U.O. INFRASTRUTTURE NORD

PROGETTO DEFINITIVO PER APPALTO

COMPLETAMENTO DEL NODO DI UDINE

PRG E ACC DEL P.M. CARGNACCO E OPERE SOSTITUTIVE DEI PL

INTERDEDENTI

INTERFERENTI

Fognatura bianca e nera Relazione di calcolo tubi per microtunneling

SCALA:	
-	

 COMMESSA
 LOTTO
 FASE
 ENTE
 TIPO DOC.
 OPERA/DISCIPLINA
 PROGR.
 REV.

 I Z 0 9
 0 0
 D
 2 6
 C L
 I N 0 2 0 0
 0 0 1
 A

Settembre 2019
RUTTURE NORD co Specth Provincia of Roma
ASTRUTTU neesco Sacci della Provinc 2 Sezz. A
e

File: IZ0900D26CLIN0200001A.docx

FOGNATURA PIANCA E NERA - RELAZIONE DI CALCOLO TUBI PER MICROTUNNELING

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN09
 00
 D26
 CLIN0200001
 A
 2 di 18

IZ0900D26CLIN0200001A Pagina 2 di 18

PROGETTO DEFINITIVO PER APPALTO COMPLETAMENTO DEL NODO DI UDINE

PRG E ACC DEL P.M. CARGNACCO E OPERE SOSTITUTIVE DEI PL INTERFERENTI

FOGNATURA PIANCA E NERA - RELAZIONE DI CALCOLO TUBI PER MICROTUNNELING

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IN09 CLIN0200001 3 di 18

INDICE

1	PREMESSA	4
2	DOCUMENTI DI RIFERIMENTO	6
	2.1 NORMATIVA, RACCOMANDAZIONI E LINEE GUIDA	6
	2.2 ELABORATI DI PROGETTO	
3	CARATTERISTICHE DEI MATERIALI	7
	3.1 CALCESTRUZZO	7
	3.2 ACCIAIO	7
4	MODELLO GEOTECNICO DI RIFERIMENTO	8
5	CARATTERIZZAZIONE SISMICA DEL SITO	9
6	DESCRIZIONE DELLE OPERE	10
7	ANALISI DEI CARICHI	11
	7.1 AZIONI PERMANENTI	11
	7.1.1 Pesi propri	11
	7.1.2 Spinta delle terre in condizioni statiche	11
	7.2 AZIONI VARIABILI	11
	7.3 AZIONE DEL TERRENO IN CONDIZIONI SISMICHE	11
8	COMBINAZIONI DI CARICO	13
9	CALCOLO DELLE SOLLECITAZIONI	14
10	SOLLECITAZIONI	16
11	SOLUZIONI PROGETTUALI	17

FOGNATURA PIANCA E NERA - RELAZIONE DI CALCOLO TUBI PER MICROTUNNELING

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IN09 00 D26 CLIN0200001 A 4 di 18

1 PREMESSA

Nell'ambito del "Progetto definitivo relativo al completamento del nodo di Udine – PRG e ACC del P.M. Cargnacco e opere sostitutive dei pl interferenti" si prevede la progettazione di n°3 nuovi tombinamenti della Roggia di Palma da eseguire lungo Via Casali Caiselli, alla progressiva p.k. 6+925 dell'annesso progetto ferroviario. L'intervento risulta inserito in un progetto più ampio che deve la sua origine alle necessità, da parte di RFI, di soddisfare le nuove esigenze logistiche dettate dall'attuale contesto economico in forte sviluppo della zona industriale Udinese (ZIU-ZAU) e dell'impianto ABS che, nell'ambito degli interventi di riorganizzazione funzionale del Nodo di Udine, vede anche la necessità di ottimizzare e potenziare l'attuale infrastruttura ferroviaria.

Oggetto della presente relazione è l'analisi dello stato di sollecitazione delle condotte circolari messe in opera con scavo meccanizzato, previsto in corrispondenza del sito illustrato indicativamente in Figura 1 ed in dettaglio negli elaborati di progetto (Doc. rif. [6]).

In particolare, si descrivono i carichi agenti sulla struttura in esame e la formulazione analitica utilizzata per la valutazione delle sollecitazioni. I calcoli sono stati eseguiti in considerazione delle vigenti normative e prescrizioni ed, in particolare, in conformità a quanto previsto nelle Norme Tecniche delle Costruzioni 2018 (D.M. 17 Gennaio 2018).

