

REGIONE BASILICATA PROVINCIA DI POTENZA COMUNE DI OPPIDO LUCANO

PROGETTO DI UN IMPIANTO SOLARE AGRIVOLTAICO DENOMINATO "AGRIVOLTAICO PIANI GORGO_ PEZZA CHIARELLA" DA REALIZZARSI NEL COMUNE DI OPPIDO LUCANO (PZ) NELLE CONTRADE DI "PIANI GORGO" E DI "PEZZA CHIARELLA" E DELLE RELATIVE OPERE DI CONNESSIONE CON POTENZA PARI A 16.883,10 kWp (15.600,00 kW IN IMMISSIONE) INTEGRATO CON TECNOLOGIA STORAGE.

PROGETTO DEFINITIVO

RAPPORTO TECNICO DELLE INDAGINI

PD)					OP1314_A.2.1	04.0	08.2021		
	REVISIONI									
REV.	DATA			DESCRI	IZIONE			ESEGUITO	VERIFICATO	APPROVATO

PROPONENTE:

OMEGA CENTAURO S.R.L. Via Mercato 3, 20121 Milano (MI) CF:11467100969

ENTE: PROGETTAZIONE:

HORIZONFIRM

Ing. D. Sıracusa
Ing. A. Costantino
Ing. C. Chiaruzzi
Arch. A. Calandrino
Arch. M. Gullo
Arch. S. Martorana
Arch. F. G. Mazzola

Arch. F. G. Mazzola Arch. P. Provenzand Arch. Y.Kokalah Arch. G. Vella Ing. G. Buffa

IL PROGETTISTA

INDICE

1.	Premessa	. 2
2.	prospezioni sismiche di tipo Masw	. 3
	2.1 Attrezzatura e metodologia utilizzata	. 3
	2.2. Elaborazione dati	. 4
	2.3. INTERPRETAZIONE	. 5
	2.4 interpretazione MASW01	. 6
3.	Prove penetrometriche dinamiche continue DPSH	11
4.	Rapporto fotografico	13
	4.1 Indagine sismica di tipo masw	13
	4.2 Prove penetrometriche dinamiche DPSH	13

1. PREMESSA

Nell'ambito del "PROGETTO AGRIVOLTAICO_OPPIDO LUCANO PIANI GORGO_PEZZA CHIARELLA" è stata eseguita una campagna di indagini geofisiche e geognostiche con lo scopo di ricostruire l'andamento stratigrafico del sottosuolo, il comportamento meccanico dei terreni nonché di effettuare la caratterizzazione sismica dei luoghi.

L'indagine ha previsto le seguenti lavorazioni:

- esecuzione di n° 1 Indagine sismica di tipo MASW;
- esecuzione di n° 4 Prova penetrometrica DPSH.

Tali indagini sono state eseguite in conformità a quanto disposto da D.M. 17/01/2018 "Norme tecniche per le Costruzioni", oltre che secondo le modalità tecnologiche dell'ANISIG.

Si riportano in allegato alla presente:

1. Grafici Prova Penetrometrica Dinamica;

2. PROSPEZIONI SISMICHE DI TIPO MASW

MASW è l'acronimo di Multi-channel Analysis of Surface Waves (Analisi Multi-canale di Onde di Superficie). Ciò indica che il fenomeno che si analizza è la propagazione delle onde di superficie.

La MASW classica/standard consiste nella registrazione della propagazione di una classe di onde di superficie (specificatamente delle onde di Rayleigh). Più in dettaglio, le onde di Rayleigh vengono generate da una sorgente ad impatto verticale (in genere mediante massa battente del peso di 10 Kg su piastra in alluminio) o da un cannoncino sismico e vengono poi registrate tramite geofoni a componente verticale a frequenza propria di 4.5 Hz.

Più specificatamente si analizza la dispersione delle onde di superficie sapendo che frequenze diverse - e quindi lunghezze d'onda diverse - viaggiano a velocità diversa. Il principio di base quindi è piuttosto semplice: le varie componenti (frequenze) del segnale (cioè della perturbazione sismica che si propaga) viaggiano ad una velocità che dipende dalle caratteristiche del mezzo.

In particolare, le lunghezze d'onda più ampie (cioè le frequenze più basse) sono influenzate dalla parte più profonda (in altre termini "sentono" gli strati più profondi), mentre le piccole lunghezze d'onda (le frequenze più alte) dipendono dalle caratteristiche della parte più superficiale.

Poiché tipicamente la velocità delle onde sismiche aumenta con la profondità, ciò si rifletterà nel fatto che le frequenze più basse (delle onde di superficie) viaggeranno ad una velocità maggiore rispetto le frequenze più alte.

2.1 Attrezzatura e metodologia utilizzata

La strumentazione utilizzata è il sismografo 16SG24 a 24 canali della PASI dalle seguenti caratteristiche tecniche: gestione a microprocessore, intervalli di campionamento 250 μs , 500 μs , 1 ms, 2 ms; tempo di campionamento da un min. di 0.2 ms ad un max. di 2 ms; lunghezza di acquisizione da un min. di 32 ms ad un max. di 4096 ms; filtri passa basso 250 Hz; notch 50/60 Hz; risoluzione a 24 bit; acquisizione dei dati e codifica dei file in formato Seg-2 .

Società con sistema di gestione certificato UNI EN ISO 9001:2015 – UNI EN ISO 14001:2015 - UNI EN ISO 45001:2018 per la fornitura dei servizi di ingegneria e

di esplorazione geologica del sottosuolo - IAF 34

ENGINEERING GEOLOGY SRL

Via del Gallitello 90/A - 85100 Potenza - Tel. 0971/26378 Fax 0971/1940737

www.engeosrl.it E mail info@engeosrl.it

L'attrezzatura è completata da un cavo sismico a 12 takes out spaziati a 10 m, con connettore cannon, montato su bobina, geofoni verticali "Pasi" con frequenza propria di 4,5 Hz, geofono trigger avente funzione di interruttore starter, cavo trigger montato su bobina e fucile sismico armato con cartucce industriali calibro 8 a carica ridotta o massa battente del peso di 10 Kg su piastra in alluminio.

Le indagini si sono svolte secondo la seguente geometria:

Numero di geofoni:12

Spaziatura tra i geofoni: 2 m

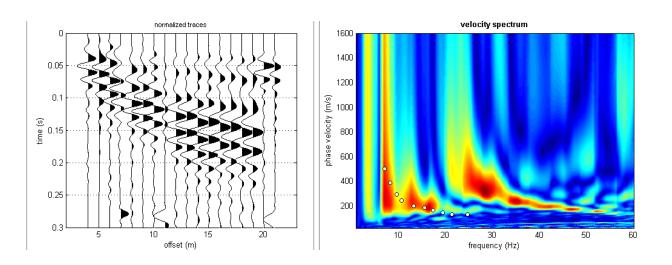
Numero di offset : 4 rispettivamente a 7,0, 8,0; 9;0; 10,0; m dal primo geofono.

Per l'interpretazione dei dati è stato utilizzato il software WinMasw Pro 4.4.2 della Eliosoft. I dati sperimentali, acquisiti in formato SEG-2, sono stati trasferiti su PC e convertiti in un formato compatibile (.sgy format file). Il software a questo punto permette di sommare due dataset acquisiti con offset diversi in modo da ottenere un unico dataset equivalente ad un'acquisizione effettuata con 24 canali e spaziatura tra i geofoni pari a B/2 rispetto a quella utilizzata in campagna.

Nota bene: si ottiene un dataset in cui la spaziatura dei geofoni è pari a B/2

2.2. ELABORAZIONE DATI

L'analisi consiste nella trasformazione dei segnali registrati in uno spettro bidimensionale "phase velocity-frequency (c-f)" che analizza l'energia di propagazione delle onde superficiali lungo la linea sismica. Dallo spettro bidimensionale ottenuto dalle registrazioni è possibile distinguere il "modo fondamentale" delle onde di superficie, in quanto le onde di Rayleigh presentano un carattere marcatamente dispersivo che le differenzia da altri

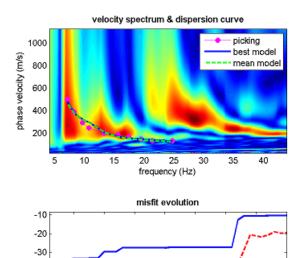

ENGINEERING GEOLOGY SRL Via del Gallitello 90/A - 85100 Potenza - Tel. 0971/26378 Fax 0971/1940737 www.engeosrl.it E_mail info@engeosrl.it

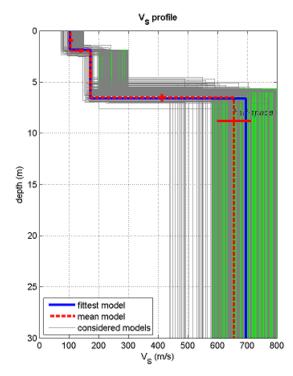
tipi di onde (onde riflesse, onde rifratte, onde multiple). Sullo spettro di frequenza viene eseguito un "picking" attribuendo ad un certo numero di punti una o più velocità di fase per un determinato numero di frequenze. Tali valori vengono successivamente riportati su un diagramma periodo-velocità di fase per l'analisi della curva di dispersione e l'ottimizzazione di un modello interpretativo. Variando la geometria del modello di partenza ed i valori di velocità delle onde S si modifica automaticamente la curva calcolata di dispersione fino a conseguire un buon "fitting" con i valori sperimentali.

Di seguito i dati di campagna acquisiti e lo spettro di velocità calcolato per ogni indagine effettuata.

2.3. INTERPRETAZIONE

Masw 01.


Nelle figure sottostanti sono riportati i risultati dell'inversione della curva di dispersione determinata tramite analisi di dati MASW. In alto a sinistra: spettro osservato, curve di dispersione piccate e curve del modello individuato dall'inversione. Sulla destra il profilo verticale Vs identificato (vedi anche Tabella 1). In basso a sinistra l'evolversi del modello al passare delle "generazioni" (l'algoritmo utilizzato per l'inversione delle curve di dispersione appartiene alla classe degli Algoritmi Genetici – Dal Moro et al., 2007).



-50

Engineering Geology srl Via del Gallitello 90/A - 85100 Potenza - Tel. 0971/26378 Fax 0971/1940737 www.engeosrl.it E_mail info@engeosrl.it

2.4 INTERPRETAZIONE MASW01

20

generation

25

10

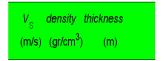
15

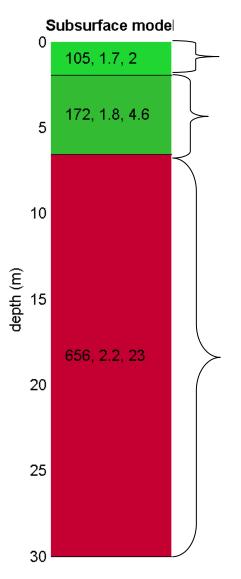
fittest model

average value

30

35


In tabella e in figura sottostante sono riportati gli strati del modello medio individuato a cui corrisponde una **Vs**₃₀ **di 370m/s** a partire dal p.c secondo la .D.M. 17/01/2018 "*Norme tecniche per le Costruzioni*".


Spessore (m)	Vs (m/s) e deviazioni standard
2	105±8
4.6	172± 5
semi-spazio	656± 57

ENGINEERING GEOLOGY SRL Via del Gallitello 90/A - 85100 Potenza - Tel. 0971/26378 Fax 0971/1940737 www.engeosrl.it E_mail_info@engeosrl.it

Depositi poco consistenti/addensati con scarse caratteristiche geotecniche

Depositi mediamente consistenti/addensati con discrete caratteristiche geotecniche

Depositi consistenti/addensati con buone caratteristiche geotecniche.

