COMMITTENTE

PROGETTAZIONE:

DIREZIONE TECNICA
U.O. OPERE CIVILI

PROGETTO FATTIBILITA' TECNICO ECONOMICA

VELOCIZZAZIONE DELLA LINEA ROMA – PESCARA RADDOPPIO FERROVIARIO TRATTA SCAFA – MANOPPELLO LOTTO 2

VI21 – Viadotto su fiume Pescara 1 e Autostrada – da pk 1+364.00 a pk 2+784.00 **Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)**

				SCALA:	
				-	
LOTTO FASE	ENTE TIPO DOC.	OPERA/DISCIPLINA	PROGR.	REV.	-

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	EMISSIONE DEFINITIVA	P. Luciani	Agosto 2021	A. Ferri	Agosto 2021	T. Paoletti	Agosto 2021	A. Vittozzi Agosto 2021
						7-7		ITALPERA S.p.A.
								U.O. Opere Civili e Gatione delle varianti Dott. Ing. Angele Vittozzi Ordine degli ingegneri delle Provincia di Roma N° A20783

File: IA9700R09CLVI2100003A.doc.doc	n. Elab.: 14-21

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IA97 00 R 09 CL VI2100 003 A 2 di 65

INDICE

1	PREMESSA	4
2	DESCRIZIONE DELL'INTERVENTO	5
3	DOCUMENTAZIONE DI RIFERIMENTO	7
4	VITA NOMINALE E CLASSE D'USO	9
4.1	VITA NOMINALE	9
4.2	CLASSE D'USO	9
4.3	PERIODO DI RIFERIMENTO PER L'AZIONE SISMICA	10
5	CARATTERISTICHE DEI MATERIALI	11
5.1	CALCESTRUZZO PER STRUTTURE IN FONDAZIONE ED ELEVAZIONE	11
5.2	ACCIAIO D'ARMATURA IN BARRE TONDE AD ADERENZA MIGLIORATA	13
5.3	Copriferro	15
6	INQUADRAMENTO GEOTECNICO	18
6.1	DESCRIZIONE UNITÀ GEOTECNICHE	18
6.2	PARAMETRI GEOTECNICI DI PROGETTO – LOTTO 2	19
6.3	Stratigrafia	20
7	ANALISI DEI CARICHI	21
7.1	Carichi permanenti strutturali (G1)	21
7.2	CARICHI TRASMESSI DALL'IMPALCATO	21
7.3	AZIONE DEL VENTO SULLA PILA Q6	21
7.4	AZIONI SISMICHE Q7	22
	7.4.1 Spettri di risposta elastici	29
	7.4.2 Spettri di risposta di progetto	31
	7.4.3 Combinazione delle componenti dell'azione sismica e valutazione delle masse	35
7.5	VARIAZIONI TERMICHE ε ₃	35
8	MODELLAZIONE STRUTTURALE E COMBINAZIONI DI CARICO	36
8.1	COMBINAZIONI DI CARICO	36
8.2	MODELLAZIONE STRUTTURALE	40

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

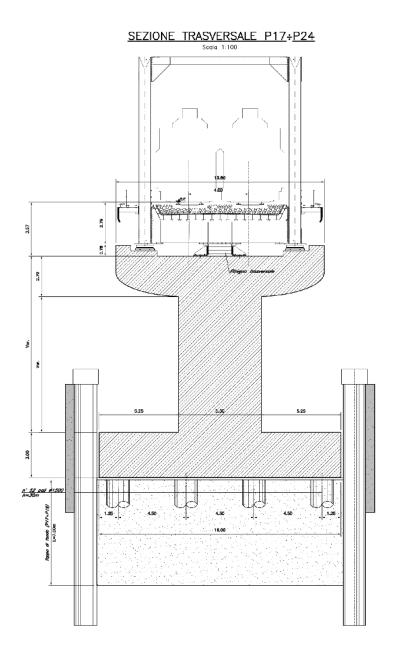
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA97	00 R 09	CL	VI2100 003	Α	3 di 65

9	VERIF	ICHE	42
9.1	SO	LLECITAZIONI DI VERIFICA	43
9.2	VEI	RIFICHE STRUTTURALI PILA	49
	9.2.1	Verifiche a pressoflessione ed a taglio	50
9.3	VEI	RIFICHE DELLA FONDAZIONE	54
	9.3.1	SOLLECITAZIONI AGENTI	55
	9.3.2	VERIFICHE STRUTTURALI E GEOTECNICHE	57

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA97	00 R 09	CL	VI2100 003	Α	4 di 65


1 PREMESSA

La presente relazione afferisce ai calcoli e alle verifiche strutturali della pila di sostegno degli impalcati reticolari tipologici di luce L=60m, nell'ambito del progetto di prefattibilità tecnico-economica della velocizzazione della linea Roma-Pescara, raddoppio della linea, Lotto 2.

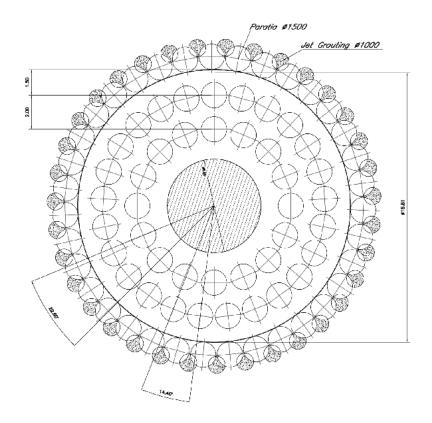
Le strutture sono state progettate coerentemente con quanto previsto dalla normativa vigente, "Norme Tecniche per le Costruzioni"- DM 14.1.2018 e relativa Circolare "Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni".

2 DESCRIZIONE DELL'INTERVENTO

La tipologia di pila in esame prevede una sezione circolare di diametro D = 5,5m.

L'altezza di calcolo delle pile tipo in oggetto è assunta pari a 20,2m.

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA


Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA97	00 R 09	CL	VI2100 003	Α	6 di 65

Il sistema di fondazione previsto è del tipo indiretto, con pozzo di profondità 28m con plinti di spessore pari a 3.00m e pianta circolare di diametro 16.0m, su n.41 pali di diametro D=1500mm.

Lo scavo è protetto con paratia di pali D=1500mm e lunghezza 16m e colonne di Jet-grouting D=1000mm e lunghezza 8.5m a intasare e tappo di fondo.

PIANTA FONDAZIONE

Gli impalcati afferenti a questa tipologia sono da entrambe le parti strutture reticolari di luce 60m. Si riportano nel seguito le verifiche di predimensionamento.

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA97
 00 R 09
 CL
 VI2100 003
 A
 7 di 65

3 DOCUMENTAZIONE DI RIFERIMENTO

L'analisi delle opere e le verifiche degli elementi strutturali sono state condotte in accordo con le vigenti disposizioni legislative e in particolare con le seguenti norme e circolari:

- RFI DTC SI PS MA IFS 001 E Dicembre 2020: Manuale di progettazione delle Opere Civili
 Emissione per applicazione
- RFI DTC SI PS SP IFS 001 E Dicembre 2020: Capitolato generale tecnico di appalto delle opere civili Parte II Sezione 6 Opere in conglomerato cementizio e in acciaio Emissione per applicazione;
- D.M. del 17 gennaio 2018: Aggiornamento delle "Norme tecniche per le costruzioni";
- C.M. 21/01/2019 n.7: Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al Decreto Ministeriale del 17 gennaio 2018;
- Legge 05/01/1971 n°1086: Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica;
- Legge 02/02/1974 n°64: Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche;

Nella redazione dei progetti e nelle verifiche strutturali si è inoltre fatto riferimento alla normativa Europea di seguito specificata:

- UNI EN 1990: 2006: Eurocodice 0: Criteri generali di progettazione strutturale;
- UNI EN 1991-1-1:2004: Eurocodice 1 –Azioni in generale– Parte 1-1: Pesi per unità di volume, pesi propri e sovraccarichi variabili;
- UNI EN 1991-1-4:2005: Eurocodice 1 Azioni sulle strutture Parte 1-4: Azioni in generale Azioni del vento;
- UNI EN 1992-1-1:2005: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici;
- UNI EN 1992-2:2006: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 2: Ponti;

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA97
 00 R 09
 CL
 VI2100 003
 A
 8 di 65

- UNI EN 1993-1-1:2005: Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-1: Regole generali e regole per gli edifici;
- UNI EN 1993-2:2007: Eurocodice 3 Progettazione delle strutture di acciaio Parte 2: Ponti;
- UNI EN 1997-1: 2005: Eurocodice 7 Progettazione geotecnica. Parte 1: Regole generali.
- UNI EN 1998-1:2005: Eurocodice 8 Progettazione delle struttura per la resistenza sismica
 Parte 1: Regole generali, azioni sismiche e regole per gli edifici;
- UNI EN 1998-2:2006: Eurocodice 8 Progettazione delle struttura per la resistenza sismica Parte 2: Ponti;
- UNI EN 1998-5:2005: Eurocodice 8 Progettazione delle strutture per la resistenza sismica. Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici:
- STI 2014 REGOLAMENTO UE N.1299/2014 della commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione Europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019;
- UNI EN 206-1-2016 Calcestruzzo. "Specificazione, prestazione, produzione e conformità".
- UNI 11104/2016 Calcestruzzo Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1.

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA97
 00 R 09
 CL
 VI2100 003
 A
 9 di 65

4 VITA NOMINALE E CLASSE D'USO

4.1 Vita nominale

La vita nominale di una costruzione, così come definita al punto 2.4.1 di **Errore. L'origine riferimento non è stata trovata.**, è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve essere usata per lo scopo al quale è destinata. Essa è la durata alla quale deve farsi espresso riferimento in sede progettuale, in relazione alla durabilità delle costruzioni, nel dimensionare le strutture ed i particolari costruttivi, nella scelta dei materiali e delle eventuali applicazioni e misure protettive per garantire il mantenimento della resistenza e della funzionalità. Facendo riferimento al punto 2.5.1.1.1 di **Errore. L'origine riferimento non è stata trovata.** la vita nominale V_N delle infrastrutture ferroviarie in esame è definita in Tab. 1 (riquadro rosso):

TIPO DI COSTRUZIONE (1)	Vita Nominale V _N [Anni] ⁽¹⁾
OPERE NUOVE SU INFRASTRUTTURE FERROVIARIE PROGETTATE CON LE NORME VIGENTI PRIMA DEL DM 14 01 2008 A VELOCITÀ CONVENZIONALE	50
(V<250 km/h)	•
ALTRE OPERE NUOVE A VELOCITÀ (V < 250 km/h)	75
ALTRE OPERE NUOVE A VELOCITÀ (V ≥ 250 km/h)	100
OPERE DI GRANDI DIMENSIONI: PONTI E VIADOTTI CON CAMPATE DI LUCE MAGGIORE DI 150 m	≥ 100 ⁽²⁾
(1) - La medesima V _N si applica anche ad apparecchi di appoggio, coprigiunti e impermeabilizzazione delle st	esse opere.

^{(2) -} Da definirsi per il singolo progetto a cura di FERROVIE.

Tab. 1 – Vita Nominale delle infrastrutture ferroviarie

In particolare, visto che la linea ferroviaria Roma – Pescara non rientra nell'elenco delle linee e tratte ferroviarie facenti parte del sistema "Sistema di grande viabilità ferroviaria" ai sensi dell'OPCM N°3274 del 2003 (cfr. Allegato 5 della parte II – Sezione 2 del MdP RFI **Errore. L'origine riferimento non è stata trovata.**) e presenta delle velocità di progetto inferiori ai 250 km/h, l'opera in oggetto avrà una vita nominale V_N pari a 75 anni.

4.2 Classe d'uso

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA97
 00 R 09
 CL
 VI2100 003
 A
 10 di 65

La norma **Errore.** L'origine riferimento non è stata trovata. attribuisce alle costruzioni, in funzione della loro destinazione d'uso e, quindi delle conseguenze di un'interruzione di operatività o di un eventuale collasso in conseguenza di un evento sismico, diverse classi d'uso; a ciascuna classe corrisponde un coefficiente d'uso c_{U} .

Facendo riferimento al punto 2.5.1.1.2 di **Errore. L'origine riferimento non è stata trovata.**, la classe d'uso delle infrastrutture ferroviarie può, di norma, assumersi come indicato in Tab. 2:

TIPO DI COSTRUZIONE	Classe d'uso ⁽¹⁾	Coefficiente d'uso [CU] (1)
FABBRICATI APPARTAMENTI ALL'ELENCO A AI SENSI DEL DPCM 3685/2003	IV	2,0
GRANDI STAZIONI	IV	2,0
FABBRICATI APPARTAMENTI ALL'ELENCO B AI SENSI DEL DPCM 3685/2003	III	1,5
OPERE D'ARTE DEL SISTEMA DI GRANDE VIABILITÀ FERROVIARIA (2)	Ш	1,5
ALTRE OPERE D'ARTE, FABBRICATI NON RIENTRATI NELLE CLASSI D'USO III E IV	II	1,0

- Qualora una costruzione sia interferente con un'altra infrastruttura di cui all'elenco A del DPCM 3685 del 2003 o all'elenco B del DPCM 3685 del 2003 dovrà essere presa in conto la più alta tra la classe d'uso assegnata alla costruzione attraverso la presente tabella e quella dell'infrastruttura con cui si realizza l'interferenza.
- Ricadono in classe d'uso IV le opere d'arte nuove ricadenti nelle tratte di nodo di collegamento delle grandi stazioni con il sistema di grande viabilità ferroviaria.