IZ0900D26CLIN0200001A Pagina 4 di 18

FOGNATURA PIANCA E NERA - RELAZIONE DI CALCOLO TUBI PER MICROTUNNELING COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IN09 00 D26 CLIN0200001 A 5 di 18

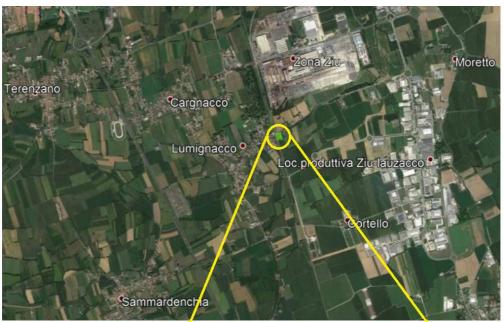


Figura 1: Inquadramento dell'area di intervento

IZ0900D26CLIN0200001A Pagina 5 di 18

FOGNATURA PIANCA E NERA - RELAZIONE DI CALCOLO TUBI PER MICROTUNNELING COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IN09 00 D26 CLIN0200001 A 6 di 18

2 DOCUMENTI DI RIFERIMENTO

2.1 NORMATIVA, RACCOMANDAZIONI E LINEE GUIDA

- [1] Decreto Ministeriale del 17 gennaio 2018: "Approvazione delle Nuove Norme Tecniche per le Costruzioni", Supplemento Ordinario alla G.U. n.42 del 20.2.2018;
- [2] D.M. 04/04/2014 Norme Tecniche per gli attraversamenti ed i parallelismi di condotte e canali convoglianti liquidi e gas con ferrovie ed altre linee di trasporto
- [3] Circolare C.S.L.P. 02/02/2009 n.617 Istruzioni per l'applicazione delle Norme Tecniche per le Costruzioni di cui al D.M. 14 gennaio 2008;
- [4] RFI Rete Ferroviaria Italia, Gruppo Ferrovie dello Stato Italiane, "Manuale di Progettazione delle Opere Civili Parte II, Sezione 2, Ponti e Strutture", Codifica RFI DTC SI PS MA IFS 001 A, 30/12/2016.

2.2 ELABORATI DI PROGETTO

- [5] IZ0900D26RGSL0300004A, Relazione geotecnica
- [6] IZ0900D26PZIN0200001A, Microtunnelling Pianta prospetto e sezioni camera di spinta e tubi
- [7] IZ0900D26PZIN0200002A, Microtunnelling Fasi esecutive
- [8] IZ0900D26RIIN0200001A, Relazione adeguamento fognatura bianca e nera
- [9] IZ0900D26W9IN0200002A, Fognatura bianca e nera Particolare attraversamento Roggia Palma

IZ0900D26CLIN0200001A Pagina 6 di 18

PROGETTO DEFINITIVO PER APPALTO

COMPLETAMENTO DEL NODO DI UDINE PRG E ACC DEL P.M. CARGNACCO E OPERE SOSTITUTIVE DEI PL INTERFERENTI

FOGNATURA PIANCA E NERA - RELAZIONE DI CALCOLO TUBI PER MICROTUNNELING
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN09
 00
 D26
 CLIN0200001
 A
 7 di 18

3 CARATTERISTICHE DEI MATERIALI

Tutti i materiali previsti per la realizzazione dell'opera sono stati definiti in conformità a quanto espressamente indicato dalle Norme Tecniche per le Costruzioni (Rif. [1]). Nei paragrafi che seguono si elencano le principali caratteristiche meccaniche richieste ai suddetti materiali.

3.1 CALCESTRUZZO

Calcestruzzo

Classe di resistenza C50/60

resistenza caratteristica cubica $R_{ck} = 60 \text{ MPa}$

resistenza caratteristica cilindrica $f_{ck} = 50 \text{ MPa}$

3.2 ACCIAIO

Barre ad aderenza migliorata, saldabile, tipo B450C dotato delle seguenti caratteristiche meccaniche:

modulo elastico $E_s = 210000 \text{ MPa}$

resistenza caratteristica a rottura $f_{tk} \ge 540 \text{ MPa}$

resistenza caratteristica a snervamento f_{vk} ≥ 450 MPa

IZ0900D26CLIN0200001A Pagina 7 di 18

FOGNATURA PIANCA E NERA - RELAZIONE DI CALCOLO TUBI PER MICROTUNNELING COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IN09 00 D26 CLIN0200001 A 8 di 18

4 MODELLO GEOTECNICO DI RIFERIMENTO

La sintesi dei principali parametri geomeccanici dei vari strati, riportata nella relazione geotecnica afferente al presente progetto, è riassunta nella seguente tabella:

