

SETTEMBRE 2021

TS ENERGY 5 S.r.L.

IMPIANTO INTEGRATO AGRIVOLTAICO
COLLEGATO ALLA RTN
POTENZA NOMINALE 81 MW

COMUNE DI ORDONA (FG) E ORTA NOVA (FG)

PROGETTO DEFINITIVO IMPIANTO AGRIVOLTAICO

Relazione inquinamento luminoso
L.R. 15 2005

Progettisti (o coordinamento)

Ing. Laura Maria Conti n. ordine Ing. Pavia 1726

Codice elaborato

2748_4499_ON_PD_R21_RevO_Relazione inquinamento luminoso L.R 152005

Memorandum delle revisioni

Cod. Documento	Data	Tipo revisione	Redatto	Verificato	Approvato
2748_4499_ON_PD_R20_Rev0_Relazio ne inquinamento luminoso L.R 152005	09/2021	Prima emissione	ML	PM	L. Conti

Gruppo di lavoro

Nome e cognome	Ruolo nel gruppo di lavoro	N° ordine
Laura Maria Conti	Direzione Tecnica	Ordine degli Ingegneri della Provincia di Pavia al n. 1726
Corrado Pluchino	Project Manager	Ordine degli Ingegneri della Provincia di Milano n. A27174
Riccardo Festante	Progettazione Elettrica, Rumore e Comunicazioni	Tecnico competente in acustica ambientale n. 71
Daniele Crespi	Coordinamento SIA	
Marco Corrù	Architetto	
Fabio Lassini	Ingegnere	Ordine degli Ingegneri della Provincia di Milano n. 29719
Francesca Jasparro	Esperto Ambientale	
Massimo Busnelli	Geologo	
Mauro Aires Ingegnere strutturista		Ordine degli Ingegneri della Provincia di Torino n. 9583J
Elena Comi	Biologo	Ordine Nazionale dei Biologi n. 60746
Sara Zucca	Architetto	
Andrea Fronteddu	Ingegnere Elettrico	Ordine degli Ingegneri di Cagliari n. 8788

Relazione inquinamento luminoso

Matteo Lana	Ingegnere Ambientale	
Vincenzo Gionti	Ingegnere	
Sergio Alifano	Architetto	
Lorenzo Griso	Geologo	
Michele Pecorelli (Studio Geodue)	Geologo - Indagini Geotecniche Geodue	Ordine dei Geologi della Regione Puglia al n. 327
Antonio Bruscella	Archeologo	Elenco dei professionisti abilitati alla redazione del documento di valutazione archeologica n. 4124
Giovanni Saraceno	3E Ingegneria S.r.l.	Ordine degli Ingegneri della Provincia di Reggio Calabria al n. 1629

Relazione inquinamento luminoso

INDICE

1.	PREMESSA	5
1.1	DATI GENERALI DEL PROGETTO	5
2.	RIFERIMENTI NORMATIVI	6
3.	DESCRIZIONE DEI COMPONENTI DELL'IMPIANTO FOTOVOLTAICO	7
3.1	DESCRIZIONE IMPIANTO ILLUMINAZIONE	7
3.1.1	Cabine di campo	8
3.1.2	Calcoli di smistamento MT	8
3.1.3	Cabina Ufficio	9
	Magazzino	
3.1.5	Corpo illuminante previsto	10
4.	VERIFICA RISPETTO REQUISITI LEGGE REGIONALE N. 15 DEL 23 NOV 2005	12

1. PREMESSA

Il progetto in questione prevede la realizzazione, attraverso la società di scopo TS Energy S.r.L., di un impianto solare fotovoltaico in alcuni terreni a sud dei comuni di Orta Nova (FG) e Ordona (FG) di potenza pari a 81 MW su un'area catastale di circa 114,92 ettari complessivi di cui 93 ha recintati.

TS Energy 5 S.r.L., è una società italiana con sede legale in Italia nel comune di Torremaggiore (FG). Le attività principali del gruppo sono lo sviluppo, la progettazione e la realizzazione di impianti di medie e grandi dimensioni per la produzione di energia da fonti rinnovabili.

L'impianto fotovoltaico sarà connesso in antenna a 150 kV alla sottostazione di trasformazione della RTN 150 kV di Stornara, mediante una linea di connessione interrata in MT (fino alla cabina di trasformazione SEU) e mediante una linea di connessione interrata in AT (fino alla sottostazione SE RTN 150 kV).

Il presente documento è finalizzato alla verifica dell'inquinamento luminoso e al risparmio energetico inerente all'impianto di illuminazione artificiale previsto per l'opera in progetto limitatamente all'area del campo impianto, secondo quanto stabilito dalla LEGGE REGIONALE n. 15 del 23 Novembre 2005. "Misure urgenti per il contenimento dell'inquinamento luminoso e per il risparmio energetico".

