

ANAS

S.p.A

∏DIREZIONE REGIONALE PER LA SICILIA

PA17/08

Affidamento a Contraente Generale dei "Lavori di ammodernamento del tratto Palermo - Lercara Friddi, lotto funzionale dal km 14,4 (km. 0,0 del Lotto 2) compreso il tratto di raccordo della rotatoria Bolognetta, al km 48,0 (km. 33,6 del Lotto 2 - Svincolo Manganaro incluso) compresi i raccordi con le attuali SS n.189 e SS n.121

Bolognetta S.c.p.a.

- PERIZIA DI VARIANTE N.3 -

II Responsabite Ambientale:
Dott. Maurizio D'angelo
Dott. Geol Control Control

Titolo elaborato:

MODIFICA TECNICA 244

OPERE D'ARTE - INTERVENTI SU SOTTOVIA ESISTENTI

Allargamento sottovia esistente al Km 8+775,15 Relazione di modifica tecnica n. 244

Codice Unico Progetto (CUP): F41B03000230001

OPERA

ARGOMENTO

DOC. E PROG.

FASE REV

REVISIONE

Codice elaborato: PA17/08

PE

MT 244

R T 0 1

6

0

CARTELLA:			FILE NAME:	NOTE:	PROT.					SCALA:	
	0	7	PEMT244_RT01_60_4137.dwg	1=1		4	1	3	7	1:50	/1:25
5											
4											
3											
2											
1											
0	PRI	ИА EI	MISSIONE		Maggio 2	2021	S	. Forti	no	S. Fortino	N, Behmann
REV.			DESCRIZION	E	DATA	١	F	REDAT	ГТО	VERIFICATO	APPROVATO

Progettisti:

ACS ingegneri

Via Catani,28/c - 59100 Prato tel 0574.527864 fax 0574.568066 E-mail acs@acsingegneri.it

II Progettista Responsabile
Ing Alberto Antonelli

Il Geologo

Dott. Geol. Enrico Cucuruto

Dott. Geol. S. Curcururu S. N. 966

Il Coordinatore per la Sicurezza in fase di Esecuzione; Arch. Francesco Rondelli

> Il Coordinatore per la Esecuzione dei Lavori arch. Francesco Rondelli

Il Direttore dei Lavori: Ing. Sandro Favero

Il Direttore dei Lavori ing Sandro Favero

ANAS S.p.A.

DATA:

PROTOCOLLO:

VISTO: IL RESPONSABILE DEL PROCEDIMENTO

CODICE PROGETTO

LO410C E 1101

Dott. Ing. Luigi Mupo

COMMITTENTE: A N A S S.p.A.

* * * * *

CONTRAENTE GENERALE: BOLOGNETTA S.C.p.A.

SS 189 e SS 121

ITINERARIO PALERMO - AGRIGENTO

PA 17/08

Lavori di ammodernamento del tratto Palermo - Lercara Friddi, lotto funzionale dal km 14,4 (km 0,0 del lotto 2) compreso il tratto di raccordo della rotatoria Bolognetta, al km 48,0 (km 33,6 del lotto 2 - svincolo Manganaro incluso), compresi i raccordi con le attuali S.S. n. 189 e S.S. n. 121

CUP F41B03000230001

Contratto per affidamento a Contraente Generale, stipulato in Roma il 19/10/2009 c/o Notaio Paolo Cerasi rep. n. 7953 racc. n. 4132, registrato in Roma il 27/10/2009.

Succ. Atto Aggiuntivo n. 1 stipulato in data 02.11.2011 rep. n. 9879 racc. n. 5275, succ. Atto Aggiuntivo n. 2 stipulato in data 30.05.2013 rep. n. 20888 racc. n. 5938 e succ. Atto Aggiuntivo n. 3 stipulato in data 23.01.2014 rep. n. 21091 racc. n. 6057.

MODIFICA TECNICA N.244

WBS: Sottovia esistente ST03 al km 8+775.15

OGGETTO: Sostituzione micropali con pali

DATA: 29/10/2018

p. A.T.I. Progettisti- POLITECNICA – A.C.S. Ing. Marcello Mancone

IL Contraente Generale

PER LA SICILIA

Sommario

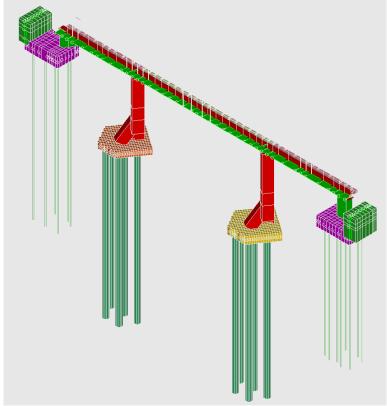
1	Scc	ро с	della modifica tecnica	3
2	Rel	azio	ne di calcolo della modifica tecnica.	3
	2.1	Ver	ifica ciabatta di fondazione unità di misura	4
	2.2	Ver	ifica ciabatta di fondazione sp 60	5
	2.3	Ver	ifica ciabatta di fondazione sp 80	7
	2.4	Ver	ifiche contrafforte	9
	2.5	Ver	ifiche a taglio	10
3	Vei	rifica	dei pali di fondazione	11
	3.1	Cur	ve di capacità portante a compressione e trazione	11
	3.2	Det	erminazione delle sollecitazioni sulla palificata	18
	3.3	Azi	oni agenti sulle palificate	18
	3.3	.1	Spalla SX - FISSA	28
	3.3	.2	Pila 1	29
	3.3	.3	Pila 2	32
	3.3	.4	Spalla dx - mobile	34
	3.3	.5	Tabelle riassuntive delle sollecitazioni	36
	3.4	Car	ico limite trasversale	37
	3.5	Ver	ifiche strutturali dei micronali e nali di fondazione	38

1 Scopo della modifica tecnica

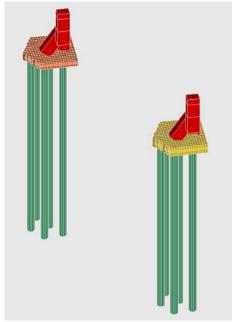
La presente nota ha per oggetto la modifica tecnica nell'ambito del progetto di allargamento del sottovia esistente al km 8+775.15, consistente nella modifica dei pali di fondazioni: i micropali previsti in progetto, sottoposti a prova di carico, hanno mostrato portanze nettamente inferiori a quelle stimate. A seguito di tali risultanze, si è ritenuto che i micropali non siano la tecnica idonea per i terreni in esame. Nel presente contesto è stato previsto l'utilizzo di pali di medio diametro φ600. Per motivi di interferenza fra macchina palificatrice ed impalcato esistente, i pali non possono essere realizzati nelle medesime posizione dei micropali e sono pertanto previsti in posizione eccentrica rispetto al fusto della pila. Sono previsti 5 pali per ogni pila. Non potendo aumentare eccessivamente l'altezza della ciabatta di fondazione, è stato inserito un contrafforte a irrigidire la fondazione stessa. L'altezza di una ciabatta di fondazione è stata aumentata da 50 a 60 cm, previo verifica in cantiere.

Riferimento ai documenti:

PESE03RC01_40_4137	Allargamento sottovia esistente al km 8+775.15 - Relazione tecnica e di calcolo
PESE3N002_41_4137	Allargamento sottovia esistente al km 8+775.15 – Stato attuale e di progetto: piante e sezioni
PESE3N003_30_4137	Allargamento sottovia esistente al km 8+775.15 – Sezioni longitudinali in asse travi e trasversali in asse pile e spalle
PESE3N005_30_4137	Allargamento sottovia esistente al km 8+775.15 – Pile: carpenterie e armature


2 Relazione di calcolo della modifica tecnica.

La geometria dell'impalcato, delle spalle e del fusto della pila non subisce variazioni a causa della modifica dei pali di fondazione (ad esclusione del contrafforte inserito per irrigidire la fondazione).


Pertanto, il calcolo della struttura in elevazione rimane invariato rispetto al progetto e viene di seguito aggiornato il calcolo della ciabatta di fondazione e dei pali.

Per quanto sopra, viene fatto riferimento alla documentazione di progetto per quanto riguarda la geometria degli elementi, le caratteristiche dei materiali, la normativa di riferimento, le ipotesi ed il metodo di calcolo, i programmi utilizzati e quant'altro non diversamente di seguito specificato.

Nel modello di calcolo agli elementi finiti è stata modificata la ciabatta di fondazione e la posizione dei pali, come mostrato nella seguente figura. Sotto le pile sono stati inseriti i nuovi pali nella loro posizione e del loro diametro. Il contrafforte è stato schematizzato come un elemento asta.

vista tridimensionale totale del modello agli elementi finiti.

dettaglio delle fondazioni modificate

2.1 Verifica ciabatta di fondazione unità di misura

 $Af \qquad [cm^2]/m$

cf [cm]

M [kgm/m]

α [°]

2.2 Verifica ciabatta di fondazione sp 60

Verifiche Verifiche Flessione SLU

Propietà dei materiali

Acciaio

- f_{vd} 3913.0 [kg/cm²]
- ϵ_{ud} 67.50 ‰
- ϵ_{vd} 1.86 ‰

Calcestruzzo

- f_{cd} 164.6 [kg/cm²]
- ε_{c2} -2.00 ‰
- $\bullet~\epsilon_{cu}~\text{-}3.50~\%$
- f_{ctd} 13.2 [kg/cm²]
- ε_{ctd} 0.08 ‰
- E_{cm} 164616.7 [kg/cm²]

Elementi più sollecitati

Intradosso

Nodi	Sez.	Comb.	Cr=S _D /S _R	ε _{f,x} ‰	ε _{f,y} ‰	ε _{c,1} ‰	ε _{c,2} ‰	Af _x	cf _{x,Eq}	Af _y	$\mathbf{cf}_{\mathbf{y},\mathbf{Eq}}$	M _{xx}	M _{yy}	M _{xy}	M ₁₁	M ₂₂	α
elemento nodi 496 500	4	27	0.912	0.637	1.765	5.495	2.936	40.21	6	40.2	6	-16499	31950.7	-26987	28538.8	43990.73	21.44
elemento nodi 458 461	4	27	0.975	1.296	3.864	7.878	1.948	40.21	6	40.2	6	5725.02	45952.6	- 27856.7	- 8520.44	60198.03	24.28
elemento nodi 558 561	4	27	0.958	0.551	0.76	4.565	3.191	80.42	6	80.4	6	-2282	15118.2	30983.6	- 25763.8	38599.99	35.75

estradosso

Nodi	Sez.	Comb.	Cr=S _D /S _R	ε _{f,x} ‰	ε _{f,y} ‰	ε _{c,1} ‰	ε _{c,2} ‰	Af _x	$cf_{x,Eq}$	Af _y	$\mathbf{cf}_{\mathbf{y},\mathbf{Eq}}$	M _{xx}	M _{yy}	\mathbf{M}_{xy}	M ₁₁	M ₂₂	α
elemento nodi 496 500	4	27	0.912	1.264	0.146	4.754	-3.5	40.21	6	40.2	6	-16499	31950.7	-26987	28538.8	43990.73	21.44
elemento nodi 458 461	4	27	0.975	0.575	0.277	3.027	-3.5	40.21	6	40.2	6	5725.02	45952.6	- 27856.7	- 8520.44	60198.03	24.28
elemento nodi 558 561	4	27	0.958	0.561	0.351	4.349	-3.5	80.42	6	80.4	6	-2282	15118.2	30983.6	- 25763.8	38599.99	35.75

Verifiche Verifiche Flessione SLE Rare

Propietà dei materiali

Acciaio

• σ 3600.0 [kg/cm²]

Calcestruzzo

• σ 174.3 [kg/cm²]

Elementi più sollecitati

Intradosso

Nodi	Sez.	Comb.	Cr=S _D /S _R	$\sigma_{f,x}$	$\sigma_{f,y}$	σς	θ	Stato	w	Af _x	$cf_{x,Eq}$	Af _y	$\mathbf{cf}_{\mathbf{y}, \mathbf{Eq}}$	M _x	M _y	M _{xy}	M ₁₁	M ₂₂	α
elemento nodi 496 500	4	117	0.636	615.9	1814	- 76.4	36.15	NON Fessurato	0	40.2	6	40.21	6	11366.9	22163.13	18830.9	19814.3	30610.6	21.6
elemento nodi 458 461	4	117	0.682	1366	2458	- 59.9	38.68	NON Fessurato	0	40.2	6	40.21	6	3514.76	31991.55	- 19491.9	6385.31	41891.6	24.1
elemento nodi 558 561	4	117	0.67	505	755.5	- 76.7	42.51	NON Fessurato	0	80.4	6	80.42	6	2261.05	10472.52	21623.6	- 18435.7	26647.2	35.4

estradosso

Nodi	Sez.	Comb.	Cr=S _D /S _R	$\sigma_{f,x}$	$\sigma_{f,y}$	σς	θ	Stato	w	Af _x	$cf_{x,Eq}$	Af _y	$\mathbf{cf}_{\mathbf{y},\mathbf{Eq}}$	M _x	M _y	M _{xy}	M ₁₁	M ₂₂	α
elemento nodi 496 500	4	117	0.636	1171	98.1	88.1	55.33	NON Fessurato	0	40.2	6	40.21	6	11366.9	22163.13	18830.9	19814.3	30610.6	21.6
elemento nodi 458 461	4	117	0.682	353.5	360.1	101	55.26	NON Fessurato	0	40.2	6	40.21	6	3514.76	31991.55	- 19491.9	6385.31	41891.6	24.1
elemento nodi 558 561	4	117	0.67	523.5	283	82.1	47.69	NON Fessurato	0	80.4	6	80.42	6	2261.05	10472.52	21623.6	18435.7	26647.2	35.4

Verifiche Verifiche Flessione SLE Frequenti

Propietà dei materiali

Acciaio

• σ 4500.0 [kg/cm²]

Calcestruzzo

• σ 290.5 [kg/cm²]

Elementi più sollecitati

Intradosso

Nodi	Sez.	Comb.	Cr=S _D /S _R	σ _{f,x}	$\sigma_{f,y}$	σς	θ	Stato	w	Af _x	cf _{x,Eq}	Af _y	cf _{y,Eq}	M _x	M _y	M _{xy}	M ₁₁	M ₂₂	α
elemento nodi 496 500	4	172	0.285	111.5	460.8	17.8	33.94	Fessurato	0.072	40.2	6	40.21	6	3820.93	8813.67	8474.23	8073.44	13066.2	24
elemento nodi 501 503	4	150	0.34	534.4	818	23.6	40.52	Fessurato	0.161	40.2	6	40.21	6	1758.88	9846.54	10494.4	- 5443.86	17049.3	32.9
elemento nodi 511 515	4	172	0.353	126.9	354.4	33.4	39.19	Fessurato	0.041	80.4	6	80.42	6	3463.19	9072.26	- 11456.8	10254.6	15863.7	28.9

estradosso

Nodi	Sez.	Comb.	Cr=S _D /S _R	$\sigma_{f,x}$	$\sigma_{f,y}$	σς	θ	Stato	w	Af _x	$cf_{x,Eq}$	Af _y	$\mathbf{cf}_{\mathbf{y},\mathbf{Eq}}$	M _x	M _y	M _{xy}	M ₁₁	M ₂₂	α
elemento nodi 496 500	4	172	0.285	34.5	151.3	31.7	57.54	Fessurato	0.005	40.2	6	40.21	6	3820.93	8813.67	8474.23	8073.44	13066.2	24
elemento nodi 501 503	4	150	0.34	-35.4	- 155.2	46.9	50.96	Fessurato	0	40.2	6	40.21	6	1758.88	9846.54	10494.4	- 5443.86	17049.3	32.9
elemento nodi 511 515	4	172	0.353	149.1	-39.7	39.1	51.47	Fessurato	0.017	80.4	6	80.42	6	3463.19	9072.26	11456.8	10254.6	15863.7	28.9

