COMMITTENTE:

PROGETTAZIONE:

CUP J94J17000040001

U.O. GEOLOGIA TECNICA, DELL'AMBIENTE E DEL TERRITORIO

PROGETTO DEFINITIVO

LINEA BOLZANO - MERANO

REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI SPOSTAMENTO BIVIO LINEA MERANESE

GEOLOGIA ED IDROGEOLOGIA

RELAZIONE GEOLOGICA

								SCALA:
COMM N B	MESSA LOTTO FAS	e ente		GEC	DISCIPLIN	A PROG	GR. RE	v.
Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Rev. A	Descrizione Emissione esecutiva	Redatto G. Benedetti	Data	Verificato S. Rodani	Data	Approvato C. Mazzocchi	Data	Autorizzato Data M. Comedini
Rev. A B	Descrizione Emissione esecutiva Aggiornamento a seguito richieste RFI	Redatto G. Benedetti G. Benedetti M.C. Morandi	Data	Verificato S. Rodani S. Rodani	Data	Approvato C. Mazzocchi C. Mazzocchi C. Mazzocchi	Data	Autorizzato Data M. Comedini Congritio 2021 Intel FERR Dott. Geol. Massimo Comedini Ordine dei Geologi dei Lazo n*2103
Rev. A B	Descrizione Emissione esecutiva Aggiornamento a seguito richieste RFI	Redatto G. Benedetti G. Benedetti G. Benedetti M.C. Morandi	Data	Verificato S. Rodani S. Rodani	Data	Approvato C. Mazzocchi C. Mazzocchi C. Mazzocchi	Data	Autorizzato Data M. Comedini UTAL FERR Dott. Geol. Massimo Comedini Ordine del Goologi del Lazo nº 2103
Rev. A B File:	Descrizione Emissione esecutiva Aggiornamento a seguito richieste RFI	Redatto G. Benedetti G. Benedetti G. Benedetti M.C. Morandi		Verificato S. Rodani S. Rodani	Data	Approvato C. Mazzocchi C. Mazzocchi C. Mazzocchi	Data	Autorizzato Data M. Comedini

GRU	PPO FERROVIE DELLO STATO ITALIANE	LINEA BOLZANO – MERANO REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI SPOSTAMENTO BIVIO LINEA MERANESE					
RELA	ZIONE GEOLOGICA	COMMESSA NB1D	LOTTO 01	CODIFICA D 69	DOCUMENTO RG GE 0001001	REV. B	FOGLIO 2 di 95
INDI	CE						
1 P	REMESSA						7
2 P	RINCIPALE NORMATIVA DI RIFERIMENTO	OO					8
3 II	NQUADRAMENTO GEOGRAFICO						9
4 II	NQUADRAMENTO GEOLOGICO						10
4.1	STRATIGRAFIA						12
5 II	NQUADRAMENTO STRUTTURALE						14
5.1	Assetto tettonico Permiano						15
5.2	ASSETTO TETTONICO E STRUTTURE MESO- C	ENOZOICHE					17
5.3	NEOTETTONICA E TETTONICA ATTIVA						17
5.4	STRUTTURE REGIONALI						17
6 II	NQUADRAMENTO GEOMORFOLOGICO						
7 II	NQUADRAMENTO IDROGEOLOGICO						19
8 R	ILIEVI E INDAGINI						
8.1	RILIEVI GEOLOGICI						
8.2	RILIEVI GEOMECCANICI						20
8.3	RILIEVI FOTOGEOLOGICO IN CUNICOLO						21
8.4	RILIEVO FOTOGEOLOGICO CON APR						21
8.5	SIMULAZIONE DI CADUTA MASSI						21
8.6	INDAGINI DIRETTE						21
8.7	INDAGINI INDIRETTE						22
9 A	SPETTI TETTONICI LOCALI						24
10 A	SSETTO GEOLOGICO LOCALE						
10.1	SUBSTRATO VULCANICO						28
1	0.1.1 Formazione di Ora						28
1	0.1.2 Formazione di Gries						
1	0.1.3 Lave andesitiche (AND)						

GRUPPO	D FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAM	ZANO – I ZIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGO IERANESE	LO A 3 BII	NARI
RELAZI	IONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
10.	1.4 Formazione di Nalles (NAL)						
10.2	DEPOSITI QUATERNARI						43
10.	2.1 Depositi glaciali – Till indifferenziati (SGI	D)					43
10.	2.2 Depositi di origine mista (PTG1)						44
10.	2.3 Depositi di versante indifferenziati (PTG)						44
10.	2.4 Alluvioni (ALL)						45
11 AS	PETTI GEOMORFOLOGICI LOCALI						46
11.1	Fenomeni di instabilità						47
11.2	INQUADRAMENTO DELL'AREA DI STUDIO NEI H	IANI DELLE	Zone di P	PERICOLO			50
12 IDI	ROGEOLOGIA LOCALE						52
12.1	SUBSTRATO VULCANICO						52
12.2	DEPOSITI ALLUVIONALI						54
12.3	DEPOSITI GLACIALI E DI VERSANTE						56
12.4	PUNTI D'ACQUA						57
12.5	Dati Piezometrici						59
13 MC	DDELLO GEOLOGICO DI RIFERIMENTO						67
13.1	TRATTO ALL'APERTO (CIRCA PK 0+000 – 0+47	75 BD e pk 0	+000-0+	-875 Meran	ESE)		67
13.2	TRATTA IN GALLERIA (CIRCA DA PK 0+475 – 0	+975 BD e f	РК 0+875 -	– 1+350 Mef	RANESE)		67
13. esp	2.1 Tratto circa da pk 0+475 – 0+700 BD e pl olorativo)	k 0+875 – 1-	+095 Mer	anese (pk 0+	-000 – 0+220 ci	irca cunico	olo 67
13. esp	2.2 Tratto circa da pk 0+700 – 0+800 BD e pl olorativo)	k 1+095 – 1-	+195 Mer	anese (pk 0+	-220 – 0+300 ci	irca cunico	olo 67
13. esp	2.3 Tratto circa da pk 0+800 – 0+975 BD e pl olorativo)	k 1+195 – 1-	+350 Mer	anese (pk 0+	-300 – 0+450 ci	irca cunico	olo 68
13.3	Tratto all'aperto (circa da pk 0+975 – 1	+358 BD e p	ж 1+350 -	- 1+876 Meb	ANESE)		68
14 SIS	SMICITÀ DELL'AREA						69
14.1	Sismicità storica						73
14.2	SORGENTI SISMOGENETICHE						76

U ITALFERR
GRUPPO FERROVIE DELLO STATO ITALIANE

LINEA BOLZANO – MERANO REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI

SPOSTAMENTO BIVIO LINEA MERANESE

		LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
	NB1D	01	D 69	RG GE 0001001	В	4 di 95	
14.3 PARAMETRI PER LA DETERMINAZIONE DELL'AZ	ZIONE SISMIC	A DI RIFE	RIMENTO			80	
15 BIBLIOGRAFIA						84	
APPENDICE 1 – INDAGINI DA BIBLIOGRAFIA		•••••				87	
APPENDICE 2 – ANALISI PETROGRAFICHE						94	

FIGURE

FIGURA 1: UBICAZIONE DELL'AREA IN STUDIO SU ORTOFOTO 2017 DELLA PROVINCIA DI BOLZANO E CTR (SCALA 1:5.000) FIGURA 2. INQUADRAMENTO GEOLOGICO (ESTRATTO DA L. KEIM, V. MAIR E C. MORELLI, 2017). L'AREA DI STUDIO È RICOMPRESA NEL RETTANG ROSSO	9 ;olo 10
FIGURA 3. TRACCIA E SEZIONE E-W DELLE ALPI MERIDIONALI DURANTE IL PERMIANO MEDIO. IL BASAMENTO METAMORFICO È INTRUSO DA MASSE PLUTONICHE E LE ZONE RIBASSATE SONO RIEMPITE DA SEDIMENTI FLUVIALI O DAI PORFIDI DEL COMPLESSO VULCANICO ATESINO (DA BOSELLI 1996)	: INI, 11
FIGURA 4: CALDERA DI BOLZANO: SI TRATTA DI UN'AREA SUBCIRCOLARE DELIMITATA DA LINEAMENTI STRUTTURALI (DA BOSELLINI, 1996)	11
FIGURA 5. RAPPORTI STRATIGRAFICI INTERCORRENTI TRA LE FORMAZIONI COSTITUENTI LA SUCCESSIONE VULCANICA ATESINA. SONO EVIDENZIATE N	NEL
CERCHIO VERDE LA FORMAZIONE DI ORA (ORA) E LA FORMAZIONE DI GRIES (IGR) CON IL MEMBRO BRECCIOSO (IGRA). AL DI SOTTO DELLA	
FORMAZIONE DI GRIES È PRESENTE LA FORMAZIONE DI NALLES (NAL). (DA MORELLI, 2012).	12
FIGURA 6. SCHEMA TETTONICO REGIONALE DELL'AREA ALPINA ORIENTALE (MODIFICATA DA BOSELLINI, 2005). NEL RIQUADRO NERO L'AREA DI ST	UDIO.
Figura 7. Assetto tettonico della Piattaforma Porfirica Atesina (da Avanzini et alii,, 2010; modificato)	15
FIGURA 8. INQUADRAMENTO MORFOLOGICO DELLA CONCA DI BOLZANO CON LA CONFLUENZA DELLE TRE VALLI ALPINE E LA LOCALIZZAZIONE DEL CO	OLLE
del Virgolo (immagine da GoogleEarth, 2017)	18
FIGURA 9. UBICAZIONE DEGLI STOP GEOLOGICI ESEGUITI IN CORRISPONDENZA DEL COLLE DEL VIRGOLO.	20
FIGURA 10. LOCALIZZAZIONE DELLE INDAGINI GEOFISICHE 2018 E 2020 UTILIZZATE PER IL PRESENTE STUDIO	23
FIGURA 11. LOCALIZZAZIONE DELLE INDAGINI GEOFISICHE 2017 PER LA RIQUALIFICAZIONE DELL'AREALE FERROVIARIO DI BOLZANO	24
FIGURA 12. RAPPRESENTAZIONE DEI PRINCIPALI SISTEMI DI DISCONTINUITÀ IDENTIFICATI.	25
FIGURA 13. ESEMPIO DI STRUTTURE SO A BASSO ANGOLO ENTRO IL CUNICOLO ESPLORATIVO (A) E NELLA CORRISPONDENTE PORZIONE ESTERNA DI CALVARIO (B).	VIA 25
FIGURA 14. ESEMPIO DI STRUTTURA S1 LUNGO LA VOLTA DEL CUNICOLO ESPLORATIVO (A) E IN CORRISPONDENZA DELLA PRIMA CAPPELLA DI VIA D	DEL
CALVARIO (B).	26
FIGURA 15. ESEMPIO DI STRUTTURE S2 AD ALTO ANGOLO ALL'INTERNO DEL CUNICOLO CON PRESENZA DI MINERALIZZAZIONE A CALCITE (A) E SUL L	ATO
NORD DEL VIRGOLO. CON DAMAGE ZONE E MINERALIZZAZIONE A CALCITE (B).	27
FIGURA 16. ESEMPIO DI STRUTTURE S3 A MEDIO ANGOLO ALL'INTERNO DEL CUNICOLO (A) E NEL CORRISPONDENTE TRATTO ESTERNO TRA LA PRIM	A E LA
SECUNDA CAPPELLA DI VIA DEL CALVARIO (B).	27 20
FIGURA 17. AFFIORAMENTO ALLA BASE DELLA PARETE PRINCIPALE CON EVIDENZA DEGLI INCLUSI LITICI	20
FIGURA 16. FORMAZIONE DI ORA TRA 55 E 40 MI DI PROFONDITA NEL SONDAGGIO PROFONDO DI 167	20
FIGURA 19. LIMITE IGR/ ORA NELLA ZONA SETTENTRIONALE (A) ED IN QUELLA MERIDIONALE (B) DEL SETTORE IN STUDIO	
FIGURA 20. AFFIORAMENTI DI IGR IN PROSSIMITA DELL'IMBOCCO NORD DEL'IONNEL IN PROGETTO (A), PARETE MASSIVA A MONTE DELL'IMBOCCO	J DEL
TUNNEL AUTOSTRADALE DEL VIRGULO (B)	50
(WP1502).	31
FIGURA 22. CONFRONTO TRA DUE AFFIORAMENTI DELLA FORMAZIONE DI GRIES POSTI A POCHE DECINE DI METRI L'UNO DALL'ALTRO	31
FIGURA 23. INDICAZIONE DEI PIANI DI DISCONTINUITÀ RILEVATI LUNGO IL CUNICOLO ESPLORATIVO	33
FIGURA 24. CONDIZIONE DELL'AMMASSO ROCCIOSO ALLA PK 0+180 M CIRCA DALL'IMBOCCO	34
FIGURA 25. ESEMPIO DI PIANI SUBVERTICALI IDENTIFICATI NEL TRATTO INIZIALE DEL CUNICOLO	34
Figura 26. Diagramma dell'orientazione dei piani di discontinuità principali misurati nel primo tratto del cunicolo. In blu la	
FAMIGLIA S2-S2C E IN GIALLO LA FAMIGLIA S1	36
FIGURA 27. ORTOPANORAMICA IN CORRISPONDENZA DELL'AFFIORAMENTO DEI PIANI A BASSO ANGOLO NEL CUNICOLO.	37
FIGURA 28. CHIUSURA DI UNA LENTE DI MATERIALE PIÙ SCADENTE ALLA PK 0+262	37

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE

LINEA BOLZANO – MERANO REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI SPOSTAMENTO BIVIO LINEA MERANESE

RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA		REV.	FOGLIO
				RG GE 0001001	В	5 di 95 2 Q
FIGURA 20. PARTICOLARE DELLA ZONA INTERESSATA DAI CROLLI IN SPRITZ BETON	CALOTTA, TRAT	TATA CON	LA POSA DELLA	RETE ELETTROSALD	ATA, CHIOD	ATURE E
FIGURA 31. DIAGRAMMA DELL'ORIENTAZIONE DEI PIANI DI DISCON	tinuità (SO) M	1ISURATI NI	EL SECONDO TRA	ATTO DEL CUNICOLO	o	
FIGURA 32. ASPETTO MASSIVO DELL'AMMASSO IGNIMBRITICO NEL	L'ULTIMO TRAT	TO DEL CUN	NICOLO, CON DI	SCONTINUITÀ POCO) EVIDENTI.	40
FIGURA 33. PIANO DI FAGLIA CON TRACCE DI MOVIMENTO						40
FIGURA 34. DIAGRAMMA DELL'ORIENTAZIONE DEI PIANI DI DISCON	TINUITÀ PRINCI	pali (S3 e	IN PARTE S2) N	IISURATI NEL TERZC	TRATTO DE	L CUNICOLO.
FIGURA 35. LAVE ANDESITICHE (AND) RINVENUTE NEL SONDAGGIO	BHG7. IN FIG	GURA LA CA	SSA COMPRESA	tra 90 e 95 m di	PROFONDIT	à42
FIGURA 36. FORMAZIONE DI NALLES (NAL) RINVENUTA NEL SONDA	AGGIO BHG7:	CASSA CON	IPRESA TRA 10	5 e 110 m di prof	ONDITÀ	43
FIGURA 37. CLASTI GRANITICI AFFERENTI A DEPOSITI GLACIALI						44
FIGURA 38. ESEMPIO DI FALDA DETRITICA CON BLOCCHI DECIMETRI	CI (A); CAROTE	DELL'INTER	RVALLO DI PROF	ondità 0-5 m del	SONDAGGI	о ВНG3 (в);
I PRIMI DUE METRI SONO ATTRIBUIBILI AI DEPOSITI PTG					••••••	45
FIGURA 39. ESEMPIO DI MATERIALE ALLUVIONALE RINVENUTO NEL	SONDAGGIO SZ	2 (2017) E	SEGUITO NEI PR	ESSI DEL PONTE FEI	ROVIARIO	(A).
CONFLUENZA TRA F. ISARCO E T. TALVERA (B): SI OSSERVA IL	LETTO IMPOST	ATO NEI MA	ATERIALI ALLUVI	ONALI	•••••	
FIGURA 40. PORZIONE NORD-OCCIDENTALE DEL COLLE DEL VIRGOL RISOLUZIONE 0.5 M.	O: CARTA DELL'	INCLINAZIO	ONE CON RISOLU	JZIONE 0.2 M, VISU	JALIZZATA S	u DTMA 47
FIGURA 41. EVIDENZE STORICHE DI EVENTI DI CROLLO CHE HANNO I	NTERESSATO LA	а SS12 (ім	BOCCO NORD G	GALLERIA) E LA SEDE	FERROVIAR	lΑ
(DOCUMENTAZIONE PRESENTE NEGLI ARCHIVI DELL'UFFICIO (GEOLOGIA E PR	OVE MATER	RIALI DELLA PRO	VINCIA AUTONOM	a di Bolzai	NO)48
FIGURA 42. BLOCCHI GIUNTI SULLA SEDE STRADALE DI VIA DEL CALV	/ARIO (OTTOBR	e 2019)	·····			
FIGURA 43. INTERVENTI DI PROTEZIONE NON ACCATASTATI: PUNTEI	LLI ALLA BASE D	I BLOCCHI I	NSTABILI (A), SO	OTTOMURAZIONI (E	3), PANNELL	I RIGIDI (C) E
LEGATURE METALLICHE (D).					•••••	50
FIGURA 44. ESTRATTO DEL PIANO DELLE ZONE DI PERICOLO (PZP F	RANE) DELL'AR	EA DEL VIR	GOLO (ESTRATI			F.4
HTTP://GEOCATALOGO.RETECIVICA.BZ.IT/GEOKATALOG/#!).	ALL'INTERNO		LI IN NERO LE AF	REE DEI PREVISTI IM	воссні	51
FIGURA 45. ESTRATIO DEL PIANO DELLE ZONE DI PERICOLO IDRAUI	LICO DELL AREA	DEL VIRGO	DLO (ESTRATIO	DA		Г1
HTTP://GEOCATALOGO.RETECIVICA.BZ.TT/GEOKATALOG/#!).						
FIGURA 40. VENUTE D'ACQUA RILEVATE LUNGO IL CUNICOLO. A) ST		PK 0+110	CIRCA, B) PICCO	JLA VENUTA D'ACQ		
EIGLIDA A7 MODESTA VENILITA D'ACOLLA DILEVATA IN SUBEDEICIE A	A	•••••				
FIGURA 48 LOCALIZZAZIONE DEI SONDAGGI ITALEERR DEI 2017 PE			ELL'AREALE EER		NO	54
FIGURA 49 CLASSI DI ERECUENZA PER I VALORI DI PERMEABILITÀ DI						56
FIGURA 50. DISTRIBUZIONE DEI PUNTI D'ACOUA CENSITI NELL'AREA	IN STUDIO (FS	TRATTO DA				
HTTP://GEOCATALOGO.RETECIVICA.BZ.IT/GEOKATALOG/#!).						
FIGURA 51. UBICAZIONE DEI PIEZOMETRI MONITORATI DAL COMUN	ne di Bolzano	NELL'INTO	RNO DELL'AREA	DI PROGETTO		
FIGURA 52. GRAFICO DELLE VARIAZIONI DI SOGGIACENZA DAL 2008	8 AD OTTOBRE	2020 PER	IL PIEZOMETRO	B005		60
FIGURA 53. GRAFICO DELLE VARIAZIONI DI SOGGIACENZA DAL 2008	8 AD OTTOBRE	2020 PER	IL PIEZOMETRO	B038		60
FIGURA 54. GRAFICO DELLE VARIAZIONI DI SOGGIACENZA DAL 2008	8 AD OTTOBRE	2020 PER	IL PIEZOMETRO	B039		60
FIGURA 55. GRAFICO DELLE VARIAZIONI DI SOGGIACENZA DAL 2008	8 AD OTTOBRE	2020 PER	IL PIEZOMETRO	B016		61
FIGURA 56. GRAFICO DELLE VARIAZIONI DI SOGGIACENZA DAL 2008	8 ad ottobre	2020 PER	IL PIEZOMETRO	B026		61
FIGURA 57. GRAFICO DELLE VARIAZIONI DI SOGGIACENZA DAL 2008	8 AD OTTOBRE	2020 per	IL PIEZOMETRO	B006		62
FIGURA 58. GRAFICO DELLE VARIAZIONI DI SOGGIACENZA DAL 2008	8 AD OTTOBRE	2020 per 1	IL PIEZOMETRO	B037		62
FIGURA 59. UBICAZIONE DEI PIEZOMETRI MONITORATI DELLE CAMP	PAGNE ITALFER	R 2018 E 2	020		•••••	63
FIGURA 60. GRAFICO DELLA SOGGIACENZA REGISTRATA AL PIEZOME	etro BH6 tra	AGOSTO 2	019 e luglio 2	2021	•••••	65
FIGURA 61. ELABORAZIONE DELLE ISOFREATICHE NELL'INTORNO DE	LL'AREA DI PRC	GETTO PER	IL PERIODO OT	TOBRE 2020	•••••	66
FIGURA 62. ELABORAZIONE DELLE ISOFREATICHE NELL'INTORNO DE	LL'AREA DI PRC	GETTO PER	IL PERIODO FEE	BRAIO 2020	•••••	66
FIGURA 63. MAPPA DI PERICOLOSITÀ SISMICA ESPRESSA IN TERMIN	I DI ACCELERAZ	IONE MASS	IMA DEL SUOLO	(A _{MAX}) CON PROBA	.BILITÀ DI EC	CEDENZA
DEL 10% IN 50 ANNI RIFERITA A SUOLI RIGIDI (VS $_{30}$ >800 M/	's) – da (ING\	/ - HTTP://	ESSE1-GIS.MI.II	NGV.IT/)	••••••	70
FIGURA 64. SPETTRI DI RISPOSTA ELASTICI PER I PERIODI DI RITORNO	DI RIFERIMEN	TO TR. TRA	TTA DA SPETTR	I-NTC VER. 1.03		
(HTTP://CSLP.MIT.GOV.IT/INDEX.PHP?OPTION=COM_CONTI	ENT&TASK=VIE	W&ID=75	&ITEMID=20).		•••••	72
FIGURA 65. STORIA SISMICA DEL COMUNE DI BOLZANO. SULLE ASC	ISSE E RIPORTA	IO L'ANNO	· · · · · · · · · · · · · · · · · · ·			
FIGURA 66. SORGENTI SISMOGENETICHE CONTENUTE NEL DISS 3.2	2.1 (HTTP://DI	SS.RM.ING	/.IT/DISS/) PER	L'AREA IN STUDIO	INDICATA II	N GIALLO).77

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I ZIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	_O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA		REV.	FOGLIO

 FIGURA 67. QUADRO RIASSUNTIVO DELLA SORGENTE SISMOGENETICA COMPOSITA BRENNER (ATCS012).
 78

 FIGURA 68. QUADRO RIASSUNTIVO DELLA SORGENTE SISMOGENETICA WESTERN PERIADRIATIC (ATCS010).
 79

 FIGURA 69. QUADRO RIASSUNTIVO DELLA SORGENTE SISMOGENETICA COMPOSITA GIUDICARIE (ITCS048).
 80

TABELLE

TABELLA 2. PIANI RILEVATI NEL PRIMO SETTORE DEL CUNICOLO.35
TABELLA 3. PIANI RILEVATI NEL SECONDO SETTORE DEL CUNICOLO.39
TABELLA 4. PIANI RILEVATI NEL TERZO SETTORE DEL CUNICOLO41
TABELLA 5. CLASSI DI PERMEABILITÀ ADOTTATE NEL PRESENTE LAVORO.52
TABELLA 6. VALORI DI PERMEABILITÀ DA PROVE LUGEON (SONDAGGI BHG3 E VG1).53
TABELLA 7. VALORI DI PERMEABILITÀ DA PROVE LUGEON (SONDAGGIO BHG7).53
TABELLA 8. VALORI DI K DA PROVE DI PERMEABILITÀ LEFRANC.55
TABELLA 9. VALORI STATISTICI DI PERMEABILITÀ DA PROVE LEFRANC PER I DEPOSITI ALLUVIONALI. 56
TABELLA 10. CLASSI DI PERMEABILITÀ PER LE UNITÀ PRESENTI NELL'AREA IN STUDIO.57
TABELLA 11. SORGENTI E DERIVAZIONI DA TORRENTE CENSITE NELL'AREALE DI PROGETTO (ARCHIVIO DELLA PROVINCIA AUTONOMA DI BOLZANO). 57
TABELLA 12. PUNTI POZZO CENSITI (ARCHIVIO DELLA PROVINCIA AUTONOMA DI BOLZANO).58
TABELLA 13. VALORI DI SOGGIACENZA MISURATA AI PIEZOMETRI ITALFERR (M DA P.C.).64
TABELLA 14. VALORI DI ACCELERAZIONE MASSIMA DEL SUOLO AG CON PROBABILITÀ DI SUPERAMENTO DEL 10% IN 50 ANNI, RIFERITO A SUOLI RIGIDI
CARATTERIZZATI DA VS,30>800 M/S. 69
TABELLA 15. VALORI DEI PARAMETRI DI AG, FO, TC* PER I PERIODI DI RITORNO TR DI RIFERIMENTO.71
TABELLA 16. VARIABILITÀ DEI VALORI DEI PARAMETRI AG, FO E TC* CON IL PERIODO DI RITORNO TR. TRATTA DA SPETTRI-NTC VER. 1.03
(http://cslp.mit.gov.it/index.php?option=com_content&task=view&id=75&Itemid=20). 73
TABELLA 17. STORIA SISMICA DEL COMUNE DI BOLZANO74
TABELLA 18. CATEGORIE DI SOTTOSUOLO DESCRITTE AL PARAGRAFO 3.2.3 DELLE NTC 2018.81
TABELLA 19. ELENCO DELLE PROVE GEOFISICHE CON ELABORAZIONE DELLA VS3081

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I LIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA NB1D	LOTTO 01	CODIFICA D 69	DOCUMENTO RG GE 0001001	REV. B	FOGLIO 7 di 95

1 PREMESSA

Il presente documento illustra le risultanze dello studio geologico eseguito per lo sviluppo del progetto definitivo riguardante la realizzazione del futuro tunnel ferroviario, che attraverserà il colle del Virgolo, e la stabilizzazione dei versanti del colle stesso.