Tab. 2 – Tabella della Classe d'uso e del coefficienti d'uso per le infrastrutture ferroviarie

La linea ferroviaria Roma –Pescara non rientra nell'elenco delle linee e tratte ferroviarie facenti parte del sistema "Sistema di grande viabilità ferroviaria" ai sensi dell'OPCM N°3274 del 2003 (cfr. Allegato 5 di **Errore. L'origine riferimento non è stata trovata.**) né nelle tratte di nodo di collegamento delle grandi stazioni con sistema di grande viabilità ferroviaria. Inoltre, l'opera oggetto della presente relazione non appartiene all'elenco A e B ai sensi del DPMC N°3685 del 2003.

Sulla base di quanto detto la classe d'uso a cui far riferimento sarà la classe II, a cui corrisponde un coefficiente d'uso c_U pari a 1.

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA97
 00 R 09
 CL
 VI2100 003
 A
 11 di 65

4.3 Periodo di riferimento per l'azione sismica

In riferimento a quanto detto nei paragrafi precedenti, il periodo di riferimento V_R da prendere a riferimento per valutare le azioni sismiche sulla struttura è pari A $V_R = V_N \cdot C_U = 75 \cdot 1,0 = 75$ anni.

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA97	00 R 09	CL	VI2100 003	Α	12 di 65

5 CARATTERISTICHE DEI MATERIALI

5.1 Calcestruzzo per strutture in fondazione ed elevazione

Si riportano di seguito due tabelle riepilogative del tipo e delle caratteristiche del calcestruzzo adottato per i diversi elementi strutturali: (Tab. 3 e Tab. 4):

Descrizione	Magrone	Struttura in elevazione	Strutture in fondazioni
Classe di resistenza	C12/15	C30/37	C25/30
Classe di esposizione	X0	XC3	XC2
Condizioni ambientali	-	ordinarie	ordinarie
Rapporto acqua/cemento	-	0,55	0,60
Diametro massimo inerti	-	25 mm	32 mm
Tipo di cemento	I, II, III, IV, V	III, IV, V	III, IV, V
Contenuto min. cemento	-	280 kg/mc	280 kg/mc
Classe minima di consistenza	-	S4	S4

Tab. 3 – Tabella caratteristiche dei calcestruzzo delle strutture

Parametri	Parametri UM N		Struttura in elevazione	Strutture in fondazioni
R _{ck}	(N/mm ²)	15	37	30
f _{ck}	(N/mm²)	12	30	25
f _{cm}	(N/mm ²)	•	36	33
α_{cc}	(-)	-	0,85	0,85
γс	(-)	-	1,50	1,50
f _{cd}	(N/mm ²)	-	17,40	14,17
f _{ctm}	(N/mm ²)	-	2,90	2,56

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA97	00 R 09	CL	VI2100 003	Α	13 di 65

Parametri UM		Magrone	Struttura in elevazione	Strutture in fondazioni
f _{ctk}	(N/mm²)	-	2,03	1,79
f _{ctd}	(N/mm ²)	-	1,35	1.19
Ec	(N/mm ²)	-	32837	31476
0.55·f _{ck} (rara)	(N/mm ²)	-	16,89	12,28
0.40·f _{ck} (QP)	(N/mm ²)	-	13,70	9,96

Tab. 4 – Tabella caratteristiche parametri operativi dei calcestruzzi delle strutture

dove:

R_{ck} = Resistenza cubica caratteristica a compressione

f_{ck} = 0.83·R_{ck} = Resistenza cilindrica caratteristica

f_{cm} = f_{ck} + 8 (N/mm²) = Resistenza cilindrica media a compressione

 α_{cc} = Coefficiente per effetti a lungo termine e sfavorevoli: α_{cc} (t > 28gg) = 0.85

 γ_c = 1.5; viene ridotto a 1.4 per produzioni continuative di elementi o strutture soggette a controllo continuativo del calcestruzzo dal quale risulti un coefficiente di variazione (rapporto tra scarto quadratico medio e valore medio della resistenza) non superiore al 10%. $f_{cd} = \frac{\alpha_{cc} \cdot f_{ck}}{\gamma_c}$ = Resistenza di calcolo a compressione

 $f_{ctm} = 0.3 \cdot (f_{ck})^{2/3}$ [per classi $\leq C50/60$] = Resistenza cilindrica media a trazione

f_{ctk} = 0.7· f_{ctm} = Resistenza cilindrica caratteristica a trazione

$$f_{ctd} = \frac{f_{ctk}}{\gamma_c}$$
 = Resistenza di calcolo a trazione

f_{cfm} = 1.2· f_{ctm} = Resistenza media a trazione per flessione

f_{cfk} = 0.7· f_{cfm} = Resistenza cilindrica caratteristica a trazione

$$E_{cm} = 22000 \cdot \left(\frac{f_{cm}}{10}\right)^{0.3} = Modulo Elastico$$

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA IA97	LOTTO 00 R 09	CODIFICA	DOCUMENTO VI2100 003	REV.	FOGLIO 14 di 65
17.01	00 11 00	0_	112100 000	-	14 01 00

Coefficiente di Poisson:

Secondo quanto prescritto al punto 11.2.10.4 della NTC2018, per il coefficiente di Poisson può adottarsi, a seconda dello stato di sollecitazione, un valore compreso tra 0 (calcestruzzo fessurato) e 0.2 (calcestruzzo non fessurato).

Coefficiente di dilatazione termica:

In sede di progettazione, o in mancanza di una determinazione sperimentale diretta, per il coefficiente di dilatazione termica del calcestruzzo può assumersi un valore medio pari a 10 x 10⁻⁶ °C-1 (NTC2018 – 11.2.10.5).

Tensione di compressione limite nel calcestruzzo:

I valori limite per le tensioni di compressione nel calcestruzzo sono stati definiti in accordo con il punto 2.5.1.8.3.2.1 di **Errore. L'origine riferimento non è stata trovata.**. Non si tiene in considerazione della riduzione del 30% dei valori poiché gli spessori delle opere d'arte in oggetto hanno spessori maggiori di 5 cm.

5.2 Acciaio d'armatura in barre tonde ad aderenza migliorata

Si adotta acciaio tipo B450C come previsto al punto 11.3.2.1 delle NTC2018 (**Errore. L'origine riferimento non è stata trovata.**), per il quale si possono assumere le seguenti caratteristiche:

• Resistenza a trazione – compressione:

f_{tk} = 540 N/mm² = Resistenza caratteristica di rottura

f_{yk} = 450 N/mm² = Resistenza caratteristica a snervamento

$$f_{yd} = \frac{f_{yk}}{\gamma_s} = 391.3 \text{ N/mm}^2 = \text{Resistenza di calcolo}$$

dove:

 γ_s = 1.15 = Coefficiente parziale di sicurezza relativo all'acciaio.

Rapporto: $1.15 < (f_t/f_v)_k < 1.35 \text{ (frattile 10\%)}$

Rapporto: $(f_v/f_{v,nom})_k < 1.25$ (frattile 10%)

Allungamento: $(A_{at})_k > 7.5\%$ (frattile 10%)

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA97	00 R 09	CL	VI2100 003	Α	15 di 65

Modulo Elastico:

$$Es = 210000 \text{ N/mm}^2$$

 Tensione limite di trazione nell'acciaio in combinazione rara (§2.5.1.8.3.2.1 di Errore. L'origine riferimento non è stata trovata.):

$$0.75 \cdot f_{yk} = 337.50 \text{ N/mm}^2$$

Tensione tangenziale di aderenza acciaio-calcestruzzo:

Parametri	UM	Struttura in elevazione	Strutture in fondazioni
f _{bk}	(N/mm²)	4,36	4,36
f _{bd}	(N/mm²)	2,90	2,90

Tab. 5 – Tabella caratteristiche meccaniche acciaio ordinario per strutture in calcestruzzo armato

dove:

f_{bk} = 2.25·η·f_{ctk} = Resistenza tangenziale caratteristica di aderenza

$$f_{bd} = \frac{f_{bk}}{\gamma_c}$$
 = Resistenza tangenziale di aderenza di calcolo

 $\eta = 1.0$ – per barre di diametro $\Phi \le 32$ mm;

 γ_c = 1.5 – Coefficiente parziale di sicurezza relativo al calcestruzzo.

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA97	00 R 09	CL	VI2100 003	Α	16 di 65

5.3 Copriferro

Con riferimento al punto 4.1.6.1.3 delle NTC (Errore. L'origine riferimento non è stata trovata.), al fine della protezione delle armature dalla corrosione il valore minimo dello strato di ricoprimento di calcestruzzo (copriferro) deve rispettare quanto indicato nella tabella C4.1.IV della Circolare 21.2.2019 (Tab. 6), riportata di seguito, nella quale sono distinte le tre condizioni ambientali di Tabella 4.1.III delle NTC (Tab. 7).

				arre da c.a. enti a piastra		rre da c.a. ri elementi		vi da c.a.p. enti a piastra		vi da c.a.p. ri elementi
C _{min}	Co	ambiente	C≥Co	C _{min} ≤C <c<sub>o</c<sub>						
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35
C30/37	C40/50	aggressivo	25	30	30	35	35	40	40	45
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50

Tab. 6 - Tabella C4.1.IV della Circolare applicativa delle NTC del 21.02.2019

Tab. 4.1.III - Descrizione delle condizioni ambientali

Condizioni ambientali	Classe di esposizione
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tab. 7 – Tabella 4.1.III delle NTC 2018

I valori della Tab. 6 si riferiscono a costruzioni con vita nominale di 50 anni (Tipo 2 secondo la Tabella 2.4.I delle NTC (Errore. L'origine riferimento non è stata trovata.)). Per costruzioni con vita nominale di 100 anni (Tipo 3 secondo la citata Tabella 2.4.I delle NTC (Errore. L'origine riferimento non è stata trovata.)) i valori della Tabella C4.1.IV vanno aumentati di 10 mm. Per classi di resistenza inferiori a C_{min} i valori della tabella sono da aumentare di 5 mm. Per produzioni di elementi sottoposte a controllo di qualità che preveda anche la verifica dei copriferri, i valori della tabella possono essere ridotti di 5 mm. A tali valori di tabella vanno aggiunte le tolleranze di posa, pari a 10 mm o minore, secondo indicazioni di norme di comprovata validità.

Al punto 2.5.2.2.3.2 del MdP RFI (**Errore. L'origine riferimento non è stata trovata.**) vengono forniti i valori minimi del copriferro da adottare per i diversi elementi strutturali riportati in Tab. 5. Nei casi in cui le condizioni ambientali per l'opera in progetto siano aggressive e molto aggressive ai sensi della Tab.4.1.III del DM 17.01.2018 (Tab. 7), il copriferro minimo indicato Tab. 8 va aumentato rispettivamente di 10 mm e di 20 mm (ad eccezione dei pali).

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA97	00 R 09	CL	VI2100 003	Α	17 di 65

Elemento strutturale	Copriferro minimo
Pali (di paratie o opere di sostegno), diaframmi e relativi cordoli di collegamento gettati in opera	60mm
Pali/diaframmi di fondazione gettati in opera	60mm
Pali di fondazione prefabbricati	60mm
Solettoni di fondazione, fondazioni armate	40mm
Fondazioni non armate (pozzi, sottoplinti, ecc.)	40mm
Cunette canalette e cordoli	40mm
Opere in elevazione in viste (pile, spalle, pulvini, baggioli)	40mm
Opere in elevazione con superfici interrate o non ispezionabili	40mm
Solette estradosso	35mm
Solette intradosso (getto in opera)	35mm
Impalcati armatura ordinaria	40mm
Impalcati in C.A.P cavi pre-tesi	Max (3Ø _{TR} ; 50mm)
Impalcati in C.A.P. cavi post-tesi	Max (Ø _G ; 60mm)
Predalles prefabbricate con funzioni strutturali	25mm
Predalles senza funzioni strutturali	Max (Ø _{inf} ; 20mm)

Tabella 2.5.2.2.3.2.-1

Con:

 Φ_{TR} = diametro esterno filo, treccia o trefolo;

 Φ_G = diametro esterno guaina;

 Φ_{IN} = diametro armatura inferiore delle lastre.

Tab. 8 – Tabella copriferri minimi del Manuale di Progettazione RFI

Il valore del copriferro di progetto da adottare per le opere d'arte in progetto sarà dato dal maggiore tra il valore desunto dalle prescrizioni delle NTC (Errore. L'origine riferimento non è stata trovata. e Errore. L'origine riferimento non è stata trovata.) e da quanto previsto dal MdP e Capitolato opere civili RFI (Errore. L'origine riferimento non è stata trovata. e Errore. L'origine riferimento non è stata trovata.).