Verifiche Verifiche Flessione SLE Quasi Permanenti

Propietà dei materiali

Acciaio

• σ 4500.0 [kg/cm²]

Calcestruzzo

• σ 130.7 [kg/cm²]

Elementi più sollecitati

Intradosso

Nodi	Sez.	Comb.	Cr=S _D /S _R	$\sigma_{f,x}$	$\sigma_{\text{f,y}}$	σς	θ	Stato	w	Af _x	$cf_{x,Eq}$	Af _y	$\mathbf{cf}_{\mathbf{y},\mathbf{Eq}}$	M _x	M _y	M _{xy}	M ₁₁	M ₂₂	α
elemento nodi 513 516	4	179	0.151	24.9	70.2	6.4	28.23	NON Fessurato	0	40.2	6	40.21	6	1993.32	5652.88	4479.86	4059.64	7719.19	22.4
elemento nodi 501 503	4	179	0.178	9.8	65.4	5.6	36.24	NON Fessurato	0	40.2	6	40.21	6	793	5259.29	5491.14	2901.72	8954.01	32.3
elemento nodi 511 515	4	179	0.185	27.7	47.7	9.4	34.23	NON Fessurato	0	80.4	6	80.42	6	-2691.4	4706.55	- 5947.04	- 5995.97	8011.12	27.3

estradosso

Nodi	Sez.	Comb.	Cr=S _D /S _R	$\sigma_{f,x}$	$\sigma_{\text{f,y}}$	σς	θ	Stato	w	Af _x	$cf_{x,Eq}$	Af _y	$\mathbf{cf}_{\mathbf{y},\mathbf{Eq}}$	M _x	M _y	M _{xy}	M ₁₁	M ₂₂	α
elemento nodi 513	4	179	0.151	24.5		-11	61.76	NON	0	40.2	6	40.21	6	-	5652.88	-	-	7719.19	22.4
516		2,3	0.252		70.9		02.70	Fessurato			Ŭ			1993.32	3032.00	4479.86	4059.64	,,13.13	

elemento nodi 50	 4	179	0.178	10.3	66.2	13.2	53.76	NON Fessurato	0	40.2	6	40.21	6	793	5259.29	- 5491.14	- 2901.72	8954.01	32.3
elemento nodi 51 51	 4	179	0.185	27.1	48.3	11.4	55.77	NON Fessurato	0	80.4	6	80.42	6	-2691.4	4706.55	5947.04	5995.97	8011.12	27.3

2.3 Verifica ciabatta di fondazione sp 80

Verifiche Verifiche Flessione SLU

Propietà dei materiali

Acciaio

- f_{vd} 3913.0 [kg/cm²]
- $\bullet~\epsilon_{ud}~67.50~\%$
- ϵ_{yd} 1.86 ‰

Calcestruzzo

- f_{cd} 164.6 [kg/cm²]
- ε_{c2} -2.00 ‰
- ε_{cu} -3.50 ‰
- f_{ctd} 13.2 [kg/cm²]
- $\bullet~\epsilon_{ctd}~0.08~\%$
- E_{cm} 164616.7 [kg/cm²]

Elementi più sollecitati

Intradosso

Nodi	Sez.	Comb.	Cr=S _D /S _R	ε _{f,x} ‰	ε _{f,y} ‰	ε _{c,1} ‰	ε _{c,2} ‰	Af _x	$cf_{x,Eq}$	Af _y	cf _{y,Eq}	M _{xx}	M _{yy}	M _{xy}	M ₁₁	M ₂₂	α
elemento nodi 162 166	2	29	0.786	1.061	5.137	9.148	2.528	30.79	6	30.8	6	- 19147	37827	31318.6	32996.1	51676.38	21.25
elemento nodi 124 127	2	29	0.854	1.781	8.653	13.2	1.729	30.79	6	30.8	6	3689.2	48547.3	32133.4	13068.7	65305.25	24.74
elemento nodi 224 227	2	29	0.716	0.876	1.173	5.229	3.108	61.58	6	61.6	6	- 1589.1	19670.6	38656.6	31050.8	49132.22	35.91

estradosso

Nodi	Sez.	Comb.	Cr=S _D /S _R	ε _{f,x} ‰	ε _{f,y} ‰	ε _{c,1} ‰	ε _{c,2} ‰	Af _x	$cf_{x,Eq}$	Af _y	cf _{y,Eq}	M _{xx}	M _{yy}	M _{xy}	M ₁₁	M ₂₂	α
elemento nodi 162 166	2	29	0.786	2.011	0.197	5.286	-3.5	30.79	6	30.8	6	- 19147	37827	31318.6	32996.1	51676.38	21.25
elemento nodi 124 127	2	29	0.854	0.829	0.172	3.123	-3.5	30.79	6	30.8	6	3689.2	48547.3	- 32133.4	13068.7	65305.25	24.74
elemento nodi 224 227	2	29	0.716	0.841	0.544	4.815	-3.5	61.58	6	61.6	6	- 1589.1	19670.6	- 38656.6	31050.8	49132.22	35.91

Verifiche Verifiche Flessione SLE Rare

Propietà dei materiali

Acciaio

• σ 3600.0 [kg/cm²]

Calcestruzzo

• σ 174.3 [kg/cm²]

Elementi più sollecitati

Intradosso

Nodi	Sez.	Comb.	Cr=S _D /S _R	σ _{f,x}	$\sigma_{f,y}$	σς	θ	Stato	w	Af _x	cf _{x,Eq}	Af _y	cf _{y,Eq}	M _x	M _y	M _{xy}	M ₁₁	M ₂₂	α
elemento nodi 162 166	2	119	0.546	654.4	1848	- 57.5	- 35.44	NON Fessurato	0	30.8	6	30.79	6	13171.7	26186.73	21818.2	22874.5	35889.6	21.4
elemento nodi 124 127	2	119	0.596	1322	2353	37.3	38.26	NON Fessurato	0	30.8	6	30.79	6	2023.24	33781.35	22455.8	9600.58	45405.2	24.6
elemento nodi 224 227	2	119	0.499	569.4	823.8	58.7	42.24	NON Fessurato	0	61.6	6	61.58	6	1809.42	13633.35	26908.2	22082.1	33906.1	35.6

estradosso

Nodi	Sez.	Comb.	Cr=S _D /S _R	$\sigma_{f,x}$	$\sigma_{\text{f,y}}$	σς	Φ	Stato	w	Af _x	$\mathrm{cf}_{\mathrm{x,Eq}}$	Af _y	$\mathbf{cf}_{\mathbf{y}, \mathbf{Eq}}$	M _x	M _y	M _{xy}	M ₁₁	M ₂₂	α
elemento nodi 162 166	2	119	0.546	1089	74.1	69.1	56.79	NON Fessurato	0	30.8	6	30.79	6	13171.7	26186.73	21818.2	22874.5	35889.6	21.4
elemento nodi 124 127	2	119	0.596	167.1	348.9	- 75.6	56.85	NON Fessurato	0	30.8	6	30.79	6	2023.24	33781.35	22455.8	9600.58	45405.2	24.6
elemento nodi 224 227	2	119	0.499	506.8	270.1	- 65.1	48.13	NON Fessurato	0	61.6	6	61.58	6	1809.42	13633.35	26908.2	22082.1	33906.1	35.6

Verifiche Verifiche Flessione SLE Frequenti

Propietà dei materiali

Acciaio

• σ 4500.0 [kg/cm²]

Calcestruzzo

• σ 290.5 [kg/cm²]

Elementi più sollecitati

Intradosso

Nodi	Sez.	Comb.	Cr=S _D /S _R	$\sigma_{f,x}$	$\sigma_{\text{f,y}}$	σς	θ	Stato	w	Af _x	$cf_{x,Eq}$	Af _y	cf _{y,Eq}	M _x	M _y	M _{xy}	M ₁₁	M ₂₂	α
elemento nodi 179 182	2	174	0.234	-48.2	109.6	-8	23.51	Fessurato	0.007	30.8	6	30.79	6	-5902.31	13342.54	8618.18	9197.47	16637.7	18.5
elemento nodi 184 189	2	152	0.285	616.2	892.9	-4.4	40.01	Fessurato	0.118	30.8	6	30.79	6	10886.41	18670.82	- 7597.54	6242.11	23315.1	42.5
elemento nodi 177 181	2	174	0.237	-25.9	75.9	10.6	- 34.25	Fessurato	0.005	61.6	6	61.58	6	-3912.84	10262.69	12807.3	11462.8	17812.7	28.7

estradosso

Nodi	Sez.	Comb.	Cr=S _D /S _R	$\sigma_{\text{f,x}}$	$\sigma_{\text{f,y}}$	σς	θ	Stato	w	Af _x	$cf_{x,Eq}$	Af _y	$\mathbf{cf}_{\mathbf{y}, \mathbf{Eq}}$	M _x	M _y	M _{xy}	M ₁₁	M ₂₂	α
elemento nodi 179 182	2	174	0.234	47.8	110.2	13.7	66.49	NON Fessurato	0	30.8	6	30.79	6	-5902.31	13342.54	8618.18	9197.47	16637.7	18.5
elemento nodi 184 189	2	152	0.285	128.9	213.9	39.5	51.59	NON Fessurato	0	30.8	6	30.79	6	10886.41	18670.82	7597.54	6242.11	23315.1	42.5
elemento nodi 177 181	2	174	0.237	26.2	-74.3	-15	55.77	NON Fessurato	0	61.6	6	61.58	6	-3912.84	10262.69	12807.3	11462.8	17812.7	28.7

Verifiche Verifiche Flessione SLE Quasi Permanenti

Propietà dei materiali

Acciaio

• σ 4500.0 [kg/cm²]

Calcestruzzo

• σ 130.7 [kg/cm²]

Elementi più sollecitati

Intradosso

Nodi	Sez.	Comb.	Cr=S _D /S _R	$\sigma_{f,x}$	$\sigma_{f,y}$	σς	θ	Stato	w	Af _x	cf _{x,Eq}	Af _y	cf _{y,Eq}	M _x	M _y	M _{xy}	M ₁₁	M ₂₂	α
elemento nodi 179 182	2	180	0.133	20.6	56.6	4.4	26.47	NON Fessurato	0	30.8	6	30.79	6	- 2523.49	6953.17	- 5243.97	- 4852.76	9282.44	21.6
elemento nodi 184 189	2	179	0.164	52.6	89.3	0	-32.7	NON Fessurato	0	30.8	6	30.79	6	6465.34	10983.2	4127.26	4019.26	13429.3	41.7
elemento nodi 177 181	2	180	0.131	16.9	39.5	-6	33.88	NON Fessurato	0	61.6	6	61.58	6	2390.54	5662.77	-7067.2	6497.72	9769.95	28.4

estradosso

Nodi	Sez.	Comb.	Cr=S _D /S _R	$\sigma_{f,x}$	$\sigma_{\text{f,y}}$	σς	Φ	Stato	w	Af _x	$cf_{x,Eq}$	Af _y	cf _{y,Eq}	M _x	M _y	M _{xy}	M ₁₁	M ₂₂	α
elemento nodi 179 182	2	180	0.133	20.4	-57	-7.7	63.53	NON Fessurato	0	30.8	6	30.79	6	2523.49	6953.17	5243.97	4852.76	9282.44	21.6
elemento nodi 184 189	2	179	0.164	52.6	89.3	13.4	57.3	NON Fessurato	0	30.8	6	30.79	6	6465.34	10983.2	4127.26	4019.26	13429.3	41.7

Nota tecnica sostituzione	micronali con nali	cottovia osistor	ata al km 0 : 77E 1E
NOTA TECNICA SOSTITUZIONE	a microbali con bali.	– somovia esistei	TE ALKIII X+//5 15

elemento nodi 177	2	180	0.131	16.6	- 39 9	-8.1	56.12	NON Fessurato	0	61.6	6	61.58	6	2390 54	5662.77	-7067.2	- 6497 72	9769.95	28.4	
101					39.9			ressurato						2390.34			0497.72	1 '		

2.4 Verifiche contrafforte

Pilastro: 153/699 / L 2.300[m] / Sezione 2 B 100 [cm]H 70 [cm]

Af: $4 \otimes 28 + 16 \otimes 22$ Af=85.45 [cm²] < **1** ϕ **28** x **4** V + **5** ϕ **22** x **2** B + **3** ϕ **22** x **2** H >

Staffe: ø 12 6br.x4br./15.0' x 230.0

Verifiche a Presso-Flessione S.L.U.

Nodo	Comb	N [kg]	M ₁₂ [kgm]	M ₁₃ [kgm]	Sd/Sr
153	29	76460	45446	35995	0.70
699	29	76460	33027	54497	0.66

Verifiche a Taglio

Da	Α	V_{d12}	V_{Rd12}	V_{d13}	V_{Rd13}	Staffe
[m]	[m]	[kg]	[kg]	[kg]	[kg]	Statie
0.125	2.425	4870	188554	8333	193282	ø 12 6br.x4br./15.0'

Verifiche a Presso-Flessione S.L.E.

Nodo	Comb	N [kg]	M ₁₂ [kgm]	M ₁₃ [kgm]	σ [kg/cm²]
	Con	nbinaz	ioni Ra	re	
153	Ft. 119	50522	30765	25319	2748.6
	sfc 119	50522	30765	25319	-841.4
	sc Max 119	50522	30765	25319	-78.7
	sc Med 91	45113	26417	20732	0.0
699	Ft. 119	50522	22265	36593	2755.3
	sfc 119	50522	22265	36593	-880.7
	sc Max 119	50522	22265	36593	-79.7
	sc Med 91	45113	18894	30948	0.0
	Combi	inazior	ni Freq	uenti	
153	Ft. 157	6388	6710	9484	652.9
	sfc 174	-1962	5549	13103	-292.4
	sc Max 174	-1962	5549	13103	-24.5
	sc Med 174	-1962	5549	13103	-8.2
699	Ft. 157	6388	4054	5728	431.2
	sfc 157	6388	4054	5728	-151.8
	sc Max 157	6388	4054	5728	-13.6
	sc Med 174	-1962	3166	3877	-3.3
	Combinazi	oni Qu	ıasi Pe	rmanei	nti
153	Ft. 180	-4088	1674	7041	246.1
	sfc 180	-4088	1674	7041	-130.4
	sc Max 180	-4088	1674	7041	-10.7
	sc Med 180	-4088	1674	7041	-3.9
699	Ft. 179	-7904	-876	-2804	39.3
	sfc 179	-7904	-876	-2804	-57.2
	sc Max 179	-7904	-876	-2804	-4.3
	sc Med 179	-7904	-876	-2804	-1.7

Pilastro: 487/700 / L 2.300[m] / Sezione 2 B 100 [cm]H 70 [cm]

Af: $4 \otimes 28 + 16 \otimes 22$ Af=85.45 [cm²] < $1\phi 28 \times 4 V + 5\phi 22 \times 2 B + 3\phi 22 \times 2 H >$

Staffe: ø 12 6br.x4br./15.0' x 230.0

Verifiche a Presso-Flessione S.L.U.

Nodo	Comb	N [kg]	IVI ₁₂ [kgm]	NI ₁₃ [kgm]	Sd/Sr
487	27	73031	46615	39172	0.71
700	27	73031	30933	47248	0.60

Verifiche a Taglio

Da	Α	V_{d12}	V_{Rd12}	V_{d13}	V_{Rd13}	Staffe
[m]	[m]	[kg]	[kg]	[kg]	[kg]	Statie
0.125	2.425	6151	188554	4869	193282	ø 12 6br.x4br./15.0'

Verifiche a Presso-Flessione S.L.E.

