

Spett.le

ISPRA

Servizio interdipartimentale per l'indirizzo di Coordinamento e il controllo delle attività ispettive Via Vitaliano Brancati, 48 c.a. Ing. Alfredo Pini 00144 Roma protocollo.ispra@ispra.legalmail.it

Ministero Ambiente e Tutela del Territorio e del Mare
DVA – DIV IV
Via C. Colombo, 44
00147 Roma
CRESS@pec.minambiente.it

ARPA Lombardia
Settore Attività Produttive e Laboratori
Viale Restelli, 3/1
20124 Milano
arpa@pec.regione.lombardia.it

Regione Lombardia

Direzione Generale Ambiente, Energia e Sviluppo U.O. Prevenzione Inquinamento Atmosferico e Autorizzazione Integrata Ambientale (IPPC) Via Stresa, 24 - 20125 Milano ambiente@pec.regione.lombardia.it

ARPA Dip. di Mantova
U.O. Sistemi Ambientali
V.le Risorgimento, 44 - 46100 Mantova
dipartimentodimantova.arpa@pec.regione.lombardia.it

Provincia di Mantova Servizio Inquinamento, Rifiuti ed Energia Uff. AIA - Ambiente Via Don Maraglio, 4 - 46100 Mantova provinciadimantova@legalmail.it

Comune di Ostiglia
Ufficio tecnico
Via XX Settembre, 22
46035 Ostiglia (MN)
comune.ostiglia@pec.regione.lombardia.it

27 Dicembre 2021 Prot.168/21

OGGETTO PEC: Controlli AIA-EP-MN-OSTIGLIA-RAPPORTO

ACCOMPAGNATORIA RELATIVA AI REPORT delle verifiche effettuate sui sistemi SME 1-2-3, Strumento Portatile Horiba PG250, Caldaie Ausiliarie 1-2 e Analizzatore ABB di magazzino in scorta alle cabine SME nel periodo 27/09÷14/10 2021.

Con riferimento a quanto prescritto dal D.M. n. 369 del 09/09/2021 di riesame dell'Autorizzazione Integrata Ambientale (AIA) rilasciata con provvedimento n. DSA-DEC-2009-976 del 03/08/2009 alla società EP Produzione S.p.A, inviamo copia delle relazioni ricevute dal laboratorio incaricato Tecnologie d'Impresa relative alle indagini analitiche alle emissioni dei Gruppi 1-2-3, alle verifiche strumentali delle Caldaie Ausiliarie 1-2, dello strumento portatile Horiba PG250 e dell'Analizzatore di scorta ABB della Centrale EP Produzione SpA di Ostiglia eseguite nel periodo 27/09÷14/10 2021.

Alleghiamo i seguenti file:

A - Relazione QAL2 TG1-TG2-TG3

Il report "*Relazione QAL2 TG1-TG2-TG3*" contiene l'elenco delle prove e risultati relativi alle verifiche di QAL2, linearità strumentale e IAR suddivise nei seguenti allegati della Relazione stessa:

"Allegato N.2": determinazione QAL2 TG1-2-3;

"Allegato N.3": verifica Linearità analizzatori Sme1-2-3 + analizzatori di scorta;

"Allegato N.4": verifica IAR analizzatori e strumenti sistemi analisi SME.

Allegato N.2:

OAL2, TARATURA e CONVALIDA AMS secondo UNI EN 14181:2015:

in applicazione della norma UNI EN 14181:2015 il Laboratorio incaricato ha proceduto ad effettuare i test e le analisi necessari alla ridefinizione della Funzione di Taratura secondo il procedimento QAL2: le nuove funzioni di taratura sono inserite nel sistema di elaborazione dati SME il giorno 01/01/2022, in sostituzione delle precedenti in vigore dal 21/03/17 (capitolo 9.0, "PROVA QAL2 – RISULTATI"). Si fa notare che quasi tutti gli intervalli di validità arrivano a coprire il Limite di Legge; solo nel caso dell'analizzatore di CO del TG3 l'intervallo di validità (0÷23,68mg/Nm³) è inferiore al Limite di Legge [25mg/Nm³] per cui è stata verificata l'idoneità dell'estrapolazione fino a valori oltre il limite, usando materiali di riferimento. Si ricorda che il sistema di Elaborazioni Dati SME è predisposto, come da Normativa UNI EN 14181:2015, al monitoraggio e alla registrazione dei valori che oltrepassano l'intervallo di validità. Si fa presente comunque che nelle condizioni di normal funzionamento della macchina, nelle quali si è sottoposti al rispetto del Limite di Legge, il valore di CO misurato è pari a Zero o pochi mg, quindi ben lontano dal punto limite dell'intervallo di validità.

Vengono inoltre configurati a sistema i valori dell'IC (intervallo di confidenza) come da report del Laboratorio incaricato, capitolo 9.0, "PROVA QAL2 – RISULTATI". L'introduzione

degli IC ottempera alla richiesta pervenuta nel "Rapporto conclusivo - Attività di controllo ex art. 29-decies del Dlgs 152/06 e s.m.i., comma 3" di ISPRA/Arpa del 18/12/2020 a seguito dell'attività di controllo effettuata dal 11/11/2020 al 17/12/2020.

Sono inoltre state determinate, a titolo conoscitivo, le funzioni di taratura QAL2 dell'ossigeno, parametro che attualmente non è sottoposto nel sistema SME a correzione QAL2. La verifica è stata eseguita con riferimento alla richiesta espressa da Arpa nel "Rapporto conclusivo - Attività di controllo ex art. 29-decies del Dlgs 152/06 e s.m.i., comma 3" di ISPRA/Arpa del 18/12/2020 a seguito dell'attività di controllo effettuata dal 11/11/2020 al 17/12/2020. L'elaborazione della funzione di taratura QAL2 dell'ossigeno del TG1 non è risultata soddisfacente; pertanto, la stessa prova verrà ripetuta a Marzo 2022 in concomitanza con le verifiche semestrali previste sui TG e Caldaie Ausiliarie relativamente a parametri discontinui e polveri PM2,5/10.

Allegato N.3:

-verifica di linearità strumentale degli analizzatori gas NO-CO-O2 delle cabine SME1-2-3 + analizzatori di scorta:

gli analizzatori gas in cabina analisi e quelli in scorta a magazzino, verificati con strumentazione di riferimento sulla risposta alla linearità (verificata su 5 punti per tutte le tipologie e scale strumenti, tranne CO f.s.75mg su 10 punti), hanno evidenziato prestazioni in linea con i parametri dichiarati dal costruttore, per cui si conferma l'idoneità di tale strumentazione ad eseguire operazioni di misura utilizzabili per dimostrare la conformità al valore Limite di emissione (capitolo 8.7, "Verifica linearità strumentale").

-verifica dell'efficienza dei convertitori catalitici NOx>NO:

le verifiche dell'efficienza dei convertitori sottoposti al test sono risultate ottimali (capitolo 8.8, "Verifica dell'efficienza del convertitore NO₂-NO").

Allegato N.4:

verifica di indice di accuratezza relativo (IAR) del sistema Sme:

N.B.: si premettere che nel caso dei grandi impianti di combustione le procedure di garanzia di qualità dei sistemi di monitoraggio delle emissioni sono soggette alla norma UNI EN 14181:2015, pertanto non si applicano le verifiche di cui al paragrafo "4" dell'allegato VI alla Parte Quinta del D.Lgs. 152/2006 e s.m.i. (Rif. D.Lgs. 183/2017).

Il calcolo dello IAR è stato comunque eseguito a titolo conoscitivo, oltre che per continuità rispetto a quanto svolto negli anni precedenti.

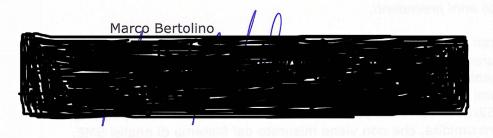
Sulla base dei dati misurati è possibile evidenziare che gli analizzatori $CO-NO-O_2$ possiedono un grado di accuratezza soddisfacente in quanto superiore alla soglia dell'80% prevista dalla normativa vigente.

Gli analizzatori di portata fumi sono stati sottoposti alla verifica dell'Indice di Accuratezza Relativo ai sensi del D.Lgs 152/2006 con esito positivo; la stessa verifica, con esito positivo, è stata eseguita al parametro umidità, che non viene misurato dal Sistema di analisi SME, ma stimato dal Sistema di elaborazione SME in base alla quantità e qualità del gas naturale (capitolo 10.0, "VERIFICA DELL'INDICE DI ACCURATEZZA RELATIVO").

B- Parametri Conoscitivi

Il Report "*Relazione parametri conoscitivi TG1-TG2-TG3*" contiene le misurazioni ed analisi effettuate al fine del rilievo dei Parametri Conoscitivi sui gas di combustione dei Turbogas1-2-3.

la presente indagine analitica valuta i livelli emissivi dei parametri conoscitivi previsti dal Piano di Monitoraggio e Controllo dell'Autorizzazione Integrata Ambientale (polveri totali e Biossido di Zolfo).


Alla luce dei risultati ottenuti, si osserva che le concentrazioni dei parametri campionati sono risultati analiticamente assenti o presenti in concentrazioni molto contenute.

C - Linearità ed emissioni C1-C2 + Linearità Horiba PG250

Il Report "Relazione caldaie ausiliarie_C1-C2 + Horiba PG250" contiene:

- 1- registrazioni effettuate per la verifica di emissione di NOx e CO delle Caldaie Ausiliarie 1-2 al carico minimo, medio e massimo delle stesse.
- 2- registrazioni effettuate al fine della verifica di Linearità degli analizzatori CO-O₂ posti al controllo combustione delle Caldaie Ausiliarie 1-2: gli analizzatori, verificati con strumentazione di riferimento sulla risposta alla linearità, sono risultati idonei alle misurazioni previste.
- registrazioni effettuate al fine della verifica di Linearità dell'analizzatore portatile Horiba PG250, utilizzato per verifiche ed in caso di avaria degli SME: l'analizzatore, verificato con strumentazione di riferimento sulla risposta alla linearità, è risultato idoneo alle misurazioni previste.

Distinti saluti

Spett.le

EP Produzione SpA

S.S. Abetone Brennero km 239 46035 Ostiglia (MN)

c.a. egr. Sig. Alberto Morandi

Cabiate, 30 Novembre 2021

Facciamo riferimento agli accordi intercorsi per trasmetterVi in allegato la relazione tecnica a seguito dell'indagine analitica alle emissioni in atmosfera delle caldaie ausiliarie effettuata nei giorni 30/09, 04 e 08/10/2021 presso la Vostra Centrale di Ostiglia (MN).

A Vostra disposizione per ogni chiarimento e per quant'altro Vi potesse occorrere, cogliamo l'occasione per porgerVi distinti saluti.

IL TECNICO INCARICATO

Debora Terlizzi

EP Produzione SpA

Centrale termoelettrica di Ostiglia (MN)

INDAGINE ANALITICA ALLE EMISSIONI IN ATMOSFERA PROVENIENTI DALLE CALDAIE AUSILIARIE N. 1 E 2 EFFETTUATA NEI GIORNI 04 E 08 OTTOBRE 2021

VERIFICA DELLA LINEARITA' STRUMENTALE DEGLI ANALIZZATORI DI CONTROLLO DELLA COMBUSTIONE

RELAZIONE TECNICA

Cabiate, 30.11.2021

INDICE

1. 0 GENER	ALITÀ'1							
2.0 PRELIE	/I ED ANALISI2							
3.0 RISULTATI6								
Allegato 1:	RAPPORTI DI PROVA N. 2104111-058, 2104111-060							
Allegato 2:	RAPPORTI DI PROVA N. 2104111-057, 2104111-059 (VERIFICHE DI LINEARITA' STRUMENTALE)							
Allegato 3:	CERTIFICATI							

1.0 GENERALITÀ'

Per incarico della Società "EP Produzione SpA", nei giorni 04 e 08/10/2021 è stata effettuata una indagine analitica alle emissioni in atmosfera derivanti rispettivamente dalla caldaia ausiliaria n. 1 e n. 2 operanti presso la Centrale termoelettrica di Ostiglia (MN).

Preliminarmente, in data 30/09/2021, è stata verificata la linearità strumentale su tutto il campo di misura degli analizzatori di ossigeno (O₂) e di monossido di carbonio (CO), installati per il controllo della combustione.

L'indagine è stata realizzata al fine di ottemperare a quanto previsto dal D.M. n. 369 del 09/09/2021 di riesame dell'Autorizzazione Integrata Ambientale (AIA) rilasciata con provvedimento n. DSA-DEC-2009-976 del 03/08/2009 alla società EP Produzione S.p.A..

Le caldaie in esame, aventi potenzialità di 14,99 MWt, sono alimentate a metano; esse vengono di norma utilizzate quando i tre moduli a ciclo combinato operanti in Centrale sono fermi o, in condizioni particolari, per procedere al loro avviamento e arresto.

Dalle ore 12:01 alle ore 15:00 del 04/10/2021 per la caldaia C1 e dalle ore 08:05 alle ore 11:03 del 08/10/2021 per la caldaia C2, sono stati effettuati rilievi in continuo delle concentrazioni dei gas di combustione (NO_x, CO, CO₂ e O₂); all'interno dei periodi sono state anche eseguite misure di portata degli effluenti gassosi.

Nel corso dell'esecuzione dei rilievi in continuo, le condizioni di esercizio delle caldaie sono state variate in modo da monitorare le concentrazioni dei gas di combustione in condizioni di minimo, medio e massimo carico.

2.0 PRELIEVI ED ANALISI

Per le sostanze determinate con metodi in continuo (automatici) nella fase di programmazione e realizzazione dell'indagine sono state applicati i seguenti metodi standard di riferimento (SRM):

- UNI EN 14792:2017 "Determinazione della concentrazione massica di ossidi di azoto Metodo di riferimento normalizzato: chemiluminescenza":
- UNI EN 15058:2017 "Determinazione della concentrazione massica di monossido di carbonio Metodo di riferimento normalizzato: spettrometria ad infrarossi non dispersiva";
- UNI EN 14789:2017 "Determinazione della concentrazione volumetrica di ossigeno. Metodo di riferimento normalizzato: Paramagnetismo".

Per le misure di portata degli effluenti gassosi e la determinazione dei parametri necessari a calcolare il peso molecolare del gas effluente, sono state seguite le indicazioni delle seguenti norme:

- UNI EN ISO 16911-1:2013 "Determinazione manuale della velocità e della portata di flussi in condotti";
- ISO 12039:2019 "Stationary source emissions Determination of the mass concentrations of Carbon monoxide, carbon dioxide and oxygen in flue gas. Performance characteristics of automated measuring systems";
- UNI EN 14790:2017 "Determinazione del vapore acqueo nei condotti".

Le misure in continuo di NO_x, CO, O₂ sono effettuate tramite analizzatori certificati, alloggiati in un laboratorio mobile dotato di sistema di condizionamento, utile a garantire il mantenimento dell'intervallo di temperatura idoneo per il funzionamento ottimale degli analizzatori stessi.

Nelle tabelle a pagina seguente vengono riportate le principali caratteristiche tecniche degli analizzatori utilizzati.

	CARATTERISTICHE DEL SISTEMA DI MISURA DI RIFERIMENTO (SRM)											
Misurando	Fornitore	Modello	Tipo di Principio di misura misura		Certificazione (*)	Unità di misura	Campo scala					
O ₂			Estrattiva, diretta	Para- magnetico	TÜV/MCERTS/ SIRA/QAL1	% (v/v)	0-21					
со	ENVIRONNEMENT	MIR9000 CLD	Estrattiva, diretta	NDIR	TÜV/MCERTS/ SIRA/QAL1	mg/Nm³	0-100					
NO/NO _x			Estrattiva, diretta	Chemilumi- nescenza	TÜV/MCERTS/ SIRA/QAL1	mg/Nm³	0-100					

La strumentazione elencata viene controllata e tarata periodicamente in conformità allo schema di garanzia di qualità aziendale conforme alla UNI EN ISO 9001 e alla UNI CEI EN ISO/IEC 17025.

I dati, nell'arco delle varie giornate di prova, sono stati acquisiti da sistema di acquisizione dati con frequenza di 10 secondi; nei rapporti di prova in Allegato 1 vengono riportati i valori medi al minuto calcolati sulla base di tali dati elementari.

Le risposte strumentali degli analizzatori sopra citati, prima di iniziare i rilievi all'emissione, vengono verificate mediante l'utilizzo di bombole ("standard") a concentrazione nota; tali verifiche vengono ripetute a fine prova.

I controlli strumentali riguardano la lettura di zero tramite standard di azoto e la lettura di span (corrispondente all'incirca al 80 % del campo scala selezionato per le misure) tramite standard per gli specifici composti da analizzare.

La linea di prelievo impiegata è così costituita:

- Sondina in acciaio di lunghezza 50 cm;
- > Filtro riscaldato per la rimozione del particolato eventualmente presente nell'emissione;
- Tubo termostatato a 150 °C da 60 m;
- Frigorifero ad alta efficienza con temperatura in uscita inferiore a 4 °C;
- Analizzatori.

La tenuta della linea è stata verificata prima dell'inizio delle analisi.

In pratica per le misure di portata è stata utilizzata la seguente attrezzatura:

- tubo di Darcy per le misure di velocità e portata degli effluenti gassosi;
- termocoppia per la misura della temperatura degli effluenti gassosi.

La captazione dell'umidità dei fumi è stata ottenuta mediante l'impiego di fiale caricate con gel di silice; la successiva determinazione è avvenuta per via ponderale.

3.0 VERIFICA LINEARITA' STRUMENTALE

Per le prove di linearità strumentale è stato utilizzato il calibratore HovaCAL 312-MF, che è stato utilizzato come diluitore di una miscela di gas in modo da generare diversi livelli di concentrazione attraverso la sua componente "a secco", ovvero un sistema di mass flow.

Sono state utilizzate miscele di gas standard (di proprietà di Tecnologie d'Impresa), i cui certificati del fornitore sono disponibili in Allegato 3.

L'ingresso gas campione dell'analizzatore e l'uscita gas del diluitore sono stati collegati mediante raccordi in teflon e agli analizzatori sono state erogate concentrazioni di gas comprese tra 0 e 80 % del campo scala, con ripetizione dello step a concentrazione zero a inizio e fine prova.

Ad ogni step di concentrazione sono state acquisite tre letture strumentali, acquisite direttamente (manualmente) dai display degli analizzatori in prova.

L'ingresso gas campione dell'analizzatore e l'uscita gas del diluitore sono stati collegati mediante raccordi in teflon e agli analizzatori sono state erogate in 5 step, concentrazioni di gas comprese tra 0 e 80 % del campo scala, con ripetizione dello step a concentrazione zero a inizio e fine prova.

Ad ogni step di concentrazione sono state acquisite tre letture strumentali; i dati ottenuti vengono trattati al fine di calcolare i residui relativi (errori di linearità).

Il residuo relativo è calcolato ad ogni step di concentrazione generata, sul valore medio ricavato dalle tre misure eseguite su ognuno dei punti della scala di linearità.

J:\TDI\E\EP Produzione S.p.a\Centrale Termoelettrica Ostiglia\A_Emissioni in atmosfera\Anno 2021\Caldaie ausiliarie\relazione caldaie ausiliarie_C1-C2_211130.docxTERLIZZ\Mariani

pag. 4 di 6

Al fine del calcolo del residuo relativo (errore di linearità) viene preliminarmente calcolata una retta di regressione lineare tra i punti (x_i) e tutte le misure $y_{c,i}$, dove:

 $x_i = \dot{e}$ il valore singolo della concentrazione del materiale di riferimento (standard);

 $y_{c,i}$ = è il valore singolo rilevato dall'analizzatore al livello di concentrazione c.

La retta di regressione lineare ottenuta, la cui equazione è del tipo y = ax + b, viene impiegata per calcolare, noti i valori di A (pendenza), B (intercetta) e x (concentrazione standard generata ad ogni step di diluizione), i valori teorici di concentrazione x_i (corretti) per ciascuno step di diluizione.

Sono questi valori teorici di concentrazione $x_1....x_n$ corretti (pari al numero di step di diluizione realizzati, comprese le concentrazioni di zero ripetuto due volte e span), derivanti dalla retta di regressione lineare, ad essere confrontati con la media delle singole concentrazioni rilevate dall'analizzatore ad ogni step di

diluizione, al fine di calcolare il residuo, espresso nella medesima unità di misura, mediante la formula:

 $d_c = \overline{y}_c - (x_i \text{ corretti})$

dove:

dc è il residuo per ogni media di concentrazione rilevata dall'analizzatore;

 \overline{y}_c è il valore di concentrazione y medio rilevato dall'analizzatore al livello di concentrazione c.

Il valore del residuo d_c viene poi convertito in unità di concentrazione relativa $d_{c,rel}$ dividendo d_c per il limite superiore dell'intervallo di misurazione (C_u), mediante la formula:

 $d_{c,rel} = d_c/C_u *100$

La prova, secondo l'allegato B della norma UNI EN 14181, ha esito positivo se i valori $d_{c,rel}$ (residui relativi) risultano compresi nell'intervallo \pm 5%.

Nel caso in esame, le prove (riportate in Allegato 2) per gli analizzatori posti a presidio delle emissioni da Caldaia ausiliaria C2 hanno avuto esito positivo, in quanto i residui risultanti sono non solo ampiamente compresi in tale intervallo, ma entro al ± 1%.

J:\TDI\E\EP Produzione S.p.a\Centrale Termoelettrica Ostiglia\A_Emissioni in atmosfera\Anno 2021\Caldaie ausiliarie\relazione caldaie ausiliarie_C1-C2_211130.docxTERLIZZ\Mariani

pag. 5 di 6

4.0 RISULTATI

I risultati dei rilievi in continuo alle emissioni sono riportati nel rapporto di prova in Allegato 1; di seguito si riporta una sintesi degli intervalli di concentrazioni di NO_x e CO (dal minimo al massimo valore riscontrato) determinate durante le tre ore di monitoraggio su ciascuna caldaia.

Parametro	Unità di misura	Caldaia 1	Caldaia 2	
Ossidi di azoto	mg/Nm³	60,4 ÷ 90,4	64,8 ÷ 99,5	
Monossido di carbonio	(rif. 3 % O ₂)	0,1 ÷ 3,6	0,1 ÷ 21,4	

Si precisa che nell'Autorizzazione Integrata Ambientale per l'esercizio della centrale (D.M. n° 51 del 03/02/2014) non sono indicati limiti specifici per le due emissioni in atmosfera oggetto della presente relazione; al fine di avere comunque un termine di paragone, si citano come riferimento i limiti previsti nel Decreto della Regione Lombardia D.G.R. n. IX/3934 del 06/08/2012.

In base a tale decreto, i limiti per le caldaie alimentate a metano, con potenzialità tra 3 e 15 MWt, sono pari a 150 mg/Nm³ per gli ossidi di azoto espressi come NO₂ e a 100 mg/Nm³ per il monossido di carbonio, entrambi riferiti ad un tenore di ossigeno del 3 %.

Alla luce dei risultati ottenuti, è possibile osservare che i valori limite per le sostanze ricercate alle emissioni delle caldaie ausiliarie risultano ampiamente rispettati.

Cabiate 30.11.2021

TECNOLOGIE D'IMPRESA SRL a socio unico

GESTIONE EMISSIONI: (Relatore)	Debora Terlizzi	
REFERENTE EMISSIONI IN ATMOSFERA:	Marco Pelozzi	
DIREZIONE:	Giorgio Penati	

J:\TDI\E\EP Produzione S.p.a\Centrale Termoelettrica Ostiglia\A_Emissioni in atmosfera\Anno 2021\Caldaie ausiliarie\relazione caldaie ausiliarie_C1-C2_211130.docxTERLIZZ\Mariani

pag. 6 di 6

EP Produzione SpA

Centrale termoelettrica di Ostiglia (MN)

ALLEGATO 1

RAPPORTI DI PROVA 2104111-058, 2104111-060

LAB N° 00175 L

Rapporto di prova n. 2104111-058

EP Produzione SpA
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - campione prelevato ns. tecnici

data inizio campionamento: 04/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 18/10/2021 data fine campionamento: 04/10/2021 data inizio fase analitica: 04/10/2021 data emissione: 30/11/2021

Punto di emissione - sigla: da caldaia ausiliaria C1 lavorazione in corso: principali materie prime: da caldaia ausiliaria C1 produzione di vapore gas naturale

autorizzazione all'emissione: AIA Prot. DSA-DEC-2009-0000976 del 03/08/2009 e s.m.i. (D.M. n° 51 del 03/02/2014)

Parametro:	Metodo di campionamento e analisi:
Ossidi di azoto	UNI EN 14792:2017
Monossido di carbonio	UNI EN 15058:2017
Vapore acqueo (Umidità)	UNI EN 14790:2017
Velocità e portata	UNI EN ISO 16911-1:2013 solo Annex A
Diossido di carbonio	ISO 12039:2019 Annex A
Ossigeno	UNI EN 14789:2017

Caratteristiche del punto di emissione

direzione flusso alla sezione di misura: verticale forma della sezione di misura: circolare sezione emissione (m^2) : 0.708

Scelta del punto di misura (UNI EN 15259:2008)

Numero di flange di campionamento libere: 1

lunghezza tratto rettilineo a monte flange (m): >5 diametri idraulici lunghezza tratto rettilineo a valle flange (m): >5 diametri idraulici

Condizioni di normalizzazione

 Temperatura:
 °C
 0

 Pressione:
 Pa
 101300

 Gas
 Secco

 Ossigeno di riferimento:
 %
 3

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio

I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

Referente emissioni in atmosfera Ordine dei Chimici della Lombardia dr. Marco Pelozzi albo prof.n. 2797 Rapporto di prova firmato digitalmente ai sensi della normativa vigente

Rapporto di prova n. 2104111-058

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610131

EP Produzione SpA
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

LAB N° 00175 L

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnici

data inizio campionamento: 04/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 18/10/2021 data fine campionamento: 04/10/2021 data inizio fase analitica: 04/10/2021 data emissione: 30/11/2021

punto di emissione - sigla: da caldaia ausiliaria 1

lavorazione in corso: produzione di vapore

principali materie prime: gas naturale

autorizzazione all'emissione: AIA Prot. DSA-DEC-2009-0000976 del 03/08/2009 e s.m.i. (D.M. n° 51 del 03/02/2014)

Dati impianto	risultato		incertezza
diametro emissione (m)	0.950		
sezione emissione (m²)	0.708		
wall adjustment factor (WAF) per tipologia di condotto liscio	0.995		
fattore di taratura del tubo di Pitot (a)	0.840		
pstat = Pressione statica misurata (Pa)	-166.8		
patm = Pressione atmosferica (Pa)	100740		
pc = Pressione assoluta dell'effluente (Pa)	100573		
Tc = Temperatura dell'effluente (°C)	130	±	1.5
M = Massa Molare (Kg/mol)	0.028		
ϕO_2 = Concentrazione O_2 misurata (% su base secca)	1.99	±	0.05
ϕ O ₂ = Concentrazione O ₂ calcolata (% su base umida)	1.72		
ϕ CO $_2$ = Concentrazione CO $_2$ misurata (% su base secca)	10.90	±	0.55
ϕ CO $_2$ = Concentrazione CO $_2$ calcolata (% su base umida)	9.43		
ϕN_2 = Concentrazione N_2 calcolata (% su base umida)	75.3		
$H_2O = Umidità Misurata (g/Nm3)$	125.5	±	6.28
$\phi H_2 O$ = Concentrazione $H_2 O$ calcolata (%)	13.5		
ρ = Densità dell'effluente (Kg/m3)	0.847		
v = Velocità media (m/s)	11.29	±	0.28
vc = Velocità corretta con WAF (m/s)	11.23		
qV,w = Portata effluente alle condizioni di emissione (m3/h)	28639	±	1432
qV,Od = Portata effluente alle condizioni di riferimento (Nm³/h)	16657		
qV ,OdO $_{2ref}$ = Portata effluente alle condizioni di riferimento O $_2$ ref. (Nm 3 /h)	17591		
O _{2ref} = Ossigeno di riferimento(%)	3.0		

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

LAB N° 00175 L

Rapporto di prova n. 2104111-058

EP Produzione SpA

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnici

data inizio campionamento: 04/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 04/10/2021 data fine campionamento: 04/10/2021 data inizio fase analitica: 04/10/2021 data emissione: 30/11/2021

frequenza acquisizione dati 15 secondi periodo mediazione dati 60 secondi

punto di emissione - sigla: da caldaia ausiliaria C1 lavorazione in corso: principali materie prime: qas naturale

principali materie prime. gas naturale

autorizzazione all'emissione: Decreto AIA n. 93 del 07/04/2017 (rinnovo del Decreto DSA-DEC-2009 0000580 del 15/06/2009)

RISULTATI RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM"

Data	Ora	NO _x	NO_x	NO_x	со	СО	со	O_2	CO2	5
	solare		come NO ₂	come NO ₂						Portata gas bruciatore
		ppm	mg/Nm³	mg/Nm³	ppm	mg/Nm³	mg/Nm³	%	%	bradiatore
			Ü	(3% O ₂)		J	(3% O ₂)			Nm³/h
04/10/21	12.01	34.9	71.5	88.4	0.1	0.1	0.1	6.44	8.40	310.5
04/10/21	12.02	35.1	71.9	88.3	0.1	0.1	0.1	6.35	8.50	300.2
04/10/21	12.03	35.2	72.1	88.3	0.2	0.2	0.2	6.31	8.50	322.3
04/10/21	12.04	35.1	72.0	89.1	0.2	0.2	0.2	6.46	8.40	310.6
04/10/21	12.05	35.1	71.9	86.3	0.1	0.1	0.1	6.00	8.60	325.7
04/10/21	12.06	35.1	72.0	87.7	0.1	0.1	0.1	6.22	8.60	345.0
04/10/21	12.07	35.2	72.1	86.5	0.1	0.1	0.1	5.99	8.70	327.6
04/10/21	12.08	35.2	72.1	85.0	0.1	0.1	0.1	5.74	8.90	327.6
04/10/21	12.09	35.0	71.7	84.9	0.1	0.1	0.1	5.80	8.90	327.6
04/10/21	12.10	35.1	71.9	85.5	0.1	0.1	0.1	5.87	8.80	302.7
04/10/21	12.11	35.1	71.9	85.6	0.1	0.1	0.1	5.88	8.80	324.7
04/10/21	12.12	35.1	72.0	88.2	0.1	0.1	0.1	6.30	8.60	299.2
04/10/21	12.13	35.0	71.8	86.0	0.1	0.1	0.1	5.98	8.70	313.4
04/10/21	12.14	35.1	72.0	88.5	0.1	0.1	0.1	6.36	8.50	310.7
04/10/21	12.15	35.4	72.6	88.9	0.1	0.1	0.1	6.30	8.50	298.5
04/10/21	12.16	35.6	72.9	88.9	0.2	0.2	0.2	6.24	8.50	311.3
04/10/21	12.17	35.5	72.7	89.9	0.1	0.1	0.1	6.44	8.50	301.1
04/10/21	12.18	35.6	72.9	89.3	0.2	0.2	0.2	6.30	8.50	299.4
04/10/21	12.19	35.6	73.0	89.5	0.1	0.1	0.1	6.32	8.50	325.3
04/10/21	12.20	35.7	73.1	90.4	0.1	0.1	0.1	6.45	8.40	302.6
04/10/21	12.21	35.6	73.0	87.7	0.2	0.2	0.2	6.01	8.80	315.9
04/10/21	12.22	35.5	72.8	88.6	0.1	0.1	0.1	6.21	8.50	328.9
04/10/21	12.23	35.6	73.0	88.1	0.1	0.1	0.1	6.08	8.70	329.1
04/10/21	12.24	35.7	73.1	86.7	0.1	0.1	0.1	5.83	8.80	329.3
04/10/21	12.25	35.6	73.0	86.6	0.1	0.1	0.1	5.82	8.80	329.4
04/10/21	12.26	35.5	72.7	86.3	0.2	0.2	0.2	5.83	8.80	329.6
04/10/21	12.27	35.6	72.9	86.4	0.2	0.2	0.2	5.82	8.90	329.8
04/10/21	12.28	35.6	73.0	86.7	0.1	0.1	0.1	5.84	8.80	330.0
3 ., . 3, = 1		00.0		· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •		.	0.0.	0.00	000.0

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova

Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio

I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

LAB N° 00175 L

Rapporto di prova n. 2104111-058

EP Produzione SpA

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnici

data inizio campionamento: 04/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 04/10/2021 data fine campionamento: 04/10/2021 data inizio fase analitica: 04/10/2021 data emissione: 30/11/2021

frequenza acquisizione dati 15 secondi periodo mediazione dati 60 secondi

punto di emissione - sigla: da caldaia ausiliaria C1 lavorazione in corso: principali materie prime: qas naturale

autorizzazione all'emissione: Decreto AIA n. 93 del 07/04/2017 (rinnovo del Decreto DSA-DEC-2009 0000580 del 15/06/2009)

RISULTATI RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM"

Data	Ora	NO_x	NO _x	NO_x	со	СО	со	O_2	CO ₂	5
	solare		come NO ₂	come NO ₂						Portata gas bruciatore
		ppm	mg/Nm³	mg/Nm³	ppm	mg/Nm³	mg/Nm³	%	%	bradiatore
			J	(3% O ₂)		J	(3% O ₂)			Nm³/h
04/10/21	12.29	35.6	72.9	86.4	0.1	0.1	0.1	5.81	8.80	315.9
04/10/21	12.30	35.4	72.6	85.9	0.2	0.2	0.2	5.78	8.80	326.8
04/10/21	12.31	35.5	72.7	87.3	0.1	0.1	0.1	6.01	8.70	327.4
04/10/21	12.32	35.5	72.8	87.0	0.1	0.1	0.1	5.94	8.70	315.4
04/10/21	12.33	35.5	72.7	86.6	0.1	0.1	0.1	5.89	8.80	326.2
04/10/21	12.34	35.3	72.3	87.1	0.1	0.1	0.1	6.06	8.60	335.8
04/10/21	12.35	35.3	72.4	87.1	0.1	0.1	0.1	6.03	8.60	339.6
04/10/21	12.36	35.4	72.5	86.1	0.2	0.3	0.4	5.84	8.80	331.7
04/10/21	12.37	35.4	72.5	85.3	0.1	0.1	0.1	5.70	8.90	315.4
04/10/21	12.38	35.2	72.2	84.9	0.1	0.1	0.1	5.70	8.90	328.4
04/10/21	12.39	35.2	72.1	86.9	0.1	0.1	0.1	6.07	8.60	329.5
04/10/21	12.40	35.3	72.4	86.0	0.1	0.1	0.1	5.84	8.80	315.1
04/10/21	12.41	35.3	72.4	86.3	0.1	0.1	0.1	5.90	8.80	328.1
04/10/21	12.42	35.3	72.4	87.8	0.1	0.1	0.1	6.15	8.60	328.8
04/10/21	12.43	35.2	72.2	85.8	0.1	0.1	0.1	5.86	8.70	301.8
04/10/21	12.44	35.2	72.2	86.2	0.1	0.1	0.1	5.93	8.80	317.9
04/10/21	12.45	34.9	71.5	87.8	0.1	0.1	0.1	6.35	8.50	301.7
04/10/21	12.46	34.8	71.4	86.0	0.1	0.1	0.1	6.05	8.70	301.7
04/10/21	12.47	34.6	71.0	87.6	0.2	0.2	0.2	6.41	8.40	288.8
04/10/21	12.48	34.7	71.1	88.1	0.1	0.1	0.1	6.48	8.40	297.0
04/10/21	12.49	34.7	71.2	89.5	0.2	0.2	0.3	6.68	8.30	297.6
04/10/21	12.50	34.8	71.3	89.9	0.1	0.1	0.1	6.73	8.30	288.3
04/10/21	12.51	34.7	71.1	88.9	0.2	0.2	0.3	6.60	8.40	312.8
04/10/21	12.52	34.7	71.2	89.2	0.1	0.1	0.1	6.64	8.20	554.0
04/10/21	12.53	34.8	71.4	89.0	0.1	0.1	0.1	6.56	8.50	727.1
04/10/21	12.54	34.7	71.1	80.3	0.2	0.2	0.2	5.07	9.30	712.1
04/10/21	12.55	32.8	67.3	70.6	0.3	0.4	0.4	3.84	10.10	672.4
04/10/21	12.56	31.2	64.0	64.8	0.1	0.1	0.1	3.21	10.40	809.7

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova

Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio

I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

LAB N° 00175 L

Rapporto di prova n. 2104111-058

EP Produzione SpA

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnici

18/10/2021 04/10/2021 data inizio campionamento: 04/10/2021 data ricevimento: data fine fase analitica: data fine campionamento: 04/10/2021 data inizio fase analitica: 04/10/2021 data emissione: 30/11/2021

frequenza acquisizione dati 15 secondi periodo mediazione dati 60 secondi

da caldaia ausiliaria C1 punto di emissione - sigla: lavorazione in corso: produzione di vapore principali materie prime: gas naturale

Decreto AIA n. 93 del 07/04/2017 (rinnovo del Decreto DSA-DEC-2009 0000580 del 15/06/2009) autorizzazione all'emissione:

RISULTATI RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM"

Data	Ora	NO_x	NO _x	NO_x	СО	СО	со	O_2	CO ₂	5
	solare		come NO ₂	come NO ₂						Portata gas bruciatore
		ppm	mg/Nm³	mg/Nm³	ppm	mg/Nm³	mg/Nm³	%	%	bradiatore
			J	(3% O ₂)		J	(3% O ₂)			Nm³/h
04/10/21	12.57	31.2	63.9	64.8	0.1	0.1	0.1	3.24	10.30	794.8
04/10/21	12.58	31.1	63.7	64.4	0.1	0.1	0.1	3.19	10.40	614.8
04/10/21	12.59	30.7	63.0	64.1	0.1	0.1	0.1	3.30	10.40	522.4
04/10/21	13.00	30.9	63.3	65.1	0.1	0.1	0.1	3.50	10.10	599.3
04/10/21	13.01	32.6	66.9	73.0	0.1	0.1	0.1	4.51	9.60	678.8
04/10/21	13.02	33.7	69.0	76.9	0.1	0.1	0.1	4.84	9.40	722.4
04/10/21	13.03	33.6	68.8	75.5	0.1	0.1	0.1	4.59	9.60	702.9
04/10/21	13.04	31.9	65.4	66.7	0.1	0.1	0.1	3.36	10.30	655.1
04/10/21	13.05	31.2	64.0	64.8	0.1	0.1	0.1	3.22	10.30	613.2
04/10/21	13.06	31.2	64.0	65.0	0.1	0.1	0.1	3.27	10.30	589.9
04/10/21	13.07	31.3	64.1	64.9	0.2	0.2	0.2	3.23	10.40	591.5
04/10/21	13.08	31.2	63.9	65.3	0.1	0.1	0.1	3.38	10.20	634.6
04/10/21	13.09	31.2	64.0	64.9	0.1	0.1	0.1	3.24	10.30	716.9
04/10/21	13.10	31.3	64.1	65.3	0.1	0.1	0.1	3.34	10.30	749.7
04/10/21	13.11	31.3	64.1	64.7	0.2	0.3	0.3	3.16	10.40	743.1
04/10/21	13.12	31.2	63.9	64.8	0.1	0.1	0.1	3.25	10.30	716.8
04/10/21	13.13	31.1	63.8	64.7	0.2	0.2	0.2	3.24	10.30	716.3
04/10/21	13.14	31.1	63.7	64.6	0.1	0.1	0.1	3.25	10.40	704.2
04/10/21	13.15	31.0	63.6	64.6	0.1	0.1	0.1	3.28	10.30	692.7
04/10/21	13.16	31.0	63.6	64.6	0.1	0.1	0.1	3.29	10.30	703.9
04/10/21	13.17	30.9	63.4	64.5	0.1	0.1	0.1	3.31	10.20	714.9
04/10/21	13.18	31.0	63.6	64.6	0.1	0.1	0.1	3.28	10.30	729.5
04/10/21	13.19	31.1	63.7	64.6	0.1	0.1	0.1	3.24	10.40	730.8
04/10/21	13.20	31.1	63.7	64.3	0.1	0.1	0.1	3.16	10.40	730.9
04/10/21	13.21	30.9	63.4	64.1	0.2	0.3	0.3	3.21	10.40	731.0
04/10/21	13.22	31.0	63.5	64.1	0.2	0.2	0.2	3.17	10.40	720.0
04/10/21	13.23	31.0	63.5	64.2	0.1	0.1	0.1	3.19	10.40	704.2
04/10/21	13.24	31.0	63.5	64.6	0.1	0.1	0.1	3.30	10.30	703.4

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova

Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio

I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

TECNOLOGIE D'IMPRESA Srl a socio unico Società soggetta all'attività di direzione e coordinamento da parte di PGF Srl Via Don Minzoni, 15 - 22060 CABIATE - CO - Tel. 031 76991 - Fax 031 7699199

www.tecnoimp.it e-mail info@tecnoimp.it Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610131

LAB N° 00175 L

Rapporto di prova n. 2104111-058

EP Produzione SpA

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnici

18/10/2021 04/10/2021 data inizio campionamento: 04/10/2021 data ricevimento: data fine fase analitica: data fine campionamento: 04/10/2021 data inizio fase analitica: 04/10/2021 data emissione: 30/11/2021

frequenza acquisizione dati 15 secondi periodo mediazione dati 60 secondi

da caldaia ausiliaria C1 punto di emissione - sigla: lavorazione in corso: produzione di vapore principali materie prime: gas naturale

Decreto AIA n. 93 del 07/04/2017 (rinnovo del Decreto DSA-DEC-2009 0000580 del 15/06/2009) autorizzazione all'emissione:

RISULTATI RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM"

Data	Ora	NO_x	NO _x	NO_x	СО	со	со	O_2	CO ₂	D
	solare		come NO ₂	come NO ₂						Portata gas bruciatore
		ppm	mg/Nm³	mg/Nm³	ppm	mg/Nm³	mg/Nm³	%	%	bradiatore
			J	(3% O ₂)		J	(3% O ₂)			Nm³/h
04/10/21	13.25	30.9	63.4	64.3	0.1	0.1	0.1	3.25	10.30	702.7
04/10/21	13.26	30.9	63.3	63.9	0.1	0.1	0.1	3.17	10.40	682.5
04/10/21	13.27	30.9	63.4	64.4	0.1	0.1	0.1	3.28	10.30	700.9
04/10/21	13.28	31.0	63.5	64.6	0.2	0.2	0.2	3.31	10.30	722.9
04/10/21	13.29	31.0	63.6	64.6	0.1	0.1	0.1	3.27	10.30	729.9
04/10/21	13.30	30.9	63.4	64.2	0.1	0.1	0.1	3.23	10.20	728.1
04/10/21	13.31	31.0	63.6	64.5	0.1	0.1	0.1	3.24	10.30	720.9
04/10/21	13.32	31.1	63.7	64.5	0.1	0.1	0.1	3.23	10.30	702.4
04/10/21	13.33	31.1	63.7	64.3	0.1	0.1	0.1	3.16	10.40	689.7
04/10/21	13.34	30.9	63.4	64.1	0.1	0.1	0.1	3.19	10.40	677.8
04/10/21	13.35	31.0	63.5	64.4	0.1	0.1	0.1	3.24	10.30	690.3
04/10/21	13.36	31.1	63.7	64.6	0.1	0.1	0.1	3.24	10.30	713.2
04/10/21	13.37	31.1	63.8	64.6	0.1	0.1	0.1	3.22	10.40	714.0
04/10/21	13.38	31.1	63.7	64.3	0.1	0.1	0.1	3.17	10.40	714.5
04/10/21	13.39	31.0	63.5	64.2	0.1	0.1	0.1	3.21	10.40	714.2
04/10/21	13.40	31.1	63.8	64.6	0.1	0.1	0.1	3.22	10.30	710.2
04/10/21	13.41	31.2	63.9	64.7	0.1	0.1	0.1	3.21	10.40	703.2
04/10/21	13.42	31.2	64.0	64.6	0.1	0.1	0.1	3.17	10.40	677.8
04/10/21	13.43	31.1	63.7	64.5	0.1	0.1	0.1	3.23	10.30	676.7
04/10/21	13.44	31.1	63.8	64.6	0.1	0.1	0.1	3.21	10.30	699.2
04/10/21	13.45	31.2	63.9	64.5	0.1	0.1	0.1	3.16	10.40	714.9
04/10/21	13.46	31.2	63.9	64.6	0.1	0.1	0.1	3.20	10.40	716.0
04/10/21	13.47	31.1	63.8	64.6	0.1	0.1	0.1	3.21	10.40	715.6
04/10/21	13.48	31.1	63.8	64.8	0.1	0.1	0.1	3.28	10.30	715.2
04/10/21	13.49	31.2	64.0	64.7	0.1	0.1	0.1	3.20	10.40	701.4
04/10/21	13.50	31.3	64.1	64.9	0.2	0.2	0.2	3.23	10.30	677.9
04/10/21	13.51	31.2	63.9	64.7	0.1	0.1	0.1	3.21	10.30	678.9
04/10/21	13.52	31.1	63.8	64.7	0.2	0.2	0.2	3.25	10.30	684.9

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova

Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

199

LAB N° 00175 L

Rapporto di prova n. 2104111-058

EP Produzione SpA

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnici

data inizio campionamento: 04/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 04/10/2021 data fine campionamento: 04/10/2021 data inizio fase analitica: 04/10/2021 data emissione: 30/11/2021

frequenza acquisizione dati 15 secondi periodo mediazione dati 60 secondi

punto di emissione - sigla: da caldaia ausiliaria C1 lavorazione in corso: principali materie prime: qas naturale

autorizzazione all'emissione: Decreto AIA n. 93 del 07/04/2017 (rinnovo del Decreto DSA-DEC-2009 0000580 del 15/06/2009)

RISULTATI RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM"

Data	Ora	NO_x	NO _x	NO_x	СО	СО	СО	O_2	CO2	
	solare		come NO ₂	come NO ₂						Portata gas bruciatore
		ppm	mg/Nm³	mg/Nm³	ppm	mg/Nm³	mg/Nm³	%	%	braciatore
			J	(3% O ₂)	•••	J	(3% O ₂)			Nm³/h
04/10/21	13.53	31.2	63.9	64.7	0.3	0.4	0.4	3.21	10.30	711.8
04/10/21	13.54	31.2	64.0	64.9	0.1	0.1	0.1	3.25	10.30	729.5
04/10/21	13.55	31.3	64.1	64.8	0.1	0.1	0.1	3.20	10.30	730.7
04/10/21	13.56	31.2	64.0	65.0	0.1	0.1	0.1	3.27	10.30	717.2
04/10/21	13.57	31.3	64.1	64.8	0.3	0.4	0.4	3.20	10.30	677.8
04/10/21	13.58	31.3	64.2	64.7	0.1	0.1	0.1	3.13	10.40	711.9
04/10/21	13.59	31.3	64.2	65.2	0.1	0.1	0.1	3.27	10.40	851.4
04/10/21	14.00	31.3	64.1	64.7	0.2	0.2	0.2	3.17	10.40	969.8
04/10/21	14.01	31.2	63.9	64.1	0.2	0.2	0.2	3.07	10.40	1021.4
04/10/21	14.02	31.0	63.6	63.4	0.2	0.2	0.2	2.93	10.50	1030.9
04/10/21	14.03	30.8	63.2	62.6	0.5	0.6	0.6	2.84	10.60	959.9
04/10/21	14.04	30.7	63.0	62.5	0.2	0.3	0.3	2.86	10.50	632.6
04/10/21	14.05	30.5	62.6	62.9	0.2	0.2	0.2	3.10	10.30	657.0
04/10/21	14.06	30.6	62.8	64.3	0.1	0.1	0.1	3.43	10.10	890.1
04/10/21	14.07	29.4	60.3	66.1	0.1	0.1	0.1	4.57	9.60	1098.9
04/10/21	14.08	29.6	60.6	61.9	0.4	0.5	0.5	3.38	10.30	1220.3
04/10/21	14.09	30.5	62.6	61.5	1.0	1.2	1.2	2.68	10.60	1302.1
04/10/21	14.10	30.8	63.1	61.6	1.2	1.5	1.5	2.55	10.70	1257.2
04/10/21	14.11	30.8	63.2	61.3	1.0	1.2	1.2	2.44	10.80	1138.8
04/10/21	14.12	30.9	63.3	61.5	1.2	1.5	1.5	2.48	10.80	1105.3
04/10/21	14.13	30.8	63.1	61.8	0.7	0.9	0.9	2.62	10.60	1178.2
04/10/21	14.14	30.8	63.1	62.3	0.6	0.7	0.7	2.78	10.60	1287.1
04/10/21	14.15	30.8	63.2	61.4	1.0	1.3	1.3	2.48	10.70	1382.0
04/10/21	14.16	30.8	63.2	61.2	1.1	1.4	1.4	2.42	10.80	1189.6
04/10/21	14.17	30.8	63.1	60.6	1.4	1.7	1.6	2.25	10.90	1312.1
04/10/21	14.18	30.8	63.1	60.4	1.2	1.5	1.4	2.20	10.90	1097.4
04/10/21	14.19	30.9	63.4	60.7	1.3	1.6	1.5	2.19	10.90	1345.3
04/10/21	14.20	30.9	63.3	60.5	1.1	1.4	1.3	2.18	10.90	1397.8

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova

Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio

I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

LAB N° 00175 L

2104111-058

Rapporto di prova n.

EP Produzione SpA

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnici

data inizio campionamento: 04/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 04/10/2021 data fine campionamento: 04/10/2021 data inizio fase analitica: 04/10/2021 data emissione: 30/11/2021

frequenza acquisizione dati 15 secondi periodo mediazione dati 60 secondi

punto di emissione - sigla: da caldaia ausiliaria C1 lavorazione in corso: principali materie prime: qas naturale

autorizzazione all'emissione: Decreto AIA n. 93 del 07/04/2017 (rinnovo del Decreto DSA-DEC-2009 0000580 del 15/06/2009)

RISULTATI RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM"

Data	Ora	NO_x	NO _x	NO_x	СО	СО	СО	O_2	CO2	
	solare		come NO ₂	come NO ₂						Portata gas bruciatore
		ppm	mg/Nm³	mg/Nm³	ppm	mg/Nm³	mg/Nm³	%	%	braciatore
			J	(3% O ₂)	•••	J	(3% O ₂)			Nm³/h
04/10/21	14.21	30.9	63.3	60.4	1.3	1.6	1.5	2.15	11.00	1397.0
04/10/21	14.22	30.8	63.2	60.4	1.6	2.0	1.9	2.17	10.90	1364.9
04/10/21	14.23	31.0	63.5	60.6	1.8	2.2	2.1	2.13	10.90	1148.4
04/10/21	14.24	31.0	63.6	60.8	1.4	1.8	1.7	2.17	11.00	1048.2
04/10/21	14.25	31.0	63.6	60.6	1.8	2.2	2.1	2.11	10.90	1335.8
04/10/21	14.26	30.9	63.4	60.4	1.5	1.9	1.8	2.10	11.00	1434.4
04/10/21	14.27	31.1	63.7	60.6	2.0	2.5	2.4	2.08	11.00	1470.0
04/10/21	14.28	31.2	63.9	60.7	2.5	3.1	2.9	2.04	11.10	1491.2
04/10/21	14.29	31.2	64.0	60.9	1.9	2.4	2.3	2.09	11.00	1502.0
04/10/21	14.30	31.2	63.9	60.7	2.2	2.7	2.6	2.04	11.10	1509.9
04/10/21	14.31	31.2	64.0	60.8	1.4	1.8	1.7	2.06	11.00	1515.9
04/10/21	14.32	31.3	64.2	61.0	2.1	2.6	2.5	2.06	11.00	1521.6
04/10/21	14.33	31.3	64.2	60.9	2.2	2.8	2.7	2.04	11.00	1523.4
04/10/21	14.34	31.3	64.1	60.8	2.2	2.8	2.7	2.02	11.00	1522.9
04/10/21	14.35	31.2	64.0	60.7	1.8	2.3	2.2	2.02	11.00	1522.3
04/10/21	14.36	31.4	64.3	60.9	2.6	3.2	3.0	2.00	11.00	1521.8
04/10/21	14.37	31.4	64.4	61.0	1.6	2.0	1.9	2.00	11.00	1522.4
04/10/21	14.38	31.4	64.4	61.0	2.5	3.1	2.9	2.00	11.00	1524.1
04/10/21	14.39	31.3	64.2	60.9	1.8	2.3	2.2	2.02	11.00	1525.8
04/10/21	14.40	31.5	64.5	61.0	2.8	3.5	3.3	1.98	11.10	1527.6
04/10/21	14.41	31.5	64.6	61.1	2.7	3.4	3.2	1.97	11.00	1529.2
04/10/21	14.42	31.6	64.8	61.4	2.6	3.2	3.0	1.99	11.10	1529.2
04/10/21	14.43	31.6	64.7	61.3	2.2	2.8	2.7	1.99	11.00	1528.8
04/10/21	14.44	31.7	64.9	61.4	2.2	2.7	2.6	1.97	11.10	1527.4
04/10/21	14.45	31.7	65.0	61.5	2.5	3.1	2.9	1.98	11.10	1525.8
04/10/21	14.46	31.7	65.0	61.5	2.9	3.6	3.4	1.97	11.00	1524.1
04/10/21	14.47	31.7	64.9	61.5	2.8	3.5	3.3	1.99	11.10	1522.0
04/10/21	14.48	31.6	64.8	61.4	2.3	2.9	2.7	2.00	11.00	1520.8

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova

Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio

I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

LAB N° 00175 L

Rapporto di prova n. 2104111-058

EP Produzione SpA

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnici

data inizio campionamento: 04/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 04/10/2021 data fine campionamento: 04/10/2021 data inizio fase analitica: 04/10/2021 data emissione: 30/11/2021

frequenza acquisizione dati 15 secondi periodo mediazione dati 60 secondi

punto di emissione - sigla: da caldaia ausiliaria C1 lavorazione in corso: principali materie prime: qas naturale

autorizzazione all'emissione: Decreto AIA n. 93 del 07/04/2017 (rinnovo del Decreto DSA-DEC-2009 0000580 del 15/06/2009)

RISULTATI RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM"

Data	Ora	NO_x	NO_x	NO_x	CO	CO	CO	O_2	CO ₂	Portata gas
	solare		come NO ₂	come NO ₂						bruciatore
		ppm	mg/Nm³	mg/Nm³	ppm	mg/Nm³	mg/Nm³	%	%	
				(3% O ₂)			(3% O ₂)			Nm³/h
04/10/21	14.49	31.7	65.0	61.5	3.0	3.8	3.6	1.97	11.10	1522.4
04/10/21	14.50	31.7	65.0	61.4	2.6	3.3	3.1	1.94	11.20	1524.0
04/10/21	14.51	31.7	64.9	61.5	2.3	2.9	2.7	1.99	11.00	1526.9
04/10/21	14.52	31.6	64.8	61.3	2.7	3.4	3.2	1.96	11.10	1528.8
04/10/21	14.53	31.7	65.0	61.5	2.9	3.6	3.4	1.98	11.10	1528.9
04/10/21	14.54	31.7	65.0	61.6	2.1	2.6	2.5	2.00	11.10	1529.0
04/10/21	14.55	31.8	65.1	61.6	2.6	3.2	3.0	1.98	11.10	1529.0
04/10/21	14.56	31.8	65.1	61.6	2.6	3.2	3.0	1.98	11.10	1529.0
04/10/21	14.57	31.8	65.1	61.6	2.6	3.2	3.0	1.98	11.10	1528.9
04/10/21	14.58	31.8	65.1	61.6	2.6	3.2	3.0	1.98	11.10	1528.9
04/10/21	14.59	31.8	65.1	61.6	2.6	3.2	3.0	1.98	11.10	1528.9
04/10/21	15.00	31.8	65.1	61.6	2.6	3.2	3.0	1.98	11.10	1528.9
Media:		32.4	66.4	70.6	0.7	0.8	0.8	3.80	10.00	
Incertezza:		-	-	± 4.9	-	-	± 0.1	± 0.10	± 0.50	
Minimo:		29.4	60.3	60.4	0.1	0.1	0.1	1.94	8.20	
Massimo:		35.7	73.1	90.4	3.0	3.8	3.6	6.73	11.20	

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

Rapporto di prova n.

2104111-060

EP Produzione SpA
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

LAB N° 00175 L

Tipologia di campione EMISSIONI IN ATMOSFERA - campione prelevato ns. tecnici

data inizio campionamento: 08/10/2021 data ricevimento: 18/10/2021 data fine campionamento: 08/10/2021 data inizio fase analitica: 08/10/2021 data emissione: 30/11/2021

Punto di emissione - sigla: da caldaia ausiliaria C2 lavorazione in corso: produzione di vapore principali materie prime: gas naturale

autorizzazione all'emissione: AIA Prot. DSA-DEC-2009-0000976 del 03/08/2009 e s.m.i. (D.M. n° 51 del 03/02/2014)

Parametro:	Metodo di campionamento e analisi:
Ossidi di azoto	UNI EN 14792:2017
Monossido di carbonio	UNI EN 15058:2017
Vapore acqueo (Umidità)	UNI EN 14790:2017
Velocità e portata	UNI EN ISO 16911-1:2013 solo Annex A
Diossido di carbonio	ISO 12039:2019 Annex A
Ossigeno	UNI EN 14789:2017

Caratteristiche del punto di emissione

direzione flusso alla sezione di misura: verticale forma della sezione di misura: circolare sezione emissione (m^2) : 0.708

Scelta del punto di misura (UNI EN 15259:2008)

Numero di flange di campionamento libere: 1

lunghezza tratto rettilineo a monte flange (m): >5 diametri idraulici lunghezza tratto rettilineo a valle flange (m): >5 diametri idraulici

Condizioni di normalizzazione

 Temperatura:
 °C
 0

 Pressione:
 Pa
 101300

 Gas
 Secco

 Ossigeno di riferimento:
 %
 3

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio

I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

Referente emissioni in atmosfera Ordine dei Chimici della Lombardia dr. Marco Pelozzi albo prof.n. 2797 Rapporto di prova firmato digitalmente ai sensi della normativa vigente

Rapporto di prova n. 2104111-060

EP Produzione SpA
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

LAB N° 00175 L

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnici

data inizio campionamento: 08/10/2021 data ricevimento: 18/10/2021 data fine campionamento: 08/10/2021 data inizio fase analitica: 18/10/2021 data emissione: 30/11/2021

punto di emissione - sigla: da caldaia ausiliaria C2

lavorazione in corso: produzione di vapore

principali materie prime: gas naturale

autorizzazione all'emissione: AIA Prot. DSA-DEC-2009-0000976 del 03/08/2009 e s.m.i. (D.M. n° 51 del 03/02/2014)

Dati impianto	risultato		incertezza
diametro emissione (m)	0.950		
sezione emissione (m²)	0.708		
wall adjustment factor (WAF) per tipologia di condotto liscio	0.995		
fattore di taratura del tubo di Pitot (a)	0.840		
pstat = Pressione statica misurata (Pa)	-142.2		
patm = Pressione atmosferica (Pa)	100550		
pc = Pressione assoluta dell'effluente (Pa)	100408		
Tc = Temperatura dell'effluente (°C)	75.0	±	1.5
M = Massa Molare (Kg/mol)	0.028		
ϕO_2 = Concentrazione O_2 misurata (% su base secca)	6.22	±	0.17
ϕO_2 = Concentrazione O_2 calcolata (% su base umida)	5.37		
φCO ₂ = Concentrazione CO ₂ misurata (% su base secca)	8.43	±	0.42
φCO ₂ = Concentrazione CO ₂ calcolata (% su base umida)	7.28		
ϕN_2 = Concentrazione N_2 calcolata (% su base umida)	73.7		
$H_2O = Umidità Misurata (g/Nm3)$	127.0	±	6.35
$\phi H_2 O = Concentrazione H_2 O calcolata (%)$	13.7		
ρ = Densità dell'effluente (Kg/m3)	0.972		
v = Velocità media (m/s)	5.93	±	0.15
vc = Velocità corretta con WAF (m/s)	5.90		
qV,w = Portata effluente alle condizioni di emissione (m3/h)	15057	±	753
qV,Od = Portata effluente alle condizioni di riferimento (Nm³/h)	10108		
qV,OdO $_{2ref}$ = Portata effluente alle condizioni di riferimento O $_2$ ref. (Nm 3 /h)	8300		
O _{2ref} = Ossigeno di riferimento(%)	3.0		

Legenda: "<" corrisponde a "non rilevabile al metodo" L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

LAB N° 00175 L

210

Rapporto di prova n. 2104111-060

EP Produzione SpA

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnici

data inizio campionamento: 08/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 08/10/2021 data fine campionamento: 08/10/2021 data inizio fase analitica: 08/10/2021 data emissione: 30/11/2021

frequenza acquisizione dati 15 secondi periodo mediazione dati 60 secondi

punto di emissione - sigla: da caldaia ausiliaria C2 lavorazione in corso: principali materie prime: qas naturale

autorizzazione all'emissione: Decreto AIA n. 93 del 07/04/2017 (rinnovo del Decreto DSA-DEC-2009 0000580 del 15/06/2009)

RISULTATI RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM"

Data	Ora	NO _x	NO_x	NO_x	со	СО	со	O_2	CO ₂	5
	solare		come NO ₂	come NO ₂						Portata gas bruciatore
		ppm	mg/Nm³	mg/Nm³	ppm	mg/Nm³	mg/Nm³	%	%	2.40.4.0.0
			· ·	(3% O ₂)		J	(3% O ₂)			Nm³/h
08/10/21	8.05	39.0	79.9	98.6	0.1	0.1	0.1	6.41	8.30	262.9
08/10/21	8.06	39.0	79.9	98.6	0.1	0.1	0.1	6.41	8.30	341.4
08/10/21	8.07	39.1	80.1	98.8	0.2	0.2	0.2	6.40	8.30	377.6
08/10/21	8.08	39.0	80.0	97.4	0.2	0.2	0.2	6.22	8.40	411.4
08/10/21	8.09	39.0	80.0	95.9	0.2	0.2	0.2	5.99	8.50	402.9
08/10/21	8.10	39.1	80.2	97.7	0.2	0.2	0.2	6.22	8.40	369.8
08/10/21	8.11	39.2	80.4	99.3	0.1	0.1	0.1	6.42	8.40	344.1
08/10/21	8.12	38.2	78.4	97.5	0.2	0.2	0.2	6.53	8.30	330.7
08/10/21	8.13	38.1	78.1	98.9	0.1	0.1	0.1	6.78	8.10	317.7
08/10/21	8.14	38.2	78.4	99.3	0.2	0.2	0.3	6.79	8.10	306.5
08/10/21	8.15	38.2	78.4	98.8	0.2	0.2	0.3	6.71	8.10	305.1
08/10/21	8.16	38.3	78.5	99.0	0.2	0.2	0.3	6.73	8.10	316.2
08/10/21	8.17	38.2	78.4	99.5	0.2	0.2	0.3	6.81	8.10	317.4
08/10/21	8.18	38.3	78.6	98.0	0.1	0.1	0.1	6.57	8.30	305.8
08/10/21	8.19	38.9	79.8	97.4	0.2	0.2	0.2	6.25	8.40	327.8
08/10/21	8.20	39.4	80.7	98.7	0.2	0.2	0.2	6.28	8.40	340.3
08/10/21	8.21	39.3	80.6	96.9	0.2	0.2	0.2	6.03	8.60	334.4
08/10/21	8.22	39.2	80.4	96.9	0.2	0.2	0.2	6.07	8.50	352.8
08/10/21	8.23	39.3	80.6	97.9	0.2	0.2	0.2	6.18	8.40	352.1
08/10/21	8.24	39.3	80.6	96.6	0.2	0.2	0.2	5.98	8.60	342.9
08/10/21	8.25	39.3	80.5	96.9	0.1	0.1	0.1	6.05	8.50	353.4
08/10/21	8.26	39.1	80.2	98.7	0.1	0.1	0.1	6.37	8.40	353.8
08/10/21	8.27	39.2	80.4	98.1	0.2	0.2	0.2	6.25	8.40	330.9
08/10/21	8.28	39.2	80.4	99.1	0.2	0.2	0.2	6.39	8.30	342.2
08/10/21	8.29	39.2	80.3	99.1	0.2	0.2	0.2	6.42	8.30	330.2
08/10/21	8.30	39.0	80.0	99.2	0.2	0.2	0.2	6.49	8.30	328.7
08/10/21	8.31	38.2	78.4	98.8	0.2	0.2	0.3	6.72	8.20	328.5
08/10/21	8.32	37.6	77.0	96.0	0.2	0.2	0.2	6.57	8.30	315.7

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova

Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio

I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

LAB N° 00175 L

Rapporto di prova n. 2104111-060

EP Produzione SpA

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnici

data inizio campionamento: 08/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 08/10/2021 data fine campionamento: 08/10/2021 data inizio fase analitica: 08/10/2021 data emissione: 30/11/2021

frequenza acquisizione dati 15 secondi periodo mediazione dati 60 secondi

punto di emissione - sigla: da caldaia ausiliaria C2 lavorazione in corso: principali materie prime: qas naturale

autorizzazione all'emissione: Decreto AIA n. 93 del 07/04/2017 (rinnovo del Decreto DSA-DEC-2009 0000580 del 15/06/2009)

RISULTATI RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM"

Data	Ora	NO_x	NO_x	NO_x	СО	СО	со	O_2	CO2	
	solare		come NO ₂	come NO ₂						Portata gas bruciatore
		ppm	mg/Nm³	mg/Nm³	ppm	mg/Nm³	mg/Nm³	%	%	bradiatore
			Ū	(3% O ₂)		Ū	(3% O ₂)			Nm³/h
08/10/21	8.33	35.6	72.9	86.4	0.1	0.1	0.1	5.81	8.80	315.9
08/10/21	8.34	35.4	72.6	85.9	0.2	0.2	0.2	5.78	8.80	326.8
08/10/21	8.35	35.5	72.7	87.3	0.1	0.1	0.1	6.01	8.70	327.4
08/10/21	8.36	35.5	72.8	87.0	0.1	0.1	0.1	5.94	8.70	315.4
08/10/21	8.37	35.5	72.7	86.6	0.1	0.1	0.1	5.89	8.80	326.2
08/10/21	8.38	35.3	72.3	87.1	0.1	0.1	0.1	6.06	8.60	335.8
08/10/21	8.39	35.3	72.4	87.1	0.1	0.1	0.1	6.03	8.60	339.6
08/10/21	8.40	35.4	72.5	86.1	0.2	0.3	0.4	5.84	8.80	331.7
08/10/21	8.41	35.4	72.5	85.3	0.1	0.1	0.1	5.70	8.90	315.4
08/10/21	8.42	35.2	72.2	84.9	0.1	0.1	0.1	5.70	8.90	328.4
08/10/21	8.43	35.2	72.1	86.9	0.1	0.1	0.1	6.07	8.60	329.5
08/10/21	8.44	35.3	72.4	86.0	0.1	0.1	0.1	5.84	8.80	315.1
08/10/21	8.45	35.3	72.4	86.3	0.1	0.1	0.1	5.90	8.80	328.1
08/10/21	8.46	35.3	72.4	87.8	0.1	0.1	0.1	6.15	8.60	328.8
08/10/21	8.47	35.2	72.2	85.8	0.1	0.1	0.1	5.86	8.70	301.8
08/10/21	8.48	35.2	72.2	86.2	0.1	0.1	0.1	5.93	8.80	317.9
08/10/21	8.49	34.9	71.5	87.8	0.1	0.1	0.1	6.35	8.50	301.7
08/10/21	8.50	34.8	71.4	86.0	0.1	0.1	0.1	6.05	8.70	301.7
08/10/21	8.51	34.6	71.0	87.6	0.2	0.2	0.2	6.41	8.40	288.8
08/10/21	8.52	34.7	71.1	88.1	0.1	0.1	0.1	6.48	8.40	297.0
08/10/21	8.53	34.7	71.2	89.5	0.2	0.2	0.3	6.68	8.30	297.6
08/10/21	8.54	34.8	71.3	89.9	0.1	0.1	0.1	6.73	8.30	288.3
08/10/21	8.55	34.7	71.1	88.9	0.2	0.2	0.3	6.60	8.40	312.8
08/10/21	8.56	34.7	71.2	89.2	0.1	0.1	0.1	6.64	8.20	554.0
08/10/21	8.57	34.8	71.4	89.0	0.1	0.1	0.1	6.56	8.50	727.1
08/10/21	8.58	34.7	71.1	80.3	0.2	0.2	0.2	5.07	9.30	712.1
08/10/21	8.59	32.8	67.3	70.6	0.3	0.4	0.4	3.84	10.10	672.4
08/10/21	9.00	31.2	64.0	64.8	0.1	0.1	0.1	3.21	10.40	809.7

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova

Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

TECNOLOGIE D'IMPRESA Srl a socio unico Società soggetta all'attività di direzione e coordinamento da parte di PGF Srl Via Don Minzoni, 15 - 22060 CABIATE - CO - Tel. 031 76991 - Fax 031 7699199 www.tecnoimp.it e-mail info@tecnoimp.it

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610131

LAB N° 00175 L

Rapporto di prova n. 2104111-060

EP Produzione SpA

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnici

18/10/2021 08/10/2021 data inizio campionamento: 08/10/2021 data ricevimento: data fine fase analitica: data fine campionamento: 08/10/2021 data inizio fase analitica: 08/10/2021 data emissione: 30/11/2021

frequenza acquisizione dati 15 secondi periodo mediazione dati 60 secondi

da caldaia ausiliaria C2 punto di emissione - sigla: lavorazione in corso: produzione di vapore principali materie prime: gas naturale

Decreto AIA n. 93 del 07/04/2017 (rinnovo del Decreto DSA-DEC-2009 0000580 del 15/06/2009) autorizzazione all'emissione:

RISULTATI RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM"

Data	Ora	NO _x	NO_x	NO_x	СО	СО	со	O_2	CO ₂	5
	solare		come NO ₂	come NO ₂						Portata gas bruciatore
		ppm	mg/Nm ³	mg/Nm³	ppm	mg/Nm³	mg/Nm³	%	%	braciatore
			J	(3% O ₂)	•••	J	(3% O ₂)			Nm³/h
08/10/21	9.01	39.2	80.4	99.3	0.1	0.1	0.1	6.42	8.30	339.1
08/10/21	9.02	39.2	80.4	99.1	0.2	0.2	0.2	6.40	8.40	328.6
08/10/21	9.03	39.1	80.2	97.7	0.2	0.2	0.2	6.22	8.40	328.8
08/10/21	9.04	38.0	77.9	92.1	0.1	0.1	0.1	5.78	8.60	428.4
08/10/21	9.05	37.2	76.3	88.4	0.2	0.3	0.3	5.46	8.80	598.1
08/10/21	9.06	37.2	76.3	88.3	0.1	0.1	0.1	5.45	8.90	678.3
08/10/21	9.07	37.3	76.5	89.1	0.2	0.2	0.2	5.55	8.90	638.4
08/10/21	9.08	37.5	76.8	89.9	0.1	0.1	0.1	5.62	8.70	548.9
08/10/21	9.09	37.5	76.9	89.9	0.2	0.3	0.4	5.61	8.80	552.7
08/10/21	9.10	37.6	77.0	89.8	0.1	0.1	0.1	5.56	8.80	583.9
08/10/21	9.11	37.6	77.0	89.5	0.1	0.1	0.1	5.52	8.80	614.9
08/10/21	9.12	37.5	76.8	89.2	0.2	0.2	0.2	5.50	8.80	627.0
08/10/21	9.13	37.4	76.7	88.8	0.2	0.2	0.2	5.46	8.90	628.8
08/10/21	9.14	37.5	76.8	89.1	0.2	0.2	0.2	5.49	8.80	627.8
08/10/21	9.15	37.5	76.8	89.4	0.2	0.2	0.2	5.54	8.80	619.3
08/10/21	9.16	37.4	76.6	89.5	0.1	0.1	0.1	5.59	8.80	628.1
08/10/21	9.17	37.2	76.3	88.3	0.2	0.2	0.2	5.45	8.90	643.1
08/10/21	9.18	37.3	76.5	88.4	0.2	0.2	0.2	5.42	8.90	636.9
08/10/21	9.19	37.4	76.6	88.4	0.2	0.2	0.2	5.41	8.90	630.1
08/10/21	9.20	37.4	76.6	88.4	0.1	0.1	0.1	5.41	8.90	613.6
08/10/21	9.21	37.2	76.3	88.3	0.1	0.1	0.1	5.44	8.90	614.3
08/10/21	9.22	37.3	76.4	88.6	0.2	0.2	0.2	5.47	8.90	614.2
08/10/21	9.23	37.4	76.6	89.1	0.2	0.2	0.2	5.52	8.80	630.8
08/10/21	9.24	37.3	76.5	88.8	0.1	0.1	0.1	5.50	8.80	617.8
08/10/21	9.25	37.2	76.3	88.7	0.2	0.2	0.2	5.52	8.90	615.0
08/10/21	9.26	37.2	76.3	88.8	0.1	0.1	0.1	5.54	8.80	620.8
08/10/21	9.27	37.4	76.6	89.0	0.2	0.2	0.2	5.50	8.80	629.6
08/10/21	9.28	37.4	76.6	88.8	0.2	0.2	0.2	5.48	8.90	622.8

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova

Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio

I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

Tipologia di campione

LAB N° 00175 L

Rapporto di prova n. 2104111-060

EP Produzione SpA

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

data inizio campionamento: 08/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 08/10/2021 data fine campionamento: 08/10/2021 data inizio fase analitica: 08/10/2021 data emissione: 30/11/2021

frequenza acquisizione dati 15 secondi periodo mediazione dati 60 secondi

punto di emissione - sigla: da caldaia ausiliaria C2 lavorazione in corso: principali materie prime: qas naturale

autorizzazione all'emissione: Decreto AIA n. 93 del 07/04/2017 (rinnovo del Decreto DSA-DEC-2009 0000580 del 15/06/2009)

EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnici

RISULTATI RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM"

Data	Ora	NO_x	NO_x	NO_x	со	СО	со	O_2	CO2	5
	solare		come NO ₂	come NO ₂						Portata gas bruciatore
		ppm	mg/Nm³	mg/Nm³	ppm	mg/Nm³	mg/Nm³	%	%	D. aciator c
			· ·	(3% O ₂)		J	(3% O ₂)			Nm³/h
08/10/21	9.29	37.3	76.5	89.2	0.2	0.2	0.2	5.56	8.80	615.2
08/10/21	9.30	37.2	76.3	89.0	0.2	0.2	0.2	5.56	8.80	627.5
08/10/21	9.31	37.4	76.6	89.3	0.2	0.2	0.2	5.56	8.80	626.5
08/10/21	9.32	37.4	76.6	88.7	0.2	0.2	0.2	5.45	8.90	626.9
08/10/21	9.33	37.4	76.6	88.4	0.2	0.2	0.2	5.40	8.90	619.7
08/10/21	9.34	37.3	76.4	88.2	0.1	0.1	0.1	5.41	9.00	615.4
08/10/21	9.35	37.3	76.5	89.0	0.2	0.2	0.2	5.53	8.80	615.6
08/10/21	9.36	37.3	76.5	89.2	0.1	0.1	0.1	5.56	8.80	626.3
08/10/21	9.37	37.3	76.5	89.1	0.1	0.1	0.1	5.55	8.80	625.4
08/10/21	9.38	37.2	76.3	88.3	0.2	0.2	0.2	5.45	8.90	626.1
08/10/21	9.39	37.2	76.3	88.4	0.2	0.2	0.2	5.46	8.90	619.6
08/10/21	9.40	37.3	76.4	88.8	0.1	0.1	0.1	5.52	8.80	616.6
08/10/21	9.41	37.2	76.3	88.6	0.1	0.1	0.1	5.50	8.80	627.0
08/10/21	9.42	37.2	76.2	88.1	0.1	0.1	0.1	5.43	8.90	626.0
08/10/21	9.43	37.1	76.0	87.9	0.2	0.2	0.2	5.44	8.80	613.1
08/10/21	9.44	37.2	76.2	88.5	0.2	0.2	0.2	5.50	8.80	610.6
08/10/21	9.45	37.1	76.1	88.4	0.1	0.1	0.1	5.51	8.80	627.1
08/10/21	9.46	37.1	76.0	88.5	0.2	0.2	0.2	5.55	8.80	626.5
08/10/21	9.47	37.0	75.9	87.9	0.2	0.2	0.2	5.46	8.80	628.5
08/10/21	9.48	37.2	76.2	88.1	0.1	0.1	0.1	5.43	8.90	619.0
08/10/21	9.49	37.2	76.3	88.1	0.2	0.2	0.2	5.41	9.00	612.4
08/10/21	9.50	37.2	76.2	88.1	0.2	0.2	0.2	5.43	8.90	613.5
08/10/21	9.51	37.1	76.0	87.9	0.2	0.2	0.2	5.43	8.90	621.4
08/10/21	9.52	37.1	76.1	88.1	0.2	0.2	0.2	5.45	9.00	629.2
08/10/21	9.53	37.1	76.1	88.1	0.2	0.2	0.2	5.45	9.00	627.6
08/10/21	9.54	37.1	76.1	88.1	0.2	0.2	0.2	5.45	9.00	615.5
08/10/21	9.55	37.1	76.1	88.1	0.2	0.2	0.2	5.45	9.00	613.6
08/10/21	9.56	37.1	76.1	88.1	0.2	0.2	0.2	5.45	9.00	619.3

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova

Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio

I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

LAB Nº 00175 L

Rapporto di prova n. 2104111-060

EP Produzione SpA

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnici

data inizio campionamento: 08/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 08/10/2021 data fine campionamento: 08/10/2021 data inizio fase analitica: 08/10/2021 data emissione: 30/11/2021

frequenza acquisizione dati 15 secondi periodo mediazione dati 60 secondi

punto di emissione - sigla: da caldaia ausiliaria C2 lavorazione in corso: principali materie prime: qas naturale

autorizzazione all'emissione: Decreto AIA n. 93 del 07/04/2017 (rinnovo del Decreto DSA-DEC-2009 0000580 del 15/06/2009)

RISULTATI RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM"

Data	Ora	NO_x	NO_x	NO_x	со	со	со	O ₂	CO ₂	Doutete was
	solare		come NO ₂	come NO ₂						Portata gas bruciatore
		ppm	mg/Nm³	mg/Nm³	ppm	mg/Nm³	mg/Nm³	%	%	
				(3% O ₂)			(3% O ₂)			Nm³/h
08/10/21	9.57	36.6	75.0	87.2	0.2	0.2	0.2	5.51	8.90	626.9
08/10/21	9.58	36.6	75.0	87.2	0.2	0.2	0.2	5.51	8.90	624.6
08/10/21	9.59	36.6	75.0	87.2	0.2	0.2	0.2	5.51	8.90	625.4
08/10/21	10.00	36.6	75.0	87.2	0.2	0.2	0.2	5.51	8.90	609.8
08/10/21	10.01	36.9	75.7	87.9	0.2	0.2	0.2	5.49	8.90	610.2
08/10/21	10.02	37.2	76.2	88.5	0.2	0.2	0.2	5.51	8.90	627.1
08/10/21	10.03	37.3	76.4	88.6	0.2	0.2	0.2	5.48	8.80	626.4
08/10/21	10.04	37.2	76.3	87.0	0.2	0.3	0.3	5.21	9.00	622.7
08/10/21	10.05	37.0	75.8	85.4	0.2	0.2	0.2	5.03	9.10	755.9
08/10/21	10.06	36.9	75.6	83.4	0.2	0.2	0.2	4.68	9.40	999.4
08/10/21	10.07	35.7	73.2	73.9	4.5	5.6	5.7	3.16	10.30	1199.5
08/10/21	10.08	35.1	71.9	70.8	10.2	12.8	12.6	2.73	10.40	1106.1
08/10/21	10.09	35.0	71.7	70.7	10.1	12.6	12.4	2.75	10.40	960.5
08/10/21	10.10	34.8	71.4	71.2	7.0	8.7	8.7	2.95	10.40	870.8
08/10/21	10.11	34.4	70.6	71.0	3.9	4.9	4.9	3.10	10.20	775.7
08/10/21	10.12	34.3	70.4	70.5	4.5	5.6	5.6	3.02	10.20	772.2
08/10/21	10.13	34.3	70.4	69.7	6.9	8.6	8.5	2.82	10.50	855.7
08/10/21	10.14	34.4	70.5	69.2	8.1	10.1	9.9	2.66	10.60	994.2
08/10/21	10.15	34.6	71.0	69.4	9.2	11.5	11.2	2.59	10.60	1096.7
08/10/21	10.16	34.7	71.2	69.6	9.2	11.5	11.2	2.58	10.60	1158.4
08/10/21	10.17	34.7	71.1	69.7	8.6	10.8	10.6	2.64	10.50	1142.7
08/10/21	10.18	34.5	70.8	70.4	5.8	7.2	7.2	2.90	10.40	1039.5
08/10/21	10.19	34.6	70.9	70.4	6.6	8.2	8.1	2.87	10.50	929.5
08/10/21	10.20	34.5	70.8	70.5	5.5	6.9	6.9	2.92	10.50	876.8
08/10/21	10.21	34.5	70.8	70.3	6.0	7.5	7.4	2.87	10.40	926.6
08/10/21	10.22	34.5	70.7	69.3	6.2	7.8	7.6	2.63	10.60	1022.6
08/10/21	10.23	34.5	70.8	69.1	10.4	13.0	12.7	2.56	10.60	1161.1
08/10/21	10.24	34.6	71.0	69.4	9.6	12.0	11.7	2.58	10.60	1268.4

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova

Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio

I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

LAB N° 00175 L

Rapporto di prova n. 2104111-060

EP Produzione SpA

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnici

data inizio campionamento: 08/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 08/10/2021 data fine campionamento: 08/10/2021 data inizio fase analitica: 08/10/2021 data emissione: 30/11/2021

frequenza acquisizione dati 15 secondi periodo mediazione dati 60 secondi

punto di emissione - sigla: da caldaia ausiliaria C2 lavorazione in corso: principali materie prime: qas naturale

autorizzazione all'emissione: Decreto AIA n. 93 del 07/04/2017 (rinnovo del Decreto DSA-DEC-2009 0000580 del 15/06/2009)