La stratigrafia del sottosuolo può essere assimilata ad un modello costituito da tre sismostrati in cui:

- Il primo sismostrato presenta uno spessore di circa 2 m, con velocità media delle onde di taglio di 105 m/s e corrisponde a depositi poco consistenti/addensati con scarse caratteristiche geotecniche;
- Il secondo sismostrato presenta uno spessore di circa 4.6 m, con velocità media delle onde di taglio di 172 m/s e corrisponde a depositi mediamente consistenti/addensati con discrete caratteristiche geotecniche;

Società con sistema di gestione certificato UNI EN ISO 9001:2015 – UNI EN ISO 14001:2015 - UNI EN ISO 45001:2018 per la fornitura dei servizi di ingegneria e di esplorazione geologica del sottosuolo – IAF 34

ENGINEERING GEOLOGY SRL Via del Gallitello 90/A - 85100 Potenza - Tel. 0971/26378 Fax 0971/1940737 www.engeosrl.it E mail info@engeosrl.it

 Il terzo sismostrato, che si rinviene a profondità maggiori di 7 m dal p.c. e fino alla profondità di investigazione, superiore ai 30 m di profondità, presenta velocità V_s media di 656 m/s.

A partire dai valori di velocità delle onde sismiche V_S (m/s), ed adottando opportuni valori del Peso di volume γ (Kg/m³) e del rapporto di Poisson rappresentativo dei litotipi presenti, è possibile inoltre <u>stimare attraverso relazioni empiriche</u>, la velocità delle onde di compressione V_P e i moduli dinamici del sottosuolo per ogni orizzonte sismico individuato.

La velocità delle onde P è stata ricavata empiricamente attraverso la seguente relazione:

$$V_P^2 = V_S^2 * (2-2\lambda)/(1-2\lambda)$$

Sono stati definiti inoltre i seguenti moduli dinamici:

- Modulo di taglio dinamico (G)

E' definito dalla seguente equazione:

$$G = \gamma \cdot Vs^2$$

Dove γ = densità

Tale parametro è fortemente dipendente dalla porosità e dalla pressione; assume valori più bassi in litotipi ad alta porosità, sottoposti a basse pressioni e saturati in acqua.

- Modulo di Young (E_d)

E' definito dalla seguente equazione:

$$\mathbf{E}_{\mathbf{d}} = \left[\mathbf{V}_{\mathbf{P}}^{2} \cdot \mathbf{\gamma} \cdot (1+\lambda) \cdot (1-2\lambda) \right] / (1-\lambda) \right]$$

Con λ = coeff. di Poisson

Rigidità sismica

$$\mathbf{R}_{s} = \gamma \mathbf{V}_{s}$$

Tale modulo dipende dalla porosità e dalla pressione litostatica.

Modulo di incompressibilità dinamica

E' definito dalla seguente equazione:

$$\mathbf{K} = \gamma [\mathbf{V}_{\mathbf{P}}^2 - 4/3 \cdot \mathbf{V}_{\mathbf{S}}^2]$$

ed è detto Bulk Modulus.

P	PARAMETRI FISICI E DINAMICI MEDI DEL SOTTOSUOLO INDAGATO CON LA MASW 01									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				R	MODULO	BULK				
S						DI YOUNG		DI TAGLIO	MODULUS	
TRATO										
	m	m/s	m/s	g/cm ³	(-)	Kg/cm ²	T/m ² *sec	Kg/cm ²	Kg/cm ²	
1	2	283	105	1.70	0.42	187	179	187	1109	
2	4.6	421	172	1.80	0.40	533	310	533	2485	
3	23.4	1765	656	2.2	0.42	9467	1443	9467	56015	

Rispetto le norme tecniche per le costruzioni (DM 17 gennaio 2018), il sito in esame rientra quindi nella categoria **B** ovvero:

• Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fine molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s

3. Prove penetrometriche dinamiche continue DPSH

Le Prove Penetrometriche Dinamiche sono molto diffuse ed utilizzate nel territorio da geologi e geotecnici, data la loro semplicità esecutiva e rapidità di esecuzione.

La loro elaborazione, interpretazione e visualizzazione grafica consente di "catalogare e parametrizzare" il suolo attraversato con un'immagine in continuo, che permette anche di avere un raffronto sulle consistenze dei vari livelli attraversati e una correlazione diretta con sondaggi geognostici per la caratterizzazione stratigrafica.

La sonda penetrometrica permette inoltre di riconoscere abbastanza precisamente lo spessore delle coltri sul substrato, la quota di eventuali falde e superfici di rottura sui pendii, e la consistenza in generale del terreno.

L'utilizzo dei dati, ricavati da correlazioni indirette e facendo riferimento a vari autori, dovrà comunque essere trattato con le opportune cautele e, possibilmente, dopo esperienze geologiche acquisite in zona.

Elementi caratteristici del penetrometro dinamico sono i seguenti:

- peso massa battente M
- altezza libera caduta H
- punta conica: diametro base cono D, area base A (angolo di apertura α)
- avanzamento (penetrazione) δ

Le elaborazioni sono state effettuate mediante un programma di calcolo automatico Dynamic Probing della GeoStru Software.

Il programma calcola il rapporto delle energie trasmesse (coefficiente di correlazione con SPT) tramite le elaborazioni proposte da Pasqualini 1983 - Meyerhof 1956 - Desai 1968 - Borowczyk-Frankowsky 1981.

Permette inoltre di utilizzare i dati ottenuti dall'effettuazione di prove penetrometriche per estrapolare utili informazioni geotecniche e geologiche.

Una vasta esperienza acquisita, unitamente ad una buona interpretazione e correlazione, permettono spesso di ottenere dati utili alla progettazione e frequentemente dati maggiormente attendibili di tanti dati bibliografici sulle litologie e di dati geotecnici determinati sulle verticali litologiche da poche prove di laboratorio eseguite come rappresentazione generale di una

verticale eterogenea disuniforme e/o complessa.

In particolare consente di ottenere informazioni su:

- l'andamento verticale e orizzontale degli intervalli stratigrafici,
- la caratterizzazione litologica delle unità stratigrafiche,
- i parametri geotecnici suggeriti da vari autori in funzione dei valori del numero dei colpi e delle resistenza alla punta.

Nell'area d'interesse sono state eseguite n° 4 prove penetrometriche dinamiche.

ENGINEERING GEOLOGY SRL Via del Gallitello 90/A - 85100 Potenza - Tel. 0971/26378 Fax 0971/1940737 www.engeosrl.it E_mail info@engeosrl.it

4. RAPPORTO FOTOGRAFICO

4.1 Indagine sismica di tipo masw

Indagine sismica Masw 01

4.2 Prove Penetrometriche dinamiche DPSH

Prova penetrometrica DINAMICA DPSH 01

ENGINEERING GEOLOGY SRL Via del Gallitello 90/A - 85100 Potenza - Tel. 0971/26378 Fax 0971/1940737 www.engeosrl.it E_mail info@engeosrl.it

Prova penetrometrica DINAMICA DPSH 02

Prova penetrometrica DINAMICA DPSH 03

Prova penetrometrica DINAMICA DPSH 04

ENGINEERING GEOLOGY SRL Via del Gallitello 90/A - 85100 Potenza - Tel. 0971/26378 Fax 0971/1940737 www.engeosrl.it E_mail info@engeosrl.it

ALL. 1 GRAFICI PROVE PENETROMETRICHE DINAMICHE DPSH

PROVA PENETROMETRICA DINAMICA

Committente:		
Descrizione:		
Località:		
Caratteristiche Tecniche-Strumentali	i Sonda: DPSH T	G 63-200 PAGANI
Rif. Norme	DIN 4094	
Peso Massa battente	63,5 Kg	
Altezza di caduta libera	0,75 m	
Peso sistema di battuta	0,63 Kg	
Diametro punta conica	51,00 mm	
Area di base punta	20,43 cm ²	
Lunghezza delle aste	1 m	
Peso aste a metro	6,31 Kg/m	
Profondità giunzione prima as	sta 0,40 m	
Avanzamento punta	0,20 m	
Numero colpi per punta	N(20)	
Coeff. Correlazione	1,47	
Rivestimento/fanghi	No	
Angolo di apertura punta	90 °	

PROVE PENETROMETRICHE DINAMICHE CONTINUE (DYNAMIC PROBING)

<u>DPSH - DPM (... scpt ecc.)</u>

Note illustrative - Diverse tipologie di penetrometri dinamici

La prova penetrometrica dinamica consiste nell'infiggere nel terreno una punta conica (per tratti consecutivi δ) misurando il numero di colpi N necessari.

Le Prove Penetrometriche Dinamiche sono molto diffuse ed utilizzate nel territorio da geologi e geotecnici, data la loro semplicità esecutiva, economicità e rapidità di esecuzione.

La loro elaborazione, interpretazione e visualizzazione grafica consente di "catalogare e parametrizzare" il suolo attraversato con un'immagine in continuo, che permette anche di avere un raffronto sulle consistenze dei vari livelli attraversati e una correlazione diretta con sondaggi geognostici per la caratterizzazione stratigrafica.

La sonda penetrometrica permette inoltre di riconoscere abbastanza precisamente lo spessore delle coltri sul substrato, la quota di eventuali falde e superfici di rottura sui pendii, e la consistenza in generale del terreno.

L'utilizzo dei dati, ricavati da correlazioni indirette e facendo riferimento a vari autori, dovrà comunque essere trattato con le opportune cautele e, possibilmente, dopo esperienze geologiche acquisite in zona.

Elementi caratteristici del penetrometro dinamico sono i seguenti:

- peso massa battente M;
- altezza libera caduta H;
- punta conica: diametro base cono D, area base A (angolo di apertura α);
- avanzamento (penetrazione) δ ;
- presenza o meno del rivestimento esterno (fanghi bentonitici).

Con riferimento alla classificazione ISSMFE (1988) dei diversi tipi di penetrometri dinamici (vedi tabella sotto riportata) si rileva una prima suddivisione in quattro classi (in base al peso M della massa battente):

- tipo LEGGERO (DPL);
- tipo MEDIO (DPM);
- tipo PESANTE (DPH);
- tipo SUPERPESANTE (DPSH).

Classificazione ISSMFE dei penetrometri dinamici:

Tipo	Sigla di riferimento	peso della massa M (kg)	prof. max indagine battente (m)
Leggero	DPL (Light)	M ≤ 10	8
Medio	DPM (Medium)	10 < M < 40	20-25
Pesante	DPH (Heavy)	$40 \le M < 60$	25
Super pesante (Super Heavy)	DPSH	M ≥ 60	25

penetrometri in uso in Italia

In Italia risultano attualmente in uso i seguenti tipi di penetrometri dinamici (non rientranti però nello Standard ISSMFE):

- DINAMICO LEGGERO ITALIANO (DL-30) (MEDIO secondo la classifica ISSMFE) massa battente M = 30 kg, altezza di caduta H = 0.20 m, avanzamento δ = 10 cm, punta conica (α =60-90°), diametro D 35.7 mm, area base cono A=10 cm 2 rivestimento / fango bentonitico : talora previsto;
- DINAMICO LEGGERO ITALIANO (DL-20) (MEDIO secondo la classifica ISSMFE) massa battente M = 20 kg, altezza di caduta H=0.20 m, avanzamento δ = 10 cm, punta conica (α = 60-90°), diametro D 35.7 mm, area base cono A=10 cm² rivestimento / fango bentonitico : talora previsto;
- DINAMICO PESANTE ITALIANO (SUPERPESANTE secondo la classifica ISSMFE) massa battente M = 73 kg, altezza di caduta H=0.75 m, avanzamento δ =30 cm, punta conica (α = 60°), diametro D = 50.8 mm, area base cono A=20.27 cm² rivestimento: previsto secondo precise indicazioni;
- DINAMICO SUPERPESANTE (Tipo EMILIA) massa battente M=63.5 kg, altezza caduta H=0.75 m, avanzamento δ =20-30 cm, punta conica conica ($\alpha=60^{\circ}$ -90°) diametro D = 50.5 mm, area base cono A = 20 cm², rivestimento / fango bentonitico : talora previsto.