Le informazioni di carattere geologico, geomorfologico, idrogeologico e geomeccanico relative al settore indagato sono state rappresentate nei seguenti elaborati che integrano ed accompagnano la presente relazione:

Rapporto sulle attività di campagna	NB1D01D69RHGE0001001A
Relazione sulle stazioni geomeccaniche tradizionali	NB1D01D69RHGE0001002A
Schede di rilevamento geomeccanico tradizionale	NB1D01D69RHGE0001003A
Carta geologica	NB1D01D69G6GE0001001A
Carta idrogeologica	NB1D01D69G6GE0002001A
Carta ubicazione Stop geologici e stazioni geomeccaniche	NB1D01D69G6GE0001002A
Carta ubicazione indagini geognostiche	NB1D01D69G6GE0001003A
Profilo geologico in asse al tracciato	NB1D01D69F6GE0001001A
Profilo idrogeologico in asse al tracciato	NB1D01D69F6GE0002001A
Sezioni geologiche trasversali	NB1D01D69W6GE0001001A
Sezioni idrogeologiche trasversali	NB1D01D69W6GE0002001A
Relazione sul rilievo fotogeologico del cunicolo	NB1D01D69RHGE0005002A
Rilievo fotogeologico del cunicolo - Parete sinistra tav.1	NB1D01D69GBGE0005001A
Rilievo fotogeologico del cunicolo - Parete sinistra tav.2	NB1D01D69GBGE0005002A
Rilievo fotogeologico del cunicolo - Parete sinistra tav.3	NB1D01D69GBGE0005003A
Rilievo fotogeologico del cunicolo - Parete destra tav.1	NB1D01D69GBGE0005004A
Rilievo fotogeologico del cunicolo - Parete destra tav.2	NB1D01D69GBGE0005005A
Rilievo fotogeologico del cunicolo - Parete destra tav.3	NB1D01D69GBGE0005006A
Rilievo fotogeologico del cunicolo - Calotta tav.1	NB1D01D69GBGE0005007A
Rilievo fotogeologico del cunicolo - Calotta tav.2	NB1D01D69GBGE0005008A
Rilievo fotogeologico del cunicolo - Calotta tav.3	NB1D01D69GBGE0005009A
Relazione sulla simulazione 3D delle traiettorie di caduta massi	NB1D00D69RHGE0001004A
Simulazione di caduta massi con volumi rocciosi medi - Carta delle probabilità di arrivo	NB1D00D69G7GE0001001A
Simulazione di caduta massi con volumi rocciosi medi - Carta dell'energia cinetica di impatto	NB1D00D69G7GE0001002A
Simulazione di caduta massi con volumi rocciosi medi - Carta delle altezze di rimbalzo	NB1D00D69G7GE0001003A
Simulazione di caduta massi con volumi rocciosi medi - Carta del numero di blocchi per cella	NB1D00D69G7GE0001004A
Simulazione di caduta massi con volumi rocciosi medi - Carta del numero di transiti per cella	NB1D00D69G7GE0001005A
Simulazione di caduta massi con volumi rocciosi grandi - Carta delle probabilità di arrivo	NB1D00D69G7GE0001006A
Simulazione di caduta massi con volumi rocciosi grandi - Carta dell'energia cinetica di impatto	NB1D00D69G7GE0001007A
Simulazione di caduta massi con volumi rocciosi grandi - Carta delle altezze di rimbalzo	NB1D00D69G7GE0001008A
Simulazione di caduta massi con volumi rocciosi grandi - Carta del numero di blocchi per cella	NB1D00D69G7GE0001009A
Simulazione di caduta massi con volumi rocciosi grandi - Carta del numero di transiti per cella	NB1D00D69G7GE0001010A
Simulazione di caduta massi con volumi rocciosi piccoli - Parete Ferrovia	NB1D00D69G7GE0001011A
Aree morfologiche omogenee	NB1D00D69G7GE0005001A
Tavola di sintesi delle analisi geomeccaniche	NB1D00D69G7GE0005002A

U ITALFERR
GRUPPO FERROVIE DELLO STATO ITALIANE

LINEA BOLZANO – MERANO REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI SPOSTAMENTO BIVIO LINEA MERANESE

RELAZIONE GEOLOGICA	COMMESSA NB1D	LOTTO 01	COL	DIFICA	DOCUMENTO RG GE 0001001	REV. B	FOGLIO 8 di 95		
Ortofoto parete sud e centro-sud con viste RGB e falsi colori	1	NB1D00D69IXC	GE0005001A						
Ortofoto parete centrale con viste RGB e falsi colori				1	NB1D00D69IXC	GE0005002A			
Ortofoto parete nord con viste RGB e falsi colori				1	NB1D00D69IXC	GE0005003A			
Relazione sui rilievi geomeccanici in parete				Ν	B1D00D69RH	GE0005001A			
Relazione sui rilievi con APR e sintesi dei dati geomeccanici				Ν	B1D00D69RH	GE0005004A			
Sondaggi Geognostici (V0-V1-V2-V3-V4-V5)				1	B1D01D69SG	GE0005001A			
Sondaggi Geognostici (BH2-BHG3)				N	B1D01D69SG	GE0005002A			
Sondaggi Geognostici (BH5-BH6)				NB1D01D69SGGE0005003A					
Sondaggi Geognostici (BHG7)				NB1D01D69SGGE0005004A					
Sondaggi Geognostici (Areale ferroviario di Bolzano)				NB1D01D69SGGE0005005A					
Indagini geofisiche - Planimetria indagini eseguite - Sezioni sismich (Camp. 2020)	e a rifrazione 2	D in onde I	P ed S	NB1D01D69IGGE0005001A					
Report indagini geofisiche (Campagna 2020)				NB1D01D69IGGE0005002A					
Indagini geofisiche - Sezioni geoelettriche (Campagna 2018)				1	NB1D01D69IGC	GE0005003A			
Indagini geofisiche - Relazione (Campagna 2018)				1	NB1D01D69IGC	GE0005004A			
Indagini geofisiche (Areale ferroviario di Bolzano - 2017)				1	NB1D01D69IGC	GE0005005A			
Prove di laboratorio (VG0-VG1-VG2-VG3-VG4-VG5)				1	NB1D01D69PR	GE0005001A			
Prove di laboratorio (sondaggi BH2-BHG3)				NB1D01D69PRGE0005002A					
Prove di laboratorio (sondaggi BH5-BH6)				NB1D01D69PRGE0005003A					
Prove di laboratorio (sondaggi BHG7)				١	NB1D01D69PRGE0005004A				

2 PRINCIPALE NORMATIVA DI RIFERIMENTO

D.M. 17.01.2018 "Norme tecniche per le costruzioni";

Circolare C.S.LL.PP. del 27 luglio 2018, n. 29/2017 – Circolare applicativa delle nuove norme tecniche per le costruzioni approvate con D.M. 17 Gennaio 2018;

O.P.C.M. 20 marzo 2003, n. 3274 e *s.m.i.* "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica";

O.P.C.M. n. 3519 del 28.04.2006, "Criteri generali per l'individuazione delle zone sismiche e per la formazione e l'aggiornamento degli elenchi delle medesime zone";

EUROCODICI: EN 1997, Eurocode 7: Geotechnical design;

EUROCODICI: EN 1998, Eurocode 8 : Design of structures for earthquake resistance;

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I LIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	B	9 di 95

3 INQUADRAMENTO GEOGRAFICO

L'area oggetto di studio ricade entro i confini comunali di Bolzano in prossimità del colle del Virgolo, che si erge in sinistra idrografica del fiume Isarco in corrispondenza dell'immissione del torrente Talvera (Figura 1). Il settore ricade all'interno del foglio n°27 "BOLZANO" della Carta Topografica d'Italia dell'Istituto Geografico Militare Italiano, dell'elemento CTR 27094 (1:5000) della Provincia Autonoma di Bolzano e all'interno dei fogli n° 53 e n° 54 della Cartografia Tecnica Numerica (1:1000) della città di Bolzano.

Il "Virgolo" è costituito da un promontorio semi-pianeggiante circondato da pareti rocciose subverticali che si affacciano sulla conca bolzanina. La linea ferroviaria attuale, prima di raggiungere la stazione di Bolzano, costeggia, all'aperto, la base del versante nord occidentale del rilievo: il nuovo tracciato ferroviario opererà una deviazione della linea, con la realizzazione di una galleria di circa 500 m che attraverserà la collina. L'opera in progetto prevede due binari di linea ed un ulteriore binario per la linea Meranese.

Figura 1: Ubicazione dell'area in studio su Ortofoto 2017 della Provincia di Bolzano e CTR (scala 1:5.000).

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I ZIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	_O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	В	10 di 95

4 INQUADRAMENTO GEOLOGICO

L'area di studio ricade nel dominio Sudalpino, caratterizzato a scala regionale da un basamento metamorfico di età Varisica costituito in prevalenza da rocce filladiche con intrusioni di tipo granitico, da successioni vulcaniche permiane e da sedimenti permo-giurassici (Figura 2). Il basamento roccioso è spesso coperto da depositi quaternari (Pleistocene Sup. – Olocene) di varia natura.

L'area di studio è ubicata all'interno della potente successione vulcanica permiana, nota come "Piattaforma Porfirica Atesina" (porfidi quarziferi) o "Gruppo Vulcanico Atesino" (GVA).

Figura 2. Inquadramento geologico (estratto da L. Keim, V. Mair e C. Morelli, 2017). L'area di studio è ricompresa nel rettangolo rosso.

Sotto il generico nome di "porfidi quarziferi" viene indicata la sequenza vulcanica, composizionalmente variabile da riodacitica-andesitica a riolitica, che è formata in prevalenza da depositi piroclastici (ignimbriti) e subordinate lave ed epiclastiti (Morelli et alii, 2007). L'attività magmatica si è protratta per circa 10-15 Ma (Morelli et alii, 2010); ha avuto origine durante una fase tettonica transtensionale-estensionale (Figura 3), con sviluppo di bacini delimitati da faglie di strike-slip nella crosta superiore fragile, che hanno condizionato la risalita dei magmi e la loro messa in posto. Tale fase tettonica è associata al collasso post-orogenico della catena Varisica e alla successiva chiusura della Paleo-Tetide (McCann et alii, 2008; Cassinis et alii, 2012).

Figura 3. Traccia e sezione E-W delle Alpi meridionali durante il Permiano medio. Il basamento metamorfico è intruso da masse plutoniche e le zone ribassate sono riempite da sedimenti fluviali o dai porfidi del complesso vulcanico atesino (da Bosellini, 1996).

L'area in cui si è esplicata la massima attività vulcanica, avente un diametro compreso tra circa 60 e 70 km, è denominata "caldera di Bolzano" (Figura 4). Sulla base delle attuali evidenze geologiche si può dunque stimare per questo dominio un areale di affioramento di circa 2000 km² (Morelli et alii, 2007), tra la linea Periadriatica a NW e la linea della Valsugana a SE.

Figura 4: Caldera di Bolzano: si tratta di un'area subcircolare delimitata da lineamenti strutturali (da Bosellini, 1996).

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I ZIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	_O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	B	12 di 95

La sequenza sedimentaria dolomitica, successiva all'attività vulcanica appena descritta, non entra invece a far parte dell'area in studio.

I depositi quaternari, al contrario, di origine glaciale e/o alluvionale, interessano l'area di progetto. In particolare i materiali alluvionali caratterizzano, in massima parte, l'attuale fondo della valle Isarco, ove si è sviluppata la zona urbana della città di Bolzano, mentre i depositi glaciali si rinvengono lungo i versanti della valle stessa. Sono infine da ricordare le diffuse coperture detritiche, generate da progressivi fenomeni di crollo e disfacimento delle pareti rocciose vulcaniche, che caratterizzano la base dei versanti del rilievo del Virgolo.

4.1 Stratigrafia

Nell'area oggetto di studio in base ai dati di letteratura risultano note due unità ignimbritiche; le formazioni in questione sono:

• Formazione di Ora (ORA)

• Formazione di Gries (IGR-IGRa)

Le indagini eseguite nell'ambito del presente studio (nello specifico il sondaggio BHG7, realizzato in corrispondenza della sommità del colle del Virgolo) hanno portato all'identificazione di una ulteriore unità ignimbritica, non affiorante, che è stata ricondotta alla:

• Formazione di Nalles (NAL)

Vengono di seguito descritte le caratteristiche principali delle formazioni suddette, facendo riferimento ai dati contenuti nella bibliografia più recente.

Figura 5. Rapporti stratigrafici intercorrenti tra le formazioni costituenti la successione vulcanica atesina. Sono evidenziate nel cerchio verde la formazione di Ora (Ora) e la formazione di Gries (IGR) con il membro breccioso (IGRa). Al di sotto della formazione di Gries è presente la formazione di Nalles (NAL). (da Morelli, 2012).

- Formazione di Ora (ORA): rappresenta il deposito vulcanico più recente del Gruppo Vulcanico Atesino, datato fra 277±2 e 274.1±1.6 Ma (Marocchi et alii, 2008). È il prodotto della messa in posto di ingenti

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I LIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL IERANESE	-O A 3 BII	NARI
RELAZIONE GEOLOGICA	COMMESSA NB1D	LOTTO 01	CODIFICA	DOCUMENTO	REV.	FOGLIO

volumi di flussi piroclastici che si sono deposti contemporaneamente ad un ampio collasso calderico. Presenta spessori di quasi 1000 metri nelle zone più depresse tra Bolzano e Ora (zone di caldera), dove risulta sovrapposta a IGR; in effetti l'ignimbrite si estende anche in altre aree, per circa 1500 km², ricoprendo in discordanza altre formazioni più antiche, con spessori più ridotti (zone extra-caldera). La formazione è costituita da lapilli-tuff riolitici saldati molto coerenti ed omogenei (Avanzini et alii, 2007), di colore dal grigio-rosato all'arancione rossastro. È caratterizzata da una evidente e regolare fessurazione subverticale secondo due sistemi principali di frattura all'incirca ortogonali; esiste anche un terzo sistema, meno netto e più spaziato, ad andamento sub-orizzontale. Questa condizione strutturale, insieme alle sue caratteristiche fisiche, ha da sempre reso la formazione un pregiato oggetto di attività estrattiva. L'ignimbrite è costituita da abbondanti cristalli millimetrici di sanidino, plagioclasi rosa e quarzo in una pasta di fondo felsitica fluidale, che osservata con la lente si presenta disomogenea per presenza di piccoli frammenti cristallini. Sono frequenti fiamme costituite da inclusi afanitici e da inclusi porfirici juvenili a composizione uguale al resto della roccia. In sezione sottile il litotipo presenta una struttura clastica orientata con cristalli (30-55%) immersi in una pasta di fondo vetrosa, che ha subito ricristallizzazione felsitica ed in aggregati quarzo-feldspatici. I cristalli che si rinvengono sono di quarzo, sanidino permeato da alterazioni argillose e da microgranuli di ematite, plagioclasi (sostituiti da un aggregato policristallino di sericite), quarzo secondario, opachi, biotite (parzialmente sostituita da opachi), raro pirosseno (completamente sostituito da opachi e clorite), apatite e zircone come accessori.

- Formazione di Gries (IGR): datata a 276.9±2.3 Ma (Marocchi et alii, 2008), è costituita da lapilli-tuff riolitici saldati (Avanzini et alii, 2007) di colore da rosso fegato a violaceo, ad aspetto massivo o blandamente orientato parallelamente alla giacitura. Gli spessori massimi conosciuti arrivano a 150 metri. L'ossatura è data da frequenti cristalli millimetrici di sanidino, feldspato rosa e quarzo, immersi in una pasta di fondo afanitica rosso-violacea. Localmente sono presenti inclusi litici di tipo vulcanico e metamorfico che presentano bordi di reazione termica; si riconoscono anche numerosi inclusi juvenili (fiamme) a tessitura porfirica e di forma globosa (dimensioni fino a 50 cm) con appendici schiacciate, allungate e isorientate secondo la direzione del flusso. In sezione sottile si osserva una struttura clastica orientata con cristalli (30-50 %) costituiti da plagioclasi (sostituiti da albite), sericite, calcite e fasi argillose, sanidino argillificato e albitizzato, quarzo, biotite (sostituita da opachi), pirosseno (sostituito da opachi e clorite), e accessori come zircone e apatite. La pasta di fondo è devetrificata e costituita da aggregati quarzo-feldspatici felsitici con strutture pseudofluidali.
- Formazione di Gries Brecce vulcanoclastiche (IGRa): la porzione superiore della formazione può essere costituita da brecce vulcanoclastiche, a luoghi grossolanamente stratificate. I clasti presenti variano da metrici a centimetrici, da subarrotondati a subangolari, hanno assetto caotico e risultano immersi in una matrice meno coerente microgranulare. Sia i clasti che la matrice sono costituiti da frammenti della formazione originaria. Localmente sono presenti vene di selce rossa.
- Formazione di Nalles (NAL): datata a 276.7±1.1 Ma (Marocchi et alii, 2008), rappresenta la formazione vulcanica più antica affiorante nella Val d'Adige a sud dell'allineamento Nalles-Terlano. Gli spessori massimi arrivano a 400 metri. È presente alla base delle pareti che si affacciano direttamente sulla piana dell'Adige sia in destra, che in sinistra orografica, ma le esposizioni migliori si osservano a sud della zona di Nalles. È costituita da lapilli-tuff riolitici saldati molto coerenti da rosa-grigio-verdino a rosso mattone. Presenta una fratturazione verticale netta e regolare, che solo localmente sviluppa una suddivisione fitta in lastre. Sono presenti e molto evidenti le fiamme costituite da frammenti afanitici, schiacciati ed allungati, di colore grigio-verde o rosso, che possono raggiungere dimensioni anche notevoli (30-50 cm) e creare a volte una pseudolaminazione parallela. In alcuni casi il materiale fine che costituisce le fiamme risulta asportato per alterazione/erosione selettiva e la roccia si caratterizza per un allineamento di vuoti allungati. L'ossatura è data da abbondanti cristalli di 1-2 mm di plagioclasi, da rosa tenue a più intenso, sanidino e quarzo in una pasta di fondo non omogenea alla lente. Petrograficamente si ha una struttura clastica

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOLZANO – MERANO REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI SPOSTAMENTO BIVIO LINEA MERANESE									
RELAZIONE GEOLOGICA	COMMESSA NB1D	LOTTO 01	CODIFICA D 69	DOCUMENTO	REV.	FOGLIO 14 di 95				

orientata con lapilli e ceneri cristallini (30-50 %) in una pasta di fondo devetrificata in aggregati felsitici, talora sferulitici, arrossati per ossidazioni diffuse e con tessitura pseudofluidale evidenziata da allineamenti ondulati di microgranulazioni opache. I cristalli di plagioclasio sono alterati in sericite, fasi argillose, calcite e fasi opache, il sanidino è sempre alterato per moderata o spinta argillificazione, il quarzo presenta arrotondamenti ed anse, la biotite è di solito sostituita da opachi ed il pirosseno è sostituito da clorite verde, quarzo secondario e opachi. Tra le fasi accessorie si trovano zircone ed apatite.

Nel corso della perforazione del sondaggio profondo BHG7, a tetto della formazione di Nalles e alla base della formazione ORA è stato inoltre rinvenuto un orizzonte di circa 17 metri di **Brecce laviche e lave andesitiche** (**AND**) di colore grigio con fenocristalli di plagioclasio.

Al di sopra delle formazioni del substrato vulcanico si rinvengono i depositi quaternari caratteristici delle vallate alpine.

In particolare ci si riferisce al **Sintema del Garda** (**SGD**) e al **Sintema Postglaciale Alpino** (**PTG**). Il primo rappresenta i depositi appartenenti al cosiddetto Last Glacial Maximum (LGM), che si rinvengono sulla sommità del colle del Virgolo mentre il secondo è costituito dai terreni di copertura che vanno dal Pleistocene superiore all'Attuale e che raggiungono la massima espressione ed estensione in corrispondenza del fondovalle Isarco. A causa dei modesti affioramenti disponibili nell'area di studio, si è inteso classificare i depositi del Sintema del Garda unicamente come till indifferenziati ovvero depositi costituiti da diamicton massivi, con clasti di dimensioni variabili da ghiaie a blocchi, a spigoli spesso smussati e talora striati, in matrice limoso-sabbiosa.

I depositi alluvionali sono costituiti prevalentemente da depositi di piana alluvionale e di conoide. Poiché in questa porzione delle Valli dell'Adige e dell'Isarco non si rinvengono terrazzi alluvionali a quote superiori rispetto al fondovalle, si può ipotizzare l'assenza di significative interruzioni della tendenza all'aggradazione dall'Olocene fino all'Attuale. In particolare, l'area in esame risulta posta in prossimità della coalescenza tra i conoidi del t. Talvera e del f. Isarco, i quali generano depositi prevalentemente ghiaioso-sabbiosi, mal stratificati, con presenza di ciottoli e blocchi fino a decimetrici. I clasti mostrano litologie varie, con prevalenza di filladi del basamento metamorfico e clasti porfirici. In misura minore si rinvengono clasti di natura dolomitica e calcarea.

