

IMPIANTO FOTOVOLTAICO A TERRA COLLEGATO ALLA RTN POTENZA NOMINALE 60 MWp

Comune di Lucera (FG)

PROPONENTE:

TEP RENEWABLES (FOGGIA 2 PV) S.R.L. Viale Michelangelo, 177 – 71121 Foggia P. IVA e C.F. 04274560715 – REA FG - 314775

PROGETTISTA:

ING. LAURA CONTI

Iscritta all'Ordine degli Ingegneri della Provincia di Pavia al n. 1726

REDAZIONE STUDIO GEOLOGICO GEOTECNICO:

DOTT. GEOL. MICHELE PECORELLI

Iscritto all'Ordine dei Geologi della Regione Puglia

al n. 327

PROGETTO DEFINITIVO IMPIANTO FOTOVOLTAICO

PECORELLI

lable felle.

Relazione Geotecnica

Cod. Documento	Data	Tipo revisione	Redatto	Verificato	Approvato
2564_3959_A3_LU_PA_R20_R ev0_Relazione geotecnica.docx	08/2021	Prima emissione	MP	СР	L. Conti

Gruppo di lavoro

Nome e cognome	Ruolo nel gruppo di lavoro
Leonardo Montesi	CEO TEP Renewables Ltd e A.U. TEP Renewables (Foggia 2 PV) Srl
Laura Maria Conti	Direzione Tecnica
Corrado Pluchino	Coordinamento Progetto
Riccardo Festante	Coordinamento Progettazione Elettrica, Rumore e Comunicazioni
Fabio Lassini	Coordinamento Progettazione Civile e Idraulica
Daniele Crespi	Coordinamento SIA
Marco Corrù	Architetto
Francesca Jasparro	Esperto Ambientale
Ayelen Natalin Figgiaconi	Ingegnere Ambientale
Sergio Alifano	Architetto
Andrea Fanelli	Tecnico Elettrico
Sara Zucca	Architetto
Pietro Simone	Geologo
Massimiliano Kovacs	Geologo
Massimo Busnelli	Geologo
Mauro Aires	Ingegnere strutturista
Elena Comi	Biologo
Lia Buvoli	Biologo
Andrea Fronteddu	Ingegnere Elettrico
Francesco Grifoni	Agronomo
Michele Pecorelli (Studio Geodue)	Indagini Geotecniche Geodue
Giovanni Saraceno (3e Ingegneria Srl)	Progetto di Connessione alla R.T.N.
Giovanni Capocchiano	Rilievo topografico
Giovanni Brambilla (Alpha Robotix Srl)	Rilievo fotogrammetrico con droni

Sommario

1.	PREMESSA	4
1.1	INQUADRAMENTO TERRITORIALE	
2.	LINEAMENTI GEOLOGICI E MORFOLOGICI GENERALI	6
2.1	INQUADRAMENTO MORFOLOGICO	
3.	PIANIFICAZIONE ED ESECUZIONE DELLE INDAGINI GEOFISICHE	8
3.1	METODOLOGIE DI INDAGINE ADOTTATE	8
3.2	MODALITÀ DI ESECUZIONE DEI RILIEVI: ATTIVITÀ DI CAMPO	10
3.3	RISULTATI INDAGINE GEOSISMICA	12
3.3.2	1 Elaborazione dell'indagine sismica di tipo MASW	12
3.3.2	2 Elaborazione dell'indagine sismica a rifrazione	13
	INDAGINE GEOELETTRICA	
3.4.2	1 Prospezione E.R.T. (Electrical Resistivity Tomography)	14
3.4.2	2 MODALITA' DI ESECUZIONE DEI RILIEVI: ATTIVITA' DI CAMPO	15
3.5	ANALISI INDAGINE GEOELETTRICA	16
4.	INDAGINE PENETROMETRICA	18
5.	SUCCESSIONE LITOSTRATIGRAFICA	20
5.1	INDIVIDUAZIONE DELLE UNITÀ LITOTECNICHE	20
6.	VALUTAZIONE DELL'AZIONE SISMICA (D.M. 17.01.2018 N.T.C.)	22
7.	SINTESI CONCLUSIVA	27

1. PREMESSA

Il presente studio descrive le caratteristiche geotecniche delle litologie affioranti nell'area interessata progetto per la realizzazione di un <u>impianto fotovoltaico per la produzione di energia da fonte solare – di potenza stimata di 60,00 MWp</u> – della relativa linea di connessione alla cabina di consegna, in località Scappaturo di Mauro – Vado Biccari nel Comune di Lucera, a SudEst rispetto al centro abitato, all'interno di un'area in disponibilità della società TEP Renewables (Foggia 2 PV) S.r.l.

È stata così programmata una campagna di studi nel rispetto del DM. 17.01.2018 - Aggiornamento delle «Norme Tecniche per le Costruzioni», che ha previsto uno schema di lavoro come di seguito riportato:

- Inquadramento geologico dell'area, per la indicazione dell'ambiente geologico, geomorfologico, idrogeologico e strutturale generale [pericolosità geologica del territorio]
- Rilevamento geologico di dettaglio, di un'area sufficientemente ampia, entro la quale ricade l'intervento in oggetto, atto alla definizione geologica, geomorfologica, idrogeologica, con particolare riferimento alla caratterizzazione della natura e del tipo di strutture sedimentarie dei corpi geologici presenti [controllo litologico di dettaglio]
- Indagini geognostiche eseguite in sito, per la definizione delle caratteristiche geotecniche dei terreni di fondazione interessati dalle opere in progetto [accertamento litotecnico].
- Analisi delle indagini geognostiche, con l'interpretazione delle indagini di campagna e la valutazione delle proprietà elastiche e meccaniche dei terreni investigati.

Durante la prima fase è stato effettuato una ricerca bibliografica, un esame fotointerpretativo e un successivo rilievo di superficie per la verifica dello stato dei luoghi e la corretta pianificazione delle indagini geognostiche.

Da qui è stata pianificata una campagna di indagini geofisiche che ha previsto l'esecuzione di prospezioni come di seguito elencate.

- n. 10 prospezioni sismiche superficiali con tecnica MASW (Multi-channel Analysis of Surface Waves);
- > n. 10 prospezioni sismiche a rifrazione.
- > n. 5 prospezioni E.R.T. (Electrical Resistivity Tomography).

Infine il quadro conoscitivo è stato completato con l'esecuzione di n. 25 prove penetrometriche dinamiche eseguite con penetrometro PENNI 30 della COMPAC di Fermignano (PU)

Le considerazioni tecniche conclusive sono state ponderate in funzione della conoscenza geologica della zona e dell'attendibilità dei dati ottenuti, operando con un giusto grado di cautela nella definizione delle principali caratteristiche fisico-meccaniche dei terreni, avvalendosi anche di studi pregressi realizzati nello stesso ambito di riferimento.

1.1 INQUADRAMENTO TERRITORIALE

Il progetto in esame è ubicato nel territorio comunale di Lucera a circa 11 km a SudEst rispetto al centro abitato. L'area è compresa tra la Strada Statale SP13 (a Nord), la SP 115 (a Ovest), la Strada Statale 117 (a Sud) e la SS 17 a Est.

Figura 1 – Inquadramento territoriale su ortofoto – da Google

Nella cartografia I.G.M. a scala 1:50000 l'area è compresa nel quadrante 408 (Foggia); nella cartografia in scala 1:25000 l'intervento interessa la Tavoletta 164 III NO (Foggia); infine, nella sezione in scala 1:5000, l'intervento si colloca nelle sezioni 408102 e 408103 (Impianto FV), 408101 (linea di connessione) e 408114 (linea di connessione e stazione di consegna).

2. LINEAMENTI GEOLOGICI E MORFOLOGICI GENERALI

2.1 INQUADRAMENTO MORFOLOGICO

Il territorio del Comune di Lucera si sviluppa lungo l'asse principale del Tavoliere delle Puglie a circa 30 Km dal litorale adriatico e comprende, a Nord, parte della media valle del Torrente Salsola e a Sud la parte media del Torrente Vulgano, i cui terreni, sia sotto il punto di vista geologico che morfologico, costituiscono una unità omogenea.

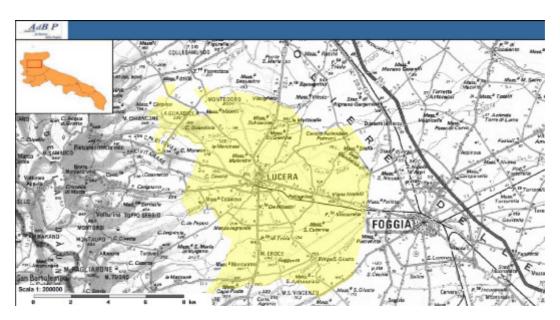


Figura 2 – Inquadramento territoriale

La morfologia del territorio comunale è tipica della Pianura di Capitanata, ad assetto sub-orizzontale, che è l'espressione attuale dello smantellamento delle falde tettoniche dell'Appennino Dauno e della sedimentazione nell'Avanfossa Bradanica avvenuta dapprima in ambiente marino (quindi con grandi continuazioni orizzontali dei terreni) poi in condizioni d'emersione totale con la deposizione di terreni a continuità orizzontale locale.

La totalità del territorio comunale presenta pendenze molto basse (<3%), ad eccezione del centro abitato che si colloca su un alto morfologico ad una quota di circa 200 metri s.l.m. Qui i terreni sono generalmente riferibili alle piane alluvionali generate dai corsi d'acqua che lo attraversano. Nello specifico, il sito di intervento è parte integrante dell'estesa valle del Torrente Celone e dei suoi tributari di sinistra che hanno generato l'estesa pianura in cui si inserisce l'area progettuale. Qui le pendenze sono piuttosto contenute, mediamente < 1°, solo localmente possono raggiungere punte di 2÷3°.

Nella figura 3 che rappresenta il foglio 408 della Carta Geologica d'Italia, si evidenzia una potente successione terrigena di avanfossa, sormontata tettonicamente da lembi dell'Unità tettonica della Daunia. Questi ultimi sono a loro volta coperti da una successione terrigena di avanfossa di età più recente (Pliocene superiore – Pleistocene inferiore), che viene comunemente indicata come ciclo della Fossa Bradanica.

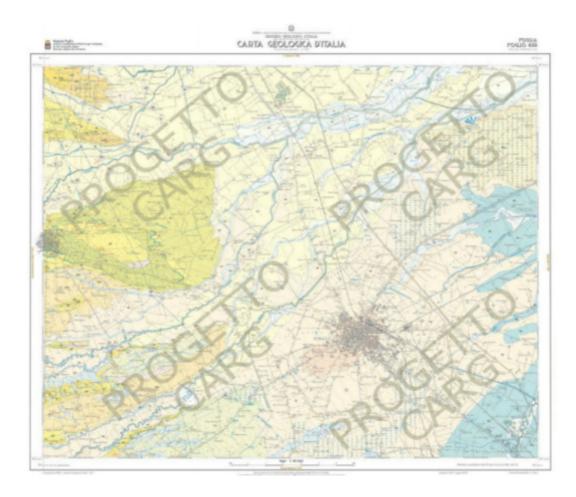


Figura 3 – Carta Geologica d'Italia - Foglio 408 Foggia.

Nello specifico si rilevano 2 formazioni ascrivibili all'Unità Quaternarie del Tavoliere di Puglia, riferibili al Pleistocene medio-superiore-Olocene.

- Unità Quaternarie del Tavoliere di Puglia
 - o Supersintema del Tavoliere di Puglia (TP)
 - TGF Sintema di Foggia
- 1. TGF Sintema di Foggia Pleistocene medio Pleistocene superiore

Si tratta di depositi alluvionali terrazzati del V Ordine costituiti dal silt argillosi sottilmente laminati con intercalazioni di sabbie siltose gradate (depositi di piana di inondazione). Nel sottosuolo a diverse profondità si rinvengono conglomerati polienici ed eterometrici in copi di spessore variabile da circa un metro a circa 5-6 metri intercalati a silt argillosi nerastri laminati che contengono a luoghi ciottoli isolati e gasteropodi continentali.

2. TLP – Sintema di Motta del Lupo – Pleistocene superiore.

È costituito da una coltre di depositi alluvionali terrazzati del VI ordine, costituiti da sabbie fini alternate a peliti sottilmente stratificate. Sono riferibili ad aree di pianure alluvionali o ad aree di esondazione. Poggia in erosione sulle argille subappennine e sui sintemi più antichi. Lo spessore varia da pochi metri sino ad un massimo di 10 metri.

3. PIANIFICAZIONE ED ESECUZIONE DELLE INDAGINI GEOFISICHE

L'area è stata già investigata a più riprese, in relazione a diversi interventi eseguiti nell'intero comprensorio, con la realizzazione indagini geomeccaniche a carotaggio continuo e indagini geofisiche.

In questa fase di studi è stata eseguita una prima ricognizione cartografica e aerofotogrammetrica a cui ha fatto seguito una indagine di superficie che è stata integrata con i risultati di indagini geofisiche che comprendono indagini sismiche a rifrazione, MASW (Multi-channel Analysis of Surface Waves) e prospezioni E.R.T. (Electrical Resistivity Tomography); il quadro conoscitivo è stato, infine, completato con l'esecuzione di n. 10 prove penetrometriche dinamiche necessarie a determinare la resistenza del suolo nei primi metri (max 10 metri) della successione stratigrafica.

Da qui si è risaliti alla determinazione dei parametri sismo-elastici del terreno indagato

3.1 METODOLOGIE DI INDAGINE ADOTTATE

La prospezione MASW è stata eseguita in accordo alle Norme Tecniche per le Costruzioni del D. M. 17 gennaio 2018. Queste, in buona misura, fanno risalire la stima dell'effetto di sito alle caratteristiche del profilo di velocità delle onde di taglio (VS).

Inoltre, con l'indagine sismica a rifrazione è stato possibile determinare le caratteristiche dinamiche del sottosuolo nelle prime decine di metri con l'individuazione delle principali unità geofisiche e delle relative proprietà meccaniche elastiche, quali velocità delle onde longitudinali P (Vp), velocità delle onde trasversali S (Vs) ed i relativi parametri elastici (E, G, K e v)¹.

L'ubicazione degli stendimenti sismici è stato accuratamente valutato in campagna, per fornire indicazioni utili sulle successioni litostratigrafiche e ricoprire l'intera area interessata dal Parco Fotovoltaico. Di seguito metodologia d'indagine geofisica, di cui vengono evidenziati brevemente i fondamenti teorici.

Prospezione sismica di tipo MASW

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, Vs,eq (in m/s), definita dall'espressione:

$$V_{s30} = \frac{H}{\sum_{i=1,N} \frac{hi}{Vi}}$$

Dove

n_i = spessore dello strato i_{esimo};

V_{si} = velocità delle onde di taglio nell'i_{esimo} strato;

N = numero di strati;

H = profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/sec².

¹ Allegato IV

² Per le fondazioni superficiali, la profondità del substrato è riferita al piano di imposta delle stesse, mentre per le fondazioni su pali è riferita alla testa dei pali. Nel caso di opere di sostegno di terreni naturali, la profondità è riferita alla testa dell'opera. Per muri di sostegno di terrapieni, la profondità è riferita al piano di imposta della fondazione.

Per depositi con profondità H del substrato superiore a 30 m, la velocità equivalente delle onde di taglio $V_{S,eq}$ è definita dal parametro V_{S30} , ottenuto ponendo H=30 m nella precedente espressione e considerando le proprietà degli strati di terreno fino a tale profondità.

Questo parametro può essere determinato attraverso indagini indirette ed in particolar modo tramite l'analisi delle onde di Rayleigh, ossia onde di superficie generate dall'interazione tra onde di pressione (P) e le onde di taglio verticali (Sv) ogni qualvolta esiste una superficie libera in un mezzo omogeneo ed isotropo.

In presenza di un semispazio non omogeneo la velocità dipende dalla frequenza, che provoca dispersione dell'energia trasportata dalle onde stesse, vale a dire che la deformazione del treno di onde nel sottosuolo è dovuta ad una variazione di velocità di propagazione al variare della frequenza; per le onde di Rayleigh questa deformazione non si manifesta all'interno di un semispazio omogeneo e isotropo ma solo quando questi presenta delle discontinuità come può essere una stratificazione.

Nelle nuove metodologie d'indagine sismica del sottosuolo si valutano le onde di superficie in quanto la percentuale di energia convertita è di gran lunga superiore rispetto alle onde P ed S; inoltre l'ampiezza di queste onde dipende da \sqrt{r} anziché da r (distanza dalla sorgente in superficie) come per le onde di volume.

La propagazione delle onde di Rayleigh, sebbene influenzata dalla V_p e dalla densità, è funzione anzitutto della V_s , che rappresenta un parametro di fondamentale importanza nella caratterizzazione geotecnica di un sito.

L'analisi delle onde S, operata con tecnica MASW, viene eseguita con la trattazione spettrale del sismogramma, che, a seguito di una trasformata di Fourier, restituisce lo spettro del segnale. In questo dominio è possibile separare il segnale relativo alle onde S da altri tipi di segnale, come onde P, propagazione in aria ecc.