Correlazione con Nspt

Poiché la prova penetrometrica standard (SPT) rappresenta, ad oggi, uno dei mezzi più diffusi ed economici per ricavare informazioni dal sottosuolo, la maggior parte delle correlazioni esistenti riguardano i valori del numero di colpi Nspt ottenuto con la suddetta prova, pertanto si presenta la necessità di rapportare il numero di colpi di una prova dinamica con Nspt. Il passaggio viene dato da:

$$NSPT = \beta_t \cdot N$$

Dove:

$$\beta_t = \frac{Q}{Q_{SPT}}$$

in cui Q è l'energia specifica per colpo e Qspt è quella riferita alla prova SPT.

L'energia specifica per colpo viene calcolata come segue:

$$Q = \frac{M^2 \cdot H}{A \cdot \delta \cdot (M + M')}$$

in cui

M peso massa battente.

M' peso aste.

H altezza di caduta.

A area base punta conica.

δ passo di avanzamento.

Formula Olandesi

$$Rpd = \frac{M^2 \cdot H}{\left[A \cdot e \cdot (M+P)\right]} = \frac{M^2 \cdot H \cdot N}{\left[A \cdot \delta \cdot (M+P)\right]}$$

Rpd resistenza dinamica punta (area A).

e infissione media per colpo (δ/N).

M peso massa battente (altezza caduta H).

P peso totale aste e sistema battuta.

Calcolo di (N₁)60

(N₁)₆₀ è il numero di colpi normalizzato definito come segue:

 $\left(N_1\right)_{60} = \mathrm{CN} \cdot \mathrm{N60} \ \mathrm{con} \ \mathrm{CN} = \sqrt{(\mathrm{Pa}'' \sigma_{\mathrm{vo}})} \ \mathrm{CN} < 1.7 \ \mathrm{Pa} = 101.32 \ \mathrm{kPa} \\ (Liao \ e \ Whitman \ 1986)$

 $N_{60} = N_{SPT} \cdot (ER/60) \cdot C_S \cdot C_r \cdot C_d$

ER/60 rendimento del sistema di infissione normalizzato al 60%.

C_s parametro funzione della controcamicia (1.2 se assente).

C_d funzione del diametro del foro (1 se compreso tra 65-115mm).

C_r parametro di correzione funzione della lunghezza delle aste.

Metodologia di Elaborazione.

Le elaborazioni sono state effettuate mediante un programma di calcolo automatico Dynamic Probing della *GeoStru Software*.

Il programma calcola il rapporto delle energie trasmesse (coefficiente di correlazione con SPT) tramite le elaborazioni proposte da Pasqualini (1983) - Meyerhof (1956) - Desai (1968) - Borowczyk-Frankowsky (1981).

Permette inoltre di utilizzare i dati ottenuti dall'effettuazione di prove penetrometriche per estrapolare utili informazioni geotecniche e geologiche.

Una vasta esperienza acquisita, unitamente ad una buona interpretazione e correlazione, permettono spesso di ottenere dati utili alla progettazione e frequentemente dati maggiormente attendibili di tanti dati bibliografici sulle litologie e di dati geotecnici determinati sulle verticali litologiche da poche prove di laboratorio eseguite come rappresentazione generale di una verticale eterogenea disuniforme e/o complessa.

In particolare consente di ottenere informazioni su:

- l'andamento verticale e orizzontale degli intervalli stratigrafici,
- la caratterizzazione litologica delle unità stratigrafiche,
- i parametri geotecnici suggeriti da vari autori in funzione dei valori del numero dei colpi e delle resistenza alla punta.

Valutazioni statistiche e correlazioni

Elaborazione Statistica

Permette l'elaborazione statistica dei dati numerici di Dynamic Probing, utilizzando nel calcolo dei valori rappresentativi dello strato considerato un valore inferiore o maggiore della media aritmetica dello strato (dato comunque maggiormente utilizzato); i valori possibili in immissione sono :

Media

Media aritmetica dei valori del numero di colpi sullo strato considerato.

Media minima

Valore statistico inferiore alla media aritmetica dei valori del numero di colpi sullo strato considerato.

Massimo

Valore massimo dei valori del numero di colpi sullo strato considerato.

Minimo

Valore minimo dei valori del numero di colpi sullo strato considerato.

Scarto quadratico medio

Valore statistico di scarto dei valori del numero di colpi sullo strato considerato.

Media deviata

Valore statistico di media deviata dei valori del numero di colpi sullo strato considerato.

Media (+ s)

Media + scarto (valore statistico) dei valori del numero di colpi sullo strato considerato.

Media (-s)

Media - scarto (valore statistico) dei valori del numero di colpi sullo strato considerato.

Distribuzione normale R.C.

Il valore di $N_{spt,k}$ viene calcolato sulla base di una distribuzione normale o gaussiana, fissata una probabilità di non superamento del 5%, secondo la seguente relazione:

$$Nspt_{,k} = Nspt_{,medio} - 1.645 \cdot (\sigma_{Nspt})$$

dove σ_{Nspt} è la deviazione standard di Nspt

Distribuzione normale R.N.C.

Il valore di Nspt,k viene calcolato sulla base di una distribuzione normale o gaussiana, fissata una probabilità di non superamento del 5%, trattando i valori medi di Nspt distribuiti normalmente:

$$Nspt_{,k} = Nspt_{,medio} - 1.645 \cdot \left(\sigma_{Nspt}\right) / \sqrt{n}$$

dove n è il numero di letture.

Pressione ammissibile

Pressione ammissibile specifica sull'interstrato (con effetto di riduzione energia per svergolamento aste o no) calcolata secondo le note elaborazioni proposte da Herminier, applicando un coefficiente di sicurezza (generalmente = 20-22) che corrisponde ad un coefficiente di sicurezza standard delle fondazioni pari a 4, con una geometria fondale standard di larghezza pari a 1 m ed immorsamento d = 1 m.

Correlazioni geotecniche terreni incoerenti

Liquefazione

Permette di calcolare utilizzando dati Nspt il potenziale di liquefazione dei suoli (prevalentemente sabbiosi).

Attraverso la relazione di *SHI-MING* (1982), applicabile a terreni sabbiosi, la liquefazione risulta possibile solamente se Nspt dello strato considerato risulta inferiore a Nspt critico calcolato con l'elaborazione di *SHI-MING*.

Correzione Nspt in presenza di falda

 $Nspt\ corretto = 15 + 0.5 \cdot (Nspt - 15)$

Nspt è il valore medio nello strato

La correzione viene applicata in presenza di falda solo se il numero di colpi è maggiore di 15 (la correzione viene eseguita se tutto lo strato è in falda).

Angolo di Attrito

- Peck-Hanson-Thornburn-Meyerhof (1956) Correlazione valida per terreni non molli a prof. < 5 m;
 correlazione valida per sabbie e ghiaie rappresenta valori medi. Correlazione storica molto usata,
 valevole per prof. < 5 m per terreni sopra falda e < 8 m per terreni in falda (tensioni < 8-10 t/mq)
- Meyerhof (1956) Correlazioni valide per terreni argillosi ed argillosi-marnosi fessurati, terreni di riporto sciolti e coltri detritiche (da modifica sperimentale di dati).
- Sowers (1961)- Angolo di attrito in gradi valido per sabbie in genere (cond. ottimali per prof. < 4 m. sopra falda e < 7 m per terreni in falda) $\sigma > 5$ t/mq.
- De Mello Correlazione valida per terreni prevalentemente sabbiosi e sabbioso-ghiaiosi (da modifica sperimentale di dati) con angolo di attrito < 38°.
- Malcev (1964) Angolo di attrito in gradi valido per sabbie in genere (cond. ottimali per prof. > 2 m e per valori di angolo di attrito $< 38^{\circ}$).
- Schmertmann (1977)- Angolo di attrito (gradi) per vari tipi litologici (valori massimi). N.B. valori spesso troppo ottimistici poiché desunti da correlazioni indirette da Dr %.
- Shioi-Fukuni (1982) ROAD BRIDGE SPECIFICATION, Angolo di attrito in gradi valido per sabbie sabbie fini o limose e limi siltosi (cond. ottimali per prof. di prova > 8 m sopra falda e > 15 m per terreni in falda) σ >15 t/mq.
- Shioi-Fukuni (1982) JAPANESE NATIONALE RAILWAY, Angolo di attrito valido per sabbie medie e grossolane fino a ghiaiose.
- Angolo di attrito in gradi (Owasaki & Iwasaki) valido per sabbie sabbie medie e grossolaneghiaiose (cond. ottimali per prof. > 8 m sopra falda e > 15 m per terreni in falda) s>15 t/mq.

- Meyerhof (1965) Correlazione valida per terreni per sabbie con % di limo < 5% a profondità < 5
 m e con (%) di limo > 5% a profondità < 3 m.
- Mitchell e Katti (1965) Correlazione valida per sabbie e ghiaie.

Densità relativa (%)

- Gibbs & Holtz (1957) correlazione valida per qualunque pressione efficace, per ghiaie Dr viene sovrastimato, per limi sottostimato.
- Skempton (1986) elaborazione valida per limi e sabbie e sabbie da fini a grossolane NC a qualunque pressione efficace, per ghiaie il valore di Dr % viene sovrastimato, per limi sottostimato.
- Meyerhof (1957).
- Schultze & Menzenbach (1961) per sabbie fini e ghiaiose NC, metodo valido per qualunque valore di pressione efficace in depositi NC, per ghiaie il valore di Dr % viene sovrastimato, per limi sottostimato.

Modulo Di Young (E_{v})

- Terzaghi elaborazione valida per sabbia pulita e sabbia con ghiaia senza considerare la pressione efficace.
- Schmertmann (1978), correlazione valida per vari tipi litologici.
- Schultze-Menzenbach, correlazione valida per vari tipi litologici.
- D'Appollonia ed altri (1970), correlazione valida per sabbia, sabbia SC, sabbia NC e ghiaia.
- Bowles (1982), correlazione valida per sabbia argillosa, sabbia limosa, limo sabbioso, sabbia media, sabbia e ghiaia.

Modulo Edometrico

Begemann (1974) elaborazione desunta da esperienze in Grecia, correlazione valida per limo con sabbia, sabbia e ghiaia

- Buismann-Sanglerat, correlazione valida per sabbia e sabbia argillosa.
- Farrent (1963) valida per sabbie, talora anche per sabbie con ghiaia (da modifica sperimentale di dati).
- Menzenbach e Malcev valida per sabbia fine, sabbia ghiaiosa e sabbia e ghiaia.

Stato di consistenza

• Classificazione A.G.I. 1977

Peso di Volume

• Meyerhof ed altri, valida per sabbie, ghiaie, limo, limo sabbioso.

Peso di volume saturo

• Terzaghi-Peck (1948-1967)

Modulo di poisson

• Classificazione A.G.I.

Potenziale di liquefazione (Stress Ratio)

 Seed-Idriss (1978-1981) . Tale correlazione è valida solamente per sabbie, ghiaie e limi sabbiosi, rappresenta il rapporto tra lo sforzo dinamico medio τ e la tensione verticale di consolidazione per la valutazione del potenziale di liquefazione delle sabbie e terreni sabbio-ghiaiosi attraverso grafici degli autori.

Velocità onde di taglio Vs (m/s)

• Tale correlazione è valida solamente per terreni incoerenti sabbiosi e ghiaiosi.

Modulo di deformazione di taglio (G)

- Ohsaki & Iwasaki elaborazione valida per sabbie con fine plastico e sabbie pulite.
- Robertson e Campanella (1983) e Imai & Tonouchi (1982) elaborazione valida soprattutto per sabbie e per tensioni litostatiche comprese tra 0,5 4,0 kg/cmq.

Modulo di reazione (Ko)

• Navfac (1971-1982) - elaborazione valida per sabbie, ghiaie, limo, limo sabbioso.