Si rinvengono inoltre depositi di origine mista (principalmente torrentizia o da debris flow), prevalentemente ubicati alla base dei versanti e lungo gli impluvi. I sedimenti maggiormente presenti in questi depositi sono diamicton a supporto di clasti ed a volte di matrice, non addensati, con clasti subangolosi di provenienza locale e matrice limo-sabbiosa e intercalazioni sabbioso-ghiaiose stratificate.

A causa della morfologia acclive dei versanti rocciosi che caratterizzano l'area del Virgolo, alla base delle pareti rocciose sono stati rilevati anche depositi di versante e di frana. Si tratta di depositi ghiaiosi con frequenti blocchi da decimetrici a metrici (con dimensioni definite principalmente dai sistemi di fratturazione visibili in parete), angolosi o sub-angolosi che risultano immersi in quantità variabili di matrice sabbioso-limosa.

Infine, si segnala la presenza di depositi antropici superficiali, concentrati essenzialmente in corrispondenza delle aree urbanizzate della conca bolzanina e lungo le principali vie di comunicazione. Si tratta usualmente, dal punto di vista granulometrico, di ghiaie con sabbie o sedimenti più fini, con spessori massimi di alcuni metri.

5 INQUADRAMENTO STRUTTURALE

Le principali strutture tettoniche del dominio all'interno del quale ricade l'area in studio sono rappresentate dalla linea della Pusteria, dalla linea delle Giudicarie Nord e da quella del Tonale. Questo sistema di lineamenti tettonici,

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I LIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BII	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	B	15 di 95

che si susseguono da sud-ovest verso nord-est, costituisce la cosiddetta Linea Insubrica che separa le Alpi meridionali (Sudalpino) dalle Alpi settentrionali (Austroalpino) a vergenza europea.

Figura 6. Schema tettonico regionale dell'area Alpina orientale (modificata da Bosellini, 2005). Nel riquadro nero l'area di studio.

La Linea Insubrica è risultata attiva nel periodo compreso tra Oligocene e Miocene, esibendo un comportamento di tipo transpressivo. La linea delle Giudicarie Nord è il segmento della Linea Insubrica orientato NNE-SSW più prossimo all'areale in studio. Altre strutture associate alla linea delle Giudicarie Nord, sono rappresentate dalla linea di Rumo, una faglia con orientazione WNW ed inclinazione di 40-50°, la linea di San Vigilio, orientata sempre WNW e inclinata di 50-60°, la linea di Sant'Elena con orientazione NW e inclinazione 40°, la linea Trento-Cles, con orientazione NNE-SSW e infine la linea di Foiana, parallela alla linea delle Giudicarie e con inclinazione subverticale.

Dal punto di vista dell'assetto locale la tettonica regionale ha giocato un ruolo fondamentale sia nei processi di messa in posto e distribuzione areale delle unità vulcaniche (assetto tettonico pre-Permiano), sia nella riorganizzazione del loro assetto post-deposizionale (assetto tettonico Meso-Cenozoico).

5.1 Assetto tettonico Permiano

La letteratura generalmente converge sull'ipotesi di un importante controllo da parte della tettonica regionale sulla mesa in posto della sequenza del Gruppo Vulcanico Atesino (GVA). In particolare, viene riconosciuto il ruolo di importanti strutture tettoniche a scala regionale come ambito strutturale di definizione della paleo-morfostruttura che ha ospitato la messa in posto delle sequenze del GVA (Figura 6). I margini del GVA, pertanto, corrispondono a paleolineamenti tettonici a scala regionale (Brondi et alii., 1974; Selli, 1998; Avanzini et alii, 2010), tra i quali: la Paleolinea della Valsugana (che delimita il GVA a sud), la Paleolinea Calisio-Trento-Cles (che delimita il GVA ad ovest), la Paleolinea di Funes (che delimita il GVA a nord), e la Paleolinea del Cordevole (che delimita il GVA ad est).

Figura 7. Assetto tettonico della Piattaforma Porfirica Atesina (da Avanzini et alii,, 2010; modificato).

Per l'assetto tettonico Permiano del settore delle Alpi Meridionali che ospita il GVA ci si riferisce a due principali scenari.

- Regime paleotettonico estensionale. In questo scenario, la morfostruttura a semi-graben che ha accolto la deposizione delle unità del GVA è scandita dalla presenza di strutture tettoniche a cinematica dominante normale (con orientazione preferenziale da NE-SO a ONO-ESE), con strutture minori di trasferimento con cinematica trascorrente (Selli, 1998). Il campo di fratturazione, definito da strutture sintetiche e antitetiche di una faglia principale con geometria listrica, avrebbe costituito il pattern di permeabilità crostale che ha guidato la risalita del magmatismo Permiano.
- 2) Regime paleotettonico transtensivo. In questo scenario, la deposizione delle unità del GVA sarebbe stata connessa allo sviluppo di bacini geometrie e cinematica di tipo pull-apart originatesi in seguito ad un regime trascorrente a scala regionale nel Permiano inferiore-medio. Strutture minori a cinematica normale possono avere controllato la risalita di magma infracrostale e subcrostale e la distribuzione in superficie dei prodotti vulcanici (Schaltegger & Brack, 2007).

Internamente, il dominio del GVA sviluppava strutture connesse all'impostazione delle diverse caldere. Tra queste, la Paleolinea di Tires definiva una faglia inversa orientata E-O e immergente a sud, bordante il lato settentrionale della caldera di Ora.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I ZIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	B	17 di 95

5.2 Assetto tettonico e strutture Meso- Cenozoiche

I processi tettonici Meso-Cenozoici hanno rielaborato la geometria e la disposizione areale delle unità vulcaniche del GVA, con produzione di sistemi di faglie e cortei di fratturazioni che interessano tutta la sequenza Permiana (Avanzini et alii, 2010).

L'evento di rifting crostale del Triassico-Giurassico inferiore destruttura il dominio paleogeografico Permiano, portando il settore delle Alpi Meridionali a formare il margine passivo della microplacca di Adria (Bertotti et al., 1993). Faglie estensionali a decorso NNE-SSO (e immersione verso i quadranti occidentali) si sono sviluppate durante la fase di rifting-drifting, modulando le relazioni geometriche tra le morfo-depressioni (ad esempio, il Bacino Lombardo) e gli altri strutturali (ad esempio, la Piattaforma di Trento).

Il motivo strutturale impostatosi nel periodo Triassico-Giurassico condiziona pesantemente la geometria e la disposizione spaziale delle strutture tettoniche Cenozoiche. Durante la fase di collisione continentale Oligo-Miocenica tra la placca europea e quella adriatica, molti dei paleo-lineamenti si riattivano secondo una cinematica compressiva con vergenze sub-parallele alle direzioni di raccorciamento delle placche. A partire da questa fase si struttura la catena a thrust delle Alpi Meridionali tramite un'embricatura sud-vergente di scaglie tettoniche. Tra i paleolineamenti riattivati, il thrust della Valsugana definisce la struttura che accomoda maggiore raccorciamento crostale (superiore a 10 km), seguita da una serie di thrust che si attivano progressivamente, e temporalmente, da nord verso sud (ad esempio: thrust di Belluno, thrust del Montello), caratterizzati da entità di raccorciamento via via sempre minori (Doglioni, 1987; Selli, 1998; Castellarin et alii, 2006).

5.3 Neotettonica e tettonica attiva

La cartografia disponibile (Brondi et alii., 1974; Avanzini et alii, 2010), così come lavori recentemente pubblicati (quali Galadini et alii, 2005; Falcucci et alii, 2018), non documentano evidenze di tettonica Quaternaria per l'area in esame. Strutture tettoniche attive sono per lo più localizzate verso le propaggini frontali della struttura a falde delle Alpi Meridionali. Sorgenti sismogenetiche collegate a strutture compressive-transpressive sono infatti documentabili nei settori pedemontani al passaggio con la Pianura Veneta e la Pianura Friulana, sulla base dell'analisi della sismicità storica e delle evidenze di campagna.

5.4 Strutture regionali

L'evoluzione tettonica polifasica del settore del GVA si esplica in una serie di strutture a scala regionale la cui sovrimposizione e rielaborazione condizionano l'assetto attuale delle stesse unità vulcaniche.

Strutture di importanza regionale possono essere considerate:

- I settori di deformazione (sistemi di faglie e cortei di fratturazioni associati) originatisi durante il contesto tettonico estensionale del Permiano, dalla messa in posto delle unità vulcaniche ai collassi calderici. Queste strutture hanno direzioni variabili, poiché connesse con le geometrie delle paleo-caldere e con l'orientazione del paleostress, ad oggi poco vincolato. Comunque, orientazioni preferenziali NE-SO e NO-SE vengono citate in letteratura per queste strutture sin-vulcaniche. Proprio per la dominante modalità fissurale di messa in posto delle unità vulcaniche, i giunti prodotti nella fase di raffreddamento sono strutturalmente controllati dalle stesse orientazioni preferenziali dei pattern di fagliazione Permiano che alimentava l'attività vulcanica.
- I settori di deformazioni (faglie e cortei di fratturazione associati) sviluppatesi durante le fasi di rifting Mesozoico. Sebbene non sia possibile ricostruire con precisione la locale paleogeografia durante l'impostazione della fase di rifting, studi sulla tettonica regionale dell'area del Alpi Meridionali indicano

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I LIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA NB1D	LOTTO 01	CODIFICA D 69	DOCUMENTO	REV.	FOGLIO 18 di 95

una generale direttrice NNE-SSO per la fase di rifting, operante mediante faglie bordiere con cinematica normale orientate generalmente NO-SE.

• Le zone di accavallamento delle falde tettoniche durante la fase di collisione continentale Oligo-Miocenica. Le strutture associate sono soprattutto thrust e faglie inverse sud-vergenti. Queste zone di taglio sono generalmente immergenti verso i quadranti settentrionali con valori di inclinazione da moderati a medi.

6 INQUADRAMENTO GEOMORFOLOGICO

Dal punto di vista geomorfologico la conca di Bolzano è caratterizzata dalla confluenza di due importanti valli alpine: quella del fiume Isarco, proveniente da NE, e quella dell'Adige, che proviene da NO. Da N proviene inoltre il torrente Talvera che attraversa la Val Sarentino (Figura 8).

Il livello di base della piana è dato dal corso del fiume Adige, a cui gli altri fiumi si raccordano. La conformazione a fondo piatto, con larghezza di circa 2 km, della valle dell'Adige risulta mantenersi inalterata anche a seguito della confluenza con l'Isarco il quale non opera dunque modifiche sostanziali nel modellamento del fondo vallivo. A sud di Bolzano è da segnalare la presenza di una notevole paleovalle dell'Adige tra Appiano e Caldaro che è stata riempita di sedimenti durante l'ultima espansione glaciale pleistocenica (Castiglioni & Trevisan, 1973).

Figura 8. Inquadramento morfologico della conca di Bolzano con la confluenza delle tre valli alpine e la localizzazione del colle del Virgolo (immagine da GoogleEarth, 2017).

Il reticolo idrografico è stato fortemente influenzato dal sistema di fratture sviluppatesi a causa della rigidezza delle rocce ignimbritiche. Gli stessi sistemi fessurativi, nonché le relative direttrici tettoniche hanno controllato l'evoluzione morfologica sia delle valli principali che di quelle secondarie.

L'azione glaciale ha poi modellato i versanti mettendo in luce le diverse caratteristiche di resistenza dei litotipi. La conca bolzanina, costituita principalmente da ignimbriti molto resistenti, presenta morfologie acclivi con pareti subverticali strapiombanti sul fondovalle e isolate cenge sulle quali sono stati rilevati lembi di sedimenti glaciali.

L'evoluzione che porta all'attuale configurazione della piana di Bolzano inizia nel tardiglaciale würmiano, più di 12.000 anni fa, quando le lingue glaciali che riempivano la valle cominciano il ritiro verso le loro attuali posizioni

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOLI REALIZZAZ SPOSTAME	ZANO – M IONE NU ENTO BIV	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA NB1D	LOTTO 01	CODIFICA	DOCUMENTO	REV.	FOGLIO 19 di 95

alla sommità dei maggiori rilievi e le acque derivate dalla fusione glaciale cominciano ad incidere i depositi precedenti. Questo periodo è caratterizzato probabilmente da una fase di aggradazione del fondovalle; in seguito alla rideposizione dei sedimenti glaciali e periglaciali, vasti conoidi cominciano a formarsi alla confluenza delle valli secondarie nella Val d'Adige (Talvera e Isarco) (Coltorti, 1991). Tali conoidi sono composti da ghiaie e sabbie con numerosi ciottoli e trovanti di natura litologica dipendente dalle aree di alimentazione.

7 INQUADRAMENTO IDROGEOLOGICO

Nel sistema di fondovalle dell'Adige sono identificabili 4 unità idrogeologiche (Autorità di Bacino Nazionale dell'Adige, 1998):

- Acquifero superficiale freatico, contenuto nelle ghiaie e sabbie dei fiumi principali e dei conoidi tributari, con spessore variabile tra 20 e 30 m. Ampi tratti del fondovalle dell'Adige sono tuttavia caratterizzati dalla mancanza o dal limitato spessore dell'acquifero freatico. Il massimo spessore di questi depositi si ha in corrispondenza del grande conoide che interessa proprio la conca di Bolzano, formato alla confluenza del f. Isarco e del t. Talvera, ove sono stati riconosciuti spessori fino a 100-150 m (Avanzini et alii, 2007).
- Acquifero inferiore confinato/semiconfinato localizzato sia nei sedimenti fluviali atesini ed in alcuni conoidi affluenti. Si tratta di un sistema in pressione, sviluppatosi generalmente entro depositi fluviali di natura in prevalenza sabbiosa, confinati al tetto da un orizzonte limoso a bassa permeabilità, distribuito in modo discontinuo nel fondovalle atesino. A N della confluenza dell'Isarco, ma anche in altri tratti, tende ad assumere i caratteri di un acquifero multifalda semiconfinato, per effetto dell'alternanza di livelli ghiaioso-sabbiosi e limoso-argillosi;
- Acquitardo regionale profondo: si tratta di una potente sequenza di sabbie fini e limi. La profondità e la geometria del limite superiore è nota solo dove sono disponibili dati di pozzi profondi ed indagini geofisiche;
- Basamento roccioso, che rappresenta a scala regionale il substrato impermeabile.

Nell'area in esame sono dunque individuabili due tipi di acquiferi, uno principale (a permeabilità primaria) legato ai sedimenti alluvionali del t. Talvera e del f. Isarco ed uno, marginale (a permeabilità secondaria), legato ai sistemi di fratturazione che caratterizzano gli ammassi rocciosi che circondano la conca bolzanina. Per quanto concerne la porzione rocciosa della piattaforma vulcanica atesina questa infatti rappresenta un mezzo sostanzialmente impermeabile ove la possibilità di circolazione è, come detto, legata esclusivamente a processi di fratturazione dell'ammasso, con particolare riguardo alle zone interessate dal passaggio di lineamenti tettonici e fasce cataclastiche.

8 RILIEVI E INDAGINI

Per l'approfondimento del quadro geologico-strutturale, geomorfologico ed idrogeologico dell'area in esame sono state eseguiti i rilievi e le campagne di indagini di seguito descritti.

8.1 Rilievi geologici

L'attività di raccolta dati sul terreno ha riguardato una fascia di territorio sviluppata all'incirca in direzione SW-NE, estesa approssimativamente tra la stazione ferroviaria di Bolzano e Via Roma, ed all'interno della quale ricade il colle del Virgolo. Sulla base delle evidenze di campagna e degli esiti delle ulteriori attività di indagine, successivamente descritte, è stata elaborata una cartografia geologica dell'area investigata in scala 1:2000 (NB1D01D69G6GE0001001A); gli stop eseguiti in corrispondenza della colle del Virgolo sono rappresentati in

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I ZIONE NU ENTO BIV	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	B	20 di 95

Figura 9; i dati raccolti sul terreno sono riportati nell'elaborato NB1D01D69RHGE0001001A. Di importante ausilio alla definizione del quadro geologico, inoltre, sono stati i rilievi condotti all'interno del cunicolo esplorativo scavato da FS tra la fine degli anni '80 e l'inizio degli anni '90 alla base del colle e che lo attraversa in direzione circa NNE-SSW per uno sviluppo approssimativo di 450 m. L'imbocco di tale cunicolo, che è cieco alla sua estremità nord, è collocato in corrispondenza della zona sud-ovest della collina.

Figura 9. Ubicazione degli stop geologici eseguiti in corrispondenza del Colle del Virgolo.

8.2 Rilievi geomeccanici

Nel corso delle attività di campagna sono state eseguite 8 stazioni geomeccaniche tradizionali di superficie. L'elaborazione statistica dei dati acquisiti ha permesso di classificare, dal punto di vista geomeccanico, le porzioni rocciose oggetto dei rilievi, sia secondo i criteri di Bieniawski (1989), attraverso la stima del coefficiente RMR, sia secondo quelli proposti da Barton (1974) mediante il calcolo del parametro Q. Per il dettaglio di tali rilievi si rimanda agli elaborati NB1D01D69RHGE0005002A e NB1D01D69RHGE0005003A.

Oltre alle suddette stazioni geomeccaniche tradizionali sono stati condotti rilievi geologico-geomeccanici in parete tramite 18 calate in corda, finalizzate alla raccolta di dati utili alla valutazione dello stato del versante roccioso e

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAMI	ZANO – ZIONE N ENTO BI	MERANO UOVO TUNNE VIO LINEA ME	EL DEL VIRGOI ERANESE	LO A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	В	21 di 95
alla alaggificaziona goomogooniga dell'ammaga	o I miguilt	ati di	tala attività	anna minam	tati mall	'alabamata

alla classificazione geomeccanica dell'ammasso. I risultati di tale attività sono riportati nell'elaborato NB1D00D69RHGE0005001A.

8.3 Rilievi fotogeologico in cunicolo

Il cunicolo è stato oggetto di un rilievo fotografico al fine di poterne ricostruire, con tecniche fotogrammetriche, un modello 3D a nuvola di punti densa su cui poter condurre delle valutazioni di tipo geologico – geomeccanico; le risultanze di questo studio sono descritte nell'elaborato NB1D01D69RHGE0005002A.

8.4 Rilievo fotogeologico con APR

Al fine di ottenere un modello 3D delle porzioni rocciose più alte e meno direttamente accessibili, dei versanti del colle del Virgolo, sono stati realizzati una serie di voli aerofotogrammetrici con APR (Aeromobile a Pilotaggio Remoto). In tal modo sono stati acquisiti dati utili alle valutazioni geomeccaniche delle pareti rocciose sommitali. Tali dati sono stati confrontati ed integrati con gli esiti dei rilievi geomeccanici tradizionali a terra e di quelli su Per dettagli si rimanda elaborati NB1D00D69IXGE0005001÷003°, fune in parete. i agli NB1D00D69RHGE0005004A e NB1D00D69RHGE0005001A.

8.5 Simulazione di caduta massi

Per la valutazione della pericolosità da caduta massi in relazione all'infrastruttura ferroviaria esistente ed al tracciato di progetto del nuovo tunnel sono state eseguite modellazioni tridimensionali dei fenomeni di crollo allo scopo di simulare le traiettorie di possibile propagazione di blocchi rocciosi. Il modello digitale del terreno (DTM) utilizzato per queste analisi deriva dal ricampionamento di un DTM ad alta risoluzione (20 cm) ricavato mediante un rilievo LIDAR da elicottero. Le analisi dei fenomeni di crollo sono state condotte attraverso l'impiego del software ®Rockyfor3D (v5.2.11 ecorisQ, International Association for Natural Hazard Risk Management) che risulta essere in grado di simulare eventi di crollo estesi su superfici tridimensionali e registrare in maniera discreta e differenziata sia i parametri cinematici che caratterizzano il moto dei volumi rocciosi in discesa sul versante, sia i punti di arrivo degli stessi. Per i dettagli si rimanda agli elaborati NB1D00D69G7GE0001001÷011A e NB1D00D69RHGE0001004A.

8.6 Indagini dirette

Allo scopo di acquisire ulteriori informazioni sulle caratteristiche geologico-stratigrafiche dell'area di studio, sono state eseguite diverse campagne di indagini geognostiche, di seguito riassunte:

• Campagna 2018.

Tra la fine del 2018 ed inizio 2019 sono stati realizzati cinque sondaggi geognostici, (BH2, BHG3, BH5, BH6 e BHG7). I sondaggi sono stati realizzati a carotaggio continuo con esecuzione di prove in foro (SPT, prove pressiometriche, dilatometriche e di permeabilità) e prelievo di campioni. Il sondaggio BHG7, eseguito sulla sommità del colle del Virgolo, è stato spinto fino alla profondità di 188,4 m; in questo sondaggio sono state eseguite anche prove BHTV e prove di fratturazione.

• Campagna 2020.

Sono stati realizzati ulteriori 6 sondaggi (VG0, VG1, VG2, VG3, VG4 e VG5) ai piedi del colle del Virgolo, con una profondità che varia da 30 m a 60 m, per approfondire la caratterizzazione dei terreni quaternari interessati dal tracciato di progetto. I sondaggi sono stati realizzati a carotaggio continuo con

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAMI	ZANO – I ZIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	_O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA NB1D	LOTTO 01	CODIFICA D 69	DOCUMENTO	REV. B	FOGLIO 22 di 95

esecuzione di prove in foro (SPT, prove pressiometriche, dilatometriche e di permeabilità) e prelievo di campioni.

Sono stati inoltre utilizzati i dati di indagini derivanti da pregresse campagne eseguite da Italferr (2017) nell'ambito dello studio per la riqualificazione dell'areale ferroviario di Bolzano e ulteriori dati provenienti dall'archivio sondaggi della Provincia Autonoma di Bolzano.

Nella seguente tabella (Tabella 1) sono riassunti i sondaggi di cui si è fatto uso ai fini della ricostruzione dei profili geologici in asse tracciato riportati nell'elaborato NB1D01D69F6GE0001001A. In Appendice I, inoltre, sono riportate le stratigrafie di riferimento dei sondaggi acquisiti dalla Provincia Autonoma di Bolzano e rappresentati nei suddetti profili.

Sondaggio	Campagna	Ente	Lunghezza]		Strumentazione		
			(m)	SPT	Pressiometrica	Dilatometrica	Lugeon	Lefranc	installata
VG0	2020	Italferr	35	Х	Х			Х	Piezometro
VG1	2020	Italferr	60	Х		Х	Х		Piezometro
VG2	2020	Italferr	40	Х	Х			Х	Piezometro
VG3	2020	Italferr	40	Х				Х	Piezometro
VG4	2020	Italferr	35	Х	Х			Х	Piezometro
VG5	2020	Italferr	30	Х	Х			Х	Piezometro
BHG7*	2018	Italferr	188.4	Х	Х	Х	Х		Piezometro
BH2	2018	Italferr	30	Х	Х			Х	Piezometro
BHG3	2018	Italferr	70	Х		Х	Х		Piezometro
BH5	2018	Italferr	50	Х	Х			Х	Tubo per DH
BH6	2018	Italferr	50	Х	Х			Х	Piezometro
S1	2017	Italferr	50	Х				Х	Piezometro
S2	2017	Italferr	50	Х				Х	Tubo per DH
S 3	2017	Italferr	30	Х				Х	Piezometro
PR1/99	1999	Privato	14.5	Х				Х	Piezometro
PR2/99	1999	Privato	10	Х				X	-
C8/92	1992	Comune	25	Х					-
C5/01	2001	Comune	20	Х					_
AN7	1989	ANAS	16.2						-

Tabella	1.	Elenco	dei	sondaggi	utilizzati.
Lancina	т.	Lichco	uu	sonuaggi	uumLLau.