Osservando lo spettro di frequenza è possibile evidenziare che l'onda S si propaga a velocità variabile a seconda della sua frequenza, come risultato del fenomeno della dispersione.

La metodologia MASW risulta particolarmente indicata in ambienti con spaziature limitate e, a differenza della sismica a rifrazione, consente di individuare la presenza di inversioni di velocità con la profondità, associabili alla presenza di strati "lenti" al di sotto del bedrock. Tuttavia, un limite di questa metodologia è che esso risente particolarmente del principio di indeterminazione e, fornendo un modello mono-dimensionale del sottosuolo, rende necessaria l'applicazione di altre metodologie d'indagine per fornire un modello geofisico-geologico più attendibile.

Prospezione sismica a rifrazione

La prospezione sismica a rifrazione prende in considerazione i tempi di propagazione delle onde elastiche che, generate al suolo, si diffondono nel semispazio riflettendosi e rifrangendosi su eventuali superfici di discontinuità presenti.

Quando un'onda sismica incontra una superficie di separazione tra due mezzi con caratteristiche elastiche differenti, una parte dell'energia dell'onda si riflette nello stesso mezzo in cui si propaga l'onda incidente, e una parte si rifrange nel mezzo sottostante.

Le relazioni matematiche dei principi fisici della riflessione e rifrazione sono regolate dalle note leggi di Snell. La condizione necessaria per la riflessione e la rifrazione di un'onda sismica è la variazione del parametro impedenza sismica fra i 2 mezzi separati dalla superficie di discontinuità. L'impedenza sismica si determina attraverso il prodotto tra la velocità di propagazione dell'onda nel mezzo e la densità del materiale attraversato.

Ogni litotipo è caratterizzato dalla capacità di lasciarsi attraversare dalle onde elastiche con determinata velocità, questa è definita sperimentalmente attraverso prove di laboratorio o in situ. La velocità di propagazione delle onde sismiche nelle rocce dipende essenzialmente dai parametri elastici che sono influenzati, a loro volta, da numerosi fattori quali, ad esempio, la densità, la porosità, la tessitura, il grado di alterazione e/o di fratturazione, la composizione mineralogica, il contenuto di fluidi, la pressione ed altro.

Questi parametri rendono piuttosto ampio il campo di variabilità della velocità per uno stesso litotipo. Per questo motivo, non sempre un orizzonte individuato con metodologie sismiche coincide con un orizzonte litologico.

Un impulso generato da una sorgente sismica in superficie genera un treno d'onde sismiche di varia natura; in fase di acquisizione e di elaborazione è possibile analizzare onde sismiche di volume o di superficie, a seconda delle modalità con cui esse si propagano nel sottosuolo.

In funzione del tipo di analisi delle onde sismiche investigate, è possibile distinguere fra la metodologia d'indagine sismica a rifrazione (analisi di onde di volume) e di tipo MASW (analisi di onde di superficie).

Disponendo un certo numero di sensori (geofoni) sul terreno lungo uno stendimento sismico e osservando il tempo di percorrenza delle onde per giungere ai sensori, è possibile determinare la velocità di propagazione delle onde sismiche che attraversano i vari strati nel sottosuolo, consentendo una ricostruzione attendibile delle sue caratteristiche elastico-dinamiche.

Al fine di una corretta interpretazione dei risultati dell'indagine sismica è importante sottolineare che:

- a) i sismostrati non sono necessariamente associabili a litotipi ben definiti, ma sono rappresentativi di livelli con simili caratteristiche elastiche, in cui le onde sismiche si propagano con la stessa velocità;
- b) la risoluzione del metodo è funzione della profondità di indagine e la risoluzione diminuisce con la profondità: considerato uno strato di spessore h ubicato a profondità z dal piano campagna, in generale non è possibile individuare sismostrati in cui h < 0,25 * z;
- c) nelle indagini superficiali, le onde di taglio (onde S), meno veloci, arrivano in un tempo successivo, per cui il segnale registrato sarà la risultante delle onde S con le onde P; quindi la lettura dei tempi di arrivo delle onde S può risultare meno precisa della lettura dei tempi di arrivo delle onde P;
- d) le velocità delle onde p, misurate in terreni saturi o molto umidi dipende, talora in maniera decisiva, dalle vibrazioni trasmesse dall'acqua interstiziale e non dallo scheletro solido del materiale, perciò tale valore può non essere rappresentativo delle proprietà meccaniche del materiale in questione. Ne consegue che per alcuni terreni al di sotto della falda, le uniche onde in grado di fornire informazioni precise sulla rigidezza del terreno sono quelle di taglio.

3.2 MODALITÀ DI ESECUZIONE DEI RILIEVI: ATTIVITÀ DI CAMPO

Indagine sismica di tipo MASW

Le prospezioni geofisiche sono state eseguite con strumentazione *Combinata PASI mod. 16SG24* (sismica 24 canali + tomografia elettrica 32 elettrodi).

La tecnica MASW prevede l'utilizzo di una sorgente attiva per l'energizzazione (massa battente di peso pari a 8 Kg) e la registrazione simultanea di 12 o più canali, utilizzando geofoni a bassa frequenza. L'esigenza di analizzare con elevato dettaglio basse frequenze (tipicamente anche al di sotto dei 20 Hz e corrispondenti a maggiori profondità d'investigazione) richiede la necessità di utilizzare geofoni ad asse verticale con frequenza di taglio non superiore a 4,5 Hz.

Per il profilo MASW eseguito è stata adottata la seguente configurazione:

➤ lunghezza stendimento = 16,50 m;

numero geofoni = 12;

> Spaziatura = 1,50 m;

offset di scoppio = 3,00 metri;

durata dell'acquisizione = 1 secondo;

tempo di campionamento = 1 millisecondo.

Per energizzare il terreno è stata usata una sorgente impulsiva del tipo "mazza battente" del peso di 8 Kg, ad impatto verticale su piastra per la generazione delle onde elastiche.

Contrariamente a quanto richiesto nell'indagine sismica a rifrazione, il segnale sismico acquisito nella tecnica MASW deve includere tutto il treno d'onda superficiale; pertanto la durata dell'acquisizione deve essere definita in modo da contenere tutto il segnale e non troncato nelle ultime tracce. Inoltre, lo stesso segnale viene acquisito senza applicazione di filtri e incrementi del segnale.

Indagine sismica a rifrazione

L'indagine sismica a rifrazione è consistita nell'esecuzione di n. 01 profilo con acquisizione di onde longitudinali (P), avente la seguente configurazione:

➤ lunghezza stendimento = 44,00 m;

numero geofoni = 12;

> Spaziatura = 4,00 m;

> End Shot A = 0,00 metri;

Central Shot E = 24,00 metri;

➤ End Shot B = 48,00 metri;

durata dell'acquisizione = 128 msec;

tempo di campionamento = 250 μsec;

> Frequenza geofoni = 10.00 Hz;

> Sistema di energizzazione = "massa battente".

3.3 RISULTATI INDAGINE GEOSISMICA

La topografia della superficie del sito investigato è perfettamente e quindi non è stato necessario correggere le quote di acquisizione. Il rumore ambientale rilevato è stato assolutamente trascurabile e riferito alle normali attività di lavorazione dei campi limitrofi. Per tutte le stese si è utilizzato un sistema di riferimento relativo, la cui origine è posta in corrispondenza dell'endshot esterno al 1° geofono sia per l'indagine sismica a rifrazione e sia per l'indagine MASW.

3.3.1 Elaborazione dell'indagine sismica di tipo MASW

L'elaborazione è stata sviluppata in due fasi:

- 1) determinazione della curva di dispersione e la valutazione dello spettro di velocità;
- 2) inversione della curva di dispersione interpretata con picking della curva di dispersione, vale a dire che sono stati selezionati i punti che appartengono ad un certo modo di propagazione dell'onda superficiale con successiva applicazione di algoritmi genetici.

La sovrapposizione della curva teorica e sperimentale fornisce un parametro abbastanza indicativo sull'attendibilità del modello geofisico risultante.

Per l'inversione dei dati sperimentali è stato utilizzato il software WinMasw 4.0 della Eliosoft.

Dall'esame dei profili sismici si mette in evidenza una sostanziale omogeneità della successione litologica, pur osservando variazione degli spessori delle singole unità litostratigrafiche che possono essere messe in relazione alle modalità di sedimentazione e alle diverse lavorazioni agricole.

In particolare emerge, abbastanza chiaramente, un modello costituito da 3 unità sismostratigrafiche valore di $V_{S,eq}$ comprese tra 354 e 618 m/sec,

PROFILO MASW	VS_{eq}	CATEGORIA SOTTOSUOLO
n.	m/sec	Tab. 3.2.II - D.M. 17 gennaio 2018
1	605	В
2	476	В
3	569	В
4	419	В
5	509	В
6	510	В
7	406	В
8	528	В
9	541	В
10	530	В

Tabella 1 – Valore della V_{S,eq} per i singoli stendimenti MASW

Pur evidenziando che l'indagine MASW risente particolarmente del problema della non univocità del modello geofisico rispetto ai dati sperimentali ed è principalmente finalizzata alla determinazione

del parametro Vs,eq. più che alla ricostruzione sismostratigrafica del sottosuolo, è stato possibile evidenziare una congruenza fra il modello ricavato dalle indagini Masw con quello determinato dall'indagine sismica a rifrazione.

Sulla base di valutazioni incrociate sull'attendibilità dei risultati ottenuti dalle ricostruzioni sismiche è possibile scegliere il modello ritenuto più conforme alla situazione litostratigrafica presente nell'area e di cui è sempre preferibile avere a disposizione informazioni dirette di tipo geologico, geotecnico e/o idrogeologico.

3.3.2 Elaborazione dell'indagine sismica a rifrazione

Dai sismogrammi sperimentali sono stati letti i tempi di arrivo dei "first-break" attraverso l'utilizzo del software SISMOPC per la costruzione delle relative dromocrone (diagrammi tempo-distanza), mostrate in allegato.

L'interpretazione delle dromocrone, anche questa eseguita con l'ausilio di processi computerizzati, è stata effettuata attraverso il software INTERSISM della Geo&Soft, utilizzando come tecnica di interpretazione il Metodo GRM.

In allegato sono riportate le sezioni sismostratigrafiche interpretative, ottenute, scegliendo dei modelli a 3 strati, dove vengono indicate con SnA – SnB, rispettivamente le progressive iniziali e finali delle stese.

3.4 INDAGINE GEOELETTRICA

3.4.1 Prospezione E.R.T. (Electrical Resistivity Tomography)

I metodi di prospezione geoelettrica in corrente continua sono comunemente utilizzati per l'indagine del sottosuolo attraverso lo studio della resistività elettrica.

Il metodo si basa sul principio che la distribuzione di un campo di potenziale elettrico (U) sulla superficie del terreno dipende, oltre che dalle caratteristiche geometriche della sorgente, anche dalla distribuzione della resistività elettrica (ρ) nel sottosuolo.

La resistività elettrica, inverso della conducibilità elettrica, è un parametro fisico intrinseco delle rocce ed indica la resistenza specifica che oppongono i vari litotipi a farsi attraversare dalla corrente elettrica quando questi sono sottoposti all'azione di una forza elettromotrice. Essa può variare notevolmente da punto a punto poiché sono molti i fattori che la influenzano, tra i quali la presenza di acqua, la porosità, la temperatura e la pressione. La tecnica della prospezione geoelettrica consiste nell'inviare corrente continua nel terreno attraverso un dipolo (dipolo di energizzazione) e registrare la differenza di potenziale del campo elettrico indotto attraverso altri distinti dipoli (dipolo di misura), posti in successione a distanze progressivamente maggiori lungo uno stendimento. Questi poli elettrici sono costituiti da elettrodi di ferro o acciaio, possibilmente impolarizzabili.

In un semispazio omogeneo e isotropo il campo elettrico si distribuisce attraverso linee di corrente radiali e superfici equipotenziali semisferiche aventi il loro centro nel punto sorgente in superficie (figura 4).

In un sottosuolo non omogeneo, la presenza di un corpo anomalo o di una struttura geologica conduttiva o resistiva determina la distorsione delle linee di corrente, in funzione delle caratteristiche elettriche del corpo attraversato, addensandole o diradandole a seconda che si tratti di corpi isolanti o conduttori.

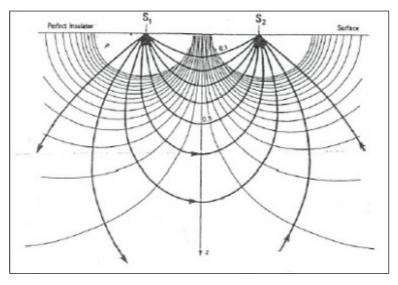


Figura 4 – Linee di corrente in un mezzo omogeneo (Carrara et alii 1992)

Per un semispazio omogeneo la resistività è determinata attraverso la relazione:

$$\rho = \frac{K\Delta V}{I}$$

Dove:

I = corrente iniettata misurata in Ampere

 ΔV = differenza di potenziale misurata in Volt

K = Fattore geometrico che varia a seconda del dispositivo utilizzato

 ρ è espresso in Ω • m.

La resistività ottenuta dalla precedente relazione rappresenta una resistività "apparente" del sottosuolo, ipotizzando un modello di sottosuolo omogeneo.

Una modellizzazione geofisica di un sottosuolo eterogeneo si ottiene attraverso un processo di "inversione" dei dati sperimentali. Invertire i dati sperimentali vuol dire ricostruire un modello significativo del sottosuolo a partire dai dati osservati.

Fra i dispositivi quadripolari collineari e simmetrici i più utilizzati sono: 1) Wenner ; 2) Schlumberger; 3) dipolo-dipolo; 4) Wenner-Schlumberger; 5) polo-dipolo: 6) polo-polo.

La scelta del dispositivo più idoneo per una prospezione geoelettrica dipende da diversi fattori, quali la profondità d'investigazione, risoluzione dei dati, sensibilità del dispositivo e il rapporto segnale/rumore.

La profondità d'investigazione è la massima profondità a cui può essere individuata una "struttura" presente nel sottosuolo ed è proporzionale alla lunghezza dello stendimento elettrico.

La risoluzione è la minima distanza a cui è possibile distinguere due oggetti o strutture poste nel sottosuolo ed è funzione della spaziatura fra gli elettrodi e del tipo di dispositivo elettrodico utilizzato.

Il rapporto segnale/rumore costituisce una funzione molto importante nella scelta del dispositivo elettrodico più efficace in quanto la presenza di sorgenti di disturbo, naturali o artificiali, costanti o variabili nel tempo, può inficiare il risultato interpretativo. Infatti, il riconoscimento delle fonti di disturbo è importante per evitare che esse siano interpretate erroneamente come anomalie generate dalle sorgenti che rappresentano l'oggetto della prospezione.

Un tipo di disturbo variabile nel tempo è dato da correnti telluriche naturali prodotte dalle variazioni del campo magnetico della terra o, ancor più, da fluidi sotterranei in movimento. Influiscono anche sorgenti artificiali generate da macchine elettriche con prese di terra attraverso le quali possono essere immesse correnti nel terreno.

Questo rapporto può essere incrementato aumentando l'intensità del segnale, che è inversamente proporzionale al fattore geometrico K, funzione del dispositivo elettrodico.

Preliminarmente all'acquisizione dei dati geoelettrici, è stata condotta una fase operativa riguardante l'organizzazione e l'approntamento delle indagini in sito.

3.4.2 MODALITA' DI ESECUZIONE DEI RILIEVI: ATTIVITA' DI CAMPO

Per i 5 profili E.R.T eseguiti è stato utilizzato l'array elettrodico Wenner-Schlumberger, previa infissione nel terreno di n. 32 elettrodi in acciaio impolarizzabile, utilizzando una spaziatura di 5 m per una lunghezza di ogni singola stesa pari a 155 m.

Il terreno è stato energizzato con l'impiego dell'energizzatore Pasi mod. P300T, avente le seguenti caratteristiche tecniche: 500 mA di corrente erogabile e 300 V di potenziale misurabile.

Brevemente viene descritta la caratteristica dell'array utilizzato.

Nel quadripolo Schlumberger, gli elettrodi di corrente AB rappresentano gli elettrodi esterni, mentre di elettrodi di potenziale MN quelli interni (figura 3).