Nodo	Comb	N [kg]	M ₁₂ [kam]	M ₁₃ [kam]	σ [kg/cm²]
		- 5-		. , .	įg, <u>1</u>
_			ioni Ra	_	1
487	Ft. 117				2820.8
	sfc 117				-900.8
	sc Max 117				-83.3
	sc Med 91	43007	27287	22982	0.0
700	Ft. 117	48368	20894	31727	2518.6
	sfc 117	48368	20894	31727	-785.2
	sc Max 117	48368	20894	31727	-71.6
	sc Med 91	43007	17806	26874	0.0
	Combi	inazior	ni Freq	uenti	
487	Ft. 172	-662	6787	14054	701.8
	sfc 172	-662	6787	14054	-330.5
	sc Max 172	-662	6787	14054	-27.8
	sc Med 172	-662	6787	14054	-9.3
700	Ft. 157	6441	3812	4576	386.9
	sfc 157	6441	3812	4576	-129.1
	sc Max 157	6441	3812	4576	-11.7
	sc Med 172	-662	3393	3463	-3.2
	Combinazi	oni Qu	ıasi Pe	rmane	nti
487	Ft. 180	-3344	2198	7199	276.6
	sfc 180	-3344	2198	7199	-143.5
	sc Max 180	-3344	2198	7199	-11.8
	sc Med 180	-3344	2198	7199	-4.1
700	Ft. 179	-7137	-762	-2939	46.3
	sfc 179	-7137	-762	-2939	-57.1
	sc Max 179	-7137	-762	-2939	-4.4
	sc Med 179	-7137	-762	-2939	-1.7

2.5 Verifiche a taglio

В	Н				A _{s1}	h _{As1}				A' _{s1}	h _{A's1}
[mm]	[mm]				[mm ²]	[mm]				[mm ²]	[mm]
1000	800	5	ф	28	3079	718	5	ф	28	3079	82
1000	600	5	φ	32	4021	516	5	ф	32	4021	84

Ī								
L	d	K	V_{min}	$\sigma_{\sf cp}$	$\alpha_{\sf cw}$	A _{s tot}	ρ_l	V_{rdU}
	[mm]	[]		[N/mm ²]	[N/mm ²]	[mm ²]	[]	[kN]
	718	1.53	0.36	0.0000	1.0000	3079	0.0043	305.14
	516	1.62	0.39	0.0000	1.0000	4021	0.0078	284.22

elementi armati a taglio

ф	m	A_{sw}	S	α	ctg θ	V_{rsd}	V_{rcd}	V_{Rd}
[mm]	[]	[mm²]	[mm]	[°]	[]	[kN]	[kN]	[kN]
16	5	1,005	200	90	1.785	2,268.21	2,268.21	2,268.21
20	5	1,571	200	90	1.295	1,848.91	1,848.91	1,848.91

I valori resistenti risultano superiori a quelli sollecitanti.

3 Verifica dei pali di fondazione

Nel seguente paragrafo si prendono in esame le verifiche di capacità portante verticale e orizzontale dei pali e micropali di fondazione previsti rispettivamente sulle pile e spalle.

Inoltre a partire dal modello di calcolo strutturale e riportate a quota intradosso fondazione, si determinano le azioni sui pali e micropali.

3.1 Curve di capacità portante a compressione e trazione

Con riferimento a quanto riportato nell'elaborato PEGTRT03_31_4137 "Relazione di calcolo portanza pali", si riportano di seguito le verifiche di capacità portante dei pali e micropali, in particolare si riportano le curve di capacità portante a compressione e a trazione.

La stratigrafia e parametri geotecnici di progetto sono:

- UNITA' LSA da p.c. a 13.0 m

 γ = 20 kN/m³ peso di volume naturale

 φ' = 26 $^{\circ}$ angolo di resistenza al taglio

c' = 0 ÷10 kPa coesione drenata

cu = 100 kPa resistenza al taglio in condizioni non drenate

E' = 15÷25 MPa modulo di deformazione elastico

- UNITA' AG da 13.0 m fino alla profondità massima indagata

 γ = 20.5 kN/m³ peso di volume naturale

 φ' = 26 ° angolo di resistenza al taglio

c' = 20 kPa coesione drenata

cu = 100÷200 kPa per z < 20.0 m resistenza al taglio in condizioni non drenate

cu = 400 kPa per z > 20.0 m

resistenza al taglio in condizioni non drenate

E' = 50÷ 150 MPa

modulo di deformazione elastico

Dove: z = profondità da p.c..

Il livello della falda viene assunto a 3.5 m da p.c..

Nella seguente tabella vengono riassunti i parametri adottati per il dimensionamento dei micropali di fondazione delle spalle. (*) Sulle spalle si considera anche l'altezza media del rilevato stradale pari a 5.0 m e si trascura la portanza dei micropali in tale tratto.

	Profondità	Prof.	Prof.		•	~~	
Unità	Profondita	falda	Testa palo	γ	Cu	αau_{lim}	
	[m]	[m]	[m]	kN/m³	kPa	kPa	
LSA	0.0 ÷ 13.0(18.0)*			20.0	100	100	
AG	13.0 ÷20.0	3.5	2.0	20.5	200 → 300	120	
AG	> 20.0			20.5	400	120	

γ = peso dell'unità di volume

SPALLE - Curve di capacità portante del micropalo a compressione

	A1 + M1 + I	R1		A2 + M1 +	R2			A1 + M1 + F	₹3
Lp	QII	Qd	Lp	QII	Qd		Lp	QII	Qd
[m]	[kN]	[kN]	[m]	[kN]	[kN]		[m]	[kN]	[kN]
						_			
8,0	75,4	44,4	8,0	75,4	30,5		8,0	75,4	38,5
9,0	150,8	88,7	9,0	150,8	61,1		9,0	150,8	76,9
10,0	226,2	133,1	10,0	226,2	91,6		10,0	226,2	115,4
11,0	301,6	177,4	11,0	301,6	122,1		11,0	301,6	153,9
12,0	377,0	221,8	12,0	377,0	152,6		12,0	377,0	192,3
13,0	452,4	266,1	13,0	452,4	183,2		13,0	452,4	230,8
14,0	527,8	310,5	14,0	527,8	213,7		14,0	527,8	269,3
15,0	603,2	354,8	15,0	603,2	244,2		15,0	603,2	307,7
16,0	678,6	399,2	16,0	678,6	274,7		16,0	678,6	346,2
17,0	754,0	443,5	17,0	754,0	305,3		17,0	754,0	384,7
18,0	829,4	487,9	18,0	829,4	335,8		18,0	829,4	423,2
19,0	919,9	541,1	19,0	919,9	372,4		19,0	919,9	469,3
20,0	1010,3	594,3	20,0	1010,3	409,0		20,0	1010,3	515,5
21,0	1100,8	647,5	21,0	1100,8	445,7		21,0	1100,8	561,6
22,0	1191,3	700,8	22,0	1191,3	482,3		22,0	1191,3	607,8
23,0	1281,8	754,0	23,0	1281,8	518,9		23,0	1281,8	654,0
24,0	1372,2	807,2	24,0	1372,2	555,6		24,0	1372,2	700,1
25,0	1462,7	860,4	25,0	1462,7	592,2		25,0	1462,7	746,3

c_u = coesione non drenata

 $[\]alpha \tau_{\text{lim}}$ = tensione tangenziale ultima

SPALLE - Curve di capacità portante del micropalo a trazione

					1	1	ı		
	A1 + M1 + F	₹1		A2 + M1 + F	₹2			A1 + M1 + F	3
Lp	QII	Qd	Lp	QII	Qd		Lp	QII	Qd
[m]	[kN]	[kN]	[m]	[kN]	[kN]		[m]	[kN]	[kN]
7,0	75,4	44,4	7,0	75,4	27,7		7,0	75,4	35,4
8,0	150,8	88,7	8,0	150,8	55,4		8,0	150,8	70,8
9,0	226,2	133,1	9,0	226,2	83,2		9,0	226,2	106,2
10,0	301,6	177,4	10,0	301,6	110,9		10,0	301,6	141,6
11,0	377,0	221,8	11,0	377,0	138,6		11,0	377,0	177,0
12,0	452,4	266,1	12,0	452,4	166,3		12,0	452,4	212,4
13,0	527,8	310,5	13,0	527,8	194,0		13,0	527,8	247,8
14,0	603,2	354,8	14,0	603,2	221,8		14,0	603,2	283,2
15,0	678,6	399,2	15,0	678,6	249,5		15,0	678,6	318,6
16,0	754,0	443,5	16,0	754,0	277,2		16,0	754,0	354,0
17,0	829,4	487,9	17,0	829,4	304,9		17,0	829,4	389,4
18,0	904,8	532,2	18,0	904,8	332,6		18,0	904,8	424,8
19,0	995,3	585,4	19,0	995,3	365,9		19,0	995,3	467,3
20,0	1085,7	638,7	20,0	1085,7	399,2		20,0	1085,7	509,7
21,0	1176,2	691,9	21,0	1176,2	432,4		21,0	1176,2	552,2
22,0	1266,7	745,1	22,0	1266,7	465,7		22,0	1266,7	594,7
23,0	1357,2	798,3	23,0	1357,2	499,0		23,0	1357,2	637,2
24,0	1447,6	851,6	24,0	1447,6	532,2		24,0	1447,6	679,6
25,0	1538,1	904,8	25,0	1538,1	565,5		25,0	1538,1	722,1

Per il dimensionamento dei pali di fondazione D= 600 mm delle pile, vengono utilizzati i seguenti parametri.

Unità	Profondità	Prof. falda	Prof. Testa palo	γ	c _u /φ	τ _{us,max}	\mathbf{Q}_{bl}	q _{ub}	τι
	[m]	[m]	[m]	kN/m ³	kPa [°]	kPa	kPa	kPa	
LSA(1)	0.0 ÷ 7.0			20.0	50	100		9 c _u +γh	$\tau_i = \alpha \cdot c_u$
Lsa (2)	7.0 ÷ 13.0	3.5	1.5	20.0	100	100			
AG (1)	13.0 ÷ 20.0			20.5	200 → 300	120	3000		$\tau_i = \beta \cdot \sigma'_v$
AG (2)	> 20.0			20.5	400	120	4500		

γ = peso dell'unità di volume

A1_M1_R1 a Compressione

Lp	Q11	Qbl	Wp	Qu	Qd
m	kn	kn	kN	kn	kn
1.00	41.	127.	1.	167.	98.
1.50	70.	127.	2.	195.	114.

 c_u = coesione non drenata

 $[\]tau_{us,max}$ = tensione tangenziale ultima massima

q_{ub} = pressione ultima di base

 $[\]beta$ = coefficiente empirico

	na zolognetta, ar kini te	,, c (55,5 de: <u>-</u> 50116 <u>-</u>	ormeolo manga	iaro incluso, compresi		
		Nota tecnica so	stituzione mid	ropali con pali -	- sottovia esiste	nte al km 8+775.15
2.00	102.	127.	3.	227.	132.	
2.50	137.	127	1	261	152.	
3.00	175.	127.	4	298.	173.	
3.50	212.	127	5	335	195.	
4.00	250.	127	6.	335. 372.	216.	
4.50	288.	127	6.	409.	238.	
5.00	325.	127	7	446.	259.	
5.50	364.	127.	γ.	484.	281.	
6.00	411.	163	4. 5. 6. 7. 8.	565.	329.	
6.50	458.	200.	9.	649.	378.	
7.00	507.	236.	10.	733.	427.	
7.50	555.	272.	11.	817.	476.	
8.00	555. 60E	2/2.	11.	017.	526.	
8.50	605. 654.	308. 311.	12.	902. 953.	556.	
9.00		311. 21 <i>1</i>	13.			
9.50	705. 755.	31 4 . 317	13. 12	1006.	586.	
10.00	/33. 906	31/. 310	13. 14.	1030. 1113	617.	
	806.	319. 333	14. 15.	1112. 1165	648.	
10.50	858.	314. 317. 319. 322. 325. 328.	15.	1058. 1112. 1165. 1220.	679.	
11.00	910.	323. 220	16.	122U.	711.	
11.50	966.	328.	16.	1278.	745.	
12.00	1047.	400.	17.	1430.	834.	
12.50	1134.	472.	18.	1588.	927.	
13.00	1224.	544.	18.	1749.	1021.	
13.50	1316.	616.	<u> 1</u> 9.	1913.	1117.	
14.00	1411.	688.	20.	2079.	1215.	
14.50	1509.	709.	20.	2198.	1284.	
15.00	1610.	730.	21. 22. 23.	2319. 2442.	1355.	
15.50	1713.	751. 772.	22.	2442.	1428.	
16.00	1819.	772.	23.	2569.	1502.	
16.50	1928.	793.	23.	2698.	1577.	
17.00	2040.	814.	24.	2830.	1655.	
17.50	2153.	835.	25.	2963.	1733.	
18.00	2266.	848.	25.	3088.	1806.	
18.50	2379.	848.	26.	3201.	1872.	
19.00	2492.	908.	27.	3373.	1973.	
19.50	2605.	968.	28.	3545.	2074.	
20.00	2718.	1027.	28.	3717.	2175.	

A2_M1_R2 a Compressione

Lp	Q11	Qb1	Wp	Qu	Qd
m	kn	kN	kN	kn	kn
1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 9.50 10.00 10.50 11.00	41. 70. 102. 137. 175. 212. 250. 288. 325. 364. 411. 458. 507. 555. 605. 654. 705. 755. 806. 858. 910.	127. 127. 127. 127. 127. 127. 127. 127. 127. 127. 127. 128. 200. 236. 272. 308. 311. 314. 317. 319. 322. 325. 328.	1. 2. 3. 4. 4. 5. 6. 7. 8. 9. 10. 11. 11. 12. 13. 14. 15. 16.	167. 195. 227. 261. 298. 335. 372. 409. 446. 484. 565. 649. 733. 817. 902. 953. 1006. 1058. 1112. 1165. 1220. 1278.	59. 70. 83. 96. 110. 125. 140. 154. 169. 184. 214. 245. 277. 308. 340. 361. 381. 402. 423. 444. 465.
12.00	1047.	400.	17.	1430.	545.
12.50	1134.	472.	18.	1588.	605.

		Nota tecnica so:	stituzione mi	cropali con pali -	- sottovia esiste	nte al km 8+775.15
13.00	1224.	544.	18.	1749.	665.	
13.50	1316.	616.	19.	1913.	727.	
14.00	1411.	688.	20.	2079.	790.	
14.50	1509.	709.	20.	2198.	836.	
15.00	1610.	730.	21.	2319.	883.	
15.50	1713.	751.	22.	2442.	932.	
16.00	1819.	772.	23.	2569.	981.	
16.50	1928.	793.	23.	2698.	1032.	
17.00	2040.	814.	24.	2830.	1083.	
17.50	2153.	835.	25.	2963.	1136.	
18.00	2266.	848.	25.	3088.	1185.	
18.50	2379.	848.	26.	3201.	1230.	
19.00	2492.	908.	27.	3373.	1296.	
19.50	2605.	968.	28.	3545.	1362.	
20.00	2718.	1027.	28.	3717.	1428.	