1.1 DATI GENERALI DEL PROGETTO

Nella Tabella 1.1 sono riepilogate in forma sintetica i principali dati di progetto dell'impianto.

Tabella 1.1: Dati di progetto

ITEM	DESCRIZIONE	
Richiedente	TS Energy 5 S.r.L.	
Luogo di installazione:	Ordona (FG), Orta Nova (FG)	
Denominazione impianto:	Ciaffa 1	
Potenza di picco (MW _p):	81 MWp	
Informazioni generali del sito:	Sito ben raggiungibile, caratterizzato da strade esistenti, idonee alle esigenze legate alla realizzazione dell'impianto e di facile accesso. La morfologia è piuttosto regolare.	
Connessione:	Interfacciamento alla rete mediante soggetto privato nel rispetto delle norme CEI	
Tipo strutture di sostegno:	Strutture metalliche in acciaio zincato tipo Tracker fissate a terra su pali	
Inclinazione piano dei moduli:	+55° - 55°	
Azimut di installazione:	0°	
Caratterizzazione urbanistico	e urbanistico II PRG del Comune di Ordona e di Orta Nova collocano l'area di intervento	
vincolistica:	in zona E – verde agricolo	
Cabine PS:	n. 21 cabine distribuite in campo	
Cabina elettrica di smistamento:	n. 1 cabina interna al campo FV da cui esce linea MT	
Stazione Utenza:	n.1 cabina di trasformazione MT/AT nelle immediate vicinanze del campo	
Rete di collegamento:	Alta tensione 150 kV	
Coordinate (uscita linea MT):	41.273002° N 15.645168° E	
	Altitudine media 175 m s.l.m.	

Relazione inquinamento luminoso

2. RIFERIMENTI NORMATIVI

Di seguito i principali riferimenti normativi:

- Legge Regionale n. 15 del 23 Novembre 2005. "Misure urgenti per il contenimento dell'inquinamento luminoso e per il risparmio energetico".
- Legge della Regione Puglia n.15 del 23 Novembre 2005 "Misure urgenti per il contenimento dell'inquinamento luminoso e per il risparmio energetico"
- Leggi n. 9 del gennaio 1991 "Norme per l'attuazione del nuovo Piano energetico nazionale: aspetti istituzionali, centrali idroelettriche ed elettrodotti, idrocarburi e geotermia, autoproduzione e disposizioni fiscali"
- Legge n. 10 del 9 gennaio 1991 "Norme per l'attuazione del Piano energetico nazionale in materia di uso razionale dell'energia, di risparmio energetico e di sviluppo delle fonti rinnovabili di energia".

3. DESCRIZIONE DEI COMPONENTI DELL'IMPIANTO FOTOVOLTAICO

L'impianto fotovoltaico con potenza nominale di picco pari a 81 MW è così costituito da:

- n.1 cabina di Utenza. Il collegamento alla RTN necessita della realizzazione di una stazione MT/AT di utenza che serve ad elevare la tensione di impianto di 30 kV al livello di 150 kV, per il successivo collegamento alla stazione di rete 150 kV di "Stornara";
- n.1 cabina principale MT di connessione. Nella stessa area all'interno della cabina sarà presente il quadro QMT1 contenente i dispositivi generali DG di interfaccia DDI e gli apparati SCADA e telecontrollo;
- n. 21 Power Station (PS). Le Power Station o cabine di campo avranno la duplice funzione di convertire l'energia elettrica da corrente continua a corrente alternata ed elevare la tensione da bassa a media tensione; esse saranno collegate tra di loro in configurazione radiale e in posizione più possibile baricentrica rispetto ai sottocampi fotovoltaici in cui saranno convogliati i cavi provenienti dalle String Box che a loro volta raccoglieranno i cavi provenienti dai raggruppamenti delle stringhe dei moduli fotovoltaici collegati in serie;
- i moduli fotovoltaici saranno installati su apposite strutture metalliche di sostegno tipo tracker fondate su pali infissi nel terreno;
- L'impianto è completato da:
 - o tutte le infrastrutture tecniche necessarie alla conversione DC/AC della potenza generata dall'impianto e dalla sua consegna alla rete di distribuzione nazionale;
 - o opere accessorie, quali: impianti di illuminazione, videosorveglianza, monitoraggio, cancelli e recinzioni.

L'impianto dovrà essere in grado di alimentare dalla rete tutti i carichi rilevanti (ad es: quadri di alimentazione, illuminazione).

Inoltre, in mancanza di alimentazione dalla rete, tutti i carichi di emergenza verranno alimentati da un generatore temporaneo di emergenza, che si ipotizza possa essere rappresentato da un generatore diesel.

Di seguito si riporta la descrizione dei principali componenti d'impianto; per dati di tecnici maggior dettaglio si rimanda alla Relazione Tecnica e agli elaborati dedicati.

