						I	
19.	20_EO_ENE_VA_AM_RE_02_00	LUGLIO 2021	VALUTAZIONE PREVISIONALE DI IMPATTO AG	CUSTICO	Dott. Michele Bungaro	Dott. Michele Bungaro	Dott. Michele Bungaro
19.	20_EO_ENE_VA_AM_RE_02_00 N. ELABORATO	LUGLIO 2021 DATA EMISSIONE	VALUTAZIONE PREVISIONALE DI IMPATTO AC DESCRIZIONE	CUSTICO	Dott. Michele Bungaro ESEGUITO	Dott. Michele Bungaro CONTROLLATO	Dott. Michele Bungaro APPROVATO
O(N. ELABORATO GGETTO: ogetto dell'in	DATA EMISSIONE npianto eolic	co con storage denomin	nato" Sava Maruggio" con	ESEGUITO COMMITTEI	CONTROLLATO NTE:	+ -
O(Propo Ma	N.ELABORATO GGETTO: Dgetto dell'in tenza complanduria (TA),	npianto eolic lessiva di 18	co con storage denomin	nato" Sava Maruggio" con nei Comuni di Sava (TA),	COMMITTEI RED ENER Z.I. Lotte	CONTROLLATO NTE: RGY s.r.l. o n. 31	APPROVATO
OC Propo Ma	N.ELABORATO GGETTO: ogetto dell'in tenza compl anduria (TA),	npianto eolic lessiva di 18	co con storage denoming MW da realizzare in TA), Torricella (TA) ed E	nato" Sava Maruggio" con nei Comuni di Sava (TA),	COMMITTEI RED ENER Z.I. Lotte	CONTROLLATO NTE: RGY s.r.l.	APPROVATO
OC Proposition of the position	N.ELABORATO GGETTO: Dgetto dell'in tenza complanduria (TA), TOLO: lutazione Prev	npianto eolio lessiva di 18 Maruggio (T	co con storage denoming B2 MW da realizzare in TA), Torricella (TA) ed E	nato" Sava Maruggio" con nei Comuni di Sava (TA),	RED ENER Z.I. Lotte 74020 San	CONTROLLATO NTE: RGY s.r.l. o n. 31	APPROVATO
Or Pripo Ma	N.ELABORATO GGETTO: Digetto dell'intenza complanduria (TA), TOLO: Iutazione Previonale Socie ettore tecnic	mpianto eolicilessiva di 18 Maruggio (T	co con storage denoming MW da realizzare in TA), Torricella (TA) ed E atto acustico	nato" Sava Maruggio" con nei Comuni di Sava (TA), Erchie (BR)	RED ENER Z.I. Lotte 74020 San	CONTROLLATO NTE: RGY s.r.l. o n. 31 Marzano di S	APPROVATO
OC Propo Ma	N.ELABORATO GGETTO: Digetto dell'intenza complanduria (TA), TOLO: Iutazione Previonale Socie ettore tecnic	mpianto eolicilessiva di 18 Maruggio (Trisionale di imperinata d'ingegnico	co con storage denoming MW da realizzare in TA), Torricella (TA) ed E atto acustico	nato" Sava Maruggio" con nei Comuni di Sava (TA), Erchie (BR)	RED ENER Z.I. Lotto 74020 San	CONTROLLATO NTE: RGY s.r.l. o n. 31 Marzano di S	APPROVATO

19_20_EO_ENE_VA_AM_RE_02_00

Tutti i diritti di autore sono riservati a termine di legge. E' vietata la riproduzione senza autorizzazione.

P.IVA: 02658050733

studio@projetto.eu

web site: <u>www.projetto.eu</u>

SCALA:

ELAB.

RE_02

VALUTAZIONE PREVISIONALE IMPATTO ACUSTICO IMPIANTO EOLICO SAVA MARUGGIO REV 0.00 AGOSTO 2021

INDICE

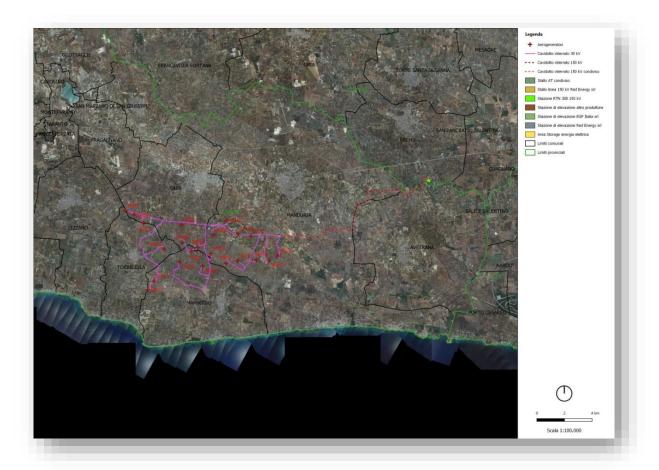
Sommario

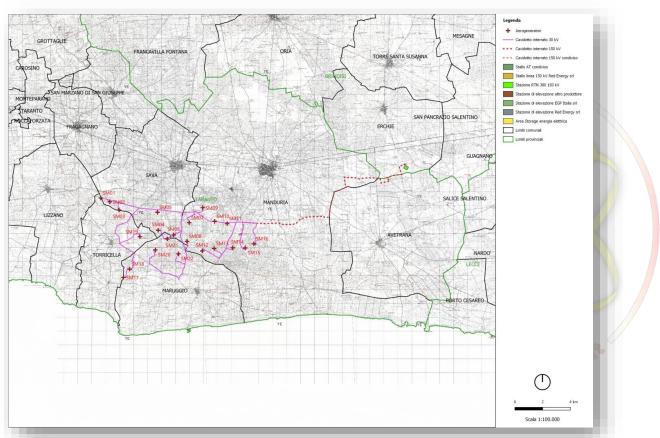
1.	INTRODUZIONE	2
2.	RIFERIMENTI LEGISLATIVI E NORMATIVI	5
3.	DESCRIZIONE DELL'OPERA	7
4.	INQUADRAMENTO DELL'AREA OGGETTO DELL'INTERVENTO	8
5.	RICETTORI	9
6.	VISUAL GRAFICO DEI RECETTORI SENSIBILI	. 11
7.	Descrizione del modello matematico di simulazione acustica:	. 12
8.	SORGENTI	. 21
9.	CALCOLO	. 22
10	. Analisi acustica delle sorgenti (con simulazione completa dello spettro	
acı	ustico)	. 23
	. Risultati analitici ai recettori (con simulazione completa dello spettro	
acı	ustico)	. 25
12	CONCLUSIONI	27

1. INTRODUZIONE

Oggetto del presente documento è l'illustrazione Valutazione d'Impatto Acustico, redatta dal sottoscritto tecnico dott.M.Ing. Michele Bungaro, iscritto ai relativi albi professionali di appartenenza, e analizza il clima acustico in seguito alla realizzazione di un impianto eolico "Sava Maruggio" ubicato nei comuni di Sava (TA), Manduria (TA), Maruggio (TA), Torricella (TA) ed Erchie (BR).