A1_M1_R3 a Compressione

A1_M1_R1 a Trazione

Lp	Q11	Qb1	Wp	Qu	Qd
m	kn	kn	k'n	ŔŇ	ŘΝ

A2_M1_R2 a Trazione

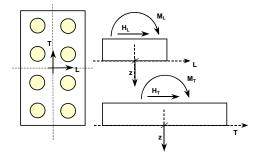
Lp	Q11	Qb1	Wp	Qu	Qd
m	kn	kN	kN	kN	kn
1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00	41. 70. 102. 137. 175. 212. 250. 288. 325. 364. 411. 458. 507. 555. 605. 654. 705. 755.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	-1234456678910111213.	43. 72. 105. 141. 179. 217. 256. 294. 333. 372. 419. 468. 517. 566. 616. 666. 717. 769.	17. 28. 40. 54. 68. 83. 98. 112. 127. 142. 159. 178. 196. 215. 234. 253. 272.
10.00	806.	0.	-14.	820.	311.
10.50	858.	0.	-15.	873.	330.
11.00	910.	0.	-16.	926.	350.
11.50	966.	0.	-16.	983.	372.

Nota tecnica so	ostituzione m	icropali con pali –	sottovia esiste	ente al km 8+775.15
0.	-17.	1064.	402.	
0.	-18.	1152.	435.	
0.	-18.	1242.	468.	
0.	-19.	1335.	503.	
0.	-20.	1431.	539.	
0.	-20.	1530.	575.	
0.	-21.	1631.	613.	
0.	-22.	1735.	652.	
0.	-23.	1842.	691.	
0.	-23.	1951.	732.	
0.	-24.	2064.	774.	
0.	-25.	2177.	816.	
0.	-25.	2291.	858.	
0.	-26.	2405.	901.	
0.	-27.	2519.	943.	
0.	-28.	2633.	985.	
0.	-28.	2746.	1028.	
	0. 0. 0. 0. 0. 0. 0. 0. 0.	017. 018. 018. 019. 020. 020. 021. 022. 023. 023. 024. 025. 025. 026. 027. 028.	0. -17. 1064. 0. -18. 1152. 0. -18. 1242. 0. -19. 1335. 0. -20. 1431. 0. -20. 1530. 0. -21. 1631. 0. -22. 1735. 0. -23. 1842. 0. -23. 1951. 0. -24. 2064. 0. -25. 2177. 0. -25. 2291. 0. -26. 2405. 0. -27. 2519. 0. -28. 2633.	0. -18. 1152. 435. 0. -18. 1242. 468. 0. -19. 1335. 503. 0. -20. 1431. 539. 0. -20. 1530. 575. 0. -21. 1631. 613. 0. -22. 1735. 652. 0. -23. 1842. 691. 0. -23. 1951. 732. 0. -24. 2064. 774. 0. -25. 2177. 816. 0. -25. 2291. 858. 0. -26. 2405. 901. 0. -27. 2519. 943. 0. -28. 2633. 985.

A1_M1_R3 a Trazione

Lp m	Q11 kn	Qb1 kN	Wp kn	Qu kn	Qd kn
1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 9.50 10.00 11.00 11.50 12.50 13.50 14.00 15.50 16.50 17.00 17.50 18.00 19.50 19.50 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.50 10.0	41. 70. 102. 137. 175. 212. 250. 288. 325. 364. 411. 458. 507. 555. 605. 654. 705. 755. 806. 858. 910. 966. 1047. 1134. 1224. 1316. 1411. 1509. 1610. 1713. 1819. 1928. 2040. 2153. 2266. 2379. 2492. 2605. 2718.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	-12345678910111213141516171819202122232425262728.	43. 72. 105. 141. 179. 217. 256. 294. 333. 372. 419. 468. 517. 566. 666. 717. 769. 820. 873. 926. 983. 1052. 1242. 1335. 1431. 1530. 1631. 1735. 1842. 1951. 2064. 2177. 2291. 2405. 2519. 2633. 2746.	21. 35. 51. 68. 86. 105. 123. 141. 160. 179. 201. 224. 248. 271. 295. 319. 344. 368. 393. 418. 443. 470. 508. 550. 593. 682. 729. 777. 826. 877. 928. 982. 1035. 1049

3.2 Determinazione delle sollecitazioni sulla palificata


Come accennato in precedenza, il calcolo delle azioni agenti sulle palificate è stato condotto secondo quanto indicato nell'elaborato PEGTRT03_31_4137 ("Relazione di calcolo portanza pali"), considerando le fondazioni come costituite dai micropali e pali incastrati in testa al plinto, assimilato ad un corpo infinitamente rigido. I valori massimi delle sollecitazioni agenti su ciascun palo / micropalo, causati dai carichi applicati, sono stati determinati con il codice di calcolo MAP. Lo studio dell'interazione tra il palo/micropalo, soggetto ai carichi orizzontali, ed il terreno è effettuato ricorrendo alla teoria di Matlock e Reese, che si basa sul noto modello di suolo alla Winkler (elastico-lineare), caratterizzato da un modulo di reazione orizzontale del terreno Emr. Nel caso in esame, si assume un modulo di reazione orizzontale variabile, in funzione della profondità, secondo questa legge:

Prof.	E kN/m ²
.00	30000.0
13.00	30000.0
13.05	60000.0
20.00	90000.0
20.05	120000.0
35.00	120000.0

3.3 Azioni agenti sulle palificate

Nelle seguenti tabelle si riportano le azioni di verifica per il calcolo delle sollecitazioni sui micropali di fondazione. Nela caso in esame, sono state assunte le nuove sollecitazioni riportate nei paragrafi precedenti e qui di seguito riassunte, riferite all'intradosso della fondazione (baricentro della palificata). Il sistema di riferimento l'asse X = L in direzione longitudinale e l'asse Y = T in direzione trasversale, mentre l'asse Z è positivo verso il basso.

La convenzione di segno è schematicamente illustrata nella figura di seguito.

SPALLA SX - FISSA

Azioni Combinate		N	H _t	Hı	M _t	Mı	Mz
		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
SPALLA SX	A1+M1 SLU 01	871	124	345	858	275	179

Azioni Combinate	ilica sostituzione illi	·	1				
AZIOIII COIIIDIIIate		N rizaia	Ht	H _I [kN]	M _t	M _l	M _z
SPALLA SX	A1+M1 SLU 02	[kN]	[kN]			[kNm]	[kNm]
SPALLA SX	A1+M1 SLU 03	737	128	345	657	154	199 237
SPALLA SX	A1+M1 SLU 04	611	136	345	470	39	
SPALLA SX	A1+M1 SLU 05	596	136	345	448	25	239
	A1+M1 SLU 06	583	136	345	429	13	240
SPALLA SX		509	129	345	332	-54	207
SPALLA SX	A1+M1 SLU 07	591	124	345	409	20	182
SPALLA SX	A1+M1 SLU 08	594	124	345	411	23	181
SPALLA SX	A1+M1 SLU 09	597	123	345	413	26	179
SPALLA SX	A1+M1 SLU 10	615	122	345	423	42	169
SPALLA SX	A1+M1 SLU 11	596	124	345	411	25	177
SPALLA SX	A1+M1 SLU 12	970	82	415	892	462	-28
SPALLA SX	A1+M1 SLU 13	791	88	415	624	300	-1
SPALLA SX	A1+M1 SLU 14	623	98	415	373	146	49
SPALLA SX	A1+M1 SLU 15	603	98	415	345	128	52
SPALLA SX	A1+M1 SLU 16	585	99	415	319	112	53
SPALLA SX	A1+M1 SLU 17	487	89	415	189	23	9
SPALLA SX	A1+M1 SLU 18	596	82	415	292	122	-25
SPALLA SX	A1+M1 SLU 19	600	82	415	295	126	-27
SPALLA SX	A1+M1 SLU 20	604	81	415	297	129	-28
SPALLA SX	A1+M1 SLU 21	628	79	415	311	151	-42
SPALLA SX	A1+M1 SLU 22	603	82	415	295	128	-31
SPALLA SX	A1+M1 SLU 23	945	122	345	917	343	270
SPALLA SX	A1+M1 SLU 24	812	126	345	716	222	290
SPALLA SX	A1+M1 SLU 25	686	133	345	528	107	328
SPALLA SX	A1+M1 SLU 26	671	133	345	507	93	329
SPALLA SX	A1+M1 SLU 27	658	134	345	488	81	331
SPALLA SX	A1+M1 SLU 28	584	127	345	390	14	297
SPALLA SX	A1+M1 SLU 29	666	121	345	467	88	273
SPALLA SX	A1+M1 SLU 30	669	121	345	470	91	271
SPALLA SX	A1+M1 SLU 31	672	121	345	471	94	270
SPALLA SX	A1+M1 SLU 32	690	119	345	482	110	259
SPALLA SX	A1+M1 SLU 33	671	121	345	470	93	267
SPALLA SX	A1+M1 SLU 34	1044	80	415	951	530	62
SPALLA SX	A1+M1 SLU 35	866	85	415	682	368	89
SPALLA SX	A1+M1 SLU 36	697	95	415	432	214	140
SPALLA SX	A1+M1 SLU 37	677	96	415	403	196	142
SPALLA SX	A1+M1 SLU 38	660	96	415	378	180	144
SPALLA SX	A1+M1 SLU 39	561	87	415	248	91	99
SPALLA SX	A1+M1 SLU 40	670	79	415	350	190	66
SPALLA SX	A1+M1 SLU 41	675	79	415	353	194	64
SPALLA SX	A1+M1 SLU 42	679	79	415	356	197	62
SPALLA SX	A1+M1 SLU 43	703	76	415	370	219	48
SPALLA SX	A1+M1 SLU 44	678	79	415	354	196	59
SPALLA SX	A2+M2 GEO 01	662	108	279	720	251	147
SPALLA SX	A2+M2 GEO 02	549	111	279	549	148	164
SPALLA SX	A2+M2 GEO 03	441	117	279	390	50	197
SPALLA SX	A2+M2 GEO 04	428	118	279	371	39	198
SPALLA SX	A2+M2 GEO 05	417	118	279	355	28	199
SPALLA SX	A2+M2 GEO 06	355	112	279	272	-29	171

	ilica sostituzione illi	1		1	1	ı	
Azioni Combinate		N	H _t	H _I	Mt	M ₁	Mz
ODALLA OV	40.140.050.07	[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
SPALLA SX	A2+M2 GEO 07	424	107	279	338	35	149
SPALLA SX	A2+M2 GEO 08	427	107	279	340	37	148
SPALLA SX	A2+M2 GEO 09	429	107	279	341	39	147
SPALLA SX	A2+M2 GEO 10	445	105	279	350	53	138
SPALLA SX	A2+M2 GEO 11	429	107	279	340	39	145
SPALLA SX	A2+M2 GEO 12	747	71	338	748	411	-32
SPALLA SX	A2+M2 GEO 13	595	76	338	519	273	-9
SPALLA SX	A2+M2 GEO 14	451	85	338	306	142	34
SPALLA SX	A2+M2 GEO 15	434	85	338	281	126	36
SPALLA SX	A2+M2 GEO 16	419	85	338	259	113	37
SPALLA SX	A2+M2 GEO 17	335	77	338	149	37	-1
SPALLA SX	A2+M2 GEO 18	428	71	338	236	121	-29
SPALLA SX	A2+M2 GEO 19	432	71	338	239	125	-31
SPALLA SX	A2+M2 GEO 20	435	70	338	241	127	-32
SPALLA SX	A2+M2 GEO 21	456	69	338	253	146	-44
SPALLA SX	A2+M2 GEO 22	434	71	338	239	127	-35
SPALLA SX	A2+M2 GEO 23	737	105	279	779	319	237
SPALLA SX	A2+M2 GEO 24	623	108	279	608	216	255
SPALLA SX	A2+M2 GEO 25	516	115	279	448	118	287
SPALLA SX	A2+M2 GEO 26	503	115	279	430	107	288
SPALLA SX	A2+M2 GEO 27	492	115	279	414	96	289
SPALLA SX	A2+M2 GEO 28	429	109	279	331	39	261
SPALLA SX	A2+M2 GEO 29	499	105	279	396	103	240
SPALLA SX	A2+M2 GEO 30	502	104	279	398	105	239
SPALLA SX	A2+M2 GEO 31	504	104	279	400	107	237
SPALLA SX	A2+M2 GEO 32	519	103	279	409	121	229
SPALLA SX	A2+M2 GEO 33	503	104	279	399	107	235
SPALLA SX	A2+M2 GEO 34	821	69	338	806	479	58
SPALLA SX	A2+M2 GEO 35	670	73	338	578	341	81
SPALLA SX	A2+M2 GEO 36	526	82	338	364	210	125
SPALLA SX	A2+M2 GEO 37	509	82	338	340	194	126
SPALLA SX	A2+M2 GEO 38	494	83	338	318	181	128
SPALLA SX	A2+M2 GEO 39	410	75	338	207	105	90
SPALLA SX	A2+M2 GEO 40	503	68	338	295	189	62
SPALLA SX	A2+M2 GEO 41	507	68	338	297	193	60
SPALLA SX	A2+M2 GEO 42	510	68	338	299	195	58
SPALLA SX	A2+M2 GEO 43	530	66	338	312	214	46
SPALLA SX	A2+M2 GEO 44	509	68	338	298	195	56
0.7.227.07.	712 1112 020 11	000	00	000	200	100	00
SPALLA SX	SLV 01	470	6	271	77	222	108
SPALLA SX	SLV 01	469	-36	324	6	231	186
SPALLA SX	SLV 02	470	8	257	86	222	97
SPALLA SX	SLV 03	469	-33	310	16	231	175
SPALLA SX	SLV 04	472	65	92	153	17	-74
SPALLA SX	SLV 05	473	74	-20	155	-147	-7 4 -160
SPALLA SX	SLV 00	473	68	50	178	22	-104
SPALLA SX	SLV 07	472	77	-62	180	-143	-104
SPALLA SX	SLV 08	473		-02 -103	82	-327	
SPALLA SX	SLV 10		36		11		-178 100
		472	-6	-50		-319	-100
SPALLA SX	SLV 11	473	38	-117	91	-327	-189

Nota tecnica sostituzione micropali con pali – sottovia esistente al km 8+775.15

Azioni Combinate		N	H _t	Hı	Mt	Mı	Mz
		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
SPALLA SX	SLV 12	472	-3	-64	21	-319	-111
SPALLA SX	SLV 13	469	-75	268	-82	46	187
SPALLA SX	SLV 14	470	-66	156	-80	-118	101
SPALLA SX	SLV 15	469	-71	226	-57	51	157
SPALLA SX	SLV 16	470	-62	114	-56	-114	71

