

TITLE:

GRE CODE

GRE.EEC.R.25.IT.W.35796.00.015.00

PAGE

1 di/of 40

AVAILABLE LANGUAGE: IT

IMPIANTO EOLICO DELLA POTENZA DI 60 MW WIND + 30 MW BESS COMUNI DI MESAGNE E TORRE SANTA SUSANNA (BR)

RELAZIONE GEOTECNICA

00	29/11/2021			FMIS	SIONI	F					c	.MEDIC	0		V.D	AMICC	A.SERGI (SCS)			5)	
	20/11/2021																				
REV.	DATE		DESCRIPTION					PR	REPARED VERIFIED			D	APPROVED		D						
					(GRE	VALI	DATIO	N												
															M.E	BAST	IANE	LLI			
	COLLABO	RATORS				VE	RIFIE	D BY							VA	ALIDA	TED I	3Y			
PROJECT	/PLANT							GF	RE-C	ODE											
IMPIANT SAN	O EOLICO TORRE TA SUSANNA	GROUP	FUNCION	TYPE	ISSU	UER	CO	UNTRY	TEC			PLANT	PLANT SYSTEM			PRO	GRES	SIVE	REVI	SION	
		GRE EEC R 2 5 I T W					3	5	7	9	6	0	0	0	1	5	0	0			
CLASSI	FICATION					UTIL	IZATI	ION SC	OPE	•	•	•	-	•	•	-	-	-	•		
This docu without th	This document is property of Enel Green Power S.p.A. It is strictly forbidden to reproduce this document, in whole or in part, and to provide to others any related information without the previous written consent by Enel Green PowerS.p.A.																				

GRE CODE

GRE.EEC.R.25.IT.W.35796.00.015.00

PAGE

2 di/of 40

INDEX

1. PREMESSA						
2. NORME DI RIFERIMENTO						
3. CRITERI DI CALCOLO						
4. INQUADRAMENTO GEOGRAFICO						
5. CONTESTO GEOLOGICO DI RIFERIMENTO						
5.1. CARATTERI GEOLOGICI LOCALI E SUCCESSIONE STRATIGRAFICA						
6. INQUADRAMENTO GEOMORFOLOGICO						
7. INDAGINI GEOGNOSTICHE E GEOFISICHE						
8. MODELLO GEOLOGICO E GEOTECNICO						
9. CRITERI DI VERIFICA						
9.1. MODELLAZIONE						
9.2. VERIFICHE ESEGUITE						
9.3. APPROCCI DI PROGETTO E COMBINAZIONI DI CARICO						
9.4. AZIONI DERIVANTI DALLA SOVRASTRUTTURA						
10. SOLUZIONE: FONDAZIONE DIRETTA						
10.1. PESO PROPRIO DELLA FONDAZIONE						
10.2. PESO PROPRIO DEL RIEMPIMENTO						
10.3. RIEPILOGO CONDIZIONI DI CARICO						
10.4. VERIFICHE GEOTECNICHE						
10.4.1. COMBINAZIONI DI CARICO E FATTORI DI SICUREZZA						
10.4.2. CARICO LIMITE						
10.4.3. SLITTAMENTO						
10.4.4. VALUTAZIONE MODULO DI REAZIONE (WINKLER)						
10.4.5. VALUTAZIONE DEI CEDIMENTI						
10.4.6. VALUTAZIONE DELLA RIGIDEZZA ROTAZIONALE DINAMICA						
11. SOLUZIONE ALTERNATIVA: FONDAZIONE SU PALI						
12. CONCLUSIONI						

3 di/of 40

PAGE

1. PREMESSA

Oggetto della presente relazione è il calcolo preliminare delle opere di fondazione degli aerogeneratori del proposto parco eolico denominato "Torre Santa Susanna".

L'area di progetto oggetto di indagine, comprendente n. 10 aerogeneratori (nel seguito WTG) e ricade nell'ambito del territorio del Comune di Torre Santa Susanna, Latiano e Mesagne, in Provincia di Brindisi.

Gli aerogeneratori che verranno installati nel nuovo impianto di Torre Santa Susanna saranno selezionati sulla base delle più innovative tecnologie disponibili sul mercato. La potenza nominale delle turbine previste sarà pari a massimo 6,0 MW. Il tipo e la taglia esatta dell'aerogeneratore saranno comunque individuati in fase di acquisto della macchina e verranno descritti in dettaglio in fase di progettazione esecutiva.

Ai soli fini della valutazione della gittata massima, è stato considerato un aerogeneratore tipo Siemens Gamesa SG 6.0 – 170.

SISTEMA DI RIFERIMENTO UTM WGS 84 - FUSO 33N			RIFERIMENTI CATASTALI				
WTG	EST [m] NORD [m]		COMUNE	FG	P.LLA		
01	734516,00	4492082,00	MESAGNE	51	213		
02	734107,00	4491451,00	MESAGNE	62	180		
03	735021,00 4490798,00		MESAGNE	86	2		
04	04 734234,71 4489777,93		MESAGNE	85	144		
05	05 734482,20 448802		TORRE SANTA SUSANNA	13	77		
06	5 736013,06 4487032,25		MESAGNE	112	210		
07	736756,73	4487108,53	MESAGNE	113	370		
08	08 736129,64 4485788,02		MESAGNE	123	109		
09	735619,21	4485421,88	MESAGNE	123	108		
10	734982,30 4485302,63		TORRE SANTA SUSANNA	30	131		

Tabella 1: Elenco degli aerogeneratori

PAGE

4 di/of 40

2. NORME DI RIFERIMENTO

[1] DM 17/01/2018 - Aggiornamento delle «Norme tecniche perle costruzioni»

[2] Circ. 21 gennaio 2019, n. 7/C.S.LL.PP.

[3] Eurocodice 2 - "Progettazione delle strutture in calcestruzzo.1-1: Regole generali e regole

per gli edifici"

[4] Eurocodice 7 - "Progettazione geotecnica. Parte 1 - Regole generali"

[5] CEI EN 61400-1

PAGE

5 di/of 40

3. CRITERI DI CALCOLO

Le analisi sono state condotte per mezzo di un software che permette la modellazione sia del terreno che della fondazione, di cui al paragrafo 9.1. Le verifiche condotte sono quelle previste dalla normativa citata.

PAGE 6 di/of 40

4. INQUADRAMENTO GEOGRAFICO

Le aree proposte per la realizzazione del parco eolico in progetto sono ubicate nel territorio comunale di Torre Santa Susanna e Mesagne, in provincia di Brindisi, Regione Puglia. L'area, dal punto di vista orografico è pianeggiante ed è situata a circa 20 km dalla costa adriatica, a circa 20 km a sud-ovest di Brindisi.

Figura 1: Localizzazione dell'area di impianto nel contesto nazionale.

Per quanto concerne le quote topografiche, variano da un massimo di circa 92 m s.l.m. (zona TS04 ad un minimo di circa 63-65 m s.l.m. (zona TS8-TS10). In generale le quote topografiche tendono a degradare da sia verso sud che verso nord, in direzione rispettivamente di Torre Santa Susanna e della "Piana Brindisina".

Cartograficamente l'area ricade all'interno della tavoletta I.G.M. alla scala 1:50.000 "Mesagne" Foglio 495. Alla scala 1:25.000 il sito di interesse ricade all'interno della Tavolette "MESAGNE" 203 I-SO, "TORRE S. SUSANNA" 203 II-NO e "S. VITO DEI NORMANNI" 203 I-NO.

Sulla cartografia geologica ufficiale, l'area ricade all'interno del Foglio 155 – "SAN SEVERO" della Carta Geologica d'Italia in scala 1:100.000.

Sabbie argillose giallastre, talora debolmente cementate, in strati di qualche cm. Di spessore, che passano inferiormente a sabbie argillose e argille grigio-azzurastre (Q_2^k); spesso l'unità ha intercalati banchi arenacei calcareniti ben cementati (Q_2^k). Nelle sabbie più elevate si notano talora **Cassidulina laevigata** D'ORB. **Carinata** SILV, **Bullmina marginata** D'ORB., **Ammonia beccarii** (IUN.), **Ammonia perlucia** (HER. ALL .EARL) (PLEISTOCENE). Nelle sabbie argillos ed argille sottostanti, accanto a **Arctica** islandica (IUN.), **Chanys septemradita** MULL. Ed altri molluschi, sono frequenti: Hyalinea bathkac (SCHR.), **Cassidulina laevigata** D'ORB. **Carinata** SILV, **Bulmina** marginata D'ORB., **Bolivina catanesis** SEG. **(CALABRIANO). FORMAZIONE DI GALLIPOLI**.

Calcari dolomitici e dolomie grigio-nocciola, a frattura irregolare, calcari grigio-chiari. Microfossili non molto frequenti: *Thaumatoporella* sp., *Praeglobotruncana stephani* stephani (GRAND), *P. stephani turbinata* (REICH), *Rotalipora appenninia* (RENZ), *R.* cf. *reicheli* (MORN.), *Nummoluculina* sp. (*CENOMANIANO* SUP. e forse *TURONIANO*). DOLOMIE DI GALATINA con passaggio graduale al CALCARE DI ALTAMURA (verso Nord e verso Ovest).

 $(Q^1 - P^3)$ Sabbie calcaree poco cementate, con intercalati banchi di panchina; sabbie argillose grigio-azzurre. Verso l'alto associazione calabriana: Hyalinea balthica (SCHR), Cassidulina laevigata D'ORB, var. carinata SILV., Bulimina marginata DD'ORB, Ammonia beccarii (LIN) (CALABRIANO-PLIOCENE SUP.?) In trasgressione sulle formazioni più antiche.