Resistenza alla punta del Penetrometro Statico (Qc)

Robertson (1983) - Qc

Correlazioni geotecniche terreni coesivi

Coesione non drenata

- Benassi & Vannelli- correlazioni scaturite da esperienze ditta costruttrice Penetrometri SUNDA (1983).
- Terzaghi-Peck (1948-1967), correlazione valida per argille sabbiose-siltose NC con Nspt < 8, argille limose-siltose mediamente plastiche, argille marnose alterate-fessurate.
- Terzaghi-Peck (1948). Cu (min-max).
- Sanglerat, da dati Penetr. Statico per terreni coesivi saturi, tale correlazione non è valida per argille sensitive con sensitività > 5, per argille sovraconsolidate fessurate e per i limi a bassa plasticità.
- Sanglerat, (per argille limose-sabbiose poco coerenti), valori validi per resistenze penetrometriche
 < 10 colpi, per resistenze penetrometriche > 10 l'elaborazione valida è comunque quella delle "argille plastiche" di Sanglerat.
- (U.S.D.M.S.M.) U.S. Design Manual Soil Mechanics Coesione non drenata per argille limose e argille di bassa media ed alta plasticità, (Cu-Nspt-grado di plasticità).

- Schmertmann (1975), Cu (Kg/cmq) (valori medi), valida per argille e limi argillosi con Nc = 20 e Qc/Nspt = 2.
- Schmertmann (1975), Cu (Kg/cmq) (valori minimi), valida per argille NC.
- Fletcher (1965), (Argilla di Chicago). Coesione non drenata Cu (Kg/cmq), colonna valori validi per argille a medio-bassa plasticità.
- Houston (1960) argilla di media-alta plasticità.
- Shioi-Fukuni (1982), valida per suoli poco coerenti e plastici, argilla di media-alta plasticità.
- Begemann.
- De Beer.

Resistenza alla punta del Penetrometro Statico (Qc)

• Robertson (1983) - Qc

Modulo Edometrico-Confinato (Mo)

- Stroud e Butler (1975),- per litotipi a media plasticità, valida per litotipi argillosi a media-medio-alta plasticità da esperienze su argille glaciali.
- Stroud e Butler (1975), per litotipi a medio-bassa plasticità (IP < 20), valida per litotipi argillosi a medio-bassa plasticità (IP < 20) da esperienze su argille glaciali .
- Vesic (1970), correlazione valida per argille molli (valori minimi e massimi).
- Trofimenkov (1974), Mitchell e Gardner Modulo Confinato -Mo (Eed) (Kg/cmq)-, valida per litotipi argillosi e limosi-argillosi (rapporto Qc/Nspt=1.5-2.0).
- Buismann- Sanglerat, valida per argille compatte (Nspt < 30) medie e molli (Nspt < 4) e argille sabbiose (Nspt = 6-12).

Modulo Di Young (Ey)

- Schultze-Menzenbach (Min. e Max.), correlazione valida per limi coerenti e limi argillosi con I.P. > 15
- D'Appollonia ed altri (1983), correlazione valida per argille sature-argille fessurate.

Stato di consistenza

• Classificazione A.G.I. 1977.

Peso di Volume

• Meyerhof ed altri, valida per argille, argille sabbiose e limose prevalentemente coerenti.

Peso di volume saturo

Meyerhof ed altri.

Strumento utilizzato... Prova eseguita in data Profondità prova Falda non rilevata DPSH TG 63-200 PAGANI 30/03/2021 8,00 mt

Tipo elaborazione Nr. Colpi: Medio

D 0 11 2 4 3		G 1 1 00	n	.	-	~
Profondità (m)	Nr. Colpi	Calcolo coeff.	Res. dinamica		Pres.	Pres.
		riduzione	ridotta	(Kg/cm²)	ammissibile	ammissibile
		sonda Chi	(Kg/cm²)		con riduzione	Herminier -
					Herminier -	Olandesi
					Olandesi	(Kg/cm²)
					(Kg/cm ²)	
0,20	1	0,855	8,98	10,51	0,45	0,53
0,40	1	0,851	8,94		0,45	0,53
0,60	1	0,847	8,17		0,41	0,48
0,80	3	0,843	24,40	28,93	1,22	1,45
1,00	5	0,840	40,49	·	2,02	2,41
1,20	5	0,836	40,32	48,22	2,02	2,41
1,40	9	0,833	72,29	·	3,61	4,34
1,60	8	0,830	59,14		2,96	3,56
1,80	8	0,826	58,91	71,29	2,95	3,56
2,00	7	0,823	51,35		2,57	3,12
2,20	8	0,820	58,46		2,92	3,56
2,40	7	0,817	50,97	62,38	2,55	3,12
2,60	7	0,814	47,20		2,36	2,90
2,80	11	0,811	73,92	91,10	3,70	4,55
3,00	13	0,759	81,68		4,08	5,38
3,20	8	0,806	53,40	66,25	2,67	3,31
3,40	11	0,803	73,19		3,66	4,55
3,60	12	0,801	74,34		3,72	4,64
3,80	13	0,748	75,26	100,56	3,76	5,03
4,00	10	0,796	61,58		3,08	3,87
4,20	27	0,694	144,88	208,86	7,24	10,44
4,40	9	0,791	55,10	69,62	2,75	3,48
4,60	8	0,789	45,82	58,06	2,29	2,90
4,80	8	0,787	45,70	58,06	2,28	2,90
5,00	8	0,785	45,57	58,06	2,28	2,90
5,20	8	0,783	45,46		2,27	2,90
5,40	8	0,781	45,34	58,06	2,27	2,90
5,60	7	0,779	37,27	47,84	1,86	2,39
5,80	9	0,777	47,81	61,51	2,39	3,08
6,00	11	0,775	58,30	75,18	2,91	3,76
6,20	9	0,774	47,59	61,51	2,38	3,08
6,40	10	0,772	52,76		2,64	3,42
6,60	9	0,770	44,77	58,12	2,24	2,91
6,80	10	0,769	49,64		2,48	3,23
7,00	9	0,767	44,59		2,23	2,91
7,20	11	0,766	54,39	71,04	2,72	3,55
7,40	12	0,764	59,22	77,49	2,96	3,87
7,60	13	0,713	56,71	79,57	2,84	3,98
7,80	29	0,661	117,38	177,50	5,87	8,88
8,00	50	0,560	171,36	306,04	8,57	15,30

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tension	Coeff. di	NSPT	Descrizi
Strato		(Kg/cm ²		Fraction	unità di	unità di	e	correlaz.		one
(m))		(%)	volume	volume	efficace	con Nspt		
					(t/m^3)	saturo	(Kg/cm ²			
						(t/m^3))			
1,2	2,67	26	Incoeren	0	1,69	1,87	0,1	1,47	3,92	
			te -							
			coesivo							
4,2	10,6	87,94	Incoeren	0	2,07	2,28	0,51	1,47	15,58	
			te -							
			coesivo							
7	8,79	61,08	Incoeren	0	2,04	2,24	1,11	1,47	12,92	
			te -							
			coesivo							
8	23	142,33	Incoeren	0	2,25	2,5	1,51	1,47	33,81	
			te -							
			coesivo							

STIMA PARAMETRI GEOTECNICI PROVA Dpsh 01

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

	NSPT	Prof.	Terzaghi	Sanglerat	Terzaghi	U.S.D.M	Schmert	SUNDA	Fletcher	Houston	Shioi -	Begeman	De Beer
		Strato	-Peck		-Peck	.S.M	mann	(1983)	(1965)	(1960)	Fukui	n	
		(m)			(1948)		1975	Benassi e	Argilla		1982		
								Vannelli	di				
									Chicago				
[1] -	3,92	1,20	0,25	0,49	0,15	0,16	0,38	0,78	0,36	0,73	0,20	0,56	0,49
[2] -	15,58	4,20	1,05	1,95	1,00	0,61	1,54	2,64	1,35	1,68	0,78	2,16	1,95
[3] -	12,92	7,00	0,87	1,62	0,50	0,51	1,27	1,83	1,13	1,44	0,65	1,29	1,62
[4] -	33,81	8,00	2,28	4,23	0,00	1,25	3,37	4,27	2,70	3,51	1,69	4,75	4,23

Qc (Resistenza punta Penetrometro Statico)

	NSPT	Prof. Strato	Correlazione	Qc
		(m)		(Kg/cm²)
[1] -	3,92	1,20	Robertson (1983)	7,84
[2] -	15,58	4,20	Robertson (1983)	31,16
[3] -	12,92	7,00	Robertson (1983)	25,84
[4] -	33.81	8.00	Robertson (1983)	67.62

Modulo Edometrico (Kg/cm²)

ividualo Edo	NSPT	Prof. Strato (m)	Stroud e Butler (1975)	Vesic (1970)	Trofimenkov (1974), Mitchell e	Buisman-Sanglerat
		, ,	, , ,		Gardner	
[1] -	3,92	1,20	17,99	58,80	41,77	49,00
[2] -	15,58	4,20	71,48		160,70	155,80
[3] -	12,92	7,00	59,28		133,57	129,20
[4] -	33,81	8,00	155,12		346,63	338,10

Modulo di Young (Kg/cm²)

	NSPT	Prof. Strato (m)	Schultze	Apollonia
[1] -	3,92	1,20	24,68	39,20
[2] -	15,58	4,20	158,77	155,80
[3] -	12,92	7,00	128,18	129,20
[4] -	33,81	8,00	368,42	338,10

Classificazione AGI

	NSPT	Prof. Strato	Correlazione	Classificazione
		(m)		
[1] -	3,92	1,20	A.G.I. (1977)	POCO CONSISTENTE
[2] -	15,58	4,20	A.G.I. (1977)	MOLTO CONSISTENTE
[3] -	12,92	7,00	A.G.I. (1977)	CONSISTENTE
[4] -	33,81	8,00	A.G.I. (1977)	ESTREM. CONSISTENTE

Peso unità di volume

	NSPT	Prof. Strato	Correlazione	Peso unità di volume
		(m)		(t/m^3)
[1] -	3,92	1,20	Meyerhof	1,69
[2] -	15,58	4,20	Meyerhof	2,07
[3] -	12,92	7,00	Meyerhof	2,04
[4] -	33.81	8.00	Meverhof	2.25

Peso unità di volume saturo

	NSPT	Prof. Strato	Correlazione	Peso unità di volume saturo
		(m)		(t/m^3)
[1] -	3,92	1,20	Meyerhof	1,87
[2] -	15,58	4,20	Meyerhof	2,28
[3] -	12,92	7,00	Meyerhof	2,24
[4] -	33,81	8,00	Meyerhof	2,50

Velocità onde di taglio

S	NSPT	Prof. Strato	Correlazione	Velocità onde di taglio
		(m)		(m/s)
[1] -	3,92	1,20		0
[2] -	15,58	4,20		0
[3] -	12,92	7,00		0
[4] -	33,81	8,00		0

TERRENI INCOERENTI

Densità relativa

	NSPT	Prof. Strato	Gibbs & Holtz	Meyerhof 1957	Schultze &	Skempton 1986
		(m)	1957		Menzenbach (1961)	
[1] -	3,92	1,20	20,4	46,44	59,9	17,9
[2] -	15,58	4,20	40,55	75,25	75,74	44,06
[3] -	12,92	7,00	28,6	56,12	56,59	39,08
[4] -	33,81	8,00	44,95	82,18	82,71	67,15

Angolo di resistenza al taglio

4	Angolo di	ı resistenz	a al taglic)											
		NSPT	Prof.	Nspt	Peck-	Meyerh	Sowers	Malcev	Meyerh	Schmert	Mitchell	Shioi-	Japanes	De	Owasaki
			Strato	corretto	Hanson-	of	(1961)	(1964)	of	mann	& Katti	Fukuni	e	Mello	&
			(m)	per	Thornbu	(1956)			(1965)	(1977)	(1981)	1982	National		Iwasaki
				presenza	rn-					Sabbie		(ROAD	Railway		
				falda	Meyerh							BRIDG			
					of 1956							E			
												SPECIF			
												ICATIO			
												N)			
	[1] -	3,92	1,20	3,92	28,12	21,12	29,1	32,18	31,21	0	<30	22,67	28,18	24,18	23,85
	[2] -	15,58	4,20	15,58	31,45	24,45	32,36	30,9	35,67	38,53	30-32	30,29	31,67	29,41	32,65
	[3] -	12,92	7,00	12,92	30,69	23,69	31,62	28,92	34,75	35,86	30-32	28,92	30,88	28,7	31,07
	[4] -	33,81	8,00	33,81	36,66	29,66	37,47	29,81	40,45	39,51	32-35	37,52	37,14	32,35	41