Si riportano i valori minimi del copriferro di progetto per le opere d'arte in oggetto della presente relazione secondo il punto 4.1.6.1.3 di NTC (Errore. L'origine riferimento non è stata trovata. e

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA97	00 R 09	CL	VI2100 003	Α	18 di 65

secondo il punto 2.5.2.2.3.2 del MdP (Errore. L'origine riferimento non è stata trovata.) sulla base dei quali viene scelto il valore più conservativo ai fini della durabilità del calcestruzzo.

Opera d'arte	Ambiente	Copriferro minimo secondo Tab. C4.1.IV (mm)	Maggioraz. Copriferro per classe di resistenza C <c<sub>min (mm)</c<sub>	Tolleranza di posa (mm)	Riduzione per produzioni in controllo qualità (mm)	Maggioraz. Copriferro per V _N > 50 anni (mm)	Copriferro minimo di progetto (mm)
Struttura in elevazione	Ordinario	25	0	10	0	0	35
Fondazioni	Ordinario	25	0	10	0	0	35

Tab. 9 – Tabella copriferri minimi secondo le NTC 2018

Opera d'arte	Ambiente	Copriferro minimo (mm)	Maggiorazione in funzione classe ambientale (mm)	Copriferro minimo di progetto (mm)
Struttura in elevazione	Ordinario	25	0	35
Fondazioni	Ordinario	25	0	35

Tab. 10 – Tabella copriferri minimi secondo MdP RFI

In definitiva si prescrive che in fondazione e in elevazione il copriferro netto di progetto non deve essere inferiore a **40mm**.

Per i pali di fondazione il copriferro netto di progetto non deve essere inferiore a 60mm.

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA97	00 R 09	CL	VI2100 003	Α	19 di 65

6 INQUADRAMENTO GEOTECNICO

6.1 Descrizione unità geotecniche

Con riferimento alle indicazioni contenute nella relazione geotecnica relativa al Lotto 2, ri riepilogano nel seguito le unità geotecniche individuate.

L'orizzonte stratigrafico è stato suddiviso in strati la cui successione individuata a partire da piano campagna e riportata in Tabella T3, rappresenta un riferimento spesso variabile nell'area in oggetto. Le unità geotecniche così individuate sono alla base della definizione dei profili geotecnici di dettaglio.

Unità geotecnica	Materiale	Descrizione materiale		
LSA L(A,S); L(S,A)		Limi sabbiosi e Limi argilloso-sabbiosi		
AL L(A); L,A		Limo argilloso o Limo e Argilla		
SL	S(A,L), S(L,G)	Sabbia limoso argillosa a tratti ghiaiosa		
G,S G(S,L); G,S		Ghiaia sabbioso-limosa e Ghiaia con sabbia		
AM A(L); A(L,M)		Argilla limosa e Argilla limoso-marnosa		

Tab. 11 – Successione stratigrafica di riferimento

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	RADDOPP LOTTO 2	IO FERR	OVIARIO TR	A ROMA – PES ATTA SCAFA - CNICA ECONO	- MANOF	PPELLO
Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)	COMMESSA	LOTTO 00 R 09	CODIFICA CL	DOCUMENTO VI2100 003	REV.	FOGLIO 20 di 65

6.2 Parametri geotecnici di progetto - Lotto 2

I In it à	ità Mataviala					Paran	netri di resi:	stenza			Param	etri di defor	mabilità ela	stici	
Unità	Materiale	γ	k ₀	OCR	φ 'p	φ' _{cv}	φ 'r	c'	Cu	G _o	E _o	E _{op1}	E _{op2}	Eu	ν'
[-]	[-]	[kN/m ³]	[-]	[-]	[°]	[°]	[°]	[kPa]	[kPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[-]
LSA	L(A,S); L(S,A)	19.0	0.50	1÷2	26.00	-	21.00	5.00	30.00	80.00	200.00	20.00	10.00	12.00	0.30
AL ⁽¹⁾	L(A); L,A	19.5	0.54	1÷2	27.00	•	22.00	10.00	80.00 120.00	150.00	400.00	40.00 60.00	20.00 30.00	30.00 50.00	0.30
SL ⁽²⁾	S(A,L), S(L,G)	19.5 20.0	0.50	1÷2	27.00 38.00	25.00 35.00	-	-	-	115.00 160.00	300.00 420.00	25.00 35.00	15.00 25.00	-	0.25
G,S ⁽³⁾	G(S,L); G,S	22.0	0.35	1.00	40.00	35.00	-	-	-	300.00 400.00	750.00 1000.00	100.00 150.00	60.00 100.00	-	0.25
AM	A(L); A(L,M)	20.5	0.52	1.00	28.00	-	-	32.00	300.00	450.00	1200.00	140.00	90.00	120.00	0.30
COL ⁽⁴⁾	L(A,S); L(S,A)	19.0	0.50	1.00	25.00	-	21.00	-	10.00	-	-	5.00	2.50	4.00	0.3

Tab. 12 – Parametri geotecnici di progetto

NOTE

- (1) I valori più elevati dei parametri di deformabilità e della resistenza al taglio non drenata cu dell'unità AL, presenti nella riga in basso, sono da adottare per profondità superiori a 10m dal p.c.
- (2) I valori più elevati dei parametri di resistenza e di deformabilità dell'unità SL, presenti nella riga in basso, sono da adottare in corrispondenza del tratto compreso tra la pk 5+500 e la pk 6+000 (rif. Sondaggi S7 e S6bis) a partire da circa 10m di profondità dal p.c..
- (3) I valori più elevati dei parametri di resistenza e deformabilità dell'unità G,S, presenti nella riga in basso, sono da adottare per profondità superiori a 15m dal p.c.. L'intervallo di valori, costituito dalla prima e seconda riga, può essere utilizzato per caratterizzare i primi 15m ipotizzando un aumento lineare dei parametri in funzione della profondità.

 I valori dell'angolo di resistenza al taglio residuo sono da utilizzare nelle verifiche di stabilità dei rilevati e dei versanti.

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA97	00 R 09	CL	VI2100 003	Α	21 di 65

I Imità	Materiale	Parametri di deformabilità e di permeabilità					
Unità	Wateriale	Сс	Cr=Cs	Cv	kv		
[-]	[-]	[-]	[-]	[m ² /s]	[m/s]		
LSA	L(A,S); L(S,A)	0.1980	0.0213	6.80E-08	5x10 ⁻⁷		
AL	L(A); L,A	0.2160	0.0288	4.80E-08	1x10 ⁻⁸		
SL	S(A,L), S(L,G)	0.1700	0.0244	1.00E-07	1x10 ⁻⁶		
G,S	G(S,L); G,S	-	-	-	4x10 ⁻⁵		
AM	A(L); A(L,M)	0.1586	0.0385	6.50E-08	1x10 ⁻⁹		
COL	L(A,S); L(S,A)	0.1980	0.0213	6.80E-08	5x10 ⁻⁷		

Tab. 13 – Parametri geotecnici di progetto

6.3 Stratigrafia

Si riportano gli spessori e le caratteristiche del terreno caratterizzato al di sotto dell'opera in oggetto, o comunque della condizione peggiore per tutte le opere analoghe dello stesso viadotto.

L'opera in esame presenta la seguente stratigrafia:

Profondità da p.c. [m]	Unità geotecnica
Da 0.0 a 2.0	Coltre
Da 2.0 a 16.0	Unità G,S
Da 16.0 a 40.0	Unità AM

Tab. 14 – Stratigrafia utilizzata per il calcolo della capacità portante delle fondazioni

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA97
 00 R 09
 CL
 VI2100 003
 A
 22 di 65

7 ANALISI DEI CARICHI

L'analisi dei carichi gravanti sulla pila è stata effettuata considerando le azioni provenienti dagli impalcati e le azioni direttamente applicate alla pila.

I carichi trasmessi dagli impalcati sono relativi alle condizioni di carico elementari, opportunamente combinate secondo le vigenti normative, analizzate nel dettaglio nelle rispettive relazioni di calcolo degli impalcati tipo che afferiscono alla pila in esame.

Si riportano di seguito la sintesi delle azioni provenienti dagli impalcati e l'analisi dei carichi elementari che interessano direttamente la pila.

7.1 Carichi permanenti strutturali (G1)

Le pile del viadotto ferroviario presentano altezze differenti ma medesima sezione, a meno delle barre d'armatura. Pertanto, assumendo un peso del calcestruzzo per unità di volume γ_{cls} =25 kN/m³, si calcola il peso proprio della pila applicato al modello. Stesso criterio è applicato per il peso dei plinti.

7.2 Carichi trasmessi dall'impalcato

Per la sintesi degli scarichi espletati dagli appoggi d'impalcato sulla pila, relativamente ai due lati, fisso e mobile, per ciascuna delle condizioni di carico elementari analizzate, si faccia riferimento al capitolo relativo alle sollecitazioni e alle verifiche della pila, presentato nell'analisi dei risultati.

7.3 Azione del vento sulla pila q₆

Si riporta di seguito il calcolo dell'azione del vento sul fusto della pila in direzione trasversale e longitudinale rispetto all'asse del viadotto. La sezione della pila è assimilata, per questo calcolo, a un rettangolo di dimensioni $B_L \times B_T$.

Si assume cautelativamente una pressione di progetto pari a 2,5kN/m².

Risulta pertanto sui due lati del fusto della pila:

q_{T,vento} = 2,5kN/m² x B_L - Carico unitario in direzione trasversale all'asse del viadotto

q_{L.vento} = 2,5kN/m² x B_T - Carico unitario in direzione parallela all'asse del viadotto

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA97
 00 R 09
 CL
 VI2100 003
 A
 23 di 65

7.4 Azioni sismiche q₇

Nel presente paragrafo si riportano la descrizione e la valutazione dell'azione sismica secondo le specifiche del NTC 2018. L'azione sismica è descritta mediante spettri di risposta elastici e di progetto. In particolare, nel NTC 2018, vengono presentati gli spettri di risposta in termini di accelerazioni orizzontali e verticali.

L'espressione analitica dello spettro di risposta elastico in termini di accelerazione orizzontale è la seguente:

$$0 \le T \le T_B \longrightarrow S_{\epsilon}(T) = a_{g.} \cdot S \cdot \eta \cdot F_0 \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_0} \left(1 - \frac{T}{T_B} \right) \right]$$

$$T_B \leq T \leq T_C \longrightarrow S_{\mathfrak{g}}(T) = a_{\mathfrak{g}} \cdot S \cdot \eta \cdot F_0$$

$$T_C \le T \le T_D \longrightarrow S_{\epsilon}(T) = a_{g.} \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C}{T}\right)$$

$$T_D \leq T_D \longrightarrow S_{e}(T) = a_{g.} \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C \cdot T_D}{T}\right)$$

In cui:

$$S = S_S \cdot S_T$$

S: coefficiente di amplificazione stratigrafico;

 S_T : coefficiente di amplificazione topografica;

 η : fattore che tiene conto di un coefficiente di smorzamento viscoso equivalente ξ , espresso in punti percentuali diverso da 5 (η =1 per ξ =5):

$$\eta = \sqrt{\frac{10}{5 + \xi}} \ge 0.55$$

 F_0 : valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

 a_{g} : accelerazione massima al suolo;

T: periodo di vibrazione dell'oscillatore semplice;

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA97
 00 R 09
 CL
 VI2100 003
 A
 24 di 65

T_B, T_C, T_D: periodi che separano i diversi rami dello spettro, e che sono pari a:

$$T_C = C_C \cdot T *_C$$

$$T_B = \frac{T_C}{3}$$

$$T_D = 4.0 + \frac{a_g}{g} + 1.6$$

In cui:

 $^{C_{\it C}}$: coefficiente che tiene conto della categoria del terreno;

 $T^*{}_{\mathcal{C}}$: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

L'espressione analitica dello spettro di risposta elastico in termini di accelerazione verticale è la seguente:

$$0 \leq T \leq T_{B} \longrightarrow S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{v} \cdot \left[\frac{T}{T_{B}} + \frac{1}{\eta \cdot F_{v}} \left(1 - \frac{T}{T_{B}} \right) \right]$$

$$T_{B} \leq T \leq T_{C} \longrightarrow S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{v}$$

$$T_{C} \leq T \leq T_{D} \longrightarrow S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{v} \cdot \left(\frac{T_{C}}{T} \right)$$

$$T_{D} \leq T_{D} \longrightarrow S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{v} \cdot \left(\frac{T_{C} \cdot T_{D}}{T} \right)$$

nelle quali:

 $S = S_S \times S_T$: con S_S pari sempre a 1 per lo spettro verticale;

 η : fattore che tiene conto di un coefficiente di smorzamento viscoso equivalente ξ , espresso in punti percentuali diverso da 5 (η =1 per ξ =5):

$$\eta = \sqrt{\frac{10}{5 + \xi}} \ge 0,55$$

T: periodo di vibrazione dell'oscillatore semplice;

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA97	00 R 09	CL	VI2100 003	Α	25 di 65

T_B, T_C, T_D: periodi che separano i diversi rami dello spettro, e che sono pari a:

$$T_C = 0.05$$
 $T_B = 0.15$ $T_D = 1.0$

F_V: fattore che quantifica l'amplificazione spettrale massima mediante la relazione:

$$F_V = 1.35 \cdot F_0 \cdot \left(\frac{a_g}{g}\right)^{0.5}$$

Di seguito si riporta il calcolo dei parametri per la valutazione degli spettri in accelerazione orizzontale e verticale, effettuata mediante l'utilizzo del software "Spettri NTC ver. 1.0.3" reperibile presso il sito del Consiglio Superiore dei Lavori Pubblici.