(P³) Calcareniti, calcari tipo panchina, calcareniti argillose giallastre. Macrofauna a Coralli, Cirripedi, Molluschi, Echinidi, Crostacel tra cui Cancer sismondal MEY. Var. antiatina MAX. Microfauna ad Ostracoidi e Foraminiferi: Bulimina marginata D'ORB., Cassidulina laevigata D'ORB. var. carinata SILV., Discotfisi orbicularis (TERQ.), Cibicides ungerianus (D'ORB), G. sacculiter (BRADY), Orbulina universa D'ORB., Hastigerina aequilateralis (BRADY) (PUOCENE SUP-MEDIO?). In trasgressione sulle forme più antiche.

Figura 3: Inquadramento su cartografia geologica – Foglio 203 (Brindisi) della Carta Geologica d'Italia alla scala 1:100.000.

PAGE

9 di/of 40

5. CONTESTO GEOLOGICO DI RIFERIMENTO

Green Power

La geologia, in generale, rispecchia, i peculiari aspetti geotettonici regionali (Ciaranfite al, 1992).

GEGNERI

La formazione più antica presente, affiorante sulle Murge, è quella calcarea e calcareadolomitica del cretaceo superiore (calcare di Altamura) che, come noto, costituisce il basamento regionale ove ha sede la più importante risorsa idrica sotterranea pugliese.

La formazione carbonatica cretacea digrada sino a quote di circa -60 metri sul lato adriatico; risulta coperta trasgressivamente da depositi sabbioso-calcarenitici di età calabriana (Calcareniti di Gravina), caratterizzati da un grado di cementazione variabile e da spessori massimi di 30-40 metri.

La formazione calcarenitica al tetto e lateralmente passa, con continuità di sedimentazione, ad argille marnose grigio-azzurre del Pleistocene inf. (Argille Subappennine), affioranti con continuità in una fascia ad E di Taranto e in piccoli lembi attorno al Mar Piccolo. Lo spessore della formazione argillosa varia da alcune decine di metri a 100-150 m.

Ove non affiorante, la formazione argillosa si rinviene al di sotto delle formazioni del Pleistocene medio-sup., raggruppate sotto il nome di Depositi marini terrazzati e comprendenti sia calcareniti, affioranti sul versante ionico, sia sabbie fini calcaree più o meno argillose, con intercalazioni calcarenitiche, affioranti diffusamente tra Francavilla F. e Brindisi. In questi depositi, di spessore variabile da pochi metri a circa 10 metri, molto spesso hanno sede falde idriche, piuttosto contenute, a carattere stagionale e localmente indicate come falde sospese.

I depositi olocenici principali, di estensione e spessori modesti, sono costituiti da sabbie calcaree poco cementate (dune costiere) oppure da limi e argille (area paludosa di Torre Guaceto ed incisioni fluviali, Sciannambolo et al., 1992; Tavolini et al., 1994).

Per quanto concerne i caratteri strutturali, nella zona il basamento carbonatico è dislocato da due sistemi di faglie (Ciaranfi et al., 1983): quello "principale", con orientazioni NW-SE ed E-W, e quello secondario, con direzione SW-NE. Si tratta di faglie dirette, che configurano il basamento carbonatico a "gradinata" con blocchi digradanti verso il mare. Studi strutturali pregressi (Cotecchia, 1997-99), hanno altresì evidenziato un sistema prevalente di fratture, orientate NW-SE, quasi sempre bene aperte, subverticali e, spesso, totalmente o in parte, riempite di Terra Rossa.

Tale sistema tettonico ha influenzato sia le caratteristiche stratigrafiche così come quelle geomorfologiche di tutte le aree interessate, infatti tutta l'area di Brindisi, fino al territorio di San Pietro Vernotico, ha subito una forte tettonizzazione che ha dato origine alla così detta "Conca di Brindisi".

Il territorio brindisino, presenta nell'insieme un aspetto tabulare con quote che degradano leggermente verso il mare; il paesaggio è interrotto da solchi erosivi di diversa estensione ed andamento.

Tutta l'area, come accennato, è stata interessata, nel periodo Orogenetico Appenninico, da intense forze tettoniche che hanno dato origine alla Conca di Brindisi, abbassando nella parte

10 di/of 40

PAGE

centrale i calcari cretacei, che costituiscono l'ossatura rigida dell'intera Puglia.

Una diminuzione altimetrica del tetto dei calcari si riscontra da W verso E; valutando le isobate del tetto del calcare, si nota una discontinuità fra le stesse; la causa è molto probabilmente da ricercarsi in una presumibile faglia che deve aver provocato uno scorrimento orizzontale nella direzione ENE – WSW di parte del massiccio carbonatico (Monterisi, Romanizzi, Salvemini, 1978). Il rigetto di tale faglia è al massimo di 30-40 m e sembrerebbe annullarsi all'altezza del canale pigolati, all'interno del Porto di Brindisi.

Il combinarsi delle azioni tettoniche ha creato l'abbassamento dei calcari, che in tal modo hanno creato la conca di Brindisi, e successivamente sono stati ricolmati da sedimenti silicoclastici di origine marina.

Da un punto di vista tettonico tale conformazione strutturale può essere assimilata ad una struttura a Horst e Graben, in cui glia alti strutturali "Horst" sono rappresentati dai calcari bordanti la conca di Brindisi, mentre la parte depressa "Graben" è quella che comprende la conca.

5.1. CARATTERI GEOLOGICI LOCALI E SUCCESSIONE STRATIGRAFICA

Nell'area di studio affiorano prevalentemente terreni di età Pliocenica e Pleistocenica che presentano la seguente successione stratigrafica dal basso verso l'alto (quindi dal più antico al Per la definizione dello scenario territoriale di riferimento, alla scala del progetto in epigrafe, è stato effettuato un rilievo geologico e strutturale all'intorno dell'area di intervento.

La geologia del territorio dell'area del parco eolico, è caratterizzata da un potente basamento carbonatico cretaceo (riferibile al "Calcare di Altamura") sovrastato, in trasgressione, dai termini basali della sequenza sedimentaria marina plio-pleistocenica della "Fossa Bradanica" (Calcarenite di Gravina e Argille subappennine) su cui, durante le fasi di ritiro del mare presso le attuali linee di costa, si sono accumulati, ai vari livelli, depositi terrazzati marini e/o, depositi continentali.

La stratigrafia della zona di studio, dalla più antica alla più recente, è rappresentata da (Figura 21):

DEPOSITI MARINI

- "Calcare di Altamura" (Cretaceo sup.)
- "Calcarenite di Gravina" (Pliocene sup. Pleistocene inf.)
- "Argille subappennine" (Pleistocene inf.)
- "Depositi Marini Terrazzati" DMT (Pleistocene medio sup.)

DEPOSITI CONTINENTALI

"Depositi colluviali ed eluviali" - (Olocene)

Figura 4: Sezione geologica dell'area del parco eolico

Depositi colluviali ed eluviali

Sono coperture di origine eluviale e/o colluviale comunemente indicate con il termine di "terra rossa".

Si tratta di terreni di origine residuale, prodotti dagli effetti dell'alterazione e della dissoluzione carsica sulle rocce calcaree affioranti e dal progressivo accumulo dei prodotti residuali insolubili di composizione non carbonatica.

La composizione chimico-mineralogica delle terre rosse è caratterizzata da una notevole abbondanza di idrossidi di ferro ed alluminio, di minerali argillosi (soprattutto illite e caolinite) e da componenti minori quali quarzo, feldspati, pirosseni, ecc..

La granulometria delle terre rosse presenta di norma un ampio spettro di variabilità, poiché dipende strettamente dalle caratteristiche genetiche ed evolutive dei singoli depositi.

In linea di massima si tratta, nella maggior parte dei casi, di terreni composti da particelle delle dimensioni del limo e/o delle sabbie fini, con una discreta presenza di frazione argillosa: si va pertanto – dal punto di vista granulometrico - dalle sabbie limose ai limi sabbioso-argillosi, con variazioni sensibili ed imprevedibili anche nell'ambito di uno stesso deposito.

Le terre rosse possono presentarsi con caratteristiche sia di depositi eluviali che colluviali, vale a dire sia come prodotto di alterazione e disfacimento della roccia in posto che come accumulo di materiali rimossi (ad esempio, ad opera delle acque dilavanti o di ruscellamento) dalla loro posizione originaria e ridepositati in corrispondenza di aree morfologicamente più depresse.

Le coperture eluviali presentano spessori generalmente modesti (poche decine di centimetri), mentre i depositi colluviali, che si concentrano quasi esclusivamente in avvallamenti, cavità e depressioni, manifestano degli spessori estremamente mutevoli ed imprevedibili, in quanto strettamente connessi all'andamento morfologico del substrato.

Depositi Marini Terrazzati [TS01, TS02, TS03, TS04, TS05, TS06, TS07]

L'unità pleistocenica dei Depositi di Terrazzo è litologicamente costituita da calcareniti giallastre

12 di/of 40

PAGE

a grana grossa ben cementate con intercalati livelli sabbiosi ed altri costituiti da calcari organogeni in strati di spessore variabile da qualche centimetro a 10÷15 cm; a luoghi, nell'ambito della successione, in particolare nel tratto basale della stessa, a diretto contatto con le Argille Subappennine, sono presenti strati decimetrici di calcari molto compatti e tenaci.

Figura 5: Affioramento dell'Unità dei Depositi di Terrazzo lungo un taglio stradale della SS7 a nord dell'area in studio.