RISULTATI RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM"

Name	Data	Ora	NO_x	NO_x	NO_x	со	СО	со	O_2	CO ₂	5
Namin		solare		come NO ₂	come NO ₂						Portata gas
08/10/21 10.25 34.6 71.0 69.3 9.7 12.1 11.8 2.57 10.50 1319.7 08/10/21 10.26 34.6 70.9 69.0 10.1 12.6 12.3 2.50 10.60 1328.1 08/10/21 10.27 34.6 71.0 69.2 10.0 12.5 12.2 2.52 10.60 1341.5 08/10/21 10.28 34.7 71.2 69.2 13.9 17.4 16.9 2.48 10.70 1378.8 08/10/21 10.29 34.7 71.1 69.1 12.2 15.3 14.9 2.47 10.70 1452.4 08/10/21 10.30 34.7 71.1 68.7 15.5 19.4 18.8 2.38 10.70 1521.7 08/10/21 10.33 34.6 71.0 68.5 16.9 21.1 20.3 2.33 10.70 1550.9 08/10/21 10.33 34.8 71.2 68.8 17.8 22.			ppm	ma/Nm³	mg/Nm³	ppm	ma/Nm³	ma/Nm³	%	%	bradiatore
08/10/21 10.26 34.6 70.9 69.0 10.1 12.6 12.3 2.50 10.60 1328.1 08/10/21 10.27 34.6 71.0 69.2 10.0 12.5 12.2 2.52 10.60 1341.5 08/10/21 10.28 34.7 71.2 69.2 13.9 17.4 16.9 2.48 10.70 1378.8 08/10/21 10.29 34.7 71.1 69.1 12.2 15.3 14.9 2.47 10.70 1452.4 08/10/21 10.30 34.7 71.1 68.7 15.5 19.4 18.8 2.38 10.70 1521.7 08/10/21 10.30 34.7 71.1 68.7 15.5 19.4 18.8 2.38 10.70 1521.7 08/10/21 10.31 34.6 71.0 68.5 16.9 21.1 20.3 2.33 10.70 1550.9 08/10/21 10.33 34.8 71.3 69.1 15.3 19.				· ·	•		Ü	-			Nm³/h
08/10/21 10.26 34.6 70.9 69.0 10.1 12.6 12.3 2.50 10.60 1328.1 08/10/21 10.27 34.6 71.0 69.2 10.0 12.5 12.2 2.52 10.60 1341.5 08/10/21 10.28 34.7 71.2 69.2 13.9 17.4 16.9 2.48 10.70 1378.8 08/10/21 10.29 34.7 71.1 69.1 12.2 15.3 14.9 2.47 10.70 1452.4 08/10/21 10.30 34.7 71.1 68.7 15.5 19.4 18.8 2.38 10.70 1521.7 08/10/21 10.30 34.7 71.1 68.7 15.5 19.4 18.8 2.38 10.70 1521.7 08/10/21 10.31 34.6 71.0 68.5 16.9 21.1 20.3 2.33 10.70 1550.9 08/10/21 10.33 34.8 71.3 69.1 15.3 19.	08/10/21	10.25	34.6	71.0	69.3	9.7	12.1	11.8	2.57	10.50	1319.7
08/10/21 10.27 34.6 71.0 69.2 10.0 12.5 12.2 2.52 10.60 1341.5 08/10/21 10.28 34.7 71.2 69.2 13.9 17.4 16.9 2.48 10.70 1378.8 08/10/21 10.29 34.7 71.1 69.1 12.2 15.3 14.9 2.47 10.70 1452.4 08/10/21 10.30 34.7 71.1 68.7 15.5 19.4 18.8 2.38 10.70 1521.7 08/10/21 10.31 34.6 71.0 68.5 16.9 21.1 20.3 2.33 10.70 1550.9 08/10/21 10.32 34.7 71.2 68.8 17.8 22.2 21.4 2.36 10.70 1556.1 08/10/21 10.33 34.8 71.3 69.1 15.3 19.1 18.5 2.42 10.60 1544.8 08/10/21 10.34 34.7 71.2 69.0 13.1 16.											
08/10/21 10.29 34.7 71.1 69.1 12.2 15.3 14.9 2.47 10.70 1452.4 08/10/21 10.30 34.7 71.1 68.7 15.5 19.4 18.8 2.38 10.70 1521.7 08/10/21 10.31 34.6 71.0 68.5 16.9 21.1 20.3 2.33 10.70 1550.9 08/10/21 10.32 34.7 71.2 68.8 17.8 22.2 21.4 2.36 10.70 1556.1 08/10/21 10.33 34.8 71.3 69.1 15.3 19.1 18.5 2.42 10.60 1544.8 08/10/21 10.34 34.7 71.2 69.0 13.1 16.4 15.9 2.43 10.60 1495.9 08/10/21 10.35 34.6 71.0 69.0 11.3 14.1 13.7 2.48 10.70 1429.3 08/10/21 10.36 34.7 71.2 69.2 10.8 13.	08/10/21	10.27	34.6	71.0	69.2	10.0	12.5	12.2	2.52	10.60	1341.5
08/10/21 10.30 34.7 71.1 68.7 15.5 19.4 18.8 2.38 10.70 1521.7 08/10/21 10.31 34.6 71.0 68.5 16.9 21.1 20.3 2.33 10.70 1550.9 08/10/21 10.32 34.7 71.2 68.8 17.8 22.2 21.4 2.36 10.70 1556.1 08/10/21 10.33 34.8 71.3 69.1 15.3 19.1 18.5 2.42 10.60 1544.8 08/10/21 10.34 34.7 71.2 69.0 13.1 16.4 15.9 2.43 10.60 1495.9 08/10/21 10.35 34.6 71.0 69.0 11.3 14.1 13.7 2.48 10.70 1429.3 08/10/21 10.36 34.7 71.2 69.2 10.8 13.5 13.1 2.48 10.60 1390.2 08/10/21 10.37 34.7 71.2 69.2 8.8 11.0	08/10/21										
08/10/21 10.30 34.7 71.1 68.7 15.5 19.4 18.8 2.38 10.70 1521.7 08/10/21 10.31 34.6 71.0 68.5 16.9 21.1 20.3 2.33 10.70 1550.9 08/10/21 10.32 34.7 71.2 68.8 17.8 22.2 21.4 2.36 10.70 1556.1 08/10/21 10.33 34.8 71.3 69.1 15.3 19.1 18.5 2.42 10.60 1544.8 08/10/21 10.34 34.7 71.2 69.0 13.1 16.4 15.9 2.43 10.60 1495.9 08/10/21 10.35 34.6 71.0 69.0 11.3 14.1 13.7 2.48 10.70 1429.3 08/10/21 10.36 34.7 71.2 69.2 10.8 13.5 13.1 2.48 10.60 1390.2 08/10/21 10.37 34.7 71.2 69.2 8.8 11.0	08/10/21	10.29	34.7	71.1	69.1	12.2	15.3	14.9	2.47	10.70	1452.4
08/10/21 10.32 34.7 71.2 68.8 17.8 22.2 21.4 2.36 10.70 1556.1 08/10/21 10.33 34.8 71.3 69.1 15.3 19.1 18.5 2.42 10.60 1544.8 08/10/21 10.34 34.7 71.2 69.0 13.1 16.4 15.9 2.43 10.60 1495.9 08/10/21 10.35 34.6 71.0 69.0 11.3 14.1 13.7 2.48 10.70 1429.3 08/10/21 10.36 34.7 71.2 69.2 10.8 13.5 13.1 2.48 10.60 1390.2 08/10/21 10.37 34.7 71.2 69.2 8.8 11.0 10.7 2.49 10.60 1394.0 08/10/21 10.38 34.7 71.1 69.5 6.7 8.4 8.2 2.59 10.60 1415.2 08/10/21 10.39 34.6 71.0 68.9 13.3 16.6 <td>08/10/21</td> <td>10.30</td> <td>34.7</td> <td>71.1</td> <td>68.7</td> <td>15.5</td> <td></td> <td>18.8</td> <td></td> <td>10.70</td> <td>1521.7</td>	08/10/21	10.30	34.7	71.1	68.7	15.5		18.8		10.70	1521.7
08/10/21 10.32 34.7 71.2 68.8 17.8 22.2 21.4 2.36 10.70 1556.1 08/10/21 10.33 34.8 71.3 69.1 15.3 19.1 18.5 2.42 10.60 1544.8 08/10/21 10.34 34.7 71.2 69.0 13.1 16.4 15.9 2.43 10.60 1495.9 08/10/21 10.35 34.6 71.0 69.0 11.3 14.1 13.7 2.48 10.70 1429.3 08/10/21 10.36 34.7 71.2 69.2 10.8 13.5 13.1 2.48 10.60 1390.2 08/10/21 10.37 34.7 71.2 69.2 8.8 11.0 10.7 2.49 10.60 1394.0 08/10/21 10.38 34.7 71.1 69.5 6.7 8.4 8.2 2.59 10.60 1415.2 08/10/21 10.39 34.6 71.0 68.9 13.3 16.6 <td>08/10/21</td> <td>10.31</td> <td>34.6</td> <td>71.0</td> <td>68.5</td> <td></td> <td></td> <td></td> <td></td> <td>10.70</td> <td>1550.9</td>	08/10/21	10.31	34.6	71.0	68.5					10.70	1550.9
08/10/21 10.33 34.8 71.3 69.1 15.3 19.1 18.5 2.42 10.60 1544.8 08/10/21 10.34 34.7 71.2 69.0 13.1 16.4 15.9 2.43 10.60 1495.9 08/10/21 10.35 34.6 71.0 69.0 11.3 14.1 13.7 2.48 10.70 1429.3 08/10/21 10.36 34.7 71.2 69.2 10.8 13.5 13.1 2.48 10.60 1390.2 08/10/21 10.37 34.7 71.2 69.2 8.8 11.0 10.7 2.49 10.60 1394.0 08/10/21 10.38 34.7 71.1 69.5 6.7 8.4 8.2 2.59 10.60 1415.2 08/10/21 10.39 34.6 71.0 68.9 13.3 16.6 16.1 2.44 10.70 1437.1 08/10/21 10.40 34.7 71.1 69.0 10.2 12.8 <td>08/10/21</td> <td></td>	08/10/21										
08/10/21 10.34 34.7 71.2 69.0 13.1 16.4 15.9 2.43 10.60 1495.9 08/10/21 10.35 34.6 71.0 69.0 11.3 14.1 13.7 2.48 10.70 1429.3 08/10/21 10.36 34.7 71.2 69.2 10.8 13.5 13.1 2.48 10.60 1390.2 08/10/21 10.37 34.7 71.2 69.2 8.8 11.0 10.7 2.49 10.60 1394.0 08/10/21 10.38 34.7 71.1 69.5 6.7 8.4 8.2 2.59 10.60 1415.2 08/10/21 10.39 34.6 71.0 68.9 13.3 16.6 16.1 2.44 10.70 1437.1 08/10/21 10.40 34.7 71.1 69.0 10.2 12.8 12.4 2.44 10.70 1490.6	08/10/21	10.33	34.8	71.3	69.1	15.3	19.1			10.60	1544.8
08/10/21 10.35 34.6 71.0 69.0 11.3 14.1 13.7 2.48 10.70 1429.3 08/10/21 10.36 34.7 71.2 69.2 10.8 13.5 13.1 2.48 10.60 1390.2 08/10/21 10.37 34.7 71.2 69.2 8.8 11.0 10.7 2.49 10.60 1394.0 08/10/21 10.38 34.7 71.1 69.5 6.7 8.4 8.2 2.59 10.60 1415.2 08/10/21 10.39 34.6 71.0 68.9 13.3 16.6 16.1 2.44 10.70 1437.1 08/10/21 10.40 34.7 71.1 69.0 10.2 12.8 12.4 2.44 10.70 1490.6											
08/10/21 10.36 34.7 71.2 69.2 10.8 13.5 13.1 2.48 10.60 1390.2 08/10/21 10.37 34.7 71.2 69.2 8.8 11.0 10.7 2.49 10.60 1394.0 08/10/21 10.38 34.7 71.1 69.5 6.7 8.4 8.2 2.59 10.60 1415.2 08/10/21 10.39 34.6 71.0 68.9 13.3 16.6 16.1 2.44 10.70 1437.1 08/10/21 10.40 34.7 71.1 69.0 10.2 12.8 12.4 2.44 10.70 1490.6		10.35									
08/10/21 10.38 34.7 71.1 69.5 6.7 8.4 8.2 2.59 10.60 1415.2 08/10/21 10.39 34.6 71.0 68.9 13.3 16.6 16.1 2.44 10.70 1437.1 08/10/21 10.40 34.7 71.1 69.0 10.2 12.8 12.4 2.44 10.70 1490.6	08/10/21	10.36	34.7	71.2	69.2	10.8	13.5	13.1	2.48	10.60	1390.2
08/10/21 10.38 34.7 71.1 69.5 6.7 8.4 8.2 2.59 10.60 1415.2 08/10/21 10.39 34.6 71.0 68.9 13.3 16.6 16.1 2.44 10.70 1437.1 08/10/21 10.40 34.7 71.1 69.0 10.2 12.8 12.4 2.44 10.70 1490.6	08/10/21	10.37	34.7	71.2	69.2	8.8	11.0			10.60	
08/10/21 10.39 34.6 71.0 68.9 13.3 16.6 16.1 2.44 10.70 1437.1 08/10/21 10.40 34.7 71.1 69.0 10.2 12.8 12.4 2.44 10.70 1490.6		10.38									
08/10/21 10.40 34.7 71.1 69.0 10.2 12.8 12.4 2.44 10.70 1490.6	08/10/21		34.6								
00140104 40.44 04.0 74.0 00.0 45.4 40.0 40.0 00.4											
<u> </u>	08/10/21	10.41	34.8	71.3	68.8	15.1	18.9	18.2	2.34	10.70	1525.3
08/10/21 10.42 34.8 71.3 68.9 13.0 16.3 15.7 2.36 10.70 1535.4	08/10/21	10.42	34.8	71.3	68.9	13.0	16.3	15.7	2.36	10.70	1535.4
08/10/21 10.43 34.6 71.0 68.9 11.0 13.7 13.3 2.45 10.70 1538.5	08/10/21	10.43	34.6	71.0	68.9	11.0	13.7	13.3	2.45	10.70	1538.5
08/10/21 10.44 34.6 71.0 68.8 12.2 15.2 14.7 2.42 10.70 1525.6	08/10/21	10.44	34.6	71.0	68.8	12.2	15.2	14.7		10.70	1525.6
08/10/21 10.45 34.7 71.2 68.9 14.0 17.5 16.9 2.39 10.80 1506.0	08/10/21	10.45	34.7	71.2	68.9	14.0	17.5	16.9	2.39	10.80	1506.0
08/10/21 10.46 34.7 71.2 69.2 11.6 14.5 14.1 2.47 10.70 1473.6	08/10/21	10.46	34.7	71.2	69.2	11.6	14.5	14.1	2.47	10.70	1473.6
08/10/21 10.47 34.6 71.0 68.9 11.0 13.7 13.3 2.45 10.70 1455.9	08/10/21	10.47	34.6	71.0	68.9	11.0	13.7	13.3	2.45	10.70	1455.9
08/10/21 10.48 34.6 71.0 68.8 13.8 17.2 16.7 2.43 10.70 1443.7	08/10/21	10.48	34.6	71.0	68.8	13.8	17.2	16.7	2.43	10.70	1443.7
08/10/21 10.49 34.7 71.1 69.0 11.5 14.4 14.0 2.46 10.60 1445.4	08/10/21	10.49	34.7	71.1	69.0	11.5	14.4	14.0	2.46	10.60	1445.4
08/10/21 10.50 34.7 71.1 69.0 11.2 14.0 13.6 2.46 10.70 1446.9	08/10/21	10.50	34.7	71.1	69.0	11.2	14.0	13.6		10.70	1446.9
08/10/21 10.51 34.6 71.0 69.0 10.4 13.0 12.6 2.47 10.70 1468.0	08/10/21	10.51	34.6	71.0	69.0	10.4	13.0	12.6	2.47	10.70	1468.0
08/10/21 10.52 34.5 70.8 68.6 13.6 17.0 16.5 2.42 10.60 1488.0	08/10/21	10.52	34.5	70.8	68.6	13.6	17.0	16.5	2.42	10.60	1488.0

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova

Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio

I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

LAB N° 00175 L

Rapporto di prova n. 2104111-060

EP Produzione SpA

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnici

data inizio campionamento: 08/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 08/10/2021 data fine campionamento: 08/10/2021 data inizio fase analitica: 08/10/2021 data emissione: 30/11/2021

frequenza acquisizione dati 15 secondi periodo mediazione dati 60 secondi

punto di emissione - sigla:
lavorazione in corso:
principali materie prime:
da caldaia ausiliaria C2
produzione di vapore
gas naturale

autorizzazione all'emissione: Decreto AIA n. 93 del 07/04/2017 (rinnovo del Decreto DSA-DEC-2009 0000580 del 15/06/2009)

RISULTATI RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM"

Data	Ora	NO_x	NO_x	NO_x	CO	СО	CO	O_2	CO ₂	Portata gas
	solare		come NO ₂	come NO ₂						bruciatore
		ppm	mg/Nm³	mg/Nm³	ppm	mg/Nm³	mg/Nm³	%	%	
				(3% O ₂)			(3% O ₂)			Nm³/h
08/10/21	10.53	34.6	71.0	68.6	13.9	17.4	16.8	2.38	10.70	1505.3
08/10/21	10.54	34.6	71.0	68.5	13.7	17.1	16.5	2.34	10.70	1504.2
08/10/21	10.55	34.6	71.0	68.7	13.8	17.2	16.6	2.39	10.70	1504.1
08/10/21	10.56	34.5	70.7	68.6	11.9	14.9	14.5	2.45	10.70	1491.1
08/10/21	10.57	34.6	70.9	68.8	10.6	13.2	12.8	2.45	10.70	1473.5
08/10/21	10.58	34.6	71.0	68.9	11.0	13.8	13.4	2.44	10.70	1468.5
08/10/21	10.59	34.6	71.0	68.9	10.0	12.5	12.1	2.46	10.70	1462.4
08/10/21	11.00	34.5	70.8	68.7	10.0	12.5	12.1	2.45	10.70	1461.0
08/10/21	11.01	34.5	70.8	68.7	11.6	14.5	14.1	2.45	10.70	1458.5
08/10/21	11.02	34.6	70.9	68.8	11.6	14.5	14.1	2.45	10.70	1462.2
08/10/21	11.03	34.6	71.0	68.8	13.5	16.9	16.4	2.42	10.70	1457.2
Media:		36.3	74.5	83.6	3.5	4.4	4.3	4.77	9.32	
Incertezza:		-	-	± 5.9	-	-	± 0.3	± 0.13	± 0.47	
Minimo:		31.2	64.0	64.8	0.1	0.1	0.1	2.33	8.10	
Massimo:		39.4	80.7	99.5	17.8	22.2	21.4	6.81	10.80	

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio

I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

EP Produzione SpA

Centrale termoelettrica di Ostiglia (MN)

ALLEGATO 2

RAPPORTI DI PROVA 2104111-057, 2104111-059 (VERIFICHE LINEARITA' STRUMENTALE)

TECNOLOGIE D'IMPRESA SrI a socio unico Società soggetta all'attività di direzione e coordinamento da parte di PGF Srl Via Don Minzoni, 15 – 22060 CABIATE – CO - Tel. 031 76991 – Fax 031 7699199 www.tecnoimp.it e-mail info@tecnoimp.it

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610131

LAB Nº 00175 L

Rapporto di prova n. 2104111-057

Prova di linearità - Metodo di prova: UNI EN 14181:2015 (Annex B)

EP Produzione S.p.A. Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

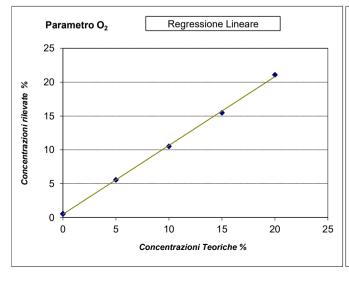
%

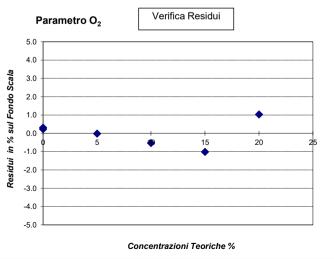
POSTAZIONE CALDAIA Marca - Modello analizzatore: ABB - EL 3020 sn. 3.355052.1 **AUSILIARIA N. 1 (C1)** 543900

O2 Gas analizzato Campo di misura 0 - 25

Standard n° 20.79 % Concentrazione

Data della verifica : 30/09/2021 Garanzia di stabilità standard: 13/03/2022


Orario della verifica : 13:00 - 13:30


Modalit	à misure		Valori di Co	ncentrazione	
Livello di Concentrazione	Ripetizione misura	Concentrazione rilevata	Concentrazione rilevata media	Concentrazione teorica	Concentrazione teorica derivata da equazione
С	m _c	Yc,	Y _c	X _i	X _i (corr.)
		%	%	%	%
	а	0.54			
0	b	0.54	0.54	0.00	0.48
	С	0.54			
	а	5.57			
1	b	5.56	5.56	5.00	5.57
	С	5.56			
	а	10.52			
2	b	10.52	10.52	10.00	10.65
	С	10.52			
	а	15.49			
3	b	15.48	15.48	15.00	15.74
	С	15.48			
	а	21.08			
4	b	21.08	21.08	20.00	20.82
	С	21.08			
	а	0.56			
0	b	0.56	0.56	0.00	0.48
	С	0.56			

Cara	tteristiche Dilu	izione
Livello di Concentrazione	Fattore di diluizione	Concentrazione teorica in % sul F.S.
С		%
0	0.0000	0.0
1	0.2000	20.0
2	0.4000	40.0
3	0.6000	60.0
4	0.8000	80.0

Parametri regressione lineare			
Intercetta A Pendenza B Correlazione R			
0.4833	1.0169	0.99977	

Errori strumentali			
Livello di Concentrazione	Residuo in %	Residuo in % sul F.S.	
С	dc	dc _{rel}	
0	0.06	0.23	
1	0.00	-0.02	
2	-0.13	-0.53	
3	-0.25	-1.02	
4	0.26	1.03	
0	0.08	0.31	
Criterio di accettabilità: -5% ≤ dc _{rel} ≤ +5%			

Referente emissioni in atmosfera Ordine dei Chimici della Lombardia dr. Marco Pelozzi albo prof.n. 2797

TECNOLOGIE D'IMPRESA Srl a socio unico Società soggetta all'attività di direzione e coordinamento da parte di PGF Srl Via Don Minzoni, 15 – 22060 CABIATE – CO - Tel. 031 76991 – Fax 031 7699199 www.tecnoimp.it e-mall info@tecnoimp.it

Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610131

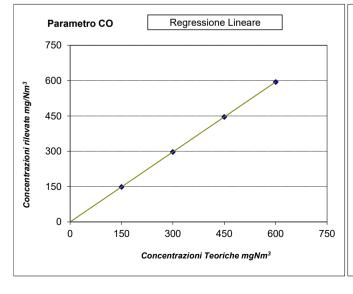
LAB Nº 00175 L

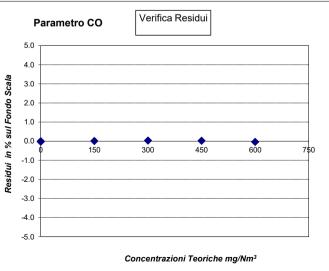
Rapporto di prova n. 2104111-057

Prova di linearità - Metodo di prova: UNI EN 14181:2015 (Annex B)

EP Produzione S.p.A.

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)


POSTAZIONE CALDAIA AUSILIARIA N. 1 (C1)		Marca - Modello analizzatore: ABB - EL 3020 sn. 3.355052.1	Gas analizzato Campo di misura	CO 0 - 750 mg/Nm ³
Standard n°	543900	Garanzia di stabilità standard: 13/03/2022	Data della verifica	: 30/09/2021
Concentrazione	995 mg/Nm ³	Garanzia di Stabilita Standard. 13/03/2022	Orario della verifica	: 13:00 - 13:30


Modalità misure		Valori di Concentrazione			
Livello di Concentrazione	Ripetizione misura	Concentrazione rilevata	Concentrazione rilevata media	Concentrazione teorica	Concentrazione teorica derivata da equazione
С	m _c	Yc,,	Y _c	\mathbf{X}_{i}	X _i (corr.)
		mg/Nm³	mg/Nm ³	mg/Nm ³	mg/Nm ³
	а	-0.03			
0	b	-0.04	-0.04	0.00	-0.01
	С	-0.04			
	а	149			
1	b	149	149	150	149
	С	149			
	а	298			
2	b	298	298	300	297
	С	298			
	а	446			
3	b	446	446	450	446
	С	446			
	а	594			
4	b	594	594	600	595
	С	595			
	а	-0.22			
5	b	-0.20	-0.21	0.00	-0.01
	С	-0.21			
Verifiche eseguite con diluitore di gas HovaCAL N 312-MF					

Caratteristiche Diluizione				
Livello di Fattore di Concentrazione diluizione		Concentrazione teorica in % sul F.S.		
С		%		
0	0.0000	0.0		
1	0.2000	20.0		
2	0.4000	40.0		
3	0.6000	60.0		
4	0.8000	80.0		

Parametri regressione lineare			
Intercetta A Pendenza B Correlazione R			
-0.0137	0.9911	1.00000	

Errori strumentali			
Livello di Concentrazione	Residuo in mg/Nm ³	Residuo in % sul F.S.	
С	dc	dc _{rel}	
0	-0.02	0.00	
1	0.08	0.01	
2	0.24	0.03	
3	0.15	0.02	
4	-0.25	-0.03	
5	-0.20	-0.03	
Criterio di accettabilità: - 5% ≤ dc _{rel} ≤ + 5%			

Referente emissioni in atmosfera Ordine dei Chimici della Lombardia dr. Marco Pelozzi albo prof.n. 2797 Rapporto di prova firmato digitalment

TECNOLOGIE D'IMPRESA SrI a socio unico Società soggetta all'attività di direzione e coordinamento da parte di PGF Srl Via Don Minzoni, 15 – 22060 CABIATE – CO - Tel. 031 76991 – Fax 031 7699199 www.tecnoimp.it e-mail info@tecnoimp.it

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610131

LAB Nº 00175 L

Rapporto di prova n. 2104111-059

Prova di linearità - Metodo di prova: UNI EN 14181:2015 (Annex B)

EP Produzione S.p.A. Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

POSTAZIONE CALDAIA AUSILIARIA N. 2 (C2)

Marca - Modello analizzatore: ABB - EL 3020 sn. 3.355053.1

O2 Gas analizzato

543900 Standard n°

Campo di misura

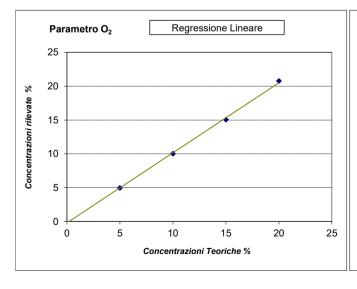
0 - 25

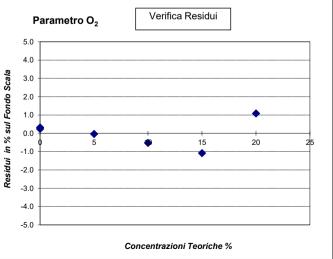
%

20.79 % Concentrazione

Garanzia di stabilità standard: 13/03/2022

Data della verifica : 30/09/2021


Orario della verifica : 13:30 - 14:00


Modalit	ità misure Valori di Concentrazione				
Livello di Concentrazione	Ripetizione misura	Concentrazione rilevata	Concentrazione rilevata media	Concentrazione teorica	Concentrazione teorica derivata da equazione
С	m _c	Yc,	Y _c	\mathbf{X}_{i}	X _i (corr.)
		%	%	%	%
	а	-0.14			
0	b	-0.14	-0.14	0.00	-0.20
	С	-0.14			
	а	4.97			
1	b	4.96	4.97	5.00	4.98
	С	4.97			
	а	10.02			
2	b	10.02	10.02	10.00	10.15
	С	10.02			
	а	15.06			
3	b	15.06	15.06	15.00	15.33
	С	15.05			
	а	20.77			
4	b	20.77	20.77	20.00	20.50
	С	20.78			
	а	-0.12			
0	b	-0.12	-0.12	0.00	-0.20
	С	-0.12			
Verifiche eseguite con diluitore di gas HovaCAL N 312-MF					

Caratteristiche Diluizione			
Fattore di diluizione	Concentrazione teorica in % sul F.S.		
	%		
0.0000	0.0		
0.2000	20.0		
0.4000	40.0		
0.6000	60.0		
0.8000	80.0		
	Fattore di diluizione 0.0000 0.2000 0.4000 0.6000		

Parametri regressione lineare			
Intercetta A Pendenza B Correlazione R			
-0.2000	1.0351	0.99976	

Errori strumentali			
Livello di Concentrazione	Residuo in %	Residuo in % sul F.S.	
C	dc	dc _{rel}	
0	0.06	0.24	
1	-0.01	-0.04	
2	-0.13	-0.53	
3	-0.27	-1.08	
4	0.27	1.08	
0	0.08	0.32	
Criterio di accettabilità: -5% ≤ dc _{rel} ≤ +5%			

Referente emissioni in atmosfera Ordine dei Chimici della Lombardia dr. Marco Pelozzi albo prof.n. 2797

Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610131

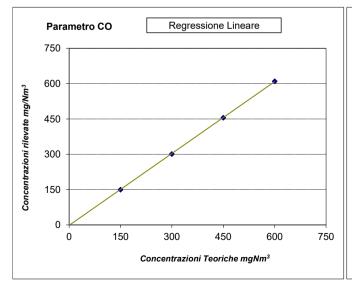
LAB Nº 00175 L

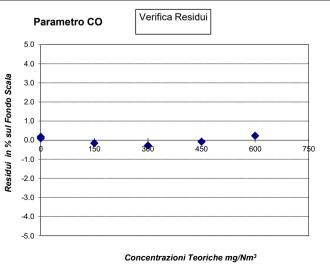
Rapporto di prova n. 2104111-059

Prova di linearità - Metodo di prova: UNI EN 14181:2015 (Annex B)

EP Produzione S.p.A.

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)


POSTAZIONE CALDAIA AUSILIARIA N. 2 (C2)		Marca - Modello analizzatore: ABB - EL 3020 sn. 3.355053.1	Gas analizzato Campo di misura	CO 0 - 750 mg/Nm ³
Standard n°	543900	Garanzia di stabilità standard: 13/03/2022	Data della verifica	: 30/09/2021
Concentrazione	995 mg/Nm ³	Gararizia di Stabilita Staridard. 13/03/2022	Orario della verifica	: 13:30 - 14:00


Modalità misure			Valori di Coi	ncentrazione	
Livello di Concentrazione	Ripetizione misura	Concentrazione rilevata	Concentrazione rilevata media	Concentrazione teorica	Concentrazione teorica derivata da equazione
С	m _c	Yc,,	Y _c	X _i	X _i (corr.)
		mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³
	а	-0.51			
0	b	-0.52	-0.52	0.00	-1.81
	С	-0.52			
	а	150			
1	b	150	150	150	151
	С	150			
	а	301			
2	b	301	301	300	303
	С	301			
	а	455			
3	b	455	455	450	456
	С	455			
	а	610			
4	b	610	610	600	609
	С	610			
	а	-1.09			
5	b	-1.05	-1.07	0.00	-1.81
	С	-1.07			

0					
Cara	tteristiche Diluizi	one			
Livello di Concentrazione	Fattore di diluizione	Concentrazione teorica in % sul F.S.			
С		%			
0	0.0000	0.0			
1	0.2000	20.0			
2	0.4000	40.0			
3	0.6000	60.0			
4	0.8000	80.0			

Parametri regressione lineare				
Intercetta A	Pendenza B	Correlazione R		
-1.8108	1.0175	0.99998		

Errori strumentali					
Livello di Concentrazione	Residuo in mg/Nm ³	Residuo in % sul F.S.			
С	dc	dc _{rel}			
0	1.29	0.17			
1	-1.15	-0.15			
2	-2.05	-0.27			
3	-0.60	-0.08			
4	1.76	0.23			
5	0.74	0.10			
Criterio di acc	Criterio di accettabilità: -5% ≤ dc _{rel} ≤ + 5%				

Referente emissioni in atmosfera Ordine dei Chimici della Lombardia dr. Marco Pelozzi albo prof.n. 2797

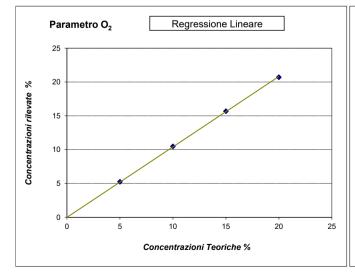
Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610131

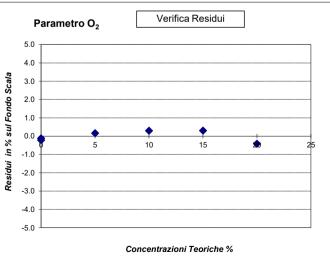
LAB N° 00175 L

Rapporto di prova n. 2104111-061

Prova di linearità - Metodo di prova: UNI EN 14181:2015 (Annex B)

EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)


O2 Gas analizzato Marca - Modello analizzatore: **POSTAZIONE PG 250** HORIBA -PG250 sn. UCB9JRKC Campo di misura 0 - 25 % 101937 Standard n° Data della verifica : 30/09/2021 Garanzia di stabilità standard: 12/02/2023 Orario della verifica Concentrazione 19.99 % : 16:00 - 16:30


Modalità misure			Valori di Cor	ncentrazione	
Livello di Concentrazione	Ripetizione misura	Concentrazione rilevata	Concentrazione rilevata media	Concentrazione teorica	Concentrazione teorica derivata da equazione
С	m _c	Yc,,	Y _c	\mathbf{X}_{i}	X _i (corr.)
		%	%	%	%
	а	-0.05			
0	b	-0.06	-0.06	0.00	0.00
	С	-0.06			
	а	5.24			
1	b	5.25	5.24	5.00	5.20
	С	5.24			
	а	10.49			
2	b	10.48	10.48	10.00	10.41
	С	10.48			
	а	15.69			
3	b	15.69	15.69	15.00	15.61
	С	15.69			
	а	20.71			
4	b	20.71	20.71	19.99	20.81
	С	20.70			
	а	-0.03			
0	b	-0.03	-0.03	0.00	0.00
	С	-0.04			

Caratteristiche Diluizione				
Livello di Concentrazione	Fattore di diluizione	Concentrazione teorica in % sul F.S.		
С		%		
0	0.0000	0.0		
1	0.2000	20.0		
2	0.4000	40.0		
3	0.6000	60.0		
4	1.0000	80.0		

Parametri regressione lineare				
Intercetta A	Pendenza B	Correlazione R		
-0.0022	1.0411	0.99996		

Errori strumentali				
Livello di Residuo Concentrazione in %		Residuo in % sul F.S.		
С	dc	dc _{rel}		
0	-0.05	-0.22		
1	0.04	0.16		
2	0.07	0.30		
3	0.08	0.30		
4	-0.10	-0.41		
0	-0.03	-0.12		
Criterio di accettabilità: -5% ≥ dc _{rel} ≤ + 5%				

Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610131

LAB N° 00175 L

Rapporto di prova n. 2104111-061

Prova di linearità - Metodo di prova: UNI EN 14181:2015 (Annex B)

EP Produzione S.p.A.

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Marca - Modello analizzatore: **POSTAZIONE PG 250** HORIBA -PG250 sn. UCB9JRKC Gas analizzato Campo di misura

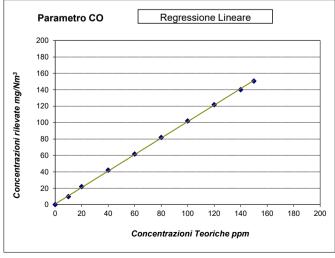
co

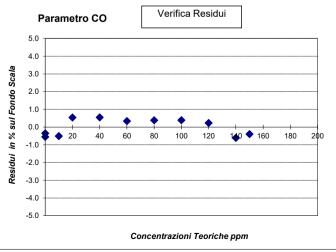
Standard n° 260657

0 - 200 ppm Data della verifica : 30/09/2021

Concentrazione 150.0 ppm Garanzia di stabilità standard: 27/01/2023

Orario della verifica : 14:00 - 14:50


_	 	


Joncentrazione	150.0	FF			
Modalità misure			Valori di Coi	ncentrazione	
Livello di Concentrazione	Ripetizione misura	Concentrazione rilevata	Concentrazione rilevata media	Concentrazione teorica	Concentrazione teorica derivata da equazione
i	m _c	Y _{ci}	Y _c	X _i	X _i (corr.)
		mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³
	а	-0.30			
0	b	-0.30	-0.33	0.0	0.78
	С	-0.40			
	а	9.7			
1	b	9.9	9.8	10.0	10.8
	С	9.8			
	а	22.1			
2	b	22.0	21.9	20.0	20.9
	С	21.7			
	а	41.9			
3	b	42.2	42.0	40.0	40.9
	С	42.0			
	а	61.9	61.7	60.0	61.0
4	b	61.7			
	С	61.5			
	а	82.0		80.0	81.1
5	b	81.7	81.9		
Ü	С	81.9			
	а	102.0			101.2
6	b	102.2	102.0	100.0	
	С	101.7			
	а	121.7			
7	b	121.6	121.7	120.0	121.3
	С	121.9	1		
	а	140.1			
8	b	140.4	140.1	140.0	141.4
	С	139.9	1		
	а	150.7			
9	b	150.6	150.6	150.0	151.4
	С	150.5	1		
	а	0.00			
0	b	0.20	0.07	0.0	0.78
	С	0.00	1		
-	Verifiche es	equite con diluitor	e di gas HovaCAI	N 312-MF	

Caratteristiche Diluizione				
Livello di Concentrazione	Fattore di diluizione	Concentrazione teorica in % sul F.S.		
i		%		
0	0.0000	0.0		
1	0.0500	5.0		
2	0.1000	10.0		
3	0.2000	20.0		
4	0.3000	30.0		
5	0.4000	40.0		
6	0.5000	50.0		
7	0.6000	60.0		
8	0.7000	70.0		
9	0.7500	75.0		

Parametri regressione lineare			
Intercetta	Pendenza Correlazione		
Α	В	R	
0.7752	1.0041	0.99985	

Errori strumentali				
Livello di Concentrazione	Residuo in mg/Nm³ dc	Residuo in % sul F.S. dc _{rel}		
0	-1.11	-0.55		
1	-1.02	-0.51		
2	1.08	0.54		
3	1.09	0.55		
4	0.68	0.34		
5	0.76	0.38		
6	0.78	0.39		
7	0.46	0.23		
8	-1.22	-0.61		
9	-0.79	-0.40		
0	-0.71	-0.35		
Criterio di accettabilità: - 5% ≥ dc _{rel} ≤ + 5%				

Referente emissioni in atmosfera Ordine dei Chimici della Lombardia dr. Marco Pelozzi albo prof.n. 2797 Rapporto di prova firmato digitalmente

ai sensi della normativa vigente

Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610131

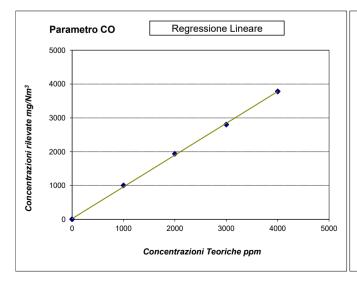
LAB N° 00175 L

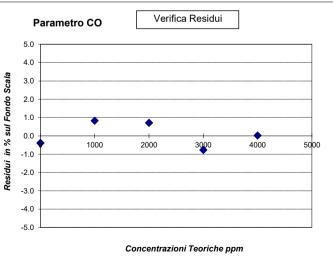
Rapporto di prova n. 2104111-061

Prova di linearità - Metodo di prova: UNI EN 14181:2015 (Annex B)

EP Produzione S.p.A.

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)


POSTAZIONE PG 250	Marca - Modello analizzatore: HORIBA -PG250 sn. UCB9JRKC	Gas analizzato Campo di misura	CO 0 - 5000 ppm
Standard n° 012583	Garanzia di stabilità standard: 18/02/2024	Data della verifica	: 30/09/2021
Concentrazione 4067 ppm	Garanzia di Stabilita Standard. 10/02/2024	Orario della verifica	: 15:25 - 16:00


Modalit	à misure	Valori di Concentrazione			
Livello di Concentrazione	Ripetizione misura	Concentrazione rilevata	Concentrazione rilevata media	Concentrazione teorica	Concentrazione teorica derivata da equazione
С	m _c	Yc,	Y _c	\mathbf{X}_{i}	X _i (corr.)
		mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³
	а	2.00			
0	b	2.00	2.00	0.00	21.50
	С	2.00			
	а	1002			
1	b	1002	1002	1000	961
	С	1002			
	а	1936			
2	b	1935	1936	2000	1900
	С	1936			
	а	2799			
3	b	2803	2801	3000	2839
	С	2800			
	а	3784			
4	b	3779	3780	4000	3779
	С	3776			
	а	2.00			
5	b	2.00	2.00	0.00	21.50
	С	2.00			
	Verifiche eseguite con diluitore di gas HovaCAL N 312-MF				

Caratteristiche Diluizione				
Livello di Concentrazione	Fattore di diluizione	Concentrazione teorica in % sul F.S.		
С		%		
0	0.0000	0.0		
1	0.2000	20.0		
2	0.4000	40.0		
3	0.6000	60.0		
4	0.8000	80.0		

Parametri regressione lineare			
Intercetta A Pendenza B Correlazione R			
21.5000	0.9393	0.99978	

Errori strumentali			
Livello di Concentrazione	Residuo in mg/Nm ³	Residuo in % sul F.S.	
С	dc	dc _{rel}	
0	-19.50	-0.39	
1	41.20	0.82	
2	35.57	0.71	
3	-38.73	-0.77	
4	0.97	0.02	
5	-19.50	-0.39	
Criterio di accettabilità: - 5% \geq dc _{rel} \leq + 5%			

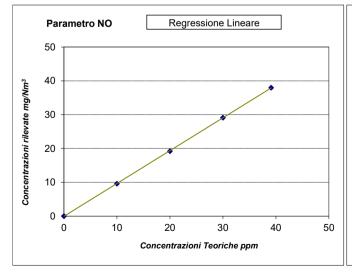
Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610131

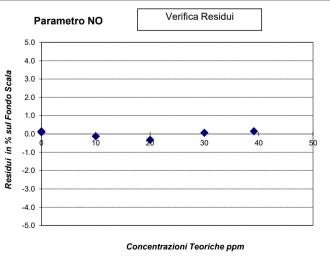
Rapporto di prova n. 2104111-061

Prova di linearità - Metodo di prova: UNI EN 14181:2015 (Annex B)

EP Produzione S.p.A.

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)


· minimus	LAB N° 0017	5 L			
DOST	AZIONE PG 250	N	Marca - Modello analizzatore:	Gas analizzato	NO
P031	AZIONE PG 250	HORIBA -PG250 sn. UCB9JRKC		Campo di misura	0 - 50 ppm
Standard n°	239343	Coron	zia di stabilità standard : 27/07/2022	Data della verifica	: 30/09/2021
Concentrazione	39.1 ppm	Garar	izia di Stabilita Staridard . 27/07/2022	Orario della verifica	: 14:50 - 15:25


Modalità misure			Valori di Coi	ncentrazione	
Livello di Concentrazione	Ripetizione misura	Concentrazione rilevata	Concentrazione rilevata media	Concentrazione teorica	Concentrazione teorica derivata da equazione
С	m _c	Yc,,	Y _c	X _i	X _i (corr.)
		mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³
	а	0.03			
0	b	0.02	0.02	0.00	-0.05
	С	0.02			
	а	9.6			
1	b	9.6	9.6	10.0	9.7
	С	9.6			
	а	19.2			
2	b	19.2	19.2	20.0	19.4
	С	19.2			
	а	29.1			
3	b	29.1	29.1	30.0	29.1
	С	29.1			
	а	38.0			
4	b	38.0	38.0	39.1	37.9
	С	38.0			
	a	0.00			
5	b	0.00	0.00	0.00	-0.05
	С	0.00			

Cara	Caratteristiche Diluizione					
Livello di Concentrazione	Fattore di diluizione	Concentrazione teorica in % sul F.S.				
С		%				
0	0.0000	0.0				
1	0.2000	20.0				
2	0.4000	40.0				
3	0.6000	60.0				
4	1.0000	78.2				

Parametri regressione lineare				
Intercetta A Pendenza B Correlazione R				
-0.0479	0.9701	0.99998		

Errori strumentali			
Livello di Concentrazione	Residuo in mg/Nm ³	Residuo in % sul F.S.	
С	dc	dc _{rel}	
0	0.07	0.14	
1	-0.06	-0.13	
2	-0.16	-0.32	
3	0.03	0.06	
4	0.08	0.15	
5	0.05	0.10	
Criterio di accettabilità: -5% ≥ dc _{rel} ≤ +5%			

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio

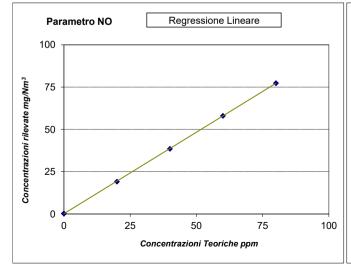
Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610131

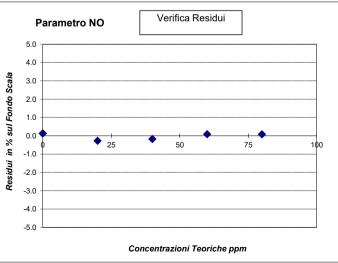
Rapporto di prova n. 2104111-061

Prova di linearità - Metodo di prova: UNI EN 14181:2015 (Annex B)

EP Produzione S.p.A.

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)


LAB № 00175 L				3 ()	
POSTAZIONE PG 250		Warda - Wodello arializzatore.		Gas analizzato	NO
				Campo di misura	0 - 100 ppm
Standard n°	260657	Coronzio	di stabilità standard: 27/01/2023	Data della verifica	: 30/09/2021
Concentrazione	149.7 ppm	Garanzia		Orario della verifica	: 14:00 - 14:50


Modalit	à misure	Valori di Concentrazione				
Livello di Concentrazione	Ripetizione misura	Concentrazione rilevata	Concentrazione rilevata media	Concentrazione teorica	Concentrazione teorica derivata da equazione	
С	m _c	Yc,	Y _c	X _i	X _i (corr.)	
		mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³	
	а	0.30				
0	b	0.30	0.30	0.00	0.17	
	С	0.30				
	а	19.2				
1	b	19.1	19.2	20.0	19.4	
	С	19.2				
	а	38.5				
2	b	38.6	38.5	40.0	38.7	
	С	38.5				
	а	58.0				
3	b	58.1	58.1	60.0	58.0	
	С	58.1				
	а	77.3				
4	b	77.3	77.3	80.0	77.2	
	С	77.4				
	а	0.30				
5	b	0.30	0.30	0.00	0.17	
	С	0.30				

Caratteristiche Diluizione				
Livello di Concentrazione	Fattore di diluizione	Concentrazione teorica in % sul F.S.		
С		%		
0	0.0000	0.0		
1	0.2000	20.0		
2	0.4000	40.0		
3	0.6000	60.0		
4	0.8000	80.0		

Parametri regressione lineare				
Intercetta A Pendenza B Correlazione R				
0.1667	0.9635	0.99998		

Errori strumentali				
Livello di Concentrazione	Residuo in mg/Nm ³	Residuo in % sul F.S.		
С	dc	dc _{rel}		
0	0.13	0.13		
1	-0.27	-0.27		
2	-0.17	-0.17		
3	0.09	0.09		
4	0.09	0.09		
5	0.13	0.13		
Criterio di accettabilità: - 5% ≥ dc _{rel} ≤ + 5%				

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio

: 30/09/2021

TECNOLOGIE D'IMPRESA Srl a socio unico
Società soggetta all'attività di direzione e coordinamento da parte di PGF Srl
Via Don Minzoni, 15 – 22060 CABIATE – CO - Tel. 031 76991 – Fax 031 7699199
www.tecnoimp.it e-mail info@tecnoimp.it

www.tecnoimp.it e-mail info@tecnoimp.it

Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610131

Verifica efficienza convertitore catalitico NO2-NO - Metodo di prova: UNI EN 14792:2006 Allegato B

Data prova:

Rapporto di prova n. 2104111-061

EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

LAB N° 00175 L

POSTAZIONE HORIBA PG 250

Denominaziono	e misura	Simbolo misura	Unità di misura	Misura 1	Misura 2
Parametro:	Monossido di azoto (NO)				
Generatore di Ozono:	OFF	P1	ppm	35.6	35.5
Convertitore Catalitico:	OFF				
Parametro:	Ossidi di di azoto (NO _x)		ppm	36.8	37.0
Generatore di Ozono:	OFF	R1			
Convertitore Catalitico:	ON				
Parametro:	Monossido di azoto (NO)		ppm	21.3	27.3
Generatore di Ozono:	ON	P2			
Convertitore Catalitico:	OFF				
Parametro:	Ossidi di azoto (NO _x)		ppm	36.2	36.6
Generatore di Ozono:	ON	R2			
Convertitore Catalitico:	ON				
Parametro:	Biossido di azoto (NO ₂)				
Generatore di Ozono:	ON	(R2-P2)	ppm	14.9	9.3
Convertitore Catalitico:	ON				
Efficienza conv	vertitore	C _E	%	95.8	95.1

NOTA: negli step P1 e R1 la concentrazione fornita all'analizzatore è generata tramite diluizione a partire da uno standard di NO contenente tracce di NO₂

EP Produzione SpA

Centrale termoelettrica di Ostiglia (MN)

CERTIFICATI

SOCIETÀ ITALIANA ACETILENE E DERIVATI
S.I.A.D. S.p.A.
24126 Bergamo, Italy - Via S. Bernardino, 92
Tel. +39 035 328111 - Fax +39 035 315486
www.siad.com - siad@siad.eu
Capitale Sociale - Share Capital € 25.000.000 i.v. - paid up
P.IVA, C.F., Reg. Impr. Bg - VAT and Fiscal Nr.: (IT) 00209070168
R.E.A. BG-15532 - Export: BG 000472

Stabilimento di Oslo Sopra 24040 Osio Sopra (BG) S.S. 525 del Brembo, 1 Tel. 035/328446 Fax 035/502208 e-mail: ricerca@siad.eu

02/02/2021

Spett.le

TECNOLOGIE D'IMPRESA SRL Via Don Giovanni Minzoni 15 22060 CABIATE

° CO

Indirizzo di consegna

Via Don Giovanni Minzoni 15 22060 CABIATE (CO)

Certificato n.

2616

(256754 / 13101)

Riferimento del cliente

20001323

13101 /

Data ordine cliente

29/12/2020

Tipo di miscela

Miscela Gas CampioneBombole da 10 L, ALL, SIAD

Miscele Certificate

Composizione Certificata

Componenti Richiesta Valore certificato Incertezza estesa OSSIDO DI CARBONIO 40,0 ppmvol 39,7 ppmvol 1,1 ppmvol **OSSIDO DI AZOTO** 40,0 ppmvol 39,1 ppmvol 1,1 ppmvol AZOTO Resto Resto Altre impurezze

BIOSSIDO DI AZOTO

0,11 ppmvol

L'incertezza estesa è espressa come incertezza tipo moltiplicata per il fattore di copertura k=2, che per una distribuzione di probabilità normale, corrisponde ad un livello di fiducia del 95% circa.

Classificazione ADR

UN 1956 GAS COMPRESSO, N.A.S. (azoto,ossido di azoto), 2.2 - SCHEDA CEFIC 20G1A

Scheda di sicurezza n.

SI-1956_30

Codice per preparazione ISO 6142

42 Codice per analisi

ISO 6143

Riferibilità

Procedura Int. di preparazione Acr 563. La miscela è stata preparata con il metodo gravimetrico su bilance tarate con masse certificate da Centro ACCREDIA. Numero dei certificati delle

masse: 511, 512, 2567, 2568, A1179; centro ACCREDIA LAT n. 55

Note

Analista Angeretti Diego

Data analisi

27/01/2021

Garanzia di stabilità fino al

27/07/2022

-20 °C

Pressione minima di utilizzo

10% Press -25% peso

Temperatura minima di utilizzo e stoccaggio Temperatura massima di utilizzo e stoccaggio

50 °C

150,00

Capacità b.la (I)

Matricola

10,0

Pressione b.la (bar abs)

Barcode

S5314843

Lotto

ARB1027011

SOCIETÀ ITALIANA ACETILENE E DERIVATI S.I.A.D. S.p.A. 24126 Bergamo, Italy - Via S. Bernardino, 92 Tel. +39 035 328111 - Fax +39 035 315486 www.siad.com - siad@siad.eu

Capitale Sociale - Share Capital € 25.000.000 i.v. - paid up P.IVA, C.F., Reg. Impr. Bg - VAT and Fiscal Nr.: (IT) 00209070168 R.E.A. BG-15532 - Export: BG 000472 Stabilimento di Osio Sopra 24040 Osio Sopra (BG) S.S. 525 del Brembo. 1 Tel. 035/328446 Fax 035/502208 e-mail: ricerca@siad.eu

9-

27/03/2019

Spett.le

TECNOLOGIE D'IMPRESA SRL Via Don Giovanni Minzoni 15 22060 CABIATE

CO

Indirizzo di consegna

Via Don Giovanni Minzoni 15 22060 CABIATE (CO)

Certificato n.

7812

(235669 / 1238)

Riferimento del cliente

19/20

Data ordine cliente

22/01/2019

Tipo di miscela

Miscela Gas CampioneBombole da 10 L, ALL, : Gas

Miscele Certificate

Composizione Certificata

Componenti Richiesta Valore certificato Incertezza estesa **OSSIDO DI CARBONIO** 800 ppmvol 796 ppmvol 16 ppmvol **AZOTO** Resto **OSSIGENO** 21,00 %vol 20,79 %vol 0,17 %vol

L'incertezza estesa è espressa come incertezza tipo moltiplicata per il fattore di copertura k=2, che per una distribuzione di probabilità normale, corrisponde ad un livello di fiducia del 95% circa.

Classificazione ADR

UN 1956 GAS COMPRESSO, N.A.S. (azoto,ossigeno), 2.2 - SCHEDA CEFIC 20G1A

Scheda di sicurezza n.

SI-1956_3

Codice per preparazione ISO 6142

Codice per analisi ISO 6143

Riferibilità

Procedura int. di preparazione Acr 563. La miscela è stata preparata con il metodo gravimetrico su bilance tarate con masse certificate da Centro ACCREDIA. Numero dei certificati delle

masse: 511, 512, 2567, 2568, A1179; centro ACCREDIA LAT n. 55

Note

Analista Belingheri Damiana Data analisi

13/03/2019

Garanzia di stabilità fino al 13/03/2022

Temperatura minima di utilizzo e stoccaggio

-20 °C

Pressione minima di utilizzo

10% Press -25%

m3

Temperatura massima di utilizzo e stoccaggio

50 °C

Contenuto b,la.

1,50

peso

Capacità b.la (I)

10,0

Pressione b.la (bar abs) 150,00

Matricola

543900

Barcode

S1624938

ARE0601039 Lotto

SIAD S.p.A. - Il responsabile del Laboratorio Gas d'Miscele Speciali

Maurizio Tintori

Spett.le

EP Produzione SpA

S.S. Abetone Brennero km 239 46035 Ostiglia (MN)

c.a. egr. Sig. Alberto Morandi

Cabiate, 30 Novembre 2021

Facciamo riferimento agli accordi intercorsi, per trasmetterVi, in allegato, la relazione tecnica a seguito dell'indagine analitica alle emissioni in atmosfera effettuata nel mese di Novembre 2021 presso la Vostra Centrale di Ostiglia (MN).

A Vostra disposizione per ogni chiarimento e per quant'altro Vi potesse occorrere, cogliamo l'occasione per porgerVi i nostri migliori saluti.

IL TECNICO INCARICATO

Debora Terlizzi

EP Produzione SpA

Centrale di Ostiglia (MN)

INDAGINE ANALITICA ALLE EMISSIONI IN ATMOSFERA E1, E2, E3 DA IMPIANTI A CICLO COMBINATO TG1, TG2, TG3 EFFETTUATA NEL PERIODO SETTEMBRE÷OTTOBRE 2021

DETERMINAZIONE DEI "PARAMETRI CONOSCITIVI"

Cabiate, 30.11.2021

INDICE

1.0 GENERALITÀ	. 1
2.0 PRELIEVI ED ANALISI	. 2
3.0 RISULTATI E RELATIVE CONSIDERAZIONI	. 3

RAPPORTI DI PROVA N. 2104111-001 (TG1) - 2104111-020 (TG2) - 2104111-039 (TG3) Allegato:

1.0 GENERALITÀ

Per incarico della società "EP Produzione SpA", nel periodo Settembre÷Ottobre 2021 è stata effettuata un'indagine analitica alle emissioni in atmosfera E1, E2, E3 relative agli impianti turbogas a ciclo combinato TG1, TG2 e TG3 operanti nella Centrale di Ostiglia (MN).

Scopo dell'indagine è stato quello di verificare i livelli emissivi per alcune sostanze inserite nel Piano di Monitoraggio e Controllo (PMC) riportato nel D.M. n. 369 del 09/09/2021 di riesame dell'Autorizzazione Integrata Ambientale (AIA) rilasciata con provvedimento n. DSA-DEC-2009-976 del 03/08/2009 alla società EP Produzione S.p.A..

In particolare, come previsto nel paragrafo "Emissioni dai Camini dei Gruppi 1, 2 e 3" del PMC aggiornato, sono state ricercate le polveri totali e il biossido di zolfo quali parametri denominati "conoscitivi".

I risultati analitici acquisiti, insieme ai principali parametri relativi alle condizioni operative degli impianti durante i campionamenti (la potenza generata), sono riportate nei rapporti di prova in Allegato.

Le giornate di prova su ciascuna emissione sono state:

Impianto	Punto di emissione	Giornate di prova
TG1	E1	06-07/10/2021
TG2	E2	27-28/09/2021
TG3	E3	04-05/10/2021

2.0 PRELIEVI ED ANALISI

Nella fase di programmazione e realizzazione dell'indagine sono state seguite le indicazioni contenute nei seguenti metodi e norme tecniche:

Concentrazione in massa di polveri (basse concentrazioni)	UNI EN 13284-1:2017
Diossido di zolfo (metodo manuale)	UNI EN 14971:2017
Ossigeno	UNI EN 14789:2017
Diossido di carbonio	ISO 12039:2019 Annex A
Velocità e portata	UNI EN ISO 16911-1:2013 solo Annex A
Vapore acqueo (Umidità)	UNI EN 14790:2017

Sono stati eseguiti tre campionamenti consecutivi da un'ora ciascuno per il biossido di zolfo; per le polveri totali sono stati effettuati tre prelievi prolungati nel tempo (8 ore).

In pratica per i prelievi di tipo discontinuo è stata utilizzata la seguente attrezzatura:

- sonda isocinetiche in acciaio inox per polveri totali;
- sonde in vetro per il biossido di zolfo e l'umidità;
- pompe di prelievo;
- contatori volumetrici dell'aria filtrata con controllo della temperatura;
- sonda di Darcy con sensore elettronico Isocheck per le misure di velocità e portata;
- sensore Isocheck per la misura della temperatura degli effluenti gassosi.

La captazione delle varie sostanze è stata ottenuta con l'impiego di:

- membrane in fibre di vetro per le polveri totali;
- due gorgogliatori posti in serie caricati con liquido specifico (soluzione acquosa di perossido di idrogeno) per il biossido di zolfo;
- fiale riempite con gel di silice per l'umidità.

Le successive determinazioni sono state eseguite per via:

- ponderale dopo stabilizzazione delle membrane in stufa termostatata per le polveri;
- cromatografia ionica per il biossido di zolfo;
- ponderale per l'umidità.

J:\TDI\E\EP Produzione S.p.a\Centrale Termoelettrica Ostiglia\A_Emissioni in atmosfera\Anno 2021\Parametri conoscitivi\Relazione parametri conoscitivi TG1-TG2-TG3_211130.docx//TERLIZZI/mariani Pag. 2 di 3

3.0 RISULTATI E RELATIVE CONSIDERAZIONI

La presente indagine analitica ha avuto la finalità di valutare, a titolo conoscitivo, i livelli emissivi delle polveri totali e del biossido di zolfo per gli impianti turbogas TG1, TG2 e TG3 della Centrale termoelettrica di Ostiglia (MN); i risultati analitici ottenuti sono riportati nei rapporti di prova allegati.

Le concentrazioni sono espresse in mg/Nm³ e riportate al tenore di ossigeno di riferimento del 15 %, in funzione della tipologia d'impianto in esame.

Si precisa che quando uno specifico inquinante è risultato analiticamente assente o presente in tracce, nel rapporto di prova è stato riportato il valore della sensibilità della metodica analitica utilizzata; questo significa che se lo specifico inquinante fosse presente nell'effluente gassoso la sua concentrazione sarebbe comunque inferiore al valore riportato.

Nel caso in cui, nella serie di tre prelievi effettuati, uno o due valori siano risultati inferiori alla sensibilità della metodica analitica utilizzata, nel computo dei valori medi è stato assunto la metà del limite di rivelabilità del metodo (con riferimento al Rapporto ISTISAN 04/15 edito da Istituto Superiore di Sanità).

Alla luce dei risultati ottenuti e riportati in allegato, è possibile osservare che i parametri monitorati sono risultati in concentrazioni molto contenute, se non analiticamente assenti.

In mancanza di limiti di accettabilità specifici per questi parametri relativamente alla tipologia di impianto oggetto dell'indagine, non è possibile stilare ulteriori considerazioni; tuttavia, laddove i composti siano risultati analiticamente presenti, si può osservare che essi sono comunque inferiori ai più restrittivi limiti di legge esistenti in materia.

Cabiate 30.11.2021

TECNOLOGIE D'IMPRESA SRL a socio unico

GESTIONE EMISSIONI:
(Relatore)

Debora Terlizzi

Marco Pelozzi

DIREZIONE:

Giorgio Penati

J:\TDI\E\EP Produzione S.p.a\Centrale Termoelettrica Ostiglia\A_Emissioni in atmosfera\Anno 2021\Parametri conoscitivî\Relazione parametri conoscitivi TG1-TG2-TG3_211130.docx//TERLIZZI/mariani Pag. 3 di 3

EP PRODUZIONE SPA

Centrale di Ostiglia (MN)

ALLEGATO

RAPPORTI DI PROVA N.

2104111-001 (TG1)

2104111-020 (TG2)

2104111-039 (TG3)

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610131

SoPrA

Rapporto di prova n. 2104111-001

EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

LAB N° 00175 L

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnico

data inizio campionamento: 06/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 17/11/2021 data fine campionamento: 07/10/2021 data inizio fase analitica: 06/10/2021 data emissione: 30/11/2021

Punto di emissione - sigla: E1 da impianto a ciclo combinato TG1

Lavorazione in corso: produzione energia elettrica

Principali materie prime: gas naturale

AlA Prot. DSA-DEC-2009-0000976 del 03/08/2009 e s.m.i. (D.M. n° 369 del 09/09/2021)

Parametro:	Metodo di campionamento/analisi
Concentrazione in massa di polveri (basse concentrazioni)	UNI EN 13284-1:2017
Diossido di zolfo (metodo manuale)	UNI EN 14971:2017
Ossigeno	UNI EN 14789:2017
Diossido di carbonio	ISO 12039:2019 Annex A
Velocità e portata	UNI EN ISO 16911-1:2013 solo Annex A
Vapore acqueo (Umidità)	UNI EN 14790:2017

Caratteristiche del punto di emissione

direzione flusso alla sezione di misura:	verticale
forma della sezione di misura:	circolare
sezione emissione (m²):	32.15

Scelta del punto di misura (UNI EN 15259:2008)

Numero di flange di campionamento:	1
Numero di nande di Cambionamento.	4

lunghezza tratto rettilineo a monte flange:<5</th>diametri idraulicilunghezza tratto rettilineo a valle flange:<5</td>diametri idraulici

test di verifica rappresentatività: esito positivo rapporto velocità fumi massima/minima: <3:1

Condizioni di normalizzazione

Temperatura:	°C	0
Pressione:	Pa	101300
Gas	-	Secco
Ossigeno di riferimento:	%	15

U.M.	risultato	i	ncertezza
m	6.40		
m^2	32.15		
°C	82	±	1
m/s	28.20	±	0.69
m³/h	2495634	±	129773
%	8.72	±	0.44
Nm³/h	1700431		
Nm³/h	2124300		
	m m² °C m/s m³/h % Nm³/h	m 6.40 m² 32.15 °C 82 m/s 28.20 m³/h 2495634 % 8.72 Nm³/h 1700431	m 6.40 m^2 32.15 °C 82 \pm m/s 28.20 \pm m^3/h 2495634 \pm % 8.72 \pm Nm^3/h 1700431

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio

Referente emissioni in atmosfera Ordine dei Chimici della Lombardia dr. Marco Pelozzi albo prof.n. 2797

Rapporto di prova firmato digitalmente ai sensi della normativa vigente

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610131

Rapporto di prova n. 2104111-001 EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

LAB N° 00175 L

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnico

data inizio campionamento: 06/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 17/11/2021 data fine campionamento: 07/10/2021 data inizio fase analitica: 06/10/2021 data emissione: 30/11/2021

Punto di emissione - sigla: E1 da impianto a ciclo combinato TG1

Lavorazione in corso: produzione energia elettrica

Principali materie prime: gas naturale

Autorizzazione all'emissione: AIA Prot. DSA-DEC-2009-0000976 del 03/08/2009 e s.m.i. (D.M. n° 369 del 09/09/2021)

Data	Orario	Potenza elettrica	Polveri totali	Ossigeno
	prelievo	MWe	mg/Nm ³ Rif. 15% O ₂	%
06/10/2021	14:00-22:00	232.5	0.016	13.80
07/10/2021	08:00-16:00	240.6	0.015	13.80
07/10/2021	16:00-24:00	241.8	0.016	13.80
Med	dia	238.3	0.016	13.80
Incert	ezza	-	± 0.003	± 0.37

Data	Orario	Potenza elettrica	Biossido di Zolfo	Ossigeno
	prelievo	MWe	mg/Nm ³ Rif. 15% O₂	%
06/10/2021	14:05-15:05	240.2	0.34	13.80
07/10/2021	08:10-09:10	244.7	0.12	13.79
07/10/2021	16:10-17:10	237.8	0.17	13.82
Med	dia	240.9	0.21	13.80
Incert	ezza	1	± 0.04	± 0.37

Referente emissioni in atmosfera Ordine dei Chimici della Lombardia dr. Marco Pelozzi albo prof.n. 2797 Rapporto di prova firmato digitalmente ai sensi della normativa vigente

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0.95 con un fattore di copertura k=2

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio

I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

www.tecnoimp.it e-maii info@tecnoimp.it Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610131

Rapporto di prova n. 2104111-020

EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

LAB N° 00175 L

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnico

data inizio campionamento: 27/09/2021 data ricevimento: 18/10/2021 data fine fase analitica: 17/11/2021 data fine campionamento: 28/09/2021 data inizio fase analitica: 27/09/2021 data emissione: 30/11/2021

Punto di emissione - sigla: E2 da impianto a ciclo combinato TG2

Lavorazione in corso: produzione energia elettrica

Principali materie prime: gas naturale

AlA Prot. DSA-DEC-2009-0000976 del 03/08/2009 e s.m.i. (D.M. n° 369 del 09/09/2021)

Parametro:	Metodo di campionamento/analisi
Concentrazione in massa di polveri (basse concentrazioni)	UNI EN 13284-1:2017
Diossido di zolfo (metodo manuale)	UNI EN 14971:2017
Ossigeno	UNI EN 14789:2017
Diossido di carbonio	ISO 12039:2019 Annex A
Velocità e portata	UNI EN ISO 16911-1:2013 solo Annex A
Vapore acqueo (Umidità)	UNI EN 14790:2017

Caratteristiche del punto di emissione

direzione flusso alla sezione di misura:	verticale
forma della sezione di misura:	circolare
sezione emissione (m²):	32.15

Scelta del punto di misura (UNI EN 15259:2008)

Numero di flange di campionamento:	1
Numero di liande di Cambionamento.	4

lunghezza tratto rettilineo a monte flange:<5</th>diametri idraulicilunghezza tratto rettilineo a valle flange:<5</td>diametri idraulici

test di verifica rappresentatività: esito positivo rapporto velocità fumi massima/minima: <3:1

Condizioni di normalizzazione

Temperatura:	°C	0
Pressione:	Pa	101300
Gas	-	Secco
Ossigeno di riferimento:	%	15

Dati impianto	U.M.	risultato	i	ncertezza
diametro emissione	m	6.40		
sezione emissione	m²	32.15		
temperatura media	°C	91	±	1
velocità media	m/s	20.37	±	0.50
portata tal quale	m³/h	2358054	±	122619
umidità media	%	8.34	±	0.42
portata normalizzata secca	Nm³/h	1610482		
portata normalizzata secca Rif. O 2 15 %	Nm³/h	1971479		

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio

Referente emissioni in atmosfera Ordine dei Chimici della Lombardia dr. Marco Pelozzi albo prof.n. 2797

Rapporto di prova firmato digitalmente ai sensi della normativa vigente

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610131

Rapporto di prova n. 2104111-020

EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

LAB Nº 00175 L

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnico

data inizio campionamento: 27/09/2021 data ricevimento: 18/10/2021 data fine fase analitica: 17/11/2021 data fine campionamento: 28/09/2021 data inizio fase analitica: 27/09/2021 data emissione: 30/11/2021

Punto di emissione - sigla: E2 da impianto a ciclo combinato TG2

Lavorazione in corso: produzione energia elettrica

Principali materie prime: gas naturale

Autorizzazione all'emissione: AIA Prot. DSA-DEC-2009-0000976 del 03/08/2009 e s.m.i. (D.M. n° 369 del 09/09/2021)

Data	Orario	Potenza elettrica	Polveri totali	Ossigeno
	prelievo	MWe	mg/Nm ³ Rif. 15% O ₂	%
27/09/2021	14:00-22:00	239.0	0.223	13.60
28/09/2021	08:00-16:00	242.0	0.569	13.62
28/09/2021	16:00-24:00	241.8	0.134	13.60
Med	dia	240.9	0.309	13.61
Incert	ezza	-	± 0.060	± 0.37

Data	Orario	Potenza elettrica	Biossido di Zolfo	Ossigeno
	prelievo	MWe	mg/Nm ³ Rif. 15% O₂	%
27/09/2021	14:05-15:05	236.0	0.19	13.60
28/09/2021	08:15-09:15	250.0	0.16	13.62
28/09/2021	16:10-17:10	239.0	0.12	13.62
Med	dia	241.7	0.16	13.61
Incert	ezza	-	± 0.03	± 0.37

Referente emissioni in atmosfera Ordine dei Chimici della Lombardia dr. Marco Pelozzi albo prof.n. 2797 Rapporto di prova firmato digitalmente ai sensi della normativa vigente

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0.95 con un fattore di copertura k=2

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio

I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610131

Rapporto di prova n. 2104111-039

EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

LAB N° 00175 L

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnico

data inizio campionamento: 04/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 17/11/2021 data fine campionamento: 05/10/2021 data inizio fase analitica: 04/10/2021 data emissione: 30/11/2021

Punto di emissione - sigla: E3 da impianto a ciclo combinato TG3

Lavorazione in corso: produzione energia elettrica

Principali materie prime: gas naturale

AlA Prot. DSA-DEC-2009-0000976 del 03/08/2009 e s.m.i. (D.M. n° 369 del 09/09/2021)

Parametro:	Metodo di campionamento/analisi
Concentrazione in massa di polveri (basse concentrazioni)	UNI EN 13284-1:2017
Diossido di zolfo (metodo manuale)	UNI EN 14971:2017
Ossigeno	UNI EN 14789:2017
Diossido di carbonio	ISO 12039:2019 Annex A
Velocità e portata	UNI EN ISO 16911-1:2013 solo Annex A
Vapore acqueo (Umidità)	UNI EN 14790:2017

Caratteristiche del punto di emissione

direzione flusso alla sezione di misura:	verticale
forma della sezione di misura:	circolare
sezione emissione (m ²):	32.15

Scelta del punto di misura (UNI EN 15259:2008)

Numero di flande	e di campionamento:	4

lunghezza tratto rettilineo a monte flange:<5</th>diametri idraulicilunghezza tratto rettilineo a valle flange:<5</td>diametri idraulici

test di verifica rappresentatività: esito positivo rapporto velocità fumi massima/minima: <3:1

Condizioni di normalizzazione

Temperatura:	°C	0
Pressione:	Pa	101300
Gas	-	Secco
Ossigeno di riferimento:	%	15

Dati impianto	U.M.	risultato	i	ncertezza
diametro emissione	m	6.40		
sezione emissione	m²	32.15		
temperatura media	°C	89	±	1
velocità media	m/s	15.57	±	0.38
portata tal quale	m³/h	1802752	±	93743
umidità media	%	7.03	±	0.35
portata normalizzata secca	Nm³/h	1252825		
portata normalizzata secca Rif. O 2 15 %	Nm³/h	1439521		

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio

Referente emissioni in atmosfera Ordine dei Chimici della Lombardia dr. Marco Pelozzi albo prof.n. 2797

Rapporto di prova firmato digitalmente ai sensi della normativa vigente

I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova
J:\TDI\E\EP Produzione S.p.a\Centrale Termoelettrica Ostiglia\A_Emissioni in atmosfera\Anno 2021\Parametri conoscitivi\analisi parametri conoscitivi
TG3_211130.xlsx\TERLIZZI\Mariani
Pag. 1 di 2

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610131

Rapporto di prova n. 2104111-039

EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

LAB N° 00175 L

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnico

data inizio campionamento: 04/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 17/11/2021 data fine campionamento: 05/10/2021 data inizio fase analitica: 04/10/2021 data emissione: 30/11/2021

Punto di emissione - sigla: E3 da impianto a ciclo combinato TG3

Lavorazione in corso: produzione energia elettrica

Principali materie prime: gas naturale

Autorizzazione all'emissione: AIA Prot. DSA-DEC-2009-0000976 del 03/08/2009 e s.m.i. (D.M. n° 369 del 09/09/2021)

Data	Orario	Potenza elettrica	Polveri totali	Ossigeno
	prelievo	MWe	mg/Nm ³ Rif. 15% O ₂	%
04/10/2021	14:00-22:00	219.2	0.013	13.40
05/10/2021	08:00-16:00	241.9	0.012	13.40
05/10/2021	16:00-24:00	242.0	0.021	13.40
Med	dia	234.3	0.016	13.40
Incert	ezza	-	± 0.003	± 0.36

Data	Orario	Potenza elettrica	Biossido di Zolfo	Ossigeno
	prelievo	MWe	mg/Nm ³ Rif. 15% O₂	%
04/10/2021	14:05-15:05	219.2	< 0.08	13.42
05/10/2021	08:10-09:10	245.1	< 0.08	13.42
05/10/2021	16:10-17:10	241.0	< 0.08	13.42
Med	dia	235.1	< 0.08	13.42
Incert	ezza	-	-	± 0.36

Referente emissioni in atmosfera Ordine dei Chimici della Lombardia dr. Marco Pelozzi albo prof.n. 2797 Rapporto di prova firmato digitalmente ai sensi della normativa vigente

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0.95 con un fattore di copertura k=2

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio

I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

Spett.le

EP Produzione SpA

S.S. Abetone Brennero km 239 46035 - (MN)

c.a. egr. Sig. Alberto Morandi

Cabiate, 29 Novembre 2021

Facciamo riferimento agli accordi intercorsi, per trasmetterVi, in allegato, la relazione tecnica a seguito dell'indagine analitica alle emissioni in atmosfera effettuata nel periodo 28 Settembre ÷ 14 Ottobre 2021 presso la Vostra Centrale di Ostiglia.

Obiettivo dell'indagine è stato l'esecuzione della prova QAL2 prevista dalla norma UNI EN 14181:2015 sui Sistemi di Misura delle Emissioni (SME) degli impianti a ciclo combinato TG1, TG2 e TG3 operanti in Centrale.

A Vostra disposizione per ogni chiarimento e per quant'altro Vi potesse occorrere, cogliamo l'occasione per porgerVi i nostri migliori saluti.

IL TECNICO INCARICATO

Debora Terlizzi

EP Produzione S.p.A.

Centrale Termoelettrica di Ostiglia (MN)

INDAGINE ANALITICA ALLE EMISSIONI IN ATMOSFERA DERIVANTI DAI TURBOGAS TGA E TGB EFFETTUATA NEL PERIODO 28 SETTEMBRE ÷ 14 OTTOBRE 2021

PROVA QAL2: TARATURA E VALIDAZIONE DEI SISTEMI DI MISURA AUTOMATICI DELLE EMISSIONI IN ATMOSFERA (SME) INSTALLATI ALLE EMISSIONI IN ATMOSFERA DI TG1, TG2 E TG3

Cabiate, 29.11.2021

INDICE

1.0 GENERALITÀ	
2.0 DESCRIZIONE DELL'IMPIANTO	2
3.0 CONDIZIONI OPERATIVE DEGLI IMPIANTI	
4.0 LABORATORIO DI PROVA E PERSONALE	
5.0 SISTEMA DI MISURAZIONE AUTOMATICO (SME)	
6.0 SISTEMA DI RIFERIMENTO (SRM)	
6.2 Misure di portata	10
7.0 PROVA QAL2: FUNZIONE DI TARATURA, INTERVALLO DI TARATURA VALIDO, TEST DI VARIABILITA' E INTERVALLO DI CONFIDENZA SPERIMENTALE – PROCEDURE DI CALCOLO	
7.2 Campo di validità della funzione di taratura	15
7.3 Prova di variabilita'	15
7.4 Intervallo di confidenza sperimentale	17
8.0 REPORT TEST FUNZIONALE	18
8.1 Verifica del sistema di campionamento	18
8.2 Documentazione e registrazioni	18
8.3 Funzionalità	19
8.4 Test di tenuta	19
8.5 Verifica tempi di risposta	20
8.6 Test dello zero e dello span	21
8.7 Verifica della linearità strumentale	22
8.8 Verifica dell'efficienza del convertitore NO ₂ -NO	23
9.0 PROVA QAL2 – RISULTATI	
10.0 VERIFICA DELL'INDICE DI ACCURATEZZA RELATIVO	28

Allegato 1: RAPPORTI DI PROVA N. 2104111-007 (TG1) - 2104111-026 (TG2) - 2104111-045 (TG3)

Allegato 2: ELABORAZIONI QAL2

Allegato 3: RAPPORTI DI PROVA N. 2104111-008 (TG1) - 2104111-027 (TG2) - 2104111-046 (TG3) -

2104111-014 (SCORTA) - VERIFICHE DI LINEARITA' STRUMENTALE – EFFICIENZA CONVERTITORI

Allegato 4: VERIFICHE DELL'INDICE DI ACCURATEZZA RELATIVO

Allegato 5: DOCUMENTAZIONE DEL LABORATORIO DI PROVA

J:\TDI\E\EP Produzione S.p.a\Centrale Termoelettrica Ostiglia\A_Emissioni in atmosfera\Anno 2021\Report QAL2\Relazione QAL2 TG1-TG2-TG3_211129.docx//TERLIZZI/mariani

ERTECED

1.0 GENERALITÀ

Per incarico della società "EP Produzione S.p.A.", nel periodo 28 Settembre ÷ 14 Ottobre 2021 è stata effettuata un'indagine analitica alle emissioni in atmosfera dei gruppi a ciclo combinato TG1, TG2 e TG3 operanti nella

Centrale termoelettrica di Ostiglia (MN).

L'indagine è stata realizzata ai fini di ottemperare a quanto prescritto dal D.M. n. 369 del 09/09/2021 di riesame

dell'Autorizzazione Integrata Ambientale (AIA) rilasciata con provvedimento n. DSA-DEC-2009-976 del

03/08/2009 alla società EP Produzione S.p.A., in merito all'applicazione della norma UNI EN ISO 14181:2015 e

s.m.i.; il suo scopo è stato quello di definire le funzioni di taratura, determinare l'intervallo di validità delle funzioni

stesse ed effettuare il test di variabilità per gli analizzatori costituenti il sistema di misura automatico (SME)

posto a presidio delle emissioni in atmosfera di ciascun gruppo, secondo quanto indicato dalla norma stessa in

relazione all'applicazione del procedimento QAL2.

A tal fine, alle emissioni sono state effettuate misure parallele a quelle effettuate dagli analizzatori SME, adottando

metodi di riferimento normalizzati (SRM) ovvero metodi di campionamento in continuo (automatici) per gli

ossidi di azoto (NO_x), il monossido di carbonio (CO) e l'ossigeno libero nei fumi (O₂).

Preliminarmente alle operazioni di misura è stata verificata la corretta messa in servizio del sistema di misura

automatico, tramite l'esecuzione di una "Prova funzionale" mediante la quale sono stati verificati i requisiti per

l'istallazione e il sito di misurazione, è stato effettuato un esame visivo sul sistema di campionamento e ulteriori

verifiche a livello documentale e strumentale, tra cui le verifiche di linearità e di efficienza dei convertitori catalitici

NO₂-NO.

Contestualmente alle prove QAL2 sono state effettuate le verifiche previste al punto 4 dell'allegato VI alla Parte

Quinta del D.Lgs. n. 152/2006 e s.m.i., ovvero l'Indice di Accuratezza Relativo (IAR), oltre alle già citate verifiche

di linearità sul campo di misura; la verifica di IAR ha riguardato anche i misuratori di umidità e di portata installati

ai camini.