Tabella 1 – Modello geotecnico di riferimento

Unità litologiche	Profo m բ		γ kN/m³	φ' °	c' kPa	E _{op} MPa
Sabbia limosa / limo sabbioso	0	1.5	18	32	0	25
Ghiaia sabbiosa con ciottoli	1.5	30	20	38	0	65

IZ0900D26CLIN0200001A Pagina 8 di 18

PROGETTO DEFINITIVO PER APPALTO

COMPLETAMENTO DEL NODO DI UDINE PRG E ACC DEL P.M. CARGNACCO E OPERE SOSTITUTIVE DEI PL INTERFERENTI

FOGNATURA PIANCA E NERA - RELAZIONE DI CALCOLO TUBI PER MICROTUNNELING COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IN09 00 D26 CLIN0200001 A 9 di 18

5 CARATTERIZZAZIONE SISMICA DEL SITO

Sulla base di quanto evidenziato nella Relazione Geotecnica, il terreno di fondazione può essere classificato come di Categoria Suolo B e l'area di riferimento come Categoria Topografica T1.

La progettazione delle strutture farà riferimento a:

vita nominale $V_N = 75$ anni

classe d'uso / Coefficiente d'uso II / $C_U = 1$

in base a ciò risulta:

periodo di riferimento per l'azione sismica $V_R = V_N \times C_U = 75$ anni

L'azione sismica di progetto è stimata con riferimento allo stato limite di salvaguardia della vita, con una probabilità di superamento nel periodo di riferimento V_R pari al 10%, ossia con riferimento al seguente periodo di ritorno dell'azione sismica T_R :

$$T_R = -V_R / ln(1-P_{VR}) = -75 / ln(1-0.10) = 712 anni$$

A seconda della progressiva del tracciato, sono stati individuati i seguenti parametri per la definizione dell'azione sismica:

 $a_{\alpha}(g) (SLV)$ 0.207

Risposta Sismica Locale

Coefficiente di amplificazione stratigrafica Ss 1.200

Coefficiente di amplificazione topografica St 1.0

Accelerazione massima attesa al suolo

 a_{max} (g) $(a_{\text{max}} = S \cdot a_g = S_S \cdot S_T \cdot a_g)$ 0.248

Nel seguito, il calcolo dell'azione sismica è stato eseguito considerando il massimo valore di a_{max} , ossia quello ricadente nell'ultima parte del tracciato, nel comune di Castelfranco Veneto.

IZ0900D26CLIN0200001A Pagina 9 di 18

PROGETTO DEFINITIVO PER APPALTO COMPLETAMENTO DEL NODO DI UDINE PRG E ACC DEL P.M. CARGNACCO E OPERE

SOSTITUTIVE DEI PL INTERFERENTI

FOGNATURA PIANCA E NERA - RELAZIONE **DI CALCOLO TUBI PER MICROTUNNELING**

COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** IN09 CLIN0200001 10 di 18

DESCRIZIONE DELLE OPERE 6

Per l'attraversamento del rilevato ferroviario, è prevista la posa di elementi prefabbricati circolari in c.a. di lunghezza pari a 2.35 m, diametro nominale 2.5 m e spessore 250 mm.

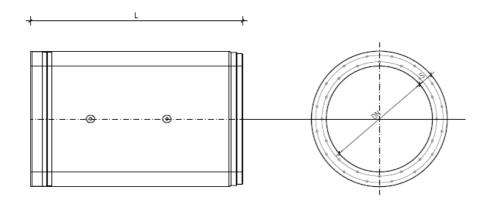


Figura 2 – Sezione tipo tombino circolare

IZ0900D26CLIN0200001A Pagina 10 di 18

PROGETTO DEFINITIVO PER APPALTO

COMPLETAMENTO DEL NODO DI UDINE PRG E ACC DEL P.M. CARGNACCO E OPERE SOSTITUTIVE DEI PL INTERFERENTI

FOGNATURA PIANCA E NERA - RELAZIONE DI CALCOLO TUBI PER MICROTUNNELING
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN09
 00
 D26
 CLIN0200001
 A
 11 di 18

7 ANALISI DEI CARICHI

7.1 AZIONI PERMANENTI

7.1.1 Pesi propri

Per il calcolo del peso proprio delle strutture e dello strato di ricoprimento dovuto al terreno e al ballast si assumono i pesi unitari di seguito indicati:

Struttura in c.a. $\gamma_1 = 25.0 \text{ kN/m}^3$; Terreno di ricoprimento: v. Tabella 1.