La facies sabbiosa è costituita da prevalenti granelli di quarzo, feldspati, materiale carbonatico di origine detritica e bioclastica nonché da subordinati cristalli di mica. I fossili rappresentati da prevalenti lamellibranchi ed alghe, sono frequenti tanto da costituire a luoghi vere lumachelle; le osservazioni al microscopio hanno messo in evidenza che sono frequenti anche i microrganismi rappresentati da foraminiferi. Da quanto sopra esposto se ne deduce che, dal punto di vista granulometrico, per quanto riguarda la facies sabbiosa, i contenuti in ghiaia $(0\% \div 28\%)$, in sabbia $(3\% \div 84\%)$ e limo $(2\% \div 75\%)$ sono estremamente variabili in funzione degli intervalli stratigrafici presi in considerazione.

Il contenuto naturale d'acqua oscilla intorno ad un valore medio del 20,79% con indice dei vuoti variabile e compreso tra 0,49 e 0,87.

Per quanto riguarda l'estensione areale di questa unità si può supporre che sia totale per tutta l'area oggetto di studio. Il passaggio alle sottostanti Argille subappennine può avvenire in maniera diretta o tramite dei termini di passaggio rappresentati da sabbie e limi sabbiosi che si descrivono nel successivo paragrafo.

Lo spessore dell'unità è molto variabile, compreso tra pochi decimetri e una ventina di metri pur essendo i valori più ricorrenti di 5÷6 m. Il tetto di questa unità si trova a quote variabili tra 30 m e -15 m rispetto al l.m.m.

I Depositi Marini Terrazzati (DMT), costituiscono il sedime di fondazione della quasi totalità dell'area del parco eolico, ed in particolare si rinvengono nell'area di allocazione della WTG

13 di/of 40

PAGE

siglate TS01, TS02, TS03, TS04, TS05, TS06, TS07.

Argille Subappennine

La formazione infrapleistocenica che si descrive è caratterizzata da argille e argille sabbiose grigio azzurre, fossilifere. Dal punto di vista granulometrico, questi depositi possono essere definiti come limi sabbiosi con argilla; ciò nonostante notevoli sono le variazioni relativamente alla dimensione dei granuli. La percentuale in sabbia varia dal 2% al 55%, quella in limo dal 11%; il contenuto medio in carbonati è del 31%, valore quest'ultimo che tende ad aumentare man mano che ci si avvicina alle sottostanti Calcareniti di Gravina. All'interno della successione, il cui spessore è di difficile valutazione ma sempre perlomeno decametrico, si possono individuare livelli sabbiosi, anch'essi di colore grigio azzurro, la cui estensione laterale e verticale non è ben definibile. Il passaggio stratigrafico con le sottostanti Calcareniti di Gravina avviene mediante un livello continuo sabbioso limoso particolarmente ricco in fossili. Il contenuto naturale d'acqua varia passando da un valore minimo del 14,05% al 43,5% ed il grado di saturazione è anch'esso estremamente variabile passando dal 71,84% al valore limite pari al 100%.

Le analisi geotecniche di laboratorio, eseguite sui campioni indisturbati prelevati in corrispondenza dello strato argilloso, indicano una bassa permeabilità, che si attesta intorno a valori compresi tra 10-10 e 10-11 m/s (media 1,81E -10 m/s).

Localmente, tale formazione non è stata rilevata in affioramento.

Calcareniti di Gravina

L'unità della Calcarenite di Gravina rappresenta la più antica delle unità pleistoceniche presenti nell'area. La formazione, caratterizzata da calcareniti a grana grossa di colore giallastro e ben diagenizzata, con frequenti macro e microfossili (foraminiferi bentonici, briozoi, lamellibranchi, gasteropodi, echinodermi, alghe calcaree e serpulidi), poggia con contatto discontinuo e discordante sul basamento carbonatico cretaceo.

Dal punto di vista chimico questi depositi sono costituiti da calcite normale con un basso contenuto in magnesio. Costituenti minori sono la kaolinite, l'illite, la clorite, la smectite, la gibsite e la goethite che si trovano dispersi nel sedimento mentre quarzo e feldspati si rinvengono come singoli grani. La matrice micritica è più o meno completamente assente.

Lo spessore di questa formazione è molto variabile e raggiunge valori massimi superiori alla trentina di metri. Il grado di porosità è variabile tra il 42,90% ed il 49,40%.

Le calcareniti di Gravina affiorano nell'intorno dell'area nord del parco (area TS01, TS02, TS03 e TS04), senza interessare direttamente le opere in progetto.

Calcari di Altamura [TS08, TS09, TS010]

L'intervallo stratigrafico, è costituto da un'alternanza tra calcari e calcari dolomitici, micritici, compatti e tenaci di colore biancastro, grigio chiaro o nocciola, in strati di spessore variabile da

PAGE 14 di/of 40

qualche centimetro a circa un metro. A luoghi gli strati si presentano fittamente laminati e sono facilmente riducibili in lastre. Gli affioramenti sono limitati a qualche metro di spessore, a luoghi coperti da terreno agrario; spessori maggiori, sino a 30÷40 m, sono esposti nelle pareti delle cave, attive e no, in alcuni casi utilizzate come discariche, ubicate nell'entroterra brindisino. In più luoghi gli strati risultano fratturati e disarticolati. I macrofossili sono in genere scarsi, caratterizzati da frammenti di rudiste e subordinati coralli e pettinidi.

Il tetto del basamento carbonatico cretacico si trova a quote molto differenti tra loro anche in aree relativamente vicine, in ciò evidenziando la probabile presenza di faglie che presentano rigetto decametrico.

La formazione è rappresentata dai seguenti tipi litologici:

- dolomie e calcari dolomitici, grigi, talora bituminosi; in alcuni livelli la dolomitizzazione si è compiuta durante la prima diagenesi (dolomitizzazione penecontemporanea, dimostrata dalla grana assai minuta, dalla porosità scarsa, dalle strutture originarie ben conservate), mentre in altri livelli, più frequenti, la dolomitizzazione è di diagenesi tardiva (grana più grossa, porosità notevole, strutture originarie praticamente scomparse);
- 2. calcari micritici, chiari, spesso laminari;
- 3. calcari ad intraclasti;
- 4. calcari a pellets;
- 5. calcari a bioclasti;
- 6. brecce calcaree.

Le brecce sono particolarmente frequenti a nord dell'area in studio, soprattutto in prossimità di S. Vito dei Normanni, dove sembrano rappresentare un livello abbastanza continuo, di qualche metro di potenza, che potrebbe segnare un episodio regressivo.

I frammenti, calcarei, sono angolosi, di dimensioni variabili (che talora superano i 30 cm di diametro) e derivano chiaramente dagli strati cretacici sottostanti.

La stratificazione è molto spesso evidente, con periodo da 5 a 40 cm. Sono pure spesso presenti, nei singoli strati, laminazioni e suddivisioni ritmiche (Figura 16).

I calcari cretacei appartenenti alla formazione sopra descritta costituiscono il sedime di fondazione delle tre torri situale nella parte sud del parco ed in particolare quelle siglate TS08, TS09, TS010.

Figura 6: Calcare di Altamura (Affioramento in scavi di fondazione a nord dell'area in studio).

PAGE 16 di/of 40

6. INQUADRAMENTO GEOMORFOLOGICO

Il territorio in studio in una visione generale, è caratterizzato da una morfologia ondulata e/o a sub-pianeggiante, con escursioni altimetriche difficilmente apprezzabili sul terreno.

Per quanto concerne le quote topografiche, variano da un massimo di circa 92 m s.l.m. (zona TS04 ad un minimo di circa 63-65 m s.l.m. (zona TS8-TS10). In generale le quote topografiche tendono a degradare da sia verso sud che verso nord, in direzione rispettivamente di Torre Santa Susanna e della "Piana Brindisina".

Da NW verso NE si passa dai rilievi collinari dell'altopiano murgiano alla piana di Brindisi: i due elementi geomorfologici che contraddistinguono l'area in studio.

L'attuale assetto morfologico è il frutto di una genesi complessa ed articolata, sicuramente dominata da un ciclico alternarsi di fenomeni di modellamento di ambiente marino e continentale.

Il fattore che ha forse influenzato in maniera più evidente e peculiare l'assetto morfologico dell'area è sicuramente quello legato alla morfogenesi carsica per quanto concerne le aree di affioramento dei calcari cretacei e quello legato alle forme di scorrimento superficiale per quanto concerne le aree di deposizione dei Depositi Marini Terrazzati.

Nelle aree di affioramento dei calcari, la composizione prevalentemente carbonatica delle unità litologiche affioranti, ha sicuramente favorito lo sviluppo dei fenomeni carsici, che, tuttavia, a causa della particolare evoluzione paleogeografica dell'area, si sono talvolta esplicati in maniera discontinua e policiclica.

In pratica, si tratta di un sistema carsico molto complesso e articolato, sviluppatosi in più periodi, su più livelli e a diverse profondità nel sottosuolo. La causa di tale complessità è individuabile nelle numerose vicissitudini paleogeografiche che hanno interessato il territorio murgiano durante il Terziario e il Quaternario. In tale arco di tempo il livello marino ha subito numerose e frequenti oscillazioni di origine prevalentemente glacio-eustatica, con escursioni altimetriche anche superiori ai 100 metri, mentre le zone continentali sono state a loro volta interessate da movimenti verticali di origine sia tettonica che isostatica.

Tali movimenti relativi tra il livello marino e le aree continentali hanno determinato numerose e frequenti variazioni del livello di base carsico regionale e la conseguente formazione, all'interno delle successioni carbonatiche del basamento mesozoico pugliese, di più livelli particolarmente carsificati, che rappresentano testimonianze di un "paleo-carsismo" esplicatosi in condizioni paleogeografiche molto differenti da quelle attuali.

I processi di dissoluzione carsica si sono impostati in maniera preferenziale lungo le principali discontinuità tettoniche e lungo i più importanti sistemi di frattura, sviluppandosi prevalentemente secondo delle direttrici NW-SE.

Gli effetti della morfogenesi carsica si evidenziano sul territorio con la presenza di strutture di piccole, medie e grandi dimensioni.