Vita Nominale e classe d'uso

I parametri sono presentati e definiti al cap.4. Pertanto per l'opera in oggetto il periodo di riferimento è pari a 75x1,0= 75 anni.

Stati limite e relative probabilità di superamento

Nei confronti delle azioni sismiche gli stati limite, sia di esercizio che ultimi, sono individuati riferendosi alle prestazioni della costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e gli impianti.

La probabilità di superamento nel periodo di riferimento P_{VR} , cui riferirsi per individuare l'azione sismica agente in ciascuno degli stati limite considerati, sono riportati nella tabella successiva.

Stati Limite		P_{VR} : Probabilità di superamento nel periodo di riferimento V_R
Stati limite di esercizio	SLO	81%
Otali ilifilite di eserelizio	SLD	63%
Stati limite ultimi	SLV	10%
Julian III. III.	SLC	5%

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA97	00 R 09	CL	VI2100 003	Α	26 di 65

Accelerazione (a_g), fattore (F₀) e periodo (T*_c)

Ai fini del NTC 2018 le forme spettrali, per ciascuna delle probabilità di superamento nel periodo di riferimento P_{VR} , sono definite a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

a_q: accelerazione orizzontale massima sul sito;

F_o: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

T*c: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

I parametri prima elencati dipendono dalle coordinate geografiche, espresse in termini di latitudine e longitudine, del sito interessato dall'opera, dal periodo di riferimento (V_R) , e quindi dalla vita nominale (VN) e dalla classe d'uso (C_u) e dallo stato limite considerato. Si riporta nel seguito la valutazione di detti parametri per i vari stati limite.

Latitudine: 42.2586°

Longitudine: 14.0609°

SLATO	T _R	a _g	F _o	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SLO	45	0,070	2,432	0,296
SLD	75	0,088	2,438	0,316
SLV	712	0,212	2,514	0,359
SLC	1462	0,271	2,545	0,369

Tab. 15 – Valutazione dei parametri ag, F0 e T*C per i periodi di ritorno associati a ciascuno stato limite

I parametri ai quali si è fatto riferimento nella definizione dell'azione sismica di progetto, indicati nella tabella precedente, corrispondono, cautelativamente, a quei parametri che danno luogo al sisma di massima entità, fra tutti quelli individuati lungo le progressive dell'opera in progetto.

Sono stati presi in esame, secondo quanto previsto dal NTC 2018 "Nuove Norme Tecniche per le Costruzioni", cap. 7.1, i seguenti Stati Limite sismici:

SLV: Stato Limite di Salvaguardia della Vita (Stato Limite Ultimo)

SLD: Stato Limite di Danno (Stato Limite di Esercizio)

SLC: Stato Limite di Collasso (Stato Limite Ultimo)

SLO: Stato Limite di Operatività (Stato Limite di Esercizio)

Le azioni sismiche relative allo stato limite di operatività (SLO) e allo stato limite di danno (SLD) non sono state considerate perché poco significative in relazione alle combinazioni di natura statica. Per quanto riguarda lo stato limite di collasso (SLC), questo è stato considerato per le combinazioni sismiche di verifica dei ritegni sismici; si faccia pertanto riferimento alle considerazioni presentate nelle rispettive relazioni di calcolo di impalcato.

Si riportano al termine dell'analisi, i parametri ed i punti dello spettro di risposta elastici e di progetto per il restante stato limite (SLV).

Classificazione dei terreni

Per la definizione dell'azione sismica di progetto, la valutazione dell'influenza delle condizioni litologiche e morfologiche locali sulle caratteristiche del moto del suolo in superficie, deve essere basata su studi specifici di risposta sismica locale esistenti nell'area di intervento. In mancanza di tali studi la normativa prevede la classificazione, riportata nella tabella seguente, basata sulla stima dei valori della velocità media delle onde sismiche di taglio V_{s30}, ovvero sul numero medio di colpi NSPT ottenuti in una prova penetrometrica dinamica (per terreni prevalentemente granulari), ovvero sulla coesione non drenata media cu (per terreni prevalentemente coesivi).

Categoria di suolo di fondazione	Descrizione
Cat. A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di Vs,30 superiori a 800 m/s eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo di 3 m.
Cat. B	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori Vs,30 compresi tra 360 m/s e 800 m/s (ovvero Nspt,30>50 nei terreni a grana grossa e cu,30 > 250 kPa nei terreni a grana fina)
Cat. C	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzanti da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs,30 compresi tra 180 m/s e 360 m/s (ovvero 15<

	Nspt,30<50 nei terreni a grana grossa e 70 <cu,30<250 a="" fina)<="" grana="" kpa="" nei="" terreni="" th=""></cu,30<250>
Cat. D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori Vs,30 inferiori a 180 m/s (ovvero Nspt,30<15 nei terreni a grana grossa e cu,30<70 kPa nei terreni a grana fina)
Cat. E	Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m, posti sul substrato di riferimento (con Vs>800 m/s)

Si considera una categoria C di suolo di fondazione.

Amplificazione stratigrafica

I due coefficienti prima definiti, Ss e Cc, dipendono dalla categoria del sottosuolo come mostrato nel prospetto seguente. Per i terreni di categoria A, entrambi i coefficienti sono pari a 1, mentre per le altre categorie i due coefficienti sono pari a:

Categoria sottosuolo	S_{S}	c_c
A	1,00	1,00
В	$1,00 \le 1,40-0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10\cdot(T_C^*)^{-0,20}$
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0,33}$
D	$0,90 \le 2,40-1,50 \cdot F_o \cdot \frac{a_g}{g} \le 1,80 \cdot$	$1,25 \cdot (T_C^*)^{-0,50}$
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	$1,15 \cdot (T_C^*)^{-0,40}$

Nel caso in esame (categoria di sottosuolo C) allo SLV risulta:

Ss = 1.381

Cc = 1.473

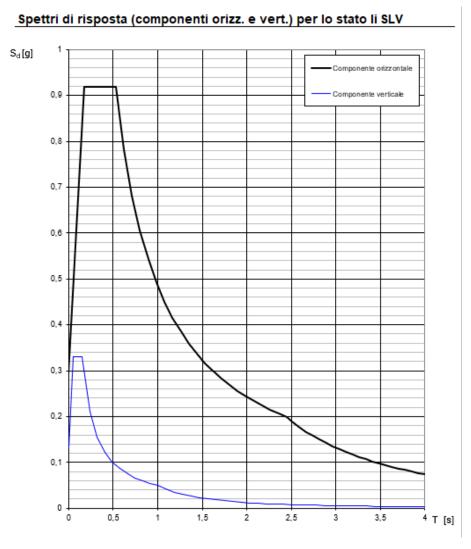
Amplificazione topografica

Per poter tenere conto delle condizioni topografiche e in assenza di specifiche analisi di risposta sismica, si utilizzano i valori del coefficiente topografico S_T riportati nella seguente tabella.

Categoria topografica	Ubicazione dell'opera o dell'intervento	S⊤
T1	-	1
T2	In corrispondenza della sommità del pendio	1.2
ТЗ	In corrispondenza della cresta del rilievo con inclinazione media 15°≤i≤30°	1.2
T4	In corrispondenza della cresta del rilievo con inclinazione media i>30°	1.4

Nel caso in esame $S_T = 1$.

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA


CODIFICA FOGLIO LOTTO DOCUMENTO REV. **IA97** 00 R 09 CL VI2100 003 30 di 65

Spettri di risposta elastici

In accordo con le prescrizioni normative, lo spettro di risposta elastico è stato considerato solo ai fini della valutazione delle azioni in fondazione e delle azioni sugli apparecchi di appoggio.

Stato limite di salvaguardia della vita

Di seguito si forniscono lo spettro di risposta elastico per lo stato limite di salvaguardia della vita e la tabella dei parametri rispettivi.

Tab. 16 - Spettro di risposta (componenti orizz. e vert.) per l' SLV

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA97	00 R 09	CL	VI2100 003	Α	31 di 65

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LV

Parametri indipendenti

STATO LIMITE	SLV
a _o	0,212 g
F _o	2,514
T _c '	0,359 s
Ss	1,381
Co	1,473
S _⊤	1,000
q	0,800

Parametri dipendenti

S	1,381
η	1,250
T _B	0,176 s
T _C	0,528 s
T _D	2,447 s

Espressioni dei parametri dipendenti

 $S = S_{s_{-}} \cdot S_{T}$ (NTC-08 Eq. 3.2.5)

 $\eta = \sqrt{10/(5+\xi)} \ge 0.55; \ \eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

 $T_B = T_C/3$ (NTC-07 Eq. 3.2.8)

 $T_{c} = C_{c} \cdot T_{c}^{*}$ (NTC-07 Eq. 3.2.7)

 $T_0 = 4,0 \cdot a_o / g + 1,6$ (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq T < T_B & \quad S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & \quad S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C \leq T < T_D & \quad S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D \leq T & \quad S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_a(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_a(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

iiu u	ello spettro	ui risposta
	T [s]	Se [g]
	0,000	0,292
T₀◀	0,176	0,919
Tℯ 	0,528	0,919
	0,620	0,783
	0,711	0,682
	0,802	0,605
	0,894	0,543
	0,985	0,493
	1,076	0,451
	1,168	0,416
	1,259	0,385
	1,351	0,359
	1,442	0,337
	1,533	0,316
	1,625	0,299
	1,716	0,283
	1,807	0,268
	1,899	0,256
	1,990	0,244
	2,081	0,233
	2,173	0,223
	2,264	0,214
	2,356	0,206
T₁◀	2,447	0,198
	2,521	0,187
	2,595	0,176
	2,669	0,167
	2,743	0,158
	2,817	0,150
	2,891	0,142
	2,965	0,135
	3,039	0,129
	3,113	0,123
	3,187	0,117
	3,260	0,112
	3,334	0,107
	3,408	0,102
	3,482	0,098
	3,556	0,094
	3,630	0,090
	3,704	0,087
	3,778	0,083
	3,852	0,080
	3,926	0,077
	4,000	0,074
'		

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA97
 00 R 09
 CL
 VI2100 003
 A
 32 di 65

7.4.2 Spettri di risposta di progetto

In accordo con il par. 3.2.3.5 del NTC 2018 le capacità dissipative delle strutture possono essere prese in considerazione attraverso una riduzione delle forze elastiche. Tale riduzione tiene conto in modo semplificato della capacità dissipativa anelastica della struttura, della sua sovraresistenza, dell'incremento del suo periodo proprio a seguito delle plasticizzazioni. Lo spettro di progetto S_d (T) che ne risulta, sia per le componenti orizzontali, che per la componente verticale, deriva dunque dallo spettro elastico con le ordinate ridotte e lo si ottiene sostituendo, nelle espressioni che lo definiscono, il termine η con il termine 1/q, dove q è il cosiddetto fattore di struttura.

Il fattore di struttura è definito in accordo con il par. 7.3.1 del NTC 2018:

$$q = q_0 \cdot K_R$$

dove:

 q_0 è il valore massimo del fattore di struttura che dipende dal livello di duttilità attesa, dalla tipologia strutturale e dal rapporto α u/ α 1 tra il valore dell'azione sismica per il quale si verifica la formazione di un numero di cerniere plastiche tali da rendere la struttura labile e quello per il quale il primo elemento strutturale raggiunge la plasticizzazione a flessione;

K_R è un fattore riduttivo che dipende dalle caratteristiche di regolarità in altezza della costruzione, con valore pari ad 1 per costruzioni regolari in altezza e pari a 0,8 per costruzioni non regolari in altezza.

Nel caso di pile da ponte in c.a. in **classe di duttilità "B" (CD "B")**, in accordo con il par. 7.9.2.1 (Tabella 7.9.I) NTC 2018 (Tabella 7.9.I), il valore di q₀ è pari ad 1.5 mentre il valore di K_R è pari ad 1, per cui, in definitiva, per le componenti orizzontali dell'azione sismica si adotta:

$$q = 1.5$$

Per la componente verticale, il fattore di struttura per i ponti è unitario (q = 1), quindi si utilizza lo spettro elastico. L'utilizzo di uno spettro di risposta di progetto (q> 1) implica il rispetto di quelli che sono i requisiti normativi della gerarchia delle resistenze, descritti nello specifico nei paragrafi relativi al calcolo e alla verifica dei singoli elementi strutturali.