3.1 DESCRIZIONE IMPIANTO ILLUMINAZIONE

Nell'impianto fotovoltaico in oggetto è prevista l'installazione di un impianto di illuminazione esclusivamente in corrispondenza dei principali cabinati di impianto, quali:

- n. 21 Power Station (PS) o cabine di campo;
- n.1 cabina di smistamento MT con tensione nominale 30 kV;
- n.9 cabine uso ufficio;
- n.9 magazzino.

Nei varichi, lungo la recinzione e nelle aree interne al campo fotovoltaico non è prevista la presenta di sistemi di illuminazione artificiale. Ove questa risulti necessaria, ad es. durante l'esecuzione di interventi di manutenzione in periodo notturno verranno adottati temporaneamente sistemi di illuminazione ausiliari portatili.

Il sistema di illuminazione artificiale previsto, per motivi di sicurezza avrà la sola funzione di illuminare esclusivamente l'area esterna dei cabinati "Power station", "Cabina secondaria MT", "Cabina ufficio" e la cabina "Magazzino" per un totale di 13 cabinati.

Il sistema di illuminazione previsto in corrispondenza dei soli cabinati interni all'area del parco sarà realizzato in conformità alla L.R. 15/05 ai sensi dell'Art.6.

Di seguito si riporta la descrizione dei cabinati e dell'apparecchio di illuminazione artificiale previsto.

3.1.1 Cabine di campo

Le Power Station (o cabine di campo) hanno la duplice funzione di convertire l'energia elettrica dal campo fotovoltaico da corrente continua (CC) a corrente alternata (CA) e di elevare la tensione da bassa (BT) a media tensione (MT).

Le cabine saranno costituite da elementi prefabbricati suddivisi in più scomparti e saranno progettate per garantire la massima robustezza meccanica e durabilità. Le pareti e il tetto saranno tali da garantire impermeabilità all'acqua e il corretto isolamento termico. Il locale avrà le dimensioni indicative riportate in e sarà posato su un basamento in calcestruzzo di adeguate dimensioni.

Per ognuna delle cabine sono previsti n.3 corpi illuminanti installati orizzontalmente sulla parete del manufatto ad una altezza dal suolo di circa 3 m e rivolti verso il basso al fine di illuminare il camminamento in prossimità dei varchi. Dio seguito di riposta una rappresentazione tipo delle cabine power station con la relativa indicazione della posizione dei corpi illuminanti previsti.

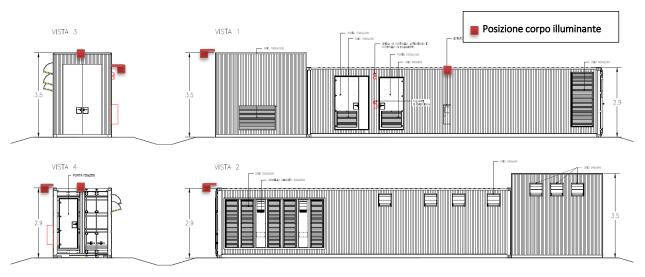


Figura 3.1: Tipologico Cabina di campo (PS) con indicazione della posizione dei corpi illuminanti

3.1.2 Calcoli di smistamento MT

Nel campo FV è prevista una cabina MT di smistamento con tensione nominale 30 kV, connessa alla Stazione Utenza MT/AT.

Per tale cabina sono previsti n.3 corpi illuminanti installati orizzontalmente sulla parete del manufatto ad una altezza dal suolo di circa 2,7 m e rivolti verso il basso al fine di illuminare il camminamento in prossimità dei varchi. Dio seguito sii riporta una rappresentazione tipo della cabina MT con la relativa indicazione della posizione dei corpi illuminanti previsti.

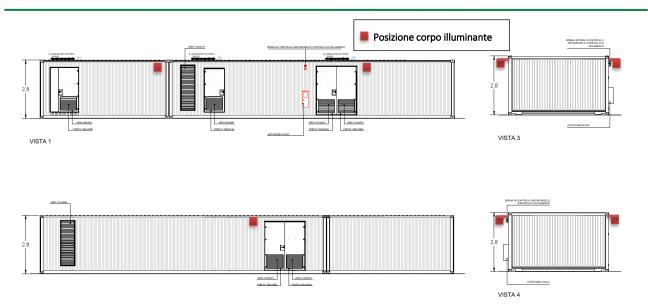


Figura 3.2: Tipologico Cabina di smistamento con indicazione della posizione dei corpi illuminanti

3.1.3 Cabina Ufficio

Nel campo FV sono previste tre cabine ufficio a servizio del personale di gestione e manutenzione.

