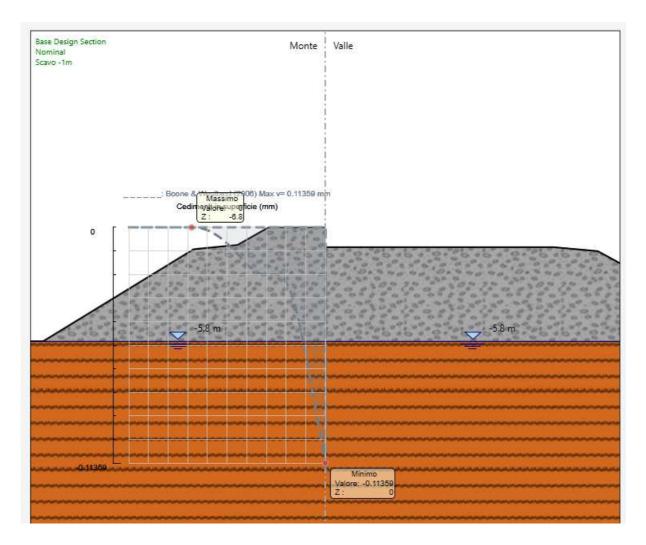


Figura 3: Cedimenti superficiali - Senza carico da traffico

Relazione di calcolo fondazioni pensiline

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLFV0300012	Α	20 di 44

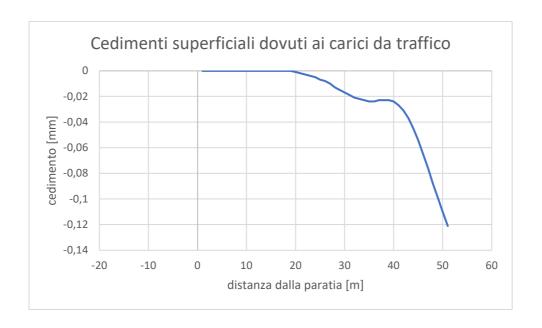


Figura 4: Cedimenti dovuti ai carichi da traffico

Dall'analisi condotta risulta:

SCARTXLMAX=1.8mm≤4mm

La verifica risulta quindi soddisfatta.

Relazione di calcolo fondazioni pensiline

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLFV0300012	Α	21 di 44

11. ALLEGATO

Report di Calcolo

Nome Progetto: New Project

Autore: Ingegnere

Design Section: Base Design Section

Sommario Contenuto Sommario

Descrizione del Software

ParatiePlus è un codice agli elementi finiti che simula il problema di uno scavo sostenuto da diaframmi flessibili e permette di valutare il comportamento della parete di sostegno durante tutte le fasi intermedie e nella configurazione finale.

Relazione di calcolo fondazioni pensiline

 COMMESSA
 LOTTO
 FASE-ENTE
 DOCUMENTO
 REV.
 FOGLIO

 RS3Z
 00
 D 26
 CLFV0300012
 A
 24 di 44

Descrizione della Stratigrafia e degli Strati di Terreno

Tipo: HORIZONTAL

Quota: 0 m OCR: 1

Tipo : HORIZONTAL Quota : -5.8 m

OCR:1

Tipo : HORIZONTAL Quota : -22.8 m

OCR:1

Strato di	Terreno	γ dry	γ sat	ø' ø	cvøp c' Su	Modulo	Eu	Evc	Eur	Ah Av exp Pa Rur/R	vc Rvc	Ku	Kvc	Kur
Terreno						Elastico								
		kN/m³	kN/m	3 0 0	° kPakPa			kPa	kPa	kPa	kPa k	kN/m³	kN/m³	kN/m³
1	Rilevato	19	20	38	0	Winkler							31430.45	94291.34
	ferroviario													
2	С	22	22	25	42	Constant		61000	97600					
3	Sb1	22	22	35	0	Constant	1	130000	208000)				