PILA 1

Azioni Combinate		N	Ht	Hı	Mt	Mı	Mz
		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
PILA 1	A1+M1 SLU 01	735	120	0	1157	-1	283
PILA 1	A1+M1 SLU 02	825	114	0	1184	-1	288
PILA 1	A1+M1 SLU 03	996	105	0	1251	-1	303
PILA 1	A1+M1 SLU 04	1005	105	0	1253	-1	304
PILA 1	A1+M1 SLU 05	1011	105	0	1256	-1	304
PILA 1	A1+M1 SLU 06	879	115	0	1205	-1	300
PILA 1	A1+M1 SLU 07	717	124	0	1177	-1	300
PILA 1	A1+M1 SLU 08	706	124	0	1174	-1	299
PILA 1	A1+M1 SLU 09	697	124	0	1171	-1	298
PILA 1	A1+M1 SLU 10	611	124	0	1138	-1	286
PILA 1	A1+M1 SLU 11	700	121	0	1144	-1	284
PILA 1	A1+M1 SLU 12	778	68	0	729	-1	178
PILA 1	A1+M1 SLU 13	899	60	0	766	-1	185
PILA 1	A1+M1 SLU 14	1127	49	0	854	-1	205
PILA 1	A1+M1 SLU 15	1140	48	0	858	-1	206
PILA 1	A1+M1 SLU 16	1148	48	0	861	-1	207
PILA 1	A1+M1 SLU 17	970	62	0	793	-1	201
PILA 1	A1+M1 SLU 18	754	73	0	756	-1	201
PILA 1	A1+M1 SLU 19	740	74	0	752	-1	200
PILA 1	A1+M1 SLU 20	727	74	0	748	-1	199
PILA 1	A1+M1 SLU 21	613	74	0	703	-1	183
PILA 1	A1+M1 SLU 22	731	69	0	712	-1	180
PILA 1	A1+M1 SLU 23	661	122	0	1174	-1	280
PILA 1	A1+M1 SLU 24	751	117	0	1201	-1	285
PILA 1	A1+M1 SLU 25	922	108	0	1267	-1	300
PILA 1	A1+M1 SLU 26	931	108	0	1270	-1	301
PILA 1	A1+M1 SLU 27	937	108	0	1272	-1	302
PILA 1	A1+M1 SLU 28	805	118	0	1222	-1	297
PILA 1	A1+M1 SLU 29	643	127	0	1194	-1	297
PILA 1	A1+M1 SLU 30	632	127	0	1191	-1	297
PILA 1	A1+M1 SLU 31	623	127	0	1188	-1	296
PILA 1	A1+M1 SLU 32	537	127	0	1155	-1	284
PILA 1	A1+M1 SLU 33	626	124	0	1161	-1	282
PILA 1	A1+M1 SLU 34	704	70	0	746	-1	176
PILA 1	A1+M1 SLU 35	825	63	0	782	-1	182
PILA 1	A1+M1 SLU 36	1053	51	0	871	-1	202
PILA 1	A1+M1 SLU 37	1066	51	0	875	-1	204
PILA 1	A1+M1 SLU 38	1074	51	0	878	-1	205
PILA 1	A1+M1 SLU 39	896	64	0	810	-1	198
PILA 1	A1+M1 SLU 40	680	76	0	773	-1	199

	ota tecnica sostituzior	-	ali con pai	I – SOLLOVI			
Azioni Combinate		N	Ht	Hı	Mt	Mı	Mz
		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
PILA 1	A1+M1 SLU 41	665	76	0	769	-1	198
PILA 1	A1+M1 SLU 42	653	77	0	765	-1	197
PILA 1	A1+M1 SLU 43	539	76	0	720	-1	180
PILA 1	A1+M1 SLU 44	657	72	0	729	-1	178
PILA 1	A2+M2 GEO 01	569	104	0	998	-1	245
PILA 1	A2+M2 GEO 02	646	99	0	1021	-1	249
PILA 1	A2+M2 GEO 03	792	92	0	1077	-1	262
PILA 1	A2+M2 GEO 04	800	91	0	1080	-1	262
PILA 1	A2+M2 GEO 05	805	91	0	1082	-1	263
PILA 1	A2+M2 GEO 06	692	100	0	1039	-1	259
PILA 1	A2+M2 GEO 07	554	107	0	1015	-1	259
PILA 1	A2+M2 GEO 08	545	107	0	1013	-1	259
PILA 1	A2+M2 GEO 09	537	108	0	1010	-1	258
PILA 1	A2+M2 GEO 10	464	108	0	981	-1	247
PILA 1	A2+M2 GEO 11	539	105	0	987	-1	246
PILA 1	A2+M2 GEO 12	606	59	0	627	-1	154
PILA 1	A2+M2 GEO 13	709	52	0	658	-1	160
PILA 1	A2+M2 GEO 14	904	42	0	733	-1	177
PILA 1	A2+M2 GEO 15	914	42	0	736	-1	178
PILA 1	A2+M2 GEO 16	921	42	0	739	-1	178
PILA 1	A2+M2 GEO 17	770	53	0	682	-1	173
PILA 1	A2+M2 GEO 18	586	63	0	650	-1	173
PILA 1	A2+M2 GEO 19	573	64	0	646	-1	173
PILA 1	A2+M2 GEO 20	563	64	0	643	-1	172
PILA 1	A2+M2 GEO 21	466	64	0	605	-1	158
PILA 1	A2+M2 GEO 22	566	60	0	612	-1	156
PILA 1	A2+M2 GEO 23	495	106	0	1015	-1	242
PILA 1	A2+M2 GEO 24	572	102	0	1038	-1	246
PILA 1	A2+M2 GEO 25	718	94	0	1094	-1	259
PILA 1	A2+M2 GEO 26	726	94	0	1097	-1	260
PILA 1	A2+M2 GEO 27	731	94	0	1099	-1	261
PILA 1	A2+M2 GEO 28	618	102	0	1056	-1	256
PILA 1	A2+M2 GEO 29	480	110	0	1030	-1 -1	257
PILA 1	A2+M2 GEO 30	471	110	0	1032	-1 -1	256
PILA 1	A2+M2 GEO 31	463	110	0	1029	-1 -1	255
PILA 1	A2+M2 GEO 31	390	110	0	998		245
PILA 1	A2+M2 GEO 32	465	107	0	1004	-1	243
PILA 1	A2+M2 GEO 33			0		-1	
PILA 1	A2+M2 GEO 34 A2+M2 GEO 35	532	61 55		644	-1	152
		635	55 45	0	675	-1 1	157
PILA 1 PILA 1	A2+M2 GEO 36 A2+M2 GEO 37	830	45 45	0	750	-1	174
		840	45 45	0	753 756	-1	175
PILA 1	A2+M2 GEO 38	847	45 56	0	756	-1	176
PILA 1	A2+M2 GEO 39	696	56	0	698	-1	171
PILA 1	A2+M2 GEO 40	512	66	0	666	-1	171
PILA 1	A2+M2 GEO 41	499	66	0	663	-1	170
PILA 1	A2+M2 GEO 42	489	67	0	660	-1	169
PILA 1	A2+M2 GEO 43	392	66	0	622	-1	155
PILA 1	A2+M2 GEO 44	492	63	0	629	-1	153

Nota tecnica sostituzione micropali con pali – sottovia esistente al km 8+775.15

Azioni Combinate		N	Ht	Hı	Mt	Mı	M _z
		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
PILA 1	SLV 01	359	-3	0	-10	-1	-3
PILA 1	SLV 02	359	-7	0	-36	-1	-2
PILA 1	SLV 03	359	-3	0	-11	-1	-3
PILA 1	SLV 04	359	-7	0	-37	-1	-1
PILA 1	SLV 05	359	5	0	37	-1	-4
PILA 1	SLV 06	358	7	0	51	-1	-3
PILA 1	SLV 07	359	4	0	33	-1	-3
PILA 1	SLV 08	359	6	0	46	-1	-1
PILA 1	SLV 09	358	4	0	35	-1	1
PILA 1	SLV 10	358	0	0	9	-1	2
PILA 1	SLV 11	358	4	0	34	-1	1
PILA 1	SLV 12	358	0	0	8	-1	3
PILA 1	SLV 13	359	-9	0	-48	-1	1
PILA 1	SLV 14	358	-7	0	-35	-1	2
PILA 1	SLV 15	359	-9	0	-53	-1	2
PILA 1	SLV 16	359	-7	0	-39	-1	4

Il peso del plinto viene considerato come un carico aggiuntivo pari a 265.80 kN (opportunamente amplificato in funzione della combinazione di carico) applicato considerando il suo baricentro rispetto al sistema di riferimento delle azioni provenienti dalle pile.

PILA 2

Azioni Combinate		N	Ht	Hı	Mt	Mı	Mz
		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
PILA 2	A1+M1 SLU 01	732	106	0	1161	-1	-241
PILA 2	A1+M1 SLU 02	650	109	0	1155	-1	-242
PILA 2	A1+M1 SLU 03	729	109	0	1184	-1	-252
PILA 2	A1+M1 SLU 04	738	108	0	1186	-1	-252
PILA 2	A1+M1 SLU 05	747	108	0	1189	-1	-253
PILA 2	A1+M1 SLU 06	895	100	0	1212	-1	-254
PILA 2	A1+M1 SLU 07	1041	90	0	1257	-1	-258
PILA 2	A1+M1 SLU 08	1037	91	0	1255	-1	-257
PILA 2	A1+M1 SLU 09	1030	91	0	1253	-1	-257
PILA 2	A1+M1 SLU 10	863	100	0	1197	-1	-243
PILA 2	A1+M1 SLU 11	765	105	0	1175	-1	-238
PILA 2	A1+M1 SLU 12	764	60	0	717	-1	-153
PILA 2	A1+M1 SLU 13	655	64	0	710	-1	-155
PILA 2	A1+M1 SLU 14	761	63	0	748	-1	-168
PILA 2	A1+M1 SLU 15	772	63	0	752	-1	-169
PILA 2	A1+M1 SLU 16	785	63	0	755	-1	-170
PILA 2	A1+M1 SLU 17	983	52	0	786	-1	-170
PILA 2	A1+M1 SLU 18	1177	39	0	846	-1	-176
PILA 2	A1+M1 SLU 19	1172	39	0	844	-1	-175
PILA 2	A1+M1 SLU 20	1163	40	0	841	-1	-174
PILA 2	A1+M1 SLU 21	940	52	0	766	-1	-156
PILA 2	A1+M1 SLU 22	808	59	0	736	-1	-150
PILA 2	A1+M1 SLU 23	662	109	0	1179	-1	-238

Azioni Combinate	a techica sostituzioi		1		1		
Azioni combinate		N UNII	H _t	H _I	M _t	M _l	M _z
PILA 2	A1+M1 SLU 24	[kN] 581	112	[kN] 0	[kNm]	[kNm]	[kNm]
PILA 2	A1+M1 SLU 25	660	111	0	1202	-1 -1	-239 -249
PILA 2	A1+M1 SLU 26	668	111	0	1202	-1	-250
PILA 2	A1+M1 SLU 27	678	111	0	1207	-1 -1	-250
PILA 2	A1+M1 SLU 28	826	103	0	1230	-1 -1	-251
PILA 2	A1+M1 SLU 29	971	93	0	1275	-1 -1	-255
PILA 2	A1+M1 SLU 30	967	93	0	1273	-1 -1	-254
PILA 2	A1+M1 SLU 31	960	93	0	1273	-1 -1	-254 -254
PILA 2	A1+M1 SLU 32	794	102	0	1215	-1 -1	-240
PILA 2	A1+M1 SLU 33	695	102	0	1193	-1 -1	-235
PILA 2	A1+M1 SLU 34	694	63	0	735	-1	-150
PILA 2	A1+M1 SLU 35	585	67	0	733	-1	-152
PILA 2	A1+M1 SLU 36	691	66	0	766	-1 -1	-165
PILA 2	A1+M1 SLU 37	702	66	0	770	-1 -1	-166
PILA 2	A1+M1 SLU 38	715		0	773		-167
PILA 2	A1+M1 SLU 39	913	65 55	0	805	-1 -1	-167
PILA 2	A1+M1 SLU 40	1108	41	0	864	-1 -1	-107
PILA 2	A1+M1 SLU 41	1100	42	0	862	-1 -1	-173
PILA 2	A1+M1 SLU 42	1093	42	0	859	-1	-171
PILA 2	A1+M1 SLU 43	870	54	0	784	-1	-154
PILA 2	A1+M1 SLU 44	739	62	0	754	-1 -1	-147
I ILA Z	ATTIVIT OLO 44	739	02		754	-1	-147
PILA 2	A2+M2 GEO 01	563	92	0	1001	-1	-208
PILA 2	A2+M2 GEO 02	493	95	0	997	-1	-209
PILA 2	A2+M2 GEO 03	561	94	0	1021	-1	-218
PILA 2	A2+M2 GEO 04	568	94	0	1023	-1	-218
PILA 2	A2+M2 GEO 05	576	94	0	1026	-1	-219
PILA 2	A2+M2 GEO 06	702	87	0	1045	-1	-219
PILA 2	A2+M2 GEO 07	826	79	0	1083	-1	-223
PILA 2	A2+M2 GEO 08	823	79	0	1082	-1	-222
PILA 2	A2+M2 GEO 09	817	79	0	1080	-1	-222
PILA 2	A2+M2 GEO 10	675	87	0	1033	-1	-210
PILA 2	A2+M2 GEO 11	591	91	0	1014	-1	-206
PILA 2	A2+M2 GEO 12	590	52	0	617	-1	-132
PILA 2	A2+M2 GEO 13	497	56	0	611	-1	-134
PILA 2	A2+M2 GEO 14	587	55	0	643	-1	-145
PILA 2	A2+M2 GEO 15	597	55	0	646	-1	-146
PILA 2	A2+M2 GEO 16	608	54	0	649	-1	-146
PILA 2	A2+M2 GEO 17	776	45	0	676	-1	-147
PILA 2	A2+M2 GEO 18	942	34	0	727	-1	-152
PILA 2	A2+M2 GEO 19	938	34	0	725	-1	-151
PILA 2	A2+M2 GEO 20	930	35	0	723	-1	-150
PILA 2	A2+M2 GEO 21	740	45	0	659	-1	-135
PILA 2	A2+M2 GEO 22	628	51	0	633	-1	-130
PILA 2	A2+M2 GEO 23	493	94	0	1019	-1	-205
PILA 2	A2+M2 GEO 24	423	97	0	1015	-1	-206
PILA 2	A2+M2 GEO 25	491	97	0	1039	-1	-215
PILA 2	A2+M2 GEO 26	498	96	0	1041	-1	-215
PILA 2	A2+M2 GEO 27	506	96	0	1044	-1	-216
PILA 2	A2+M2 GEO 28	632	89	0	1063	-1	-216
1 16A 6	7.2 · WIZ OLO 20	002	09	U	1000	1	-210

Nota tecnica sostituzione micropali con pali – sottovia esistente al km 8+775.15

	a tecnica sostituzion		1			1	
Azioni Combinate		N	H _t	Hı	M _t	Mı	Mz
		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
PILA 2	A2+M2 GEO 29	756	81	0	1101	-1	-220
PILA 2	A2+M2 GEO 30	753	81	0	1100	-1	-220
PILA 2	A2+M2 GEO 31	747	81	0	1098	-1	-219
PILA 2	A2+M2 GEO 32	605	89	0	1051	-1	-208
PILA 2	A2+M2 GEO 33	521	94	0	1032	-1	-203
PILA 2	A2+M2 GEO 34	520	55	0	635	-1	-129
PILA 2	A2+M2 GEO 35	428	58	0	629	-1	-131
PILA 2	A2+M2 GEO 36	518	57	0	662	-1	-142
PILA 2	A2+M2 GEO 37	527	57	0	664	-1	-143
PILA 2	A2+M2 GEO 38	538	57	0	667	-1	-144
PILA 2	A2+M2 GEO 39	707	48	0	694	-1	-144
PILA 2	A2+M2 GEO 40	872	37	0	745	-1	-149
PILA 2	A2+M2 GEO 41	868	37	0	743	-1	-148
PILA 2	A2+M2 GEO 42	860	37	0	741	-1	-148
PILA 2	A2+M2 GEO 43	670	47	0	677	-1	-132
PILA 2	A2+M2 GEO 44	558	54	0	651	-1	-127
PILA 2	SLV 01	426	-2	0	-11	-1	-3
PILA 2	SLV 02	426	-6	0	-40	-1	-1
PILA 2	SLV 03	426	-3	0	-15	-1	-2
PILA 2	SLV 04	426	-7	0	-45	-1	-1
PILA 2	SLV 05	426	5	0	47	-1	-3
PILA 2	SLV 06	426	7	0	63	-1	-2
PILA 2	SLV 07	426	3	0	32	-1	-2
PILA 2	SLV 08	426	5	0	48	-1	-1
PILA 2	SLV 09	426	4	0	42	-1	1
PILA 2	SLV 10	426	1	0	13	-1	2
PILA 2	SLV 11	426	4	0	37	-1	1
PILA 2	SLV 12	426	0	0	8	-1	2
PILA 2	SLV 13	426	-8	0	-50	-1	1
PILA 2	SLV 14	426	-6	0	-35	-1	2
PILA 2	SLV 15	426	-9	0	-65	-1	2
PILA 2	SLV 16	426	-7	0	-49	-1	3

Il peso del plinto viene considerato come un carico aggiuntivo pari a 265.80 kN (opportunamente amplificato in funzione della combinazione di carico) applicato considerando il suo baricentro rispetto al sistema di riferimento delle azioni provenienti dalle pile.