J:\TDI\E\EP Produzione S.p.a\Centrale Termoelettrica Ostiglia\A_Emissioni in atmosfera\Anno 2021\Report QAL2\Relazione QAL2 TG1-TG2-TG3_211129.docx//TERLIZZI/mariani

Pag. 1 di 30

Le giornate di prova e le diverse tipologie di verifica su ciascuna emissione/SME sono state le seguenti:

Impianto	Punto di	Giornate di prova		
Implanto	emissione	Prova QAL2	Verifica IAR	Verifica linearità
TG1	E1	28/09÷01/10/2021	28/09÷01,14/10/2021	28/09/2021
101		14/10/2021	07/10/2021	20/09/2021
TG2	E2	05÷07/10/2021	28/09/2021	29/09/2021*
102		05-07/10/2021	05÷07/10/2021	29/09/2021
TG3	E3	11÷13/10/2021	11÷13/10/2021	30/09/2021

^{*}in tale giornata è stata verificata anche la linearità di un gruppo di analizzatori di scorta

2.0 DESCRIZIONE DELL'IMPIANTO

DATI GENERALI DELL'IMPIANTO		
Ragione Sociale	EP Produzione SpA	
Stabilimento	Centrale Termoelettrica di Ostiglia	
Indirizzo	S.S. Abetone-Brennero Km239 46035 OSTIGLIA (MN)	
Processo produttivo	Produzione energia elettrica tramite tre moduli a ciclo combinato, alimentati a gas naturale, aventi potenza elettrica lorda complessiva di 1155 MW	

VALORI LIMITE DI EMISSIONE (ELV) Rif. AIA Prot. DSA-DEC-2009-0000976 del 03/08/2009 e s.m.i. (D.M. n° 51 del 03/02/2014)		
Emissioni E1-E2-E3 – da turbogas TG1-TG2-TG3		
Ossidi di Azoto (come biossido di Azoto) 30 mg/Nm³ (Rif. 15 % O₂)		
Monossido di Carbonio 30 mg/Nm³ (Rif. 15 % O₂)		

DATI RELATIVI ALLE EMIS	SIONI E AL LUOGO DI CAMPIONAMENTO
Punti di emissione oggetto della verifica	Camino n. 1 da TG1 Camino n. 2 da TG2 Camino n. 3 da TG3
Forma camini	Cilindrica
Diametro interno camini	6,4 metri
Altezza da terra della bocca del camino	100 metri per TG1 e TG2 150 metri per TG3
Altezza da terra della piattaforma di lavoro relativa alla sezione di campionamento	75 metri per TG1 e TG2 70 metri per TG3
Quota di ingresso fumi in ciminiera	46,5 metri per TG1 e TG2 22,5 metri per TG3
Accessibilità alla piattaforma di lavoro	Tramite montacarichi da terra al piano caldaia (quota c.a. 40 metri) e scala tradizionale fino alla piattaforma di lavoro per TG1 e TG2. Tramite montacarichi da terra alla piattaforma di lavoro per TG3; è inoltre presente scala alla marinara.
Numero flange	4 (più un quinto bocchello "in contraddittorio")
Tipologia e dimensioni delle flange	UNI 100-DIN

Nota: ove non diversamente specificato, i dati relativi alle emissioni si intendono identici per i tre TG.

3.0 CONDIZIONI OPERATIVE DEGLI IMPIANTI

I dati relativi alle principali condizioni operative degli impianti durante le prove sono riportati puntualmente nelle tabelle in Allegato 2, onde permettere un'immediata correlazione con le concentrazioni misurate; in particolare sono stati considerati i valori di potenza elettrica generata. Tali dati sono riportati sotto forma di medie orarie calcolate a partire dai dati al minuto forniti dal Committente; le medie si riferiscono all'ora solare.

Le condizioni operative realizzate rispecchiano la normale operatività degli impianti in condizioni di normale funzionamento, a partire dal minimo tecnico ambientale (CMTA, pari a 85 MW per i tre impianti), fino a valori prossimi al massimo carico; tali condizioni sono state variate con la finalità di effettuare la verifica a diversi livelli di concentrazione degli inquinanti, rappresentativi dello stato di normale funzionamento.

Si precisa che, unicamente al fine di ottenere valori di concentrazione di CO il più possibile prossimi ai limiti autorizzati, sono state indagate alcune fasi transitorie con carico di impianto prossimo o di poco inferiore al minimo tecnico, mantenute in modo controllato in questi periodi:

- TG1: ore 11:09÷12:10 del 28/09/2021 e ore 11:26÷11:59 del 30/09/2021;
- TG2: ore 11:03÷ 12:02 del 05/10/2021 e ore 11:09÷12:01 del 07/10/2021;
- TG3: ore 11:10÷ 12:01 del 11/10/2021 e ore 11:12÷12:02 del 13/10/2021.

Con lo stesso obiettivo, cioè ottenere valori di concentrazione di NO_x prossimi al limite di legge, nei periodi in cui si sono registrate le massime concentrazioni di NO_x si è invece agito opportunamente sulle temperature di combustione; solo per il TG1, si è inoltre indagata una fase transitoria con carico di impianto poco inferiore al minimo tecnico, mantenute in modo controllato tra le 11:05 e le 11:57 del 14/10/2021.

Queste operazioni hanno permesso di estendere il campo di validità delle funzioni di taratura dei rispettivi analizzatori il più vicino possibile al limite di legge.

4.0 LABORATORIO DI PROVA E PERSONALE

DATI GENERALI DEL LABORATORIO		
Ragione sociale	TECNOLOGIE D'IMPRESA SrI	
Indirizzo	Via Don Minzoni,15	
CAP	22060	
Località	Cabiate (CO)	

PERSONALE TECNICO CHE HA ESEGUITO I TEST			
Tecnici incaricati dell'intervento	Federico Iorio Filippo Sangalli Stefano Cella Stefano Tanzi		
Responsabile in campo	Filippo Sangalli		

Il certificato di accreditamento secondo la norma EN ISO/IEC 17025 del laboratorio è riportato in Allegato 5.

5.0 SISTEMA DI MISURAZIONE AUTOMATICO (SME)

Riportiamo di seguito una descrizione della strumentazione a presidio delle emissioni da TG1, TG2 e TG3. Le tre emissioni sono presidiate ciascuna da una specifica cabina di analisi, con analizzatori del tutto identici per caratteristiche.

Si premette che la documentazione inerente agli SME e al sito di misurazione (layout camini, schemi pneumatici dei sistemi di analisi e dei circuiti di calibrazione, certificati QAL1 degli analizzatori), oltre ad essere parte integrante del Manuale di Gestione SME, è allegata al precedente report QAL2, cui si rimanda.

	CARATTERISTICHE DEI SISTEMI DI MISURA AUTOMATICI (SME)							
Misurando coperto	Fornitore	Modello	Tipo di misura	Principio di misura	Certificazio- ne (*)	Unità di misura	Campo scala (**)	
O ₂	ABB	Magnos 206	Estrattiva, diretta	Parama- gnetico	TÜV	% (v/v)	0-25	
NO	ABB	Limas 11	Estrattiva, diretta	NDUV	TÜV/QAL1	mg/Nm³	0-34 (**)	
со	ABB	Uras 26	Estrattiva, diretta	NDIR	TÜV/QAL1	mg/Nm ³	0-75 (**)	
Portata	Durag	DFL 200	In situ	Ultrasuoni	TÜV NORD GmbH	m³/h	0-3.000.000	

- (*) Si rimanda alle copie dei certificati "ABB QAL1 Report" elaborati dal fornitore; in essi viene determinata l'incertezza associata alle misure degli analizzatori di NO e CO forniti alla Centrale di Ostiglia in relazione alle specifiche condizioni dell'impianto. Tale valutazione è stata effettuata a partire dai dati riportati nei certificati TÜV e confermano la conformità degli analizzatori ai requisiti delle norme EN 14181:2004 (QAL1) e ISO 14956:2003 per le specifiche condizioni operative.
- (**) Campo scala impostato per le misure in condizioni di normale funzionamento d'impianto (condizione indagata durante le prove); si precisa però che gli strumenti sono dotati di doppio campo di misura con commutazione automatica: oltre ai campi indicati in tabella, per il CO è operativo anche il campo 0-5000 mg/Nm³, per NO il campo 0-150 mg/Nm³. La verifica di linearità strumentale è stata effettuata su tutti i campi.

Si precisa che gli analizzatori di portata dei fumi sono stati sottoposti alla sola verifica dell'Indice di Accuratezza Relativo ai sensi del D.Lgs. 152/2006 e s.m.i.; la stessa verifica è stata applicata a titolo conoscitivo anche al parametro umidità, che non viene misurato ma stimato in base alla quantità e qualità del gas naturale.

CABINA DI ANALISI				
Presente/Assente	Presente			
Quota di installazione	42 metri da terra per TG1 e TG2 A terra per TG3			
Sistema di condizionamento interno	Presente			
Sistema di taratura	Autocontrollo settimanale QAL3 con cellette interne. Taratura manuale con bombole certificate ogni tre mesi			
Gas standard	Bombole in corso di validità presenti all'interno di ciascuna cabina di analisi. Gas di span: 80% del fondo-scala Gas di zero: aria ambiente deumidificata in caso di autocontrollo QAL3, azoto in caso di taratura manuale			

CARATTERISTICHE DEL SISTEMA DI ACQUISIZIONE DATI			
Tipologia	Sistema Hardware-Software di acquisizione, elaborazione, memorizzazione dati di ABB interfacciato via rete con protocollo OPC con il sistema di analisi		
Frequenza disponibilità dati	5 secondi		

6.0 SISTEMA DI RIFERIMENTO (SRM)

6.1 Rilievi in continuo

Per le sostanze determinate con metodi in continuo (automatici) nella fase di programmazione e realizzazione dell'indagine sono state applicati i seguenti metodi standard di riferimento (SRM):

- > UNI EN 14792:2017 "Determinazione della concentrazione massica di ossidi di azoto Metodo di riferimento normalizzato: chemiluminescenza";
- ➤ UNI EN 15058:2017 "Determinazione della concentrazione massica di monossido di carbonio Metodo di riferimento normalizzato: spettrometria ad infrarossi non dispersiva";
- UNI EN 14789:2017 "Determinazione della concentrazione volumetrica di ossigeno. Metodo di riferimento normalizzato: Paramagnetismo".

Per le misure di portata degli effluenti gassosi e la determinazione dei parametri necessari a calcolare il peso molecolare del gas effluente, sono state seguite le indicazioni delle seguenti norme:

- UNI EN ISO 16911-1:2013 "Determinazione manuale della velocità e della portata di flussi in condotti";
- ISO 12039:2019 "Stationary source emissions Determination of the mass concentrations of Carbon monoxide, carbon dioxide and oxygen in flue gas. Performance characteristics of automated measuring systems";
- UNI EN 14790:2017 "Determinazione del vapore acqueo nei condotti".

Le misure in continuo di NO_x, CO, O₂ sono effettuate tramite analizzatori certificati, alloggiati in un laboratorio mobile dotato di sistema di condizionamento, utile a garantire il mantenimento dell'intervallo di temperatura idoneo per il funzionamento ottimale degli analizzatori stessi.

Nelle tabelle a pagina seguente vengono riportate le principali caratteristiche tecniche degli analizzatori utilizzati.

CARATTERISTICHE DEL SISTEMA DI MISURA DI RIFERIMENTO (SRM)								
Misurando	Fornitore	Modello	Tipo di misura	Principio di misura	Certificazione (*)	Unità di misura	Campo scala	
O ₂	ENVIRONNEMENT	MIR9000 CLD	Estrattiva, diretta	Para- magnetico	TÜV/MCERTS/ SIRA/QAL1	% (v/v)	0-21	
со			Estrattiva, diretta	NDIR	TÜV/MCERTS/ SIRA/QAL1	mg/Nm³	0-50	
NO/NO _x			Estrattiva, diretta	Chemilumi- nescenza	TÜV/MCERTS/ SIRA/QAL1	mg/Nm³	0-50	

(*) Si rimanda alle copie dei certificati riportati in Allegato 5.

La strumentazione elencata viene controllata e tarata periodicamente in conformità allo schema di garanzia di qualità aziendale conforme alla UNI EN ISO 9001 e alla UNI CEI EN ISO/IEC 17025.

I dati, nell'arco delle varie giornate di prova, sono stati acquisiti da sistema di acquisizione dati con frequenza di 10 secondi; nei rapporti di prova in Allegato 1 e nelle tabelle in Allegato 2 vengono riportati i valori medi orari calcolati sulla base di tali dati elementari.

Le risposte strumentali degli analizzatori sopra citati, prima di iniziare i rilievi all'emissione, vengono verificate mediante l'utilizzo di bombole ("standard") a concentrazione nota; successivamente, durante la campagna analitica, tali verifiche avvengono con frequenza giornaliera.

I controlli strumentali riguardano la lettura di zero tramite standard di azoto e la lettura di span (corrispondente all'incirca al 80 % del campo scala selezionato per le misure) tramite standard per gli specifici composti da analizzare.

In Allegato 5 vengono fornite le copie dei certificati utilizzati per i controlli di cui sopra.

La linea di campionamento è costituita da:

- > Sonda riscaldata, completa di box riscaldato al cui interno è allegata una sondina in acciaio da 1,5,m;
- Filtro riscaldato per la rimozione del particolato eventualmente presente nell'emissione;
- Tubo termostatato a 150 °C da 2 m;
- Frigorifero ad alta efficienza con temperatura in uscita inferiore a 4 °C;
- > Linea di trasferimento campione in teflon collegata all'unità di condizionamento e trattamento campione.

J:\TDI\E\EP Produzione S.p.a\Centrale Termoelettrica Ostiglia\A_Emissioni in atmosfera\Anno 2021\Report QAL2\Relazione QAL2 TG1-TG2-TG3_211129.docx//TERLIZZI/mariani

Pag. 9 di 30

L'acquisizione e registrazione dei dati del SRM avviene tramite software dedicato. Preliminarmente alle operazioni di misura viene annotata l'eventuale differenza di orario tra sistema di acquisizione e registrazione dati del SRM e il sistema di registrazione/archiviazione dati di Centrale.

Completate le acquisizioni giornaliere, nella successiva fase di valutazione ed elaborazione dei dati, i valori mediati al minuto del SRM vengono posti a confronto con i dati al minuto dello SME (forniti dal Committente) su file in formato Excel; in questa fase i dati del SRM vengono allineati all'ora SME annullando la differenza di orario eventualmente rilevata in fase di pre-campionamento.

Tali dati vengono inoltre confrontati in forma grafica, in modo da valutare gli andamenti nel tempo delle concentrazioni per ogni parametro misurato; questa operazione permette di osservare, soprattutto in presenza di variazioni o picchi di concentrazione, le eventuali differenze legate ai diversi tempi di risposta strumentale, oltre che segnalare eventuali anomalie non rilevate durante le prove.

Si precisa che prima di effettuare le elaborazioni per la prova QAL2, dai dati acquisiti vengono esclusi i periodi di stabilizzazione delle misure, le eventuali fasi transitorie non controllate e le fasi in cui sono stati effettuati i controlli di zero e span o ulteriori accertamenti strumentali.

Oltre a ciò, le coppie di dati SME-SRM vengono valutate graficamente; a partire dalle coppie di valori orari "SME;SRM" vengono ricercati eventuali dati anomali ("outliers"); generalmente, se per tali coppie di dati il valore R² della retta di regressione lineare è superiore o uguale a 0,9, si ritiene non necessario procedere con ulteriori test per la ricerca di outliers (rif. Guida Tecnica M20 della Environment Agency).

In caso contrario, si procede con l'applicazione di test statici per valutare la presenza di outliers; nel caso specifico è stato utilizzato il test di Grubb alla popolazione di coppie di dati "SME;SRM" acquisita solo nel caso dell'analizzatore di NO_x installato per il TG3, per la quale l'indice R² è risultato pari a 0,84; l'esito di tale test ha escluso la presenza di outliers e tutte le coppie di valori prese in considerazione sono state ritenute valide.

6.2 Misure di portata

Per ciascuna emissione sono state eseguite cinque misure a reticolo di pressione differenziale e temperatura per la determinazione della velocità e della portata fumi. Parallelamente sono stati effettuati cinque campionamenti discontinui per la determinazione dell'umidità dei fumi.

Le sezioni di emissione sono state suddivise in cinque sub-aree equivalenti; ne sono risultati 5 punti di misura per ciascuno dei 4 assi ortogonali, per un totale di venti punti, centro del condotto escluso.

J:\TDI\E\EP Produzione S.p.a\Centrale Termoelettrica Ostiglia\A_Emissioni in atmosfera\Anno 2021\Report QAL2\Relazione QAL2 TG1-TG2-TG3_211129.docx//TERLIZZI/mariani

Pag. 10 di 30

La disposizione degli assi di misura è la seguente:

TG1

- Asse A: Posta in prossimità (a sinistra) rispetto alla sonda SME ubicata al piano di lavoro in quota;
- Asse B: Posta 90° a sinistra rispetto ad A;
- Asse C: Posta 90° a sinistra rispetto a B;
- Asse D: Posta 90° a sinistra rispetto a C.

TG2

- Asse A: Posta 45° a destra rispetto alla scala di accesso al piano di lavoro in quota;
- Asse B: Posta 90° a destra rispetto ad A;
- Asse C: Posta 90° a destra rispetto a B;
- Asse D: Posta 90° a destra rispetto a C.

TG3

- Asse A: Posta 45° a destra rispetto alla porta di ingresso ciminiera al piano di lavoro in quota;
- Asse B: Posta 90° a destra rispetto ad A;
- Asse C: Posta 90° a destra rispetto a B;
- Asse D: Posta 90° a destra rispetto a C.

Per il calcolo delle velocità e delle portate degli effluenti gassosi sono stati considerati i seguenti parametri:

UMIDITA'

I campionamenti dell'umidità dei fumi sono stati effettuati tramite fiale di gel di silice anidro tarate per via ponderale in laboratorio.

La determinazione è successivamente avvenuta per via ponderale.

COMPOSIZIONE CHIMICA

Valore medi di ossigeno e di biossido di carbonio rilevati nell'intervallo di esecuzione dei reticoli dagli analizzatori del sistema di riferimento (a principio paramagnetico per O₂ e NDIR per CO₂).

Tutta la strumentazione utilizzata (tubi di Darcy, sensori di pressione e temperatura, campionatori e contatori volumetrici) viene controllata e tarata in conformità allo schema di garanzia di qualità aziendale conforme alla UNI EN ISO 9001 e alla UNI CEI EN ISO/IEC 17025.

7.0 PROVA QAL2: FUNZIONE DI TARATURA, INTERVALLO DI TARATURA VALIDO, TEST DI VARIABILITA' E INTERVALLO DI CONFIDENZA SPERIMENTALE – PROCEDURE DI CALCOLO

7.1 Calcolo della funzione di taratura

La funzione di taratura è una funzione matematica, in genere lineare con una deviazione standard residua costante. Essa, in accordo con la norma ISO 11095:1996, è descritta dal seguente modello:

$$y_i = a + bx_i + \varepsilon_i$$

dove:

 X_i è l' i^{esimo} risultato fornito dallo SME: i va da 1 a N; N \geq 15;

 y_i è l' i^{esimo} risultato fornito dall' SRM; i va da 1 a N; N \geq 15;

 \mathcal{E}_i è lo scarto tra \mathcal{Y}_i ed il valore previsto;

 \mathcal{Q} è l'intercetta della funzione di taratura;

b è la pendenza della funzione di taratura.

Devono essere calcolati i seguenti valori medi:

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 $\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$

Successivamente viene calcolata la differenza ($y_{s,max}$ - $y_{s,min}$) tra i valori massimi e minimi misurati dal sistema di riferimento (SRM) alle condizioni normalizzate.

Tale differenza deve essere confrontata con la massima incertezza ammissibile per ciascun parametro misurato, al fine di selezionare il criterio di calcolo della funzione di taratura più adeguato.

La legislazione nazionale definisce la massima incertezza ammissibile come intervallo di fiducia al 95 % ovvero come percentuale (P) del valore limite di emissione (ELV):

• per il parametro NO_x: PE = 20 % dell'ELV (da D.Lgs. 152/2006 e s.m.i.)

• per il parametro CO: PE = 10 % dell'ELV (da D.Lgs. 46/2014)

Il parametro O₂ è stato trattato uniformemente ai suddetti parametri; a tal fine sono stati utilizzati il valore dell'intervallo di confidenza e del "valore limite" alle emissioni indicati nell'aggiornamento del 2012 "*Guida tecnica* per i gestori dei Sistemi di Monitoraggio in continuo delle Emissioni in atmosfera (SME)" emessa da ISPRA, in collaborazione con le agenzie ARPA/APPA (Manuale 87/2013):

• per il parametro O₂: PE = 10 % dell'ELV (dove ELV = 21 % di O₂)

Fatte queste premesse, la metodologia di calcolo per la determinazione della funzione di taratura varia in base alla sussistenza di uno dei tre casi sotto esposti:

Criterio di elaborazione di TIPO A

Se

 $(y_{s,max} - y_{s,min}) \ge PE$

calcolare:

$$\hat{b} = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{N} (x_i - \bar{x})^2}$$

$$\hat{a} = \overline{y} - \hat{b}\overline{x}$$

Criterio di elaborazione di TIPO B (cluster ad alta concentrazione)

Se $(y_{s,max} - y_{s,min}) < PE$ e $y_{s,min} \ge 15 \% ELV$

calcolare:

$$\hat{b} = \frac{\bar{y}}{\bar{x} - Z}$$

$$\hat{a} = -\hat{b}Z$$

dove Z rappresenta la differenza tra la "concentrazione zero" e la risposta strumentale SME a zero.

Criterio di elaborazione di TIPO C (cluster a bassa concentrazione)

Se $(y_{s,max} - y_{s,min}) < PE$ e $y_{s,min} < 15 \% ELV$

utilizzare materiali di riferimento a zero e in prossimità dell'ELV in modo da ottenere due coppie di dati da trattare come le coppie di dati ottenute dalle misurazioni parallele sul campione gassoso prelevato nel camino; eseguire il calcolo della funzione di taratura utilizzando le formule di cui al "criterio A".

La funzione di taratura, in generale, è data dall'equazione seguente:

$$\hat{y}_i = \hat{a} + \hat{b}x_i$$

dove:

 \hat{y}_i è il valore tarato del sistema automatico di misura (SME);

 x_i è il valore misurato dal sistema automatico di misura (SME).

Ogni valore misurato \mathcal{X}_i verrà convertito in un valore tarato $\hat{\mathcal{Y}}_i$ per mezzo della funzione di taratura ottenuta.

7.2 Campo di validità della funzione di taratura

La funzione di taratura è valida nell'intervallo da zero a $\hat{y}_{s,max}$, ovvero il valore massimo dello SME tarato e riferito alle condizioni normalizzate, determinato durante il procedimento QAL2, più un'estensione del 10 % oltre il valore più alto, oppure un'estensione al 20 % dell'ELV, in base al valore che comporta il maggior ampliamento dell'intervallo.

Si precisa che solo i valori nell'intervallo di taratura valido sono valori misurati validi, pertanto, per i valori che occasionalmente risultino superiori all'intervallo, occorre estrapolare la funzione di taratura utilizzando materiali di riferimento a zero e a un valore prossimo al limite, previa la verifica di entrambe le seguenti condizioni:

- Lo scarto a zero del valore tarato dell'AMS deve essere inferiore al 10 % dell'ELV
- Lo scarto all'ELV del valore tarato dell'AMS deve essere inferiore al PE

Tale operazione di estrapolazione, qualora applicata, non si traduce in una ulteriore estensione dell'intervallo di taratura valido.

7.3 Prova di variabilita'

Si premette che lo scopo del test di variabilità è quello di dimostrare l'idoneità dell'analizzatore SME in prova ad eseguire operazioni di misura utilizzabili per dimostrare la conformità al valore limite di emissione.

Occorre calcolare:

$$D_i = y_{i,s} - \hat{y}_{i,s}$$

$$\overline{D} = \frac{1}{N} \sum_{i=1}^{N} D_i$$

$$s_D = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (D_i - \hat{D})^2}$$

dove:

 $\mathcal{Y}_{i,s}$ è l' i^{esimo} valore dell'SRM alle condizioni normalizzate;

 $\hat{m{\mathcal{Y}}}_{i,s}$ è l' i^{esimo} valore dello SME tarato, calcolato dalle misure dello SME x_i alle condizioni normalizzate;

 \overline{D} è la media delle differenze D_i e S_D è lo scarto tipo delle differenze D_i nelle misurazioni parallele.

J:\TDI\E\EP Produzione S.p.a\Centrale Termoelettrica Ostiglia\A_Emissioni in atmosfera\Anno 2021\Report QAL2\Relazione QAL2 TG1-TG2-TG3_211129.docx//TERLIZZI/mariani

Pag. 15 di 30

La variabilità dei valori misurati dello SME è accettata se si verifica che:

$$s_D \leq \sigma_o k_v$$

Dove σ_o rappresenta la massima incertezza derivante da requisiti legali e k_v è il valore di prova di un test χ^2 , con un valore β del 50 % da applicare in funzione del numero N di misure parallele.

I valori di k_{ν} che devono essere applicati in funzione del numero di misure parallele sono riportati nella seguente tabella:

Numero di misure (N)	k _v
15	0,9761
16	0,9777
17	0,9791
18	0,9803
19	0,9814
20	0,9824
25	0,9861
30	0,9885

Come già specificato al par. 7.1 della presente relazione, la legislazione nazionale definisce la massima incertezza ammissibile come intervallo di fiducia al 95%, ovvero come percentuale del valore limite di emissione (PE); per esprimere tale incertezza in termini di scarto tipo assoluto, si utilizza l'espressione:

$$\sigma_o = \frac{PE}{1,96}$$

dove 1,96 rappresenta il fattore di copertura nel caso l'incertezza sia espressa con un livello di confidenza del 95 %.

7.4 Intervallo di confidenza sperimentale

La legislazione nazionale prevede che i valori medi convalidati siano determinati in base ai valori medi orari validi misurati, dopo detrazione del valore dell'intervallo di fiducia al 95 %.

In occasione della prova QAL2 è possibile calcolare l'intervallo di confidenza sperimentale (Ic), calcolato utilizzando alcuni dei risultati della prova QAL2, tramite la formula:

$$Ic [mg/Nm^3] = (S_D * 1,96) / kv$$

Lo stesso intervallo può essere espresso come percentuale del valore limite di emissione tramite la formula:

$$Ic [\%] = [(S_D * 1,96) / (E * kv)] * 100$$

8.0 REPORT TEST FUNZIONALE

8.1 Verifica del sistema di campionamento

È stato eseguito un esame visivo dei sistemi di campionamento, analizzando lo stato dei componenti installati:

Components			
Componente	Α	В	С
Sonda di campionamento	X		
Sistema di condizionamento dei gas	X		
Pompe	X		
Connessioni	X		
Linee di campionamento	X		
Alimentazione	Х		
Filtri	Х		
Stato del componente: A Buono, B Sufficiente, 0	C Insufficiente		

8.2 Documentazione e registrazioni

Documento	Collocazione/Riferimento
P&I del sistema pneumatico	Disponibile in sala Server
Manuale d'uso SME	Disponibili in ufficio elettroregolazione
Manuale manutenzione SME	Disponibili in ufficio elettroregolazione
Registri riportanti malfunzionamenti e manutenzioni effettuate	Disponibili in ufficio elettroregolazione
Rapporti di assistenza	Disponibile in ufficio elettroregolazione
Documentazioni QAL3	Disponibili in ufficio elettroregolazione
Schede manutenzione	Disponibile in ufficio elettroregolazione
Procedura di manutenzione SME	Disponibile in ufficio elettroregolazione
Procedura di taratura SME	Disponibile in ufficio elettroregolazione
Procedure di esercizio SME	Disponibili in sala manovra

8.3 Funzionalità

Descrizione		Giudizio	
Descrizione	Α	В	С
Ambiente di lavoro sicuro e pulito con spazio sufficiente	X		
Ambiente di lavoro con coperture dalle intemperie adeguate	Х		
Accesso al sistema di misura facile e in condizioni di sicurezza	Х		
Scorte adeguate di materiale di riferimento, attrezzature e parti di ricambio	Х		
Stato del componente: A : adeguato; B : Sufficient	e; C: Inadegua	ato	

8.4 Test di tenuta

Descrizione	Esito del test
Il test di tenuta è stato effettuato su tutta la linea SME, erogando gas standard (azoto) dalla linea di trasporto campione all'analizzatore di umidità (strumento Baggi, attualmente inutilizzato) e valutando le risposte strumentali.	Superato (misure prossime a zero)

8.5 Verifica tempi di risposta

Descrizione

I tempi di risposta degli analizzatori sono stati valutati in fase di prova di linearità, adducendo i gas campione utilizzati per tali prove all'inlet degli analizzatori.

Sono stati valutati i seguenti tempi:

t₀: apertura bombola (secondo "zero")

t₁: tempo che intercorre tra t₀ e la prima variazione delle letture strumentali

t₂: tempo che intercorre tra t₁ e il raggiungimento del 90% del valore atteso di bombola.

Esito del test:

superato (tempi di risposta inferiori al valore certificato in QAL1)

		<u> </u>	,
SME TG	1	SME TG2	SME TG3
Parametri $t_1 = 14 \text{ s}$ $t_2 = 27 \text{ s}$	ro CO:	Parametro CO: $t_1 = 16 \text{ s}$ $t_2 = 26 \text{ s}$	Parametro CO: t ₁ = 13 s t ₂ = 25 s
Parameter $t_1 = 15 \text{ s}$ $t_2 = 27 \text{ s}$	ro NO:	Parametro NO: $t_1 = 19 \text{ s}$ $t_2 = 31 \text{ s}$	Parametro NO: $t_1 = 17 \text{ s}$ $t_2 = 33 \text{ s}$
Parametr t ₁ = 15 s t ₂ = 27 s		Parametro O_2 : $t_1 = 22 \text{ s}$ $t_2 = 35 \text{ s}$	Parametro O ₂ : t ₁ = 12 s t ₂ = 24 s

8.6 Test dello zero e dello span

In fase di verifica di linearità sono stati utilizzati materiali di riferimento per lo zero e lo span (i cui certificati sono riportati in allegato 5) al fine di verificare le letture corrispondenti dello SME; per gli analizzatori di NO e CO sono considerate risposte strumentali relative al primo campo scala degli analizzatori.

Parametro	Unità di misura	Camaliameters		TG2 C analizzatore (*)	TG3 C analizzatore (*)
O ₂	%v/v	0,00	-0,07	-0,06	-0,02
со	mg/Nm³	0,00	1,00	-0,46	1,00
NO	mg/Nm³	0,00	0,10	0,10	-0,03

Parametro	Unità di misura	Concentrazione di SPAN	C !		TG3 C analizzatore (*)
O ₂	%v/v	19,99	19,96	20,04	20,04
СО	mg/Nm³	60,0	57,0	60,4	59,0
NO	mg/Nm³	27,2	27,0	27,3	26,5

8.7 Verifica della linearità strumentale

Per le prove di linearità strumentale è stato utilizzato il calibratore HovaCAL 312-MF, che è stato utilizzato come diluitore di una miscela di gas in modo da generare diversi livelli di concentrazione attraverso la sua componente "a secco", ovvero un sistema di mass flow.

Sono state utilizzate miscele di gas standard (di proprietà di Tecnologie d'Impresa), i cui certificati del fornitore sono disponibili in Allegato 5.

L'ingresso gas campione dell'analizzatore e l'uscita gas del diluitore sono stati collegati mediante raccordi in teflon e agli analizzatori sono state erogate concentrazioni di gas comprese tra 0 e 80 % del campo scala, con ripetizione dello step a concentrazione zero a inizio e fine prova.

Ad ogni step di concentrazione sono state acquisite tre letture strumentali, acquisite direttamente (manualmente) dai display degli analizzatori in prova.

Le verifiche di linearità per gli analizzatori di CO e NO sono state effettuate sia sul campo scala inferiore che sul campo scala superiore.

L'ingresso gas campione dell'analizzatore e l'uscita gas del diluitore sono stati collegati mediante raccordi in teflon e agli analizzatori sono state erogate, in 10 step nel caso delle verifiche per il parametro CO, in 5 step per i parametri NO e O₂, concentrazioni di gas comprese tra 0 e 80/90 % del campo scala, con ripetizione dello step a concentrazione zero a inizio e fine prova.

Ad ogni step di concentrazione sono state acquisite tre letture strumentali; i dati ottenuti vengono trattati al fine di calcolare i residui relativi (errori di linearità).

Il residuo relativo è calcolato ad ogni step di concentrazione generata, sul valore medio ricavato dalle tre misure eseguite su ognuno dei punti della scala di linearità.

Al fine del calcolo del residuo relativo (errore di linearità) viene preliminarmente calcolata una retta di regressione lineare tra i punti (x_i) e tutte le misure $y_{c,i}$, dove:

 x_i = è il valore singolo della concentrazione del materiale di riferimento (standard); $y_{c,i}$ = è il valore singolo rilevato dall'analizzatore al livello di concentrazione c.

J:\TDI\E\EP Produzione S.p.a\Centrale Termoelettrica Ostiglia\A_Emissioni in atmosfera\Anno 2021\Report QAL2\Relazione QAL2 TG1-TG2-TG3_211129.docx//TERLIZZI/mariani

Pag. 22 di 30

La retta di regressione lineare ottenuta, la cui equazione è del tipo y = ax + b, viene impiegata per calcolare, noti i valori di A (pendenza), B (intercetta) e x (concentrazione standard generata ad ogni step di diluizione), i valori teorici di concentrazione x_i (corretti) per ciascuno step di diluizione.

Sono questi valori teorici di concentrazione $x_1....x_n$ corretti (pari al numero di step di diluizione realizzati, comprese le concentrazioni di zero ripetuto due volte e span), derivanti dalla retta di regressione lineare, ad essere confrontati con la media delle singole concentrazioni rilevate dall'analizzatore ad ogni step di

diluizione, al fine di calcolare il residuo, espresso nella medesima unità di misura, mediante la formula:

$$d_c = \overline{y}_c - (x_i \text{ corretti})$$

dove:

dc è il residuo per ogni media di concentrazione rilevata dall'analizzatore;

 \overline{y}_c è il valore di concentrazione y medio rilevato dall'analizzatore al livello di concentrazione c.

Il valore del residuo d_c viene poi convertito in unità di concentrazione relativa $d_{c,rel}$ dividendo d_c per il limite superiore dell'intervallo di misurazione (C_u), mediante la formula:

 $d_{c,rel} = d_c/C_u *100$

La prova, secondo l'allegato B della norma UNI EN 14181, ha esito positivo se i valori d_{c,rel} (residui relativi) risultano compresi nell'intervallo ± 5%.

Nel caso in esame, le prove (riportate in Allegato 3) per gli analizzatori posti a presidio delle emissioni da TG1, TG2 e TG3 hanno avuto esito positivo, in quanto i residui risultanti per entrambi i campi scala verificati sono compresi in tale intervallo, ma entro al ± 1%.

8.8 Verifica dell'efficienza del convertitore NO₂-NO

La verifica dell'efficienza dei convertitori catalitici NO₂-NO è stata realizzata utilizzando un generatore di ossidi di azoto della LNI operante sul principio della titolazione in fase gassosa di una concentrazione nota di monossido di azoto tramite ozono.

J:\TDI\E\EP Produzione S.p.a\Centrale Termoelettrica Ostiglia\A_Emissioni in atmosfera\Anno 2021\Report QAL2\Relazione QAL2 TG1-TG2-TG3_211129.docx//TERLIZZI/mariani

Pag. 23 di 30

Il sistema consente di generare concentrazioni di ozono variabili; fornendo parallelamente uno standard contenente NO in azoto diluito in aria gas-cromatografica si generano, dalla reazione con ozono, proporzionali concentrazioni di NO_x (NO + NO₂).

La verifica avviene per step successivi: il gas in uscita dal generatore viene fornito direttamente all'inlet dello strumento del quale vengono registrate le risposte.

I passaggi sono di seguito descritti; i primi due avvengono con generatore spento:

- > viene fornita la miscela di riferimento di solo NO; viene quindi registrata la concentrazione di NO misurata dall'analizzatore a convertitore escluso (fase P1);
- yiene fornita la stessa miscela di riferimento di solo NO; viene quindi registrata la concentrazione di NO_x misurata dall'analizzatore a convertitore inserito (fase R1).

Successivamente si aziona il generatore e si opera attraverso ulteriori passaggi:

- ➢ fornendo la stessa miscela di cui sopra e variando la concentrazione di ozono generata, vengono create concentrazioni crescenti della miscela di NO + NO₂; viene quindi registrata la concentrazione di NO misurata dall'analizzatore a convertitore escluso (fase P2);
- ➤ fornendo la stessa miscela di cui sopra e variando la concentrazione di ozono generata, vengono create concentrazioni crescenti della miscela di NO + NO₂; viene quindi registrata la concentrazione di NO_x misurata dall'analizzatore a convertitore inserito (fase R2).

Nel caso specifico sono stati creati due livelli di concentrazioni di ozono, variando l'intensità della lampada UV tramite la quale l'ossigeno presente nello standard di aria gas-cromatografica viene convertito in ozono.

Infine, per ognuna delle fasi a generatore acceso, la concentrazione di NO₂ convertito e misurato dallo strumento si ottiene per differenza R2-P2.

L'efficienza del convertitore viene calcolata in termini percentuali tramite la seguente formula:

Conv. Eff. (%) = (((R2-P2)-(R1-P1))/(P1-P2)))*100

J:\TDI\E\EP Produzione S.p.a\Centrale Termoelettrica Ostiglia\A_Emissioni in atmosfera\Anno 2021\Report QAL2\Relazione QAL2 TG1-TG2-TG3_211129.docx//TERLIZZI/mariani

Pag. 24 di 30

La prova, secondo il paragrafo 6.3.2 della norma UNI EN 14792, ha esito ottimale se l'efficienza di conversione risulta almeno pari al 95 %; nel caso specifico, l'efficienza dei convertitori sotto test (riportata in Allegato 3 e in ogni caso maggiore del 95 %) è risultata ottimale.

9.0 PROVA QAL2 - RISULTATI

I risultati analitici relativi ai rilievi in continuo eseguiti alle emissioni dagli impianti a ciclo combinato TG1, TG2 e TG3 tramite sistema di riferimento (SRM) sono riportati nel rapporto di prova in Allegato 1, ove vengono dettagliate le date e gli orari di prova.

Le concentrazioni di CO e NO_x misurate sono espresse sia in ppm che in mg/Nm^3 (con espressione del dato sia come NO che come NO_2 per gli ossidi di azoto), con e senza il riferimento al tenore di ossigeno del 15 %; le concentrazioni di O_2 sono espresse in % v/v.

Negli elaborati presentati in Allegato 2 sono riportate le seguenti informazioni:

- data, ora, durata delle misure eseguite in parallelo dal sistema di riferimento (SRM) e dal sistema di misura automatico (SME);
- valori "tal quale" per ciascun inquinante misurati parallelamente da SRM e SME. Nel caso specifico si tratta delle concentrazioni riferite alle condizioni fisiche normali (0 °C e 1013 hPa) e ai fumi secchi (in mg/Nm³, con espressione del dato come NO nel caso degli ossidi di azoto);
- valori misurati parallelamente da SRM e SME necessari per riportare le concentrazioni "tal quale" (descritte sopra) alle condizioni di riferimento ovvero al 15 % di ossigeno; nella fattispecie il solo parametro coinvolto nelle normalizzazioni è il tenore di ossigeno misurato nei fumi secchi tramite analizzatore paramagnetico.
- le funzioni di taratura calcolate per gli analizzatori e riportate anche graficamente;
- l'intervallo di validità delle funzioni di taratura;
- gli esiti della prova di variabilità;
- gli intervalli di confidenza sperimentale.

Rimandando al paragrafo 7.0 della presente relazione per i dettagli relativi ai criteri di calcolo e alle tabelle in Allegato 2 per i valori utilizzati nelle elaborazioni, di seguito seguono vengono sintetizzati i risultati conseguiti nella prova QAL2 eseguita sugli analizzatori SME posti a presidio di TG1, TG2 e TG3:

SME TG1								
Parametro	ELV (Valore Limite di Emissione)	Limite intervallo di confidenza (PE)	Funzione di taratura		Tipo di elaborazione	Intervallo di validità	Intervallo di confidenza sperimentale	
NO _x	30 mg/Nm ³ rif. 15 % O ₂	20% ELV	1,013	-0,101 mg/Nm³ (NO)	В	0 - 29,29 mg/Nm ³ (NO ₂) rif. 15 % O ₂	0,98 mg/Nm³	
СО	30 mg/Nm ³ rif. 15 % O ₂	10% ELV	1,003	+0,755 mg/Nm ³	А	0 – 30,87 mg/Nm ³ rif. 15 % O ₂	0,96 mg/Nm³	
O ₂	21% ELV	10% ELV	0,984	+0,069 %	В	-	-	

	SME TG2								
Parametro	ELV (Valore Limite di Emissione)	Limite intervallo di confidenza (PE)	Funzione di taratura		Tipo di elaborazione	Intervallo di validità	Intervallo di confidenza sperimentale		
NOx	30 mg/Nm ³ rif. 15 % O ₂	20% ELV	0,977	-0,098 mg/Nm³ (NO)	В	0 – 31,27 mg/Nm ³ (NO ₂) rif. 15 % O ₂	0,82 mg/Nm³		
СО	30 mg/Nm ³ rif. 15 % O ₂	10% ELV	0,904	+1,012 mg/Nm ³	А	0 – 34,91 mg/Nm ³ rif. 15 % O ₂	0,99 mg/Nm³		
O ₂	21% ELV	10% ELV	0,995	+0,060 %	В	-	-		

	SME TG3									
Parametro	ELV (Valore Limite di Emissione)	Limite intervallo di confidenza (PE)	Funzione di taratura		Tipo di elaborazione	Intervallo di validità	Intervallo di confidenza sperimentale			
NOx	30 mg/Nm ³ rif. 15 % O ₂	20% ELV	0,952	+0,271 mg/Nm³ (NO)	А	0 - 30,55 mg/Nm ³ (NO ₂) rif. 15 % O ₂	0,43 mg/Nm³			
СО	30 mg/Nm ³ rif. 15 % O ₂	10% ELV	0,932	+1,632 mg/Nm ³	А	0 – 23,68 mg/Nm ³ rif. 15 % O ₂	1,14 mg/Nm³			
O ₂	21% ELV	10% ELV	0,995	+0,020 %	В	-	-			

J:\TDI\E\EP Produzione S.p.a\Centrale Termoelettrica Ostiglia\A_Emissioni in atmosfera\Anno 2021\Report QAL2\Relazione QAL2 TG1-TG2-TG3_211129.docx//TERLIZZI/mariani

Pag. 26 di 30

Nella maggior parte dei casi, per i parametri NO_x e CO, si osserva che l'intervallo di taratura valido arriva a coprire, superando leggermente, i limiti autorizzati; questo è stato ottenuto utilizzando i dati relativi alle fasi in cui si è agito opportunamente sulle temperature di combustione e sul carico d'impianto.

Ciò non si è verificato per gli analizzatori di NO del TG1 e di CO del TG3, per i quali è stato necessario verificare l'idoneità dell'estrapolazione al limite, secondo quanto descritto al par. 7.2 della presente relazione, ottenendo i seguenti risultati:

TG1 - VERIFICA ZERO e ESTRAPOLAZIONE ALL'ELV								
Parametro	Concentrazione materiale di riferimento (mg/Nm³)	Lettura "tal quale" analizzatore SME (mg/Nm³)	Lettura tarata analizzatore SME (mg/Nm³)	Scarto (mg/Nm³)	10% ELV	PE	Condizione rispettata	
NO	0,00	0,10	0,00	0,0	3	-	si	
NO -	20,4 *	20,3	20,5	0,1	-	3	si	
	TG3 - V	ERIFICA ZER	O e ESTRAPOL	AZIONE AI	L'ELV			
Parametro	Concentrazione materiale di riferimento (mg/Nm³)	Lettura "tal quale" analizzatore SME (mg/Nm³)	Lettura tarata analizzatore SME (mg/Nm³)	Scarto (mg/Nm³)	10% ELV	PE	Condizione rispettata	
00	0,00	1,00	2,56	2,56	3	-	si	
CO	30,0	30,0	29,6	0,4	1	3	si	

^{*} il valore è espresso come NO (espressione della lettura strumentale) e corrisponde a 31,2 mg/Nm³ come NO₂ (espressione del limite autorizzato).

In entrambi i casi si conclude che risultano rispettate le due condizioni necessarie per accettare l'estrapolazione al limite delle funzione di taratura:

- lo scarto a zero del valore tarato dell'analizzatore SME risulta inferiore al 10 % dell'ELV
- lo scarto all'ELV del valore tarato dell'analizzatore SME risulta inferiore al PE ovvero alla massima incertezza ammissibile espressa come percentuale (P) del valore limite di emissione (ELV).

Infine, per quanto riguarda una valutazione dei risultati dei test di variabilità eseguiti su ciascun analizzatore dei sistemi di monitoraggio delle emissioni dei TG1, TG2 e TG3, si rimanda ai dati di dettaglio riportati nelle tabelle in Allegato 2, da cui si evince che per ciascun analizzatore il test di variabilità ha avuto esito positivo in quanto è risultata soddisfatta la condizione:

$$s_D \leq \sigma_o k_v$$

Il superamento del test di variabilità conferma l'idoneità degli analizzatori per la loro applicazione, nel rispetto dei requisiti sulla massima incertezza ammissibile previsti dalla legislazione.

10.0 VERIFICA DELL'INDICE DI ACCURATEZZA RELATIVO

Le misure parallele effettuate per le verifiche QAL2 sono state utilizzate anche per verificare l'Indice di Accuratezza Relativo (IAR) dello SME secondo quanto previsto al punto "4.4" dell'allegato VI alla Parte Quinta del D.Lgs. n. 152/2006 e s.m.i.

Occorre premettere che, nel caso dei grandi impianti di combustione, le procedure di garanzia di qualità dei sistemi di monitoraggio delle emissioni per i parametri NO_x, CO e O₂ sono soggette alla norma UNI EN 14181:2015, pertanto non si applicano le verifiche di cui al paragrafo "4" dell'allegato VI alla Parte Quinta del D.Lgs. n. 152/2006 e s.m.i. (Rif. D.Lgs. 183/2017); il calcolo dello IAR per tali parametri è stato comunque eseguito a titolo conoscitivo, oltre che per continuità rispetto a quanto svolto negli anni precedenti.

La verifica è stata effettuata anche per i misuratori di portata e per l'umidità stimata dei fumi, utilizzando i risultati di una serie di cinque misure effettuate ai camini dei turbogas.

Nel suddetto decreto viene previsto il calcolo dello IAR (indice di accuratezza relativo) calcolato secondo la seguente formula:

$$IAR = 100 * \left[1 - \frac{M + I_c}{M_r} \right]$$

dove:

M: rappresenta la media aritmetica degli N valori X_i ;

M_r: rappresenta la media dei valori delle concentrazioni rilevate dal sistema di riferimento;

 I_c : rappresenta il valore assoluto dell'intervallo di confidenza calcolato per la media degli N valori X_i

ossia $I_c = t_n \frac{S}{\sqrt{N}}$;

J:\TDI\E\EP Produzione S.p.a\Centrale Termoelettrica Ostiglia\A_Emissioni in atmosfera\Anno 2021\Report QAL2\Relazione QAL2 TG1-TG2-TG3_211129.docx//TERLIZZI/mariani

Pag. 28 di 30

 X_i : rappresenta il valore assoluto della differenza delle concentrazioni misurate dai due sistemi di misura (analizzatore fisso "SME" e analizzatore di riferimento "SRM");

N: numero delle misure effettuate;

 t_n : rappresenta il t di Student calcolato per il livello di fiducia del 95% e per (n) gradi di libertà pari a (N-1);

S: rappresenta la deviazione standard dei valori X_i .

La verifica ha esito positivo se il valore di IAR risulta essere superiore a 80 %.

Il confronto tra dati SRM-SME e le elaborazioni sono riportate in Allegato 4; nella tabella seguente vengono riepilogati i valori di IAR ottenuti. Si precisa che per il calcolo di IAR sono stati trattati i valori "tal quale" restituiti da SME, ovvero i valori a monte dell'applicazione dei coefficienti di QAL2.

Analizzatore	TG1 IAR (%)	TG2 IAR (%)	TG3 IAR (%)
NO	97,6	96,8	96,3
СО	89,3	85,7	86,8
O ₂	98,7	99,8	99,4
Portata	93,5	96,8	91,1
Umidità (stimata)	88,7	96,7	88,7

Sulla base dei dati sopra riportati è possibile evidenziare che gli analizzatori di gas e i misuratori di parametri fisici (anche stimati) possiedono un grado di accuratezza soddisfacente in quanto superiore alla soglia del 80 % prevista dalla normativa vigente.

In merito agli analizzatori di CO si precisa che l'indice di accuratezza non è stato calcolato utilizzando l'intera popolazione di dati ottenuta, ma considerando le sole coppie di valori con concentrazione superiore all'intervallo di fiducia ammesso per il CO (pari al 10% dell'ELV ovvero a 3 mg/Nm³); infatti, in quasi tutto il periodo di monitoraggio, i valori sono risultati costantemente prossimi allo zero strumentale o comunque inferiori al suddetto intervallo.

Occorre considerare a questo proposito che l'applicazione dell'indice statistico IAR (come riportato nella Linea Guida 87/2013 "Guida tecnica per i gestori dei Sistemi di Monitoraggio in continuo delle Emissioni in atmosfera (SME)" emessa dal Gruppo interagenziale n. 1.1 "Ispezioni e Controlli" composto dalle Agenzie Ambientali ARPA e coordinato da ISPRA), è considerato inefficace per concentrazioni inferiori o prossime al limite di rivelabilità strumentale e, in generale, all'intervallo di fiducia ammesso per singolo composto.

Cabiate 29.11.2021

TECNOLOGIE D'IMPRESA SRL a socio unico

Poudle Ofoudl

GESTIONE EMISSIONI: Debora Terlizzi (Relatore)

REFERENTE EMISSIONI IN ATMOSFERA: Marco Pelozzi

DIREZIONE: Giorgio Penati

EP PRODUZIONE S.p.A.

Centrale di Ostiglia

ALLEGATO N. 1

RAPPORTI DI PROVA N. 2104111-007 (TG1) - 2104111-026 (TG2) - 2104111-045 (TG3)

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610131

LAB N° 00175 L

Rapporto di prova n. 2104111-007 EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnico

data inizio campionamento: 28/09/2021 data ricevimento: 18/10/2021 data fine fase analitica: 18/10/2021 data fine campionamento: 14/10/2021 data inizio fase analitica: 28/09/2021 data emissione: 18/11/2021

Punto di emissione - sigla: E1 da impianto a ciclo combinato TG1

Lavorazione in corso: produzione energia elettrica

Principali materie prime: gas naturale

Autorizzazione all'emissione: AIA Prot. DSA-DEC-2009-0000976 del 03/08/2009 e s.m.i. (D.M. n° 369 del 09/09/2021)

Parametro:	Metodo di campionamento e analisi:
Ossidi di Azoto	UNI EN 14792:2017
Monossido di Carbonio	UNI EN 15058:2017
Ossigeno	UNI EN 14789:2017
Diossido di carbonio	ISO 12039:2019 Annex A
Velocità e portata	UNI EN ISO 16911-1:2013 solo Annex A
Vapore acqueo (umidità)	UNI EN 14790:2017

Caratteristiche del punto di emissione

direzione flusso alla sezione di misura:verticaleforma della sezione di misura:circolaresezione emissione (m²):32.15

Scelta del punto di misura (UNI EN 15259:2008)

Numero di flange di campionamento: 4

lunghezza tratto rettilineo a monte flange:<5</th>diametri idraulicilunghezza tratto rettilineo a valle flange:<5</td>diametri idraulici

test di verifica rappresentatività: esito positivo rapporto velocità fumi massima/minima: <3:1

Condizioni di normalizzazione

 Temperatura:
 °C
 0

 Pressione:
 Pa
 101300

 Gas
 Secco

 Ossigeno di riferimento:
 %
 15

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio

I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610131

LAB N° 00175 L

Rapporto di prova n. 2104111-007 EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnico

data inizio campionamento: 07/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 18/10/2021 data fine campionamento: 07/10/2021 data inizio fase analitica: 07/10/2021 data emissione: 18/11/2021

Punto di emissione - sigla: E1 da impianto a ciclo combinato TG1

lavorazione in corso: produzione energia elettrica

principali materie prime: gas naturale

autorizzazione all'emissione: AIA Prot. DSA-DEC-2009-0000976 del 03/08/2009 e s.m.i. (D.M. n° 369 del 09/09/2021)

Denominazione della misura	Simboli	Unità di misura	Reticolo n. 1	Reticolo n. 2	Reticolo n. 3	Reticolo n. 4	Reticolo n. 5	Medie	Incertezza Ud			
Diametro del condotto	D	m			6.4			-				
Tipologia del condotto	-	-			liscio				-			
Wall adjustment factor (WAF)					0.995				-			
Area della sezione di misurazione	Α	m ²			32.15				-			
Numero assi di misurazione	n	-			4				-			
Numero punti di misurazione	n ⁱ	-			20				-			
Umidità	U	%	8.85	8.87	8.44	8.55	8.88	8.72	±	0.44		
Frazione molare sul gas umido	X _a		0.088	0.089	0.084	0.086	0.089	0.087	-			
Ossigeno	O ₂	%	13.51	13.50	13.50	13.51	13.50	13.50	±	0.36		
Anidride Carbonica	CO ₂	%	4.17	4.18	4.18	4.18	4.18	4.18	±	0.21		
Azoto	N ₂	%	82.3	82.3	82.3	82.3	82.3	82.3	-			
Massa molare (Peso molecolare)	М	Kg/Kmole	28.22	28.21	28.26	28.25	28.21	28.23	-			
Pressione Atmosferica	p _{bar}	Pa	100450	100420	100420	100430	100430	100430	-			
Pressione Statica assoluta del gas	p _e	Pa	100235	100226	100229	100235	100244	100234	-			
Pressione dinamica differenziale	$\Delta \mathbf{p_i}$	Pa	334.8	317.7	324.6	319.6	211.4	301.6	-			
Temperatura assoluta del gas	T _e	K	362	361	362	362	362	362	±	274		
Velocità di flusso * WAF	u	m/s	21.98	21.40	21.64	21.44	21.34	21.56	±	0.53		
Portata volumica del flusso alle condizioni di esercizio	Qv _e	m³/h	2544512	2477394	2504498	2481657	2470111	2495634	±	129773		
Portata volumica del flusso alle condizioni di riferimento (a secco)	Qv _{rs}	Nm ³ /h	1728688	1687150	1712435	1695202	1678677	1700431	-			
Portata volumica del flusso alle condizioni di riferimento (a secco) Rif. 15 % O ₂	Qv _{rs}	Nm³/h	2158213	2109172	2139133	2117337	2097646	2124300	-			

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610131

n. 2104111-007

Rapporto di prova

EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

LAB N° 00175 L

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnico

data inizio campionamento: 07/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 18/10/2021 data fine campionamento: 07/10/2021 data inizio fase analitica: 07/10/2021 data emissione: 18/11/2021

Punto di emissione - sigla: E1 da impianto a ciclo combinato TG1

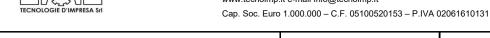
lavorazione in corso: produzione energia elettrica

principali materie prime: gas naturale

autorizzazione all'emissione: AIA Prot. DSA-DEC-2009-0000976 del 03/08/2009 e s.m.i. (D.M. n° 369 del 09/09/2021)

Retico Data Orario		: n. 1 : 07/10/20 : 07:35-08			: n. 2 : 07/10/20 : 08:20-0			: n. 3 : 07/10/20 : 08:50-0			: n. 4 : 07/10/20 : 09:20-09			: n. 5 : 07/10/2021 : 09:50-10:20		
Asse	Quota	Temp. gas	Pressione diff.	Velocità di flusso	Temp. gas	Pressione diff.	Velocità di flusso	Temp. gas	Pressione diff.	Velocità di flusso	Temp. gas	Pressione diff.	Velocità di flusso	Temp. gas	Pression e diff	Velocità di flusso
n	n ⁱ	T _e	$\Delta \mathbf{p_i}$	u	T _e	$\Delta \mathbf{p_i}$	u	T _e	$\Delta \mathbf{p_i}$	u	T _e	$\Delta \mathbf{p_i}$	u	T _e	$\Delta \mathbf{p_i}$	u
	cm	°C	mm.c.a	m/s	°C	mm.c.a	m/s	°C	mm.c.a	m/s	°C	mm.c.a	m/s	°C	mm.c.a	m/s
	17	91	24.0	18.63	90	22.6	18.06	90	24.3	18.71	91	21.3	17.54	90	22.3	17.93
	52	91	29.5	20.66	90	28.1	20.13	89	28.0	20.05	90	27.4	19.87	90	24.9	18.95
Α	93	90	32.4	21.62	89	29.3	20.53	89	29.9	20.72	88	29.4	20.52	89	31.4	21.25
	145	89	33.3	21.88	88	32.3	21.53	89	31.5	21.27	87	35.8	22.62	87	32.9	21.69
	219	89	44.9	25.41	88	42.3	24.63	88	35.3	22.48	88	43.8	25.05	87	33.7	21.96
	17	90	28.4	20.24	88	24.5	18.75	89	25.9	19.29	88	24.4	18.70	90	22.6	18.05
	52	89	32.6	21.65	88	33.9	22.05	89	32.0	21.44	88	30.4	20.87	90	32.0	21.48
В	93	88	33.7	21.99	87	31.3	21.16	88	33.5	21.90	87	34.4	22.17	88	30.3	20.85
	145	88	37.5	23.19	87	33.6	21.92	88	34.7	22.29	86	33.3	21.78	88	35.4	22.53
	219	87	39.8	23.86	87	37.9	23.29	88	36.5	22.86	86	38.2	23.33	86	38.6	23.46
	17	91	25.8	19.32	90	28.5	20.28	90	32.5	21.63	90	25.8	19.28	92	26.8	19.71
	52	90	32.6	21.68	89	31.4	21.25	89	34.6	22.29	90	30.6	21.00	92	34.1	22.24
С	93	89	35.3	22.53	88	37.3	23.13	89	34.8	22.36	90	33.6	22.00	91	34.3	22.27
	145	88	35.7	22.63	87	36.5	22.85	89	37.6	23.24	89	34.9	22.39	90	37.8	23.35
	219	87	47.4	26.04	88	36.8	22.98	87	38.8	23.54	88	38.1	23.36	89	36.4	22.88
	17	90	29.2	20.52	89	30.3	20.88	90	28.2	20.15	90	31.0	21.13	90	29.4	20.59
	52	91	33.5	22.01	90	32.7	21.72	89	35.6	22.61	90	36.5	22.93	89	35.6	22.63
D	93	90	33.7	22.05	89	31.3	21.22	88	33.9	22.03	89	30.3	20.86	89	32.2	21.52
	145	90	35.6	22.66	88	36.3	22.82	87	37.2	23.05	88	35.2	22.46	88	35.2	22.47
	219	89	37.7	23.29	87	30.9	21.03	87	37.0	22.99	88	37.2	23.09	88	37.2	23.10
M	edie	<u>89</u>	<u>34.1</u>	22.09	<u>88</u>	<u>32.4</u>	<u>21.51</u>	<u>89</u>	<u>33.1</u>	<u>21.75</u>	<u>89</u>	<u>32.6</u>	<u>21.55</u>	<u>89</u>	<u>32.2</u>	<u>21.45</u>

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente


Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio

I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

Rapporto di prova n. 2104111-007

EP Produzione S.p.A. Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnici

LAB N° 00175 L

18/10/2021 data fine fase analitica: data inizio campionamento: 28/09/2021 data ricevimento: 14/10/2021 28/09/2021 data fine campionamento: 14/10/2021 data inizio fase analitica: data emissione: 18/11/2021

frequenza acquisizione dati 10 secondi periodo mediazione dati 60 minuti

E1 da impianto a ciclo combinato TG1 punto di emissione - sigla:

lavorazione in corso: produzione energia elettrica

principali materie prime: gas naturale

AIA Prot. DSA-DEC-2009-0000976 del 03/08/2009 e s.m.i. (D.M. n° 369 del 09/09/2021) autorizzazione all'emissione:

RISULTATI RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM"

Data	Ora	NO_x	NO_x	NO_x	со	со	со	O_2	Produzione
			come NO	come NO ₂					TG1
		ppm	mg/Nm ³	mg/Nm³	ppm	mg/Nm ³	mg/Nm ³	%	MWe
				(rif. 15 % O ₂)		(rif. 15 % O ₂)	
28/09/2021	12:00 *	9.9	13.3	19.1	23.9	29.9	28.1	14.63	82.8
28/09/2021	13:00 *	10.2	13.6	19.4	7.3	9.1	8.4	14.55	86.4
28/09/2021	14:00	10.4	13.9	19.7	5.8	7.2	6.6	14.49	93.3
28/09/2021	15:00	12.8	17.2	21.6	0.19	0.24	0.20	13.71	233.6
28/09/2021	16:00	13.1	17.6	21.9	0.25	0.31	0.26	13.63	234.1
28/09/2021	17:00	13.1	17.5	21.8	0.19	0.24	0.19	13.61	235.5
28/09/2021	18:00	13.1	17.6	21.8	0.21	0.26	0.21	13.60	235.3
28/09/2021	19:00	13.2	17.7	21.9	0.29	0.36	0.29	13.60	236.5
28/09/2021	20:00	13.3	17.9	22.1	0.21	0.26	0.21	13.57	235.3
28/09/2021	21:00	13.5	18.1	22.4	0.22	0.28	0.23	13.57	237.4
28/09/2021	22:00	13.6	18.3	22.5	0.08	0.10	0.08	13.57	238.7
28/09/2021	23:00	13.7	18.3	22.6	0.08	0.10	0.08	13.55	237.8
29/09/2021	00:00	13.9	18.6	22.8	0.08	0.10	0.08	13.52	231.5
29/09/2021	01:00	13.9	18.6	22.8	0.08	0.10	0.08	13.53	234.6
29/09/2021	02:00	14.1	18.8	23.1	0.07	0.09	0.07	13.52	231.8
29/09/2021	03:00	14.0	18.8	23.2	0.06	80.0	0.06	13.56	242.6
29/09/2021	04:00	14.0	18.8	23.2	0.28	0.35	0.28	13.58	243.7
29/09/2021	05:00	14.0	18.8	23.2	0.21	0.26	0.21	13.55	235.1
29/09/2021	06:00	14.3	19.1	23.5	0.16	0.20	0.16	13.54	227.6
29/09/2021	07:00	14.3	19.2	23.7	0.19	0.24	0.19	13.54	231.5
29/09/2021	08:00	14.1	18.9	23.6	0.14	0.18	0.15	13.64	252.5
29/09/2021	09:00	13.8	18.5	23.2	0.13	0.16	0.13	13.66	250.3
29/09/2021	10:00	13.7	18.4	23.0	0.08	0.10	0.08	13.68	245.6
29/09/2021	11:00	10.8	14.5	20.0	5.8	7.3	6.6	14.36	111.4
29/09/2021	12:00 *	10.6	14.2	19.8	6.5	8.1	7.4	14.43	96.7
29/09/2021	13:00	10.7	14.3	19.9	6.1	7.7	7.0	14.41	96.6
29/09/2021	14:00	12.0	16.0	21.1	0.08	0.10	0.09	14.01	173.5
29/09/2021	16:00	11.7	15.7	20.6	0.07	80.0	0.07	14.03	175.5

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime

utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova

Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio

I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

LAB N° 00175 L

Rapporto di prova n. 2104111-007

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610131

EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnici

data inizio campionamento: 28/09/2021 data ricevimento: 18/10/2021 data fine fase analitica: 14/10/2021 data fine campionamento: 14/10/2021 data inizio fase analitica: 28/09/2021 data emissione: 18/11/2021

frequenza acquisizione dati 10 secondi periodo mediazione dati 60 minuti

punto di emissione - sigla: E1 da impianto a ciclo combinato TG1

lavorazione in corso: produzione energia elettrica

principali materie prime: gas naturale

autorizzazione all'emissione: AIA Prot. DSA-DEC-2009-0000976 del 03/08/2009 e s.m.i. (D.M. n° 369 del 09/09/2021)

RISULTATI RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM"

Data	Ora	NO_x	NO_x	NO_x	CO	co	CO	O_2	Produzione
			come NO	come NO ₂					TG1
		ppm	mg/Nm³	mg/Nm³	ppm	mg/Nm³	mg/Nm³	%	MWe
				(rif. 15 % O ₂)		(rif. 15 % O ₂)	
29/09/2021	17:00	13.0	17.4	22.0	0.05	0.06	0.05	13.73	216.4
29/09/2021	18:00	13.5	18.1	22.4	0.08	0.10	80.0	13.56	223.0
29/09/2021	19:00	13.5	18.1	22.4	0.09	0.11	0.09	13.58	229.8
29/09/2021	20:00	14.0	18.8	23.1	0.06	0.08	0.06	13.52	203.4
29/09/2021	21:00	13.5	18.1	22.5	0.07	0.09	0.07	13.58	224.8
29/09/2021	22:00	13.7	18.4	22.8	0.69	0.86	0.70	13.57	227.6
29/09/2021	23:00	13.2	17.7	22.3	0.85	1.06	0.88	13.72	208.4
30/09/2021	00:00	13.9	18.7	23.2	0.79	0.98	0.80	13.61	240.7
30/09/2021	01:00	14.1	18.9	23.4	0.77	0.97	0.78	13.59	244.4
30/09/2021	02:00	14.2	19.0	23.6	0.75	0.93	0.76	13.59	246.4
30/09/2021	03:00	14.1	19.0	23.6	0.76	0.95	0.78	13.63	247.0
30/09/2021	04:00	14.1	18.9	23.6	0.43	0.53	0.44	13.64	247.1
30/09/2021	05:00	14.1	18.9	23.6	0.41	0.51	0.42	13.66	249.1
30/09/2021	06:00	14.1	19.0	23.6	0.54	0.68	0.55	13.63	242.0
30/09/2021	07:00	14.4	19.3	23.8	0.43	0.54	0.44	13.56	229.2
30/09/2021	08:00	14.1	18.9	23.7	0.40	0.50	0.40	13.66	247.6
30/09/2021	09:00	14.0	18.8	23.6	0.44	0.55	0.45	13.68	245.6
30/09/2021	10:00	13.9	18.6	23.4	1.3	1.7	1.4	13.70	244.4
30/09/2021	11:00	13.7	18.3	23.2	1.4	1.8	1.4	13.76	244.9
30/09/2021	12:00 *	10.7	14.4	20.2	12.7	15.8	14.5	14.47	101.6
30/09/2021	13:00	10.4	14.0	19.7	12.1	15.1	13.9	14.48	93.4
30/09/2021	14:00	10.5	14.0	19.6	10.8	13.5	12.3	14.44	96.8
30/09/2021	15:00	13.6	18.2	23.1	1.4	1.7	1.5	13.77	232.2
30/09/2021	16:00	13.6	18.3	23.0	0.31	0.39	0.32	13.72	241.4
30/09/2021	17:00	13.6	18.2	23.0	0.36	0.45	0.37	13.72	242.2
30/09/2021	18:00	13.7	18.4	23.1	0.41	0.51	0.42	13.70	244.0
30/09/2021	19:00	13.8	18.5	23.3	0.36	0.45	0.37	13.70	244.4
30/09/2021	20:00	14.0	18.7	23.5	0.35	0.44	0.36	13.68	244.2

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime

utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio

I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

LAB N° 00175 L

Rapporto di prova n. 2104111-007

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610131

EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnici

data inizio campionamento: 28/09/2021 data ricevimento: 18/10/2021 data fine fase analitica: 14/10/2021 data fine campionamento: 14/10/2021 data inizio fase analitica: 28/09/2021 data emissione: 18/11/2021

frequenza acquisizione dati 10 secondi periodo mediazione dati 60 minuti

punto di emissione - sigla: E1 da impianto a ciclo combinato TG1

lavorazione in corso: produzione energia elettrica

principali materie prime: gas naturale

autorizzazione all'emissione: AIA Prot. DSA-DEC-2009-0000976 del 03/08/2009 e s.m.i. (D.M. n° 369 del 09/09/2021)

RISULTATI RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM"

Data	Ora	NO_x	NO_x	NO_x	СО	СО	со	O ₂	Produzione
			come NO	come NO ₂					TG1
		ppm	mg/Nm³	mg/Nm³	ppm	mg/Nm³	mg/Nm³	%	MWe
				(rif. 15 % O ₂)		(rif. 15 % O	2)	
30/09/2021	21:00	14.0	18.8	23.5	0.42	0.53	0.43	13.68	244.9
30/09/2021	22:00	14.1	18.9	23.7	0.66	0.82	0.67	13.67	247.6
30/09/2021	23:00	14.4	19.3	23.8	0.75	0.94	0.76	13.58	228.6
01/10/2021	00:00	14.3	19.1	23.9	0.72	0.90	0.74	13.66	249.0
14/10/2021	11:00	14.3	19.1	23.6	-	-	-	13.54	211.3
14/10/2021	12:00 *	13.0	17.4	25.4	-	-	-	14.71	73.5
Media:		13.5	17.7	22.5	1.8	2.3	2.1	13.78	211.7
Incertezza:		-	-	± 1.1	-	-	± 0.1	± 0.37	_
Limite		-	-	30	-	-	30	-	_
Minimo:		10.4	13.9	19.6	0.0	0.06	0.05	13.52	93.3
Massimo:		14.4	19.3	23.9	12.1	15.1	13.9	14.49	252.5

Nota: Valori medi, minimi e massimi calcolati escludendo i valori * (contrassegnati da asterisco) con impianto sotto al minimo tecnico per tutta o parte dell'ora (valori non utilizzabili per il confronto con i limiti autorizzati)

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610131

LAB N° 00175 L

Rapporto di prova n. 2104111-026 EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnico

data inizio campionamento: 28/09/2021 data ricevimento: 18/10/2021 data fine fase analitica: 18/10/2021 data fine campionamento: 07/10/2021 data inizio fase analitica: 28/09/2021 data emissione: 18/11/2021

Punto di emissione - sigla: E2 da impianto a ciclo combinato TG2

Lavorazione in corso: produzione energia elettrica

Principali materie prime: gas naturale

Autorizzazione all'emissione: AIA Prot. DSA-DEC-2009-0000976 del 03/08/2009 e s.m.i. (D.M. n° 369 del 09/09/2021)

Parametro:	Metodo di campionamento e analisi:
Ossidi di Azoto	UNI EN 14792:2017
Monossido di Carbonio	UNI EN 15058:2017
Ossigeno	UNI EN 14789:2017
Diossido di carbonio	ISO 12039:2019 Annex A
Velocità e portata	UNI EN ISO 16911-1:2013 solo Annex A
Vapore acqueo (umidità)	UNI EN 14790:2017

Caratteristiche del punto di emissione

 direzione flusso alla sezione di misura:
 verticale

 forma della sezione di misura:
 circolare

 sezione emissione (m²):
 32.15

 test di verifica rappresentatività:
 esito positivo

 rapporto velocità fumi massima/minima:
 <3:1</td>

Scelta del punto di misura (UNI EN 15259:2008)

Numero di flange di campionamento: 4

lunghezza tratto rettilineo a monte flange:<5</th>diametri idraulicilunghezza tratto rettilineo a valle flange:<5</td>diametri idraulici

Condizioni di normalizzazione

 Temperatura:
 °C
 0

 Pressione:
 Pa
 101300

 Gas
 Secco

 Ossigeno di riferimento:
 %
 15

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova

Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610131

LAB N° 00175 L

Rapporto di prova n. 2104111-026 EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnico

data inizio campionamento: 28/09/2021 data ricevimento: 18/10/2021 data fine campionamento: 28/09/2021 data inizio fase analitica: 28/09/2021 data emissione: 18/11/2021

Punto di emissione - sigla: E2 da impianto a ciclo combinato TG2

lavorazione in corso: produzione energia elettrica

principali materie prime: gas naturale

autorizzazione all'emissione: AIA Prot. DSA-DEC-2009-0000976 del 03/08/2009 e s.m.i. (D.M. n° 369 del 09/09/2021)

Denominazione della misura	Simboli	Unità di misura	Reticolo n. 1	Reticolo n. 2	Reticolo n. 3	Reticolo n. 4	Reticolo n. 5	Medie	Incertezza Uc	estesa
Diametro del condotto	D	m			6.4				-	
Tipologia del condotto	-	-			liscio				-	
Wall adjustment factor (WAF)					0.995				-	
Area della sezione di misurazione	Α	m ²			32.15				-	
Numero assi di misurazione	n	-			4				-	
Numero punti di misurazione	n ⁱ	-			20				-	
Umidità	U	%	8.48	8.31	8.10	8.57	8.22	8.34	±	0.42
Frazione molare sul gas umido	X _a		0.085	0.083	0.081	0.086	0.082	0.083	-	
Ossigeno	O ₂	%	13.65	13.66	13.65	13.65	13.66	13.66	±	0.37
Anidride Carbonica	CO ₂	%	4.10	4.09	4.09	4.10	4.09	4.09	±	0.20
Azoto	N ₂	%	82.3	82.2	82.3	82.3	82.3	82.3	-	
Massa molare (Peso molecolare)	М	Kg/Kmole	28.25	28.27	28.29	28.24	28.28	28.27	-	
Pressione Atmosferica	p _{bar}	Pa	101050	100950	100910	100920	100880	100942	-	
Pressione Statica assoluta del gas	p _e	Pa	100875	100799	100767	100774	100726	100788	-	
Pressione dinamica differenziale	$\Delta \mathbf{p_i}$	Pa	291.1	285.8	279.2	274.0	197.8	265.6	-	
Temperatura assoluta del gas	T _e	K	364	365	364	365	365	364	±	274
Velocità di flusso * WAF	u	m/s	20.63	20.49	20.23	20.06	20.45	20.37	±	0.50
Portata volumica del flusso alle condizioni di esercizio	Qv _e	m³/h	2388279	2371551	2341924	2321897	2366622	2358054	±	122619
Portata volumica del flusso alle condizioni di riferimento (a secco)	Qv _{rs}	Nm ³ /h	1631300	1618414	1604628	1581077	1616992	1610482	-	
Portata volumica del flusso alle condizioni di riferimento (a secco) Rif. 15 % O ₂	Qv _{rs}	Nm ³ /h	1998929	1979223	1964334	1937048	1977860	1971479	-	

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610131

LAB N° 00175 L

Rapporto di prova n. 2104111-026 EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnico

data inizio campionamento: 28/09/2021 data ricevimento: 18/10/2021 data fine campionamento: 28/09/2021 data inizio fase analitica: 28/09/2021 data emissione: 18/11/2021

Punto di emissione - sigla:

E2 da impianto a ciclo combinato TG2

lavorazione in corso: produzione energia elettrica principali materie prime: gas naturale

autorizzazione all'emissione: AIA Prot. DSA-DEC-2009-0000976 del 03/08/2009 e s.m.i. (D.M. n° 369 del 09/09/2021)

Data	Reticolo : n. 1 Data : 28/09/2021 Orario : 12:50 - 13:20			: n. 2 : 28/09/2021 : 13:20-13:50			: n. 3 : 28/09/20 : 13:50-1			: n. 4 : 28/09/20 : 14:20-14			: n. 5 : 28/09/2021 : 14:50-15:20			
Asse	Quota	Temp. gas	Pressione diff.	Velocità di flusso	Temp. gas	Pressione diff.	Velocità di flusso	Temp. gas	Pressione diff.	Velocità di flusso	Temp. gas	Pressione diff.	Velocità di flusso	Temp. gas	Pressione diff.	Velocità di flusso
n	n ⁱ	T _e	$\Delta \mathbf{p_i}$	u	T _e	$\Delta \mathbf{p_i}$	u	T _e	$\Delta \mathbf{p_i}$	u	T _e	$\Delta \mathbf{p_i}$	u	T _e	Δp_i	u
	cm	°C	mm.c.a	m/s	°C	mm.c.a	m/s	°C	mm.c.a	m/s	°C	mm.c.a	m/s	°C	mm.c.a	m/s
	17	93	21.3	17.74	93	25.1	19.26	93	24.2	18.91	93	21.8	17.96	92	23.5	18.62
	52	93	24.7	19.11	93	28.2	20.42	93	23.9	18.79	93	25.6	19.47	93	29.7	20.96
Α	93	92	32.6	21.92	92	31.8	21.65	92	31.1	21.41	93	30.1	21.11	93	31.3	21.51
	145	92	37.4	23.48	92	36.5	23.20	92	35.5	22.87	92	34.5	22.57	92	34.9	22.69
	219	91	39.3	24.04	92	38.8	23.92	93	37.7	23.60	92	37.7	23.59	91	38.5	23.80
	17	91	19.8	17.06	94	17.9	16.29	91	18.8	16.62	92	18.6	16.57	92	19.1	16.78
	52	91	24.7	19.06	94	23.5	18.66	91	23.2	18.46	92	22.9	18.39	92	22.8	18.34
В	93	91	27.2	20.00	93	26.4	19.76	91	26.9	19.88	91	23.8	18.72	92	24.7	19.09
	145	92	28.4	20.46	94	28.6	20.59	90	27.3	20.00	91	25.4	19.34	91	26.3	19.67
	219	91	38.8	23.88	93	32.3	21.85	91	34.1	22.39	91	32.5	21.87	91	33.4	22.16
	17	94	30.4	21.23	93	28.3	20.45	92	28.2	20.38	93	25.3	19.35	93	26.3	19.72
	52	91	32.2	21.76	92	31.8	21.65	92	31.7	21.61	93	32.1	21.80	94	31.2	21.51
С	93	91	35.3	22.78	92	34.6	22.59	92	33.3	22.15	93	32.9	22.07	93	34.7	22.65
	145	92	36.8	23.29	92	37.4	23.48	91	36.4	23.13	92	38.8	23.93	92	36.5	23.20
	219	91	43.4	25.26	91	38.8	23.88	91	38.5	23.79	92	37.9	23.65	92	44.3	25.56
	17	90	24.0	18.76	90	22.7	18.24	90	22.3	18.08	90	21.4	17.72	90	19.8	17.04
	52	90	15.6	15.12	89	16.3	15.44	90	15.8	15.22	90	16.2	15.42	90	20.6	17.38
D	93	89	24.6	18.96	90	23.5	18.56	90	25.7	19.41	90	23.6	18.61	89	24.4	18.89
	145	89	27.2	19.94	90	27.8	20.19	89	26.4	19.64	89	27.4	20.03	90	26.7	19.79
	219	89	29.8	20.87	89	32.3	21.73	89	28.3	20.34	89	30.2	21.03	89	31.9	21.60
M	edie	<u>91</u>	<u>29.7</u>	<u>20.74</u>	<u>92</u>	<u>29.1</u>	<u>20.59</u>	<u>91</u>	<u>28.5</u>	<u>20.33</u>	<u>92</u>	<u>27.9</u>	<u>20.16</u>	<u>92</u>	<u>29.0</u>	<u>20.55</u>

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova

Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio

I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610131

LAB N° 00175 L

Rapporto di prova n. 2104111-026 EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnici

data inizio campionamento: 05/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 07/10/2021 data fine campionamento: 07/10/2021 data inizio fase analitica: 05/10/2021 data emissione: 18/11/2021

frequenza acquisizione dati 10 secondi periodo mediazione dati 60 minuti

punto di emissione - sigla: E2 da impianto a ciclo combinato TG2

lavorazione in corso: produzione energia elettrica

principali materie prime: gas naturale

autorizzazione all'emissione: AIA Prot. DSA-DEC-2009-0000976 del 03/08/2009 e s.m.i. (D.M. n° 369 del 09/09/2021)

RISULTATI RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM"

Data	Ora	NO _x	NO _x come NO	NO _x come NO ₂	СО	со	со	O ₂	Produzione TG2
		ppm	mg/Nm³	mg/Nm³	ppm	mg/Nm³	mg/Nm³	%	MWe
				(rif. 15 % O ₂)		(rif. 15 % O ₂)	
05/10/2021	03:00	15.2	20.4	25.7	1.1	1.4	1.2	13.70	185.3
05/10/2021	04:00	16.2	21.7	26.0	0.7	8.0	0.7	13.36	229.0
05/10/2021	05:00	16.4	21.9	26.3	0.6	8.0	0.6	13.35	251.1
05/10/2021	06:00	15.9	21.3	25.4	0.6	8.0	0.6	13.31	221.6
05/10/2021	07:00	15.9	21.3	25.4	8.0	1.0	0.7	13.29	229.9
05/10/2021	09:00	15.8	21.2	25.3	8.0	1.0	8.0	13.32	245.5
05/10/2021	10:00	15.6	20.9	25.0	0.1	0.1	0.1	13.35	242.9
05/10/2021	11:00	15.3	20.6	24.8	0.1	0.1	0.1	13.39	240.2
05/10/2021	12:00*	11.5	15.4	21.9	19.7	24.6	22.8	14.53	79.7
05/10/2021	13:00	12.2	16.3	22.3	5.6	7.0	6.3	14.28	98.8
05/10/2021	14:00	12.2	16.4	22.3	5.1	6.4	5.7	14.25	98.2
05/10/2021	15:00	15.3	20.4	25.1	0.1	0.1	0.1	13.53	235.1
05/10/2021	16:00	15.4	20.6	24.9	0.7	8.0	0.7	13.40	239.1
05/10/2021	17:00	15.3	20.6	24.9	0.7	0.8	0.6	13.41	240.7
05/10/2021	18:00	15.5	20.8	25.2	0.7	8.0	0.7	13.42	243.3
05/10/2021	19:00	15.6	20.9	25.3	8.0	0.9	0.7	13.43	242.6
05/10/2021	20:00	15.6	20.9	25.4	8.0	1.0	8.0	13.44	244.0
05/10/2021	21:00	15.7	21.1	25.6	0.7	0.9	0.7	13.45	245.5
05/10/2021	22:00	15.9	21.2	25.6	0.4	0.5	0.4	13.39	246.6
05/10/2021	23:00	15.5	20.8	25.1	0.4	0.4	0.3	13.40	245.0
06/10/2021	06:00	16.0	21.4	26.2	0.1	0.1	0.1	13.50	247.9
06/10/2021	07:00	15.7	21.0	25.1	0.1	0.1	0.1	13.34	233.9
06/10/2021	09:00	16.5	22.0	26.6	0.1	0.1	0.1	13.40	255.9
06/10/2021	10:00	16.5	22.1	26.8	0.5	0.7	0.5	13.41	255.8
06/10/2021	11:00	16.3	21.9	26.4	0.5	0.6	0.5	13.38	251.4
06/10/2021	12:00	15.6	21.0	25.2	0.6	0.8	0.6	13.36	232.3
06/10/2021	13:00	12.9	17.3	23.3	5.9	7.4	6.5	14.21	106.3
06/10/2021	14:00	12.8	17.1	23.3	6.9	8.7	7.7	14.26	97.9
06/10/2021	15:00	13.1	17.5	23.8	5.7	7.1	6.3	14.24	101.2

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610131

Rapporto di prova

Tipologia di campione

LAB N° 00175 L

n. 2104111-026

EP Produzione S.p.A.