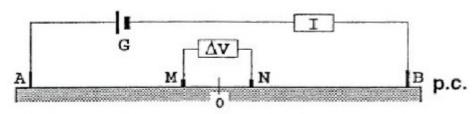
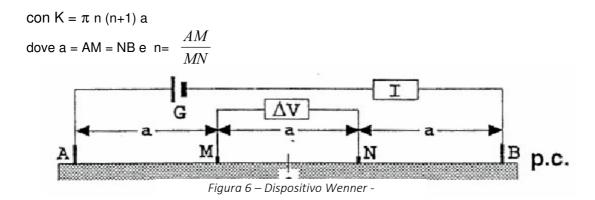



Figura 5 - Dispositivo di Schlumberger; MN = 1/5 AB

Questo tipo di dispositivo è un ibrido tra il dispositivo Wenner e quello Schlumberger (Pazdirek e Blaha, 1996). Come evidenziato in precedenza, il classico dispositivo Schlumberger è utilizzato comunemente per realizzare dei sondaggi di resistività ma, con degli opportuni accorgimenti, è possibile utilizzare lo stesso dispositivo anche per effettuare delle tomografie disponendo un certo numero di elettrodi lungo uno stendimento.

La spaziatura tra gli elettrodi di potenziale rimane costante e pari ad "a" mentre la spaziatura tra gli elettrodi di corrente aumenta secondo multipli interi di "a" (fig.6). In questo modo si ottiene una maggiore copertura orizzontale e la possibilità di ottenere una distribuzione 2D della resistività elettrica nel sottosuolo. Per il dispositivo Schlumberger il fattore geometrico K è il seguente:

3.5 ANALISI INDAGINE GEOLETTRICA

La fase di elaborazione dei profili ERT è consistita nell'applicazione di un filtraggio dei dati, rimuovendo i valori acquisiti aventi letture di potenziale inferiori a 5 mV. Successivamente è stato generato un file di testo in modo da poter essere caricato sul software "RES2DINV", della Geotomo Software, utilizzato per ottenere il modello di inversione.

Il programma di inversione utilizza un modello 2D che consiste nel suddividere il profilo in blocchi rettangolari in cui all'interno è ipotizzato un valore di resistività costante. La disposizione dei blocchi è legata alla distribuzione dei dati nella pseudosezione (Sasaki Y., 1992).

La pseudosezione è una rappresentazione artificiosa dei dati sperimentali di resistività apparente, dalla quale non si possono ricavare direttamente forme e dimensioni dei corpi. Questo tipo di rappresentazione fu introdotta da Hallof (1957) e modificata da Edwards (1977. L'indagine qualitativa si rende necessaria per poter impostare un modello iniziale su cui operare numericamente.

Nel processo d'inversione la distribuzione dei blocchi, la grandezza e la profondità possono essere scelte dall'operatore qualora si abbiano conoscenze a priori dei parametri geologici (profondità e dimensione degli strati).

Nel caso specifico, per ottenere un maggior dettaglio e migliore risoluzione, è stato adottato il criterio di modellizzare il sottosuolo utilizzando dei blocchi aventi dimensioni pari a metà della spaziatura elettrodica.

Per ottimizzare la risposta della procedura di inversione viene adottato il metodo dei minimi quadrati con vincolo di omogeneità (modelli teorici d), basato anche sull'approssimazione quasi - newtoniana di ottimizzazione (Loke e Barker 1996, deGroot-Hedlin e Constable 1990, Sasaki 1992).

5.1.1 Interpretazione delle sezioni elettrostratigrafiche

Dall'analisi delle sezioni elettrostratigrafiche è stato possibile verificare la presenza di materiale eterogeneo, dal punto di vista elettrico, caratterizzato da variazioni sia verticali che orizzontali dei valori di resistività elettrica.

Il modello ricavato dai dall'esame dei profili eseguiti è sovrapponibile a quanto già determinato con l'indagine sismica e suggerisce la presenza di materiale eterogeneo con variazioni laterali e verticali di resistività. Non si esclude la possibilità di influenza della resistività causata dalle intense piogge dei giorni precedenti l'indagini e dalle azioni di irrigazione che interessano parzialmente l'area di progetto.

L'esito dell'indagine è sintetizzato in un modello a 3 unità:

- > Elettrostruttura conduttiva (C), con valori di resistività elettrica < 14,50 Ω·m
- \triangleright Elettrostruttura mediamente conduttiva (MC), con valori di resistività elettrica compresi tra 14,51 ÷ 39,60 Ω ·m.
- \triangleright Elettrostruttura mediamente resistiva (MR), con valori di resistività elettrica compresi tra 39,61 ÷ 77,30 Ω·m.

STRATIGRAFI	A ELETTRICA	COMUNE DI LUCERA – Località SCAPPATURO di MAURO – VADO BICCARI		
Quota [m. da	ıl p.c.]	Litologia		Resistività Elettrica
da	а			(ohm*m)
0.00	- 5.00	Terreno vegetale	Conduttivo	< 14,50
- 5.00	-25.00	Ghiaia e sabbia con limo	Mediamente Conduttivo	14,51 ÷ 39,60
- 25.00	- 35.00	Ghiaia in matrice sabbiosa	Mediamente Resistivo	39,61 ÷ 77,30

Tabella 2

In allegato si riportano le sezioni elettrostratigrafiche interpretative³.

³ Allegato V

4. INDAGINE PENETROMETRICA

La prova penetrometrica dinamica consiste nell'infiggere nel terreno una punta conica (per tratti consecutivi d) misurando il numero di colpi N necessari.

Le Prove Penetrometriche Dinamiche sono molto diffuse ed utilizzate data la loro semplicità esecutiva, economicità e rapidità di esecuzione. La loro elaborazione, interpretazione e visualizzazione grafica consente di "catalogare e parametrizzare" il suolo attraversato con un'immagine in continuo, che permette anche di avere un raffronto sulle consistenze dei vari livelli attraversati e una correlazione diretta con sondaggi geognostici per la caratterizzazione stratigrafica.

La sonda penetrometrica permette inoltre di riconoscere abbastanza precisamente lo spessore delle coltri sul substrato, la quota di eventuali falde e superfici di rottura sui pendii, e la consistenza in generale del terreno.

L'utilizzo dei dati, ricavati da correlazioni indirette e facendo riferimento a vari autori, dovrà comunque essere trattato con le opportune cautele e, possibilmente, dopo esperienze geologiche acquisite in zona

Elementi caratteristici del penetrometro dinamico sono i seguenti:

- peso massa battente M;
- altezza libera caduta H;
- > punta conica: diametro base cono D, area base A (angolo di apertura a);
- > avanzamento (penetrazione) 5;
- > presenza o meno del rivestimento esterno (fanghi bentonitici).

Con riferimento alla classificazione ISSMFE (1988) dei diversi tipi di penetrometri dinamici (Tabella 3) si rileva una prima suddivisione in quattro classi (in base al peso M della massa battente):

TIPO	SIGLA DI RIFERIMENTO	PESO DELLA MASSA BATTENTE	PRPF. MAX. DI INDAGINE
Leggero	DPL	M ≤ 10	8 m.
Medio	DPM	10 ≤ M ≤ 60	20 ÷ 25 m.
Pesante	DPH	40 ≤ M ≤ 60	25 m.
Super Pesante	DPSH	M ≥ 60	25 m.

Tabella 3 – Classificazione ISSMFE dei penetrometri dinamici

Il penetrometro in uso nel corso dell'indagine PENNI 30 COMPAC, ha le seguenti caratteristiche:

- ➤ altezza di caduta H = 0.20 m;
- avanzamento 2 = 10 cm;
- \triangleright punta conica ($\square = 60-90^\circ$);
- diametro D = 35.7 mm;
- > area base cono A = 10 cm²

Correlazione con N_{SPT}

Poiché la prova penetrometrica standard (SPT) rappresenta, ad oggi, uno dei mezzi più diffusi ed economici per ricavare informazioni dal sottosuolo, la maggior parte delle correlazioni esistenti riguardano i valori del numero di colpi Nspt ottenuto con la suddetta prova, pertanto si presenta la necessità di rapportare il numero di colpi di una prova dinamica con Nspt. Il passaggio viene dato da:

$$N_{SPT} = (2_t N)$$

Dove:

$$\beta_t = \frac{Q_t}{Q_{SPT}}$$

In cui Q è l'energia specifica per colpo e Q_{SPT} è quella riferita alla prova SPT.

Le prove penetrometriche eseguite hanno ricoperto l'intera area interessata dalla proposta progettuale, per quanto possibile, sovrapponendole alle linee degli stendimenti geofisici.

Tutte le prove eseguite sono state ripetute in adiacenza, a distanza di circa 1 metro in quanto, per la presenza a diverse profondità di elementi lapidei anche di grosse dimensioni, il rifiuto all'avanzamento della punta interveniva a profondità non compatibili con il quadro geolitologico d'insieme.

In appendice sono riportate le valutazioni statistiche e le correlazioni che permettono l'utilizzazione delle prove penetrometriche.

Dall'esame delle prove si è potuto sintetizzare un modello costituito da tre diverse unità litotecniche.

UNITÀ LITOTECNICA	SPESSORE	PROFONDITÀ	PESO DI VOLUME	N _{SPT}	COESIONE C'	ANGOLO DI ATTRITO
	(metri)	(metri)	[Kn/m³]		[MPa]	(°)
Coltre superficiale	0,50	0,50	17,05	3	0.098	22
Sabbie fini con ghiaia	1,7 ÷ 2,80	1,70 ÷ 3,30	18,85	9 ÷ 12	0,6 ÷ 0,8	28 ÷ 32
Ghiaia con sabbia	> 7,00	8.30 ÷ 10,00	20,61	26 ÷ 35	0,03 ÷ 0.05	38 ÷ 40

Tabella 4 – Correlazioni con prove penetrometriche.

5. SUCCESSIONE LITOSTRATIGRAFICA

Le esposizioni naturali e i tagli di origine antropica in corrispondenza di piccole sezioni occasionali, osservati in vari luoghi del comprensorio, unitamente ai sondaggi eseguiti nell'intera area hanno evidenziato la presenza di una sequenza di sabbie fini, talora limose, con intercalate lenti di ghiaia e ciottoli subarrotondati, poligenici, eterometrici, in matrice sabbiosa, medio-grossa, subordinatamente limosa, di colore beige, a volte rossastra. Queste lenti sono tendenzialmente non cementate. Poco frequenti sono sottili livelli, di spessore contenuto, di argilla o di arenaria.

L'analisi delle stratigrafie, ottenute da sondaggi sismici e penetrometrici eseguiti, consente di definire che i terreni in esame, nella loro variabilità granulometrica e nei rapporti geometrici verticali tra i vari strati, pur nella loro eterogenietà, mostrano una sostanziale uniformità che permette di inquadrarli in unità litotecniche dalle caratteristiche geotecniche definite.

La successione stratigrafica così individuata è si compone di uno strato superficiale costituito da terreno vegetale localmente misto a riporto generico, che poggia su banco ghiaioso talora molto cementato. Infine al di sotto si ha un livello sabbioso a tratti molto cementato.

5.1 INDIVIDUAZIONE DELLE UNITÀ LITOTECNICHE

L'analisi delle indagini pregresse e la conoscenza diretta dei luoghi ha permesso la ricostruzione dettagliata e il locale assetto litostratigrafico, con l'identificazione e la caratterizzazione dei principali orizzonti litologici caratteristici del substrato dell'area d'intervento e definendo, per ognuno di essi, le caratteristiche litotecniche peculiari indispensabili per una corretta progettazione geotecnica e strutturale delle opere che si vogliono realizzare consolidando alla base quanto già edificato.

Da quanto emerso nel corso delle indagini geognostiche è stato possibile individuare, nell'ambito della successione stratigrafica, diverse unità litotecniche omogenee per litologia e geotecnica.

Unità Litotecnica "A"

Si tratta di suoli di copertura, di natura prevalentemente limo-sabbiosa, raramente frammisti a riporto generico e localmente arricchiti di sostanza organica. È considerato un suolo incoerente, al più poco coesivo, da molto sciolto a sciolto, mediamente permeabile.

Lo spessore è compreso tra 1,20 e 3,40 metri.

Caratteristiche elastiche e meccaniche dell'unità Litologica "A"			
Spessore variabile	h = 1,00÷2,00 m		
Peso volume medio	γ_m = 16,94 KN/m ³		
Angolo di resistenza al taglio medio (tensioni efficaci, a lungo termine)	φ _m '= 30°		
Coesione drenata media (tensioni efficaci, a lungo termine)	$c'_{m} = 4.0 \text{ kN/m}^{2}$		
Modulo di Edometrico medio	E _m = 38,78 MPa		
Modulo di Poisson	ν = 0.43		
Modulo di Young dinamico	E _{din} = 124,40 MPa		
Modulo di Taglio dinamico	G _d = 4,5 MPa		

Tabella 5

Unità Litotecnica "B"

È costituita da depositi limo sabbiosi con ghiaie poligeniche, eterometriche in matrice sabbiosa, generalmente non cementate (puddinghe). È un suolo non coesivo, molto denso, poco compressibile, permeabile. Lo spessore varia da 3,20 metri sino ad un massimo di 7,60 metri.

Caratteristiche elastiche e meccaniche dell'unità Litologica "B"		
Spessore variabile	h = 3,70 ÷ 7,30 m	
Peso volume medio	$\gamma_{\rm m}$ = 18,68 KN/m ³	
Angolo di resistenza al taglio medio (tensioni efficaci, a lungo termine)	φ' _m = 34°	
Coesione drenata media (tensioni efficaci, a lungo termine)	$c'_{m} = 0.45 \text{ kN/m}^{2}$	
Modulo Edometrico medio	E _m = 216,77 MPa	
Modulo di Poisson	v = 0.43	
Modulo di Young dinamico	E _{din} = 820,70 MPa	
Modulo di Taglio dinamico	G _d = 28,40 MPa	

Tabella 6

Unità litotecnica "C"

Questa unità è formata prevalentemente da depositi sabbiosi e ghiaiosi, generalmente poco o nulla cementati, con intercalazioni limoso-argilloso-sabbiose. Ha un comportamento incoerente, molto denso, poco compressibile, altamente permeabile.

Caratteristiche elastiche e meccaniche dell'unità Litologica "C"		
Spessore variabile	h = 3,00 ÷ 10,10 m	
Peso volume medio	$\gamma_{\rm m}$ = 21,10 KN/m ³	
Angolo di resistenza al taglio medio (tensioni efficaci, a lungo termine)	φ' _m = 38°	
Coesione drenata media (tensioni efficaci, a lungo termine)	$c'_{m} = 0.50 \text{ kN/m}^{2}$	
Modulo Edometrico medio	E _m = 679,45 MPa	
Modulo di Poisson	v = 0.44	
Modulo di Young dinamico	E _{din} = 2808,30 MPa	
Modulo di Taglio dinamico	G _d = 158,8 MPa	

Tabella 7

6. VALUTAZIONE DELL'AZIONE SISMICA (D.M. 17.01.2018 N.T.C.)

Come evidenziato in precedenza, la regione del Tavoliere è notoriamente un'area a bassa attività sismica, ma che risente della vicinanza con zone sismogeneticamente attive (il Promontorio del Gargano e i monti del Subappennino Dauno), a causa dei particolari caratteri tettonici che li contraddistinguono, con notevoli disturbi (faglie), che nel corso degli anni è stata interessata da energia sismica intensa, con magnitudo comprese tra 5.0 e 6.5 e VIII/X grado MSK.

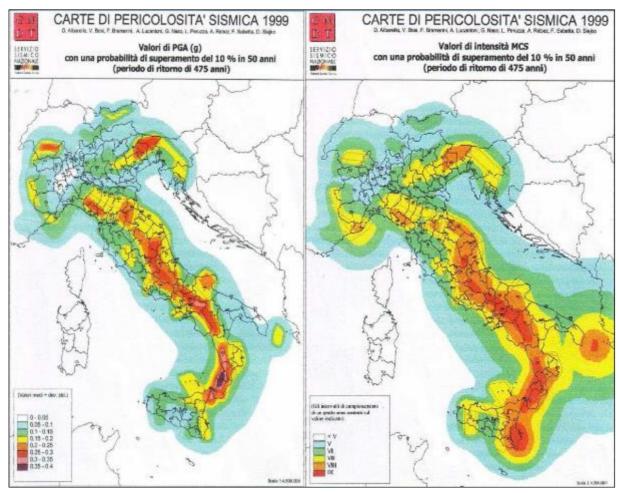


Figura 7 – Carta della pericolosità sismica (Servizio Sismico Nazionale)

Il Decreto 17 gennaio 2018 - Aggiornamento delle "Norme tecniche per le costruzioni" - fornisce le indicazioni per la progettazione e la verifica di nuove strutture secondo criteri antisismici.

Ai sensi del decreto, le azioni sismiche di progetto si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione. La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa a_g in condizioni di campo libero su sito di riferimento con superficie topografica orizzontale, nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente Se(T), con riferimento a prefissate probabilità di eccedenza P_{VR} nel periodo di riferimento V_R . In alternativa è ammesso l'uso di accelerogrammi, purché correttamente commisurati alla pericolosità sismica del sito.