Per tali cabine è prevista la posa di n.2 corpi illuminanti installati orizzontalmente sulla parete del manufatto ad una altezza dal suolo di circa 2,7 m e rivolti verso il basso al fine di illuminare il camminamento in prossimità dei varchi. Di seguito di riposta una rappresentazione tipo della cabina la relativa indicazione della posizione dei corpi illuminanti previsti.

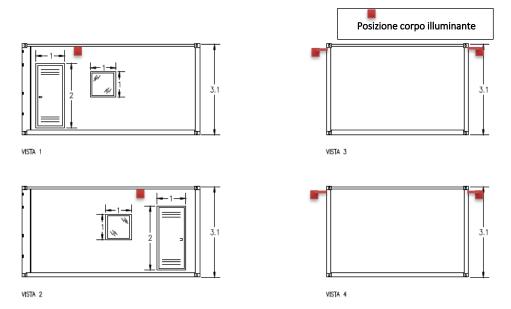


Figura 3.3: Tipologico Cabinato ufficio

3.1.4 Magazzino

Nel campo FV sono previsti tre magazzi a servizio del personale di gestione e manutenzione.

Per tali cabine è prevista la posa di n.2 corpi illuminanti installati orizzontalmente sulla parete del manufatto ad una altezza dal suolo di circa 2,7m e rivolti verso il basso al fine di illuminare il camminamento in prossimità dei varchi. Di seguito di riposta una rappresentazione tipo della cabina la relativa indicazione della posizione dei corpi illuminanti previsti.

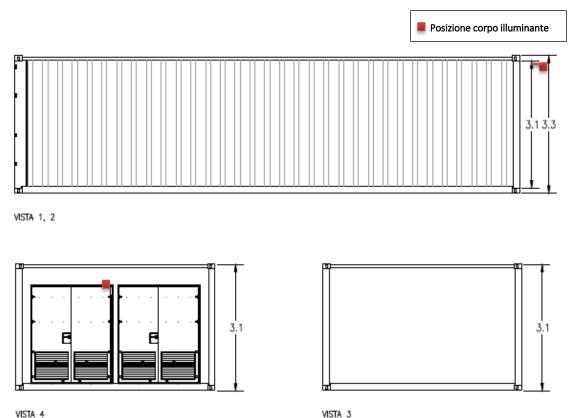


Figura 3.4: Tipologico Cabinato Magazzino

3.1.5 Corpo illuminante previsto

Per tutti i cabinati in impianto è prevista l'installazione di un corpo illuminante tipo led ad alta efficienza da 30W ed un flusso luminoso di circa 4394 lm..

Il proiettore sarà di tipo compatto e fissato alla struttura del cabinato mediante una staffa di circa 30cm.

Di seguito i dati tecnici del proiettore:

Potenza: 30W
Tensione: 85 - 277 V
Frequenza: 50/60 Hz
Fattore di potenza: >0,9

• Tipo LED: COB CITIZEN

Numero LED:

Flusso luminoso:
 4394 lm

• Colore luce: 2800 - 4000 - 5500 k

Angolo di diffusione: 120°

Temperatura di lavoro: -30° ÷ 60°
 Indice di resa cromatica: >70

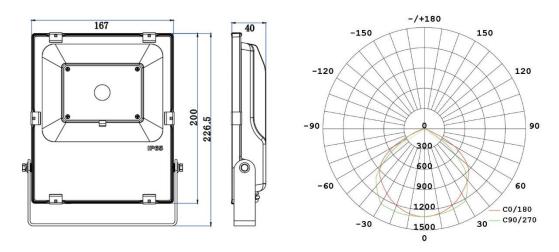


Figura 3.5: Diagramma fotometrico e viste proiettore

4. VERIFICA RISPETTO REQUISITI LEGGE REGIONALE N. 15 DEL 23 NOV 2005

Come stabilito all'art del Art. 5 della LEGGE REGIONALE N. 15 DEL 23 NOV 2005 (Requisiti tecnici e modalità d'impiego degli impianti di illuminazione) il corpo illuminante scelto e la modalità di posa A valle della installazione saranno corredati di opportuna certificazione di conformità alla presente legge, e più precisamente come specificato all'articolo 4, comma 1 del medesimo regolamento. Inoltre nel dimensionamento e nella futura posa saranno rispettati:

- Tipo area da illuminare: spazi privati
- Valore di intensità luminosa massima di 0 candele (cd) per 1000 lumen (lm) di flusso luminoso totale emesso a 90 gradi e oltre = 0; il proiettore scelto in progetto possiede un flusso luminoso pari a 0 per angolo superiore a 70°
- Il corpo illuminante sarà equipaggiato con lampada ad avanzata tecnologia ed elevata efficienza luminosa LED con un rapporto di 4393 lm per 30W con indice di resa cromatica superiore a 65 (Ra>65), ed efficienza comunque superiore ai 90 lm/W
- Vita media della lampada di circa 50.000 ore