SPALLA DX – MOBILE

Azioni Combinate		N	Ht	Hı	Mt	Mı	Mz
		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
SPALLA MOBILE	A1+M1 SLU 01	630	126	-143	563	254	-376
SPALLA MOBILE	A1+M1 SLU 02	645	124	-143	570	244	-369
SPALLA MOBILE	A1+M1 SLU 03	630	126	-143	564	253	-379
SPALLA MOBILE	A1+M1 SLU 04	628	126	-143	563	255	-381
SPALLA MOBILE	A1+M1 SLU 05	625	126	-143	562	257	-382

	ca sostituzione micro	- pa cc.	թա		1		.,,5.15
Azioni Combinate		N	Ht	H _I	Mt	Mı	Mz
		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
SPALLA MOBILE	A1+M1 SLU 06	549	131	-143	494	306	-405
SPALLA MOBILE	A1+M1 SLU 07	618	138	-143	592	261	-436
SPALLA MOBILE	A1+M1 SLU 08	630	138	-143	608	254	-435
SPALLA MOBILE	A1+M1 SLU 09	643	137	-143	627	245	-434
SPALLA MOBILE	A1+M1 SLU 10	768	130	-143	804	164	-397
SPALLA MOBILE	A1+M1 SLU 11	906	126	-143	1001	74	-376
SPALLA MOBILE	A1+M1 SLU 12	640	75	-143	388	247	-212
SPALLA MOBILE	A1+M1 SLU 13	660	73	-143	398	234	-202
SPALLA MOBILE	A1+M1 SLU 14	640	75	-143	390	247	-216
SPALLA MOBILE	A1+M1 SLU 15	637	76	-143	389	249	-218
SPALLA MOBILE	A1+M1 SLU 16	634	76	-143	387	251	-220
SPALLA MOBILE	A1+M1 SLU 17	531	83	-143	296	318	-250
SPALLA MOBILE	A1+M1 SLU 18	624	91	-143	427	257	-292
SPALLA MOBILE	A1+M1 SLU 19	639	91	-143	449	247	-291
SPALLA MOBILE	A1+M1 SLU 20	657	91	-143	473	236	-289
SPALLA MOBILE	A1+M1 SLU 21	824	81	-143	710	127	-239
SPALLA MOBILE	A1+M1 SLU 22	1009	76	-143	973	7	-212
SPALLA MOBILE	A1+M1 SLU 23	699	123	-143	612	209	-466
SPALLA MOBILE	A1+M1 SLU 24	714	122	-143	619	199	-458
SPALLA MOBILE	A1+M1 SLU 25	699	123	-143	614	208	-469
SPALLA MOBILE	A1+M1 SLU 26	697	124	-143	612	210	-470
SPALLA MOBILE	A1+M1 SLU 27	694	124	-143	611	212	-472
SPALLA MOBILE	A1+M1 SLU 28	618	129	-143	543	262	-494
SPALLA MOBILE	A1+M1 SLU 29	687	135	-143	641	216	-526
SPALLA MOBILE	A1+M1 SLU 30	699	135	-143	657	209	-525
SPALLA MOBILE	A1+M1 SLU 31	712	135	-143	676	200	-523
SPALLA MOBILE	A1+M1 SLU 32	837	127	-143	853	119	-486
SPALLA MOBILE	A1+M1 SLU 33	975	123	-143	1050	29	-466
SPALLA MOBILE	A1+M1 SLU 34	709	73	-143	437	202	-302
SPALLA MOBILE	A1+M1 SLU 35	729	71	-143	447	189	-292
SPALLA MOBILE	A1+M1 SLU 36	709	73	-143	439	202	-306
SPALLA MOBILE	A1+M1 SLU 37	706	73	-143	438	204	-308
SPALLA MOBILE	A1+M1 SLU 38	703	74	-143	436	206	-309
SPALLA MOBILE	A1+M1 SLU 39	600	80	-143	346	273	-340
SPALLA MOBILE	A1+M1 SLU 40	693	89	-143	476	212	-382
SPALLA MOBILE	A1+M1 SLU 41	708	89	-143	498	202	-381
SPALLA MOBILE	A1+M1 SLU 42	726	88	-143	523	191	-379
SPALLA MOBILE	A1+M1 SLU 43	893	79	-143	759	82	-329
SPALLA MOBILE	A1+M1 SLU 44	1078	73	-143	1022	-38	-302
SPALLA MOBILE	A2+M2 GEO 01	456	109	-106	471	195	-316
SPALLA MOBILE	A2+M2 GEO 02	469	108	-106	477	186	-309
SPALLA MOBILE	A2+M2 GEO 03	456	109	-106	472	195	-318
SPALLA MOBILE	A2+M2 GEO 04	454	109	-106	471	196	-319
SPALLA MOBILE	A2+M2 GEO 05	452	110	-106	470	197	-320
SPALLA MOBILE	A2+M2 GEO 06	387	114	-106	413	240	-340
SPALLA MOBILE	A2+M2 GEO 07	446	119	-106	496	201	-367
SPALLA MOBILE	A2+M2 GEO 08	456	119	-106	510	195	-366
SPALLA MOBILE	A2+M2 GEO 09	467	119	-106	525	188	-365
SPALLA MOBILE	A2+M2 GEO 10	573	113	-106	676	119	-333

	La sostituzione inici	1					
Azioni Combinate		N [kN]	H _t	H _I [kN]	M _t	M _I [kNm]	M _z [kNm]
SPALLA MOBILE	A2+M2 GEO 11	691	109	-106	844	42	-316
SPALLA MOBILE SPALLA MOBILE	A2+M2 GEO 11	464	66	-106	320	189	-316
SPALLA MOBILE	A2+M2 GEO 13	482	64	-106	328	178	-165
SPALLA MOBILE	A2+M2 GEO 14	465	66	-106	321	189	-177
SPALLA MOBILE	A2+M2 GEO 15	462	66	-106	320	191	-178
SPALLA MOBILE	A2+M2 GEO 16	459	66	-106	318	193	-180
SPALLA MOBILE	A2+M2 GEO 17	372	72	-106	241	249	-206
SPALLA MOBILE	A2+M2 GEO 18	451	79	-106	353	198	-242
SPALLA MOBILE	A2+M2 GEO 19	464	79	-106	371	190	-240
SPALLA MOBILE	A2+M2 GEO 20	479	79	-106	392	180	-239
SPALLA MOBILE	A2+M2 GEO 21	621	70	-106	593	87	-196
SPALLA MOBILE	A2+M2 GEO 22	779	66	-106	818	-15	-173
SPALLA MOBILE	A2+M2 GEO 23	525	107	-106	520	150	-405
SPALLA MOBILE	A2+M2 GEO 24	538	107	-106	527	142	-399
SPALLA MOBILE	A2+M2 GEO 25	525	107	-106	521	150	-408
SPALLA MOBILE	A2+M2 GEO 26	523	107	-106	521	151	-409
SPALLA MOBILE	A2+M2 GEO 27	521	107	-106	519	153	-410
SPALLA MOBILE	A2+M2 GEO 28	456	111	-106	462	195	-429
SPALLA MOBILE	A2+M2 GEO 29	515	117	-106	545	157	-456
SPALLA MOBILE	A2+M2 GEO 30	525	117	-106	559	150	-455
SPALLA MOBILE	A2+M2 GEO 31	536	116	-106	575	143	-454
SPALLA MOBILE	A2+M2 GEO 32	642	110	-106	725	74	-422
SPALLA MOBILE	A2+M2 GEO 33	760	107	-106	893	-3	-405
SPALLA MOBILE	A2+M2 GEO 34	533	63	-106	369	145	-263
SPALLA MOBILE	A2+M2 GEO 35	551	61	-106	377	133	-254
SPALLA MOBILE	A2+M2 GEO 36	534	63	-106	370	144	-266
SPALLA MOBILE	A2+M2 GEO 37	531	63	-106	369	146	-268
SPALLA MOBILE	A2+M2 GEO 38	528	64	-106	368	148	-269
SPALLA MOBILE	A2+M2 GEO 39	441	69	-106	290	205	-295
SPALLA MOBILE	A2+M2 GEO 40	520	76	-106	402	153	-331
SPALLA MOBILE	A2+M2 GEO 41	533	76	-106	420	145	-330
SPALLA MOBILE	A2+M2 GEO 42	548	76	-106	441	135	-328
SPALLA MOBILE	A2+M2 GEO 43	690	68	-106	643	42	-286
SPALLA MOBILE	A2+M2 GEO 44	848	63	-106	867	-60	-263
SPALLA MOBILE	SLV 01	541	-2	0	-11	-1	-3
SPALLA MOBILE	SLV 02	541	-6	0	-40	-1	-1
SPALLA MOBILE	SLV 03	541	-3	0	-15	-1	-2
SPALLA MOBILE	SLV 04	541	-7	0	-45	-1	-1
SPALLA MOBILE	SLV 05	541	5	0	47	-1	-3
SPALLA MOBILE	SLV 06	541	7	0	63	-1	-2
SPALLA MOBILE	SLV 07	541	3	0	32	-1	-2
SPALLA MOBILE	SLV 08	541	5	0	48	-1	-1
SPALLA MOBILE	SLV 09	541	4	0	42	-1	1
SPALLA MOBILE	SLV 10	541	1	0	13	-1	2
SPALLA MOBILE	SLV 11	541	4	0	37	-1	1
SPALLA MOBILE	SLV 12	541	0	0	8	-1	2
SPALLA MOBILE	SLV 13	541	-8	0	-50	-1	1
SPALLA MOBILE	SLV 14	541	-6	0	-35	-1	2
SPALLA MOBILE	SLV 15	541	-9	0	-65	-1	2

Azioni Combinate		N	Ht	H	Mt	Mı	Mz
		[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
SPALLA MOBILE	SLV 16	541	-7	0	-49	-1	3

Mediante analoga analisi di calcolo, condotta nella già citata "Relazione di calcolo portanza pali", e brevemente descritta in precedenza, sono state determinate le sollecitazioni sui singoli pali e micropali della palificata nella configurazione modificata delle pile adottando n°5 pali di diametro 600 mm. Si riportano in seguito i risultati ottenuti in termini di sollecitazioni a testa palo, con le sollecitazioni maggiori per entrambe le spalle e pile, in analogia a quanto illustrato e riportato nella "Relazione di calcolo portanza pali" di PEA.

3.3.1 Spalla SX - FISSA

Spalla Fissa_GEO

Sollecitazioni massime in sommita' ai pali

	Fz kn	M KN*m	T kN	palo	c.d.c.
S.1 S.2 S.3 S.4 T.1 T.2	293.7 -149.5 13.1 13.1 13.1	14.1 21.8 32.6 32.6 32.6 32.6	43.0 51.1 79.8 79.8 79.8 79.8	3 6 8 8 8	34 34 27 27 27 27

- S.1: cond. di carico con Sforzo Normale Massimo SPALLA SX A2+M2 GEO 34
- S.2: cond. di carico con Sforzo Normale Minimo SPALLA SX A2+M2 GEO 34
- S.3: cond. di carico con Momento Massimo SPALLA SX - A2+M2 GEO 27
- S.4: cond. di carico con Taglio Massimo SPALLA SX A2+M2 GEO 27
- T.1: cond. di carico con Tensione Massima (sez. interamente reagente) SPALLA SX - A2+M2 GEO 27
- T.2: cond. di carico con Tensione Minima (sez. interamente reagente) SPALLA SX - A2+M2 GEO 27

Spalla Fissa_SLU

Sollecitazioni massime in sommita' ai pali

	Fz kn	M kn*m	T kn	palo	c.d.c.
s.1	349.7	17.6	52.4	3	34
s.2	-159.4	26.4	62.0	6	34
s.3	24.4	38.8	94.5	8	27
s.4	24.4	38.8	94.5	8	27
T.1	24.4	38.8	94.5	8	27
T.2	24.4	38.8	94.5	8	27

S.1: cond. di carico con Sforzo Normale Massimo

- SPALLA SX A1+M1 SLU 34
- S.2: cond. di carico con Sforzo Normale Minimo SPALLA SX A1+M1 SLU 34
- S.3: cond. di carico con Momento Massimo SPALLA SX A1+M1 SLU 27
- S.4: cond. di carico con Taglio Massimo SPALLA SX A1+M1 SLU 27
- T.1: cond. di carico con Tensione Massima (sez. interamente reagente) SPALLA SX - A1+M1 SLU 27
- T.2: cond. di carico con Tensione Minima (sez. interamente reagente) SPALLA SX - A1+M1 SLU 27

Spalla Fissa_SLV

Sollecitazioni massime in sommita' ai pali

	FZ kN	M KN*m	T kn	palo	c.d.c.
S.1 S.2 S.3 S.4 T.1 T.2	138.4 -12.7 19.1 19.1 138.4 19.1	26.9 17.7 27.9 27.9 26.9 27.9	62.8 43.6 66.6 66.6 62.8 66.6	8 1 6 6 8	2 2 2 2 2 2 2

- S.1: cond. di carico con Sforzo Normale Massimo SPALLA SX - SLV 02
- S.2: cond. di carico con Sforzo Normale Minimo SPALLA SX SLV 02
- S.3: cond. di carico con Momento Massimo SPALLA SX SLV 02
- S.4: cond. di carico con Taglio Massimo SPALLA SX - SLV 02
- T.1: cond. di carico con Tensione Massima (sez. interamente reagente) SPALLA SX SLV 02
- T.2: cond. di carico con Tensione Minima (sez. interamente reagente)
 SPALLA SX SLV 02

3.3.2 Pila 1

Pila 1_GEO

Sollecitazioni massime in sommità ai pali

	Fz kn	M KN*m	T kn	palo	c.d.c.
S.1 S.2 S.3 S.4 T.1 T.2	675.2 -460.4 641.0 517.9 641.0 -460.4	73.3 161.9 190.5 43.0 190.5 161.9	73.3 28.6 39.1 75.9 39.1 28.6	3 4 1 3 1 4	5 5 5 29 5

- S.1: cond. di carico con Sforzo Normale Massimo PILA 1 A2+M2 GEO 05
- S.2: cond. di carico con Sforzo Normale Minimo PILA 1 - A2+M2 GEO 05
- S.3: cond. di carico con Momento Massimo
- PILA 1 A2+M2 GEO 05 S.4: cond. di carico con Taglio Massimo PILA 1 - A2+M2 GEO 29

- T.1: cond. di carico con Tensione Massima (sez. interamente reagente) PILA 1 - A2+M2 GEO 05
- T.2: cond. di carico con Tensione Minima (sez. interamente reagente) PILA 1 - A2+M2 GEO 05

Pila 1_SLU

Sollecitazioni massime in sommita' ai pali

	Fz kn	M kn*m	T kn	palo	c.d.c.
S.1 S.2 S.3 S.4 T.1 T.2	831.7 -547.4 788.4 652.4 788.4 -547.4	93.0 195.8 229.0 57.7 229.0 195.8	84.8 33.2 45.3 87.8 45.3 33.2	3 4 1 3 1 4	5 5 5 29 5

- S.1: cond. di carico con Sforzo Normale Massimo
- PILA 1 A1+M1 SLU 05 S.2: cond. di carico con Sforzo Normale Minimo
- PILA 1 A1+M1 SLU 05
 S.3: cond. di carico con Momento Massimo
 PILA 1 A1+M1 SLU 05
- S.4: cond. di carico con Taglio Massimo PILA 1 - A1+M1 SLU 29
- T.1: cond. di carico con Tensione Massima (sez. interamente reagente)
- PILA 1 A1+M1 SLU 05
 T.2: cond. di carico con Tensione Minima (sez. interamente reagente)
 PILA 1 A1+M1 SLU 05

Pila 1_SLV

Sollecitazioni massime in sommita' ai pali

	FZ kN	M kn*m	T kn	palo	c.d.c.
S.1 S.2 S.3 S.4 T.1 T.2	264.6 -74.8 264.6 223.1 264.6 -74.8	42.9 42.2 42.9 39.1 42.9 42.2	.9 1.5 .9 2.2 .9 1.5	3 4 3 1 3 4	6 6 6 15 6

- S.1: cond. di carico con Sforzo Normale Massimo
- PILA 1 SLV 06

PILA 1 -

- S.2: cond. di carico con Sforzo Normale Minimo
- S.3: cond. di carico con Momento Massimo
- SLV 06 PILA 1 - SLV 06
- S.4: cond. di carico con Taglio Massimo PILA 1 - SLV 15
- T.1: cond. di carico con Tensione Massima (sez. interamente reagente) PILA 1 - SLV 06
- T.2: cond. di carico con Tensione Minima (sez. interamente reagente) PILA 1 - SLV 06

Pila 1 SLE RARE

FZ kn	M kN*m	T kn	palo	c.d.c.