Nel caso in esame, lo spessore massimo del ricoprimento è pari a 5.10 m e, pertanto, il sovraccarico agente è pari a 97 kPa.

7.1.2 Spinta delle terre in condizioni statiche

Il calcolo delle spinte dovute al terreno e ai sovraccarichi è stato eseguito con il metodo di Rankine nell'ipotesi che il terreno si trovi in condizione di spinta a riposo, introducendo quindi nel calcolo della spinte agenti il fattore k_0 , calcolato come 1-sen ϕ ', nel quale è stato assunto un angolo di attrito pari a 38°.

Secondo tale criterio, la distribuzione di sforzo orizzontale agente sull'elemento circolare è trapezioidale e pari a 38 kPa nella porzione superiore e 42.7 in quella inferiore.

7.2 AZIONI VARIABILI

Il carico variabile dovuto al traffico di mezzi di cantiere o agricoli è assunto pari a 10 kPa.

7.3 AZIONE DEL TERRENO IN CONDIZIONI SISMICHE

L'effetto del sisma è considerato applicando un incremento di sforzo valutato secondo la teoria di Wood, agente direttamente sull'elemento secondo una distribuzione uniforme sull'intera altezza dell'opera.

IZ0900D26CLIN0200001A Pagina 11 di 18

FOGNATURA PIANCA E NERA - RELAZIONE DI CALCOLO TUBI PER MICROTUNNELING
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN09
 00
 D26
 CLIN0200001
 A
 12 di 18

 $\Delta P_d = \gamma \cdot H \cdot (a_{max}/g)$

dove:

γ rappresenta il peso dell'unità di volume della formazione con la quale l'opera interagisce,

H rappresenta l'altezza totale dell'opera (pari a 2.5m nel caso in esame).

Tale azione risulta pari a 15kPa.

IZ0900D26CLIN0200001A Pagina 12 di 18

PROGETTO DEFINITIVO PER APPALTO COMPLETAMENTO DEL NODO DI UDINE

PRG E ACC DEL P.M. CARGNACCO E OPERE SOSTITUTIVE DEI PL INTERFERENTI

FOGNATURA PIANCA E NERA - RELAZIONE DI CALCOLO TUBI PER MICROTUNNELING

COMMESSA DOCUMENTO LOTTO CODIFICA RFV **FOGLIO** CLIN0200001 IN09 13 di 18

COMBINAZIONI DI CARICO 8

Le combinazioni di carico sono definite sulla base dei criteri forniti dalle Norme Tecniche e sono di seguito richiamate:

$$\bullet \quad \text{fondamentale } \gamma_{\text{G1}} \cdot G_{1k} + \gamma_{\text{G2}} \cdot G_{2k} + \gamma_{\text{G3}} \cdot G_{3k} + \gamma_{\text{Q1}} \cdot Q_{1k} + \sum \left(\gamma_{\text{Q,i}} \cdot \psi_{0,i} \cdot Q_{ik} \right);$$

• sismica
$$\gamma_1 \cdot \mathsf{E}_{\mathsf{SLU}} + \mathsf{G}_{\mathsf{1k}} + \mathsf{G}_{\mathsf{2k}} + \mathsf{G}_{\mathsf{3k}} + \sum (\psi_{2,i} \cdot \mathsf{Q}_{\mathsf{ik}})$$

• rara
$$G_{1k} + G_{2k} + G_{3k} + \psi_{0,1} \cdot Q_{1k} + \sum (\psi_{0,i} \cdot Q_{ik});$$

• frequente
$$G_{1k} + G_{2k} + G_{3k} + \psi_{1,1} \cdot Q_{1k} + \sum (\psi_{2,i} \cdot Q_{ik})$$

• quasi permanente
$$G_{1k} + G_{2k} + G_{3k} + \sum (\psi_{2,i} \cdot Q_{ik})$$
.

I coefficienti parziali per le azioni γ_E previsti dalla norma al cap.5 delle NTC18 sono:

Tabella 2 - Coefficienti parziali per azioni o effetto delle azioni (NTC, Tab. 5.2.VI)

Carichi	Effetto	Coefficiente parziale γ _F (ο γ _E)	EQU	(A1) STR	(A2) GEO
Permanenti	Favorevole	V	0.9	1.0	1.0
remanenti	Sfavorevole	Y G1	1.1	1.35	1.0
Permanenti non	Favorevole	V	0.0	0.0	0.0
strutturali	Sfavorevole	Y G2	1.5	1.5	1.3
Variabili	Favorevole	V	0.0	0.0	0.0
Valiabili	Sfavorevole	YQi	1.45	1.45	1.25

