

Anas Spa

STRUTTURA TERRITORIALE UMBRIA

DG 03-17 Accordo Quadro

CONTRATTO APPLICATIVO N. 06

CODICE SIL: ACMSPG00699EGENP CODICE CIG DERIVATO: Y972DBDA5A

"OGGETTO: S.S.3 "Flaminia" - Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura - Intersezione ponte in muratura al km 122+800"

PROGETTAZIONE

COOPROGETTI Soc. Coop. - Sede Legale ed Operativa Via della Piaggiola, 152 - 06024 Gubbio (PG) tel +39-075.923011 - fax +39-075.9230150 www.cooprogetti.it

DIRETTORE TECNICO

Ing. Lorena Ragnacci

Ordine Ingegneri Provincia di Perugia n. A2857

GRUPPO PROGETTAZIONE

Ing. Danilo Pelle Ing. Moreno Panfili Ing. Monia Angeloni Arch. Paolo Ghirelli

Arch. Antonella Strati

Ing. Edoardo Filippetti Ing.Costanza Cecchetti Arch. Enrico Costa Arch. Alessio Mazzacrelli Ing. Federica Suraci

STUDI E INDAGINI GEOLOGIA E GEOTECNICA RELAZIONE GEOLOGICA CON ALLEGATI

CODICE PROG	ETTO	NOME FILE TOOEGOOGEC	REVISIONE	SCALA		
17063	FASE	CODICE T 0 0 E G 0 0 G E		PROG ELAB.	A	-
А	Emissione		Mag. 2021	Pelicci	Panfili	Ragnacci
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

Sanas

ANAS S.p.A. DG 03-17 PROGETTO ESECUTIVO

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

SOMMARIO

1 2 3	N	ORMA	SA TIVA E DOCUMENTAZIONE TECNICA DI RIFERIMENTO ZAZIONE GEOGRAFICA DEL SITO – STATO DEI LUOGHI – CARATTERISTICHE PROGETTUALI	4
	3.1	Ubica	zione	5
	3.2	Stato	dei luoghi e caratteristiche morfo-evolutive del sito	7
	3.3	Caratt	teristiche dell'intervento	7
4	M		O GEOLOGICO	
	4.1	Inqua	dramento geologico locale	8
	4.2	Indagi	ini geognostiche	9
		2.1	Log stratigrafici e prove penetrometriche	
	4.	2.2	Prove di laboratorio	.17
	4.	2.3	Prove MASW e HVSR	.18
	4.3	Litolo	gia	.21
	4.4	Idrolo	ogia, geomorfologia e vincoli geo-ambientali	.21
	4.4	4.1	Vincoli geo-ambientali – PAI ecc.	
	4.5	Idroge	eologia	. 28
5	AS	SPETTI	SISMOTETTONICI E PERICOLOSITA' SISMICA	29
	5.1	Inqua	dramento tettonico-strutturale	.29
	5.2	Sismic	cità e pericolosità sismica del sito	.30
	5.3	Perico	olosità sismica di base	.39
	5.4	Banca	Dati Faglie Sismogenetiche	.46
	5.5	Banca	a Dati Faglie Capaci ITHACA	.47
	5.6	Verific	ca alla liquefazione	.48
	5.7	Carta	delle Microzone Omogenee	.51

T00EG00GENRE01_A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

6	MODELLO GEOLOGICO-TECNICO PARAMETRIZZAZIONE	52
	6.1 Profilo geotecnico di riferimento	53
7	7 CONSIDERAZIONI CONCLUSIVE	54

TAVOLE:

TAVOLA 1: SEZIONE GEOLOGICA GEOTECNICA

TAVOLA 2: TABELLA DI PARAMETRIZZAZIONE GEOTECNICA E SISMICA

ALLEGATI GEOSERVING SRL:

ALLEGATO 1a: CARTA GEOLOGICA CON UBICAZIONE PROVE IN SITO

ALLEGATO 1b: CARTA GEOMORFOLOGICA ALLEGATO 1c: CARTA IDROGEOLOGICA

GRUPPO DI LAVORO:

Geol. FAUSTO PELICCI

Geol. GLORIA RUSPI

Geol. GIACOMO SCHIRO'

T00EG00GENRE01 A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

1 PREMESSA

L'intervento in oggetto fa parte del Piano Straordinario di Potenziamento e Riqualificazione della S.S.3 "Via Flaminia", predisposto dalla Struttura territoriale Umbria di ANAS, volto ad agevolare la ripresa socio-economica nelle aree interessate dal sisma, in particolare mediante la riduzione dei tempi di percorrenza con il contestuale aumento dei livelli di sicurezza e capacità di flusso nei nodi ad alto utilizzo.

Il Piano, dopo aver individuato tutte le criticità dell'infrastruttura, ha identificato un quadro di interventi finalizzati a migliorarne le condizioni di funzionalità, sicurezza e comfort degli utenti, attraverso un'azione di recupero del patrimonio stradale esistente.

La presente relazione è finalizzata ad illustrare i criteri progettuali dell'intervento al Km 122+800 della S.S.3 "Flaminia" nell'ambito dell'Accordo quadro DG03-17 Contratto applicativo n. 01, finalizzato al potenziamento e riqualificazione dell'infrastruttura viaria.

Si sottolinea come gli interventi di progetto, sulla base di quanto indicato dalla competente struttura territoriale di ANAS, non si configurano come adeguamenti normativi ma sono finalizzati esclusivamente ad obiettivi di miglioramento funzionale e di aumento dei livelli di sicurezza della circolazione, con riguardo alle principali normative stradali, nei limiti applicativi consentiti dall'attuale assetto dei luoghi e nel rispetto delle risorse economiche disponibili per la realizzazione degli interventi stessi.

Nel presente elaborato sono esposti i risultati scaturiti dall'analisi delle caratteristiche geologiche, geomorfologiche, idrogeologiche e sismiche del sito in cui si intende intervenire.

Lo studio è stato condotto in conformità alle normative vigenti ed in particolare alle "Norme tecniche per le costruzioni (D. Min. Infrastrutture 17 gennaio 2018)".

Al fine di ottenere le informazioni necessarie per una caratterizzazione geotecnica dei terreni interessati dall'opera, è stata consultata la banca dati "Indagini geognostiche" della regione Umbria.

La GEOSERVING S.R.L. su incarico di ANAS ha eseguito una campagna di indagini specifica che ha visto la realizzazione di:

- · n° 1 sondaggi geognostici a carotaggio continuo con prove SPT e prelievo di campione realizzato a Nord del ponte che attraversa il torrente Tessino;
- · n° 1 prova di laboratorio su campione indisturbato prelevato;
- · n° 1 prova di simica passiva HVSR ad a Nord del ponte che attraversa il torrente Tessino;
- · n° 1 prova penetrometrica dinamica a Sud del ponte che attraversa il torrente Tessino;
- · n° 1 prova sismica di tipo MASW.

TO ESECUTIVO T00EG00GENRE01_A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

2 NORMATIVA E DOCUMENTAZIONE TECNICA DI RIFERIMENTO

I principali riferimenti tecnici e normativi sono i seguenti:

- · Circolare del Ministero delle infrastrutture e dei trasporti 21 gennaio 2019, n. 7 del Consiglio superiore del Lavori Pubblici recante "Istruzioni per l'applicazione dell'Aggiornamento delle "Norme tecniche per le costruzioni", di cui al Decreto Ministeriale 17 gennaio 2018.
- Norme tecniche per le costruzioni, Decreto Ministero delle Infrastrutture e dei Trasporti del 17 gennaio 2018.
- DELIBERAZIONE DELLA GIUNTA REGIONALE 6 maggio 2019, n. 593.
- Atto di indirizzo sulle nuove procedure sul rilascio dell'autorizzazione sismica, sulla vigilanza e sul controllo di opere e costruzioni in zone sismiche di cui alla D.G.R. 11 giugno 2018, n. 628. Aggiornamento a seguito dell'entrata in vigore del D.L. n. 32 del 18 aprile 2019 (cd "Sblocca Cantieri").
- DELIBERAZIONE DELLA GIUNTA REGIONALE 16 luglio 2020, n. 596. Linee di indirizzo e procedure sulle funzioni in materia sismica (autorizzazione sismica, vigilanza e controllo di opere e costruzioni in zone sismiche) a seguito dell'introduzione dell'art. 94-bis del D.P.R. n. 380/01 e delle relative Linee Guida nazionali (decreto MIT del 30 aprile 2020).
- Regione Umbria Legge regionale 21 gennaio 2015, n. 1 Testo unico Governo del territorio e materie correlate e s.m.i.
- · Norme regolamentari attuative della legge regionale 21 gennaio 2015, n. 1 (Testo unico Governo del territorio e materie correlate).
- LEGGE REGIONALE 23 novembre 2016, n. 13 Modificazioni ed integrazioni alla legge regionale 21 gennaio 2015, n. 1 Testo unico governo del territorio e materie correlate.
- · Circolare del C.S.LL.PP. 2 febbraio 2009 n. 617 "Istruzioni per l'applicazione delle Norme tecniche per le costruzioni di cui al D.M. 14 gennaio 2008".
- D.M. 14 gennaio 2008: "Norme Tecniche per le Costruzioni".
- · Indirizzi e criteri per la microzonazione sismica Parti I, II e III Dipartimento della Protezione Civile. 2008 Contributi per l'aggiornamento degli "Indirizzi e criteri per la microzonazione sismica", 2011.
- · PAI Autorità di bacino Italia Centrale cartografia e NTA.
- · Carta geologica sezione 336050 (Servizio geologico della regione Umbria).
- · Carta pericolosità sismica sezione 336050 (Servizio geologico della regione Umbria).
- · Elaborati geologi a corredo PRG Comune SPOLETO (parte strutturale);
- · Studi di microzonazione sismica Comune SPOLETO;
- Note illustrative carta geologica d'Italia (scala 1:50.000) foglio 336-SPOLETO (a cura di A.V. DAMIANI)

T00EG00GENRE01_A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

3 LOCALIZZAZIONE GEOGRAFICA DEL SITO – STATO DEI LUOGHI – CARATTERISTICHE PROGETTUALI

3.1 Ubicazione

Il ponte in muratura che sarà interessato dal progetto di potenziamento e riqualificazione è posto lungo la S.S. 3 FLAMINIA al km 122+800.