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA97
 00 R 09
 CL
 VI2100 003
 A
 33 di 65

Stato limite di salvaguardia della vita

Secondo quanto riportato nel DM 14/01/2008 "Nuove Norme Tecniche per le Costruzioni", cap. 3.2.3.5, lo spettro di progetto delle componenti orizzontali per lo SLV è stato determinato secondo le sequenti relazioni:

$$0 \le T < T_B \qquad S_e(T) = a_g \cdot S \cdot \frac{1}{q} \cdot F_O \cdot \left[\frac{T}{T_B} + \frac{1}{\frac{1}{q} \cdot F_O} \cdot \left(1 - \frac{T}{T_B} \right) \right]$$

$$T_B \le T < T_C$$
 $S_e(T) = a_g \cdot S \cdot \frac{1}{q} \cdot F_O$

$$T_C \le T < T_D$$
 $S_e(T) = a_g \cdot S \cdot \frac{15}{q} \cdot F_O \cdot \left(\frac{T_C}{T}\right)$

$$T_D \le T$$
 $S_e(T) = a_g \cdot S \cdot \frac{1}{q} \cdot F_O \cdot \left(\frac{T_c T_D}{T^2}\right)$

In cui:

 $S = S_S \cdot S_T$;

 S_s : coefficiente di amplificazione stratigrafico;

 $S_{\scriptscriptstyle T}$: coefficiente di amplificazione topografica;

 F_0 : valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

 T_C : periodo corrispondente all'inizio del tratto a velocità costante dello spettro ed è ottenuto mediante la seguente relazione:

$$T_C = C_C \cdot T_C^*$$

In cui:

 C_{c} : coefficiente che tiene conto della categoria del terreno;

 $T^*{}_{\mathcal{C}}$: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

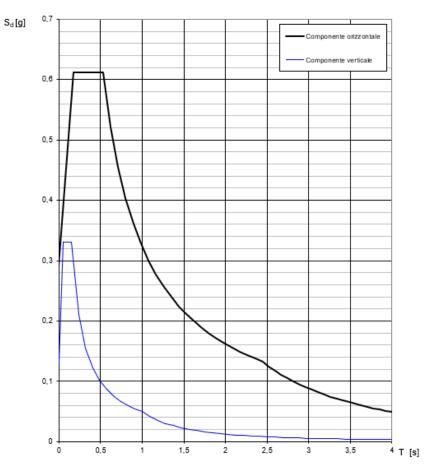
PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA97	00 R 09	CL	VI2100 003	Α	34 di 65

 T_B : periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante ed è ottenuto mediante la seguente relazione:

$$T_B = \frac{T_C}{3}$$


 T_D : periodo corrispondente all'inizio del tratto dello spettro a spostamento costante ed è ottenuto mediante la seguente relazione:

$$T_D = 4.0 \cdot \frac{a_g}{g} + 1.6$$

q: fattore di struttura.

Sono stati determinati gli spettri di risposta di progetto ed i parametri per lo SLV, riportati di seguito:

Spettri di risposta (componenti orizz. e vert.) per lo stato li SLV

Tab. 17 – Spettro di risposta (componenti orizz. e vert.), con q=1,5, per l' SLV

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA97	00 R 09	CL	VI2100 003	Α	35 di 65

Parametri e punti dello spettro di risposta orizzontale per lo stato \$LV

Parametri indipendenti

STATO LIMITE	SLV
a _o	0,212 g
F _o	2,514
T _c '	0,359 s
Ss	1,381
Co	1,473
S _⊤	1,000
q	1,200

Parametri dipendenti

S	1,381
η	0,833
T _B	0,176 s
T _C	0,528 s
T _D	2,447 s

Espressioni dei parametri dipendenti

 $S = S_c \cdot S_T$ (NTC-08 Eq. 3.2.5)

 $\eta = \sqrt{10/(5+\xi)} \ge 0.55$; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

 $T_n = T_c / 3$ (NTC-07 Eq. 3.2.8)

 $T_c = C_c \cdot T_c^*$ (NTC-07 Eq. 3.2.7)

 $T_0 = 4.0 \cdot a_a / g + 1.6$ (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq T < T_{_{\!\!B}} & \qquad S_{_{\!\!C}}(T) = a_{_{\!\!B}} \cdot S \cdot \eta \cdot F_{_{\!\!O}} \cdot \left[\frac{T}{T_{_{\!\!B}}} + \frac{1}{\eta \cdot F_{_{\!\!O}}} \left(1 - \frac{T}{T_{_{\!\!B}}} \right) \right] \\ T_{_{\!\!B}} \leq T < T_{_{\!\!C}} & \qquad S_{_{\!\!C}}(T) = a_{_{\!\!B}} \cdot S \cdot \eta \cdot F_{_{\!\!O}} \\ T_{_{\!\!C}} \leq T < T_{_{\!\!D}} & \qquad S_{_{\!\!C}}(T) = a_{_{\!\!B}} \cdot S \cdot \eta \cdot F_{_{\!\!O}} \cdot \left(\frac{T_{_{\!\!C}}}{T} \right) \\ T_{_{\!\!D}} \leq T & \qquad S_{_{\!\!C}}(T) = a_{_{\!\!B}} \cdot S \cdot \eta \cdot F_{_{\!\!O}} \cdot \left(\frac{T_{_{\!\!C}}T_{_{\!\!D}}}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_a(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_a(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

aniu u	ello spettro	ui risposta
	T [s]	Se [g]
	0,000	0,292
T₀◀	0,176	0,612
Tℯ ⋖	0,528	0,612
	0,620	0,522
	0,711	0,455
	0,802	0,403
	0,894	0,362
	0,985	0,328
	1,076	0,301
	1,168	0,277
	1,259	0,257
	1,351	0,240
	1,442	0,224
	1,533	0,211
	1,625	0,199
	1,716	0,189
	1,807	0,179
	1,899	0,170
	1,990	0,163
	2,081	0,155
	2,173	0,149
	2,264	0,143
	2,356	0,137
Τρ◀−	2,447	0,132
	2,521	0,125
	2,595	0,118
	2,669	0,111
	2,743	0,105
	2,817	0,100
	2,891	0,095
	2,965	0,090
	3,039	0,086
	3,113	0,082
	3,187	0,078
	3,260	0,074
	3,334	0,071
	3,408	0,068
	3,482	0,065
	3,556	0,063
	3,630	0,060
	3,704	0,058
	3,778	0,055
	3,852	0,053
	3,926	0,051
	4,000	0,049

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA97
 00 R 09
 CL
 VI2100 003
 A
 36 di 65

7.4.3 Combinazione delle componenti dell'azione sismica e valutazione delle masse

Il sisma viene convenzionalmente considerato come agente separatamente in due direzioni tra loro ortogonali prefissate (direzione longitudinale rispetto all'asse del viadotto e trasversale); per tenere conto che nella realtà il moto del terreno durante l'evento sismico ha direzione casuale e in accordo con le prescrizioni normative, per ottenere l'effetto complessivo del sisma, a partire dagli effetti delle direzioni calcolati separatamente, si è provveduto a sommare i massimi ottenuti in una direzione con il 30% dei massimi ottenuti per l'azione applicata nell'altra direzione.

Per quanto riguarda la valutazione delle masse sismiche, nel caso di ponti, in accordo con il par. 3.2.4 del D.M. 14/01/2008, oltre alla massa efficace dell'impalcato e della pila, è stata considerata un'aliquota pari al 20% del carico dovuto al transito dei treni: questo è stato ottenuto tenendo conto dello scenario più gravoso tra quello che vede la presenza sui due binari di due treni di carico LM71 e quello caratterizzato da un treno LM71 e da un treno tipo SW/2.

In direzione longitudinale rispetto all'asse del viadotto, la lunghezza di impalcato di competenza della pila, per il calcolo delle masse sismiche, è quella relativa all'impalcato "lato fisso"; in direzione trasversale, è pari alla somma della metà della luce dell'impalcato "lato fisso" e della metà di quella dell'impalcato "lato mobile".

La valutazione delle masse sismiche è esplicitata nell'analisi dei risultati, per ciascuna delle due direzioni di verifica.

7.5 Variazioni termiche ε₃

Per l'analisi termica delle pile cave, eseguita in accordo con quanto previsto nel par. 5.2.2.5.2 del NTC 2018, si rimanda alla successiva fase di progetto.

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA97
 00 R 09
 CL
 VI2100 003
 A
 37 di 65

8 MODELLAZIONE STRUTTURALE E COMBINAZIONI DI CARICO

8.1 Combinazioni di carico

Le combinazioni delle azioni sono state definite in accordo con quanto riportato al par. 2.5.3 del NTC 2018:

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.1)

- Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

- Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

- Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

 Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto A_d (v. § 3.6):

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

I valori dei coefficienti parziali di sicurezza γ_{Gi} e γ_{Qj} e quelli dei coefficienti di combinazione Ψ_{ij} sono stati desunti dal par. 5.2.3.3.1 del NTC 2018, relativo al capitolo sui 'Ponti ferroviari'. Di seguito si riportano le Tabelle di riferimento.

Per quanto riguarda il coefficiente di combinazione Ψ_{2j} relativo ai carichi dovuti al transito dei treni, come anticipato in precedenza, questo si assume pari a 0,2 nelle combinazioni sismiche, conformemente a quanto prescritto nel par. 3.2.4 del NTC 2018.

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA97	00 R 09	CL	VI2100 003	Α	38 di 65

		Coefficiente	EQU ⁽¹⁾	Al STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γGI	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ ω	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γQ	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	γ₽	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

Tab. 18 – Valori dei coefficienti parziali di sicurezza – Tabella 5.2.V del NTC 2018

Azioni		Ψo	V 1	Ψ 2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr1	0,80(2)	0,80(1)	0,0
Gruppi di	2 72	0,80(2)	0,80 ⁽¹⁾	-
carico	gr3	0,80(2)	0,80(1)	0,0
	gr ₄	1,00	1,00(1)	0,0
Azioni del vento	F _{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T _k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Tab. 19 – Valori dei coefficienti di combinazione– Tabella 5.2.VI del NTC 2018

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

⁽³⁾ Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

⁽⁵⁾ Aliquota di carico da traffico da considerare.

^{(6) 1,30} per instabilità in strutture con precompressione esterna

^{(7) 1,20} per effetti locali

Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA97	00 R 09	CL	VI2100 003	Α	39 di 65

	Azioni	Ψο	Ψı	Ψ2
	Treno di carico LM 71	0,80(3)	(1)	0,0
Azioni	Treno di carico SW /0	0,80(3)	0,80	0,0
singole	Treno di carico SW/2	0,0 ⁽³⁾	0,80	0,0
da	Treno scarico	1,00(3)	-	-
traffico	Centrifuga	(2 (3)	(2)	(2)
	Azione laterale (serpeggio)	1,00(3)	0,80	0,0

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Tab. 20 – Ulteriori valori dei coefficienti di combinazione – Tabella 5.2. VII del NTC 2018

Conformemente con quanto prescritto al par.5.2.3.1.3 del NTC 2018, gli effetti dei carichi verticali dovuti alla presenza dei convogli vanno sempre combinati con le altre azioni derivanti dal traffico ferroviario, adottando i coefficienti indicati nella Tabella 5.2.IV del NTC 2018, riportata di seguito.

TIPO DI CARICO	Azioni v	erticali	A	zioni orizzont		
Gruppo di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti
Gruppo 1 (2)	1,00	1	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale
Gruppo.2 (2)	1	1,00	0,00	1,0 (0,0)	1,0(0,0)	stabilità laterale
Gruppo 3 (2)	1,0 (0,5)	-	1,00	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale
Gruppo 4	0,8 (0,6; 0,4)	-	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	fessurazione

Azione dominante

Tab. 21 – Valutazione dei carichi da traffico – Tabella 5.2.IV del NTC 2018

⁽³⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

Includendo tutti i fattori ad essi relativi (Φ,α, ecc..)

⁽²⁾ La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1, 2, 3 senza che ciò abbia significative conseguenze progettuali.

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA97	00 R 09	CL	VI2100 003	Α	40 di 65

Nel progetto di predimensionamento si considerano come combinazioni di riferimento quella a SLU che massimizzano i carichi verticali e le azioni sismiche che invece costituiscono i valori di verifica per i carichi orizzontali e, di conseguenza, determinano i momenti alla base dei fusti.

Si riporta nei seguito tabella dei coefficienti utilizzati, sulla base delle prescrizioni di norma sopra riportate:

		G1	G2	Traffico	Vento	Avv.	Fren.	Serp.
LM71 Bpari + LM71 Bdispari	SLU1	1,35	1,5	1,45	0,9	0,725	0,725	1,45
LM71 Bpari + LM71 Bdispari	SLU2	1,35	1,5	1,45	0,9	1,45	1,45	0,725
LM71 Bpari + SW2 Bdispari	SLU3	1,35	1,5	1,45	0,9	0,725	0,725	1,45
LM71 Bpari + SW2 Bdispari	SLU4	1,35	1,5	1,45	0,9	1,45	1,45	0,725
LM71 Bpari	SLU5	1,35	1,5	1,45	0,9	1,45	1,45	0,725
LM71 Bdispari	SLU6	1,35	1,5	1,45	0,9	1,45	1,45	0,725
LM71 Bpari + LM71 Bdispari	SLU7	1	1	1,45	0,9	0,725	0,725	1,45
LM71 Bpari + LM71 Bdispari	SLU8	1	1	1,45	0,9	1,45	1,45	0,725
LM71 Bpari + SW2 Bdispari	SLU9	1	1	1,45	0,9	0,725	0,725	1,45
LM71 Bpari + SW2 Bdispari	SLU10	1	1	1,45	0,9	1,45	1,45	0,725
LM71 Bpari	SLU11	1	1	1,45	0,9	1,45	1,45	0,725
LM71 Bdispari	SLU12	1	1	1,45	0,9	1,45	1,45	0,725
	CI) /	Fy + 0,3x Fx						
	SLV	0,3xFy + Fx						

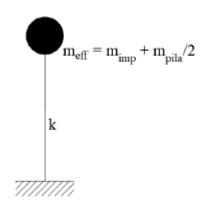
Tab. 22 – Combinazioni di carico dimensionanti

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA97	00 R 09	CL	VI2100 003	Α	41 di 65

8.2 Modellazione strutturale


Conformemente con quanto prescritto nel par.7.9.4.1 del NTC 2018, risulta applicabile, nel caso in esame di ponte a travate semplicemente appoggiate, per entrambe le direzioni di verifica della pila (longitudinale e trasversale rispetto all'asse del viadotto), un'analisi statica lineare, sviluppata riconducendo la pila allo schema di oscillatore semplice con incastro alla base, a quota estradosso plinto di fondazione.