Le forme spettrali sono definite, per ciascuna delle probabilità di superamento nel periodo di riferimento P_{VR}, a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

ag = accelerazione orizzontale massima al sito;

F₀ = valore massimo di fattore di amplificazione dello spettro in accelerazione orizzontale;

T*_C = periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Per l'area in esame, sulla base delle indagini eseguite, si verifica l'assoluta stabilità dell'area; ai fini della determinazione dell'azione sismica di progetto e della categoria di sottosuolo (Ordinanza P.C.M. n.3274 del 20/03/03 e aggiornamenti, modifiche, integrazioni, sostituzioni del D.M. 14/09/2005 "Norme Tecniche per le Costruzioni" D.M. Infrastrutture del 17/01/2018, si potranno prendere in considerazione i seguenti elementi di valutazione:

- In base alla localizzazione geografica del sito di progetto vengono definiti i parametri di riferimento del moto sismico in superficie, successivamente correlati con gli stati limite e la vita nominale dell'opera. Ciò al fine di definire gli obiettivi da raggiungere in termini di sicurezza e prestazioni delle opere o parti di essa.
 - o Individuazione del sito
 - Regione Puglia, Provincia di Foggia, Comune di Foggia;
- Ricerca per coordinate: Long. 15.543000; Lat. 41.497707
- La velocità media di propagazione potrà essere assunta mediamente superiore a 400 m/s, entro 30 m di profondità delle onde di taglio ($V_{s,eq}$) per deformazioni di taglio $2 < 10^{-6}$, dello strato i_{esimo} , per un totale di N strati presente nei 30 m superiori;
- Sulla base del valore V_{S,eq} avendo considerato l'insieme delle indagini effettuate durante la campagna geognostica, considerando in modo cautelativo i risultati peggiori riscontrati, non considerando l'aumento delle caratteristiche geotecniche dei terreni con la profondità, si ipotizza un sottosuolo riferibile alla categoria "B", Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fine molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.. (tab. 3.2.II NTC/18).

	CATEGORIE SUOLI DI FONDAZIONE			
	Tab. 3.2.II - D.M. 17 gennaio 2018 "Nuove Norme Tecniche per le Costruzioni".			
А	Ammassi rocciosi affioranti o terreni molto rigidi, caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.			
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fine molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.			
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fine mediamente consistenti, con profondità del substrato superiori a 30 m., caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e valori di velocità equivalente comprese tra 180 m/s e 360 m/s.			
D	Depositi di terreni a grana grossa scarsamente addensati o terreni a grana fine scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.			
E	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definiti per le categorie C o D, con profondità del substrato non superiore a 30 m.			

Tabella 8 Categoria di sottosuoli.

➤ Le condizioni topografiche del sito che si colloca su un'area perfettamente pianeggiante con inclinazione media i <15° (max 2°), sono riferibili alla categoria "T₁", per cui il coefficiente di amplificazione topografica (ST) è pari a 1,0 (valori massimi del coefficiente tab. 3.2. III Norme Tecniche per le Costruzioni 2018).

VALORI MASSIMI DEL COEFFICIENTE DI AMPLIFICAZIONE TOPOGRAFICA			
Categoria Topografica	Ubicazione dell'opera o dell'intervento	S _T	
T ₁	-	1,0	
T ₂	In corrispondenza della sommità del pendio	1,2	
T ₃	In corrispondenza della cresta del rilievo	1,2	
T ₄	In corrispondenza della cresta del rilievo	1,4	

Tabella 9 – Tabella 3.2.III NTC 2018 – Valori massimi del coefficiente di amplificazione topografica S_T

Per il calcolo dei parametri sopra citati sono stati considerati i seguenti parametri:

Classe d'uso: classe nella quale sono suddivise le opere, con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso; per le opere in progetto è la II (tab. 2.4.II) il cui uso prevede normali affollamenti), per cui il coefficiente d'uso risulta C_U=1,0;

VALORI DEL COEFFICIENTE D'USO C∪.				
CLASSE D'USO I II III IV				
COEFFICIENTE C _U	0,7	1,0	1,5	2,0

Tabella 10 − Tab. 2.4.II NTC 2018 − Valori del coefficiente d'uso C_U.

 \triangleright Vita nominale dell'opera V_N : intesa come il numero di anni nel quale la struttura, purché soggetta alla necessaria manutenzione, mantiene gli specifici livelli prestazionali di progetto (da questo valore viene calcolato il Periodo di riferimento per l'azione sismica V_R come:

 $V_R=V_N*C_U$ (dove CU è il coefficiente d'uso);

➤ Probabilità di superamento nel periodo di riferimento P_{VR}: in funzione dello stato limite di riferimento.

Nel caso dell'opera in oggetto sono considerati i seguenti valori:

Classe d'uso "II": Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente

Vita nominale V_N: 50 anni: costruzioni con livelli di prestazione ordinari.

Coefficiente d'uso Cu: 1 relativo alla classe d'uso II.

Periodo di riferimento per l'azione sismica: $V_R=V_N*C_U=50*1=50$ anni

In funzione della probabilità di superamento nel periodo di riferimento P_{VR} vengono calcolati i valori a_g , F_0 , T^*_C e del periodo di ritorno:

$$T_{R} = -\frac{V_{R}}{\ln\left(1 - P_{VR}\right)}$$

	SPETTRI DI RISPOSTA SECONDO LE NTC 2018						
Sta	ti limite	P _{VR}	Periodo di ritorno (anni)	a _g ⁴ (g)	F ₀	T* _c (sec)	
SLE	SLO	81%	30	0,047	2,430	0,296	
JLL	SLD	63%	50	0,060	2,519	0,330	
SLU	SLV	10%	475	0.145	2,582	0,395	
320	SLC	5%	975	0.187	2,555	0,422	

Tabella 11

Nota:

Dove:

> SLE = stati limite di esercizio

- o SLO = **stato limite di operatività**: a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e le apparecchiature rilevanti in relazione alla sua funzione, non deve subire danni ed interruzioni d'uso significativi;
- SLD = stato limite di danno: a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e le apparecchiature rilevanti alla sua funzione, subisce danni tali da non mettere a rischio gli utenti e da non compromettere significativamente la capacità di resistenza e di rigidezza nei confronti delle azioni verticali ed orizzontali, mantenendosi immediatamente utilizzabile pur nell'interruzione d'uso di parte delle apparecchiature.

SLU = stati limite ultimi

- SLV = stato limite di salvaguardia della vita: a seguito del terremoto la costruzione subisce rotture e crolli dei componenti non strutturali ed impiantistici e significativi danni dei componenti strutturali cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali; la costruzione conserva invece una parte della resistenza e rigidezza per azioni verticali e un margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali;
- o SLC = **stato limite di prevenzione del collasso**: a seguito del terremoto la costruzione subisce gravi rotture e crolli dei componenti non strutturali ed impiantistici e danni

⁴ a_q espressa come frazione dell'accelerazione di gravità g

molto gravi dei componenti strutturali; la costruzione conserva ancora un margine di sicurezza per azioni verticali ed un esiguo margine di sicurezza nei confronti del collasso per azioni orizzontali.

COEFFICIENTI SISMICI (PER STABILITÀ DI PENDII E FONDAZIONI)					
coefficienti	SLO	SLD	SLV	SLC	
kh	0,010	0,012	0,029	0,038	
kv	0,005	0,006	0,014	0,019	
a _{max} [m/s²]	0,461	0,59	1,422	1,833	
β	0,200	0,200	0,200	0,200	

Tabella 12 – Calcolo dei coefficienti sismici (per stabilità di pendii e fondazioni) con Categoria di Suolo di categoria C.

Dove:

2 = coefficiente di riduzione dell'accelerazione massima attesa al sito = 0,2

a_{max} = accelerazione orizzontale massima attesa al sito

a_g = accelerazione orizzontale massima attesa su sito di riferimento rigido (a_g/g)

g = accelerazione di gravità

Ss = coefficiente di amplificazione stratigrafica = 1,5 (SLO)-1,5 (SLD)-1,48 (SLV)-1,42 (SLC)

St = coefficiente di amplificazione topografica = 1,0

7. SINTESI CONCLUSIVA

Il presente studio descrive le caratteristiche geotecniche delle litologie affioranti nell'area interessata progetto per la realizzazione di un <u>impianto fotovoltaico per la produzione di energia da fonte solare – di potenza stimata di 60,00 MWp</u> – e della relativa linea di connessione alla cabina di consegna, sito in località Scappaturo – Vado Biccari, a SudEst rispetto al centro abitato di Lucera.

È stata così programmata una campagna di studi nel rispetto del DM. 17.01.2018 - Aggiornamento delle «Norme Tecniche per le Costruzioni», che ha previsto:

- > n. 10 prospezioni sismiche superficiali con tecnica MASW (Multi-channel Analysis of Surface Waves);
- > n. 10 prospezioni sismiche a rifrazione;
- > n. 5 prospezioni E.R.T. (Electrical Resistivity Tomography);
- > n. 25 Prove penetrometriche dinamiche.

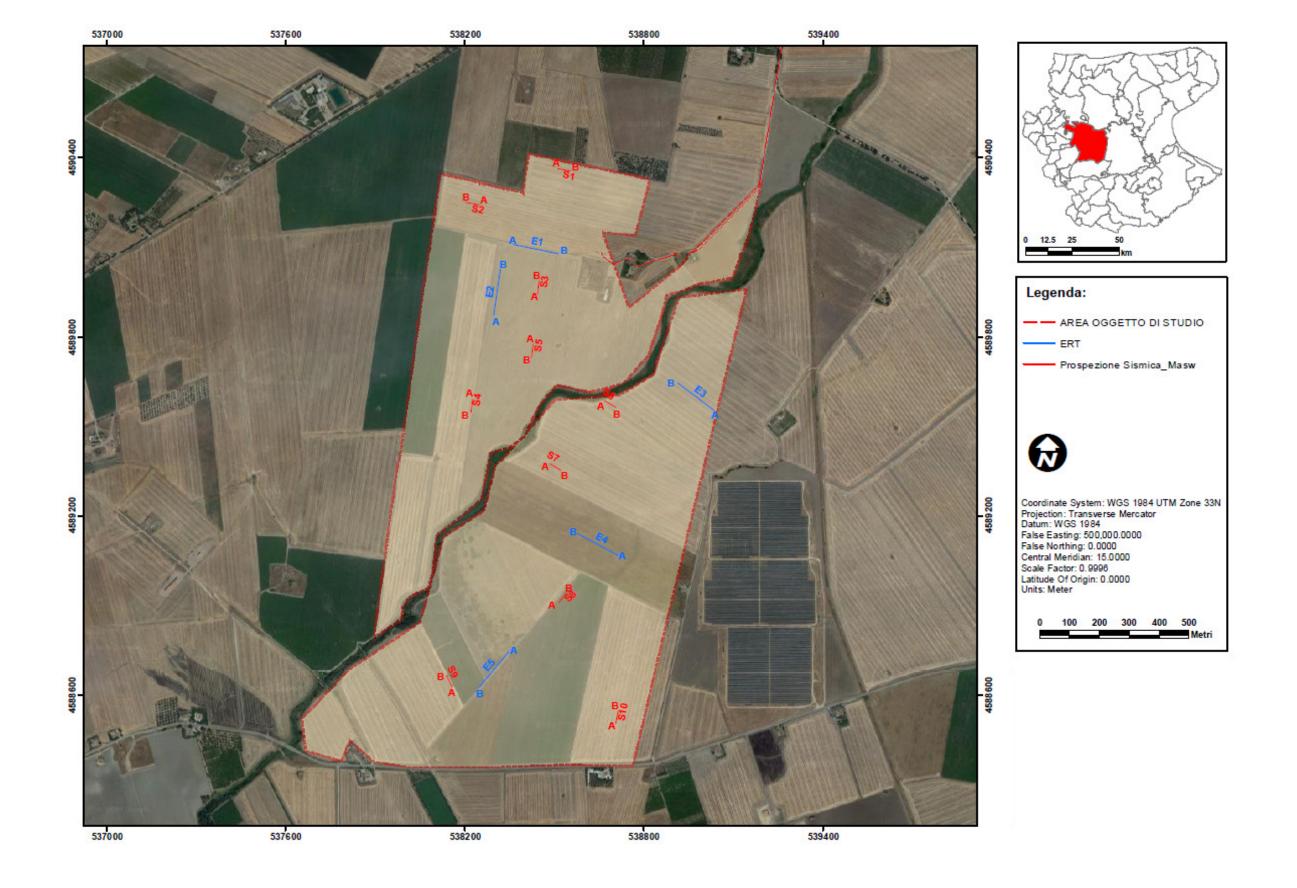
L'area oggetto di intervento è ubicata in un ambito perfettamente pianeggiante espressione attuale di un terrazzo alluvionale a quote prossime a 80 metri con pendenze minime, prossime ad 1° in direzione Est-NordEst. Qui affiorano depositi alluvionali addossati a depositi carbonatici, di età compresa tra il Pleistocene sup. e Olocene.

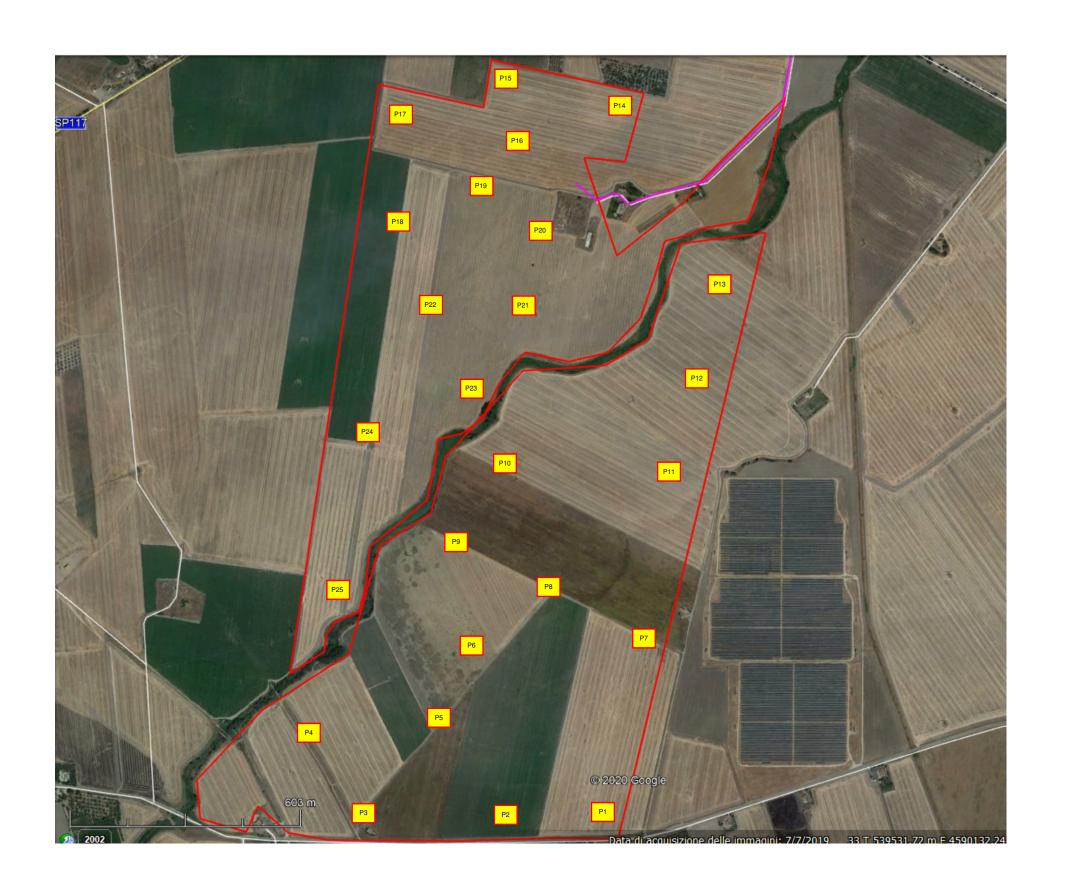
La successione stratigrafica individuata e la caratterizzazione geomeccanica delle singole unità litostratigrafiche è stata eseguita sulla base di un rilievo geologico tecnico e dalle correlazioni dei risultati di indagini geosismiche (MASW e a Rifrazione), geoelettriche (Tomografie) e penetrometriche. È stato così ipotizzato un modello geotecnico a 3 unità litotecniche.

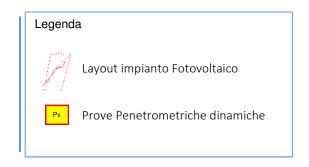
Le indagini sismiche eseguite, hanno consentito di determinare le caratteristiche elasto-dinamiche dei terreni investigati e definire la categoria del sottosuolo di fondazione.

Il substrato di fondazione, sulla base dei risultati dell'indagine sismica è, per l'intera area di intervento, classificabile come un suolo di categoria B, caratterizzato da $V_{S,eq} = > 360$ m/sec, spessore > 30 metri ad eccezione del profilo sismico MASW 9 che ha un valore di $V_{S,eq} = 354$ m/sec.