L'opera è ubicata a Sud di Spoleto e consente l'attraversamento del torrente Tessino ed il collegamento tra la SS3 Flaminia e località Mustaiole.

Figura 1-Ubicazione area di interesse

La Flaminia nel tratto di interesse percorre in senso longitudinale la valle del Tessino, le quote medie dell'area sono circa 392-395 mt slm. Il torrente scorre incassato nelle sue alluvioni da SO a NE, in un ambito pianeggiante degradante verso NE.

T00EG00GENRE01_A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

Nella carta dell'I.G.M. Serie 25 in scala 1:25.000 il sito è rappresentato nel Foglio 131 Tavolette II-SO (SPOLETO). Le Coordinate geografiche medie del sito sono:

WGS84	Lat 42.716521	Lng 12.725191
ED50	Lat 42.717491	Lng 12.726124

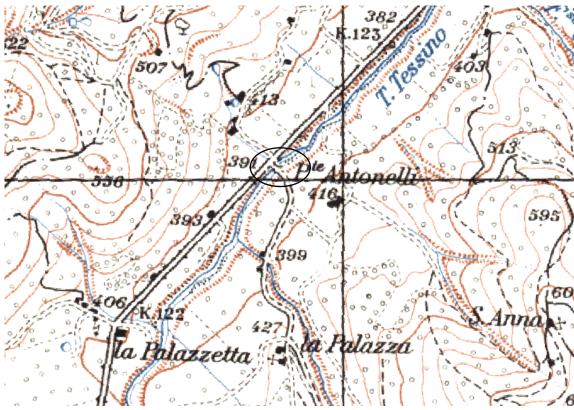


Figura 2 -Ubicazione area di interesse (Foglio 131 Tavolette II-SO SPOLETO).

T00EG00GENRE01 A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

3.2 Stato dei luoghi e caratteristiche morfo-evolutive del sito

Il progetto prevede l'allargamento dello svincolo di collegamento tra la strada proveniente dalla Loc. Mustaiole e la SS 3 Flaminia in corrispondenza del ponte posto sul torrente Tessino. Il ponte è costituito da tre campate in muratura. La campata in sinistra idrografica è stata nel passato parzialmente inglobata nell'attuale svincolo.

Nell'alveo del Tessino, a monte e a valle del ponte, si rinviene la presenza di n°2 briglie in muratura. L'alveo è colmo di depositi alluvionali ghiaiosi e ciottoli di natura prevalentemente calcarea.

3.3 Caratteristiche dell'intervento

L'intervento prevede un allargamento del ponte in muratura esistente tramite la creazione di un nuovo impalcato di larghezza 3,9 metri e lunghezza circa 20 metri. Tale impalcato affiancherà l'esistente e sarà da esso separato tramite giunto sotto pavimentato. La sezione dell'impalcato sarà realizzata tramite travi in acciaio e soletta collaborante in calcestruzzo. Le spalle saranno costituite da elementi in c.a. fondate su pali.

T00EG00GENRE01 A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

4 MODELLO GEOLOGICO

4.1 Inquadramento geologico locale

L'area esaminata è stata interessata da una serie di eventi tettonici che hanno coinvolto tutto l'Appennino Centrale. Fasi compressive e distensive hanno influenzato i processi di sedimentazione e prodotto piegamenti e dislocazioni nelle successioni sedimentarie.

In particolare, il sito di interesse è caratterizzato dall'affioramento dei litotipi della Successione umbromarchigiana, e da formazioni di natura continentale.

Della successione Umbro-marchigiana prevalgono i litotipi afferenti al complesso carbonatico (Giurassico inferiore al Miocene inferiore) che inizialmente sono relativi ad un ambiente deposizionale "neritico", di piattaforma carbonatica. Il regime distensivo del Lias medio ha causato l'abbassamento dell'area lungo un sistema di faglie dirette e favorito una sedimentazione in ambiente pelagico.

La tettonica compressiva Miocenica ha sollevato e disarticolati blocchi, determinando l'emersione di alcuni e la formazione di alcune depressioni intrappenniniche, di bacini Plio-pleistocenici. Questi ultimi sono stati oggetto di colmamento in facies prima lacustre e successivamente fluvio-lacustre.

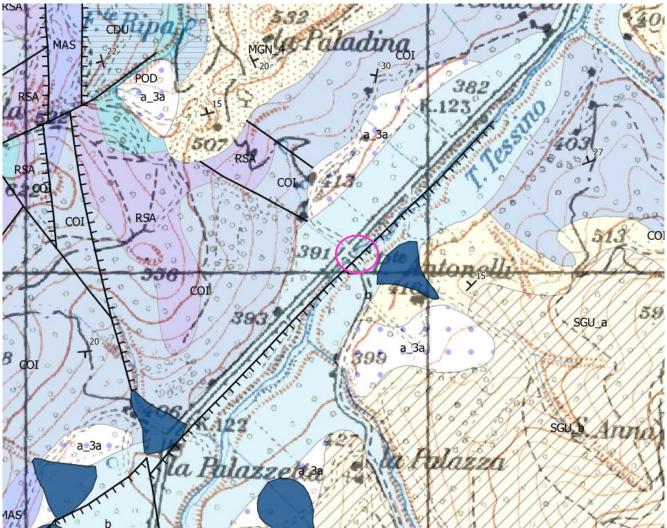


Figura 3 -Stralcio carta geologica regione Umbria (336050).

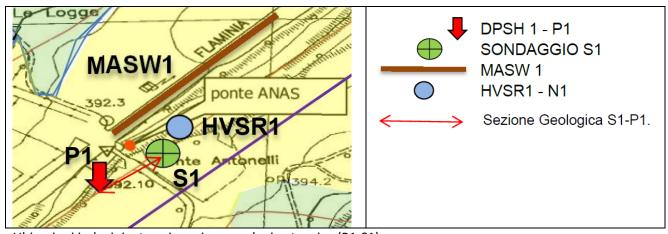
T00EG00GENRE01 A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

In corrispondenza dei rilievi posti a NO e SE affiora la successione carbonatica che va dalla Corniola al gruppo delle Scaglie.

A SE della valle del Tessino sono presenti sistemi di rilievi collinari dove affiorano depositi pliocenici appartenenti al Sintema San Giuliano (Super Sintema Tiberino). In generale si tratta di:

- ¹ "Depositi detritici e detritico-alluvionali, prevalentemente ruditici, grossolanamente stratificati. Sono localizzati a ridosso dei rilievi calcarei a sud di Spoleto, in destra del T. Tessino, e, probabilmente, legati a conoidi. Vi sono state distinte due litofacies:
- **SGU_b** litofacies b-ruditi con clasti per lo più calcarei eterometrici (1-4 cm, massimo 20 cm), con grado di arrotondamento variabile, stratificati con rare intercalazioni di areniti e di limi argillosi, di aspetto più evoluto rispetto a quelli della sottostante litofacies;
- **SGU_a** litofacies a-ruditi grossolane prevalentemente cementate, costituite da clasti eterometrici, per lo più calcarei, a spigoli vivi e solo subordinatamente sub arrotondati che eccezionalmente raggiungono i 50 cm. La stratificazione è grossolana, talora apparentemente incrociata.


Pliocene inferiore p.p.? - Pliocene medio p.p.?"

La valle del Tessino è tappezzata da Depositi alluvionali (b) costituiti da ghiaie e sabbie in matrice limo argillosa. Tali depositi alluvionali sono in rapporto con la morfologia e la dinamica attuali del corso d'acqua che li ha sedimentati (Pleistocene – Olocene).

4.2 Indagini geognostiche

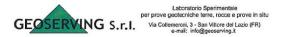
La GEOSERVING S.R.L. su incarico di ANAS ha eseguito una campagna di indagini specifica che ha visto la realizzazione di:

- · n° 1 sondaggi geognostici a carotaggio continuo con prove SPT e prelievo di campione realizzato a Nord del ponte che attraversa il torrente Tessino;
- · n° 1 prova di laboratorio su campione indisturbato prelevato;
- · n° 1 prova di simica passiva HVSR ad a Nord del ponte che attraversa il torrente Tessino;
- · n° 1 prova penetrometrica dinamica a Sud del ponte che attraversa il torrente Tessino;
- · n° 1 prova sismica di tipo MASW.

Ubicazioni indagini e traccia sezione geologico tecnica (P1-S1).

-

¹ Legenda carta geologica regione Umbria tavoletta 336050.


T00EG00GENRE01_A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

4.2.1 Log stratigrafici e prove penetrometriche

Di seguito si riporta la sintesi dei risultati della campagna geognostica e geofisica. Per la trattazione esaustiva della campagna realizzata si rimanda allo specifico elaborato redatto su incarico di ANAS dalla GEOSERVING SRL sulle indagini condotte.