Nel sito è prevista l'installazione di 22 aerogeneratori di tipo SIEMENS GAMESA "SG170 6.0MW @ 115m per una potenza totale pari a 132 MW, e di sistema di accumulo di energia elettrica dalla potenza di 50 MW, per una potenza totale di progetto pari a 182 MW.


Gli aerogeneratori in progetto sono così suddivisi e ubicati nel territorio di:


- n.5 aerogeneratori nel Comune di Maruggio;
- n.2 aerogeneratori nel Comune di Torricella;
- n.10 aerogeneratori nel Comune di Manduria;
- n.5 aerogeneratori nel Comune di Sava

Dati prodromici al presente documento sono forniti dalla ditta richiedente e dall'ufficio tecnico di progettazione incaricato.

hungaro. N

Il presente elaborato è stato redatto sulle emissioni sonore legate agli impianti a servizio dell'impianto stesso. Dai dati progettuali si individuano le seguenti sorgenti (sistema cartesiano di riferimento WGS 84 UTM Zona 33 N) :

UTM WGS84 33

N.	East (m)	North (m)
SM1	711579	4473358
SM2	712229,46	4473085.13
SM3	712887.45	4472498.83
SM4	715704	4471037
SM5	715657	4472502
SM6	716818.66	4470706
SM7	4471444.06	4471444.06
SM8	717774.53	4470249.32
SM9	718917.48	4472675.77
SM10	719763.85	4471682.79
SM11	720663.71	4471515.98
SM12	718870.82	4469557.23
SM13	719730.02	4469732.74
SM14	721061.30	4469781.07
SM15	721961	4469769
SM16	722580.09	4470070.22
SM17	713208.52	4467655.56
SM18	713653.03	4468254.88
SM19	714391.04	4470575.03
SM20	715504.74	4469626.03
SM21	716359.98	4470414.75
SM22	717163.47	4469349.56

2. RIFERIMENTI LEGISLATIVI E NORMATIVI

Per la valutazione del clima acustico e per le modalità di esecuzione dei rilievi fonometrici si è fatto riferimento alla normativa seguente:

- Legge n. 447, 26 ottobre 1995, "Legge quadro sull'inquinamento acustico"
- D.P.C.M. 14 novembre 1997 "Determinazione dei valori limite delle sorgenti sonore"
- Decreto Ministro dell'Ambiente 16 marzo 1998, "Tecniche di rilevamento e di misurazione dell'inquinamento acustico"
- UNI 9884 31 luglio 1997 "Acustica Caratterizzazione acustica del territorio mediante la descrizione del rumore ambientale"
- UNI 10855 dicembre 1999 "Acustica Misurazione e valutazione del contributo acustico di singole sorgenti"
- Legge Regionale 12 febbraio 2002, N. 3

Secondo il D.P.C.M. 14 novembre 1997 l'opera in oggetto ricade in zona di tipo misto di classe III e devono essere rispettati i seguenti limiti:

Classi di destinazione	Limite diurno (06-22)	Limite notturno (22-06)
d'uso del territorio	LAeq [dBA]	LAeq [dBA]
III – Aree di tipo misto	55	45

Tabella 1 – Valori limite assoluti di emissione (tab. C del D.P.C.M. 14 novembre 1997)

Classi di destinazione	Limite diurno (06-22)	Limite notturno (22-06)
d'uso del territorio	LAeq [dBA]	LAeq [dBA]
III – Aree di tipo misto	60	50

Tabella 2 – Valori limite assoluti di immissione (tab. C del D.P.C.M. 14 novembre 1997)

Dalla classificazione ai sensi del DPCM 1 marzo del 1991, non avendo il comune di Castellaneta reso noto i risultati della classificazione acustica del territorio comunale, si applicheranno prudenzialmente i limiti di cui all'art 6, che prescrivono

Classi di destinazione	Limite diurno (06-22)	Limite notturno (22-06)
d'uso del territorio	LAeq [dBA]	LAeq [dBA]
Tutto il territorio Nazionale	70	60

Tabella 3 – Valori limite assoluti di immissione art 6.

3. DESCRIZIONE DELL'OPERA

L'opera di cui trattasi è descritta come appresso riportato, con dati desunti dalla documentazione progettuale:

INQUADRAMENTO

Il sito di installazione ricade nel territorio amministrativo dei Comuni di Sava (TA), Manduria (TA), Maruggio (TA), Torricella (TA) ed Erchie (BR), a circa 2,80 km nord dal centro abitato del comune di Maruggio, a circa 2,15 km est dal centro abitato del comune di Torricella, a circa 5,35 km sudovest dal centro abitato del comune di Manduria e a circa 3,50 km sud dal centro abitato del comune di Sava.

PROPONENTE

Red Energy Srl

DISPONIBILITÀ DEL SITO

Sede Legale: Zona Industriale lotto 31 – 74020 – S. Marzano di San Giuseppe (TA). Atto di compravendita stipulato tra la società proponente e il proprietario dei siti oggetto di intervento.

POTENZA MASSIMA IMPIANTO POTENZA MASSIMA STORAGE

132 MW 50 MW

È prevista che la connessione alla Rete di Trasmissione Nazionale avvenga in corrispondenza della Stazione Elettrica 150/380 kV di proprietà di TERNA S.p.a., esistente in agro di Erchie, la cui distanza dagli aerogeneratori varia da 12 a 22 km circa. L'area in cui ricade il parco eolico oggetto di analisi si presenta del tutto pianeggiante.

L'esatta posizione degli aerogeneratori è diretta conseguenza dello studio del regime eolico effettuato con l'installazione di una torre di misura anemometrica e l'elaborazione dei dati ottenuti tramite un programma di simulazione.