La V_{S,eq} calcolata, per ciscun profilo di indagine MASW è risultata pari a:


Profilo MASW 1	Vs,eq = 605 m/s	Categoria "B"
Profilo MASW 2	Vs,eq = 476 m/s	Categoria "B"
Profilo MASW 3	Vs,eq = 569 m/s	Categoria "B"
Profilo MASW 4	Vs,eq = 419 m/s	Categoria "B"
Profilo MASW 5	Vs,eq = 509 m/s	Categoria "B"
Profilo MASW 6	Vs,eq = 510 m/s	Categoria "B"
Profilo MASW 7	Vs,eq = 406 m/s	Categoria "B"
Profilo MASW 8	Vs,eq = 528 m/s	Categoria "B"
Profilo MASW 9	Vs,eq = 541 m/s	Categoria "B"
Profilo MASW 10	Vs,eq = 530 m/s	Categoria "B"


Per quanto attiene le condizioni topografiche, valutata la pendenza generale della piana si attribuisce una categoria topografica T_1 (pendii e rilievi isolati con inclinazione media $i \le 15^{\circ}$ - valori misurati pari ad 1°) e in assenza di specifiche analisi di risposta sismica locale si adotta un coefficiente topografico $S_T = 1,0$.


La presenza della falda freatica è stata riscontrata in numerosi pozzi diffusi in tutto il comprensorio utilizzati quasi esclusivamente per uso irriguo. Il livello freatico varia in relazione alla eterogenità dell'acquifero e comunque la quota è sempre individuata a profondità comprese tra -10 metri e - 15 metri dal piano di campagna), il che porta ad escludere l'insorgenza di sovrappressioni neutre nel sistema terreno - fondazione.

Vieste, agosto 2020

ALLEGATO 2 UBICAZIONE PROVE PENETROMETRICHE

ALLEGATO III

PROSPEZIONI SISMICHE TIPO MASW

Prospezione MASW 1

L'indagine MASW 1 ha restituito un valore di Vs_{30} = 406 m/s, coincidente col valore della $V_{s,eq}$, in quanto non è stato intercettato il bedrock (definito come quella formazione costituita da roccia o terreno molto rigido, con Vs>800 m/sec) ad una profondità H = 30.00 m dal p.c..

Di seguito si riportano i valori delle Vs in funzione delle profondità investigate.

	MASW 1		
MASW	Velocità di taglio (m/sec)	Spessori (m)	Profondità (m)
SISMOSTRATO I	149	1,40	0,00 - 1,40
SISMOSTRATO II	533	4,70	1,40 - 6,10
SISMOSTRATO III	762	Semispazio	Semispazio
Vs ₃₀ = 605 m/sec			

Per quanto attiene le correlazioni tra le unità sismostratigrafiche e litologie investigate, si rimanda alla tabella seguente.

	MASW 1			
SISMOSTRATI	LITOLOGIA INVESTIGATA	Profondità (m)		
SISMOSTRATO I	Terreno vegetale su sabbia fine debolmente limosa	0,00 - 1,40		
SISMOSTRATO II	Ghiaia in matrice sabbioso limosa	1,40 - 6,10		
SISMOSTRATO III	Ghiaia in matrice sabbiosa	Semispazio		

Prospezione MASW 2

L'indagine MASW 2 ha restituito un valore di $V_{s30} = V_{s,eq} = 476$ m/sec.

	MASW 2		
MASW	Velocità di taglio (m/sec)	Spessori (m)	Profondità (m)
SISMOSTRATO I	170	1,20	0,00 - 1,20
SISMOSTRATO II	318	4,70	1,20 – 5,90
SISMOSTRATO III	585	Semispazio	Semispazio
Vs ₃₀ = 605 m/sec			

SISMOSTRATI	LITOLOGIA INVESTIGATA	/·\

L'indagine MASW 2 ha restituito un valore di $V_{s30} = V_{s,eq} = 569$ m/sec.

	MASW 3		
MASW	Velocità di taglio (m/sec)	Spessori (m)	Profondità (m)
SISMOSTRATO I	151	1,60	0,00 - 1,60
SISMOSTRATO II	553	7,30	1,60 – 8,90
SISMOSTRATO III	733	Semispazio	Semispazio
Vs ₃₀ = 605 m/sec			

	MASW 3	
SISMOSTRATI	LITOLOGIA INVESTIGATA	Profondità (m)
SISMOSTRATO I	Terreno vegetale su sabbia fine debolmente limosa	0,00 – 1,60
SISMOSTRATO II	Ghiaia in matrice sabbioso limosa	1,60 – 8,90
SISMOSTRATO III	Ghiaia in matrice sabbiosa	Semispazio

Prospezione MASW 4

L'indagine MASW 4 ha restituito un valore di V_{s30} = $V_{s,eq}$ = 419 m/sec.

<u>MASW 4</u>				
MASW	Velocità di taglio (m/sec)	Spessori (m)	Profondità (m)	
SISMOSTRATO I	130	2,00	0,00 – 2,00	
SISMOSTRATO II	306	6,50	2,00 – 8,50	
SISMOSTRATO III	615	Semispazio	Semispazio	
Vs ₃₀ = 419 m/sec				

<u>MASW 4</u>			
SISMOSTRATI	LITOLOGIA INVESTIGATA	Profondità (m)	
SISMOSTRATO I	Terreno vegetale su sabbia fine debolmente limosa	0,00 - 2,00	
SISMOSTRATO II	Ghiaia in matrice sabbioso limosa	2,00 – 8,50	
SISMOSTRATO III	Ghiaia in matrice sabbiosa	Semispazio	

L'indagine MASW 5ha restituito un valore di V_{s30} = $V_{s,eq}$ = 509 m/sec.

MASW 5			
MASW	Velocità di taglio (m/sec)	Spessori (m)	Profondità (m)
SISMOSTRATO I	145	1,00	0,00 - 1,00
SISMOSTRATO II	370	4,60	1,00 – 5,60
SISMOSTRATO III	453	3,00	5,60 – 8,60
SISMOSTRATO IV	649	Semispazio	Semispazio
Vs ₃₀ = 509 m/sec			

	MASW 5	
SISMOSTRATI	LITOLOGIA INVESTIGATA	Profondità (m)
SISMOSTRATO I	Terreno vegetale su sabbia fine debolmente limosa	0,00 - 1,00
SISMOSTRATO II	Ghiaia in matrice sabbioso limosa	1,00 – 5,60
SISMOSTRATO III	Ghiaia in matrice sabbiosa	5,60 – 8,60
SISMOSTRATO IV	Ghiaia cementata in matrice sabbiosa	Semispazio

Prospezione MASW 6

L'indagine MASW 6 ha restituito un valore di V_{s30} = $V_{s,eq}$ = 510 m/sec.

	MASW 6		
MASW	Velocità di taglio (m/sec)	Spessori (m)	Profondità (m)
SISMOSTRATO I	166	2,00	0,00 – 2,00
SISMOSTRATO II	356	5,90	2,00 – 7,90
SISMOSTRATO III	730	Semispazio	Semispazio
Vs ₃₀ = 510 m/sec			

MASW 6		
SISMOSTRATI	LITOLOGIA INVESTIGATA	Profondità (m)
SISMOSTRATO I	Terreno vegetale su sabbia fine debolmente limosa	0,00 – 2,00
SISMOSTRATO II	Ghiaia in matrice sabbioso limosa	2,00 – 7,90
SISMOSTRATO III	Ghiaia in matrice sabbiosa	Semispazio

L'indagine MASW 7 ha restituito un valore di $V_{s30} = V_{s,eq} = 406$ m/sec.

MASW 7			
MASW	Velocità di taglio (m/sec)	Spessori (m)	Profondità (m)
SISMOSTRATO I	154	1,80	0,00 - 1,80
SISMOSTRATO II	231	6,20	1,80 - 8,00
SISMOSTRATO III	549	10,10	8,00 – 18,10
SISMOSTRATO IV	704	Semispazio	Semispazio
Vs ₃₀ = 406 m/sec			

MASW 7		
SISMOSTRATI	LITOLOGIA INVESTIGATA	Profondità (m) 0,00 – 1,80
SISMOSTRATO I	Terreno vegetale su sabbia fine debolmente limosa	1,80 - 8,00
SISMOSTRATO II	Ghiaia in matrice sabbioso limosa	8,00 – 18,10
SISMOSTRATO III	Ghiaia in matrice sabbiosa	Semispazio
SISMOSTRATO IV	Ghiaia cementata in matrice sabbiosa	Profondità (m)

Prospezione MASW 8

L'indagine MASW 8 ha restituito un valore di $V_{s30} = V_{s,eq} = 528$ m/sec.

	MASW 8		
MASW	Velocità di taglio (m/sec)	Spessori (m)	Profondità (m)
SISMOSTRATO I	186	1,80	0,00 - 1,80
SISMOSTRATO II	309	3,70	1,80 – 5,50
SISMOSTRATO III	722	Semispazio	Semispazio
Vs ₃₀ = 528 m/sec			

MASW 8			
SISMOSTRATI	LITOLOGIA INVESTIGATA	Profondità (m	
SISMOSTRATO I	Terreno vegetale su sabbia fine debolmente limosa	0,00 – 1,80	
SISMOSTRATO II	Ghiaia in matrice sabbioso limosa	1,80 – 5,50	
SISMOSTRATO III	Ghiaia in matrice sabbiosa	Semispazio	

L'indagine MASW 9 ha restituito un valore di V_{s30} = $V_{s,eq}$ = 541 m/sec.

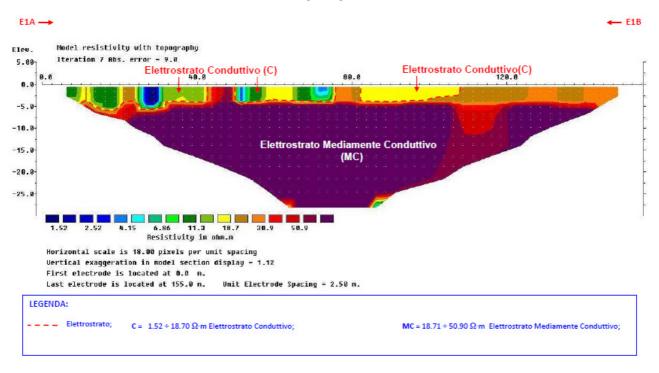
	MASW 9		
MASW	Velocità di taglio (m/sec)	Spessori (m)	Profondità (m)
SISMOSTRATO I	165	1,70	0,00 – 1,70
SISMOSTRATO II	351	4,30	1,70 – 6,00
SISMOSTRATO III	729	Semispazio	Semispazio
Vs ₃₀ = 541 m/sec			

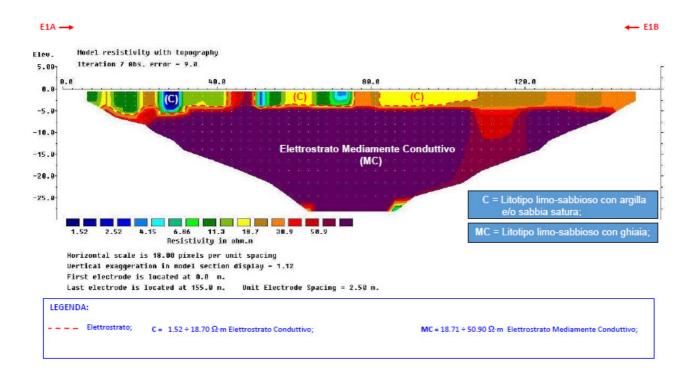
	MASW 6	
SISMOSTRATI	LITOLOGIA INVESTIGATA	Profondità (m)
SISMOSTRATO I	Terreno vegetale su sabbia fine debolmente limosa	Profondità (m)
SISMOSTRATO II	Ghiaia in matrice sabbioso limosa	0,00 - 1,70
SISMOSTRATO III	Ghiaia in matrice sabbiosa	1,70 - 6,00

Prospezione MASW 10

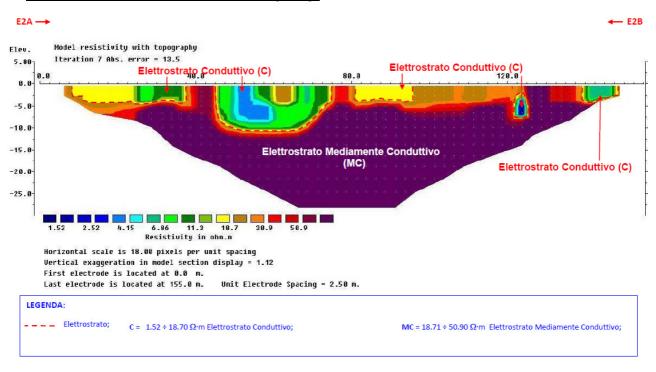
L'indagine MASW 10 ha restituito un valore di V_{s30} = $V_{s,eq}$ = 530 m/sec.

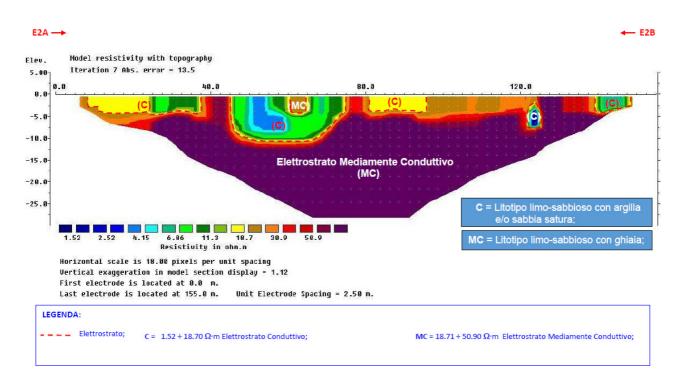
	MASW 10		
MASW	Velocità di taglio (m/sec)	Spessori (m)	Profondità (m)
SISMOSTRATO I	169	1,70	0 00 – 1,70
SISMOSTRATO II	425	4,70	1,70 – 6,60
SISMOSTRATO III	670	Semispazio	Semispazio
Vs ₃₀ = 530 m/sec			

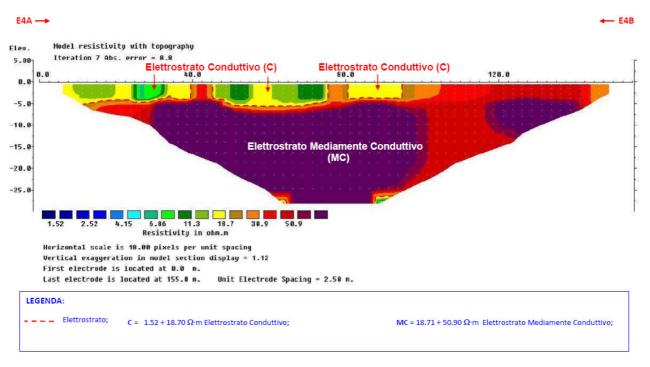

MASW 10		
SISMOSTRATI	LITOLOGIA INVESTIGATA	Profondità (m) 0 00 – 1,70
SISMOSTRATO I	Terreno vegetale su sabbia fine debolmente limosa	1,70 – 6,60
SISMOSTRATO II	Ghiaia in matrice sabbioso limosa	Semispazio
SISMOSTRATO III	Ghiaia in matrice sabbiosa	Profondità (m)

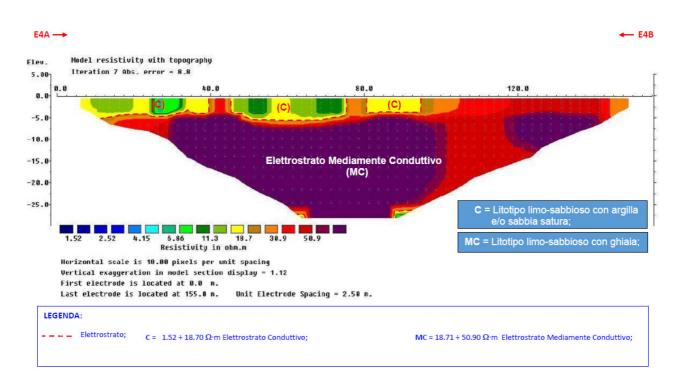


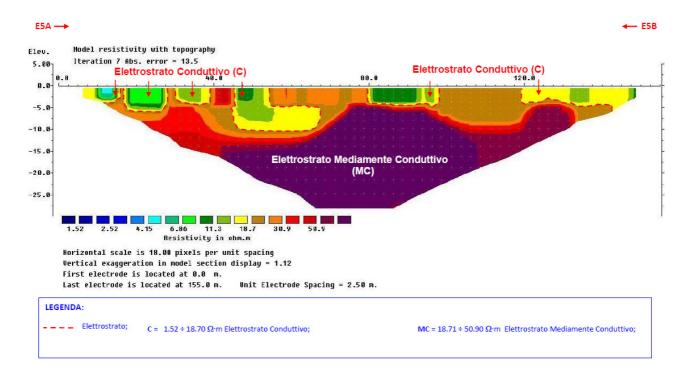
ALLEGATO V SEZIONI ELETTROSTRATIGRAFICHE

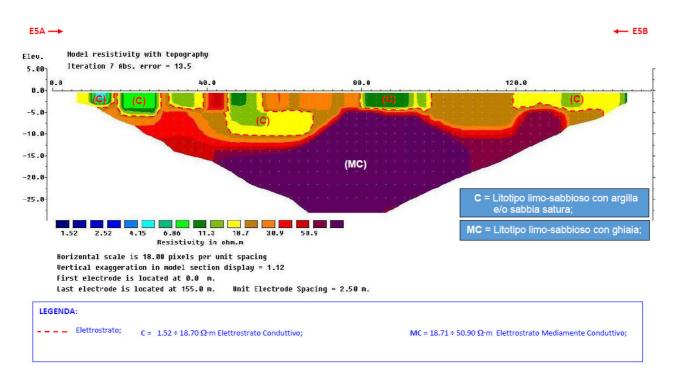

SEZIONE ELETTROSTRTATIGRAFICA 1 (ERT1):