*nel sondaggio BHG7 sono state effettuate anche prove BHTV e prove di fratturazione

8.7 Indagini indirette

Nell'ambito delle diverse campagne di indagini sono state eseguite anche prospezioni geofisiche, la cui ubicazione all'interno dell'area di studio è visibile nell'elaborato NB1D01D69G6GE0001003A – Carta ubicazione delle indagini geognostiche.

La campagna di indagini geofisiche 2020 è stata realizzata lungo il tracciato ferroviario di progetto, in una zona compresa tra il ponte ferroviario sul fiume Isarco e il quartiere di Oltrisarco. In questa campagna sono state eseguite 8 prove di tipo MASW/Re.Mi. e 3 prospezioni sismiche a rifrazione.

La campagna di indagini geofisiche 2018 è stata realizzata nell'intorno del ponte ferroviario esistente. Sono stati eseguiti due stendimenti di geoelettrica, uno parallelamente al ponte ferroviario ed uno perpendicolarmente allo stesso ed una prova sismica in foro di tipo Down-Hole attrezzando il sondaggio BH5.

Figura 10. Localizzazione delle indagini geofisiche 2018 e 2020 utilizzate per il presente studio.

Nella campagna 2017, eseguita per lo studio relativo alla riqualificazione dell'areale ferroviario di Bolzano, sono state eseguite 6 prove MASW/Re.Mi. e 5 prove Down-Hole. La localizzazione di alcune di queste prove ricade oltre i limiti del suddetto elaborato NB1D01D69G6GE0001003A, pertanto la posizione di tutte le prove geofisiche 2017 è mostrata in Figura 11. Le prove che risultano maggiormente in prossimità della linea ferroviaria sono una prova Down-Hole (H2, nel foro del sondaggio S2) in destra idrografica del fiume Isarco e una prova MASW/Re.Mi. (R1) nel pressi del sondaggio S1, in sponda sinistra dell'Isarco.

Figura 11. Localizzazione delle indagini geofisiche 2017 per la riqualificazione dell'areale ferroviario di Bolzano.

9 ASPETTI TETTONICI LOCALI

L'assetto locale risulta influenzato dallo schema tettonico descritto nel capitolo 5. Il Colle di Bolzano, di cui il Virgolo risulta essere l'estrema propaggine orientale, è costituito da una struttura leggermente immergente in direzione S-SE. Il lineamento principale che caratterizza l'area è ubicato a nord del rilievo del Virgolo e costituisce il prolungamento della già citata Linea di Tires, un sovrascorrimento nord vergente con direzione circa WNW-ESE. La sua azione di dislocamento è visibile allo sbocco della Val d'Ega con rigetti compresi tra 200 e 300 metri. Evidenze del movimento a tetto della faglia (zona funivia Colle) sono visibili per la presenza di piani compressivi associati a fasce cataclastiche di spessore metrico.

I rilievi geologici eseguiti per il presente lavoro nell'area del Virgolo hanno messo in luce la presenza di 4 sistemi principali di discontinuità strutturali che caratterizzano l'ammasso roccioso vulcanico, schematizzati sulla base dei rilievi di superficie e dei rilievi condotti all'interno del cunicolo esplorativo scavato nel colle.

La mappatura dei principali lineamenti è mostrata nell'elaborato NB1D01D69G6GE0001001A - Carta Geologica.

Figura 12. Rappresentazione dei principali sistemi di discontinuità identificati.

Di seguito si indicano le caratteristiche meccaniche e giaciturali delle suddette famiglie, riconoscibili nello stereoplot di Figura 12:

• **S0**: Superfici di contatto stratigrafico a basso angolo (< 30°) immergenti verso ENE che separano flussi piroclastici successivi appartenenti alla Formazione di Gries (IGR). Queste strutture risultano particolarmente evidenti nel tratto centrale del cunicolo esplorativo (Figura 13a) e meno in superficie, seppur identificabili in corrispondenza di Via del Calvario (tra la seconda e terza cappella, Figura 13b).

Figura 13. Esempio di strutture S0 a basso angolo entro il cunicolo esplorativo (a) e nella corrispondente porzione esterna di Via Calvario (b).

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOLI REALIZZAZ SPOSTAME	ZANO – I LIONE NU ENTO BIV	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	B	26 di 95

• S1: Strutture orientate generalmente NE-SO che rappresentano giunti di fissurazione della roccia con origine da sin a post-deposizionali, inclinazione sub-verticale ed immersione verso NO (talvolta con basculamento di 180° - Sistema S1-2 in Figura 12). Non sono visibili né tracce di mineralizzazioni associate lungo i piani di discontinuità né evidenze di scivolamento tra i blocchi a contatto. Si valuta dunque, come detto, che si tratti di discontinuità di tipo tensionale e non di origine prettamente tettonico-strutturale.

Figura 14. Esempio di struttura S1 lungo la volta del cunicolo esplorativo (a) e in corrispondenza della prima cappella di Via del Calvario (b).

S2: Strutture tettoniche post-deposizionali, persistenti, a cinematica normale (talvolta con segni di riattivazione in trascorrenza) con orientazione circa NNO-SSE ed immersione verso OSO e valori di inclinazione generalmente elevati (> 60 °). Sono identificabili, in corrispondenza dei piani di scorrimento delle *damage zone* sino a decimetriche (max 30 cm) con mineralizzazione a calcite. Localmente presentano strutture coniugate alle superfici principali (S2-C in Figura 12). Proprio a causa di queste riattivazioni successive è possibile notare una certa dispersione, in termini di direzione ed immersione dei piani di faglia di questa famiglia. Questo effetto è mostrato nello stereoplot di Figura 12 che evidenzia delle sotto famiglie (S2-1 ed S2-2) con orientazione leggermente diversa da quella del set dominante. Sulla base di quanto osservato in cunicolo queste strutture tagliano e dislocano (con rigetti variabili da qualche centimetro sino a qualche decimetro) le discontinuità S1, definendo pertanto una cronologia relativa per la quale le discontinuità S2 sono da considerarsi più giovani rispetto alle discontinuità S1.

Figura 15. Esempio di strutture S2 ad alto angolo all'interno del cunicolo con presenza di mineralizzazione a calcite (a) e sul lato nord del Virgolo, con damage zone e mineralizzazione a calcite (b).

• S3: Strutture di origine tettonica o vulcano-tettonica a cinematica inversa, con orientazione circa NO-SE ed immersione verso SO con valori di inclinazione medio-bassi. Sono presenti *damage zone* di spessore decimetrico (sino a 50 cm). Le relazioni matrice-clasti nelle aree di danneggiamento, così come la presenza di una organizzazione tessiturale dei differenti livelli granulometrici, suggerisce un meccanismo di deformazione di tipo cataclastico per la formazione di queste strutture. Non si sono definiti con chiarezza i rapporti temporali intercorrenti tra le famiglie S3 ed S2 poiché non visibili, né in cunicolo né in superficie.

Figura 16. Esempio di strutture S3 a medio angolo all'interno del cunicolo (a) e nel corrispondente tratto esterno tra la prima e la seconda cappella di Via del Calvario (b).

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I LIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	B	28 di 95

10 ASSETTO GEOLOGICO LOCALE

Ai fini della definizione del quadro geologico locale vengono di seguito descritti i dati direttamente acquisiti nel corso dello studio, sia attraverso i rilievi di campagna, sia attraverso le indagini geognostiche eseguite.

Il rilevamento svolto sul terreno ha permesso di ricostruire con affidabilità il limite tra le formazioni affioranti di Gries e Ora nonché di mappare l'andamento dei principali depositi quaternari e dei lineamenti tettonici. I dati di superficie relativi al substrato vulcanico sono stati inoltre comparati con quelli raccolti all'interno del cunicolo esplorativo esistente nel colle del Virgolo, così da poter sviluppare un modello geologico coerente che tiene conto dei vari set di dati.

Per la caratterizzazione dei litotipi in esame, sono state inoltre eseguite analisi petrografiche in microscopia ottica in luce polarizzata trasmessa su sezioni sottili di campioni di roccia prelevati nei sondaggi BHG3 e BHG7, all'interno del cunicolo ed in affioramento sulla collina del Virgolo; i risultati delle analisi sono allegati alla presente relazione.

10.1 Substrato Vulcanico

10.1.1 Formazione di Ora

La formazione di Ora costituisce la porzione più alta del colle del Virgolo; rappresenta l'unità vulcanica più recente dell'area e non se ne prevede l'interessamento nello scavo della nuova galleria in progetto. Ad essa sono associate le principali pareti a sviluppo verticale o sub-verticale che caratterizzano il rilievo, lo delimitano e isolano su tutti i lati, ad eccezione del versante sud orientale, che risulta in continuità morfologica con il rilievo del Colle di Bolzano.

In campagna risulta particolarmente frequente una "facies a litici", ove l'aspetto dell'ignimbrite risulta caratterizzato dall'abbondanza di inclusi litici di dimensioni fino a decimetriche immersi in una pasta di fondo di colore rosato/grigiastro (Figura 17).

Figura 17. Affioramento alla base della parete principale con evidenza degli inclusi litici.

Al piede delle pareti la roccia risulta spesso alterata e arrotondata presumibilmente a causa del prolungato dilavamento, mentre in parete si presenta in grossi blocchi e prismi definiti da una fratturazione tipicamente colonnare, caratteristica dei fenomeni di raffreddamento associati alla messa in posto delle colate piroclastiche. La

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I LIONE NU ENTO BIV	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	_O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	B	29 di 95

formazione di Ora è stata attraversata dalla perforazione BHG7 nei primi 80 m circa: nel sondaggio essa ha mostrato oltre all'arricchimento in litici (Figura 18) anche la presenza di locali e sottili livelli a granulometria fine, cineritica. All'analisi petrografica in sezione sottile, condotta su campioni prelevati dal sondaggio BHG7, l'unità è classificata come un lapilli tuff ad alto indice porfirico, grana grossa, con cristalloclasti di quarzo, plagioclasio, sanidino e biotite immersi in una matrice che presenta motivi fluidali, e con fiamme porfiriche e litici lavici riodacitici.

Figura 18. Formazione di Ora tra 35 e 40 m di profondità nel sondaggio profondo BHG7.

Il limite con la sottostante formazione di Gries risulta discordante e ad andamento piuttosto articolato, in relazione alle paleomorfologie esistenti al momento della messa in posto. In particolare, tale limite si rinviene nella zona nord dell'area in esame, in prossimità dell'imbocco settentrionale della galleria stradale "Virgolo" della SS 12; il limite poi tende a salire lungo il bordo occidentale del colle fino alla zona sovrastante il santuario del Santo Sepolcro (Figura 19), con un aumento graduale di quota e per un dislivello complessivo di circa 60 metri.

Figura 19. Limite IGR/ORA nella zona settentrionale (a) ed in quella meridionale (b) del settore in studio.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I ZIONE NU ENTO BIV	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	_O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	В	30 di 95

10.1.2 Formazione di Gries

La Formazione di Gries (IGR) si presenta nell'area del Virgolo come una ignimbrite a pasta di fondo fine dal colore grigio/rossastro/vinaccia, in cui sono sparsi numerosi cristalli (anche plurimillimetrici) di feldspati e quarzo, inclusi litici e juvenili. L'aspetto può risultare variabile in funzione del grado di alterazione dell'ammasso; i sistemi di fratture, nelle porzioni più massive e meno alterate, tendono ad isolare cunei di roccia come visibile in Figura 20.

Figura 20. Affioramenti di IGR in prossimità dell'imbocco Nord del tunnel in progetto (a); parete massiva a monte dell'imbocco del tunnel autostradale del Virgolo (b).

In superficie si rinvengono zone dove l'ammasso roccioso è maggiormente alterato e/o detensionato; a tal proposito si può osservare in Figura 21 un certo grado di fratturazione, con presenza di giunti orizzontali e suddivisione in blocchetti del litotipo. Altrove la condizione dell'ammasso risulta meno degradata e di aspetto decisamente più massivo. In Figura 22, al fine di rappresentare la variabilità geomeccanica e strutturale dalla formazione di Gries si riporta un confronto tra due affioramenti (oggetto di stazioni geomeccaniche), a circa 50 metri uno dall'altro, a monte del primo tratto di Via del Calvario. Si può notare l'aspetto massivo che caratterizza l'affioramento al punto 1504, e quello più disturbato rinvenuto al punto 1505.

Il limite con la sovrastante formazione di Ora risulta ondulato e ad andamento complesso in funzione delle caratteristiche paleomorfologiche delle superfici di deposizione. Come detto in precedenza, si nota un progressivo aumento di quota di tale limite procedendo da nord (imbocco nord della galleria della strada statale del Brennero) verso sud (a monte del santuario del Santo Sepolcro sul Virgolo).

Figura 21. Particolare di un affioramento della Formazione di Gries in corrispondenza della terza cappella di Via del Calvario (WP1502).

Figura 22. Confronto tra due affioramenti della Formazione di Gries posti a poche decine di metri l'uno dall'altro.

Il substrato ignimbritico della formazione di Gries (IGR) è stato intercettato dai sondaggi BH2 e BHG3 del 2018 e dal sondaggio VG1 del 2020.

Su alcuni campioni prelevati nel sondaggio BHG3 sono state condotte anche analisi petrografiche di sezioni sottili; i campioni analizzati sono stati classificati come lapilli tuff-riolitici a medio indice porfirico e grana medio-grossa con una caratteristica orientazione preferenziale delle fiamme e dei cristalloclasti (plagioclasio, sanidino, quarzo, biotite e pirosseno).

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I LIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	В	32 di 95

10.1.2.1 Formazione di Gries - osservazioni nel cunicolo esplorativo

Nel cunicolo esplorativo risalente all'inizio degli anni '90, sono state condotte (per quanto possibile stante le condizioni agibilità) delle osservazioni che hanno permesso di acquisire rilevanti informazioni di tipo geologico.

Il cunicolo è scavato per intero nella Formazione di Gries: in esso sono state identificate tre zone con caratteristiche differenziabili. Le tre zone sono state suddivise in funzione di orientative progressive di riferimento, misurate, con un relativo grado di approssimazione, a partire dall'imbocco sud del cunicolo:

- Zona 1 (da imbocco a pk 0+220 circa), in azzurro in Figura 23;
- Zona 2 (circa da pk 0+220 a pk 0+300 circa), in verde in Figura 23;
- Zona 3 (da pk 0+300 circa a pk 0+450 circa), in giallo in Figura 23.

In Figura 23 sono inoltre indicate le posizioni di una serie piani di discontinuità persistenti/lineamenti (con il loro valore di inclinazione) rilevati e misurati manualmente lungo il cunicolo esplorativo (e già in parte analizzati nel capitolo 9 in funzione della loro appartenenza alle principali famiglie di discontinuità identificate). Il tracciato del cunicolo riportato in figura deriva da un apposito rilievo topografico mediante drone svolto da Italferr nel novembre 2020. Le posizioni dei piani rilevati sono state poi proiettate lungo il nuovo tracciato di linea (binario dispari di progetto) e lungo il tracciato di progetto della nuova linea Meranese, ai fini della rappresentazione delle suddette discontinuità sui relativi profili geologici (NB1D01D69F6GE0001001A). Sempre nei profili geologici sono state correlate, ove possibile, le strutture rilevate all'interno del cunicolo con i lineamenti identificati attraverso il rilievo di superficie.

Figura 23. Indicazione dei piani di discontinuità rilevati lungo il cunicolo esplorativo.

10.1.2.1.1 Zona 1

La prima parte del cunicolo si caratterizza per la presenza di un litotipo massivo con piani di fratturazione ben definiti e piuttosto regolari (Figura 24). La buona qualità della roccia è testimoniata oltre che dall'assenza di interventi di stabilizzazione del cavo, dalla scarsità di detriti e blocchi crollati dalla volta; alcuni rilievi speditivi tramite martello di Schmidt per la stima della resistenza a compressione hanno restituito valori di σ_c attorno ai 100 Mpa di media.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAMI	LINEA BOLZANO – MERANO REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI SPOSTAMENTO BIVIO LINEA MERANESE							
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO			
	NB1D	01	D 69	RG GE 0001001	В	34 di 95			

Figura 24. Condizione dell'ammasso roccioso alla pk 0+180 m circa dall'imbocco.

Figura 25. Esempio di piani subverticali identificati nel tratto iniziale del cunicolo.

Di seguito (Tabella 2) si indicano i piani persistenti rilevati nel primo tratto di cunicolo e proiettati, alle rispettive pk e con la stessa numerazione, nei profili geologici in asse al tracciato di progetto della linea Meranese e a quello di linea (Binario Dispari). Per ogni lineamento si è provveduto a definire la famiglia di appartenenza rispetto a quelle già individuate e descritte al capitolo 9.

GRUPPO FERROVIE DELLO			LINEA BOLZANO – MERANO REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINAR SPOSTAMENTO BIVIO LINEA MERANESE					
RELAZIONE GEOL	OGICA		NB1D 01 D 69 RG GE 0001001 B					
	Tal	oella 2. Piani rilev	vati nel primo s	settore del cui	nicolo.			
Numero	Dip	Dip Dir	Famiglia di	scontinuità	Progr. orientati	va cunic	olo (m)	
1	85	238	S	2	2	1		
2	82	54	S	2	22	2		
3	82	129	S	1	45			
4	82	274	S	2	72			
5	88	217	S	2	77			
6	77	127	S	1	91			
7	32	72	SZ	2c	106			
8	71	262	S	2	110			
9	52	56	S2	2c	12	:3		
10	62	38	S2	2c	12	.6		
11	72	39	SZ	2c	12	6		
12	81	285	S	1	13	7		
13	54	52	SZ	2c	14	5		
14	66	295	S	1	15	5		
15	41	52	SZ	2c	19	03		
16	76	244	S	2	21	0		
17	68	258	S	2	216			

Sono presenti numerosi piani persistenti (Figura 25), visibili attraverso tutto lo sviluppo della sezione che intersecano il cunicolo con inclinazioni medie attorno ai 70° ed immersioni lungo due set preferenziali (Figura 26).

I due set mostrati in Figura 26 rappresentano le famiglie di discontinuità S2-S2c e S1. La famiglia S1 è definita da piani ad alto angolo con orientazione circa NE-SO mentre la famiglia S2 è rappresentata da piani con direzione media circa NO-SE, con variazioni di orientazione legate alla *stress history* di cui questi lineamenti sono rappresentazione.

Si tratta principalmente di piccole faglie ad alto angolo, con zone di danneggiamento molto ridotte (centimetrichedecimetriche) e presenza di mineralizzazioni a calcite, come visto in precedenza, caratteristiche della famiglia di discontinuità S2.

Lungo il tratto in esame si segnalano solo locali zone umide o deboli stillicidi circa alle Pk $0+070 \div 0+080$, 0+110, 0+126, 0+186 e 0+193 dall'imbocco.

Figura 26. Diagramma dell'orientazione dei piani di discontinuità principali misurati nel primo tratto del cunicolo. In blu la famiglia S2-S2c e in giallo la famiglia S1.

10.1.2.1.2 Zona 2

Il secondo tratto del cunicolo è caratterizzato dalla presenza di diversi piani sub-orizzontali o poco inclinati, appartenenti alla famiglia S0 (si veda cap. 9), immergenti verso NE (Figura 27) che separano i flussi piroclastici ed isolano orizzonti più o meno competenti, talvolta caratterizzati da una struttura brecciata con annessa presenza di livelli cineritici centimetrici più compatti.

Figura 27. Ortopanoramica in corrispondenza dell'affioramento dei piani a basso angolo nel cunicolo.

In alcuni casi, come alla pk 0+262 circa, è possibile osservare un livello ignimbritico più degradato chiudersi con un andamento lentiforme (Figura 28)

Figura 28. Chiusura di una lente di materiale più scadente alla pk 0+262.

In questa porzione di tunnel è possibile identificare estese mineralizzazioni di colore giallastro, di probabile natura sulfurea (Figura 27); sono presenti numerosi blocchi crollati dalla volta e dalle pareti che invadono il piano di calpestio. Questi distacchi sono il risultato di cinematismi di instabilità legati alla presenza dei suddetti piani a basso angolo che hanno svincolato, con l'aiuto dei restanti sistemi di giunti, svariati blocchi rocciosi (Figura 29).

Figura 29. Fenomeni di crollo in volta dovuti alla presenza dei piani suborizzontali oltre la pk 0+240.

Da segnalare la presenza attorno alla pk 0+240 di una area che è stata interessata verosimilmente da maggiore instabilità, in corrispondenza di un allargo del cavo. L'area è stata trattata con spritz beton, reti elettrosaldate e chiodature. La causa dello scavernamento è presumibilmente da ricercarsi nella presenza di un livello più debole, isolato dai piani a basso angolo precedentemente descritti.

Figura 30. Particolare della zona interessata dai crolli in calotta, trattata con la posa della rete elettrosaldata, chiodature e spritz beton.

Di seguito (Tabella 3) si indicano i piani persistenti rilevati in questo secondo tratto di cunicolo e riportati, alle rispettive pk e con la stessa numerazione, nei profili geologici in asse al tracciato della Meranese e a quello di linea (Binario Dispari).

I piani si mostrano persistenti per tutta la sezione del cunicolo, intercettata circa perpendicolarmente al suo sviluppo, e definiscono una spaziatura di alcuni metri l'uno dall'altro.

GRU		FERR STATO ITALIANE			LINEA BOLZANO – MERANO REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI SPOSTAMENTO BIVIO LINEA MERANESE						
RELA	ZIONE GEOL	OGICA			COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO						
					NB1D	01	D 69	RG GE 0001001	В	39 di	95
			Tabella 3. Piani	i rileva	ati nel secon	do settor	e del cunico	olo.			
	Numero	Dip	Dip Dir	Fan	niglia disco	ontinuità	Progr.	orientativa cu	nicolo (m)	
	18	9	57		S0			222			
	19	22	73		S0			254			
	20	21	75		SO			256			
	21	11	31	SO		275					
	22	12	80		SO		285				
	23	13	25		S0			297			

Figura 31. Diagramma dell'orientazione dei piani di discontinuità (S0) misurati nel secondo tratto del cunicolo.

10.1.2.1.3 Zona 3

L'ultimo tratto del cunicolo, a partire dalla progressiva 0+300 circa fino al termine, ritorna a mostrare una roccia più massiva (Figura 32), anche se con piani di discontinuità meno definiti di quelli osservati nel primo tratto e struttura localmente più brecciata, legata ad una maggiore incidenza di inclusi (juvenili e litici) nell'ignimbrite di Gries.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOLZANO – MERANO REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI SPOSTAMENTO BIVIO LINEA MERANESE						
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	

Figura 32. Aspetto massivo dell'ammasso ignimbritico nell'ultimo tratto del cunicolo, con discontinuità poco evidenti.

I piani di discontinuità persistenti appartengono in gran parte alla famiglia S3 (*cfr.* cap. 9); presentano un'inclinazione media attorno ai 45° ed un'immersione generale verso SSE. Alcuni piani come quello alla pk 0+376 mostrano evidenze di movimento lungo le superfici (Figura 33) con identificazione di una limitata *damage zone* a carattere cataclastico.

Figura 33. Piano di faglia con tracce di movimento.

Più rari risultano essere i piani appartenenti alla famiglia S1, e rinvenuti tra le pk 0+415 e 0+430. Si rinvengono inoltre isolati piani a basso angolo con immersione opposta rispetto a quelli del tratto centrale.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I ZIONE NU ENTO BIV	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	В	41 di 95

In questo terzo tratto i distacchi/crolli appaiono limitati; rilievi speditivi tramite martello di Schmidt per la stima della resistenza a compressione hanno mostrato valori di σ_c attorno ai 95 Mpa di media.