Relazione di calcolo fondazioni pensiline

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO

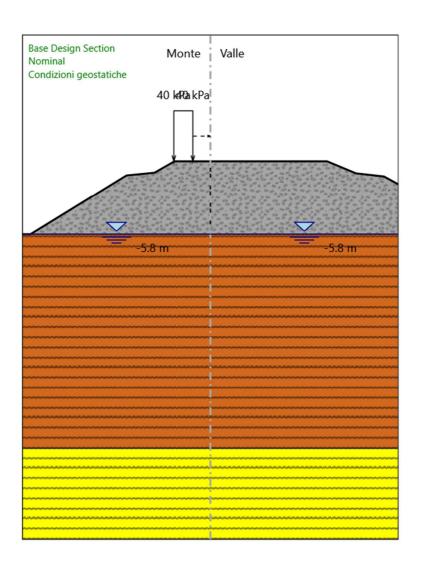
RS3Z 00 D 26 CLFV0300012 A 25 di 44

Descrizione Pareti

X:0 m

Quota in alto : 0 m Quota di fondo : -5 m Muro di sinistra

Sezione: Larssen607


Area equivalente : 0.0243 m Inerzia equivalente : 0.0007 m⁴/m Materiale calcestruzzo : C20/25 Tipo sezione : None

Spessore : 0.6 m Efficacia : 1

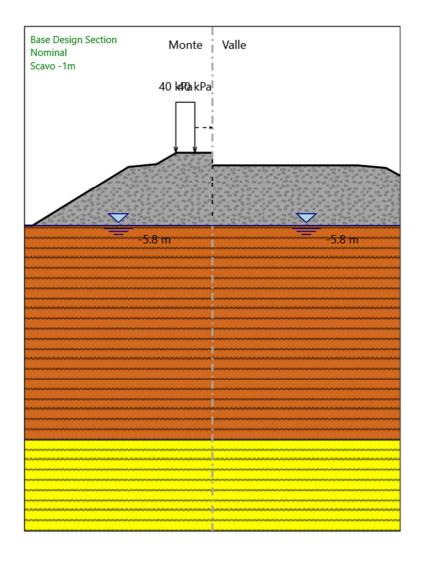
Fasi di Calcolo

Condizioni geostatiche

Relazione di calcolo fondazioni pensiline

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO
RS3Z 00 D 26 CLFV0300012 A 27 di 44

Elementi strutturali


Paratia: WallElement

X:0 m

Quota in alto: 0 m Quota di fondo: -5 m Sezione: Larssen607

Scavo -1m

Scavo -1m

Elementi strutturali

Paratia: WallElement

Relazione di calcolo fondazioni pensiline

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO
RS3Z 00 D 26 CLFV0300012 A 29 di 44

X:0 m

Quota in alto: 0 m Quota di fondo: -5 m Sezione: Larssen607

RS3Z

00

D 26

Grafici dei Risultati

Design Assumption: Nominal

Tabella Spostamento Nominal - LEFT Stage: Condizioni geostatiche

Design Assumption: Nominal Ti	ipo Risultato: Spostamento	o Muro: LEFT
Stage	Z (m)	Spostamento (mm)
Condizioni geostatiche	0	0
Condizioni geostatiche	-0.2	0
Condizioni geostatiche	-0.4	0
Condizioni geostatiche	-0.6	0
Condizioni geostatiche	-0.8	0
Condizioni geostatiche	-1	0
Condizioni geostatiche	-1.2	0
Condizioni geostatiche	-1.4	0
Condizioni geostatiche	-1.6	0
Condizioni geostatiche	-1.8	0
Condizioni geostatiche	-2	0
Condizioni geostatiche	-2.2	0
Condizioni geostatiche	-2.4	0
Condizioni geostatiche	-2.6	0
Condizioni geostatiche	-2.8	0
Condizioni geostatiche	-3	0
Condizioni geostatiche	-3.2	0
Condizioni geostatiche	-3.4	0
Condizioni geostatiche	-3.6	0
Condizioni geostatiche	-3.8	0
Condizioni geostatiche	-4	0
Condizioni geostatiche	-4.2	0
Condizioni geostatiche	-4.4	0
Condizioni geostatiche	-4.6	0
Condizioni geostatiche	-4.8	0
Condizioni geostatiche	-5	0

REV.