^{*} Nel caso in cui i carichi permanenti non strutturali (ad e. i carichi permanenti portati) siano compiutamente definiti, si potranno adottare gli stessi coefficienti validi per le azioni permanenti

IZ0900D26CLIN0200001A Pagina 13 di 18

FOGNATURA PIANCA E NERA - RELAZIONE DI CALCOLO TUBI PER MICROTUNNELING

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN09
 00
 D26
 CLIN0200001
 A
 14 di 18

9 CALCOLO DELLE SOLLECITAZIONI

Il calcolo delle sollecitazioni agenti sull'elemento circolare è stato eseguito analiticamente, facendo riferimento a quanto riportato nelle Norme Tecniche per gli attraversamenti (Doc. rif. [2]).

L'analisi viene eseguita a partire dallo studio di una sezione caratteristica della struttura, riconducendo il calcolo alla risoluzione di uno schema piano che rappresenta una sezione trasversale di spessore unitario.

Nelle diverse combinazioni di calcolo considerate, è stata applicata la sovrapposizione degli effetti per tenere conto di tutti i contributi di carico gravanti sull'elemento circolare prima descritti.

Lo stato di sollecitazione nelle sezioni superiore, mediana e inferiore è stato calcolato a partire quanto riportato e mostrato nella seguente tabella:

IZ0900D26CLIN0200001A Pagina 14 di 18

FOGNATURA PIANCA E NERA - RELAZIONE DI CALCOLO TUBI PER MICROTUNNELING COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IN09 00 D26 CLIN0200001 A 15 di 18

Tabella 3 – Formulazione analitica per la valutazione dello stato di sollecitazione di tubazioni circolari (Allegato A, Doc. rif. [2])

	Α	В	С	D	E
	PESO PROPRIO	CARICO RIPARTITO SUPERIORE	CARICO RIPARTITO LATERALE	CARICO TRIANGOLARE LATERALE	REAZIONE RADIALE COSTANTE SETTORE 2φ ₀ = 60°
SCHEMA	M N S	p	q	z z	60°22φι
SEZIONE VERTICALE SUPERIORE	$M = \frac{1}{2} \gamma_t s r^2$ $N = -\frac{1}{2} \gamma_t s r$	$M = (\frac{4}{3\pi} - \frac{1}{8}) p r^{2} = 0,29941 p r^{2}$ $N = -\frac{1}{3\pi} p r = -0,10610 p r$	$M = -\frac{1}{4} q r^2$ $N = q r$	$M = -\frac{5}{48} z r^{2} =$ $-0.10417 z r^{2}$ $N = \frac{5}{16} z r =$ $0.31250 z r$	Q = (reazione totale) M = - 0,0073038 <i>Q r</i>
		- 0,10010 p7		0,31250 27	N = 0,014817 Q
SEZIONE ORIZZONTALE MEDIANA	$M = -\frac{\pi - 2}{2} \gamma_t s r^2 = -0,57080 \gamma_t s r^2$	$M = (\frac{1}{\pi} - \frac{5}{8}) p r^2 = -0,30669 p r^2$	$M = \frac{1}{4} q r^2 =$	$M = \frac{1}{8} z r^2 = 0,125 z r^2$	M = 0,0075118 Q r
SEZIONE ($N = \frac{\pi}{2} \gamma_t s r = 1,57080 \gamma_t s r$	N = <i>p r</i>	N = 0	N = 0	N = 0
SEZIONE VERTICALE INFERIORE	$M = \frac{3}{2} \gamma_t s r^2$	$M = (\frac{2}{3\pi} + \frac{3}{8}) p r^2 = 0,58721 p r^2$	$M = -\frac{1}{4} q r^2$	$M = -\frac{7}{48} z r^2 = -0,14583 z r^2$	M = -0,11165 <i>Q r</i>
SEZIONE V	$N = \frac{1}{2} y_t s r$	$N = \frac{1}{3\pi} p r = 0,10610 p r$	N = q r	$N = \frac{11}{16} z r = 0,68750 z r$	N = 0,11916 Q

M = momento flettente

N = sforzo assiale

p = carico uniformemente ripartito, dovuto ai carichi mobili ed al peso della massicciata

q = pressione uniforme dovuta alle spinte oprizzontali

z = pressione variabile dovuta alle spinte orizzontali

r = raggio medio della tubazione

s = spessore della tubazione

 γ_t = peso specifico del materiale costituente la

tubazlone

Q = reazione radiale totale

IZ0900D26CLIN0200001A Pagina 15 di 18

DI CALCOLO TUBI PER MICROTUNNELING

PROGETTO DEFINITIVO PER APPALTO COMPLETAMENTO DEL NODO DI UDINE PRG E ACC DEL P.M. CARGNACCO E OPERE SOSTITUTIVE DEI PL INTERFERENTI