Adottando il sistema cartesiano di riferimento WGS 84 UTM Zona 33 N, le coordinate degli aerogeneratori sono le seguenti:

4. INQUADRAMENTO DELL'AREA OGGETTO DELL'INTERVENTO

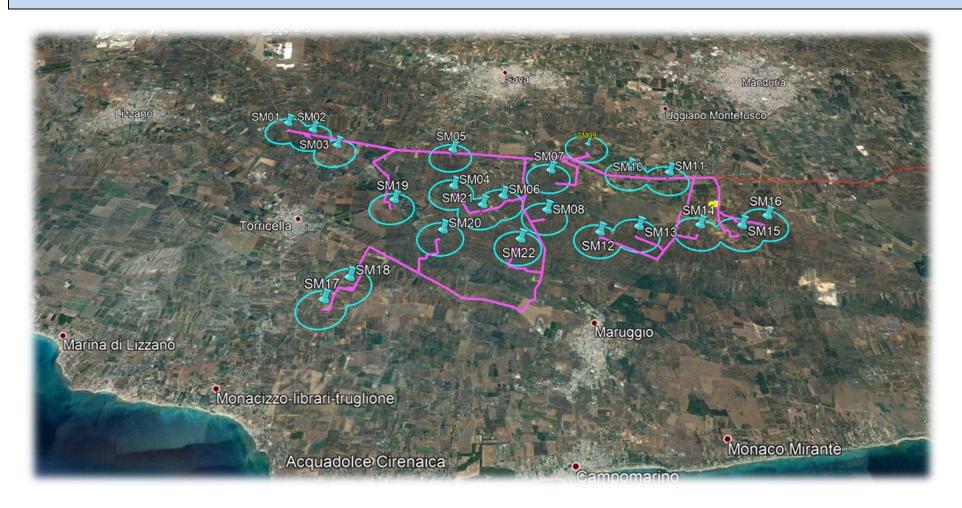
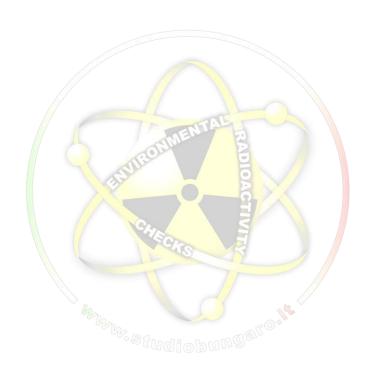


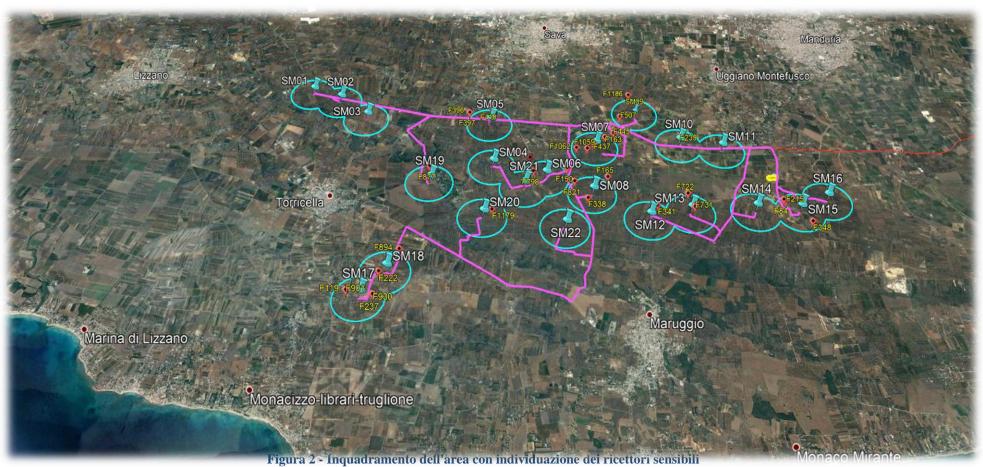
Figura 1 - Inquadramento dell'area

5. RICETTORI

I ricettori sensibili individuabili nella zona ove sorgerà l'impianto sono i seguenti, identificati nella seguente tabella e graficamente nel modello di simulazione (coordinate sul piano di simulazione , per la ubicazione si rimanda alla doc. progettuale) :


nome recettore	x	у	Z(m)
F396	-286,92	1.340,52	1
F 397	-313,78	1.307,79	1
F 418	243,76	1.744,43	1
F877	-1.169,21	-331,38	1
F877	-1.042,46	-198,81	1
Lizzano	-7.615,31	2.855,63	1
Torricella	-3.182,61	-1.152,17	1
F1105	451,78	-1.430,11	1
F1119	255,78	-1.583,55	1
F222	-2.023,27	-3.157,88	1
F894	-1.649,51	-2.565,10	1
F 119 F 901	-2.734,71	-3.515,50	1
F 930 F 237	-2.102,69	-3.718,90	1
F798	1.190,64	-250,98	1
F573	1.113,77	66,11	1
F 150	1.917,70	-327,85	1
F338	2.224,02	-1.477,83	1
F 165	2.760,06	-725,01	1
F437	2.513,79	227,89	1
F1063	2.401,27	260,88	1
F 1059	2.335,10	102,47	1
F1062	2.097,66	139,27	1
F507	3.196,09	1.028,37	1

nome recettore	X	У	Z(m)
F1186	3.432,99	1.852,28	1
F239	4.354,98	715,95	1
Sava	1.656,16	4.323,86	1
Uggiano Montefusco	5.673,96	2.681,87	1
Manduria	8.557,61	3.790,78	1
Maruggio	3.127,67	-4.303,18	1
F731	4.548,67	-1.602,16	1
F1158 F722	4.333,92	-1.131,58	1
F 341	3.323,33	-1.491,69	1
F215	6.294,75	-1.522,22	1
F348	6.746,67	-2.155,27	1


NB: oltre ai recettori sensibili individuati si sono inseriti i centri dei paesi e comunità vicinore.

6. VISUAL GRAFICO DEI RECETTORI SENSIBILI

A seguito di sopralluogo e verifiche puntuali in campo con idonea strumentazione conforme agli standard normativi, in valido periodo di taratura ed a completa disposizione del tecnico incaricato, non si è reputato necessario procedere ad ulteriori sessioni fonometriche tenuto conto della scientifica constatazione della preesistente presenza di sorgenti poco emettitive e distanze tra sorgenti e ricettori assai considerevoli.

7. Descrizione del modello matematico di simulazione acustica:

La determinazione dei contributi ai livelli acustici attuali è stata eseguita con l'ausilio del modello previsionale di calcolo SoundPLAN della soc. Braunstein + Bernt GmbH.

La scelta di applicare tale software di simulazione è stata effettuata in considerazione delle caratteristiche del modello, del livello di dettaglio che è in grado di raggiungere e, inoltre, della sua affidabilità ampiamente garantita dalle applicazioni in industriale, già effettuate in altri studi analoghi.

SoundPLAN è un modello previsionale ad "ampio spettro" in quanto permette di studiare fenomeni acustici generati da rumore stradale, ferroviario e industriale utilizzando di volta in volta gli standard internazionali più ampiamente riconosciuti.

Nel caso specifico si utilizza come riferimento la norma ISO 9613 "dedicata" al problema della propagazione in ambiente esterno.

Tale metodo è indicato quale riferimento dalla bozza di direttiva europea in materia di inquinamento acustico ambientale.

Vengono di seguito descritte le modalità con le quali è stato effettuato l'inserimento dei dati nel modello di simulazione, nonché i dati delle sorgenti ed i parametri acustici adottati nell'applicazione del SoundPLAN.