Di seguito (Tabella 4) si indicano i piani persistenti rilevati nel terzo tratto di cunicolo e riportati, alle rispettive pk e con la stessa numerazione, nei profili geologici in asse al tracciato della linea Meranese e a quello di linea (Binario Dispari).

Numero	Dip	Dip Dir	Famiglia discontinuità	Pk orientativa cunicolo
24	55	263	S3	322
24a	85	215	S2	360
25	27	212	S 3	372
26	43	260	S3	376
27	45	232	S3	396
28	44	105	S2c	417
29	49	197	S3	419
30	62	237	S2	430
31	35	229	S 3	439
32	43	246	\$3	450

Tabella 4. Piani rilevati nel terzo settore del cunicolo

Lungo la volta del cunicolo, in particolare tra le pk 0+330 e 0+360 è stato notato un lineamento persistente, subparallelo all'andamento del tunnel (N235/80) identificato come appartenente alla famiglia S1 e mostrato in Figura 14. Il lineamento si interrompe in corrispondenza di una faglia ad alto angolo (24a) appartenente al set S2 a riprova del rapporto di successione temporale intercorrente tra le due famiglie.

Figura 34. Diagramma dell'orientazione dei piani di discontinuità principali (S3 e in parte S2) misurati nel terzo tratto del cunicolo.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I ZIONE NU ENTO BIV	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	В	42 di 95

10.1.3 Lave and esitiche (AND)

Nel sondaggio BHG7 è stato rinvenuto al di sotto della formazione di Ora (e a tetto della formazione di Nalles) un orizzonte di lave andesitiche dello spessore di circa 17 m. Tale orizzonte lavico non risulta affiorante nell'area in esame, analogamente alla formazione di Nalles. In sondaggio le lave si presentano da compatte a brecciate, porfiriche, con evidenti fenocristalli di plagioclasio. Analisi petrografiche in sezione sottile hanno messo in evidenza la presenza, tra i fenocristalli, oltre che dei plagioclasi (parzialmente sostituiti da sericite+calcite) anche di pirosseni (parzialmente sostituiti da clorite+calcite+opachi), e una pasta di fondo fluidale in cui sono stati riconosciuti individui di plagioclasi seriati.

Figura 35. Lave andesitiche (AND) rinvenute nel sondaggio BHG7. In figura la cassa compresa tra 90 e 95 m di profondità.

10.1.4 Formazione di Nalles (NAL)

L'unità vulcanica ricondotta alla formazione di Nalles non risulta affiorante nell'area di studio e non è interessata dallo scavo del tunnel in progetto. La sua presenza è dedotta dalle risultanze del sondaggio profondo BHG7 (Figura 36), ove viene intercettata alla profondità di circa 100 m da p.c., ossia ad una quota di circa 320 m.s.l.m., al di sotto della formazione di Ora (Ora) e delle lave andesitiche (AND). Macroscopicamente si presenta come una ignimbrite compatta, di colore da rosso mattone a rosato, con abbondanti fenocristalli millimetrici di sanidino, plagioclasi e quarzo, fiamme, litici sia lavici che ignimbritici. Su campioni prelevati a varie quote dal sondaggio sono state eseguite analisi in sezione sottile: si tratta di lapilli tuff riolitici spesso ad alto indice porfirico, con cristalloclasti di sanidino, quarzo, plagioclasi e biotite in pasta di fondo felsitica a tessitura orientata, con frequenti fiamme rinsaldate, litici di lave e ignimbriti riodacitiche. La formazione di Nalles è rappresentata nelle sezioni geologiche trasversali al tracciato (NB1D01D69W6GE0001001A).

La presenza a tergo del Colle del Virgolo di questa formazione potrebbe essere ricondotta ad una paleomorfostruttura, ad andamento ipotizzabile circa NNE-SSO, presumibilmente legata alle fasi di collasso calderico e sepolta dalla formazione di Ora.

Figura 36. Formazione di Nalles (NAL) rinvenuta nel sondaggio BHG7: cassa compresa tra 105 e 110 m di profondità.

10.2 Depositi Quaternari

10.2.1 Depositi glaciali – Till indifferenziati (SGD)

Nell'area di studio i depositi di origine glaciale si rinvengono quasi esclusivamente nella porzione sommitale del rilievo del Virgolo, dove le modeste pendenze hanno permesso l'accumulo dei materiali trasportati dal ghiacciaio della Valle Isarco. Si tratta di deposito di modesto spessore, caratterizzati da elementi grossolani (ghiaie e ciottoli), di natura litologica poligenica (fillade, granito, calcare) con forma da sub-arrotondata ad arrotondata, immersi in matrice limoso-sabbiosa.

GRUPPO FERROVIE DELLO STATO ITALIANE		LINEA BOLZANO – MERANO REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI SPOSTAMENTO BIVIO LINEA MERANESE					
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	

Figura 37. Clasti granitici afferenti a depositi glaciali.

10.2.2 Depositi di origine mista (PTG1)

Questi depositi si rinvengono solo a sud dell'area di studio, nel quartiere dell'Oltrisarco-Aslago. Sono il frutto di processi di accumulo operati da minori corsi d'acqua che scendevano dal colle del Virgolo generando le classiche forme a conoidi coalescenti tipiche dei settori posti ai piedi dei versanti. Anche in questo caso si tratta di materiali prevalentemente grossolani, ghiaiosi, con presenza di matrice sabbiosa.

10.2.3 Depositi di versante indifferenziati (PTG)

Questi depositi affiorano piuttosto estesamente nell'area di studio, al di sotto delle pareti sub-verticali, e sono il risultato della disgregazione e mobilizzazione della roccia in posto che genera accumuli di materiali grossolani, a dimensione variabile da centimetrica a metrica, con presenza variabile di matrice sabbiosa e/o sabbioso-limosa (Figura 38). I clasti risultano angolosi o sub-angolosi (per il ridotto trasporto subito). La distinzione tra depositi di frana e coltri di detrito di versante non sempre è possibile e per questa ragione si è valutato di unificare tutti questi materiali sotto la definizione di depositi di versante indifferenziati.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOLZANO – MERANO REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI SPOSTAMENTO BIVIO LINEA MERANESE					
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	B	45 di 95

Figura 38. Esempio di falda detritica con blocchi decimetrici (a); carote dell'intervallo di profondità 0-5 m del sondaggio BHG3 (b); i primi due metri sono attribuibili ai depositi PTG.

10.2.4 Alluvioni (ALL)

I depositi alluvionali si rinvengono estesamente ai margini della zona di studio, in corrispondenza dell'area urbana della città di Bolzano. Si tratta di depositi eterogenei in prevalenza costituiti da ghiaie, ciottoli e blocchi, generalmente a spigoli arrotondati, immersi in quantità variabile di matrice sabbioso-limosa. L'origine dei depositi è legata alle dinamiche fluviali dei due principali corsi d'acqua della città, il fiume Isarco e il torrente Talvera (Figura 39).

Figura 39. Esempio di materiale alluvionale rinvenuto nel sondaggio S2 (2017) eseguito nei pressi del ponte ferroviario (a). Confluenza tra f. Isarco e t. Talvera (b): si osserva il letto impostato nei materiali alluvionali.

Infine, si segnala la presenza di depositi antropici superficiali (R), rinvenuti tramite le indagini dirette in prossimità della linea ferroviaria; si tratta solitamente di ghiaie con resti di laterizi, sabbie e raramente di sedimenti più fini. Tali depositi non sono stati rappresentati in carta stante la loro variabilità di spessore, ma sono stati rappresentati nei profili geologici.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I LIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	B	46 di 95

11 ASPETTI GEOMORFOLOGICI LOCALI

Dal punto di vista geomorfologico il rilievo del Virgolo si erge rispetto alla piana alluvionale della conca di Bolzano per un dislivello di circa 200 metri ed una quota massima di circa 460 m s.l.m. Il colle risulta direttamente prospiciente la piana alluvionale nei settori nord, sud e ovest, mentre è in continuità morfologica con il retrostante versante montuoso del Colle di Bolzano sul lato est.

Le pareti che delimitano il colle del Virgolo presentano pendenze elevate: la scarpata superiore principale del rilievo, costituita dalla formazione di Ora, presenta un dislivello di circa 50-60 metri e inclinazione anche prossima alla verticale, con locali morfologie in aggetto. La porzione sommitale del rilievo risulta invece occupata da un ripiano immergente verso Sud che è stato modellato dall'azione glaciale, la cui testimonianza si rinviene nei depositi descritti al paragrafo 10.2.1. Al piede della porzione nord-occidentale del colle, dove corre la linea ferroviaria attuale, il versante è caratterizzato da una inclinazione media di circa 45 °).

Operando una schematizzazione morfologica del colle del Virgolo (anche con l'ausilio di un modello digitale del terreno con risoluzione a 20 cm ottenuto mediante rilievo LIDAR da elicottero eseguito nel mese di dicembre 2018) sono stati individuati i seguenti ambiti:

- ripiano sommitale;
- pareti sommitali sub-verticali;
- scarpate intermedie a medio-alta acclività;
- ripiano intermedio;
- parete basale.

Una accurata descrizione degli ambiti morfologico-topografici distinti nel settore in esame è riportata nella relazione NB1D00D69RHGE0005004A, alla quale si rimanda per gli approfondimenti del caso.

Figura 40. Porzione nord-occidentale del colle del Virgolo: carta dell'inclinazione con risoluzione 0.2 m, visualizzata su DTM a risoluzione 0.5 m.

11.1 Fenomeni di instabilità

Le caratteristiche morfologiche delineate nel precedente capitolo, unitamente alle caratteristiche di fratturazione dei litotipi vulcanici affioranti, determinano nell'area in esame la presenza di un diffuso pericolo di caduta massi. Il fenomeno è stato oggetto di specifiche modellazioni alle quali si rimanda per maggiori approfondimenti (NB1D0069DRHGE00001004A; NB1D0069DG7GE00001001±011A).. Documentazioni storiche archiviate presso l'Ufficio Geologia e prove materiali della Provincia Autonoma di Bolzano, testimoniano di eventi di crollo che hanno interessato la collina del Virgolo, in alcuni casi con arrivo di materiale in prossimità o in corrispondenza della sede ferroviaria. Alcune foto tratte dai documenti di archivio sono riportate in Figura 41.

Figura 41. Evidenze storiche di eventi di crollo che hanno interessato la SS12 (imbocco nord galleria) e la sede ferroviaria (documentazione presente negli archivi dell'Ufficio Geologia e prove materiali della Provincia Autonoma di Bolzano).

Ulteriori fenomeni di locali instabilità per caduta di massi di limitate dimensioni sono avvenute di recente (ottobre 2019, Figura 42).

Figura 42. Blocchi giunti sulla sede stradale di via del Calvario (ottobre 2019).

Molteplici interventi sono stati eseguiti, in epoche più o meno recenti, nelle aree valutate maggiormente suscettibili al verificarsi di tali fenomeni di instabilità. Oltre ad una serie di opere di difesa realizzate e censite nel database della Provincia (<u>http://geocatalogo.retecivica.bz.it/geokatalog/#</u>!), esistono in diversi punti della collina svariati interventi, non segnalati nel database provinciale presumibilmente a causa della loro vetustà o della mancanza di adeguata documentazione progettuale (Figura 43). Si tratta di barriere paramassi a pannelli rigidi (realizzate ad es. mediante intreccio di binari verticali e travi in legno orizzontali), legature di massi con funi o fasce in acciaio, infissioni di barre metalliche nelle pareti tipo chiodature, pannellature in aderenza alla parete, sottomurazioni o semplici sostegni a puntello con binari ferroviari posti a valle dei blocchi instabili. È stato concluso di recente, ad opera del Comune di Bolzano, un censimento di tali interventi finora non catalogati.

Figura 43. Interventi di protezione non accatastati: puntelli alla base di blocchi instabili (a), sottomurazioni (b), pannelli rigidi (c) e legature metalliche (d).

Il colle è altresì soggetto a fenomeni di instabilità legati alla mobilizzazione di detrito presente lungo il versante. Questi fenomeni, generalmente di modeste dimensioni, si innescano in seguito a intensi e/o prolungati fenomeni metereologici ed interessano la porzione superficiale della coltre detritica di alterazione e/o eluvio colluviale. Lungo le pareti più acclivi del versante, tali eventi possono essere accompagnati da fenomeni di rilascio delle porzioni corticali e più detensionate/alterate degli ammassi rocciosi. Un ulteriore elemento che influisce sulla stabilità è costituito dalla vegetazione che ricopre il versante: la presenza degli apparati radicali all'interno delle discontinuità degli ammassi rocciosi favorisce infatti l'apertura delle stesse e la frammentazione dei blocchi.

11.2 Inquadramento dell'area di studio nei Piani delle Zone di Pericolo

La peculiare situazione geomorfologica che contraddistingue il colle del Virgolo è rilevabile anche negli strumenti di pianificazione territoriale elaborati dagli enti locali. Nel Piano delle Zone di Pericolo del Comune di Bolzano, l'area risulta inquadrata, per la maggior parte della sua estensione, in una zona a pericolo molto elevato per fenomeni di crollo e ribaltamento (Figura 44). Locali declassazioni della classe di pericolo da molto elevato (H4) ad elevato (H3) sono dovute alla presenza di opere di protezione efficaci presenti sul versante.

Questa classificazione riflette i fenomeni di instabilità registrati nell'area e le aspre caratteristiche delle morfologie che delimitano il rilievo roccioso.

Con particolare riferimento alle aree di imbocco si nota come l'accesso sud sia caratterizzato da zone a pericolosità H4 ed H3, contraddistinte dalla presenza di una parete rocciosa subverticale. Per quanto riguarda l'imbocco nord, invece, le opere di protezione presenti sul versante, consistenti in barriere paramassi, hanno permesso di abbassare il livello di pericolosità della zona da H4 a H3, fino ad H2 (livello medio) a nord di Via Piè di Virgolo.

Infine, in Figura 45 si riporta un ulteriore stralcio del Piano Zone di Pericolo del comune di Bolzano estratto dal Geocatalogo Alto Adige (<u>http://geocatalogo.retecivica.bz.it/geokatalog/#!</u>) relativo alla cartografia del pericolo idraulico.

Figura 44. Estratto del Piano delle Zone di Pericolo (PZP frane) dell'area del Virgolo (estratto da <u>http://geocatalogo.retecivica.bz.it/geokatalog/#!</u>). All'interno degli ovali in nero le aree dei previsti imbocchi.

Figura 45. Estratto del Piano delle Zone di Pericolo idraulico dell'area del Virgolo (estratto da <u>http://geocatalogo.retecivica.bz.it/geokatalog/#!</u>).

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I LIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL IERANESE	_O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	B	52 di 95

12 IDROGEOLOGIA LOCALE

Per la valutazione delle caratteristiche idrogeologiche dei litotipi presenti nell'area oggetto di studio e l'assegnazione del relativo grado di permeabilità è stata presa a riferimento la classificazione delle raccomandazioni AFTES (2003), operando una modifica alla stessa.

In tale classificazione modificata si è ricorso all'uso di 5 categorie rappresentate nella Tabella 5, ove sono esplicitati i gradi di conducibilità idraulica relativa e i relativi intervalli di competenza utilizzati.

	Tabena 5. Classi ul permeabilità autottate nel presente lavoro.								
GRADO	RANGE DI CONDUCIBILITÀ IDRAULICA	CONDUCIBILITÀ IDRAULICA RELATIVA							
K5	K > 1E-04	ALTA							
K4	$1E-05 < K \le 1E-04$	MEDIO ALTA							
K3	$1E-06 < K \le 1E-05$	MEDIA							
K2	$1E-08 < K \le 1E-06$	BASSA							
K1	$K \le 1E-08$	MOLTO BASSA							

12.1 Substrato vulcanico

Per quanto concerne il substrato roccioso vulcanico, giova segnalare che i rilievi nel cunicolo esplorativo, scavato interamente nell'ammasso roccioso vulcanico della formazione di Gries, non hanno messo in evidenza la presenza di particolari venute idriche.

Figura 46. Venute d'acqua rilevate lungo il cunicolo: a) stillicidio alla pk 0+110 circa; b) piccola venuta d'acqua poco oltre la zona centrale caratterizzata dai maggiori rilasci in calotta.

Sono stati rinvenuti solo locali stillicidi dalla calotta o aree inumidite, in corrispondenza di porzioni dell'ammasso maggiormente fratturate (Figura 46).

Nel corso dei rilievi di superficie è stato riscontrato un solo punto (in prossimità del WP1472) in cui è stata individuata una venuta d'acqua, con portata non misurabile e classificabile come stillicidio. La causa di tale venuta

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I ZIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	B	53 di 95

è da ricercarsi in un probabile locale contrasto di permeabilità al passaggio tra le formazioni di Gries alla base e Ora al tetto (Figura 47).

Figura 47. Modesta venuta d'acqua rilevata in superficie al WP 1472.

In virtù dei dati acquisiti durante il rilevamento di superficie e sulla base delle prove Lugeon eseguite nei sondaggi è possibile attribuire all'ammasso roccioso vulcanico una classe di permeabilità bassa. Solo in corrispondenza di locali porzioni interessate da fratturazione più persistente e/o beante tale valore può risultare maggiore rendendo la roccia più permeabile.

Più in particolare si riportano in Tabella 6 i dati delle prove Lugeon relative alla formazione di Gries che verrà interessata dallo scavo della nuova galleria ed eseguite nei sondaggi BHG3 e VG1 che hanno attraversato la suddetta formazione. Il valore medio di permeabilità derivante da tali prove è pari a 4.4×10^{-7} m/s, corrispondente ad una classe di permeabilità bassa per fratturazione.

permeusinen an prove Eugeen (senat							
Sondaggio	Prof. (m)	K (m/s)					
BHG3	35.3	1.78E-07					
BHG3	46.2	4.06E-07					
BHG3	52.1	2.70E-07					
BHG3	59	1.33E-06					
VG1	57.5	6.20E-08					

Tabella 6. Valori d<u>i permeabilità da prove Lugeon (sondaggi BHG3 e VG1).</u>

Nel sondaggio BHG7 sono state eseguite ulteriori prove di permeabilità di tipo Lugeon che hanno interessato le formazioni ignimbritiche che non verrano direttamente coinvolte nello scavo del tunnel di progetto.

Per la formazione di Nalles (NAL) sono disponibili 3 prove di permeabilità Lugeon (Tabella 7), considerando le quali si ottiene un valore medio pari a 6.1×10^{-7} m/s, corrispondente ad una classe di permeabilità bassa per fratturazione.

Tabella 7. Valori di permeabilità da prove Lugeon (sondaggio BHG7).

Sondaggio Prof. (m) K (m/s)

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOLZANO – MERANO REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI SPOSTAMENTO BIVIO LINEA MERANESE						
RELAZIONE GEOLOGICA		COMMESSA NB1D	LOTTO 01	CODIFICA D 69	A DOCUMENTO RG GE 0001001	REV. B	FOGLIO 54 di 95
	BHG7	108	3.78E-	07			
	BHG7	135.7	7.10E-	07			
	BHG7	1467	7 31E-	07			

Infine per la formazione di Ora è disponibile un'unica prova, eseguita a circa 72 m di profondità che ha fornito un valore di K uguale a 1.3x10-6 m/s. Secondo la classificazione adottata, la formazione di Ora sarebbe collocata entro la classe di permeabilità media (anche se in prossimità del passaggio alla classe bassa). Nonostante ciò, in virtù dell'esito delle più numerose prove Lugeon ottenute sulle altre formazioni ignimbritiche e menzionate pocanzi, nonché sulla base dei rilievi in loco relativi alle condizioni di fratturazione dell'ammasso, è ragionevole assumere anche per la formazione di Ora una permeabilità bassa per fratturazione.

12.2 Depositi alluvionali

L'acquifero ospitato entro il complesso alluvionale ghiaioso-sabbioso che riempie la conca bolzanina è sicuramente quello più importante sia dal punto di vista dello sfruttamento che da quello della produttività. L'acquifero si divide in più *layer*, in funzione della profondità e delle caratteristiche granulometriche dei sedimenti coinvolti. Per l'attribuzione dei valori di permeabilità ai sedimenti alluvionali nell'area in esame si è fatto ricorso alle prove Lefranc (Tabella 8) eseguite nei sondaggi della campagna 2018 e 2020 e a quelle eseguite durante la campagna indagini Italferr 2017 (Figura 48) nell'ambito dello studio geologico per la riqualificazione dell'areale della stazione di Bolzano, congiuntamente a valutazioni sulla tessitura e granulometria dei depositi.

Figura 48. Localizzazione dei sondaggi Italferr del 2017 per la riqualificazione dell'areale ferroviario di Bolzano.

U ITALFERR	
GRUPPO FERROVIE DELLO STATO ITALIANE	

LINEA BOLZANO – MERANO REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI SPOSTAMENTO BIVIO LINEA MERANESE

RELAZIONE GEOLOGICA		COMM	ESSA LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
		NB1	D 01	D 69	RG GE 0001001	в	55 di 95
Tabella 8. Valori di k da prove di permeabilità Lefranc.							
	Sondaggio	Anno	Prof. (m)	K (m/s)]		

Sondaggio	Anno	Prof. (m)	K (m/s)	
VG0	2020	4.5	9.54E-05	
VG0	2020	12.5	2.37E-05	
VG0	2020	25.5	2.78E-05	
VG1	2020	6.5	2.08E-04	
VG1	2020	20.25	3.52E-04	
VG1	2020	30.75	3.35E-04	
VG2	2020	5.25	2.51E-04	
VG2	2020	17.25	1.36E-04	
VG3	2020	6.55	9.01E-05	
VG3	2020	19.75	2.04E-05	
VG4	2020	6.5	4.39E-04	
VG4	2020	17.6	2.78E-05	
VG5	2020	4.85	6.95E-05	
VG5	2020	14	9.45E-04	
BH2	2018/19	4	1.70E-06	
BH2	2018/19	13.9	4.89E-07	
BH6	2018/19	13	1.65E-04	
BH6	2018/19	24.1	6.53E-05	
S1	2017	11.25	7.49E-05	
S1	2017	30.25	8.34E-05	
S2	2017	11.25	1.37E-04	
S2	2017	30.25	7.60E-05	
S3	2017	11.25	9.87E-05	
S3	2017	22.25	7.41E-05	
S4	2017	11.25	1.23E-04	
S4	2017	22.25	7.13E-05	
S5	2017	11.25	1.04E-04	
S5	2017	22.25	8.62E-05	
S6	2017	11.25	1.02E-04	
S6	2017	22.25	7.91E-05	
S 7	2017	10.75	1.09E-04	
S 7	2017	21.75	8.32E-05	
S 8	2017	10.75	1.36E-04	
S8	2017	21.75	7.54E-05	
S9	2017	10.75	1.20E-04	
S9	2017	21.75	9.53E-05	
S10	2017	10.75	1.14E-04	
S10	2017	21.75	8.58E-05	

GRUPPO FERROVIE DELLO STATO ITALIANE			LINEA REAL SPOS	INEA BOLZANO – MERANO REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI ROSTAMENTO BIVIO LINEA MERANESE					
RELAZIONE GEOLOGICA			COMME	ESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
			NB1	D	01	D 69	RG GE 0001001	В	56 di 95
	S11	2	017	1	1.25	1.27E-04			
	S11	2	017	2	2.25	1.06E-04			

Valutando nell'insieme le prove eseguite si hanno i valori medi, massimi e minimi, riportati in Tabella 9.

Tabella 9. Valori statistici di permeabilità da prove Lefranc per i depositi alluvionali.