Il sondaggio geognostico a conservazione di nucleo è stato spinto a 30 mt dal p.c.

						ritoriale Umbria					o: S1				_
	S.S.3	"Via Flam	inia	"Pı	ınto	critico n°29					02/2021				_
Coordinate:	Cara		4:			a. NENZI		Q	uot	a:					_
erforazione	. Caro	taggio con	uriu	o, s									_	12	-
SCALA 1:					5	STRATIGRAFIA - S1						_	na		
R metri Prel. 9 0 10			prof. m	Quota m	Spess m	Descrizione	Campion	ni	RP	M Stan	S.P.T.	n Tes N	Pt	in fore	A r s
8			0,3	-0,3	0,3	Terreno vegetale, colore marrone.							П		
1_			1,1	-1,1	0,8	Limo con ghiaia media e sabbia, colore marrone. Presenti frustoli vegetali e resti antropici.									
2_ 3_						Ghiaia e sabbia con ciottoli, colore nocciola-avana chiaro. Ghiaia medio-grossolana, calcarea, da sub-arrotondata ad angolare. Tra 2,00-2,20 m livello di argilla debolmente sabbiosa, con ghiaia medio-fine, colore marrone-rossastro.									
5.			4,0 5,0	-4,0 -5,0	1,0	Sabbia medio-grossolana con argilla e ghiaia media, calcarea, sub-arrotondata; materiale molto addensato, colore nocciola.	SPT1) SPT 4,50			4,5	18-21-24	45	A		
6_1						Sabbia medio-grossolana con argilla e ghiaia medio-grossolana, da sub-arrotondata a sub-angolare, colore nocciola.									
7_ 8_			6,6	-6,6	1,6	Argilla, dura, colore grigio. Tra 7,30+7,40 m traccia di elementi carboniosi, colore nerastro. Tra 12,10+12,30 m livello di argilla debolmente limosa e tra 15,70+15,80 m livello di argilla debolmente sabbiosa. Tra 20,70+20,80 m elementi	Ci1) She 7.50	12623	4.7 >6 >6						
9_						presumibilmente torboso-carboniosi, con spessore 2-3 mm. Tra 21,80+23,00 m argilla debolmente limosa, molto consistente.	SPT2) SPT 9,50	1111	>6 2.0	9,5	10-13-19	32	A		
10_									2.0						
11_									>6 >6						
12_									>6 3.0						
13_1							SPT3) SP (3,00		4.0 3.0	13,0	18-23-24	47	A		
14_0									2.8						
15_									>6 >6 >6						
16_						SOUND SPERIMENTAL									

Il Geologo di Cantiere dott.geol Giuseppe Pacitti

T00EG00GENRE01_A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

GEOSERVING S.r.I.

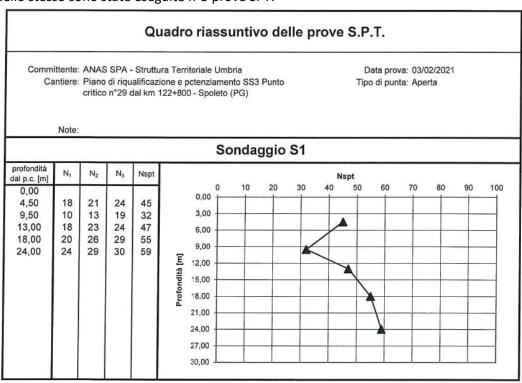
Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ

Certificato nº V6090/21 PS1 del 10/02/2021 Acc	eptance note n° V6090 del 09/02/2021
Committente: ANAS SPA - Struttura Territoriale Umbria	Sondaggio: S1
Riferimento: S.S.3 "Via Flaminia" Punto critico n°29	Data: 03/02/2021
Coordinate:	Quota:
Perforazione: Carotaggio continuo, sonda: NENZI	***

SCALA 1:85		<u>STRATIGRAFIA - S1</u>		Pagina 2/2
ø R metri Prel. % RQD % 0 100	Litologia prof. Quota Spess	Descrizione	Campioni RP Stan	S.P.T. N Pt foro r S
18_0		Argilla, dura, colore grigio. Tra 7,30+7,40 m traccia di elementi carboniosi, colore nerastro. Tra 12,10+12,30 m livello di argilla debolmente limosa e tra 15,70+15,80 m livello di argilla debolmente sabbiosa. Tra 20,70+20,80 m elementi presumibilmente torboso-carboniosi, con spessore 2-3 mm. Tra 21,80+23,00 m argilla debolmente limosa, molto consistente.	>6 SPT4) SP ^{45,00} 18,45 >6 18,0	20-26-29 55 A
20_1		presumibilmente torboso-carboniosi, con spessore 2-3 mm. Tra 21,80+23,00 m argilla debolmente limosa, molto consistente.	4.0 3.5 4.0	
21_1			>6	
22_	*		>6	
23_			>6	
24_			SPT5) SP ^{24,00} 4.0 4.0 24,0	24-29-30 59 A
25_1			>6	
26_			>6	
27_			4.0 3.0	
28			>6 >6	
			>6 >6	
29_0			>6	
101 30	30,0 -30,0 23,4		>6 >6	

Utilizzato carotiere semplice. Prelevato n. 1 campione indisturbato. Prelevati n. 5 campioni rimaneggiati S.P.T. Eseguite n. 5 prove S.P.T.

II Geologo di Cantiere dott.geol. Giuseppe Pacitti



S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

Figura 4 -Posizionamento S1 (da report GEOSERVING SRL)

Nello stesso sono state eseguite n°5 prove SPT:

T00EG00GENRE01_A

S.S. 3 "Flaminia" - Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

È stato prelevato anche n°1 campione indisturbato:

S1Cl1 tra 7.5-8.0 mt dal p.c.

La prova penetrometrica eseguita ha raggiunto la profondità di 15 mt, di seguito la diagrafia e i dati di rielaborazione.

PROVA PENETROMETRICA DINAMICA (DPSH)

Prova n° .: DPSH 1

Caratteristiche punta: modello tipo chiusa; ϕ : 50,5 ± 0,5 mm, h= 73 mm; angolo: 90°, area: 20 cm².

Caratteristiche massa battente: peso: 63,5 \pm 0,5 kg; altezza di caduta: 0,75 \pm 0,02 m

falda rilevata a 7,00 m da p.c. Note:

Quota [m da p.c.]	N° colpi	Quota [m da p.c.]	N° colpi			N° colpi 5 10 15 20 25 30 35 40 45 50 55 60	65 70 75 80 85 90 95 10
0,0	-	8,20	40	1	0.20		
0,20	3	8,40	37	1	0,40		
0,40	3	8,60	37	1	1,00		
0,60	2	8,80	38	1	1,20	□S.S.3 Via Fi	aminia - Punto critico n. 29
0,80	1	9,00	37	1	1,60 1,80		
1,00	2	9,20	37	1	2,00		
1,20	2	9,40	38	1	2,40		第 200 位
1,40	5	9,60	39	1	2,80		-
1,60	5	9,80	37	1	3,20		
1,80	4	10,00	38	1	3,60		
2,00	3	10,20	38	1	4,00		VIII
2,20	4	10,40	38]	4,40		
2,40	2	10,60	40	1	4,80		
2,60	3	10,80	40		5,20		
2,80	2	11,00	42	1	5,40		
3,00	4	11,20	40	1	5,80 6.00		
3,20	8	11,40	40	1	6,20		
3,40	4	11,60	40	1	6,60		2007 AN
3,60	3	11,80	42	p.c.]	7,00		
3,80	12	12,00	44	ď	7.40		
4,00	19	12,20	42	ğ	7,80		
4,20	23	12,40	42	프	8,20		
4,40	24	12,60	44	Quota [m da	8,60		
4,60	25	12,80	42	ā	9,00		
4,80	24	13,00	44		9,20		
5,00	30	13,20	44		9,60		
5,20	27	13,40	46		10,00		
5,40	30	13,60	47		10,40		
5,60	30	13,80	46		000011111120202468802468802468802468802468802468802468802468802468802468802468802488802488802488802488802488802488802488802488802488802488802488802488802488802488888880004888802488880248888024888802488880248888802488888800048888888000488888888		
5,80	30	14,00	46		11,20		
6,00	32	14,20	46		11,60		
6,20	34	14,40	45		12,00		
6,40	32	14,60	44		12:40		
6,60	36	14,80	44		12:80		
6,80	37	15,00	46		13,20		
7,00	38				13,40		
7,20	37				13,80 14,00		
7,40	37				14,20		
7,60	38				14,60		
7,80	37				15,00	Landau de	
8,00	40						1

IL TECNICO RESPONSABILE

IL DIRETTORE DEL LABORATORIO dott geol. Maria Di Donato

GEOSERVING S.r.I. - Via Collemeroni, 3 - San Vittore del Lazio (FR) e-mail: info@geoserving.it
RIPRODUZIONE VIETATA
Qualsiasi copia parziale del presente documento potrà avvenire dopo debita autorizzazione scritta da parte della GEOSERVING S.r.I.