Le strutture più frequenti e di maggiori dimensioni sono indubbiamente le doline e le grotte; queste ultime non sono state censite nell'intorno dell'area in esame.

PAGE 17 di/of 40

Le prime si presentano sotto forma di blande depressioni dal contorno pseudo-circolare o ellittico, con una forma generalmente piuttosto piatta (a "piatto" o a "scodella") legata, in molti casi, al colmamento dell'originaria depressione con materiali ivi trasportati dalle acque di ruscellamento.

Le depressioni dolinari si formano per effetto dell'azione solvente delle acque pluviali che si esplica in corrispondenza e nelle vicinanze di strutture che permettono l'infiltrazione concentrata delle acque nel sottosuolo (come ad es. sistemi di fratture beanti). In alcuni casi al centro delle doline sono presenti dei veri e propri inghiottitoi, il cui imbocco è, nella maggior parte dei casi, occultato da accumuli detritici.

I depositi che spesso colmano parzialmente o quasi interamente le doline sono in prevalenza costituiti da accumuli detritici a granulometria grossolana (ghiaie) e/o da accumuli di "terra rossa" di spessore variabile in funzione della morfologia e del grado di evoluzione delle singole doline.

Quanto esplicitato in precedenza è mostrato in forma grafica nella Tavola 3 – Carta Geomorfologica.

Figura 7: Carta Geomorfologica di sintesi dell'area in studi

PAGE 19 di/of 40

7. INDAGINI GEOGNOSTICHE E GEOFISICHE

La campagna di indagini geognostiche, pianificata per il presente progetto ha indagato aree in cui l'accesso era consentito, cercando di investigare le litologie caratteristiche del sedime di fondazione degli aerogeneratori. Le indagini eseguite, rappresentano una prima caratterizzazione di massima dei litotipi affioranti all'interno dell'area di progetto, che dovranno necessariamente essere integrate in fase di progettazione esecutiva, andando ad investigare puntualmente ogni postazione in cui è prevista l'ubicazione degli aerogeneratori, nonché di ogni struttura interagente con il sottosuolo.

Nello specifico la campagna di indagini è consistita in:

- ✓ esecuzione di n. 5 indagini sismiche a rifrazione con restituzione tomografica in onde P ed S;
- ✓ Esecuzione di n. 5 Indagini Sismiche MASW, al fine di definire la Vs, eq e di conseguenza la categoria del suolo di fondazione (NTC18).

✓ Esecuzione di n. 5 misure HVSR con impiego di sismografo monocanale tridimensionale.
 L'ubicazione, le metodologie di indagine ed i report dettagliati sono riportati nell'Allegato 1 –
 REPORT SULLE INDAGINI IN SITO.

Le indagini sono state commissionate dal soggetto proponente, Enel Green Power SRL ed eseguite dalla ditta CoStag.

Figura 8: Ubicazione indagini geofisiche.

GRE CODE

GRE.EEC.R.25.IT.W.35796.00.015.00

PAGE

20 di/of 40

Figura 9: Ubicazione indagini geofisiche.

Figura 10: Ubicazione indagini geofisiche.

Con l'Aggiornamento delle Norme Tecniche per le Costruzioni (DM 17.1.2018), per quanto Con l'Aggiornamento delle Norme Tecniche per le Costruzioni (DM 17.1.2018), per quanto riguarda le categorie di sottosuolo, vengono eliminate le categorie S1 ed S2, mentre con l'utilizzo della VSeq, le categorie di sottosuolo B, C e D vengono ampliate inglobando alcune configurazioni che rientravano in S2, quando il bedrock sismico si posizionava tra i 3 ed i 25 metri dal piano

PAGE

21 di/of 40

di riferimento. Inoltre la Categoria di sottosuolo D (che nelle NTC08 erano definite con Vs,30 < 180 m/sec) viene classificata con valori di Vs,eq compresi tra 100 e 180 m/sec. La VSeq, è data dai valori della velocità equivalente di propagazione delle onde di taglio, VS,eq (in m/s), definita dall'espressione:

$$Vs_{,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{s,1}}}$$

con hi = spessore dello stato i-sesimo; Vs,i = velocità delle onde di taglio nell'i-esimo strato; N = numero di strati; H = profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/sec.

Per le fondazioni superficiali, la profondità del substrato viene riferita al piano di imposta delle stesse, mentre per le fondazioni su pali alla testa dei pali.

Nel caso di opere di sostegno di terreni naturali, la profondità è riferita alla testa dell'opera. Per muri di sostegno di terrapieni, la profondità viene riferita al piano di imposta della fondazione (Figura 45).

Figura 11: Definizione della profondità del substrato.

Per depositi con profondità H del substrato superiore a 30 m, la velocità equivalente delle onde di taglio VS,eq è definita dal parametro VS,30, ottenuto ponendo H=30 m nella precedente espressione e considerando le proprietà degli strati di terreno fino a tale profondità.

Il valore della velocità equivalente di propagazione delle onde di taglio (Vs,eq), ottenuto dal

PAGE 22 di/of 40

Modello Medio dell'elaborazione dei dati acquisiti attraverso le basi sismiche, è stato calcolato in riferimento al piano piano di posa delle fondazioni, supposte superficiali ad una profondità di 4,0 m dal p.c..

Come si evince dai profili di velocità mostrati in precedenza, in alcuni casi si nota una inversione delle velocità Vs. La norma definisce che nel caso vi sia una inversione di velocità, si deve fare riferimento, come del resto prescritto in generale dalle NTC2018, alla RSL mediante analisi numerica.

Perché si verifichi una inversione di velocità, devono venirsi a creare situazioni litostratigrafiche dove si verificano contemporaneamente 4 condizioni: un terreno rigido che in profondità sovrasta un terreno soffice con un rapporto Vs rig/ Vs sof superiore a 1.5; la differenza tra le Vs dei due terreni è maggiore di 200 m/s; lo spessore dello strato a velocità minore è maggiore di 5 m; la Vs dello strato più rigido è maggiore o uguale a 500 m/s.

<u>Nel nostro caso tali condizioni non si verificano mai contemporaneamente e pertanto è possibile</u> <u>fare riferimento all'utilizzo dell'approccio semplificato, le cui categorie sono definite in Tab.</u> <u>3.2.II del D.M. 17.01.2018.</u>

Categoria	Caratteristiche della superficie topografica
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteri- stiche meccaniche più scadenti con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consi- stenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
с	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consi- stenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del- le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consi- stenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del- le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
E	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le catego- rie C o D, con profondità del substrato non superiore a 30 m.

Figura 12: Tab. 3.2.II del D.M. 17.01.2018 – Categorie Suolo di Fondazione.

Linea	Vs eq	Categoria di Sottosuolo (D.M. 17.01.2018)
MASW 1	500.48	В
MASW 2	560.26	В
MASW 3	364.61	В
MASW 4	408.65	В
MASW 5	1246.15	A

Per l'interpretazione di dettaglio delle indagini si rimanda all'elaborato "GRE.EEC.R.25.IT.W.35796.00.014.00 - Relazione geologica sismica".

PAGE

23 di/of 40

8. MODELLO GEOLOGICO E GEOTECNICO

Sulla scorta degli studi delle risultanze delle indagini geognostiche effettuate è stato possibile elaborare per l'area di progetto un modello geologico di riferimento, il quale tiene conto di tutte le informazioni acquisite durante il presente studio, che viene nel seguito sintetizzato:

UNITA' GEOTECNICA 1 - TERRENO VEGETALE

Terreno vegetale prevalentemente argilloso-limoso.

UNITA' GEOTECNICA 2 – : Depositi sabbioso-ghiaioso-arenitici [TS01, TS02, TS03, TS04, TS05, TS06, TS07]

Formazione geologica: Depositi Marini Terrazzati

Descrizione litologica: alternanza di sabbie, sabbie con limo, e strati arenitici da mediamente a ben cementati.

Soggiacenza della falda: Assente.

<u>Caratteristiche geotecniche generali</u>: terreni a comportamento geotecnico da discreto a buono, prevalentemente incoerente, a consistenza generalmente medio-bassa nei livelli superficiali, che tende ad aumentare con la profondità.

Comportamento Strato: Granulare sciolto

Stato di addensamento: da mediamente addensato a semicoerente.

UNITA' GEOTECNICA 3 – Depositi sabbioso-limo-argillosi e argillosi

Formazione geologica: Argille Subappennine

Descrizione litologica: Sabbie fini con limo e argilla passanti ad argille propriamente dette

<u>Caratteristiche geotecniche generali:</u> terreni a comportamento geotecnico da discreto a buono, a comportamento coesivo.

Comportamento Strato: Coesivo

Stato di Consistenza: da mediamente consistente a duro.

UNITA' GEOTECNICA 4: Depositi calcarenitici

Formazione geologica: Calcareniti di Gravina

<u>Descrizione litologica</u>: Calcareniti bioclastiche a grana grossolana di colore bianco giallastro da mediamente a scarsamente cementate

<u>Caratteristiche geotecniche generali</u>: terreni a comportamento geotecnico da discreto a buono, con comportamento assibilabile ad un ammasso roccioso dalle discrete qualità.

Comportamento Strato: Roccioso

Stato di addensamento: Da mediamente a ben cementato

UNITA' GEOTECNICA 5: Depositi calcarei [TS08, TS09, TS10]

Formazione geologica: Calcari di Altamura

Descrizione litologica: Calcari micritici biancastri da fratturati ed alterati a compatti.