Modulo di Young (Kg/cm²)

Modulo di 1 odi	ig (Kg/Ciii-)							
	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Terzaghi	Schmertmann (1978) (Sabbie)	Schultze- Menzenbach (Sabbia ghiaiosa)	D'Appollonia ed altri 1970 (Sabbia)	Bowles (1982) Sabbia Media
[1] -	3,92	1,20	3,92		31,36			
[2] -	15,58	4,20	15,58	281,74	124,64	184,54	296,85	152,90
[3] -	12,92	7,00	12,92	256,57	103,36	153,16	276,90	139,60
[4] -	33,81	8,00	33,81	415,04	270,48	399,66	433,58	244,05

Modulo Edometrico (Kg/cm²)

vioualo Luomen	ico (III)						
	NSPT		Nspt corretto per		Begemann 1974	Farrent 1963	Menzenbach e
		(m)	presenza falda	Sanglerat	(Ghiaia con		Malcev (Sabbia
				(sabbie)	sabbia)		media)
[1] -	3,92	1,20	3,92		35,52	27,83	55,48
[2] -	15,58	4,20	15,58	93,48	59,47	110,62	107,49
[3] -	12,92	7,00	12,92	77,52	54,00	91,73	95,62
[4] -	33,81	8,00	33,81	202,86	96,91	240,05	188,79

Classificazione AGI

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Classificazione AGI
[1] -	3,92	1,20	3,92	Classificazione A.G.I	SCIOLTO
[2] -	15,58	4,20	15,58	Classificazione A.G.I	MODERATAMENTE
					ADDENSATO
[3] -	12,92	7,00	12,92	Classificazione A.G.I	MODERATAMENTE
					ADDENSATO
[4] -	33,81	8,00	33,81	Classificazione A.G.I	ADDENSATO

Peso unità di volume

i coo amia ai voiame					
	NSPT	Prof. Strato	Nspt corretto per	Correlazione	Peso Unità di Volume
		(m)	presenza falda		(t/m³)
[1] -	3,92	1,20	3,92	Terzaghi-Peck 1948	1,40
[2] -	15,58	4,20	15,58	Terzaghi-Peck 1948	1,55
[3] -	12,92	7,00	12,92	Terzaghi-Peck 1948	1,51
[4] -	33,81	8,00	33,81	Terzaghi-Peck 1948	1,73

Peso unità di volume saturo

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Peso Unità Volume Saturo (t/m³)
[1] -	3,92	1,20	3,92	Terzaghi-Peck 1948	1,87
[2] -	15,58	4,20	15,58	Terzaghi-Peck 1948	1,96
[3] -	12,92	7,00	12,92	Terzaghi-Peck 1948	1,94
[4] -	33,81	8,00	33,81	Terzaghi-Peck 1948	2,08

Modulo di Poisson

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Poisson
[1] -	3,92	1,20	3,92	(A.G.I.)	0,35
[2] -	15,58	4,20	15,58	(A.G.I.)	0,32
[3] -	12,92	7,00	12,92	(A.G.I.)	0,33
[4] -	33,81	8,00	33,81	(A.G.I.)	0,29

Modulo di deformazione a taglio dinamico (Kg/cm²)

Modulo al aetormazion	odulo di deformazione a tagno dinamico (Kg/cm²)											
	NSPT	Prof. Strato	Nspt corretto per	Ohsaki (Sabbie pulite)	Robertson e							
		(m)	presenza falda		Campanella (1983) e							
					Imai & Tonouchi							
					(1982)							
[1] -	3,92	1,20	3,92	234,75	288,01							
[2] -	15,58	4,20	15,58	858,87	669,22							
[3] -	12,92	7,00	12,92	720,28	596,89							
[4] -	33.81	8.00	33.81	1779.16	1074.38							

Velocità onde di taglio

velocita onde di tagno					
	NSPT	Prof. Strato	Nspt corretto per	Correlazione	Velocità onde di taglio
		(m)	presenza falda		(m/s)
[1] -	3,92	1,20	3,92	Ohta & Goto (1978)	78,51
				Limi	
[2] -	15,58	4,20	15,58	Ohta & Goto (1978)	133,26
				Limi	
[3] -	12,92	7,00	12,92	Ohta & Goto (1978)	148,51
				Limi	
[4] -	33,81	8,00	33,81	Ohta & Goto (1978)	185,58
				Limi	

Liquefazione

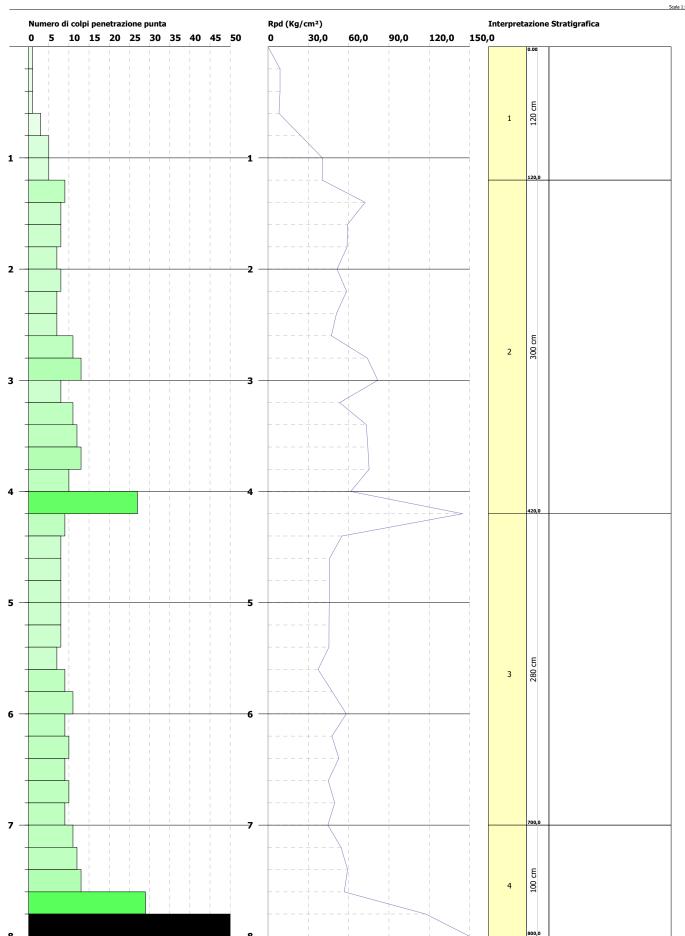
		NSPT	Prof. Strato	Nspt corretto per	Correlazione	Fs
			(m)	presenza falda		Liquefazione
	[1] -	3,92	1,20	3,92	Seed e Idriss (1971)	
	[2] -	15,58	4,20	15,58	Seed e Idriss (1971)	
ſ	[3] -	12,92	7,00	12,92	Seed e Idriss (1971)	
	[4] -	33,81	8,00	33,81	Seed e Idriss (1971)	

Coefficiente spinta a Riposo K0=SigmaH/P0

Cocincicinic spinia a Ki	poso ixo-biginari/i o				
	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	K0
[1] -	3,92	1,20	3,92		
[2] -	15,58	4,20	15,58		
[3] -	12,92	7,00	12,92		
[4] -	33,81	8,00	33,81		

Qc (Resistenza punta Penetrometro Statico)

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Qc (Kg/cm²)
[1] -	3,92	1,20	3,92		
[2] -	15,58	4,20	15,58		
[3] -	12,92	7,00	12,92		
[4] -	33,81	8,00	33,81		



PROVA PENETROMETRICA DINAMICA Dpsh 01 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente: Descrizione: Località:

Data: 30/03/2021

Strumento utilizzato... Prova eseguita in data Profondità prova Falda non rilevata DPSH TG 63-200 PAGANI 30/03/2021 7,20 mt

Tipo elaborazione Nr. Colpi: Medio

Profondità (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Olandesi (Kg/cm²)
0,20	1	0,855	8,98	10,51	0,45	0,53
0,40	1	0.851	8.94	10,51	0.45	0,53
0,60	2	0,847	16,34	19,29	0,82	0,96
0,80	2	0,843	16,27	19,29	0,81	0,96
1,00	4	0,840	32,39	38,57	1,62	1,93
1,20	4	0,836	32,26	38,57	1,61	1,93
1,40	5	0,833	40,16	48,22	2,01	2,41
1,60	6	0,830	44,35	53,47	2,22	2,67
1,80	5	0,826	36,82	44,55	1,84	2,23
2,00	7	0,823	51,35	62,38	2,57	3,12
2,20	8	0,820	58,46	71,29	2,92	3,56
2,40	6	0,817	43,69	53,47	2,18	2,67
2,60	6	0,814	40,46	49,69	2,02	2,48
2,80	7	0,811	47,04	57,97	2,35	2,90
3,00	10	0,809	66,97	82,82	3,35	4,14
3,20	12	0,806	80,10	99,38	4,01	4,97
3,40	11	0,803	73,19	91,10	3,66	4,55
3,60	11	0,801	68,15	85,09	3,41	4,25
3,80	10	0,798	61,76	77,36	3,09	3,87
4,00	9	0,796	55,42	69,62	2,77	3,48
4,20	12	0,794	73,68	92,83	3,68	4,64
4,40	13	0,741	74,56	100,56	3,73	5,03
4,60	15	0,739	80,47	108,85	4,02	5,44
4,80	7	0,787	39,98	50,80	2,00	2,54
5,00	7	0,785	39,88	50,80	1,99	2,54
5,20	8	0,783	45,46	58,06	2,27	2,90
5,40	7	0,781	39,68	50,80	1,98	2,54
5,60	10	0,779	53,25	68,34	2,66	3,42
5,80	11	0,777	58,43	75,18	2,92	3,76
6,00	10	0,775	53,00	68,34	2,65	3,42
6,20	12	0,774	63,45	82,01	3,17	4,10
6,40	13	0,722	64,15	88,84	3,21	4,44
6,60	12	0,770	59,70	77,49	2,98	3,87
6,80	14	0,719	64,98	90,41	3,25	4,52
7,00	26	0,667	112,02	167,90	5,60	8,40
7,20	50	0,566	182,64	322,89	9,13	16,14

Prof. Strato (m)	NPDM	Rd (Kg/cm²)	Tipo	Clay Fraction (%)	Peso unità di volume (t/m³)	Peso unità di volume saturo (t/m³)	Tensione efficace (Kg/cm²)	Coeff. di correlaz. con Nspt	NSPT	Descrizione
1,8	3,33	31,44	Incoerente - coesivo	0	1,75	1,88	0,16	1,47	4,9	
4,6	9,79	78,74	Incoerente - coesivo	0	2,06	2,27	0,6	1,47	14,39	
5,4	7,25	52,62	Incoerente - coesivo	0	1,99	2,19	0,97	1,47	10,66	
7,2	17,56	115,71	Incoerente - coesivo	0	2,12	2,25	1,24	1,47	25,81	

STIMA PARAMETRI GEOTECNICI PROVA Dpsh 02

TERRENI COESIVI

Coesione non	drenata	(Kg/cm ²)

	NSPT	Prof. Strato	Terzaghi -Peck	Sanglerat	Terzaghi -Peck	U.S.D.M .S.M	Schmert mann	SUNDA (1983)	Fletcher (1965)	Houston (1960)	Shioi - Fukui	Begeman n	De Beer
		(m)			(1948)		1975	Benassi e Vannelli	U		1982		
									Chicago				
[1] -	4,9	1,80	0,31	0,61	0,25	0,20	0,48	0,94	0,44	0,80	0,25	0,65	0,61
[2] -	14,39	4,60	0,97	1,80	0,50	0,57	1,42	2,36	1,25	1,57	0,72	1,89	1,80
[3] -	10,66	5,40	0,72	1,33	0,50	0,43	1,05	1,58	0,94	1,25	0,53	1,14	1,33
[4] -	25,81	7,20	1,74	3,23	1,00	0.98	2,56	3,47	2,13	2,65	1,29	3,52	3,23