EMATERIALA)

SERVING SRL

Mod.004/TR Rev. A del 05.12.2013

Emesso da DL

Sanas GRUPPO ES ITALIANE

ANAS S.p.A. DG 03-17 PROGETTO ESECUTIVO

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

Res. dinamica (Kg/cm ²)	Res. dinamica ridotta (Kg/cm²)	Calcolo coeff. riduzione sonda Chi	Nr. Colpi	Profondità (m)
23.5	20.09	0.855	3	0.20
23.5	20.00	0.851	3	0.40
15.6 7.8	13.27 6.61	0.847 0.843	2	0.60 0.80
15.2	12.76	0.840	2	1.00
15.2	12.71	0.836	2	1.20
37.9	31.64	0.833	5	1.40
37.9	31.52	0.830	5	1.60
30.3	25.12	0.826	4	1.80
22.1	18.22	0.823	3	2.00
29.5 14.7	24.20 12.05	0.820 0.817	2	2.20 2.40
22.1	18.02	0.814	3	2.60
14.7	11.97	0.811	2	2.80
28.6	23.18	0.809	4	3.00
57.3	46.21	0.806	8	3.20
28.6	23.03	0.803	4	3.40
21.5 86.0	17.22 68.66	0.801 0.798	3 12	3.60 3.80
132.4	98.77	0.746	19	4.00
160.2	111.18	0.694	23	4.20
167.2	115.63	0.691	24	4.40
174.2	120.07	0.689	25	4.60
167.2	114.91	0.687	24	4.80
203.4	139.35	0.685	30	5.00
183.0 203.4	125.04 138.54	0.683 0.681	27 30	5.20 5.40
203.4	138.15	0.679	30	5.60
203.4	137.77	0.677	30	5.80
211.3	132.16	0.625	32	6.00
224.5	140.03	0.624	34	6.20
211.3	131.43	0.622	32	6.40
237.7 244.3	147.46 151.17	0.620 0.619	36 37	6.60 6.80
244.5	150.90	0.617	38	7.00
238.0	146.57	0.616	37	7.20
238.0	146.21	0.614	37	7.40
244.5	149.81	0.613	38	7.60
238.0	145.53	0.611	37	7.80
250.9 250.9	140.52 140.18	0.560 0.559	40	8.00 8.20
230.9	140.18	0.607	37	8.40
232.1	140.67	0.606	37	8.60
238.4	144.18	0.605	38	8.80
226.5	136.69	0.603	37	9.00
226.5	136.42	0.602	37	9.20
232.6 238.7	139.84	0.601	38	9.40
226.5	131.30 135.64	0.550 0.599	39 37	9.60 9.80
227.1	135.75	0.598	38	10.00
227.1	135.50	0.597	38	10.20
227.1	135.25	0.596	38	10.40
239.0	130.16	0.544	40	10.60
239.0	129.91	0.543	40	10.80
245.2 233.5	132.98 126.41	0.542 0.541	42	11.00 11.20
233.5	126.17	0.540	40	11.40
233.5	125.93	0.539	40	11.60
245.2	131.98	0.538	42	11.80
251.0	134.87	0.537	44	12.00
239.6	128.50	0.536	42	12.20
239.6	128.26	0.535	42	12.40
251.0 239.6	134.11 127.77	0.534 0.533	44 42	12.60 12.80
245.5	130.63	0.532	42	13.00
245.5	130.38	0.531	44	13.20
256.6	136.04	0.530	46	13.40
262.2	138.72	0.529	47	13.60
256.6	135.49	0.528	46	13.80

T00EG00GENRE01_A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

14.00	46	0.527	132.28	251.11
14.20	46	0.526	132.01	251.11
14.40	45	0.525	128.87	245.65
14.60	44	0.523	125.73	240.19
14.80	44	0.522	125.45	240.19
15.00	46	0.521	128.09	245.78

Prof. Strato(m)	NPDM	Rd(Kg/cm ²)	Tipo	ClayFraction	Peso unità di	Peso unità di	Tensione	Coeff. di correlaz.	NSPT
				(%)	volume (t/m³)	volume sat. (t/m³)	efficace(Kg/cm²)	con Nspt	
1.2	2.17	16.82	Incoerente - coesivo	0	1.66	1.86	0.1	1.57	3.4
3.8	4.54	33.22	Incoerente - coesivo	0	1.89	1.9	0.44	1.57	7.13
5.8	26.2	179.81	Incoerente - coesivo	0	2.5	2.5	0.94	1.57	41.13
15	40.17	239.13	Coesivo	0	2.5	2.5	2.34	1.57	63.07

STIMA PARAMETRI GEOTECNICI PROVA Nr.1

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

	NSPT	Prof. Strato (m)	Terzaghi- Peck	Sanglerat	Terzaghi- Peck (1948)	U.S.D.M. S.M	Schmert mann 1975	SUNDA (1983) Benassi e Vannelli	0	Houston (1960)	Shioi - Fukui 1982	Begemann	De Beer
[1] -Strato	3.4	1.20	0.21	0.43	0.00	0.14	0.33	0.51	0.31	0.69	0.17	0.47	0.43
[2] -Strato	7.13	3.80	0.45	0.89	0.00	0.29	0.70	1.00	0.64	0.97	0.36	0.76	0.89
[3] -Strato	41.13	5.80	2.78	5.14	0.00	1.49	4.11	5.39	3.17	4.36	2.06	6.31	5.14
[4] -Strato	63.07	15.00	4.26	7.88	0.00	2.10	6.33	7.17	4.34	7.32	3.15	8.58	7.88

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato (m)	Stroud e Butler (1975)	Vesic (1970)	Trofimenkov (1974), Mitchell e Gardner	Buisman-Sanglerat
[1] - Strato	3.4	1.20	15.60	51.00	36.47	42.50
[2] - Strato	7.13	3.80	32.71		74.51	89.13
[3] - Strato	41.13	5.80	188.70		421.29	411.30
[4] - Strato	63.07	15.00	289.37		645.07	630.70

Modulo di Young (Kg/cm²)

	B (B	/		
	NSPT	Prof. Strato	Schultze	Apollonia
		(m)		
[1] - Strato	3.4	1.20	18.70	34.00
[2] - Strato	7.13	3.80	61.60	71.30
[3] - Strato	41.13	5.80	452.60	411.30
[4] - Strato	63.07	15.00	704.91	630.70

Classificazione AGI

Chassine and the chassine chas										
NSPT		Prof. Strato	Correlazione	Classificazione						
		(m)								
[1] - Strato	3.4	1.20	A.G.I. (1977)	POCO CONSISTENTE						
[2] - Strato	7.13	3.80	A.G.I. (1977)	MODERAT. CONSISTENTE						
[3] - Strato	41.13	5.80	A.G.I. (1977)	ESTREM. CONSISTENTE						
[4] - Strato	63.07	15.00	A.G.I. (1977)	ESTREM. CONSISTENTE						

Peso unità di volume

	NSPT	Prof. Strato	Correlazione	Peso unità di volume
		(m)		(t/m³)
[1] - Strato	3.4	1.20	Meyerhof	1.66
[2] - Strato	7.13	3.80	Meyerhof	1.86
[3] - Strato	41.13	5.80	Meyerhof	2.50
[4] - Strato	63.07	15.00	Meyerhof	2.50

ANAS S.p.A. DG 03-17

riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

PROGETTO ESECUTIVO
S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e

T00EG00GENRE01_A

TERRENI INCOERENTI

Densità relativa

	NSPT	Prof. Strato	Gibbs & Holtz 1957	Meyerhof 1957	Schultze & Menzenbach (1961)	Skempton 1986
		(m)				
[1] - Strato	3.4	1.20	17.93	43.3	56.22	16.44
[2] - Strato	7.13	3.80	25.55	52.41	54.12	26.29
[3] - Strato	41.13	5.80	57.03	100	100	73.27

Angolo di resistenza al taglio

Angolo di resistenza ai tagno														
	NSPT	Prof.	Nspt	Peck-	Meyerho	Sowers	Malcev	Meyerho	Schmert	Mitchell	Shioi-	Japanese	De	Owasaki
		Strato	corretto	Hanson-	f (1956)	(1961)	(1964)	f (1965)	mann	& Katti	Fukuni	National	Mello	&
		(m)	per	Thornbu					(1977)	(1981)	1982	Railway		Iwasaki
			presenza	rn-					Sabbie		(ROAD			
			falda	Meyerho							BRIDG			
				f 1956							E			
											SPECIFI			
											CATIO			
											N)			
[1] - Strato	3.4	1.20	3.4	27.97	20.97	28.95	31.99	30.99	0	< 30	22.14	28.02	29.31	23.25
[2] - Strato	7.13	3.80	7.13	29.04	22.04	30	29.94	32.55	0	< 30	25.34	29.14	34.46	26.94
[3] - Strato	41.13	5.80	41.13	38.75	31.75	39.52	31.15	41.62	42	35-38	39.84	39.34	47.87	43.68

Modulo di Young (Kg/cm²)

	NSPT	Prof. Strato	Nspt corretto per presenza falda	Terzaghi	Schmertmann (1978) (Sabbie)	Schultze- Menzenbach	D'Appollonia ed altri 1970	Bowles (1982) Sabbia Media
		(111)	prosonia raida		(1) (0) (540010)	(Sabbia ghiaiosa)	(Sabbia)	Sucola Modia
[1] - Strato	3.4	1.20	3.4		27.20			
[2] - Strato	7.13	3.80	7.13		57.04			
[3] - Strato	41.13	5.80	41.13	457.77	329.04	486.03	488.48	280.65

Modulo Edometrico (Kg/cm²)

	NSPT	Prof. Strato	Nspt corretto per	Buisman-	Begemann 1974	Farrent 1963	Menzenbach e
		(m)	presenza falda	Sanglerat (sabbie)	(Ghiaia con		Malcev (Sabbia
					sabbia)		media)
[1] - Strato	3.4	1.20	3.4		34.45	24.14	53.16
[2] - Strato	7.13	3.80	7.13		42.11	50.62	69.80
[3] - Strato	41.13	5.80	41.13	246.78	111.95	292.02	221.44

Classificazione AGI

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Classificazione AGI
[1] - Strato	3.4	1.20	3.4	Classificazione A.G.I	SCIOLTO
[2] - Strato	7.13	3.80	7.13	Classificazione A.G.I	POCO ADDENSATO
[3] - Strato	41.13	5.80	41.13	Classificazione A.G.I	ADDENSATO

Peso unità di volume

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Peso Unità di Volume (t/m³)
[1] - Strato	3.4	1.20	3.4	Terzaghi-Peck 1948	1.39
[2] - Strato	7.13	3.80	7.13	Terzaghi-Peck 1948	1.44
[3] - Strato	41.13	5.80	41.13	Terzaghi-Peck 1948	1.79

Peso unità di volume saturo

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Peso Unità Volume Saturo (t/m³)
[1] - Strato	3.4	1.20	3.4	Terzaghi-Peck 1948	1.87
[2] - Strato	7.13	3.80	7.13	Terzaghi-Peck 1948	1.90
[3] - Strato	41.13	5.80	41.13	Terzaghi-Peck 1948	2.11

Modulo di Poisson

IIIO GGI I	1700010 017 010001										
	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Poisson						
[1] - Strato	3.4	1.20	3.4	(A.G.I.)	0.35						
[2] - Strato	7.13	3.80	7.13	(A.G.I.)	0.34						
[3] - Strato	41.13	5.80	41.13	(A.G.I.)	0.27						

Modulo di deformazione a taglio dinamico (Kg/cm²)

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Ohsaki (Sabbie pulite)	Robertson e Campanella (1983) e Imai & Tonouchi (1982)
[1] - Strato	3.4	1.20	3.4	205.35	264.02
[2] - Strato	7.13	3.80	7.13	411.92	415.10
[3] - Strato	41.13	5.80	41.13	2139.06	1211.05

T00EG00GENRE01_A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

4.2.2 Prove di laboratorio

Il campione SC1CI1 è stato sottoposto ad indagini di laboratorio dalla GEOSERVING SRL. Di seguito si riportano i dati riassuntivi.

