COMMITTENTE:

PROGETTAZIONE:

CUP J94J17000040001

U.O. COORDINAMENTO TERRITORIALE NORD

PROGETTO DEFINITIVO

LINEA BOLZANO - MERANO

REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI SPOSTAMENTO BIVIO LINEA MERANESE

RELAZIONE

Rilevati e trincee ferroviari Relazione di calcolo stabilità e cedimenti

SCALA:

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

NB1D 01 D 26 RH GE0000 001 A

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	EMISSIONE ESECUTIVA	Technital	mag21	G. Nitti	mag21	C. Mazzocchi	mag21	A. Perego
				Gramen Mari		Olivelli'		mag21
								EGNENION
								DOTT. NG.
								PEREGO ANDREA
								a) civile elembientale Z
								P A 32428
					•			711300
	•							
File:								

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO LINEA BOLZANO - MERANO: ADEGUAMENTO/INTEGRAZION PP 2013 REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI - SPOSTAMENTO BIVIO LINEA MERANESE					
Rilevati e trincee ferroviari	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo stabilità e cedimenti	NB1D	01	D26	RHGE0000001	Α	2 di 36

INDICE

1	PRE	EMESSA	4
2	DO	CUMENTI REFERENZIATI	6
3	INQ	UADRAMENTO GEOLOGICO	7
	3.1	INQUADRAMENTO GEOLOGICO	7
	3.2	GEOMORFOLOGIA	8
	3.3	ELEMENTI DI IDROGEOLOGIA	8
	3.4	DESCRIZIONE DEL TRACCIATO	9
4	INQ	UADRAMENTO GEOTECNICO	12
	4.1	CARATTERIZZAZIONE DEI TERRENI TIPO	12
	4.2	PARAMETRI GEOTECNICI DI INPUT	13
5	VEF	RIFICA DI STABILITA'	14
	5.1	RIFERIMENTI TEORICI	14
	5.2	ANALISI DI STABILITA'	18
6	CEI	DIMENTI	35

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO LINEA BOLZANO - MERANO: ADEGUAMENTO/INTEGRAZIONE PP 2013 REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI - SPOSTAMENTO BIVIO LINEA MERANESE					
Rilevati e trincee ferroviari	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo stabilità e cedimenti	NB1D	01	D26	RHGE0000001	Α	3 di 36

FIGURE

FIGURA 1: COLLOCAZIONE INTERVENTO	4
FIGURA 2: STRALCIO DELLA CARTA GEOLOGICA DI PROGETTO CON TRACCIATO E INDAGINI – PRIMO TRATTO ALL'APERTO.	10
FIGURA 3: STRALCIO DELLA CARTA GEOLOGICA DI PROGETTO CON TRACCIATO E INDAGINI – SECONDO TRATTO ALL'APERTO.	11
FIGURA 4: PROFILO GEOLOGICO DI PROGETTO.	11
FIGURA 5: DEPOSITO ALLUVIONALE AL SONDAGGIO VG2	12
Figura 6: Deposito alluvionale al sondaggio VG2	15
FIGURA 7: SEZIONE DI CALCOLO [SEZ. PROGR. 0+650.00]	19
FIGURA 8: MODELLO DI CALCOLO [SEZ. PROGR. 0+650.00]	20
FIGURA 9: SEZIONE DI CALCOLO [SEZ. PROGR. 0+000.00]	27
FIGURA 10: SEZIONE DI CALCOLO [SEZ. PROGR. 0+000.00]	28

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO LINEA BOLZANO - MERANO: ADEGUAMENTO/INTEGRAZIO PP 2013 REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A BINARI - SPOSTAMENTO BIVIO LINEA MERANESE					
Rilevati e trincee ferroviari	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo stabilità e cedimenti	NB1D	01	D26	RHGE0000001	Α	4 di 36

1 PREMESSA

Il Progetto del nuovo Tunnel del Virgolo a tre binari e lo spostamento del Bivio della linea Meranese, fa parte degli interventi individuati nell'Accordo Quadro sottoscritto da RFI e Provincia Autonoma di Bolzano – Alto Adige per l'implementazione della capacità dell'infrastruttura ferroviaria.

Oltre al nuovo tunnel del Virgolo, è prevista la realizzazione del tratto di variante a tre binari per una lunghezza complessiva di circa 1,1 chilometri. La tratta ha origine al Km 148+529.86 della linea Verona-Brennero, poco prima del sottovia ferroviario di via Roma, e termina al Km 149+790.04, in corrispondenza del Ponte sul fiume Isarco.

La nuova sede ferroviaria a tre binari si sviluppa in parte in variante, con una galleria di lunghezza complessiva di poco superiore a 500 metri e in parte allo scoperto, dove, per la maggior parte dello sviluppo, risulta in affiancamento alla sede esistente. lo spostamento Bivio Meranese consiste nella demolizione delle comunicazioni esistenti per consentire l'accesso al nuovo deposito SAD dal binario della Meranese e la realizzazione di una nuova connessione con la linea per Merano al Km 147+400 LS.

La seguente figura mostra la localizzazione dell'intervento.

Figura 1: Collocazione intervento

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO LINEA BOLZANO - MERANO: ADEGUAMENTO/INTEGRAZIONI PP 2013 REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI - SPOSTAMENTO BIVIO LINEA MERANESE					
Rilevati e trincee ferroviari	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo stabilità e cedimenti	NB1D	01	D26	RHGE0000001	Α	5 di 36

NORME E RIFERIMENTI

- 1. D. Lgs. 50/2016 Codice dei contratti pubblici
- 2. D. Lgs 19/04/2017, n. 56, cosiddetto "Correttivo" al Codice dei contratti pubblici
- 3. D.M. 17 gennaio 2018: "Aggiornamento delle Norme Tecniche per le Costruzioni", Supplemento Ordinario alla G.U. n.42 del 20.2.2018
- 4. Circ. 21 gennaio 2019 n.7 "Istruzioni per l'applicazione dell'«Aggiornamento delle Norme tecniche per le costruzioni» di cui al D.M. 17 gennaio 2018"

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO LINEA BOLZANO - MERANO: ADEGUAMENTO/INTEGRAZION PP 2013 REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A : BINARI - SPOSTAMENTO BIVIO LINEA MERANESE					
Rilevati e trincee ferroviari	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo stabilità e cedimenti	NB1D	01	D26	RHGE0000001	Α	6 di 36

2 DOCUMENTI REFERENZIATI

RIFERIMENTO	ELABORATO	CODIFICA
	GEOTECNICA	
	Relazione geotecnica generale - Opere all'aperto	NB1D01D26RGGE0000001A
	Profilo longitudinale geotecnico linea ferroviaria - Tav.1/4	NB1D01R26F7GE0000001A
	Profilo longitudinale geotecnico linea ferroviaria - Tav.2/4	NB1D01R26F7GE0000002A
	Profilo longitudinale geotecnico linea ferroviaria - Tav.3/4	NB1D01R26F7GE0000003A
	Profilo longitudinale geotecnico linea ferroviaria - Tav.4/4	NB1D01R26F7GE0000004A
	Profilo longitudinale geotecnico via Piè di Virgolo	NB1D01R26F7GE0000005A

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO LINEA BOLZANO - MERANO: ADEGUAMENTO/INTEGRAZIONI PP 2013 REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI - SPOSTAMENTO BIVIO LINEA MERANESE					
Rilevati e trincee ferroviari	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo stabilità e cedimenti	NB1D	01	D26	RHGE0000001	Α	7 di 36

3 INQUADRAMENTO GEOLOGICO

3.1 Inquadramento geologico

Si riporta un breve inquadramento geologico e geomorfologico dell'area interessata dal progetto. Per gli approfondimenti si rimanda allo specifico elaborato "Relazione geologica, geomorfologica ed idrogeologica".

Le rocce affioranti nell'area di Bolzano fanno parte della "Piattaforma Porfirica Atesina" (porfidi quarziferi) o, più correttamente, del "Gruppo Vulcanico Atesino" (AVG), secondo la recente nomenclatura stratigrafica. Si tratta di una potente successione vulcanica di età permiana, eruttate da un'enorme struttura denominata "caldera di Bolzano, del diametro compreso tra 60 e 70 km circa.

Più in dettaglio sono presenti le successioni più recenti del Gruppo Vulcanico Atesino, in particolare nella zona del Colle sono affioranti le sequenze di riempimento della caldera terminale, denominate Formazione di Gries e Formazione di Ora.

- La Formazione di Gries (IGR) presenta spessori fino a 150 metri, ed è costituita da lapillituff riolitici saldati di colore rosso scuro-violaceo ad aspetto massivo o blandamente orientato parallelamente alla giacitura. In alcune zone la porzione superiore o tutta a formazione è costituita da brecce vulcanoclastiche (IGRa) in parte grossolanamente stratificate. I clasti come la matrice sono esclusivamente costituiti da frammenti della formazione originaria. Sono presenti occasionali vene di selce rossa.
- La Formazione di Ora (ORA) rappresenta il deposito vulcanico più recente del Gruppo Vulcanico Atesino. È il prodotto della messa in posto di enormi volumi di flussi piroclastici che si deposero con spessori di quasi 1000 metri nelle zone più depresse tra Bolzano e Ora, dove sono sovrapposti a IGR. La formazione è costituita da lapilli-tuff riolitici saldati molto coerenti ed estremamente omogenei, di colore variabile dal grigio-rosato all'arancione rossastro.