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnici

data inizio campionamento: 05/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 07/10/2021 data fine campionamento: 07/10/2021 data inizio fase analitica: 05/10/2021 data emissione: 18/11/2021

frequenza acquisizione dati 10 secondi periodo mediazione dati 60 minuti

punto di emissione - sigla: E2 da impianto a ciclo combinato TG2

lavorazione in corso: produzione energia elettrica

principali materie prime: gas naturale

autorizzazione all'emissione: AIA Prot. DSA-DEC-2009-0000976 del 03/08/2009 e s.m.i. (D.M. n° 369 del 09/09/2021)

RISULTATI RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM"

Data	Ora	NO _x	NO _x	NO _x	СО	СО	СО	O ₂	Produzione TG2
		ppm	come NO mg/Nm³	come NO₂ mg/Nm³	ppm	mg/Nm³	mg/Nm³	%	MWe
			·	(rif. 15 % O ₂)			rif. 15 % O ₂)	
06/10/2021	16:00	14.3	19.2	24.6	0.4	0.5	0.4	13.84	180.6
06/10/2021	17:00	14.1	18.8	24.2	0.2	0.3	0.3	13.85	182.9
06/10/2021	18:00	13.9	18.6	24.0	0.2	0.3	0.3	13.87	182.9
06/10/2021	19:00	16.2	21.7	26.6	0.2	0.2	0.2	13.51	263.1
06/10/2021	20:00	16.2	21.7	26.5	0.2	0.3	0.2	13.49	264.3
06/10/2021	21:00	16.2	21.6	26.5	0.2	0.3	0.2	13.49	263.8
06/10/2021	22:00	14.6	19.6	24.0	0.2	0.2	0.2	13.50	234.7
06/10/2021	23:00	15.0	20.1	24.3	0.2	0.3	0.2	13.41	223.9
06/10/2021	00:00	16.2	21.7	26.1	0.2	0.2	0.2	13.39	251.6
07/10/2021	01:00	16.2	21.6	26.2	0.2	0.3	0.2	13.41	255.2
07/10/2021	02:00	16.1	21.6	26.2	0.2	0.3	0.2	13.44	258.2
07/10/2021	03:00	16.0	21.5	26.1	0.2	0.3	0.2	13.45	258.0
07/10/2021	04:00	16.0	21.5	26.0	0.1	0.1	0.1	13.43	258.1
07/10/2021	05:00	16.1	21.6	26.2	0.1	0.1	0.1	13.44	260.3
07/10/2021	06:00	15.2	20.4	25.1	0.1	0.2	0.1	13.53	223.3
07/10/2021	07:00	16.1	21.6	26.2	0.1	0.1	0.1	13.42	257.1
07/10/2021	09:00	13.6	18.3	23.0	0.1	0.1	0.1	13.71	248.4
07/10/2021	10:00	13.7	18.3	23.1	0.2	0.2	0.2	13.71	246.6
07/10/2021	11:00	13.6	18.3	23.1	0.1	0.2	0.1	13.72	240.0
07/10/2021	12:00 *	14.5	19.4	27.4	28.8	36.0	33.2	14.49	87.1
07/10/2021	13:00	13.4	17.9	24.7	6.9	8.6	7.8	14.33	94.5
07/10/2021	14:00	12.9	17.3	23.8	6.1	7.7	6.9	14.31	95.3
07/10/2021	15:00	13.5	18.2	23.3	8.0	1.0	8.0	13.84	223.5
07/10/2021	16:00	13.1	17.5	22.3	0.1	0.1	0.1	13.77	240.3
07/10/2021	17:00	13.0	17.4	22.1	0.1	0.1	0.1	13.76	240.3
07/10/2021	18:00	13.0	17.4	22.0	0.1	0.1	0.1	13.75	243.8
07/10/2021	19:00	13.1	17.5	22.2	0.1	0.1	0.1	13.75	242.2
07/10/2021	20:00	13.1	17.6	22.2	0.1	0.1	0.1	13.75	242.4
07/10/2021	21:00	13.2	17.7	22.4	0.1	0.1	0.1	13.74	244.1

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610131

Rapporto di prova

LAB N° 00175 L

n. 2104111-026

EP Produzione S.p.A.

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnici

data inizio campionamento: 05/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 07/10/2021 data fine campionamento: 07/10/2021 data inizio fase analitica: 05/10/2021 data emissione: 18/11/2021

frequenza acquisizione dati 10 secondi periodo mediazione dati 60 minuti

punto di emissione - sigla: E2 da impianto a ciclo combinato TG2

lavorazione in corso: produzione energia elettrica

principali materie prime: gas naturale

autorizzazione all'emissione: AIA Prot. DSA-DEC-2009-0000976 del 03/08/2009 e s.m.i. (D.M. n° 369 del 09/09/2021)

RISULTATI RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM"

Data	Ora	NO _x	NO _x come NO	NO _x come NO ₂	СО	СО	со со		Produzione TG2
		ppm	mg/Nm³	mg/Nm³	ppm	mg/Nm³	mg/Nm³	%	MWe
				(rif. 15 % O ₂)		(
07/10/2021	22:00	13.3	17.8	22.5	0.1	0.1	0.1	13.73	246.7
07/10/2021	23:00	13.3	17.8	22.5	0.1	0.1	0.1	13.72	245.6
07/10/2021	00:00	13.3	17.9	22.7	0.1	0.1	0.1	13.76	236.6
Media:		14.8	19.8	24.6	1.8	2.2	2.0	13.65	218.4
Incertezza:		-	-	± 1.2	-	-	± 0.1	± 0.37	-
Limite		-	-	30	-	-	30	-	-
Minimo:		12.2	16.3	22.0	0.1	0.1	0.1	13.29	94.5
Massimo:		16.5	22.1	26.8	6.9	8.7	7.8	14.33	264.3

Nota: Valori medi, minimi e massimi calcolati escludendo i valori * (contrassegnati da asterisco) con impianto sotto al minimo tecnico per tutta o parte dell'ora (valori non utilizzabili per il confronto con i limiti autorizzati)

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

LAB Nº 00175 L

Rapporto di prova n. 2104111-045

EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnico

data inizio campionamento: 11/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 18/10/2021 data fine campionamento: 13/10/2021 data inizio fase analitica: 11/10/2021 data emissione: 18/11/2021

Punto di emissione - sigla: E3 da impianto a ciclo combinato TG3

Lavorazione in corso: produzione energia elettrica

Principali materie prime: gas naturale

Autorizzazione all'emissione: AIA Prot. DSA-DEC-2009-0000976 del 03/08/2009 e s.m.i. (D.M. n° 369 del 09/09/2021)

Parametro:	Metodo di campionamento e analisi:					
Ossidi di Azoto	UNI EN 14792:2017					
Monossido di Carbonio	UNI EN 15058:2017					
Ossigeno	UNI EN 14789:2017					
Diossido di carbonio	ISO 12039:2019 Annex A					
Velocità e portata	UNI EN ISO 16911-1:2013 solo Annex A					
Vapore acqueo (umidità)	UNI EN 14790:2017					

Caratteristiche del punto di emissione

direzione flusso alla sezione di misura:verticaleforma della sezione di misura:circolaresezione emissione (m²):32.15

Scelta del punto di misura (UNI EN 15259:2008)

Numero di flange di campionamento: 4

lunghezza tratto rettilineo a monte flange:>5diametri idraulicilunghezza tratto rettilineo a valle flange:>5diametri idraulici

Condizioni di normalizzazione

 Temperatura:
 °C
 0

 Pressione:
 Pa
 101300

 Gas
 Secco

 Ossigeno di riferimento:
 %
 15

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio

Referente emissioni in atmosfera Ordine dei Chimici della Lombardia dr. Marco Pelozzi albo prof.n. 2797 Rapporto di prova firmato digitalmente

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610131

LAB N° 00175 L

Rapporto di prova n. 2104111-045

EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnico

data inizio campionamento: 11/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 18/10/2021 data fine campionamento: 11/10/2021 data inizio fase analitica: 11/10/2021 data emissione: 18/11/2021

Punto di emissione - sigla: E3 da impianto a ciclo combinato TG3

lavorazione in corso: produzione energia elettrica

principali materie prime: gas naturale

autorizzazione all'emissione: AIA Prot. DSA-DEC-2009-0000976 del 03/08/2009 e s.m.i. (D.M. n° 369 del 09/09/2021)

Denominazione della misura	Simboli	Unità di misura			Reticolo n. 3	Reticolo n. 4	Reticolo n. 5	Medie	Incertezza estesa Uc	
Diametro del condotto	D	m			6.4		-			
Tipologia del condotto	-	-			liscio		-			
Wall adjustment factor (WAF)					0.995		-			
Area della sezione di misurazione	Α	m ²		32.15						
Numero assi di misurazione	n	-		4						
Numero punti di misurazione		-		20						
Umidità	U	%	7.07	6.45	6.53	7.57	7.51	7.03	±	0.35
Frazione molare sul gas umido	X _a		0.082	0.080	0.080	0.078	0.079	0.080	-	
Ossigeno	O ₂	%	14.32	14.31	14.30	14.31	13.61	14.17	±	0.38
Anidride Carbonica	CO ₂	%	3.72	3.73	3.73	3.73	4.12	3.81	±	0.19
Azoto	N ₂	%	82.0	82.0	82.0	82.0	82.3	82.0	-	
Massa molare (Peso molecolare)	М	Kg/Kmole	28.25	28.28	28.28	28.30	28.32	28.28	-	
Pressione Atmosferica	p _{bar}	Pa	100920	100910	100910	100860	100810	100882	-	
Pressione Statica assoluta del gas	p _e	Pa	100663	100651	100661	100615	100452	100608	-	
Pressione dinamica differenziale	$\Delta \mathbf{p_i}$	Pa	128.0	130.5	129.2	127.0	134.3	129.8	-	
Temperatura assoluta del gas	T _e	K	360	360	361	361	367	362	±	274
Velocità di flusso * WAF	u	m/s	13.65	13.80	13.75	13.62	23.05	15.57	±	0.38
Portata volumica del flusso alle condizioni di esercizio	Qv _e	m³/h	1580048	1597255	1591679	1576429	2668347	1802752	±	93743.1
Portata volumica del flusso alle condizioni di riferimento (a secco)	Qv _{rs}	Nm³/h	1107716	1125764	1116957	1095500	1818188	1252825	-	
Portata volumica del flusso alle condizioni di riferimento (a secco) Rif. 15 % O ₂	Qv _{rs}	Nm³/h	1232580	1255227	1247517	1221665	2240614	1439521	-	

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

Tipologia di campione

LAB N° 00175 L

Rapporto di prova n. 2104111-045

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610131

EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnico

data inizio campionamento: 11/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 18/10/2021 data fine campionamento: 11/10/2021 data inizio fase analitica: 11/10/2021 data emissione: 18/11/2021

Punto di emissione - sigla: E3 da impianto a ciclo combinato TG3

lavorazione in corso: produzione energia elettrica

principali materie prime: gas naturale

autorizzazione all'emissione: AIA Prot. DSA-DEC-2009-0000976 del 03/08/2009 e s.m.i. (D.M. n° 369 del 09/09/2021)

Reticolo Data Orario		: n. 1 : 11/10/2021 : 12:00-12:30			: n. 2 : 11/10/2021 : 12:30-13:00			: n. 3 : 11/10/2021 : 13:00-13:30			: n. 4 : 11/10/2021 : 13:30-14:00			: n. 5 : 11/10/2021 : 14:30-15:00		
Asse	Asse Quota Temp. Pressione Velocità di flusso				Velocità di flusso	Temp. gas	Pressione diff.	Velocità di flusso	Temp. gas	Pressione diff.	Velocità di flusso	Temp. gas	Pressione diff.	Velocità di flusso		
n	ni	T _e	$\Delta \mathbf{p_i}$	u	T _e	$\Delta \mathbf{p_i}$	u	T _e	$\Delta \mathbf{p_i}$	u	T _e	$\Delta \mathbf{p_i}$	u	T _e	Δp_i	u
	cm	°C	mm.c.a	m/s	°C	mm.c.a	m/s	°C	mm.c.a	m/s	°C	mm.c.a	m/s	°C	mm.c.a	m/s
A	17	86	8.8	11.31	87	10.0	12.07	88	9.1	11.53	87	9.1	11.51	94	28.8	20.68
	52	86	13.2	13.85	87	14.1	14.33	88	12.6	13.56	87	14.0	14.27	94	37.1	23.47
	93	86	14.0	14.26	87	12.7	13.60	88	13.1	13.83	87	13.1	13.81	95	36.3	23.25
	145	87	14.7	14.64	87	13.8	14.17	88	13.5	14.04	88	15.4	14.99	95	37.6	23.66
	219	87	14.5	14.54	88	15.9	15.24	88	15.7	15.14	88	13.9	14.24	94	39.2	24.13
	17	86	8.2	10.92	86	9.4	11.68	87	11.3	12.83	87	8.4	11.06	94	27.4	20.17
В	52	87	13.7	14.13	87	15.0	14.78	88	14.0	14.30	88	14.2	14.40	94	33.3	22.24
	93	87	16.0	15.27	87	14.7	14.63	88	14.2	14.40	88	13.9	14.24	94	35.6	22.99
	145	86	13.8	14.16	87	15.1	14.83	89	14.8	14.72	88	14.5	14.55	95	42.8	25.24
	219	87	13.6	14.08	87	14.0	14.28	88	15.0	14.80	88	14.8	14.70	95	44.0	25.59
	17	86	9.1	11.50	86	9.7	11.87	88	8.7	11.27	87	10.1	12.12	94	26.7	19.91
	52	86	13.2	13.85	86	13.4	13.95	88	13.8	14.19	87	13.4	13.97	95	37.4	23.60
С	93	86	14.8	14.66	87	14.8	14.68	89	13.3	13.95	88	14.6	14.60	94	39.7	24.28
	145	86	16.1	15.30	87	16.7	15.59	89	15.9	15.26	88	13.8	14.19	94	37.5	23.60
	219	87	14.5	14.54	87	14.0	14.28	89	14.7	14.67	87	14.0	14.27	95	40.2	24.46
	17	87	9.7	11.89	87	8.8	11.32	88	8.5	11.14	88	8.4	11.07	94	30.1	21.14
D	52	87	11.4	12.89	87	12.8	13.65	88	13.4	13.99	88	12.4	13.45	94	36.3	23.22
	93	86	13.0	13.74	88	13.0	13.78	89	13.7	14.16	87	13.1	13.81	94	38.6	23.94
	145	87	13.9	14.23	87	13.7	14.12	89	13.1	13.85	88	12.9	13.72	95	36.4	23.28
	219	87	14.7	14.64	87	14.5	14.53	88	15.0	14.80	87	15.0	14.78	94	40.5	24.52
Medie		<u>87</u>	<u>13.0</u>	<u>13.72</u>	<u>87</u>	<u>13.3</u>	<u>13.87</u>	<u>88</u>	<u>13.2</u>	<u>13.82</u>	<u>88</u>	<u>13.0</u>	<u>13.69</u>	<u>94</u>	<u>36.3</u>	<u>23.17</u>

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova

Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio

I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

LAB N° 00175 L

Rapporto di prova n. 2104111-045

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610131

EP Produzione S.p.A.Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnici

data inizio campionamento: 11/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 13/10/2021 data fine campionamento: 13/10/2021 data inizio fase analitica: 11/10/2021 data emissione: 18/11/2021

frequenza acquisizione dati 10 secondi periodo mediazione dati 60 minuti

punto di emissione - sigla: E3 da impianto a ciclo combinato TG3

lavorazione in corso: produzione energia elettrica

principali materie prime: gas naturale

autorizzazione all'emissione: AIA Prot. DSA-DEC-2009-0000976 del 03/08/2009 e s.m.i. (D.M. n° 369 del 09/09/2021)

RISULTATI RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM"

Data	Ora	NO_x	NO_x	NO_x	CO	CO	CO	O_2	Produzione
			come NO	come NO ₂					TG3
		ppm	mg/Nm³	mg/Nm³	ppm	mg/Nm³	mg/Nm³	%	MWe
				(rif. 15 % O ₂)			(rif. 15 % O ₂)		
11/10/2021	02:00	12.7	17.0	21.0	0.2	0.2	0.2	13.56	230.5
11/10/2021	03:00	13.2	17.7	22.0	0.4	0.5	0.4	13.60	195.4
11/10/2021	04:00	13.1	17.5	21.6	0.2	0.3	0.2	13.57	222.4
11/10/2021	05:00	12.9	17.2	21.2	0.3	0.3	0.3	13.54	230.1
11/10/2021	06:00	13.0	17.5	21.5	0.2	0.3	0.2	13.54	259.2
11/10/2021	07:00	12.8	17.2	21.2	0.3	0.4	0.3	13.55	244.1
11/10/2021	08:00	13.1	17.6	21.6	0.3	0.4	0.3	13.54	259.3
11/10/2021	11:00*	13.1	17.5	21.6	0.1	0.1	0.1	13.57	250.2
11/10/2021	12:00	12.2	16.3	22.9	17.0	21.3	19.5	14.45	100.1
11/10/2021	13:00	12.5	16.7	22.9	8.2	10.3	9.2	14.32	97.5
11/10/2021	14:00	12.5	16.7	22.9	7.4	9.3	8.3	14.30	98.4
11/10/2021	15:00	13.1	17.6	22.1	0.4	0.5	0.4	13.67	231.7
11/10/2021	16:00	12.8	17.2	21.3	0.1	0.1	0.1	13.61	248.4
11/10/2021	17:00	12.8	17.1	21.2	0.1	0.1	0.1	13.60	248.9
11/10/2021	18:00	12.8	17.2	21.2	0.1	0.1	0.1	13.55	249.8
11/10/2021	19:00	12.8	17.2	21.2	0.1	0.1	0.1	13.54	246.9
11/10/2021	20:00	12.8	17.2	21.2	0.1	0.1	0.1	13.56	248.3
11/10/2021	21:00	12.8	17.2	21.2	0.1	0.1	0.1	13.57	250.5
11/10/2021	22:00	12.9	17.2	21.3	0.1	0.1	0.1	13.57	253.2
11/10/2021	23:00	12.9	17.3	21.3	0.1	0.1	0.1	13.57	251.3
12/10/2021	06:00	13.8	18.5	23.1	0.5	0.6	0.5	13.63	228.1
12/10/2021	07:00	13.0	17.4	21.4	0.2	0.2	0.2	13.54	242.1
12/10/2021	09:00	13.1	17.6	21.6	0.2	0.2	0.2	13.53	238.4
12/10/2021	10:00	13.2	17.7	22.6	1.8	2.3	1.9	13.81	194.7
12/10/2021	11:00	12.5	16.7	22.6	6.0	7.5	6.7	14.21	113.5
12/10/2021	12:00	12.6	16.8	23.0	6.7	8.4	7.5	14.27	98.0
12/10/2021	13:00	12.7	17.0	23.2	6.2	7.7	6.9	14.27	98.9
12/10/2021	14:00	13.6	18.2	23.6	0.1	0.1	0.1	13.93	176.9
12/10/2021	15:00	13.4	17.9	23.3	0.1	0.1	0.1	13.94	178.2

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

Referente emissioni in atmosfera Ordine dei Chimici della Lombardia dr. Marco Pelozzi albo prof.n. 2797 Rapporto di prova firmato digitalmente ai sensi della normativa vigente

Rapporto di prova n. 2104111-045

EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

LAB N° 00175 L

Tipologia di campione EMISSIONI IN ATMOSFERA - valori rilevati da ns. tecnici

data inizio campionamento: 11/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 13/10/2021 data fine campionamento: 13/10/2021 data inizio fase analitica: 11/10/2021 data emissione: 18/11/2021

frequenza acquisizione dati 10 secondi periodo mediazione dati 60 minuti

punto di emissione - sigla: E3 da impianto a ciclo combinato TG3

lavorazione in corso: produzione energia elettrica

principali materie prime: gas naturale

autorizzazione all'emissione: AIA Prot. DSA-DEC-2009-0000976 del 03/08/2009 e s.m.i. (D.M. n° 369 del 09/09/2021)

RISULTATI RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM"

Data	Ora	NO _x	NO _x come NO	NO _x come NO ₂	СО	CO	СО	O ₂	Produzione TG3
		ppm	mg/Nm³	mg/Nm³	ppm	mg/Nm³	mg/Nm³	%	MWe
				(rif. 15 % O ₂)			(rif. 15 % O ₂)		
12/10/2021	16:00	13.3	17.8	23.2	0.2	0.2	0.2	13.94	178.6
12/10/2021	17:00	13.3	17.8	21.8	0.1	0.2	0.1	13.54	247.6
12/10/2021	18:00	13.1	17.5	21.5	0.1	0.2	0.1	13.52	249.2
12/10/2021	19:00	13.0	17.5	21.4	0.2	0.2	0.2	13.51	248.5
12/10/2021	20:00	13.0	17.4	21.4	0.2	0.2	0.2	13.52	248.0
12/10/2021	21:00	13.0	17.5	21.4	0.2	0.2	0.2	13.52	248.0
12/10/2021	22:00	13.0	17.4	21.7	0.2	0.2	0.2	13.62	234.3
13/10/2021	05:00	13.2	17.7	24.1	7.3	9.2	8.1	14.24	116.3
13/10/2021	06:00	13.8	18.5	23.1	1.6	2.0	1.6	13.67	221.3
13/10/2021	07:00	13.4	18.0	22.0	0.4	0.6	0.4	13.48	257.7
13/10/2021	09:00	13.2	17.7	21.7	0.4	0.6	0.4	13.52	251.1
13/10/2021	10:00	13.5	18.0	22.8	0.5	0.6	0.5	13.75	202.9
13/10/2021	11:00	13.2	17.7	21.7	0.4	0.5	0.4	13.51	247.5
13/10/2021	12:00*	14.4	19.3	27.4	20.1	25.1	23.3	14.54	89.3
13/10/2021	13:00	12.9	17.3	23.7	9.6	12.0	10.7	14.31	97.1
13/10/2021	14:00	12.9	17.3	23.3	7.5	9.4	8.3	14.20	114.1
13/10/2021	15:00	13.3	17.8	21.8	0.3	0.4	0.3	13.54	246.3
13/10/2021	16:00	12.9	17.2	21.3	0.1	0.1	0.1	13.58	247.0
13/10/2021	17:00	12.9	17.2	21.3	0.1	0.1	0.1	13.57	247.8
13/10/2021	18:00	12.8	17.2	21.3	0.1	0.1	0.1	13.58	250.4
13/10/2021	19:00	13.1	17.5	21.5	0.1	0.1	0.1	13.53	249.7
13/10/2021	20:00	13.0	17.5	21.6	0.1	0.1	0.1	13.55	250.9
Media:		13.0	17.4	22.0	1.8	2.2	2.0	13.72	212.0
Incertezza:		-	-	± 1.5	-	-	± 0.1	± 0.37	-
Limite		-	-	30	-	-	30	-	-
Minimo:		12.2	16.3	21.0	0.1	0.1	0.1	13.48	97.1
Massimo:		13.8	18.5	24.1	17.0	21.3	19.5	14.45	259.3

Nota: Valori medi, minimi e massimi calcolati escludendo i valori * (contrassegnati da asterisco) con impianto sotto al minimo tecnico per tutta o parte dell'ora (valori non utilizzabili per il confronto con i limiti autorizzati)

Le informazioni relative alla ragione sociale, alla denominazione e alla posizione del campionamento, alle lavorazioni in corso e alle materie prime

utilizzate, alle condizioni di impianto ed ai limiti di legge ove applicabile sono fornite dal cliente

Il dettaglio dei singoli codici campione è riportato nel verbale di campionamento identificato dal numero di rapporto di prova Legenda: "<" corrisponde a "non rilevabile al metodo"

L'incertezza è calcolata con un livello di probabiltà p = 0,95 con un fattore di copertura k=2

Il presente documento non può essere riprodotto parzialmente se non con approvazione scritta del Responsabile del Laboratorio

I risultati si riferiscono unicamente ai campioni prelevati nelle succitate condizioni e sottoposti a prova

Referente emissioni in atmosfera Ordine dei Chimici della Lombardia dr. Marco Pelozzi albo prof.n. 2797 Rapporto di prova firmato digitalmente ai sensi della normativa vigente

EP PRODUZIONE S.p.A.

Centrale di Ostiglia

ALLEGATO N. 2

ELABORAZIONI QAL2

LAB N° 00175 L

Requisiti per la percentuale relativa all'ELV (da D.Lgs. 152/2006 e s.m.i.) - Massima incertezza ammissibile

QAL2 , TARATURA E CONVALIDA AMS - METODO DI PROVA: UNI EN 14181:2015

Allegato al Rapporto di prova n. 2104111-007

EP Produzione S.p.A.

20 % ELV =

6

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

mg/Nm³s rif

Punto di emissione E1 da impianto a ciclo combinato TG1 PARAMETRO: OSSIDI DI AZOTO Analizzatore ABB Limas 11 UV Metodo del SME Metodo di riferimento normalizzato (SRM) Valore limite di emissione (ELV) per condizioni normalizzate (0°C, 1013 hPa, gas secco, 15 % O₂) - Media oraria Punto di emissione E1 da impianto a ciclo combinato TG1 Analizzatore ABB Limas 11 UV Continuo, NDUV UNI EN 14792:2017 Valore limite di emissione (ELV) per condizioni normalizzate (0°C, 1013 hPa, gas secco, 15 % O₂) - Media oraria O 2,rif (%): 15

																	3,111	
CA	MPIONAMEN	ITO	CONDIZIONI IMPIANTO		SIST	EMA DI RIFI	ERIMENTO (SRM)			SIS	TEMA DI MIS	SURA DELLE	EMISSIONI	(SME)		SCOSTA	MENTO
Data	Ora	Durata	Produzione	NO _x	Т	Р	O ₂	Umidità	NO _x	NO _x	T	Р	O ₂	Umidità	NO _x	NO _x		
	(solare)		TG1	y i	t _i	p i	O <i>i</i>	hi	y i,s,rif	X _i	t _i	p i	O <i>i</i>	hi	Ŷ _i	$\hat{\mathbf{Y}}_{i,s,rif}$	$D_i = y_{i,s,rif} - \hat{Y}_{i,s,rif}$	$(D_i - D_{i,med})^2$
		min	MWe	mg/Nm ³	°C	hPa	%	%	mg/Nm ³ _{s,rif}	mg/Nm ³	°C	hPa	%	%	mg/Nm ³	mg/Nm ³ _{s,rif}	mg/Nm ³ _{s,rif}	(mg/Nm ³ _{s,rif}) ²
28/09/21	12:00:00	60	82.8	13.3	0.0	1013	14.63	0.0	19.1	14.3	0.0	1013	14.66	0.0	14.4	20.8	-1.64	1.26
28/09/21	13:00:00	60	86.4	13.6	0.0	1013	14.55	0.0	19.4	14.5	0.0	1013	14.60	0.0	14.6	20.9	-1.52	1.01
28/09/21	14:00:00	60	93.3	13.9	0.0	1013	14.49	0.0	19.7	14.7	0.0	1013	14.56	0.0	14.8	21.1	-1.44	0.85
28/09/21	15:00:00	53	233.6	17.2	0.0	1013	13.71	0.0	21.6	17.4	0.0	1013	13.94	0.0	17.5	22.7	-1.09	0.33
28/09/21	16:00:00	60	234.1	17.6	0.0	1013	13.63	0.0	21.9	17.8	0.0	1013	13.87	0.0	17.9	23.0	-1.14	0.39
28/09/21	17:00:00	60	235.5	17.5	0.0	1013	13.61	0.0	21.8	17.7	0.0	1013	13.88	0.0	17.8	23.0	-1.18	0.45
28/09/21	18:00:00	60	235.3	17.6	0.0	1013	13.60	0.0	21.8	17.7	0.0	1013	13.86	0.0	17.9	23.0	-1.14	0.38
28/09/21	19:00:00	60	236.5	17.7	0.0	1013	13.60	0.0	21.9	17.7	0.0	1013	13.86	0.0	17.9	23.0	-1.07	0.30
28/09/21	20:00:00	60	235.3	17.9	0.0	1013	13.57	0.0	22.1	17.9	0.0	1013	13.82	0.0	18.1	23.1	-0.99	0.23
28/09/21	21:00:00	53	237.4	18.1	0.0	1013	13.57	0.0	22.4	18.1	0.0	1013	13.81	0.0	18.3	23.3	-0.93	0.17
28/09/21	22:00:00	60	238.7	18.3	0.0	1013	13.57	0.0	22.5	18.3	0.0	1013	13.79	0.0	18.4	23.4	-0.90	0.15
28/09/21	23:00:00	60	237.8	18.3	0.0	1013	13.55	0.0	22.6	18.4	0.0	1013	13.77	0.0	18.5	23.5	-0.89	0.14
29/09/21	00:00:00	60	231.5	18.6	0.0	1013	13.52	0.0	22.8	18.5	0.0	1013	13.72	0.0	18.7	23.6	-0.76	0.06
29/09/21	01:00:00	60	234.6	18.6	0.0	1013	13.53	0.0	22.8	18.6	0.0	1013	13.72	0.0	18.7	23.6	-0.75	0.06
29/09/21	02:00:00	60	231.8	18.8	0.0	1013	13.52	0.0	23.1	18.7	0.0	1013	13.71	0.0	18.9	23.8	-0.66	0.02
29/09/21	03:00:00	53	242.6	18.8	0.0	1013	13.56	0.0	23.2	18.6	0.0	1013	13.76	0.0	18.7	23.8	-0.63	0.01
29/09/21	04:00:00	60	243.7	18.8	0.0	1013	13.58	0.0	23.2	18.6	0.0	1013	13.77	0.0	18.7	23.8	-0.56	0.00
29/09/21	05:00:00	60	235.1	18.8	0.0	1013	13.55	0.0	23.2	18.6	0.0	1013	13.72	0.0	18.8	23.6	-0.48	0.00
29/09/21	06:00:00	60	227.6	19.1	0.0	1013	13.54	0.0	23.5	18.9	0.0	1013	13.68	0.0	19.0	23.9	-0.38	0.02
29/09/21	07:00:00	60	231.5	19.2	0.0	1013	13.54	0.0	23.7	19.0	0.0	1013	13.68	0.0	19.1	24.0	-0.31	0.04
29/09/21	08:00:00	60	252.5	18.9	0.0	1013	13.64	0.0	23.6	18.6	0.0	1013	13.82	0.0	18.7	23.9	-0.34	0.03
29/09/21	09:00:00	53	250.3	18.5	0.0	1013	13.66	0.0	23.2	18.2	0.0	1013	13.85	0.0	18.4	23.6	-0.38	0.02
29/09/21	10:00:00	60	245.6	18.4	0.0	1013	13.68	0.0	23.0	18.1	0.0	1013	13.87	0.0	18.2	23.5	-0.42	0.01
29/09/21	11:00:00	60	111.4	14.5	0.0	1013	14.36	0.0	20.0	14.9	0.0	1013	14.41	0.0	15.0	20.9	-0.92	0.17
29/09/21	12:00:00	60	96.7	14.2	0.0	1013	14.43	0.0	19.8	14.8	0.0	1013	14.45	0.0	14.9	20.8	-0.99	0.22
29/09/21	13:00:00	60	96.6	14.3	0.0	1013	14.41	0.0	19.9	14.9	0.0	1013	14.46	0.0	14.9	21.0	-1.04	0.28
29/09/21	14:00:00	60	173.5	16.0	0.0	1013	14.01	0.0	21.1	16.1	0.0	1013	14.18	0.0	16.2	21.8	-0.71	0.04
29/09/21	16:00:00	60	175.5	15.7	0.0	1013	14.03	0.0	20.6	15.7	0.0	1013	14.21	0.0	15.8	21.4	-0.76	0.06

LAB N° 00175 L

QAL2, TARATURA E CONVALIDA AMS - METODO DI PROVA: UNI EN 14181:2015

Allegato al Rapporto di prova n. 2104111-007

EP Produzione S.p.A.

Punto di emissione E1 da impi	Punto di emissione E1 da impianto a ciclo combinato TG1												
PARAMETRO: OSSIDI DI AZOTO	Analizzatore ABB Limas 11 UV												
Metodo del SME	continuo, NDUV												
Metodo di riferimento normalizzato (SRM)	UNI EN 14792:2017												
Valore limite di emissione (ELV) per condizioni normalizzate (0°C, 1013 hPa, gas secco, 15 % O ₂) - Media oraria	30 mg/Nm³ _{s,rif} O _{2,rif} (%): 15												
Requisiti per la percentuale relativa all'ELV (da D.Lgs. 152/2006 e s.m.i.) - Massima incertezza ammissibile	20 % ELV = 6 $mg/Nm_{s,rif}^3$												

CAI	MPIONAMEN	ITO	CONDIZIONI IMPIANTO		SIST	EMA DI RIFI	ERIMENTO (SRM)			SIS	STEMA DI MIS	SURA DELLE	EMISSIONI	(SME)		SCOSTAMENTO	
Data	Ora	Durata	Produzione	NO _x	T	Р	O ₂	Umidità	NO _x	NO _x	T	Р	O ₂	Umidità	NO _x	NO _x		
	(solare)		TG1	y i	ti	p _i	0 <i>i</i>	hi	y _{i,s,rif}	X i	t _i	p i	0 <i>i</i>	hi	Ŷ _i	$\hat{\mathbf{Y}}_{i,s,rif}$	$D_i = y_{i,s,rif} - \hat{Y}_{i,s,rif}$	$(D_i - D_{i,med})^2$
		min	MWe	mg/Nm ³	°C	hPa	%	%	mg/Nm ³ _{s,rif}	mg/Nm ³	°C	hPa	%	%	mg/Nm ³	mg/Nm ³ _{s.rif}	mg/Nm ³ _{s.rif}	$(mg/Nm_{s,rif}^3)^2$
29/09/21	17:00:00	60	216.4	17.4	0.0	1013	13.73	0.0	22.0	17.2	0.0	1013	13.97	0.0	17.4	22.7	-0.71	0.04
29/09/21	18:00:00	60	223.0	18.1	0.0	1013	13.56	0.0	22.4	17.9	0.0	1013	13.79	0.0	18.1	23.0	-0.61	0.01
29/09/21	19:00:00	60	229.8	18.1	0.0	1013	13.58	0.0	22.4	17.9	0.0	1013	13.81	0.0	18.0	23.0	-0.58	0.00
29/09/21	20:00:00	60	203.4	18.8	0.0	1013	13.52	0.0	23.1	18.6	0.0	1013	13.69	0.0	18.7	23.5	-0.44	0.01
29/09/21	21:00:00	53	224.8	18.1	0.0	1013	13.58	0.0	22.5	17.9	0.0	1013	13.79	0.0	18.1	23.0	-0.53	0.00
29/09/21	22:00:00	60	227.6	18.4	0.0	1013	13.57	0.0	22.8	18.1	0.0	1013	13.77	0.0	18.3	23.2	-0.43	0.01
29/09/21	23:00:00	60	208.4	17.7	0.0	1013	13.72	0.0	22.3	17.5	0.0	1013	13.88	0.0	17.7	22.8	-0.44	0.01
30/09/21	00:00:00	60	240.7	18.7	0.0	1013	13.61	0.0	23.2	18.3	0.0	1013	13.81	0.0	18.4	23.5	-0.36	0.03
30/09/21	01:00:00	60	244.4	18.9	0.0	1013	13.59	0.0	23.4	18.5	0.0	1013	13.78	0.0	18.6	23.7	-0.32	0.04
30/09/21	02:00:00	60	246.4	19.0	0.0	1013	13.59	0.0	23.6	18.6	0.0	1013	13.78	0.0	18.7	23.8	-0.25	0.07
30/09/21	03:00:00	56	247.0	19.0	0.0	1013	13.63	0.0	23.6	18.4	0.0	1013	13.82	0.0	18.6	23.7	-0.11	0.16
30/09/21	04:00:00	57	247.1	18.9	0.0	1013	13.64	0.0	23.6	18.4	0.0	1013	13.81	0.0	18.5	23.6	-0.01	0.26
30/09/21	05:00:00	60	249.1	18.9	0.0	1013	13.66	0.0	23.6	18.3	0.0	1013	13.82	0.0	18.5	23.6	-0.03	0.24
30/09/21	06:00:00	60	242.0	19.0	0.0	1013	13.63	0.0	23.6	18.4	0.0	1013	13.78	0.0	18.5	23.6	0.04	0.31
30/09/21	07:00:00	60	229.2	19.3	0.0	1013	13.56	0.0	23.8	18.8	0.0	1013	13.69	0.0	18.9	23.8	0.04	0.31
30/09/21	08:00:00	60	247.6	18.9	0.0	1013	13.66	0.0	23.7	18.4	0.0	1013	13.79	0.0	18.5	23.6	0.11	0.39
30/09/21	09:00:00	56	245.6	18.8	0.0	1013	13.68	0.0	23.6	18.2	0.0	1013	13.80	0.0	18.4	23.4	0.17	0.47
30/09/21	10:00:00	57	244.4	18.6	0.0	1013	13.70	0.0	23.4	18.1	0.0	1013	13.82	0.0	18.2	23.3	0.17	0.47
30/09/21	11:00:00	60	244.9	18.3	0.0	1013	13.76	0.0	23.2	17.8	0.0	1013	13.87	0.0	17.9	23.0	0.15	0.44
30/09/21	12:00:00	60	101.6	14.4	0.0	1013	14.47	0.0	20.2	14.5	0.0	1013	14.52	0.0	14.6	20.7	-0.51	0.00
30/09/21	13:00:00	60	93.4	14.0	0.0	1013	14.48	0.0	19.7	14.5	0.0	1013	14.49	0.0	14.6	20.6	-0.94	0.18
30/09/21	14:00:00	60	96.8	14.0	0.0	1013	14.44	0.0	19.6	14.5	0.0	1013	14.45	0.0	14.6	20.5	-0.86	0.12
30/09/21	15:00:00	56	232.2	18.2	0.0	1013	13.77	0.0	23.1	17.9	0.0	1013	13.90	0.0	18.0	23.3	-0.22	0.09
30/09/21	16:00:00	57	241.4	18.3	0.0	1013	13.72	0.0	23.0	17.7	0.0	1013	13.89	0.0	17.9	23.1	-0.04	0.23
30/09/21	17:00:00	60	242.2	18.2	0.0	1013	13.72	0.0	23.0	17.7	0.0	1013	13.89	0.0	17.9	23.1	-0.07	0.20
30/09/21	18:00:00	55	244.0	18.4	0.0	1013	13.70	0.0	23.1	17.9	0.0	1013	13.87	0.0	18.0	23.2	-0.04	0.22
30/09/21	19:00:00	60	244.4	18.5	0.0	1013	13.70	0.0	23.3	17.9	0.0	1013	13.86	0.0	18.1	23.2	0.03	0.30
30/09/21	20:00:00	60	244.2	18.7	0.0	1013	13.68	0.0	23.5	18.1	0.0	1013	13.84	0.0	18.2	23.4	0.14	0.42
30/09/21	21:00:00	53	244.9	18.8	0.0	1013	13.68	0.0	23.5	18.1	0.0	1013	13.83	0.0	18.2	23.4	0.19	0.49
30/09/21	22:00:00	60	247.6	18.9	0.0	1013	13.67	0.0	23.7	18.2	0.0	1013	13.82	0.0	18.4	23.5	0.23	0.55
30/09/21	23:00:00	60	228.6	19.3	0.0	1013	13.58	0.0	23.8	18.6	0.0	1013	13.70	0.0	18.8	23.6	0.27	0.62
01/10/21	00:00:00	60	249.0	19.1	0.0	1013	13.66	0.0	23.9	18.4	0.0	1013	13.79	0.0	18.6	23.6	0.27	0.63

LAB N° 00175 L

 $\mathsf{QAL2}$, TARATURA E CONVALIDA AMS - METODO DI PROVA: UNI EN 14181:2015

Allegato al Rapporto di prova n. 2104111-007

EP Produzione S.p.A.Strada Statale Abetone Brennero Km 239

46035 Ostiglia (MN)

Punto di emissione E1 da impianto a ciclo combinato TG1												
PARAMETRO: OSSIDI DI AZOTO	Analizzatore ABB Limas 11 UV											
Metodo del SME	continuo, NDUV											
Metodo di riferimento normalizzato (SRM)	UNI EN 14792:2017											
Valore limite di emissione (ELV) per condizioni normalizzate (0°C, 1013 hPa, gas secco, 15 % O ₂) - Media oraria	30 mg/Nm ³ _{s,rif} O _{2·rif} (%): 15											
Requisiti per la percentuale relativa all'ELV (da D.Lgs. 152/2006 e s.m.i.) - Massima incertezza ammissibile	20 % ELV = 6 mg/Nm³ _{s,rif}											

CAI	CAMPIONAMENTO CONDIZIONI IMPIANTO				SISTEMA DI RIFERIMENTO (SRM)							SISTEMA DI MISURA DELLE EMISSIONI (SME)						
Data	Ora	Durata	Produzione	NO _x	T	Р	O ₂	Umidità	NO _x	NO _x	Т	Р	O ₂	Umidità	NO _x	NO_x		
	(solare)		TG1	y i	t _i	p _i	O <i>i</i>	hi	y i,s,rif	X i	ti	p _i	0 i	hi	Ŷ _i	$\hat{\mathbf{Y}}_{i,s,rif}$	$D_i = y_{i,s,rif} - \hat{Y}_{i,s,rif}$	$(D_i - D_{i,med})^2$
		min	MWe	mg/Nm ³	°C	hPa	%	%	mg/Nm ³ _{s,rif}	mg/Nm ³	°C	hPa	%	%	mg/Nm ³	mg/Nm ³ _{s,rif}	mg/Nm ³ _{s,rif}	(mg/Nm ³ _{s,rif}) ²
14/10/21	11:00:00	60	211.3	19.1	0.0	1013	13.54	0.0	23.6	19.6	0.0	1013	13.62	0.0	19.8	24.6	-1.08	0.32
14/10/21	12:00:00	60	73.5	17.4	0.0	1013	14.71	0.0	25.4	18.0	0.0	1013	14.73	0.0	18.1	26.6	-1.17	0.43
				Media y i		•				Media x i							D _{i,med} =Media D _i	$\sum (D_i - D_{i,med})^2$
				17.7						17.6							-0.52	14.75

N Y i,s,rif,max-Y i,s,rif,min	62 6.3 mg/Nm³ _{s,rif}	yi,s,rif,max ⁻ yi,s,rif,min		_
y i,s,rif,min	19.1	massima incertezza ammissibile	Elaborazione tipo B	
15 % ELV	4.5	(20 % ELV)	Elaborazione tipo B	
Z	0.1	e	_	
		y _{i.s.rif.min} > 15% ELV		

FUNZIONE DI TARATURA												
$\hat{\mathbf{Y}}_i = 1.013 * \mathbf{x}_i -0.101$												
	CAMPO D	I VALIDI	Γ A '									
0.0 ≤ Ŷ _{i,s,rif} ≤ 29.23												

$\sigma_0 k_v$	3.03
$S_D < \sigma_0 k_v \implies$	esito test positivo
INTERVALLO D SPERIM	OI CONFIDENZA ENTALE
Ic (mg/Nm ³)	0.98

TEST VARIABILITA'

0.49

0.9885

3.06

3.25

SD

k,

 $\sigma_0 = PE/1.96$

Ic (% ELV)

LEGENDA:

N numero di campioni accoppiati nelle misurazioni parallele

Z scostamento tra "lettura zero" dello SME e "zero"

y_i i-esimo valore del SRM alle condizioni normali (273 K e 1013 hPa), su base secca ed espressione del dato come NO

x_i i-esimo valore dello SME alle condizioni normali (273 K e 1013 hPa), su base secca ed espressione del dato come NO

y Ls.rif i-esimo valore del SRM alle condizioni normali (273 K e 1013 hPa), su base secca, con riferimento al 15 % di O 2 ed espressione del dato come NO 2

Ŷ, i-esimo valore tarato dello SME alle condizioni normali (273 K e 1013 hPa), su base secca ed espressione del dato come NO

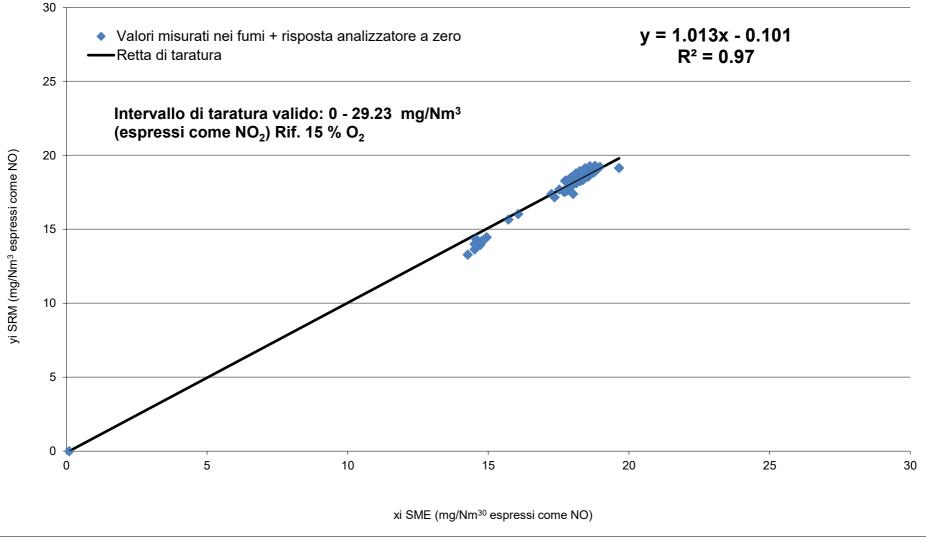
Ý is.rif i-esimo valore tarato dello SME alle condizioni normali (273 K e 1013 hPa), su base secca, con riferimento al 15 % di O 2 ed espressione del dato come NO 2

S_D deviazione standard degli scostamenti D_i

σ₀ incertezza fornita dal legislatore espressa come % del ELV (PE con fattore di copertura K=1,96 corrispondente ad un livello di fiducia del 95 %)

LAB N° 00175 L

QAL2 , TARATURA E CONVALIDA AMS - METODO DI PROVA: UNI EN 14181:2015


Allegato al Rapporto di prova n. 2104111-007

Punto di emissione E1 da impianto a ciclo combinato TG1											
PARAMETRO: OSSIDI DI AZOTO	Analizzatore ABB Limas 11 UV										
Metodo del SME	continuo, NDUV										
Metodo di riferimento normalizzato (SRM)	UNI EN 14792:2017										
Valore limite di emissione (ELV) per condizioni normalizzate (0°C, 1013 hPa, gas secco, 15 % O ₂) - Media oraria	30 mg/Nm ³ _{s,rif} O _{2,rif} (%): 15										
Requisiti per la percentuale relativa all'ELV (da D.Lgs. 152/2006 e s.m.i.) - Massima incertezza ammissibile	20 % ELV = 6 mg/Nm ³ s,rif										

C	AMPIONAMEN	то	CONDIZIONI IMPIANTO	SISTEMA DI RIFERIMENTO (SRM)							SISTEMA DI MISURA DELLE EMISSIONI (SME)							SCOSTAMENTO	
Data	Ora	Durata	Produzione	NO _x	Т	Р	O ₂	Umidità	NO _x	NO _x	Т	Р	O ₂	Umidità	NO _x	NO _x			
	(solare)		TG1	y i	t _i	p _i	o _i	hi	y _{i,s,rif}	X _i	ti	p _i	o _i	hi	Ŷ _i	$\hat{\mathbf{Y}}_{i,s,rif}$	$D_i = y_{i,s,rif} - \hat{Y}_{i,s,rif}$	$(D_i - D_{i,med})^2$	
		min	MWe	mg/Nm ³	°C	hPa	%	%	mg/Nm ³ _{s,rif}	mg/Nm ³	°C	hPa	%	%	mg/Nm ³	mg/Nm ³ _{s,rif}	mg/Nm ³ _{s,rif}	$(mg/Nm^3_{s,rif})^2$	

 k_v valori di una prova χ^2 con un valore β del 50 %

LAB Nº 00175 L

QAL2, TARATURA E CONVALIDA AMS - METODO DI PROVA: UNI EN 14181:2015

Allegato al Rapporto di prova n. 2104111-007

Punto di emissione E1 da impianto a ciclo combinato TG1										
PARAMETRO: MONOSSIDO DI CARBONIO	Analizzatore ABB Uras 26									
Metodo del SME	continuo, NDIR									
Metodo di riferimento normalizzato (SRM)	UNI EN 15058:2017									
Valore limite di emissione (ELV) per condizioni normalizzate (0°C, 1013 hPa, gas secco, 15 % O ₂) - Media oraria	30 mg/Nm ³ _{s,rif} O _{2,rif} (%): 15									
Requisiti per la percentuale relativa all'ELV (da D.Lgs. 46/2014) - Massima incertezza ammissibile	10 % ELV = 3 mg/Nm ³ _{s,rif}									

CA	MPIONAMEN	NTO	CONDIZIONI IMPIANTO		SIST	EMA DI RIFE	ERIMENTO (SRM)			SIST	TEMA DI MISI	URA DELLE	EMISSIONI (SME)		SCOSTAMENTO		
Data	Ora	Durata	Produzione	CO	T	Р	O ₂	Umidità	CO	CO	Т	Р	O ₂	Umidità	CO	CO			
	(solare)		TG1	y i	ti	p i	O <i>i</i>	hi	y _{i,s,rif}	X i	ti	p i	o _i	hi	Ŷ _i	$\hat{\mathbf{Y}}_{i,s,rif}$	$D_i = y_{i,s,rif} - \hat{Y}_{i,s,rif}$	$(D_i - D_{i,med})^2$	
		min	MWe	mg/Nm ³	°C	hPa	%	%	mg/Nm ³ _{s,rif}	mg/Nm ³	°C	hPa	%	%	mg/Nm ³	mg/Nm ³ _{s,rif}	mg/Nm ³ _{s,rif}	$(mg/Nm_{s,rif}^3)^2$	
28/09/21	12:00:00	60	82.8	29.9	0.0	1013	14.63	0.0	28.1	28.8	0.0	1013	14.66	0.0	29.7	28.1	0.07	0.01	
28/09/21	13:00:00	60	86.4	9.1	0.0	1013	14.55	0.0	8.4	9.3	0.0	1013	14.60	0.0	10.1	9.5	-1.01	0.99	
28/09/21	14:00:00	60	93.3	7.2	0.0	1013	14.49	0.0	6.6	7.2	0.0	1013	14.56	0.0	8.0	7.4	-0.80	0.60	
28/09/21	15:00:00	53	233.6	0.2	0.0	1013	13.71	0.0	0.2	-0.3	0.0	1013	13.94	0.0	0.4	0.3	-0.15	0.02	
28/09/21	16:00:00	60	234.1	0.3	0.0	1013	13.63	0.0	0.3	-0.4	0.0	1013	13.87	0.0	0.4	0.3	-0.08	0.00	
28/09/21	17:00:00	60	235.5	0.2	0.0	1013	13.61	0.0	0.2	-0.4	0.0	1013	13.88	0.0	0.4	0.3	-0.12	0.01	
28/09/21	18:00:00	60	235.3	0.3	0.0	1013	13.60	0.0	0.2	-0.4	0.0	1013	13.86	0.0	0.4	0.3	-0.11	0.01	
28/09/21	19:00:00	60	236.5	0.4	0.0	1013	13.60	0.0	0.3	-0.4	0.0	1013	13.86	0.0	0.4	0.3	0.00	0.00	
28/09/21	20:00:00	60	235.3	0.3	0.0	1013	13.57	0.0	0.2	-0.4	0.0	1013	13.82	0.0	0.4	0.3	-0.11	0.01	
28/09/21	21:00:00	53	237.4	0.3	0.0	1013	13.57	0.0	0.2	-0.3	0.0	1013	13.81	0.0	0.4	0.3	-0.12	0.01	
28/09/21	22:00:00	60	238.7	0.1	0.0	1013	13.57	0.0	0.1	-0.4	0.0	1013	13.79	0.0	0.4	0.3	-0.25	0.05	
28/09/21	23:00:00	60	237.8	0.1	0.0	1013	13.55	0.0	0.1	-0.2	0.0	1013	13.77	0.0	0.5	0.4	-0.36	0.12	
29/09/21	00:00:00	60	231.5	0.1	0.0	1013	13.52	0.0	0.1	-0.2	0.0	1013	13.72	0.0	0.5	0.4	-0.34	0.10	
29/09/21	01:00:00	60	234.6	0.1	0.0	1013	13.53	0.0	0.1	-0.3	0.0	1013	13.72	0.0	0.5	0.4	-0.31	0.08	
29/09/21	02:00:00	60	231.8	0.1	0.0	1013	13.52	0.0	0.1	-0.1	0.0	1013	13.71	0.0	0.7	0.6	-0.49	0.22	
29/09/21	03:00:00	53	242.6	0.1	0.0	1013	13.56	0.0	0.1	-0.2	0.0	1013	13.76	0.0	0.6	0.5	-0.43	0.17	
29/09/21	04:00:00	60	243.7	0.4	0.0	1013	13.58	0.0	0.3	-0.1	0.0	1013	13.77	0.0	0.7	0.6	-0.28	0.07	
29/09/21	05:00:00	60	235.1	0.3	0.0	1013	13.55	0.0	0.2	-0.2	0.0	1013	13.72	0.0	0.5	0.4	-0.21	0.04	
29/09/21	06:00:00	60	227.6	0.2	0.0	1013	13.54	0.0	0.2	-0.2	0.0	1013	13.68	0.0	0.5	0.4	-0.28	0.07	
29/09/21	07:00:00	60	231.5	0.2	0.0	1013	13.54	0.0	0.2	-0.2	0.0	1013	13.68	0.0	0.6	0.5	-0.27	0.06	
29/09/21	08:00:00	60	252.5	0.2	0.0	1013	13.64	0.0	0.1	-0.3	0.0	1013	13.82	0.0	0.4	0.4	-0.22	0.04	
29/09/21	09:00:00	53	250.3	0.2	0.0	1013	13.66	0.0	0.1	-0.3	0.0	1013	13.85	0.0	0.4	0.4	-0.22	0.04	
29/09/21	10:00:00	60	245.6	0.1	0.0	1013	13.68	0.0	0.1	-0.3	0.0	1013	13.87	0.0	0.4	0.4	-0.28	0.07	
29/09/21	11:00:00	60	111.4	7.3	0.0	1013	14.36	0.0	6.6	7.2	0.0	1013	14.41	0.0	8.0	7.3	-0.70	0.47	
29/09/21	12:00:00	60	96.7	8.1	0.0	1013	14.43	0.0	7.4	8.4	0.0	1013	14.45	0.0	9.1	8.4	-0.97	0.90	
29/09/21	13:00:00	60	96.6	7.7	0.0	1013	14.41	0.0	7.0	8.0	0.0	1013	14.46	0.0	8.8	8.0	-1.07	1.10	
29/09/21	14:00:00	60	173.5	0.1	0.0	1013	14.01	0.0	0.1	-0.1	0.0	1013	14.18	0.0	0.6	0.6	-0.47	0.20	
29/09/21	16:00:00	60	175.5	0.1	0.0	1013	14.03	0.0	0.1	-0.3	0.0	1013	14.21	0.0	0.5	0.4	-0.34	0.10	

LAB Nº 00175 L

QAL2 , TARATURA E CONVALIDA AMS - METODO DI PROVA: UNI EN 14181:2015

Allegato al Rapporto di prova n. 2104111-007

Punto di emissione E1 da impianto a ciclo combinato TG1										
PARAMETRO: MONOSSIDO DI CARBONIO	Analizzatore ABB Uras 26									
Metodo del SME	continuo, NDIR									
Metodo di riferimento normalizzato (SRM)	UNI EN 15058:2017									
Valore limite di emissione (ELV) per condizioni normalizzate (0°C, 1013 hPa, gas secco, 15 % O ₂) - Media oraria	30 mg/Nm ³ _{s,rif} O _{2,rif} (%): 15									
Requisiti per la percentuale relativa all'ELV (da D.Lgs. 46/2014) - Massima incertezza ammissibile	10 % ELV = 3 mg/Nm ³ _{s,rif}									

CAI	MPIONAMEN	NTO	CONDIZIONI IMPIANTO		SIST	EMA DI RIFE	ERIMENTO (SRM)			SIS	TEMA DI MIS	URA DELLE	EMISSIONI (SME)		SCOSTAMENTO	
Data	Ora	Durata	Produzione	CO	Т	Р	O ₂	Umidità	СО	CO	T	Р	O ₂	Umidità	CO	CO		
	(solare)		TG1	Уi	t _i	p _i	0 <i>i</i>	hi	y _{i,s,rif}	X i	t _i	p;	O <i>i</i>	hi	Ŷ _i	$\hat{\mathbf{Y}}_{i,s,rif}$	$D_i = y_{i,s,rif} - \hat{Y}_{i,s,rif}$	$(D_i - D_{i,med})^2$
		min	MWe	mg/Nm ³	°C	hPa	%	%	mg/Nm ³ _{s,rif}	mg/Nm ³	°C	hPa	%	%	mg/Nm ³	mg/Nm ³ _{s,rif}	mg/Nm ³ _{s,rif}	$(mg/Nm_{s,rif}^3)^2$
29/09/21	17:00:00	60	216.4	0.1	0.0	1013	13.73	0.0	0.1	-0.4	0.0	1013	13.97	0.0	0.4	0.3	-0.26	0.06
29/09/21	18:00:00	60	223.0	0.1	0.0	1013	13.56	0.0	0.1	-0.3	0.0	1013	13.79	0.0	0.4	0.4	-0.28	0.07
29/09/21	19:00:00	60	229.8	0.1	0.0	1013	13.58	0.0	0.1	-0.3	0.0	1013	13.81	0.0	0.4	0.4	-0.27	0.06
29/09/21	20:00:00	60	203.4	0.1	0.0	1013	13.52	0.0	0.1	-0.2	0.0	1013	13.69	0.0	0.5	0.4	-0.36	0.12
29/09/21	21:00:00	53	224.8	0.1	0.0	1013	13.58	0.0	0.1	-0.3	0.0	1013	13.79	0.0	0.5	0.4	-0.34	0.10
29/09/21	22:00:00	60	227.6	0.9	0.0	1013	13.57	0.0	0.7	-0.2	0.0	1013	13.77	0.0	0.5	0.4	0.27	0.08
29/09/21	23:00:00	60	208.4	1.1	0.0	1013	13.72	0.0	0.9	-0.2	0.0	1013	13.88	0.0	0.5	0.4	0.44	0.21
30/09/21	00:00:00	60	240.7	1.0	0.0	1013	13.61	0.0	0.8	-0.2	0.0	1013	13.81	0.0	0.6	0.5	0.34	0.13
30/09/21	01:00:00	60	244.4	1.0	0.0	1013	13.59	0.0	0.8	-0.2	0.0	1013	13.78	0.0	0.5	0.4	0.34	0.13
30/09/21	02:00:00	60	246.4	0.9	0.0	1013	13.59	0.0	8.0	-0.2	0.0	1013	13.78	0.0	0.5	0.4	0.32	0.11
30/09/21	03:00:00	56	247.0	1.0	0.0	1013	13.63	0.0	0.8	-0.3	0.0	1013	13.82	0.0	0.4	0.3	0.44	0.21
30/09/21	04:00:00	57	247.1	0.5	0.0	1013	13.64	0.0	0.4	-0.4	0.0	1013	13.81	0.0	0.3	0.3	0.15	0.03
30/09/21	05:00:00	60	249.1	0.5	0.0	1013	13.66	0.0	0.4	-0.4	0.0	1013	13.82	0.0	0.4	0.3	0.11	0.02
30/09/21	06:00:00	60	242.0	0.7	0.0	1013	13.63	0.0	0.5	-0.4	0.0	1013	13.78	0.0	0.4	0.3	0.25	0.07
30/09/21	07:00:00	60	229.2	0.5	0.0	1013	13.56	0.0	0.4	-0.4	0.0	1013	13.69	0.0	0.4	0.3	0.12	0.02
30/09/21	08:00:00	60	247.6	0.5	0.0	1013	13.66	0.0	0.4	-0.4	0.0	1013	13.79	0.0	0.3	0.3	0.14	0.03
30/09/21	09:00:00	56	245.6	0.5	0.0	1013	13.68	0.0	0.4	-0.4	0.0	1013	13.80	0.0	0.4	0.3	0.14	0.02
30/09/21	10:00:00	57	244.4	1.7	0.0	1013	13.70	0.0	1.4	-0.4	0.0	1013	13.82	0.0	0.4	0.3	1.08	1.22
30/09/21	11:00:00	60	244.9	1.8	0.0	1013	13.76	0.0	1.4	-0.4	0.0	1013	13.87	0.0	0.4	0.3	1.14	1.35
30/09/21	12:00:00	60	101.6	15.8	0.0	1013	14.47	0.0	14.5	14.3	0.0	1013	14.52	0.0	15.1	14.0	0.54	0.32
30/09/21	13:00:00	60	93.4	15.1	0.0	1013	14.48	0.0	13.9	12.9	0.0	1013	14.49	0.0	13.7	12.6	1.29	1.71
30/09/21	14:00:00	60	96.8	13.5	0.0	1013	14.44	0.0	12.3	12.3	0.0	1013	14.45	0.0	13.1	12.0	0.34	0.13
30/09/21	15:00:00	56	232.2	1.7	0.0	1013	13.77	0.0	1.5	-0.4	0.0	1013	13.90	0.0	0.4	0.3	1.15	1.36
30/09/21	16:00:00	57	241.4	0.4	0.0	1013	13.72	0.0	0.3	-0.4	0.0	1013	13.89	0.0	0.4	0.3	0.02	0.00
30/09/21	17:00:00	60	242.2	0.4	0.0	1013	13.72	0.0	0.4	-0.4	0.0	1013	13.89	0.0	0.4	0.3	0.06	0.01
30/09/21	18:00:00	55	244.0	0.5	0.0	1013	13.70	0.0	0.4	-0.4	0.0	1013	13.87	0.0	0.4	0.3	0.11	0.02
30/09/21	19:00:00	60	244.4	0.5	0.0	1013	13.70	0.0	0.4	-0.3	0.0	1013	13.86	0.0	0.4	0.3	0.03	0.00
30/09/21	20:00:00	60	244.2	0.4	0.0	1013	13.68	0.0	0.4	-0.4	0.0	1013	13.84	0.0	0.3	0.3	0.07	0.01
30/09/21	21:00:00	53	244.9	0.5	0.0	1013	13.68	0.0	0.4	-0.4	0.0	1013	13.83	0.0	0.3	0.3	0.15	0.03
30/09/21	22:00:00	60	247.6	0.8	0.0	1013	13.67	0.0	0.7	-0.4	0.0	1013	13.82	0.0	0.4	0.3	0.38	0.16
30/09/21	23:00:00	60	228.6	0.9	0.0	1013	13.58	0.0	0.8	-0.3	0.0	1013	13.70	0.0	0.4	0.4	0.40	0.18

LAB N° 00175 L

QAL2 , TARATURA E CONVALIDA AMS - METODO DI PROVA: UNI EN 14181:2015

Allegato al Rapporto di prova n. 2104111-007

EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

Punto di emissione E1 da impia	Punto di emissione E1 da impianto a ciclo combinato TG1										
PARAMETRO: MONOSSIDO DI CARBONIO	Analizzatore ABB Uras 26										
Metodo del SME	continuo, NDIR										
Metodo di riferimento normalizzato (SRM)	UNI EN 15058:2017										
Valore limite di emissione (ELV) per condizioni normalizzate (0°C, 1013 hPa, gas secco, 15 % O ₂) - Media oraria	30 mg/Nm³ _{s,rif} O _{2,rif} (%): 15										
Requisiti per la percentuale relativa all'ELV (da D.Lgs. 46/2014) - Massima incertezza ammissibile	10 % ELV = 3 $mg/Nm_{s,rif}^3$										

CA	MPIONAMEN	то	CONDIZIONI IMPIANTO		SISTEMA DI RIFERIMENTO (SRM)					SISTEMA DI MISURA DELLE EMISSIONI (SME)							SCOSTAMENTO	
Data	Ora	Durata	Produzione	CO	T	Р	O ₂	Umidità	CO	CO	T	Р	O ₂	Umidità	CO	CO		
	(solare)		TG1	y i	ti	\boldsymbol{p}_i	O <i>i</i>	hi	y i,s,rif	X i	ti	p i	o _i	hi	Ŷ _i	$\hat{\mathbf{Y}}_{i,s,rif}$	$D_i = y_{i,s,rif} - \hat{Y}_{i,s,rif}$	$(D_i - D_{i,med})^2$
		min	MWe	mg/Nm ³	°C	hPa	%	%	mg/Nm ³ _{s,rif}	mg/Nm ³	°C	hPa	%	%	mg/Nm ³	mg/Nm ³ _{s,rif}	mg/Nm ³ _{s,rif}	$(mg/Nm^3_{s,rif})^2$
01/10/21	00:00:00	60	249.0	0.9	0.0	1013	13.66	0.0	0.7	-0.4	0.0	1013	13.79	0.0	0.3	0.3	0.45	0.22
				Media y i						Media x ;							$D_{i,med}$ = Media D_i	$\sum (D_i - D_{i,med})^2$
				2.3						1.5							-0.02	13.73

N 60

*y*_{i,s,rif,max-}*y*_{i,s,rif,min} 28.1 mg/Nm³_{s,rif}

y,s,rif,max*y,s,rif,min
>
massima incertezza ammissibile (10
% ELV = 3 mg/Nm³)

Elaborazione tipo A

	FUNZIONE DI TARATURA										
Π	$\hat{\mathbf{Y}}_i =$	1.003	* X i	+	0.755						
	CAMPO DI VALIDITA'										
	0.0	≤Ý	' _{i,s,rif} ≤	30.87							

TEST VAF	RIABILITA'
S _D	0.48
k _v	0.9885
$\sigma_0 = PE/1.96$	1.53
$\sigma_0 k_v$	1.51
$S_D < \sigma_0 k_v \implies$	esito test positivo

	DI CONFIDENZA IENTALE
Ic (mg/Nm ³)	0.96
<i>Ic</i> (% ELV)	3.19

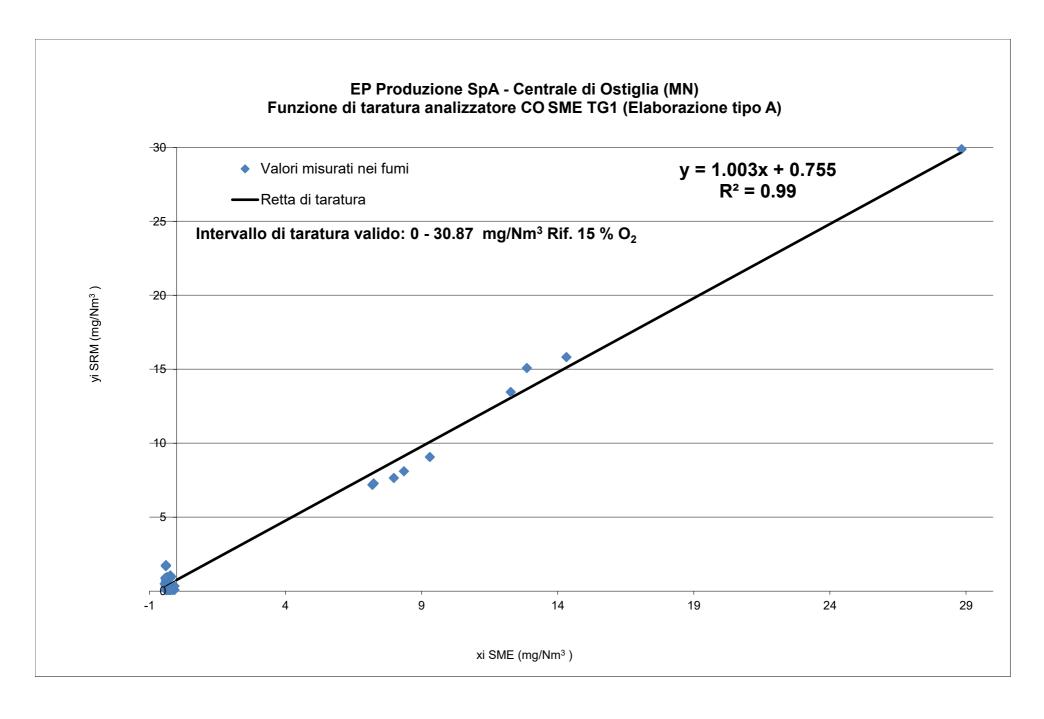
LEGENDA:

N numero di campioni accoppiati nelle misurazioni parallele

y i i-esimo valore del SRM alle condizioni normali (273 K e 1013 hPa), su base secca

x i i-esimo valore dello SME alle condizioni normali (273 K e 1013 hPa), su base secca

y ,s,rif i-esimo valore del SRM alle condizioni normali (273 K e 1013 hPa), su base secca, con riferimento al 15 % di O 2


 \hat{Y}_i i-esimo valore tarato dello SME alle condizioni normali (273 K e 1013 hPa), su base secca

Ŷ_{is rif} i-esimo valore tarato dello SME alle condizioni normali (273 K e 1013 hPa), su base secca, con riferimento al 15 % di O 2

S_D deviazione standard degli scostamenti D_i

σ₀ incertezza fornita dal legislatore espressa come % del ELV (PE con fattore di copertura K=1,96 corrispondente ad un livello di fiducia del 95 %)

 k_v valori di una prova χ^2 con un valore β del 50 %

QAL2 , TARATURA E CONVALIDA AMS - METODO DI PROVA: UNI EN 14181:2015 Allegato al Rapporto di prova n. 2104111-007

EP Produzione S.p.A.

LAB № 00175 L	10000 Galgila (iii.i)								
Punto di emissione E1 da impianto a ciclo combinato TG1									
PARAMETRO: OSSIGENO	Analizzatore ABB - Magnos 206								
Metodo del SME	continuo, paramagnetico								
Metodo di riferimento normalizzato (SRM)	UNI EN 14789:2017								
Valore limite applicabile "ELV" (Rif. ISPRA/ARPA/APPA: Guida Tecnica per i gestori dei Sistemi di Monitoraggio in continuo delle Emissioni in atmosfera, aggiornamento 2012)	21 %								
Intervallo di confodenza al 95 % (Rif. ISPRA/ARPA/APPA: Guida Tecnica per i gestori dei Sistemi di Monitoraggio in continuo delle Emissioni in atmosfera, aggiornamento 2012)	10 % ELV = 2.1 %								

	CAMPIONAMENTO		CONDIZIONI IMPIANTO	SISTEMA DI RIFERIMENTO (SRM)	SISTEMA DI MISURA DELLE E	MISSIONI (SME)	SCOSTAMENTO		
Data	Ora	Durata	Produzione	O ₂	O_2	O ₂			
	(solare)		TG1	y _i	\boldsymbol{x}_i	Ŷ _i	$D_i = y_{i,s,rif} - \hat{Y}_{i,s,rif}$	$(D_i - D_{i,med})^2$	
		min	MWe	%	%	%	mg/Nm ³ s,rif	(mg/Nm ³ _{s,rif}) ²	
28/09/21	12:00:00	60	82.8	14.63	14.66	14.49	0.14	0.02	
28/09/21	13:00:00	60	86.4	14.55	14.60	14.43	0.12	0.01	
28/09/21	14:00:00	60	93.3	14.49	14.56	14.39	0.10	0.01	
28/09/21	15:00:00	53	233.6	13.71	13.94	13.78	-0.07	0.00	
28/09/21	16:00:00	60	234.1	13.63	13.87	13.72	-0.08	0.01	
28/09/21	17:00:00	60	235.5	13.61	13.88	13.72	-0.11	0.01	
28/09/21	18:00:00	60	235.3	13.60	13.86	13.71	-0.11	0.01	
28/09/21	19:00:00	60	236.5	13.60	13.86	13.70	-0.11	0.01	
28/09/21	20:00:00	60	235.3	13.57	13.82	13.66	-0.09	0.01	
28/09/21	21:00:00	53	237.4	13.57	13.81	13.66	-0.09	0.01	
28/09/21	22:00:00	60	238.7	13.57	13.79	13.64	-0.07	0.01	
28/09/21	23:00:00	60	237.8	13.55	13.77	13.61	-0.06	0.00	
29/09/21	00:00:00	60	231.5	13.52	13.72	13.57	-0.04	0.00	
29/09/21	01:00:00	60	234.6	13.53	13.72	13.57	-0.04	0.00	
29/09/21	02:00:00	60	231.8	13.52	13.71	13.56	-0.03	0.00	
29/09/21	03:00:00	53	242.6	13.56	13.76	13.61	-0.05	0.00	
29/09/21	04:00:00	60	243.7	13.58	13.77	13.61	-0.04	0.00	
29/09/21	05:00:00	60	235.1	13.55	13.72	13.56	-0.01	0.00	
29/09/21	06:00:00	60	227.6	13.54	13.68	13.53	0.01	0.00	
29/09/21	07:00:00	60	231.5	13.54	13.68	13.53	0.01	0.00	
29/09/21	08:00:00	60	252.5	13.64	13.82	13.67	-0.02	0.00	
29/09/21	09:00:00	53	250.3	13.66	13.85	13.69	-0.03	0.00	
29/09/21	10:00:00	60	245.6	13.68	13.87	13.71	-0.03	0.00	
29/09/21	11:00:00	60	111.4	14.36	14.41	14.24	0.12	0.01	
29/09/21	12:00:00	60	96.7	14.43	14.45	14.28	0.14	0.02	
29/09/21	13:00:00	60	96.6	14.41	14.46	14.30	0.12	0.01	
29/09/21	14:00:00	60	173.5	14.01	14.18	14.02	-0.01	0.00	
29/09/21	16:00:00	60	175.5	14.03	14.21	14.05	-0.02	0.00	
29/09/21	17:00:00	60	216.4	13.73	13.97	13.81	-0.08	0.01	

QAL2 , TARATURA E CONVALIDA AMS - METODO DI PROVA: UNI EN 14181:2015 Allegato al Rapporto di prova n. 2104111-007

EP Produzione S.p.A.

LAB № 00175 L	10000 Galgila (iii.i)								
Punto di emissione E1 da impianto a ciclo combinato TG1									
PARAMETRO: OSSIGENO	Analizzatore ABB - Magnos 206								
Metodo del SME	continuo, paramagnetico								
Metodo di riferimento normalizzato (SRM)	UNI EN 14789:2017								
Valore limite applicabile "ELV" (Rif. ISPRA/ARPA/APPA: Guida Tecnica per i gestori dei Sistemi di Monitoraggio in continuo delle Emissioni in atmosfera, aggiornamento 2012)	21 %								
Intervallo di confodenza al 95 % (Rif. ISPRA/ARPA/APPA: Guida Tecnica per i gestori dei Sistemi di Monitoraggio in continuo delle Emissioni in atmosfera, aggiornamento 2012)	10 % ELV = 2.1 %								

	CAMPIONAMENTO		CONDIZIONI IMPIANTO	SISTEMA DI RIFERIMENTO (SRM)	SISTEMA DI MISURA DELLE E	MISSIONI (SME)	SCOSTA	MENTO
Data	Ora	Durata	Produzione	O_2	O ₂	O ₂		
	(solare)		TG1	y _i	X _i	Ŷ _i	$D_i = y_{i,s,rif} - \hat{Y}_{i,s,rif}$	$(D_i - D_{i,med})^2$
		min	MWe	%	%	%	mg/Nm ³ _{s,rif}	(mg/Nm ³ _{s.rif}) ²
29/09/21	18:00:00	60	223.0	13.56	13.79	13.63	-0.07	0.01
29/09/21	19:00:00	60	229.8	13.58	13.81	13.66	-0.08	0.01
29/09/21	20:00:00	60	203.4	13.52	13.69	13.53	-0.01	0.00
29/09/21	21:00:00	53	224.8	13.58	13.79	13.63	-0.05	0.00
29/09/21	22:00:00	60	227.6	13.57	13.77	13.61	-0.05	0.00
29/09/21	23:00:00	60	208.4	13.72	13.88	13.72	0.00	0.00
30/09/21	00:00:00	60	240.7	13.61	13.81	13.65	-0.04	0.00
30/09/21	01:00:00	60	244.4	13.59	13.78	13.63	-0.04	0.00
30/09/21	02:00:00	60	246.4	13.59	13.78	13.63	-0.04	0.00
30/09/21	03:00:00	56	247.0	13.63	13.82	13.66	-0.03	0.00
30/09/21	04:00:00	57	247.1	13.64	13.81	13.66	-0.01	0.00
30/09/21	05:00:00	60	249.1	13.66	13.82	13.66	-0.01	0.00
30/09/21	06:00:00	60	242.0	13.63	13.78	13.62	0.01	0.00
30/09/21	07:00:00	60	229.2	13.56	13.69	13.54	0.03	0.00
30/09/21	08:00:00	60	247.6	13.66	13.79	13.63	0.03	0.00
30/09/21	09:00:00	56	245.6	13.68	13.80	13.64	0.03	0.00
30/09/21	10:00:00	57	244.4	13.70	13.82	13.66	0.04	0.00
30/09/21	11:00:00	60	244.9	13.76	13.87	13.71	0.04	0.00
30/09/21	12:00:00	60	101.6	14.47	14.52	14.35	0.12	0.01
30/09/21	13:00:00	60	93.4	14.48	14.49	14.33	0.15	0.02
30/09/21	14:00:00	60	96.8	14.44	14.45	14.29	0.16	0.02
30/09/21	15:00:00	56	232.2	13.77	13.90	13.75	0.02	0.00
30/09/21	16:00:00	57	241.4	13.72	13.89	13.74	-0.02	0.00
30/09/21	17:00:00	60	242.2	13.72	13.89	13.73	-0.01	0.00
30/09/21	18:00:00	55	244.0	13.70	13.87	13.71	-0.01	0.00
30/09/21	19:00:00	60	244.4	13.70	13.86	13.70	0.00	0.00
30/09/21	20:00:00	60	244.2	13.68	13.84	13.69	0.00	0.00
30/09/21	21:00:00	53	244.9	13.68	13.83	13.68	0.01	0.00
30/09/21	22:00:00	60	247.6	13.67	13.82	13.66	0.01	0.00
30/09/21	23:00:00	60	228.6	13.58	13.70	13.54	0.04	0.00
01/10/21	00:00:00	60	249.0	13.66	13.79	13.63	0.02	0.00
14/10/21	11:00:00	60	211.3	13.54	13.62	13.47	0.07	0.00

QAL2 , TARATURA E CONVALIDA AMS - METODO DI PROVA: UNI EN 14181:2015 Allegato al Rapporto di prova n. 2104111-007

EP Produzione S.p.A.