S.1 S.2	601.1 -379.8	69.6 139.0	56.7 22.5	3 4	5 5
s.3	568.8	161.6	31.1	1	5
s.4	469.6	43.4	59.0	3	29
T.1	568.8	161.6	31.1	1	5
T.2	-379.8	139.0	22.5	4	5

- S.1: cond. di carico con Sforzo Normale Massimo PILA 1 - SLE 05
- S.2: cond. di carico con Sforzo Normale Minimo
- PILA 1 SLE 05 S.3: cond. di carico con Momento Massimo PILA 1 - SLE 05
- S.4: cond. di carico con Taglio Massimo PILA 1 - SLE 29
- T.1: cond. di carico con Tensione Massima (sez. interamente reagente) PILA 1 - SLE 05
- T.2: cond. di carico con Tensione Minima (sez. interamente reagente) PILA 1 - SLE 05

Pila 1_SLE FREQUENTI

Sollecitazioni massime in sommita' ai pali

	Fz kn	M KN*m	T kn	palo	c.d.c.
S.1	451.4	76.9	2.5	3	16
S.2	-155.9	85.4	6.4	4	16
S.3	419.2	88.3	8.5	1	16
S.4	303.9	42.1	11.5	3	23
T.1	419.2	88.3	8.5	1	16
T.2	-155.9	85.4	6.4	4	16

- S.1: cond. di carico con Sforzo Normale Massimo
- PILA 1 SLE 16
- S.2: cond. di carico con Sforzo Normale Minimo PILA 1 SLE 16
 S.3: cond. di carico con Momento Massimo
- PILA 1 SLE 16
- S.4: cond. di carico con Taglio Massimo
- PILA 1 SLE 23 T.1: cond. di carico con Tensione Massima (sez. interamente reagente) PILA 1 - SLE 16
- T.2: cond. di carico con Tensione Minima (sez. interamente reagente) PILA 1 - SLE 16

Pila 1 SLE QP

	Fz kN	M KN*m	T kn	palo	c.d.c.
S.1 S.2 S.3 S.4 T.1 T.2	294.5 -75.7 271.9 271.9 271.9 -75.7	47.3 48.9 49.5 49.5 49.5 48.9	.5 1.1 1.5 1.5 1.5	3 4 1 1 1 4	1 1 1 1 1

- S.1: cond. di carico con Sforzo Normale Massimo PILA 1 - SLE 01
- S.2: cond. di carico con Sforzo Normale Minimo PILA 1 - SLE 01

- S.3: cond. di carico con Momento Massimo PILA 1 - SLE 01
- S.4: cond. di carico con Taglio Massimo
- PILA 1 SLE 01 T.1: cond. di carico con Tensione Massima (sez. interamente reagente) PILA 1 - SLE 01
- T.2: cond. di carico con Tensione Minima (sez. interamente reagente) PILA 1 - SLE 01

3.3.3 Pila 2

Pila 2 GEO

Sollecitazioni massime in sommita' ai pali

	Fz kn	M KN*m	T kn	palo	c.d.c.
S.1 S.2 S.3 S.4 T.1 T.2	682.8 -460.9 682.8 531.6 682.8 -443.4	182.1 112.5 182.1 60.9 182.1 159.8	30.7 43.1 30.7 62.0 30.7 22.9	3 4 3 1 3 5	7 7 7 5 7

- S.1: cond. di carico con Sforzo Normale Massimo
- PILA 2 A2+M2 GEO 07 S.2: cond. di carico con Sforzo Normale Minimo
- PILA 2 A2+M2 GEO 07 S.3: cond. di carico con Momento Massimo PILA 2 - A2+M2 GEO 07
- S.4: cond. di carico con Taglio Massimo
- PILA 2 A2+M2 GEO 05

 T.1: cond. di carico con Tensione Massima (sez. interamente reagente)
 PILA 2 A2+M2 GEO 07
- T.2: cond. di carico con Tensione Minima (sez. interamente reagente) PILA 2 - A2+M2 GEO 07

Pila 2 SLU

	Fz kn	M KN*m	T kn	palo	c.d.c.
S.1 S.2 S.3 S.4 T.1 T.2	842.8 -548.9 842.8 662.0 842.8 -526.7	219.7 139.0 219.7 78.7 219.7 193.7	35.6 49.8 35.6 71.7 35.6 26.5	3 4 3 1 3 5	7 7 7 5 7 7

- S.1: cond. di carico con Sforzo Normale Massimo PILA 2 - A1+M1 SLU 07
- S.2: cond. di carico con Sforzo Normale Minimo PILA 2 - A1+M1 SLU 07
- S.3: cond. di carico con Momento Massimo PILA 2 - A1+M1 SLU 07
- S.4: cond. di carico con Taglio Massimo PILA 2 - A1+M1 SLU 05
- T.1: cond. di carico con Tensione Massima (sez. interamente reagente)

PILA 2 - A1+M1 SLU 07

T.2: cond. di carico con Tensione Minima (sez. interamente reagente) PILA 2 - A1+M1 SLU 07

Pila 2_SLV

Sollecitazioni massime in sommita' ai pali

	Fz kN	M kN*m	T kn	palo	c.d.c.
S.2 S.3	-90.8 298.5	49.2 48.7 49.2 44.0 49.2 48.7	$1.6 \\ 1.1$	4 3	6 6 6 15 6
	PILA 2 -	carico con SLV 06 carico con			
s.3:	PILA 2 - cond. di PILA 2 -	SLV 06 carico con SLV 06	Momento M	assimo	
	PILA 2 - cond. di	carico con	_		a (sez.
т.2:	PILA 2 - cond. di PILA 2 -	carico con	Tensione	Minima	(sez. i

Pila 2_SLE RARE

Sollecitazioni massime in sommita' ai pali

	Fz kn	м kn*m	T kn	palo	c.d.c.
S.1 S.2 S.3	609.3 -380.7 609.3	155.4 100.7 155.4	24.6 33.3 24.6	3 4 3	7 7 7
S.4 T.1 T.2	474.9 609.3 -364.2	57.9 155.4 137.8	48.2 24.6 18.0	1 3 5	, 5 7 7
	cond. di	carico con		rmale N	Massimo
c 2.	PILA 2 -	SLE U/	Cforzo No	nmala A	4i ni mo

- S.2: cond. di carico con Sforzo Normale Minimo
- PILA 2 SLE 07
 S.3: cond. di carico con Momento Massimo
 PILA 2 SLE 07
- S.4: cond. di carico con Taglio Massimo

- PILA 2 SLE 05

 T.1: cond. di carico con Tensione Massima (sez. interamente reagente)
 PILA 2 SLE 07

 T.2: cond. di carico con Tensione Minima (sez. interamente reagente) PILA 2 - SLE 07

Pila 2_SLE FREQUENTI

	Fz kn	M KN*m	T kn	palo	c.d.c.
s.1	458.7	88.9	8.3	3	18

		Nota	tecnica sostituzion	e micropali co	n pali – sottovia esistente al km 8+775.15
s.2	-155.5	80.8	2.7 4 8.3 3	1 18	
s.3	458.7	88.9	8.3	3 18	
s.4	311.1	49.4	9.4 1 8.3 3 6.3 5	L 1	
T.1	458.7	88.9	8.3	18	
1.2	-139.0	86.3	6.3	5 18	
c 1.	cond di	carico con	Sforzo Normal	la Maccimo	_
3.1.	PILA 2 -		310120 NOTHIA	ie massimo	
s.2:		-	Sforzo Normal	le Minimo	
	PILA 2 -				
s.3:	cond. di	carico con	Momento Massi	imo	
	PILA 2 -				
s.4:			Taglio Massim	no	
_ 1	PILA 2 -			. ,	
T.1:			Tensione Mass	sıma (sez.	interamente reagente)
т э.	PILA 2 -		Tonciono Mini	ima (607	interamente reagente)
1.2.	PILA 2 -		rensione Mini	ıma (sez.	interamente reagente)
	FILM Z -	SEE TO			

Pila 2_SLE QP

Sollecitazioni massime in sommita' ai pali

	FZ kn	M KN*m	T kn	palo	c.d.c.
S.1 S.2 S.3 S.4 T.1	304.3 -79.2 304.3 304.3 304.3	51.2 49.6 51.2 51.2 51.2 50.7	1.5 .5 1.5 1.5	3 4 3 3	1 1 1 1 1
	PILA 2 -	carico con SLE 01 carico con			
	PILA 2 - cond. di	SLE 01 carico con			
s.4:	PILA 2 - cond. di PILA 2 -	carico con	Taglio Ma	assimo	
т.1:	cond. di PILA 2 -	carico con SLE 01	Tensione	Massim	na (sez.
т.2:	cond. di PILA 2 -	carico con SLE 01	Tensione	Minima	ı (sez.

3.3.4 Spalla dx - mobile

Spalla DX_GEO

Sollecitazioni massime in sommita' ai pali

	Fz kn	M KN*m	T kn	palo	c.d.c.
S.1 S.2 S.3 S.4 T.1 T.2	201.7 -66.4 -49.0 -49.0 179.6 -49.0	6.9 22.8 23.3 23.3 19.7 23.3	29.1 39.3 59.3 59.3 29.5 59.3	1 10 8 8 8 3	44 33 29 29 33 29

S.1: cond. di carico con Sforzo Normale Massimo SPALLA MOBILE - A2+M2 GEO 44

S.2: cond. di carico con Sforzo Normale Minimo SPALLA MOBILE - A2+M2 GEO 33

- S.3: cond. di carico con Momento Massimo SPALLA MOBILE A2+M2 GEO 29
- S.4: cond. di carico con Taglio Massimo SPALLA MOBILE - A2+M2 GEO 29
- T.1: cond. di carico con Tensione Massima (sez. interamente reagente)
 SPALLA MOBILE A2+M2 GEO 33
- T.2: cond. di carico con Tensione Minima (sez. interamente reagente) SPALLA MOBILE A2+M2 GEO 29

Spalla DX _SLU

Sollecitazioni massime in sommita' ai pali

	Fz kn	M kn*m	T kn	palo	c.d.c.
S.1 S.2 S.3 S.4 T.1	241.1 -68.0 -53.8 -53.8 220.9 -53.8	7.6 26.8 27.4 27.4 22.6 27.4	33.3 46.4 69.3 69.3 33.3 69.3	1 10 8 8 8 3	44 33 29 29 33 29

- S.1: cond. di carico con Sforzo Normale Massimo SPALLA MOBILE A1+M1 SLU 44
- S.2: cond. di carico con Sforzo Normale Minimo SPALLA MOBILE - A1+M1 SLU 33
- S.3: cond. di carico con Momento Massimo SPALLA MOBILE A1+M1 SLU 29
- S.4: cond. di carico con Taglio Massimo SPALLA MOBILE A1+M1 SLU 29
- T.1: cond. di carico con Tensione Massima (sez. interamente reagente)
 SPALLA MOBILE A1+M1 SLU 33
- T.2: cond. di carico con Tensione Minima (sez. interamente reagente) SPALLA MOBILE - A1+M1 SLU 29

Spalla DX _SLV

Sollecitazioni massime in sommita' ai pali

	Fz kn	м kn*m	T kn	palo	c.d.c.
S.1 S.2 S.3 S.4 T.1	54.3 35.9 51.4 54.3 53.5 36.3	.1 .2 .3 .1 .3	1.0 .6 .2 1.0 .4 .4	8 3 3 8 3 10	15 15 5 15 6

- S.1: cond. di carico con Sforzo Normale Massimo SPALLA MOBILE - SLV 15
- S.2: cond. di carico con Sforzo Normale Minimo SPALLA MOBILE SLV 15
- S.3: cond. di carico con Momento Massimo SPALLA MOBILE - SLV 05
- S.4: cond. di carico con Taglio Massimo SPALLA MOBILE - SLV 15
- T.1: cond. di carico con Tensione Massima (sez. interamente reagente)
 SPALLA MOBILE SLV 06
- T.2: cond. di carico con Tensione Minima (sez. interamente reagente)
 SPALLA MOBILE SLV 06

3.3.5 Tabelle riassuntive delle sollecitazioni

Nella tabella seguente si riassumono, i valori del dimensionamento geotecnico dei micropali 240 mm sulle spalle e pali di diametro 600 mm sulle pile.

PALIFICATA	COMBINAZIONE	L [m]	Q _d COMPRESSIONE KN	Q d TRAZIONE KN	N _{MAX} compressione kN	N _{MAX} trazione kN
	A1+M1+R1	17.0	488	488	350	133
Spalla 1B (SX)	A2+M1+R2	17.0	336	305	294	128
Spalla 15 (SA)	A1+M1+R3 (Sismica)	17.0	423	389	138	14
Pila 1	A1+M1+R1	16.0	1502	1093	832	-547
	A2+M1+R2	16.0	981	691	675	-460
	A1+M1+R3 (Sismica)	16.0	1241	877	265	-75
	A1+M1+R1	16.0	1502	1093	843	-549
Pila 2	A2+M1+R2	16.0	981	691	683	-461
Pila 2	A1+M1+R3 (Sismica)	16.0	1241	877	299	-91
	A1+M1+R1	13.0	311	311	241	70
Spalla 2B (DX)	A2+M1+R2	13.0	214	194	202	67
	A1+M1+R3 (Sismica)	13.0	269	248	54	

Nella tabella seguente si riportano i massimi carichi a cui devono essere sottoposti a prove di carico i micropali D=240 mm delle spalle ed i pali D=600 mm delle pile.

PALIFICATA	COMBINAZIONE	L [m]	N _{MAX} compressione kN	CARICO MAX PROVA kN
Spalla S1A	SLE_R	17.0	255	383
Spalla S1B	SLE_R	17.0	255	383
Pila 1A	SLE_R	16.0	600	900
Pila 1B	SLE_R	16.0	600	900
Pila 2A	SLE_R	16.0	610	915
Pila 2B	SLE_R	16.0	610	915
Spalla S2A	SLE_R	13.0	175	263
Spalla S2B	SLE_R	13.0	175	263

3.4 Carico limite trasversale

Come dimostrato di seguito, il comportamento di rottura è a "pali lunghi", cioè la rottura si verifica con la formazione di due cerniere plastiche, una in testa ed una più in profondità lungo il fusto. Essendo il modello di verifica al carico orizzontale di tipo semplificato (Broms, 1964), i pali di fondazione immersi in terreni coesivi, si eseguono le seguenti verifiche adottando, come previsto da normativa NTC 2008 (par. 6.4.3.1.2) l'Approccio 2. Per verificare il carico limite, si considerano i pali incastrati in sommità. Le spalle presentano micropali di diametro ϕ 240 mm e sono armati con un tubolare di diametro esterno 177.8 mm e spessore 8.0 mm. Il momento di plasticizzazione risulta: M_y = 78.1 kNm.