Α

CLFV0300012

FOGLIO

30 di 44

Tabella Spostamento Nominal - LEFT Stage: Scavo -1m

Design Assumption: Nominal	Tipo Risultato: Spostament	to Muro: LEFT
Stage	Z (m)	Spostamento (mm)
Scavo -1m	0	0.1
Scavo -1m	-0.2	0.09
Scavo -1m	-0.4	0.08
Scavo -1m	-0.6	0.08
Scavo -1m	-0.8	0.07
Scavo -1m	-1	0.06
Scavo -1m	-1.2	0.06
Scavo -1m	-1.4	0.05
Scavo -1m	-1.6	0.04
Scavo -1m	-1.8	0.04
Scavo -1m	-2	0.04
Scavo -1m	-2.2	0.03
Scavo -1m	-2.4	0.03
Scavo -1m	-2.6	0.03
Scavo -1m	-2.8	0.02
Scavo -1m	-3	0.02
Scavo -1m	-3.2	0.02
Scavo -1m	-3.4	0.02
Scavo -1m	-3.6	0.02
Scavo -1m	-3.8	0.02
Scavo -1m	-4	0.02
Scavo -1m	-4.2	0.02
Scavo -1m	-4.4	0.02
Scavo -1m	-4.6	0.02
Scavo -1m	-4.8	0.02
Scavo -1m	-5	0.02

Risultati Paratia

Tabella Risultati Paratia Nominal - Stage: Condizioni geostatiche

Design Assumption: Nominal R	lisultati Parat	ia Muro: LEFT	
Stage	Z (m)	Momento (kN*m/m) Taglio (kN/m)
Condizioni geostatiche	0	0	0
Condizioni geostatiche	-0.2	0	0
Condizioni geostatiche	-0.4	0	0
Condizioni geostatiche	-0.6	0	0
Condizioni geostatiche	-0.8	0	0
Condizioni geostatiche	-1	0	0
Condizioni geostatiche	-1.2	0	0
Condizioni geostatiche	-1.4	0	0
Condizioni geostatiche	-1.6	0	0
Condizioni geostatiche	-1.8	0	0
Condizioni geostatiche	-2	0	0
Condizioni geostatiche	-2.2	0	0
Condizioni geostatiche	-2.4	0	0
Condizioni geostatiche	-2.6	0	0
Condizioni geostatiche	-2.8	0	0
Condizioni geostatiche	-3	0	0
Condizioni geostatiche	-3.2	0	0
Condizioni geostatiche	-3.4	0	0
Condizioni geostatiche	-3.6	0	0
Condizioni geostatiche	-3.8	0	0
Condizioni geostatiche	-4	0	0
Condizioni geostatiche	-4.2	0	0
Condizioni geostatiche	-4.4	0	0
Condizioni geostatiche	-4.6	0	0
Condizioni geostatiche	-4.8	0	0
Condizioni geostatiche	-5	0	0

Tabella Risultati Paratia Nominal - Stage: Scavo -1m

Design Assumption:	Nominal Risultati Paratia	Muro: LEFT	
Stage	Z (m)	Momento (kN*m	/m) Taglio (kN/m)
Scavo -1m	0	0	0
Scavo -1m	-0.2	0	0
Scavo -1m	-0.2	0	0
Scavo -1m	-0.4	-0.04	-0.18
Scavo -1m	-0.6	-0.15	-0.55
Scavo -1m	-0.8	-0.37	-1.12
Scavo -1m	-1	-0.78	-2.04
Scavo -1m	-1.2	-1.47	-3.46
Scavo -1m	-1.4	-1.95	-2.38
Scavo -1m	-1.6	-2.23	-1.42
Scavo -1m	-1.8	-2.36	-0.63
Scavo -1m	-2	-2.36	-0.01
Scavo -1m	-2.2	-2.27	0.46
Scavo -1m	-2.4	-2.11	0.79
Scavo -1m	-2.6	-1.9	1.02
Scavo -1m	-2.8	-1.67	1.15
Scavo -1m	-3	-1.43	1.2
Scavo -1m	-3.2	-1.19	1.2
Scavo -1m	-3.4	-0.96	1.15
Scavo -1m	-3.6	-0.75	1.07
Scavo -1m	-3.8	-0.56	0.96
Scavo -1m	-4	-0.39	0.83
Scavo -1m	-4.2	-0.25	0.69
Scavo -1m	-4.4	-0.14	0.55
Scavo -1m	-4.6	-0.06	0.4
Scavo -1m	-4.8	-0.02	0.24
Scavo -1m	-5	0	0.08