Alluvioni del t. Talvera e del f. Isarco						
K min (m/s)	K min (m/s) K medio (m/s) K max (m/s					
4.9E-07	1.4E-04	9.5E-04				

Tali valori risultano in linea con quanto riscontrato in bibliografia; i dati ricadono, in riferimento alla Tabella 5, generalmente nella classe di permeabilità alta o medio-alta Quest'ultima in effetti è la classe maggiormente rappresentata (Figura 49); conseguentemente si è valutato di collocare i depositi in esame entro la classe di permeabilità per porosità medio alta.

Figura 49. Classi di frequenza per i valori di permeabilità dei depositi alluvionali

Sovrastanti ai depositi alluvionali si possono rinvenire depositi di origine antropica, con caratteristiche granulometriche spesso simili alle sottostanti ghiaie e sabbie alluvionali. Risulta disponibile una prova entro tali depositi, eseguita nel sondaggio BH6. La prova ha restituito un valore di permeabilità pari a 2.32E-04 m/s, che appare in linea con esperienze pregresse su questo tipo di materiali; si è valutato pertanto di classificare questi materiali entro la classe di permeabilità alta per porosità.

12.3 Depositi glaciali e di versante

Le coltri di materiale detritico e gli accumuli di frana posti alla base dei versanti del Virgolo, in relazione alle loro caratteristiche granulometriche possono presentare una buona permeabilità; essi tuttavia non appaiono in grado di ospitare corpi acquiferi degni di nota, se non locali e momentanei ristagni d'acqua generati durante intensi e prolungati periodi piovosi.

I materiali di origine glaciale, posti sulla sommità del rilievo, possono essere interessati solo da una limitata e locale circolazione idrica, a carattere stagionale, sostenuta dal substrato vulcanico. Sulla base della valutazione delle carote di sondaggio e dell'esperienza acquisita in contesti geologici analoghi si stima di poter collocare questi depositi in una classe di permeabilità medio-alta.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I ZIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BII	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	В	57 di 95

In sintesi, per le formazioni cartografate nell'area in esame, sono state definite le seguenti classi di permeabilità, riportate nella Tabella 10:

Unità	Grado	Tipo di permeabilità	Classe
NAL	K2	Fratturazione	Bassa
IGR	K2	Fratturazione	Bassa
ORA	K2	Fratturazione	Bassa
ALL	K4	Porosità	Medio-alta
PTG	K4	Porosità	Medio-alta
SGD	K4	Porosità	Medio-alta
R	K5	Porosità	Alta

Tabella 10. Classi di permeabilità per le unità presenti nell'area in studio.

12.4 Punti d'acqua

Dal punto di vista delle emergenze idriche, all'interno dell'areale cartografato, risultano censite nel database provinciale quattro sorgenti e una derivazione da torrente (Tabella 11). Non sono disponibili informazioni relative alle caratteristiche chimico-fisiche di queste acque o ai valori di portata delle emergenze, situate comunque a distanza superiore ai 500 metri dal tracciato di progetto. É ragionevole ipotizzare una circolazione dei flussi alimentatori entro i depositi quaternari superficiali, senza l'interessamento diretto del substrato roccioso vulcanico. Dal rilevamento di campagna non sono emersi ulteriori punti d'acqua localizzati nei pressi del tracciato in progetto se non una venuta molto limitata (stillicidio) e descritta in precedenza al par. 12.1. Ciò risulta in linea con le evidenze riscontrate nel cunicolo esplorativo, il cui sviluppo è caratterizzato solo da locali stillicidi o zone umide, evidenziando una generale scarsa, circolazione idrica all'interno dell'ammasso roccioso.

Tabella 11. Sorgenti e derivazioni da torrente censite nell'areale di progetto (archivio della Pro	vincia Autonoma (di
Bolzano).		

		,		
Тіро	Codice	Uso	X (UTM32N)	Y (UTM32N)
Acqua corrente - derivazione	В	irriguo	680642.200	5150729.419
Sorgente	Q14219	potabile	680657.239	5150787.250
Sorgente	Q14220	irriguo	680642.972	5150738.606
Sorgente	Q5294	potabile	681166.310	5151004.935
Sorgente	Q7879	nessun utilizzo	681203.665	5151020.281

La Figura 50 illustra inoltre la distribuzione dei pozzi nell'area in studio, localizzati nelle zone di fondovalle e che si collocano a distanze minime di circa 100-200 metri dalla linea ferroviaria e dal nuovo tracciato in progetto. In Tabella 12 sono elencati i codici dei punti pozzo mostrati in Figura 50.

Figura 50. Distribuzione dei punti d'acqua censiti nell'area in studio (estratto da <u>http://geocatalogo.retecivica.bz.it/geokatalog/#!</u>).

Codice	Uso	X (UTM32N)	Y (UTM32N)
T499	industriale	679262.577	5150450.354
T683	industriale	679363.512	5150758.957
T1119	nessun utilizzo	679469.618	5150618.670
T1788	irriguo	680556.874	5151836.768
T1790	vario	681251.418	5151558.055
T1797	industriale	679419.671	5150807.956
T2808	vario	679970.511	5151358.328
T3297	potabile	679717.155	5150408.959
T449	irriguo	681615.811	5151600.154
T6622	Vario	679493.428	5150381.052
T7947	irriguo	679416.820	5151397.452
T8411	misto	681411.625	5151792.599

Tabella 12. Punti pozzo censiti (archivio della Provincia Autonoma di Bolzano).

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I LIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	B	59 di 95

12.5 Dati Piezometrici

I dati piezometrici raccolti durante le indagini geognostiche precedentemente citate sono stati confrontati con i dati provenienti dalla rete di monitoraggio delle acque di falda del comune di Bolzano. Tale rete consiste in 28 punti piezometrici monitorati in continuo dal 2008 dal comune di Bolzano, distribuiti nel fondovalle, alcuni dei quali posti nelle vicinanze dell'area di progetto (Figura 51).

Figura 51. Ubicazione dei piezometri monitorati dal Comune di Bolzano nell'intorno dell'area di progetto.

In base ai dati della rete comunale aggiornati ad ottobre 2020, nell'intorno dell'area di studio si rilevano le seguenti situazioni. Nelle zone a est del T. Talvera e a nord dell'Isarco (punti B005, B038 e B039), che costituiscono l'areale della città vecchia e della stazione ferroviaria, le variazioni del livello di falda sono risultate comprese tra una profondità minima di 12.61 m da p.c. (nell'ottobre 2020 al piezometro B038) ed una profondità massima registrata al piezometro B039 (dicembre 2009). L'oscillazione massima registrata tra la stagione estiva e quella invernale è di circa 9-10 m; in tutti e tre i punti di controllo si è verificato un progressivo aumento della quota di falda dall'inizio del monitoraggio fino ad oggi. Nelle figure seguenti sono mostrati i grafici relative alle variazioni della soggiacenza nei suddetti tre punti di monitoraggio.

Figura 52. Grafico delle variazioni di soggiacenza dal 2008 ad ottobre 2020 per il piezometro B005.

Figura 53. Grafico delle variazioni di soggiacenza dal 2008 ad ottobre 2020 per il piezometro B038.

Figura 54. Grafico delle variazioni di soggiacenza dal 2008 ad ottobre 2020 per il piezometro B039.

Nella zona industriale nord, nel quartiere di Oltrisarco, i punti B016 e B026 hanno mostrato indicato una profondità minima nell'ottobre 2020 (B026) pari a 9.34 m da p.c. ed una profondità massima di 15.96 m da p.c., (piezometro B016), nel dicembre 2009. Il medesimo piezometro ha segnato però un valore di falda ulteriormente depresso (16.28 m da p.c.) nel marzo del 2007 quando ancora il monitoraggio sistematico e continuo della falda non era ancora attivo.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAMI	ZANO – I ZIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	B	61 di 95

Nell'area le oscillazioni annuali medie della falda si attestano attorno ai 2-3 metri, quindi inferiori rispetto a quelle registrati nell'area del centro cittadino.

Figura 55. Grafico delle variazioni di soggiacenza dal 2008 ad ottobre 2020 per il piezometro B016.

Figura 56. Grafico delle variazioni di soggiacenza dal 2008 ad ottobre 2020 per il piezometro B026.

Infine, per le stazioni freatimetriche poste nella zona ovest di Bolzano (B006 e B037), i valori di falda oscillano tra un minimo di 22.10 m da p.c. al piezometro B006, registrato a dicembre 2009, ed un massimo di 13.19 m da p.c. registrati al punto B037 nell'ottobre 2020.

Si nota come anche in quest'area le oscillazioni annuali medie si attestino nuovamente attorno ai 2-3 metri.

In linea generale i piezometri monitorati hanno mostrato un valore storico minimo di soggiacenza nel mese di ottobre 2020, caratterizzato da eventi piovosi molto significativi.

Figura 57. Grafico delle variazioni di soggiacenza dal 2008 ad ottobre 2020 per il piezometro B006.

Figura 58. Grafico delle variazioni di soggiacenza dal 2008 ad ottobre 2020 per il piezometro B037.

Da questi dati si può desumere come i valori di soggiacenza varino, nell'area di interesse, tra un minimo di circa 10 m da p.c. e un massimo di circa 20-25 m da p.c..

La Tabella 13 riporta invece i dati disponibili misurati nei piezometri installati nel corso delle campagne di indagine del 2018 e 2020 (rappresentati in Figura 59).

Figura 59. Ubicazione dei piezometri monitorati delle campagne Italferr 2018 e 2020.

Nella stessa Tabella 13 sono riportati anche i dati registrati ai piezometri S1 ed S3 (relativi alla campagna 2017 per la riqualificazione dell'areale ferroviario di Bolzano), vicini al tracciato di progetto e per i quali si dispone tuttavia di una sola misura. I dati di falda registrati ai piezometri S1 e S3 sono stati rilevati in corrispondenza di un periodo caratterizzato da una notevole carenza di precipitazioni (inverno 2016-17); è quindi possibile che essi rappresentino dei valori bassi in relazione all'andamento medio della falda. Per tale motivo e per ricostruire una condizione piezometrica uniforme e che rispecchiasse la situazione attuale, la superficie freatica disegnata nei profili idrogeologici non ha tenuto del valore di soggiacenza del sondaggio S1, misurata in condizioni idrogeologiche considerate diverse dalle attuali.

Nell'insieme comunque i dati disponibili misurati ai piezometri installati nel corso delle diverse campagne geognostiche appaiono coerenti con i dati provenienti dalla rete di monitoraggio continuo. Nei profili in asse tracciato (NB1D01D69F6GE0001001A e NB1D01D69F6GE0002001A) sono stati riportati i valori medi di soggiacenza derivati da tutte le misure disponibili per i singoli piezometri.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I LIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL IERANESE	_O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA NB1D	LOTTO 01	CODIFICA D 69	DOCUMENTO	REV. B	FOGLIO 64 di 95

Tabella 13. Valori di soggiacenza misurata ai piezometri Italferr (m da p.c.).

Piezometri campagna Italferr 2020											
Sondaggio	VG0	VG1	VG2	VG4	VG5						
ott-20	14.72	13.94	15.68	-	10.98						
nov-20	15.14	13.52	15.33	13.71	10.74						
dic-20	-	15.01	16.42	14.28	11.47						
gen-21	16.88	15.74	16.74	14.58	11.70						
feb-21	18.08	16.63	17.48	15.28	12.32						
mar-21	19.14	18.2	18.13	15.81	12.76						
apr-21	19.97	19.21	18.54	16.11	13.01						
mag-21	17.87	16.5	17.21	15.15	12.29						
giu-21	-	13.75	15.67	13.67	11.14						
lug-21	16.16	15.22	16.53	14.37	11.53						
Media	17.25	15.77	16.77	14.91	11.79						

Piezometri campagna Italferr 2018										
Sondaggio	BH2	BH6	BHG3	BHG7						
nov-18	16.58									
dic-18	17.13	18.6								
gen-19			58							
feb-19	18.32	18.12	55.45							
mag-19	16.25	13.93	53.12	167.9						
giu-19	15	6.5	56.2	168.6						
lug-19	16.25	12.5	58.95	168						
ago-19	17.35	13.3	59.9	165.35						
set-19	18.3	17.3	59.9	166.6						
ott-19	18.8	18.27	59.9	164.08						
nov-19	17.4	16.05	54.5	165.45						
dic-19	17.8	16.75	53.55	166.2						
feb-20	18.65	17.5	60.05	167.5						
feb-20	18.97	18.23	62.45	166						
mag-20	17.95	16.5	59.9	170.3						
giu-20	15.83	12.64	57.9	169.6						
lug-20	15.73	12.71	59.88	167.95						
ago-20	16.88	14.84	59.92	169.32						
set-20	14.98	12.32	58.25	169.12						
ott-20	14.29	10.97	56.18	168.4						
nov-20	14.15	10.96	53.98	167.38						
dic-20	15.29	12.32	59.88	167.85						
gen-21	15.46	13.03	55.37	165.87						
feb-21	16.37	14.21	52.98	167.4						
mar-21	17.16	15.58	56.65	168.32						

GRUPPO FERROVIE DELLO STATO ITALIANE			LIN RE/ SPC	EA BOLZA ALIZZAZIO DSTAMEN	ANO – M DNE NU(ITO BIVI	ERANO DVO TUNN O LINEA N	NEL DEL VIRGO VIERANESE	LO A 3 BI	NARI
RELAZIONE GEOLOGICA			CON	MMESSA I	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
			1	NB1D	01	D 69	RG GE 0001001	В	65 di 95
	apr-21	17	.65	15.98	59.94	4 169.	.4		
	mag-2	1 16	.11	14.85	59.82	2 169.	.1		
	giu-21	14	.48	11.09	59.8	3 169.	.4		
	lug-21	15	.25	12.59	59.8	7 166.	.4		
	Media 16			14.36	57.82	7 167.0	66		
		Piezom	etri c	ampagna 2017	Italferr				
		Sondagg	io	<i>S1</i>	Sã	?			
		mar-1	7	24.21	24.	7			

Il massimo livello della falda si registra al piezometro BH6, in sponda destra Isarco, nel mese di giugno 2019, con una profondità di 6.5 m da p.c.; questo valore risulta, in effetti, particolare e notevolmente superiore anche alla misura che più gli si avvicina, ovvero quella di novembre 2020 (10.96 m da p.c.). In questo piezometro è inoltre installato un *Diver* per la misurazione in continuo del livello di falda; in Figura 60 si mostrano le variazioni di soggiacenza relative al periodo agosto 2019 – luglio 2021.

Figura 60. Grafico della soggiacenza registrata al piezometro BH6 tra agosto 2019 e luglio 2021.

Nella carta idrogeologica (NB1D01D69G6GE0002001A), attraverso la correlazione dei dati dei piezometri della rete comunale e di quelli attualmente disponibili per i piezometri Italferr, sono state tracciate, nell'intorno dell'area di progetto, le linee isofreatiche relative al mese di ottobre 2020, nel quale la falda, come visto in precedenza, ha raggiunto i valori massimi.

Tale elaborazione è riportata anche nella Figura 61; in Figura 62 sono invece mostrate le isofreatiche calcolate per il mese di febbraio 2020, interpretato, come usuale nel regime idrogeologico alpino, come un periodo di depressione della falda acquifera. Confrontando le due rappresentazioni si nota una escursione, in termini di soggiacenza, che tende a diminuire dalla zona dell'areale ferroviario verso la zona di Oltrisarco.

Figura 61. Elaborazione delle isofreatiche nell'intorno dell'area di progetto per il periodo ottobre 2020.

Figura 62. Elaborazione delle isofreatiche nell'intorno dell'area di progetto per il periodo febbraio 2020.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I LIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BII	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	В	67 di 95

13 MODELLO GEOLOGICO DI RIFERIMENTO

Di seguito si descrive il modello geologico di riferimento attraverso l'analisi dei profili geologici (Profilo geologico in asse Binario Dispari e Profilo geologico in asse Linea Meranese) riportati nell'elaborato NB1D01D69F6GE0001001A.

13.1 Tratto all'aperto (circa pk 0+000 – 0+475 BD e pk 0+000 – 0+875 Meranese)

L'opera prevede un primo tratto in superficie in corrispondenza dell'attuale tracciato ferroviario. Attorno alla pk 0+200 del tracciato di linea, il nuovo Binario Dispari devia leggermente verso est allontanandosi dal binario della Meranese (e dal Binario Pari).

L'ambiente geologico-geomorfologico è quello tipico di una piana alluvionale intramontana, caratterizzata dalla presenza di un importante materasso di materiali alluvionali depositati dal torrente Talvera e dal fiume Isarco. Tali depositi sono costituiti prevalentemente da ghiaie e sabbie; dal punto di vista idrogeologico i dati disponibili ai piezometri installati lungo il tracciato indicano una profondità della falda compresa tra circa 10 e 15 m da p.c.; la falda tende ad approfondirsi procedendo da sud verso nord. Il basamento vulcanico è stato intercettato nel sondaggio BH2 alla profondità di 26.5 m da p.c. (corrispondente a circa 232.5m s.l.m. intorno alla pk 0+350 del BD e 0+720 della linea Meranese). Approssimandosi ai portali delle gallerie il substrato vulcanico tende a diventare più superficiale (circa 240 m s.l.m. in corrispondenza della pila n°3 del viadotto autostradale – ARBO, 2013), per poi affiorare e dare luogo alle pareti sub-verticali in corrispondenza delle quali sono collocati gli imbocchi delle gallerie.

Si segnala inoltre la presenza di un livello di materiale di riporto antropico (fino a qualche m di spessore), distribuito lungo lo sviluppo di questa porzione di tracciato, costituito da materiali grossolani e da scarti di lavorazioni quali laterizi.

13.2 Tratta in galleria (circa da pk 0+475 – 0+975 BD e pk 0+875 – 1+350 Meranese)

L'intera tratta in galleria si sviluppa all'interno della formazione ignimbritica di Gries (IGR). Il percorso in galleria è stato a sua volta suddiviso in tre tratte, indicate nel profilo geologico, in relazione a quanto emerso dalle osservazioni condotte nel cunicolo esplorativo.

13.2.1 Tratto circa da pk 0+475 – 0+700 BD e pk 0+875 – 1+095 Meranese (pk 0+000 – 0+220 circa cunicolo esplorativo)

Per questo primo settore, in base a quanto osservato nel cunicolo esplorativo, si può prevedere la presenza di un materiale massivo con piani di fratturazione ben definiti e piuttosto regolari, con piani di faglia subverticali, persistenti (famiglie di discontinuità S1, S2 e S2c), ma con zone di taglio e danneggiamento di limitata entità (centimetriche-decimetriche). In cunicolo la buona qualità della roccia è testimoniata anche dall'assenza di interventi di stabilizzazione del cavo e dalla ridotta presenza di detriti e blocchi crollati a quasi 30 anni dallo scavo.

Dal punto di vista idrogeologico si ipotizzano solo isolati stillicidi (come osservato nel cunicolo esplorativo), soprattutto in corrispondenza dell'intersezione dei modesti piani di faglia rilevati all'interno del cunicolo esplorativo.

13.2.2 Tratto circa da pk 0+700 – 0+800 BD e pk 1+095 – 1+195 Meranese (pk 0+220 – 0+300 circa cunicolo esplorativo)

Per questo secondo tratto, la cui analisi è basata ancora sui dati derivanti dal rilievo del cunicolo esplorativo, si ipotizza una condizione geologica più delicata, caratterizzata dalla presenza di diversi piani di discontinuità ad

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I LIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA NB1D	LOTTO 01	CODIFICA D 69	DOCUMENTO	REV. B	FOGLIO 68 di 95

andamento sub-orizzontale (famiglia S0), immergenti circa verso nord. Tali piani, oltre a separare livelli ignimbritici a diverse caratteristiche tessiturali, granulometriche e di resistenza, possono determinare il distacco di blocchi rocciosi. Nel cunicolo esplorativo si rinviene infatti una quantità rilevante di blocchi crollati sul piano di calpestio. Le fasce maggiormente alterate presentano riempimenti di calcite e patine sulfuree giallastre.

Dal punto di vista idrogeologico non sono prevedibili venute di particolare rilievo; nel cunicolo infatti sono stati osservati solo locali stillicidi e zone umide.

Per i tratti corrispondenti dei tunnel in progetto si rileva dunque un elemento di attenzione legato alle più scadenti condizioni geomeccaniche dell'ammasso, soprattutto in funzione della giacitura sfavorevole dei suddetti piani di discontinuità.

13.2.3 Tratto circa da pk 0+800 – 0+975 BD e pk 1+195 – 1+350 Meranese (pk 0+300 – 0+450 circa cunicolo esplorativo)

Le osservazioni condotte nel cunicolo esplorativo portano a prevedere condizioni geomeccaniche simili al primo tratto analizzato. In cunicolo le discontinuità più rilevanti appaiono essere dei piani a medio angolo immergenti verso sud (famiglia di discontinuità S3). La struttura della roccia si presenta massiva, senza mostrare piani di discontinuità ben definiti come accade nel primo tratto. Talora la struttura risulta invece più brecciata e sono ancora presenti fasce centimetriche, cataclasate, con riempimenti di calcite e locali patine sulfuree. Tale caratteristiche, in merito alle discontinuità della famiglia S3, sono state rinvenute anche all'esterno, nella corrispondente porzione di Via del Calvario.

Dal punto di vista idrogeologico, non si prevedono venute particolari, se non locali stillicidi localizzati, in special modo, all'intersezione di più piani di frattura.

Come nel caso del primo tratto, la scarsità di materiale crollato nel cunicolo anche in assenza di interventi di stabilizzazione, induce a ritenere l'ammasso che caratterizza questo settore di buona qualità.

13.3 Tratto all'aperto (circa da pk 0+975 – 1+358 BD e pk 1+350 – 1+876 Meranese)

Oltrepassato il tratto in galleria il tracciato torna ad interessare, allo scoperto, i depositi alluvionali ghiaiososabbiosi della conca di Bolzano. Si segnala che anche in questa zona, come accaduto nel tratto all'aperto a sud, si rinviene un orizzonte superficiale di materiale di riporto antropico (fino a 3 m di spessore) a granulometria grossolana. Il livello della falda contenuta dei depositi alluvionali risulta aggirarsi, in base alle misure al momento disponibili, mediamente attorno ai 13-18 m di profondità dal piano campagna.

In sintesi dal punto di vista geologico per lo scavo delle gallerie in progetto gli elementi di attenzione sono principalmente legati all'attraversamento di una fascia ignimbritica con condizioni geomeccaniche più scadenti (pk 0+220 - 0+300 del cunicolo esplorativo), accompagnate dalla presenza di piani di discontinuità sub-orizzontali con giacitura sfavorevole che possono favorire cinematismi di svincolo di cunei instabili. Nelle restanti porzioni di galleria si rilevano locali zone a maggior debolezza, in corrispondenza dell'intersezione di più piani di discontinuità con formazione di isolate fasce cataclastiche a minor resistenza. La roccia nel complesso appare di buona qualità come dimostrano anche i rilievi geomeccanici eseguiti. Si segnala che le zone degli imbocchi sud risultano collocate in aree a elevata pericolosità geomorfologica (PZP del comune di Bolzano). Nei tratti all'aperto l'opera invece andrà ad interessare terreni di riporto e i depositi alluvionali di riempimento della conca di Bolzano a granulometria grossolana.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I LIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	OA3BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	B	69 di 95

14 SISMICITÀ DELL'AREA

Il territorio della Provincia Autonoma di Bolzano è classificato in Zona sismica 4 ai sensi dell'Ordinanza del Presidente del Consiglio dei Ministri n. 3274/2003, aggiornata con la Delibera della Giunta Provinciale n. 4047 del 6.11.2006 della Provincia Autonoma di Bolzano.