Come base cartografica è stata utilizzata la Cartografia digitale relativa al progetto, attraverso la quale sono state caricate nel modello tutte le informazioni relative alle sorgenti ed ai ricettori.

Successivamente, per assegnare l'elevazione ad ognuno degli oggetti presenti sulla mappa è stato creato un modello digitale del terreno DGM che definisce una superficie sull'intera area di calcolo attraverso una triangolazione che unisce tutti i punti dei quali è nota la quota.

La mappa è stata calcolata ad un'altezza da terra pari a 1 metri, corrispondente al primo piano degli edifici circostanti.

Modello ISO 9613-2

La norma internazionale ISO 9613 è dedicata alla modellizzazione della propagazione acustica nell'ambiente esterno, ma non fa riferimento alcuno a sorgenti specifiche di rumore (traffico, rumore industriale...), anche se è invece esplicita nel dichiarare che non si applica al rumore aereo (durante il volo dei velivoli) e al rumore generato da esplosioni di vario tipo. L'Unione Europea ha scelto tale norma come riferimento per la modellizzazione del rumore industriale.

E' dunque una norma di tipo ingegneristico rivolta alla previsione dei livelli sonori sul territorio, che prende origine da una esigenza nata dalla norma ISO 1996 del 1987, che richiedeva la valutazione del livello equivalente ponderato "A" in condizioni meteorologiche "favorevoli alla propagazione del suono1"; la norma ISO 9613 permette, in aggiunta, il calcolo dei livelli sonori equivalenti "sul lungo periodo" tramite una correzione forfettaria.

La prima parte della norma (ISO 9613-1:1993) tratta esclusivamente il problema del calcolo dell'assorbimento acustico atmosferico, mentre la seconda parte (ISO 9613-2:1996) tratta in modo complessivo il calcolo dell'attenuazione acustica dovuta a tutti i fenomeni fisici di rilevanza più comune, ossia:

- la divergenza geometrica;
- l'assorbimento atmosferico;
- l'effetto del terreno: le riflessioni da parte di superfici di vario genere;
- l'effetto schermante di ostacoli;
- l'effetto della vegetazione e di altre tipiche presenze (case, siti industriali).

La norma ISO, come abbiamo già rimarcato, non si addentra nella definizione delle sorgenti, ma specifica unicamente criteri per la riduzione di sorgenti di vario tipo a sorgenti puntiformi.

In particolare, viene specificato come sia possibile utilizzare una sorgente puntiforme solo qualora sia rispettato il seguente criterio:

$$d > 2 H_{max}$$

dove d è la distanza reciproca fra la sorgente e l'ipotetico ricevitore, mentre H_{max} è la dimensione maggiore della sorgente.

L'equazione che permette di determinare il livello sonoro L_{AT}(DW) in condizioni favorevoli alla propagazione in ogni punto ricevitore è la seguente:

$$L_{AT}(DW) = L_w + D_c - A$$

dove L_w è la potenza sonora della sorgente (espressa in bande di frequenza di ottava) generata dalla generica sorgente puntiforme, D_c è la correzione per la direttività della sorgente e A l'attenuazione dovuti ai diversi fenomeni fisici di cui sopra, espressa da:

$$A = A_{div} + A_{atm} + A_{gr} + A_{bar} + A_{misc}$$

con

Adiv attenuazione per la divergenza geometrica,

Aatm attenuazione per l'assorbimento atmosferico,

Agr l'attenuazione per effetto del terreno,

Abar l'attenuazione di barriere,

A_{misc} l'attenuazione dovuta agli altri effetti non compresi in quelli precedenti. La condizione di propagazione ottimale, corrispondente alle condizioni di "sottovento" e/o di moderata inversione termica (tipica del periodo notturno), è definita dalla ISO 1996-2 nel modo seguente:

Direzione del vento compresa entro un angolo di \pm 45° rispetto alla direzione individuata dalla retta che congiunge il centro della sorgente sonora dominante alla regione dove è situato il ricevitore, con il vento che spira dalla sorgente verso il ricevitore;

Velocità del vento compresa fra 1 e 5 m/s, misurata ad una altezza dal suolo compresa fra 3 e 11 m.

Allo scopo di calcolare un valore medio di lungo-periodo L_{AT}(LT), la norma ISO 9613 propone di utilizzare la seguente relazione:

$$L_{AT}(LT) = L_{AT}(DW) - C_{met}$$

dove C_{met} è una correzione di tipo meteorologico derivante da equazioni approssimate che richiedono una conoscenza elementare della situazione locale.

$$C_{met} = 0$$
 per $d_p < 10 (h_s + h_r)$

$$C_{met} = C_0 [1 - 10(h_s + h_r)/d_p]$$
 per $d_p > 10 (h_s + h_p)$

dove

 $h_{\mbox{\scriptsize s}}$ è l'altezza della sorgente dominante,

h_r è l'altezza del ricevitore

d_p la proiezione della distanza fra sorgente e ricevitore sul piano orizzontale.

 C_0 è una correzione che dipende dalla situazione meteo locale e può variare in una gamma limitata (0–5 dB): la ISO consiglia che debba essere un parametro determinato dall'autorità locale.

Adiv: attenuazione dovuta alla divergenza geometrica

La divergenza sferica comporta una diminuzione di 6 dB per raddoppio della distanza s - o

$$\Delta = 10 \cdot \log_{10} 4\pi r^2$$

La divergenza emisferica comporta una diminuzione di 3 dB per raddoppio della distanza s - o

$$\Delta = 10 \cdot \log_{10} 2\pi r^2$$

<u>A_{atm}: attenuazione dovuta all'assorbimento da parte dell'atmosfera</u>

$$A_{atm} = \alpha d / 1000$$

Calcolo del coefficiente di attenuazione dovuto all'assorbimento atmosferico α Il coefficiente di attenuazione α , in dB / metro, dovuto all'assorbimento atmosferico può essere calcolato dalla:

$$\alpha = C_1 \cdot f^2 \cdot \left\{ \left(C_2 \cdot \frac{P_s}{P_{s0}} \cdot \sqrt{\frac{T}{T_0}} \right) + \left(\frac{T}{T_0} \right)^{-\frac{5}{2}} \cdot \left[C_3 \cdot \frac{e^{-\frac{9_O}{T}}}{f_{rO} + \left(\frac{f^2}{f_{rO}} \right)} + C_4 \cdot \frac{e^{-\frac{9_N}{T}}}{f_{rN} + \left(\frac{f^2}{f_{rN}} \right)} \right] \right\}$$

con

C₁, C₂, C₃, C₄: costanti disponibili in letteratura

 θ_{0} e θ_{N} temperature caratteristiche

f : frequenza del suono in esame [Hz]