<u>Caratteristiche geotecniche generali:</u> terreni a comportamento geotecnico in genere buono, con comportamento assibilabile ad un ammasso roccioso dalle buone qualità. La qualità dell'ammasso e le

PAGE

24 di/of 40

caratteristiche geotecniche tendono ad aumentare al diminuire del grado di alterazione e fratturazione dell'ammasso. Per tale motivo l'unità geotecnica viene distinta in due sottounità: quella più superficiale, costituita dai calcari alterati e fratturati e quella più profonda costituita dai calcari da poco fratturati a compatti.

Sulla base del modello geologico di riferimento è possibile inoltre considerare i seguenti aspetti:

Categoria di sottosuolo	A-B
Categoria Topografica	Т1
Falda superficiale	Assente
Rischio liquefazione dei terreni	Nullo
Rischio instabilità dei terreni	Situazione Stabile
Pericolosità geo-sismica del sito	Molto Bassa

I valori delle principali caratteristiche fisiche e meccaniche sono stati ricavati dall'elaborazione di tutte le prove eseguite oltre che da dati bibliografici in possesso dello scrivente riguardanti indagini pregresse su terreni similari a quelli in studio.

In particolare sono state parametrizzate le Unità geotecniche 2, 3, 4 e 5 (a e b); l'Unità 1, costituita da terreno vegetale, date le scadenti caratteristiche meccaniche non viene prese in considerazione, e dovrà necessariamente essere asportato.

Di seguito, viene esplicitata la parametrizzazione geotecnica di massima delle singole Unità precedentemente individuate, con l'indicazione degli aerogeneratori di cui ne costituiscono il sedime di fondazione.

UNITA' GEOTECNICA 2 [U.G.2] – Depositi sabbioso-ghiaioso-arenitici [TS01, TS02, TS03, TS04, TS05, TS06, TS07]

Φ΄ (°)	c' (kPa)	Cu (kPa)	γ (kN/m³)	γ _{sat} (kN/m ³)
30.00	4.00		20.00	20.50

UNITA' GEOTECNICA 3 [U.G.3] – Depositi sabbioso-limo-argillosi e argillosi [UG sottostante la UG2 per TS01, TS02, TS03, TS04, TS05, TS06, TS07]

Φ′ (°)	c' (kPa)	Cu (kPa)	γ (kN/m³)	γ _{sat} (kN/m ³)
25.60	8.00	90.00	19.30	19.40

UNITA' GEOTECNICA 4 [U.G.4] – Depositi calcarenitici [UG sottostante la UG3 per TS01, TS02, TS03, TS04, TS05, TS06, TS07]

Φ΄ (°)	c' (kPa)	Cu (kPa)	γ (kN/m³)	γ _{sat} (kN/m³)
32.00	5.00		21.00	21.00

GRE CODE

GRE.EEC.R.25.IT.W.35796.00.015.00

PAGE

25 di/of 40

UNITA' GEOTECNICA 5 [U.G.5] – Depositi calcarei [TS08, TS09, TS10]

Φ′ (°)	c' (kPa)	Cu (kPa)	γ (kN/m³)	γ _{sat} (kN/m³)
35.00	140.00		22.50	23.00

PAGE

26 di/of 40

9. CRITERI DI VERIFICA

9.1. MODELLAZIONE

La fondazione è stata analizzata considerando i carichi dovuti alle seguenti azioni:

1) il peso proprio

2) il peso del terreno di rinterro (sovraccarico permanente non compiutamente definito)

3) carichi provenienti dalla struttura in elevazione (Fz, Fx, Fy, Mz, Mx, My) e applicati a 20 cm dal piedistallo

Nell'ambito della valutazione geotecnica della fondazione si è proceduto alla determinazione delle rigidezza equivalente verticale alla **Winkler** del terreno di fondazione, adottata nell'ambito della modellazione strutturale: tale parametro è riportato al § 10.4.4.

Il modello geotecnic	o ipotizzato é	è il	seguete:
----------------------	----------------	------	----------

SPESSORE STRATO	UNITÀ GEOTECNICA	PARAMETRI GEOTECNICI CARATTERISTICI
		γ _s (kN/m ³) Peso specifico: 20,00
		Φ' (°) Angolo di attrito di picco: 30,0
11 m	U.G. 2	c' (kPa) Coesione efficace: 4,0
		E (Mpa) Modulo Elastico Statico: 40 ^(*)
		η Coefficiente di Poisson: 0,40
		γ _s (kN/m ³) Peso specifico: 19,3
		Φ' (°) Angolo di attrito di picco: 23,0
12 m	U.G. 3	c' (kPa) Coesione efficace: 7,0
		E (Mpa) Modulo Elastico Statico: 25 ^(**)
		η Coefficiente di Poisson: 0,50

(*)Valore medio assunto da bibliografia. Il modulo elastico medio per un terreno sabbioso a diverso grado di cementazione può variare da un minimo 10MPa ad un massimo di 80MPa. Si assume 40 MPa, data la presenza di banchi arenacei all'interno del deposito.

(**) Valore medio assunto da bibliografia. Il modulo elastico medio per un terreno argilloso può variare da un minimo 15MPa ad un massimo di 250MPa.

Cautelativamente è stata parametrizzata la stratigrafia peggiore tra le due tipologie presenti in sito.

9.2. VERIFICHE ESEGUITE

Le verifiche riguardanti la sicurezza globale e geotecnica sono state eseguite in accordo con il metodo degli stati limite di cui al cap. 2, 4 e 6 di [1], tenendo conto delle ulteriori richieste prestazionali previste nella normativa di settore [5]. In particolare sono state eseguite le:

- 1) verifiche globali di ribaltamento
- 2) verifiche geotecniche di resistenza a slittamento e carico limite
- 3) valutazione della costante di Winkler
- 4) valutazioni dei cedimenti massimi assoluti e differenziali
- 5) valutazione della rigidezza rotazionale dinamica

Le verifiche esposte nel seguito si fondano sui dati di calcolo forniti dal progettista della parte in elevazione, e che sono riassunti nelle successive tabelle (§9.4).

PAGE

27 di/of 40

9.3. APPROCCI DI PROGETTO E COMBINAZIONI DI CARICO

Per le verifiche geotecniche si fa riferimento all'approccio 2, in accordo con la combinazione A1+M1+R3 e le tabelle seguenti:

		Coefficiente	EQU	A1	A2
		$\gamma_{\rm F}$			
Carichi normananti Cr	Favorevoli	24	0,9	1,0	1,0
Carichi permanenti Gi	Sfavorevoli	Ϋ́G1	1,1	1,3	1,0
Carichi permapenti non strutturali C2(1)	Favorevoli	24	0,8	0,8	0,8
Carichi permanenti non strutturali G247	Sfavorevoli	Ϋ́G2	1,5	1,5	1,3
Azioni mariakili O	Favorevoli	27	0,0	0,0	0,0
Azioni variabili Q	Sfavorevoli	YQi	1,5	1,5	1,3

⁽¹⁾Nel caso in cui l'intensità dei carichi permanenti non strutturali o di una parte di essi (ad es. carichi permanenti portati) sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti parziali validi per le azioni permanenti.

Tabella 9.1

Verifica	Coefficiente parziale
	(R3)
Carico limite	$\gamma_R = 2,3$
Scorrimento	$\gamma_R = 1,1$

Tabella 9.2

Nella logica del metodo degli Stati Limite ogni azione è stata classificata in base alla "sorgente" (cioè alla norma di riferimento, [1] e [5]) e al tipo di carico. Ciò anche nell'ottica di operare una corretta applicazione della norma [5], specifica per gli aerogeneratori, assieme con i criteri di progettazione previsti dalla norma [1] valida per tutte le costruzioni civili ed industriali. La tabella seguente riassume, pertanto, i coefficienti parziali da applicare, che differiscono in caso di azione "Abnormal" o "Normal" in accordo con le precedenti tabelle (8.1 e 8.2) estratte da [1] e la tabella 3 di [5].

AZIONE		NORMA DI	COEFFICIENTI PARZIALI γ _F				
ALIONE		RIFERIMENTO	GEO	EQU			
Peso proprio fondazione	Permanente fondazione	[1]	1,00 / 1,30	0,90			
Peso terreno riempimento	Permanente fondazione	[1]	0,80 / 1,50	0,80			
Peso aerogeneratore	Permanente aerogener.	[1] [5]	0,90 / 1,1 1,5	0 0 0,90 / 1,00			
Vento aerogen.	Variabile aerogeneratore	[1] [5]	/ 1,1 1,5	0 1,00 / 1,10 0 1,00 / 1,50			

Green Power

GRE CODE GRE.EEC.R.25.IT.W.35796.00.015.00

PAGE

28 di/of 40

Tabella 9.3: Possibili valori dei coefficienti parziali delle azioni adottati nel presente progetto

Nella tabella a seguire si riporta l'elenco completo delle combinazioni di carico adottate nelle verifiche della fondazione dell'aerogeneratore in oggetto, esplicitate al successivo §9.4; i coefficienti adottati sono in accordo con quanto riportato nella tabella precedente.