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

- anno	LAB N° 0	0175 L					40000 Cougha (Witt)			
	Punto di emissione E1 da impianto a ciclo combinato TG1									
		PARAMETRO: OSSIGEI	Analizzatore ABB - Magnos 206							
Metodo del SME						continuo, paramagne	tico			
Metodo di riferimento normal	izzato (SRM)					UNI EN 14789:201	7			
Valore limite applicabile "ELV aggiornamento 2012)	V" (Rif. ISPRA/ARPA/APPA:	Guida Tecnica per i gestori dei Sist	emi di Monitoraggio in continuo	delle Emissioni in atmosfera,	21	%				
Intervallo di confodenza al 95 aggiornamento 2012)	5 % (Rif. ISPRA/ARPA/APPA	A: Guida Tecnica per i gestori dei Si	stemi di Monitoraggio in continu	io delle Emissioni in atmosfera,	10	% ELV =	2.1	%		
	CAMPIONAMENTO		CONDIZIONI IMPIANTO	SISTEMA DI RIFERIMENTO (SRM)	(I) SISTEMA DI MISURA DELLE EMISSIONI (SME) SCOSTAMENTO					
Data	Ora	Durata	Produzione	O ₂	O ₂	O ₂				
	(solare)		TG1	y _i	\boldsymbol{x}_i	Ŷ _i	$D_i = y_{i,s,rif} - \hat{Y}_{i,s,rif}$	$(D_i - D_{i,med})^2$		
		min	MWe	%	%	%	mg/Nm ³ _{s,rif}	(mg/Nm ³ _{s,rif}) ²		
14/10/21	12:00:00	60	73.5	14.71	14.73	14.56	0.15	0.02		
				Media y _i	Media x ;		D _{i,med} =Media D _i	$\sum (D_i - D_{i,med})^2$		
				13.78	13.93		0.00	0.30		
N	62			y _{i,max} -y _{i,min}			TEST VAF	RIABILITA'		
У _{i,max-} У _{i,min}	1.2	%		71,max 71,min <			S _D	0.07		
y _{i,min}	13.5	%		massima incertezza ammissibile	Elaborazione		k _v	0.9885		
15 % ELV	3.2	%		(10 % ELV)	tipo B		$\sigma_{0} = PE/1.96$	1.07		
Z	-0.07	%		e y _{i,s,rif,min} > 15 % ELV			$\sigma_0 k_v$	1.06		
				y _{i,s,rif,min} 13 /6 ELV			$S_D < \sigma_0 k_v \implies$	esito test positivo		

	FUNZIO	ONE DI TARATURA	
$\hat{\mathbf{Y}}_{i} =$	0.984	*x; +	0.069

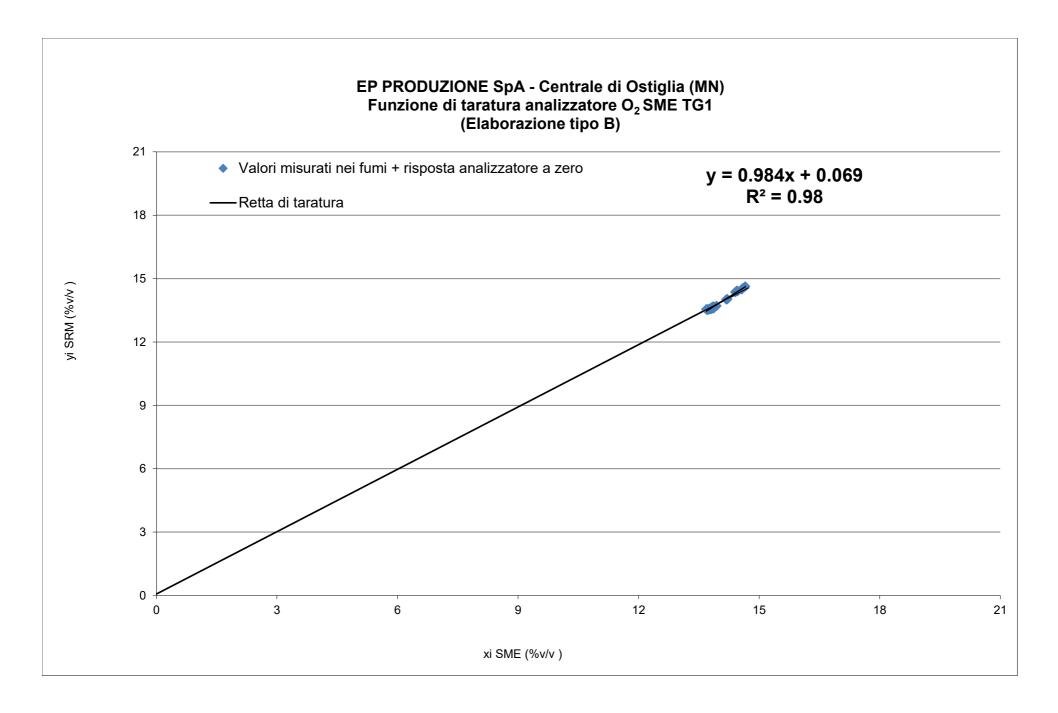
LEGENDA:

N numero di campioni accoppiati nelle misurazioni parallele

Z scostamento tra "lettura zero" dello SME e "zero"

y, i-esimo valore del SRM alle condizioni normali (273 K e 1013 hPa), su base secca

x, i-esimo valore dello SME alle condizioni normali (273 K e 1013 hPa), su base secca


ŷ, i-esimo valore tarato dello SME alle condizioni normali (273 K e 1013 hPa), su base secca

S_D deviazione standard degli scostamenti D_i

σ₀ incertezza fornita dal legislatore espressa come % del ELV (PE con fattore di copertura K=1,96 corrispondente ad un livello di fiducia del 95 %)

 k_v valori di una prova χ^2 con un valore β del 50 %

Referente emissioni in atmosfera
Ordine dei Chimici della Lombardia
dr. Marco Pelozzi
albo prof.n. 2797
Rapporto di prova firmato digitalmente
ai sensi della normativa vigente

LAB N° 00175 L

QAL2, TARATURA E CONVALIDA AMS - METODO DI PROVA: UNI EN 14181:2015 Allegato al Rapporto di prova n. 2104111-026

EP Produzione S.p.A. Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Punto di emissione E2 da impianto a ciclo combinato TG2 PARAMETRO: OSSIDI DI AZOTO Analizzatore ABB Limas 11 UV Metodo del SME continuo, NDUV UNI EN 14792:2017 Metodo di riferimento normalizzato (SRM) Valore limite di emissione (ELV) per condizioni normalizzate (0°C, 1013 hPa, gas secco, 15 % O₂) - Media oraria 30 mg/Nm³_{s,rif} O_{2,rif} (%): 15 Requisiti per la percentuale relativa all'ELV (da D.Lgs. 152/2006 e s.m.i.) - Massima incertezza ammissibile 20 % ELV = 6 mg/Nm³_{s.rif}

CA	MPIONAMEN	ОТИ	CONDIZIONI IMPIANTO		SIST	EMA DI RIFI	ERIMENTO (SRM)			SIS	TEMA DI MIS	SURA DELLE	EMISSIONI	(SME)		SCOSTA	AMENTO
Data	Ora	Durata	Produzione	NO _x	Т	Р	O ₂	Umidità	NO _x	NO _x	T	Р	O ₂	Umidità	NO _x	NO _x		
	(solare)		TG2	y i	ti	p _i	o _i	hi	y _{i,s,rif}	X i	t _i	p ;	0 _i	hi	Ŷ _i	$\hat{\mathbf{Y}}_{i,s,rif}$	$D_i = y_{i,s,rif} - \hat{Y}_{i,s,rif}$	$(D_i - D_{i,med})^2$
		min	MWe	mg/Nm ³	°C	hPa	%	%	mg/Nm ³ _{s,rif}	mg/Nm ³	°C	hPa	%	%	mg/Nm ³	mg/Nm ³ _{s,rif}	mg/Nm ³ _{s,rif}	(mg/Nm ³ _{s,rif}) ²
05/10/21	03:00:00	54	185.3	20.4	0.0	1013	13.70	0.0	25.7	20.4	0.0	1013	13.73	0.0	19.9	25.1	0.62	0.46
05/10/21	04:00:00	59	229.0	21.7	0.0	1013	13.36	0.0	26.0	21.6	0.0	1013	13.38	0.0	21.0	25.3	0.71	0.60
05/10/21	05:00:00	60	251.1	21.9	0.0	1013	13.35	0.0	26.3	21.8	0.0	1013	13.39	0.0	21.3	25.6	0.69	0.56
05/10/21	06:00:00	60	221.6	21.3	0.0	1013	13.31	0.0	25.4	21.2	0.0	1013	13.32	0.0	20.6	24.6	0.76	0.67
05/10/21	07:00:00	60	229.9	21.3	0.0	1013	13.29	0.0	25.4	21.2	0.0	1013	13.31	0.0	20.6	24.6	0.81	0.75
05/10/21	09:00:00	54	245.5	21.2	0.0	1013	13.32	0.0	25.3	21.9	0.0	1013	13.36	0.0	21.3	25.5	-0.24	0.03
05/10/21	10:00:00	59	242.9	20.9	0.0	1013	13.35	0.0	25.0	21.6	0.0	1013	13.40	0.0	21.0	25.3	-0.27	0.04
05/10/21	11:00:00	60	240.2	20.6	0.0	1013	13.39	0.0	24.8	21.3	0.0	1013	13.45	0.0	20.7	25.2	-0.36	0.09
05/10/21	12:00:00	52	79.7	15.4	0.0	1013	14.53	0.0	21.9	16.7	0.0	1013	14.58	0.0	16.3	23.3	-1.41	1.82
05/10/21	13:00:00	60	98.8	16.3	0.0	1013	14.28	0.0	22.3	17.5	0.0	1013	14.33	0.0	17.0	23.4	-1.06	1.01
05/10/21	14:00:00	60	98.2	16.4	0.0	1013	14.25	0.0	22.3	17.6	0.0	1013	14.30	0.0	17.1	23.4	-1.05	0.98
05/10/21	15:00:00	54	235.1	20.4	0.0	1013	13.53	0.0	25.1	21.2	0.0	1013	13.61	0.0	20.6	25.6	-0.47	0.17
05/10/21	16:00:00	59	239.1	20.6	0.0	1013	13.40	0.0	24.9	21.4	0.0	1013	13.48	0.0	20.8	25.4	-0.42	0.13
05/10/21	17:00:00	60	240.7	20.6	0.0	1013	13.41	0.0	24.9	21.3	0.0	1013	13.48	0.0	20.7	25.3	-0.46	0.16
05/10/21	18:00:00	60	243.3	20.8	0.0	1013	13.42	0.0	25.2	21.5	0.0	1013	13.49	0.0	20.9	25.6	-0.40	0.12
05/10/21	19:00:00	60	242.6	20.9	0.0	1013	13.43	0.0	25.3	21.5	0.0	1013	13.48	0.0	20.9	25.6	-0.25	0.04
05/10/21	20:00:00	60	244.0	20.9	0.0	1013	13.44	0.0	25.4	21.6	0.0	1013	13.49	0.0	21.0	25.6	-0.22	0.03
05/10/21	21:00:00	54	245.5	21.1	0.0	1013	13.45	0.0	25.6	21.7	0.0	1013	13.50	0.0	21.1	25.8	-0.19	0.02
05/10/21	22:00:00	59	246.6	21.2	0.0	1013	13.39	0.0	25.6	21.8	0.0	1013	13.43	0.0	21.2	25.8	-0.14	0.01
05/10/21	23:00:00	60	245.0	20.8	0.0	1013	13.40	0.0	25.1	21.4	0.0	1013	13.44	0.0	20.8	25.3	-0.11	0.00
06/10/21	06:00:00	60	247.9	21.4	0.0	1013	13.50	0.0	26.2	22.1	0.0	1013	13.50	0.0	21.5	26.3	-0.07	0.00
06/10/21	07:00:00	60	233.9	21.0	0.0	1013	13.34	0.0	25.1	21.5	0.0	1013	13.34	0.0	20.9	25.1	0.03	0.01
06/10/21	09:00:00	54	255.9	22.0	0.0	1013	13.40	0.0	26.6	22.6	0.0	1013	13.41	0.0	22.0	26.6	0.07	0.02
06/10/21	10:00:00	59	255.8	22.1	0.0	1013	13.41	0.0	26.8	22.6	0.0	1013	13.43	0.0	22.0	26.6	0.15	0.04
06/10/21	11:00:00	60	251.4	21.9	0.0	1013	13.38	0.0	26.4	22.3	0.0	1013	13.41	0.0	21.7	26.2	0.10	0.03
06/10/21	12:00:00	60	232.3	21.0	0.0	1013	13.36	0.0	25.2	21.4	0.0	1013	13.38	0.0	20.8	25.1	0.09	0.02
06/10/21	13:00:00	60	106.3	17.3	0.0	1013	14.21	0.0	23.3	18.0	0.0	1013	14.23	0.0	17.5	23.7	-0.41	0.12
06/10/21	14:00:00	60	97.9	17.1	0.0	1013	14.26	0.0	23.3	18.0	0.0	1013	14.26	0.0	17.5	23.9	-0.52	0.21

LAB N° 00175 L

Allegato al Rapporto di prova n. 2104111-026

QAL2, TARATURA E CONVALIDA AMS - METODO DI PROVA: UNI EN 14181:2015

EP Produzione S.p.A.

Punto di emissione E2 da impianto a ciclo combinato TG2									
PARAMETRO: OSSIDI DI AZOTO	Analizzatore ABB Limas 11 UV								
Metodo del SME	continuo, NDUV								
Metodo di riferimento normalizzato (SRM)	UNI EN 14792:2017								
Valore limite di emissione (ELV) per condizioni normalizzate (0°C, 1013 hPa, gas secco, 15 % O ₂) - Media oraria	30 mg/Nm ³ _{s,rif} O _{2,rif} (%): 15								
Requisiti per la percentuale relativa all'ELV (da D.Lgs. 152/2006 e s.m.i.) - Massima incertezza ammissibile	20 % ELV = 6 $mg/Nm_{s,rif}^3$								

CAI	MPIONAMEN	NTO	CONDIZIONI		SIST	EMA DI RIFI	ERIMENTO (SRM)			SIS	TEMA DI MIS	SURA DELLE	EMISSIONI	(SME)		SCOSTAMENTO	
Data	Ora	Durata	Produzione	NO_x	T	Р	O ₂	Umidità	NO _x	NO _x	T	Р	O ₂	Umidità	NO _x	NO _x		
	(solare)		TG2	y i	ti	p _i	O <i>i</i>	hi	y i,s,rif	X _i	ti	p i	0 <i>i</i>	hi	Ŷ _i	$\hat{\mathbf{Y}}_{i,s,rif}$	$D_i = y_{i,s,rif} - \hat{Y}_{i,s,rif}$	$(D_i - D_{i,med})^2$
		min	MWe	mg/Nm ³	°C	hPa	%	%	mg/Nm ³ _{s,rif}	mg/Nm ³	°C	hPa	%	%	mg/Nm ³	mg/Nm ³ _{s,rif}	mg/Nm ³ _{s,rif}	$(mg/Nm_{s,rif}^3)^2$
06/10/21	15:00:00	54	101.2	17.5	0.0	1013	14.24	0.0	23.8	18.3	0.0	1013	14.21	0.0	17.8	24.1	-0.32	0.07
06/10/21	16:00:00	58	180.6	19.2	0.0	1013	13.84	0.0	24.6	19.7	0.0	1013	13.85	0.0	19.1	24.5	0.10	0.03
06/10/21	17:00:00	60	182.9	18.8	0.0	1013	13.85	0.0	24.2	19.4	0.0	1013	13.85	0.0	18.8	24.2	0.03	0.01
06/10/21	18:00:00	60	182.9	18.6	0.0	1013	13.87	0.0	24.0	19.1	0.0	1013	13.87	0.0	18.6	24.0	-0.01	0.00
06/10/21	19:00:00	60	263.1	21.7	0.0	1013	13.51	0.0	26.6	22.2	0.0	1013	13.49	0.0	21.6	26.4	0.19	0.06
06/10/21	20:00:00	60	264.3	21.7	0.0	1013	13.49	0.0	26.5	22.2	0.0	1013	13.47	0.0	21.6	26.3	0.20	0.07
06/10/21	21:00:00	54	263.8	21.6	0.0	1013	13.49	0.0	26.5	22.1	0.0	1013	13.48	0.0	21.5	26.2	0.21	0.07
06/10/21	22:00:00	59	234.7	19.6	0.0	1013	13.50	0.0	24.0	20.1	0.0	1013	13.49	0.0	19.5	23.9	0.14	0.04
06/10/21	23:00:00	60	223.9	20.1	0.0	1013	13.41	0.0	24.3	20.6	0.0	1013	13.40	0.0	20.0	24.2	0.10	0.02
06/10/21	00:00:00	60	251.6	21.7	0.0	1013	13.39	0.0	26.1	22.2	0.0	1013	13.38	0.0	21.6	26.0	0.11	0.03
07/10/21	01:00:00	60	255.2	21.6	0.0	1013	13.41	0.0	26.2	22.3	0.0	1013	13.40	0.0	21.7	26.2	0.03	0.01
07/10/21	02:00:00	60	258.2	21.6	0.0	1013	13.44	0.0	26.2	22.2	0.0	1013	13.43	0.0	21.6	26.2	0.06	0.01
07/10/21	03:00:00	54	258.0	21.5	0.0	1013	13.45	0.0	26.1	22.0	0.0	1013	13.44	0.0	21.4	26.0	0.12	0.03
07/10/21	04:00:00	59	258.1	21.5	0.0	1013	13.43	0.0	26.0	22.0	0.0	1013	13.42	0.0	21.4	25.9	0.10	0.03
07/10/21	05:00:00	60	260.3	21.6	0.0	1013	13.44	0.0	26.2	22.0	0.0	1013	13.43	0.0	21.4	26.0	0.19	0.07
07/10/21	06:00:00	60	223.3	20.4	0.0	1013	13.53	0.0	25.1	20.9	0.0	1013	13.52	0.0	20.3	25.0	0.09	0.02
07/10/21	07:00:00	60	257.1	21.6	0.0	1013	13.42	0.0	26.2	22.1	0.0	1013	13.41	0.0	21.5	26.1	0.08	0.02
07/10/21	09:00:00	54	248.4	18.3	0.0	1013	13.71	0.0	23.0	18.8	0.0	1013	13.68	0.0	18.3	22.9	0.07	0.02
07/10/21	10:00:00	59	246.6	18.3	0.0	1013	13.71	0.0	23.1	18.9	0.0	1013	13.69	0.0	18.3	23.0	0.04	0.01
07/10/21	11:00:00	60	240.0	18.3	0.0	1013	13.72	0.0	23.1	18.8	0.0	1013	13.71	0.0	18.3	23.0	0.03	0.01
07/10/21	12:00:00	60	87.1	19.4	0.0	1013	14.49	0.0	27.4	20.7	0.0	1013	14.50	0.0	20.1	28.4	-1.01	0.90
07/10/21	13:00:00	60	94.5	17.9	0.0	1013	14.33	0.0	24.7	18.8	0.0	1013	14.35	0.0	18.3	25.2	-0.49	0.19
07/10/21	14:00:00	60	95.3	17.3	0.0	1013	14.31	0.0	23.8	18.1	0.0	1013	14.33	0.0	17.6	24.2	-0.43	0.14
07/10/21	15:00:00	54	223.5	18.2	0.0	1013	13.84	0.0	23.3	18.7	0.0	1013	13.86	0.0	18.1	23.3	-0.01	0.00
07/10/21	16:00:00	59	240.3	17.5	0.0	1013	13.77	0.0	22.3	18.0	0.0	1013	13.78	0.0	17.5	22.2	0.02	0.01
07/10/21	17:00:00	60	240.3	17.4	0.0	1013	13.76	0.0	22.1	17.9	0.0	1013	13.78	0.0	17.4	22.1	0.00	0.00
07/10/21	18:00:00	60	243.8	17.4	0.0	1013	13.75	0.0	22.0	17.9	0.0	1013	13.76	0.0	17.4	22.1	-0.03	0.00
07/10/21	19:00:00	60	242.2	17.5	0.0	1013	13.75	0.0	22.2	18.1	0.0	1013	13.76	0.0	17.5	22.2	-0.04	0.00
07/10/21	20:00:00	60	242.4	17.6	0.0	1013	13.75	0.0	22.2	18.1	0.0	1013	13.75	0.0	17.6	22.3	-0.03	0.00
07/10/21	21:00:00	54	244.1	17.7	0.0	1013	13.74	0.0	22.4	18.2	0.0	1013	13.74	0.0	17.7	22.4	-0.02	0.00
07/10/21	22:00:00	59	246.7	17.8	0.0	1013	13.73	0.0	22.5	18.2	0.0	1013	13.72	0.0	17.7	22.3	0.12	0.03
07/10/21	23:00:00	60	245.6	17.8	0.0	1013	13.72	0.0	22.5	18.1	0.0	1013	13.72	0.0	17.6	22.2	0.26	0.10

QAL2, TARATURA E CONVALIDA AMS - METODO DI PROVA: UNI EN 14181:2015

Allegato al Rapporto di prova n. 2104111-026

EP Produzione S.p.A. Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

lac MRA	ACCREDIA 5
"The Madeland	LAB N° 00175 L

Punto di emissione E2 da impianto a ciclo combinato TG2									
PARAMETRO: OSSIDI DI AZOTO	Analizzatore ABB Limas 11 UV								
Metodo del SME	continuo, NDUV								
Metodo di riferimento normalizzato (SRM)	UNI EN 14792:2017								
Valore limite di emissione (ELV) per condizioni normalizzate (0°C, 1013 hPa, gas secco, 15 % O ₂) - Media oraria	30 mg/Nm ³ _{s,rif} O _{2·rif} (%): 15								
Requisiti per la percentuale relativa all'ELV (da D.Lgs. 152/2006 e s.m.i.) - Massima incertezza ammissibile	20 % ELV = 6 $mg/Nm_{s,rif}^3$								

CA	MPIONAMEN	то	CONDIZIONI IMPIANTO	SISTEMA DI RIFERIMENTO (SRM)				SISTEMA DI MISURA DELLE EMISSIONI (SME)						SCOSTAMENTO				
Data	Ora	Durata	Produzione	NO _x	Т	Р	O ₂	Umidità	NO _x	NO _x	T	Р	O ₂	Umidità	NO _x	NO_x		
	(solare)		TG2	y i	t _i	p _i	o _i	hi	y _{i,s,rif}	X i	ti	p _i	0 <i>i</i>	hi	Ŷ _i	$\hat{\mathbf{Y}}_{i,s,rif}$	$D_i = y_{i,s,rif} - \hat{Y}_{i,s,rif}$	$(D_i - D_{i,med})^2$
		min	MWe	mg/Nm ³	°C	hPa	%	%	mg/Nm ³ _{s,rif}	mg/Nm ³	°C	hPa	%	%	mg/Nm ³	mg/Nm ³ _{s,rif}	mg/Nm ³ _{s,rif}	(mg/Nm ³ _{s,rif}) ²
07/10/21	00:00:00	60	236.6	17.9	0.0	1013	13.76	0.0	22.7	18.0	0.0	1013	13.76	0.0	17.5	22.2	0.42	0.23
				Media y i						Media x i							$D_{i,med}$ =Media D_i	$\sum (D_i - D_{i,med})^2$
				19.8						20.3							-0.06	10.36

N	61		y i,s,rif,max ⁻ y i,s,rif,min		F	UNZIONE DI T	ARATURA
У i,s,rif,max- У i,s,rif,min	5.6	mg/Nm ³ _{s,rif}	> 1,3,11,11111		$\hat{\mathbf{Y}}_i =$	ر* 0.977	-0.098
$y_{i,s,rif,min}$	21.9		massima incertezza ammissibile	Elaborazione tipo B		CAMPO DI VA	LIDITA'
15 % ELV	4.5		(20 % ELV)	Elaborazione upo B	0.0	≤Ŷ _{i,s,rif}	≤ 31.27
Z	0.1		e				
			$y_{i,s,rif,min} > 15\% ELV$				

TEST VARIABILITA'							
S _D	0.42						
k _v	0.9885						
$\sigma_{0} = PE/1.96$	3.06						
$\sigma_0 k_v$	3.03						
$S_D < \sigma_0 k_v \implies$	esito test positivo						

	DI CONFIDENZA IENTALE
Ic (mg/Nm ³)	0.82
Ic (% ELV)	2.75

I FGENDA

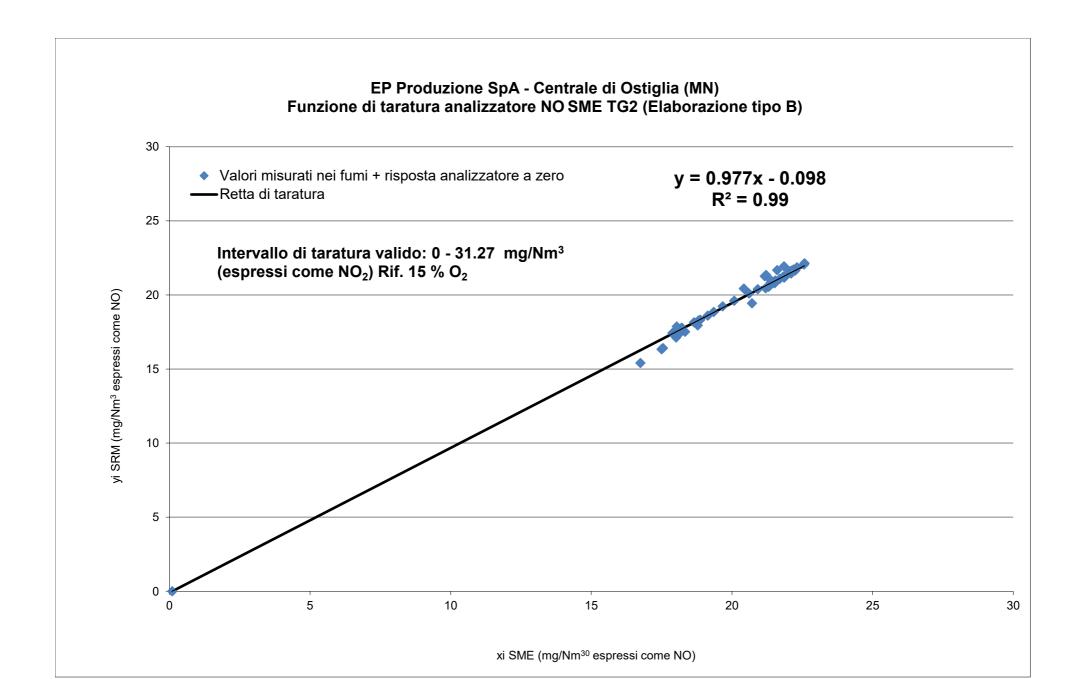
numero di campioni accoppiati nelle misurazioni parallele

scostamento tra "lettura zero" dello SME e "zero"

i-esimo valore del SRM alle condizioni normali (273 K e 1013 hPa), su base secca ed espressione del dato come NO

i-esimo valore dello SME alle condizioni normali (273 K e 1013 hPa), su base secca ed espressione del dato come NO

i-esimo valore del SRM alle condizioni normali (273 K e 1013 hPa), su base secca, con riferimento al 15 % di O 2 ed espressione del dato come NO 2


i-esimo valore tarato dello SME alle condizioni normali (273 K e 1013 hPa), su base secca ed espressione del dato come NO

 $\hat{Y}_{i.s.rif}$ i-esimo valore tarato dello SME alle condizioni normali (273 K e 1013 hPa), su base secca, con riferimento al 15 % di O 2 ed espressione del dato come NO 2

deviazione standard degli scostamenti Di SD

incertezza fornita dal legislatore espressa come % del ELV (PE con fattore di copertura K=1,96 corrispondente ad un livello di fiducia del 95 %) σ_o

valori di una prova χ^2 con un valore β del 50 % k_v

LAB Nº 00175 L

QAL2, TARATURA E CONVALIDA AMS - METODO DI PROVA: UNI EN 14181:2015

Allegato al Rapporto di prova n. 2104111-026

Punto di emissione E2 da impianto a ciclo combinato TG2									
PARAMETRO: MONOSSIDO DI CARBONIO	Analizzatore ABB Uras 26								
Metodo del SME	continuo, NDIR								
Metodo di riferimento normalizzato (SRM)	UNI EN 15058:2017								
Valore limite di emissione (ELV) per condizioni normalizzate (0°C, 1013 hPa, gas secco, 15 % O ₂) - Media oraria	30 mg/Nm ³ _{s,rif} O _{2,rif} (%): 15								
Requisiti per la percentuale relativa all'ELV (da D.Lgs. 46/2014) - Massima incertezza ammissibile	10 % ELV = 3 mg/Nm ³ _{s,rif}								

CA	MPIONAMEN	NTO	CONDIZIONI IMPIANTO		SIST	EMA DI RIFE	ERIMENTO (SRM)		SISTEMA DI MISURA DELLE EMISSIONI (SME)							SCOSTAMENTO	
Data	Ora	Durata	Produzione	CO	T	Р	O ₂	Umidità	CO	CO	T	Р	O ₂	Umidità	CO	CO		
	(solare)		TG2	y i	t _i	p_i	o <i>i</i>	hi	y i,s,rif	X i	t _i	p_i	o <i>i</i>	hi	Ŷ _i	$\hat{\mathbf{Y}}_{i,s,rif}$	$D_i = y_{i,s,rif} - \hat{Y}_{i,s,rif}$	$(D_i - D_{i,med})^2$
		min	MWe	mg/Nm ³	°C	hPa	%	%	mg/Nm ³ _{s,rif}	mg/Nm ³	°C	hPa	%	%	mg/Nm ³	mg/Nm ³ _{s,rif}	mg/Nm ³ _{s,rif}	$(mg/Nm_{s,rif}^3)^2$
05/10/21	03:00:00	54	185.3	1.4	0.0	1013	13.70	0.0	1.2	-0.2	0.0	1013	13.73	0.0	0.8	0.7	0.47	0.23
05/10/21	04:00:00	59	229.0	0.8	0.0	1013	13.36	0.0	0.7	-0.7	0.0	1013	13.38	0.0	0.4	0.3	0.33	0.11
05/10/21	05:00:00	60	251.1	0.8	0.0	1013	13.35	0.0	0.6	-0.7	0.0	1013	13.39	0.0	0.3	0.3	0.35	0.13
05/10/21	06:00:00	60	221.6	0.8	0.0	1013	13.31	0.0	0.6	-0.7	0.0	1013	13.32	0.0	0.4	0.3	0.31	0.10
05/10/21	07:00:00	60	229.9	1.0	0.0	1013	13.29	0.0	0.7	-0.7	0.0	1013	13.31	0.0	0.4	0.3	0.44	0.20
05/10/21	09:00:00	54	245.5	1.0	0.0	1013	13.32	0.0	0.8	-0.8	0.0	1013	13.36	0.0	0.3	0.2	0.55	0.31
05/10/21	10:00:00	59	242.9	0.1	0.0	1013	13.35	0.0	0.1	-0.8	0.0	1013	13.40	0.0	0.3	0.2	-0.12	0.01
05/10/21	11:00:00	60	240.2	0.1	0.0	1013	13.39	0.0	0.1	-0.8	0.0	1013	13.45	0.0	0.3	0.2	-0.14	0.02
05/10/21	12:00:00	52	79.7	24.6	0.0	1013	14.53	0.0	22.8	27.3	0.0	1013	14.58	0.0	25.7	24.0	-1.17	1.35
05/10/21	13:00:00	60	98.8	7.0	0.0	1013	14.28	0.0	6.3	8.8	0.0	1013	14.33	0.0	9.0	8.1	-1.84	3.34
05/10/21	14:00:00	60	98.2	6.4	0.0	1013	14.25	0.0	5.7	8.3	0.0	1013	14.30	0.0	8.5	7.6	-1.95	3.74
05/10/21	15:00:00	54	235.1	0.1	0.0	1013	13.53	0.0	0.1	-0.5	0.0	1013	13.61	0.0	0.6	0.4	-0.37	0.13
05/10/21	16:00:00	59	239.1	0.8	0.0	1013	13.40	0.0	0.7	-0.7	0.0	1013	13.48	0.0	0.4	0.3	0.35	0.13
05/10/21	17:00:00	60	240.7	0.8	0.0	1013	13.41	0.0	0.6	-0.8	0.0	1013	13.48	0.0	0.3	0.2	0.41	0.18
05/10/21	18:00:00	60	243.3	0.8	0.0	1013	13.42	0.0	0.7	-0.8	0.0	1013	13.49	0.0	0.3	0.3	0.41	0.18
05/10/21	19:00:00	60	242.6	0.9	0.0	1013	13.43	0.0	0.7	-0.6	0.0	1013	13.48	0.0	0.4	0.4	0.40	0.17
05/10/21	20:00:00	60	244.0	1.0	0.0	1013	13.44	0.0	0.8	-0.7	0.0	1013	13.49	0.0	0.4	0.3	0.46	0.22
05/10/21	21:00:00	54	245.5	0.9	0.0	1013	13.45	0.0	0.7	-0.6	0.0	1013	13.50	0.0	0.5	0.4	0.35	0.13
05/10/21	22:00:00	59	246.6	0.5	0.0	1013	13.39	0.0	0.4	-0.8	0.0	1013	13.43	0.0	0.3	0.2	0.17	0.03
05/10/21	23:00:00	60	245.0	0.4	0.0	1013	13.40	0.0	0.3	-0.8	0.0	1013	13.44	0.0	0.3	0.2	0.11	0.02
06/10/21	06:00:00	60	247.9	0.1	0.0	1013	13.50	0.0	0.1	-0.6	0.0	1013	13.50	0.0	0.5	0.4	-0.31	0.09
06/10/21	07:00:00	60	233.9	0.1	0.0	1013	13.34	0.0	0.1	-0.7	0.0	1013	13.34	0.0	0.3	0.3	-0.18	0.03
06/10/21	09:00:00	54	255.9	0.1	0.0	1013	13.40	0.0	0.1	-0.8	0.0	1013	13.41	0.0	0.3	0.2	-0.14	0.02
06/10/21	10:00:00	59	255.8	0.7	0.0	1013	13.41	0.0	0.5	-0.8	0.0	1013	13.43	0.0	0.3	0.2	0.30	0.10
06/10/21	11:00:00	60	251.4	0.6	0.0	1013	13.38	0.0	0.5	-0.9	0.0	1013	13.41	0.0	0.2	0.1	0.35	0.13
06/10/21	12:00:00	60	232.3	0.8	0.0	1013	13.36	0.0	0.6	-0.6	0.0	1013	13.38	0.0	0.5	0.4	0.24	0.06
06/10/21	13:00:00	60	106.3	7.4	0.0	1013	14.21	0.0	6.5	6.5	0.0	1013	14.23	0.0	6.9	6.1	0.42	0.19
06/10/21	14:00:00	60	97.9	8.7	0.0	1013	14.26	0.0	7.7	7.7	0.0	1013	14.26	0.0	7.9	7.1	0.66	0.45

LAB Nº 00175 L

QAL2 , TARATURA E CONVALIDA AMS - METODO DI PROVA: UNI EN 14181:2015

Allegato al Rapporto di prova n. 2104111-026

Punto di emissione E2 da impianto a ciclo combinato TG2								
PARAMETRO: MONOSSIDO DI CARBONIO	Analizzatore ABB Uras 26							
Metodo del SME	continuo, NDIR							
Metodo di riferimento normalizzato (SRM)	UNI EN 15058:2017							
Valore limite di emissione (ELV) per condizioni normalizzate (0°C, 1013 hPa, gas secco, 15 % O ₂) - Media oraria	30 mg/Nm ³ _{s,rif} O _{2,rif} (%): 15							
Requisiti per la percentuale relativa all'ELV (da D.Lgs. 46/2014) - Massima incertezza ammissibile	10 % ELV = 3 $mg/Nm_{s,rif}^3$							

CAI	MPIONAMEN	NTO	CONDIZIONI		SIST	EMA DI RIFE	ERIMENTO (SRM)			SIS	TEMA DI MIS	URA DELLE	EMISSIONI (SME)		SCOSTAMENTO	
Data	Ora	Durata	Produzione	CO	Т	Р	O ₂	Umidità	СО	CO	T	Р	O ₂	Umidità	CO	CO		
	(solare)		TG2	Уi	t _i	p _i	o _i	hi	y _{i,s,rif}	Χį	t _i	p _i	o _i	hi	Ŷ _i	$\hat{\mathbf{Y}}_{i,s,rif}$	$D_i = y_{i,s,rif} - \hat{Y}_{i,s,rif}$	$(D_i - D_{i,med})^2$
		min	MWe	mg/Nm ³	°C	hPa	%	%	mg/Nm ³ _{s.rif}	mg/Nm ³	°C	hPa	%	%	mg/Nm ³	mg/Nm ³ _{s,rif}	mg/Nm ³ _{s,rif}	(mg/Nm ³ _{s.rif}) ²
06/10/21	15:00:00	54	101.2	7.1	0.0	1013	14.24	0.0	6.3	6.1	0.0	1013	14.21	0.0	6.5	5.8	0.55	0.32
06/10/21	16:00:00	58	180.6	0.5	0.0	1013	13.84	0.0	0.4	-0.5	0.0	1013	13.85	0.0	0.6	0.5	-0.10	0.01
06/10/21	17:00:00	60	182.9	0.3	0.0	1013	13.85	0.0	0.3	-0.7	0.0	1013	13.85	0.0	0.4	0.3	-0.08	0.00
06/10/21	18:00:00	60	182.9	0.3	0.0	1013	13.87	0.0	0.3	-0.7	0.0	1013	13.87	0.0	0.3	0.3	-0.04	0.00
06/10/21	19:00:00	60	263.1	0.2	0.0	1013	13.51	0.0	0.2	-0.8	0.0	1013	13.49	0.0	0.3	0.2	-0.03	0.00
06/10/21	20:00:00	60	264.3	0.3	0.0	1013	13.49	0.0	0.2	-0.8	0.0	1013	13.47	0.0	0.3	0.2	0.03	0.00
06/10/21	21:00:00	54	263.8	0.3	0.0	1013	13.49	0.0	0.2	-0.8	0.0	1013	13.48	0.0	0.3	0.2	0.03	0.00
06/10/21	22:00:00	59	234.7	0.2	0.0	1013	13.50	0.0	0.2	-0.8	0.0	1013	13.49	0.0	0.3	0.2	-0.06	0.00
06/10/21	23:00:00	60	223.9	0.3	0.0	1013	13.41	0.0	0.2	-0.8	0.0	1013	13.40	0.0	0.3	0.2	0.01	0.00
06/10/21	00:00:00	60	251.6	0.2	0.0	1013	13.39	0.0	0.2	-0.8	0.0	1013	13.38	0.0	0.3	0.2	-0.05	0.00
07/10/21	01:00:00	60	255.2	0.3	0.0	1013	13.41	0.0	0.2	-0.8	0.0	1013	13.40	0.0	0.3	0.2	0.04	0.00
07/10/21	02:00:00	60	258.2	0.3	0.0	1013	13.44	0.0	0.2	-0.9	0.0	1013	13.43	0.0	0.2	0.2	0.03	0.00
07/10/21	03:00:00	54	258.0	0.3	0.0	1013	13.45	0.0	0.2	-0.8	0.0	1013	13.44	0.0	0.3	0.2	0.04	0.00
07/10/21	04:00:00	59	258.1	0.1	0.0	1013	13.43	0.0	0.1	-0.8	0.0	1013	13.42	0.0	0.3	0.2	-0.15	0.02
07/10/21	05:00:00	60	260.3	0.1	0.0	1013	13.44	0.0	0.1	-0.8	0.0	1013	13.43	0.0	0.3	0.2	-0.15	0.02
07/10/21	06:00:00	60	223.3	0.2	0.0	1013	13.53	0.0	0.1	-0.6	0.0	1013	13.52	0.0	0.5	0.4	-0.26	0.06
07/10/21	07:00:00	60	257.1	0.1	0.0	1013	13.42	0.0	0.1	-0.8	0.0	1013	13.41	0.0	0.3	0.2	-0.13	0.01
07/10/21	09:00:00	54	248.4	0.1	0.0	1013	13.71	0.0	0.1	-0.8	0.0	1013	13.68	0.0	0.3	0.2	-0.13	0.01
07/10/21	10:00:00	59	246.6	0.2	0.0	1013	13.71	0.0	0.2	-0.8	0.0	1013	13.69	0.0	0.3	0.2	-0.07	0.00
07/10/21	11:00:00	60	240.0	0.2	0.0	1013	13.72	0.0	0.1	-0.7	0.0	1013	13.71	0.0	0.3	0.3	-0.15	0.02
07/10/21	12:00:00	60	87.1	36.0	0.0	1013	14.49	0.0	33.2	36.9	0.0	1013	14.50	0.0	34.4	31.7	1.47	2.20
07/10/21	13:00:00	60	94.5	8.6	0.0	1013	14.33	0.0	7.8	8.7	0.0	1013	14.35	0.0	8.9	8.0	-0.26	0.06
07/10/21	14:00:00	60	95.3	7.7	0.0	1013	14.31	0.0	6.9	7.9	0.0	1013	14.33	0.0	8.1	7.3	-0.44	0.18
07/10/21	15:00:00	54	223.5	1.0	0.0	1013	13.84	0.0	0.8	0.2	0.0	1013	13.86	0.0	1.2	1.0	-0.17	0.03
07/10/21	16:00:00	59	240.3	0.1	0.0	1013	13.77	0.0	0.1	-0.7	0.0	1013	13.78	0.0	0.4	0.3	-0.25	0.06
07/10/21	17:00:00	60	240.3	0.1	0.0	1013	13.76	0.0	0.1	-0.8	0.0	1013	13.78	0.0	0.3	0.2	-0.15	0.02
07/10/21	18:00:00	60	243.8	0.1	0.0	1013	13.75	0.0	0.1	-0.8	0.0	1013	13.76	0.0	0.3	0.2	-0.16	0.02
07/10/21	19:00:00	60	242.2	0.1	0.0	1013	13.75	0.0	0.1	-0.7	0.0	1013	13.76	0.0	0.4	0.3	-0.22	0.04
07/10/21	20:00:00	60	242.4	0.1	0.0	1013	13.75	0.0	0.1	-0.7	0.0	1013	13.75	0.0	0.4	0.3	-0.21	0.04
07/10/21	21:00:00	54	244.1	0.1	0.0	1013	13.74	0.0	0.1	-0.7	0.0	1013	13.74	0.0	0.3	0.3	-0.18	0.03
07/10/21	22:00:00	59	246.7	0.1	0.0	1013	13.73	0.0	0.1	-0.8	0.0	1013	13.72	0.0	0.3	0.2	-0.13	0.01

LAB Nº 00175 L

QAL2, TARATURA E CONVALIDA AMS - METODO DI PROVA: UNI EN 14181:2015

Allegato al Rapporto di prova n. 2104111-026

EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

Punto di emissione E2 da impianto a ciclo combinato TG2								
PARAMETRO: MONOSSIDO DI CARBONIO	Analizzatore ABB Uras 26							
Metodo del SME	continuo, NDIR							
Metodo di riferimento normalizzato (SRM)	UNI EN 15058:2017							
Valore limite di emissione (ELV) per condizioni normalizzate (0°C, 1013 hPa, gas secco, 15 % O ₂) - Media oraria	30 mg/Nm ³ _{s,rif} O _{2,rif} (%): 15							
Requisiti per la percentuale relativa all'ELV (da D.Lgs. 46/2014) - Massima incertezza ammissibile	10 % ELV = 3 mg/Nm ³ _{s,rif}							

CA	MPIONAMEN	NTO	CONDIZIONI IMPIANTO		SISTEMA DI RIFERIMENTO (SRM)					SISTEMA DI MISURA DELLE EMISSIONI (SME)							SCOSTAMENTO	
Data	Ora	Durata	Produzione	CO	T	Р	O ₂	Umidità	CO	CO	T	Р	O ₂	Umidità	CO	CO		
	(solare)		TG2	Уi	ti	p i	O <i>i</i>	hi	y _{i,s,rif}	X i	ti	p i	O <i>i</i>	hi	Ŷ _i	$\hat{\mathbf{Y}}_{i,s,rif}$	$D_i = y_{i,s,rif} - \hat{Y}_{i,s,rif}$	$(D_i - D_{i,med})^2$
		min	MWe	mg/Nm ³	°C	hPa	%	%	mg/Nm ³ _{s,rif}	mg/Nm ³	°C	hPa	%	%	mg/Nm ³	mg/Nm ³ _{s,rif}	mg/Nm ³ _{s,rif}	$(mg/Nm^3_{s,rif})^2$
07/10/21	23:00:00	60	245.6	0.1	0.0	1013	13.72	0.0	0.1	-0.8	0.0	1013	13.72	0.0	0.2	0.2	-0.12	0.01
07/10/21	00:00:00	60	236.6	0.1	0.0	1013	13.76	0.0	0.1	-0.8	0.0	1013	13.76	0.0	0.2	0.2	-0.12	0.01
	·			Media y i						Media x i							D _{i,med} = Media D _i	$\sum (D_i - D_{i,med})^2$
				2.2						1.3							-0.01	15.00

N 61

y_{i,s,rif,max}-y_{i,s,rif,min} 33.1 mg/Nm³_{s,rif}

y_{i,s,rif,max}-y_{i,s,rif,min}
>>
massima incertezza ammissibile (10
% ELV = 3 mg/Nm³)

Elaborazione tipo A

FUNZIONE DI TARATURA									
$\hat{\mathbf{Y}}_i = 0.904 * \mathbf{x}_i + 1.012$									
CAMPO DI VALIDITA'									
0.0									

TEST VARIABILITA'							
S _D	0.50						
k _v	0.9885						
$\sigma_0 = PE/1.96$	1.53						
$\sigma_0 k_v$	1.51						
$S_D < \sigma_0 k_v \implies$	esito test positivo						

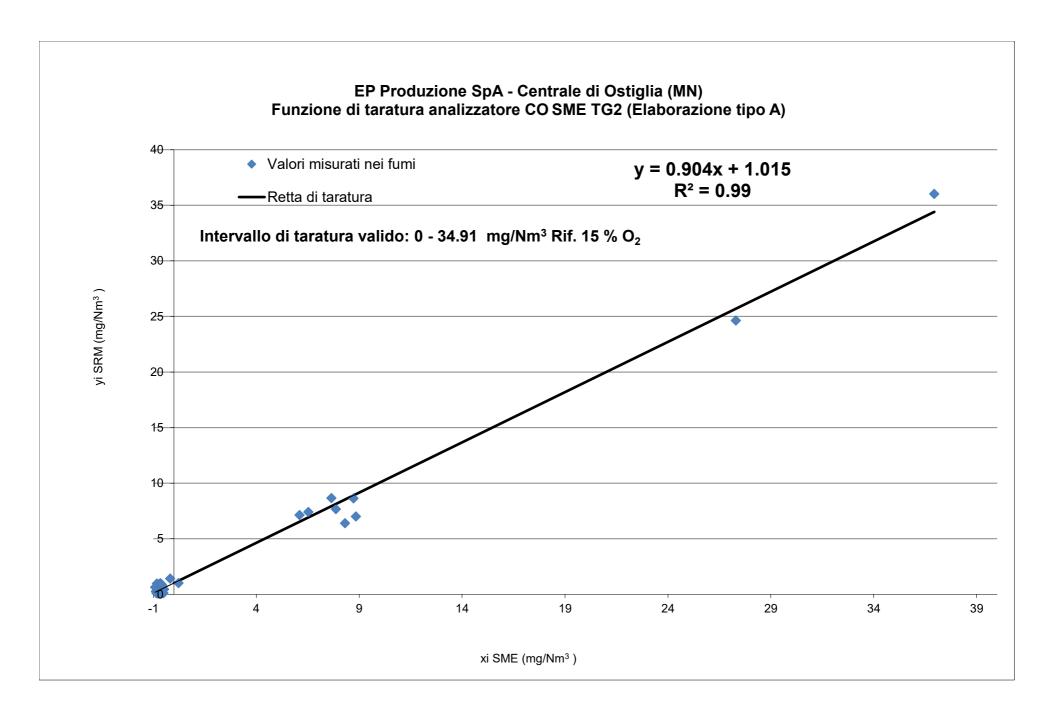
	OI CONFIDENZA ENTALE
Ic (mg/Nm ³)	0.99
Ic (% ELV)	3.30

LEGENDA:

N numero di campioni accoppiati nelle misurazioni parallele

y_i i-esimo valore del SRM alle condizioni normali (273 K e 1013 hPa), su base secca x_i i-esimo valore dello SME alle condizioni normali (273 K e 1013 hPa), su base secca

y is rif i-esimo valore del SRM alle condizioni normali (273 K e 1013 hPa), su base secca, con riferimento al 15 % di O 2


Ŷ_I i-esimo valore tarato dello SME alle condizioni normali (273 K e 1013 hPa), su base secca

 $\hat{Y}_{is.nf}$ i-esimo valore tarato dello SME alle condizioni normali (273 K e 1013 hPa), su base secca, con riferimento al 15 % di O $_2$

S_D deviazione standard degli scostamenti D_i

σ₀ incertezza fornita dal legislatore espressa come % del ELV (PE con fattore di copertura K=1,96 corrispondente ad un livello di fiducia del 95 %)

 k_v valori di una prova $χ^2$ con un valore β del 50 %

QAL2 , TARATURA E CONVALIDA AMS - METODO DI PROVA: UNI EN 14181:2015 Allegato al Rapporto di prova n. 2104111-026

EP Produzione S.p.A.

LAB № 00175 L	10000 ostigiia (iiii)								
Punto di emissione E2 da impianto a ciclo combinato TG2									
PARAMETRO: OSSIGENO	Analizzatore ABB - Magnos 206								
Metodo del SME	continuo, paramagnetico								
Metodo di riferimento normalizzato (SRM)	UNI EN 14789:2017								
Valore limite applicabile "ELV" (Rif. ISPRA/ARPA/APPA: Guida Tecnica per i gestori dei Sistemi di Monitoraggio in continuo delle Emissioni in atmosfera, aggiornamento 2012)	21 %								
Intervallo di confodenza al 95 % (Rif. ISPRA/ARPA/APPA: Guida Tecnica per i gestori dei Sistemi di Monitoraggio in continuo delle Emissioni in atmosfera, aggiornamento 2012)	10 % ELV = 2.1 %								

	CAMPIONAMENTO		CONDIZIONI IMPIANTO	SISTEMA DI RIFERIMENTO (SRM)	SISTEMA DI MISURA DELLE E	MISSIONI (SME)	SCOSTAMENTO		
Data	Ora	Durata	Produzione	O ₂	O_2	O ₂			
	(solare)		TG2	<i>y</i> _i	x _i	Ŷ _i	$D_i = y_{i,s,rif} - \hat{Y}_{i,s,rif}$	$(D_i - D_{i,med})^2$	
		min	MWe	%	%	%	mg/Nm ³ _{s,rif}	(mg/Nm ³ _{s,rif}) ²	
05/10/21	03:00:00	54	185.3	13.70	13.73	13.72	-0.01	0.00	
05/10/21	04:00:00	59	229.0	13.36	13.38	13.36	-0.01	0.00	
05/10/21	05:00:00	60	251.1	13.35	13.39	13.38	-0.02	0.00	
05/10/21	06:00:00	60	221.6	13.31	13.32	13.31	0.00	0.00	
05/10/21	07:00:00	60	229.9	13.29	13.31	13.29	0.00	0.00	
05/10/21	09:00:00	54	245.5	13.32	13.36	13.34	-0.02	0.00	
05/10/21	10:00:00	59	242.9	13.35	13.40	13.38	-0.03	0.00	
05/10/21	11:00:00	60	240.2	13.39	13.45	13.43	-0.05	0.00	
05/10/21	12:00:00	52	79.7	14.53	14.58	14.56	-0.03	0.00	
05/10/21	13:00:00	60	98.8	14.28	14.33	14.31	-0.03	0.00	
05/10/21	14:00:00	60	98.2	14.25	14.30	14.29	-0.03	0.00	
05/10/21	15:00:00	54	235.1	13.53	13.61	13.60	-0.06	0.00	
05/10/21	16:00:00	59	239.1	13.40	13.48	13.47	-0.06	0.00	
05/10/21	17:00:00	60	240.7	13.41	13.48	13.47	-0.06	0.00	
05/10/21	18:00:00	60	243.3	13.42	13.49	13.47	-0.05	0.00	
05/10/21	19:00:00	60	242.6	13.43	13.48	13.47	-0.04	0.00	
05/10/21	20:00:00	60	244.0	13.44	13.49	13.48	-0.04	0.00	
05/10/21	21:00:00	54	245.5	13.45	13.50	13.48	-0.03	0.00	
05/10/21	22:00:00	59	246.6	13.39	13.43	13.42	-0.03	0.00	
05/10/21	23:00:00	60	245.0	13.40	13.44	13.43	-0.03	0.00	
06/10/21	06:00:00	60	247.9	13.50	13.50	13.48	0.01	0.00	
06/10/21	07:00:00	60	233.9	13.34	13.34	13.32	0.01	0.00	
06/10/21	09:00:00	54	255.9	13.40	13.41	13.40	0.00	0.00	
06/10/21	10:00:00	59	255.8	13.41	13.43	13.42	0.00	0.00	
06/10/21	11:00:00	60	251.4	13.38	13.41	13.40	-0.01	0.00	
06/10/21	12:00:00	60	232.3	13.36	13.38	13.37	-0.02	0.00	
06/10/21	13:00:00	60	106.3	14.21	14.23	14.21	0.00	0.00	
06/10/21	14:00:00	60	97.9	14.26	14.26	14.24	0.02	0.00	
06/10/21	15:00:00	54	101.2	14.24	14.21	14.19	0.05	0.00	
06/10/21	16:00:00	58	180.6	13.84	13.85	13.83	0.01	0.00	

QAL2 , TARATURA E CONVALIDA AMS - METODO DI PROVA: UNI EN 14181:2015 Allegato al Rapporto di prova n. 2104111-026

EP Produzione S.p.A.

LAB № 00175 L	10000 ostigiia (iiii)								
Punto di emissione E2 da impianto a ciclo combinato TG2									
PARAMETRO: OSSIGENO	Analizzatore ABB - Magnos 206								
Metodo del SME	continuo, paramagnetico								
Metodo di riferimento normalizzato (SRM)	UNI EN 14789:2017								
Valore limite applicabile "ELV" (Rif. ISPRA/ARPA/APPA: Guida Tecnica per i gestori dei Sistemi di Monitoraggio in continuo delle Emissioni in atmosfera, aggiornamento 2012)	21 %								
Intervallo di confodenza al 95 % (Rif. ISPRA/ARPA/APPA: Guida Tecnica per i gestori dei Sistemi di Monitoraggio in continuo delle Emissioni in atmosfera, aggiornamento 2012)	10 % ELV = 2.1 %								

	CAMPIONAMENTO		CONDIZIONI IMPIANTO	SISTEMA DI RIFERIMENTO (SRM)	SISTEMA DI MISURA DELLE E	MISSIONI (SME)	SCOSTA	MENTO
Data	Ora	Durata	Produzione	O ₂	O ₂	O ₂		
	(solare)		TG2	У,	x _i	Ŷ _i	$D_i = y_{i,s,rif} - \hat{Y}_{i,s,rif}$	$(D_i - D_{i,med})^2$
		min	MWe	%	%	%	mg/Nm ³ _{s,rif}	(mg/Nm ³ _{s,rif}) ²
06/10/21	17:00:00	60	182.9	13.85	13.85	13.84	0.01	0.00
06/10/21	18:00:00	60	182.9	13.87	13.87	13.85	0.02	0.00
06/10/21	19:00:00	60	263.1	13.51	13.49	13.47	0.03	0.00
06/10/21	20:00:00	60	264.3	13.49	13.47	13.46	0.03	0.00
06/10/21	21:00:00	54	263.8	13.49	13.48	13.46	0.03	0.00
06/10/21	22:00:00	59	234.7	13.50	13.49	13.48	0.03	0.00
06/10/21	23:00:00	60	223.9	13.41	13.40	13.39	0.02	0.00
06/10/21	00:00:00	60	251.6	13.39	13.38	13.37	0.02	0.00
07/10/21	01:00:00	60	255.2	13.41	13.40	13.39	0.02	0.00
07/10/21	02:00:00	60	258.2	13.44	13.43	13.42	0.03	0.00
07/10/21	03:00:00	54	258.0	13.45	13.44	13.42	0.02	0.00
07/10/21	04:00:00	59	258.1	13.43	13.42	13.41	0.02	0.00
07/10/21	05:00:00	60	260.3	13.44	13.43	13.42	0.02	0.00
07/10/21	06:00:00	60	223.3	13.53	13.52	13.51	0.03	0.00
07/10/21	07:00:00	60	257.1	13.42	13.41	13.40	0.02	0.00
07/10/21	09:00:00	54	248.4	13.71	13.68	13.66	0.05	0.00
07/10/21	10:00:00	59	246.6	13.71	13.69	13.67	0.04	0.00
07/10/21	11:00:00	60	240.0	13.72	13.71	13.69	0.03	0.00
07/10/21	12:00:00	60	87.1	14.49	14.50	14.48	0.02	0.00
07/10/21	13:00:00	60	94.5	14.33	14.35	14.33	0.00	0.00
07/10/21	14:00:00	60	95.3	14.31	14.33	14.32	0.00	0.00
07/10/21	15:00:00	54	223.5	13.84	13.86	13.84	0.00	0.00
07/10/21	16:00:00	59	240.3	13.77	13.78	13.77	0.00	0.00
07/10/21	17:00:00	60	240.3	13.76	13.78	13.76	0.00	0.00
07/10/21	18:00:00	60	243.8	13.75	13.76	13.74	0.01	0.00
07/10/21	19:00:00	60	242.2	13.75	13.76	13.74	0.01	0.00
07/10/21	20:00:00	60	242.4	13.75	13.75	13.74	0.01	0.00
07/10/21	21:00:00	54	244.1	13.74	13.74	13.73	0.01	0.00
07/10/21	22:00:00	59	246.7	13.73	13.72	13.71	0.02	0.00
07/10/21	23:00:00	60	245.6	13.72	13.72	13.71	0.02	0.00

QAL2 , TARATURA E CONVALIDA AMS - METODO DI PROVA: UNI EN 14181:2015 Allegato al Rapporto di prova n. 2104111-026

EP Produzione S.p.A.

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

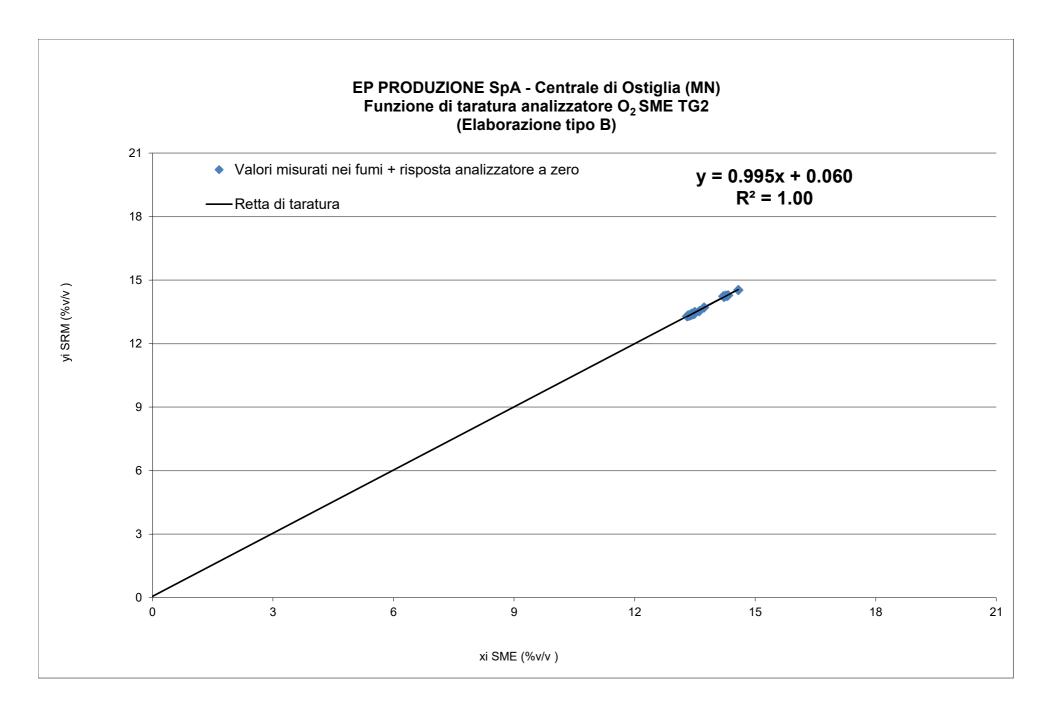
	LAB N° 0	0175 L						
			Punto di emissione	E2 da impianto a ciclo combinato 1	rG2			
		PARAMETRO: OSS	IGENO			Analizzatore ABB - Mag	gnos 206	
Metodo del SME						continuo, paramagn	netico	
Metodo di riferimento normali	zzato (SRM)					UNI EN 14789:20)17	
Valore limite applicabile "ELV aggiornamento 2012)	" (Rif. ISPRA/ARPA/APPA:	: Guida Tecnica per i gestori dei	Sistemi di Monitoraggio in continuo	o delle Emissioni in atmosfera,		21 %		
Intervallo di confodenza al 95 aggiornamento 2012)	% (Rif. ISPRA/ARPA/APPA	A: Guida Tecnica per i gestori d	ei Sistemi di Monitoraggio in contini	uo delle Emissioni in atmosfera,		10 % ELV =	2.1	%
	CAMPIONAMENTO		CONDIZIONI IMPIANTO	SISTEMA DI RIFERIMENTO (SRM)	SISTEMA DI MISURA DELLE	E EMISSIONI (SME)	SCOST	AMENTO
Data	Ora	Durata	Produzione	O ₂	O ₂	O ₂		
	(solare)		TG2	y _i	\boldsymbol{x}_i	Ŷ _i	$D_i = y_{i,s,rif} - \hat{Y}_{i,s,rif}$	$(D_i - D_{i,med})^2$
		min	MWe	%	%	%	mg/Nm ³ _{s,rif}	(mg/Nm ³ _{s,rif}) ²
07/10/21	00:00:00	60	236.6	13.76	13.76	13.75	0.01	0.00
				Media y _i	Media x _i		D _{i,med} =Media D _i	$\sum (D_i - D_{i,med})^2$
				13.65	13.66		0.00	0.05
N	61			y _{i,max} -y _{i,min}			TEST VA	RIABILITA'
У i,max- У i,min	1.2	%		yı,max yı,min			S _D	0.03
y _{i,min}	13.3	%			Elaborazione		k _v	0.9885
15 % ELV	3.2	%		(10 % ELV)	tipo B		$\sigma_{0} = PE/1.96$	1.07
Z	-0.06	%		e y _{i,s,rif,min} > 15 % ELV			$\sigma_0 k_v$	1.06
				yi,s,rif,min ⊂ 13 /0 LL v			$S_D < \sigma_0 k_v \implies$	esito test positivo

	FUNZIO	NE DI TARATURA	
$\hat{\mathbf{Y}}_i =$	0.995	*x; +	0.060

LEGENDA:

N numero di campioni accoppiati nelle misurazioni parallele

Z scostamento tra "lettura zero" dello SME e "zero"


y, i-esimo valore del SRM alle condizioni normali (273 K e 1013 hPa), su base secca
x, i-esimo valore dello SME alle condizioni normali (273 K e 1013 hPa), su base secca
Ý, i-esimo valore tarato dello SME alle condizioni normali (273 K e 1013 hPa), su base secca

S_D deviazione standard degli scostamenti D_i

σ₀ incertezza fornita dal legislatore espressa come % del ELV (PE con fattore di copertura K=1,96 corrispondente ad un livello di fiducia del 95 %)

 k_v valori di una prova χ^2 con un valore β del 50 %

Referente emissioni in atmosfera
Ordine dei Chimici della Lombardia
dr. Marco Pelozzi
albo prof.n. 2797
Rapporto di prova firmato digitalmente
ai sensi della normativa vigente

Allegato al Rapporto di prova n. 2104111-045

QAL2, TARATURA E CONVALIDA AMS - METODO DI PROVA: UNI EN 14181:2015

EP Produzione S.p.A.

LAB	N٥	00175 L	

Punto di emissione E3 da imp	ianto a ciclo combinato TG3
PARAMETRO: OSSIDI DI AZOTO	Analizzatore ABB Limas 11 UV
Metodo del SME	continuo, NDUV
Metodo di riferimento normalizzato (SRM)	UNI EN 14792:2017
Valore limite di emissione (ELV) per condizioni normalizzate (0°C, 1013 hPa, gas secco, 15 % O ₂) - Media oraria	30 mg/Nm ³ _{s,rif} O _{2,rif} (%): 15
Requisiti per la percentuale relativa all'ELV (da D.Lgs. 152/2006 e s.m.i.) - Massima incertezza ammissibile	20 % ELV = 6 mg/Nm ³ _{s,rif}

CAI	MPIONAMEN	то	CONDIZIONI IMPIANTO		SIST	EMA DI RIFI	ERIMENTO (S	SRM)			SIS	TEMA DI MIS	SURA DELLE	EMISSIONI	(SME)		SCOSTA	MENTO
Data	Ora	Durata	Produzione	NO _x	Т	Р	O ₂	Umidità	NO _x	NO_x	Т	Р	O ₂	Umidità	NO _x	NO _x		
	(solare)		TG3	y i	t _i	p _i	O <i>i</i>	hi	y i,s,rif	Χį	ti	p _i	0 <i>i</i>	hi	Ŷ _i	Ŷ _{i,s,rif}	$D_i = y_{i,s,rif} - \hat{Y}_{i,s,rif}$	$(D_i - D_{i,med})^2$
		min	MWe	mg/Nm ³	°C	hPa	%	%	mg/Nm ³ _{s,rif}	mg/Nm ³	°C	hPa	%	%	mg/Nm ³	mg/Nm ³ _{s,rif}	mg/Nm ³ _{s,rif}	$(mg/Nm_{s,rif}^3)^2$
11/10/21	02:00:00	60	230.5	17.0	0.0	1013	13.56	0.0	21.0	17.9	0.0	1013	13.49	0.0	17.3	21.2	-0.17	0.00
11/10/21	03:00:00	53	195.4	17.7	0.0	1013	13.60	0.0	22.0	18.6	0.0	1013	13.53	0.0	18.0	22.1	-0.12	0.00
11/10/21	04:00:00	56	222.4	17.5	0.0	1013	13.57	0.0	21.6	18.4	0.0	1013	13.51	0.0	17.8	21.8	-0.18	0.00
11/10/21	05:00:00	60	230.1	17.2	0.0	1013	13.54	0.0	21.2	18.2	0.0	1013	13.47	0.0	17.6	21.4	-0.21	0.00
11/10/21	06:00:00	60	259.2	17.5	0.0	1013	13.54	0.0	21.5	18.3	0.0	1013	13.48	0.0	17.7	21.6	-0.14	0.00
11/10/21	07:00:00	60	244.1	17.2	0.0	1013	13.55	0.0	21.2	18.1	0.0	1013	13.48	0.0	17.5	21.4	-0.14	0.00
11/10/21	08:00:00	60	259.3	17.6	0.0	1013	13.54	0.0	21.6	18.4	0.0	1013	13.47	0.0	17.8	21.7	-0.12	0.00
11/10/21	11:00:00	60	250.2	17.5	0.0	1013	13.57	0.0	21.6	17.9	0.0	1013	13.61	0.0	17.4	21.6	0.04	0.05
11/10/21	12:00:00	60	100.1	16.3	0.0	1013	14.45	0.0	22.9	17.3	0.0	1013	14.49	0.0	16.8	23.6	-0.73	0.31
11/10/21	13:00:00	60	97.5	16.7	0.0	1013	14.32	0.0	22.9	17.6	0.0	1013	14.38	0.0	17.0	23.6	-0.71	0.28
11/10/21	14:00:00	60	98.4	16.7	0.0	1013	14.30	0.0	22.9	17.5	0.0	1013	14.37	0.0	17.0	23.5	-0.65	0.22
11/10/21	15:00:00	60	231.7	17.6	0.0	1013	13.67	0.0	22.1	18.2	0.0	1013	13.73	0.0	17.6	22.2	-0.14	0.00
11/10/21	16:00:00	60	248.4	17.2	0.0	1013	13.61	0.0	21.3	17.6	0.0	1013	13.66	0.0	17.1	21.4	-0.03	0.02
11/10/21	17:00:00	60	248.9	17.1	0.0	1013	13.60	0.0	21.2	17.6	0.0	1013	13.67	0.0	17.0	21.3	-0.07	0.01
11/10/21	18:00:00	60	249.8	17.2	0.0	1013	13.55	0.0	21.2	17.7	0.0	1013	13.64	0.0	17.1	21.3	-0.11	0.00
11/10/21	19:00:00	60	246.9	17.2	0.0	1013	13.54	0.0	21.2	17.7	0.0	1013	13.62	0.0	17.1	21.3	-0.10	0.01
11/10/21	20:00:00	60	248.3	17.2	0.0	1013	13.56	0.0	21.2	17.6	0.0	1013	13.63	0.0	17.1	21.2	-0.09	0.01
11/10/21	21:00:00	60	250.5	17.2	0.0	1013	13.57	0.0	21.2	17.6	0.0	1013	13.63	0.0	17.1	21.3	-0.06	0.01
11/10/21	22:00:00	60	253.2	17.2	0.0	1013	13.57	0.0	21.3	17.7	0.0	1013	13.63	0.0	17.2	21.4	-0.06	0.01
11/10/21	23:00:00	60	251.3	17.3	0.0	1013	13.57	0.0	21.3	17.8	0.0	1013	13.63	0.0	17.2	21.4	-0.07	0.01
12/10/21	06:00:00	60	228.1	18.5	0.0	1013	13.63	0.0	23.1	19.0	0.0	1013	13.72	0.0	18.4	23.2	-0.10	0.01
12/10/21	07:00:00	60	242.1	17.4	0.0	1013	13.54	0.0	21.4	17.8	0.0	1013	13.61	0.0	17.2	21.4	-0.04	0.02
12/10/21	09:00:00	53	238.4	17.6	0.0	1013	13.53	0.0	21.6	17.9	0.0	1013	13.61	0.0	17.4	21.5	0.07	0.06
12/10/21	10:00:00	59	194.7	17.7	0.0	1013	13.81	0.0	22.6	18.2	0.0	1013	13.89	0.0	17.6	22.7	-0.13	0.00
12/10/21	11:00:00	60	113.5	16.7	0.0	1013	14.21	0.0	22.6	17.4	0.0	1013	14.27	0.0	16.9	23.0	-0.43	0.06
12/10/21	12:00:00	60	98.0	16.8	0.0	1013	14.27	0.0	23.0	17.6	0.0	1013	14.34	0.0	17.1	23.5	-0.59	0.17
12/10/21	13:00:00	60	98.9	17.0	0.0	1013	14.27	0.0	23.2	17.8	0.0	1013	14.35	0.0	17.3	23.8	-0.62	0.19
12/10/21	14:00:00	60	176.9	18.2	0.0	1013	13.93	0.0	23.6	18.7	0.0	1013	14.02	0.0	18.1	23.8	-0.17	0.00

LAB N° 00175 L

QAL2 , TARATURA E CONVALIDA AMS - METODO DI PROVA: UNI EN 14181:2015

Allegato al Rapporto di prova n. 2104111-045

EP Produzione S.p.A.

Punto di emissione E3 da impi	anto a ciclo combinato TG3
PARAMETRO: OSSIDI DI AZOTO	Analizzatore ABB Limas 11 UV
Metodo del SME	continuo, NDUV
Metodo di riferimento normalizzato (SRM)	UNI EN 14792:2017
Valore limite di emissione (ELV) per condizioni normalizzate (0°C, 1013 hPa, gas secco, 15 % O ₂) - Media oraria	30 mg/Nm³ _{s,rif} O _{2,rif} (%): 15
Requisiti per la percentuale relativa all'ELV (da D.Lgs. 152/2006 e s.m.i.) - Massima incertezza ammissibile	20 % ELV = 6 $mg/Nm_{s,rif}^3$

CA	MPIONAMEN	ITO	CONDIZIONI IMPIANTO		SIST	EMA DI RIFI	ERIMENTO (SRM)			SIS	STEMA DI MIS	SURA DELLE	EMISSIONI	(SME)		SCOSTA	AMENTO
Data	Ora	Durata	Produzione	NO _x	T	Р	O ₂	Umidità	NO _x	NO _x	T	Р	O ₂	Umidità	NO _x	NO _x		
	(solare)		TG3	y i	ti	p i	0 <i>i</i>	hi	y _{i,s,rif}	X i	ti	p i	O <i>i</i>	hi	Ŷ _i	$\hat{\mathbf{Y}}_{i,s,rif}$	$D_i = y_{i,s,rif} - \hat{Y}_{i,s,rif}$	$(D_i - D_{i,med})^2$
		min	MWe	mg/Nm ³	°C	hPa	%	%	mg/Nm ³ _{s,rif}	mg/Nm ³	°C	hPa	%	%	mg/Nm ³	mg/Nm ³ _{s,rif}	mg/Nm ³ _{s,rif}	(mg/Nm ³ _{s,rif}) ²
12/10/21	15:00:00	53	178.2	17.9	0.0	1013	13.94	0.0	23.3	18.4	0.0	1013	14.03	0.0	17.8	23.4	-0.16	0.00
12/10/21	16:00:00	59	178.6	17.8	0.0	1013	13.94	0.0	23.2	18.3	0.0	1013	14.04	0.0	17.7	23.4	-0.15	0.00
12/10/21	17:00:00	60	247.6	17.8	0.0	1013	13.54	0.0	21.8	18.2	0.0	1013	13.64	0.0	17.6	21.9	-0.11	0.00
12/10/21	18:00:00	60	249.2	17.5	0.0	1013	13.52	0.0	21.5	17.9	0.0	1013	13.62	0.0	17.4	21.6	-0.10	0.01
12/10/21	19:00:00	60	248.5	17.5	0.0	1013	13.51	0.0	21.4	17.9	0.0	1013	13.61	0.0	17.3	21.5	-0.13	0.00
12/10/21	20:00:00	60	248.0	17.4	0.0	1013	13.52	0.0	21.4	17.9	0.0	1013	13.61	0.0	17.3	21.5	-0.11	0.00
12/10/21	21:00:00	53	248.0	17.5	0.0	1013	13.52	0.0	21.4	17.9	0.0	1013	13.61	0.0	17.3	21.5	-0.09	0.01
12/10/21	22:00:00	59	234.3	17.4	0.0	1013	13.62	0.0	21.7	17.9	0.0	1013	13.69	0.0	17.3	21.8	-0.05	0.02
13/10/21	05:00:00	60	116.3	17.7	0.0	1013	14.24	0.0	24.1	18.5	0.0	1013	14.30	0.0	17.9	24.6	-0.47	0.09
13/10/21	06:00:00	60	221.3	18.5	0.0	1013	13.67	0.0	23.1	18.9	0.0	1013	13.75	0.0	18.3	23.2	-0.06	0.01
13/10/21	07:00:00	60	257.7	18.0	0.0	1013	13.48	0.0	22.0	18.3	0.0	1013	13.57	0.0	17.7	21.9	0.02	0.04
13/10/21	09:00:00	53	251.1	17.7	0.0	1013	13.52	0.0	21.7	18.1	0.0	1013	13.60	0.0	17.5	21.7	0.04	0.05
13/10/21	10:00:00	59	202.9	18.0	0.0	1013	13.75	0.0	22.8	18.4	0.0	1013	13.82	0.0	17.8	22.8	0.03	0.04
13/10/21	11:00:00	60	247.5	17.7	0.0	1013	13.51	0.0	21.7	18.1	0.0	1013	13.59	0.0	17.5	21.7	-0.01	0.03
13/10/21	12:00:00	60	89.3	19.3	0.0	1013	14.54	0.0	27.4	20.2	0.0	1013	14.56	0.0	19.5	27.8	-0.34	0.03
13/10/21	13:00:00	60	97.1	17.3	0.0	1013	14.31	0.0	23.7	18.1	0.0	1013	14.38	0.0	17.5	24.3	-0.63	0.20
13/10/21	14:00:00	60	114.1	17.3	0.0	1013	14.20	0.0	23.3	18.1	0.0	1013	14.28	0.0	17.5	23.9	-0.61	0.18
13/10/21	15:00:00	53	246.3	17.8	0.0	1013	13.54	0.0	21.8	18.2	0.0	1013	13.61	0.0	17.6	21.9	-0.06	0.01
13/10/21	16:00:00	59	247.0	17.2	0.0	1013	13.58	0.0	21.3	17.7	0.0	1013	13.64	0.0	17.1	21.4	-0.05	0.02
13/10/21	17:00:00	60	247.8	17.2	0.0	1013	13.57	0.0	21.3	17.7	0.0	1013	13.64	0.0	17.1	21.4	-0.07	0.01
13/10/21	18:00:00	60	250.4	17.2	0.0	1013	13.58	0.0	21.3	17.7	0.0	1013	13.65	0.0	17.1	21.4	-0.08	0.01
13/10/21	19:00:00	60	249.7	17.5	0.0	1013	13.53	0.0	21.5	17.9	0.0	1013	13.61	0.0	17.3	21.5	-0.05	0.02

LAB N° 00175 L

 $\mathsf{QAL2}$, TARATURA E CONVALIDA AMS - METODO DI PROVA: UNI EN 14181:2015

Allegato al Rapporto di prova n. 2104111-045

EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

Punto di emissione E3 da impi	anto a ciclo combinato TG3
PARAMETRO: OSSIDI DI AZOTO	Analizzatore ABB Limas 11 UV
Metodo del SME	continuo, NDUV
Metodo di riferimento normalizzato (SRM)	UNI EN 14792:2017
Valore limite di emissione (ELV) per condizioni normalizzate (0°C, 1013 hPa, gas secco, 15 % O ₂) - Media oraria	30 mg/Nm ³ _{s,rif} O _{2,rif} (%): 15
Requisiti per la percentuale relativa all'ELV (da D.Lgs. 152/2006 e s.m.i.) - Massima incertezza ammissibile	20 % ELV = 6 $mg/Nm_{s,rif}^3$

CA	MPIONAMEN	ITO	CONDIZIONI IMPIANTO		SIS	TEMA DI RIFE	ERIMENTO (SRM)			SIS	TEMA DI MIS	SURA DELLE	EMISSIONI	(SME)		SCOSTA	AMENTO
Data	Ora	Durata	Produzione	NO _x	T	Р	O ₂	Umidità	NO _x	NO _x	Т	Р	O ₂	Umidità	NO _x	NO _x		
	(solare)		TG3	y i	t _i	p i	0 <i>i</i>	hi	y _{i,s,rif}	X _i	t _i	p i	o _i	hi	Ŷ _i	$\hat{\mathbf{Y}}_{i,s,rif}$	$D_i = y_{i,s,rif} - \hat{Y}_{i,s,rif}$	$(D_i - D_{i,med})^2$
		min	MWe	mg/Nm ³	°C	hPa	%	%	mg/Nm ³ _{s,rif}	mg/Nm ³	°C	hPa	%	%	mg/Nm ³	mg/Nm ³ _{s,rif}	mg/Nm ³ _{s,rif}	(mg/Nm ³ _{s,rif}) ²
13/10/21	20:00:00	58	250.9	17.5	0.0	1013	13.55	0.0	21.6	17.9	0.0	1013	13.61	0.0	17.3	21.5	0.00	0.03
				Media y i						Media x i							D _{i,med} =Media D _i	$\sum (D_i - D_{i,med})^2$
				17.5						18.1							-0.18	2.30

N	51				
У i,s,rif,max- У i,s,rif,min	6.4	mg/Nm ³ _{s,rif}			
y _{i,s,rif,min}	21.0		yi,s,rif,max-yi,s,rif,min	\longrightarrow	Elaborazione tipo A
15 % ELV	4.5		massima incertezza ammissibile	,	Liaborazione tipo A
Z	0.1		(20 % ELV)		

F	UNZIONE	DI TARATI	JRA	
$\hat{\mathbf{Y}}_i =$	0.952	* x ; +	0.271	
	CAMPO D	I VALIDITA	۱'	
0.0	≤Ý	' _{i,s,rif} ≤	30.55	

TEST VARIABILITA'							
S _D	0.21						
k _v	0.9885						
$\sigma_{0} = PE/1.96$	3.06						
$\sigma_0 k_v$	3.03						
$S_D < \sigma_0 k_v \implies$	esito test positivo						

	OI CONFIDENZA ENTALE
Ic (mg/Nm ³)	0.43
Ic (% ELV)	1.42

LEGENDA:

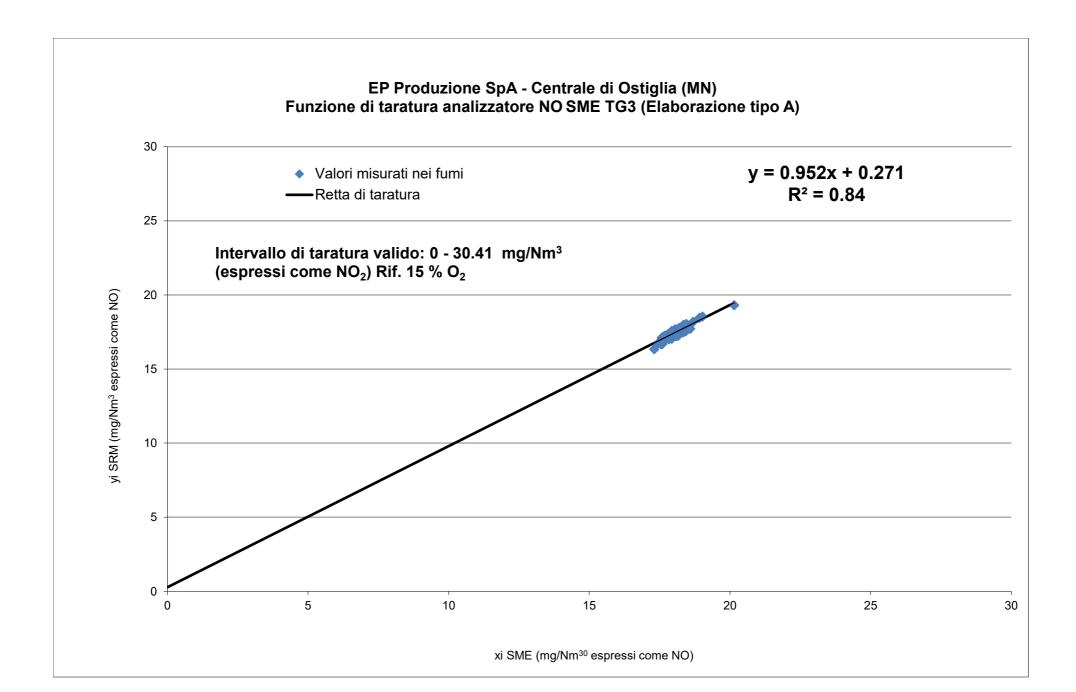
N numero di campioni accoppiati nelle misurazioni parallele

Z scostamento tra "lettura zero" dello SME e "zero"

y_i i-esimo valore del SRM alle condizioni normali (273 K e 1013 hPa), su base secca ed espressione del dato come NO

x_i i-esimo valore dello SME alle condizioni normali (273 K e 1013 hPa), su base secca ed espressione del dato come NO

V_{I,S.ff} i-esimo valore del SRM alle condizioni normali (273 K e 1013 hPa), su base secca, con riferimento al 15 % di O 2 ed espressione del dato come NO 2


Ý_i i-esimo valore tarato dello SME alle condizioni normali (273 K e 1013 hPa), su base secca ed espressione del dato come NO

Ý i.s.rif i-esimo valore tarato dello SME alle condizioni normali (273 K e 1013 hPa), su base secca, con riferimento al 15 % di O 2 ed espressione del dato come NO 2

S_D deviazione standard degli scostamenti D_i

σ₀ incertezza fornita dal legislatore espressa come % del ELV (PE con fattore di copertura K=1,96 corrispondente ad un livello di fiducia del 95 %)

 k_v valori di una prova χ^2 con un valore β del 50 %

LAB Nº 00175 L

QAL2 , TARATURA E CONVALIDA AMS - METODO DI PROVA: UNI EN 14181:2015

Allegato al Rapporto di prova n. 2104111-045

Punto di emissione E3 da impianto a ciclo combinato TG3								
PARAMETRO: MONOSSIDO DI CARBONIO	Analizzatore ABB Uras 26							
Metodo del SME	continuo, NDIR							
Metodo di riferimento normalizzato (SRM)	UNI EN 15058:2017							
Valore limite di emissione (ELV) per condizioni normalizzate (0°C, 1013 hPa, gas secco, 15 % O ₂) - Media oraria	30 mg/Nm³ _{s,rif} O _{2,rif} (%): 15							
Requisiti per la percentuale relativa all'ELV (da D.Lgs. 46/2014) - Massima incertezza ammissibile	10 % ELV = 3 mg/Nm ³ _{s,rif}							