Tabella 14. Valori di accelerazione massima del suolo ag con probabilità di superamento del 10% in 50 anni, rife	rito a
suoli rigidi caratterizzati da Vs,30>800 m/s.	

Zona	Accelerazione orizzontale con probabilità di superamento pari al 10% in 50 anni (ag/g)	Accelerazione orizz. di ancoraggio dello spettro di risposta elastica (Norme Tecniche, ag/g)
1	>0.25	0.35
2	0.15 ÷ 0.25	0.25
3	0.05 ÷ 0.15	0.15
4	<0.05	0.05

Figura 63. Mappa di pericolosità sismica espressa in termini di accelerazione massima del suolo (a_{max}) con probabilità di eccedenza del 10% in 50 anni riferita a suoli rigidi (Vs₃₀>800 m/s) – da (INGV - <u>http://esse1-gis.mi.ingv.it/</u>).

Il DM 14/01/2008 ed il successivo DM 17/01/2018, hanno introdotto significative novità inerenti alla definizione dell'azione sismica.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I LIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO			REV.	FOGLIO

L'azione sismica viene valutata in condizioni di campo libero (cioè in assenza di manufatti), su sito di riferimento rigido (di categoria A), a superficie orizzontale (superficie topografica di categoria T1), riferendosi alla definizione di "pericolosità sismica di base", fornita dall'Istituto Nazionale di Geofisica e Vulcanologia (INGV).

L'azione sismica viene valutata sito per sito e costruzione per costruzione. In particolare, i caratteri del moto sismico su sito di riferimento rigido orizzontale sono descritti dalla distribuzione sul territorio nazionale delle seguenti grandezze, sulla base delle quali sono compiutamente definite le forme spettrali per la generica "probabilità di superamento nel periodo di riferimento " P_{VR} :

ag: accelerazione massima su suolo tipo A (allegato B alle NTC)

 F_0 : valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale (allegato B alle NTC)

 T_{C}^{*} : periodo di riferimento che consente di calcolare il periodo Tc corrispondente all'inizio del tratto a velocità costante dello spettro (Allegato B alle NTC).

In Tabella 15 vengono forniti, per il Comune di Bolzano e per periodi di ritorno TR di 30 anni, 50 anni, 72 anni, 101 anni, 140 anni, 201 anni, 475 anni, 975 anni, 2475 anni, i valori dei parametri ag, F0 e TC* da utilizzare per definire l'azione sismica nei diversi stati limite considerati.

Tabella 15. Valori dei parametri di ag, F0, TC* per i periodi di ritorno TR di riferimento.

T _R	a _g	Fo	T _C *	
[anni]	[g]	[-]	[s]	
30	0.019	2.555	0.156	
50	0.024	2.524	0.187	
72	0.028	2.501	0.206	
101	0.032	2.489	0.231	
140	0.035	2.506	0.266	
201	0.039	2.519	0.294	
475	0.052	2.599	0.346	
975	0.062	2.703	0.382	
2475	0.079	2.821	0.424	

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOLZANO – MERANO REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI SPOSTAMENTO BIVIO LINEA MERANESE							
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Spettri di risposta elastici per i periodi di ritorno Te di riferimento								

Con linea continua si rappresentano gli spettri di Normativa, con linea tratteggiata gli spettri del progetto S1-INGV da cui sono derivati.

Figura 64. Spettri di risposta elastici per i periodi di ritorno di riferimento Tr. Tratta da Spettri-NTC ver. 1.03 (http://cslp.mit.gov.it/index.php?option=com_content&task=view&id=75&Itemid=20).

 Tabella 16. Variabilità dei valori dei parametri ag, F0 e Tc* con il periodo di ritorno TR. Tratta da Spettri-NTC ver.

 1.03 (http://cslp.mit.gov.it/index.php?option=com_content&task=view&id=75&Itemid=20).

14.1 Sismicità storica

Al fine di inquadrare dal punto di vista della sismicità storica l'area in esame, si riporta di seguito un breve riepilogo delle osservazioni macrosismiche di terremoti al di sopra della soglia del danno che hanno interessato storicamente il comune di Bolzano. Nello specifico, le informazioni riportate di seguito derivano dalla consultazione del DBMI15 (Locati et al., 2019, <u>https://emidius.mi.ingv.it/CPTI15-DBMI15/</u>), il database macrosismico utilizzato per la compilazione del Catalogo Parametrico dei Terremoti Italiani CPTI15. Pertanto, nella successiva tabella si intende:

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOLZ REALIZZAZ SPOSTAME	ZANO – M IONE NU ENTO BIV	/IERANO IOVO TUNN IO LINEA M	EL DEL VIRGOL ERANESE	.O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	B	74 di 95

Ι	Intensità al sito (scala MCS)
NMDP	Numero osservazioni macrosismiche
Year Mo Da Ho Mi Se	Data
Іо	Intensità epicentrale nella scala MCS
Ax	Localizzazione epicentro
Mw	Magnitudo momento

Tabella 17. Storia sismica del Comune di Bolzano

Ι	Year Mo Da Ho Mi Se	Epicentral area	NMDP	Іо	Mw
7-8	1348 01 25	Alpi Giulie	89	9	6.63
5	1695 02 25 05 30	Asolano	107	10	6.4
4-5	1812 10 25 07	Pordenonese	34	7-8	5.62
F	1862 05 27 01 20	Tirol, Sillian	30	5-6	4.78
3	1885 12 29	Alpago Cansiglio	47	6	4.96
F	1890 03 26 20 10	Bellunese	48	6	4.82
F	1891 06 07 01 06 14.00	Valle d'Illasi	403	8-9	5.87
4	1895 04 14 20 17 30.00	Ljubljana	810	8-9	5.98
F	1895 06 10 01 47	Prealpi Trevigiane	73	6	4.85
3	1902 06 19 09 23	Alpi Retiche	184	6-7	4.96
F	1904 03 10 04 23 04.24	Slovenia nord-occidentale	57		
4-5	1907 04 25 04 52	Veronese	122	6	4.79
4-5	1909 01 13 00 45	Emilia Romagna orientale	867	6-7	5.36
4	1914 10 27 09 22	Lucchesia	660	7	5.63
2	1924 05 12 08 46	Carnia	20	6	5.04
4	1926 01 01 18 04 03.00	Carniola interna	63	7-8	5.72
3	1928 03 27 08 32	Carnia	359	9	6.02
2	1930 05 14 00 01	Cadore	15	5-6	4.89
3	1931 04 14 22 13	Valli Giudicarie	160	6	4.77
3	1931 12 25 11 41	Friuli	45	7	5.25
NF	1934 05 04 13 56	Carnia	80	6	4.69
4	1934 06 08 03 16	Dolomiti Friulane	21	5-6	4.93
2	1934 11 30 02 58 23.00	Adriatico settentrionale	51	5	5.3
5	1936 10 18 03 10	Alpago Cansiglio	269	9	6.06
2-3	1943 07 24 01 44	Feltrino	29	7	5.07
3	1951 05 15 22 54	Lodigiano	179	6-7	5.17
4-5	1967 12 30 04 19	Emilia Romagna orientale	40	6	5.05

GRUPPO FERROVIE DELLO STATO ITALIANE		LINEA BOLZANO – MERANO REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI SPOSTAMENTO BIVIO LINEA MERANESE						
RELAZIONE GEOLC	OGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
<u> </u> т	Voor Mo Do Ho Mi So	NB1D	01 Enicontro	D 69	RG GE 0001001	В	75 di 95	
1	Year Mo Da Ho Mi Se		Epicentra	i area		10	NIW	
4-5	1968 06 22 12 21 37.00		<u>vai Laga</u>	irina	21	6-7	4.74	
3-4	1970 04 19 18 16 32.00	6	arda occio	ientale	65	5	4.55	
3	1971 07 15 01 33 23.00		Parmen	ise	228	8	5.51	
4	1972 10 25 21 56 11.31	Appe	ennino sett	entrionale	198	5	4.87	
5-6	1976 05 06 20		Friuli	1	770	9-10	6.45	
3	1976 09 11 16 35 02.44		Friul	i	40	7-8	5.6	
5	1976 09 15 09 21 19.01		Friuli	i	54	8-9	5.95	
F	1977 04 03 03 18 14.07		Friuli	l	25	5	4.51	
5	1977 09 16 23 48 07.64		Friuli	i	94	6-7	5.26	
3	1978 12 05 15 39 04.00		Romag	na	34	4-5	4.61	
4	1978 12 12 15 14 49.22	D	Dolomiti Fi	riulane	56	5-6	4.35	
3	1979 02 09 14 44		Bergama	asco	73	6	4.78	
F	1979 04 18 15 19 19.28		Friuli	i	72	6-7	4.66	
F	1979 11 17 20 53		Lago d'I	seo	17	5-6	4.37	
3-4	1980 01 25 00 27		Val Ven	osta	8	4-5	4	
4	1983 11 09 16 29 52.00		Parmense			6-7	5.04	
3	2000 04 06 17 40 36.70		Alpi Ret	iche	40		4.02	
5	2001 07 17 15 06 15.27		Val Ven	osta	657	5-6	4.78	
3-4	2002 02 14 03 18 02.48		Carni	a	338	5-6	4.67	
F	2008 12 23 15 24 21.77		Parmer	ise	291	6-7	5.36	
2-3	2011 07 17 18 30 27.31	Pianu	ura lombai	do-veneta	73	5	4.79	

Figura 65. Storia sismica del Comune di Bolzano. Sulle ascisse è riportato l'anno.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I ZIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	B	76 di 95

14.2 Sorgenti sismogenetiche

La versione attuale (3.2.1) del "Database of Individual Seismogenic Sources (DISS): A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas" (DISS Working Group, 2018. <u>http://diss.rm.ingv.it/diss/</u>), contiene sorgenti sismogenetiche individuali e composite ritenute in grado di generare grandi terremoti.

Obiettivo del Database è quello di rendere quanto più possibile completa l'informazione sulle sorgenti sismogenetiche potenziali del territorio nazionale; per questa ragione, oltre ad un numero maggiore di sorgenti individuali, viene proposta una forma di rappresentazione e caratterizzazione di tutte le aree che, pur essendo certamente in grado di generare forti terremoti, sono ancora poco comprese. È stata pertanto istituita una nuova categoria di aree sismogenetiche per le quali, in analogia con quanto proposto dalla zonazione sismogenetica ZS9 (Meletti & Valensise, 2004), viene fornita la localizzazione geografica, la stima del meccanismo di fagliazione, la profondità efficace e la magnitudo massima attesa.

Nel database non sono presenti sorgenti sismogenetiche composite per l'area in oggetto (Figura 66); le più vicine all'area di intervento sono le sorgenti Western Periadriatic (ATCS010) e Brenner (ATCS012) che si incontrano nell'area di Vipiteno. Più a sud si trova invece la sorgente sismogenetica delle Giudicarie (ITCS048), visibile a SW di Trento: le principali informazioni di riferimento per le sorgenti sono riportate in Figura 67, Figura 68 e Figura 69.

Figura 66. Sorgenti sismogenetiche contenute nel DISS 3.2.1 (<u>http://diss.rm.ingv.it/diss/)</u> per l'area in studio (indicata in giallo).

I ITALFERR
GRUPPO FERROVIE DELLO STATO ITALIANE

LINEA BOLZANO – MERANO REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI

SPOSTAMENTO BIVIO LINEA MERANESE

ZIONE	E GEOLOGICA	C	OMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FO
			NB1D	01	D 69	RG GE 0001001	В	78
	GENERAL INFORMATION							
	DISS-ID	ATCS012						
	Name	Brenner						
	Compiler(s)	Garcia Moreno	D.(1), Dec	ker K.(2),	Camelbeeck T.	(1)		
	Contributor(s)	Kastelic V.(3),	Burrato P.(3)				
	Affiliation(s)	1) Royal Obse 1180 (Uccle), 2) Center for E Sedimentology Althanstrasse 3) Istituto Naz Tettonofisica:	 (a) Contrato P.(3) (b) Royal Observatory of Belgium; Seismology; 3 Avenue Circulaire, 1180 (Uccle), Brussels. Belgium (c) Center for Earth Sciences; Departament for Geodynamics and Sedimentology; UZA II - Universittszentrum Althanstrasse. (A) Althanstrasse 14, 1090 Vienna, Austria (c) Istituto Nazionale di Geofisica e Vulcanologia; Sismologia e 					
	Created	07-Jul-2010				····, ····,		
	Updated	23-May-2016						
	Display map	See 3	2					
	Related sources		•					
	PARAMETER		QUALITY		EVIDEN	CE		
	Min depth [km]	3.5	EJ	Inferre by Re	ed from earthqu eiter et al. (200	iake data colleted 5).		
	Max depth [km]	15.0	LD	Base Reite	d on earthquak r et al. (2005).	e data colleted by		
	Strike [deg] min max	110170	LD	Base maps al.,20	d on structural s (Linzer et al.,2 106)	and geological 2002; Reiter et		
	Dip [deg] min max	3050	LD	Base earth	d on geomorph quake data (Re	ological maps and iter et al., 2005).		
	Rake [deg] min max	260280	EJ	Inferr by Re	ed from earthqu eiter et al. (200	iake data colleted 5).		
	Slip Rate [mm/y] min max	0.020.11	LD	Calcu rate o	ilated from geo constraints.	dynamic and strain		

GRUPPO FERROVIE DELLO STATO ITALIANE			LINEA BOLZANO – MERANO REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI SPOSTAMENTO BIVIO LINEA MERANESE						
RELAZIONE GEOLO	OGICA		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
	Grupper Inconstruction		NB1D	01	D 69	RG GE 0001001	В	79 di 95	
		ATC: 040							
	DISS-ID Name	AICS010	Pariadriatia						
		Kastolio V	(1) Burrata D	(1)					
	complicital	Kastelic V	(1), Burrato P.	(1) Garcia !	Moreno D (2) De	acker K (3)			
	Contributor(s)	Camelbee	ck T.(2)	(i), Gaicia (
	Affiliation(s)	1) Istituto Tettonofisi 2) Royal (1180 (Ucc 3) Center Sedimento Althanstra	Nazionale di G ica; Via di Vigna Observatory of E Ie), Brussels. E for Earth Scient ology; UZA II - U isse 14, 1090 V	eofisica e V a Murata, 6l Belgium; Se Belgium ces; Depart Jniversittsze ′ienna, Aust	fulcanologia; Sisi 05, 00143 Roma, ismology; 3 Aver ament for Geody entrum Althanstra tria	mologia e , Italy nue Circulaire, mamics and asse.			
	Created	28-May-20	010						
	Updated	23-May-20	016						
	Display map	\$\$ \$	8						
	Related sources								
	PARAMETRIC INFORMATION								
	PARAMETER		QUALITY		EVIDENCE				
	Min depth [km]	0.0	EJ	Assun	ned from geomor	phology.			
	Max depth [km]	15.0	LD	Based & Cloe 2004).	on seismic data tingh, 2003; Lüs	a (Willingshofer schen et al.,			
	Strike [deg] min max	280300	LD	Based maps	l on structural an (e.g. Linzer et al	id geological ., 2002).			
	Dip [deg] min max	7085	EJ	Inferre Lüsch	d from seismic p en et al. (2004).	profiles from			
	Rake [deg] min max	130170	EJ	Inferre geolog	d from regional s Iy and geodynam	structural nic settings.			
	Slip Rate [mm/y] min max	0.150.5	; EJ	Inferre rate co	d from geodynan onstraints.	nic and strain			
	Max Magnitude [Mw]	7.0	EJ	Inferre taken	d from historical from Guidoboni e	seismic records et al. (2007).			
	LD=LITERATURE DATA; OD=ORIGINAL DATA; ER=	EMINICAL RELAT	TIONSHIP; AR=ANALYTICAL	RELATIONSHIP(EJ	Ехлект Јарсемент;				

Figura 68. Quadro riassuntivo della sorgente sismogenetica Western Periadriatic (ATCS010).

GRUPPO FERROVIE DELLO STATO ITALIANE		LINEA BOLZANO – MERANO REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI SPOSTAMENTO BIVIO LINEA MERANESE						
RELAZIONE GEOLO	OGICA		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
			NB1D	01	D 69	RG GE 0001001	В	80 di 95
	GENERAL INFORMATION							
	DISS-ID	ITCS048						
	Name	Giudicarie						
	Compiler(s)	Burrato P.((1)					
	Contributor(s)	Burrato P.(1)					
	Affiliation(s)	1) Istituto I Tettonofisi	Nazionale di G ca; Via di Vign	6eofisica e ∖ a Murata, 6	/ulcanologia; Sis 05, 00143 Rom	smologia e a, Italy		
	Created	08-Jan-20	05					
	Updated	28-May-20)15					
	Display map	\$	8					
	Related sources	ITIS069						
	PARAMETRIC INFORMATION							
	PARAMETER		QUALIT	Y	EVIDENC	E		
	Min depth [km]	5.0	OD	Base data.	d on geological	and seismological		
	Max depth [km]	12.0	OD	Base data.	d on geological	and seismological		
	Strike [deg] min max	205265	OD	Base data.	d on geological	and seismological		
	Dip [deg] min max	2535	OD	Base data.	d on geological	and seismological		
	Rake [deg] min max	70100	EJ	Inferr seisn	ed from geologi nological data.	cal and		
	Slip Rate [mm/y] min max	0.10.5	EJ	Unkn geod	own, values ass ynamic constraii	sumed from nts.		
	Max Magnitude [Mw]	5.7	OD	Deriv	ed from maximu ciated individual	um magnitude of source(s).		
	LD=LITERATURE DATA; OD=ORGINAL DATA; ER	ENTRICAL RELAT	IONSHIP; AR=ANALYTIC	AL RELATIONSHIP(E	JEEXNERT JUCCEMENT;			

ACTIVE FAULTS

Figura 69. Quadro riassuntivo della sorgente sismogenetica composita Giudicarie (ITCS048).

14.3 Parametri per la determinazione dell'azione sismica di riferimento

Ai sensi del D.M. 17/01/2018 (Norme Tecniche per le Costruzioni), ai fini della definizione dell'azione sismica di progetto deve essere valutata l'influenza delle condizioni litologiche e geomorfologiche locali, determinando quindi la corrispondente categoria (o tipo) di sottosuolo nonché le condizioni topografiche del sito di interesse.

Categoria di sottosuolo

La determinazione del tipo di sottosuolo, secondo normativa, può essere basata sulla stima dei valori della velocità media di propagazione delle onde di taglio $V_{s,eq}$ (in m/s), definita dall'espressione:

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

dove:

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOLI REALIZZAZ SPOSTAME	ZANO - M IONE NU ENTO BIV	MERANO IOVO TUNNI 'IO LINEA M	EL DEL VIRGOL ERANESE	OA3BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	B	81 di 95

 $h_i = spessore \; dello \; stato \; i\text{-}esimo$

 $V_{s,i}$ = velocità delle onde di taglio nello strato i-esimo

N = numero degli strati

H = profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s

Per depositi con profondità H del substrato superiore a 30 m, la velocità equivalente delle onde di taglio $V_{s,eq}$ è definita dal parametro $V_{s,30}$ ottenuto ponendo H=30 m nella precedente espressione.

La suddivisione delle categorie di sottosuolo sulla base dei valori delle velocità media di propagazione delle onde di taglio $V_{s, eq}(in m/s)$ è definita nella Tab. 3.2.II delle NTC 2018 e qui di seguito riportata.

Categoria	Caratteristiche della superficie topografica
А	<i>Ammassi rocciosi affioranti o terreni molto rigidi</i> caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consi- stenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consi- stenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del- le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consi- stenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del- le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
Е	<i>Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le catego-</i> <i>rie C o D,</i> con profondità del substrato non superiore a 30 m.

I risultati tutte le indagini geofisiche realizzate nei dintorni dell'area di studio per la definizione della $V_{s,30}$ sono elencati nella seguente tabella.

Tubenu 177 Lieneo dene prove geonstene con elaborazione dena 4530												
Tipologia	Prova/Sondaggio	Campagna di indagine	V _s 30 (m/s)	Categoria di sottosuolo								
MASW/Re.Mi.	R1	2020	1019	А								
MASW/Re.Mi.	R2	2020	392	В								
MASW/Re.Mi.	R3	2020	395	В								
MASW/Re.Mi.	R4	2020	398	В								
MASW/Re.Mi.	R5	2020	381	В								
MASW/Re.Mi.	R6	2020	418	В								
MASW/Re.Mi.	R7	2020	393	В								
MASW/Re.Mi.	R 8	2020	334	С								
Down-Hole	BH5	2018	422	В								

Tabella 19. Elenco delle prove geofisiche con elaborazione della Vs₃₀

GRUPPO FER	TALFERR ITALFERR RROVIE DELLO STATO ITALIANE		LINEA BOLZANO – MERANO REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI SPOSTAMENTO BIVIO LINEA MERANESE											
RELAZION	NE GEOLOGICA		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	-					
			NB1D	01	D 69	RG GE 0001001	В	82 di 95						
	MASW/Re.Mi.	R1	2017		428	В								
	MASW/Re.Mi.	R3	2017		381	В								
	MASW/Re.Mi.	R5	2017		369	В								
	MASW/Re.Mi.	R7	2017		424	В								
	MASW/Re.Mi.	R9	2017		495	В								
	MASW/Re.Mi.	R11	2017		487	В								
	Down-Hole	H2/S2	2017		405	В								
	Down-Hole	H4/S4	2017		377	В								
	Down-Hole	H6/S6	2017		396	В								
	Down-Hole	H8/S8	2017		427	В								
	Down-Hole	H10/S10	2017		482	В								

Il 90% delle prove rileva valori di velocità $V_{s,eq} = V_{s,30} > 360$ m/s definendo una categoria di sottosuolo di tipo B. La sola prova R8 mostra un terreno di categoria C. Infine la prova R1, eseguita al piede del rilievo del Virgolo, in prossimità di roccia semi affiorante, mostra, un terreno di categoria A.

Condizioni topografiche

Per quanto concerne le caratteristiche della superficie topografica, le morfologie, nei tratti all'aperto, possono essere ricondotte ad una delle configurazioni T1 prevista nel D.M. 17/01/2018 in Tabella 3.2.III.

Considerazioni sul fenomeno di liquefazione

In terreni saturi sabbiosi sollecitati, in condizioni non drenate, da azioni cicliche dinamiche, il termine liquefazione comprende una serie di fenomeni associati alla perdita di resistenza al taglio o ad accumulo di deformazioni plastiche. L'avvenuta liquefazione si manifesta, in presenza di manufatti, attraverso la perdita di capacità portante e/o lo sviluppo di elevati cedimenti e rotazioni.

In base ad D.M. 17/01/2018, la verifica di liquefazione può essere omessa quando si manifesti almeno una delle seguenti circostanze:

- accelerazioni massime attese al piano campagna in assenza di manufatti (condizioni di campo libero), minori di 0.1g;
- profondità media stagionale della falda superiore a 15 m dal piano campagna, per piano campagna suborizzontale e strutture con fondazioni superficiali;
- depositi costituiti da sabbie pulite con resistenza penetrometrica normalizzata $(N_1)_{60}>30$ oppure $q_{c1N}>180$, dove $(N_1)_{60}$ è il valore della resistenza determinata in prove penetrometriche dinamiche (SPT), normalizzata ad una tensione efficace verticale di 100 kPa, e q_{c1N} è il valore della resistenza determinata in prove penetrometriche statiche (CPT), normalizzata ad una tensione efficace verticale di 100 kPa;
- distribuzione granulometrica esterna alle zone indicate nel grafico a), nel caso di terreni con coefficiente di uniformità $U_c < 3.5$ e nel grafico b) nel caso di terreni con coefficiente di uniformità $U_c > 3.5$.