Descrizione Coefficienti Design Assumption

	Carichi	Carichi	Carichi	Carico	Pressi	Pressi	Carichi	Carichi	Carichi	Carichi	Carichi	Carichi
Permanenti	Permanent	Variabili	Variabili	Sismico	oni	oni	Perman	Perman	Variabili	Perman	Perman	Variabili
Sfavorevoli	i Favorevoli	Sfavorevoli	Favorevoli	(F_seis	Acqua	Acqua	enti	enti	Destabil	enti	enti	Destabili
F_dead_loa	(F_dead_lo	(F_live_load	(F_live_lo	m_load	Lato	Lato	Destabil	Stabiliz	izzanti	Destabili	Stabiliz	zzanti
_unfavour)	ad_favour)	_unfavour)	ad_favour)	Monte	Valle	izzanti	zanti	(F_UPL_	zzanti	zanti	(F_HYD_
)		(F_Wa	(F_Wa	(F_UPL_	(F_UPL	QDStab)	(F_HYD_	(F_HYD	QDStab)
					terDR)	terRes	GDStab)	_GStab		GDStab)	_GStab)	
))				1
γG	γG	γQ	γQ	γQE	γG	γG	γGdst	γGstb	γQdst	γGdst	γGstb	γQdst
1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1	1	0	1	1	1	1	1	1	1	1
1.3	1	1.5	1	0	1.3	1	1	1	1	1.3	0.9	1
1	1	1.3	1	0	1	1	1	1	1	1.3	0.9	1
S F	favorevoli _dead_loa _unfavour) γG 1 1	favorevoli i Favorevoli i _dead_loa (F_dead_loa _loa _loa_loa _loa_loa_loa_loa_loa_loa_loa_loa_loa_loa	favorevoli i Favorevoli Sfavorevoli i Gavorevoli i Favorevoli Sfavorevoli i Gavorevoli Sfavorevoli i Gavorevoli i Gavorev	favorevoli i Favorevoli Sfavorevoli Favorevoli i Gead_loa (F_live_load (F_live_load (F_live_load (F_live_load favour) ad_favour) ad_favour) \[\textbf{YG} \textbf{YG} \textbf{YQ} \textbf{YQ} \textbf{YQ} \textbf{YQ} \\ \begin{array}{cccccccccccccccccccccccccccccccccccc	favorevoli i Favorevoli Sfavorevoli Favorevoli (F_seis f_dead_loa (F_dead_lo (F_live_load (F_live_lo m_load (II)	favorevoli i Favorevoli Sfavorevoli Favorevoli (F_seis Acqua f_dead_loa (F_dead_lo (F_live_load (F_live_lo m_load Lato _unfavour) ad_favour) _unfavour) ad_favour	favorevoli i Favorevoli Sfavorevoli Favorevoli (F_seis Acqua Acqua E_dead_loa (F_dead_lo (F_live_load (F_live_lo m_load Lato Lato _unfavour) ad_favour) _unfavour) ad_favour	favorevoli i Favorevoli Sfavorevoli Favorevoli (F_seis Acqua Acqua enti E_dead_loa (F_dead_lo (F_live_load (F_live_lo m_load Lato Lato Destabil unfavour) ad_favour)unfavour) ad_favour	favorevoli i Favorevoli Sfavorevoli Favorevoli (F_seis Acqua Acqua enti enti della della Cadado (F_dead_lo (F_live_load (F_live_lo m_load Lato Lato Destabil Stabiliz Lanfavour) ad_favour) _unfavour) ad_favour	favorevoli i Favorevoli Sfavorevoli Favorevoli (F_seis Acqua Acqua enti enti Destabili dead_loa (F_dead_loa (F_live_load (F_live_load (F_live_load Lato Lato Destabil Stabiliz izzanti Lanfavour) ad_favour)unfavour) ad_favour	favorevoli i Favorevoli Sfavorevoli Favorevoli (F_seis Acqua Acqua enti enti Destabili enti E_dead_loa (F_dead_lo (F_live_load (F_live_lo m_load Lato Lato Destabil Stabiliz izzanti Destabili unfavour) ad_favour) unfavour) ad_favour) Monte Valle izzanti zanti (F_UPL_ zzanti	favorevoli i Favorevoli Sfavorevoli Favorevoli (F_seis Acqua Acqua enti enti Destabil enti enti dedad_loa (F_live_load (F_live_load (F_live_load Infavour) ad_favour) ad_favour