In discordanza sulle rocce ignee appena descritte giacciono i terreni quaternari, di origine principalmente alluvionale e glaciale.

- Le alluvioni hanno una facies sabbiosa e ghiaiosa, con clasti fino a 15 cm, che salgono a 50 cm nei conoidi del Talvera e dell'Isarco. di diametro. Nei settori più occidentali dell'area di studio ma anche in alcune aree più a Est, sono presenti lenti e/o livelli di depositi di piana inondabile, lago e palude, costituiti da limi più o meno argillosi con locali intercalazioni di limi sabbiosi e sabbie limose.
- I depositi di origine mista (torrentizi e/o da debris flow) sono presenti alla base dei versanti e lungo gli impluvi. I sedimenti più presenti in questi depositi sono diamicton a supporto di clasti e a volte di matrice non addensati, a matrice limo-sabbiosa e intercalazioni sabbioso-ghiaiose stratificate. Nell'area di studio affiorano a Est del tracciato in progetto, ai piedi dei monti che circondano il quartiere Aslago.
- I depositi di versante e/o di frana si presentano sotto forma di accumuli ai piedi delle scarpate rocciose. Si tratta di ghiaie e blocchi con matrice in quantità variabile. I depositi di frana per crollo sono costituiti da blocchi di dimensioni variabili a seconda della fratturazione dell'ammasso roccioso (spaziatura dei piani di discontinuità).
- I depositi di origine glaciale interessano alcune spianate morfologiche nella parte più elevata dell'area di indagine. Si tratta di accumuli di materiale grossolano in matrice fine, di limitata estensione e spessore.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO LINEA BOLZANO - MERANO: ADEGUAMENTO/INTEGRAZIONI PP 2013 REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI - SPOSTAMENTO BIVIO LINEA MERANESE					
Rilevati e trincee ferroviari	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo stabilità e cedimenti	NB1D	01	D26	RHGE0000001	Α	8 di 36

• I depositi antropici si trovano essenzialmente nei fondovalle. Si tratta in genere di ghiaie miscelate con sabbie o sedimenti fini, spesso derivanti dalla demolizione di edifici o dagli accumuli di materiali scartati dalle lavorazioni di cava. Altri depositi di origine antropica sono le opere idrauliche quali gli argini o i terrapieni per l'edificazione di edifici. Lo spessore è in genere di alcuni metri.

3.2 Geomorfologia

I settori di affioramento dei porfidi quarziferi del gruppo vulcanico atesino (AGV) sono caratterizzati, generalmente, da versanti acclivi e con sommità poco inclinata fino a formare a volte un tavolato.

Le scarpate verticali che delimitano gli ammassi vulcanici sono intagliate da numerose valli trasversali, a volte strette e profondamente incise, indicanti le principali strutture tettoniche presenti.

La conoide del Torrente Talvera ha spinto il corso dell'Isarco verso il colle del Virgolo, che appare quindi delimitato nella sua parte settentrionale, dal corso d'acqua.

Il reticolo idrografico minore risulta poco sviluppato a causa dell'urbanizzazione che negli ultimi decenni ha totalmente modificato l'assetto della piana alluvionale dell'Oltreisarco. Tra questi il Rio Aslago, proveniente dai rilievi porfirici a Sud-Est del tracciato in progetto è stato nel tempo deviato allo sbocco nella piana alluvionale. Anche ì fossi agricoli preesistenti sono infatti stati canalizzati e tombati.

Nell'area di studio i versanti del colle del Virgolo sono interessati da una diffusa instabilità, legata alla fratturazione degli ammassi rocciosi secondo piani subverticali. La combinazione di più sistemi subverticali porta inoltre alla tipica morfologia colonnare degli ammassi porfirici. Questo tipo di fratturazione favorisce principalmente fenomeni di crollo e ribaltamento. Sono meno frequenti i fenomeni di scivolamento planare. Buona parte dei versanti rocciosi sono attualmente protetti con reti e chiodature, sono a volte presenti barriere paramassi.

Le altre tipologie di dissesto riguardano le coperture. In questo caso sono possibili colate e i movimenti di tipo complesso, legate alle normali dinamiche di versante in seguito agli eventi piovosi o ai cicli stagionali.

3.3 Elementi di idrogeologia

Sono presenti due complessi idrogeologici principali, le alluvioni e le rocce porfiriche.

Il complesso di substrato, impermeabile come materiale roccia, costituisce acquiferi fessurati piuttosto discontinui, connessi alla locale presenza di fratture beanti o di fasce cataclasate; è sede di falde idriche sotterranee di scarsa rilevanza, generalmente contenute nelle porzioni più alterate e fratturate dell'ammasso.

Buona parte delle acque circolanti nel colle del Virgolo viene drenata dalle numerose gallerie che lo attraversano a quote diverse rispetto al tunnel in progetto. Il rilievo geologico eseguito nel cunicolo esplorativo, posto a quota inferiore e più "esterno" rispetto agli altri, oltre ad essere privo di rivestimento, ha mostrato la presenza di numerosissime venute d'acqua lungo il cavo, ma di modesta portata complessiva. Non si registrano opere di captazione o sorgenti nei pressi dell'area di indagine.

Il complesso idrogeologico ghiaioso è rappresentato dal materasso alluvionale del fondovalle e delle conoidi dei principali corsi d'acqua.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO LINEA BOLZANO - MERANO: ADEGUAMENTO/INTEGRAZIONE PP 2013 REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI - SPOSTAMENTO BIVIO LINEA MERANESE					
Rilevati e trincee ferroviari	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo stabilità e cedimenti	NB1D	01	D26	RHGE0000001	Α	9 di 36

La falda freatica ha come base il substrato litoide. Presenta oscillazioni annuali fino ad oltre 10 metri nelle porzioni più prossime all'apice delle conoidi, mentre nelle quote inferiori, dove le conoidi sfumano nel fondovalle atesino, l'escursione annuale è di circa 3 metri.

Le misure effettuate recentemente mostrano che la falda freatica nelle alluvioni ha una profondità minima di circa 10 metri dal piano campagna.

3.4 Descrizione del tracciato

Il tracciato delle opere allo scoperto si sviluppa sulle alluvioni della conca di Bolzano.

Il primo tratto all'aperto, da progressiva 0+000 a progressiva 0+830 circa (linea Meranese), si sviluppa nella piana alluvionale dell'Isarco poco più a valle della confluenza con i Torrente Talvera. Non si hanno elementi geomorfologici interferenti con il tracciato, che ricalca in buona parte la linea ferroviaria preesistente.

Il secondo tratto all'aperto si sviluppa da progressiva 1+317 a progressiva 1+871. (linea Meranese). Il tracciato, dopo l'imbocco lato stazione della galleria, si ricollega alla linea ferroviaria esistente in corrispondenza della stazione di Bolzano.

I terrazzi alluvionali su cui è impostata la linea ferroviaria sono costituiti essenzialmente da ghiaie e sabbie. Il tratto in esame appare a luoghi rimaneggiato, con depositi antropici estesi. Questi accumuli sono costituiti da detriti provenienti da sbancamenti e scavi nel materiale alluvionale e porfirico, quindi comunque di buona qualità.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PP 2013 R	LZANO - EALIZZA	ZIONE NUC	ADEGUAMENTO DVO TUNNEL DE O LINEA MERAN	L VIRG	
Rilevati e trincee ferroviari	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo stabilità e cedimenti	NB1D	01	D26	RHGE0000001	Α	10 di 36

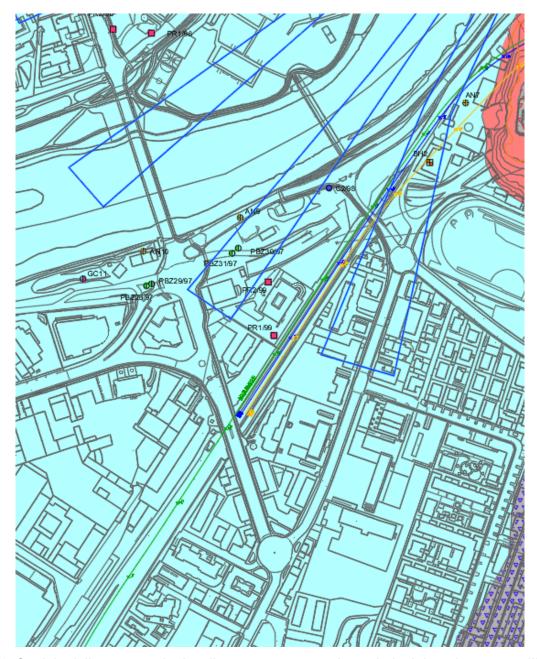


Figura 2: Stralcio della carta geologica di progetto con tracciato e indagini – primo tratto all'aperto.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PP 2013 R	ZANO - EALIZZA	ZIONE NUC	ADEGUAMENTO DVO TUNNEL DE O LINEA MERAN	L VIRG	
Rilevati e trincee ferroviari	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo stabilità e cedimenti	NB1D	01	D26	RHGE0000001	Α	11 di 36