CAMPIONE S1CI1:

Laboratorio Sperimentale per prove geotecniche terre, rocce e prove in situ Autorizzato dal Ministero Infrastrutture e Trasporti con decreto nº 388 del 22.01.2014

Via Collemeroni, 3 - San Vittore del Lazio (FR) - e-mail: info@geoserving.it

	PA - Struttura Territoriale Umbria		
RIFERIMENTO: Piano di	riqualificazione e potenziamento S.S	S.3 "Via Flaminia"	
SONDAGGIO: S1	CAMPIONE: T1	PROFONDITA': m	7,50-8,00

MODULO RIASSUNTIVO

CARATTERISTICHE FISICHE

Umidità naturale	28,3	%
Peso di volume	19,3	kN/m³
Peso di volume secco	15,0	kN/m³
Peso di volume saturo	S. Sections	kN/m³
Peso specifico		kN/m³
Indice dei vuoti		
Porosità		%
Grado di saturazione		%

COMPRESSIONE

σ	kPa	σRim	kPa
cu	kPa	C _u Rim	kPa

TAGLIO DIRETTO

Prova co	onsolidata-le	enta			
c'	23,0	kPa	φ'	29,2	0
c'Res		kPa	φ'Res		0

T00EG00GENRE01_A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

4.2.3 Prove MASW e HVSR

È stata eseguita un'indagine sismica "MASW" mediante uno stendimento di 46 mt e con distanza intergeofonica di 2 mt.

Foto 1 - Esecuzione della prova MASW1

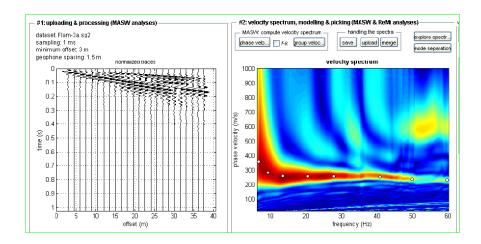


Foto 2 - Esecuzione della prova MASW1

Figura 5 -Posizionamento MASW1 (da report GEOSERVING SRL)

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

Spoleto, Flaminia - Profilo 1

MODELLO MEDIO:

Vs (m/sec)	262	331	218	469
Spessore (m)	3.6	2.7	5.8	semispazio

Massima Profondità di Penetrazione in Approssimazione "Steady State Rayleigh Method": 34 m

VS5 del modello medio: 306 m/s VS30 del modello medio: 346 m/s

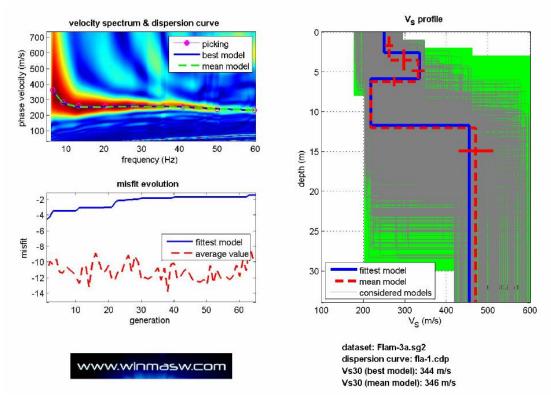


Figura 6 -Modello sismostratigrafico Vs (da report GEOSERVING SRL)

TO ESECUTIVO T00EG00GENRE01_A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

L'elaborazione dei dati attraverso tecnica di inversione ha permesso di individuare i seguenti layer sismici:

Spoleto, Flaminia - Profilo 1

Vs (m/sec)	262	331	218	469
Spessore (m)	3.6	2.7	5.8	semispazio

Sono stati individuati quattro sismostrati principali:

- il primo sismostrato, rilevato per uno spessore di 3.6 m, è caratterizzato da una velocità delle onde S di 262 m/s;
- il secondo, dello spessore di 2.7 m, ha fatto registrare una velocità delle onde di taglio (V_S) di 331 m/s;
- il terzo, dello spessore di 5.8 m, ha fatto registrare una velocità delle onde di taglio (V_S) di 218 m/s;
- il quarto ed ultimo strato ha uno spessore minimo di 22 m e velocità delle onde S di 469 m/sec.

Figura 7 - layer sismici (da report GEOSERVING SRL)

Dal profilo sismico ottenuto si può ricavare il valore di Vs30 (che nel caso in esempio è Vs30=346 m/s) attraverso la media ponderata del contributo dei vari orizzonti mediante la relazione:

$$Vs30 = \frac{30}{\sum \frac{h_i}{Vs_i}}$$

dove hi e Vsi sono spessori e velocità dei singoli strati.

L'indagine HVSR ha evidenziato che sono soddisfatti i criteri per una curva H/V affidabile, mentre i criteri per un picco H/V chiaro non sono soddisfatti. Di questi ultimi solo 4 criteri su 6 sono verificati (dovrebbero essere soddisfatti almeno 5).

Di seguito i risultati considerando i dati nella finestra di frequenza 0.5-20.0Hz

Frequenza di Picco (Hz): 6.8 (± 0.9) Valore HVSR di picco: 6.4 (± 0.8)

=== Criteri per una curva H/V affidabile ======

```
#1. [f0 > 10/Lw]: 6.8 > 0.5 (OK)
```

#2. [nc > 200]: 22556 > 200 (OK)

#3. [f0>0.5Hz; sigmaA(f) < 2 for 0.5f0 < f < 2f0] (OK)

=== Criteri per un picco H/V chiaro (almeno 5 dovrebbero essere soddisfatti) ==

```
#1. [exists f- in the range [f0/4, f0] | AH/V(f-) \leq A0/2]: yes, at frequency 4.2Hz (OK)
```

#3. [A0 > 2]: 6.4 > 2 (OK)

#4. [fpeak[Ah/v(f) \pm sigmaA(f)] = f0 \pm 5%]: (OK)

#5. [sigmaf < epsilon(f0)]: 5.106 > 0.338 (NO)

#6. [sigmaA(f0) < theta(f0)]: 2.031 < 1.58 (NO)

•

^{#2. [}exists f+ in the range [f0, 4f0] | AH/V(f+) \leq A0/2]: yes, at frequency 8.0Hz (OK)

T00EG00GENRE01 A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

4.3 Litologia

Le indicazioni emerse dalle osservazioni dirette e dalle indagini geognostiche e geofisiche hanno permesso di ricostruire l'assetto litostratigrafico dell'area.

L'area di interesse presenta un assetto geo litologico caratterizzato dall'affioramento di depositi di natura alluvionale riconducibili all'attività deposizionale del torrente Tessino.

Il sondaggio realizzato in prossimità del ponte evidenzia la presenza di un orizzonte superficiale costituito da coltre agraria e materiale rimaneggiato con resti vegetali e resti antropici (spessore 1.20 mt).

Al di sotto si estende un deposito prevalentemente ghiaioso sabbioso di natura calcarea. I clasti e ciottoli sono da sub arrotondati ad angolari (spessore 2.8 mt).

Da 4.0 a 6.6 mt dal p.c. il deposito alluvionale è costituito da sabbia medio grossolana di natura calcarea in matrice argillosa di coltre nocciola (spessore 2.6 mt).

Da 6.6 mt a 30 mt (profondità massima indagata dal sondaggio S1) si rinviene la presenza di argilla grigia di consistenza "Durissima" con intercalazioni di frustoli carboniosi e torbe. Presenti anche sottili strati di limi sabbiosi. Tale deposito di natura prevalentemente fluvio lacustre e/o lacustre, potrebbe essere riconducibile al Sub sintema di Colle Fabbri – MGN₂. Queste ultime caratterizzano il bacino intramontano poco a Sud di Spoleto. Si tratta di "Argille e marne in appoggio sul sub sintema di San Filippo quando presente, oppure aggradanti con contatti discordanti sulla sottostante marnoso arenacea umbra (e romagnola). Nella porzione inferiore è localizzato l'importante orizzonte lignitifero oggetto, nel passato di pluridecennale coltivazione mineraria al cui tetto, a Colle Fabbri, si hanno porcellaniti derivate dalla fusione delle rocce incassanti a causa dell'autocombustione delle ligniti. Oltre ad una flora assai ricca a diatomee vi è stata rinvenuta una fauna a mammiferi fra cui: *Tapirus arvenensis* (Croiet & Jobert, 1828), *Anancus arvenensis* (Croiet & Jobert, 1828), *Castor* sp. E "Mammut" borsoni (Hais, 1834). *Pliocene medio p.p.?*"

L'indagine geofisica non ha rinvenuto la presenza di bedrock sismico fino a 30 mt dal p.c..