Nome	Parziale su	Parziale su c'	Parziale su Su	Parziale su qu	Parziale su peso specifico
	tan(ø') (F_Fr)	(F_eff_cohe)	(F_Su)	(F_qu)	(F_gamma)
Simbolo	γф	γс	γcu	γqu	YY
Nominal	1	1	1	1	1
NTC2018: SLE (Rara/Frequente/Quasi Permanente)	1	1	1	1	1
NTC2018: A1+M1+R1 (R3 per tiranti)	1	1	1	1	1
NTC2018: A2+M2+R1	1.25	1.25	1.4	1	1

Nome	Parziale resistenza terreno (es. Parziale resistenza Tiranti Parziale resistenza Tiranti Parziale elementi					
	Kp) (F_Soil_Res_walls)	permanenti (F_Anch_P)	temporanei (F_Anch_T)	strutturali (F_wall)		
Simbolo	γRe	үар	γat			
Nominal	1	1	1	1		
NTC2018: SLE	1	1	1	1		
(Rara/Frequente/Quasi						
Permanente)						
NTC2018: A1+M1+R1 (R3 per	1	1.2	1.1	1		
tiranti)						
NTC2018: A2+M2+R1	1	1.2	1.1	1		

Relazione di calcolo fondazioni pensiline

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLFV0300012	Α	35 di 44

Allegati

Design Assumption: Nominal - File di Paratie - File di input (.d)

```
* PARATIE ANALYSIS FOR DESIGN SECTION: Base Design Section USING ASSUMPTION: Nominal
* Time:giovedì 28 maggio 2020 19:37:38
\star 1: Defining general settings
UNIT m kN
TITLE New Project
DELTA 0.2
option param itemax 40
option control hinges 0 0.0001 0.001
* 2: Defining wall(s)
WALL LeftWall_32 0 -5 0 1
* 3: Defining surfaces for wall(s)
SOIL 0_L LeftWall_32 -5 0 1 0
SOIL 0_R LeftWall_32 -5 0 2 180
* 4: Defining soil layers
* Soil Profile (Rilevatoferroviario_5_15536_L_0)
LDATA Rilevatoferroviario_5_15536_L_0 0 LeftWall_32
ATREST 0.384 0.5 1
WEIGHT 19 10 10
PERMEABILITY 0.0001
RESISTANCE 0 38 0 0 0
KSCALE 0 0
WINKLER 31430 94291
\star 5: Defining structural materials
* Steel material: 113 Name=S275 E=210000000 kPa
MATERIAL S275_113 2.1E+08
* 6: Defining structural elements
* 6.1: Beams and combined Wall Elements
BEAM WallElement_23255 LeftWall_32 -5 0 S275_113 0.20289 00 00 0
* 6.2: Supports
* 6.3: Strips
STRIP LeftWall_32 1 2 1.4 1.52 0 40 45
* 7: Defining Steps
STEP Condizionigeostatiche 31
CHANGE Rilevatoferroviario_5_15536_L_0 U-FRICT=38 LeftWall_32
CHANGE Rilevatoferroviario_5_15536_L_0 D-FRICT=38 LeftWall_32
CHANGE Rilevatoferroviario_5_15536_L_0 U-KA=0.238 LeftWall_32
CHANGE Rilevatoferroviario_5_15536_L_0 U-KP=5.228 LeftWall_32
CHANGE Rilevatoferroviario_5_15536_L_0 D-KA=0.238 LeftWall_32
CHANGE Rilevatoferroviario_5_15536_L_0 D-KP=7.205 LeftWall_32
CHANGE Rilevatoferroviario_5_15536_L_0 U-COHE=0 LeftWall_32
{\tt CHANGE\ Rilevatoferroviario\_5\_15536\_L\_0\ U-ADHES=0\ LeftWall\_32}
CHANGE Rilevatoferroviario_5_15536_L_0 D-COHE=0 LeftWall_32
CHANGE Rilevatoferroviario_5_15536_L_0 D-ADHES=0 LeftWall_32
SETWALL LeftWall_32
GEOM 0 0
SURCHARGE 0 0 0 0
WATER -5.8 0 -5 0 0
ADD WallElement_23255
```