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN09
 00
 D26
 CLIN0200001
 A
 16 di 18

10 SOLLECITAZIONI

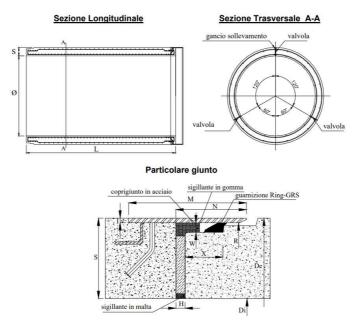
Si riportano infine le sollecitazioni ottenute dal modello di calcolo per ciascuna sezione analizzata e per ciascuna combinazione di carico considerata.

INPUT		
Diametro interno tubo, DN	2.5 m	
Raggio tubo, r	1.25 m	1/5/5
Spessore tubo, s _c	0.25 m	/// /
Peso specifico tubo, γ _c	25 kN/mc	/// See ////
Spessore ricoprimento, h _{ricoprimento}	5.1 m pc	
Peso specifico terreno, γt	20 kN/mc	WV 1141
Angolo di attrito del terreno, φ	38 °	
Falda	assente	
Sovraccarico permanente, qg	0 kPa	
Totale carichi permanenti superiori, p	102 kPa	
Tipo di sovraccarico variabile	stradale	
Sovraccarico variabile, q _q	10 kPa	
a _g /g	0.207 -	
$S = S_S * S_T$	1.20 -	A
γg	1.35 -	
γq	1.35 -	
Ψ11	0.75 -	
Ψ21	0.20 -	
		Vall Land
		IN N=4 (P)
AZIONI ELEMENTARI		49484557920
Area laterale interna, A _l	7.85 m/m	(1)
Area corona circolare, A _c	2.16 m2/m	villa in the second
Peso tubo, Pc	54.00 kN/m	
Coefficiente di spinta a riposo, ko	0.38 -	
Sforzo orizzontale carichi permanenti, q	39.2025 kPa	
Sforzo orizzontale treno, qq	3.84339 kPa	
Pressione orizzontale Wood, qs	14.90 kPa	
Sforzo orizzontale max terreno, z	21.1386 kPa	
Reazione radiale costante peso tubo, Qc	134.99 kN/m	388888888888888888888888888888888888888
Reazione radiale costante terrapieno, Qg	255.00 kN/m	
Reazione radiale costante treno, Qq	25.00 kN/m	