Qc (Resistenza punta Penetrometro Statico)

QC (ICSISTCHZa pt	unta i chen omen o stanco,			
	NSPT	Prof. Strato	Correlazione	Qc
		(m)		(Kg/cm²)
[1] -	4,9	1,80	Robertson (1983)	9,80
[2] -	14,39	4,60	Robertson (1983)	28,78
[3] -	10,66	5,40	Robertson (1983)	21,32
[4] -	25,81	7,20	Robertson (1983)	51,62

Modulo Edometrico (Kg/cm²)

mount Davi	icuito (iig/ciii)					
	NSPT	Prof. Strato (m)	Stroud e Butler (1975)	Vesic (1970)	Trofimenkov (1974), Mitchell e Gardner	Buisman-Sanglerat
[1] -	4,9	1,80	22,48	73,50	51,77	61,25
[2] -	14,39	4,60	66,02		148,56	143,90
[3] -	10,66	5,40	48,91		110,52	106,60
[4] -	25,81	7,20	118,42		265,04	258,10

Modulo di Young (Kg/cm²)

	NSPT	Prof. Strato	Schultze	Apollonia	
		(m)			
[1] -	4,9	1,80	35,95	49,00	
[2] -	14,39	4,60	145,09	143,90	
[3] -	10,66	5,40	102,19	106,60	
[4] -	25,81	7,20	276,42	258,10	

Classificazione AGI

Clubbilicuzione 11		I		I am a second and a
	NSPT	Prof. Strato	Correlazione	Classificazione
		(m)		
[1] -	4,9	1,80	A.G.I. (1977)	MODERAT.
				CONSISTENTE
[2] -	14,39	4,60	A.G.I. (1977)	CONSISTENTE
[3] -	10,66	5,40	A.G.I. (1977)	CONSISTENTE
[4] -	25,81	7,20	A.G.I. (1977)	MOLTO CONSISTENTE

Peso unità di volume

	NSPT	Prof. Strato	Correlazione	Peso unità di volume
		(m)		(t/m³)
[1] -	4,9	1,80	Meyerhof	1,75
[2] -	14,39	4,60	Meyerhof	2,06
[3] -	10,66	5,40	Meyerhof	1,99
[4] -	25.81	7.20	Meverhof	2.12

Peso unità di volume saturo

	NSPT	Prof. Strato	Correlazione	Peso unità di volume saturo
		(m)		(t/m^3)
[1] -	4,9	1,80	Meyerhof	1,88
[2] -	14,39	4,60	Meyerhof	2,27
[3] -	10,66	5,40	Meyerhof	2,19
[4] -	25,81	7,20	Meyerhof	2,25

Velocità onde di taglio

v ciocita onuc ui tagno				
	NSPT	Prof. Strato	Correlazione	Velocità onde di taglio
		(m)		(m/s)
[1] -	4,9	1,80		0
[2] -	14,39	4,60		0
[3] -	10,66	5,40		0
[4] -	25,81	7,20		0

TERRENI INCOERENTI

Densità relativa

	NSPT	Prof. Strato	Gibbs & Holtz	Meyerhof 1957	Schultze &	Skempton 1986
		(m)	1957		Menzenbach (1961)	
[1] -	4,9	1,80	23,39	50,2	59,38	20,57
[2] -	14,39	4,60	37,34	69,78	69,89	41,9
[3] -	10,66	5,40	26,37	53,03	53,45	34,43
[4] -	25,81	7,20	41,71	76,56	76,49	58,93

Angolo di resistenza al taglio

Angoio ai	ı resistenz	a ai tagne)											
	NSPT	Prof.	Nspt	Peck-	Meyerh	Sowers	Malcev	Meyerh	Schmert	Mitchell	Shioi-	Japanes	De	Owasaki
		Strato	corretto	Hanson-	of	(1961)	(1964)	of	mann	& Katti	Fukuni	e	Mello	&
		(m)	per	Thornbu	(1956)			(1965)	(1977)	(1981)	1982	National		Iwasaki
			presenza	rn-					Sabbie		(ROAD	Railway		
			falda	Meyerh							BRIDG			
				of 1956							E			
											SPECIF			
											ICATIO			
											N)			
[1] -	4,9	1,80	4,9	28,4	21,4	29,37	31,59	31,63	0	<30	23,57	28,47	25,03	24,9
[2] -	14,39	4,60	14,39	31,11	24,11	32,03	30,42	35,26	37,77	30-32	29,69	31,32	29,11	31,96
[3] -	10,66	5,40	10,66	30,05	23,05	30,98	28,9	33,92	35,42	<30	27,65	30,2	27,97	29,6
[4] -	25,81	7,20	25,81	34,37	27,37	35,23	29,8	38,68	38,72	32-35	34,68	34,74	31,32	37,72

Modulo di Young (Kg/cm²)

Miodulo di Todi	ig (ixg/till-)							
	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Terzaghi	Schmertmann (1978) (Sabbie)	Schultze- Menzenbach (Sabbia ghiaiosa)	D'Appollonia ed altri 1970 (Sabbia)	Bowles (1982) Sabbia Media
[1] -	4,9	1,80	4,9		39,20			
[2] -	14,39	4,60	14,39	270,77	115,12	170,50	287,92	146,95
[3] -	10,66	5,40	10,66	233,05	85,28	126,49	259,95	128,30
[4] -	25,81	7,20	25,81	362,63	206,48	305,26	373,57	204,05

Modulo Edometrico (Kg/cm²)

Modulo Edometrico (Kg/cm²)								
	NSPT	Prof. Strato	Nspt corretto per	Buisman-	Begemann 1974	Farrent 1963	Menzenbach e	
		(m)	presenza falda	Sanglerat	(Ghiaia con		Malcev (Sabbia	
				(sabbie)	sabbia)		media)	
[1] -	4,9	1,80	4,9		37,53	34,79	59,85	
[2] -	14,39	4,60	14,39	86,34	57,02	102,17	102,18	
[3] -	10,66	5,40	10,66	63,96	49,36	75,69	85,54	
[4] -	25,81	7,20	25,81	154,86	80,48	183,25	153,11	

Classificazione AGI

Ciassificazione AGI					
	NSPT	Prof. Strato	Nspt corretto per	Correlazione	Classificazione AGI
		(m)	presenza falda		
[1] -	4,9	1,80	4,9	Classificazione A.G.I	POCO ADDENSATO
[2] -	14,39	4,60	14,39	Classificazione A.G.I	MODERATAMENTE
					ADDENSATO
[3] -	10,66	5,40	10,66	Classificazione A.G.I	MODERATAMENTE
					ADDENSATO
[4] -	25,81	7,20	25,81	Classificazione A.G.I	MODERATAMENTE
					ADDENSATO

Peso unità di volume

		NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Peso Unità di Volume (t/m³)
	[1] -	4,9	1,80	4,9	Terzaghi-Peck 1948	1,41
Г	[2] -	14,39	4,60	14,39	Terzaghi-Peck 1948	1,53
	[3] -	10,66	5,40	10,66	Terzaghi-Peck 1948	1,49
	[4] -	25,81	7,20	25,81	Terzaghi-Peck 1948	1,66

Peso unità di volume saturo

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Peso Unità Volume Saturo (t/m³)
[1] -	4,9	1,80	4,9	Terzaghi-Peck 1948	1,88
[2] -	14,39	4,60	14,39	Terzaghi-Peck 1948	1,95
[3] -	10,66	5,40	10,66	Terzaghi-Peck 1948	1,93
[4] -	25,81	7,20	25,81	Terzaghi-Peck 1948	2,03

Modulo di Poisson

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Poisson
[1] -	4,9	1,80	4,9	(A.G.I.)	0,34
[2] -	14,39	4,60	14,39	(A.G.I.)	0,33
[3] -	10,66	5,40	10,66	(A.G.I.)	0,33
[4] -	25,81	7,20	25,81	(A.G.I.)	0,3

Modulo di deformazione a taglio dinamico (Kg/cm²)

Woodulo di deloi mazione a tagno dinamico (Kg/cm ⁻)									
	NSPT	Prof. Strato	Nspt corretto per	Ohsaki (Sabbie pulite)	Robertson e				
		(m)	presenza falda		Campanella (1983) e				
					Imai & Tonouchi				
					(1982)				
[1] -	4,9	1,80	4,9	289,53	330,08				
[2] -	14,39	4,60	14,39	797,06	637,51				
[3] -	10,66	5,40	10,66	601,18	530,73				
[4] -	25,81	7,20	25,81	1380,37	910,99				

Velocità onde di taglio

v ciocita onuc ui tagno					
	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Velocità onde di taglio (m/s)
[1] -	4,9	1,80	4,9	Ohta & Goto (1978) Limi	88,25
[2] -	14,39	4,60	14,39	Ohta & Goto (1978) Limi	135,82
[3] -	10,66	5,40	10,66	Ohta & Goto (1978) Limi	140,55
[4] -	25,81	7,20	25,81	Ohta & Goto (1978) Limi	171,25

Liquefazione

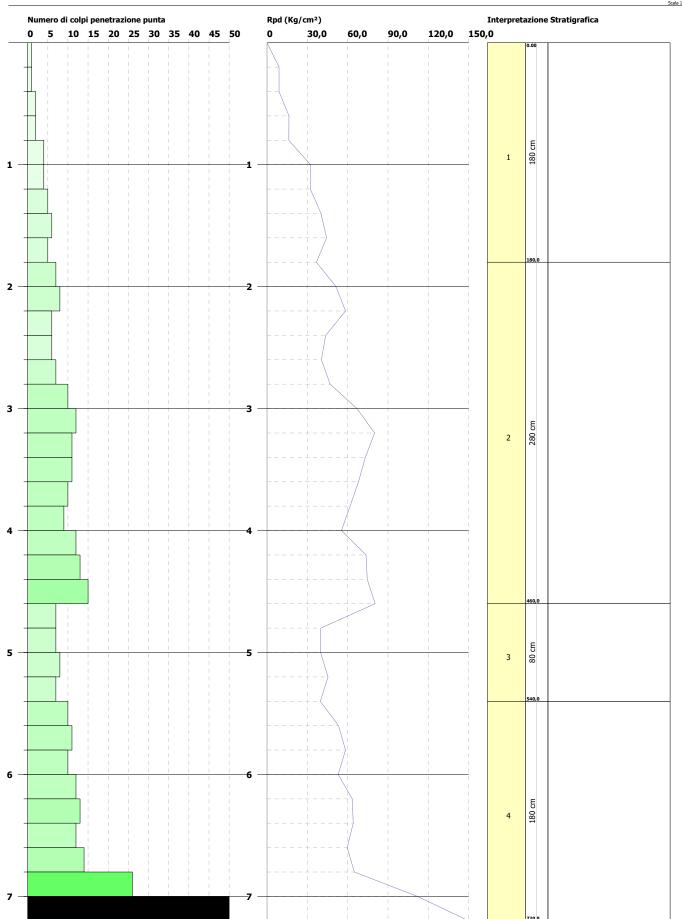
1	•	NSPT	Prof. Strato	Nspt corretto per	Correlazione	Fs
			(m)	presenza falda		Liquefazione
	[1] -	4,9	1,80	4,9	Seed e Idriss (1971)	
ſ	[2] -	14,39	4,60	14,39	Seed e Idriss (1971)	-
İ	[3] -	10,66	5,40	10,66	Seed e Idriss (1971)	
ĺ	[4] -	25,81	7,20	25,81	Seed e Idriss (1971)	

Coefficiente spinta a Riposo K0=SigmaH/P0

cocinciente spinta a ra	poso ixo-biginari/i o				
	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	K0
[1] -	4,9	1,80	4,9		
[2] -	14,39	4,60	14,39		
[3] -	10,66	5,40	10,66		
[4] -	25,81	7,20	25,81		