 T_0 : temperatura atmosferica di riferimento 293,15 K

T: temperatura atmosferica [K] (253,15 \div 323, 15 K; -20 \div +50 °C)

P_{s0}: pressione atmosferica di riferimento 101,325 Kpa

 P_s : pressione atmosferica [Kpa] (< 200 Kpa; 2 atmosfere)

h: concentrazione molare del vapor d'acqua [%] (0,05 ÷ 5 %)

 f_{rO} : frequenza di rilassamento dell'ossigeno [Hz]

f_{rN}: frequenza di rilassamento dell'azoto [Hz]

Agr. l'attenuazione per effetto del terreno: metodo completo

Nelle condizioni meteorologiche di propagazione del suono previste dalla norma l'attenuazione dovuta all'interferenza del suono si realizza principalmente in due aree limitate una vicina alla sorgente e una vicina al recettore. Queste due aree hanno

rispettivamente estensione massima pari a trenta volte l'altezza della sorgente sul suolo e trenta volte l'altezza del recettore sul suolo.

L'equazione utilizzata è la seguente:

$$A_{gr} = A_s + A_r + A_m$$

dove:

As, attenuazione calcolata nella regione della sorgente

Ar: attenuazione calcolata nella regione del recettore

A_m: attenuazione calcolata nella regione di mezzo (che può anche non esserci) Nella tabella seguente è riportato lo schema di calcolo descritto nella norma

Hz	As, Ar (dB)	Am (dBI	
63	-1,5	-3q	
125	-1,5+G·a(h)	-3q(1-Gm)	
250	-1,5+G·b(h)	-3q(1-Gm)	
500	-1,5+G·c(h)	-3q(1-Gm)	
1000	-1,5+G·d(h)	-3q(1-Gm)	
2000	-1,5(1-G)	-3q(1-Gm)	
4000	-1,5(1-G)	-3q(1-Gm)	
8000	-1,5(1-G)	-3q(1-Gm)	

Dove:

$$a(h) = 1.5 + 3 \cdot e^{-0.12(h-5)^2} (1 - e^{-d/50}) + 5.7 \cdot e^{-0.09h^2} (1 - e^{-2.8 \cdot 10^{-6} \cdot d^2})$$

$$b(h) = 1.5 + 8.6 \cdot e^{-0.09h^2} (1 - e^{-d/50})$$

$$c(h) = 1.5 + 14 \cdot e^{-0.46h^2} (1 - e^{-d/50})$$

$$d(h) = 1.5 + 5 \cdot e^{-0.9h^2} (1 - e^{-d/50})$$

 $d(h) = 1.5 + 5 \cdot e^{-0.9h^2} (1 - e^{-d/50})$ h: nel calcolo di A_s rappresenta l'altezza sul suolo in metri della sorgente, nel calcolo

di A_r rappresenta l'altezza sul suolo in metri del recettore

d : è la proiezione sul piano della distanza in metri tra sorgente e recettore

q : se d \leq 30×(h_s + h_r) il termine q vale 0 altrimenti vale

$$q = 1 - \frac{30(h_s + h_r)}{d}$$

G: Ground factor, fattore che descrive le proprietà acustiche del terreno compreso tra 0 (Hard ground) e 1 (Porous Ground)

Questo metodo è applicabile solo in caso di terreno pianeggiante; per applicare questo metodo è necessario fornire in ogni punto del reticolo di calcolo il valore del coefficiente G.

In caso di terreno non piatto la ISO 9613-2 fornisce un metodo semplificato che calcola l'attenuazione dovuta al terreno ponderata in curva A (e non quindi in banda d'ottava):

$$A_{gr} = 4.8 - (2h_m/d)(17 + 300/d)$$
 dB

dove:

 h_{m} : altezza media del raggio di propagazione in metri

d : distanza tra la sorgente e il recettore in metri

questo metodo è applicabile solo quando la propagazione del suono avviene su terreni porosi o prevalentemente porosi.

Abar l'attenuazione di barriere

Le condizioni per considerare un oggetto come schermo sono le seguenti:

- la densità superficiale dell'oggetto è almeno pari a 10Kg/m²
- l'oggetto ha una superficie uniforme e compatta (si ignorano quindi molti impianti presenti in zone industriali)
- la dimensione orizzontale dell'oggetto normale al raggio acustico è maggiore della lunghezza d'onda della banda nominale in esame

Il modello di calcolo valuta solo la diffrazione dal bordo superiore orizzontale secondo l'equazione:

$$A_{bar} = D_z - A_{gr}$$

dove:

D₇: attenuazione della barriera in banda d'ottava

A_{qr}: attenuazione del terreno in assenza della barriera

- L'attenuazione provocata dalla barriera tiene conto dell'effetto del suolo: quindi in presenza di una barriera non si calcola l'effetto suolo
- Per grandi distanze e barriere alte il calcolo di seguito illustrato non è attendibile
- Si considera solo il percorso principale

L'equazione che descrive l'effetto dello schermo è la seguente:

$$D_z = 10\log(3 + (C_2/\lambda) \cdot C_3 \cdot z \cdot K_{met})$$

dove:

C2: uguale a 20

C₃: vale 1 in caso di diffrazione semplice mentre in caso di diffrazione doppia vale :

$$C_3 = (1 + (5\lambda/e)^2)/(1/3 + (5\lambda/e)^2)$$

1: lunghezza d'onda nominale della banda d'ottava in esame

z : differenza tra il percorso diretto del raggio acustico e il percorso diffratto

K_{met}: correzione meteorologica data da:

$$K_{met} = \exp(-(1/2000)\sqrt{d_{ss}d_{sr}d/(2z)})$$

e : distanza tra i due spigoli in caso di diffrazione doppia

In caso di barriere multiple la ISO 96113-2 suggerisce di considerare solo le due barriere più significative

Il calcolo per ogni banda d'ottava viene comunque limitato a 20 dB in caso di diffrazione singola e a 25 dB in caso di diffrazione doppia

Si ricorda che l'orografia è considerata dal modello come una serie di barriere. L'inserimento dell'orografia nel modello è critico visto che non sempre è possibile approssimare l'orografia come schermi discreti.

Amisc l'attenuazione dovuta agli altri effetti non compresi in quelli precedenti

Per quanto riguarda le attenuazioni aggiuntive dovute alla presenza di vegetazione, di siti industriali o di gruppi di case, la ISO 9613 propone alcune relazioni empiriche per il calcolo, che pur avendo una limitata validità possono essere utili in casi particolari.

<u>L'attenuazione dovuta alla vegetazione</u> è molto limitata e si verifica solo se la vegetazione è molto densa al punto da bloccare la vista.