CALCOLO SOLLECITAZION	I
-----------------------	---

		Α		В		С		D		E			
	PESO F	PROPRIO	CARICO	RIPARTITO	CARICO RIPARTITO		CARICO		REAZIONE RADIALE				
					RIORE	LATERALE		TRIANGOLARE		cos	TANTE		
		N	h N c	Р				LAT	ERALE				
		N/	D					A	A			то	TALE
		M	<	()		朣			L (,	A.)		
			1							$-\infty$	EX		
		"-"	М		A	q	q	z	z	420	<u>"</u>		
		N	М	N	М	N	М	N	М	N	M	N	М
		[kN/m]	[kNm/m]	[kN/m]	[kNm/m]	[kN/m]	[kNm/m]	[kN/m]	[kNm/m]	[kN/m]	[kNm/m]	[kN/m]	[kNm/m]
	Caratteristico	-3.9	4.9	-14.9	52.4	72.4	-22.6	8.3	-3.4	6.1	-3.8	68.1	27.4
SEZIONE VERTICALE SUPERIORE	SLU	-5.3	6.6	-20.1	70.7	72.6	-22.7	11.1	-4.6	8.3	-5.1	66.8	44.9
S S S	SLE_RARA	-3.9	4.9	-14.9	52.4	53.8	-16.8	8.3	-3.4	6.1	-3.8	49.5	33.2
SEZIONE VERTICALE SUPERIORE	SLE_FREQ	-3.9	4.9	-14.5	51.2	52.6	-16.4	8.3	-3.4	6.1	-3.7	48.5	32.5
s ≥ 3	SLE_QP	-3.9	4.9	-13.5	47.7	49.0	-15.3	8.3	-3.4	5.8	-3.6	45.6	30.3
	SISMA	-3.9	4.9	-13.8	48.7	68.6	-21.4	8.3	-3.4	5.9	-3.6	65.0	25.1
ш	Caratteristico	12.3	-5.6	140.0	-53.7	0.0	22.6	0.0	4.1	0.0	3.9	152.3	-28.6
SEZIONE ORIZZONTALE MEDIANA	SLU	16.6	-7.5	189.0	-72.5	0.0	22.7	0.0	5.6	0.0	5.3	205.6	-46.4
SEZIONE RIZZONTAI MEDIANA	SLE_RARA	12.3	-5.6	140.0	-53.7	0.0	16.8	0.0	4.1	0.0	3.9	152.3	-34.4
2 2 2 2	SLE_FREQ	12.3	-5.6	136.9	-52.5	0.0	16.4	0.0	4.1	0.0	3.8	149.1	-33.6
0, ≦ ≥	SLE_QP	12.3	-5.6	127.5	-48.9	0.0	15.3	0.0	4.1	0.0	3.7	139.8	-31.3
	SISMA	12.3	-5.6	130.0	-49.8	0.0	30.9	0.0	4.1	0.0	3.7	142.3	-16.6
	Caratteristico	3.9	14.6	14.9	102.8	72.4	-22.6	18.2	-4.8	49.5	-57.9	158.8	32.0
ᄪᆲᇣ	SLU	5.3	19.8	20.1	138.7	72.6	-22.7	24.5	-6.5	66.8	-78.2	189.2	51.1
8 5 S	SLE_RARA	3.9	14.6	14.9	102.8	53.8	-16.8	18.2	-4.8	49.5	-57.9	140.2	37.9
SEZIONE VERTICALE INFERIORE	SLE_FREQ	3.9	14.6	14.5	100.5	52.6	-16.4	18.2	-4.8	48.7	-57.0	137.9	36.8
" ≥ ≤	SLE_QP	3.9	14.6	13.5	93.6	49.0	-15.3	18.2	-4.8	46.5	-54.4	131.1	33.7
	SISMA	3.9	14.6	13.8	95.4	68.6	-21.4	18.2	-4.8	47.1	-55.1	151.5	28.7

IZ0900D26CLIN0200001A Pagina 16 di 18


FOGNATURA PIANCA E NERA - RELAZIONE DI CALCOLO TUBI PER MICROTUNNELING COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IN09 00 D26 CLIN0200001 A 17 di 18

11 SOLUZIONI PROGETTUALI

Sulla base delle sollecitazioni stimate, si prevede di armare i conci con doppi armatura a spirale e barre longitudinali interne ed esterne, per un'incidenza minima di circa 50 kg/m³.

A titolo esemplificativo, si riportano di seguito alcune delle soluzioni commercialmente disponibili e che potranno essere impiegate per l'attraversamento in oggetto.

IZ0900D26CLIN0200001A Pagina 17 di 18

FOGNATURA PIANCA E NERA - RELAZIONE DI CALCOLO TUBI PER MICROTUNNELING

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN09
 00
 D26
 CLIN0200001
 A
 18 di 18