4.4 Idrologia, geomorfologia e vincoli geo-ambientali

L'assetto idrologico e geomorfologico dell'area di intervento è, evidentemente, strettamente connesso alle caratteristiche, idrauliche, morfometriche e deposizionali del torrente Tessino.

Il T. Tessino afferisce al Maroggia (a sua volta affluente in dx idrografica del fiume Topino) e si sviluppa al contatto tra la catena calcarea e la barriera a sud costituita da un potente pacco di sedimenti fluvio-lacustri. Dalla catena calcarea riceve acque perenni e dopo un ripido percorso sfocia nella piana con una conoide su cui è situata Spoleto. È caratterizzato da un regime a carattere torrentizio.

La falda intercettata dall'indagine geognostica è posta a circa 7 mt dal p.c..

S.S. 3 "Flaminia" - Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

T00EG00GENRE01_A

Vincoli geo-ambientali – PAI ecc. 4.4.1

L'area complessivamente mostra una densità di drenaggio superficiale alta in connessione al basso grado di permeabilità del litotipo affiorante. L'indagine realizzata ha intercettato la falda a 7 mt.

VINCOLO IDROGEOLOGICO

Ai sensi di quanto prescritto dal Regio Decreto n°3267 del 1923 in tema di Vincolo Idrogeologico, si rileva quanto segue:

l'area di interesse ricade in una zona è soggetta a Vincolo Idrogeologico.

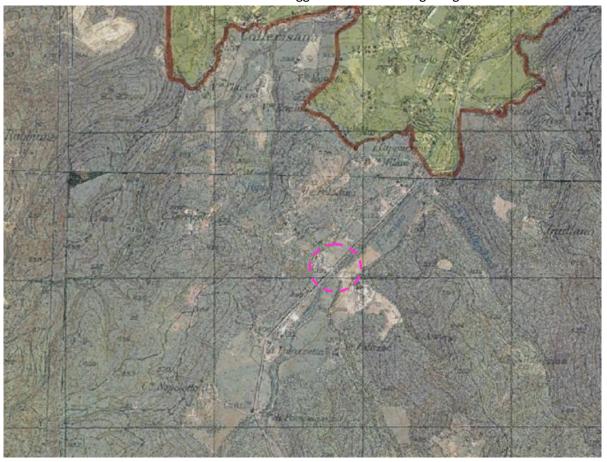


Figura 8 -stralcio della Carta vincolo idrogeologico

T00EG00GENRE01_A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

VINCOLI PRG (PARTE STRUTTURALE)

Di seguito si riporta uno stralcio della Tav.03a Componente morfologica del Piano Regolatore Generale (Parte Strutturale) con relativa legenda.

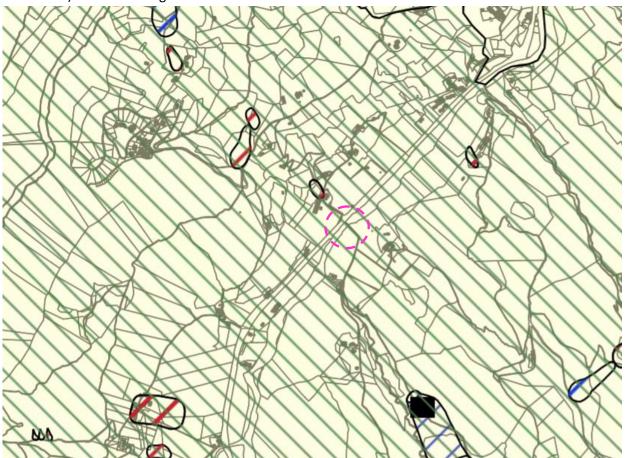


Figura 9 - stralcio Tav.03a Componente morfologica

Da tale elaborato risulta che nell'area di interesse insistono i seguenti vincoli:

- vincolo idrogeologico.

T00EG00GENRE01_A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

Di seguito si riporta anche lo stralcio della Tav.03b Componente idraulica del Piano Regolatore Generale (Parte Strutturale) con relativa legenda.

Figura 10 - stralcio Tav.03b Componente idraulica

LEGENDA

Tavola 3.b COMPONENTE IDRAULICA Scala 1:30.000 Variante parziale al P.R.G. Parte Strutturale ai sensi dell'Art. 32, Commi 3 e 4 dela L.R. n. 1 del 21/01/2015

Studi idraulici speditivi

Fasce PAI

Fascia A

Fascia B

Fascia C

Conoidi

Conoide attivo

Rischio esondabilità

Rischio Idraulico R2

Rischio Idraulico R3

Rischio Idraulico R4

Da tale elaborato risulta che nell'area di interesse non insistono vincoli di natura idraulica.

TTO ESECUTIVO T00EG00GENRE01_A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

ISPRA Dissesto idrogeologico in Italia: pericolosità e indicatori di rischio (Edizione 2018)

Il Rapporto aggiorna le mappe nazionali della pericolosità da frana dei Piani di Assetto Idrogeologico – PAI e della pericolosità idraulica secondo gli Scenari del D.lgs. 49/2010 (recepimento della Direttiva Alluvioni 2007/60/CE), realizzate dall'ISPRA mediante l'armonizzazione e la mosaicatura delle aree perimetrate dalle Autorità di Bacino Distrettuali.

Le mappe consultate sul portale Idrogeo evidenziano che l'area di studio interferisce con le fasce idrauliche di esondazione del PAI a cui sono associati scenari di pericolosità P1 P2 e P3.

Figura 11 – Portale Idrogeo (http://www.isprambiente.gov.it/it/pubblicazioni/rapporti/dissesto-idrogeologico-in-italia-pericolosita-e-indicatori-di-rischio-edizione-2018) Temi PAI

riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

PROGETTO ESECUTIVO
S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e

T00EG00GENRE01_A

INVENTARIO MOVIMENTI FRANOSI IFFI

Nell'area non sono censiti movimenti franosi.


Figura 12 – Portale Idrogeo (http://www.isprambiente.gov.it/it/pubblicazioni/rapporti/dissesto-idrogeologico-in-italia-pericolosita-e-indicatori-di-rischio-edizione-2018) tema IFFI

Frane IFFI

Colamento rapido

Sprofondamento

Complesso

Eventi franosi

Segnalazioni IFFI

T00EG00GENRE01_A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

L'area interferisce con le "Aree di rispetto di 150 metri dalle sponde dei fiumi, torrenti e corsi d'acqua iscritti negli elenchi delle Acque Pubbliche, e di 300 metri dalla linea di battigia costiera del mare e dei laghi, vincolate ai sensi dell'art.142 c. 1 lett. a), b), c) del Codice" del torrente Tessino.

Figura 13 – qgis fasce idrauliche "Galasso" per torrente Tessino.

T00EG00GENRE01 A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

4.5 Idrogeologia

Le caratteristiche degli acquiferi presenti nel sito di interesse sono illustrate nella carta idrogeologica della regione Umbria. Il ponte interessa "il complesso dei depositi alluvionali" caratterizzato da Alta Permeabilità.

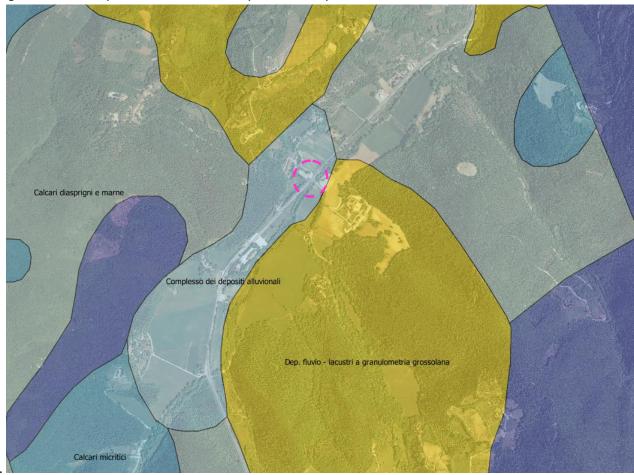


Figura 14 – Qgis- shape carta idrogeologica Regione Umbria

Complesso dei depositi alluvionali:

Depositi eterogenei, prevalentemente sabbioso - ghiaiosi, di riempimento delle principali valli e conche intramontane, con spessori generalmente compresi entro i 30 metri, talvolta possono raggiungere e superare i 100 m come in Valle Umbra e in Alta Valtiberina. Nella zona di Cannara e Foligno (Valle Umbra) sono sormontati da spessi ed estesi depositi argillosi. I principali sistemi acquiferi alluvionali regionali corrispondono alle più estese aree di pianura che costituiscono : l' Alta e Media Valle del Tevere, la Conca Eugubina, la Valle Umbra e la Conca Ternana. I depositi alluvionali permeabili per porosità ospitano in genere acquiferi a falda libera, raramente e localmente acquiferi in pressione. La vulnerabilità degli acquiferi risulta generalmente elevata nelle aree delle conoidi alluvionali e nei settori di pianura caratterizzati da falda libera con depositi grossolani in superficie. I valori della trasmissività nelle aree degli acquiferi principali sono mediamente compresi tra 100 e 2000 m2/giorno, con valori massimi anche superiori a 5000 m2/giorno rilevati nei settori degli acquiferi più produttivi.

T00EG00GENRE01 A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

5 ASPETTI SISMOTETTONICI E PERICOLOSITA' SISMICA

Di seguito viene proposta una sintesi della sismicità dell'area e della pericolosità sismica di sito ai sensi della normativa vigente.