L'attenuazione si verifica solo nei pressi della sorgente e nei pressi del recettore secondo la tabella seguente:

Attenuazione in dB

Per valori di d > 200 metri si prende comunque tale valore come massimo

m	63	125	250	500	1000	2000	4000	8000
10≤d ≤ 20	0	1	1	1	1	1	2	3
$20 \le d \le 200$	0.02	0.03	0.04	0.05	0.06	0.08	0.09	0.12

Attenuazione dovuta a propagazione attraverso siti industriali

L'attenuazione non deve superare 10 dB non bisogna inserire barriere in una zona acustica

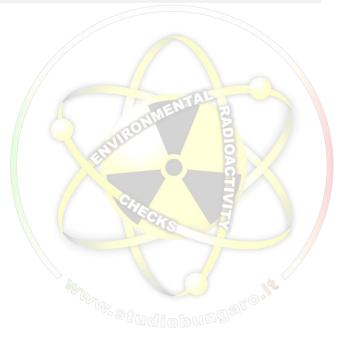
							- 101	
	63	125	250	500	1000	2000	4000	8000
dB/m	0	0.015	0.025	0.025	0.02	0.02	0.015	0.015

Attenuazione dovuta a propagazione attraverso siti edificati

$$A_{hous} = 0, 1 \cdot B \cdot d$$

dove:

B : densità degli edifici nella zona data dal rapporto tra la zona edificata e la zona libera


d : lunghezza del raggio curvo che attraversa la zona edificata sia nei pressi della sorgente che nei pressi del recettore, calcolato come descritto in precedenza

il valore dell'attenuazione non deve superare i 10 dB

Se il valore dell'attenuazione del suolo calcolato come se le case non fossero presenti fosse superiore dell'attenuazione calcolata con l'equazione precedente, allora questa viene trascurata.

Per quanto riguarda l'incertezza associata alla previsione la ISO ipotizza che, in condizioni favorevoli di propagazione (sottovento, DW) e tralasciando l'incertezza con cui si può determinare la potenza sonora della sorgente sonora, nonché problemi riflessioni o schermature, l'accuratezza associabile alla previsione di livelli sonori globali sia quella presentata nella tabella sottostante.

Altezza media di ricevitore e sorgente		Distanza
[m]	$0 < d < 100 \ m$	100 m < d < 1000 m
0 < h < 5	± 3 dB	± 3 dB
5 < h < 30	± 1 dB	± 3 dB

8. SORGENTI

Le sorgenti considerate nel presente impianto sono essenzialmente rappresentate da

Aerogeneratori

Si rimanda alla relazione tecnica prodromica al presente documento la trattazione analitica delle stesse. Si riporta appresso il contributo acustico delle stesse come simulato .

name	X	у	Z (m)	global [dBA]
S2	-3.186,40	1.885,70	115	105,031
S1	-3.802,40	2.285	115	105,031
S3	-2.541,80	1.312,40	115	105,031
S4	268,8	-245,1	115	105,031
S5	264	1.081,50	115	105,031
S19	-1.097	-702,7	115	105,031
S20	41,1	-1.693,80	115	105,031
S18	-1.945,30	-3.078,20	115	105,031
S22	1.712,70	-2.025,50	115	105,031
S17	-2.389,80	-3.663	115	105,031
S21	924,8	-914	115	105,031
S6	1.392,40	-612,9	115	105,031
S8	2.408,10	-1.077,30	115	105,031
S7	2.617,60	319,8	115	105,031
S9	3.538,90	1.323,30	115	105,031
S10	4.389,30	269,3	115	105,031
S11	5.307,50	101,1	115	105,031
S13	4.361	-1.622,20	115	105,031
S12	3.445,20	-1.923	115	105,031
S14	5.694,50	-1.684,30	115	105,031
S15	6.651,60	-1.655,80	115	105,031
S16	7.245,70	-1.313	115	105,031

9. CALCOLO

9.1 Procedura di calcolo

A seguito delle considerazioni precedenti, per poter determinare il livello di pressione acustica nei ricettori A, B e C, si utilizza la seguente formula

$$Lp = Lw - 20 \log(d) - 8$$

Dove:

Lp = livello di Pressione alla distanza d

Lw = livello di Potenza della sorgente

d = distanza dalla sorgente

9.2 Sorgenti

Nel modello vengono identificate le seguenti sorgenti :

Area 1 cabine ed inverter (C 1.1 - 1.7);

Area 2 cabine ed inverter (C 2.1 - 2.6);

Area 3 cabine ed inverter (C 3.1 -C 3.13).

Con emissioni spettrali come da tabella in allegato:

10. Analisi acustica delle sorgenti (con simulazione completa dello spettro acustico)

Risultati analitici ai recettori (con simulazione completa dello spettro acustico)

name	Х	У	Z(m)	63Hz (dBA)	125Hz (dBA)	250Hz (dBA)	500Hz (dBA)	1kHz (dBA)	2kHz (dBA)	4kHz (dBA)	8kHz (dBA)	Global (dBA)
S16	7245,7	-1313	115	96	96	96	96	96	96	96	96	105,031
S15	6651,6	-1655,8	115	96	96	96	96	96	96	96	96	105,031
S14	5694,5	-1684,3	115	96	96	96	96	96	96	96	96	105,031
S12	3445,2	-1923	115	96	96	96	96	96	96	96	96	105,031
S13	4361	-1622,2	115	96	96	96	96	96	96	96	96	105,031
S11	5307,5	101,1	115	96	96	96	96	96	96	96	96	105,031
S10	4389,3	269,3	115	96	96	96	96	96	96	96	96	105,031
S9	3538,9	1323,3	115	96	96	96	96	96	96	96	96	105,031
S7	2617,6	319,8	115	96	96	96	96	96	96	96	96	105,031
S8	2408,1	-1077,3	115	96	96	96	96	96	96	96	96	105,031
S6	1392,4	-612,9	115	96	96	96	96	96	96	96	96	105,031
S21	924,8	-914	115	96	96	96	96	96	96	96	96	105,031

name	Х	У	Z(m)	63Hz (dBA)	125Hz (dBA)	250Hz (dBA)	500Hz (dBA)	1kHz (dBA)	2kHz (dBA)	4kHz (dBA)	8kHz (dBA)	Global (dBA)
S17	-2389,8	-3663	115	96	96	96	96	96	96	96	96	105,031
S22	1712,7	-2025,5	115	96	96	96	96	96	96	96	96	105,031
S18	-1945,3	-3078,2	115	96	96	96	96	96	96	96	96	105,031
S20	41,1	-1693,8	115	96	96	96	96	96	96	96	96	105,031
S19	-1097	-702,7	115	96	96	96	96	96	96	96	96	105,031
S 5	264	1081,5	115	96	96	96	96	96	96	96	96	105,031
S4	268,8	-245,1	115	96	96	96	96	96	96	96	96	105,031
S 3	-2541,8	1312,4	115	96	96	96	96	96	96	96	96	105,031
S1	-3802,4	2285	115	96	96	96	96	96	96	96	96	105,031
S2	-3186,4	1885,7	115	96	96	96	PAE 96	96	96	96	96	105,031