L'analisi prevede l'applicazione sulla pila di forze statiche equivalenti alle forze di inerzia indotte dall'azione sismica. L'entita di queste forze si ottiene desumendo l'accelerazione corrispondente al periodo della pila nella direzione considerata dallo spettro elastico/di progetto. Il periodo fondamentale T_1 , in corrispondenza del quale valutare la risposta spettrale in accelerazione $S_d(T_1)$ è dato in entrambi i casi dall'espressione:

$$T_1 = 2 \pi \sqrt{M/K}$$

in cui la massa M, da considerare concentrata in testa alla pila, in corrispondenza dell'impalcato, vale la massa di impalcato afferente alla pila, più la massa della metà superiore della pila (massa efficace) e K consiste nella rigidezza laterale della pila nella direzione considerata.

La massa efficace della pila non risulta superiore ad 1/5 della massa di impalcato da essa portata, requisito necessario per l'applicabilità dell'analisi statica lineare.

Modello della pila ad oscillatore semplice

Per tener conto dell'influenza della fessurazione sulla rigidezza, in accordo con il par.7.2.6 del NTC 2018, si è considerato un abbattimento del modulo elastico pari al 50%, rispetto al valore iniziale E_{cm}

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA97
 00 R 09
 CL
 VI2100 003
 A
 42 di 65

con conseguente abbattimento delle rigidezze flessionali della pila nelle due direzioni e corrispondente aumento dei periodi di vibrazione. Questa condizione rappresenta lo scenario più gravoso per la struttura in esame: in condizioni iniziali non fessurate, le pile sono caratterizzate da rigidezze molto alte, dunque periodi di vibrazione molto bassi (spesso T₁< T_B o al più T_B< T₁<< T_C) ai quali corrispondono ordinate spettrali prossime o uguali a quelle di massima amplificazione (plateau dello spettro di risposta). In definitiva, in questo ramo dello spettro, un aumento del periodo di vibrazione, legato ad un abbattimento della rigidezza, comporta un aumento dell'accelerazione sismica considerata.

Inoltre, secondo quanto anticipato nel paragrafo relativo alle azioni sismiche, la valutazione degli effetti dell'azione sismica viene effettuata considerando uno spettro di progetto, ottenuto riducendo lo spettro elastico mediante un fattore di stuttura pari ad 1.5, in modo da tener conto in maniera semplificata della capacità dissipativa anelastica della struttura.

Per questioni legate al criterio di gerarchia delle resistenze, gli spettri elastici (q=1) verranno utilizzati solo nel caso della verifica degli apparecchi di appoggio e per la valutazione delle azioni in fondazione; si rimanda ai relativi paragrafi per approfondimenti in merito all'applicazione del criterio di gerarchia delle resistenze per i diversi elementi strutturali.

Si ribadisce inoltre che per la valutazione delle masse sismiche del viadotto, oltre alla massa efficace dell'impalcato e della pila, è stata considerata anche un'aliquota pari al 20% del carico dovuto al transito dei mezzi.

Nel paragrafo relativo all'analisi dei risultati si riportano tutte le valutazioni effettuate per l'analisi sismica della pila in esame, sia in ipotesi di sezione fessurata che non fessurata, con riferimento allo spettro elastico (q=1) e allo spettro di progetto (q=1.5).

Oltre alle sollecitazioni destate in condizioni sismiche, desunte seguendo i criteri sopra elencati, le sollecitazioni di verifica della pila indotte in condizioni statiche, sono state determinate a partire dai valori delle azioni trasmesse dagli impalcati afferenti, alla quota degli apparecchi di appoggio. Queste sono state trasportate in corrispondenza della testa della pila per le singole condizioni di carico e quindi alla base della pila, facendo riferimento a uno schema a mensola.

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA97
 00 R 09
 CL
 VI2100 003
 A
 43 di 65

9 VERIFICHE

Nei paragrafi successivi si esibiscono le sollecitazioni e le verifiche strutturali relative al fusto della pila in esame.

Si riportano di seguito la sintesi delle proprietà geometriche e meccaniche delle pile di calcolo, nonchè le valutazioni effettuate per l'analisi sismica, sia in ipotesi di sezione fessurata che non fessurata, con riferimento allo spettro elastico (q=1) e allo spettro di progetto (q=1.5): come anticipato nei criteri di modellazione, l'analisi è stata sviluppata riconducendo la pila allo schema di oscillatore semplice con incastro alla base.

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA97
 00 R 09
 CL
 VI2100 003
 A
 44 di 65

9.1 SOLLECITAZIONI DI VERIFICA

Si riportano di seguito la sintesi delle proprietà geometriche e meccaniche delle pile di calcolo, nonchè le valutazioni effettuate per l'analisi sismica, sia in ipotesi di sezione fessurata che non fessurata, con riferimento allo spettro elastico (q=1) e allo spettro di progetto (q=1.5): come anticipato nei criteri di modellazione, l'analisi è stata sviluppata riconducendo la pila allo schema di oscillatore semplice con incastro alla base.

	Pila 60_	60		
Luce Campata 1	m	60		
Luce Campata 2	m	60		
			massa	
Peso impalcati incidenti su pila	kN	21600	2201,8	kN/m/s2
Peso traffico incidente sulla pila	kN	13340	1359,8	kN/m/s2
			2473,8	
Altezza baggiolo+appoggio	m	0,6		
Altezza pulvino	m	2,7		
Altezza fusto	m	17,5		
Braccio delle forze	m	20,8		
Sezione pila	mq	23,8		
Sezione pulvino	mq	81,4		
Volume pulvino	mc	219,8		
Volume pila	mc	415,77015		
			massa	
Peso pulvino	kN	5496	560,2	kN/m/s2
Peso pila	kN	10394	1059,6	kN/m/s2
Peso metà superiore pila	kN	10693	1090,0	kN/m/s2
Peso metà inferiore pila	kN	5197	529,8	kN/m/s2
Peso incidente su testa pila (G+0,2xQ)	kN	34961	3563,8	kN/m/s2

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA97
 00 R 09
 CL
 VI2100 003
 A
 45 di 65

Pila 60_60						
Inerzia pila trasversale	mm ⁴	4,49E+13				
Inerzia pila longitudinale	mm^4	4,49E+13				
Modulo elastico	Мра	3,33E+04				
Rig. flessionale trasversale	N/mm	1,50E+07	K_{T}			
Rig. flessionale longitudinale	N/mm	1,50E+07	K_L			
Rig. flessionale trasversale	N/mm	7,49E+06	$K_{T,fess}$	fessurata		
Rig. flessionale longitudinale	N/mm	7,49E+06	$K_{L,fess}$	fessurata		
		T [s]	S _d , _H [g]			
Periodo (K _T)	Т	0,097	0,468			
Periodo (K _L)	Т	0,097	0,468			
Periodo (K _{T,fess})	Т	0,137	0,541			
Periodo (K _{L,fess})	T	0,137	0,541			
Accelerazione spettrale orizzontale						
Spettro di progetto (q=1,5)	g	0,541	Trasversale			
Spettro di progetto (q=1,5)	g	0,541	Longitudina	ale		
Taglio trasversale base pila	kN	18930				
Taglio longitudinale base pila	kN	18930				

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA97	00 R 09	CL	VI2100 003	Α	46 di 65

Si riporta di seguito la sintesi degli scarichi espletati dagli appoggi d'impalcato sulla pila, relativamente ai due lati, fisso e mobile, per ciascuna delle condizioni di carico elementari analizzate. Le grandezze che figurano nella Tabella di seguito fanno riferimento alle seguenti azioni trasmesse dagli appoggi:

Fz: Sforzo normale (negativo, se di compressione)

Fy: Taglio in direzione trasversale rispetto all'asse del viadotto

Fx: Taglio in direzione parallela all'asse del viadotto

Mx: Momento flettente che produce flessione nel piano ortogonale all'asse del viadotto

Pila 60_60								
		Lato I	Fisso					
	Fx	Fy	Fz	Mx				
	kN	kN	kN	kNm				
SLU1	1874	891	27238	-2259				
SLU2	3748	715	27238	-2259				
SLU3	2472	891	27318	-2666				
SLU4	4945	715	27318	-2666				
SLU5	1595	628	21337	9351				
SLU6	1595	628	21337	-8397				
SLU7	1874	891	22603	-2259				
SLU8	3748	715	22603	-2259				
SLU9	2472	891	22683	-2666				
SLU10	4945	715	22683	-2666				
SLU11	1595	628	16702	9351				
SLU12	1595	628	16702	-8397				

Tab. 23 – Sollecitazioni su pila impalcato "fisso"

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA97
 00 R 09
 CL
 VI2100 003
 A
 47 di 65

Pila 60_60								
		Lato i	mobile					
	Fx	Fy	Fz	Mx				
	kN	kN	kN	kNm				
SLU1	0	859	26165	3213				
SLU2	0	700	26165	3213				
SLU3	0	859	26238	2843				
SLU4	0	700	26238	2843				
SLU5	0	620	20800	12087				
SLU6	0	620	20800	-5661				
SLU7	0	859	21530	3213				
SLU8	0	700	21530	3213				
SLU9	0	859	21603	2843				
SLU10	0	700	21603	2843				
SLU11	0	620	16165	12087				
SLU12	0	620	16165	-5661				

Tab. 24 – Sollecitazioni su pila impalcato "mobile"

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA97	00 R 09	CL	VI2100 003	Α	48 di 65

Si riporta di seguito la sintesi delle sollecitazioni indotte nella sezione a quota testa pila, desunte dagli scarichi espletati dagli appoggi. I momenti flettenti nei due piani di verifica sono ricavati tenendo in considerazione le eccentricità, rispetto all'asse pila, dei singoli appoggi su ciascun lato, in direzione longitudinale e in direzione trasversale.

Le grandezze che figurano nelle Tabelle riportate di seguito fanno riferimento al seguente gruppo di sollecitazioni:

Fz: Sforzo normale (negativo, se di compressione)

Fy: Taglio in direzione trasversale rispetto all'asse del viadotto

Fx: Taglio in direzione parallela all'asse del viadotto

Mx: Momento flettente che produce flessione nel piano ortogonale all'asse del viadotto

My: Momento flettente che produce flessione nel piano parallelo all'asse del viadotto

Carichi testa pila - Pila 60_60									
	Fx	Fy	Fz	Mx					
	kN	kN	kN	kNm					
SLU1	1900	1750	53450	1000					
SLU2	3750	1450	53450	1000					
SLU3	2500	1750	53600	200					
SLU4	4950	1450	53600	200					
SLU5	1600	1250	42150	21450					
SLU6	1600	1250	42150	-14100					
SLU7	1900	1750	44150	1000					
SLU8	3750	1450	44150	1000					
SLU9	2500	1750	44300	200					
SLU10	4950	1450	44300	200					
SLU11	1600	1250	32900	21450					
SLU12	1600	1250	32900	-14100					

Tab. 25 – Sollecitazioni su testa pila

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA97	00 R 09	CL	VI2100 003	A	49 di 65

Il calcolo delle massime sollecitazioni agenti a quota spiccato plinto è stato effettuato trasportando le azioni relative alla sezione di testa pila e considerando i carichi aggiuntivi relativi al peso proprio della pila e all'azione del vento sulla pila.

Di seguito se ne riporta una sintesi.

Le grandezze che figurano nelle Tabelle riportate di seguito fanno riferimento al medesimo gruppo di sollecitazioni individuato in precedenza per la sezione a quota testa pila.

I tagli agenti in condizioni sismiche, riportati nella seguente Tabella sono ricavati, come anticipato in precedenza, dallo schema di oscillatore semplice, considerando lo spettro di risposta di progetto.