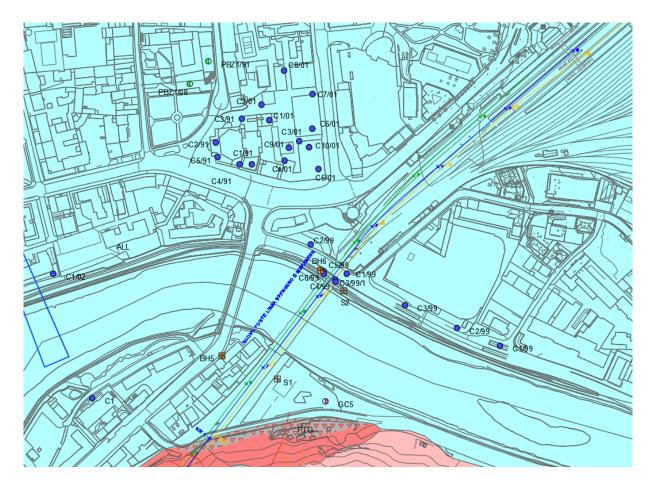


Figura 3: stralcio della carta geologica di progetto con tracciato e indagini – secondo tratto all'aperto.

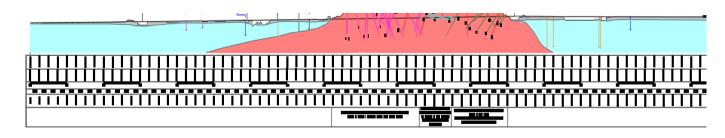


Figura 4: Profilo geologico di progetto.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PP 2013 RI	ZANO - EALIZZA	ZIONE NUC	ADEGUAMENTO DVO TUNNEL DE O LINEA MERAN	L VIRG	_
Rilevati e trincee ferroviari	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo stabilità e cedimenti	NB1D	01	D26	RHGE0000001	Α	12 di 36

4 INQUADRAMENTO GEOTECNICO

4.1 CARATTERIZZAZIONE DEI TERRENI TIPO

I terreni presenti nelle tratte di progetto, individuati sulla base dei dati stratigrafici rivenienti dalle risultanze dei sondaggi geognostici effettuati, sono caratterizzati essenzialmente dalla presenza di un *Deposito Alluvionale* formato da ghiaie, ghiaie con sabbia, e sabbie ghiaiose in proporzioni localmente variabili in riferimento ai livelli stratigrafici presenti alle varie profondità. E' costituito per lo più da ghiaie e ciottoli di natura poligenica (carbonatica, filladica, ignimbritica), eterometriche con elementi da sub-arrotondati ad arrotondati, di dimensioni Ø medio di ordine centimetrico e Ø max. anche superiore a 10 cm. Occasionalmente si rinvengono trovanti e blocchi di natura porfirica.

La potenza dell'unità è superiore a 40 metri, profondità a cui solo nel sondaggio VG1 è stato intercettato il basamento vulcanico.

In alcuni sondaggi si evidenzia anche la presenza in superficie di un deposito di origine antropica, costituito essenzialmente da materiali della stessa natura ghiaiosa e sabbiosa.

Figura 5: Deposito alluvionale al sondaggio VG2

La quasi totalità dei campioni analizzati presenta una frazione granulometrica ghiaioso-sabbiosa mediamente pari al 87% (min. 58% - max. 98%), inferiore al 80% su 10 campioni e inferiore al 70% soltanto in 3 campioni su 80 analizzati.

La valutazione dei parametri di resistenza e deformabilità viene effettuata sulla base delle risultanze delle prove geotecniche effettuate in sito e in laboratorio.

Per la definizione del peso di volume del materiale, in assenza di prove dirette, si considera un intervallo di valori bibliografico, compreso tra 18 e 19 KN/m3.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PP 2013 R	ZANO - EALIZZA	ZIONE NUC	ADEGUAMENTO DVO TUNNEL DE O LINEA MERAN	L VIRG	
Rilevati e trincee ferroviari	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo stabilità e cedimenti	NB1D	01	D26	RHGE0000001	Α	13 di 36

Per i materiali sciolti la coesione viene considerata nulla.

4.2 PARAMETRI GEOTECNICI DI INPUT

Per i terreni prevalentemente granulari si considera la coesione nulla C = 0.

Per il **peso di volume naturale**, in assenza di determinazioni sperimentali dirette, si assume il valore **Pv = 19 KN/m**³

Per **l'angolo di resistenza al taglio**, in considerazione dei valori massimi risultanti dalle correlazioni empiriche utilizzate, si assume un valore ridotto non superiore a ϕ = 38°.

Litotipo	Peso volume naturale	Coesione	Angolo di attrito φ °	Modulo E (Mpa)
Terreno di riporto ghiaioso-sabbioso	γ = 18 kN/m ³	C = 0,0 kPa	30°	30 Мра
Deposito alluvionale ghiaioso-sabbioso	γ = 19 kN/m ³	C = 0,0 kPa	38°	62 Mpa

La falda freatica ha una profondità minima di circa 10 metri dal piano campagna.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PP 2013 RI	ZANO - EALIZZA	ZIONE NUC	ADEGUAMENTO DVO TUNNEL DE O LINEA MERAN	L VIRG	
Rilevati e trincee ferroviari	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo stabilità e cedimenti	NB1D	01	D26	RHGE0000001	Α	14 di 36

5 VERIFICA DI STABILITA'

5.1 RIFERIMENTI TEORICI

La risoluzione di un problema di stabilità richiede la presa in conto delle equazioni di campo e dei legami costitutivi. Le prime sono di equilibrio, le seconde descrivono il comportamento del terreno. Tali equazioni risultano particolarmente complesse in quanto i terreni sono dei sistemi multifase, che possono essere ricondotti a sistemi monofase solo in condizioni di terreno secco, o di analisi in condizioni drenate.

Nella maggior parte dei casi ci si trova a dover trattare un materiale che se saturo è per lo meno bifase, ciò rende la trattazione delle equazioni di equilibrio notevolmente complicata. Inoltre è praticamente impossibile definire una legge costitutiva di validità generale, in quanto i terreni presentano un comportamento non-lineare già a piccole deformazioni, sono anisotropi ed inoltre il loro comportamento dipende non solo dallo sforzo deviatorico ma anche da quello normale. A causa delle suddette difficoltà vengono introdotte delle ipotesi semplificative:

- Si usano leggi costitutive semplificate: modello rigido perfettamente plastico. Si assume che la resistenza del materiale sia espressa unicamente dai parametri coesione (c) e angolo di resistenza al taglio (φ), costanti per il terreno e caratteristici dello stato plastico; quindi si suppone valido il criterio di rottura di Mohr-Coulomb.
- 2. In alcuni casi vengono soddisfatte solo in parte le equazioni di equilibrio.

Metodo equilibrio limite (LEM)

Il metodo dell'equilibrio limite consiste nello studiare l'equilibrio di un corpo rigido, costituito dal pendio e da una superficie di scorrimento di forma qualsiasi (linea retta, arco di cerchio, spirale logaritmica); da tale equilibrio vengono calcolate le tensioni da taglio (τ) e confrontate con la resistenza disponibile (τ_f) , valutata secondo il criterio di rottura di Coulomb, da tale confronto ne scaturisce la prima indicazione sulla stabilità attraverso il coefficiente di sicurezza:

$$F = \tau_f / \tau$$

Tra i metodi dell'equilibrio limite alcuni considerano l'equilibrio globale del corpo rigido (Culman), altri a causa della non omogeneità dividono il corpo in conci considerando l'equilibrio di ciascuno (Fellenius, Bishop, Janbu ecc.).

Metodo dei conci

La massa interessata dallo scivolamento viene suddivisa in un numero conveniente di conci. Se il numero dei conci è pari a *n*, il problema presenta le seguenti incognite:

n valori delle forze normali N_i agenti sulla base di ciascun concio;

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PP 2013 RI	ZANO - EALIZZA	ZIONE NUC	ADEGUAMENTO DVO TUNNEL DE O LINEA MERAN	L VIRG	
Rilevati e trincee ferroviari	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo stabilità e cedimenti	NB1D	01	D26	RHGE0000001	Α	15 di 36

- n valori delle forze di taglio alla base del concio T_i;
- (n-1) forze normali Ei agenti sull'interfaccia dei conci;
- (n-1) forze tangenziali X_i agenti sull'interfaccia dei conci;
- n valori della coordinata a che individua il punto di applicazione delle Ei;
- (n-1) valori della coordinata che individua il punto di applicazione delle X_i;
- una incognita costituita dal fattore di sicurezza F.

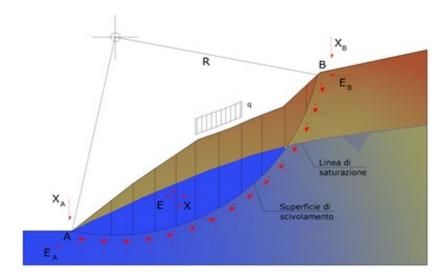


Figura 6: Deposito alluvionale al sondaggio VG2

Complessivamente le incognite sono (6n-2).