^{*} i dati aberranti/trascurabili vengono trattati, come da letteratura scientifica, assimilabili al livello di pressione sonora residuo, cosiddetto "di fondo"

11. Risultati analitici ai recettori (con simulazione completa dello spettro acustico)

name	X	у	Z (m)	63Hz (dBA)	125Hz (dBA)	250Hz (dBA)	500Hz (dBA)	1kHz (dBA)	2kHz (dBA)	4kHz (dBA)	8kHz (dBA)	Global (dBA)
F396	-286,92	1.340,52	1	32,1669	28,0516	25,3593	23,4866	25,2999	24,1748	19,6247	16,0824	37,60
F 397	-313,78	1.307,79	1	32,1016	27,9472	25,2697	23,3676	25,1464	23,992	19,5089	16,0821	37,50
F 418	243,76	1.744,43	1	31,4519	27,1973	24,5137	22,6083	24,3907	23,289	19,1559	16,0815	36,77
F877	-1.169,21	-331,38	1	35,063	31,8508	28,7946	27,372	29,7024	29,1154	24,3732	16,2461	41,31
F877	-1.042,46	-198,81	1	33,5839	29,7742	27,0172	25,2659	27,2098	26,1592	21,0832	16,0919	39,29
Lizzano	-7.615,31	2.855,63	1	21,5216	15,2426	11,7714	14,1513	17,2016	18,3815	18,1811	16,0811	25,76
Torricella	-3.182,61	-1.152,17	1	27,2403	22,1	18,8177	16,5467	18,0655	18,4801	18,1811	16,0811	31,53
F1105	451,78	-1.430,11	1	35,3248	31,512	28,9032	27,156	29,04 <mark>3</mark> 3	27,7363	21,834	16,0973	41,08
F1119	255,78	-1.583,55	1	38,1997	35,521	32,2368	31,0732	33,6831	33,494	29,8373	18,6673	45,01
F222	-2.023,27	-3.157,88	1	41,9549	39,8956	36,4365	35,6529	38,5239	<mark>3</mark> 8,8127	36,5415	28,17	49,60
F894	-1.649,51	-2.565,10	1	32,3288	28,2723	25,6355	23,8808	25,7419	24,5678	19,8092	16,0829	37,86
F 119 F 901	-2.734,71	-3.515,50	1	34,8847	31,7849	28,7 <mark>646</mark>	27,5449	29,9786	29,39	24,5156	16,2576	41,30
F 930 F 237	-2.102,69	-3.718,90	1	36,8257	34,0725	30,8721	29,7707	32,3681	32,0238	27,6928	17,0737	43,57
F798	1.190,64	-250,98	1	36,1298	32,5469	29,8105	28 <mark>,1</mark> 741	30,214	29,1412	23,5307	16,1577	42,08
F573	1.113,77	66,11	1	33,8662	29,4709	27,1218	24,9564	26,3024	24,2998	18,9926	16,0812	39,10
F 150	1.917,70	-327,85	1	34,6198	30,4414	28,0131	26,0003	27,5578	25,8177	19,9659	16,0827	40,05
F338	2.224,02	-1.477,83	1	35,6106	31,9377	29,2327	27,5369	29,513	28,3746	22,7555	16,1247	41,48

name	X	у	Z (m)	63Hz (dBA)	125Hz (dBA)	250Hz (dBA)	500Hz (dBA)	1kHz (dBA)	2kHz (dBA)	4kHz (dBA)	8kHz (dBA)	Global (dBA)
F 165	2.760,06	-725,01	1	34,6695	30,7624	28,1195	26,2253	27,9911	26,6774	21,2833	16,0941	40,29
F437	2.513,79	227,89	1	41,0173	38,8312	35,3595	34,4701	37,3075	37,5361	35,0578	25,8163	48,46
F1063	2.401,27	260,88	1	38,4792	35,9235	32,5573	31,4461	34,1236	34,05	30,6423	19,5094	45,42
F 1059	2.335,10	102,47	1	36,0135	32,7534	29,7506	28,2493	30,506	29,8465	25,1211	16,3439	42,22
F1062	2.097,66	139,27	1	34,1588	30,0975	27,5226	25,5451	27,204	25,7497	20,3992	16,0854	39,65
F507	3.196,09	1.028,37	1	34,5393	30,923	28,1282	26,511	28,5903	27,6222	22,3217	16,1153	40,45
F1186	3.432,99	1.852,28	1	32,6111	28,7654	25,9853	24,3295	26,3586	25,3978	20,5155	16,0865	38,31
F239	4.354,98	715,95	1	34,6085	30,9968	28,2197	26,6124	28,684	27,6965	22,4049	16,1185	40,53
Sava	1.656,16	4.323,86	1	24,8103	19,0518	14,9715	14,54 <mark>88</mark>	17,2554	18,3831	18,1811	16,0811	28,84
Uggiano Montefusco	5.673,96	2.681,87	1	25,937	20,5251	16,9409	15,4562	17,5765	18,4136	18,1811	16,0811	30,11
Manduria	8.557,61	3.790,78	1	22,2938	15,9774	12,0327	14,1096	17,1893	18,3811	18,1811	16,0811	26,39
Maruggio	3.127,67	-4.303,18	1	26,6449	21,3284	17,7186	15,7008	17,6281	18,4165	18,1811	16,0811	30,81
F731	4.548,67	-1.602,16	1	39,4222	37,043 <mark>3</mark>	33,6215	32,6244	35,39 <mark>0</mark> 2	35,4445	32,4114	21,768	46,59
F1158 F722	4.333,92	-1.131,58	1	34,3327	30,4988	27,8095	25,9982	27,8532	26,6616	21,3964	16,096	40,02
F 341	3.323,33	-1.491,69	1	35,024	31,34	28,59 <mark>84</mark>	26 <mark>,8</mark> 86	28,8635	27,785	22,4127	16,1183	40,86
F215	6.294,75	-1.522,22	1	36,0803	32,803	29,9301	28,5498	30,8305	30,0249	24,6671	16,2377	42,34
F348	6.746,67	-2.155,27	1	33,6143	29,8382	27,2074	25,6376	27,6506	26,51	21,1127	16,0915	39,44

12. CONCLUSIONI

Alla luce delle analisi effettuate, si deduce che le emissioni acustiche prodotte dall'esercizio dell'impianto da progetto, tenuto conto dei vincoli di progetto, delle macchine ed attrezzature dichiarate al tecnico acustico e nella fase di progetto, risultano essere compatibili con la zona acustica di riferimento e rispettano i limiti legislativi.