Le pile sono previsti pali di diametro 600 mm armati con n°16 ϕ 18, pertanto il momento di plasticizzazione risulta: M_v = 320.50 kNm.

1. Micropali Spalle

\mathbf{C}_{u}	100 kPa	coesione non drenata (valore assunto da elaborato di PEA -
		PEGRT03_31_4137)
d	240 mm	diametro palo
L	13, 17 m	lunghezza del micropalo
M_{y}	78.1 kNm	momento di plasticizzazione della sezione (D=177.8, sp. 8mm)
γ_{t}	1.3	coefficiente parziale γ_R di sicurezza (R3) – Tab. 6.4.II NTC 2008
ξ_4	1.7	fattore di correlazione in funzione del n° delle vert. indagate - Tab. 6.4.IV
NTC 2	2008	

Palo Corto $H_{LIM,1} = 2730 \text{ kN}$ Palo Intermedio $H_{LIM,2} = 1095 \text{ kN}$ Palo Lungo $H_{LIM,3} = 193 \text{ kN}$

Il carico limite orizzontale di progetto risulta quindi pari a H_d = 193 / (1.3 * 1.7) = 87 kN Essendo il Taglio pari a 66.6 kN (Spalla SX, SLV) la verifica risulta soddisfatta.

Così come condotto nella verifica illustrata nella relazione di calcolo di PEA (PEGRT03_31_4137), il valore del taglio massimo di verifica assunto a 0.5 di profondità rispetto all'incastro, risulta pari a 42.0 kN (Spalla SX_SLU), e la verifica risulta soddisfatta.

2. Pali pile

c_u 100 kPa coesione non drenata (valore assunto da elaborato di PEA - PEGRT03 31 4137)

d 600 mm diametro palo

L 16 m lunghezza del micropalo

M_v 320.50 kNm momento di plasticizzazione della sezione

 γ_t 1.3 coefficiente parziale γ_R di sicurezza (R3) – Tab. 6.4.II NTC 2008

 ξ_4 1.7 fattore di correlazione in funzione del n° delle vert. indagate – Tab. 6.4.IV

NTC 2008

Palo Corto $H_{LIM,1} = 8154 \text{ kN}$

Palo Intermedio $H_{LIM.2} = 3140 \text{ kN}$

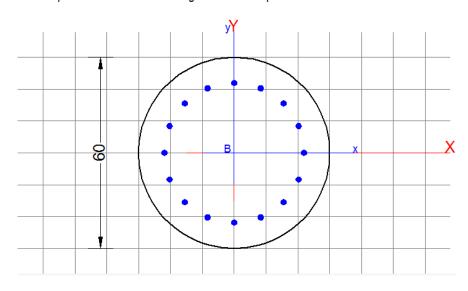
Palo Lungo $H_{LIM.3} = 478 \text{ kN}$

Il carico limite orizzontale di progetto risulta quindi pari a Hd = 478 / (1.3 * 1.7) = 216 kNEssendo il Taglio pari a 72 kN (Pila 2, SLU) la verifica risulta soddisfatta.

3.5 Verifiche strutturali dei micropali e pali di fondazione

Le verifiche a pressoflessione e a taglio dei micropali previsti sulle spalle vengono condotte considerando la sola sezione di acciaio di tipo tubolare di diametro esterno 177.8 mm e spessore 8.0 mm in acciaio (S355).

Spalla SX



Spalla DX

Ved =	33,30) kN										
Med =	7,60	kNm										
Ned =	241,10	kN										
Verifica a	TAGLIO											
La verific	a è soddisf	atta quand	o Ved < V	c,rd								
Vc,rd =	Av fyk / (3	3^1/2) * 1,0	5 =	530	kN							
dove												
	Av =	2 A / PIGR	ECO =	27,2	cmq	Area resiste	nte a ta	glio nel cas	o di profil	i a sezione	circolare o	ava
Si ha pert	tanto che la	verifica è:	VERIFICA	SODDISFA	ATTA							
Verifica a	FLESSIONI	E										
La verific	a è soddisf	atta quand	o Med < N	Лс,rd								
Se il tagli	o di calcolo	Ved è infe	riore a m	netà della r	esistenza c	i calcolo a ta	glio Vc,ro	d, si può tr	ascurare l'	nfluenza		
del taglio	sulla resis	tenza a fle	ssione									
		Ved < 0,5	Vc, rd =	da cui	TRASCUE	O TAGLIO NE	LLA VER	FICA A FLE	SSIONE			
Mpl,y,rd	= 74,45	kNm										
La verific	a risulta so	ddisfatta se	2									
		Med < Mp	l, y, rd d	a cui	VERIFICA	SODDISFATT	A					

Pile 1 e 2

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

Resistenza compress. di calcolo fcd: 170.00 daN/cm² Resistenza compress. ridotta fcd': 85.00 daN/cm² Deform. unitaria max resistenza ec2: 0.0020 Deformazione unitaria ultima ecu: 0.0035 Parabola-Rettangolo Diagramma tensioni-deformaz.:

Modulo Elastico Normale Ec: 328365 daN/cm² Resis. media a trazione fctm: 28.96 daN/cm² Coeff.Omogen. S.L.E.: 15.00

Sc limite S.L.E. comb. Rare: 180.00 daN/cm² Sc limite S.L.E. comb. Frequenti: 180.00 daN/cm² Ap.Fessure limite S.L.E. comb. Frequenti: 0.300 mm Sc limite S.L.E. comb. Q.Permanenti: 135.00 daN/cm² 0.200 Ap.Fessure limite S.L.E. comb. Q.Permanenti: mm

ACCIAIO -B450C Tipo:

> Resist. caratt. a snervamento fyk: 4500.0 daN/cm² Resist. caratt. a rottura ftk: 4500.0 daN/cm² Resist, a snerv, di calcolo fvd: 3913.0 daN/cm² Resist. ultima di calcolo ftd: 3913.0 daN/cm² Deform. ultima di calcolo Epu: 0.068

> Modulo Elastico Ef: 2000000 daN/cm²

Diagramma tensioni-deformaz.: Bilineare finito Coeff. Aderenza istant. ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50

Comb.Rare - Sf Limite: 3600.0 daN/cm²

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

60.0 Diametro sezione: Barre circonferenza: 16Ø18 (40.7 cm²) Coprif.(dal baric. barre): 8.1 cm

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [daN] applicato nel baricentro (posit. se di compress.) Mx Momento flettente [daNm] intorno all'asse x baric. della sezione con verso positivo se tale da comprimere il lembo sup. della sezione Taglio [daN] in direzione parallela all'asse y baric. della sezione Vy MT

Momento torcente [daN m]

N°Comb.	N	Mx	Vy	MT
1	84280	21970	3560	0
2	-54890	13900	4980	0
3	66200	7870	7170	0
4	29850	4920	110	0

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [daN] applicato nel baricentro (positivo se di compress.)

Coppia [daNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx 60930 15540 10070 2 -38070

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [daN] applicato nel baricentro (positivo se di compress.) Mx

Coppia [daNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mχ

1	45870	8890 (12416)
2	-15550	8080 (6592)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [daN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [daNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx 1 30430 5120 (13760) 2 -7920 4960 (6739)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 7.2 cm Interferro netto minimo barre longitudinali: 6.7 cm Copriferro netto minimo staffe: 6.0 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale [daN] applicato nel Baricentro (positivo se di compressione)
Mx Momento flettente assegnato [daNm] riferito all'asse x baricentrico
N Ult Sforzo normale ultimo [daN] nella sezione (positivo se di compress.)
Mx Ult Momento flettente ultimo [daNm] riferito all'asse x baricentrico
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N Ult,Mx Ult) e (N,Mx)

Verifica positiva se tale rapporto risulta >=1.000

Yneutro Ordinata [cm] dell'asse neutro a rottura nel sistema di rif. X,Y,O sez.

Mx sn. Momento flettente allo snervamento [daNm] x/d Rapp. di duttilità a rottura per sole travi (N = 0)

C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

As Tesa Area armature long. [cm²] in zona tesa per sole travi (l'area minima ex (4.1.43)NTC è indicata tra parentesi)

N°Comb	Ver	N	Mx	N Ult	Mx Ult	Mis.Sic.	Yn	M sn	x/d	C.Rid.	As Tesa
1	S	84280	21970	84302	42533	1.936	7.7	35156			
2	S	-54890	13900	-54878	22749	1.637	18.1	13664			
3	S	66200	7870	66186	40705	5.172	9.0	32803			
4	S	29850	4920	29868	36439	7.406	11.8	27666			

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max ec 3/7	Deform. unit. massima del conglomerato a compressione Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Yc max	
	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compressione)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	ec 3/7	Yc max	es min	Ys min	es max	Ys max
1	0.00350	-0.00053	30.0	0.00223	21.9	-0.00463	-21.9
2	0.00350	-0.00406	30.0	0.00112	21.9	-0.01176	-21.9
3	0.00350	-0.00079	30.0	0.00215	21.9	-0.00517	-21.9
4	0.00350	-0.00144	30.0	0.00194	21.9	-0.00647	-21.9

ARMATURE A TAGLIO E/O TORSIONE DI INVILUPPO PER TUTTE LE COMBINAZIONI ASSEGNATE

Diametro staffe: 12 mm

Passo staffe: 20.0 cm [Passo massimo di normativa = 21.6 cm]

N.Bracci staffe: 2

Area staffe/m: 11.3 cm²/m [Area Staffe Minima NTC = 2.6 cm²/m]

METODO AGLI STATI LIMITE ULTIMI - VERIFICHE A TAGLIO

Ver S = comb.verificata a taglio-tors./ N = comb. non verificata Vsdu Taglio agente [daN] uguale al taglio Vy di comb. Vrd Taglio resistente [daN] in assenza di staffe [formula (4.1.14)NTC] Vcd Taglio compressione resistente [daN] lato conglomerato [formula (4.1.19)NT Vwd Taglio trazione resistente [daN] assorbito dalle staffe [formula (4.1.18)NTC] bw Larghezza minima [cm] sezione misurata parallelam. all'asse neutro Teta Angolo [gradi sessadec.] di inclinazione dei puntoni di conglomerato Acw Coefficiente maggiorativo della resistenza a taglio per compressione Ast Area staffe/metro strettamente necessaria per taglio e torsione [cm²/m]								NŤC]	
N°Comb	Ver	Vsdu	Vrd	Vcd	Vwd	bw	Teta	Acw	ASt
1	S	3560	22619	73279	42930	54.8	21.80	1.175	0.9
2	S	4980	0	56742	45371	47.2	21.80	1.000	1.2
3	S	7170	20352	70934	42930	54.8	21.80	1.138	1.9
4	S	110	15631	65440	43367	53.6	21.80	1.062	0.0

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

Ver	S = combinazione verificata / N = combin. non verificata
Sc max	Massima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²]
Yc max	Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Sc min	Minima tensione di compress.(+) nel conglom. in fase fessurata ([daN/cm²]
Yc min	Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O)
Sf min	Minima tensione di trazione (-) nell'acciaio [daN/cm²]
Ys min	Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
Dw Eff.	Spessore di conglomerato [cm] in zona tesa considerata aderente alle barre
Ac eff.	Area di congl. [cm²] in zona tesa aderente alle barre (verifica fess.)
As eff.	Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.)

N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	Ac Eff.	As Eff.	D barre
1	S	100.3	-30.0	0.0	30.0	-1084	21.9	20.7	884	12.7	
2	S	64.1	-30.0	0.0	30.0	-2830	21.9	20.7	1238	17.8	

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA APERTURA FESSURE

Ver	S = com	S = combinazione verificata / N = combin. non verificata									
ScImax	Massim	Massima tensione nel conglomerato nello STATO I non fessurato [daN/cm²]									
ScImin	Minuma	Minuma tensione nel conglomerato nello STATO I non fessurato [daN/cm²]									
K3	=0,125	=0,125 per flessione; = 0,25 (Sclmin + Sclmax)/(2 Sclmin) per trazione eccentrica									
Beta12	Prodotto	Prodotto dei Coeff. di aderenza Beta1*Beta2									
Psi	= 1-Beta12*(Ssr/Ss) ² = 1-Beta12*(fctm/ScImin) ² = 1-Beta12*(Mfess/M) ² [B.6.6 DM96]										
e sm	Deformazione unitaria media tra le fessure . Tra parentesi il valore minimo = 0.4 Ss/Es										
srm	Distanza	a media in mm	tra le fessure								
wk	Apertura	a delle fessure i	n mm = 1,7*Eps	*Srm. Tra parentesi è	indicato il valor	e limite.					
M fess.	Momento di prima fessurazione [daNm]										
°Comb Ver	ScImax	Sclmin	Sc Eff	K3 Beta12	Psi						

N°Comb	Ver	ScImax	ScImin	Sc Eff	K3 E	Beta12	Psi	e sm	srm	wk	M Fess.
1	S	77.3	-41.8		0.125	1.00	0.521	0.000282 (0.000217)	224	0.107	10754
2	S	27.5	-49.7		0.125	1.00	0.660	0.000934 (0.000566)	224	0.355	5871

COMBINAZIONI FREQUENTI IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	Ac Eff.	As Eff.	D barre
1	S	56.3	-30.0	0.0	30.0	-416	21.9	20.7	531	7.6	
2	S	54.1	-30.0	0.0	30.0	-1823	21.9	20.7	1238	17.8	

COMBINAZIONI FREQUENTI IN ESERCIZIO - VERIFICA APERTURA FESSURE

N°Comb	Ver	ScImax	Sclmin	Sc Eff	K3 B	eta12	Psi	e sm	srm	wk	M Fess.
1	S	47.4	-20.7		0.125	1.00	0.400	0.000083 (0.000083)	224	0.032 (0.30)	12416

tratto urra	ccorao	aciia i otatorio	i bolognetta, al	KIII 40,0 (KIII. 3	3,0 dei Lott	O Z SVIIIC	JOIO IVIAIIE	anaio inclus	so, compresi i rac	corar cor	i le attuali 55 li.1	05 6 35 11.121 .
				Nota	tecnica	sostituz	ione m	icropali (con pali – so	ttovia	esistente al	km 8+775.15
2	S	26.4	-35.5		0.125	1.00	0.400	0.00036	65 (0.000365)	224	0.139 (0.30)	6592
COMBINA	AZION	I QUASI PE	RMANENTI I	N ESERCIZIO	- VERIF	ICA MAS	SSIME TI	ENSIONI N	NORMALI			
N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf	min	Ys min	Dw Eff.	Ac E	Eff. As Eff.	D barre
1	S	32.2	-30.0	0.0	30.0	-180		21.9	20.7	5	31 7.6	
2	S	33.4	-30.0	0.0	30.0	-10	071	21.9	20.7	12	38 17.8	
COMBINA	AZION	I QUASI PE	RMANENTI I	N ESERCIZIO	- VERIF	ICA APE	RTURA	FESSURE				
N°Comb	Ver	ScImax	ScImin	Sc Eff	K3	Beta12	Psi		e sm	srm	wk	M Fess.
1	S	28.5	-10.8		0.125	0.50	0.400	0.00003	36 (0.000036)	224	0.014 (0.20)	13760
2	S	16.7	-21.3		0.125	0.50	0.400	0.00021	4 (0.000214)	224	0.081 (0.20)	6739

Ing. Marcello Mancone