Mentre le equazioni a disposizione sono:

- equazioni di equilibrio dei momenti n;
- equazioni di equilibrio alla traslazione verticale n;
- equazioni di equilibrio alla traslazione orizzontale n;
- equazioni relative al criterio di rottura n.

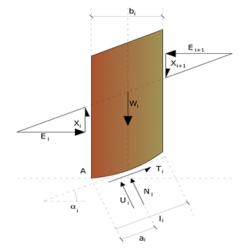
Totale numero di equazioni 4n.

Il problema è staticamente indeterminato ed il grado di indeterminazione è pari a :

$$i = (6n-2)-(4n) = 2n-2$$

Il grado di indeterminazione si riduce ulteriormente a (n-2) in quanto si fa l'assunzione che N_i sia applicato nel punto medio della striscia. Ciò equivale ad ipotizzare che le tensioni normali totali siano uniformemente distribuite.

I diversi metodi che si basano sulla teoria dell'equilibrio limite si differenziano per il modo in cui vengono eliminate le (n-2) indeterminazioni.


TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PP 2013 RI	ZANO - EALIZZA	ZIONE NUC	ADEGUAMENTO DVO TUNNEL DE O LINEA MERAN	L VIRG	
Rilevati e trincee ferroviari	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo stabilità e cedimenti	NB1D	01	D26	RHGE0000001	Α	16 di 36

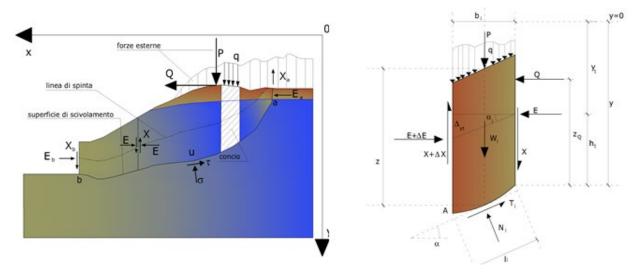
Metodo di Bishop (1955)

Con tale metodo non viene trascurato nessun contributo di forze agenti sui blocchi e fu il primo a descrivere i problemi legati ai metodi convenzionali. Le equazioni usate per risolvere il problema sono:

$$\sum F_y = 0$$
, $\sum M_0 = 0$ Criterio di rottura

$$F = \frac{\Sigma \big\{ c_i \times b_i^{} + \big(W_i^{} - u_i^{} \times b_i^{} + \Delta X_i^{} \big) \times \tan \phi_i^{} \big\} \times \frac{\sec \alpha_i^{}}{1 + \tan \alpha_i^{} \times \tan \phi_i^{} / F^{}}}{\Sigma W_i^{} \times \sin \alpha_i^{}}$$

I valori di F e di ΔX per ogni elemento che soddisfano questa equazione danno una soluzione rigorosa al problema. Come prima approssimazione conviene porre ΔX = 0 ed iterare per il calcolo del fattore di sicurezza, tale procedimento è noto come metodo di **Bishop ordinario**, gli errori commessi rispetto al metodo completo sono di circa 1 %.

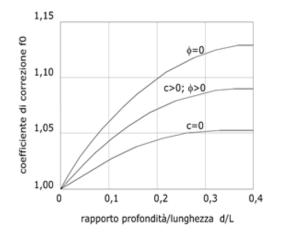

Metodo di Janbu (1967)

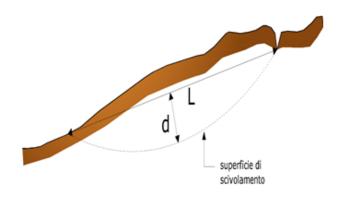
Janbu estese il metodo di Bishop a superfici di scorrimento di forma qualsiasi.

Quando vengono trattate superfici di scorrimento di forma qualsiasi il braccio delle forze cambia (nel caso delle superfici circolari resta costante e pari al raggio). A tal motivo risulta più conveniente valutare l'equazione del momento rispetto allo spigolo di ogni blocco.

$$F = \frac{\Sigma \left\{c_{i} \times b + (W_{i} - u_{i} \times b_{i} + \Delta X_{i}) \times \tan \varphi_{i}\right\} \times \frac{\sec^{2} \alpha_{i}}{1 + \tan \alpha_{i} \times \tan \varphi_{i} / F}}{\Sigma W_{i} \times \tan \alpha_{i}}$$

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PP 2013 R	ZANO - EALIZZA	ZIONE NUC	ADEGUAMENTO DVO TUNNEL DE O LINEA MERAN	L VIRG	
Rilevati e trincee ferroviari Relazione di calcolo stabilità e cedimenti	COMMESSA NB1D	10ТТО 01	CODIFICA D26	DOCUMENTO RHGE0000001	REV.	FOGLIO 17 di 36




Azioni sul concio i-esimo secondo le ipotesi di Janbu e rappresentazione d'insieme dell'ammasso

Assumendo $\Delta X_i = 0$ si ottiene il metodo ordinario. Janbu propose inoltre un metodo per la correzione del fattore di sicurezza ottenuto con il metodo ordinario secondo la seguente:

$$F_{corretto} = f_0 \cdot F$$

dove f_0 è riportato in grafici funzione di geometria e parametri geotecnici. Tale correzione è molto attendibile per pendii poco inclinati.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PP 2013 R	ZANO - EALIZZA	ZIONE NUC	ADEGUAMENTO DVO TUNNEL DE O LINEA MERAN	L VIRG	
Rilevati e trincee ferroviari	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo stabilità e cedimenti	NB1D	01	D26	RHGE0000001	Α	18 di 36

Valutazione dell'azione sismica

La stabilità dei pendii nei confronti dell'azione sismica viene verificata con il metodo pseudo-statico. Per i terreni che sotto l'azione di un carico ciclico possono sviluppare pressioni interstiziali elevate viene considerato un aumento in percento delle pressioni neutre che tiene conto di questo fattore di perdita di resistenza.

Ai fini della valutazione dell'azione sismica vengono considerate le seguenti forze:

$$F_{H} = K_{x}W$$
$$F_{V} = K_{y}W$$

Essendo:

- F_H e F_V rispettivamente la componente orizzontale e verticale della forza d'inerzia applicata al baricentro del concio;
- **W** peso concio;
- K_X coefficiente sismico orizzontale;
- **K_V** coefficiente sismico verticale.

Ricerca della superficie di scorrimento critica

In presenza di mezzi omogenei non si hanno a disposizione metodi per individuare la superficie di scorrimento critica ed occorre esaminarne un numero elevato di potenziali superfici.

Nel caso vengano ipotizzate superfici di forma circolare, la ricerca diventa più semplice, in quanto dopo aver posizionato una maglia dei centri costituita da m righe e n colonne saranno esaminate tutte le superfici aventi per centro il generico nodo della maglia m×n e raggio variabile in un determinato range di valori tale da esaminare superfici cinematicamente ammissibili.

5.2 ANALISI DI STABILITA'

Si riportano nel seguito le risultanze delle analisi di stabilità condotte in riferimento alle due sezioni di progetto che presentano le maggiori criticità.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PP 2013 R	ZANO - EALIZZA	ZIONE NUC	ADEGUAMENTO DVO TUNNEL DE O LINEA MERAN	L VIRG	
Rilevati e trincee ferroviari	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo stabilità e cedimenti	NB1D	01	D26	RHGE0000001	Α	19 di 36

Sezione progr. 0+650.00

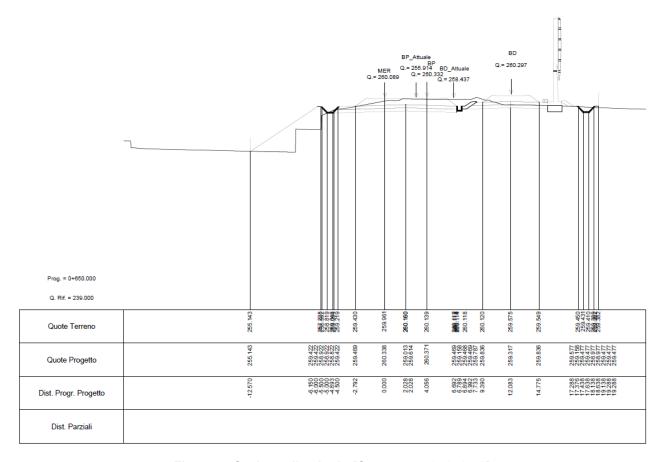


Figura 7: Sezione di calcolo [Sez. progr. 0+650.00]

46,485621/11,340396
NTC 2018
3,0
10,0
1,3
1,0
Picco
Condizione drenata

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PP 2013 RI	ZANO - EALIZZA	ZIONE NUC	ADEGUAMENTO DVO TUNNEL DE O LINEA MERAN	L VIRG	
Rilevati e trincee ferroviari	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo stabilità e cedimenti	NB1D	01	D26	RHGE0000001	Α	20 di 36

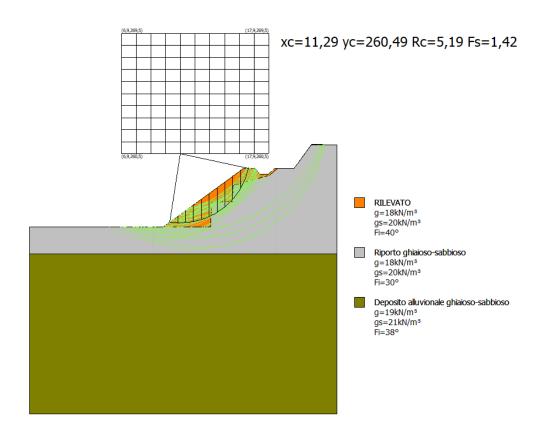


Figura 8: Modello di calcolo [Sez. progr. 0+650.00]

Maglia dei Centri

=======================================	======	
Ascissa vertice sinistro inferiore xi	6,89	m
Ordinata vertice sinistro inferiore yi	260,49	m
Ascissa vertice destro superiore xs	17,89	m
Ordinata vertice destro superiore ys	269,49	m
Passo di ricerca	10,0	
Numero di celle lungo x	10,0	
Numero di celle lungo y	10,0	
=======================================	======	=======================================

Coefficienti sismici [N.T.C.]