CAI	CAMPIONAMENTO CONDIZIONI SISTEMA DI RIFERIMENTO (SRM)						SISTEMA DI MISURA DELLE EMISSIONI (SME)							SCOSTAMENTO				
Data	Ora	Durata	Produzione	CO	T	Р	O ₂	Umidità	CO	CO	T	Р	O ₂	Umidità	CO	CO		
	(solare)		TG3	Уi	t _i	p _i	O <i>i</i>	hi	y _{i,s,rif}	X _i	ti	p _i	O <i>i</i>	hi	Ŷ _i	$\hat{\mathbf{Y}}_{i,s,rif}$	$D_i = y_{i,s,rif} - \hat{Y}_{i,s,rif}$	$(D_i - D_{i,med})^2$
		min	MWe	mg/Nm ³	°C	hPa	%	%	mg/Nm ³ _{s,rif}	mg/Nm ³	°C	hPa	%	%	mg/Nm ³	mg/Nm ³ _{s,rif}	mg/Nm ³ _{s,rif}	$(mg/Nm_{s,rif}^3)^2$
11/10/21	02:00:00	60	230.5	0.2	0.0	1013	13.56	0.0	0.2	-1.8	0.0	1013	13.49	0.0	0.0	0.0	0.18	0.04
11/10/21	03:00:00	53	195.4	0.5	0.0	1013	13.60	0.0	0.4	-1.4	0.0	1013	13.53	0.0	0.3	0.3	0.14	0.03
11/10/21	04:00:00	56	222.4	0.3	0.0	1013	13.57	0.0	0.2	-1.7	0.0	1013	13.51	0.0	0.1	0.1	0.19	0.05
11/10/21	05:00:00	60	230.1	0.3	0.0	1013	13.54	0.0	0.3	-1.7	0.0	1013	13.47	0.0	0.1	0.0	0.22	0.06
11/10/21	06:00:00	60	259.2	0.3	0.0	1013	13.54	0.0	0.2	-1.8	0.0	1013	13.48	0.0	0.0	0.0	0.21	0.06
11/10/21	07:00:00	60	244.1	0.4	0.0	1013	13.55	0.0	0.3	-1.6	0.0	1013	13.48	0.0	0.1	0.1	0.20	0.05
11/10/21	08:00:00	60	259.3	0.4	0.0	1013	13.54	0.0	0.3	-1.7	0.0	1013	13.47	0.0	0.1	0.1	0.24	0.07
11/10/21	11:00:00	60	250.2	0.1	0.0	1013	13.57	0.0	0.1	-1.7	0.0	1013	13.61	0.0	0.1	0.0	0.04	0.00
11/10/21	12:00:00	60	100.1	21.3	0.0	1013	14.45	0.0	19.5	20.7	0.0	1013	14.49	0.0	20.9	19.3	0.22	0.06
11/10/21	13:00:00	60	97.5	10.3	0.0	1013	14.32	0.0	9.2	9.9	0.0	1013	14.38	0.0	10.9	9.9	-0.64	0.38
11/10/21	14:00:00	60	98.4	9.3	0.0	1013	14.30	0.0	8.3	9.0	0.0	1013	14.37	0.0	10.0	9.1	-0.75	0.53
11/10/21	15:00:00	60	231.7	0.5	0.0	1013	13.67	0.0	0.4	-1.2	0.0	1013	13.73	0.0	0.5	0.4	-0.01	0.00
11/10/21	16:00:00	60	248.4	0.1	0.0	1013	13.61	0.0	0.1	-1.8	0.0	1013	13.66	0.0	0.0	0.0	0.07	0.01
11/10/21	17:00:00	60	248.9	0.1	0.0	1013	13.60	0.0	0.1	-1.8	0.0	1013	13.67	0.0	0.0	0.0	0.08	0.01
11/10/21	18:00:00	60	249.8	0.1	0.0	1013	13.55	0.0	0.1	-1.6	0.0	1013	13.64	0.0	0.1	0.1	-0.02	0.00
11/10/21	19:00:00	60	246.9	0.1	0.0	1013	13.54	0.0	0.1	-1.7	0.0	1013	13.62	0.0	0.1	0.1	0.00	0.00
11/10/21	20:00:00	60	248.3	0.1	0.0	1013	13.56	0.0	0.1	-1.7	0.0	1013	13.63	0.0	0.1	0.1	0.01	0.00
11/10/21	21:00:00	60	250.5	0.1	0.0	1013	13.57	0.0	0.1	-1.7	0.0	1013	13.63	0.0	0.0	0.0	0.03	0.00
11/10/21	22:00:00	60	253.2	0.1	0.0	1013	13.57	0.0	0.1	-1.7	0.0	1013	13.63	0.0	0.0	0.0	0.04	0.00
11/10/21	23:00:00	60	251.3	0.1	0.0	1013	13.57	0.0	0.1	-1.7	0.0	1013	13.63	0.0	0.0	0.0	0.04	0.00
12/10/21	06:00:00	60	228.1	0.6	0.0	1013	13.63	0.0	0.5	-1.0	0.0	1013	13.72	0.0	0.7	0.6	-0.08	0.00
12/10/21	07:00:00	60	242.1	0.2	0.0	1013	13.54	0.0	0.2	-1.5	0.0	1013	13.61	0.0	0.3	0.2	-0.03	0.00
12/10/21	09:00:00	53	238.4	0.2	0.0	1013	13.53	0.0	0.2	-1.5	0.0	1013	13.61	0.0	0.2	0.2	-0.04	0.00
12/10/21	10:00:00	59	194.7	2.3	0.0	1013	13.81	0.0	1.9	1.7	0.0	1013	13.89	0.0	3.2	2.7	-0.78	0.58
12/10/21	11:00:00	60	113.5	7.5	0.0	1013	14.21	0.0	6.7	8.2	0.0	1013	14.27	0.0	9.2	8.2	-1.57	2.39
12/10/21	12:00:00	60	98.0	8.4	0.0	1013	14.27	0.0	7.5	9.5	0.0	1013	14.34	0.0	10.5	9.4	-1.94	3.69
12/10/21	13:00:00	60	98.9	7.7	0.0	1013	14.27	0.0	6.9	8.7	0.0	1013	14.35	0.0	9.8	8.8	-1.95	3.69
12/10/21	14:00:00	60	176.9	0.1	0.0	1013	13.93	0.0	0.1	-1.4	0.0	1013	14.02	0.0	0.3	0.2	-0.15	0.02

LAB Nº 00175 L

QAL2 , TARATURA E CONVALIDA AMS - METODO DI PROVA: UNI EN 14181:2015

Allegato al Rapporto di prova n. 2104111-045

Punto di emissione E3 da impianto a ciclo combinato TG3									
PARAMETRO: MONOSSIDO DI CARBONIO	Analizzatore ABB Uras 26								
Metodo del SME	continuo, NDIR								
Metodo di riferimento normalizzato (SRM)	UNI EN 15058:2017								
Valore limite di emissione (ELV) per condizioni normalizzate (0°C, 1013 hPa, gas secco, 15 % O ₂) - Media oraria	30 mg/Nm³ _{s,rif} O _{2,rif} (%): 15								
Requisiti per la percentuale relativa all'ELV (da D.Lgs. 46/2014) - Massima incertezza ammissibile	10 % ELV = 3 mg/Nm ³ _{s,rif}								

CA	MPIONAMEN	NTO	CONDIZIONI IMPIANTO		SIST	EMA DI RIFE	ERIMENTO (SRM)			SIST		SCOSTAMENTO					
Data	Ora	Durata	Produzione	CO	T	Р	O ₂	Umidità	CO	CO	Т	Р	O ₂	Umidità	CO	CO		
	(solare)		TG3	y i	ti	p _i	O <i>i</i>	hi	y _{i,s,rif}	X i	ti	p i	o _i	hi	Ŷ _i	$\hat{\mathbf{Y}}_{i,s,rif}$	$D_i = y_{i,s,rif} - \hat{Y}_{i,s,rif}$	$(D_i - D_{i,med})^2$
		min	MWe	mg/Nm ³	Ĵ	hPa	%	%	mg/Nm ³ _{s,rif}	mg/Nm ³	°C	hPa	%	%	mg/Nm ³	mg/Nm ³ _{s,rif}	mg/Nm ³ _{s,rif}	$(mg/Nm_{s,rif}^3)^2$
12/10/21	15:00:00	53	178.2	0.1	0.0	1013	13.94	0.0	0.1	-1.5	0.0	1013	14.03	0.0	0.2	0.2	-0.11	0.01
12/10/21	16:00:00	59	178.6	0.2	0.0	1013	13.94	0.0	0.2	-1.5	0.0	1013	14.04	0.0	0.2	0.2	0.00	0.00
12/10/21	17:00:00	60	247.6	0.2	0.0	1013	13.54	0.0	0.1	-1.6	0.0	1013	13.64	0.0	0.1	0.1	0.06	0.01
12/10/21	18:00:00	60	249.2	0.2	0.0	1013	13.52	0.0	0.1	-1.6	0.0	1013	13.62	0.0	0.1	0.1	0.06	0.01
12/10/21	19:00:00	60	248.5	0.2	0.0	1013	13.51	0.0	0.2	-1.6	0.0	1013	13.61	0.0	0.1	0.1	0.08	0.01
12/10/21	20:00:00	60	248.0	0.2	0.0	1013	13.52	0.0	0.2	-1.6	0.0	1013	13.61	0.0	0.1	0.1	0.06	0.01
12/10/21	21:00:00	53	248.0	0.2	0.0	1013	13.52	0.0	0.2	-1.6	0.0	1013	13.61	0.0	0.1	0.1	0.08	0.01
12/10/21	22:00:00	59	234.3	0.2	0.0	1013	13.62	0.0	0.2	-1.2	0.0	1013	13.69	0.0	0.5	0.4	-0.26	0.06
13/10/21	05:00:00	60	116.3	9.2	0.0	1013	14.24	0.0	8.1	7.3	0.0	1013	14.30	0.0	8.4	7.6	0.58	0.37
13/10/21	06:00:00	60	221.3	2.0	0.0	1013	13.67	0.0	1.6	-0.1	0.0	1013	13.75	0.0	1.6	1.3	0.32	0.12
13/10/21	07:00:00	60	257.7	0.6	0.0	1013	13.48	0.0	0.4	-1.6	0.0	1013	13.57	0.0	0.2	0.1	0.30	0.11
13/10/21	09:00:00	53	251.1	0.6	0.0	1013	13.52	0.0	0.4	-1.5	0.0	1013	13.60	0.0	0.2	0.2	0.28	0.09
13/10/21	10:00:00	59	202.9	0.6	0.0	1013	13.75	0.0	0.5	-1.4	0.0	1013	13.82	0.0	0.3	0.3	0.25	0.07
13/10/21	11:00:00	60	247.5	0.5	0.0	1013	13.51	0.0	0.4	-1.6	0.0	1013	13.59	0.0	0.1	0.1	0.27	0.09
13/10/21	12:00:00	60	89.3	25.1	0.0	1013	14.54	0.0	23.3	23.0	0.0	1013	14.56	0.0	23.1	21.5	1.81	3.38
13/10/21	13:00:00	60	97.1	12.0	0.0	1013	14.31	0.0	10.7	10.4	0.0	1013	14.38	0.0	11.3	10.2	0.49	0.26
13/10/21	14:00:00	60	114.1	9.4	0.0	1013	14.20	0.0	8.3	7.7	0.0	1013	14.28	0.0	8.8	7.9	0.43	0.20
13/10/21	15:00:00	53	246.3	0.4	0.0	1013	13.54	0.0	0.3	-1.6	0.0	1013	13.61	0.0	0.1	0.1	0.23	0.06
13/10/21	16:00:00	59	247.0	0.1	0.0	1013	13.58	0.0	0.1	-1.6	0.0	1013	13.64	0.0	0.1	0.1	-0.02	0.00
13/10/21	17:00:00	60	247.8	0.1	0.0	1013	13.57	0.0	0.1	-1.7	0.0	1013	13.64	0.0	0.1	0.1	0.00	0.00
13/10/21	18:00:00	60	250.4	0.1	0.0	1013	13.58	0.0	0.1	-1.7	0.0	1013	13.65	0.0	0.1	0.1	0.02	0.00
13/10/21	19:00:00	60	249.7	0.1	0.0	1013	13.53	0.0	0.1	-1.6	0.0	1013	13.61	0.0	0.1	0.1	-0.04	0.00

LAB Nº 00175 L

QAL2 , TARATURA E CONVALIDA AMS - METODO DI PROVA: UNI EN 14181:2015

Allegato al Rapporto di prova n. 2104111-045

EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

Punto di emissione E3 da impianto a ciclo combinato TG3							
PARAMETRO: MONOSSIDO DI CARBONIO	Analizzatore ABB Uras 26						
Metodo del SME	continuo, NDIR						
Metodo di riferimento normalizzato (SRM)	UNI EN 15058:2017						
Valore limite di emissione (ELV) per condizioni normalizzate (0°C, 1013 hPa, gas secco, 15 % O ₂) - Media oraria	30 mg/Nm³ _{s,rif} O _{2·rif} (%): 15						
Requisiti per la percentuale relativa all'ELV (da D.Lgs. 46/2014) - Massima incertezza ammissibile	10 % ELV = 3 $mg/Nm_{s,rif}^3$						

CA	MPIONAMEN	NTO	CONDIZIONI IMPIANTO		SISTEMA DI RIFERIMENTO (SRM)					SISTEMA DI MISURA DELLE EMISSIONI (SME)						SCOSTAMENTO		
Data	Ora	Durata	Produzione	CO	T	Р	O ₂	Umidità	CO	CO	T	Р	O ₂	Umidità	CO	CO		
	(solare)		TG3	Уi	ti	p i	O <i>i</i>	hi	y i,s,rif	X i	ti	p i	0 <i>i</i>	hi	Ŷ _i	$\hat{\mathbf{Y}}_{i,s,rif}$	$D_i = y_{i,s,rif} - \hat{Y}_{i,s,rif}$	$(D_i - D_{i,med})^2$
		min	MWe	mg/Nm ³	°C	hPa	%	%	mg/Nm ³ _{s,rif}	mg/Nm ³	°C	hPa	%	%	mg/Nm ³	mg/Nm ³ _{s,rif}	mg/Nm ³ _{s,rif}	$(mg/Nm_{s,rif}^3)^2$
13/10/21	20:00:00	58	250.9	0.1	0.0	1013	13.55	0.0	0.1	-1.6	0.0	1013	13.61	0.0	0.1	0.1	-0.04	0.00
				Media y i						Media x ;							$D_{i,med}$ = Media D_i	$\sum (D_i - D_{i,med})^2$
				2.6						1.1							-0.02	16.59

N 51

*y*_{i,s,rif,max-}*y*_{i,s,rif,min} 23.3 mg/Nm³_{s,rif}

y,s,rif,max*y,s,rif,min
>
massima incertezza ammissibile (10
% ELV = 3 mg/Nm³)

Elaborazione tipo A

F	FUNZIONE DI TARATURA								
$\hat{\mathbf{Y}}_i =$	0.932	* x _i +	1.632						
	CAMPO DI VALIDITA'								
0.0	≤Ŷ	_{i,s,rif} ≤	23.68						

TEST VA	TEST VARIABILITA'								
S _D 0.58									
k _v	0.9885								
$\sigma_0 = PE/1.96$	1.53								
$\sigma_0 k_v$	1.51								
$S_D < \sigma_0 k_v \implies$	esito test positivo								

	DI CONFIDENZA IENTALE
Ic (mg/Nm ³)	1.14
Ic (% ELV)	3.81

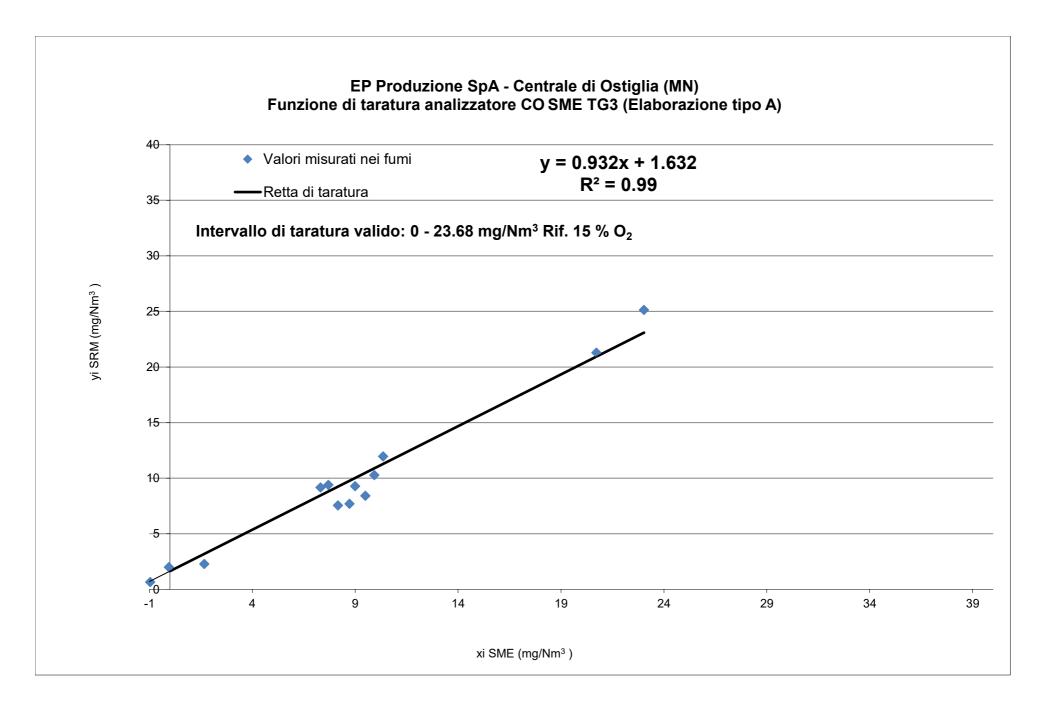
LEGENDA:

N numero di campioni accoppiati nelle misurazioni parallele

y i i-esimo valore del SRM alle condizioni normali (273 K e 1013 hPa), su base secca

x i i-esimo valore dello SME alle condizioni normali (273 K e 1013 hPa), su base secca

y i.s.rif i-esimo valore del SRM alle condizioni normali (273 K e 1013 hPa), su base secca, con riferimento al 15 % di O 2


 \hat{Y}_i i-esimo valore tarato dello SME alle condizioni normali (273 K e 1013 hPa), su base secca

Ŷ_{IS rif} i-esimo valore tarato dello SME alle condizioni normali (273 K e 1013 hPa), su base secca, con riferimento al 15 % di O 2

S_D deviazione standard degli scostamenti D_i

σ₀ incertezza fornita dal legislatore espressa come % del ELV (PE con fattore di copertura K=1,96 corrispondente ad un livello di fiducia del 95 %)

 k_v valori di una prova χ^2 con un valore β del 50 %

LAB N° 00175 L

QAL2 , TARATURA E CONVALIDA AMS - METODO DI PROVA: UNI EN 14181:2015 Allegato al Rapporto di prova n. 2104111-045

EP Produzione S.p.A.

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Punto di emissione E3 da impianto a ciclo combinato TG3					
PARAMETRO: OSSIGENO	Analizzatore ABB - Magnos 206				
Metodo del SME	continuo, paramagnetico				
Metodo di riferimento normalizzato (SRM)	UNI EN 14789:2017				
Valore limite applicabile "ELV" (Rif. ISPRA/ARPA/APPA: Guida Tecnica per i gestori dei Sistemi di Monitoraggio in continuo delle Emissioni in atmosfera, aggiornamento 2012)	21 %				
Intervallo di confodenza al 95 % (Rif. ISPRA/ARPA/APPA: Guida Tecnica per i gestori dei Sistemi di Monitoraggio in continuo delle Emissioni in atmosfera, aggiornamento 2012)	10 % ELV = 2.1 %				

	CAMPIONAMENTO		CONDIZIONI IMPIANTO	SISTEMA DI RIFERIMENTO (SRM)	SISTEMA DI MISURA DELLE E	MISSIONI (SME)	SCOSTA	MENTO
Data	Ora	Durata	Produzione	O ₂	O_2	O ₂		
	(solare)		TG3	У,	X _i	Ŷ _i	$D_i = y_{i,s,rif} - \hat{Y}_{i,s,rif}$	$(D_i - D_{i,med})^2$
		min	MWe	%	%	%	mg/Nm ³ _{s,rif}	(mg/Nm ³ _{s,rif}) ²
11/10/21	02:00:00	60	230.5	13.56	13.49	13.43	0.13	0.02
11/10/21	03:00:00	53	195.4	13.60	13.53	13.48	0.12	0.02
11/10/21	04:00:00	56	222.4	13.57	13.51	13.45	0.11	0.01
11/10/21	05:00:00	60	230.1	13.54	13.47	13.42	0.12	0.01
11/10/21	06:00:00	60	259.2	13.54	13.48	13.43	0.12	0.01
11/10/21	07:00:00	60	244.1	13.55	13.48	13.43	0.13	0.02
11/10/21	08:00:00	60	259.3	13.54	13.47	13.42	0.12	0.01
11/10/21	11:00:00	60	250.2	13.57	13.61	13.56	0.01	0.00
11/10/21	12:00:00	60	100.1	14.45	14.49	14.43	0.02	0.00
11/10/21	13:00:00	60	97.5	14.32	14.38	14.33	-0.01	0.00
11/10/21	14:00:00	60	98.4	14.30	14.37	14.31	-0.01	0.00
11/10/21	15:00:00	60	231.7	13.67	13.73	13.68	-0.01	0.00
11/10/21	16:00:00	60	248.4	13.61	13.66	13.61	0.00	0.00
11/10/21	17:00:00	60	248.9	13.60	13.67	13.61	-0.01	0.00
11/10/21	18:00:00	60	249.8	13.55	13.64	13.58	-0.03	0.00
11/10/21	19:00:00	60	246.9	13.54	13.62	13.57	-0.03	0.00
11/10/21	20:00:00	60	248.3	13.56	13.63	13.58	-0.02	0.00
11/10/21	21:00:00	60	250.5	13.57	13.63	13.58	-0.01	0.00
11/10/21	22:00:00	60	253.2	13.57	13.63	13.58	-0.01	0.00
11/10/21	23:00:00	60	251.3	13.57	13.63	13.57	0.00	0.00
12/10/21	06:00:00	60	228.1	13.63	13.72	13.66	-0.04	0.00
12/10/21	07:00:00	60	242.1	13.54	13.61	13.56	-0.02	0.00
12/10/21	09:00:00	53	238.4	13.53	13.61	13.55	-0.02	0.00
12/10/21	10:00:00	59	194.7	13.81	13.89	13.83	-0.03	0.00
12/10/21	11:00:00	60	113.5	14.21	14.27	14.21	-0.01	0.00
12/10/21	12:00:00	60	98.0	14.27	14.34	14.28	-0.02	0.00
12/10/21	13:00:00	60	98.9	14.27	14.35	14.29	-0.02	0.00
12/10/21	14:00:00	60	176.9	13.93	14.02	13.97	-0.04	0.00
12/10/21	15:00:00	53	178.2	13.94	14.03	13.98	-0.04	0.00

QAL2 , TARATURA E CONVALIDA AMS - METODO DI PROVA: UNI EN 14181:2015 Allegato al Rapporto di prova n. 2104111-045

EP Produzione S.p.A.

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

LAB N° 00175 L	ioooo oougiiu (iiii)					
Punto di emissione E3 da impianto a ciclo combinato TG3						
PARAMETRO: OSSIGENO	Analizzatore ABB - Magnos 206					
Metodo del SME	continuo, paramagnetico					
Metodo di riferimento normalizzato (SRM)	UNI EN 14789:2017					
Valore limite applicabile "ELV" (Rif. ISPRA/ARPA/APPA: Guida Tecnica per i gestori dei Sistemi di Monitoraggio in continuo delle Emissioni in atmosfera, aggiornamento 2012)	21 %					
Intervallo di confodenza al 95 % (Rif. ISPRA/ARPA/APPA: Guida Tecnica per i gestori dei Sistemi di Monitoraggio in continuo delle Emissioni in atmosfera, aggiornamento 2012)	10 % ELV = 2.1 %					

	CAMPIONAMENTO		CONDIZIONI IMPIANTO	SISTEMA DI RIFERIMENTO (SRM)	SISTEMA DI MISURA DELLE EMISSIONI (SME)		SCOSTAMENTO	
Data	Ora	Durata	Produzione	O ₂	O_2	O ₂		
	(solare)		TG3	У,	x _i	Ŷ _i	$D_i = y_{i,s,rif} - \hat{Y}_{i,s,rif}$	$(D_i - D_{i,med})^2$
		min	MWe	%	%	%	mg/Nm ³ _{s,rif}	(mg/Nm ³ _{s,rif}) ²
12/10/21	16:00:00	59	178.6	13.94	14.04	13.98	-0.03	0.00
12/10/21	17:00:00	60	247.6	13.54	13.64	13.59	-0.05	0.00
12/10/21	18:00:00	60	249.2	13.52	13.62	13.57	-0.05	0.00
12/10/21	19:00:00	60	248.5	13.51	13.61	13.56	-0.05	0.00
12/10/21	20:00:00	60	248.0	13.52	13.61	13.56	-0.04	0.00
12/10/21	21:00:00	53	248.0	13.52	13.61	13.56	-0.04	0.00
12/10/21	22:00:00	59	234.3	13.62	13.69	13.64	-0.01	0.00
13/10/21	05:00:00	60	116.3	14.24	14.30	14.24	0.00	0.00
13/10/21	06:00:00	60	221.3	13.67	13.75	13.70	-0.03	0.00
13/10/21	07:00:00	60	257.7	13.48	13.57	13.52	-0.03	0.00
13/10/21	09:00:00	53	251.1	13.52	13.60	13.54	-0.02	0.00
13/10/21	10:00:00	59	202.9	13.75	13.82	13.77	-0.02	0.00
13/10/21	11:00:00	60	247.5	13.51	13.59	13.54	-0.03	0.00
13/10/21	12:00:00	60	89.3	14.54	14.56	14.51	0.04	0.00
13/10/21	13:00:00	60	97.1	14.31	14.38	14.32	-0.01	0.00
13/10/21	14:00:00	60	114.1	14.20	14.28	14.22	-0.03	0.00
13/10/21	15:00:00	53	246.3	13.54	13.61	13.56	-0.02	0.00
13/10/21	16:00:00	59	247.0	13.58	13.64	13.59	-0.01	0.00
13/10/21	17:00:00	60	247.8	13.57	13.64	13.59	-0.02	0.00
13/10/21	18:00:00	60	250.4	13.58	13.65	13.60	-0.02	0.00
13/10/21	19:00:00	60	249.7	13.53	13.61	13.55	-0.03	0.00

QAL2 , TARATURA E CONVALIDA AMS - METODO DI PROVA: UNI EN 14181:2015 Allegato al Rapporto di prova n. 2104111-045

EP Produzione S.p.A.

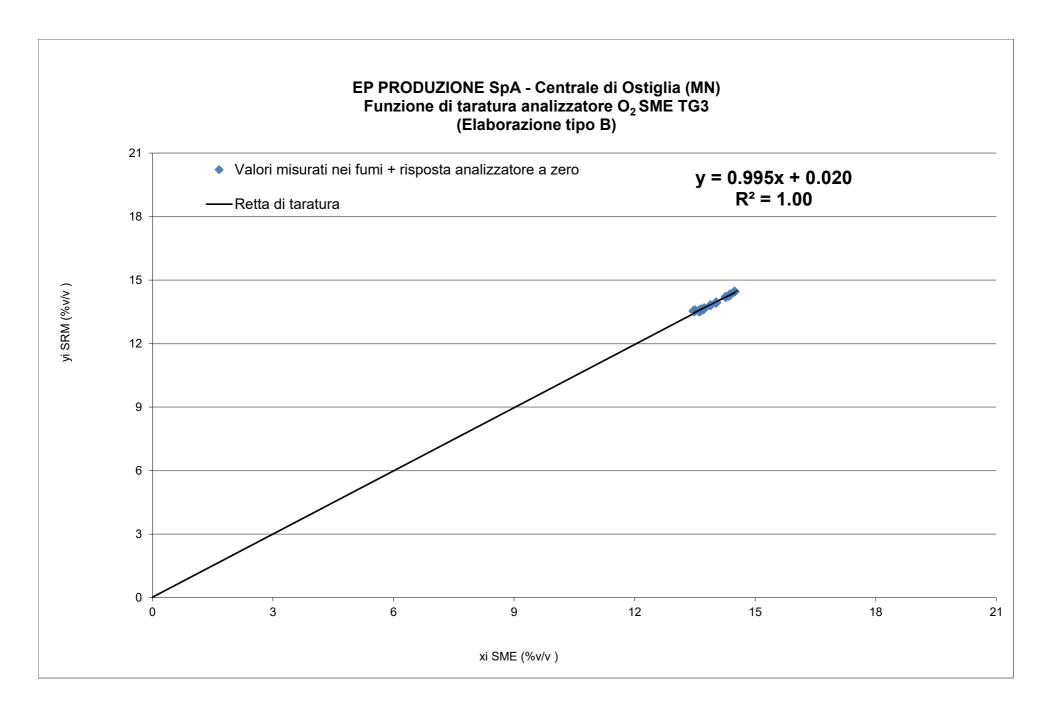
Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

"John hill	LAB N° 0	00175 L					46035 Ostiglia (MN)	
			Don't all and all and	FO de la contrata de del constitue de S				
		DADAMETRO, OCCIOEN		E3 da impianto a ciclo combinato				
		PARAMETRO: OSSIGEN	10			Analizzatore ABB - Mag	•	
Metodo del SME						continuo, paramagn		
Metodo di riferimento normaliz	, ,					UNI EN 14789:20	17	
Valore limite applicabile "ELV" (Rif. ISPRA/ARPA/APPA: Guida Tecnica per i gestori dei Sistemi di Monitoraggio in continuo delle Emissioni in atmosfera, aggiornamento 2012)					2	1 %		
Intervallo di confodenza al 95 aggiornamento 2012)	% (Rif. ISPRA/ARPA/APP/	A: Guida Tecnica per i gestori dei Sis	stemi di Monitoraggio in continu	io delle Emissioni in atmosfera,	1	0 % ELV =	2.1	%
	CAMPIONAMENTO		CONDIZIONI IMPIANTO	SISTEMA DI RIFERIMENTO (SRM)	SISTEMA DI MISURA DELLE	EMISSIONI (SME)	SCOSTA	AMENTO
Data	Ora	Durata	Produzione	O ₂	O ₂	O ₂		
	(solare)		TG3	y _i	X _i	Ŷ _i	$D_i = y_{i,s,rif} - \hat{Y}_{i,s,rif}$	$(D_i - D_{i,med})^2$
		min	MWe	%	%	%	mg/Nm ³ _{s.rif}	$(mg/Nm_{s,rif}^3)^2$
13/10/21	20:00:00	58	250.9	13.55	13.61	13.56	-0.01	0.00
				Media y _i	Media x _i		D _{i,med} = Media D _i	$\sum (D_i - D_{i,med})^2$
				13.74	13.79		0.00	0.13
N	51			W W - :			TEST VAF	RIABILITA'
У i,max- У i,min	1.1	%		y _{i,max} -y _{i,min} <			S _D	0.05
V _{i,min}	13.5	%		massima incertezza ammissibile	Elaborazione		k _v	0.9885
15 % ELV	3.2	%		(10 % ELV)	tipo B		$\sigma_0 = PE/1.96$	1.07
Z	-0.02	%		e			$\sigma_0 k_v$	1.06
				$y_{i,s,rif,min}$ > 15 % ELV			$S_D < \sigma_0 k_v \implies$	esito test positivo

	FUNZIO	NE DI TARATURA	
$\hat{\mathbf{Y}}_i =$	0.995	*x; +	0.020

LEGENDA:

N numero di campioni accoppiati nelle misurazioni parallele


Z scostamento tra "lettura zero" dello SME e "zero"

i-esimo valore del SRM alle condizioni normali (273 K e 1013 hPa), su base secca
i-esimo valore dello SME alle condizioni normali (273 K e 1013 hPa), su base secca
i-esimo valore tarato dello SME alle condizioni normali (273 K e 1013 hPa), su base secca

S_D deviazione standard degli scostamenti D_i

σ₀ incertezza fornita dal legislatore espressa come % del ELV (PE con fattore di copertura K=1,96 corrispondente ad un livello di fiducia del 95 %)

 k_v valori di una prova χ^2 con un valore β del 50 %

EP PRODUZIONE S.p.A.

Centrale di Ostiglia

ALLEGATO N. 3

VERIFICHE DI LINEARITA' STRUMENTALE – EFFICIENZA CONVERTITORI

RAPPORTI DI PROVA N.

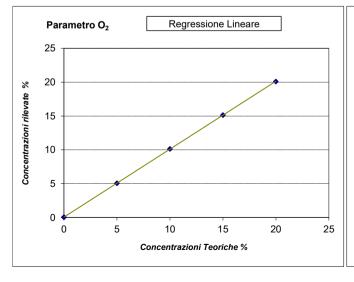
2104111-008 (TG1) - 2104111-027 (TG2) - 2104111-046 (TG3) - 2104111-014 (SCORTA)

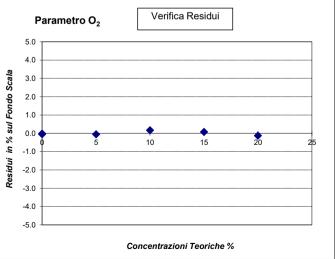
Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610131

Rapporto di prova n. 2104111-014

Prova di linearità - Metodo di prova: UNI EN 14181:2015 (Annex B)

EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)


LAB № 00175 L						
POSTAZIONE SCORTA		Marca - Modello analizzatore:		Gas analizzato	O ₂	
		Al	BB - Magnos 206 3.351868.1	Campo di misura	0 - 25	%
Standard n°	101937	Cara	aria di atabilità atandard. 12/02/2022	Data della verifica	: 29/09/2021	
Concentrazione	19.99 %	Garanzia di stabilità standard: 12/02/2023		Orario della verifica	: 10:10 - 10:40	


Modalit	à misure	Valori di Concentrazione			
Livello di Concentrazione	Ripetizione misura	Concentrazione rilevata	Concentrazione rilevata media	Concentrazione teorica	Concentrazione teorica derivata da equazione
С	m _c	Yc,	Y _c	\mathbf{X}_{i}	X _i (corr.)
		%	%	%	%
	а	0.04			
0	b	0.04	0.04	0.00	0.05
	С	0.05			
	а	5.06			
1	b	5.06	5.06	5.00	5.08
	С	5.07			
	а	10.14			
2	b	10.14	10.14	10.00	10.10
	С	10.14			
	а	15.14			
3	b	15.14	15.14	15.00	15.12
	С	15.14			
	а	20.10			
4	b	20.10	20.10	19.99	20.13
	С	20.10			
	а	0.05			
0	b	0.05	0.05	0.00	0.05
	С	0.05			

Caratteristiche Diluizione					
Livello di Concentrazione	Fattore di diluizione	Concentrazione teorica in % sul F.S.			
С		%			
0	0.0000	0.0			
1	0.2000	20.0			
2	0.4000	40.0			
3	0.6000	60.0			
4	0.8000	80.0			

Parametri regressione lineare					
Intercetta A	Pendenza B	Correlazione R			
0.0546	1.0044	0.99999			

Errori strumentali				
Livello di	Residuo	Residuo		
Concentrazione	in %	in % sul F.S.		
С	dc	dc _{rel}		
0	-0.01	-0.04		
1	-0.01	-0.05		
2	0.04	0.17		
3	0.02	0.08		
4	-0.03	-0.13		
0	0.00	-0.02		
Criterio di ac	cettabilità: - 5%	≤ dc _{rel} ≤ + 5%		

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610131

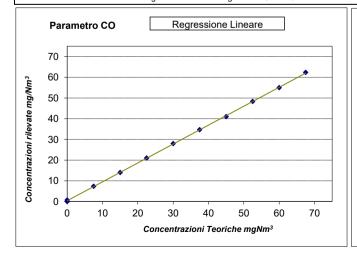
LAB N° 00175 L

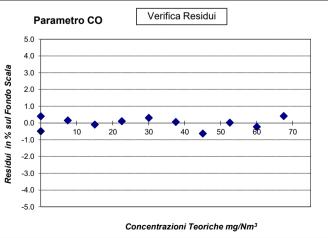
Rapporto di prova n. 2104111-014

Prova di linearità - Metodo di prova: UNI EN 14181:2015 (Annex B)

EP Produzione S.p.A.

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)


POSTAZIONE SCORTA		Marca - Modello analizzatore: ABB - Uras 26 3.351871.1	Gas analizzato Campo di misura	CO 0 - 75 mg/Nm ³
Standard n°	083313	Garanzia di stabilità standard: 01/10/2021	Data della verifica	: 29/09/2021
Concentrazione	103 mg/Nm ³	Garanzia di Stabilita Standard. 01/10/2021	Orario della verifica	: 08:40 - 09:30


Modalità misure			Valori di Coi	ncentrazione	
Livello di Concentrazione	Ripetizione misura	Concentrazione rilevata	Concentrazione rilevata media	Concentrazione teorica	Concentrazione teorica derivata da equazione
i	m _c	Y _{ci}	Y _c	X_{i}	X _i (corr.)
		mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³
	а	0.00			
0	b	0.00	0.00	0.00	0.37
	С	0.00			
	а	7.0			
1	b	8.0	7.3	7.5	7.2
	С	7.0			
	а	14.0			
2	b	14.0	14.0	15.0	14.1
	С	14.0			
	а	21.0		22.5	20.9
3	b	21.0	21.0		
	С	21.0			
	а	28.0		30.0	27.8
4	b	28.0	28.0		
	С	28.0			
	а	35.0		37.5	34.6
5	b	34.0	34.7		
	С	35.0			
	а	41.0		45.0	41.5
6	b	41.0	41.0		
	С	41.0			
	а	48.0			
7	b	48.0	48.3	52.5	48.3
	С	49.0]		
	a	55.0	55.0 60.0		
8	b	55.0		60.0	55.2
	С	55.0			
	а	62.0			-
9	b	62.0	62.3	67.5	62
	c 63.0	1			
	а	1.00			
0	b	1.00	0.67	0.00	0.37
	С	0.00	1		
	Verifiche es	eguite con diluitor	e di gas HovaCAI	L N 312-MF	

Caratteristiche Diluizione				
Livello di Concentrazione	Fattore di diluizione	Concentrazione teorica in % sul F.S.		
i		%		
0	0.0000	0.0		
1	0.1000	10.0		
2	0.2000	20.0		
3	0.3000	30.0		
4	0.4000	40.0		
5	0.5000	50.0		
6	0.6000	60.0		
7	0.7000	70.0		
8	0.8000	80.0		
9	0.9000	90.0		

Param	Parametri regressione lineare				
Intercetta	Pendenza	Correlazione			
Α	В	R			
0.3694	0.9134	0.99981			

Errori strumentali					
Livello di	Residuo	Residuo			
Concentrazione	in mg/Nm ³	in % sul F.S.			
i	dc	dc _{rel}			
0	-0.37	-0.49			
1	0.11	0.15			
2	-0.07	-0.09			
3	0.08	0.11			
4	0.23	0.31			
5	0.05	0.06			
6	-0.47	-0.63			
7	0.01	0.01			
8	-0.17	-0.23			
9	0.31	0.41			
0	0.30	0.40			
Criterio di ac	Criterio di accettabilità: - 5% ≤ dc _{rel} ≤ + 5%				

Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610131

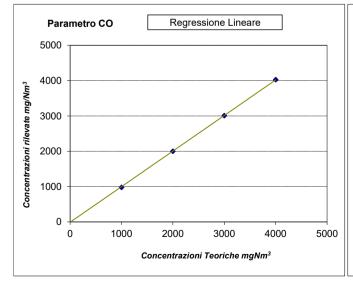
LAB Nº 00175 L

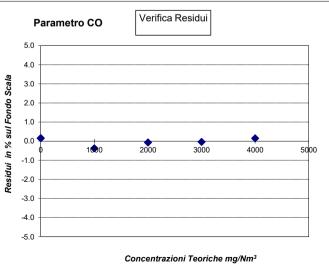
Rapporto di prova n. 2104111-014

Prova di linearità - Metodo di prova: UNI EN 14181:2015 (Annex B)

EP Produzione S.p.A.

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)


POSTAZIONE SCORTA		Marca - Modello analizzatore: ABB - Uras 26 3.351871.1	Gas analizzato Campo di misura	CO 0 - 5000 mg/Nm ³
Standard n°	012583	Garanzia di stabilità standard: 18/02/2024	Data della verifica	: 29/09/2021
Concentrazione	5084 mg/Nm ³	Garanzia di Stabilita Standard. 10/02/2024	Orario della verifica	: 09:30 - 10:10


Modalità misure			Valori di Coi	ncentrazione	
Livello di Concentrazione	Ripetizione misura	Concentrazione rilevata	Concentrazione rilevata media	Concentrazione teorica	Concentrazione teorica derivata da equazione
С	m _c	Yc,,	Y _c	X _i	X _i (corr.)
		mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³
	а	-1.00			
0	b	-1.00	-1.00	0.00	-9.00
	С	-1.00			
	а	980			
1	b	980	980	1000	999
	С	980			
	а	2003			
2	b	2003	2003	2000	2006
	С	2003			
	а	3012			
3	b	3012	3012	3000	3014
	С	3012			
	а	4029			
4	b	4029	4029	4000	4021
	С	4029			
	а	-1.00			
5	b	-1.00	-1.00	0.00	-9.00
	С	-1.00			

Caratteristiche Diluizione				
Livello di Concentrazione	Fattore di diluizione	Concentrazione teorica in % sul F.S.		
С		%		
0	0.0000	0.0		
1	0.2000	20.0		
2	0.4000	40.0		
3	0.6000	60.0		
4	0.8000	80.0		

Parametri regressione lineare				
Intercetta A	Pendenza B	Correlazione R		
-9.0000	1.0076	0.99998		

Errori strumentali						
Livello di Concentrazione	Residuo in mg/Nm ³	Residuo in % sul F.S.				
С	dc	dc _{rel}				
0	8.00	0.16				
1	-18.60	-0.37				
2	-3.20	-0.06				
3	-1.80	-0.04				
4	7.60	0.15				
5	8.00	0.16				
Criterio di acc	Criterio di accettabilità: - 5% ≤ dc _{rel} ≤ + 5%					

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610131

LAB Nº 00175 L

Rapporto di prova n. 2104111-014

Prova di linearità - Metodo di prova: UNI EN 14181:2015 (Annex B)

EP Produzione S.p.A.

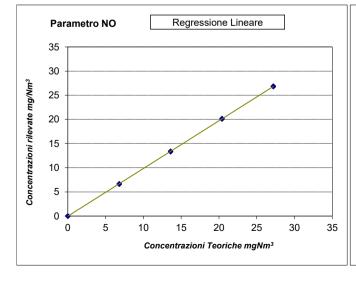
Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

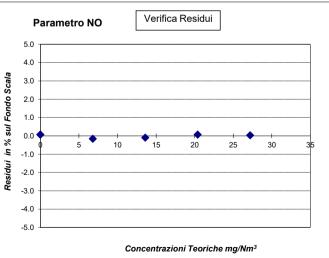
Marca - Modello analizzatore: **POSTAZIONE SCORTA** ABB - LIMAS 11 3.351868.1 239343

NO Gas analizzato

Campo di misura 0 - 34 mg/Nm³

Data della verifica


Standard n° : 29/09/2021 Garanzia di stabilità standard: 27/07/2022 Orario della verifica Concentrazione 52.4 mg/Nm³ : 08:05 - 08:40


Modalit	à misure		Valori di Cor	ncentrazione	
Livello di Concentrazione	Ripetizione misura	Concentrazione rilevata	Concentrazione rilevata media	Concentrazione teorica	Concentrazione teorica derivata da equazione
С	m _c	Yc,,	Y _c	X _i	X _i (corr.)
		mg/Nm³	mg/Nm ³	mg/Nm³	mg/Nm ³
	а	0.00			
0	b	0.00	0.00	0.00	-0.03
	С	0.00			
	а	6.6			
1	b	6.7	6.6	6.8	6.7
	С	6.6			
	а	13.4			
2	b	13.4	13.4	13.6	13.4
	С	13.3			
	а	20.2			
3	b	20.1	20.1	20.4	20.1
	С	20.1			
	а	26.8			
4	b	26.9	26.8	27.2	26.8
	С	26.8			
	а	0.00			
5	b	0.00	0.00	0.00	-0.03
	С	0.00			

Caratteristiche Diluizione			
Livello di Concentrazione	Fattore di diluizione	Concentrazione teorica in % sul F.S.	
С		%	
0	0.0000	0.0	
1	0.2000	20.0	
2	0.4000	40.0	
3	0.6000	60.0	
4	0.8000	80.0	

Parametri regressione lineare				
Intercetta A	Pendenza B	Correlazione R		
-0.0250	0.9870	0.99999		

Errori strumentali				
Livello di Concentrazione	Residuo in mg/Nm ³	Residuo in % sul F.S.		
С	dc	dc _{rei}		
0	0.03	0.07		
1	-0.05	-0.16		
2	-0.03	-0.09		
3	0.02	0.07		
4	0.01	0.03		
5	0.03	0.07		
Criterio di accettabilità: - 5% ≤ dc _{rel} ≤ + 5%				

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610131

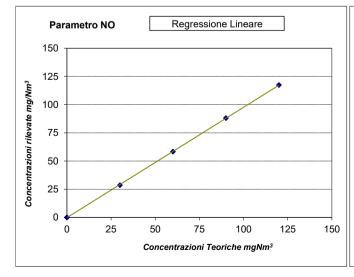
LAB N° 00175 L

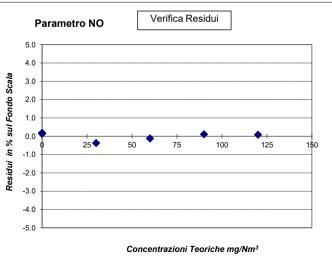
Rapporto di prova n. 2104111-014

Prova di linearità - Metodo di prova: UNI EN 14181:2015 (Annex B)

EP Produzione S.p.A.

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

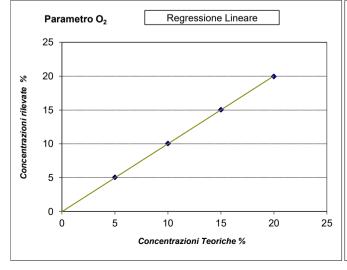

POSTAZIONE SCORTA		Marca - Modello analizzatore: ABB - LIMAS 11 3.351868.1	Gas analizzato Campo di misura	NO 0 - 150 mg/Nm³
Standard n°	260657	Garanzia di stabilità standard: 27/01/2023	Data della verifica	: 29/09/2021
Concentrazione	201 mg/Nm ³	Garanzia di Stabilita Standard. 27/01/2023	Orario della verifica	: 10:40 - 11:10

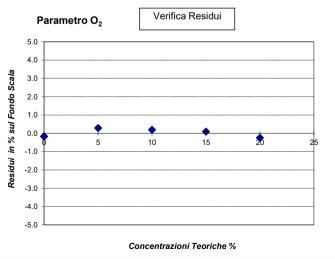

Modalit	à misure	Valori di Concentrazione			
Livello di Concentrazione	Ripetizione misura	Concentrazione rilevata	Concentrazione rilevata media	Concentrazione teorica	Concentrazione teorica derivata da equazione
С	m _c	Yc,,	Y _c	X _i	X _i (corr.)
		mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³
	а	0.00			
0	b	0.00	0.00	0.00	-0.20
	С	0.00			
	а	28.6			
1	b	28.6	28.6	30.0	29.2
	С	28.6			
	а	58.3			
2	b	58.3	58.3	60.0	58.5
	С	58.4			
	а	88.1			
3	b	88.0	88.0	90.0	87.9
	С	88.0			
	a	117.4			
4	b	117.3	117.4	120.0	117.2
	С	117.4			
	a	0.00			
5	b	0.10	0.07	0.00	-0.20
	С	0.10			
	Verifiche es	eguite con diluitor	e di gas HovaCAI	L N 312-MF	

Caratteristiche Diluizione				
Livello di Concentrazione	Fattore di diluizione	Concentrazione teorica in % sul F.S.		
С		%		
0	0.0000	0.0		
1	0.2000	20.0		
2	0.4000	40.0		
3	0.6000	60.0		
4	0.8000	80.0		

Parametri regressione lineare			
Intercetta A	Pendenza B	Correlazione R	
-0.2042	0.9788	0.99998	

Errori strumentali				
Livello di Concentrazione	Residuo in mg/Nm ³	Residuo in % sul F.S.		
С	dc	dc _{rel}		
0	0.20	0.14		
1	-0.56	-0.37		
2	-0.19	-0.12		
3	0.15	0.10		
4	0.12	0.08		
5	0.27	0.18		
Criterio di ac	cettabilità: - 5%	≤ dc _{rel} ≤ + 5%		


Prova di linearità - Metodo di prova: UNI EN 14181:2015 (Annex B) EP Produzione S.p.A. REDIA Rapporto di prova n. Strada Statale Abetone Brennero Km 239 2104111-008 46035 Ostiglia (MN) LAB Nº 00175 L O2 Gas analizzato Marca - Modello analizzatore: **POSTAZIONE SME TG1** ABB - Magnos 206 3.351871.1 Campo di misura 0 - 25 % 101937 Standard n° Data della verifica : 28/09/2021 Garanzia di stabilità standard: 12/02/2023 Orario della verifica Concentrazione 19.99 % : 08:40 -09:10


Modalit	à misure		Valori di Coi	ncentrazione	
Livello di Concentrazione	Ripetizione misura	Concentrazione rilevata	Concentrazione rilevata media	Concentrazione teorica	Concentrazione teorica derivata da equazione
С	m _c	Yc,	Y _c	\mathbf{X}_{i}	X _i (corr.)
		%	%	%	%
	а	-0.07			
0	b	-0.07	-0.07	0.00	-0.03
	С	-0.07			
	а	5.06			
1	b	5.06	5.06	5.00	4.99
	С	5.06			
	а	10.05			
2	b	10.05	10.05	10.00	10.00
	С	10.05			
	а	15.04			
3	b	15.04	15.04	15.00	15.02
	С	15.04			
	а	19.96			
4	b	19.96	19.96	19.99	20.02
	С	19.96			
	а	-0.07			
0	b	-0.07	-0.07	0.00	-0.03
	С	-0.07			
	Verifiche es	eguite con diluitor	e di gas HovaCAI	L N 312-MF	

Caratteristiche Diluizione				
Livello di Concentrazione	Fattore di diluizione	Concentrazione teorica in % sul F.S.		
С		%		
0	0.0000	0.0		
1	0.2000	20.0		
2	0.4000	40.0		
3	0.6000	60.0		
4	0.8000	80.0		

Parametri regressione lineare			
Intercetta A	Pendenza B	Correlazione R	
-0.0275	1.0029	0.99998	

Errori strumentali				
Livello di Concentrazione	Residuo in %	Residuo in % sul F.S.		
С	dc	dc _{rel}		
0	-0.04	-0.17		
1	0.07	0.29		
2	0.05	0.19		
3	0.02	0.10		
4	-0.06	-0.24		
0	-0.04	-0.17		
Criterio di ac	cettabilità: - 5%	≤ dc _{rel} ≤ + 5%		

Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610131

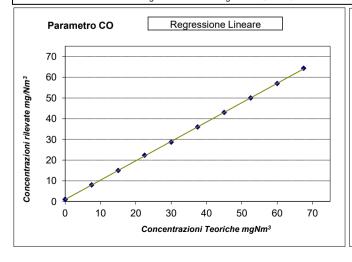
LAB N° 00175 L

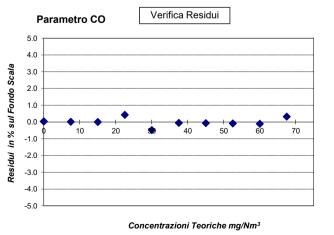
Rapporto di prova n. 2104111-008

Prova di linearità - Metodo di prova: UNI EN 14181:2015 (Annex B)

EP Produzione S.p.A.

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)


POSTAZIOI	NE SME TG1	IVIAICA - IVIOUEIIO AITAIIZZATOI E.	Gas analizzato Campo di misura	CO 0 - 75 mg/Nm ³
Standard n°	083313	Garanzia di stabilità standard: 01/10/2021	Data della verifica	: 28/09/2021
Concentrazione	103 mg/Nm ³		Orario della verifica	: 09:10 - 10:00


Modalità misure		Valori di Concentrazione			
Livello di Concentrazione	Ripetizione misura	Concentrazione rilevata	Concentrazione rilevata media	Concentrazione teorica	Concentrazione teorica derivata da equazione
i	m _c	Y _{ci}	Y _c	X _i	X _i (corr.)
		mg/Nm³	mg/Nm ³	mg/Nm ³	mg/Nm ³
	а	1.00			
0	b	1.00	1.00	0.00	0.98
	С	1.00			
	а	8.0			
1	b	8.0	8.0	7.5	8.0
	С	8.0			
	а	15.0			
2	b	15.0	15.0	15.0	15.0
	С	15.0			
	а	23.0			
3	b	22.0	22.3	22.5	22.0
	С	22.0			
	а	28.0			
4	b	29.0	28.7	30.0	29.0
	С	29.0			
	а	36.0			
5	b	36.0	36.0	37.5	36.0
	С	36.0			
	а	43.0			
6	b	43.0	43.0	45.0	43.1
	С	43.0			
	а	50.0			
7	b	50.0	50.0	52.5	50.1
	С	50.0			
	а	56.0			
8	b	58.0	57.0	60.0	57.1
	С	57.0			
	а	64.0			
9	b	65.0	64.3	67.5	64
	С	64.0	1		
	а	1.00			
0	b	1.00	1.00	0.00	0.98
	С	1.00	1		

Caratteristiche Diluizione			
Livello di Concentrazione	Fattore di diluizione	Concentrazione teorica in % sul F.S.	
i		%	
0	0.0000	0.0	
1	0.1000	10.0	
2	0.2000	20.0	
3	0.3000	30.0	
4	0.4000	40.0	
5	0.5000	50.0	
6	0.6000	60.0	
7	0.7000	70.0	
8	0.8000	80.0	
9	0.9000	90.0	

Parametri regressione lineare			
Intercetta	Pendenza Correlazione		
Α	В	R	
0.9775	0.9351	0.99983	

Errori strumentali				
Livello di	Residuo	Residuo		
Concentrazione	in mg/Nm ³	in % sul F.S.		
i	dc	dc _{rel}		
0	0.02	0.03		
1	0.01	0.01		
2	0.00	0.00		
3	0.32	0.42		
4	-0.36	-0.48		
5	-0.04	-0.06		
6	-0.05	-0.07		
7	-0.07	-0.09		
8	-0.08	-0.11		
9	0.24	0.32		
0	0.02	0.03		
Criterio di accettabilità: - 5% ≤ dc _{rel} ≤ + 5%				

Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610131

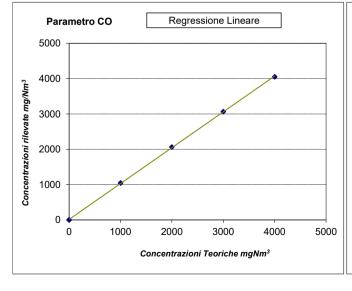
LAB Nº 00175 L

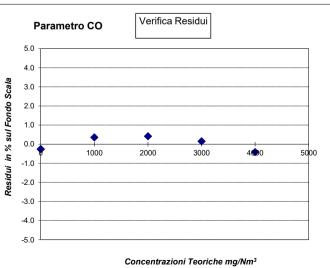
Rapporto di prova n. 2104111-008

Prova di linearità - Metodo di prova: UNI EN 14181:2015 (Annex B)

EP Produzione S.p.A.

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)


POSTAZ	ZIONE SME TG1	Marca - Modello analizzatore: ABB - Uras 26 3.351868.1	Gas analizzato Campo di misura	CO 0 - 5000 mg/Nm ³
Standard n°	012583	Garanzia di stabilità standard: 18/02/2024	Data della verifica	: 28/09/2021
Concentrazione	5084 mg/Nm ³	Garanzia di Stabilita Standard. 10/02/2024	Orario della verifica	: 10:00 - 10:30


Modalità misure			Valori di Coi	ncentrazione	
Livello di Concentrazione	Ripetizione misura	Concentrazione rilevata	Concentrazione rilevata media	Concentrazione teorica	Concentrazione teorica derivata da equazione
С	m _c	Yc,,	Yc	X _i	X _i (corr.)
		mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³
	а	1.00			
0	b	0.00	1.00	0.00	13.83
	С	2.00			
	а	1047			
1	b	1048	1047	1000	1029
	С	1046			
	а	2064			
2	b	2066	2065	2000	2044
	С	2065			
	а	3065			
3	b	3067	3067	3000	3060
	С	3069			
	а	4056			
4	b	4052	4054	4000	4075
	С	4055			
	а	1.00			
5	b	1.00	1.00	0.00	13.83
	С	1.00			

Cara	Caratteristiche Diluizione			
Livello di Concentrazione	Fattore di diluizione	Concentrazione teorica in % sul F.S.		
С		%		
0	0.0000	0.0		
1	0.2000	20.0		
2	0.4000	40.0		
3	0.6000	60.0		
4	0.8000	80.0		

Parametri regressione lineare		
Intercetta A	Pendenza B	Correlazione R
13.8333	1.0152	0.99994

Errori strumentali				
Livello di Concentrazione	Residuo in mg/Nm ³	Residuo in % sul F.S.		
С	dc	dc _{rel}		
0	-12.83	-0.26		
1	17.93	0.36		
2	20.70	0.41		
3	7.47	0.15		
4	-20.43	-0.41		
5	-12.83	-0.26		
Criterio di accettabilità: - 5% ≤ dc _{rel} ≤ + 5%				

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610131

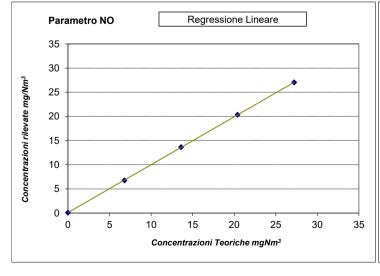
Standard n°

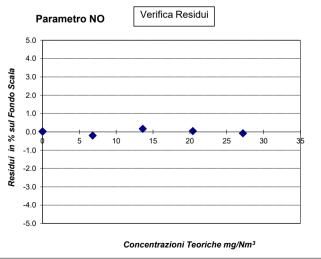
LAB N° 00175 L

Rapporto di prova n. 2104111-008

Prova di linearità - Metodo di prova: UNI EN 14181:2015 (Annex B)

EP Produzione S.p.A. Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)


NO Gas analizzato Marca - Modello analizzatore: **POSTAZIONE SME TG1** ABB - LIMAS 11 3.351871.1 Campo di misura 0 - 34 mg/Nm³ 083313 Data della verifica : 28 Settembre 2021 Garanzia di stabilità standard: 01/10/2021 Orario della verifica Concentrazione 109.2 mg/Nm³ : 09:10 - 10:00


Modalità misure Valori di Concentrazione					
Livello di Concentrazione	Ripetizione misura	Concentrazione rilevata	Concentrazione rilevata media	Concentrazione teorica	Concentrazione teorica derivata da equazione
С	m _c	Yc,	Y _c	X _i	X _i (corr.)
		mg/Nm³	mg/Nm ³	mg/Nm ³	mg/Nm³
	a	0.10			
0	b	0.10	0.10	0.00	0.09
	С	0.10			
	а	6.8			
1	b	6.7	6.8	6.8	6.8
	С	6.8			
	а	13.7			
2	b	13.6	13.6	13.6	13.6
	С	13.6			
	а	20.3			
3	b	20.3	20.3	20.4	20.3
	С	20.4			
	а	27.1			
4	b	27.0	27.0	27.2	27.1
	С	27.0			
	а	0.10			
5	b	0.10	0.10	0.00	0.09
	С	0.10			
Verifiche eseguite con diluitore di gas HovaCAL N 312-MF					

Caratteristiche Diluizione			
Livello di Concentrazione	Fattore di diluizione	Concentrazione teorica in % sul F.S.	
С		%	
0	0.0000	0.0	
1	0.2000	20.0	
2	0.4000	40.0	
3	0.6000	60.0	
4	0.8000	80.0	

Parametri regressione lineare		
Intercetta A	Pendenza B	Correlazione R
0.0917	0.9914	0.99999

Errori strumentali			
Livello di Concentrazione	Residuo in mg/Nm ³	Residuo in % sul F.S.	
С	dc	dc _{rel}	
0	0.01	0.02	
1	-0.07	-0.20	
2	0.06	0.17	
3	0.02	0.05	
4	-0.03	-0.07	
5	0.01	0.02	
Criterio di accettabilità: $-5\% \le dc_{rel} \le +5\%$			

Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610131

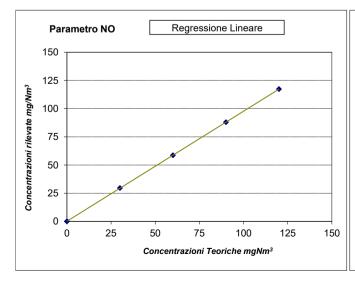
LAB N° 00175 L

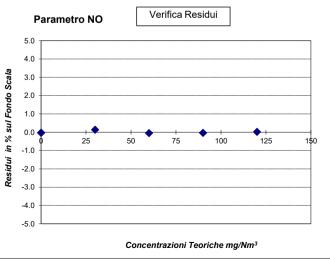
Rapporto di prova n. 2104111-008

Prova di linearità - Metodo di prova: UNI EN 14181:2015 (Annex B)

EP Produzione S.p.A.

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)


POSTAZIONE SME TG1		Marca - Modello analizzatore: ABB - LIMAS 11 3.351871.1	Gas analizzato Campo di misura	NO 0 - 150 mg/Nm³
Standard n°	260657	Garanzia di stabilità standard: 27/01/2023	Data della verifica	: 28/09/2021
Concentrazione	201 mg/Nm ³	Garanzia di Stabilita Standard. 27/01/2023	Orario della verifica	: 10:30 - 11:00


Modalità misure		Valori di Concentrazione			
Livello di Concentrazione	Ripetizione misura	Concentrazione rilevata	Concentrazione rilevata media	Concentrazione teorica	Concentrazione teorica derivata da equazione
С	m _c	Yc,,	Y _c	\mathbf{X}_{i}	X _i (corr.)
		mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³
	а	0.10			
0	b	0.10	0.10	0.00	0.15
	С	0.10			
	а	29.6			
1	b	29.7	29.6	30.0	29.4
	С	29.6			
	а	58.6			
2	b	58.7	58.6	60.0	58.7
	С	58.6			
	а	87.9			
3	b	88.0	87.9	90.0	88.0
	С	87.9			
	а	117.3			
4	b	117.2	117.3	120.0	117.3
	С	117.4			
	а	0.10			
5	b	0.10	0.10	0.00	0.15
	С	0.10			
Verifiche eseguite con diluitore di gas HovaCAL N 312-MF					

Caratteristiche Diluizione					
Livello di Concentrazione	Fattore di diluizione	Concentrazione teorica in % sul F.S.			
С		%			
0	0.0000	0.0			
1	0.2000	20.0			
2	0.4000	40.0			
3	0.6000	60.0			
4	0.8000	80.0			

Parametri regressione lineare					
Intercetta A Pendenza B Correlazione F					
0.1500	0.9760	1.00000			

Errori strumentali					
Livello di Concentrazione	Residuo in mg/Nm ³	Residuo in % sul F.S.			
С	dc	dc _{rel}			
0	-0.05	-0.03			
1	0.20	0.14			
2	-0.08	-0.05			
3	-0.06	-0.04			
4	0.03	0.02			
5	-0.05	-0.03			
Criterio di accettabilità: -5% ≤ dc _{rel} ≤ + 5%					

Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610131

Verifica efficienza convertitore catalitico NO2-NO - Metodo di prova: UNI EN 14792:2017 (Annex C.3)

Rapporto di prova n. 2104111-008 EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

LAB Nº 00175 L

Data prova: : 28/09/2021 POSTAZIONE SME TG1

Denominazione mis	ura	Simbolo misura	Unità di misura	Misura 1	Misura 2
Parametro:	Monossido di azoto (NO)				
Generatore di Ozono:	OFF	P1	mg/Nm ³	47.3	47.2
Convertitore Catalitico:	OFF				
Parametro:	Ossidi di di azoto (NO _x)				
Generatore di Ozono:	OFF	R1	mg/Nm ³	47.5	47.6
Convertitore Catalitico:	ON				
Parametro:	Monossido di azoto (NO)				
Generatore di Ozono:	ON	P2	mg/Nm ³	36.8	32.5
Convertitore Catalitico:	OFF				
Parametro:	Ossidi di azoto (NO _x)				
Generatore di Ozono:	ON	R2	mg/Nm ³	47.4	47.5
Convertitore Catalitico:	ON				
Parametro:	Biossido di azoto (NO ₂)				
Generatore di Ozono:	ON	(R2-P2)	mg/Nm ³	10.6	15.0
Convertitore Catalitico:	ON				
Efficienza convertito	re	C _E	%	99.0	99.3

NOTA: negli step P1 e R1 la concentrazione fornita all'analizzatore è generata tramite diluizione a partire da uno standard di NO contenente tracce di NO₂

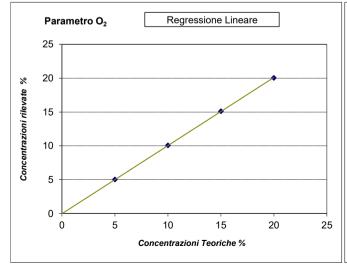
Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610131

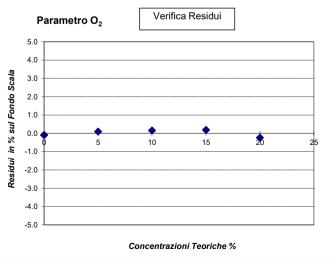
Rapporto di prova n. 2104111-027

Prova di linearità - Metodo di prova: UNI EN 14181:2015 (Annex B)

EP Produzione S.p.A.

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)


LAB Nº 00175 L						
POSTAZIONE SME TG2		N	Marca - Modello analizzatore:		O ₂	
		ABB - Magnos 206 3.351869.1		Campo di misura	0 - 25 %	%
Standard n°	101937	Carar	nzia di stabilità standard: 12/02/2023	Data della verifica	: 29/09/2021	
Concentrazione	19.99 %	Garai	izia di Stadilita Stafidard. 12/02/2023	Orario della verifica	: 14:40 - 15:10	


Modalit	à misure	Valori di Concentrazione			
Livello di Concentrazione	Ripetizione misura	Concentrazione rilevata	Concentrazione rilevata media	Concentrazione teorica	Concentrazione teorica derivata da equazione
С	m _c	Yc,	Y _c	\mathbf{X}_{i}	X _i (corr.)
		%	%	%	%
	а	-0.06			
0	b	-0.06	-0.06	0.00	-0.03
	С	-0.05			
	а	5.03			
1	b	5.03	5.03	5.00	5.00
	С	5.02			
	а	10.08			
2	b	10.08	10.08	10.00	10.04
	С	10.07			
	а	15.12			
3	b	15.13	15.12	15.00	15.07
	С	15.11			
	а	20.04			
4	b	20.04	20.04	19.99	20.10
	С	20.04			
	а	-0.06			
0	b	-0.06	-0.06	0.00	-0.03
	С	-0.05			
Verifiche eseguite con diluitore di gas HovaCAL N 312-MF					

Caratteristiche Diluizione					
Livello di Concentrazione	Fattore di diluizione	Concentrazione teorica in % sul F.S.			
С		%			
0	0.0000	0.0			
1	0.2000	20.0			
2	0.4000	40.0			
3	0.6000	60.0			
4	0.8000	80.0			

Parametri regressione lineare					
Intercetta A Pendenza B Correlazione R					
-0.0325	1.0071	0.99999			

Errori strumentali					
Livello di	Residuo in %	Residuo			
Concentrazione		in % sul F.S.			
С	dc	dc _{rel}			
0	-0.02	-0.10			
1	0.02	0.09			
2	0.04	0.15			
3	0.05	0.18			
4	-0.06	-0.24			
0	-0.02	-0.10			
Criterio di ac	Criterio di accettabilità: -5% ≤ dc _{rel} ≤ +5%				

Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610131

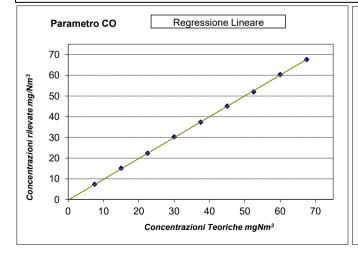
LAB N° 00175 L

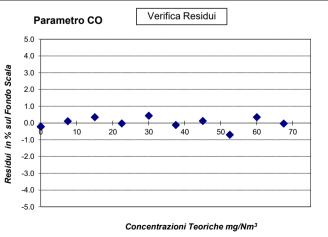
Rapporto di prova n. 2104111-027

Prova di linearità - Metodo di prova: UNI EN 14181:2015 (Annex B)

EP Produzione S.p.A.

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)


POSTAZIONE SME TG2	Marca - Modello analizzatore: ABB - Uras 26 3.351869.1	Gas analizzato Campo di misura	CO 0 - 75 mg/Nm³
Standard n° 083313	Coronzio di atabilità atandardi 04/40/2024	Data della verifica	: 29/09/2021
Concentrazione 103 mg/Nm ³	Garanzia di stabilità standard: 01/10/2021	Orario della verifica	: 13:50 - 14:40


Modalità misure		Valori di Concentrazione			
Livello di Concentrazione	Ripetizione misura	Concentrazione rilevata	Concentrazione rilevata media	Concentrazione teorica	Concentrazione teorica derivata da equazione
i	m _c	Y _{ci}	Y _c	\mathbf{X}_{i}	X _i (corr.)
		mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³
	а	-1.50			
0	b	-0.06	-0.45	0.00	-0.29
	С	0.20			
	а	7.1			
1	b	7.5	7.3	7.5	7.3
	С	7.4			
	а	15.5			
2	b	14.6	15.1	15.0	14.8
	С	15.1			
	а	22.9			
3	b	21.9	22.3	22.5	22.4
	С	22.2			
	а	29.1			
4	b	31.2	30.2	30.0	29.9
	С	30.4			
	а	36.2			
5	b	37.5	37.4	37.5	37.5
ŭ	С	38.4	0	07.0	
	а	44.6			
6	b	45.5	45.1	45.0	45.0
	С	45.2			
	а	52.2			
7	b	51.4	52.0	52.5	52.6
	С	52.5			
	а	60.4			
8	b	60.9	60.4	60.0	60.1
	c 59.8				
	а	67.7			
9	b	67.8	67.6	67.5	68
	С	67.4			
	а	-0.50			
0	b	-0.40	-0.47	0.00	-0.29
-	С	-0.50	-		

Caratteristiche Diluizione					
Livello di Concentrazione	Fattore di diluizione	Concentrazione teorica in % sul F.S.			
i		%			
0	0.0000	0.0			
1	0.1000	10.0			
2	0.2000	20.0			
3	0.3000	30.0			
4	0.4000	40.0			
5	0.5000	50.0			
6	0.6000	60.0			
7	0.7000	70.0			
8	0.8000	80.0			
9	0.9000	90.0			

Parametri regressione lineare						
Intercetta	cetta Pendenza Correlazion					
Α	В	R				
-0.2934	1.0067	0.99968				

Errori strumentali						
Livello di	Residuo	Residuo				
Concentrazione	in mg/Nm ³	in % sul F.S.				
i	dc	dc _{rel}				
0	-0.16	-0.21				
1	0.08	0.10				
2	0.26	0.35				
3	-0.02	-0.03				
4	0.32	0.43				
5	-0.09	-0.12				
6	0.09	0.12				
7	-0.53	-0.70				
8	0.26	0.34				
9	-0.03	-0.04				
0	-0.17	-0.23				
Criterio di ac	Criterio di accettabilità: - 5% ≤ dc _{ret} ≤ + 5%					

Referente emissioni in atmosfera Ordine dei Chimici della Lombardia dr. Marco Pelozzi albo prof.n. 2797 Rapporto di prova firmato digitalmente ai sensi della normativa vigente

pag. 2 di 6

Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610131

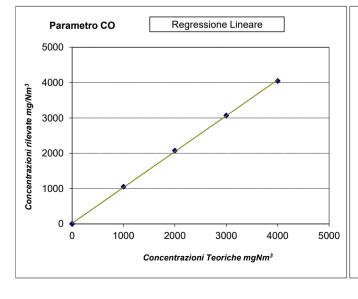
LAB Nº 00175 L

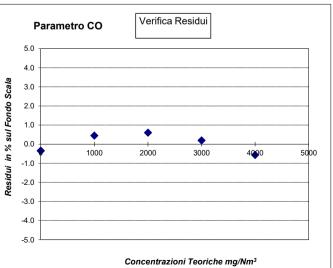
Rapporto di prova n. 2104111-027

Prova di linearità - Metodo di prova: UNI EN 14181:2015 (Annex B)

EP Produzione S.p.A.

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)


POSTAZIONE SME TG2		Marca - Modello analizzatore: ABB - Uras 26 3.351869.1	Gas analizzato Campo di misura	CO 0 - 5000 mg/Nm ³
Standard n°	012583	Garanzia di stabilità standard: 18/02/2024	Data della verifica	: 29/09/2021
Concentrazione	5084 mg/Nm ³	Garanzia di Stabilita Standard. 10/02/2024	Orario della verifica	: 15:10 - 15:40


Modalità misure		Valori di Concentrazione			
Livello di Concentrazione	Ripetizione misura	Concentrazione rilevata	Concentrazione rilevata media	Concentrazione teorica	Concentrazione teorica derivata da equazione
С	m _c	Yc,	Y _c	\mathbf{X}_{i}	X _i (corr.)
		mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³
	а	1.0			
0	b	2.0	1.3	0.0	18.42
	С	1.0			
	а	1056			
1	b	1057	1056	1000	1033
	С	1055			
	а	2075			
2	b	2079	2079	2000	2048
	С	2082			
	а	3076			
3	b	3074	3073	3000	3063
	С	3070			
	а	4049			
4	b	4052	4050	4000	4078
	С	4050			
	а	1.00			
5	b	1.00	1.00	0.00	18.42
	С	1.00			

Cara	Caratteristiche Diluizione						
Livello di Fattore di Concentrazione diluizione		Concentrazione teorica in % sul F.S.					
С		%					
0	0.0000	0.0					
1	0.2000	20.0					
2	0.4000	40.0					
3	0.6000	60.0					
4	0.8000	80.0					

Parametri regressione lineare						
Intercetta A	Pendenza B	Correlazione R				
18.4167	1.0150	0.99989				

Errori strumentali						
Livello di Concentrazione	Residuo in mg/Nm ³	Residuo in % sul F.S.				
С	dc	dc _{rel}				
0	-17.08	-0.34				
1	22.57	0.45				
2	30.22	0.60				
3	9.87	0.20				
4	-28.15	-0.56				
5	-17.42	-0.35				
Criterio di accettabilità: - 5% ≤ dc _{rel} ≤ + 5%						

Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610131

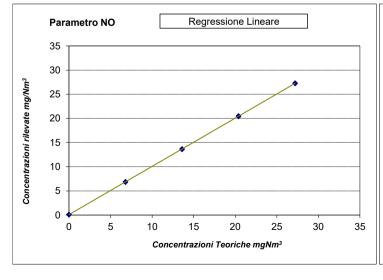
LAB N° 00175 L

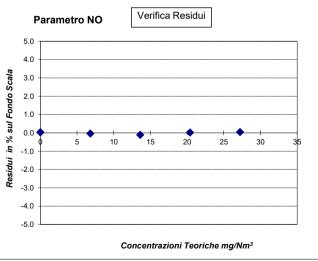
Rapporto di prova n. 2104111-027

Prova di linearità - Metodo di prova: UNI EN 14181:2015 (Annex B)

EP Produzione S.p.A.

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)


POSTAZIONE SME TG2			A C 44 2 254200 4	Gas analizzato Campo di misura	NO 0 - 34 mg/Nm ³
Standard n°	239343	Garanzia di stabilità standard: 27/07/2022		Data della verifica	: 29/09/2021
Concentrazione	52.4 mg/Nm ³			Orario della verifica	: 15:10 - 15:40


Modalità misure		Valori di Concentrazione			
Livello di Concentrazione	Ripetizione misura	Concentrazione rilevata	Concentrazione rilevata media	Concentrazione teorica	Concentrazione teorica derivata da equazione
С	m _c	Yc,,	Y _c	X _i	X _i (corr.)
		mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³
	a	0.10			
0	b	0.10	0.10	0.00	0.09
	С	0.10			
	а	6.9			
1	b	6.8	6.9	6.8	6.9
	С	6.9			
	а	13.6			
2	b	13.6	13.6	13.6	13.7
	С	13.7			
	а	20.5			
3	b	20.5	20.5	20.4	20.5
	С	20.4			
	а	27.3			
4	b	27.2	27.3	27.2	27.3
	С	27.3			
	а	0.10			
5	b	0.10	0.10	0.00	0.09
	С	0.10			

Caratteristiche Diluizione						
Livello di Concentrazione	Fattore di diluizione	Concentrazione teorica in % sul F.S.				
С		%				
0	0.0000	0.0				
1	0.2000	20.0				
2	0.4000	40.0				
3	0.6000	60.0				
4	0.8000	80.0				

Parametri regressione lineare					
Intercetta A Pendenza B Correlazione R					
0.0875	0.9987	0.99999			

1	Errori strumentali					
Livello di Concentrazione	Residuo in mg/Nm ³	Residuo in % sul F.S.				
C	dc	dc _{rel}				
0	0.01	0.04				
1	-0.01	-0.03				
2	-0.04	-0.11				
3	0.01	0.02				
4	0.02	0.05				
5	0.01	0.04				
Criterio di accettabilità: -5% ≤ dc _{rel} ≤ + 5%						

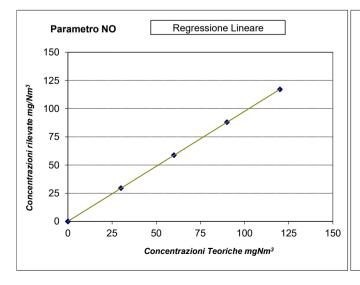
Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610131

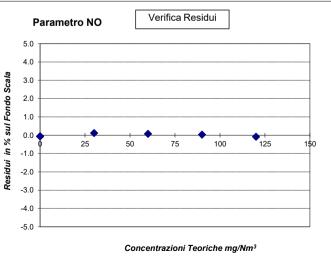
Rapporto di prova n. 2104111-027

Prova di linearità - Metodo di prova: UNI EN 14181:2015 (Annex B)

EP Produzione S.p.A.