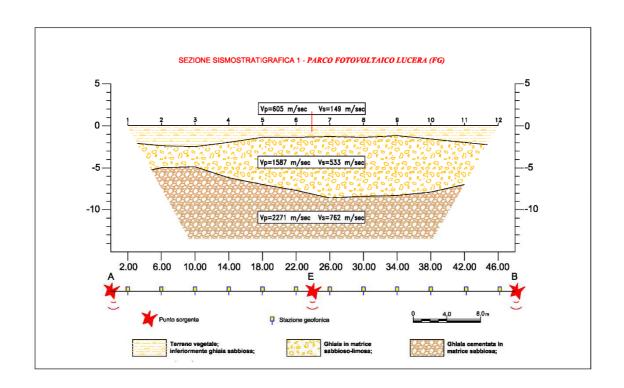

SEZIONE ELETTROSTRTATIGRAFICA 2 (ERT2):




SEZIONE ELETTROSTRTATIGRAFICA 3 (ERT3):



SEZIONE ELETTROSTRTATIGRAFICA 4 (ERT4):

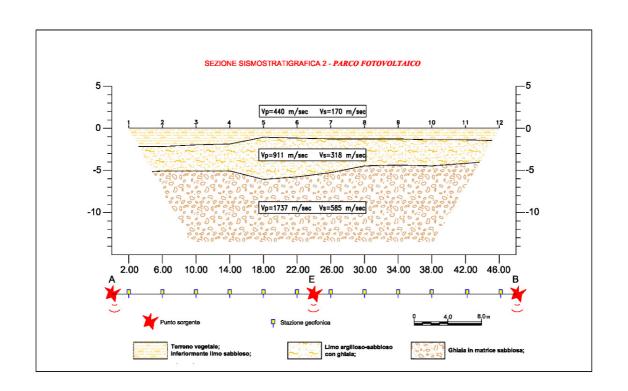

ALLEGATO IVII

PROSPEZIONI SISMICHE A RIFRAZIONE

Prospezione Sismica 1

PROSPEZIONE SISMICA 1					
Sismica a Rifrazione	Velocità Onde P	Velocità Onde S	Profondità		
Sistilica a Kili azione	(m/sec)	(m/sec)	Da (m)	a (m)	
SISMOSTRATO I	605	149	0,00 1,20 – 2,5		
SISMOSTRATO II	1587	533	1,20 – 2,50 4,90 – 8,60		
SISMOSTRATO III	2271	762	Indefinito		

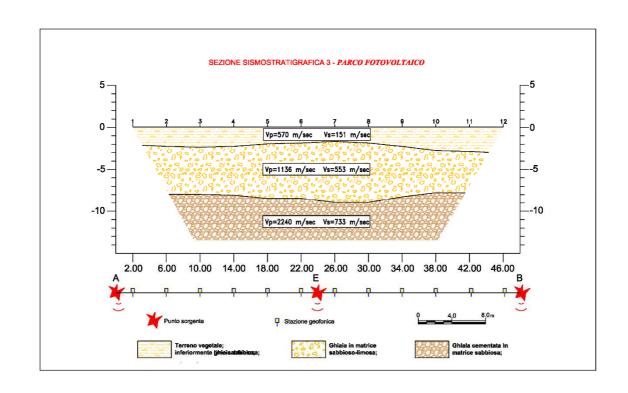
PROSPEZIONE SISMICA 1			
SISMOSTRATI	LITOLOGIA INVESTIGATA		
SISMOSTRATO I	Terreno vegetale con alla base ghiaia sabbiosa		
SISMOSTRATO II	Ghiaia in matrice sabbioso limosa		
SISMOSTRATO III	Ghiaia cementata in matrice sabbiosa		



MODULI DINAMICI PROFILO 1				
	Strato 1	Strato 2	Strato 3	
Velocità Onde P (m/s):	605	1587	2271	
Velocità Onde S (m/s):	149	533	762	
Modulo di Poisson:	0,47	0,44	0,44	
Peso di volume (KN/m³):	17,21	20,17	21,54	
SPESSORE MEDIO STRATO (m)	1,40	4,70	6,10	
MODULO DI YOUNG DINAMICO Edin (Mpa o Nmm²)	114	1680	3667	
MODULO DI TAGLIO DINAMICO Gdin (Mpa o Nmm2)	4	57	125	
MODULO DI BULK (K) (Mpa o Nmm²) (mod. di incompressibilità di volume)	591	4405	9635	
MODULO DI YOUNG STATICO E _{stat} (Kg/cm ²)	140	2064	4505	
POROSITÀ % (correlazione Rzhesvky e Novik (1971) (%)	45,09	35,92	29,52	
MODULO DI COMPRESSIONE EDOMETRICA (Kg/cm²)	642	5181	11329	
RIGIDITÀ SISMICA (m/sec · KN/m³)	2564	10753	16415	
Frequenza dello strato	26,61	28,35	31,23	
Periodo dello strato	0,04	0,035	0,032	

PROSPEZIONE SISMICA 2					
Sismica a Rifrazione	Velocità Onde P	Velocità Onde S	Velocità Onde S Profondità		
Sistilica a Kili azione	(m/sec)	(m/sec)	Da (m)	a (m)	
SISMOSTRATO I	440	170	0,00	1,10 – 2,20	
SISMOSTRATO II	911	318	1,10 – 2,20 3,90 – 6,10		
SISMOSTRATO III	1737	585	Indefinito		

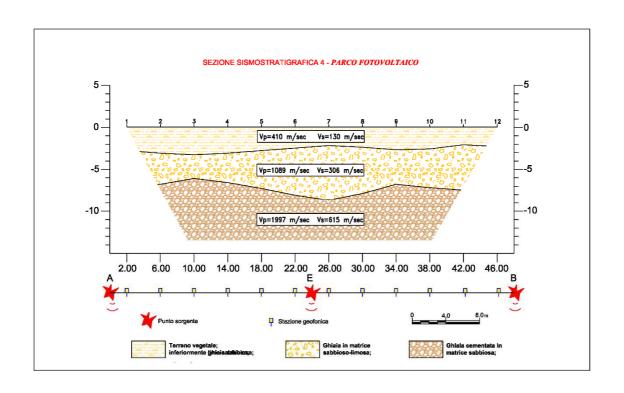
PROSPEZIONE SISMICA 2		
SISMOSTRATI	LITOLOGIA INVESTIGATA	
SISMOSTRATO I	Terreno vegetale con alla base ghiaia sabbiosa	
SISMOSTRATO II	Limo argilloso con ghiaia	
SISMOSTRATO III	Ghiaia cementata in matrice sabbiosa	



MODULI DINAMICI PROFILO 2			
	Strato 1	Strato 2	Strato 3
Velocità Onde P (m/s):	440	911	1737
Velocità Onde S (m/s):	170	318	585
Modulo di Poisson:	0,41	0,43	0,44
Peso di volume (KN/m³):	16,88	17,82	20,47
SPESSORE MEDIO STRATO (m)	1,20	4,70	5,90
MODULO DI YOUNG DINAMICO Edin (Mpa o Nmm²)	141	526	2053
MODULO DI TAGLIO DINAMICO Gdin (Mpa o Nmm²)	5	18	70
MODULO DI BULK (K) (Mpa o Nmm²) (mod. di incompressibilità di volume)	267	1264	5350
MODULO DI YOUNG STATICO E _{stat} (Kg/cm ²)	173	646	2523
POROSITÀ % (correlazione Rzhesvky e Novik (1971) (%)	46,64	42,23	34,51
MODULO DI COMPRESSIONE EDOMETRICA (Kg/cm²)	333	1508	6299
RIGIDITÀ SISMICA (m/sec · KN/m³)	2870	5667	11977
Frequenza dello strato	35,42	16,91	24,79
Periodo dello strato	0,03	0,059	0,040

PROSPEZIONE SISMICA 3					
Sismica a Rifrazione Velocità Onde P Velocità Onde S		Profondità			
Sistifica a Miliazione	(m/sec) (m/sec)		Da (m)	a (m)	
SISMOSTRATO I	570	151	0,00	1,70 – 3,10	
SISMOSTRATO II	1136	553	1,70 – 3,10 7,70 – 9,00		
SISMOSTRATO III	2240	733	Indefinito		

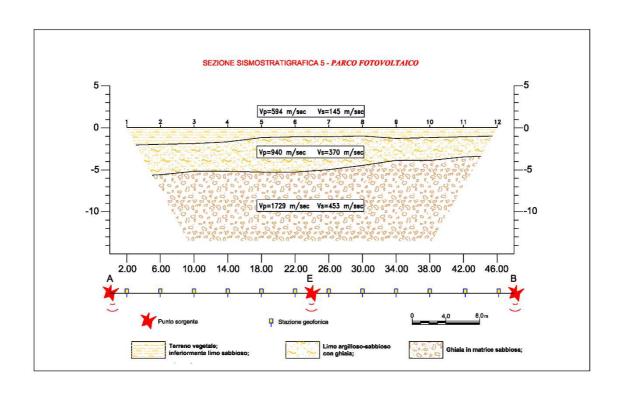
PROSPEZIONE SISMICA 3		
SISMOSTRATI	LITOLOGIA INVESTIGATA	
SISMOSTRATO I	Terreno vegetale con alla base ghiaia sabbiosa	
SISMOSTRATO II	Limo argilloso sabbioso con ghiaia	
SISMOSTRATO III	Ghiaia cementata in matrice sabbiosa	



MODULI DINAMICI PROFILO 3			
	Strato 1	Strato 2	Strato 3
Velocità Onde P (m/s):	570	1136	2240
Velocità Onde S (m/s):	151	553	733
Modulo di Poisson:	0,46	0,34	0,44
Peso di volume (KN/m³)	17,14	19,27	21,48
SPESSORE MEDIO STRATO (m)	1,60	7,30	8,90
MODULO DI YOUNG DINAMICO Edin (Mpa o Nmm²)	117	1617	3392
MODULO DI TAGLIO DINAMICO Gdin (Mpa o Nmm²)	4	59	115
MODULO DI BULK (K) (Mpa o Nmm²) (mod. di incompressibilità di volume)	515	1736	9427
MODULO DI YOUNG STATICO E _{stat} (Kg/cm ²)	143	1987	4167
POROSITÀ % (correlazione Rzhesvky e Novik (1971) (%)	45,42	40,13	29,81
MODULO DI COMPRESSIONE EDOMETRICA (Kg/cm²)	568	2536	10990
RIGIDITÀ SISMICA (m/sec · KN/m³)	2588	10657	15745
Frequenza dello strato	23,59	18,94	20,59
Periodo dello strato	0,04	0,053	0,049

PROSPEZIONE SISMICA 4					
Sismica a Rifrazione	Velocità Onde P	Velocità Onde S	Profondità		
Sistilica a Miliazione	(m/sec) (m/sec)		Da (m)	a (m)	
SISMOSTRATO I	440	170	0,00	1,10 - 2,20	
SISMOSTRATO II	911	318	1,10 – 2,20 3,90 – 6,10		
SISMOSTRATO III	1737	585	Indefinito		

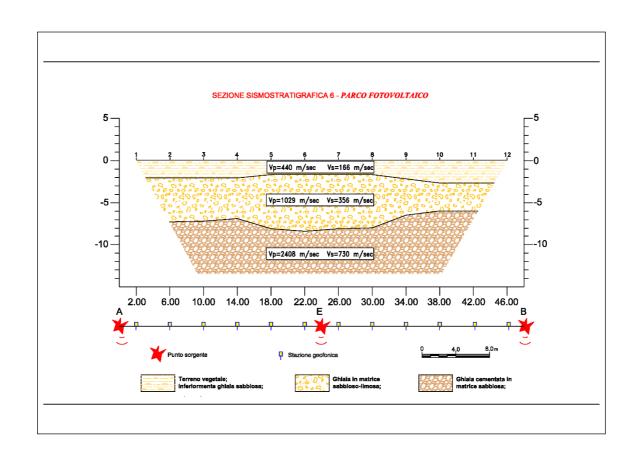
PROSPEZIONE SISMICA 4		
SISMOSTRATI	LITOLOGIA INVESTIGATA	
SISMOSTRATO I	Terreno vegetale con alla base ghiaia sabbiosa	
SISMOSTRATO II	Ghiaia in matrice sabbioso limosa	
SISMOSTRATO III	Ghiaia cementata in matrice sabbiosa	



MODULI DINAMICI PROFILO 4			
	Strato 1	Strato 2	Strato 3
Velocità Onde P (m/s):	410	1089	1997
Velocità Onde S (m/s):	130	306	615
Modulo di Poisson:	0,44	0,46	0,45
Peso di volume (KN/m³)	16,82	19,18	20,99
SPESSORE MEDIO STRATO (m)	2,00	6,50	8,50
MODULO DI YOUNG DINAMICO Edin (Mpa o Nmm²)	84	534	2346
MODULO DI TAGLIO DINAMICO Gdin (Mpa o Nmm²)	29	183	810
MODULO DI BULK (K) (Mpa o Nmm²) (mod. di incompressibilità di volume)	250	2076	7463
MODULO DI YOUNG STATICO E _{stat} (Kg/cm ²)	103	656	2882
POROSITÀ % (correlazione Rzhesvky e Novik (1971) (%)	46,92	40,57	32,08
MODULO DI COMPRESSIONE EDOMETRICA (Kg/cm²)	288	2319	8537
RIGIDITÀ SISMICA (m/sec · KN/m³)	2817	5868	12911
Frequenza dello strato	16,25	11,77	18,09
Periodo dello strato	0,06	0,085	0,055

PROSPEZIONE SISMICA 5						
Sismica a Rifrazione	Velocità Onde P	Velocità Onde S	Profondità			
Sistilica a Milazione	(m/sec) (m/sec)	Da (m)	a (m)			
SISMOSTRATO I	594	145	0,00	1,00 – 2,10		
SISMOSTRATO II	940	370	1,00 - 2,10 3,30 - 5,80			
SISMOSTRATO III	1729	453	Indefinito			

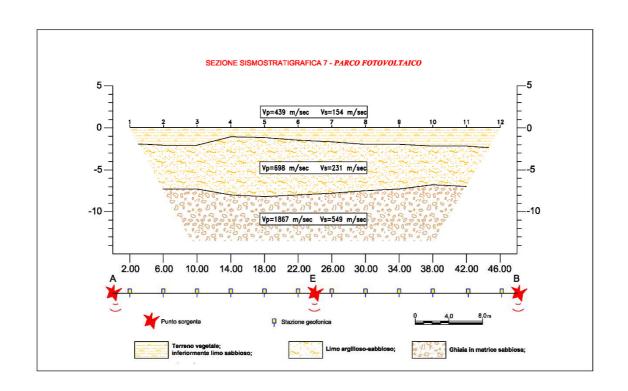
PROSPEZIONE SISMICA 5			
SISMOSTRATI	LITOLOGIA INVESTIGATA		
SISMOSTRATO I	Terreno vegetale con alla base ghiaia sabbiosa		
SISMOSTRATO II	Limo argilloso con ghiaia		
SISMOSTRATO III	Ghiaia cementata in matrice sabbiosa		



MODULI DINAMICI PROFILO 5				
	Strato 1	Strato 2	Strato 3	
Velocità Onde P (m/s):	594	940	1729	
Velocità Onde S (m/s):	145	370	453	
Modulo di Poisson:	0,47	0,41	0,46	
Peso di volume (KN/m³)	17,19	17,88	20,46	
SPESSORE MEDIO STRATO (m)	1,00	4,60	3,00	
MODULO DI YOUNG DINAMICO Edin (Mpa o Nmm²)	108	704	1254	
MODULO DI TAGLIO DINAMICO Gdin (Mpa o Nmm²)	4	24	42	
MODULO DI BULK (K) (Mpa o Nmm²) (mod. di incompressibilità di volume)	570	1279	5669	
MODULO DI YOUNG STATICO E _{stat} (Kg/cm ²)	133	864	1540	
POROSITÀ % (correlazione Rzhesvky e Novik (1971) (%)	45,20	41,96	34,59	
MODULO DI COMPRESSIONE EDOMETRICA (Kg/cm²)	618	1611	6236	
RIGIDITÀ SISMICA (m/sec · KN/m³)	2492	6616	9267	
Frequenza dello strato	36,25	20,11	37,75	
Periodo dello strato	0,03	0,050	0,026	