Carichi spiccato pila - Pila 60_60									
	Fx	Fy	Fz	Mx	Му				
	kN	kN	kN	kNm	kNm				
SLU1	1900	1950	74902	41560	39520				
SLU2	3750	1650	74902	35320	78000				
SLU3	2500	1950	75052	40760	52000				
SLU4	4950	1650	75052	34520	102960				
SLU5	1600	1450	63602	51610	33280				
SLU6	1600	1450	63602	16060	33280				
SLU7	1900	1950	60040	41560	39520				
SLU8	3750	1650	60040	35320	78000				
SLU9	2500	1950	60190	40760	52000				
SLU10	4950	1650	60190	34520	102960				
SLU11	1600	1450	48790	51610	33280				
SLU12	1600	1450	48790	16060	33280				
SLV - Tt + 0,3x Tl	5679	18930	40158	393748	118124				
SLV - 0,3xTt + Tl	18930	5679	40158	118124	393748				

Tab. 26 – Sollecitazioni a spiccato pila

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

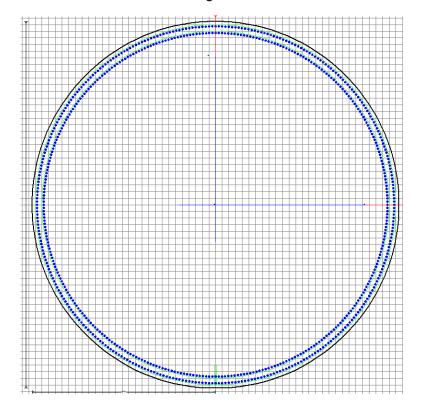
Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA97
 00 R 09
 CL
 VI2100 003
 A
 50 di 65

9.2 VERIFICHE STRUTTURALI PILA

Nel seguito si riportano le verifiche a presso-flessione ed a taglio eseguite con il programma RC-Sec considerando le combinazioni sismiche, che sono dimensionanti.


Le armature previste sono:

Corona esterna: 170 ø 30 accoppiati

Corona interna: 170 ø 30 accoppiati

Staffatura circolare ø 20/10cm

La sezione di verifica è la seguente:

Nota bene: per esigenze di calcolo con il software in questione, che in presenza di una doppia corona di ferri di armatura inserisce automaticamente due staffature, il passo inputato per la verifica a taglio della pila è pari al doppio di quello effettivamente previsto a progetto.

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA97
 00 R 09
 CL
 VI2100 003
 A
 51 di 65

9.2.1 Verifiche a pressoflessione ed a taglio

Descrizione Sezione:

Metodo di calcolo resistenza:

Tipologia sezione:

Sezione circolare pila 60_60

Resistenze agli Stati Limite Ultimi

Sezione generica di Pilastro

Normativa di riferimento: N.T.C.

Percorso sollecitazione: A Sforzo Norm. costante Riferimento Sforzi assegnati: Assi x,y principali d'inerzia Riferimento alla sismicità: Zona non sismica

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C30/37

Resis. compr. di progetto fcd: 170.00 daN/cm²
Resis. compr. ridotta fcd': 85.00 daN/cm²
Def.unit. max resistenza ec2: 0.0020
Def.unit. ultima ecu: 0.0035

Def.unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo

Modulo Elastico Normale Ec:328360daN/cm²Resis. media a trazione fctm:29.00daN/cm²

ACCIAIO - Tipo: B450C

Resist. caratt. snervam. fyk: 4500.0 daN/cm²
Resist. caratt. rottura ftk: 4500.0 daN/cm²
Resist. snerv. di progetto fyd: 3913.0 daN/cm²
Resist. ultima di progetto ftd: 3913.0 daN/cm²

Deform. ultima di progetto Epu: 0.068

Modulo Elastico Ef 2000000 daN/cm²

Diagramma tensione-deformaz.: Bilineare finito

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Dominio: Circolare Classe Conglomerato: C30/37

Raggio circ.: 275.0 cm X centro circ.: 0.0 cm Y centro circ.: 0.0 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N°Gen. Numero assegnato alla singola generazione circolare di barre

Xcentro
Ascissa [cm] del centro della circonf. lungo cui sono disposte le barre generate
Ycentro
Ordinata [cm] del centro della circonf. lungo cui sono disposte le barre genrate
Raggio
Raggio [cm] della circonferenza lungo cui sono disposte le barre generate
N°Barre
Numero di barre generate equidist. disposte lungo la circonferenza

Ø Diametro [mm] della singola barra generata

N°Gen.	Xcentro	Ycentro	Raggio	N°Barre	Ø
1	0.0	0.0	267.5	340	30
2	0.0	0.0	257.5	340	30

ARMATURE A TAGLIO

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA97
 00 R 09
 CL
 VI2100 003
 A
 52 di 65

Diametro staffe: 20 mm Passo staffe: 20.0 cm

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baric. (+ se di compressione)
Mx Momento flettente [daNm] intorno all'asse x princ. d'inerzia
con verso positivo se tale da comprimere il lembo sup. della sez.
My Momento flettente [daNm] intorno all'asse y princ. d'inerzia
con verso positivo se tale da comprimere il lembo destro della sez.
Vy Componente del Taglio [daN] parallela all'asse princ.d'inerzia y
Vx Componente del Taglio [daN] parallela all'asse princ.d'inerzia x

N°Comb. N Mx My Vy Vx 1 4015800 39374800 11812400 1893000 567900

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 6.0 cm Interferro netto minimo barre longitudinali: 1.8 cm Copriferro netto minimo staffe: 4.0 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sn Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione)

Mx Sn
Componente momento assegnato [daNm] riferito all'asse x princ. d'inerzia
My Sn
Componente momento assegnato [daNm] riferito all'asse y princ. d'inerzia
N Res
Sforzo normale resistente [daN] baricentrico (positivo se di compress.)
Mx Res
Momento flettente resistente [daNm] riferito all'asse x princ. d'inerzia
My res
Momento flettente resistente [daNm] riferito all'asse y princ. d'inerzia
Mis.Sic.
Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb Ver Ν Mx My N Res Mx Res My Res Mis.Sic. As Totale 39374800 11812400 42445451 12733329 1.084806.6(712.7) 1 4015800 4015792

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ve may	Ordinata in cm della harra corrien, a es may (sistema rif. X V O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	79.0	263.4	0.00335	77.9	255.9	-0.00706	-77.9	-255.9

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA97
 00 R 09
 CL
 VI2100 003
 A
 53 di 65

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

 $N^{\circ}Comb$ a b c x/d C.Rid.

1 0.00005594 0.000018648 -0.001853888 ---- ---

VERIFICHE A TAGLIO

bw

Ctg

Diam. Staffe: 20 mm

Passo staffe: 20.0 cm [Passo massimo di normativa = 25.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata

Ved Taglio di progetto [daN] = proiez. di Vx e Vy sulla normale all'asse neutro
Vcd Taglio compressione resistente [daN] lato conglomerato [formula (4.1.28)NTC]

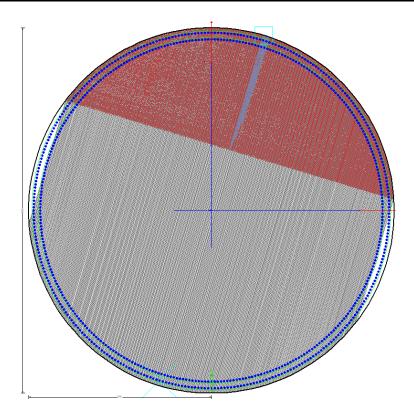
Vwd Taglio resistente [daN] assorbito dalle staffe

d | z Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm]

Vengono prese nella media le strisce con almeno un estremo compresso. I pesi della media sono costituiti dalle stesse lunghezze delle strisce. Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Coefficiente maggiorativo della resistenza a taglio per compressione

Acw Coefficiente maggiorativo della resistenza a taglio per compressione
Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m]
A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]
Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.


N°Comb Ver Ved Vcd Vwd d|z Ctg Acw Ast A.Eff S 1976350 6521515 2458454465.4| 407.6 496.5 2.500 1.099 1 49.6 61.7(0.0)

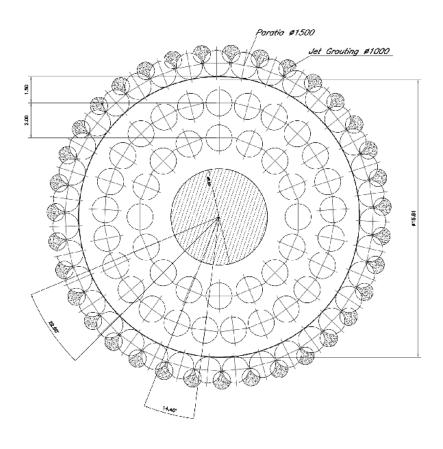
PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA97	00 R 09	CL	VI2100 003	Α	54 di 65

Tutte le verifiche risultano soddisfatte.

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA


Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA97	00 R 09	CL	VI2100 003	Α	55 di 65

9.3 VERIFICHE DELLA FONDAZIONE

Nei paragrafi successivi si forniscono le sollecitazioni e le verifiche strutturali relative al sistema di fondazione. Nel caso specifico si tratta di una fondazione a pozzo a pianta circolare, composta di 41 pali diametro D=1500.

PIANTA FONDAZIONE

Tab. 27 – Schema posso di fondazione

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA97	00 R 09	CL	VI2100 003	Α	56 di 65

9.3.1 SOLLECITAZIONI AGENTI

Per le combinazioni di carico statiche, le sollecitazioni ad intradosso plinto sono state ottenute a partire da quelle indotte a base pila, tenendo conto del peso del plinto di fondazione, del carico permanente dovuto al peso del ricoprimento sul plinto, valutato considerandone uno spessore medio, e dell'eccentricità tra la sezione di spiccato e quella di intradosso del plinto (spessore della fondazione).

In condizione sismica, invece, secondo quanto prescritto nel par.7.2.5 del NTC 2018, per le strutture progettate in CD "B" il dimensionamento delle strutture di fondazione e la verifica di sicurezza del complesso fondazione-terreno devono essere eseguiti assumendo come azioni in fondazione le resistenze degli elementi strutturali soprastanti.

Più precisamente, la forza assiale negli elementi strutturali verticali derivante dalla combinazione delle azioni deve essere associata al concomitante valore resistente del momento flettente e del taglio; si richiede tuttavia che tali azioni risultino non maggiori di quelle trasferite dagli elementi soprastanti, amplificate con un γ_{Rd} pari a 1,1 in CD "B", e comunque non maggiori di quelle derivanti da una analisi elastica della struttura in elevazione eseguita con un fattore di struttura q pari a 1.

Si riportano nel seguito le sollecitazioni a intradosso plinto, per tutte le combinazioni di carico considerate.

Carichi intradosso plinto - Pila 60_60									
	Fx	Fy	Fz	Mx	Му				
	kN	kN	kN	kNm	kNm				
SLU1	1900	1950	123286	47410	45220				
SLU2	3750	1650	123286	40270	89250				
SLU3	2500	1950	123436	46610	59500				
SLU4	4950	1650	123436	39470	117810				
SLU5	1600	1450	111986	55960	38080				
SLU6	1600	1450	111986	20410	38080				
SLU7	1900	1950	95880	47410	45220				
SLU8	3750	1650	95880	40270	89250				
SLU9	2500	1950	96030	46610	59500				
SLU10	4950	1650	96030	39470	117810				
SLU11	1600	1450	84630	55960	38080				
SLU12	1600	1450	84630	20410	38080				
SLV - Tt + 0,3x Tl	9734	32446	75998	491087	147326				
SLV - 0,3xTt + Tl	32446	9734	75998	147326	491087				

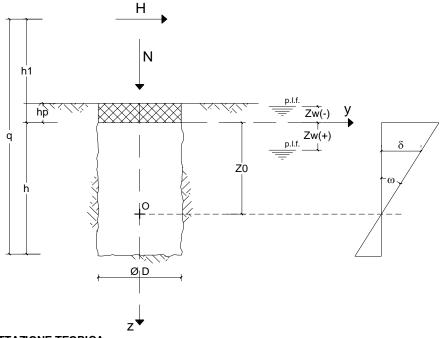
Tab. 28 - Sollecitazioni a intradosso plinto

Di seguito si mostrano le sollecitazioni massime di verifica del pozzo.:

Carichi massimi per dimensionamento pozzo - Pila 60_60								
	Fx	Fy	Fz	Mx	My			
	kN	kN	kN	kNm	kNm			
SLV - Tt + 0,3x Tl	13789	45962	75998	511361	153408			
SLV - 0,3xTt + Tl	45962	13789	75998	153408	511361			

Tab. 29 – Sollecitazioni massime di verifica pozzoi

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA97
 00 R 09
 CL
 VI2100 003
 A
 58 di 65

9.3.2 VERIFICHE STRUTTURALI E GEOTECNICHE

CALCOLO DEI POZZI DI FONDAZIONE (Metodo di Jamiolkowski)

OPERA: IA97 - VI21 - PILE 17-18-19 pozzo

TRATTAZIONE TEORICA

Formule utilizzate nei calcoli:

$$z_0 = (\beta Dh^2 (4q-h) + 6WD) / (2 \beta Dh(3q-h))$$

$$\beta = k_h / k_v$$

$$tg\omega = 6H/Rm_h h$$

$$R = (\beta Dh^3 + 18DW) / (2\beta(3q - h))$$

$$\sigma_h (z) = (6H/Rh)z(z_0 - z)$$

$$(\sigma_h (z) max per z = z_0/2)$$

$$\sigma_{zmax(min)} = Nt / A \pm (3DH) / (\beta R)$$

$$M(z) = (h_1 + z(1 - ((Dz^2)/(2Rh))(2z_0 - z))))$$

$$\delta_h = (z_0 - z)^* tg \, \omega$$

Verifica della condizione di fondazione infinitamente rigida:

$$2.5 / h > ((m_h *D) / (Ep*Jp))^{1/5}$$

(Silin e Zavrijev)