Relazione di calcolo fondazioni pensiline

 COMMESSA
 LOTTO
 FASE-ENTE
 DOCUMENTO
 REV.
 FOGLIO

 RS3Z
 00
 D 26
 CLFV0300012
 A
 36 di 44

ENDSTEP

STEP Scavo-1m_74368
CHANGE Rilevatoferroviario_5_15536_L_0 D-KP=7.232 LeftWall_32
SETWALL LeftWall_32
GEOM 0 -1
SURCHARGE 0 0 0 0
WATER -5.8 0 -5 0 0
ENDSTEP

Relazione di calcolo fondazioni pensiline

WATER -5.8 0 -5 0 0 ADD WallElement_23255

ENDSTEP

 COMMESSA
 LOTTO
 FASE-ENTE
 DOCUMENTO
 REV.
 FOGLIO

 RS3Z
 00
 D 26
 CLFV0300012
 A
 37 di 44

Design Assumption: NTC2018: SLE (Rara/Frequente/Quasi Permanente) - File di Paratie - File di input (.d)

```
* PARATIE ANALYSIS FOR DESIGN SECTION: Base Design Section USING ASSUMPTION: NTC2018: SLE (Rara/Frequente/Quasi Permanente)
 * Time:giovedì 28 maggio 2020 19:37:39
* 1: Defining general settings
UNIT m kN
TITLE New Project
DELTA 0.2
option param itemax 40
option control hinges 0 0.0001 0.001
* 2: Defining wall(s)
WALL LeftWall_32 0 -5 0 1
* 3: Defining surfaces for wall(s) \,
SOIL 0 L LeftWall 32 -5 0 1 0
SOIL 0_R LeftWall_32 -5 0 2 180
* 4: Defining soil layers
* Soil Profile (Rilevatoferroviario_5_15536_L_0)
LDATA Rilevatoferroviario_5_15536_L_0 0 LeftWall_32
ATREST 0.384 0.5 1
WEIGHT 19 10 10
PERMEABILITY 0.0001
RESISTANCE 0 38 0 0 0
KSCALE 0 0
WINKLER 31430 94291
ENDL
* 5: Defining structural materials
* Steel material: 113 Name=S275 E=210000000 kPa
MATERIAL S275 113 2.1E+08
* 6: Defining structural elements
* 6.1: Beams and combined Wall Elements
BEAM WallElement_23255 LeftWall_32 -5 0 S275_113 0.20289 00 00 0
* 6.2: Supports
* 6.3: Strips
STRIP LeftWall_32 1 2 1.4 1.52 0 40 45
* 7: Defining Steps
STEP Condizionigeostatiche_31
CHANGE Rilevatoferroviario_5_15536_L_0 U-FRICT=38 LeftWall_32
CHANGE Rilevatoferroviario_5_15536_L_0 D-FRICT=38 LeftWall_32
CHANGE Rilevatoferroviario_5_15536_L_0 U-KA=0.238 LeftWall_32
CHANGE Rilevatoferroviario_5_15536_L_0 U-KP=5.228 LeftWall_32
CHANGE Rilevatoferroviario_5_15536_L_0 D-KA=0.238 LeftWall_32
CHANGE Rilevatoferroviario_5_15536_L_0 D-KP=7.205 LeftWall_32
CHANGE Rilevatoferroviario_5_15536_L_0 U-COHE=0 LeftWall_32
CHANGE Rilevatoferroviario_5_15536_L_0 U-ADHES=0 LeftWall_32
{\tt CHANGE\ Rilevatoferroviario\_5\_15536\_L\_0\ D-COHE=0\ LeftWall\_32}
CHANGE Rilevatoferroviario_5_15536_L_0 D-ADHES=0 LeftWall_32
SETWALL LeftWall 32
GEOM 0 0
SURCHARGE 0 0 0 0
```