5.1 Inquadramento tettonico-strutturale

L'area in esame ricade all'interno di un ambito che geologicamente appartiene alla propaggine sud-occidentale del Bacino Tiberino che attraverso Todi arriva fino alla Conca Ternana.

Il bacino è riconducibile ad una depressione tettonica, allungata in direzione NNW-SSE. Il sito di interesse si trova lungo in argine meridionale di tale depressione (area di affioramento di depositi quaternari).

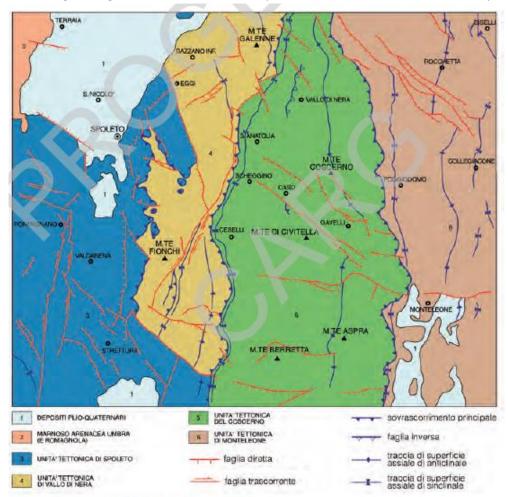
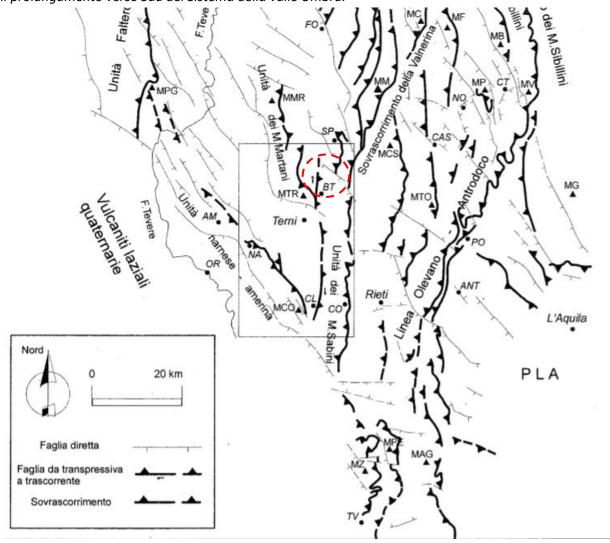


Fig. 18 - Schema tettonico del Foglio 336 "Spoleto".

L'area ha un assetto strutturale frutto di una storia deformativa complessa articolata in due principali fasi tettoniche.

La fase compressiva porta alla formazione di pieghe e sovrascorrimenti, che producono un sensibile raccorciamento della successione carbonatica (Langhiano-Tortoniano).

Nelle fasi terminale di questa fase deformativa prevalgono deformazioni traslative, su quelle plicative, con lo sviluppo di importanti faglie trascorrenti secondo i due principali sistemi "NS+10 destro e N100+10 sinistro". Dal Pliocene inferiore (Basilici, 1993) fino a tutto il Pleistocene inferiore si ha una fase distensiva.


T00EG00GENRE01 A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

La ricorrente sismicità dell'area anche tempi attuali denota una netta connotazione estensionale.

La conseguenza della fase distensiva Plio-quaternarie è la formazione di sistemi di faglie dirette a carattere regionale che favoriscono la formazione di graben, e conche intermontane.

Nell'evoluzione tettonica dell'area hanno svolto un ruolo di primo piano anche i sistemi di trascorrenti che hanno reso ancora più complesso il contesto geologico strutturale. La tettonica recente con estensioni e trastensioni ha riattivato spesso questi sistemi di piano di taglio preesistenti modificando i rilievi e le reti idrografiche. Il Tessino scorre in un graben ribassato da sistemi di faglie tra loro antitetiche che rappresentano il prolungamento verso Sud del Sistema della valle Umbra.

F. CALAMITA & P. PIERANTONI. "MODALITA' DELLA STRUTTURAZIONE NEOGENICA NELL'APPENNINO UMBRO-SABINO (ITALIA CENTRALE)

5.2 Sismicità e pericolosità sismica del sito

Con riferimento alla Delibera della Giunta Regionale, 18 settembre 2012, n.1111 "Aggiornamento della classificazione sismica del territorio regionale dell'Umbria", il Comune di Spoleto è classificato come zona sismica di I categoria (O.P.C.M. n. 3274 del 20/03/2003).

T00EG00GENRE01_A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

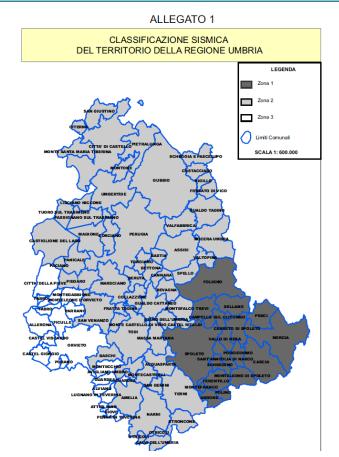


Figura 15: D.G.R. del 18 settembre 2012, n.1111 "Aggiornamento della classificazione sismica del territorio regionale dell'Umbria".

Il valore massimo di ag, espresso come frazione dell'accelerazione di gravità g, da adottare nella zona sismica I è pari a 0.35 g. Sulla base della DGR n.1111/2012 per il territorio in esame si può considerare un valore di riferimento 0.237513 g.

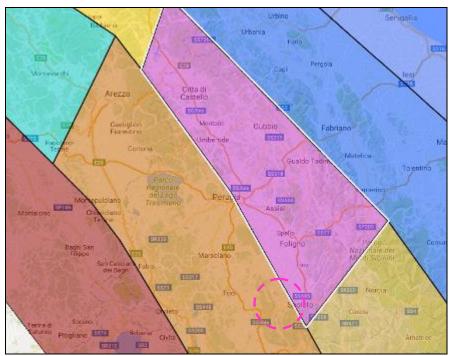


Figura 16: Zone Sismogenetiche ZS9 su base Google Map

T00EG00GENRE01 A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

Gruppo di Lavoro per la redazione della mappa di pericolosità sismica (Ordinanza PCM 20.03.03, n.3274) Istituto Nazionale di Geofisica e Vulcanologia

1	2	3	4	5	6	7	8	9	10
nome ZS	NZS	DISS2 MwMax	CPTI2 MwMax	CPTI2 MwMax (dasse)	CPTI2 completo 04.2	Az1	Mw Max1	Az2	Mw Max2
Savoia	901		5.79	5.68	5.68	+1(a)	5.91	+2(d)	6.14
Vallese	902		6.10	6.14	6.14		6.14		6.14
Grigioni-Valtellina	903		5.79	5.68	5.22	+3(b)	5.91	+4(d)	6.14
Trieste -Monte Nevoso	904		5.71	5.68	5.68		5.68	+2(d)	6.14
Friuli -Veneto Orientale	905	6.4	6.66	6.60	6.60		6.60		6.60
Garda-Veronese	906	6.2	6.49	6.60	6.60		6.60		6.60
Bergamasco	907	5.9	5.67	5.68	5.68	G	5.91	+2(d)	6.14
Piemonte	908		5.67	5.68	5.68		5.68	+2(d)	6.14
Alpi Occidentali	909		5.54	5.45	5.45	+1(a)	5.68	+3(d)	6.14
Nizza-Sanremo	910	6.3	6.29	6.37	6.37		6.37		6.37
Tortona-Bobbio	911		5.67	5.68	5.68		5.68	+2(d)	6.14
Dorsale Ferrarese	912	6.2	5.88	5.91	5.91	G	6.14	G	6.14
Appennino Emiliano-Romagn.	913		5.85	5.91	5.91		5.91	+1(d)	6.14
Forlivese	914		5.97	5.91	5.91		5.91	+1(d)	6.14
Garfagnana-Mugello	915	6.4	6.49	6.60	6.60		6.60		6.60
Versilia-Chianti	916		5.52	5.45	5.45	+1(c)	5.68	+3(d)	6.14
Rimini-Ancona	917	6.1	5.94	5.91	5.91	G	6.14	G	6.14
Medio-Marchigiana/Abruzz.	918		6.23	6.14	6.14	+ 1(a)	6.37	+1(a)	6.37
Appennino Umbro	919	6.0	6.33	6.37	6.37		6.37		6.37
Val di Chiana-Ciociaria	920		5.57	5.68	5.45	+1(b)	5.68	+3(d)	6.14
Etruria	921		5.91	5.91	5.91		5.91	+1(d)	6.14
Colli Albani	922		5.53	5.45	5.45		5.45	1	5.45
Appennino Abruzzese	923	6.7	6.99	7.06	7.06		7.06		7.06
Molise-Gargano	924	6.7	6.73	6.83	6.83		6.83		6.83
Ofanto	925		6.72	6.83	6.83		6.83		6.83
Basento	926	5.8	5.84	5.91	5.91		5.91	+1(d)	6.14
Sannio-Irpinia -Basilicata	927	6.8	6.96	7.06	7.06		7.06	(-/	7.06
Ischia-Vesuvio	928		5.78	5.68	5.68	+1(a)	5.91	+1(a)	5.91
Calabria Tirrenica	929	7.0	7.24	7.29	7.29	7	7.29		7.29
Calabria Ionica	930	6.0	6.60	6.60	6.60		6.60		6.60
Canale d'Otranto	931		6.90	6.83	6.83		6.83		6.83
Eolie-Patti	932	6.1	6.06	6.14	6.14		6.14	\Box	6.14
Sicilia settentrionale	933		5.89	5.91	5.91	+1(c)	6.14	+1(c)	6.14
Belice	934		6.12	6.14	6.14	-(-/	6.14	1	6.14
Iblei	935		7.41	7.29	7.29		7.29	\Box	7.29
Etna	936		5.30	5.22	5.22	+ 1(a)	5.45	+1(a)	5.45

Il progetto ricade in prossimità del contatto tra la zona sismogenetica ZS9 "920-Appennino Val di Chiana Ciociaria" e "919-Appennino Umbro". Il valore di Mw massimo atteso è rispettivamente di 6.14 e 6.37, così come tratto dal rapporto redatto dal Gruppo di Lavoro MPS (Redazione della mappa di pericolosità sismica prevista dall'Ordinanza PCM 3274 del 20 marzo 2003. Rapporto Conclusivo per il Dipartimento della Protezione Civile, INGV, Milano-Roma, aprile 2004, 65 pp. + 5 appendici).