	Tine di c	mhinariana		CdC	Coeffi	cienti parziali de	lle azio	oni γ _f	
		ombinazione		N.	Peso proprio	Riempimento	Fz	н	м
	Approccio 2	A1+M1+R3	Abnormal SLU2	1	1,00	1,00	0,80	1,10	1,10
GEO (abnormal)	Approccio 2	A1+M1+R3	Abnormal SLU1	2	1,30	1,30	1,50	1,10	1,10
	Approccio 2	A1+M1+R3	Abnormal SLU2	3	1,00	1,00	0,80	1,10	1,10
	Approccio 2	A1+M1+R3	Normal SLU2	4	1,00	1,00	0,80	1,50	1,50
GEO (normal)	Approccio 2	A1+M1+R3	Normal SLU1	5	1,30	1,30	1,50	1,50	1,50
	Approccio 2	A1+M1+R3	Normal SLU2	6	1,00	1,00	0,80	1,50	1,50

Tabella 9.4: Coefficienti parziali delle azioni utilizzati ai fini del presente progetto

L'azione della neve, che presenta un coefficiente di combinazione $\psi^2 = 0$ in accordo con [1], non è stata mai assunta come azione variabile dominante e, pertanto, non compare in tabella. Le combinazione 7 è assunta come Caratteristica (Rare) e, pertanto ad essa sono state riferite le valutazione delle tensioni (SLE R) su calcestruzzo e armatura (si veda la relazione di calcolo strutturale delle fondazioni), oltre che per la valutazione dei cedimenti di fondazione. La combinazione 9 è utilizzata per le verifiche relative alla superficie di contatto (area d'impronta) terreno - plinto di fondazione (assieme alle combinazioni 7 e 8). Le combinazioni 10 e 11 fanno riferimento agli stati limite di esercizio strutturali (tensioni, fessurazione) e, pertanto, non sono prese in considerazione nell'ambito di questa relazione, ma saranno oggetto di successive fasi di progetto.

9.4. AZIONI DERIVANTI DALLA SOVRASTRUTTURA

Ai soli fini della valutazione dei carichi, è stato considerato un aerogeneratore tipo Siemens Gamesa SG 6.0 – 170. Il documento « D2370721-004 SGRE ON SG 6.0-170 Foundation loads T115-50A.pdf» - preparato dal costruttore delle WTG - riporta gli scarichi in fondazione derivanti dall'aereogeneratore, in accordo con le indicazioni delle norma [5]. I valori dei carichi, non fattorizzati, sono riportati nelle successive tabelle e, pertanto ad essi sono da applicare i "Partial Load Factor" in accordo con quanto riportato nella tabella 3 al § 7.6.2.1 della norma [5].

Figura 13: Simboli e segni adottati nelle successive tabelle fornite dal fabbricante degli aerogeneratori

Extreme load

The extreme loads for the design of the SG 6.0-170 T115-50A foundations are shown in Table 3.

Load case	Load factor	F _x (kN)	F _y (kN)	F _z (kN)	F _{xy} (kN)	M _x (kNm)	M _y (kNm)	M _z (kNm)	M _{xy} (kNm)
Dlc22_3bn_ V11.0_n_s7	1,1	1688,55	55,55	-7508,71	1689,47	4580,25	196184,46	412,39	196237,91
Dic22_3bn_ V11.0_n_s7	1.0	1535,05	50,5	-6826,1	1535,88	4163,87	178349,5	374,9	178398,1

Table 3 SG 6.0-170 HH115m Factored/Unfactored Extreme loads at tower bottom

The loads provided by Siemens Gamesa as "Extreme Loads" in this section are the maximum static loads for the specific wind turbine calculated according to IEC 61400 or DIBt standard for each site class. These loads must not be combined with any other type of load. They include the dynamic behaviour of the structure and correspond to the most unfavourable case at the base of the wind turbine among the different load cases, according to IEC 61400 or DIBt. Therefore, the loads provided by Siemens Gamesa as "Extreme Loads" are directly the foundation design loads. They shall not be divided or combined with any other load.

Characteristic load

Characteristics loads (maximum M_{xy} bending moment load combination of groups N, E and T according to GL2012 Sec. 5.4.3.1.3, or equivalent groups N-T according to IEC 61400-1 2006) have been estimated as shown in Table 4:

Load case	F _x (kN)	F _y (kN)	F _z (kN)	F _{xy} (kN)	M _x (kNm)	M _y (kNm)	M _z (kNm)	M _{xy} (kNm)
DIc62_V42.5_ 060_s9	1535,05	50,5	-6826,1	1535,88	4163,87	178349,5	374,9	178398,1

Table 4 SG 6.0-170 HH115m Characteristics Loads at the base of the tower

Quasi-permanent load

Loads according to GL2010, considering DLC 1.1 and 6.4 with a probability of exceedance of pf = 10^{-2} (equivalent to 1750 h in 20 years) with γ F = 1.0 have been estimated as shown in Table 5:

pf=0.01000		Tower loads at section						
Section Height from bottom (m)	Fx (KN)	Fy (KN)	Fxy (KN)	Fz (KN)	Mx (KNm)	My (KNm)	Mxy (KNm)	Mz (KNm)
0	1002.0 7	123,15	1002,4 8	-6629,52	18223,36	119459,4 9	119805,99	4928,71

Table 5 SG 6.0-170 HH115m Quasi Permanent Loads at tower bottom

Tabella 9.5: Scarichi in fondazione forniti sa Siemens Gamesa secondo [5]

Figura 14: Simbologia adottata nell'analisi dei carichi e nelle verifiche

Oltre a queste azioni si sono considerate quelle derivanti dal peso proprio della struttura di fondazione e dal peso del terreno di riempimento.

PAGE

31 di/of 40

10. SOLUZIONE: FONDAZIONE DIRETTA

La fondazione sarà in calcestruzzo armato, con pianta di forma circolare di diametro De = 24,50 m, spessore variabile da un minimo di 0,90 m sul bordo esterno, ad un massimo di 3,55 m in corrispondenza della zona centrale di attacco della parte in elevazione della torre.

Figura 15: Geometria della fondazione diretta dell'aereogeneratore

GEOMETRIA FONDAZIONE	
Diametro esterno fondazione	24,50 m
Diametro esterno piedistallo	6,00 m
Spessore fondazione al bordo esterno	0,90 m
Spessore massimo della suola di fondaz.	3,00 m
Scalino esterno del piedistallo	0,55 m
Ringrosso inferiore plinto (zona centrale)	0,30 m
Diametro zona di ringrosso inferiore plinto	6,00 m
Altezza massima piedistallo	3,55 m
Spessore minimo di ricoprimento fondaz.	0,40 m
Pendenza profilo terra di ricoprimento	1,00%
Pendenza estradosso fondazione	22,70%
Tabella 6: Geometria del plinto	•

La parte più alta del plinto, cioè la zona centrale indicata come piedistallo, emerge dal terreno post-sistemazione di 15 cm (tenuto conto della pendenza del riempimento).

PAGE

32 di/of 40

10.1. PESO PROPRIO DELLA FONDAZIONE

Il peso del plinto di fondazione è pari a 21.489,75 kN.

10.2. PESO PROPRIO DEL RIEMPIMENTO

E' previsto un ritombamento al di sopra e a fianco del plinto di fondazione, da realizzarsi con materiale drenante di buone caratteristiche meccaniche. Si assume un peso di volume pari a 18 kN/m³, e si assegna questo peso come pressione verticale secondo quanto riportato nella figura seguente.

Raggio Interno	Raggio Esterno	Area Corona	Peso ricoprimento su singolo anello	g ricoprimento
			Ŭ	•••
[m]	[m]	[m²]	[kN]	[kN/m²]
3,00	4,85	45,60	506,30	11,10
4,85	6,70	67,09	1223,97	18,24
6,70	8,55	88,59	2252,46	25,43
8,55	10,40	110,08	3591,78	32,63
10,40	12,25	131,57	5241,91	39,84

Figura 10.16: Carico del riempimento

La risultante del peso del riempimento vale 12.522,09 kN.

10.3. RIEPILOGO CONDIZIONI DI CARICO

SCADICULT IN CONDUCTIONS ESTREME (JEC 64100)	Fx	Fy	Fz	Mx	Му	Mz
SCARICHI IN CONDIZIONI ESTREME (IEC 64100)	[kN]	[kN]	[kN]	[kNm]	[kNm]	[kNm]
Normal[Fc=1,35]	2.072,32	68,18	-9.215,24	5.621,22	240.771,83	506,12
Abnormal[Fc=1,1]	1.688,56	55,55	-7.508,71	4.580,26	196.184,45	412,39

SCARICHI IN CONDIZIONI NORMAL (IEC 64100)	Fx [kN]	Fy [kN]	Fz [kN]	Mx [kNm]	My [kNm]	Mz [kNm]
Normal	1.535,05	50,50	-6.826,10	4.163,87	178.349,50	374,90
Abnormal	1.535,05	50,50	-6.826,10	4.163,87	178.349,50	374,90

SCARICHI COND. OPERAZIONALI (IEC 64100)	Fxy	Fz	Мху	Mz
	[kN]	[kN]	[kNm]	[kNm]
Operational	1.002,48	-6.629,52	119.805,99	4.928,71

Tabella 10.7:Riepilogo delle condizioni di carico secondo la convenzione di cui alla Figura 13

PAGE

33 di/of 40

10.4. VERIFICHE GEOTECNICHE

10.4.1. COMBINAZIONI DI CARICO E FATTORI DI SICUREZZA

Nella tabelle a seguire si riporta un riepilogo dei fattori parziali, dei coefficienti e fattori di sicurezza.

Verifica		CdC N.	Ti	Fattore di Sicurezza		
	Carico limite	1	Approccio 2	A1+M1+R3	Abnormal SLU2	6,46
GEO (abnormal)	Carico limite	2	Approccio 2	A1+M1+R3	Abnormal SLU1	6,68
(ubiloiniui)	Scorrimento	3	Approccio 2	A1+M1+R3	Abnormal SLU2	12,09
	Carico limite	4	Approccio 2	A1+M1+R3	Normal SLU2	3,53
GEO (normal)	Carico limite	5	Approccio 2	A1+M1+R3	Normal SLU1	4,89
	Scorrimento	6	Approccio 2	A1+M1+R3	Normal SLU2	8,71

Tabella 10.8: Riepilogo delle verifiche geotecniche e globali e relativi coefficienti di sicurezza (F.S.)

10.4.2. CARICO LIMITE

Le verifiche a carico limite sono dettagliate nelle successive tabelle. Si è adottato il metodo di verifica di cui all'appendice D di [4] (Eurocodice 7).