Relazione di calcolo fondazioni pensiline

COMMESSA	LOTTO	FASE-ENTE	DOCUMENTO	REV.	FOGLIO
RS3Z	00	D 26	CLFV0300012	Α	38 di 44

STEP Scavo-1m_74368
CHANGE Rilevatoferroviario_5_15536_L_0 D-KP=7.232 LeftWall_32
SETWALL LeftWall_32
GEOM 0 -1
SURCHARGE 0 0 0 0
WATER -5.8 0 -5 0 0
ENDSTEP

Relazione di calcolo fondazioni pensiline

ADD WallElement_23255

ENDSTEP

 COMMESSA
 LOTTO
 FASE-ENTE
 DOCUMENTO
 REV.
 FOGLIO

 RS3Z
 00
 D 26
 CLFV0300012
 A
 39 di 44

Design Assumption: NTC2018: A1+M1+R1 (R3 per tiranti) - File di Paratie - File di input (.d)

```
* PARATIE ANALYSIS FOR DESIGN SECTION: Base Design Section USING ASSUMPTION: NTC2018: A1+M1+R1 (R3 per tiranti)
 * Time:giovedì 28 maggio 2020 19:37:40
* 1: Defining general settings
UNIT m kN
TITLE New Project
DELTA 0.2
option param itemax 40
option control hinges 0 0.0001 0.001
* 2: Defining wall(s)
WALL LeftWall_32 0 -5 0 1
* 3: Defining surfaces for wall(s) \,
SOIL 0 L LeftWall 32 -5 0 1 0
SOIL 0_R LeftWall_32 -5 0 2 180
* 4: Defining soil layers
* Soil Profile (Rilevatoferroviario_5_15536_L_0)
LDATA Rilevatoferroviario_5_15536_L_0 0 LeftWall_32
ATREST 0.384 0.5 1
WEIGHT 19 10 10
PERMEABILITY 0.0001
RESISTANCE 0 38 0 0 0
KSCALE 0 0
WINKLER 31430 94291
ENDL
* 5: Defining structural materials
* Steel material: 113 Name=S275 E=210000000 kPa
MATERIAL S275 113 2.1E+08
* 6: Defining structural elements
^{\star} 6.1: Beams and combined Wall Elements
BEAM WallElement_23255 LeftWall_32 -5 0 S275_113 0.20289 00 00 0
* 6.2: Supports
* 6.3: Strips
STRIP LeftWall_32 1 2 1.4 1.52 0 40 45
* 7: Defining Steps
STEP Condizionigeostatiche_31
CHANGE Rilevatoferroviario_5_15536_L_0 U-FRICT=38 LeftWall_32
CHANGE Rilevatoferroviario_5_15536_L_0 D-FRICT=38 LeftWall_32
CHANGE Rilevatoferroviario_5_15536_L_0 U-KA=0.238 LeftWall_32
CHANGE Rilevatoferroviario_5_15536_L_0 U-KP=5.228 LeftWall_32
CHANGE Rilevatoferroviario_5_15536_L_0 D-KA=0.238 LeftWall_32
CHANGE Rilevatoferroviario_5_15536_L_0 D-KP=7.205 LeftWall_32
CHANGE Rilevatoferroviario_5_15536_L_0 U-COHE=0 LeftWall_32
CHANGE Rilevatoferroviario_5_15536_L_0 U-ADHES=0 LeftWall_32
{\tt CHANGE\ Rilevatoferroviario\_5\_15536\_L\_0\ D-COHE=0\ LeftWall\_32}
CHANGE Rilevatoferroviario_5_15536_L_0 D-ADHES=0 LeftWall_32
SETWALL LeftWall 32
GEOM 0 0
SURCHARGE 0 0 0 0
WATER -5.8 0 -5 0 0
```