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)


POSTAZIONE SME TG2		Marca - Modello analizzatore: ABB - LIMAS 11 3.351869.1	Gas analizzato Campo di misura	NO 0 - 150 mg/Nm³
Standard n°	260657	Garanzia di stabilità standard: 27/01/2023	Data della verifica	: 29/09/2021
Concentrazione	201 mg/Nm ³	Garanzia di Stabilita Standard. 27/01/2023	Orario della verifica	: 13:15 - 13:50


Modalit	à misure		Valori di Coi	ncentrazione	
Livello di Concentrazione	Ripetizione misura	Concentrazione rilevata Concentrazione rilevata rilevata media		Concentrazione teorica	Concentrazione teorica derivata da equazione
С	m _c	Yc,,	Y _c	X _i	X _i (corr.)
		mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³
	а	0.00			
0	b	0.00	0.00	0.00	0.10
	С	0.00			
	а	29.6			
1	b	29.5	29.5	30.0	29.4
	С	29.5			
	а	58.7			
2	b	58.8	58.7	60.0	58.6
	С	58.7			
	а	87.9			
3	b	87.9	87.9	90.0	87.9
	С	88.0			
	а	117.0			
4	b	117.0	117.0	120.0	117.2
	С	117.1			
	а	0.00			
5	b	0.00	0.00	0.00	0.10
	С	0.00			

Caratteristiche Diluizione					
Livello di Concentrazione	Fattore di diluizione	Concentrazione teorica in % sul F.S.			
С		%			
0	0.0000	0.0			
1	0.2000	20.0			
2	0.4000	40.0			
3	0.6000	60.0			
4	0.8000	80.0			

Parametri regressione lineare					
Intercetta A Pendenza B Correlazione R					
0.0958	0.9755	1.00000			

Errori strumentali					
Livello di Concentrazione	Residuo in mg/Nm³	Residuo in % sul F.S.			
С	dc	dc _{rel}			
0	-0.10	-0.06			
1	0.17	0.11			
2	0.11	0.07			
3	0.04	0.03			
4	-0.13	-0.08			
5	-0.10	-0.06			
Criterio di accettabilità: -5% ≤ dc _{rel} ≤ + 5%					

Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610131

Verifica efficienza convertitore catalitico NO2-NO - Metodo di prova: UNI EN 14792:2017 (Annex C.3)

Rapporto di prova n. 2104111-027 EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

LAB Nº 00175 L

Data prova: : 29/09/2021 POSTAZIONE SME TG2

Denominazione misura		Simbolo misura	Unità di misura	Misura 1	Misura 2
Parametro:	Monossido di azoto (NO)				
Generatore di Ozono:	OFF	P1	mg/Nm ³	47.3	47.3
Convertitore Catalitico:	OFF				
Parametro:	Ossidi di di azoto (NO _x)				
Generatore di Ozono:	OFF	R1	mg/Nm ³	47.5	47.6
Convertitore Catalitico:	ON				
Parametro:	Monossido di azoto (NO)				
Generatore di Ozono:	ON	P2	mg/Nm³	31.9	30.0
Convertitore Catalitico:	OFF				
Parametro:	Ossidi di azoto (NO _x)				
Generatore di Ozono:	ON	R2	mg/Nm ³	47.4	47.4
Convertitore Catalitico:	ON				
Parametro:	Biossido di azoto (NO ₂)				
Generatore di Ozono:	ON	(R2-P2)	mg/Nm ³	15.5	17.4
Convertitore Catalitico:	ON				
Efficienza convertito	pre	C _E	%	99.4	98.8

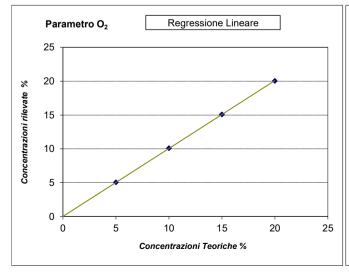
NOTA: negli step P1 e R1 la concentrazione fornita all'analizzatore è generata tramite diluizione a partire da uno standard di NO contenente tracce di NO₂

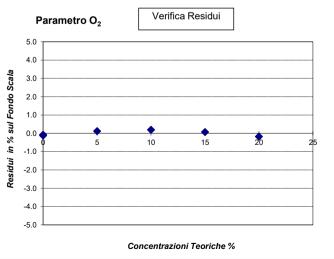
Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610131

Rapporto di prova n. 2104111-046

Prova di linearità - Metodo di prova: UNI EN 14181:2015 (Annex B)

EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)


William.	LAB N° 0017	′5 L				
POSTAZIONE SME TG3		Marca - Modello analizzatore:	Gas analizzato	O ₂		
POSTA	ZIONE SWE 163	ABB - Magnos 206 3.351870.1		Campo di misura	0 - 25	%
Standard n°	101937	Cara	nzia di stabilità standard: 12/02/2023	Data della verifica	: 30/09/2021	
Concentrazione	19.99 %	Garar	izia di Stabilita Staridard. 12/02/2023	Orario della verifica	: 09:15 - 09:45	


Livello di Concentrazione C	Ripetizione misura	Concentrazione rilevata	Concentrazione	Concentrazione	Concentrazione
С			rilevata media	teorica	teorica derivata da equazione
	m _c	Yc,,	Y _c	\mathbf{X}_{i}	X _i (corr.)
		%	%	%	%
	а	-0.01			
0	b	-0.01	-0.01	0.00	0.01
 	С	-0.01			
	а	5.06			
1	b	5.06	5.06	5.0	5.03
	С	5.06			
	а	10.10			
2	b	10.10	10.10	10.0	10.05
	С	10.10			
	а	15.09			
3	b	15.09	15.09	15.0	15.07
	С	15.09			
	а	20.04			
4	b	20.04	20.04	19.99	20.08
	С	20.04			
	а	-0.02			
0	b	-0.02	-0.02	0.00	0.01
F	С	-0.02			

Caratteristiche Diluizione					
Livello di Concentrazione	Fattore di diluizione	Concentrazione teorica in % sul F.S.			
С		%			
0	0.0000	0.0			
1	0.2000	20.0			
2	0.4000	40.0			
3	0.6000	60.0			
4	0.8000	80.0			

Parametri regressione lineare				
Intercetta A	Pendenza B	Correlazione R		
0.0100	1.0042	0.99999		

Errori strumentali				
Livello di Concentrazione	Residuo in %	Residuo in % sul F.S.		
С	dc	dc _{rel}		
0	-0.02	-0.08		
1	0.03	0.12		
2	0.05	0.19		
3	0.02	0.07		
4	-0.04	-0.18		
0	-0.03	-0.12		
Criterio di ac	Criterio di accettabilità: -5% ≤ dc _{rel} ≤ +5%			

Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610131

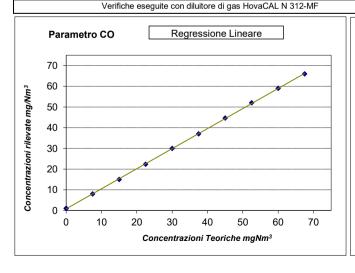
LAB N° 00175 L

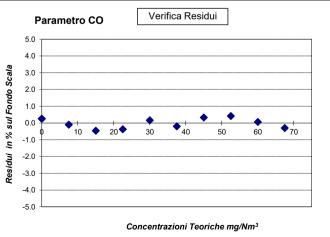
Rapporto di prova n. 2104111-046

Prova di linearità - Metodo di prova: UNI EN 14181:2015 (Annex B)

EP Produzione S.p.A.

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)


POSTAZIONE SME TG3		Marca - Modello analizzatore: ABB - Uras 26 3.351870.1	Gas analizzato Campo di misura	CO 0 - 75 mg/Nm³
Standard n°	083313	Garanzia di stabilità standard: 01/10/2021	Data della verifica	: 30/09/2021
Concentrazione	103 mg/Nm ³	Garanzia di Stabilita Standard. 01/10/2021	Orario della verifica	: 09:45 - 10:30


Modalità misure		Valori di Concentrazione				
Livello di Concentrazione	Ripetizione misura	Concentrazione rilevata	Concentrazione rilevata media	Concentrazione teorica	Concentrazione teorica derivata da equazione	
i	m _c	\mathbf{Y}_{ci}	Y _c	X_{i}	X _i (corr.)	
		mg/Nm ³	mg/Nm ³	mg/Nm³	mg/Nm ³	
	а	1.00				
0	b	1.00	1.00	0.00	0.81	
	С	1.00				
	а	8.0				
1	b	8.0	8.0	7.5	8.1	
	С	8.0				
	а	15.0				
2	b	15.0	15.0	15.0	15.3	
	С	15.0				
	а	22.0				
3	b	23.0	22.3	22.5	22.6	
	С	22.0				
	а	30.0		30.0		
4	b	30.0	30.0		29.9	
	С	30.0				
	а	37.0				
5	b	37.0	37.0	37.5	37.2	
	С	37.0				
	а	45.0				
6	b	44.0	44.7	45.0	44.4	
	С	45.0				
	а	52.0				
7	b	52.0	52.0	52.5	51.7	
	С	52.0	1			
	а	59.0				
8	b	59.0	59.0	60.0	59.0	
	С	59.0	1			
	а	66.0				
9	b	66.0	66.0	67.5	66	
	С	66.0	1			
	а	1.00				
0	b	1.00	1.00	0.00	0.81	
	С	1.00				

-				
Caratteristiche Diluizione				
Livello di Concentrazione	Fattore di diluizione	Concentrazione teorica in % sul F.S.		
i		%		
0	0.0000	0.0		
1	0.1000	10.0		
2	0.2000	20.0		
3	0.3000	30.0		
4	0.4000	40.0		
5	0.5000	50.0		
6	0.6000	60.0		
7	0.7000	70.0		
8	0.8000	80.0		
9	0.9000	90.0		

Parametri regressione lineare				
Intercetta	Pendenza	Correlazione		
Α	В	R		
0.8108	0.9691	0.99991		

Errori strumentali				
Livello di	Residuo	Residuo		
Concentrazione	in mg/Nm ³	in % sul F.S.		
i	dc	dc _{rel}		
0	0.19	0.25		
1	-0.08	-0.11		
2	-0.35	-0.46		
3	-0.28	-0.38		
4	0.12	0.15		
5	-0.15	-0.20		
6	0.25	0.33		
7	0.31	0.41		
8	0.04	0.06		
9	-0.23	-0.30		
0	0.19	0.25		
Criterio di ac	cettabilità: - 5%	≤ dc _{rel} ≤ + 5%		

Referente emissioni in atmosfera Ordine dei Chimici della Lombardia dr. Marco Pelozzi albo prof.n. 2797 Rapporto di prova firmato digitalmente ai sensi della normativa vigente

pag. 2 di 6

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610131

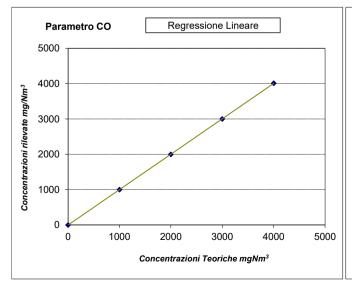
LAB Nº 00175 L

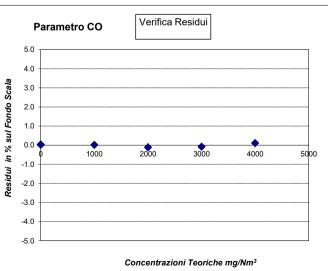
Rapporto di prova n. 2104111-046

Prova di linearità - Metodo di prova: UNI EN 14181:2015 (Annex B)

EP Produzione S.p.A.

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)


POSTAZIONE SME TG3		Marca - Modello analizzatore: ABB - Uras 26 3.351870.1	Gas analizzato Campo di misura	CO 0 - 5000 mg/Nm ³
Standard n°	012583	Garanzia di stabilità standard: 18/02/2024	Data della verifica	: 30/09/2021
Concentrazione	5084 mg/Nm ³	Garanzia di Stabilita Staridard. 10/02/2024	Orario della verifica	: 08:40 - 09:15


Modalit	Modalità misure		Valori di Concentrazione			
Livello di Concentrazione	Ripetizione misura	Concentrazione rilevata	Concentrazione rilevata media Concentrazione teorica		Concentrazione teorica derivata da equazione	
С	m _c	Yc,,	Y _c	X _i	X _i (corr.)	
		mg/Nm ³	mg/Nm ³ mg/Nm ³		mg/Nm ³	
	a	-1.00				
0	b	-1.00	-1.00	0.00	-2.21	
	С	-1.00				
	а	1001				
1	b	1001	1001	1000	1000	
	С	1001				
	а	1997				
2	b	1997	1997	2000	2003	
	С	1997				
	а	3001				
3	b	3001	3001	3000	3005	
	С	3001				
	а	4012				
4	b	4013	4013	4000	4007	
	С	4013				
	a	-1.00				
5	b	0.00	-0.33	0.00	-2.21	
	С	0.00				

·		
Cara	tteristiche Diluizi	ione
Livello di Concentrazione	Fattore di diluizione	Concentrazione teorica in % sul F.S.
С		%
0	0.0000	0.0
1	0.2000	20.0
2	0.4000	40.0
3	0.6000	60.0
4	0.8000	80.0

Parametri regressione lineare			
Intercetta A	Pendenza B	Correlazione R	
-2.2083	1.0024	1.00000	

Errori strumentali				
Livello di	Residuo	Residuo		
Concentrazione	in mg/Nm ³	in % sul F.S.		
С	dc	dc _{rel}		
0	1.21	0.02		
1	0.85	0.02		
2	-5.51	-0.11		
3	-3.87	-0.08		
4	5.44	0.11		
5	1.88	0.04		
Criterio di accettabilità: - 5% ≤ dc _{rel} ≤ + 5%				

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610131

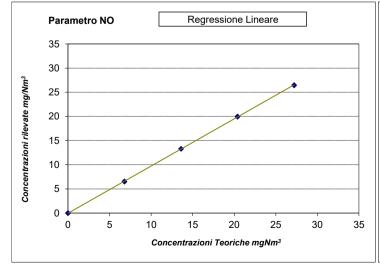
LAB N° 00175 L

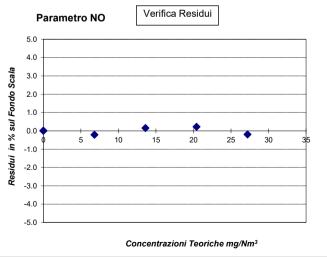
Rapporto di prova n. 2104111-046

EP Produzione S.p.A.

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

POSTAZIONE SME TG3			arca - Modello analizzatore: BB - LIMAS 11 3.351870.1	Gas analizzato Campo di misura	NO 0 - 34 mg/Nm ³
Standard n°	239343	Garanzia di stabilità standard: 27/07/2022		Data della verifica	: 30/09/2021
Concentrazione	52.4 mg/Nm ³	Garani		Orario della verifica	: 08:10 - 08:40


Prova di linearità - Metodo di prova: UNI EN 14181:2015 (Annex B)


Mod	alità misure		Valori di Concentrazione			
Livello di Concentrazione	Ripetizione misura	Concentrazione rilevata	Concentrazione rilevata media	Concentrazione teorica	Concentrazione teorica derivata da equazione	
С	m _c	Yc,,	Y _c	\mathbf{X}_{i}	X _i (corr.)	
		mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³	
	а	0.00				
0	b	-0.10	-0.03	0.00	-0.04	
	С	0.00				
	а	6.5				
1	b	6.6	6.5	6.8	6.6	
	С	6.5			İ	
	а	13.3				
2	b	13.3	13.3	13.6	13.2	
	С	13.3			<u> </u>	
	а	20.0				
3	b	19.9	20.0	20.4	19.9	
	С	20.0				
	а	26.4				
4	b	26.5	26.5	27.2	26.5	
	С	26.5				
	а	0.00				
5	b	0.00	-0.03	0.00	-0.04	
-	С	-0.10				

Caratteristiche Diluizione						
Livello di Concentrazione	Fattore di diluizione	Concentrazione teorica in % sul F.S.				
С		%				
0	0.0000	0.0				
1	0.2000	20.0				
2	0.4000	40.0				
3	0.6000	60.0				
4	0.8000	80.0				

Parametri regressione lineare					
Intercetta A	rcetta A Pendenza B Corr				
-0.0375	0.9768	0.99998			

Errori strumentali						
Livello di Concentrazione	Residuo in mg/Nm ³	Residuo in % sul F.S.				
С	dc	dc _{rel}				
0	0.00	0.01				
1	-0.07	-0.21				
2	0.05	0.15				
3	0.08	0.23				
4	-0.07	-0.19				
5	0.00	0.01				
Criterio di ac	cettabilità: - 5%	≤ dc _{rel} ≤ + 5%				

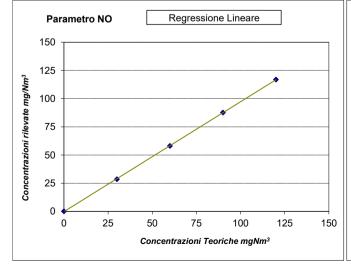
Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610131

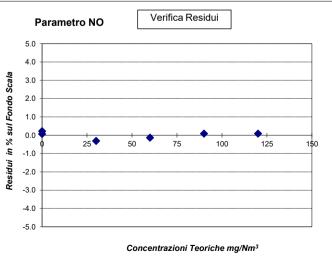
Rapporto di prova n. 2104111-046

Prova di linearità - Metodo di prova: UNI EN 14181:2015 (Annex B)

EP Produzione S.p.A.

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)


POSTAZIONE SME TG3		Marca - Modello analizzatore:	Gas analizzato	NO
		ABB - LIMAS 11 3.351870.1	Campo di misura	0 - 150 mg/Nm³
Standard n°	260657	Garanzia di stabilità standard: 27/01/2023	Data della verifica	: 30/09/2021
Concentrazione	201 mg/Nm ³	Garanzia di Stabilita Standard. 27/01/2023	Orario della verifica	: 10:30 - 11:10


Modalit	à misure		Valori di Coi	ncentrazione		
Livello di Concentrazione	Ripetizione misura	Concentrazione rilevata	Concentrazione rilevata media	Concentrazione teorica	Concentrazione teorica derivata da equazione	
С	m _c	Yc,,	Yc	X _i	X _i (corr.)	
		mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³	
	а	0.10				
0	b	0.20	0.13	0.00	-0.20	
	С	0.10				
	а	28.5				
1	b	28.6	28.6	30.0	29.0	
	С	28.6				
	а	58.1				
2	b	58.1	58.1	60.0	58.3	
	С	58.0				
	а	87.6				
3	b	87.6	87.6	90.0	87.5	
	С	87.7				
	а	116.9				
4	b	116.9	116.9	120.0	116.7	
	С	116.8				
	а	-0.10				
5	b	-0.10	-0.10	0.00	-0.20	
	С	-0.10				

Caratteristiche Diluizione						
Livello di Concentrazione	Fattore di diluizione	Concentrazione teorica in % sul F.S.				
С		%				
0	0.0000	0.0				
1	0.2000	20.0				
2	0.4000	40.0				
3	0.6000	60.0				
4	0.8000	80.0				

Parametri regressione lineare					
Intercetta A	Pendenza B	Correlazione R			
-0.1958	0.9745	0.99998			

Errori strumentali						
Livello di Concentrazione	Residuo in mg/Nm³	Residuo in % sul F.S.				
С	dc	dc _{rel}				
0	0.33	0.22				
1	-0.47	-0.31				
2	-0.21	-0.14				
3	0.13	0.08				
4	0.13	0.08				
5	0.10	0.06				
Criterio di accettabilità: -5% ≤ dc _{rel} ≤ + 5%						

Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610131

Verifica efficienza convertitore catalitico NO2-NO - Metodo di prova: UNI EN 14792:2017 (Annex C.3)

Rapporto di prova n. 2104111-046 EP Produzione S.p.A.
Strada Statale Abetone Brennero Km 239
46035 Ostiglia (MN)

LAB Nº 00175 L

Data prova: : 30/09/2021 POSTAZIONE SME TG3

Denominazione mis	sura	Simbolo misura	Unità di misura	Misura 1	Misura 2	
Parametro:	Monossido di azoto (NO)					
Generatore di Ozono:	OFF	P1	mg/Nm ³	47.1	47.2	
Convertitore Catalitico:	OFF					
Parametro:	Ossidi di di azoto (NO _x)					
Generatore di Ozono:	OFF	R1	mg/Nm ³	47.2	47.3	
Convertitore Catalitico:	ON					
Parametro:	Monossido di azoto (NO)		mg/Nm³	32.5		
Generatore di Ozono:	ON	P2			34.0	
Convertitore Catalitico:	OFF					
Parametro:	Ossidi di azoto (NO _x)			47.1		
Generatore di Ozono:	ON	R2	mg/Nm ³		47.2	
Convertitore Catalitico:	ON					
Parametro:	Biossido di azoto (NO ₂)					
Generatore di Ozono:	ON	(R2-P2)	mg/Nm ³	14.6	13.2	
Convertitore Catalitico:	ON					
Efficienza convertito	re	C _E	%	99.3	99.2	

NOTA: negli step P1 e R1 la concentrazione fornita all'analizzatore è generata tramite diluizione a partire da uno standard di NO contenente tracce di NO₂

EP PRODUZIONE S.p.A.

Centrale di Ostiglia

ALLEGATO N. 4

VERIFICHE DELL'INDICE DI ACCURATEZZA RELATIVO

Società soggetta all'attività di direzione e coordinamento da parte di PGF Srl Via Don Minzoni, 15 – 22060 CABIATE – CO - Tel. 031 76991 – Fax 031 7699200 www.tecnoimp.it e-mail info@tecnoimp.it

Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610132

VERIFICA IAR

Allegato al Rapporto di Prova n. 2104111-007 **EP Produzione SpA**

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori SRM rilevati da ns. tecnico

data inizio campionamento: 28/09/2021 data ricevimento: 18/10/2021 data fine campionamento: 01/10/2021 data inizio fase analitica: 28/09/2021 data emissione: 18/11/2021

punto di emissione - sigla: E1 da impianto a ciclo combinato TG1

RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM" E SISTEMA DI MISURA EMISSIONI "SME" (VALORI TARATI) - VERIFICA INDICE DI ACCURATEZZA RELATIVO

Ora	SRM	SME	Xi	SRM	SME	Xi	SRM	SME	Xi
(solare)	NO_X	NO_X	(*)	CO	CO	(*)	O_2	O_2	(*)
	come NO	come NO							
	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	%	%	%
12.00	13.3	14.3	1.0	29.9	28.8	1.0	14.63	14.66	0.03
13.00	13.6	14.5	0.9	9.1	9.3	0.2	14.55	14.60	0.05
14.00	13.9	14.7	0.8	7.2	7.2	0.0	14.49	14.56	0.07
15.00	17.2	17.4	0.2				13.71	13.94	0.23
16.00	17.6	17.8	0.2				13.63	13.87	0.24
17.00	17.5	17.7	0.2				13.61	13.88	0.26
18.00	17.6	17.7	0.1				13.60	13.86	0.26
19.00	17.7	17.7	0.1				13.60	13.86	0.26
20.00	17.9	17.9	0.1				13.57	13.82	0.24
21.00	18.1	18.1	0.0				13.57	13.81	0.24
22.00	18.3	18.3	0.0				13.57	13.79	0.23
23.00	18.3	18.4	0.0				13.55	13.77	0.22
0.00	18.6	18.5	0.0				13.52	13.72	0.20
1.00	18.6	18.6	0.0				13.53	13.72	0.19
2.00	18.8	18.7	0.1				13.52	13.71	0.19
3.00	18.8	18.6	0.1				13.56	13.76	0.20
4.00	18.8	18.6	0.2				13.58	13.77	0.19
5.00	18.8	18.6	0.2				13.55	13.72	0.17
6.00	19.1	18.9	0.2				13.54	13.68	0.14
7.00	19.2	19.0	0.3				13.54	13.68	0.14
8.00	18.9	18.6	0.3				13.64	13.82	0.18
9.00	18.5	18.2	0.3				13.66	13.85	0.18
10.00	18.4	18.1	0.3				13.68	13.87	0.18
11.00	14.5	14.9	0.5	7.3	7.2	0.0	14.36	14.41	0.04
12.00	14.2	14.8	0.6	8.1	8.4	0.2	14.43	14.45	0.02
13.00	14.3	14.9	0.5	7.7	8.0	0.3	14.41	14.46	0.05
	12.00 13.00 14.00 15.00 16.00 17.00 18.00 20.00 21.00 22.00 23.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 11.00 11.00 12.00	(solare) NO _X come NO mg/Nm³ 12.00 13.3 13.00 13.6 14.00 13.9 15.00 17.2 16.00 17.6 17.00 17.5 18.00 17.7 20.00 17.9 21.00 18.1 22.00 18.3 23.00 18.6 1.00 18.6 2.00 18.8 3.00 18.8 4.00 18.8 5.00 18.8 6.00 19.1 7.00 19.2 8.00 18.9 9.00 18.5 10.00 14.5 12.00 14.2	(solare) NO _X come NO mg/Nm³ NO _X come NO mg/Nm³ 12.00 13.3 14.3 13.00 13.6 14.5 14.00 13.9 14.7 15.00 17.2 17.4 16.00 17.6 17.8 17.00 17.5 17.7 18.00 17.6 17.7 19.00 17.7 17.7 20.00 17.9 17.9 21.00 18.1 18.1 22.00 18.3 18.3 23.00 18.6 18.5 1.00 18.6 18.6 2.00 18.8 18.6 2.00 18.8 18.6 4.00 18.8 18.6 5.00 18.8 18.6 5.00 18.8 18.6 6.00 19.1 18.9 7.00 19.2 19.0 8.00 18.9 18.6 9.00 18.5 18.2 10.00 <	(solare) NO _X come NO mg/Nm³ NO _X come NO mg/Nm³ (*) 12.00 13.3 14.3 1.0 13.00 13.6 14.5 0.9 14.00 13.9 14.7 0.8 15.00 17.2 17.4 0.2 16.00 17.6 17.8 0.2 17.00 17.5 17.7 0.1 19.00 17.7 17.7 0.1 20.00 17.9 17.9 0.1 21.00 18.1 18.1 0.0 22.00 18.3 18.3 0.0 22.00 18.3 18.4 0.0 0.00 18.6 18.5 0.0 1.00 18.6 18.5 0.0 1.00 18.8 18.6 0.2 2.00 18.8 18.6 0.2 1.00 18.8 18.6 0.2 5.00 18.8 18.6 0.2 6.00 19.1 18.9 0.	(solare) NO _X come NO come NO mg/Nm³ NO _X mg/Nm³ (*) mg/Nm³ CO 12.00 13.3 14.3 1.0 29.9 13.00 13.6 14.5 0.9 9.1 14.00 13.9 14.7 0.8 7.2 15.00 17.2 17.4 0.2 7.2 16.00 17.6 17.8 0.2 7.2 18.00 17.6 17.7 0.1 7.2 18.00 17.6 17.7 0.1 7.2 18.00 17.6 17.7 0.1 7.2 18.00 17.6 17.7 0.1 7.2 18.00 17.6 17.7 0.1 7.0 20.00 17.9 17.9 0.1 7.0 21.00 18.3 18.3 0.0 7.2 1.00 18.6 18.5 0.0 7.3 1.00 18.6 18.6 0.1 7.3 4.00 18.8 18.6 <	(solare) NO _X come NO come NO mg/Nm³ (*) mg/Nm³ CO mg/Nm³ <	(solare) NO _X come NO come NO mg/Nm³ NO _X come NO come NO mg/Nm³ (*) CO (*) (*) (*) CO (*)	(solare) NOx come NO come NO mg/Nm³ NOx mg/Nm³ (*) CO CO (*) O2 come NO mg/Nm³ 12.00 13.3 14.3 1.0 29.9 28.8 1.0 14.63 13.00 13.6 14.5 0.9 9.1 9.3 0.2 14.55 14.00 13.9 14.7 0.8 7.2 7.2 0.0 14.49 15.00 17.2 17.4 0.2 2 2 13.61 14.49 15.00 17.6 17.8 0.2 2 13.61 13.63 13.61 13.61 16.00 17.6 17.7 0.2 2 13.61 13.61 13.61 13.60 17.7 0.1 13.60 13.60 13.60 13.60 13.60 13.60 13.60 13.60 13.60 13.57 13.60 13.57 13.60 13.57 13.60 13.57 13.60 13.57 13.57 13.57 13.57 13.57 13.57 13.57 13.57 1	(solare) NO _X (me) NO _X (*) CO CO (*) O ₂ O ₂ mg/Nm³ % 12.00 13.3 14.3 1.0 29.9 28.8 1.0 14.63 14.66 13.00 13.6 14.5 0.9 9.1 9.3 0.2 14.55 14.60 14.00 13.9 14.7 0.8 7.2 7.2 0.0 14.49 14.56 15.00 17.2 17.4 0.2 7.2 0.0 14.49 14.56 15.00 17.6 17.8 0.2 13.61 13.61 13.88 16.00 17.6 17.7 0.1 13.61 13.60 13.86 18.00 17.7 17.7 0.1 13.57 13.61 13.82 20.00 17.9 17.9 0.1 13.57 13.57

n.c.: IAR CO calcolato utilizzando le coppie di valori di concentrazione > 10%ELV (*) Valore assoluto della differenza tra concentrazioni rilevate dai due sistemi di analisi Dati SME forniti dal Committente

Società soggetta all'attività di direzione e coordinamento da parte di PGF Srl Via Don Minzoni, 15 – 22060 CABIATE – CO - Tel. 031 76991 – Fax 031 7699200 www.tecnoimp.it e-mail info@tecnoimp.it

Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610132

VERIFICA IAR

Allegato al Rapporto di Prova n. 2104111-007 **EP Produzione SpA**

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori SRM rilevati da ns. tecnico

data inizio campionamento: 28/09/2021 data ricevimento: 18/10/2021 data fine campionamento: 01/10/2021 data inizio fase analitica: 28/09/2021 data emissione: 18/11/2021

punto di emissione - sigla: E1 da impianto a ciclo combinato TG1

RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM" E SISTEMA DI MISURA EMISSIONI "SME" (VALORI TARATI) - VERIFICA INDICE DI ACCURATEZZA RELATIVO

Data	Ora	SRM	SME	Xi	SRM	SME	Xi	SRM	SME	Xi
	(solare)	NO_X	NO_X	(*)	CO	CO	(*)	O_2	O_2	(*)
		come NO	come NO							
		mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	%	%	%
29/09/2021	14.00	16.0	16.1	0.0				14.01	14.18	0.17
29/09/2021	16.00	15.7	15.7	0.1				14.03	14.21	0.18
29/09/2021	17.00	17.4	17.2	0.1				13.73	13.97	0.24
29/09/2021	18.00	18.1	17.9	0.2				13.56	13.79	0.23
29/09/2021	19.00	18.1	17.9	0.2				13.58	13.81	0.23
29/09/2021	20.00	18.8	18.6	0.2				13.52	13.69	0.17
29/09/2021	21.00	18.1	17.9	0.2				13.58	13.79	0.21
29/09/2021	22.00	18.4	18.1	0.3				13.57	13.77	0.20
29/09/2021	23.00	17.7	17.5	0.2				13.72	13.88	0.16
30/09/2021	0.00	18.7	18.3	0.4				13.61	13.81	0.20
30/09/2021	1.00	18.9	18.5	0.4				13.59	13.78	0.20
30/09/2021	2.00	19.0	18.6	0.4				13.59	13.78	0.20
30/09/2021	3.00	19.0	18.4	0.5				13.63	13.82	0.19
30/09/2021	4.00	18.9	18.4	0.6				13.64	13.81	0.17
30/09/2021	5.00	18.9	18.3	0.5				13.66	13.82	0.16
30/09/2021	6.00	19.0	18.4	0.5				13.63	13.78	0.15
30/09/2021	7.00	19.3	18.8	0.5				13.56	13.69	0.13
30/09/2021	8.00	18.9	18.4	0.5				13.66	13.79	0.13
30/09/2021	9.00	18.8	18.2	0.6				13.68	13.80	0.12
30/09/2021	10.00	18.6	18.1	0.6				13.70	13.82	0.12
30/09/2021	11.00	18.3	17.8	0.5				13.76	13.87	0.11
30/09/2021	12.00	14.4	14.5	0.2	15.8	14.3	1.5	14.47	14.52	0.05
30/09/2021	13.00	14.0	14.5	0.6	15.1	12.9	2.2	14.48	14.49	0.01
30/09/2021	14.00	14.0	14.5	0.5	13.5	12.3	1.2	14.44	14.45	0.01
30/09/2021	15.00	18.2	17.9	0.3				13.77	13.90	0.13
30/09/2021	16.00	18.3	17.7	0.5				13.72	13.89	0.18

n.c.: IAR CO calcolato utilizzando le coppie di valori di concentrazione > 10%ELV (*) Valore assoluto della differenza tra concentrazioni rilevate dai due sistemi di analisi Dati SME forniti dal Committente

Società soggetta all'attività di direzione e coordinamento da parte di PGF Srl Via Don Minzoni, 15 – 22060 CABIATE – CO - Tel. 031 76991 – Fax 031 7699200 www.tecnoimp.it e-mail info@tecnoimp.it

Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610132

VERIFICA IAR

Allegato al Rapporto di Prova n. 2104111-007 **EP Produzione SpA**

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori SRM rilevati da ns. tecnico

data inizio campionamento: 28/09/2021 data ricevimento: 18/10/2021 data fine campionamento: 01/10/2021 data inizio fase analitica: 28/09/2021 data emissione: 18/11/2021

punto di emissione - sigla: E1 da impianto a ciclo combinato TG1

RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM" E SISTEMA DI MISURA EMISSIONI "SME" (VALORI TARATI) - VERIFICA INDICE DI ACCURATEZZA RELATIVO

Data	Ora (solare)	SRM NO _X	SME NO _X	Xi (*)	SRM CO	SME CO	Xi (*)	SRM O ₂	SME O ₂	Xi (*)
		come NO	come NO							
		mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	%	%	%
30/09/2021	17.00	18.2	17.7	0.5				13.72	13.89	0.17
30/09/2021	18.00	18.4	17.9	0.5				13.70	13.87	0.17
30/09/2021	19.00	18.5	17.9	0.6				13.70	13.86	0.16
30/09/2021	20.00	18.7	18.1	0.6				13.68	13.84	0.16
30/09/2021	21.00	18.8	18.1	0.7				13.68	13.83	0.15
30/09/2021	22.00	18.9	18.2	0.7				13.67	13.82	0.15
30/09/2021	23.00	19.3	18.6	0.7				13.58	13.70	0.12
1/10/2021	0.00	19.1	18.4	0.7				13.66	13.79	0.13
14/10/2021	11.00	19.1	19.6	0.5				13.54	13.62	0.08
14/10/2021	12.00	17.4	18.0	0.6				14.71	14.73	0.02
	Medie	17.7	17.6	0.4	12.6	12.0	0.8	13.78	13.93	0.16

		IAR NO			IAR CO			IAR O ₂			
ni	t di St	DEV ST	IC	IAR	DEV ST	IC	IAR	DEV ST	IC	IAR	
N° misure NO _x , O ₂	t di student	Differenza assoluta	Indice di confidenza	Accuratezza	Differenza assoluta	Indice di confidenza	Accuratezz a	Differenza assoluta	Indice di confidenza	Accuratezza	
62	2.000	0.24	0.06	97.6	0.77	0.59	89.3	0.07	0.02	98.7	
N°	4 4: -4.44						•				

N° misure CO t di student

9 2.306

Referente emissioni in atmosfera Ordine dei Chimici della Lombardia dr. Marco Pelozzi albo prof.n. 2797 Rapporto di prova firmato digitalmente

Società soggetta all'attività di direzione e coordinamento da parte di PGF Srl Via Don Minzoni, 15 – 22060 CABIATE – CO - Tel. 031 76991 – Fax 031 7699200 www.tecnoimp.it e-mail info@tecnoimp.it

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610132

VERIFICA IAR

Allegato al Rapporto di Prova n. 2104111-007 **EP Produzione SpA**

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori SRM rilevati da ns. tecnico

data inizio campionamento: 28/09/2021 data ricevimento: 18/10/2021 data fine campionamento: 01/10/2021 data inizio fase analitica: 28/09/2021 data emissione: 18/11/2021

punto di emissione - sigla: E1 da impianto a ciclo combinato TG1

RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM" E SISTEMA DI MISURA EMISSIONI "SME" (VALORI TARATI) - VERIFICA INDICE DI ACCURATEZZA RELATIVO

Data	Ora	SRM	SME	Xi	SRM	SME	Xi	SRM	SME	Xi
	(solare)	NO_X	NO_X	(*)	CO	CO	(*)	O_2	O_2	(*)
		come NO	come NO							
		mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm³	mg/Nm ³	mg/Nm ³	%	%	%

ai sensi della normativa vigente

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610132

VERIFICA IAR

Allegato al Rapporto di Prova n. 2104111-007

EP Produzione SpA

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori SRM rilevati da ns. tecnico

data inizio campionamento: 07/10/2021 data ricevimento: 18/10/2021 data fine campionamento: 07/10/2021 data inizio fase analitica: 07/10/2021 data emissione: 18/11/2021

Punto di emissione - sigla: E1 da impianto a ciclo combinato TG1

CAMPIONAMENTI E MISURE DISCONTINUE ESEGUITE MEDIANTE SISTEMA DI RIFERIMENTO "SRM" E SISTEMA DI MISURA EMISSIONI "SME" - VERIFICA INDICE DI ACCURATEZZA RELATIVO

Data	Orario (solare)	SRM Portata			SRM Umidità	SME Umidità	Xi (*)
		m³/h	m³/h	m³/h	%	%	%
07/10/2021	07:35-08:05	2544512	2385362	159151	8.85	7.96	0.88
07/10/2021	08:20-08:50	2477394	2360951	116443	8.87	7.98	0.89
07/10/2021	08:50-09:20	2504498	2349235	155263	8.44	7.99	0.46
07/10/2021	09:20-09:50	2481657	2348248	133409	8.55	8.00	0.55
07/10/2021	09:50-10:20	2470111	2340365	129746	8.88	8.01	0.87
	Medie	2495634	2356832	138802	8.72	7.99	0.73

			IAR PORTATA		IAR UMIDITA'			
ni	T di ST	DEV ST	IC	IAR	DEV ST	IC	IAR	
N° misure	T di student	Differenza assoluta	Indice di confidenza	Accuratezza	Differenza assoluta	Indice di confidenza	Accuratezza	
5	2.776	18000	22350	93.5	0.21	0.26	88.7	

Società soggetta all'attività di direzione e coordinamento da parte di PGF Srl Via Don Minzoni, 15 – 22060 CABIATE – CO - Tel. 031 76991 – Fax 031 7699200 www.tecnoimp.it e-mail info@tecnoimp.it

Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610132

VERIFICA IAR

Allegato al Rapporto di Prova n. 2104111-026 **EP Produzione SpA**

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori SRM rilevati da ns. tecnico

data inizio campionamento: 05/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 07/10/2021 data fine campionamento: 07/10/2021 data inizio fase analitica: 05/10/2021 data emissione: 18/11/2021

punto di emissione - sigla: E2 da impianto a ciclo combinato TG2

RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM" E SISTEMA DI MISURA EMISSIONI "SME" (VALORI TARATI) - VERIFICA INDICE DI ACCURATEZZA RELATIVO

Ora	SRM	SME	Xi	SRM	SME	Xi	SRM	SME	Xi
(solare)	NO_X	NO_X	(*)	CO	CO	(*)	O_2	O_2	(*)
	come NO	come NO							
	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	%	%	%
3.00	20.4	20.4	0.0				13.70	13.73	0.03
4.00	21.7	21.6	0.1				13.36	13.38	0.02
5.00	21.9	21.8	0.1				13.35	13.39	0.04
6.00	21.3	21.2	0.1				13.31	13.32	0.01
7.00	21.3	21.2	0.1				13.29	13.31	0.01
9.00	21.2	21.9	0.7				13.32	13.36	0.04
10.00	20.9	21.6	0.7				13.35	13.40	0.04
11.00	20.6	21.3	0.7				13.39	13.45	0.06
12.00	15.4	16.7	1.3	24.6	27.3	2.7	14.53	14.58	0.05
13.00	16.3	17.5	1.2	7.0	8.8	1.8	14.28	14.33	0.04
14.00	16.4	17.6	1.1	6.4	8.3	1.9	14.25	14.30	0.05
15.00	20.4	21.2	0.7				13.53	13.61	0.08
16.00	20.6	21.4	0.7				13.40	13.48	0.08
17.00	20.6	21.3	8.0				13.41	13.48	0.08
18.00	20.8	21.5	0.7				13.42	13.49	0.07
19.00	20.9	21.5	0.6				13.43	13.48	0.05
20.00	20.9	21.6	0.6				13.44	13.49	0.05
21.00	21.1	21.7	0.6				13.45	13.50	0.05
22.00	21.2	21.8	0.6				13.39	13.43	0.04
23.00	20.8	21.4	0.6				13.40	13.44	0.04
6.00	21.4	22.1	0.7				13.50	13.50	0.00
7.00	21.0	21.5	0.6				13.34	13.34	0.00
9.00	22.0	22.6	0.5				13.40	13.41	0.01
10.00	22.1	22.6	0.4				13.41	13.43	0.02
11.00	21.9	22.3	0.4				13.38	13.41	0.03
12.00	21.0	21.4	0.4				13.36	13.38	0.03
	3.00 4.00 5.00 6.00 7.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 20.00 21.00 22.00 23.00 6.00 7.00 9.00 10.00 11.00	(solare) NO _X come NO mg/Nm³ 3.00 20.4 4.00 21.7 5.00 21.9 6.00 21.3 7.00 21.3 9.00 21.2 10.00 20.9 11.00 20.6 12.00 15.4 13.00 16.3 14.00 16.4 15.00 20.4 16.00 20.6 17.00 20.6 18.00 20.8 19.00 20.9 21.00 21.1 22.00 20.8 6.00 21.4 7.00 21.0 9.00 22.0 10.00 22.1 11.00 21.9	(solare) NO _X come NO mg/Nm³ NO _X come NO mg/Nm³ 3.00 20.4 20.4 4.00 21.7 21.6 5.00 21.9 21.8 6.00 21.3 21.2 7.00 21.3 21.2 9.00 21.2 21.9 10.00 20.9 21.6 11.00 20.6 21.3 12.00 15.4 16.7 13.00 16.3 17.5 14.00 16.4 17.6 15.00 20.4 21.2 16.00 20.6 21.4 17.00 20.6 21.3 18.00 20.8 21.5 19.00 20.9 21.5 20.00 20.9 21.6 21.00 21.1 21.7 22.00 21.2 21.8 23.00 20.8 21.4 6.00 21.4 22.1 7.00 21.0 21.5 9.00	(solare) NO _X come NO mg/Nm³ NO _X come NO mg/Nm³ (*) 3.00 20.4 20.4 0.0 4.00 21.7 21.6 0.1 5.00 21.9 21.8 0.1 6.00 21.3 21.2 0.1 7.00 21.3 21.2 0.1 9.00 21.2 21.9 0.7 10.00 20.9 21.6 0.7 11.00 20.6 21.3 0.7 12.00 15.4 16.7 1.3 13.00 16.3 17.5 1.2 14.00 16.4 17.6 1.1 15.00 20.4 21.2 0.7 16.00 20.6 21.4 0.7 17.00 20.6 21.3 0.8 18.00 20.8 21.5 0.6 20.00 20.9 21.5 0.6 20.00 20.9 21.6 0.6 21.00 21.1 21.7 0	(solare) NO _X come NO come NO mg/Nm³ mg/Nm³ <th< td=""><td>(solare) NO_X come NO come NO come NO mg/Nm³ (*) mg/Nm³ CO mg/Nm³ mg/Nm³</td></th<> <td>(solare) NO_X come NO come NO mg/Nm³ (*) CO CO (*) come NO mg/Nm³ mg/Nm³</td> <td>(solare) NOx come NO come NO mg/Nm³ NOx mg/Nm³ (*) CO CO (*) O2 3.00 20.4 20.4 0.0 13.70 4.00 21.7 21.6 0.1 13.36 5.00 21.9 21.8 0.1 13.35 6.00 21.3 21.2 0.1 13.39 7.00 21.3 21.2 0.1 13.39 9.00 21.2 21.9 0.7 13.39 11.00 20.6 21.3 0.7 13.39 12.00 15.4 16.7 1.3 24.6 27.3 2.7 14.53 13.00 16.3 17.5 1.2 7.0 8.8 1.8 14.28 14.00 16.4 17.6 1.1 6.4 8.3 1.9 14.25 15.00 20.4 21.2 0.7 </td> <td> NO</td>	(solare) NO _X come NO come NO come NO mg/Nm³ (*) mg/Nm³ CO mg/Nm³ mg/Nm³	(solare) NO _X come NO come NO mg/Nm³ (*) CO CO (*) come NO mg/Nm³ mg/Nm³	(solare) NOx come NO come NO mg/Nm³ NOx mg/Nm³ (*) CO CO (*) O2 3.00 20.4 20.4 0.0 13.70 4.00 21.7 21.6 0.1 13.36 5.00 21.9 21.8 0.1 13.35 6.00 21.3 21.2 0.1 13.39 7.00 21.3 21.2 0.1 13.39 9.00 21.2 21.9 0.7 13.39 11.00 20.6 21.3 0.7 13.39 12.00 15.4 16.7 1.3 24.6 27.3 2.7 14.53 13.00 16.3 17.5 1.2 7.0 8.8 1.8 14.28 14.00 16.4 17.6 1.1 6.4 8.3 1.9 14.25 15.00 20.4 21.2 0.7	NO

n.c.: IAR CO calcolato utilizzando le coppie di valori di concentrazione > 10%ELV (*) Valore assoluto della differenza tra concentrazioni rilevate dai due sistemi di analisi Dati SME forniti dal Committente

Società soggetta all'attività di direzione e coordinamento da parte di PGF Srl Via Don Minzoni, 15 – 22060 CABIATE – CO - Tel. 031 76991 – Fax 031 7699200 www.tecnoimp.it e-mail info@tecnoimp.it

Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610132

VERIFICA IAR

Allegato al Rapporto di Prova n. 2104111-026 EP Produzione SpA

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori SRM rilevati da ns. tecnico

data inizio campionamento: 05/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 07/10/2021 data fine campionamento: 07/10/2021 data inizio fase analitica: 05/10/2021 data emissione: 18/11/2021

punto di emissione - sigla: E2 da impianto a ciclo combinato TG2

RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM" E SISTEMA DI MISURA EMISSIONI "SME" (VALORI TARATI) - VERIFICA INDICE DI ACCURATEZZA RELATIVO

Ora	SRM	SME	Xi	SRM	SME	Xi	SRM	SME	Xi
(solare)	NO_X	NO_X	(*)	CO	CO	(*)	O_2	O_2	(*)
	come NO	come NO							
	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	%	%	%
13.00	17.3	18.0	0.8	7.4	6.5	0.9	14.21	14.23	0.02
14.00	17.1	18.0	0.9	8.7	7.7	1.0	14.26	14.26	0.00
15.00	17.5	18.3	8.0	7.1	6.1	1.0	14.24	14.21	0.03
16.00	19.2	19.7	0.4				13.84	13.85	0.01
17.00	18.8	19.4	0.5				13.85	13.85	0.00
18.00	18.6	19.1	0.5				13.87	13.87	0.00
19.00	21.7	22.2	0.5				13.51	13.49	0.02
20.00	21.7	22.2	0.5				13.49	13.47	0.01
21.00	21.6	22.1	0.5				13.49	13.48	0.01
22.00	19.6	20.1	0.5				13.50	13.49	0.01
23.00	20.1	20.6	0.5				13.41	13.40	0.01
0.00	21.7	22.2	0.5				13.39	13.38	0.01
1.00	21.6	22.3	0.6				13.41	13.40	0.01
2.00	21.6	22.2	0.6				13.44	13.43	0.01
3.00	21.5	22.0	0.5				13.45	13.44	0.01
4.00	21.5	22.0	0.5				13.43	13.42	0.01
5.00	21.6	22.0	0.5				13.44	13.43	0.01
6.00	20.4	20.9	0.5				13.53	13.52	0.01
7.00	21.6	22.1	0.6				13.42	13.41	0.01
9.00	18.3	18.8	0.5				13.71	13.68	0.03
10.00	18.3	18.9	0.6				13.71	13.69	0.03
11.00	18.3	18.8	0.5				13.72	13.71	0.01
12.00	19.4	20.7	1.3	36.0	36.9	0.9	14.49	14.50	0.00
13.00	17.9	18.8	0.8	8.6	8.7	0.1	14.33	14.35	0.02
14.00	17.3	18.1	0.8	7.7	7.9	0.2	14.31	14.33	0.02
15.00	18.2	18.7	0.5				13.84	13.86	0.01
	13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00 22.00 23.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 9.00 11.00 12.00 13.00 14.00	(solare) NO _X come NO mg/Nm³ 13.00 17.3 14.00 17.1 15.00 17.5 16.00 19.2 17.00 18.8 18.00 18.6 19.00 21.7 20.00 21.7 21.00 21.6 22.00 19.6 23.00 20.1 0.00 21.7 1.00 21.6 2.00 21.6 3.00 21.5 5.00 21.6 6.00 20.4 7.00 21.6 9.00 18.3 10.00 18.3 10.00 18.3 11.00 18.3 12.00 19.4 13.00 17.9 14.00 17.3	(solare) NO _X come NO mg/Nm³ NO _X come NO mg/Nm³ 13.00 17.3 18.0 14.00 17.1 18.0 15.00 17.5 18.3 16.00 19.2 19.7 17.00 18.8 19.4 18.00 18.6 19.1 19.00 21.7 22.2 20.00 21.7 22.2 21.00 21.6 22.1 22.00 19.6 20.1 23.00 20.1 20.6 0.00 21.7 22.2 1.00 21.6 22.3 2.00 21.6 22.3 2.00 21.6 22.2 3.00 21.5 22.0 4.00 21.5 22.0 5.00 21.6 22.1 9.00 18.3 18.8 10.00 18.3 18.9 11.00 18.3 18.9 11.00 18.3 18.8 12.00	(solare) NO _X come NO mg/Nm³ NO _X come NO mg/Nm³ (*) 13.00 17.3 18.0 0.8 14.00 17.1 18.0 0.9 15.00 17.5 18.3 0.8 16.00 19.2 19.7 0.4 17.00 18.8 19.4 0.5 18.00 18.6 19.1 0.5 19.00 21.7 22.2 0.5 20.00 21.7 22.2 0.5 21.00 21.6 22.1 0.5 22.00 19.6 20.1 0.5 23.00 20.1 20.6 0.5 0.00 21.7 22.2 0.5 1.00 21.6 22.1 0.5 23.00 20.1 20.6 0.5 0.00 21.7 22.2 0.5 1.00 21.6 22.2 0.6 3.00 21.5 22.0 0.5 5.00 21.6 22.0 0	(solare) NO _X come NO come NO mg/Nm³ mg/Nm³ <th< td=""><td>(solare) NO_X come NO come NO come NO mg/Nm³ (*) mg/Nm³ CO mg/Nm³ CO mg/Nm³ mg/Nm³</td><td>(solare) NO_X come NO come NO mg/Nm³ NO_X mg/Nm³ (*) mg/Nm³ CO CO (*) mg/Nm³ 13.00 17.3 18.0 0.8 7.4 6.5 0.9 14.00 17.1 18.0 0.9 8.7 7.7 1.0 15.00 17.5 18.3 0.8 7.1 6.1 1.0 16.00 19.2 19.7 0.4 1.0 6.1 1.0 16.00 19.2 19.7 0.4 1.0 6.1 1.0 18.00 18.8 19.4 0.5 1.0 6.1 1.0 19.00 21.7 22.2 0.5 1.0<!--</td--><td>(solare) NOx come NO come NO mg/Nm³ NOx mg/Nm³ (*) CO CO (*) O2 13.00 17.3 18.0 0.8 7.4 6.5 0.9 14.21 14.00 17.1 18.0 0.9 8.7 7.7 1.0 14.26 15.00 17.5 18.3 0.8 7.1 6.1 1.0 14.24 16.00 19.2 19.7 0.4 </td><td>(solare) NO_X come NO come NO come NO come NO COME NO come NO come NO COME NO come NO come NO COME NO come NO come NO COME NO come NO come NO COME NO come NO come NO COME NO come NO come NO Mag/Nm³ mg/Nm³ m</td></td></th<>	(solare) NO _X come NO come NO come NO mg/Nm³ (*) mg/Nm³ CO mg/Nm³ CO mg/Nm³ mg/Nm³	(solare) NO _X come NO come NO mg/Nm³ NO _X mg/Nm³ (*) mg/Nm³ CO CO (*) mg/Nm³ 13.00 17.3 18.0 0.8 7.4 6.5 0.9 14.00 17.1 18.0 0.9 8.7 7.7 1.0 15.00 17.5 18.3 0.8 7.1 6.1 1.0 16.00 19.2 19.7 0.4 1.0 6.1 1.0 16.00 19.2 19.7 0.4 1.0 6.1 1.0 18.00 18.8 19.4 0.5 1.0 6.1 1.0 19.00 21.7 22.2 0.5 1.0 </td <td>(solare) NOx come NO come NO mg/Nm³ NOx mg/Nm³ (*) CO CO (*) O2 13.00 17.3 18.0 0.8 7.4 6.5 0.9 14.21 14.00 17.1 18.0 0.9 8.7 7.7 1.0 14.26 15.00 17.5 18.3 0.8 7.1 6.1 1.0 14.24 16.00 19.2 19.7 0.4 </td> <td>(solare) NO_X come NO come NO come NO come NO COME NO come NO come NO COME NO come NO come NO COME NO come NO come NO COME NO come NO come NO COME NO come NO come NO COME NO come NO come NO Mag/Nm³ mg/Nm³ m</td>	(solare) NOx come NO come NO mg/Nm³ NOx mg/Nm³ (*) CO CO (*) O2 13.00 17.3 18.0 0.8 7.4 6.5 0.9 14.21 14.00 17.1 18.0 0.9 8.7 7.7 1.0 14.26 15.00 17.5 18.3 0.8 7.1 6.1 1.0 14.24 16.00 19.2 19.7 0.4	(solare) NO _X come NO come NO come NO come NO COME NO come NO come NO COME NO come NO come NO COME NO come NO come NO COME NO come NO come NO COME NO come NO come NO COME NO come NO come NO Mag/Nm³ mg/Nm³ m

n.c.: IAR CO calcolato utilizzando le coppie di valori di concentrazione > 10%ELV (*) Valore assoluto della differenza tra concentrazioni rilevate dai due sistemi di analisi Dati SME forniti dal Committente

TECNOLOGIE D'IMPRESA Srl a socio unico

Società soggetta all'attività di direzione e coordinamento da parte di PGF Srl Via Don Minzoni, 15 – 22060 CABIATE – CO - Tel. 031 76991 – Fax 031 7699200 www.tecnoimp.it e-mail info@tecnoimp.it

Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610132

VERIFICA IAR

Allegato al Rapporto di Prova n. 2104111-026 EP Produzione SpA

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori SRM rilevati da ns. tecnico

data inizio campionamento: 05/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 07/10/2021 data fine campionamento: 07/10/2021 data inizio fase analitica: 05/10/2021 data emissione: 18/11/2021

punto di emissione - sigla: E2 da impianto a ciclo combinato TG2

RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM" E SISTEMA DI MISURA EMISSIONI "SME" (VALORI TARATI) - VERIFICA INDICE DI ACCURATEZZA RELATIVO

Data	Ora (solare)	SRM NO _X	SME NO _X	Xi (*)	SRM CO	SME CO	Xi (*)	SRM O ₂	SME O ₂	Xi (*)
		come NO	come NO	•			•			
		mg/Nm³	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm³	mg/Nm³	%	%	%
7/10/2021	16.00	17.5	18.0	0.5				13.77	13.78	0.02
7/10/2021	17.00	17.4	17.9	0.5				13.76	13.78	0.02
7/10/2021	18.00	17.4	17.9	0.5				13.75	13.76	0.01
7/10/2021	19.00	17.5	18.1	0.5				13.75	13.76	0.01
7/10/2021	20.00	17.6	18.1	0.5				13.75	13.75	0.00
7/10/2021	21.00	17.7	18.2	0.5				13.74	13.74	0.00
7/10/2021	22.00	17.8	18.2	0.4				13.73	13.72	0.01
7/10/2021	23.00	17.8	18.1	0.3				13.72	13.72	0.00
7/10/2021	0.00	17.9	18.0	0.2				13.76	13.76	0.00
	Medie	19.8	20.3	0.6	12.6	13.1	1.2	13.65	13.66	0.02

			IAR NO	·		IAR CO			IAR O ₂	
ni	t di St	DEV ST	IC	IAR	DEV ST	IC	IAR	DEV ST	IC	IAR
N° misure NO _x , O ₂	t di student	Differenza assoluta	Indice di confidenza	Accuratezza	Differenza assoluta	Indice di confidenza	Accuratezz a	Differenza assoluta	Indice di confidenza	Accuratezza
61	2.000	0.26	0.07	96.8	0.83	0.64	85.7	0.02	0.01	99.8
N° misure CO	t di student									

IAR CO calcolato utilizzando le coppie di valori di concentrazione > 10%ELV

(*) Valore assoluto della differenza tra concentrazioni rilevate dai due sistemi di analisi
Dati SME forniti dal Committente

9

2.306

Referente emissioni in atmosfera Ordine dei Chimici della Lombardia dr. Marco Pelozzi albo prof.n. 2797 Rapporto di prova firmato digitalmente ai sensi della normativa vigente

TECNOLOGIE D'IMPRESA Srl a socio unico Società soggetta all'attività di direzione e coordinamento da parte di PGF Srl Via Don Minzoni, 15 – 22060 CABIATE – CO - Tel. 031 76991 – Fax 031 7699200 www.tecnoimp.it e-mail info@tecnoimp.it

Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610132

VERIFICA IAR

Allegato al Rapporto di Prova n. 2104111-026

EP Produzione SpA

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori SRM rilevati da ns. tecnico

data inizio campionamento: 28/09/2021 data ricevimento: 18/10/2021 data fine campionamento: 28/09/2021 data inizio fase analitica: 28/09/2021 data emissione: 18/11/2021

Punto di emissione - sigla: E2 da impianto a ciclo combinato TG2

CAMPIONAMENTI E MISURE DISCONTINUE ESEGUITE MEDIANTE SISTEMA DI RIFERIMENTO "SRM" E SISTEMA DI MISURA EMISSIONI "SME" - VERIFICA INDICE DI ACCURATEZZA RELATIVO

Data	Orario (solare)	SRM Portata NORM.	SME Portata NORM.	Xi (*)	SRM Umidità	SME Umidità	Xi (*)
		Nm³/h	Nm³/h	Nm³/h	%	%	%
28/09/2021	12:50-13:20	1631300	1664422	33122	8.48	8.43	0.06
28/09/2021	13:20-13:50	1618414	1665201	46787	8.31	8.39	80.0
28/09/2021	13:50-14:20	1604628	1635636	31009	8.10	8.39	0.30
28/09/2021	14:20-14:50	1581077	1631244	50168	8.57	8.39	0.19
28/09/2021	14:50-15:20	1616992	1635402	18410	8.22	8.37	0.15
	Medie	1610482	1646381	35899	8.34	8.39	0.15

			IAR PORTATA	IAR UMIDITA'			
ni	T di ST	DEV ST	IC	IAR	DEV ST	IC	IAR
N° misure	T di student	Differenza assoluta	Indice di confidenza	Accuratezza	Differenza assoluta	Indice di confidenza	Accuratezza
5	2.776	12842	15945	96.8	0.09	0.12	96.7

TECNOLOGIE D'IMPRESA Srl a socio unico

Società soggetta all'attività di direzione e coordinamento da parte di PGF Srl Via Don Minzoni, 15 – 22060 CABIATE – CO - Tel. 031 76991 – Fax 031 7699200 www.tecnoimp.it e-mail info@tecnoimp.it

Cap. Soc. Euro 1.000.000 – C.F. 05100520153 – P.IVA 02061610132

VERIFICA IAR

Allegato al Rapporto di Prova n. 2104111-045 **EP Produzione SpA**

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori SRM rilevati da ns. tecnico

data inizio campionamento: 11/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 13/10/2021 data fine campionamento: 13/10/2021 data inizio fase analitica: 11/10/2021 data emissione: 18/11/2021

punto di emissione - sigla: E3 da impianto a ciclo combinato TG3

RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM" E SISTEMA DI MISURA EMISSIONI "SME" (VALORI TARATI) - VERIFICA INDICE DI ACCURATEZZA RELATIVO

Data	Ora	SRM	SME	Xi	SRM	SME	Xi	SRM	SME	Xi
		NO_X	NO_X	(*)	CO	CO	(*)	O_2	O_2	(*)
		come NO	come NO							
		mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	%	%	%
11/10/2021	2.00	17.0	17.9	0.9				13.56	13.49	0.07
11/10/2021	3.00	17.7	18.6	0.9				13.60	13.53	0.07
11/10/2021	4.00	17.5	18.4	0.9				13.57	13.51	0.06
11/10/2021	5.00	17.2	18.2	0.9				13.54	13.47	0.06
11/10/2021	6.00	17.5	18.3	0.9				13.54	13.48	0.06
11/10/2021	7.00	17.2	18.1	0.9				13.55	13.48	0.07
11/10/2021	8.00	17.6	18.4	0.9				13.54	13.47	0.06
11/10/2021	11.00	17.5	17.9	0.4				13.57	13.61	0.04
11/10/2021	12.00	16.3	17.3	1.0	21.3	20.7	0.6	14.45	14.49	0.04
11/10/2021	13.00	16.7	17.6	0.9	10.3	9.9	0.3	14.32	14.38	0.07
11/10/2021	14.00	16.7	17.5	0.9	9.3	9.0	0.3	14.30	14.37	0.07
11/10/2021	15.00	17.6	18.2	0.6				13.67	13.73	0.06
11/10/2021	16.00	17.2	17.6	0.5				13.61	13.66	0.05
11/10/2021	17.00	17.1	17.6	0.5				13.60	13.67	0.07
11/10/2021	18.00	17.2	17.7	0.5				13.55	13.64	0.08
11/10/2021	19.00	17.2	17.7	0.5				13.54	13.62	0.09
11/10/2021	20.00	17.2	17.6	0.5				13.56	13.63	0.07
11/10/2021	21.00	17.2	17.6	0.5				13.57	13.63	0.06
11/10/2021	22.00	17.2	17.7	0.5				13.57	13.63	0.06
11/10/2021	23.00	17.3	17.8	0.5				13.57	13.63	0.06
12/10/2021	6.00	18.5	19.0	0.5				13.63	13.72	0.09
12/10/2021	7.00	17.4	17.8	0.4				13.54	13.61	0.07
12/10/2021	9.00	17.6	17.9	0.4				13.53	13.61	0.07
12/10/2021	10.00	17.7	18.2	0.5				13.81	13.89	0.08

IAR CO calcolato utilizzando le coppie di valori di concentrazione > 10%ELV (*) Valore assoluto della differenza tra concentrazioni rilevate dai due sistemi di analisi Dati SME forniti dal Committente

Referente emissioni in atmosfera Ordine dei Chimici della Lombardia dr. Marco Pelozzi albo prof.n. 2797 Rapporto di prova firmato digitalmente ai sensi della normativa vigente

TECNOLOGIE D'IMPRESA Srl a socio unico

Società soggetta all'attività di direzione e coordinamento da parte di PGF Srl Via Don Minzoni, 15 – 22060 CABIATE – CO - Tel. 031 76991 – Fax 031 7699200 www.tecnoimp.it e-mail info@tecnoimp.it

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610132

VERIFICA IAR

Allegato al Rapporto di Prova n. 2104111-045 **EP Produzione SpA**

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori SRM rilevati da ns. tecnico

data inizio campionamento: 11/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 13/10/2021 data fine campionamento: 13/10/2021 data inizio fase analitica: 11/10/2021 data emissione: 18/11/2021

punto di emissione - sigla: E3 da impianto a ciclo combinato TG3

RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM" E SISTEMA DI MISURA EMISSIONI "SME" (VALORI TARATI) - VERIFICA INDICE DI ACCURATEZZA RELATIVO

Data	Ora	SRM NO _X	SME NO _X	Xi (*)	SRM CO	SME CO	Xi (*)	SRM O ₂	SME O ₂	Xi (*)
		come NO	come NO	()			• • •	_	_	()
		mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	%	%	%
12/10/2021	11.00	16.7	17.4	0.7	7.5	8.2	0.6	14.21	14.27	0.06
12/10/2021	12.00	16.8	17.6	0.8	8.4	9.5	1.1	14.27	14.34	0.08
12/10/2021	13.00	17.0	17.8	0.8	7.7	8.7	1.0	14.27	14.35	0.08
12/10/2021	14.00	18.2	18.7	0.5				13.93	14.02	0.09
12/10/2021	15.00	17.9	18.4	0.5				13.94	14.03	0.09
12/10/2021	16.00	17.8	18.3	0.5				13.94	14.04	0.09
12/10/2021	17.00	17.8	18.2	0.4				13.54	13.64	0.11
12/10/2021	18.00	17.5	17.9	0.4				13.52	13.62	0.10
12/10/2021	19.00	17.5	17.9	0.4				13.51	13.61	0.10
12/10/2021	20.00	17.4	17.9	0.5				13.52	13.61	0.09
12/10/2021	21.00	17.5	17.9	0.4				13.52	13.61	0.09
12/10/2021	22.00	17.4	17.9	0.5				13.62	13.69	0.07
13/10/2021	5.00	17.7	18.5	0.8	9.2	7.3	1.9	14.24	14.30	0.06
13/10/2021	6.00	18.5	18.9	0.5				13.67	13.75	0.09
13/10/2021	7.00	18.0	18.3	0.4				13.48	13.57	0.09
13/10/2021	9.00	17.7	18.1	0.4				13.52	13.60	0.08
13/10/2021	10.00	18.0	18.4	0.4				13.75	13.82	0.07
13/10/2021	11.00	17.7	18.1	0.4				13.51	13.59	0.08
13/10/2021	12.00	19.3	20.2	0.9	25.1	23.0	2.1	14.54	14.56	0.02
13/10/2021	13.00	17.3	18.1	0.9	12.0	10.4	1.6	14.31	14.38	0.07
13/10/2021	14.00	17.3	18.1	0.8	9.4	7.7	1.7	14.20	14.28	0.09
13/10/2021	15.00	17.8	18.2	0.5				13.54	13.61	0.08
13/10/2021	16.00	17.2	17.7	0.5				13.58	13.64	0.06
13/10/2021	17.00	17.2	17.7	0.5				13.57	13.64	0.07

IAR CO calcolato utilizzando le coppie di valori di concentrazione > 10%ELV (*) Valore assoluto della differenza tra concentrazioni rilevate dai due sistemi di analisi Dati SME forniti dal Committente

Referente emissioni in atmosfera Ordine dei Chimici della Lombardia dr. Marco Pelozzi albo prof.n. 2797 Rapporto di prova firmato digitalmente ai sensi della normativa vigente

10

2.262

TECNOLOGIE D'IMPRESA Srl a socio unico

Società soggetta all'attività di direzione e coordinamento da parte di PGF Srl Via Don Minzoni, 15 – 22060 CABIATE – CO - Tel. 031 76991 – Fax 031 7699200 www.tecnoimp.it e-mail info@tecnoimp.it

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610132

VERIFICA IAR

Allegato al Rapporto di Prova n. 2104111-045 **EP Produzione SpA**

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori SRM rilevati da ns. tecnico

data inizio campionamento: 11/10/2021 data ricevimento: 18/10/2021 data fine fase analitica: 13/10/2021 data fine campionamento: 13/10/2021 data inizio fase analitica: 11/10/2021 data emissione: 18/11/2021

punto di emissione - sigla: E3 da impianto a ciclo combinato TG3

RILIEVI IN CONTINUO ESEGUITI MEDIANTE SISTEMA DI RIFERIMENTO "SRM" E SISTEMA DI MISURA EMISSIONI "SME" (VALORI TARATI) - VERIFICA INDICE DI ACCURATEZZA RELATIVO

Data	Ora	SRM NO _X come NO	SME NO _X come NO	Xi (*)	SRM CO	SME CO	Xi (*)	SRM O ₂	SME O ₂	Xi (*)
		mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	%	%	%
13/10/2021	18.00	17.2	17.7	0.4				13.58	13.65	0.08
13/10/2021	19.00	17.5	17.9	0.4				13.53	13.61	0.08
13/10/2021	20.00	17.5	17.9	0.4				13.55	13.61	0.06
	Medie	17.5	18.1	0.6	12.0	11.4	1.1	13.74	13.79	0.07

			IAR NO			IAR CO			IAR O ₂	
ni	t di St	DEV ST	IC	IAR	DEV ST	IC	IAR	DEV ST	IC	IAR
N° misure NO _x , O ₂	t di student	Differenza assoluta	Indice di confidenza	Accuratezza	Differenza assoluta	Indice di confidenza	Accuratezz a	Differenza assoluta	Indice di confidenza	Accuratezza
51	2.009	0.20	0.06	96.3	0.66	0.47	86.8	0.02	0.00	99.4
N° misure CO	t di student									

TECNOLOGIE D'IMPRESA Srl a socio unico Società soggetta all'attività di direzione e coordinamento da parte di PGF Srl Via Don Minzoni, 15 – 22060 CABIATE – CO - Tel. 031 76991 – Fax 031 7699200 www.tecnoimp.it e-mail info@tecnoimp.it

Cap. Soc. Euro 1.000.000 - C.F. 05100520153 - P.IVA 02061610132

VERIFICA IAR

Allegato al Rapporto di Prova n. 2104111-045

EP Produzione SpA

Strada Statale Abetone Brennero Km 239 46035 Ostiglia (MN)

Tipologia di campione EMISSIONI IN ATMOSFERA - valori SRM rilevati da ns. tecnico

data inizio campionamento: 11/10/2021 data ricevimento: 18/10/2021 data fine campionamento: 11/10/2021 data inizio fase analitica: 18/10/2021 data emissione: 18/11/2021

Punto di emissione - sigla: E3 da impianto a ciclo combinato TG3

CAMPIONAMENTI E MISURE DISCONTINUE ESEGUITE MEDIANTE SISTEMA DI RIFERIMENTO "SRM" E SISTEMA DI MISURA EMISSIONI "SME" - VERIFICA INDICE DI ACCURATEZZA RELATIVO

Data	Orario (solare)	SRM Portata	SME Portata	Xi (*)	SRM Umidità	SME Umidità	Xi (*)
		m³/h	m³/h	m³/h	%	%	%
11/10/2021	12:00-12:30	1580048	1490901	89146	7.07	7.20	0.13
11/10/2021	12:30-13:00	1597255	1489267	107989	6.45	7.22	0.77
11/10/2021	13:00-13:30	1591679	1487265	104414	6.53	7.21	0.69
11/10/2021	13:30-14:00	1576429	1483238	93191	7.57	7.18	0.40
11/10/2021	14:30-15:00	2668347	2488250	180097	7.51	7.82	0.31
	Medie	1802752	1687784	114967	7.03	7.33	0.46

			IAR PORTATA	IAR UMIDITA'			
ni	T di ST	DEV ST	IC	IAR	DEV ST	IC	IAR
N° misure	T di student	Differenza assoluta	Indice di confidenza	Accuratezza	Differenza assoluta	Indice di confidenza	Accuratezza
5	2.776	37225	46221	91.1	0.27	0.33	88.7

EP PRODUZIONE S.p.A.

Centrale di Ostiglia

ALLEGATO N. 5

DOCUMENTAZIONE DEL LABORATORIO DI PROVA

Membro degli Accordi di Mutuo Riconoscimento EA, IAF e ILAC Signatory of EA, IAF and ILAC Mutual Recognition Agreements

CERTIFICATO DI ACCREDITAMENTO

Accreditation Certificate

ACCREDITAMENTO N. ACCREDITATION N.

0175L REV. 05

EMESSO DA ISSUED BY **DIPARTIMENTO LABORATORI DI PROVA**

SI DICHIARA CHE WE DECLARE THAT **TECNOLOGIE D'IMPRESA SrL**

Sede/Headquarters:

- Via Don Minzoni, 15 - 22060 Cabiate CO

È CONFORME AI REQUISITI DELLA NORMA UNI CEI EN ISO/IEC 17025:2018

MEETS THE REQUIREMENTS OF THE STANDARD

MD-CA-01 rev.

ISO/IEC 17025:2017

QUALE

Laboratorio di Prova

AS

Testing Laboratory

Data di 1ª emissione 1st issue date 24-03-1998 Data di modifica Modification date 21-05-2020 Data di scadenza Expiring date 13-03-2022

Dott.ssa Silvia Tramontin Il Direttore di Dipartimento The Department Director Dott. Filippo Infiletti Il Direttore Generale The General Director Ing. Giuseppe Rossi Il Presidente The President

L'accreditamento attesta la competenza tecnica del Laboratorio relativamente al campo di accreditamento riportato nell'Elenco Prove allegato al presente certificato di accreditamento.

Il presente certificato non è da ritenersi valido se non accompagnato dagli Elenchi Prove, che possono variare nel tempo.
La vigenza dell'accreditamento può essere verificata sul sito web (www.accredia.it) o richiesta al Dipartimento di competenza.
I requisiti di sistema riportati nella norma ISO/IEC 17025 sono scritti in un linguaggio attinente alle attività di laboratorio e sono generalmente in accordo con i principi della norma ISO 9001 (si veda il comunicato congiunto ISO-ILAC-IAF dell'Aprile 2017).