Dati generali

Tipo opera:2 - Opere ordinarie Classe d'uso: Classe IV

Vita nominale: 50,0 [anni] Vita di riferimento: 100,0 [anni]

Parametri sismici su sito di riferimento

Categoria sottosuolo: B Categoria topografica: T1

S.L. Stato limite	TR Tempo ritorno [anni]	ag [m/s²]	F0 [-]	TC* [sec]
S.L.O.	60,0	0,26	2,51	0,2
S.L.D.	101,0	0,31	2,49	0,23
S.L.V.	949,0	0,62	2,69	0,38
S.L.C.	1950,0	0,74	2,79	0,42

Coefficienti sismici orizzontali e verticali

Opera: Classe IV

S.L.	amax	beta	kh	kv
Stato limite	[m/s ²]	[-]	[-]	[sec]
S.L.O.	0,312	1,0	0,0318	0,0159
S.L.D.	0,372	0,47	0,0178	0,0089
S.L.V.	0,744	0,38	0,0288	0,0144
S.L.C.	0,888	1,0	0,0906	0,0453

Coefficiente azione sismica orizzontale 0,018 Coefficiente azione sismica verticale 0,009

Vertici profilo

vertici profilo		
Nr	X	у
	(m)	(m)
1	0,0	255,0
2	10,0	255,0
3	16,0	259,42
4	16,84	259,42
5	17,22	258,95
6	17,85	258,95
7	18,35	259,42
8	19,78	259,39
9	21,09	261,18
10	22,97	261,15

Vertici strato1

vertici strato	!	
N	X	у
	(m)	(m)
1	0,0	255,0
2	13,55	255,0
3	13,59	256,88
4	15,2	256,92
5	15,22	258,12
6	17,94	258,87
7	18,55	259,42
8	19,78	259,4
9	21,07	261,17
10	22,21	261,16
11	22,97	261,15

Vertici strato2

N	X (m)	y (m)
1	0,0	253,0
2	22,97	253,0

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO LINEA BOLZANO - MERANO: ADEGUAMENTO/INTEGRAZIONE PP 2013 REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI - SPOSTAMENTO BIVIO LINEA MERANESE						
Rilevati e trincee ferroviari	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo stabilità e cedimenti	NB1D	01	D26	RHGE0000001	Α	22 di 36	

Coefficienti parziali azioni

Sfavorevoli: Permanenti, variabili 1,0 1,0 Favorevoli: Permanenti, variabili 1,0 1,0 1,0

Coefficienti parziali per i parametri geotecnici del terreno

Tangente angolo di resistenza al taglio 1,25 Coesione efficace 1,25 Coesione non drenata 1,4 Riduzione parametri geotecnici terreno No

Stratigrafia

Strato	Coesione (kN/m²)	Coesione non drenata (kN/m²)	Angolo resistenza al taglio (°)	Peso unità di volume (kN/m³)	Peso saturo (kN/m³)	Litologia	
1	0	0	40	18	20	RILEVATO	
2	0	0	30	18	20	Riporto ghiaioso- sabbioso	
3	0	0	38	19	21	Deposito alluvionale ghiaioso-sabbioso	

Risultati analisi pendio

Fs minimo individuato

Ascissa centro superficie

Ordinata centro superficie

Raggio superficie

→ 1,42 VERIFICATO

11,29 m

260,49 m

5,19 m

Numero di superfici esaminate....(188)

N°	 Хо	Yo	======================================	======================================
1	======================================	======================================	======================================	5,07
2	7,4	260,9	8,6	3,20
3	8,0	260,5	7,9	2,85
4	8,5	260,9	7,4	2,19
5	9,1	260,5	6,7	2,01
6	9,6	260,9	7,0	1,68
7	10,2	260,5	6,2	1,58
8	10,7	260,9	6,3	1,46
9	11,3	260,5	5,2	1,42
10	11,8	260,9	4,7	1,54
11	12,4	260,5	4,7	1,55
12	12,9	260,9	4,2	1,65
13	13,5	260,5	4,3	1,88
14	14,0	260,9	7,2	1,79

			PROGETTO	O DEFI	NITIVO			
GRUPPO FERROVIE DELLO STATO ITALIANE			PP 2013 R	EALIZZA	ZIONE NU	ADEGUAMENTO DVO TUNNEL DE IO LINEA MERAN	L VIRG	
Rilevati e trincee	ferroviari		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calc	colo stabilità e cedimenti		NB1D	01	D26	RHGE0000001	Α	23 di 36
15	14,6	260,5		6,9		1,80		
16	15,1	260,9		7,1		1,94		
17	15,7	260,5		5,9		2,13		
18	16,2	260,9		6,1		2,12		
19	16,8	260,5		5,6		2,23		
20	17,3	260,9		5,1		2,53		
21	17,9	260,5		4,2		2,73		
22	6,9	261,4		8,5		3,84		
23	7,4	261,8		9,1		2,80		
24	8,0	261,4		8,2		2,42		
25	8,5	261,8		8,8		2,10		
26	9,1	261,4		7,8		1,84		
27	9,6	261,8		7,3		1,62		
28	10,2	261,4		7,2		1,56		
29	10,7	261,8		6,4		1,45		
30	11,3	261,4		5,9		1,44		
31	11,8	261,8		5,8		1,54		
32	12,4	261,4		5,3		1,60		
33	12,9	261,8		8,2		1,78		
34	13,5	261,4		8,6		1,76		
35	14,0	261,8		8,1		1,76		
36	14,6	261,4		7,6		1,83		
37	15,1	261,8		7,1		2,00		
38	15,7	261,4		6,6		2,08		
39	16,2	261,8		5,5		2,33		
40	16,8	261,4		5,6		2,25		
41	17,3	261,8		4,7		2,65		
42	17,9	261,4		4,1		2,74		
43	6,9	262,3		8,2		5,52		
44	7,4	262,7		9,8		2,55		
45 46	8,0	262,3		8,8		2,30		
46 47	8,5	262,7		8,5		1,96		
48	9,1 9,6	262,3 262,7		7,4 8,0		1,65 1,53		
49	10,2	262,7		6,7		1,48		
50	10,7	262,7		6,9		1,49		
51	11,3	262,7		6,3		1,50		
52	11,8	262,7		6,3		1,60		
53	12,4	262,3		5,8		1,67		
54	12,9	262,7		9,2		1,61		
55	13,5	262,3		8,7		1,73		
56	14,0	262,7		8,2		1,80		
57	14,6	262,3		6,8		2,08		
58	15,1	262,7		7,3		2,02		
59	15,7	262,3		6,7		2,05		
60	16,2	262,7		6,4		2,19		
61	16,8	262,3		5,2		2,60		
62	17,3	262,7		5,4		2,60		
63	17,9	262,3		4,4		2,72		
64	6,9	263,2		9,8		2,97		
65	7,4	263,6		9,6		2,56		
66	8,0	263,2		9,5		2,15		
67	8,5	263,6		9,2		1,87		
68	9,1	263,2		8,1		1,49		
69	9,6	263,6		8,7		1,51		
70	10,2	263,2		7,4		1,52		