Relazione di calcolo fondazioni pensiline

 COMMESSA
 LOTTO
 FASE-ENTE
 DOCUMENTO
 REV.
 FOGLIO

 RS3Z
 00
 D 26
 CLFV0300012
 A
 40 di 44

STEP Scavo-1m_74368
CHANGE Rilevatoferroviario_5_15536_L_0 D-KP=7.232 LeftWall_32
SETWALL LeftWall_32
GEOM 0 -1
SURCHARGE 0 0 0 0
WATER -5.8 0 -5 0 0
ENDSTEP

Relazione di calcolo fondazioni pensiline

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO

RS3Z 00 D 26 CLFV0300012 A 41 di 44

Design Assumption: NTC2018: A2+M2+R1 - File di Paratie - File di input (.d)

```
* PARATIE ANALYSIS FOR DESIGN SECTION: Base Design Section USING ASSUMPTION: NTC2018: A2+M2+R1
* Time:giovedì 28 maggio 2020 19:37:40
* 1: Defining general settings
UNIT m kN
TITLE New Project
DELTA 0.2
option param itemax 40
option control hinges 0 0.0001 0.001
* 2: Defining wall(s)
WALL LeftWall_32 0 -5 0 1
* 3: Defining surfaces for wall(s)
SOIL 0_L LeftWall_32 -5 0 1 0
SOIL 0_R LeftWall_32 -5 0 2 180
* 4: Defining soil layers
 * Soil Profile (Rilevatoferroviario_5_15536_L_0)
LDATA Rilevatoferroviario_5_15536_L_0 0 LeftWall_32
ATREST 0.384 0.5 1
WEIGHT 19 10 10
PERMEABILITY 0.0001
RESISTANCE 0 38 0 0 0
KSCALE 0 0
WINKLER 31430 94291
ENDL
* 5: Defining structural materials
* Steel material: 113 Name=S275 E=210000000 kPa
MATERIAL S275_113 2.1E+08
* 6: Defining structural elements
* 6.1: Beams and combined Wall Elements
BEAM WallElement_23255 LeftWall_32 -5 0 S275_113 0.20289 00 00 0
* 6.2: Supports
* 6.3: Strips
STRIP LeftWall 32 1 2 1.4 1.52 0 40 45
* 7: Defining Steps
STEP Condizionigeostatiche\_31
CHANGE Rilevatoferroviario_5_15536_L_0 U-FRICT=32.007 LeftWall_32
CHANGE Rilevatoferroviario_5_15536_L_0 D-FRICT=32.007 LeftWall_32
CHANGE Rilevatoferroviario_5_15536_L_0 U-KA=0.307 LeftWall_32
CHANGE Rilevatoferroviario_5_15536_L_0 U-KP=3.618 LeftWall_32
CHANGE Rilevatoferroviario_5_15536_L_0 D-KA=0.307 LeftWall_32
CHANGE Rilevatoferroviario_5_15536_L_0 D-KP=4.831 LeftWall_32
CHANGE Rilevatoferroviario_5_15536_L_0 U-COHE=0 LeftWall_32
CHANGE Rilevatoferroviario_5_15536_L_0 U-ADHES=0 LeftWall_32
{\tt CHANGE\ Rilevatoferroviario\_5\_15536\_L\_0\ D-COHE=0\ LeftWall\_32}
{\tt CHANGE\ Rilevatoferroviario\_5\_15536\_L\_0\ D-ADHES=0\ LeftWall\_32}
SETWALL LeftWall 32
GEOM 0 0
SURCHARGE 0 0 0 0
WATER -5.8 0 -5 0 0
ADD WallElement_23255
ENDSTEP
STEP Scavo-1m_74368
```

CHANGE Rilevatoferroviario_5_15536_L_0 D-KP=4.847 LeftWall_32

Relazione di calcolo fondazioni pensiline

COMMESSA LOTTO FASE-ENTE DOCUMENTO REV. FOGLIO

RS3Z 00 D 26 CLFV0300012 A 42 di 44

SETWALL LeftWall_32 GEOM 0 -1 SURCHARGE 0 0 0 0 WATER -5.8 0 -5 0 0 ENDSTEP