PROSPEZIONE SISMICA 6						
Sismica a Rifrazione	Velocità Onde P	Velocità Onde S	Profondità			
Sismica a Rifrazione (m/sec) (m/sec)	Da (m)	a (m)				
SISMOSTRATO I	440	166	0,00	1,70 – 2,70		
SISMOSTRATO II	1029	356	1,70 – 2,70	6,00 – 8,40		
SISMOSTRATO III	2408	730	Indefinito			

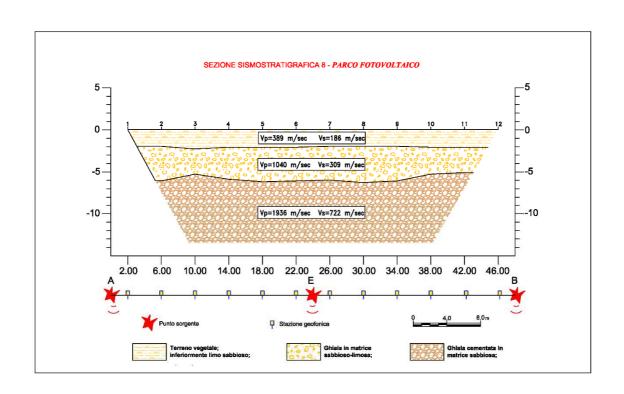
PROSPEZIONE SISMICA 6			
SISMOSTRATI	LITOLOGIA INVESTIGATA		
SISMOSTRATO I	Terreno vegetale con alla base ghiaia sabbiosa		
SISMOSTRATO II	Ghiaia in matrice sabbioso limosa		
SISMOSTRATO III	Ghiaia cementata in matrice sabbiosa		



MODULI DINAMICI PROFILO 6				
	Strato 1	Strato 2	Strato 3	
Velocità Onde P (m/s):	440	1029	2408	
Velocità Onde S (m/s):	166	356	730	
Modulo di Poisson:	0,42	0,43	0,43	
Peso di volume (KN/m³)	16,98	19,06	21,82	
SPESSORE MEDIO STRATO (m)	2,00	5,90	7,90	
MODULO DI YOUNG DINAMICO Edin (Mpa o Nmm²)	135	706	3439	
MODULO DI TAGLIO DINAMICO Gdin (Mpa o Nmm²)	5	24	116	
MODULO DI BULK (K) (Mpa o Nmm²) (mod. di incompressibilità di volume)	270	1730	11326	
MODULO DI YOUNG STATICO E _{stat} (Kg/cm ²)	165	867	4225	
POROSITÀ % (correlazione Rzhesvky e Novik (1971) (%)	46,64	41,13	28,24	
MODULO DI COMPRESSIONE EDOMETRICA (Kg/cm²)	409	2529	15858	
RIGIDITÀ SISMICA (m/sec · KN/m³)	2802	6785	15926	
Frequenza dello strato	20,75	15,08	23,10	
Periodo dello strato	0,05	0,066	0,043	

PROSPEZIONE SISMICA 7						
Sismica a Rifrazione	Velocità Onde P	Velocità Onde S (m/sec)	Profondità			
Sismica a Kifrazione	(m/sec)		Da (m)	a (m)		
SISMOSTRATO I	439	154	0,00	1,10 – 2,50		
SISMOSTRATO II	698	231	1,10 – 2,50	6,80 – 8,20		
SISMOSTRATO III	1867	549	Indefinito			

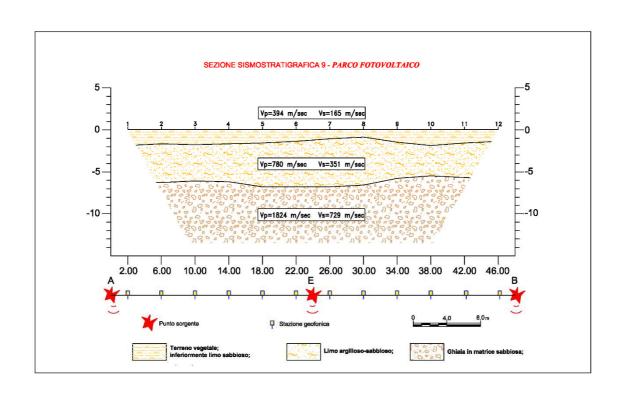
PROSPEZIONE SISMICA 7			
SISMOSTRATI	LITOLOGIA INVESTIGATA		
SISMOSTRATO I	Terreno vegetale con alla base ghiaia sabbiosa		
SISMOSTRATO II	Limo argilloso sabbioso		
SISMOSTRATO III	Ghiaia in matrice sabbiosa		



MODULI DINAMICI PROFILO 7				
	Strato 1	Strato 2	Strato 3	
Velocità Onde P (m/s):	439	698	1867	
Velocità Onde S (m/s):	154	231	1837	
Modulo di Poisson:	0,43	0,44	0,44	
Peso di volume (KN/m³)	16,88	17,40	20,73	
SPESSORE MEDIO STRATO (m)	1,80	6,20	10,10	
MODULO DI YOUNG DINAMICO Edin (Mpa o Nmm²)	117	273	2690	
MODULO DI TAGLIO DINAMICO Gdin (Mpa o Nmm²)	4	9	723	
MODULO DI BULK (K) (Mpa o Nmm²) (mod. di incompressibilità di volume)	277	739	2458	
MODULO DI YOUNG STATICO E _{stat} (Kg/cm ²)	143	335	4275	
POROSITÀ % (correlazione Rzhesvky e Novik (1971) (%)	46,64	44,22	33,30	
MODULO DI COMPRESSIONE EDOMETRICA (Kg/cm²)	332	864	7370	
RIGIDITÀ SISMICA (m/sec · KN/m³)	2599	4018	38710	
Frequenza dello strato	21,39	9,31	46,21	
Periodo dello strato	0,05	0,107	0,022	

PROSPEZIONE SISMICA 8						
Sismica a Rifrazione	Velocità Onde P	Velocità Onde S	Profondità			
(m/sec)		(m/sec)	Da (m)	a (m)		
SISMOSTRATO I	389	186	0,00	2,00 – 2,30		
SISMOSTRATO II	1040	309	2,00 – 2,30 5,10 – 6,30			
SISMOSTRATO III	1936	722	Indefinito			

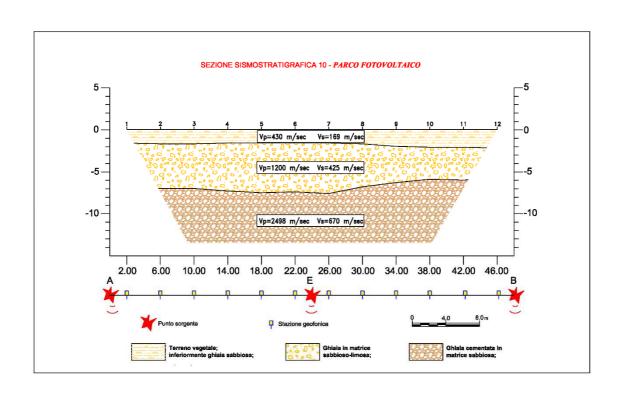
PROSPEZIONE SISMICA 8				
SISMOSTRATI	LITOLOGIA INVESTIGATA			
SISMOSTRATO I	Terreno vegetale con alla base ghiaia sabbiosa			
SISMOSTRATO II	Ghiaia in matrice sabbioso - limosa			
SISMOSTRATO III	Ghiaia cementata in matrice sabbiosa			



MODULI DINAMICI PROFILO 8				
	Strato 1	Strato 2	Strato 3	
Velocità Onde P (m/s):	389	1040	1936	
Velocità Onde S (m/s):	186	309	722	
Modulo di Poisson:	0,35	0,45	0,42	
Peso di volume (KN/m³)	16,78	19,08	20,87	
SPESSORE MEDIO STRATO (m)	1,80	3,70	5,50	
MODULO DI YOUNG DINAMICO Edin (Mpa o Nmm²)	160	540	3151	
MODULO DI TAGLIO DINAMICO Gdin (Mpa o Nmm²)	59	186	1109	
MODULO DI BULK (K) (Mpa o Nmm²) (mod. di incompressibilità di volume)	180	1858	6502	
MODULO DI YOUNG STATICO E _{stat} (Kg/cm ²)	197	663	3871	
POROSITÀ % (correlazione Rzhesvky e Novik (1971) (%)	47,11	41,03	32,65	
MODULO DI COMPRESSIONE EDOMETRICA (Kg/cm²)	318	2587	9807	
RIGIDITÀ SISMICA (m/sec · KN/m³)	3121	5896	15070	
Frequenza dello strato	25,83	20,88	32,82	
Periodo dello strato	0,04	0,048	0,030	

PROSPEZIONE SISMICA 9				
Sismica a Rifrazione	Velocità Onde P (m/sec)	Velocità Onde S (m/sec)	Profondità	
			Da (m)	a (m)
SISMOSTRATO I	394	165	0,00	0,90 – 1,90
SISMOSTRATO II	780	351	0,90 – 1,90	5,50 – 6,80
SISMOSTRATO III	1824	729	Indefinito	

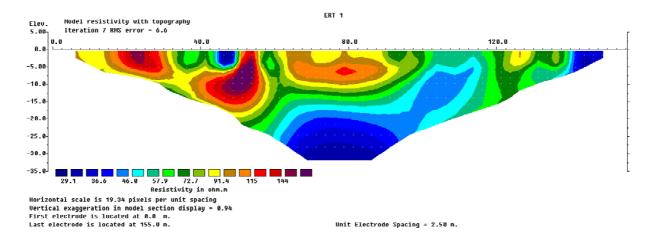
PROSPEZIONE SISMICA 9			
SISMOSTRATI	LITOLOGIA INVESTIGATA		
SISMOSTRATO I	Terreno vegetale con alla base ghiaia sabbiosa		
SISMOSTRATO II	Limo argilloso - sabbioso		
SISMOSTRATO III	Ghiaia in matrice sabbiosa		



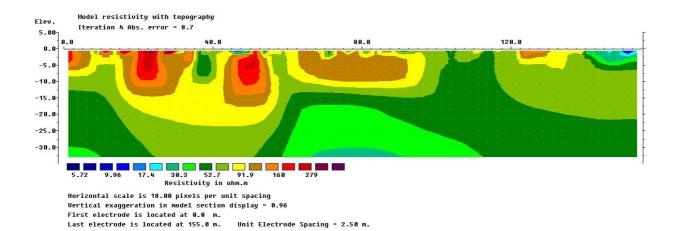
MODULI DINAMICI PROFILO 9			
	Strato 1	Strato 2	Strato 3
Velocità Onde P (m/s):	394	780	1824
Velocità Onde S (m/s):	165	351	729
Modulo di Poisson:	0,39	0,37	0,40
Peso di volume (KN/m³)	16,79	17,56	20,65
SPESSORE MEDIO STRATO (m)	1,70	4,30	6,00
MODULO DI YOUNG DINAMICO Edin (Mpa o Nmm²)	130	606	3146
MODULO DI TAGLIO DINAMICO Gdin (Mpa o Nmm²)	5	22	110
MODULO DI BULK (K) (Mpa o Nmm²) (mod. di incompressibilità di volume)	204	796	5517
MODULO DI YOUNG STATICO E _{stat} (Kg/cm ²)	160	745	3865
POROSITÀ % (correlazione Rzhesvky e Novik (1971) (%)	47,07	43,46	33,70
MODULO DI COMPRESSIONE EDOMETRICA (Kg/cm²)	266	1089	7005
RIGIDITÀ SISMICA (m/sec · KN/m³)	2770	6164	15052
Frequenza dello strato	24,26	20,41	30,38
Periodo dello strato	0,04	0,049	0,033

PROSPEZIONE SISMICA 10				
Sismica a Rifrazione	Velocità Onde P (m/sec)	Velocità Onde S (m/sec)	Profondità	
			Da (m)	a (m)
SISMOSTRATO I	430	169	0,00	1,60 – 2,20
SISMOSTRATO II	1200	425	1,60 – 2,20	5,80 – 7,60
SISMOSTRATO III	2498	670	Indefinito	

PROSPEZIONE SISMICA 9			
SISMOSTRATI	LITOLOGIA INVESTIGATA		
SISMOSTRATO I	Terreno vegetale con alla base ghiaia sabbiosa		
SISMOSTRATO II	Ghiaia in matrice sabbioso - limosa		
SISMOSTRATO III	Ghiaia cementata n matrice sabbiosa		

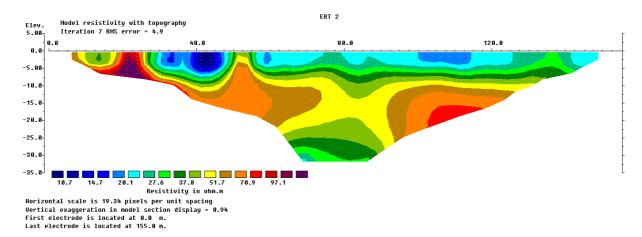


MODULI DINAMICI PROFILO 10			
	Strato 1	Strato 2	Strato 3
Velocità Onde P (m/s):	430	1200	2498
Velocità Onde S (m/s):	169	425	670
Modulo di Poisson:	0,41	0,43	0,46
Peso di volume (KN/m³)	16,86	19,40	22,00
SPESSORE MEDIO STRATO (m)	1,70	4,70	6,40
MODULO DI YOUNG DINAMICO Edin (Mpa o Nmm²)	138	1021	2945
MODULO DI TAGLIO DINAMICO Gdin (Mpa o Nmm²)	5	35	99
MODULO DI BULK (K) (Mpa o Nmm²) (mod. di incompressibilità di volume)	253	2374	12662
MODULO DI YOUNG STATICO E _{stat} (Kg/cm ²)	170	1255	3617
POROSITÀ % (correlazione Rzhesvky e Novik (1971) (%)	46,73	39,53	27,40
MODULO DI COMPRESSIONE EDOMETRICA (Kg/cm²)	318	2849	13996
RIGIDITÀ SISMICA (m/sec · KN/m³)	2849	8245	14737
Frequenza dello strato	24,85	22,61	26,17
Periodo dello strato	0,04	0,044	0,038

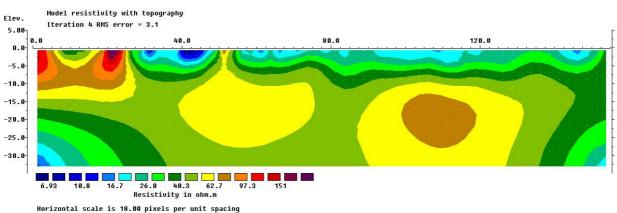


ALLEGATO V SEZIONI ELETTROSTRATIGRAFICHE

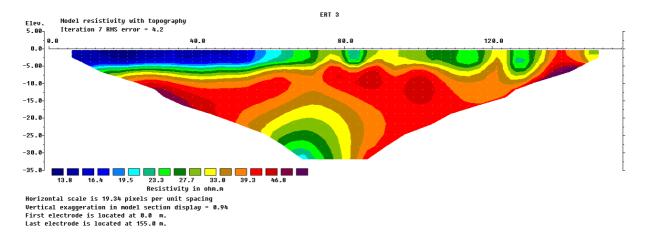
SEZIONE ELETTROSTRATIGRAFICA 1 (ERT1):

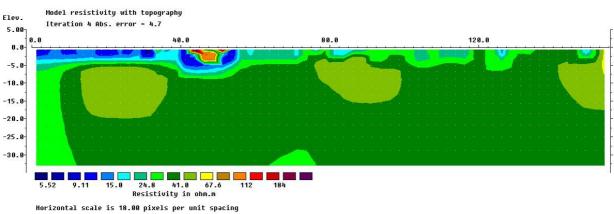


ERT 1

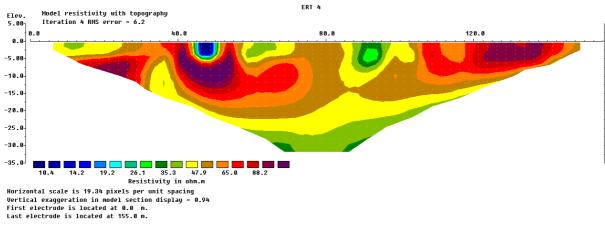


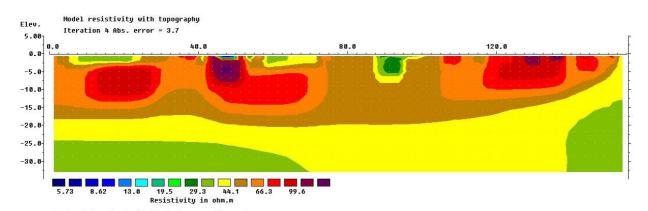
SEZIONE ELETTROSTRATIGRAFICA 2 (ERT2):


ERT 2

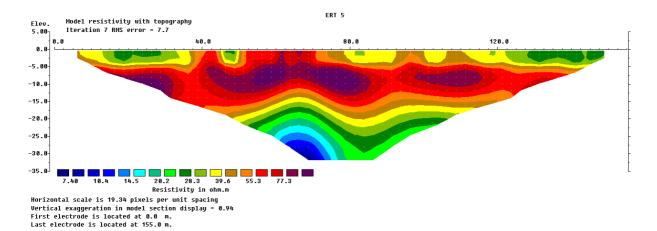

Horizontal scale is 18.00 pixels per unit spacing
Vertical exaggeration in model section display = 0.96
First electrode is located at 0.0 m.
Last electrode is located at 155.0 m. Unit Electrode Spacing = 2.50 m.