The accreditation certifies the technical competence of the laboratory limited to the scope detailed in the attached Enclosure. The present certificate is valid only if associated to the annexed schedule, that may vary in the time. Confirmation of the validity of accreditation can be verified on website www.accredia.it or by contacting the relevant Department. The management system requirements in ISO/IEC 17025 are written in language relevant to laboratories operations and generally operate in accordance with the principles of ISO 9001 (refer joint ISO-ILAC-IAF Communiqué dated April 2017).

pag. 1/1

TECNOLOGIE D'IMPRESA SrL	UNI CEI EN ISO/IEC 17025:2018	
Via Don Minzoni, 15 22060 Cabiate CO	Revisione: 41	Data: 14/12/2021
	Sede A	pag. 1 di 14

ELENCO PROVE ACCREDITATE - CON CAMPO FISSO IN CATEGORIA: 0

Acque da torri di raffreddamento/Cooling towers waters, Acque destinate al consumo umano/Drinking waters, Acque di

Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	0&.
Legionella spp/Legionella spp	ISO 11731:2017	Metodo colturale-conta-ricerca	a
Acque destinate al consumo umano (1)/Drinking waters (1), Acque di scarico anche sottoposte a trattamento/Waste waters a		O -	s,
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	0&.
Coliformi fecali/Fecal coliforms	APAT CNR IRSA 7020 B Man 29 2003	Metodo colturale-cont	ta
Coliformi totali/Total coliforms	APAT CNR IRSA 7010 C Man 29 2003	Metodo colturale-cont	ta
Enterococchi/Enterococci, Streptococchi fecali/Intestinal streptococci	APAT CNR IRSA 7040 C Man 29 2003	Metodo colturale-cont	ta
Microrganismi vitali a 22°C/Microorganisms at 22°C, Microrganismi vitali a 36°C/Microorganisms at 36°C	APAT CNR IRSA 7050 Man 29 2003	Metodo colturale-cont	ta
Acque destinate al consumo umano (1)/Drinking waters (1), Acque destinate al consumo umano (1)/Drinking waters (que di scarico/Waste waters, Ac	que naturali/Natural	
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	0&.
Fenoli/Phenols	APAT CNR IRSA 5070 A2 Man 29 2003	Spettrofotometria UV-VIS	
Mercurio/Mercury	APAT CNR IRSA 3200 A2 Man 29 2003	CVAAS	
Acque destinate al consumo umano/Drinking waters			
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	0&1
Azoto ammoniacale/Ammonium nitrogen	ISO 7150-1:1984	Spettrofotometria UV-VIS	
Clostridium perfringens (spore comprese)/Clostridium perfringens (spores included)	UNI EN ISO 14189:2016	Metodo colturale-cont	ta
Residuo Fisso a 180°C/Fixed solids at 180°C	UNI 10506:1996	Gravimetria	
Acque destinate al consumo umano/Drinking waters, Acque di b pool waters	alneazione/Bathing waters, Acq	ue di piscina/Swimm	ning
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	0&1
Enterococchi intestinali/Intestinal enterococci	ISO 7899-2:2000	Metodo colturale-cont	a
Acque destinate al consumo umano/Drinking waters, Acque di b waters	alneazione/Bathing waters, Acq	ue di scarico/Waste	
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	0&2
Cloro libero/Free chlorine, Cloro totale/Total chlorine (> 0,05 mg/l)	MI n° 30 rev 5 del 21/11/2017	Spettrofotometria	

Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	O&I
Pseudomonas aeruginosa/Pseudomonas aeruginosa	UNI EN ISO 16266:2008	Metodo colturale-co	onta

Acque destinate al consumo umano/Drinking waters, Acque di piscina/Swimming pool waters, Acque trattate/Treated

waters			
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	O&I

TECNOLOGIE D'IMPRESA SrL	UNI CEI EN ISO/IEC 17025:2018	
Via Don Minzoni, 15 22060 Cabiate CO	Revisione: 41	Data: 14/12/2021
	Sede A	pag. 2 di 14

Batteri coliformi/Coliform bacteria, Escherichia coli/Escherichia coli	ISO 9308-1:2014/Amd 1:2016	Metodo colturale-c	onta
Acque destinate al consumo umano/Drinking waters, Acque di s	scarico/Waste waters		
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	0&1
Benzil butilftalato (BBP)/Benzyl butylphthalate (BBP), Di-2-etilesilftalato (DEHP)/Di-2-ethylhexylphthalate (DEHP), Di-butilftalato (DBP)/Di-butylphthalate (DBP), Di-etilftalato (DEP)/Di-ethylphthalate (DEP), Di-n-ottilftalato (DNOP)/Di-n-octylphthalate (DNOP)	EPA 3510C 1996, EPA 8270E 2018	GC-MS	
Torbidità/Turbidity	APAT CNR IRSA 2110 Man 29 2003	Nefelometria	

Acque destinate al consumo umano/Drinking waters, Acque di scarico/Waste waters, Acque industriali (1)/Industrial waters (1), Acque naturali/Natural waters

Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	<i>0&I</i>
IPA/PAH: Acenaftene/Acenaphthene, Acenaftilene/Acenaphthylene, Antracene/Anthracene, Benzo(a)antracene/Benzo(a)anthracene, Benzo(a)pirene/Benzo(a)pyrene, Benzo(b)fluorantene/Benzo(b)fluoranthene, Benzo(e)pirene/Benzo(e)pyrene, Benzo(ghi)perilene/Benzo(ghi)perylene, Benzo(j)fluorantene/Benzo(ghi)perylene, Benzo(j)fluorantene/Benzo(j)fluoranthene, Crisene/Chrysene, Dibenzo(ah)antracene/Benzo(k)fluoranthene, Crisene/Chrysene, Dibenzo(ah)antracene/Dibenzo(ah)anthracene, Fenantrene/Phenanthrene, Fluorantene/Fluoranthene, Fluorene/Fluorene, Indeno(1-2-3-cd)pirene/Indeno(1-2-3-cd)pyrene, Naftalene/Naphthalene, Pirene/Pyrene	EPA 3510C 1996, EPA 8270E 2018	GC-MS	

Acque destinate al consumo umano/Drinking waters, Acque di scarico/Waste waters, Acque naturali/Natural waters

Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	<i>0</i> & <i>I</i>
1-1-2-2-tetracloroetano/1-1-2-2-tetrachloroethane, 1-1-2-tricloroetano/1-1-2-trichloroethane, 1-1-dicloroetano/1-1-dichloroethane, 1-1-dicloroetilene/1-1-dichloroethene, 1-2-3-tricloropropano/1-2-3-trichloropropane, 1-2-dicloroetano/1-2-dichloroethane, 1-2-dicloroetilene (cis+trans)/1-2-dichloroethene (cis+trans), 1-2-dicloropropano/1-2-dichloropropane, Bromodiclorometano/Bromodichloromethane, Cloroetilene (Cloruro di vinile)/Chloroethylene (Vinyl chloride), Clorometano/Chloromethane, Dibromoclorometano/Dibromochloromethane, Dibromometano/Dibromomethane, Esacloro-1-3-butadiene/Hexachloro-1-3-butadiene, Tetracloroetilene/Tetrachloroethene, Tribromometano (Bromoformio)/Tribromomethane (Bromoform), Tricloroetilene (Trielina)/Trichloroethene, Triclorometano (Cloroformio)/Trichloromethane (Chloroform)	EPA 5030C 2003, EPA 8260D 2018	GC-MS	
Benzene/Benzene, Etilbenzene/Ethylbenzene, Idrocarburi leggeri C<12 espressi come n-esano/Light hydrocarbons C<12 expressed as n-hexan, Idrocarburi leggeri C<12/Light hydrocarbons C<12, m+p-xilene/m+p-xylene, Metilterbutiletere (MTBE)/Methyltertbutylether (MTBE), o-xilene/o-xylene, Stirene/Styrene, Toluene/Toluene	EPA 5021A 2014, EPA 8015C 2007	GC-FID	
Benzene/Benzene, Etilbenzene/Ethylbenzene, m+p-xilene/m+p-xylene, o-xilene/o-xylene, Stirene/Styrene, Toluene/Toluene	EPA 5030C 2003, EPA 8260D 2018	GC-MS	
Idrocarburi C10-C28 (DRO) espressi come n-esano/Hydrocarbons C10-C28 (DRO) expressed as n-hexan, Idrocarburi C10-C28 (DRO)/Hydrocarbons C10-C28 (DRO)	EPA 3510C 1996, EPA 8015C 2007	GC-FID	

Allegato al certificato di accreditamento n. $\bf 0175L$ rev. $\bf 5$ del $\bf 21/05/2020$

TECNOLOGIE D'IMPRESA SrL	UNI	CEI EN ISO/IEC 17025:2018		
Via Don Minzoni, 15 22060 Cabiate CO	Revis	sione: 41	Data: 14/12/20 2	21
	Sede	Α	pag. 3 di :	14
Metilterbutiletere (MTBE)/Methyltertbutylether (MTBE)		EPA 5030C 2003, EPA 8260D 2018	GC-MS	
Acque destinate al consumo umano/Drinking waters, Acquaturali/Natural waters	ue mine	rali naturali/Natural mineral w	aters, Acque	
Denominazione della prova / Campi di prova		Metodo di prova	Tecnica di prova	0&1
Microrganismi vitali a 22°C/Microorganisms at 22°C, Microrganismi vitali a 36°C/Microorganisms at 36°C	nismi	EN ISO 6222:1999	Metodo colturale-co	nta ———
Acque destinate al consumo umano/Drinking waters, Acqu	ue supe		Tanaina di mana	001
Denominazione della prova / Campi di prova Alluminio/Aluminium, Arsenico/Arsenic, Bario/Barium, Boro/Bo Cadmio/Cadmium, Calcio/Calcium, Cobalto/Cobalt, Cromo/Chi Ferro/Iron, Magnesio/Magnesium, Manganese/Manganese, Nichel/Nickel, Piombo/Lead, Potassio/Potassium, Rame/Coppe Sodio/Sodium, Zinco/Zinc	romium,	Wetodo di prova UNI EN ISO 17294-2:2016	ICP-MS	O&1
Acque di falda/Ground waters, Acque superficiali/Surface	waters			
Denominazione della prova / Campi di prova		Metodo di prova	Tecnica di prova	081
Cromo esavalente (Cr VI)/Hexavalent Chromium (Cr VI)		ISO 18412:2005	Spettrofotometria UV-VIS	
- Acque di scarico anche sottoposte a trattamento/Waste w	aters al	so treated, Acque superficiali/	Surface waters	
Denominazione della prova / Campi di prova		Metodo di prova	Tecnica di prova	081
Escherichia coli/Escherichia coli		APAT CNR IRSA 7030 F Man 29 2003	Metodo colturale-co	nta
Acque di scarico/Waste waters				
Denominazione della prova / Campi di prova		Metodo di prova	Tecnica di prova	081
Alluminio/Aluminium, Arsenico/Arsenic, Bario/Barium, Boro/Bo Cadmio/Cadmium, Cobalto/Cobalt, Cromo/Chromium, Ferro/In Manganese/Manganese, Nichel/Nickel, Piombo/Lead, Rame/Co Zinco/Zinc	ron,	UNI EN ISO 15587-2:2002, UNI EN ISO 17294-2:2016	ICP-MS	
Anioni/Anions : Solfiti/Sulphites		APAT CNR IRSA 4150 A cap 7.1 Man 29 2003	Titrimetria	
Anioni/Anions : Solfuri/Sulphides		APAT CNR IRSA 4160 Man 29 2003	Titrimetria	
Arsenico/Arsenic, Cadmio/Cadmium, Piombo/Lead		UNI EN ISO 15587-2:2002, ISO 11885:2007	ICP-OES	
Azoto ammoniacale/Ammonium nitrogen		APAT CNR IRSA 4030 A2 Man 29 2003	Spettrofotometria UV-VIS	
Azoto ammoniacale/Ammonium nitrogen		APAT CNR IRSA 4030 C Man 29 2003	Spettrofotometria UV-VIS	
Colore/Color		UNI EN ISO 7887:2012	Spettrofotometria UV-VIS	
Cromo esavalente (Cr VI)/Hexavalent Chromium (Cr VI)		APAT CNR IRSA 3150 C Man 29 2003	Spettrofotometria UV-VIS	
Solidi sedimentabili/Settleable solids		APAT CNR IRSA 2090 C Man 29 2003	Volumetria	
Tensioattivi anionici/Anionic surfactants (>0,2 mg/l)		MI n° 33 rev 5 del 05/11/2021	Spettrofotometria UV-VIS	
Valutazione della tossicità acuta con Daphnia magna - Accetta un effluente/Acute Toxicity test with Daphnia magna - Effluent		APAT CNR IRSA 8020 B Man 29 2003 - escluso/except Appendice	Esame visivo	

Allegato al certificato di accreditamento n. $\bf 0175L$ rev. $\bf 5$ del $\bf 21/05/2020$

TECNOLOGIE D'IMPRESA SrL	SrL UNI CEI EN ISO/IEC 17025:2018	
Via Don Minzoni, 15 22060 Cabiate CO	Revisione: 41	Data: 14/12/2021
	Sede A	pag. 4 di 14

Acque di scarico/Waste waters, Acque dolci/Fresh waters, Acque minerali naturali/Natural mineral waters, Acque sotterranee/Ground waters, Acque superficiali/Surface waters, Acque trattate/Treated waters, Eluati da test di cessione (1)/Eluates from leaching test (1), Percolati (1)/Leachates (1), Rifiuti liquidi acquosi (1)/Aqueous liquid wastes (1)

Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	0&.
Anioni/Anions : Cloruri/Chloride, Fluoruri/Fluoride, Nitrati/Nitrate, Solfati/Sulphates	APAT CNR IRSA 4020 Man 29 2003	Cromatografia ionica	
cque di scarico/Waste waters, Acque industriali (1)/Industrial v	vaters (1)		
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	0&1
1-2-4-5-tetraclorobenzene/1-2-4-5-tetrachlorobenzene, 1-2-4-triclorobenzene/1-2-4-trichlorobenzene, 1-2-diclorobenzene/1-2-dichlorobenzene, 1-3-diclorobenzene/1-3-dichlorobenzene, 1-4-diclorobenzene/1-4-dichlorobenzene, Esaclorobenzene (HCB)/Hexachlorobenzene (HCB), Pentaclorobenzene/Pentachlorobenzene	EPA 3510C 1996, EPA 8270E 2018	GC-MS	
cque di scarico/Waste waters, Acque naturali/Natural waters			
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	0&1
Alcalinità/Alkalinity	APAT CNR IRSA 2010B Man 29 2003	Titrimetria	
Aldeidi alifatiche/Aliphatic aldehyde	APAT CNR IRSA 5010 A Man 29 2003	Spettrofotometria UV-VIS	
Alluminio/Aluminium, Bario/Barium, Boro/Boron, Cobalto/Cobalt, Cromo/Chromium, Ferro/Iron, Fosforo/Phosphorus, Manganese/Manganese, Nichel/Nickel, Piombo/Lead, Rame/Copper, Zinco/Zinc	EPA 3015A 2007, EPA 6010D 2018	ICP-OES	
Anioni/Anions : Solfuri disciolti/Dissolved sulfide	ISO 10530:1992	Spettrofotometria UV-VIS	
Azoto totale/Total nitrogen	UNI 11658:2016	Spettrofotometria UV-VIS	
Cloro combinato/Combined chlorine, Cloro libero/Free chlorine	APAT CNR IRSA 4080 Man 29 2003	Spettrofotometria UV-VIS	
Conducibilità elettrica/Electrical conductivity	UNI EN 27888:1995	Conduttimetria	
Diossido di silicio (Silice)/Silicon dioxide (Silica)	APAT CNR IRSA 4130 Man 29 2003	Spettrofotometria UV-VIS	
Grassi animali/Animal fats, Grassi vegetali/Vegetable fats, Oli animali/Animal oils, Oli vegetali/Vegetable oils	APAT CNR IRSA 5160 A1 + A2 Man 29 2003	Gravimetria	
Idrocarburi totali/Total hydrocarbons	APAT CNR IRSA 5160 A2 Man 29 2003	Gravimetria	
pH/pH	APAT CNR IRSA 2060 Man 29 2003	Potenziometria	
Richiesta biochimica di ossigeno (BOD5)/Biochemical Oxygen Demand (BOD5)	APHA Standard Methods for Examination of Water and Wastewater Ed 23rd 2017 5210 B + 4500-O G	Potenziometria	
Richiesta chimica di ossigeno (COD)/Chemical oxygen demand (COD)	ISO 15705:2002	Spettrofotometria UV-VIS	
Richiesta chimica di ossigeno (COD)/Chemical oxygen demand (COD)	APAT CNR IRSA 5130 Man 29 2003	Titrimetria	
Solidi sospesi totali/Total suspended solids	APAT CNR IRSA 2090 B Man 29 2003	Gravimetria	

Allegato al certificato di accreditamento n. 0175L rev. 5 del 21/05/2020

TECNOLOGIE D'IMPRESA SrL	UNI CEI EN ISO/IEC 17025:2018		
Via Don Minzoni, 15 22060 Cabiate CO	Revisione: 41	Data: 14/12/202	1
	Sede A	pag. 5 di 1	4
Tensioattivi non ionici/Non ionic surfactants	UNI 10511-1:1996/A1:2000	Titrimetria	
Acque di scarico/Waste waters, Acque naturali/Natural wate (1), Rifiuti liquidi acquosi (1)/Aqueous liquid wastes (1)	ers, Eluati da test di cessione (1)/E	luates from leaching t	test
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	08
Azoto nitroso/Nitrous nitrogen	APAT CNR IRSA 4050 Man 29 2003	Spettrofotometria UV-VIS	
Acque di scarico/Waste waters, Acque non trattate/Raw wat	ers		
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	08
Solidi sospesi/Suspended solids	ISO 11923:1997	Gravimetria	
Acque di scarico/Waste waters, Acque sotterranee/Ground v	vaters, Acque superficiali/Surface	waters	
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	08
Alluminio/Aluminium, Bario/Barium, Boro/Boron, Cobalto/Cobalt, Cromo/Chromium, Ferro/Iron, Fosforo/Phosphorus, Manganese/Manganese, Nichel/Nickel, Rame/Copper, Sodio/SodiuZinco/Zinc	UNI EN ISO 15587-2:2002, ISC 11885:2007 um,	ICP-OES	
Alluminio/Aluminium, Boro/Boron, Cadmio/Cadmium, Cobalto/Co Cromo/Chromium, Ferro/Iron, Fosforo/Phosphorus, Manganese/Manganese, Nichel/Nickel, Piombo/Lead, Rame/Coppe Zinco/Zinc	Man 29 2003	ICP-OES	
Azoto ammoniacale/Ammonium nitrogen	UNI 11669:2017	Spettrofotometria UV-VIS	
Conducibilità/Conductivity	APAT CNR IRSA 2030 Man 29 2003	Conduttimetria	
Mercurio/Mercury	UNI EN ISO 12846:2013	CVAAS	
Tensioattivi anionici/Anionic surfactants	APAT CNR IRSA 5170 Man 29 2003	Spettrofotometria UV-VIS	
Tensioattivi totali (da calcolo)/Total surfactants (calculation)	APAT CNR IRSA 5170 Man 29 2003 + UNI 10511-1:1996/A1:2000	Calcolo: Spettrofotometria UV-VIS - Titrimetria	
Acque di scarico/Waste waters, Acque sotterranee/Ground v cessione (1)/Eluates from leaching test (1)	vaters, Acque superficiali/Surface	waters, Eluati da test	di
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	08
Anioni/Anions : Cloruri/Chloride, Fluoruri/Fluoride, Nitrati/Nitrate, Solfati/Sulphates	ISO 10304-1:2007	Cromatografia ionica	
Acque di scarico/Waste waters, Acque sotterranee/Ground vacquosi (1)/Aqueous liquid wastes (1)	vaters, Acque superficiali/Surface	waters, Rifiuti liquidi	
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	08
pH/pH	ISO 10523:2008	Potenziometria	
Acque di scarico/Waste waters, Acque superficiali/Surface w	vaters	<u>'</u>	
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	08
Indice di idrocarburi/Hydrocarbon oil index	UNI EN ISO 9377-2:2002	GC-FID	
Acque naturali/Natural waters			
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	08
Durezza/Hardness	APAT CNR IRSA 2040 B Man 29 2003	Titrimetria complessometrica	
Acque sotterranee/Ground waters, Acque superficiali/Surfac	e waters		
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	08
Anioni/Anions : Clorati/Chlorate, Cloriti/Chlorite	UNI EN ISO 10304-4:2001	Cromatografia ionica	
		_	

Denominazione della prova / Campi di prova

Allegato al certificato di accreditamento n. 0175L rev. 5 del 21/05/2020

0&I

Tecnica di prova

TECNOLOGIE D'IMPRESA SrL	UNI CEI EN ISO/IEC 17025:2018	
Via Don Minzoni, 15 22060 Cabiate CO	Revisione: 41	Data: 14/12/2021
	Sede A	pag. 6 di 14
Acque trattate (1)/Treated waters (1)		
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova 08
Escherichia coli/Escherichia coli	APAT CNR IRSA 7030 E Man 29 2003	Metodo colturale-conta
Alimenti/Food		
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova 08
Listeria monocytogenes/Listeria monocytogenes	AFNOR UNI 03/05-09/06	Metodo colturale-conta
Listeria monocytogenes/Listeria monocytogenes	AFNOR UNI 03/04-04/05	Metodo colturale - ricerca
Alimenti/Food, Mangimi/Animal feeding stuffs		
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova 08
Coliformi/Coliforms	ISO 4832:2006	Metodo colturale-conta
Enterobacteriaceae/Enterobacteriaceae	ISO 21528-2:2017	Metodo colturale-conta
Escherichia coli beta-glucuronidasi positiva/Beta-glucuronidase-positive Escherichia coli	ISO 16649-2:2001	Metodo colturale-conta
Microrganismi a 30°C/Microorganisms at 30°C	ISO 4833-1:2013	Metodo colturale-conta
Salmonella spp/Salmonella spp	AFNOR UNI 03/06-12/07	Metodo colturale - ricerca
Stafilococchi coagulasi positivi (Staphylococcus aureus e altre specie)/Coagulase-positive staphylococci (Staphylococcus aureus other species)	UNI EN ISO 6888-1:2018 and	Metodo colturale-conta
Ammendanti/Soil improvers, Substrati di coltivazione/Growi	ing media	
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova 08
Cadmio/Cadmium, Cromo/Chromium, Fosforo/Phosphorus, Manganese/Manganese, Nichel/Nickel, Piombo/Lead, Rame/Coppo Zinco/Zinc	UNI EN 13650:2002 + ISO er, 11885:2007	ICP-OES
Conducibilità elettrica/Electrical conductivity	UNI EN 13038:2012	Conduttimetria
рН/рН	UNI EN 13037:2012	Potenziometria
Sostanza secca/Dry matter, Umidità/Moisture	UNI EN 13040:2008	Gravimetria
Aria ambiente/Ambient air		
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova 08
Butanale (Butirraldeide)/Butanal (Butyraldehyde), Etanale (Acetaldeide)/Ethanal (Acetaldehyde), Fenilmetanale (Benzaldeide)/Phenylmethanal (Benzaldehyde), Isopentanale (Isovaleraldeide)/Isopentanal (Isovaleraldehyde), Metanale (Formaldeide)/Methanal (Formaldehyde), Pentanale (Valeraldeide)/Pentanal (Valeraldehyde), Propanale (Propionaldeide)/Propanal (Propionaldehyde), Trans-2-butenale (Crotonaldeide)/Trans-2-butenal (Crotonaldehyde)	EPA TO-11A 1999	HPLC-UV-vis
Aria di ambienti di lavoro/Workplace air		

Metodo di prova

Allegato al certificato di accreditamento n. $\bf 0175L$ rev. $\bf 5$ del $\bf 21/05/2020$

TECNOLOGIE D'IMPRESA SrL	UNI CEI EN ISO/IEC 17025:2018	
Via Don Minzoni, 15 22060 Cabiate CO	Revisione: 41	Data: 14/12/2021
	Sede A	pag. 7 di 14
1-butanolo (alcol n-butilico)/1-butanol (n-butyl alcohol), 2-butossietanolo/2-butoxyethanol, 2-etossietanolo/2-ethoxyeth 2-metil-1-propanolo (alcol isobutilico)/2-methyl-1-propanol (Isobutanol), 2-propanolo (alcol isopropilico)/2-propanol (isopro alcohol), Acetato di 2-etossietile/2-ethoxyethyl acetate, Acetato etile/Ethyl acetate, Acetato di isobutile/Isobutyl acetate, Acetato n-butile/N-butyl acetate, Cicloesanone/Cyclohexanene, Di-metil chetone (Acetone)/Di-methyl ketone (Acetone), Etilbenzene/Ethylbenzene, Metil etil chetone (MEK)/Methyl ethy ketone (MEK), Metil isobutilchetone (MIBK)/Methyl isobuthylket (MIBK), Stirene/Styrene, Toluene/Toluene, Xileni/Xylenes	opyl di o di	GC-FID
Acido bromidrico/Hydrogen bromide, Acido cloridrico/Hydrochloacid, Acido nitrico/Nitric acid	ric NIOSH 7907 2014	Cromatografia ionica
Acido fosforico/Phosphoric acid, Acido solforico/Sulfuric acid	NIOSH 7908 2014	Cromatografia ionica
Ammoniaca/Ammonia	MU 268:78	Spettrofotometria UV-VIS
Benzene/Benzene, Etilbenzene/Ethylbenzene, Stirene/Styrene, Toluene/Toluene, Xileni/Xylenes	NIOSH 1501 2003	GC-FID
Cromo esavalente (Cr VI)/Hexavalent Chromium (Cr VI)	NIOSH 7600 2015	Spettrofotometria UV-VIS
Fibre inorganiche aerodisperse/Airborne inorganic fibres	ISO 8672:2014	Microscopia ottica: MOCF
Fluoruri gassosi espressi come Acido Fluoridrico/Gaseous fluorid expressed as Hydrofluoric acid, Fluoruri particellari/Particulate f		Cromatografia ionica
Lieviti/Yeasts, Microrganismi vitali a 22°C/Microorganisms at 22 Microrganismi vitali a 36°C/Microorganisms at 36°C, Muffe/Mou		Metodo colturale-conta
Particelle aerodisperse inalabili/Inhalable aerosol particles	MU 1998:13	Gravimetria
Polveri alcaline: Idrossido di litio (LiOH)/Alkaline dusts: Lithium hydroxide (LiOH), Polveri alcaline: Idrossido di Potassio (KOH)/Alkaline dusts: Potassium hydroxide (KOH), Polveri alcalidrossido di Sodio (NaOH)/Alkaline dusts: Sodium hydroxide		Titrimetria
Polveri respirabili/Respirable dust fraction	MU 2010:11	
'su polveri/On dust, Cromo/Chromium, Manganese/Manganese, Nichel/Nickel	UNI EN ISO 10882-1:2012 + MU 723:86 + MU 888:95	ICP-OES
Aria di ambienti di lavoro/Workplace air, Aria di ambienti d	i vita/Ambient air	
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova 0&1
Amianto/Asbestos : Fibre aerodisperse di Amianto/Airborne fibre asbestos	es of DM 06/09/1994 GU n 288 10/12/1994 All 2 met B	Microscopia elettronica: SEM
Fibre aerodisperse/Airborne fibre	DM 06/09/1994 GU n 288 10/12/1994 All 2 Met A	Microscopia ottica: MOCF
Fibre inorganiche aerodisperse/Airborne inorganic fibres	ISO 14966:2019	Microscopia elettronica: SEM
Compost/Compost		
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova 0&1
Enterobacteriaceae/Enterobacteriaceae	APAT 5 Man 20 2003	Metodo colturale-conta
Salmonella spp/Salmonella spp	APAT 3 Man 20 2003	Metodo colturale - ricerca

0&I

Tecnica di prova

TECNOLOGIE D'IMPRESA SrL	UNI CEI EN ISO/IEC 17025:2018	
Via Don Minzoni, 15 22060 Cabiate CO	Revisione: 41	Data: 14/12/2021
	Sede A	pag. 8 di 14

Emissioni da sorgente fissa/Stationary source emissions

Denominazione della prova / Campi di prova

Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	08
1-butanolo (alcol n-butilico)/1-butanol (n-butyl alcohol), 2-etossietanolo/2-ethoxyethanol, 2-metil-1-propanolo (alcol sobutilico)/2-methyl-1-propanol (Isobutanol), 2-propanolo (alcol sopropilico)/2-propanol (isopropyl alcohol), Acetato di 2-butossietile/2-butoxyethyl acetate, Acetato di 2-etossietile/2-ethoxyethyl acetate, Acetato di etile/Ethyl acetate, Acetato di isobutile/Isobutyl acetate, Acetato di n-butile/N-butyl acetate, Benzene/Benzene, Cicloesanone/Cyclohexanene, Di-metil chetone (Acetone)/Di-methyl ketone (Acetone), Etilbenzene/Ethylbenzene, Metil etil chetone (MEK)/Methyl ethyl ketone (MEK), Metil isobutilchetone (MIBK)/Methyl isobuthylketone (MIBK), o-xilene/o-xylene, p-xilene/p-xylene, Stirene/Styrene, Toluene/Toluene, Tricloroetilene (Trielina)/Trichloroethene	UNI CEN/TS 13649:2015	GC-FID	
Ammoniaca/Ammonia	EPA CTM 027 1997	Cromatografia ionica	
Ammoniaca/Ammonia	MU 632:84	Spettrofotometria UV-VIS	
Antimonio/Antimony, Argento/Silver, Arsenico/Arsenic, Bario/Barium, Berillio/Beryllium, Cadmio/Cadmium, Cobalto/Cobalt, Cromo/Chromium, Fosforo/Phosphorus, Manganese/Manganese, Nichel/Nickel, Piombo/Lead, Rame/Copper, Selenio/Selenium, Tallio/Thallium, Zinco/Zinc	EPA 29 2017 + EPA 6010D 2018	ICP-OES	
Antimonio/Antimony, Arsenico/Arsenic, Cadmio/Cadmium, Cobalto/Cobalt, Cromo/Chromium, Manganese/Manganese, Nichel/Nickel, Piombo/Lead, Rame/Copper, Tallio/Thallium, Vanadio/Vanadium	UNI EN 14385:2004	ICP-OES	
Cloruri gassosi (espressi come Acido cloridrico)/Gaseous chlorides (expressed as Hydrochloric acid)	UNI EN 1911:2010 + UNI EN ISO 10304-1:2009	Cromatografia ionica	
Concentrazione in massa di polveri basse concentrazioni/Low range mass concentration of dust	UNI EN 13284-1:2017	Gravimetria	
Cromo esavalente (Cr VI)/Hexavalent Chromium (Cr VI)	CARB method 425 1997 - escluso/except paragrafi 4.2,4.4,5.1,5.3,6.1, 6.3,7.3.1,7.3.3,11.3,11.5, 14 e 16	Spettrofotometria UV-VIS	
Diossido di zolfo/Sulfur dioxide (Metodo manuale)	UNI EN 14791:2017 cap 9.2	Cromatografia ionica	
Etanale (Acetaldeide)/Ethanal (Acetaldehyde), Metanale (Formaldeide)/Methanal (Formaldehyde)	CARB method M430 1991	HPLC-UV-vis	
Etanale (Acetaldeide)/Ethanal (Acetaldehyde), Metanale (Formaldeide)/Methanal (Formaldehyde), Propanale (Propionaldeide)/Propanal (Propionaldehyde)	EPA 0011 1996 + EPA 8315A 1996	HPLC-UV-vis	
Fluoruri gassosi espressi come Acido Fluoridrico/Gaseous fluoride expressed as Hydrofluoric acid	ISO 15713:2006	Potenziometria	
Mercurio/Mercury	UNI EN 13211:2003 + UNI EN ISO 12846:2013	CVAAS	
Mercurio/Mercury	EPA 29 2017 + EPA 7470A 1994	CVAAS	
Particolato sospeso PM10/Suspended particulate matter PM10, Particolato sospeso PM2.5/Suspended particulate matter PM2.5	ISO 23210:2009	Gravimetria	
Vapore acqueo (Umidità)/Water vapour (moisture)	UNI EN 14790:2017	Gravimetria	

Metodo di prova

TECNOLOGIE D'IMPRESA SrL	NI CEI EN ISO/IEC 17025:2018		
Via Don Minzoni, 15 22060 Cabiate CO	evisione: 41	Data: 14/12/202 :	1
S	ede A	pag. 9 di 1 4	4
Acido cloridrico/Hydrochloric acid, Acido fluoridrico/Hydrofluoric aci	id DM 25/08/2000 SO GU n 223 23/9/2000 All 2	Cromatografia ionica	
Acido solfidrico (Solfuro d'idrogeno)/Hydrogen sulfide (Sulphur hydride)	MU 634:84	Titrimetria	
IPA/PAH: Acenaftene/Acenaphthene, Acenaftilene/Acenaphthylene Antracene/Anthracene, Benzo(a)antracene/Benzo(a)anthracene, Benzo(a)pirene/Benzo(a)pyrene, Benzo(b)fluorantene/Benzo(b)fluoranthene, Benzo(ghi)perilene/Benzo(ghi)perylene, Benzo(k)fluorantene/Benzo(k)fluoranthene, Crisene/Chrysene, Dibenzo(ah)antracene/Dibenzo(ah)anthracene, Fenantrene/Phenanthrene, Fluorantene/Fluoranthene, Fluorene/Fluorene, Indeno(1-2-3-cd)pirene/Indeno(1-2-3-cd)pyrer Naftalene/Naphthalene, Pirene/Pyrene		GC-FID+MS	
IPA/PAH: Acenaftene/Acenaphthene, Acenaftilene/Acenaphthylene Antracene/Anthracene, Benzo(a)antracene/Benzo(a)anthracene, Benzo(a)pirene/Benzo(a)pyrene, Benzo(b)fluorantene/Benzo(b)fluoranthene, Benzo(ghi)perilene/Benzo(ghi)perylene, Benzo(k)fluorantene/Benzo(k)fluoranthene, Crisene/Chrysene, Dibenzo(ae)pirene/Dibenzo(ae)pyrene, Dibenzo(ah)antracene/Dibenzo(ah)anthracene, Dibenzo(ah)pirene/Dibenzo(ah)pyrene, Dibenzo(ai)pirene/Dibenzo(ai)pyrene, Dibenzo(ai)pirene/Dibenzo(ai)pyrene, Fenantrene/Phenanthrene, Fluorantene/Fluoranthene, Fluorene/Fluorene, Indeno(1-2-3-cd)pirene/Indeno(1-2-3-cd)pyrene, Naftalene/Naphthalene, Pirene/Pyrene	e, DM 25/08/2000 SO GU n 223 23/9/2000 AII 3	GC-FID+MS	
Nebbie di oli minerali/Mineral oil mist (>0,1 mg/Nm3)	MI n° 1 rev 6 del 19/11/2017	Spettrofotometria IR	
Ossidi di azoto/Nitrogen oxides, Ossidi di zolfo/Sulfur oxides	DM 25/08/2000 SO GU n 223 23/9/2000 All 1	Cromatografia ionica	
Particolato sospeso PM10/Suspended particulate matter PM10	EPA 201A 2020	Gravimetria	
anghi (1)/Sludges (1), Rifiuti liquidi/Liquid wastes, Rifiuti sc	olidi/Solid wastes		
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	0&
Idrocarburi C10-C40/Hydrocarbons C10-C40	UNI EN 14039:2005	GC-FID	
anghi (1)/Sludges (1), Rifiuti solidi/Solid wastes			
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	0&
Idrocarburi totali/Total hydrocarbons	UNI EN 14345:2005	Gravimetria	
Fanghi (1)/Sludges (1), Rifiuti/Wastes, Sedimenti (1)/Sedime	ents (1)		
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	08
Alluminio/Aluminium, Arsenico/Arsenic, Cadmio/Cadmium, Cromo/Chromium, Ferro/Iron, Nichel/Nickel, Piombo/Lead, Rame/Copper, Zinco/Zinc	UNI EN 13657:2004, APAT CNR IRSA 3020 Man 29 2003	ICP-OES	
Residuo secco a 105°C/Dry residue at 105°C, Umidità (da calcolo)/Moisture (calculation)	UNI EN 14346:2007 Met A	Gravimetria	
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	08
Anioni/Anions : -su eluati da test di cessione/-in eluates from leach test, Cloruri/Chloride, Fluoruri/Fluoride, Nitrati/Nitrate, Solfati/Sulphates	ning UNI EN 12457-2:2004, ISO 10304-1:2007	Cromatografia ionica	
Carbonio organico/Organic carbon, Sostanza organica/Organic mat	ter CNR IRSA 5 Q 64 Vol 3 1988	Titrimetria	

Allegato al certificato di accreditamento n. 0175L rev. 5 del 21/05/2020

Allegato al certif	ficato	di accreditamento n. 0175L re	v. 5 del 21/05/202	20
TECNOLOGIE D'IMPRESA SrL	UNI	CEI EN ISO/IEC 17025:2018		
Via Don Minzoni, 15 22060 Cabiate CO	Revis	sione: 41	Data: 14/12/2021	ī
	Sede	: A	pag. 10 di 1 4	4
Solidi sospesi fissi/Fixed suspended solids, Solidi sospesi/Susper solids	nded	CNR IRSA 1 Q 64 Vol 2 1984	Gravimetria	
-su eluati da test di cessione/-in eluates from leaching test, Cadmio/Cadmium, Cromo/Chromium, Nichel/Nickel, Piombo/Lea Rame/Copper, Zinco/Zinc	ad,	UNI EN 12457-2:2004, ISO 11885:2007	ICP-OES	
-su eluati da test di cessione/-in eluates from leaching test, Conducibilità/Conductivity		UNI EN 12457-2:2004, UNI EN 27888:1995	Conduttimetria	
-su eluati da test di cessione/-in eluates from leaching test, Mercurio/Mercury		UNI EN 12457-2:2004, UNI EN ISO 12846:2013	CVAAS	
-su eluati da test di cessione/-in eluates from leaching test, pH/	pН	UNI EN 12457-2:2004, ISO 10523:2008	Potenziometria	
-su eluati da test di cessione/-in eluates from leaching test, Rich chimica di ossigeno (COD)/Chemical oxygen demand (COD)	niesta	UNI EN 12457-2:2004, ISO 15705:2002	Spettrofotometria UV-VIS	
-su eluati da test di cessione/-in eluates from leaching test, Soli totali disciolti (TDS)/Total dissolved solids (TDS)	di	UNI EN 12457-2:2004, UNI EN 15216:2008	Gravimetria	
Fanghi/Sludges, Rifiuti/Wastes, Sedimenti (1)/Sediments (Denominazione della prova / Campi di prova	(1)	Metodo di prova	Tacnica di prova	 0&I
pH/pH		CNR IRSA 1 Q 64 Vol 3 1985 + APAT CNR IRSA 2060 Man 29 2003	Potenziometria	001
Residuo secco/Dry weight content, Sostanza secca (da calcolo)/matter (calculation)	Dry	UNI EN 15934:2012	Gravimetria	
Fanghi/Sludges, Rifiuti/Wastes, Sedimenti/Sediments				
Denominazione della prova / Campi di prova		Metodo di prova	Tecnica di prova	0&I
Perdita al fuoco (PAF)/Loss on ignition		UNI EN 15169:2007	Gravimetria	
Fanghi/Sludges, Rifiuti/Wastes, Sedimenti/Sediments, Terr	reni/S		Tanina di avava	001
Denominazione della prova / Campi di prova Cromo esavalente (Cr VI)/Hexavalent Chromium (Cr VI)		Metodo di prova EPA 3060A 1996 + EPA 7196A 1992	Spettrofotometria UV-VIS	<i>0&I</i>
Fanghi/Sludges, Suoli/Soils			-	
Denominazione della prova / Campi di prova		Metodo di prova	Tecnica di prova	0&I
Mercurio/Mercury		UNI EN 16174:2012 Met B + UNI EN 16175-1:2016	CVAAS	
Materiali massivi (≥ 0,01% amianto)/Bulk materials (≥ 0,0 amianto)/Powdery materials (0,01-1% asbestos)	1% as	sbestos), Materiali polverulenti	(0,01-1%	
Denominazione della prova / Campi di prova		Metodo di prova	Tecnica di prova	<i>0&I</i>
Amianto/Asbestos : Amosite/Amosite, Crisotilo/Chrysotile, Crocidolite/Crocidolite		DM 06/09/1994 GU n 288 10/12/1994 All 1 Met B	Microscopia elettronica: SEM	
Prodotti tessili/Textiles				
Denominazione della prova / Campi di prova		Metodo di prova	Tecnica di prova	O&I
Metanale (Formaldeide) libera e idrolizzata/Free and hydrolysed methanal (Formaldehyde)		ISO 14184-1:2011	Spettrofotometria UV-VIS	
Suoli/Soils				
Denominazione della prova / Campi di prova		Metodo di prova	Tecnica di prova	0&I
Anioni/Anions: Cloruri/Chloride, Fluoruri/Fluoride, Nitrati/Nitrate Solfati/Sulphates	e,	DM 13/09/1999 SO n 185 GU n 248 21/10/1999 Met IV.2 DM 25/03/2002 GU n 84 10/04/2002	Cromatografia ionica	

Allegato al certificato di accreditamento n. $\bf 0175L$ rev. $\bf 5$ del $\bf 21/05/2020$

UNI CEI EN ISO/IEC 17025:2018	3
Revisione: 41	Data: 14/12/2021
Sede A	pag. 11 di 14
EPA 5021A 2014, EPA 8015C 2007	GC-FID
DM 13/09/1999 SO n 185 GU 248 21/10/1999 Met VII.3	n Titrimetria
DM 13/09/1999 SO n 185 GU 248 21/10/1999 Met III.1	n Potenziometria
DM 13/09/1999 SO n 185 GU 248 21/10/1999 Met II.1	n Gravimetria
DM 13/09/1999 SO n 185 GU 248 21/10/1999 Met II.2	n Gravimetria
Metodo di prova	Tecnica di prova O8
ISO 16703:2004	GC-FID
les from air sampling of workpla	ce air
Metodo di prova	Tecnica di prova O8
ISO 15202-2:2020 + ISO 30011:2010 er,	ICP-MS
ISO 15202-2:2020 + ISO 15202-3:2004	ICP-OES
n air sampling of Stationary sour	ce
Metodo di prova	Tecnica di prova OS
	GC-MS
Metodo di prova	Tecnica di prova O8
EPA 3051A 2007, EPA 6010D 2018	ICP-OES
	Revisione: 41 Sede A EPA 5021A 2014, EPA 8015C 2007 DM 13/09/1999 SO n 185 GU 248 21/10/1999 Met VII.3 DM 13/09/1999 SO n 185 GU 248 21/10/1999 Met III.1 DM 13/09/1999 SO n 185 GU 248 21/10/1999 Met III.1 DM 13/09/1999 SO n 185 GU 248 21/10/1999 Met II.2 Metodo di prova ISO 16703:2004 Ies from air sampling of workplace Metodo di prova ISO 15202-2:2020 + ISO 30011:2010 er, ISO 15202-2:2020 + ISO 15202-3:2004 In air sampling of Stationary sour Metodo di prova ne, ISO 11338-2:2003 cap 6.2

Allegato al certificato di accreditamento n. **0175L** rev. **5** del **21/05/2020**

TECNOLOGIE D'IMPRESA SrL	UNI CEI EN ISO/IEC 17025:2018	
Via Don Minzoni, 15 22060 Cabiate CO	Revisione: 41	Data: 14/12/2021
	Sede A	pag. 12 di 14

ELENCO PROVE ACCREDITATE - CON CAMPO FISSO IN CATEGORIA: II

Emissioni da sorgente fissa/Stationary source emissions

Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	<i>0&I</i>
Diossido di azoto/Nitrogen dioxide, Monossido di azoto/Nitrogen monoxide	UNI EN 14792:2017	Chemiluminescenza	
Diossido di carbonio/Carbon dioxide	ISO 12039:2019 Annex A	Spettrofotometria IR	
Diossido di zolfo/Sulfur dioxide (SO2: 0-200/500/1000/3000 ppm)	UNI CEN/TS 17021:2017	Spettrofotometria IR	
Monossido di carbonio/Carbon monoxide	UNI EN 15058:2017	Spettrofotometria IR	
Ossigeno/Oxygen	UNI EN 14789:2017	Paramagnetismo	
Emissioni: flussi gassosi convogliati/Stack emission in conveyed	gas flow		
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	<i>O&I</i>
Diossido di azoto/Nitrogen dioxide, Monossido di azoto/Nitrogen monoxide	UNI 10878:2000 cap 6.2.2	Chemiluminescenza	
Diossido di zolfo/Sulfur dioxide	UNI 10393:1995 cap 7.2.2	Spettrofotometria IR	

TECNOLOGIE D'IMPRESA SrL	UNI CEI EN ISO/IEC 17025:2018	
Via Don Minzoni, 15 22060 Cabiate CO	Revisione: 41	Data: 14/12/2021
	Sede A	pag. 13 di 14

ELENCO PROVE ACCREDITATE - CON CAMPO FISSO IN CATEGORIA: III

Acque destinate al consumo umano (1)/Drinking waters (1), Acque di scarico/Waste waters, Rifiuti liquidi acquosi

Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	0&1
Temperatura/Temperature	APAT CNR IRSA 2100 Man 29 2003	Misura della temperatura	
Acque destinate al consumo umano/Drinking waters, Acque di sc	arico/Waste waters, Acque na	turali/Natural waters	
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	0&1
Campionamento per parametri microbiologici/Sampling for microbiological parameters	ISO 19458:2006	_	
Acque di scarico/Waste waters			
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	0&1
Campionamento per parametri chimici/Sampling for chemical parameters	APAT CNR IRSA 1030 Man 29 2003	_	
Campionamento per parametri microbiologici/Sampling for microbiological parameters	APAT CNR IRSA 6010 Man 29 2003	_	
Acque di scarico/Waste waters, Acque naturali/Natural waters			
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	<i>0</i> & <i>I</i>
Cloro libero/Free chlorine, Cloro totale/Total chlorine (> 0,05 mg/l)	MI n° 30 rev 5 del 21/11/2017	Spettrofotometria UV-VIS	
llimenti/Food			
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	0&I
Campionamento per parametri microbiologici/Sampling for microbiological parameters	UNI CEN ISO/TS 17728:2015	_	
Aria di ambienti di lavoro/Workplace air			
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	<i>0&I</i>
Campionamento per parametri chimici/Sampling for chemical parameters	ISO 15202-1:2020	_	
missioni da sorgente fissa/Stationary source emissions			
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	<i>0&I</i>
AST-Prova di sorveglianza annuale/AST-annual surveillance tests, Prova di linearità/Linearity test, QAL2-Taratura e convalida dell'AMS/QAL2-Calibration and validation of AMS	UNI EN 14181:2015	_	
Campionamento per Idrocarburi policiclici aromatici (IPA)/Sampling for Polycyclic aromatic hydrocarbon (PAH)	ISO 11338-1:2003	_	
Campionamento per PCB diossina simili/Sampling for PCB dioxin like, Campionamento per PCDD/PCDF/Sampling for PCDD/PCDF	UNI EN 1948-1:2006	_	
Carbonio organico totale in forma gassosa (espresso come TVOC) /Gaseous Total Organic Carbon (expressed as TVOC)	UNI EN 12619:2013/EC1:2013	FID	
Diossido di azoto/Nitrogen dioxide, Monossido di azoto/Nitrogen monoxide	UNI EN 14792:2017	Chemiluminescenza	
Diossido di carbonio/Carbon dioxide	ISO 12039:2019 Annex A	Spettrofotometria IR	
Diossido di zolfo/Sulfur dioxide (SO2: 0-200/500/1000/3000 ppm)	UNI CEN/TS 17021:2017	Spettrofotometria IR	
Metano/Methane	UNI EN ISO 25140:2010	GC-FID	
Monossido di carbonio/Carbon monoxide	UNI EN 15058:2017	Spettrofotometria IR	
		F	

Allegato al certificato di accreditamento n. 0175L rev. 5 del 21/05/2020

TECNOLOGIE D'IMPRESA SrL	UNI CEI EN ISO/IEC 17025:2018		
Via Don Minzoni, 15 22060 Cabiate CO	Revisione: 41	Data: 14/12/202 :	L
	Sede A	pag. 14 di 14	
Velocità e portata/Velocity and Volume flow rate	UNI EN ISO 16911-1:2013 (solo Annex A)	Tubo di Pitot	
- Emissioni: flussi gassosi convogliati/Stack emission in conv	eyed gas flow		
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	0&I
Diossido di azoto/Nitrogen dioxide, Monossido di azoto/Nitrogen monoxide	UNI 10878:2000 cap 6.2.2	Chemiluminescenza	
Diossido di zolfo/Sulfur dioxide	UNI 10393:1995 cap 7.2.2	Spettrofotometria IR	
Velocità e portata/Velocity and Volume flow rate	UNI 10169:2001	Tubo di Pitot	
Superfici ambienti del settore alimentare (Supporti da camp environment (Samples from surface sampling)	oionamento superfici)/Surface in the	e food industry	
Denominazione della prova / Campi di prova	Metodo di prova	Tecnica di prova	<i>0&I</i>
Campionamento per parametri microbiologici/Sampling for microbiological parameters	ISO 18593:2018	_	

Legenda

L'eventuale simbolo (1) in corrispondenza della matrice indica:matrice non prevista dal metodo ma assimilabile/matrix not provided for by the method but acceptable

Il QRcode consente di accedere direttamente al sito www.accredia.it per verificare la validità dell'elenco prove e del certificato di accreditamento rilasciato al laboratorio.

L'eventuale simbolo "X" riportato nella colonna "O8I" indica che il laboratorio è accreditato anche per fornire opinioni e interpretazioni basate sui risultati delle specifiche prove contrassegnate.

L'eventuale simbolo (*) indica che è attiva una sospensione dell'accreditamento per la specifica attività riportata a fianco

SOCIETÀ ITALIANA ACETILENE E DERIVATI
S.I.A.D. S.p.A.
24126 Bergamo, Italy - Via S. Bernardino, 92
Tel. +39 035 328111 - Fax +39 035 315486
www.siad.com - siad@siad.eu
Capitale Sociale - Share Capital € 25.000.000 i.v. - paid up
P.IVA, C.F., Reg. Impr. Bg - VAT and Fiscal Nr.: (IT) 00209070168
R.E.A. BG-15532 - Export. BG 000472

Stabilimento di Osio Sopra 24040 Osio Sopra (BG) S.S. 525 del Brembo, 1 Tel. 035/328446 Fax 035/502208 e-mail: ricerca@siad.eu

29/01/2021

Spett.le

TECNOLOGIE D'IMPRESA SRL

Via Don Giovanni Minzoni 15

22060

CABIATE

CO

Indirizzo di consegna

Via Don Giovanni Minzoni 15 22060 CABIATE (CO)

Certificato n.

2611

(256754 / 13100)

Riferimento del cliente

20001323

Data ordine cliente

29/12/2020

Tipo di miscela

Miscela Gas CampioneBombole da 10 L, ALL, SIAD

Miscele Certificate

Composizione Certificata

Componenti
OSSIDO DI CARBONIO
OSSIDO DI AZOTO

150,0 ppmvol

Richiesta

Valore certificato 150,0 ppmvol

Resto

Incertezza estesa 3,1 ppmvol

OSSIDO DI AZOTO

150,0 ppmvol Resto 149,7 ppmvol

3,1 ppmvol

Altre impurezze

BIOSSIDO DI AZOTO

0,5 ppmvol

L'incertezza estesa è espressa come incertezza tipo moltiplicata per il fattore di copertura k=2, che per una distribuzione di probabilità normale, corrisponde ad un livello di fiducia del 95% circa.

Classificazione ADR

UN 1956 GAS COMPRESSO, N.A.S. (azoto,ossido di azoto), 2.2 - SCHEDA CEFIC 20G1A

Scheda di sicurezza n.

SI-1956_30

Codice per preparazione

ISO 6142

Codice per analisi ISO 6143

Riferibilità

Procedura int. di preparazione Acr 563. La miscela è stata preparata con il metodo gravimetrico su bilance tarate con masse certificate da Centro ACCREDIA. Numero del certificati delle

masse: 511, 512, 2567, 2568, A1179; centro ACCREDIA LAT n. 55

Note

Analista

Angeretti Diego

Data analisi

27/01/2021

Garanzia di stabilità fino al

27/01/2023

-20 °C

Pressione minima di utilizzo

10% Press -25%

Temperatura minima di utilizzo e stoccaggio
Temperatura massima di utilizzo e stoccaggio

50 °C
Pressione b.la (bar abs)

peso

Capacità b.la (I)

Matricola

10,0 260657

Barcode

S5161715

150.00

Lotto

ARB0727011

- seque -

SIAD S.p.A. - Il responsabile del Laboratorio Gas e Miscele Speciali

Maurizio Tintori

SOCIETÀ ITALIANA ACETILENE E DERIVATI
S.I.A.D. S.p.A.
24126 Bergamo, Italy - Via S. Bernardino, 92
Tel. +39 035 328111 - Fax +39 035 315486
www.siad.com - siad@siad.eu
Capitale Sociale - Share Capital € 25.000.000 i.v. - paid up
P.IVA, C.F., Reg. Impr. Bg - VAT and Fiscal Nr.: (IT) 00209070168
R.E.A. BG-15532 - Export: BG 000472

Stabilimento di Oslo Sopra 24040 Osio Sopra (BG) S.S. 525 del Brembo, 1 Tel. 035/328446 Fax 035/502208 e-mail: ricerca@siad.eu

02/02/2021

Spett.le

TECNOLOGIE D'IMPRESA SRL Via Don Giovanni Minzoni 15 22060 CABIATE

° CO

Indirizzo di consegna

Via Don Giovanni Minzoni 15 22060 CABIATE (CO)

Certificato n.

2616

(256754 / 13101)

Riferimento del cliente

20001323

13101 /

Data ordine cliente

29/12/2020

Tipo di miscela

Miscela Gas CampioneBombole da 10 L, ALL, SIAD

Miscele Certificate

Composizione Certificata

Componenti Richiesta Valore certificato Incertezza estesa OSSIDO DI CARBONIO 40,0 ppmvol 39,7 ppmvol 1,1 ppmvol **OSSIDO DI AZOTO** 40,0 ppmvol 39,1 ppmvol 1,1 ppmvol AZOTO Resto Resto Altre impurezze

BIOSSIDO DI AZOTO

0,11 ppmvol

L'incertezza estesa è espressa come incertezza tipo moltiplicata per il fattore di copertura k=2, che per una distribuzione di probabilità normale, corrisponde ad un livello di fiducia del 95% circa.

Classificazione ADR

UN 1956 GAS COMPRESSO, N.A.S. (azoto,ossido di azoto), 2.2 - SCHEDA CEFIC 20G1A

Scheda di sicurezza n.

SI-1956_30

Codice per preparazione ISO 6142

42 Codice per analisi

ISO 6143

Riferibilità

Procedura Int. di preparazione Acr 563. La miscela è stata preparata con il metodo gravimetrico su bilance tarate con masse certificate da Centro ACCREDIA. Numero dei certificati delle

masse: 511, 512, 2567, 2568, A1179; centro ACCREDIA LAT n. 55

Note

Analista Angeretti Diego

Data analisi

27/01/2021

Garanzia di stabilità fino al

27/07/2022

-20 °C

Pressione minima di utilizzo

10% Press -25% peso

Temperatura minima di utilizzo e stoccaggio Temperatura massima di utilizzo e stoccaggio

50 °C

150,00

Capacità b.la (I)

Matricola

10,0

Pressione b.la (bar abs)

Barcode

S5314843

Lotto

ARB1027011

SOCIETÀ ITALIANA ACETILENE E DERIVATI S.I.A.D. S.p.A. 24126 Bergamo, Italy - Via S. Bernardino, 92 Tel. +39 035 328111 - Fax +39 035 315486 www.siad.com - siad@siad.eu

24040 Osio Sopra (BG) S.S. 525 del Brembo, 1 Tel. 035/328446 Fax 035/502208 e-mail: ricerca@siad.eu

Stabilimento di Osio Sopra

Capitale Sociale - Share Capital € 25.000.000 i.v. - paid up P.IVA, C.F., Reg. Impr. Bg - VAT and Fiscal Nr.: (IT) 00209070168 R.E.A. BG-15532 - Export: BG 000472

15/02/2021

Spett.le

TECNOLOGIE D'IMPRESA SRL Via Don Giovanni Minzoni 15 22060 CABIATE

CO

Indirizzo di consegna

Certificato n.

Riferimento del cliente

Via Don Giovanni Minzoni 15 22060 CABIATE (CO)

4320

21000012

(257024 /

Data ordine cliente

13/01/2021

Tipo di miscela

Miscela Gas CampioneBombole da 10 L, ALL, SIAD

Gas

Miscele Certificate

Composizione Certificata

Componenti Richiesta Valore certificato Incertezza estesa OSSIDO DI CARBONIO 40,0 ppmvol 40,2 ppmvol 1,1 ppmvol AZOTO Resto Resto OSSIGENO 20,00 %vol 19,99 %vol 0,17 %vol

L'incertezza estesa è espressa come incertezza tipo moltiplicata per il fattore di copertura k=2, che per una distribuzione di probabilità normale, corrisponde ad un livello di fiducia del 95% circa.

Classificazione ADR

UN 1956 GAS COMPRESSO, N.A.S. (azoto,ossigeno), 2.2 - SCHEDA CEFIC 20G1A

Scheda di sicurezza n.

SI-1956 3

Codice per preparazione

ISO 6142

Codice per analisi ISO 6143

Riferibilità

Procedura int. di preparazione Acr 563. La miscela è stata preparata con il metodo gravimetrico su bilance tarate con masse certificate da Centro ACCREDIA. Numero dei certificati delle

masse : 511, 512, 2567, 2568, A1179; centro ACCREDIA LAT n. 55

Note

Analista Angeretti Diego Data analisi

12/02/2021

Garanzia di stabilità fino al Temperatura minima di utilizzo e stoccaggio

12/02/2023

-20 °C

Pressione minima di utilizzo

10% Press -25%

Temperatura massima di utilizzo e stoccaggio

50 °C

Pressione b.la (bar abs)

peso

Capacità b.la (I) Matricola

10.0 101937

Barcode

S5179198

150,00

Lotto

ARB0612021

SOCIETÀ ITALIANA ACETILENE E DERIVATI S.I.A.D. S.p.A. 24126 Bergamo, Italy - Via S. Bernardino, 92 Tel. +39 035 328111 - Fax +39 035 315486

www.siad.com - siad@siad.eu

Capitale Sociale - Share Capital € 25.000.000 i.v. - paid up P.IVA, C.F., Reg. Impr. Bg - VAT and Fiscal Nr.: (IT) 00209070168 R.E.A. BG-15532 - Export: BG 000472

Stabilimento di Osio Sopra 24040 Osio Sopra (BG) S.S. 525 del Brembo, 1 Tel. 035/328446 Fax 035/502208 e-mail: ricerca@siad.eu

18/02/2021

Spett.le

TECNOLOGIE D'IMPRESA SRL Via Don Giovanni Minzoni 15 22060 **CABIATE**

CO

Indirizzo di consegna

Via Don Giovanni Minzoni 15 22060 CABIATE (CO)

Certificato n.

4842 21000012 (257024 /

Riferimento del cliente

Data ordine cliente

13/01/2021

Tipo di miscela

Miscela Gas CampioneBombole da 10 L, ALL, SIAD

Miscele Certificate

Composizione Certificata

Componenti OSSIDO DI CARBONIO OSSIDO DI AZOTO **AZOTO**

Richiesta 4000 ppmvol

1500 ppmvol

Valore certificato 4067 ppmvol Incertezza estesa lovmqq 08

1514 ppmvol Resto Resto

30 ppmvol

Altre impurezze

BIOSSIDO DI AZOTO

ppmvol

L'incertezza estesa è espressa come incertezza tipo moltiplicata per il fattore di copertura k=2, che per una distribuzione di probabilità normale, corrisponde ad un livello di fiducia del 95% circa.

Classificazione ADR

UN 1956 GAS COMPRESSO, N.A.S. (azoto,ossido di carbonio), 2.2 - SCHEDA CEFIC 20G1A

Scheda di sicurezza n.

SI-1956_101

Codice per preparazione

ISO 6142

Codice per analisi

ISO 6143

Riferibilità

Procedura int. di preparazione Acr 563. La miscela è stata preparata con il metodo gravimetrico su bilance tarate con masse certificate da Centro ACCREDIA. Numero del certificati delle

masse : 511, 512, 2567, 2568, A1179; centro ACCREDIA LAT n. 55

Note

Analista

Pirotta Stefano

Data analisi

18/02/2021

Garanzia di stabilità fino al

18/02/2024

-20 °C

Pressione minima di utilizzo

10% Press -25%

Temperatura minima di utilizzo e stoccaggio Temperatura massima di utilizzo e stoccaggio

50 °C

Pressione b.la (bar abs)

150,00

Capacità b.la (I) Matricola

10.0 012583

Barcode

S5362598

Lotto

ARB1112021

peso

- segue -

SIAD S.p.A. - Il responsabile del Laboratorio Gas e Miscele Speciali

Maurizio Tintori

SOCIETÀ ITALIANA ACETILENE E DERIVATI S.I.A.D. S.p.A.

24126 Bergamo, Italy - Via S. Bernardino, 92 Tel. +39 035 328111 - Fax +39 035 315486 www.siad.com - siad@siad.eu

Capitale Sociale - Share Capital € 25.000.000 i.v. - paid up P.IVA, C.F., Reg. Impr. Bg - VAT and Fiscal Nr.: (IT) 00209070168 R.E.A. BG-15532 - Export: BG 000472

Fax 035/502208 e-mail: ricerca@siad.eu

Stabilimento di Osio Sopra

24040 Osio Sopra (BG)

S.S. 525 del Brembo, 1

Tel. 035/328446

14/04/2020

Spett.le

TECNOLOGIE D'IMPRESA SRL Via Don Giovanni Minzoni 15 22060 CABIATE

CO

Indirizzo di consegna

Via Don Giovanni Minzoni 15 22060 CABIATE (CO)

Certificato n.

(246233 / 572)

Riferimento del cliente

19/00781

Data ordine cliente

18/12/2019

Tipo di miscela

Miscela Gas CampioneBombole da 10 L, ALL, : Gas

Miscele Certificate

Composizione Certificata

Componenti

Richiesta

Valore certificato

Incertezza estesa

OSSIDO DI CARBONIO

80,0 ppmvol

82,5 ppmvol

1,8 ppmvol

OSSIDO DI AZOTO

80,0 ppmvol

81,5 ppmvol

1,7 ppmvol

AZOTO

Resto

Resto

Altre impurezze

BIOSSIDO DI AZOTO

0,3 ppmvol

L'incertezza estesa è espressa come incertezza tipo moltiplicata per il fattore di copertura k=2, che per una distribuzione di probabilità normale, corrisponde ad un livello di fiducia del 95% circa.

Classificazione ADR

UN 1956 GAS COMPRESSO, N.A.S. (azoto,ossido di azoto), 2.2 - SCHEDA CEFIC 20G1A

Scheda di sicurezza n.

SI-1956 30

Codice per preparazione ISO 6142

Codice per analisi ISO 6143

Riferibilità

Procedura int. di preparazione Acr 563. La miscela è stata preparata con Il metodo gravimetrico su bilance tarate con masse certificate da Centro ACCREDIA. Numero dei certificati delle

masse: 511, 512, 2567, 2568, A1179; centro ACCREDIA LAT n 55

Note

Analista

Baccala Efrem

Data analisi

01/04/2020

01/10/2021 Garanzia di stabilità fino al

-20 °C

Pressione minima di utilizzo

10% Press -25%

m3

Temperatura minima di utilizzo e stoccaggio Temperatura massima di utilizzo e stoccaggio 10,0

peso

50 °C

Pressione b.la (bar abs) 150,00

Contenuto b.la.

Capacità b.la (I) Matricola

083313

Barcode

S5202019

Lotto

1.50 ARF1230030

- seque -

SIAD S.p.A. - Il responsabile del Laboratorio Gas e Miscele Speciali

Maurizio Tinto

mund

ZERTIFIKAT

über Produktkonformität (QAL1)

Zertifikatsnummer: 0000024161_01

Messeinrichtung:

MIR 9000CLD Option für NO/NO_x, NO₂, CO₂, O₂, N₂O und CH₄

Hersteller:

Environnement S.A.

111 Boulevard Robespierre

78304 Poissy Cedex

Frankreich

Prüfinstitut:

TÜV Rheinland Energy GmbH

Es wird bescheinigt, dass das AMS unter Berücksichtigung der Normen DIN EN 15267-1 (2009), DIN EN 15267-2 (2009), DIN EN 15267-3 (2008) sowie DIN EN 14181 (2004) geprüft wurde und zertifiziert ist.

Die Zertifizierung gilt für die in diesem Zertifikat aufgeführten Bedingungen (das Zertifikat umfasst 13 Seiten).

Eignungsgeprüft DIN EN 15267 QAL1 zertifiziert Regelmäßige Überwachung

www.tuv.com ID 0000024161

Eignungsbekanntgabe im Bundesanzeiger vom 05. März 2013 Gültigkeit des Zertifikates bis: 04. März 2023

Umweltbundesamt Dessau, 05. März 2018 TÜV Rheinland Energy GmbH Köln, 04. März 2018

DURA 659-

i. A. Dr. Marcel Langner

ppa. Dr. Peter Wilbring

www.umwelt-tuv.eu tre@umwelt-tuv.eu Tel. + 49 221 806-5200 TÜV Rheinland Energy GmbH Am Grauen Stein 51105 Köln

Durch die DAkkS nach DIN EN ISO/IEC 17025:2005 akkreditiertes Prüflabor.

Die Akkreditierung gilt nur für den in der Urkundenanlage D-PL-11120-02-00 aufgeführten Akkreditierungsumfang.

Prüfbericht: 936/21220780/B vom 05. Oktober 2012

Erstmalige Zertifizierung: 05. März 2013 Gültigkeit des Zertifikats bis: 04. März 2023

Zertifikat: erneute Ausstellung (vorheriges Zertifikat 0000024161

vom 22. März 2013 mit Gültigkeit bis zum 04. März 2018)

Veröffentlichung: BAnz AT 05.08.2013 B10, Kapitel I Nr. 5.3

Genehmigte Anwendung

Das geprüfte AMS ist geeignet zum Einsatz an genehmigungsbedürftigen Anlagen (13. Blm-SchV, 17. BlmSchV, 30. BlmSchV, TA Luft) sowie an Anlagen der 27. BlmSchV. Die geprüften Messbereiche wurden ausgewählt, um einen möglichst weiten Anwendungsbereich für das AMS sicherzustellen.

Die Eignung des AMS für diese Anwendung wurde auf Basis einer Laborprüfung und eines dreimonatigen Feldtests an einer kommunalen Klärschlammverbrennungsanlage beurteilt.

Das AMS ist für den Umgebungstemperaturbereich von +5 °C bis +40 °C zugelassen.

Die Bekanntgabe der Messeinrichtung, die Eignungsprüfung sowie die Durchführung der Unsicherheitsberechnungen erfolgte auf Basis der zum Zeitpunkt der Prüfung gültigen Bestimmungen. Aufgrund möglicher Änderungen rechtlicher Grundlagen sollte jeder Anwender vor dem Einsatz der Messeinrichtung sicherstellen, dass die Messeinrichtung zur Überwachung der für ihn relevanten Grenzwerte und Sauerstoffkonzentrationen geeignet ist.

Jeder potentielle Nutzer sollte in Abstimmung mit dem Hersteller sicherstellen, dass dieses AMS für die Anlage, an der es installiert werden soll, geeignet ist.

Basis der Zertifizierung

Dieses Zertifikat basiert auf:

- Prüfbericht 936/21220780/B vom 05. Oktober 2012 der TÜV Rheinland Energie und Umwelt GmbH
- Eignungsbekanntgabe durch das Umweltbundesamt als zuständige Stelle
- Überwachung des Produktes und des Herstellungsprozesses

Veröffentlichung im Bundesanzeiger: BAnz AT 05.03.2013 B10, Kapitel I Nr. 5.3, UBA Bekanntmachung vom 12. Februar 2013:

Messeinrichtung:

MIR 9000 CLD Option für NO/NO_x, NO₂, CO₂, O₂, N₂O und CH₄

Hersteller:

Environnement S.A., Poissy Cedex, Frankreich

Eignung:

Für genehmigungsbedürftige Anlagen sowie Anlagen der 27. BlmSchV

Messbereiche in der Eignungsprüfung:

Komponente	Zertifizierungsbereich	zusätzlicher Messbereich	Einheit
NO/NO _X	0 - 20	0 - 2000	mg/m³
NO ₂	0 - 20	0 - 200	mg/m³
CO ₂	0 - 25		Vol%
O ₂	0 - 10	0 - 25	Vol%
N ₂ O	0 - 20	0 - 200	mg/m³
CH₄	0 - 10	0 - 200	mg/m³

Softwareversion:

V6.5

Einschränkung:

Die Anforderung bei der Eignungsprüfung nach DIN EN 15267-3 für die Schutzart des Gehäuses wird nicht erfüllt. Die Messeinrichtung muss geschützt vor Staub und Niederschlag aufgestellt werden.

Hinweise:

- Das Wartungsintervall beträgt zwei Wochen.
- 2. Ergänzungsprüfung (Überführung in die DIN EN 15267) zu der Bekanntmachung des Umweltbundesamtes vom 19. Februar 2009 (BAnz. S. 899, Kapitel I Nummer 2.4).

Prüfbericht:

TÜV Rheinland Energie und Umwelt GmbH, Köln Bericht-Nr.: 936/21220780/B vom 5. Oktober 2012

Veröffentlichung im Bundesanzeiger: BAnz AT 26.08.2015 B4, Kapitel V Mitteilung 24, UBA Bekanntmachung vom 22. Juli 2015:

24 Mitteilung zu der Bekanntmachung des Umweltbundesamtes vom 12. Februar 2013 (BAnz AT 05.03.2013 B10, Kapitel I Nummer 5.3)

Die aktuelle Softwareversion der Messeinrichtung MIR 9000 CLD Option für NO/NOx, NO₂, CO₂, O₂, N₂O und CH₄ der Firma Environnement S.A. lautet:

v6.58 (Calculation Process) v3.3.I (Display Process)

Stellungnahme der TÜV Rheinland Energie und Umwelt GmbH vom 14. März 2015.

Zertifiziertes Produkt

Das Zertifikat gilt für automatische Messeinrichtungen, die mit der folgenden Beschreibung übereinstimmen:

Der MIR 9000CLD Option ist ein Messgerät, das auf der Basis der Infrarotspektroskopie mit Gasfilterkorrelation (Komponenten CO₂, N₂O und CH₄), Chemilumineszenz (NO/NOx als NO₂) und Paramagnetismus (O₂) funktioniert.

Infrarotspektroskopie mit Gasfilterkorrelation

Alle mehratomigen Gase absorbieren eine elektromagnetische Strahlung einer gegebenen Wellenlänge. Die auf diesem Phänomen basierende qualitative und quantitative Analyse nennt man Absorptionsspektroskopie.

Chemilumineszenz

Das Chemilumineszenzmodul analysiert die Konzentration von Stickstoffoxid und Stickstoffoxid im Abgas. Das Gerät funktioniert auf dem Prinzip, dass Stickstoffoxid (NO) bei Vorhandensein stark oxidierender Ozonmoleküle Licht aussendet (Chemilumineszenz).

Paramagnetismus

Dieses Verfahren basiert auf der magnetischen Suszeptibilität des Sauerstoffs.

Die Messeinrichtung besteht aus folgenden Bestandteilen:

Eine "SEC"-Sonde

Unbeheizte Leitung (50 m Standard)

Klimatisierter Analysenschrank mit

- Einheit zur Aufbereitung und Verteilung von Druckluft (M.D.S)
- Abzweigkasten
- Kasten für die automatische Gasumschaltung (TIG) mit elektrischen Anschlüssen
- Heizung mit integriertem Thermostat
- Klimagerät

Die aktuelle Software-Version lautet:

v6.58 (Calculation Process)

v3.3.I (Display Process)

Die aktuelle Handbuchversion lautet:

März 2016

Allgemeine Anmerkungen

Dieses Zertifikat basiert auf dem geprüften Gerät. Der Hersteller ist dafür verantwortlich, dass die Produktion dauerhaft den Anforderungen der DIN EN 15267 entspricht. Der Hersteller ist verpflichtet, ein geprüftes Qualitätsmanagementsystem zur Steuerung der Herstellung des zertifizierten Produktes zu unterhalten. Sowohl das Produkt als auch die Qualitätsmanagementsysteme müssen einer regelmäßigen Überwachung unterzogen werden.

Falls festgestellt wird, dass das Produkt aus der aktuellen Produktion mit dem zertifizierten Produkt nicht mehr übereinstimmt, ist die TÜV Rheinland Energy GmbH unter der auf Seite 1 angegebenen Adresse zu informieren.

Das Zertifikatszeichen mit der produktspezifischen ID-Nummer, das an dem zertifizierten Produkt angebracht oder in Werbematerialien für das zertifizierte Produkt verwendet werden kann, ist auf Seite 1 dieses Zertifikates dargestellt.

Dieses Dokument sowie das Zertifikatszeichen bleiben Eigentum der TÜV Rheinland Energy GmbH. Mit dem Widerruf der Bekanntgabe verliert dieses Zertifikat seine Gültigkeit. Nach Ablauf der Gültigkeit des Zertifikats und auf Verlangen der TÜV Rheinland Energy GmbH muss dieses Dokument zurückgegeben und das Zertifikatszeichen darf nicht mehr verwendet werden.

Die aktuelle Version dieses Zertifikates und seine Gültigkeit kann auch unter der Internetadresse: qal1.de eingesehen werden.

Die Zertifizierung der Messeinrichtung MIR 9000CLD Option basiert auf den im folgenden dargestellten Dokumenten und der regelmäßigen fortlaufenden Überwachung des Qualitätsmanagementsystems des Herstellers:

Basisprüfung:

Prüfbericht: 936/21206578/E vom 10. Oktober 2008 TÜV Rheinland Immissionsschutz und Energiesysteme GmbH, Köln Veröffentlichung: BAnz. 11. März 2009, Nr. 38, S. 899, Kapitel I Nr. 2.4 UBA Bekanntmachung vom 19. Februar 2009

Erstzertifizierung gemäß DIN EN 15267:

Zertifikat Nr. 0000024161: 22. März 2013 Gültigkeit des Zertifikats: 04. März 2018

Prüfbericht: 936/21220780/B vom 05. Oktober 2012 TÜV Rheinland Energie und Umwelt GmbH, Köln Veröffentlichung: BAnz AT 05.03.2013 B10, Kapitel I Nr. 5.3 UBA Bekanntmachung vom 12. Februar 2013

Mitteilung gemäß DIN EN 15267

Stellungnahme der TÜV Rheinland Energie und Umwelt GmbH vom 14. März 2015 Veröffentlichung: BAnz AT 26.08.2015 B4, Kapitel V Mitteilung 24 UBA Bekanntmachung vom 22. Juli 2015 (neue Software-Version)

Erneute Ausstellung des Zertifikats

Zertifikat Nr. 0000024161_01: 05. März 2018 Gültigkeit des Zertifikats: 04. März 2023

Seite 7 von 13

Berechnung der Gesamtunsicherheit nach DIN EN 14181 und DIN EN 15267-3

HE BEST : C PE CHE E E E E PETE PETE BEST PETE E E E E E E E E E E E E E E E E E		
Messeinrichtung		
Hersteller	Environnement S.A.	
Bezeichnung der Messeinrichtung	MIR 9000 CLD Option	
Seriennummer der Prüflinge	1912 / 1913	
Messprinzip	CLD	
Prüfbericht	936/21220780/B	
Prüfinstitut	TÜV Rheinland	
Berichtsdatum	05.10.2012	
Messkomponente Zottifiziorungaboroloh ZB	NOx 0 - 20 ma/m³	
Zertifizierungsbereich ZB	0 - 20 mg/m³	
Bewertung der Querempfindlichkeiten (QE)		
(System mit größter QE)		
Summe positive QE am Null-Punkt	0,00 mg/m³	
Summe negative QE am Null-Punkt	0,00 mg/m³	医白斑 法人员
Summe positive QE am RefPunkt	0,24 mg/m³	
Summe negative QE am RefPunkt	-0,34 mg/m³	
Maximale Summe von Querempfindlichkeiten	-0,34 mg/m³	
Messunsicherheit der Querempfindlichkeit	-0,200 mg/m³	
Berechnung der erweiterten Messunsicherheit		<i>)</i> #
Prüfgröße		U ²
Standardabweichung aus Doppelbestimmungen	u _D 0,311 mg/m³	0,097 (mg/m³)²
Linearität / Lack-of-fit	u _{lof} -0,064 mg/m ³	0,004 (mg/m³)²
Nullpunktdrift aus Feldtest	u _{d,z} 0,094 mg/m³	0,009 (mg/m³)²
Referenzpunktdrift aus Feldtest	u _{d.s} 0,318 mg/m ³	0,101 (mg/m³)²
Einfluss der Umgebungstemperatur am Referenzpunkt	ս _է 0,265 mg/m³	0,070 (mg/m³)²
Einfluss der Netzspannung	u _v 0,012 mg/m³	0,000 (mg/m³)²
Querempfindlichkeit	u _i -0,200 mg/m³	0,040 (mg/m³)²
Einfluss des Probengasvolumenstrom Unsicherheit des Referenzmaterials bei 70% des ZB	u _p -0,040 mg/m³	0,002 (mg/m³)²
	u _{rm} 0,162 mg/m³	0,026 (mg/m³)²
Konverterwirkungsgrad für AMS zur Messung von NOx * Der größere der Werte wird verwendet:	u _{ce} 0,208 mg/m³	0,043 (mg/m³)²
"Wiederholstandardabweichung am Referenzpunkt" oder	$U_c = \sqrt{\sum (U_{max,l})^2}$	
"Standardabweichung aus Doppelbestimmungen"	$U_c = \sqrt{\sum (U_{max,j})}$	
	이 그 전환 한번째 기급했다.	
Kombinierte Standardunsicherheit (uc)		0,63 mg/m³
Erweiterte Unsicherheit	$U = u_c * k = u_c * 1,96$	1,23 mg/m ³
Relative erweiterte Messunsicherheit	U in % vom Messbereich 2	
Anforderung nach 2000/76/EG und 2001/80/EG	U in % vom Messbereich 2	Transport of the second
Anforderung nach DIN EN 15267-3	U in % wom Messbereich 20	mg/m³ 15,0
		본 하기 가고싶었다. 그리고 말했다.

Berechnung der Gesamtunsicherheit nach DIN EN 14181 und DIN EN 15267-3

Relative erweiterte Messunsicherheit	ilin	% vom l	Messbereich	20 ma/m³	4,
Erweiterte Unsicherheit	i negative de la compa	ı _c *k≕u	c I'AD	U,98	mg/m³
Combinierte Standardunsicherheit (u _C)		*	* 1.06	0,50	•
"Wederholstandardabweichung am Referenzpunkt" oder "Standardabweichung aus Doppelbestimmungen"	$u_c = \sqrt{\sum (u_m)}$	ax,] /			
Jnsicherheit des Referenzmaterials bei 70% des ZB Der größere der Werte wird verwendet:	U _m	<u> </u>	mymi	0,020	(1119/111)
Einfluss des Probengasvolumenstrom	u _p	anger was	mg/m³ ma/m³		(mg/m³)²
Querempfindlichkeit	u _i	NAMES OF STREET	mg/m³	0,120	(mg/m³)² (mg/m³)²
Einfluss der Netzspannung	u_v		mg/m³		(mg/m³)²
Einfluss der Umgebungstemperatur am Referenzpunkt	u_t		mg/m³		(mg/m³)²
Referenzpunktdrift aus Feldtest	u _{d.s}	化二基 网络人名伊朗特	mg/m³	C 1 (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	(mg/m³)²
Nullpunktdrift aus Feldtest	$u_{d,z}$		mg/m³		(mg/m³)²
inearität / Lack-of-fit	U _{lof}	and the second of the	mg/m³		(mg/m³)²
Standardabweichung aus Doppelbestimmungen	u_D	0,081	mg/m³	is in the second sections of	(mg/m³)²
Prüfgröße				U ²	
Berechnung der erweiterten Messunsicherheit					
Messunsicherheit der Querempfindlichkeit		0,346	mg/m³		
Maximale Summe von Querempfindlichkeiten		0,60	mg/m³		
Summe negative QE am RefPunkt		ing sign of the training	mg/m³		
Summe positive QE am RefPunkt			mg/m³		
Summe negative QE am Null-Punkt		110000000000000000000000000000000000000	mg/m³		
Summe positive QE am Null-Punkt		0,24	mg/m³		
Bewertung der Querempfindlichkeiten (QE) System mit größter QE)					
Zertifizierungsbereich ZB	0 -	20	mg/m³		
Messkomponente .	NO ₂				
3erichtsdatum	05.10.2012				
Prüfinstitut	TÜV	Rheinlan	d		
Prüfbericht	936/2	1220780)/B		
Messprinzip	CLD				
Seriennummer der Prüflinge		/ 1913			
Bezeichnung der Messeinrichtung		stricted in these	Option		
-lersteller	, in distributing the formation	onnemer	desirant the state of		
Messeinrichtung					

20,0

15,0

U in % vom Messbereich 20 mg/m3

U in % vom Messbereich 20 mg/m³

Anforderung nach 2000/76/EG und 2001/80/EG

Anforderung nach DIN EN 15267-3

Berechnung der Gesamtunsicherheit nach DIN EN 14181 und DIN EN 15267-3

	Messeinrichtung						
	Hersteller	Envir	onnemen	t S.A.			
	Bezeichnung der Messeinrichtung	MIR	9000 CLE	Option :			
	Seriennummer der Prüflinge	1912	/ 1913				
	Messprinzip	NDIF					
i i	Prüfbericht	936/2	21220780	/B			
	Prüfinstitut	TÜV	Rheinlan	d			
	Berichtsdatum	05.10	0.2012			afyr ddinau Mae'r hanna	
	Messkomponente	CO ₂					
	Zertifizierungsbereich ZB	0 -	25	Vol%			
	Bewertung der Querempfindlichkeiten (QE) (System mit größter QE)						
ì	Summe positive QE am Null-Punkt		0,10	Vol%			43
•	Summe negative QE am Null-Punkt		-0,10	Vol%			
	Summe positive QE am RefPunkt		0,60	Vol%			. 9
	Summe negative QE am RefPunkt		-0,40	Vol%			
	Maximale Summe von Querempfindlichkeiten		0,60	Vol%		Again garan Na galaga kalaya N	
	Messunsicherheit der Querempfindlichkeit		0,346	Vol%			
-	Berechnung der erweiterten Messunsicherheit Prüfgröße				U ²		
	Standardabweichung aus Doppelbestimmungen	un	0,222	Vol%	0.049	(Vol%) ²	- :
	Linearität / Lack-of-fit	Li _{lof}	-0,087	Vol%		(Vol%) ²	4,3,3
	Nullpunktdrift aus Feldtest	u _{d.z}	0444	Vol%		(Vol%) ²	
	Referenzpunktdrift aus Feldtest	u _{d.s}		Vol%		(Vol%)2	i/j
	Einfluss der Umgebungstemperatur am Referenzpunkt	u	0,173	Vol%	47.5	(Vol%) ²	
	Einfluss der Netzspannung	Uν	0,012	Vol%	and the state of t	(Vol%) ²	di,
	Querempfindlichkeit	u _i	0,346	Vol%		(Vol%) ²	
	Einfluss des Probengasvolumenstrom	Up	-0,035	Vol%	0,001	(Vol%) ²	
	Unsicherheit des Referenzmaterials bei 70% des ZB * Der größere der Werte wird verwendet: "Wederholstandardabweichung am Referenzpunkt" oder	$u_{c} = \sqrt{\sum \left(u_{rr}\right)}$		Vol%	0,041	(Vol%)²	
	"Standardabweichung aus Doppelbestimmungen"						
	Kombinierte Standardunsicherheit (uc)				0,54	Vol%	
	Erweiterte Unsicherheit	U≓u A	i _c * k = u _c	. * 1,96	1,06	Vol%	
	Relative erweiterte Messunsicherheit	U in	% vom N	lessbereich	25 Vol%	4,2	
	Anforderung nach 2000/76/EG und 2001/80/EG	U in	% vom N	lessbereich	25 Vol%	10,0 *	*
	Anforderung nach DIN EN 15267-3	U in '	% vom M	essbereich 2	5 Vol%	7,5	
			nu di karana	or and the	STREET - F		

^{**} Für diese Komponente sind keine Anforderungen in den EG-Richtlinien 2001/80/EG und 2000/76/EG enthalten.
Es wurde ein Wert von 10 % herangezogen.

Berechnung der Gesamtunsicherheit nach DIN EN 14181 und DIN EN 15267-3

Messeinrichtung		
Hersteller	Environnement S.A.	
Bezeichnung der Messeinrichtung	MIR 9000 CLD Option	
Seriennummer der Prüflinge	1912 / 1913	
Messprinzip	Paramagnetismus	
Prüfbericht	936/21220780/B	
Prüfinstitut	TÜV Rheinland	
Berichtsdatum	05.10.2012	
Messkomponente	O ₂	
Zertifizierungsbereich ZB	0 - 10 Vol%	
Bewertung der Querempfindlichkeiten (QE)	그림의 발생하고 발생하고 발생하고 발생하고 말 그림의 아이지, 그림의 발생하고 나는 사용하고?	
(System mit größter QE)		a a rest trade
Summe positive QE am Null-Punkt	0,00 Vol%	
Summe negative QE am Null-Punkt	0,00 Vol%	
Summe positive QE am RefPunkt	0,09 Vol%	
Summe negative QE am RefPunkt	-0,24 Vol%	
Maximale Summe von Querempfindlichkeiten	-0,24 Vol%	
Messunsicherheit der Querempfindlichkeit	-0,139 Val%	
Berechnung der erweiterten Messunsicherheit		
Prüfgröße	는 집단 전 기계	
Standardabweichung aus Doppelbestimmungen	The state of the s	(Vol%)²
Linearität / Lack-of-lit		(Vol%) ²
Nullpunktdrift aus Feldtest	그는 그 전 그는 그는 그는 그는 그는 전혀 보고 있다. 그는 그는 그는 그는 그는 그는 그는 그를 가지 않는 그는	(Vol%)²
Referenzpunktdrift aus Feldtest	さい ひこうこう こうちんせん 信誉者 はいこうけいせい しゃかんかい ちょうじょう おりゅうぶん あか	(Vol%) ²
Einfluss der Umgebungstemperatur am Referenzpunkt	1996年,李子说:"我们的,我们的自己的,我们就是有好的。""我们的这样,我们就是一个女子的,我们就是这个女子的,我们就是这个女子的,我们就是这个女子的女子的	(Vol%)2
Einfluss der Netzspannung		(Vol%) ²
Querempfindlichkeit		(Vol%) ²
Einfluss des Probengasvolumenstrom		(Vol%)²
Unsicherheit des Referenzmaterials bei 70% des ZB		(Vol%) ²
 Der größere der Werte wird verwendet: "Wederholstandardabweichung am Referenzpunkt" ode "Standardabweichung aus Doppelbestimmungen" 	$u_c = \sqrt{\sum (u_{max i})^2}$	
Kombinierte Standardunsicherheit (u _c)	0.23	Vol%
Enweiterte Unsicherheit		Vol%
Relative erweiterte Messunsicherheit	U in % vom Messbereich 10 Vol%	4,4
Anforderung nach 2000/76/EG und 2001/80/EG	U in % vom Messbereich 10 Vol%	10,0

^{**} Für diese Komponente sind keine Anforderungen in den EG-Richtlinien 2001/80/EG und 2000/76/EG enthalten.
Es wurde ein Wert von 10 % herangezogen.

U in % vom Messbereich 10 Vol.-%

Anforderung nach DIN EN 15267-3

Berechnung der Gesamtunsicherheit nach DIN EN 14181 und DIN EN 15267-3

Messelnrichtung		
Hersteller	Environnement S.A.	
Bezeichnung der Messeinrichtung	MIR 9000 CLD Option	
Seriennummer der Prüflinge	1912 / 1913	
Messprinzip	NDIR	
Prüfbericht	936/21220780/B	
Prüfinstitut	TÜV Rheinland	
Berichtsdatum	05,10.2012	
Messkomponente	N₂O	
Zertifizierungsbereich ZB	0 - 20 mg/m³	
Bewertung der Querempfindlichkeiten (QE)		
(System mit größter QE)		
Summe positive QE am Null-Punkt	0,25 mg/m ³	Kabupatèn Kabupatèn
Summe negative QE am Null-Punkt	-0,27 mg/m³	
Summe positive QE am RefPunkt	0,19 mg/m³	
Summe negative QE am RefPunkt	-0,59 mg/m³	
Maximale Summe von Querempfindlichkeiten	-0,59 mg/m³	
Messunsicherheit der Querempfindlichkeit	-0,341 mg/m³	candidate plan significa
Berechnung der erweiterten Messunsicherheit		接触在 / 用数数
Prüfgröße	경에 얼굴하는 살게 살아왔다는 것	U ²
Standardabweichung aus Doppelbestimmungen	_{UD} 0,321 mg/m³	0,103 (mg/m³)²
Linearität / Lack-of-fit	u _{lof} -0,064 mg/m³	0,004 (mg/m³)²
Nullpunktdrift aus Feldtest	u _{d.z} 0,007 mg/m³	0,000 (mg/m³)²
Referenzpunktdrift aus Feldtest	u _{d,s} 0,102 mg/m ^s	0.010 (mg/m³)²
Einfluss der Umgebungstemperatur am Referenzpunkt	սլ 0,346 mg/m³	0,120 (mg/m³)²
Einfluss der Netzspannung	u _v 0,036 mg/m³	0,001 (mg/m³)²
Querempfindlichkeit	u _i -0,341 mg/m³	0,116 (mg/m³)²
Einfluss des Probengasvolumenstrom	ս _թ 0,017 mg/m³	0,000 (mg/m³)²
Unsicherheit des Referenzmaterials bei 70% des ZB	u _m 0,162 mg/m ^s	0,026 (mg/m³)²
* Der größere der Werte wird verwendet:	$u_c = \sqrt{\sum_i (u_{max,i})^2}$	
"Wiederholstandardabweichung am Referenzpunkt" oder	7 Y - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
"Standardabweichung aus Doppelbestimmungen"		
Kombinierte Standardunsicherheit (u _C)		0,62 mg/m³
Erweiterte Unsicherheit	$U = u_0 * k = u_0 * 1.96$	1,21 mg/m³
Relative erweiterte Messunsicherheit	U in % vom Messbereich 2	0 mg/m³ 6,0

U in % vom Messbereich 20 mg/m³

U in % vom Messbereich 20 mg/m³

Anforderung nach 2000/76/EG und 2001/80/EG

Anforderung nach DIN EN 15267-3

20,0 **

15,0

^{**} Für diese Komponente sind keine Anforderungen in den EG-Richtlinien 2001/80/EG und 2000/76/EG enthalten. Es wurde ein Wert von 20 % herangezogen.

Berechnung der Gesamtunsicherheit nach DIN EN 14181 und DIN EN 15267-3

Messeinrichtung Hersteller	Environnement S.A.	
Bezeichnung der Messeinrichtung	MIR 9000 CLD Option	
Seriennummer der Prüflinge	1912 / 1913	
Messprinzip	NDIR	
(1635) (2)		
Prüfbericht	936/21220780/B	현실 등 기업을 받는 것 같습니다. 기업을 기업을 하는 기업을 보다고
Prüfinstitut	TÜV Rheinland	
Berichtsdatum	05.10.2012	
Messkomponente	CH₄	
Zertifizierungsbereich ZB	0 - 10 mg/m³	
Bewertung der Querempfindlichkeiten (QE)		
(System mit größter QE)		
Summe positive QE am Null-Punkt	0,05 mg/m³	
Summe negative QE am Null-Punkt	-0,29 mg/m³	
Summe positive QE am RefPunkt	0,12 mg/m³	
Summe negative QE am RefPunkt	-0,28 mg/m ³	
Maximale Summe von Querempfindlichkeiten	-0,29 mg/m ³	
Messunsicherheit der Querempfindlichkeit	-0,167 mg/m³	
Berechnung der erweiterten Messunsicherheit		
Prüfgröße		u² a
Standardabweichung aus Doppelbestimmungen	սը 0,085 mg/m³	0,007 (mg/m³)²
Linearität / Lack-of-fit	u _{lof} 0,046 mg/m ³	0,002 (mg/m³)²
Nullpunktdrift aus Feldtest	u _{d.z} -0,094 mg/m³	0,009 (mg/m³)²
Referenzpunktdrift aus Feldtest	u _{d.s} -0,133 mg/m³	0,018 (mg/m³)²
Einfluss der Umgebungstemperatur am Referenzpunkt	ս _լ 0,231 mg/m³	0,053 (mg/m³)²
Einfluss der Netzspannung	u _v 0,012 mg/m³	0,000 (mg/m³)²
Querempfindlichkeit	u _i -0,167 mg/m³	0,028 (mg/m³)²
Einfluss des Probengasvolumenstrom	u _p 0,017 mg/m³	0,000 (mg/m³)²
Unsicherheit des Referenzmaterials bei 70% des ZB	u _{rm} 0,081 mg/m³	0,007 (mg/m³)²
* Der größere der Werte wird verwendet:	$U_{c} = \sqrt{\sum \left(U_{\text{max } i}\right)^{2}}$	
"Wiederholstandardabweichung am Referenzpunkt" oder	c V → /_max 1)	보살이 본 유민이었다.
"Standardabweichung aus Doppelbestimmungen"		
		About the Hills
Kombinierte Standardunsicherheit (uc)		0,35 mg/m³

Erweiterte Unsicherheit

Relative erweiterte Messunsicherheit

Anforderung nach DIN EN 15267-3

Anforderung nach 2000/76/EG und 2001/80/EG

Es wurde ein Wert von 30 % herangezogen.

0,69 mg/m³

6,9

30,0

22,5

U in % vom Messbereich 10 mg/m³

U in % vom Messbereich 10 mg/m³

U in % vom Messbereich 10 mg/m³

^{**} Für diese Komponente sind keine Anforderungen in den EG-Richtlinien 2001/80/EG und 2000/76/EG enthalten.