			PROGETTO DEFINITIVO					
GRUPPO FERROV	TALFERR IE DELLO STATO ITALIANE		PP 2013 RI	EALIZZA	ZIONE NU	ADEGUAMENTO OVO TUNNEL DE IO LINEA MERAN	L VIRG	
Rilevati e trincee	ferroviari		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calc	colo stabilità e cedimenti		NB1D	01	D26	RHGE0000001	Α	24 di 36
			1					
71	10,7	263,6		8,3		1,58		
72	11,3	263,2		6,9		1,61		
73	11,8	263,6	1	10,4		1,71		
74	12,4	263,2		9,8		1,66		
75	12,9	263,6		9,3		1,67		
76	13,5	263,2		7,8		2,06		
77	14,0	263,6		8,4		1,88		
78	14,6	263,2		7,8		1,96		
79	15,1	263,6		6,8		2,32		
80	15,7	263,2		7,0		2,11		
81	16,2	263,6		6,7		2,40		
82	16,8	263,2		5,6		2,68		
83	17,3	263,6		5,8		2,70		
84	17,9	263,2		5,1		2,74		
85 86	6,9	264,1		10,5		2,73		
87	7,4 8,0	264,5 264,1		11,2 10,2		2,29 2,03		
88	8,5	264,1		9,9		1,78		
89	9,1	264,3 264,1		8,8		1,49		
90	9,6	264,5		9,1		1,50		
91	10,2	264,1		8,8		1,52		
92	10,7	264,5		8,2		1,64		
93	11,3	264,1		7,8		1,65		
94	11,8	264,5		9,4		1,80		
95	12,4	264,1		9,9		1,61		
96	12,9	264,5		9,6		1,76		
97	13,5	264,1		9,0		1,87		
98	14,0	264,5		8,7		1,96		
99	14,6	264,1		8,1		2,02		
100	15,1	264,5		7,2		2,69		
101	15,7	264,1		6,7		2,67		
102	16,2	264,5		6,6		2,99		
103	16,8	264,1		6,5		2,59		
104	17,3	264,5		6,3		2,84		
105	17,9	264,1		5,6		2,87		
106 107	6,9	265,0 265,4		11,3 11,0		2,52 2,20		
107	7,4 8,0	265,4		10,0		1,51		
100	8,5	265,4		10,0		1,49		
110	9,1	265,0		10,2		1,64		
111	9,6	265,4		10,2		1,58		
112	10,2	265,0		9,8		1,63		
113	10,7	265,4	•	10,6		1,72		
114	11,3	265,0		11,2		1,71		
115	11,8	265,4		9,6		1,90		
116	12,4	265,0	1	10,1		1,68		
117	12,9	265,4		9,9		1,84		
118	13,5	265,0		9,3		1,90		
119	14,0	265,4		8,3		2,85		
120	14,6	265,0		7,7		2,89		
121	15,1	265,4		8,3		2,33		
122	15,7	265,0		7,1		3,08		
123	16,2	265,4		7,1		3,72		
124	16,8	265,0		6,5		3,37		
125 126	6,9 7.4	265,9 266,3		12,0 12,5		2,42 2,16		
120	7,4	∠00,3		12,0		۷, ۱۷		

			PROGETTO DEFINITIVO						
GRUPPO FERROV	PP 2013 R	EALIZZA	ZIONE NUC	ADEGUAMENTO DVO TUNNEL DE O LINEA MERAN	L VIRG				
Rilevati e trincee ferroviari		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione di calc	colo stabilità e cedimenti		NB1D	01	D26	RHGE0000001	Α	25 di 36	
127	8,0	265,9		11,4		1,92			
128	8,5	266,3		10,6		1,65			
129	9,1	265,9		10,5		1,53			
130	9,6	266,3	•	10,4		1,65			
131	10,2	265,9		9,9		1,65			
132	10,7	266,3		12,0		1,73			
133	11,3	265,9		11,4		1,66			
134	11,8	266,3		11,1		1,78			
135	12,4	265,9		10,5		1,83			
136	12,9	266,3	•	10,3		1,95			
137	13,5	265,9		9,7		2,01			
138	14,0	266,3		8,7		3,30			
139	14,6	265,9		8,9		2,28			
140	15,1	266,3		8,8		2,58			
141	15,7	265,9		8,1		2,62			
142	16,2	266,3		8,0		3,09			
143	16,8	265,9		7,0		1,83			
144	7,4	267,2		11,9		1,63			
145	8,5	267,2		13,6		2,03			
146	9,1	266,8		10,8		1,66			
147	9,6	267,2		11,9		1,70			
148 149	10,2 10,7	266,8 267,2		11,3 12,3		1,73 1,74			
150	11,3	266,8		12,3 11,7		1,74			
151	11,8	267,2		10,4		2,34			
152	12,4	266,8		9,8		2,42			
153	12,9	267,2		10,8		2,11			
154	13,5	266,8		9,2		3,08			
155	14,0	267,2		10,0		2,48			
156	14,6	266,8		9,4		2,50			
157	15,1	267,2		9,3		2,92			
158	15,7	266,8		8,7		3,02			
159	16,2	267,2		8,6		3,59			
160	6,9	267,7	•	13,3	2	2,32			
161	7,4	268,1	•	12,4		1,89			
162	8,0	267,7		12,3		1,58			
163	8,5	268,1		12,7		1,61			
164	9,1	267,7		12,4		1,71			
165	9,6	268,1		12,1		1,80			
166	10,2	267,7		11,5		1,90			
167	10,7	268,1		11,4		2,04			
168	11,3	267,7		10,9		2,19			
169 170	11,8	268,1		12,0		2,01			
170 171	12,4 12,9	267,7		10,3		2,59			
171	13,5	268,1 267,7		11,3 10,6		2,40 2,47			
172	14,0	268,1		10,5		2,47 2,79			
174	14,6	267,7		9,9		2,7 <i>9</i> 2,84			
175	8,0	268,6		12,8		1,70			
176	8,5	269,0		13,2		1,71			
177	9,1	268,6		12,7		1,74			
178	9,6	269,0		12,5		1,93			
179	10,2	268,6		13,4		1,86			
180	10,7	269,0		13,2		1,99			
181	11,3	268,6	•	11,4	2	2,30			
182	11,8	269,0		12,5		2,21			

GRUPPO FERROVIE	PROGETTO DEFINITIVO LINEA BOLZANO - MERANO: ADEGUAMENTO/INTEGRAZION PP 2013 REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI - SPOSTAMENTO BIVIO LINEA MERANESE							
Rilevati e trincee ferroviari			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo stabilità e cedimenti		NB1D	01	D26	RHGE0000001	Α	26 di 36	
183	12,9	269,0	,	11,8	;	2,88		
184	13,5	268,6		11,2		2,79		
185	14,6	268,6		10,5	4,69			
186	8,0	269,5	14,9		2,01			
187	9,1	269,5	14,6		1,89			
188	13,5	269,5	•	11,7	;	3,61		

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO LINEA BOLZANO - MERANO: ADEGUAMENTO/INTEGRAZIONE PP 2013 REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI - SPOSTAMENTO BIVIO LINEA MERANESE						
Rilevati e trincee ferroviari	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo stabilità e cedimenti	NB1D	01	D26	RHGE0000001	Α	27 di 36	

Sezione progr. 0+000.00

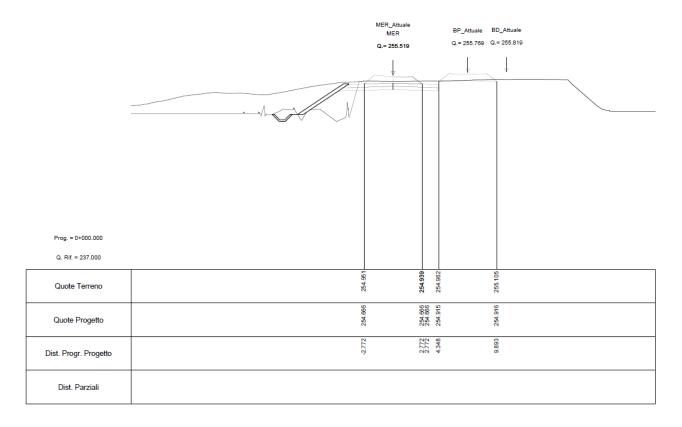


Figura 9: Sezione di calcolo [Sez. progr. 0+000.00]

=======================================	=======================================
Lat./Long.	46,485621/11,340396
Calcolo eseguito secondo	NTC 2018
Numero di strati	3,0
Numero dei conci	10,0
Grado di sicurezza ritenuto accettabile	1,3
Coefficiente parziale resistenza	1,0
Parametri geotecnici da usare. Angolo di attrito:	Picco
Analisi	Condizione drenata
Superficie di forma circolare	
Coefficiente parziale resistenza Parametri geotecnici da usare. Angolo di attrito: Analisi	1,0 Picco

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO LINEA BOLZANO - MERANO: ADEGUAMENTO/INTEGRAZIONE PP 2013 REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI - SPOSTAMENTO BIVIO LINEA MERANESE						
Rilevati e trincee ferroviari	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo stabilità e cedimenti	NB1D	01	D26	RHGE0000001	Α	28 di 36	

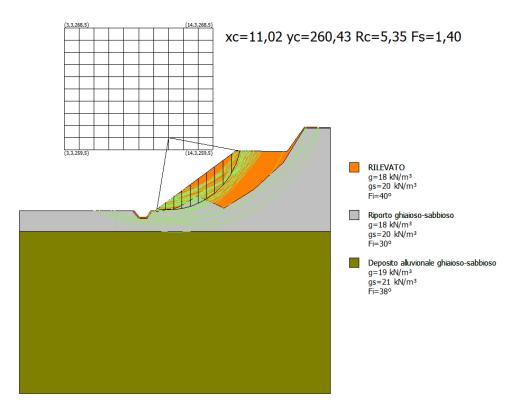


Figura 10: Sezione di calcolo [Sez. progr. 0+000.00]

Maglia dei Centri

Ascissa vertice sinistro inferiore xi
Ordinata vertice sinistro inferiore yi
Ascissa vertice destro superiore xs
Ordinata vertice destro superiore ys
Ordinata vertice destro superiore ys
Passo di ricerca
Numero di celle lungo x
Numero di celle lungo y

3,32 m
259,53 m
14,32 m
268,53 m
10,0

Coefficienti sismici [N.T.C.]