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA97	00 R 09	CL	VI2100 003	Α	59 di 65

DATI DI INPUT:

Caratteristiche geometriche del pozzo

D = diametro del pozzo di fondazione	=	14.50	(m)
hp = spessore del plinto di fondazione	=	3.00	(m)
h = profondità del pozzo di fondazione	=	28.00	(m)
A_b = Area di base $(\pi D^2/4)$	=	165.13	(m ²)
$Jp = Momento di inerzia (\pi D^4/64)$	=	2169.91	(m ⁴)
Wp = Modulo di resistenza ($\pi D^3/32$)	=	299.30	(m ³)
Ep = Modulo di elasticità del pozzo =		32000.00	(MPa)

coefficienti parziali

	azioni		proprietà del terreno			resistenze		
Metodo di calcolo		permanenti	temporanee variabili	tan φ'	c'	Cu	qlim	
Φ.	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00	1.00
Limite imo	A2+M2+R2	0	1.00	1.30	1.25	1.25	1.40	1.80
Stato Limi Ultimo	SISMA	0	1.00	1.00	1.25	1.25	1.40	1.80
Stat L	A1+M1+R3	0	1.30	1.50	1.00	1.00	1.00	2.30
	SISMA	•	1.00	1.00	1.00	1.00	1.00	2.30
Tensioni Ammissibili		0	1.00	1.00	1.00	1.00	1.00	3.00
Definiti d	lal Progettista	0	1.00	1.00	1.00	1.00	1.00	2.30

Parametri geotecnici

Terreno al contorno del fusto

	condizioni	Odrer	nate		non drenate	
					Valori caratteristici	Valori di progetto
peso spec	cifico del terreno		γ	(kN/m ³)	20.00	20.00
coesione	efficace		c'	(kPa)	0.00	0.00
angolo di	attrito interno del terre	no	φ′	(°)	40.00	40.00

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA97
 00 R 09
 CL
 VI2100 003
 A
 60 di 65

Terreno di base

Valori caratteristici

peso specifico del terreno γ (kN/m³) 20.00

resistenza al taglio non drenata cu (kPa) 300.00

profondità della falda

 $z_w = \text{profondità della falda} = 1.00$ (m)

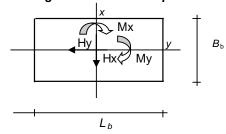
coefficienti di reazione

 $m_h=$ modulo di reazione orizzontale = 1000 (kN/m 4) $k_h=$ coefficiente di reazione orizzontale alla base = 28000.00 (kN/m 3) $k_v=$ coefficiente di reazione verticale = 20000.00 (kN/m 3) $\beta=$ rapporto tra le cost. di reazione = 1.40 (-)

Verifica della condizione di fondazione infinitamente rigida

2,5 / h > $((m_h*D) / (Epozzo*J))^{1/5}$ (Silin e Zavrijev)

2.5 / h = 0.09 (-)


 $((m_h^*D) / (Ep^*Jp))^{1/5} = 0.05$ (-)

condizione di fondazione infinitamente rigida verificata

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
IA97	00 R 09	CL	VI2100 003	Α	61 di 65	

Sollecitazioni massime agenti alla base della pila:

AZIONI

	valori	Valori di	
	permanenti	temporanee	calcolo
N [kN]	76000.00		76000.00
Mx [kNm]	529000.00		529000.00
My [kNm]	159400.00		159400.00
Hx [kN]	14000.00		14000.00
Hy [kN]	46000.00		46000.00

Dimensioni in pianta del plinto di fondazione

$$hp = 3.00$$
 (m)

$$Ap = 165.13$$
 (m)

Sollecitazioni massime agenti alla testa del pozzo:

$$Nt = N + Pplinto = 88384.75$$
 (kN)

$$Ht = (Hx^2 + Hy^2)^{0.5} = 48083.26$$
 (kN)

$$Mt = (Mxx^2 + Myy^2)^{0.5} = 643807.24$$
 (kNm)

dove:

$$Mxx = Mx + Hy * h_p$$

$$Myy = My + Hx * h_p$$

$$h_1$$
 (quota di applicazione Ht) = 13.39 (m)

$$(h_1 = Mt / Ht)$$

$$q (somma di h e di h1) = 41.39$$
 (m)

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA LOTTO

IA97 00 R 09

CODIFICA CL DOCUMENTO VI2100 003

REV. FOGLIO

A 62 di 65

Profondità del centro di rotazione del pozzo

$$z_0 = (\beta Dh^2 (4q-h) + 6WD) / (2\beta Dh(3q-h))$$

$$\beta = k_h / k_v$$

$$z_0 =$$

(-)

Rotazione del pozzo

$$R = (\beta Dh^3 + 18DW) / (2\beta(3q - h))$$

$$tg \omega = 6H / Rk_h h$$

$$\omega = \operatorname{arctg}(6H / \operatorname{Rm}_h h)$$

(°)

$$\omega =$$

 σ_h (z)max

Profondità alla quale si verifica la massima pressione orizzontale

 $z = z_0/2$

$$z = 10.13$$

$$\sigma_h (z)_{max} =$$

$$(kN/m^2)$$

Raggio di Nocciolo della sezione del pozzo

r = D/8

Sollecitazioni lungo il fusto del pozzo

Pressioni laterali

$$\sigma_h(z)_{lim} = kp^*\sigma'_v(z) + 2^*c'(kp)^{0.5}$$

$$\sigma_h(z)_{lim} = \sigma_v(z) + 2^*cu$$

(tensioni totali)

$$kp = (1+\sin\varphi')/(1-\sin\varphi')$$

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA97
 00 R 09
 CL
 VI2100 003
 A
 63 di 65

Caratteristiche di sollecitazione

 $N = Nt + A_b * \gamma_{cls}$

 $M = H ((h_1 + z(1 - (Dz^2/(2Rh))*(2z_0 - z)))$

 $T = H (1 - (Dz^2/(Rh))*(3z_0 - 2z))$

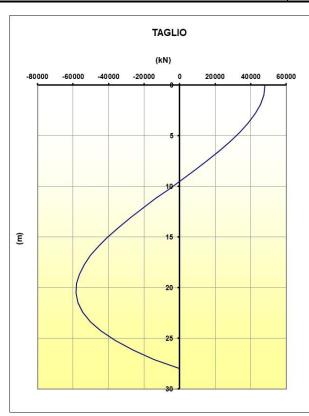
 $\sigma_h(z) = ((6H)/(Rh))z(z_0-z)$

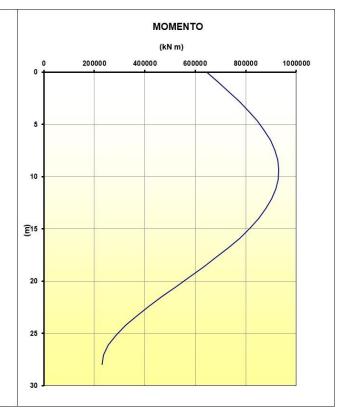
 $\delta_h = (z_0 - z)^* tg \omega$

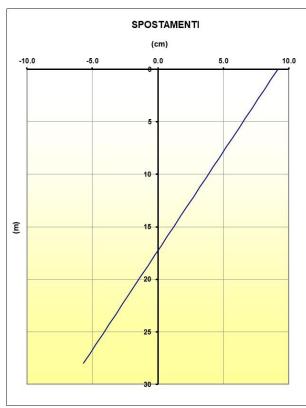
3 n (=) = ((011)/(1111))2(20	-2)		$O_h = (Z_0 - Z)$	ıgω			
Z	N	М	Т	е	თ _h (z)	σ _v (z)	σ _h (z) _{lim}	δ_{h}
(m)	(kN)	(kNm)	(kN)	(m)	(kN/m ²)	(kN/m ²)	(kN/m^2)	(cm)
0	88384.75	643807.24	48083.26	F.N.	274.35	60.00	275.93	9.15
0.93	92237.78	688478.89	47426.14	F.N.	340.26	78.67	361.78	8.65
1.87	96090.81	731953.07	45538.06	F.N.	396.94	88.00	404.70	8.16
2.80	99943.84	773139.17	42543.92	F.N.	444.39	97.33	447.63	7.66
3.73	103796.88	811063.14	38568.61	F.N.	482.61	106.67	490.55	7.17
4.67	107649.91	844867.52	33737.04	F.N.	511.60	116.00	533.47	6.67
5.60	111502.94	873811.42	28174.12	F.N.	531.36	125.33	576.40	6.18
6.53	115355.97	897270.53	22004.73	F.N.	541.89	134.67	619.32	5.68
7.47	119209.01	914737.10	15353.79	F.N.	543.20	144.00	662.24	5.19
8.40	123062.04	925819.98	8346.20	F.N.	535.27	153.33	705.17	4.70
9.33	126915.07	930244.57	1106.85	F.N.	518.12	162.67	748.09	4.20
10.27	130768.10	927852.86	-6239.35	F.N.	491.73	172.00	791.01	3.71
11.20	134621.14	918603.40	-13567.50	F.N.	456.12	181.33	833.94	3.21
12.13	138474.17	902571.33	-20752.70	F.N.	411.27	190.67	876.86	2.72
13.07	142327.20	879948.36	-27670.05	F.N.	357.20	200.00	919.78	2.22
14.00	146180.23	851042.76	-34194.64	F.N.	293.90	209.33	962.70	1.73
14.93	150033.27	816279.41	-40201.57	F.N.	221.37	218.67	1005.63	1.23
15.87	153886.30	776199.73	-45565.95	F.N.	139.61	228.00	1048.55	0.74
16.80	157739.33	731461.73	-50162.87	F.N.	48.62	237.33	1091.47	0.25
17.73	161592.36	682839.99	-53867.43	F.N.	-51.59	246.67	1134.40	-0.25
18.67	165445.40	631225.67	-56554.73	F.N.	-161.04	256.00	1177.32	-0.74
19.60	169298.43	577626.49	-58099.87	F.N.	-279.72	265.33	1220.24	-1.24
20.53	173151.46	523166.78	-58377.94	F.N.	-407.62	274.67	1263.17	-1.73
21.47	177004.49	469087.40	-57264.04	F.N.	-544.76	284.00	1306.09	-2.23
22.40	180857.53	416745.81	-54633.28	F.N.	-691.12	293.33	1349.01	-2.72
23.33	184710.56	367616.05	-50360.75	F.N.	-846.71	302.67	1391.94	-3.22
23.33	184710.56	367616.05	-50360.75	F.N.	-846.71	302.67	1391.94	-3.22
24.27	188563.59	323288.71	-44321.55	1.71	-1011.54	312.00	1434.86	-3.71
25.20	192416.62	285470.98	-36390.77	1.48	-1185.59	321.33	1477.78	-4.20
26.13	196269.66	255986.62	-26443.52	1.30	-1368.87	330.67	1520.71	-4.70
27.07	200122.69	236775.95	-14354.90	1.18	-1561.38	340.00	1563.63	-5.19
28.00	203975.72	229895.87	0.00	1.13	-1763.11	349.33	1606.55	-5.69

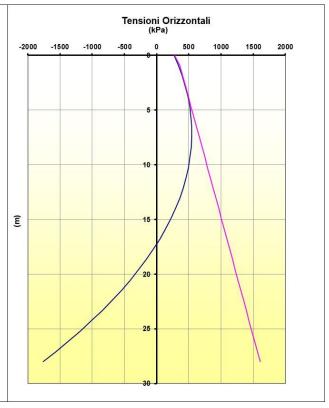
 $N_b = 203975.72$ (kN)

 $M_b = 229895.87$ (kNm)




PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA


Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)


 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IA97
 00 R 09
 CL
 VI2100 003
 A
 64 di 65

PROGETTO DI FATTIBILITÀ TECNICA ECONOMICA

Relazione di predimensionamento pile Impalcati 60/60m (P17-P24)

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IA97	00 R 09	CL	VI2100 003	Α	65 di 65

Sottospinta idrostatica alla base del pozzo

$$N_w = 44585.09$$
 (kN)

Pressioni verticali alla base del pozzo

$$\sigma_{zmax} = (N_b - N_w) / A_b + (3DH) / (\beta R)$$

$$\sigma_{zmin} = (N_b - N_w) / A_b - (3DH) / (\beta R)$$

$$\sigma_{zmax} = 1733.36 \text{ (kN/m}^2)$$

$$\sigma_{zmin} = 197.13$$
 (kN/m²)

Valori Massimi delle caratteristiche di sollecitazione

Nmax =	203975.72	(kN)	zNmax =	28.00	(m)
Mmax =	930244.57	(kNm)	zMmax =	9.33	(m)
Tmax =	48083.26	(kN)	zTmax =	0.00	(m)