In relazione a quanto previsto dalla normativa il progettista specialista potrà escludere o meno il rischio di liquefazione per l'area in cui insiste l'opera. In questa sede si segnala che, in termini di valore a_g , per il comune di Bolzano si riscontra un valore inferiore a 0.1g, condizione per l'esclusione della verifica.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I LIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BII	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	B	84 di 95

15 BIBLIOGRAFIA

- 1. AFTES (Association Francaise des Travaux En Soutterain) (2003). Text of raccomandations for a description of rock masses useful for examining the stability of underground works. Tunnel er Ouvrages Soutterains n. 117.
- 1) ARBO Areale Bolzano S.p.A. (2013). Documenti del Progetto preliminare della galleria ferroviaria del Virgolo.
- 2) Autorità di Bacino Nazionale dell'Adige (1998). Rapporto sugli approfondimenti di studio nei settori di acquifero con criticità quantitative (attività n. 1 della perizia di variante). In: Attività di studio e ricerca a supporto della redazione del piano di bacino. Studio degli acquiferi montani, da Resia a Domegliara, e degli acquiferi di pianura. Seconda fase.
- Avanzini, M., Bargossi, G.M., Borsato, Selli, L., 2010. Note Illustrative del Foglio 060 Trento, Carta Geol. It. 1:50000. Roma, ISPRA, p. 244.
- 4) Bieniawski R.T. (1989), Engineering Rock Mass Classification Wiley p.251.
- 5) Barton N., Lien R., Lunde J. (1974) Engineering Classification of Rock Masses for the Design of Tunnel Support. Rock Mechanics. Springer Verlag Vol. 6 pp. 189-236.
- 6) Bosellini A. (2005). Storia geologica d'Italia. Zanichelli editore S.p.A., Bologna. pp192.
- 7) Brondi A., Fuganti A., Mittemperger A., Murara G., Nardin M., Rossi D., Scudeler Baccelle L., Sommavilla E., Zirpoli G. (1974). Note esplicative della Carta Geologica d'Italia, Foglio 027, Bolzano. Servizio Geologico d'Italia, Roma.
- Avanzini M., Bargossi G.M., Borsato A., Castiglioni G.B., Cucato M., Morelli C., Prosser G., Sapelza A. (2007). Note illustrative della Carte Geologica d'Italia alla scala 1:50.000, Foglio 026 Appiano. APAT Servizio Geologico d'Italia, Roma.
- 9) Bargossi G.M., Klotzli U.S., Mair V., Marocchi M., Morelli C.(2004). The lower Permian Volcanic Group (AVG) in the Adige Valley between Merano end Bolzano: a stratigraphic and geochronological outline. 32nd IGC, Florence 2004 – Scientific Session_abstracts (part 1) – 187.
- 10) Bosellini A. (1996). Geologia delle Dolomiti. Athesia, Bolzano. pp192.
- 11) Cassinis G., Perotti C.R., Ronchi A. (2012). Permian continental basins in the southern Alps (Italy) and peri-meditteranea correlations. Int. J. Earth Sci. (Geol Rundsch.), 101, 129-157.
- Castiglioni G.B. & Trevisan L. (1973). La sella di Appiano-Caldaro presso Bolzano nel Quaternario. Mem. Ist. Geol. Min. Univ. Padova, 29, 1-34.
- 13) Castellarin A., Nicolich R., Fantoni R., Cantelli L., Sella M., Selli L., 2006. Structure of the lithosphere beneath the Eastern Alps (southern sector of the TRANSALP transect). Tectonophysics, 414, 259-282.
- 14) Coltorti M. (1991). Il contributo geoarcheologico alla conoscenza dell'evoluzione recente della piana di Bolzano. In: AA. VV. (eds), Bolzano: dalle Origini alla Distruzione delle Mura, Atti del Convegno Internazionale di Studi alla Cultura del Comune di Bolzano 1989, p.17-37. Castel Mareccio, Bolzano.
- 15) Comune di Bolzano, Ufficio Geologia, Protezione Civile ed energia (2018). Stato della falda acquifera di Bolzano. Redatto da M. Platter.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I LIONE NU ENTO BIV	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BII	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	B	85 di 95

- 16) Comune di Bolzano, Ufficio Geologia, Protezione Civile ed energia Consorzio Triveneto Rocciatori Alpin Geologie (2019). Studio geologico del versante sovrastante la via del Calvario ed il tratto ferroviario Verona-Brennero tra le progressive chilometriche 149+158 e 149+557 nel Comune di Bolzano.
- 17) Consiglio Superiore dei Lavori Pubblici. Azioni sismiche Spettri di risposta ver. 1.03. http://cslp.mit.gov.it/index.php?option=com_content&task=view&id=75&Itemid=20.
- 18) DISS Working Group (2018). Database of Individual Seismogenic Sources (DISS), Version 3.2.1: A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas. <u>http://diss.rm.ingv.it/diss/</u>, Istituto Nazionale di Geofisica e Vulcanologia; doi:<u>10.6092/INGV.IT-DISS3.2.1</u>.
- 19) Doglioni, C., 1987. Tectonics of the Dolomites (Southern Alps, Northern Italy). Journal of Structural Geology, 9, 181-193.
- 20) Ente Ferrovie dello Stato-Ufficio Tecnico di Bolzano (1989). Variante del Virgolo, planimetria scala 1:1000, disegno 450 V 367
- 21) Falcucci E., Poli M.E., Galadini F., Scardia G., Paiero G., Zanferrari A., 2018. First evidence of active transpressive surface faulting at the front of the eastern Southern Alps, northeastern Italy: insight on the 1511 earthquake seismotectonics. Solid Earth, 9, 911–922, https://doi.org/10.5194/se-9-911-2018.
- 22) Galadini, F., Poli, M. E., and Zanferrari, A., 2005. Seismogenic sources potentially responsible for earthquakes with M≥6 in the eastern Southern Alps (Thiene-Udine sector, NE Italy), Geophysical Journal International, 161, 739–762, https://doi.org/10.1111/j.1365-246X.2005.02571.x, 2005.
- 23) Italferr S.p.A. (2017). Progetto di fattibilità tecnico-economica per la riqualificazione areale ferroviario di Bolzano Relazione generale sondaggi stratigrafici e prove in sito.
- 24) Italferr S.p.A. (2020). Progetto Definitivo Linea Bolzano-Merano, Realizzazione nuovo tunnel del Virgolo a 3 binari, Spostamento Linea Meranese Stabilizzazione del versante del colle Virgolo.
- 25) Keim, L., Mair, V., Morelli, C. (2017)."General Geologic map of South Tyrol." Published and unpublished results of the CARG and Basiskarte projects, the Italian geological map 1.100,000, and the Structural model of Italy 1:500,000 (ed. 1990).
- 26) Marocchi M., Morelli C., Mair V., Klotzli U., Bargossi G.M. (2008). Evolution of large silicic magma system: new U-PB zircon data on the NW Permian Volcanic Athesian Group. J. Geol., 116, 480-498.
- 27) McCann T., Kiersnowski H., Krainer K., Vozarova A., Peryt T.M. Oplustil S., Wetzel A., Boulvain F., Dusar M., TOrok A., Haas J., Tait J., Korner F. (2008). Permian. The Geology of Central Europe 1. Geological Society, London.
- 28) Meletti C. e Valensise G. (a cura di), (2004). Zonazione sismogenetica ZS9 App.2 al Rapporto Conclusivo, <u>http://zonesismiche.mi.ingv.it/documenti/App2.pdf</u>.
- 29) Morelli C., Bargossi G.M., Mair V., Marocchi M., Moretti A. (2007). The Lower Permian Volcanics along the Etsch Valley from Meran to Auer (Bozen). Mitt. Osterr. Miner. Ges. 153, 195-218.
- 30) Morelli C., Bargossi G.M., Marocchi M., Piccin G., Moretti A. & Mair V (2010). The Athesian volcanics: a spectacular example of a caldera complex. Rend. Online. Soc. Geol. It., 11.
- 31) Morelli C. (2012). Il Gruppo Vulcanico Atesino: la nuova stratigrafia dei depositi vulcanici permiani affioranti in Sudtirolo (sequenza superiore). in: "La geologia del territorio quale base della conoscenza per

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I LIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	B	86 di 95

il professionista, giornate di formazione teorica e pratica sulla geologia della Provincia di Bolzano, la nuova cartografia geologica e l'evoluzione della dottrina degli ultimi decenni". Bolzano.

- 32) Locati M., Camassi R., Rovida A., Ercolani E., Bernardini F., Castelli V., Caracciolo C.H., Tertulliani A., Rossi A., Azzaro R., D'Amico S., Conte S., Rocchetti E., Antonucci A. (2019). Database Macrosismico Italiano (DBMI15), versione 2.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). <u>https://doi.org/10.13127/DBMI/DBMI15.2</u>
- 33) Provincia Autonoma di Bolzano, Ufficio Gestione Risorse Idriche (2000). Carta del livello massimo di falda acquifera di Bolzano nel luglio 1997. Scala 1:10000.
- 34) Rovida A., Locati M., Camassi R., Lolli B., Gasperini P. (2019). Catalogo Parametrico dei Terremoti Italiani (CPTI15), versione 2.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). <u>https://doi.org/10.13127/CPTI/CPTI15.2</u>
- 35) Rovida A., Locati M., Camassi R., Lolli B., Gasperini P. (2020). The Italian earthquake catalogue CPTI15. Bulletin of Earthquake Engineering, 18(7), 2953-2984. <u>https://doi.org/10.1007/s10518-020-00818-y</u>
- 36) Schaltegger, U., Brack, P., 2007. Crustal-scale magmatic systems during intracontinental strike-slip tectonics: U, Pb and Hf isotopic constraints from Permian magmatic rocks of the Southern Alps. Int. J. Earth Sci. 96, 1131–1151.
- 37) Selli L., 1998. Il lineamento della Valsugana fra Trento e Cima D'Asta: cinematica neogenica ed eredità strutturali Permo-Mesozoiche nel quadro evolutivo del Sudalpino Orientale (NE-Italia). Memorie delle Società Geologica Italiana, 53, 503-541.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I ZIONE NU ENTO BIV	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	В	87 di 95

APPENDICE 1 – INDAGINI DA BIBLIOGRAFIA

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I ZIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	B	88 di 95

SONDAGGI PRIVATI – PR1/99 e PR2/99 (codice PAB 10005-10009)

COMMITTENTE: DR. C. FERRETTI PROGETTO: INDAGINE GEOGNOSTICA LOCALITA': NUOVO OSTELLO – PONTE ROMA (BZ) DATA ESECUZIONE: DAL 16.12 AL 16.12.99													S	SONI	DAG(1:5	GIO io	Nr. S 1			
SU	PEF.	VISOR	RE: I	DR. A.	POCHER	SONDA	TOR	E:	SI	G. R.	MAI	FAT	TI				TIPO	DI	SON	DA: NENZI GELMINA
uma	-	E								-	-		PF	OVE	N SI	U		_	-	
Tipe di carot. e	Rivestimento e é	Spessore strato	Profondita" m	legenda	DESCRIZIO	NE LITOLOGICA	Perc. carotaggio	R.Q.D. X	Campioni	Profondita'	N N 91-0	r. Colp	30-45 cm	N.S.P.T.	Tipo di punta	Pocket Pen. kg/emq	Yane Test kg/cmq	quota falda m	Plezometro	NOTE ED OSSERVAZIONI
		115	1 15	000 Ha	Riporto: ghiaia (s mi rotondata ad arroton dia a fine debolment m. 1.00 + 1.15 Blocc	ax = 5 cm.) da subar- idata con sabbia da me- ce limosa. o di porfido.									£.				Contraction of the local data	Installato piezometro ø 50 mm, con pozzetto carrabile.
		0.35	1.40	Po	Ghiaia poligenetica g	rossa (s max = 4 cm.).													STOC NO.	
			2		Sabbia da fine a me ghiaiosa.	dia, limosa, debolmente													Strategy and	
		2.40	2.10 3 4 4.50		Ghiaia eterogranuları da medla a grossa d arrotondata (e max	p poligenetica con sabbia a subarrotondata ad = 8 cm.).				4.50	21	32	41	73	с					
			5	0.0	Sabbia da grossa a netica eterogranular	media con ghiaia polige- z (s max = 3 cm.).													a la la	
		1.00 0.10 0.40	5.50 5.60 6	0.0000	Ghisia poligenetica d Ghisia (s max = 4 granulare da spigolo sabbia da media a	con ciottoli (s max=7cm.) cm.) poligenetica etero- sa a subarrotondata con line.													William Constant	
Carotiere semplice ø 101 mm	Carotiere semplice ø 101 mm ø 127 mm		7		alternanze di ghisia sulare, con sabbia tratti deboimente a boli (e max = 9 cm	, poligenetica, eterogra- da media a grossa a gillosa. Presenza di ciot- .).	-			<u>6.50</u> <u>9.00</u>	50	R 50	R	-	c	-				
		3,20	920		Ghiaia, poligenetica,	(s max = 3,5 cm.) con	1													
		0.40	9,60 10		a subarrotondata. Sabbia grossa limos (e max = 2 cm.).	a. Presenza di ghiaia fine													AND STREET	
				0.0	Alternanze di ghiaia lare con sabbia da	poligenetica eterogranu- media a grossa a tratti													and the	
		0.70	11	8.00	Blocchi e ciottoli (s	max = 8 cm.) di porfi-	-							1						
		0.30	11.30	6.0	do verdastro e ross Sabbia da media a	astro. fine limosa debolmente 3.5 cm.). Colore marrone													かった	
		0.70	12	0.0	z tra m. 11.70 + 11.75 ceo. Z Sabbia da grossa a llosa con shiala (a	fine a trattl limo-argil- nax = 5 cm.).														
		1.70	12.70 13		Ghiaia poligenitica.	eterogranulare con sabbia													And in the second	
		1.20	13. <u>P</u> 0	0000	da grossa a media max = 6 cm.) con cm.) da subspigolos Chiaja poligenetica	debolmente limosa, (s rari ciottoli (s max = 8 i ad arrotondati. eterogranulare da media													No. State of	
		0.40	14:30	00	Blocchi di porfido n	5 cm.) con ciottoli. osa e verdastro.													R.C.	14.50
					F.F. m. 14.50.															

GRUPPO FERROVIE D						LIN RE SPO	EA ALIZ OS ⁻	BC ZZ/ TAN	OLZA AZIC MEN) – E NI BIV	ME JO` VIO	RA VO	NO TU NE/	NN A M	IEL 1ER	DE	L V ES	'IRGC E	DLO /	431	BINARI			
RELAZIONE GE	OL	.00	GIC	A				CO		SSA		_OTT 01	o	c	ODII	FICA	L.			UME	ENTO	R	EV. B	FOGLI 89 di 9	0
	BOI		К • -	BOZ) SF	ERVICE 1471 / 285434	COMMITTENTE: PROGETTO: IND LOCALITA': NU- DATA ESECUZI	DR. C AGINE OVO O: ONE:	. FEI GEO STELI	RRET GNO LO - DA	TTI STICA - PON AL 2	TE R	OMA AL ;	(BZ) 20.12			0 10	SONI	DAG(HO 0	Nr. S	2			-
	Tipe di carot. e fimm	Rivestimento e # mm	Spessore strato m	Profondita' m	or. A.	DESCRIZI	ONE LITOLOGICA		RE:		Profondita	Stand	Ard Fee	TI PF setration	NowE 1	Tipo di punta	Pocket Pen.	Vane Test kg/cmq	Quota falda m	Pierometro	NOTE ED	OSSERV	NZIONI		
		2	0.05 0.25 0.20 1.00 0.60 0.40 1.10 0.40 0.75	0.05 0.30 0.50 1 1.50 2.50 2.50 3 3.60 4 4.70 5.10 5.85 6	ំពុងខ្លួលចំណឹង ទោះ	Chiaia poligenica m Sabbia debolmente Ghiaia da media a ad arrotondata. Sabbia limosa con nulare da subspigo Sabbia grossa con poligenica eleregra lora grido asuro. Chiaia poligenica el golossa a ben arroto con sabbia grossa con elerogranulare sub- scure. Sabbia poligenica el de om.). Sabbia poligenica el de om.). Sabbia poligenica el con sabbia poligeniche. de om.) con blocchi Chiaia poligeniche. de om.) con blocchi Chiaia poligeniche. de om.) con blocchi Sabbia grossa. Biocchi di portido	edia con sabbia gros limosa con ghiaia fin grossa da subarroton ghiaia poligenica, ete losa ac arrotondata. ghiaia de fine a maturator andata (e max = 6 co so vulcaniche (e max ghiaia da fine a medi ghiaia da fine a medi ghiaia da fine a suba ghiaia da fine a suba ghiaia da fine a suba ghiaia (e max = 6 com eterogranulari (e max terogranulari (e max eterogranulari da suba data (comax = 6 com e fine.	sa.			3.00	50	R	-		c									

11

12

13

14

Carotiere doppio Ø 101 mm mm 127 0

 810cchi di porfido violaceo con ghisia pullta.

 0.60
 6.70

 0.80
 6.70

 10
 10

 11
 10

 12
 10

 13
 10

 14
 10

 15
 10

 16
 10

 17
 10

 18
 10

 19
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

 10
 10

Blocchi di porfido violaceo con ghiala pulita

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAMI	ZANO – I ZIONE NU ENTO BIV	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	B	90 di 95

SONDAGGI COMUNE DI BOLZANO – C8/92 (codice PAB 54762)

SONDAGGIO GEOGNOSTICO n. 8 R-0-89

Tipo : A rotazione Località : Viale Trento - Ponte pedociciabile Committente : Comune di Bolzano Lata : 7 febbraio 1992 Cuota inizio : 253 m.s.m. crof. falda =15.20 m da ouota inizio scala profondità * 1 : 127

CAMPIONI : A-B-C... = INDISTIRBATI 1-2-3... = RIMANEGGIAT:

prof.	s1mib.	CAMPIONI N. prof.(m)	NªTURA S"RATIGRAFICA descrizione	Faida	CSPT
0.00-	50		1	t	
	0°°°°°°°°		Materiale di riporto		
3.00-	00000		- 	ļ	
5.00-	0.00 0.00 0.00 0.00 0.00		- Ghiaia con Babbia e ciottoli		69
7.50_ 8.60_	Ŭ.Aŭ		Sabbia grobsa con ghiainc		
10.00-	0.0000	Ŷ	Chiaia con sabbia		37
	0.0.0.0 0.0.0		Ciotteli con ghiaia e sabbia		
13.00_ 13.50_	0000		Trovante	*	R
16.30	00000		Ciotteli con ghiaia e sabbia	15.20	
17.00_	0000		Trovante		94
	0000		Ciott¢li con ghïaia ⊛ sabbia		
20.50_ 21.10_			Sabbi£ grossa		77
23.00-			Ghiaia e c∙otto∎i con sabbia		
25.00-	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	anana (Carada)	Ghiais e sabbia con trovanti pju		

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAMI	ZANO – I ZIONE NU ENTO BIV	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	В	91 di 95

SONDAGGI COMUNE DI BOLZANO – C5/01 (codice PAB 16925)

	=					LINEA BOLZANO – MERANO																						
						REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI																						
RUPPO FERROVIE DELLO STATO ITALIANE					SPOSTAMENTO BIVIO LINEA MERANESE																							
																V.												
AZIONE GE	OLC	LOGICA					1	NB1D			01	•		D	69	•		RG	GE 0	0010	01	В		92 di 95				
		Δ	À	JE) S	ER	VI(E		COMM PROG LOCAL	ITTENT ETTO: ITA':	E: CC IN PI	MUN DAGI AZZA	E DI NE C	BOL EOGI	ZANO) ICA LZAN	0			s	ONDA	AGG	IO 1 50	Nr. S Fogli	5		
	BC	DLZA	NO -	BOZ	EN -	0471 POC	/ 285	5434		DATA	ESECU	SONE	E:	E: S	DAL	O V P/	9.04	AL ZA	10.04	4.01		TIPO	DIS	SOND	A: NEN	VZI GE	T.MA	
		I	EVISO B	RE:	DR. R.	100										Standa	and Rep	PR	OVE	IN ST	U							
	ipo di carot, e	tivestimento e #	Spessore strato	Profondita' m	Legenda		DE	SCRIZIO	NE LITO	LDGICA		Pero, cerotaggio	R.Q.D. X	Campionl	Profondita"	0-15 on	r. Colp	30-45 am	N.S.P.T.	Tipo di punta	Pocket Pen. kg/cmq	Vane Test t/mg	quota falda m	Plezometro	NOTE E	ED OSSE	RVAZI	
			0.50	15.50	000	Ciott gross grigin	oli (ø 1 olana astri. ia med	max = (s max io-fine	8-9 cm = 6 cm debolm	n.) e gi m.) sab nente g	niaia biosi, hiaiosa		-								۰,							
	шш		0.50	16	000000		ax = x	5 CIII.),	FURT		,																	
	mplice # 101	27 mm	-	17	0.0.00	? Sabb cm.) 8 cn	ia med deboln 1.), grig	io-fine nente c glastra.	ghiaios ciottolos	за (ø п њ (ø п	ax = 6 ax = 7	-																
	Carotiere se	8 1		18	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	1. A A A A A A A A A A A A A A A A A A A									10.00	10	- 12		bu	<u> </u>	۰.				-			
			1.00	20	14,0 144 14,0 044	Sabb da fi arrot stra.	ia, da ne a g ondata	fine a rossola debolr	grossole na (s r nente li	nna, e nax = imosa,	ghiaia 4 cm.) grigia-						•											
				21		F.F. :	m. 20.0	.																				
			· .	22										- 20														
				23															•					1				
				24					• .																			
				25			· •, .																					
			,	26																								
				27		-								1.1									-					
				28	- <u></u>	-										-												
				29																	-							

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAM	.ZANO – ZIONE NI ENTO BI ^N	MERANO JOVO TUNN VIO LINEA M	IEL DEL VIRGOI IERANESE	_O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA		REV.	FOGLIO

SONDAGGI ANAS - AN7 (codice PAB 54761)

 Dr.Geol. GIAN PAOLO LOVINO - Via Taræmelli 1/a - BO_ZANO - Tel.0471/280506
 Rifer. : 14A-24

 SONDAGGIO GEOGNOSTICO n. 7
 RZ-GP-89

 Tipo : A rotazione Località : Committente : ANAS
 Data : 1988 Quita inizio : 262.50 m.s.m

CAMPIONI : A-8-C... = INDISTURBATE 1-2-3... : RIMANEGGIATI

prof (m)	. simb.	CAMPIONI N. prof.(m)	NATURA STRATIGRAFICA descrizione	Falda	CSPT	
	0			1	I	
			Materia∥e di riperto Detrito e ghiaia con sabb∥a			
4.5	• - • <u>· · ·</u>		Trovante porfirico	ļ		ļ
5.00			Trovante porfirico Ghimia con smbbia e rmri ciottoli			
16.20						

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOLI REALIZZAZ SPOSTAME	ZANO – I LIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	В	94 di 95

APPENDICE 2 – ANALISI PETROGRAFICHE

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOL REALIZZAZ SPOSTAME	ZANO – I LIONE NU ENTO BI\	MERANO JOVO TUNN /IO LINEA M	EL DEL VIRGOL ERANESE	-O A 3 BI	NARI
RELAZIONE GEOLOGICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	NB1D	01	D 69	RG GE 0001001	B	95 di 95

Il presente allegato contiene i risultati delle analisi petrografiche delle sezioni sottili realizzate dal Dipartimento di Scienze Biologiche, Geologiche, e Ambientali dell'Università di Bologna. L'ubicazione dei campioni prelevati per le analisi è riportata nella sottostante figura.

Ubicazione dei punti di prelievo dei campioni analizzati.