Dati generali

Tipo opera: 2 - Opere ordinarie
Classe d'uso: Classe IV
Vita nominale: 50,0 [anni]
Vita di riferimento: 100,0 [anni]

Parametri sismici su sito di riferimento

Categoria sottosuolo: B Categoria topografica: T1

S.L. Stato limite	TR Tempo ritorno [anni]	ag [m/s²]	F0 [-]	TC* [sec]
S.L.O.	60,0	0,26	2,51	0,2
S.L.D.	101,0	0,31	2,49	0,23
S.L.V.	949,0	0,62	2,69	0,38
S.L.C.	1950,0	0,74	2,79	0,42

Coefficienti sismici orizzontali e verticali

Opera: Classe IV

S.L.	amax	beta	kh	kv
Stato limite	[m/s ²]	[-]	[-]	[sec]
S.L.O.	0,312	1,0	0,0318	0,0159
S.L.D.	0,372	0,47	0,0178	0,0089
S.L.V.	0,744	0,38	0,0288	0,0144
S.L.C.	0,888	1,0	0,0906	0,0453

0,018

0,009

Coefficiente azione sismica orizzontale Coefficiente azione sismica verticale

Vertici profilo

vertici profilo		
Nr	X	у
	(m)	(m)
1	0,0	255,0
2	8,5	255,0
3	8,88	254,53
4	9,38	254,53
5	9,71	255,0
6	10,0	255,0
7	16,0	259,42
8	19,78	259,39
9	21,09	261,18
10	23,0	261,15

Vertici strato1

N	X	у
	(m)	(m)
1	0,0	255,0
2	8,37	255,0
3	8,85	254,42
4	9,43	254,41
5	9,78	254,9
6	11,68	255,25
7	13,19	256,12
8	15,14	255,19
9	17,33	256,56
10	19,51	258,57
11	21,08	261,13
12	23,0	261,13

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA BOI PP 2013 R	PROGETTO DEFINITIVO LINEA BOLZANO - MERANO: ADEGUAMENTO/INTEGRAZIONE PP 2013 REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI - SPOSTAMENTO BIVIO LINEA MERANESE						
Rilevati e trincee ferroviari	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione di calcolo stabilità e cedimenti	NB1D	01	D26	RHGE0000001	Α	30 di 36		

Vertici strato2

N	X (m)	y (m)		
1	0,0	253,5		
2	23,0	253,5		

Coefficienti parziali azioni

Sfavorevoli: Permanenti, variabili

1,0
1,0
Favorevoli: Permanenti, variabili

1,0
1,0

Coefficienti parziali per i parametri geotecnici del terreno

Tangente angolo di resistenza al taglio1,25Coesione efficace1,25Coesione non drenata1,4Riduzione parametri geotecnici terrenoNo

Stratigrafia

Strato	Coesione (kN/m²)	Coesione non drenata (kN/m²)	Angolo resistenza al taglio (°)	Peso unità di volume (kN/m³)	Peso saturo (kN/m³)	Litologia	
1	0	0	40	18	20	RILEVATO	
2	0	0	30	18	20	Riporto ghiaioso- sabbioso	
3	0	0	38	19	21	Deposito alluvionale ghiaioso-sabbioso	

Risultati analisi pendio

Fs minimo individuato
Ascissa centro superficie

11,02 m

Ordinata centro superficie 260,43 m Raggio superficie 5,35 m

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO LINEA BOLZANO - MERANO: ADEGUAMENTO/INTEGRA PP 2013 REALIZZAZIONE NUOVO TUNNEL DEL VIRGOL BINARI - SPOSTAMENTO BIVIO LINEA MERANESE					
Rilevati e trincee ferroviari	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo stabilità e cedimenti	NB1D	01	D26	RHGE0000001	Α	31 di 36

Numero di superfici esaminate....(169)

Numero ai	supernoi esamin	iale(103) 			
N°	Xo	Yo	Ro	Fs	
1	5,0	260,0	6,4	66,53	
2	5,5	259,5	5,7	80,38	
3	6,1	260,0	7,1	12,21	
4	6,6	259,5	7,2	6,17	
5	7,2	260,0	7,1	4,61	
6	7,7	259,5	7,2	3,64	
7	8,3	260,0	6,9	2,91	
8	8,8	259,5	6,0	2,34	
9	9,4	260,0	5,6	1,82	
10	9,9	259,5	5,5	1,71	
11	10,5	260,0	6,1	1,56	
12	11,0	259,5	4,8	1,42	
13	11,6	260,0	4,9	1,44	
14	12,1	259,5	4,4	1,52	
15	12,7	260,0	4,4	1,66	
16	13,2	259,5	3,0	1,68	
17	13,8	260,0	3,1	1,86	
18	14,3	259,5	4,5	2,08	
19	5,0	260,9	7,0	60,66	
20	5,5	260,4	6,4	71,37	
21	6,1	260,9	6,9	20,00	
22		260,4			
23	6,6 7,2	260,4	7,0 8.4	8,45 3,68	
23 24		260,4	8,4 7.7	3,22	
	7,7		7,7		
25 26	8,3	260,9	7,3	2,41	
26 27	8,8	260,4	6,6	2,16	
27	9,4	260,9	6,8	1,76	
28	9,9 10.5	260,4	6,1	1,57	
29	10,5	260,9	7,4	1,73	
30	11,0	260,4	5,4	1,40	
31	11,6	260,9	5,9	1,52	
32	12,1	260,4	4,9	1,57	
33	12,7	260,9	4,4	1,67	
34	13,2	260,4	6,0	1,78	
35	13,8	260,9	7,4	1,84	
36	14,3	260,4	7,1	1,91	
37	6,1	261,8	8,2	11,10	
38	6,6	261,3	8,3	4,96	
39	7,2	261,8	8,9	3,25	
40	7,7	261,3	8,0	2,87	
41	8,3	261,8	7,6	2,31	
42	8,8	261,3	7,6	1,99	
43	9,4	261,8	8,2	1,86	
44	9,9	261,3	7,1	1,61	
45	10,5	261,8	6,4	1,44	
46	11,0	261,3	6,0	1,46	

			PROGETT	O DEFI	INITIVO			
	TALFERR TIE DELLO STATO ITALIANE		LINEA BOLZANO - MERANO: ADEGUAMENTO/INTEGRAZIONE PP 2013 REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI - SPOSTAMENTO BIVIO LINEA MERANESE					
Rilevati e trince	e ferroviari		COMMESSA	COMMESSA LOTTO		DOCUMENTO	REV.	FOGLIO
Relazione di cale	colo stabilità e cedimenti		NB1D	01	D26	RHGE0000001	Α	32 di 36
47	11,6	261,8		5,9		1,58		
48	12,1	261,3		5,4		1,65		
49	12,7	261,8		7,4	•	1,73		
50	13,2	261,3		7,8	•	1,74		
51	13,8	261,8		7,5	•	1,78		
52	14,3	261,3		7,8		1,79		
53	5,5	262,2		8,3		1,05		
54	6,1	262,7		8,1		2,27		
55	6,6	262,2		8,0		0,00		
56	7,2	262,7		9,6		3,04		
		262,7						
57 59	7,7	,		8,6		2,51		
58 50	8,3	262,7		8,3		2,06		
59 60	8,8	262,2		8,2		1,85		
60	9,4	262,7		8,9		1,79		
61	9,9	262,2		8,8		1,95		
62	10,5	262,7		7,0		1,51		
63	11,0	262,2		6,5		1,54		
64	11,6	262,7		6,4		1,65		
65	12,1	262,2		7,9		1,65		
66	12,7	262,7		8,6		1,70		
67	13,2	262,2		8,1		1,73		
68	13,8	262,7		8,5	•	1,73		
69	14,3	262,2		7,9		1,80		
70	5,5	263,1		9,0	132	2,34		
71	6,1	263,6		9,7	-	7,36		
72	7,2	263,6	1	10,3	2	2,77		
73	7,7	263,1		9,3		2,32		
74	8,3	263,6	1	10,0		2,09		
75	8,8	263,1		8,9		1,83		
76	9,4	263,6		8,5	•	1,44		
77	9,9	263,1		7,3		1,54		
78	10,5	263,6		8,5		1,56		
79	11,0	263,1		7,0		1,60		
80	11,6	263,6		7,0		1,73		
81	12,1	263,1		9,2		1,72		
82	12,7	263,6		8,9		1,71		
83	13,2	263,1		9,2		1,69		
84	13,8	263,6		8,7		1,77		
85	14,3	263,1		8,1		1,85		
86	6,1	264,5	1	10,4		0,00		
87	6,6	264,0		0,3		3,21		
88	7,2	264,5		11,0		2,50		
89	7,7	264,0		10,0		2,16		
90	8,3	264,5		10,7		2,03		
91	8,8	264,3 264,0		8,6		2,03 1,55		
91 92		264,0 264,5		9,2		1,53		
92 93	9,4	264,5 264,0				1,55 1,55		
93 94	9,9 10.5	264,0 264,5		9,1		1,65		
9 4 95	10,5 11.0			9,0				
	11,0	264,0 264.5		7,5		1,69 1,70		
96	11,6	264,5	٦	1,0		1,70		