Tale documento, seppur redatto secondo i canoni della buona tecnica vigenti e considerando le verosimili variabili interessate, rappresenta fase previsionale di impatto acustico che si ritiene consigliabile verificare con misura in opera .

Taranto, agosto 2021

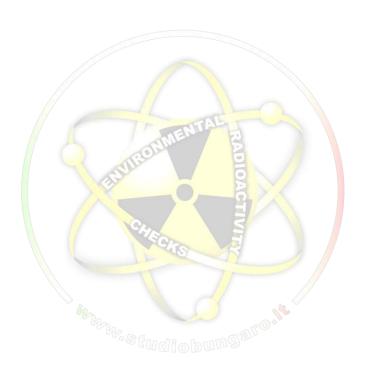
In fede

Dott.M. Ing Michele Bungaro

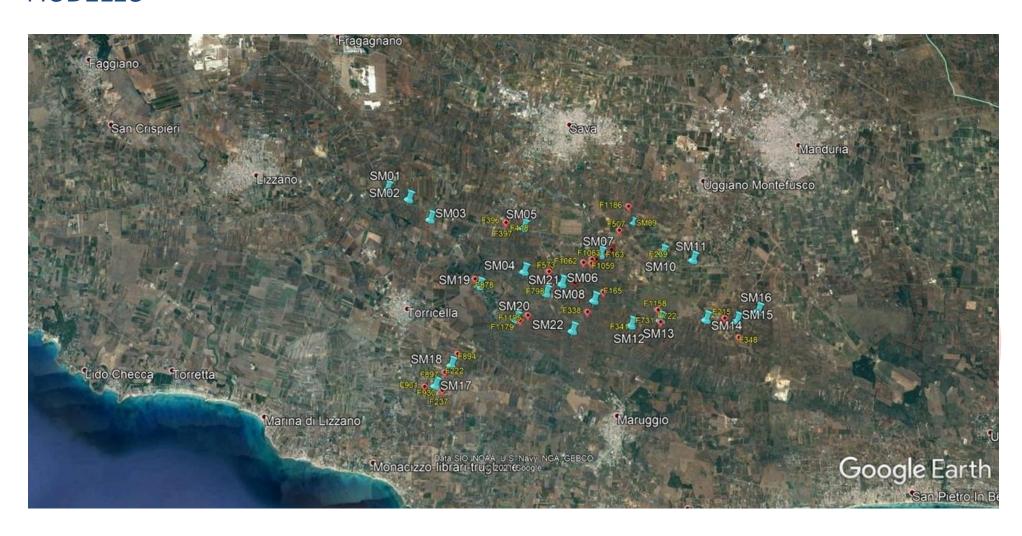
Tecnico Competente in

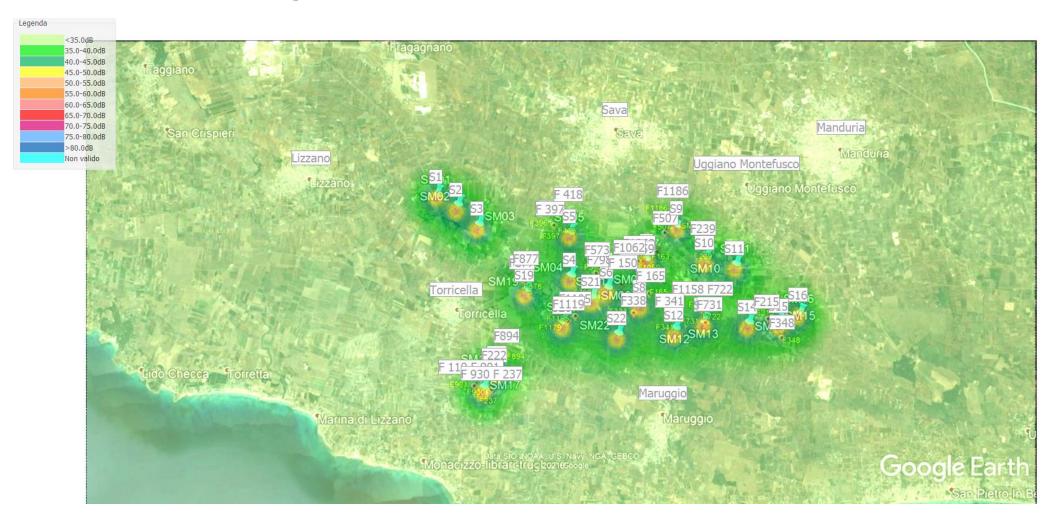
Acustica Ambientale della

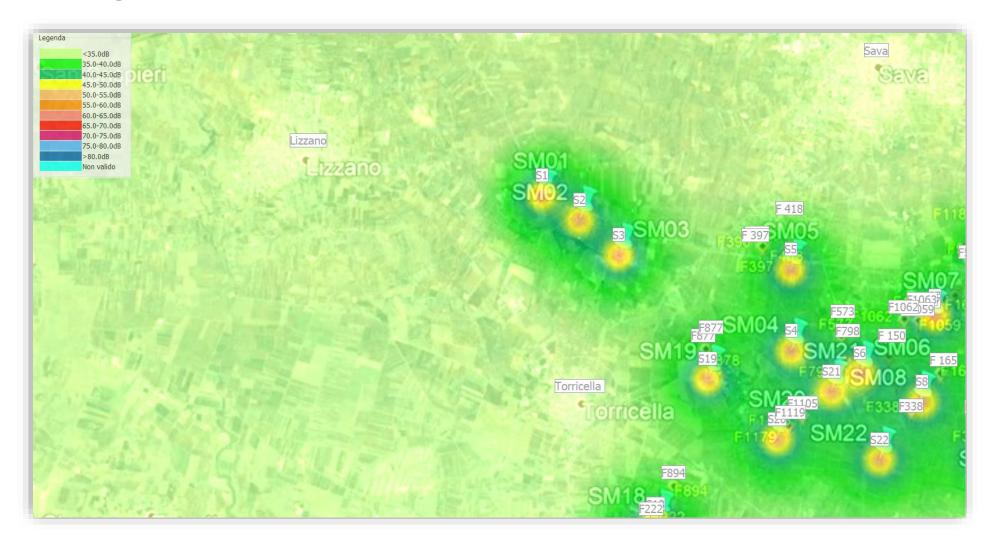
Regione Puglia


Dr. M. Ing. Michele Bungaro	ORDINE INGEGNERI PROVI	NCIA TARANTO
Tecnico competente in acustica		Sezione A
Specialista ASSOACUSTICI n°10148 del 14/1/19 E.N. TE.C. 1	BUNGARO Michele nº 2849	Settore: Industriale
1		

Allegati


Mappe del modello di simulazione


MODELLO



Simulazione vista generale