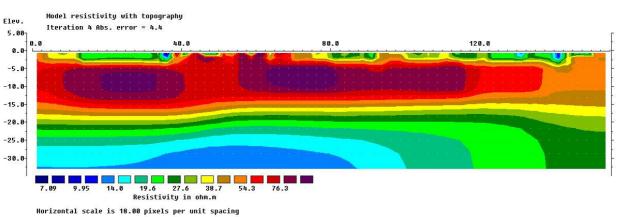
SEZIONE ELETTROSTRATIGRAFICA 3 (ERT3)


ERT 3


Horizontal scale is 18.00 pixels per unit spacing
Vertical exaggeration in model section display = 0.96
First electrode is located at 0.0 m.
Last electrode is located at 155.0 m. Unit Electrode Spacing = 2.50 m.

SEZIONE ELETTROSTRATIGRAFICA 4 (ERT4)


ERT 4


Horizontal scale is 18.00 pixels per unit spacing Vertical exaggeration in model section display = 0.96First electrode is located at 0.0 m. Last electrode is located at 155.0 m. Unit Electrode Spacing = 2.50 m.

SEZIONE ELETTROSTRATIGRAFICA 5 (ERT 5)

PASI survey WENNER-SCHLUMBERGER 20/02/07-08:45:53

Horizontal scale is 18.00 pixels per unit spacing
Vertical exaggeration in model section display = 0.96
First electrode is located at 0.0 m.
Last electrode is located at 155.0 m. Unit Electrode Spacing = 2.50 m.

A. PROVE PENETROMETRICHE - VALUTAZIONI STATISTICHE E CORRELAZIONI A.1 ELABORAZIONE STATISTICA

Permette l'elaborazione statistica dei dati numerici di Dynamic Probing, utilizzando nel calcolo dei valori rappresentativi dello strato considerato un valore inferiore o maggiore della media aritmetica dello strato (dato comunque maggiormente utilizzato); i valori possibili in immissione sono:

Media

Media aritmetica dei valori del numero di colpi sullo strato considerato.

Media minima

Valore statistico inferiore alla media aritmetica dei valori del numero di colpi sullo strato considerato.

Massimo

Valore massimo dei valori del numero di colpi sullo strato considerato.

Minimo

Valore minimo dei valori del numero di colpi sullo strato considerato.

Scarto quadratico medio

Valore statistico di scarto dei valori del numero di colpi sullo strato considerato.

Media deviata

Valore statistico di media deviata dei valori del numero di colpi sullo strato considerato.

Media + s

Media + scarto (valore statistico) dei valori del numero di colpi sullo strato considerato.

Media - s

Media - scarto (valore statistico) dei valori del numero di colpi sullo strato considerato.

A.2 PRESSIONE AMMISSIBILE

Pressione ammissibile specifica sull'interstrato (con effetto di riduzione per svergolamento o no) calcolata secondo le note elaborazioni proposte da Herminier, applicando un coefficiente di sicurezza (generalmente = 20-22) che corrisponde ad un coefficiente standard delle fondazioni pari a 4, con una geometria fondale standard di larghezza pari a 1 mt. ed immorsamento d = 1 mt..

A.3 CORRELAZIONI GEOTECNICHE TERRENI INCOERENTI

LIQUEFAZIONE

Permette di calcolare utilizzando dati Nspt il potenziale di liquefazione dei suoli (prevalentemente sabbiosi).

Attraverso la relazione di SHI-MING (1982), applicabile a terreni sabbiosi, la liquefazione risulta possibile solamente se Nspt dello strato considerato risulta inferiore a Nspt critico calcolato con l'elaborazione di **SHI-MING**.

CORREZIONE NSPT IN PRESENZA DI FALDA

N_{SPT}Corretto = 15 + 0.5 x (Nspt -15) Nspt è il valore medio nello strato

La correzione viene applicata in presenza di falda solo se il numero di colpi è maggiore di 15 (la correzione viene eseguita se tutto lo strato è in falda) .

ANGOLO DI ATTRITO - GRADI

- Peck-Hanson-Thornburn-Meyerhof 1956 Correlazione valida per terreni non molli a prof.< 5 mt.; correlazione valida per sabbie e ghiaie rappresenta valori medi. Correlazione storica molto usata, valevole per prof. < 5 mt. per terreni sopra falda e < 8 mt. per terreni in falda (tensioni < 8-10 t/mq);
- Meyerhof 1956 Correlazione utilizzata per terreni coesivi in genere, argillosi ed argillosi marnosi fessurati, terreni di riporto sciolti, terreno vegetale, coltri detritiche e terreni flyschoidi (da modifica sperimentale di dati).

- Sowers 1961)- Angolo di attrito in gradi valido per sabbie in genere (cond. ottimali per prof. < 4 mt. sopra falda e < 7 mt. per terreni in falda) s>5 t/mq.
- De Mello Correlazione valida per terreni prevalentemente sabbiosi e sabbioso-ghiaiosi (da modifica sperimentale di dati) con angolo di attrito < 38°.
- Malcev 1964 Angolo di attrito in gradi valido per sabbie in genere (cond. ottimali per prof. > 2 mt. e per valori di angolo di attrito < 38°).
- Schmertmann 1977- Angolo di attrito (gradi) per vari tipi litologici (valori massimi). N.B. valori spesso troppo ottimistici poiché desunti da correlazioni indirette da Dr %.
- Shioi-Fukuni 1982 (ROAD BRIDGE SPECIFICATION) Angolo di attrito in gradi valido per sabbie sabbie fini o limose e limi siltosi(cond. ottimali per prof, di prova > 8 mt. sopra falda e > 15 mt. per terreni in falda) s>15 t/mq.
- Shioi-Fukuni 1982 (JAPANESE NATIONALE RAILWAY) Angolo di attrito valido per sabbie medie e grossolane fino a ghiaiose.
- Angolo di attrito in gradi (Owasaki & Iwasaki) valido per sabbie sabbie medie e grossolane-ghiaiose (cond. ottimali per prof. > 8 mt. sopra falda e > 15 mt. per terreni in falda) s>15 t/mq.
- Meyerhof 1965 Correlazione valida per terreni per sabbie con % di limo < 5% a profondità < 5 mt. e con % di limo > 5% a profondità < 3 mt.
- Mitchell e Katti (1965) Correlazione valida per sabbie e ghiaie.

DENSITÀ RELATIVA %

- Gibbs & Holtz (1957) correlazione valida per qualunque pressione efficace, per ghiaie Dr viene sovrastimato, per limi sottostimato.
- Skempton (1986) elaborazione valida per limi e sabbie e sabbie da fini a grossolane NC a qualunque pressione efficace, per ghiaie il valore di Dr % viene sovrastimato, per limi sottostimato.
- Meyerhof (1957).
- Schultze & Menzenbach (1961) metodo valido per qualunque valore di pressione efficace in depositi NC, per sabbie fini e ghiaiose NC; per ghiaie il valore di Dr % viene sovrastimato, per limi sottostimato.

MODULO DI YOUNG E (Kg/cmq)

- Terzaghi elaborazione valida per sabbia pulita e sabbia con ghiaia senza considerare la pressione efficace.
- Schmertmann (1978), correlazione valida per vari tipi litologici.
- Schultze-Menzenbach, correlazione valida per vari tipi litologici.
- D'Appollonia ed altri (1970), correlazione valida per sabbia, sabbia SC, sabbia NC e ghiaia
- Bowles (1982), correlazione valida per sabbia argillosa, sabbia limosa, limo sabbioso,sabbia media, sabbia e ghiaia.

MODULO EDOMETRICO (Kg/cmq)

- Begemann (1974) elaborazione desunta da esperienze in Grecia, correlazione valida per limo con sabbia, sabbia e ghiaia.
- Buismann-Sanglerat, correlazione valida per sabbia e sabbia argillosa.
- Farrent (1963) valida per sabbie, talora anche per sabbie con ghiaia (da modifica sperimentale di dati).
- Menzenbach e Malcev valida per sabbia fine, sabbia ghiaiosa e sabbia e ghiaia.

GRADO DI ADDENSAMENTO

• Classificazione AG.I. 1977

PESO DI VOLUME GAMMA (t/mc)

• Meyerhof ed altri, valida per sabbie, ghiaie, limo, limo sabbioso.

PESO DI VOLUME SATURO (t/mc)

• Bowles 1982, Terzaghi-Peck 1948-1967. Correlazione valida per peso specifico del materiale pari a circa G=2,65 t/mc) e per peso di volume secco variabile da 1,33 (Nspt=0) a 1,99 (Nspt=95)

MODULO DI POISSON (MU)

• Classificazione A.G.I.

VELOCITÀ ONDE DI TAGLIO Vs (m/sec)

• Ohta e Goto (1978); correlazione valida per terreni limosi, sabbie e sabbie e ghiaia.

MODULO DI DEFORMAZIONE DI TAGLIO G (kg/cmq)

- Ohsaki & Iwasaki G (kg/cmq) elaborazione valida per sabbie con fine plastico e sabbie pulite.
- Robertson e Campanella (1983) e Imai & Tonouchi (1982) elaborazione valida soprattutto per sabbie e per tensioni litostatiche comprese tra 0,5 4,0 kg/cmq.

MODULO DI REAZIONE DEL SOTTOFONDO Ko (Kg/cmc)

• Navfac 1971-1982 - elaborazione valida per sabbie, ghiaie, limo, limo sabbioso.

RESISTENZA ALLA PUNTA DEL PENETROMETRO STATICO – QC (Kg/cmg)

• Robertson 1983 Qc (Kg/cmq).

A.4 CORRELAZIONI GEOTECNICHE TERRENI COESIVI

COESIONE NON DRENATA Cu (Kg/cmq)

- Benassi & Vannelli- correlazioni scaturite da esperienze ditta costruttrice Penetrometri SUNDA 1983.
- Terzaghi-Peck (1948-1967), correlazione valida per argille sabbiose-siltose NC con Nspt <8, argille limosesiltose mediamente plastiche, argille marnose alterate-fessurate.
- Terzaghi-Peck (1948). Cu min-max.
- Sanglerat , da dati Penetr. Statico per terreni coesivi saturi, tale correlazione non è valida per argille sensitive con sensitività > 5, per argille sovraconsolidate fessurate e per i limi a bassa plasticità.
- Sanglerat , (per argille limose-sabbiose poco coerenti), valori validi per resistenze penetrometriche < 10 colpi, per resistenze penetrometriche > 10 l'elaborazione valida è comunque quella delle "argille plastiche " di Sanglerat.
- (U.S.D.M.S.M.) U.S. Design Manual Soil Mechanics Coesione non drenata per argille limose e argille di bassa media ed alta plasticità, (Cu-Nspt-grado di plasticità).
- Schmertmann 1975 Cu (Kg/cmq) (valori medi), valida per argille e limi argillosi con Nc=20 e Qc/Nspt=2.
- Schmertmann 1975 Cu (Kg/cmq) (valori minimi), valida per argille NC.
- Fletcher 1965 (Argilla di Chicago). Coesione non drenata Cu (Kg/cmq), colonna valori validi per argille a mediobassa plasticità.
- Houston (1960) argilla di media-alta plasticità.
- Shioi-Fukuni 1982, valida per suoli poco coerenti e plastici, argilla di media-alta plasticità.
- Begemann.
- De Beer.

RESISTENZA ALLA PUNTA DEL PENETROMETRO STATICO - QC (Kg/cmg)

• Robertson 1983 Qc (Kg/cmq).

MODULO EDOMETRICO-CONFINATO Mo (Eed) (Kg/cmq)

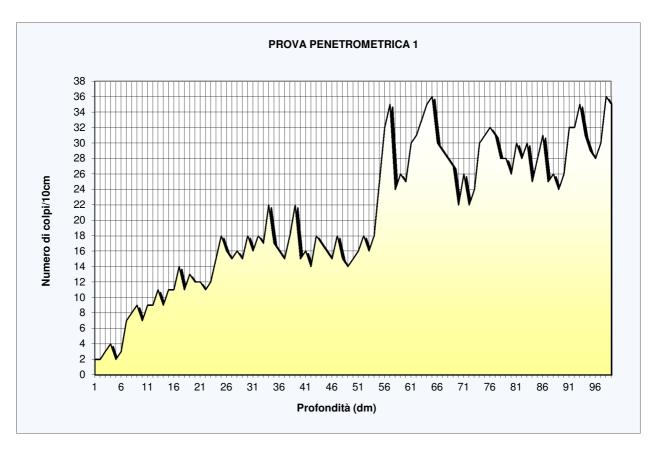
- Stroud e Butler (1975) Mo (Eed) (Kg/cmq)- per litotipi a media plasticità, valida per litotipi argillosi a media-medio-alta plasticità da esperienze su argille glaciali.
- Stroud e Butler (1975), per litotipi a medio-bassa plasticità (IP< 20), valida per litotipi argillosi a medio-bassa plasticità (IP< 20) da esperienze su argille glaciali.
- Vesic (1970) correlazione valida per argille molli (valori minimi e massimi).
- Trofimenkov (1974), Mitchell e Gardner Modulo Confinato -Mo (Eed) (Kg/cmq) valida per litotipi argillosi e limosi-argillosi (rapporto Qc/Nspt=1.5-2.0).
- Buismann- Sanglerat, valida per argille compatte (Nspt <30) medie e molli (Nspt <4) e argille sabbiose (Nspt=6-12).

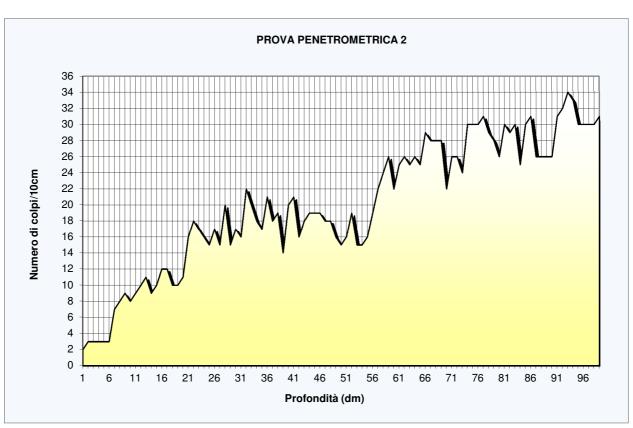
MODULO DI YOUNG E (Kg/cmq)

- Schultze-Menzenbach Ey (Kg/cmq) (Min. e Max.), correlazione valida per limi coerenti e limi argillosi con I.P. >15
- D'Appollonia ed altri (1983) E Young (Kg/cmq) correlazione valida per argille sature argille fessurate.

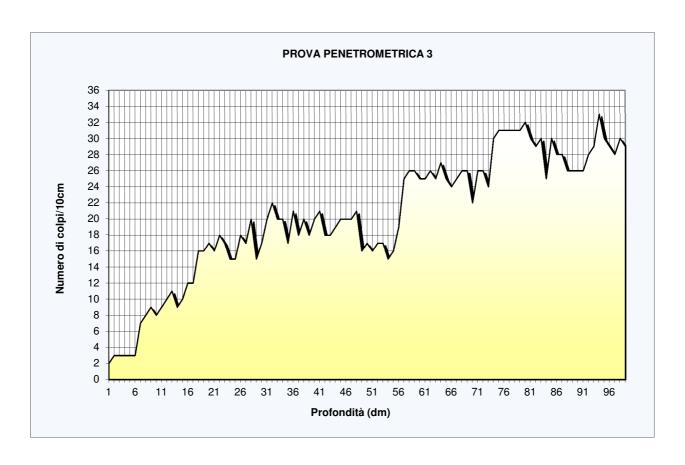
STATO DI CONSISTENZA

• Classificazione A.G.l. 1977


PESO DI VOLUME GAMMA (t/mc)


• Meyerhof ed altri, valida per argille, argille sabbiose e limose prevalentemente coerenti.

PESO DI VOLUME SATURO (t/mc)-


• Correlazione Bowles (1982), Terzaghi-Peck (1948-1967), valida per condizioni specifiche: peso specifico del materiale pari a circa G=2,70 (t/mc) e per indici dei vuoti variabili da 1,833 (Nspt=0) a 0,545 (Nspt=28)

