

SETTEMBRE 2021

TE GREEN DEV 2

IMPIANTO INTEGRATO AGRIVOLTAICO COLLEGATO ALLA RTN POTENZA NOMINALE 57,44 MW

COMUNE DI STORNARA (FG)

PROGETTO DEFINITIVO IMPIANTO AGRIVOLTAICO

Calcolo producibilità

Progettisti (o coordinamento)

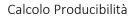
Ing. Laura Maria Conti n. ordine Ing. Pavia 1726

Codice elaborato

2748_4469_ST_PD_R18_Rev0_Calcolo Producibilità

Memorandum delle revisioni

Cod. Documento	Data	Tipo revisione	Redatto	Verificato	Approvato
2748_4469_ST_PD_R19_Rev0_Calcolo Producibilità	09/2021	Prima emissione	СР	СР	L. Conti


Gruppo di lavoro

Nome e cognome	Ruolo nel gruppo di lavoro	N° ordine
Laura Maria Conti	Direzione Tecnica	Ordine degli Ingegneri della Provincia di Pavia al n. 1726
Corrado Pluchino	Project Manager	Ordine degli Ingegneri della Provincia di Milano n. A27174
Riccardo Festante	Progettazione Elettrica	Tecnico competente in acustica ambientale n. 71
Daniele Crespi	Coordinamento SIA	
Marco Corrù	Architetto	
Francesca Jasparro	Esperto Ambientale	
Massimo Busnelli	Geologo	
Mauro Aires	Ingegnere strutturista	Ordine degli Ingegneri della Provincia di Torino n. 9583J
Elena Comi	Biologo	Ordine Nazionale dei Biologi n. 60746
Fabio Lassini	Ingegnere	Ordine degli Ingegneri della Provincia di Milano n. 29719
Piero Simone	Geologo	Ordine dei Geologi della Lombardia n. 1030
Sergio Alifano	Architetto	

Calcolo Producibilità

Marianna Denora	Architetto	Ordine degli Architetti della Provincia di Bari, Sez. A n. 2521
Andrea Fronteddu	Ingegnere Elettrico	Ordine degli Ingegneri di Cagliari n. 8788
Matteo Lana	Ingegnere	
Vincenzo Gionti	Ingegnere	
Nazzario D'Errico	Agronomo	Ordine professionale Degli Agronomi di Foggia n. 382
Lorenzo Griso	Geologo	
Giovanni Saraceno	3E Ingegneria Srl	Ordine degli Ingegneri della Provincia di Reggio Calabria al n. 1629
Antonio Bruscella	Archeologo	Elenco dei professionisti abilitati alla redazione del documento di valutazione archeologica n. 4124

INDICE

1.	PREMESSA	.5
2.	DATI CLIMATICI	.6
	RISULTATI	
J.	MODEIAI	. ,

Calcolo Producibilità

1. PREMESSA

Il progetto in questione prevede la realizzazione, attraverso la società di scopo TE GREEN DEV 2 S.r.L., di un impianto solare fotovoltaico in località La Contessa nel comune di Stornara (FG) di potenza pari a 57,44 MW su un'area catastale di circa 72,52 ettari complessivi di cui 66,89 ha recintati.

TE GREEN DEV 2 S.r.L.,. è una società italiana con sede legale in Italia nella città di Bolzano. Le attività principali del gruppo sono lo sviluppo, la progettazione e la realizzazione di impianti di medie e grandi dimensioni per la produzione di energia da fonti rinnovabili.

Il presente documento costituisce la Relazione di calcolo della producibilità dell'impianto.

La simulazione prende in esame un anno tipo ed è stata è effettuata tramite il programma per sistemi fotovoltaici PVsyst.

2. DATI CLIMATICI

Il database internazionale **MeteoNorm** rende disponibili i dati meteorologici per la località di Sterparone e l'attendibilità dei dati contenuti nel database è internazionalmente riconosciuta, possono quindi essere usati per l'elaborazione statistica per la stima di radiazione solare per il nostro sito. Di seguito si riportano i bilanci e i risultati principali:

Bilanci e risultati principali

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	MWh	MWh	ratio
Gennaio	60.9	27.22	7.20	77.0	73.1	4117	4063	0.918
Febbraio	75.2	33.42	7.53	94.1	89.5	5001	4935	0.913
Marzo	122.5	53.18	10.98	150.8	144.0	7823	7721	0.892
Aprile	156.2	68.25	13.81	190.9	182.1	9687	9559	0.872
Maggio	197.3	77.08	19.84	245.3	235.2	12104	11945	0.848
Giugno	205.8	82.91	23.89	252.4	242.0	12211	12054	0.831
Luglio	216.6	81.28	27.09	268.6	257.7	12864	12700	0.823
Agosto	189.6	71.03	26.57	237.8	228.1	11446	11300	0.827
Settembre	141.4	55.00	20.97	176.9	169.2	8781	8669	0.853
Ottobre	108.8	37.50	17.62	139.1	133.2	7077	6987	0.874
Novembre	63.6	31.84	12.30	77.4	73.3	4041	3988	0.897
Dicembre	51.8	24.87	8.69	64.4	60.9	3422	3376	0.913
Anno	1589.7	643.59	16.43	1974.7	1888.4	98572	97297	0.858

L	^	~		m	~	4
ᆫ	c	u	c	11	u	С

GlobHor Irraggiamento orizzontale globale
DiffHor Irraggiamento diffuso orizz.
T_Amb Temperatura ambiente
GlobInc Globale incidente piano coll.

GlobEff Globale "effettivo", corr. per IAM e ombre

EArray Energia effettiva in uscita campo E_Grid Energia immessa in rete PR Indice di rendimento

Figura 2.1: Bilanci e risultati principali

3. RISULTATI

Le simulazioni sono state effettuate prendendo in esame le varie sezioni d'impianto. I dati relativi le singole sezioni sono deducibili dagli allegati alla presente relazione.

Di seguito si riportano i dati relativi l'impianto complessivo.

L'energia immessa in rete risulta essere di 97.562 MWh/anno e la produzione specifica è pari a 1.699 MWh/MWp)/anno

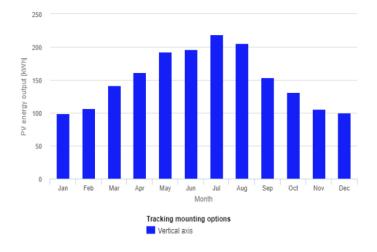
In base ai parametri impostati per le relative perdite d'impianto, i componenti scelti (moduli e inverter) e alle condizioni meteorologiche del sito in esame risulta un indice di rendimento (performance ratio PR) del **85,86 %.**

Performance of tracking PV

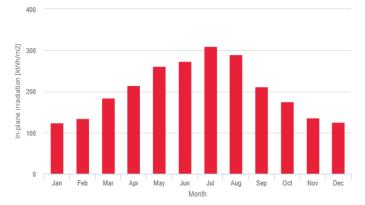
PVGIS-5 estimates of solar electricity generation

Provided inputs:

Latitude/Longitude: 41.287, 15.810 Horizon: Calculated Database used: **PVGIS-SARAH** PV technology: Crystalline silicon 1 kWp


PV installed: System loss: 18 %

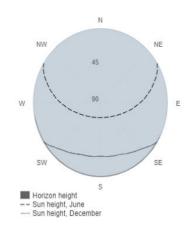
Simulation outputs


VA* Slope angle [°]: 55 Yearly PV energy production [kWh]: 1814.25 Yearly in-plane irradiation [kWh/m²]: Year-to-year variability [kWh]: Changes in output due to: Angle of incidence [%]: -1.47 Spectral effects [%]: 0.81

Temp. and low irradiance [%]: -8.6 Total loss [%]: -25.55

Monthly energy output from tracking PV system:

Monthly in-plane irradiation for tracking PV system:


Tracking mounting options

The European Commission maintains this website to the arms publicagees to information about its initiatives and European Union policies in general. Our goal is to keep this information timely and accurate. If errors are brought to our attention, we will try to correct them.

i) of a general nature only and is not intended to address the specific circumstances of any particular individual or entity ii) not necessarily comprehensive, complete, accurate or up to date.

iii) sometimes linked to external sites over which the Commission services have no control and for which the Commission assumes no responsibility,

Outline of horizon at chosen location:

Vertical axis

Month	E_m	H(i)_m	SD_m
January	99.3	124.5	19.5
February	106.7	134.8	13.8
March	141.4	183.5	17.9
April	161.5	214.8	15.7
May	192.8	261.2	15.6
June	196.6	273.2	11.3
July	218.8	308.7	11.4
August	206.1	289.9	14.1
September	153.8	210.9	13.4
October	131.4	174.6	18.2
November	105.8	135.8	14.8
December	99.9	125.2	15.7

E_m:Average monthly electricity production from the given system [kWh].

H_m: Average monthly sum of global irradiation per square meter received by the modules of the given system [kWh/m^2].

SD_m: Standard deviation of the monthly electricity production due to year-to-year variation [kWh].

PVGIS ©European Union, 2001-2021. Reproduction is authorised, provided the source is acknowledged, save where otherwise stated

Report generated on 2021/03/02

^{*} VA: Vertical axis