SCARICHI DI PROGETTO PER VERIFICHE DI PORTANZA									
	Peso proprio	Riempimento	Fz	Н	М				
Normal SLU2	1,00	1,00	1,50	0,80	1,50				
Normal SLU1	1,30	1,30	0,00	1,50	1,50				
Abnormal 2	1,00	1,00	1,50	0,80	1,10				
Abnormal 1	1,30	1,30	0,00	1,50	1,10				
	FOUNDATION BOTTOM								
	Normal SLU2	Normal SLU1	Abnormal 2	Abnormal 1					
Fz	38.772,79	58.784,34	38.772,79	56.053,90					
Fxy	2.303,82	2.303,82	1.689,47	1.689,47					
Мху	276.508,33	276.508,33	202.772,77	202.772,77					

Tabella 10.9: Analisi scarichi in fondazione

Si effettuano le verifiche per le sole condizioni drenate, in considerazione del fatto che all'interno dello strato UG2 sono le uniche verificabili, in virtù della natura esclusivamente granulare.

CdC	Q _{rd} (kPA)	Q _{sd} (kPA)	FS	5
Normal SLU1	1.166	238	4,89	> 1 OK
Normal SLU2	959	271	3,53	> 1 OK
Abnormal SLU1	1.261	189	6,67	> 1 OK
Abnormal SLU2	1.122	174	6,46	> 1 OK

 Tabella 10.10: Verifica a carico limite in condizioni drenate – Per tutte le combinazioni

10.4.3. SLITTAMENTO

Di seguito di dettaglia la verifica a slittamento.

GRE CODE

GRE.EEC.R.25.IT.W.35796.00.015.00

PAGE

34 di/of 40

Peso pro	oprio 0 TION B Normal 38.77 2.303 276.50 isi scar RESISTER	Riempimento 1,00 1,00 COTTOM SU2 2,79 3,82 08,33 richi in fondazi NZA A SLITTAME Soil parameters Soil parameters STR01 - Laye	Fz 1,50 1,50 ione STO	H 0,80 0,80 Abnorma 38.772, 1.689,4 202.772, 202.772, Norma 4 276.508 759,17	I 2 79 77 77 77 Load al SLU2 kPa kNm kNm	M 1,50 1,10
1,00 1,00 FOUNDAT N bella 10.11: Anali LUTAZIONE DELLA R Co drai	0 0 TION B Normal 38.77 2.303 276.50 isi scar RESISTEI	1,00 1,00 SOTTOM SECTION SECTION SECTION SECTION Soil parameters Soil parameters SECTION STR01 - Laye	1,50 1,50	0,80 0,80 Abnorma 38.772,7 1.689,4 202.772, 202.772, Norma 4 276.508 759,17	I 2 79 77 77 Load al SLU2 kPa kNm kNm	1,50 1,10
LUTAZIONE DELLA R	0 TION B Normal 38.77 2.303 276.50 <i>isi scar</i> RESISTER	1,00 SOTTOM SU2 2,79 3,82 08,33 richi in fondazi NZA A SLITTAME Soil parameters STR01 - Laye	1,50 ione ENTO	0,80 Abnorma 38.772, 1.689,4 202.772, Norma 4 276.508 759,17	Load al SLU2 kPa kNm kNm	1,10
FOUNDAT	TION B Normal 38.77 2.303 276.50 isi scar RESISTER	Soil parameters	ione ENTO	Abnorma 38.772, 1.689,4 202.772, 202.772, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	I 2 79 77 77 Load al SLU2 kPa kNm kNm	comb.
bella 10.11: Anali	Normal 38.77 2.303 276.50 <i>isi scar</i> RESISTER	Soil parameters Soil parameters ▼ STR01 - Laye	ione INTO	Abnorma 38.772, 1.689,4 202.772, 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.000000	Load al SLU2 kPa kNm kNm	comb.
bella 10.11: Anali	38.77 2.303 276.50 <i>isi scar</i> RESISTEI	2,79 3,82 08,33 richi in fondazi NZA A SLITTAME Soil parameters	ione INTO	38.772, 1.689,4 202.772, Norma 4 276.508 759,17	79 77 77 Load al SLU2 kPa kNm kNm	comb.
bella 10.11: Anali	2.303 276.50 <i>isi scar</i> RESISTER	3,82 08,33 richi in fondazi NZA A SLITTAME Soil parameters ▼ STR01 - Laye	ione INTO	1.689,4 202.772, Norm 4 276.508 759,17	Load al SLU2 kPa kNm kNm	comb.
bella 10.11: Anali	276.50 isi scar RESISTER	08,33 richi in fondazi NZA A SLITTAME Soil parameters ▼ STR01 - Laye	ione INTO	202.772, Norm 4 276.508 759,17	Load al SLU2 kPa kNm kNm	comb.
bella 10.11: Anali	RESISTEI	richi in fondazi NZA A SLITTAME Soil parameters ▼ STR01 - Laye	ione INTO	Norma 4 276.508 759,17	Load al SLU2 kPa kNm kNm	comb.
LUTAZIONE DELLA R Co drai	ndition ined	NZA A SLITTAME Soil parameters ▼ STR01 - Laye	s s er 1 🔽	Norm 4 276.508 759,17	Load al SLU2 kPa kNm kNm	comb.
LUTAZIONE DELLA R Co drai	ndition ined	Soil parameters	s er 1 🗸	Norma 4 276.508 759,17	Load al SLU2 kPa kNm kNm	comb.
Co drai Mxy/Fz	ined	Soil parameters STR01 - Laye	s er 1 ▼	Norma 4 276.508 759,17	Load al SLU2 kPa kNm kNm	comb.
Co drai Mxy/Fz	ondition ined	Soil parameters	S :r1▼	Norm 4 276.508 759,17	Load al SLU2 kPa kNm kNm	comb.
drai Mxy/Fz	ined	STR01 - Laye	s :r 1 ▼	4 276.508 759,17	kPa kNm kNm	-
Mxy/Fz				4 276.508 759,17	kPa kNm kNm	
Mxy/Fz				4 276.508 759,17	kPa kNm kNm	
Mxy/Fz				276.508 759,17	kNm kNm	
Mxy/Fz				759,17	kNm	
Mxy/Fz						
Mxy/Fz				38.773	kN	
M _{xy} /Fz				2.304	kN	
Mxy/Fz				12,25	m	
•				7,13	m	
2*(R-e)				10,24	m	
2 R [1-(1-Be/2R	R)²] ^{1/2}			19,92	m	
2*[R ² arccos(e/	/R)-e*(l	$R^2 - e^2)^{1/2}$]		142,88	m²	
$(Aeff^{Le}/Be)^{1/2}$				16,67	m	
Leff*Be/Le				8,57	m	
$2*M_z/I_{eff}+[H^2+$	-(2*Mz/]	[eff) ²] ^{1/2}		2.396,68	kN	
				30,0°		
			30° =	30,0°		
				4	kPa	
				1,100)	
	2 (R-e) 2 R [1-(1-Be/2F 2*[R ² arccos(e (Aeff*Le/Be) ^{1/2} Leff*Be/Le 2*Mz/Ieff+[H ² +	2 (R-e) 2 R [1-(1-Be/2R) ²] ^{1/2} 2*[R ² arccos(e/R)-e*(1 (Aeff*Le/Be) ^{1/2} Leff*Be/Le 2*Mz/Ieff+[H ² +(2*Mz/	2 '(R-e) 2 R $[1-(1-Be/2R)^2]^{1/2}$ 2*[R ² arccos(e/R)-e*(R ² - e ²) ^{1/2}] (Aeff*Le/Be) ^{1/2} Leff*Be/Le 2*Mz/Ieff+[H ² +(2*Mz/Ieff) ²] ^{1/2}	2 (R-e) 2 R $[1-(1-Be/2R)^2]^{1/2}$ 2*[R ² arccos(e/R)-e*(R ² - e ²) ^{1/2}] (Aeff*Le/Be) ^{1/2} Leff*Be/Le 2*Mz/Ieff+[H ² +(2*Mz/Ieff) ²] ^{1/2} 30° =	$2^{(R-e)} = 10,24$ $2 R [1-(1-Be/2R)^{2}]^{1/2} = 19,92$ $2^{*}[R^{2} \arccos(e/R)-e^{*}(R^{2} - e^{2})^{1/2}] = 142,88$ $(Aeff^{*}Le/Be)^{1/2} = 16,67$ $Leff^{*}Be/Le = 8,57$ $2^{*}Mz/Ieff + [H^{2}+(2^{*}Mz/Ieff)^{2}]^{1/2} = 2.396,68$ $30,0^{\circ} = 30,0^{\circ}$ 4 $1,100$	$2^{(R-e)} = 10,24 \text{ m}$ $2 \text{ R } [1-(1-\text{Be}/2\text{R})^2]^{1/2} = 19,92 \text{ m}$ $2^{*}[\text{R}^2 \arccos(\text{e}/\text{R})-\text{e}^{*}(\text{R}^2-\text{e}^2)^{1/2}] = 142,88 \text{ m}^2$ $(\text{Aeff}^{*}\text{Le}/\text{Be})^{1/2} = 16,67 \text{ m}$ $\text{Leff}^{*}\text{Be}/\text{Le} = 8,57 \text{ m}$ $2^{*}\text{Mz}/\text{Ieff}+[\text{H}^2+(2^{*}\text{Mz}/\text{Ieff})^2]^{1/2} = 2.396,68 \text{ kN}$ $30,0^{\circ}$ $30^{\circ} = 30,0^{\circ}$ 4 kPa $1,100$