	DIMENSIONI (mm)													DA	ATI TEC	NICI						
Codice	e prodotto	Di Diametro	De Diametro	L	Peso tubo	S Spessore	Spessore	M Lunghezza	N Lunghezza utile	R Diametro interno	X Lunghezza sede	W	H Spessore anello	Gancio DEHA	chi	Max spinta a giunto chiuso Tonnellate		razione Vm	schiaco	Rottura a schiacciamento KN/m		resistenza Vmo
Stradale	Ferroviario	interno	esterno	utile ± 1%	Kg	tubo	coprigiunto	coprigiunto	coprigiunto	coprigiunto	guarnizione	guarnizione	ripartitore	Portata T.	Stradale	Ferroviario	Stradale	Ferroviario	Stradale Ferroviario		Stradale Ferroviario	
1345	1586	500 ±12	760	1980	2000	130	6	160	115	748	55	15,5 ± 1,5	20	2,5	201,73	201,73	203,00	205,30	215,00	225,68	430	451
1346	1565	500 ±12	760	2980	2000	130	6	160	115	748	55	15,5 ± 1,5	20	2,5	201,73	201,73	203,00	205,30	215,00	225,68	430	4 51
1347	1587	600 ±12	862	1980	1250	131	6	160	115	850	55	15,5 ± 1,5	20	2,5	234,58	234,58	177,00	181,07	195,00	213,92	325	356
1348	1566	600 ±12	862	2980	2300	131	6	160	115	850	55	15,5 ± 1,5	20	2,5	234,58	234,58	177,00	181,07	195,00	213,92	325	356
1349	1588	700 ±12	960	1980	2600	130	8	200	115	944	55	15,5 ± 1,5	20	2,5	267,44	267,44	156,00	179,29	171,00	297,27	244	424
1350	1567	700 ±12	960	2980	2600	130	8	200	115	944	55	15,5 ± 1,5	20	2,5	267,44	267,44	156,00	179,29	171,00	297,27	244	424
1351	1568	800 ±12	1000	2980	2100	100	8	200	115	984	55	15,5 ± 1,5	20	2,5	179,39	179,39	91,00	121,32	122,00	313,98	152	392
1352	1569	800 ±12	1100	2980	3400	150	8	200	115	1084	55	15,5 ± 1,5	20	2,5	371,82	371,82	186,00	202,76	223,00	291,56	278	364
1353	1570	1000 ±12	1280	2980	3800	140	8	200	115	1264	55	15,5 ± 1,5	20	2,5	403,74	403,74	140,00	168,34	187,00	353,96	187	354
1354	1571	1000 ±12	1435	2980	6200	217,5	8	200	115	1419	55	15,5 ± 1,5	20	5	808,63	808,63	301,00	319,58	319,00	398,18	319	398
1355	1572	1100 ±12	1435	2980	5000	167,5	8	200	115	1419	55	15,5 ± 1,5	20	2,5	597,42	597,42	185,00	211,49	246,00	389,14	223	353
1356	1573	1200 ±12	1435	2980	3700	117,5	8	200	115	1419	55	15,5 ± 1,5	20	2,5	366,66	366,66	103,00	143,68	203,00	442,77	169	369
1357	1574	1200 ±12	1490	2980	4600	145	8	200	115	1474	55	15,5 ± 1,5	20	2,5	503,46	503,46	130,00	176,26	184,00	442,15	153	368
1370	1575	1200 ±12		2980	4900	175	8	200	115	1534	55	15,5 ± 1,5	20	5	674,07	674,07	176,00	214,84	277,00	416,63	230	347
1358	1589	1400 ±12		2280	4500	160	8	200	115	1704	55	15,5 ± 1,5	20	5	675,49	675,49	139,00	190,70	207,00	510,63	147	364
1359	1576 1577	1400 ±12	1720 1820	2980 2980	5900	160	8	200	115	1704	55 55	15,5 ± 1,5	20	5	675,49	675,49	139,00	190,70	207,00	510,63	147	364 348
1360	1577	1500 ±12	1940	2980	6300 7100	160 170	8	200	115	1924	55	15,5 ± 1,5 15,5 ± 1,5	20	5	719,30 836.01	719,30 836.01	140,00	183,82 199,52	244,00	522,82 560,79	152	348
1362	1579	1800 ±12	2166	2980	8400	183	10	220	140	2146	55	15,5 ± 1,5	20	5	996,59	996,59	157.00	211,52	298.00	642.68	165	356
1365	1592	2000 ±12	2400	1980	10500	200	10	220	140	2380	55	15,5 ± 1,5	20	5	1278.99	1278.99	169.00	224.19	299.00	647.68	149	323
1366	1580	2000 ±12	2400	2980	10500	200	10	220	140	2380	55	15.5 ± 1.5	20	5	1278,99	1278,99	169.00	224,19	299.00	647.68	149	323
1371	1581	2000 ±12	2500	2980	11000	250	10	220	140	2480	55	15,5 ± 1,5	20	10	1744,43	1744,43	226,00	292,80	280,00	663,37	140	331
1372	1582	2200 ±12	2630	2280	9600	215	10	220	140	2610	55	15,5 ± 1,5	20	10	1545,64	1545,64	175,00	252,61	294,00	805,36	133	366
1367	1583	2200 ±12	2630	2980	12500	215	10	220	140	2610	55	15,5 ± 1,5	20	10	1545,64	1545,64	175,00	252,61	294,00	805,36	133	366
1373	1584	2500 ±12	3000	2380	12700	250	10	220	140	2980	55	15,5 ± 1,5	25	10	2085,98	2085,98	207,00	280,13	343,00	831,50	137	332
1369	1585	2500 ±12	3000	2980	16500	250	10	220	140	2980	55	15,5 ± 1,5	25	10	2085,98	2085,98	207,00	280,13	343,00	831,50	137	332
1376	1595	3200 ±12	3700	1900	13000	250	10	220	140	3680	55	15,5 ± 1,5	25	10	2619,88	2619,88	204,00	237,16	523,00	714,92	163	223

IZ0900D26CLIN0200001A Pagina 18 di 18