Qc (Resistenza punta Penetrometro Statico)

	NSPT	Prof. Strato	Nspt corretto per	Correlazione	Qc
		(m)	presenza falda		(Kg/cm²)
[1] -	4,9	1,80	4,9		
[2] -	14,39	4,60	14,39		
[3] -	10,66	5,40	10,66		
[4] -	25,81	7,20	25,81		



PROVA PENETROMETRICA DINAMICA Dpsh 02 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente: Descrizione: Località:

Data: 30/03/2021

SIGNATURE 2 SIGNATURE 1

Strumento utilizzato... Prova eseguita in data Profondità prova Falda non rilevata

DPSH TG 63-200 PAGANI 30/03/2021 2,00 mt

Tipo elaborazione Nr. Colpi: Medio

Profondità (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Olandesi (Kg/cm²)
0,20	2	0,855	17,96	21,01	0,90	1,05
0,40	5	0,851	44,70	52,54	2,23	2,63
0,60	2	0,847	16,34	19,29	0,82	0,96
0,80	5	0,843	40,66	48,22	2,03	2,41
1,00	6	0,840	48,59	57,86	2,43	2,89
1,20	7	0,836	56,45	67,50	2,82	3,38
1,40	26	0,733	183,75	250,73	9,19	12,54
1,60	33	0,680	199,83	294,06	9,99	14,70
1,80	45	0,626	251,15	400,99	12,56	20,05
2,00	50	0,623	277,65	445,54	13,88	22,28

Prof. Strato (m)	NPDM	Rd (Kg/cm²)	Tipo	Clay Fraction (%)	Peso unità di volume (t/m³)	Peso unità di volume saturo	Tensione efficace (Kg/cm²)	Coeff. di correlaz. con Nspt	NSPT	Descrizione
						(t/m³)				
1,2	4,5	44,4	Incoerente -	0	1,84	1,89	0,11	1,47	6,62	
			coesivo							
2	38,5	347,83	Incoerente -	0	2,5	2,5	0,32	1,47	56,6	
			coesivo							

STIMA PARAMETRI GEOTECNICI PROVA Dpsh 3

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

Coesione	non arena	ta (IXg/CIII	,										
	NSPT	Prof.	Terzaghi	Sanglerat	Terzaghi	U.S.D.M	Schmert	SUNDA	Fletcher	Houston	Shioi -	Begeman	De Beer
		Strato	-Peck		-Peck	.S.M	mann	(1983)	(1965)	(1960)	Fukui	n	
		(m)			(1948)		1975	Benassi e	Argilla		1982		
								Vannelli	di				
									Chicago				
[1] -	6,62	1,20	0,41	0,83	0,25	0,27	0,65	1,33	0,59	0,93	0,33	1,02	0,83
[2] -	56,6	2,00	3,82	7,08	0,00	1.93	5,67	10,44	4,03	6,39	2,83	9,75	7.08

Qc (Resistenza punta Penetrometro Statico)

	NSPT	Prof. Strato	Correlazione	Qc
		(m)		(Kg/cm²)
[1] -	6,62	1,20	Robertson (1983)	13,24
[2] -	56,6	2,00	Robertson (1983)	113,20

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato (m)	Stroud e Butler (1975)	 Trofimenkov (1974), Mitchell e Gardner	Buisman-Sanglerat
[1] -	6,62	1,20	30,37	 69,31	82,75
[2] -	56,6	2,00	259,68	 579,08	566,00

Modulo di Young (Kg/cm²)

110000000000000000000000000000000000000				
		Prof. Strato	Schultze	Apollonia
		(m)		
[1] -	6,62	1,20	55,73	66,20
[2] -	56.6	2.00	630.50	566.00

Clar	raifia	azione		CI
Clas	SHILL	aziviit	· A	UΠ

	NSPT	Prof. Strato	Correlazione	Classificazione
		(m)		
[1] -	6,62	1,20	A.G.I. (1977)	MODERAT.
				CONSISTENTE
[2] -	56,6	2,00	A.G.I. (1977)	ESTREM. CONSISTENTE

Peso unità di volume

	NSPT	Prof. Strato	Correlazione	Peso unità di volume
		(m)		(t/m^3)
[1] -	6,62	1,20	Meyerhof	1,84
[2] -	56,6	2,00	Meyerhof	2,50

Peso unità di volume saturo

	NSPT	Prof. Strato	Correlazione	Peso unità di volume saturo
		(m)		(t/m^3)
[1] -	6,62	1,20	Meyerhof	1,89
[2] -	56,6	2,00	Meyerhof	2,50

Velocità onde di taglio

	NSPT	Prof. Strato	Correlazione	Velocità onde di taglio
		(m)		(m/s)
[1] -	6,62	1,20		0
[2] -	56,6	2,00		0

TERRENI INCOERENTI

Densità relativa

	NSPT	Prof. Strato	Gibbs & Holtz	Meyerhof 1957	Schultze &	Skempton 1986
		(m)	1957		Menzenbach (1961)	
[1] -	6,62	1,20	30,12	60,02	75,25	25,03
[2] -	56,6	2,00	78,69	100	100	86,41

Angolo di resistenza al taglio

Angolo di	ı resistenz	a al taglic)											
	NSPT	Prof.	Nspt	Peck-	Meyerh	Sowers	Malcev	Meyerh	Schmert	Mitchell	Shioi-	Japanes	De	Owasaki
		Strato	corretto	Hanson-	of	(1961)	(1964)	of	mann	& Katti	Fukuni	e	Mello	&
		(m)	per	Thornbu	(1956)			(1965)	(1977)	(1981)	1982	National		Iwasaki
			presenza	rn-					Sabbie		(ROAD	Railway		
			falda	Meyerh							BRIDG	-		
				of 1956							Е			
											SPECIF			
											ICATIO			
											N)			
[1] -	6,62	1,20	6,62	28,89	21,89	29,85	32,85	32,34	0	< 30	24,96	28,99	26,17	26,51
[2] -	56,6	2,00	56,6	43,17	36,17	43,85	34,01	42,69	42	>38	44,14	43,98	34,3	48,65

Modulo di Young (Kg/cm²)

wiouulo ul Toul	ig (ixg/ciii-)							
	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Terzaghi	Schmertmann (1978) (Sabbie)	Schultze- Menzenbach (Sabbia ghiaiosa)	1.1	Bowles (1982) Sabbia Media
[1] -	6,62	1,20	6,62		52,96			
[2] -	56,6	2,00	56,6	537.01	452,80	668,58	604,50	358,00

Modulo Edometrico (Kg/cm²)

Modulo Edollien	dulo Edoliletrico (Rg/ciii ⁻)										
	NSPT	Prof. Strato	Nspt corretto per	Buisman-	Begemann 1974	Farrent 1963	Menzenbach e				
		(m)	presenza falda	Sanglerat	(Ghiaia con		Malcev (Sabbia				
				(sabbie)	sabbia)		media)				
[1] -	6,62	1,20	6,62		41,06	47,00	67,53				
[2] -	56,6	2,00	56,6	339,60	143,72	401,86	290,44				

Classificazione AGI

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Classificazione AGI
[1] -	6,62	1,20	6,62	Classificazione A.G.I	POCO ADDENSATO
[2] -	56,6	2,00	56,6	Classificazione A.G.I	MOLTO
					ADDENSATO

Peso unità di volume

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Peso Unità di Volume (t/m³)
[1] -	6,62	1,20	6,62	Terzaghi-Peck 1948	1,43
[2] -	56,6	2,00	56,6	Terzaghi-Peck 1948	1,89

Peso unità di volume sat	uro				
	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Peso Unità Volume Saturo (t/m³)
[1] - [2] -	6,62 56,6	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Terzaghi-Peck 1948 Terzaghi-Peck 1948	· · · · · · · · · · · · · · · · · · ·

Modulo di Poisson					
	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Poisson
[1] -	6,62	1,20	6,62	(A.G.I.)	0,34
[2] -	56,6	2,00	56,6	(A.G.I.)	0,24

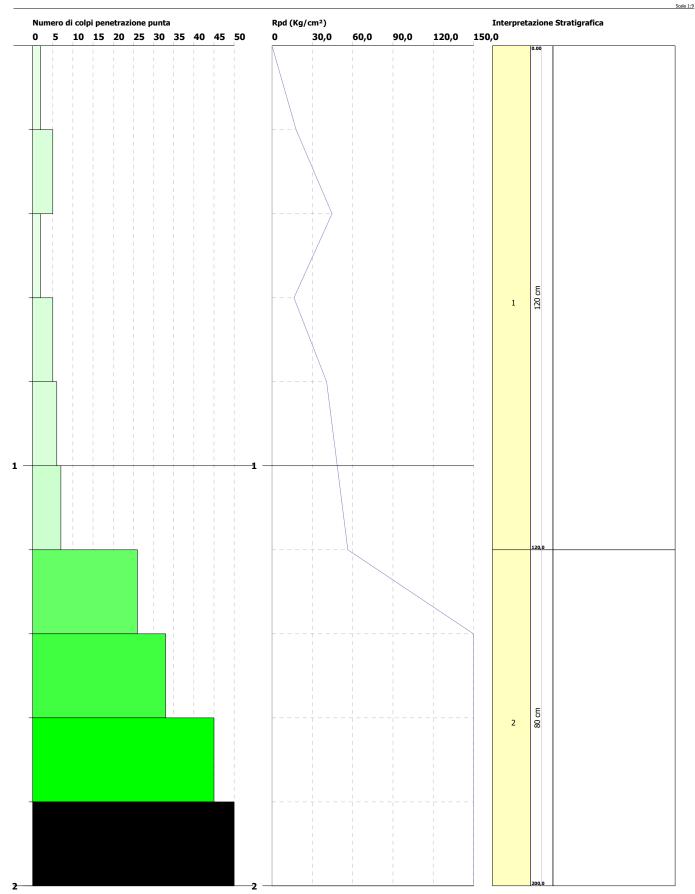
Modulo di deformazione a taglio dinamico (Kg/cm²)										
	NSPT	Prof. Strato	Nspt corretto per	Ohsaki (Sabbie pulite)	Robertson e					
		(m)	presenza falda		Campanella (1983) e					
					Imai & Tonouchi					
					(1982)					
[1] -	6,62	1,20	6,62	384,17	396,69					
[2] -	56,6	2,00	56,6	2887,76	1471,91					

Velocità onde di taglio					
	NSPT	Prof. Strato	Nspt corretto per	Correlazione	Velocità onde di taglio
		(m)	presenza falda		(m/s)
[1] -	6,62	1,20	6,62	Ohta & Goto (1978)	85,96
				Limi	
[2] -	56,6	2,00	56,6	Ohta & Goto (1978)	150,58
				Limi	

Liquefazione					
	NSPT	Prof. Strato	Nspt corretto per	Correlazione	Fs
		(m)	presenza falda		Liquefazione
[1] -	6,62	1,20	6,62	Seed e Idriss (1971)	
[2] -	56,6	2,00	56,6	Seed e Idriss (1971)	

Coefficiente spinta a Riposo K0=SigmaH/P0										
	NSPT	Prof. Strato	Nspt corretto per	Correlazione	K0					
		(m)	presenza falda							
[1] -	6,62	1,20	6,62							
[2] -	56,6	2,00	56,6							

Qc (Resistenza punta Penetrometro Statico)										
	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Qc (Kg/cm²)					
[1] - [2] -	6,62 56.6	1,20 2.00	6,62 56.6							



PROVA PENETROMETRICA DINAMICA Dpsh 3 Strumento utilizzato... DPSH TG 63-200 PAGANI

Committente: Descrizione: Località: Data: 30/03/2021

SIGNATURE 2 SIGNATURE 1

Strumento utilizzato... Prova eseguita in data Profondità prova Falda non rilevata DPSH TG 63-200 PAGANI 30/03/2021 3,40 mt