Tabella 10.12: Verifica a slittamento – Combinazione Normal SLU 2

GRE CODE

GRE.EEC.R.25.IT.W.35796.00.015.00

PAGE

35 di/of 40

SLIDING CHECK		Condition Soil parameters drained Image: STR01 - Layer 1	Abno	Load comb.
Cohesion	c'		4	kPa
Design bending moment	Mxy		202.773	kNm
Design torque moment	Mz		556,73	kNm
Design vertical load	Fz		38.773	kN
Design tangential load	Н		1.689	kN
Radius	R		12,25	m
Eccentricity	e	Mxy/Fz	5,23	m
Ellipse minor axes	Be	2*(R-e)	14,04	m
Ellipse major axes	Le	$2 \text{ R} [1-(1-\text{Be}/2\text{R})^2]^{1/2}$	22,16	m
Effective loaded area	Aeff	$2*[R^2 \arccos(e/R)-e^*(R^2 - e^2)^{1/2}]$	223,19	m²
Effective lenght	Leff	$(Aeff^{*}Le/Be)^{1/2}$	18,77	m
Effective width	Beff	Leff*Be/Le	11,89	m
Horizontal force	H'	$2*M_z/I_{eff}+[H^2+(2*M_z/I_{eff})^2]^{1/2}$	1.749,84	kN
Friction angle	φ'		30,0°	
Structground friction	δ'	30° =	30,0°	
Adhesion	\mathbf{c}_{a}		4	kPa
Resistance factor	γR		1,100)
Design sliding resist.	Rd	$(Fz \tan(\delta) + Aeff c_a) / \gamma_R =$	21.162	kN
Sliding check	FS	21162 / 1750 =	12,094	>1 OK

Tabella 10.13: Verifica a slittamento – Combinazione Abnormal SLU 2

10.4.4.

VALUTAZIONE MODULO DI REAZIONE (WINKLER)

	VALUTAZIONE		D DI REAZIONE SOTTOFONDO (WINKLER)	
		_		-
		۲	on stratum over bedrock	
		0	on stratum over half-space	
n. stratigraphy	1	0	embledded in stratum over bedrock	

Parameter	Symbol	Expression / note	V	alue
Static shear modulus	G		14,29	N/mm²
Static Young modulus	Е		40,00	N/mm²
Poisson ratio	v		0,40	-
Foundation radius	R		12,25	m
Thickness of layer	Н		11,00	m
	αr	(for circular rigid foundation)		-
Winkler modulus	Kw	$\frac{4GR}{1-\nu}(1+1.28\frac{R}{H})\frac{1}{\pi R^2}$	6.002,30	kN/m³

Tabella 10.14: Valutazione della costante di Winkler

10.4.5. VALUTAZIONE DEI CEDIMENTI

I cedimenti medio e differenziale in combinazione SLE Rara (Normal) sono valutati attraverso

PAGE 36 di/of 40

il metodo semplificato.

Si assume che il cedimento medio sia pari al rapporto tra la pressione media e la costante di Winkler di cui al punto precedente. La pressione media, sulla base dell'analisi di carichi esposta ai punti precedenti, vale:

QMEDIA,SLE R = 58.784,34 /(3,1415*12,25^2) = 124,70 kN/m²

Pertanto il cedimento medio atteso, se si escludono gli effetti legate alle pressioni efficaci litostatiche (dovute, in sostanza, al peso del terreno di scavo rimosso), vale:

Cedimento elastico medio atteso = 100 * 124,70 / 6.002,30 ≈ 2,08 cm.

Questa valutazione si basa, oltre che sul modello di terreno alla Winkler, sull'ipotesi di fondazione deformabile (rispetto al terreno), dunque in grado di trasmettere un campo di pressioni di contatto con andamento quasi lineare.

Il cedimento differenziale massimo atteso, sempre in combinazione rara, è valutato secondo Bowles:

Parameter	Symbol	Expression / note	V	alue
Poisson ratio	v			
Static Young modulus	Е	(Layer 1)	40,00	N/mm²
		(Layer 2)	25,00	N/mm²
		(mean value)	40,00	N/mm²
Thickness of Layer 1	t1	(Layer 1)	11,00	m
Bending moment	М	(Rare)	184.338,89	kNm
Influence factor	Iθ	(rigid circular spread foundation)	5,53	
Static rotation	tan(θ)	$\tan(\theta) = \frac{(1-\upsilon^2)}{E} \frac{M}{B^2 L} I_{\theta}$	1,58	mm/m

Tabella 10.15: Valutazione del cedimento massimo differenziale (rotazione) in combinazione SLE rara

Pertanto il cedimento medio vale 20,8 mm mentre la rotazione vale 1,58 mm/m (38,72 mm per D=24,5m).

Con riferimento alla trattazione di Sowers (1962), si può assumere per strutture assimilabili a WTG (ciminiere e silos), un valore ammissibile del cedimento tra 75 e 130 mm, mentre come cedimento rotazionale, un valore di 0,004D (nel caso in esame 98mm). L'analisi ha perciò evidenziato che nel caso in esame i valori dei cedimenti sono assolutamente compatibili con la funzionalità delle strutture in elevazione.

10.4.6. VALUTAZIONE DELLA RIGIDEZZA ROTAZIONALE DINAMICA

Si riporta a seguire la valutazione della rigidezza rotazionale dinamica e la relativa verifica rispetto al valore minimo richiesto dal fabbricante della torre. La rigidezza rotazionale dinamica è assunta pari a:

PAGE

37 di/of 40

Kr =8 Gdyn R³ / [3 (1-v)]

- Gdyn = modulo a taglio dinamico di progetto
- R = raggio del plinto
- v = coeficiente di Poisson

Per il calcolo del modulo a taglio dinamico si fa riferimento alla velocità delle onde di taglio (Vs) del sottosuolo, mediata sulla profondità significativa in funzione delle pressioni indotte dai carichi.

Si adotta la formula Gdyn = $0.35 \rho < Vs > 2$ in cui < Vs > il valore medio ponderato della velocità delle onde di taglio e ρ la densità media del sottosuolo. Nel caso in esame la < Vs > è stata assunta conservativamente pari al valore minimo della velocità equivalente delle onde a taglio valutate nell'ambito delle indagini geofisiche esecutive MASW di cui alla relazione geologica.

Soil density	ρ =		2,00 kg/dm ³
Shear wave velocity (design value)	<vs> =</vs>		267,00 m/s
Poisson ratio	v =		0,40
Dynamic shear modulus (γ =0.001)	Gdyn =	0,35 * 2 * 267 ² / 1000 =	49,90 N/mm²
Foundation radius	R =		12,25 m
Rotational stiffness	Kr =	8 * 49,9 * 12,253 / 3 / (1-0,4) =	407.705,26 MNm/rad
Min required Kr (from manifacturer)	Kr,min =		150.000,00 MNm/rad
		CHECK	ОК

PAGE 38 di/of 40

11. SOLUZIONE ALTERNATIVA: FONDAZIONE SU PALI

Sulla base dei dati provenienti dalle prove eseguite in sito, ed in considerazione delle informazioni bibliografiche, la soluzione con fondazione diretta risulta essere la più compatibile con le caratteristiche del sito.

Tuttavia, il dimensionamento di dettaglio in fase di progettazione esecutiva sarà eseguito a valle di indagini sulle singole posizioni, non eseguibili in questa fase per la non disponibilità delle aree di sedime proposte per le WTG. A solo titolo esemplificativo, si presenta perciò una soluzione di fondazione che prevede l'utilizzo di plinto su pali trivellati e gettati in opera, di opportuno diametro e lunghezza, adeguatamente armati.

La fondazione potrà avere pianta di forma circolare di diametro De = 21,00 m, spessore variabile da un minimo di 1,30 m sul bordo esterno, ad un massimo di 3,55 m in corrispondenza della zona centrale di attacco della parte in elevazione della torre.

Figura 17: Geometria della fondazione su pali dell'aereogeneratore

GEOMETRIA FONDAZIONE	
Diametro esterno fondazione	21,00 m
Diametro esterno piedistallo	6,00 m
Spessore fondazione al bordo esterno	1,30 m
Spessore massimo della suola di fondaz.	3,00 m
Scalino esterno del piedistallo	0,55 m
Ringrosso inferiore plinto (zona centrale)	0,30 m
Diametro zona di ringrosso inferiore plinto	6,00 m
Altezza massima piedistallo	3,55 m
Spessore minimo di ricoprimento fondaz.	0,40 m
Pendenza profilo terra di ricoprimento	1,00%
Pendenza estradosso fondazione	22,70%
Numero Pali	30

PAGE

39 di/of 40

Raggio Corona interna	6
Numero Pali corona interna	12
Raggio Corona esterna	9
Numero Pali corona esterna	18

Tabella 16: Geometria del plinto

La parte più alta del plinto, cioè la zona centrale indicata come piedistallo, emerge dal terreno post-sistemazione di 15 cm (tenuto conto della pendenza del riempimento). Per questioni legate prescrizioni normative di interdistaza tra i pali, si prevedono cautelativamente due corone di pali, la più interna, con raggio 6 m, con 12 pali, la più esterna, con raggio 9 m, con 18 pali. Sono previsti pali con diametro 1 m e lunghezza 38m.

PAGE 40 di/of 40

12. CONCLUSIONI

Le verifiche incluse nel presente elaborato, tengono in considerazione i carichi relativi ad un aerogeneratore tipo e delle assunzioni relative ai modelli geotecnici.

Le caratteristiche geometriche delle due tipologie di fondazione descritte nel presente elaborato dovranno confermarsi mediante dimensionamento di dettaglio in fase di progettazione esecutiva, con i carichi di dettaglio sitospecifici forniti dal produttore delle turbine eoliche e a valle di indagini di dettaglio da eseguire sulle singole posizioni. Per questo motivo, la soluzione di fondazione potrà prevedere, in relazione ai carichi ed al terreno, l'utilizzo di una fondazione diretta o su pali trivellati.