			PROGETT	O DEFI	NITIVO			
GRUPPO FERRO	TALFERR VIE DELLO STATO ITALIANE		LINEA BOLZANO - MERANO: ADEGUAMENTO/INTEGRAZIONE PP 2013 REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A 3 BINARI - SPOSTAMENTO BIVIO LINEA MERANESE					
Rilevati e trince	e ferroviari		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di cal	lcolo stabilità e cedimenti		NB1D	01	D26	RHGE0000001	Α	33 di 36
97	12,1	264,0	•	9,5		1,69		
98	12,7	264,5		9,3		1,84		
99	13,2	264,0		8,6	,	1,97		
100	13,8	264,5		9,0		1,93		
101	14,3	264,0		8,4		2,04		
102	5,5	264,9	1	0,6		5,87		
103	7,2	265,4		0,9		0,00		
104	7,7	264,9		0,8		2,15		
105	8,3	265,4		1,4		2,02		
106	8,8	264,9	'	9,4		1,55		
107	9,4	265,4	4	0,0		1,59		
107		264,9	!			1,62		
108	9,9 10.5		4	9,6				
110	10,5	265,4		0,5		1,74 1,75		
	11,0	264,9		0,8		1,75		
111	11,6	265,4		0,6		1,84		
112	12,1	264,9		9,9		1,81		
113	12,7	265,4	1	0,4		1,70		
114	13,2	264,9		9,0		2,28		
115	13,8	265,4		9,4		2,16		
116	14,3	264,9		8,0		2,79		
117	6,1	266,3		2,0		0,00		
118	7,2	266,3		1,7		0,00		
119	7,7	265,8		0,6		1,59		
120	8,3	266,3		1,3		1,54		
121	8,8	265,8		0,2		1,58		
122	9,4	266,3		0,7		1,65		
123	9,9	265,8		0,1		1,70		
124	10,5	266,3		0,1		1,82		
125	11,0	265,8		9,5		1,88		
126	11,6	266,3	1	1,0	•	1,97		
127	12,1	265,8	1	0,3	2	2,09		
128	12,7	266,3	1	0,0		2,37		
129	13,2	265,8	1	0,1	2	2,09		
130	13,8	266,3		9,8		2,30		
131	14,3	265,8		8,4	;	3,27		
132	6,1	267,2	1	2,8	20	0,00		
133	7,2	267,2	1	2,5	20	0,00		
134	7,7	266,7	1	1,4	,	1,59		
135	8,3	267,2		2,0	,	1,59		
136	8,8	266,7	1	0,9	,	1,64		
137	9,4	267,2		2,2		1,71		
138	9,9	266,7		1,6		1,77		
139	10,5	267,2		3,1		1,67		
140	11,0	266,7		1,6		1,94		
141	11,6	267,2		2,2		1,73		
142	12,1	266,7		1,5		1,91		
143	12,7	267,2		1,2		2,11		
144	13,2	266,7		0,5		2,21		
145	13,8	267,2		9,6		3,19		
146	14,3	266,7		9,6		2,57		
	1 1,0	_00,1		5,5	•	_, • .		

			PROGETTO		NITIVO MERANO:	ADEGUAMENTO	/INTEG	RAZIONE
GRUPPO FERROVII	TALFERR E DELLO STATO ITALIANE		PP 2013 REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A BINARI - SPOSTAMENTO BIVIO LINEA MERANESE					OLO A 3
Rilevati e trincee	ferroviari		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calco	olo stabilità e cedimenti		NB1D	01	D26	RHGE0000001	Α	34 di 36
147	6,6	267,6	1	3,5		2,48		
148	7,2	268,1	1	4,1		2,31		
149	7,7	267,6	1	2,2		1,61		
150	8,3	268,1	1	2,8		1,65		
151	8,8	267,6	1	1,7		1,70		
152	9,4	268,1	11,9			1,81		
153	9,9	267,6	13,8			1,71		
154	10,5	268,1	1	2,0		2,01		
155	11,0	267,6	1	2,1		2,08		
156	11,6	268,1	1	1,2		2,29		
157	12,1	267,6	1	1,9		1,99		
158	12,7	268,1	1	1,7		2,28		
159	13,2	267,6	1	1,0		2,37		
160	13,8	268,1	1	0,1	;	3,51		
161	14,3	267,6	1	0,1		2,77		
162	6,6	268,5	1	3,5		1,64		
163	7,7	268,5	1	3,0		1,65		
164	8,8	268,5	1	3,3		1,74		
165	9,9	268,5	1	4,2	,	1,68		
166	11,0	268,5	1	1,9		2,19		
167	12,1	268,5	1	2,4	:	2,20		
168	13,2	268,5	1	1,5		2,52		
169	14,3	268,5	1	0,7	;	3,03		

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO LINEA BOLZANO - MERANO: ADEGUAMENTO/INTEGRAZI PP 2013 REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO BINARI - SPOSTAMENTO BIVIO LINEA MERANESE					
Rilevati e trincee ferroviari	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo stabilità e cedimenti	NB1D	01	D26	RHGE0000001	Α	35 di 36

6 CEDIMENTI

Per il calcolo dei cedimenti, qualora si disponga di dati ottenuti da prove penetrometriche dinamiche SPT, è possibile fare affidamento al metodo di Burland e Burbidge (1985), nel quale viene correlato un indice di compressibilità lc al risultato N della prova penetrometrica dinamica.

L'espressione del cedimento proposta dai due autori è la seguente:

$$S = f_S \cdot f_H \cdot f_t \cdot \left[\sigma'_{v0} \cdot B^{0.7} \cdot I_C / 3 + \left(q' - \sigma'_{v0} \right) \cdot B^{0.7} \cdot I_C \right]$$

nella quale:

- q': pressione efficace lorda;
- σ'_{vo}: tensione verticale efficace alla quota d'imposta della fondazione;
- B: larghezza della fondazione;
- Ic: Indice di compressibilità;
- f_s, f_H, f_t: fattori correttivi che tengono conto rispettivamente della forma, dello spessore dello strato compressibile e del tempo, per la componente viscosa.

L'indice di compressibilità Ic è legato al valore medio N_{av} di N_{spt} all'interno di una profondità significativa z:

$$I_{\rm C} = \frac{1.706}{N_{\rm AV}^{1.4}}$$

Per quanto riguarda i valori di Nspt da utilizzare nel calcolo del valore medio N_{AV} va precisato che i valori vanno corretti, per sabbie con componente limosa sotto falda e $N_{spt}>15$, secondo l'indicazione di Terzaghi e Peck (1948):

$$N_c = 15 + 0.5 \cdot (Nspt - 15)$$

dove N_c è il valore coretto da usare nei calcoli.

Per depositi ghiaiosi o sabbioso-ghiaiosi il valore corretto è pari a:

$$N_c = 1.25 \cdot Nspt$$

Le espressioni dei fattori correttivi fs, f_H e f_t sono rispettivamente:

$$f_{S} = \left(\frac{1.25 \cdot L / B}{L / B + 0.25}\right)^{2}$$

$$f_{H} = \frac{H}{z_{i}} \left(2 - \frac{H}{z_{i}}\right)$$

$$f_{t} = \left(1 + R_{3} + R \cdot \log \frac{t}{3}\right)$$

con:

t tempo in anni > 3;

R3 costante pari a 0.3 per carichi statici e 0.7 per carichi dinamici;

R 0.2 nel caso di carichi statici e 0.8 per carichi dinamici.

ITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	PROGETTO DEFINITIVO LINEA BOLZANO - MERANO: ADEGUAMENTO/INTEGRAZION PP 2013 REALIZZAZIONE NUOVO TUNNEL DEL VIRGOLO A BINARI - SPOSTAMENTO BIVIO LINEA MERANESE					
Rilevati e trincee ferroviari	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo stabilità e cedimenti	NB1D	01	D26	RHGE0000001	Α	36 di 36

Si riportano nel seguito gli esiti della verifica effettuata in riferimento alla sezione più significativa, corrispondente alla Sez. Progr. 0+650.00.

DATI GENERALI

Larghezza fondazione	7.0	m	
Lunghezza fondazione	10.0	m	
Profondità piano di posa	0.0	m	

CEDIMENTI BURLAND E BURBIDGE

			=======
Pressione normale di progetto	20.0	kN/m^2	
Tempo	30.0	anni	
Profondità significativa Zi (m)	5.212		
Media dei valori di Nspt all'interno di Zi	50		
Fattore di forma fs	1.132		
Fattore strato compressibile fh	1		
Fattore tempo ft	1.5		
Indice di compressibilità	0.007		
Cedimento	0.378	mm	