Tipo elaborazione Nr. Colpi: Medio

Profondità (m)	Nr. Colpi	Calcolo coeff. riduzione sonda Chi	Res. dinamica ridotta (Kg/cm²)	Res. dinamica (Kg/cm²)	Pres. ammissibile con riduzione Herminier - Olandesi (Kg/cm²)	Pres. ammissibile Herminier - Olandesi (Kg/cm²)
0,20	1	0,855	8,98	10,51	0,45	0,53
0,40	3	0,851	26,82	31,52	1,34	1,58
0,60	2	0,847	16,34	19,29	0,82	0,96
0,80	3	0,843	24,40	28,93	1,22	1,45
1,00	3	0,840	24,29	28,93	1,21	1,45
1,20	5	0,836	40,32	48,22	2,02	2,41
1,40	7	0,833	56,22	67,50	2,81	3,38
1,60	6	0,830	44,35	53,47	2,22	2,67
1,80	6	0,826	44,18	53,47	2,21	2,67
2,00	6	0,823	44,01	53,47	2,20	2,67
2,20	8	0,820	58,46	71,29	2,92	3,56
2,40	8	0,817	58,25	71,29	2,91	3,56
2,60	7	0,814	47,20	57,97	2,36	2,90
2,80	20	0,761	126,12	165,63	6,31	8,28
3,00	29	0,709	170,20	240,17	8,51	12,01
3,20	37	0,656	201,01	306,42	10,05	15,32
3,40	50	0,603	249,86	414,08	12,49	20,70

Prof. Strato m)	NPDM	Rd (Kg/cm²)	Tipo	Clay Fraction (%)	Peso unità di volume (t/m³)	Peso unità di volume saturo (t/m³)	Tensione efficace (Kg/cm²)	Coeff. di correlaz. con Nspt	NSPT	Descrizione
1	2,4	23,84	Incoerente - coesivo	0	1,67	1,87	0,08	1,47	3,53	
2,6	6,62	59,59	Incoerente - coesivo	0	1,96	2,16	0,32	1,47	9,73	
3,4	34	281,57	Incoerente - coesivo	0	2,5	2,5	0,58	1,47	49,98	

STIMA PARAMETRI GEOTECNICI PROVA Dpsh 4

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

Cocsione	non archa	ita (IXg/CIII	,										
	NSPT	Prof.	Terzaghi	Sanglerat	Terzaghi	U.S.D.M	Schmert	SUNDA	Fletcher	Houston	Shioi -	Begeman	De Beer
		Strato	-Peck		-Peck	.S.M	mann	(1983)	(1965)	(1960)	Fukui	n	
		(m)			(1948)		1975	Benassi e	Argilla		1982		
								Vannelli	di				
									Chicago				
[1] -	3,53	1,00	0,22	0,44	0,15	0,14	0,34	0,72	0,32	0,70	0,18	0,51	0,44
[2] -	9,73	2,60	0,66	1,22	0,50	0,39	0,96	1,79	0,86	1,18	0,49	1,37	1,22
[3] -	49,98	3,40	3,37	6,25	0,00	1,75	5,00	8,45	3,68	5,48	2,50	8,32	6,25

Qc (Resistenza punta Penetrometro Statico)

	NSPT	Prof. Strato	Correlazione	Qc
		(m)		(Kg/cm²)
[1] -	3,53	1,00	Robertson (1983)	7,06
[2] -	9,73	2,60	Robertson (1983)	19,46
[3] -	49,98	3,40	Robertson (1983)	99,96

Modulo Edometrico (Kg/cm²)

MIOUUIO EUOIII	Todulo Edolieti (Co (Kg/Clii-)											
	NSPT	Prof. Strato (m)	Stroud e Butler (1975)	Vesic (1970)	Trofimenkov (1974), Mitchell e	Buisman-Sanglerat						
		(III)	(1575)		Gardner							
[1] -	3,53	1,00	16,20	52,95	37,80	44,13						
[2] -	9,73	2,60	44,64		101,03	121,63						
[3] -	49,98	3,40	229,31		511,56	499,80						

Modulo di Young (Kg/cm²)

	NSPT	Prof. Strato	Schultze	Apollonia	
		(m)			
[1] -	3,53	1,00	20,20	35,30	
[2] -	9,73	2,60	91,50	97,30	
[3] -	49,98	3,40	554,37	499,80	

Classificazione AGI

	NSPT	Prof. Strato	Correlazione	Classificazione
		(m)		
[1] -	3,53	1,00	A.G.I. (1977)	POCO CONSISTENTE
[2] -	9,73	2,60	A.G.I. (1977)	CONSISTENTE
[3] -	49,98	3,40	A.G.I. (1977)	ESTREM. CONSISTENTE

Peso unità di volume

	NSPT	Prof. Strato (m)	Correlazione	Peso unità di volume (t/m³)
[1] -	3,53	1,00	Meyerhof	1,67
[2] -	9,73	2,60	Meyerhof	1,96
[3] -	49.98	3.40	Meverhof	2.50

Peso unità di volume saturo

	NSPT	Prof. Strato	Correlazione	Peso unità di volume saturo
		(m)		(t/m³)
[1] -	3,53	1,00	Meyerhof	1,87
[2] -	9,73	2,60	Meyerhof	2,16
[3] -	49,98	3,40	Meyerhof	2,50

Velocità onde di taglio

	NSPT	Prof. Strato	Correlazione	Velocità onde di taglio
		(m)		(m/s)
[1] -	3,53	1,00		0
[2] -	9,73	2,60		0
[3] -	49.98	3.40		0

TERRENI INCOERENTI

Densità relativa

	NSPT	Prof. Strato	Gibbs & Holtz	Meyerhof 1957	Schultze &	Skempton 1986
		(m)	1957		Menzenbach (1961)	
[1] -	3,53	1,00	18,89	44,57	59,94	16,81
[2] -	9,73	2,60	33,76	64,74	68,24	32,39
[3] -	49,98	3,40	68,8	100	100	80,35

Angolo di resistenza al taglio

4	mgoio ui	i i esistenz	a ai tagii	,											
		NSPT	Prof.	Nspt	Peck-	Meyerh	Sowers	Malcev	Meyerh	Schmert	Mitchell	Shioi-	Japanes	De	Owasaki
			Strato	corretto	Hanson-	of	(1961)	(1964)	of	mann	& Katti	Fukuni	e	Mello	&
			(m)	per	Thornbu	(1956)			(1965)	(1977)	(1981)	1982	National		Iwasaki
				presenza	rn-					Sabbie		(ROAD	Railway		
				falda	Meyerh							BRIDG			
					of 1956							Е			
												SPECIF			
												ICATIO			
												N)			
Ī	[1] -	3,53	1,00	3,53	28,01	21,01	28,99	32,43	31,04	0	<30	22,28	28,06	23,78	23,4
	[2] -	9,73	2,60	9,73	29,78	22,78	30,72	31,13	33,57	0	< 30	27,08	29,92	27,63	28,95
	[3] -	49,98	3,40	49,98	41,28	34,28	41,99	32,52	42,47	42	35-38	42,38	41,99	33,83	46,62

Modulo di Young (Kg/cm²)

Modulo di Toui	ig (Kg/CIII-)							
	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Terzaghi	Schmertmann (1978) (Sabbie)	Schultze- Menzenbach (Sabbia ghiaiosa)	D'Appollonia ed altri 1970 (Sabbia)	Bowles (1982) Sabbia Media
[1] -	3,53	1,00	3,53		28,24			
[2] -	9,73	2,60	9,73		77,84	115,51		
[3] -	49,98	3,40	49,98	504,62	399,84	590,46	554,85	324,90

Modulo Edometrico (Kg/cm²)

Modulo Edollien i	co (IXg/ciii-)						
	NSPT	Prof. Strato	Nspt corretto per	Buisman-	Begemann 1974	Farrent 1963	Menzenbach e
		(m)	presenza falda	Sanglerat	(Ghiaia con		Malcev (Sabbia
				(sabbie)	sabbia)		media)
[1] -	3,53	1,00	3,53		34,72	25,06	53,74
[2] -	9,73	2,60	9,73		47,45	69,08	81,40
[3] -	49,98	3,40	49,98	299,88	130,13	354,86	260,91

Classificazione AGI

CIMBBILITATION II GI					
	NSPT	Prof. Strato	Nspt corretto per	Correlazione	Classificazione AGI
		(m)	presenza falda		
[1] -	3,53	1,00	3,53	Classificazione A.G.I	SCIOLTO
[2] -	9,73	2,60	9,73	Classificazione A.G.I	POCO ADDENSATO
[3] -	49,98	3,40	49,98	Classificazione A.G.I	ADDENSATO

Peso unità di volume

e coo amea ar voidine					
	NSPT	Prof. Strato	Nspt corretto per	Correlazione	Peso Unità di Volume
		(m)	presenza falda		(t/m³)
[1] -	3,53	1,00	3,53	Terzaghi-Peck 1948	1,39
[2] -	9,73	2,60	9,73	Terzaghi-Peck 1948	1,47
[3] -	49,98	3,40	49,98	Terzaghi-Peck 1948	1,85

Peso unità di volume saturo

reso umta di volume sa	เนาง				
	NSPT	Prof. Strato	Nspt corretto per	Correlazione	Peso Unità Volume
		(m)	presenza falda		Saturo
					(t/m³)
[1] -	3,53	1,00	3,53	Terzaghi-Peck 1948	1,87
[2] -	9,73	2,60	9,73	Terzaghi-Peck 1948	1,92
[3] -	49,98	3,40	49,98	Terzaghi-Peck 1948	2,15

Modulo di Poisson

viouulo ul i dissoli					
	NSPT	Prof. Strato	Nspt corretto per	Correlazione	Poisson
		(m)	presenza falda		
[1] -	3,53	1,00	3,53	(A.G.I.)	0,35
[2] -	9,73	2,60	9,73	(A.G.I.)	0,33
[3] -	49.98	3.40	49.98	(A.G.I.)	0.25

Modulo di deformazione a taglio dinamico (Kg/cm²)

viouulo ui ucioi iliazioii	c a tagno amanico (112)	cm)			
	NSPT	Prof. Strato	Nspt corretto per	Ohsaki (Sabbie pulite)	Robertson e
		(m)	presenza falda		Campanella (1983) e
					Imai & Tonouchi
					(1982)
[1] -	3,53	1,00	3,53	212,73	270,15
[2] -	9,73	2,60	9,73	551,75	501,93
[3] -	49,98	3,40	49,98	2569,10	1364,19

Velocità onde di taglio

7 0-0 0-100 0-10 0 -10					
	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Velocità onde di taglio (m/s)
[1] -	3,53	1,00	3,53	Ohta & Goto (1978) Limi	74,44
[2] -	9,73	2,60	9,73	Ohta & Goto (1978) Limi	113,59
[3] -	49,98	3,40	49,98	Ohta & Goto (1978) Limi	166,38

Liquefazione

	NSPT	Prof. Strato	Nspt corretto per	Correlazione	Fs
		(m)	presenza falda		Liquefazione
[1] -	3,53	1,00	3,53	Seed e Idriss (1971)	
[2] -	9,73	2,60	9,73	Seed e Idriss (1971)	
[3] -	49,98	3,40	49,98	Seed e Idriss (1971)	

Coefficiente spinta a Riposo K0=SigmaH/P0

cocinciente spinita a m	P000 0				
	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	K0
		(111)	presenza raida		
[1] -	3,53	1,00	3,53		
[2] -	9,73	2,60	9,73		
[3] -	49,98	3,40	49,98		

Qc (Resistenza punta Penetrometro Statico)

	NSPT	Prof. Strato	Nspt corretto per	Correlazione	Qc
		(m)	presenza falda		(Kg/cm²)
[1] -	3,53	1,00	3,53		
[2] -	9,73	2,60	9,73		
[3] -	49,98	3,40	49,98		



PROVA PENETROMETRICA DINAMICA Dpsh 4 Strumento utilizzato... DPSH TG 63-200 PAGANI

Data: 30/03/2021

Committente: Descrizione: Località:

SIGNATURE 2 SIGNATURE 1