L'analisi del meccanismo di fagliazione prevalente indica, che l'Appennino centrale è caratterizzato dal prevalere di faglie di tipo normale (diretto).

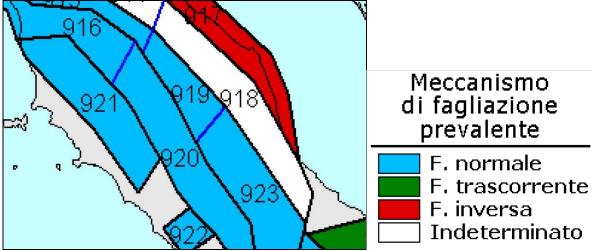
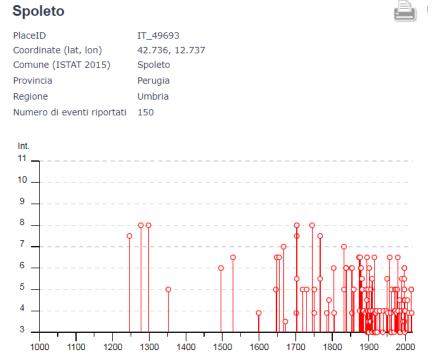


Figura 17: Meccanismi di fagliazione prevalente atteso per le zone sismogenetiche ZS9 (INGV)



T00EG00GENRE01_A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

TERREMOTI STORICI

Di seguito si riporta l'estratto del database terremoti dell'Ingv DBMI15 relativi al comune di Spoleto².

Si evidenzia ce il territorio è caratterizzato da terremoti di alta intensità con intensità massime di 7-8, rispettivamente attorno agli anni 1270-1300, 1700-1750.

Sanas GRUPPO FS ITALIANE

ANAS S.p.A. DG 03-17 PROGETTO ESECUTIVO

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

Effetti		In occasione del terremoto del			
Int.	Anno Me Gi Ho Mi S	e Area epicentrale	NMDP	Io	Mw
7-8	₽ 1246	Spoleto	1	7-8	5.33
8	₽ 1277	Spoleto	1	8	5.56
8	1298 12 01	Monti Reatini	5	9-10	6.26
5	1352 12 25	Alta Valtiberina	7	9	6.31
6	₽ 1496 06	Valle Umbra	3	5	4.16
6-7	₫ 1529 01 01	Spoleto	1	6-7	4.86
F		Valnerina	20	9	6.07
NF	1639 10 07	Monti della Laga	39	9-10	6.21
5	1646 04 28 07	Monti della Laga	10	9	5.90
6-7	1648 01 01	Spoleto	1	6-7	4.86
6-7	1655 02 03	Spoleto	2	6-7	4.86
7	₽ 1667	Spoleto	1	7	5.10
3-4		Riminese	92	8	5.59
F	₫ 1702 10 18	Valnerina	5	5	4.16
7-8	₫ 1703 01 14 18	Valnerina	197	11	6.92
8	₫ 1703 01 16 13 30	Appennino laziale-abruzzese	22		
8	₫ 1703 02 02 11 05	Aquilano	69	10	6.67
5-6	₫ 1703 06 29 18	Valnerina	3	5-6	4.40
5	₫ 1719 06 27 06 30	Valnerina	16	8	5.59
5	₫ 1730 05 12 05	Valnerina	115	9	6.04
8	₽ 1745 03	Valle Umbra	2	7	5.10
5	₽ 1751 06 11	Ternano	8	7	5.12
F	₫ 1751 07 27 01	Appennino umbro-marchigiano	66	10	6.38
7-8	₫ 1767 06 05 01 30	Valle Umbra	10	7-8	5.45
5-6	₫ 1767 09 02	Valle Umbra	2	5-6	4.40
NF	₫ 1785 05 03 02 30	Appennino umbro-marchigiano	11	7	5.10
F	₫ 1785 10 09 03 15	Monti Reatini	33	8-9	5.76
4-5	1791 10 11 13 05	Appennino umbro-marchigiano	54	8	5.57
6	₫ 1804 07 28 23	Valle Umbra	7	6-7	4.95
F	₫ 1805 07 26 21	Molise	220	10	6.68
7	₫ 1832 01 13 13	Valle Umbra	101	10	6.43

Sanas GRUPPO FS ITALIANE

ANAS S.p.A. DG 03-17 PROGETTO ESECUTIVO

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

5	🗗 1832 11 21 21 Appennino umbro-marchigi	lano 8	6 4.78
6	🗗 1838 01 05 14 Valnerina	8	7 5.10
6	🗗 1838 02 14 07 30 Valnerina	24	8 5.48
6	🗗 1838 08 05 17 15 Valnerina	10	7 5.19
6	₽ 1853 09 22 Spoleto	1	6 4.63
F	🗗 1854 01 17 09 Narni	6	5-6 4.71
6	₽ 1854 02 12 05 Valle Umbra	21	8 5.57
5	₽ 1859 08 22 Valnerina	20	8-9 5.73
6-7	₽ 1873 03 12 20 04 Appennino marchigiano	196	8 5.85
4	🗗 1875 03 17 23 51 Costa romagnola	144	8 5.74
6-7	₽ 1876 05 22 00 30 Spoleto	14	5-6 4.57
6	🗗 1878 09 15 07 20 Valle Umbra	34	8 5.46
6	🗗 1879 02 23 18 30 Valnerina	15	8 5.59
5-6	🗗 1881 03 11 22 50 Valle Umbra	15	5 4.51
5	₫ 1882 05 26 04 15 Cascia	16	5 4.45
4	🗗 1885 04 10 01 44 Appennino laziale-abruzz	zese 44	5 4.57
4	🗗 1885 06 17 22 34 Monti Reatini	9	7 4.90
F	🗗 1891 07 14 05 58 Trevi	9	5 4.16
2	🗗 1892 01 22 Colli Albani	81	7 5.14
5	🗗 1893 08 02 00 59 Valnerina	84	5-6 4.55
6-7	🗗 1895 05 20 15 32 57 Valle Umbra	27	5-6 4.49
4	🗗 1895 08 09 17 38 20 Adriatico centrale	103	6 5.11
4-5	🛃 1895 08 25 00 17 10 Sellano	13	5 4.25
2		94	6-7 4.83
3	🔂 1896 01 06 15 59 Narni	13	5 4.08
4		19	6 4.68
3	🚱 1897 12 18 07 24 20 Alta Valtiberina	132	7 5.09
5		186	8 5.50
3		67	7 5.03
3-4		45	4 3.96
3	🚱 1899 07 19 13 18 54 Colli Albani	122	7 5.10
3		13	6 4.22

ANAS S.p.A. DG 03-17 PROGETTO ESECUTIVO

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

2	₽ 1901 07	7 31	10	38 30	Sorano	76	7 5.16
6	₫ 1901 08	3 04	06	52	Valle Umbra	3	5 4.16
4	₫ 1902 00	6 14	14	30 45	Giano dell'Umbria	3	5 4.16
4	₫ 1902 10	23	08	51	Reatino	77	6 4.74
3-4	₽ 1903 11	1 02	21	52	Valnerina	33	6 4.81
2	₽ 1904 00	6 20	01	24	Assisi	24	5 4.10
4	₫ 1904 09	9 02	11	21	Maceratese	59	5-6 4.63
3-4	₫ 1905 12	2 09	21	41	Valle Umbra	42	5 4.24
5	₽ 1906 02	2 05	16	34	Valnerina	55	5 4.41
3	₽ 1909 01	1 13	00	45	Emilia Romagna orientale	867	6-7 5.36
NF	₫ 1909 02	2 06	08	05	Ternano	12	5 4.16
2-3	₫ 1909 08	3 25	00	22	Crete Senesi	259	7-8 5.34
5-6	₽ 1909 10	01	01	80	Spoleto	8	5-6 4.40
4	₽ 1910 00	6 29	13	52	Valnerina	58	7 4.93
6-7	₫ 1915 01	1 13	06	52 43	Marsica	1041	11 7.08
2	₫ 1915 03	3 26	23	37	Perugino	40	6 4.55
F	₽ 1916 04	4 22	04	33	Aquilano	9	6-7 5.09
3	₽ 1916 05	5 17	12	50	Riminese	132	8 5.82
3	₽ 1916 11	1 16	06	35	Alto Reatino	40	8 5.50
3	1917 05	5 12	15	34 36	Ternano	34	7-8 5.03
4	₽ 1918 04	4 14	01	56	Monti Martani	21	6 4.48
3	₽ 1919 00	6 29	15	06 13	Mugello	565	10 6.38
2-3	₽ 1919 09	9 10	16	57	Val di Paglia	67	7-8 5.36
F	1919 10	22	06	10	Anzio	142	6-7 5.22
4	₫ 1922 12	2 29	12	22 06	Val Roveto	119	6-7 5.24
3	₽ 1923 07	7 12	20	49	Marche meridionali	20	5 4.28
2	₫ 1924 01	1 02	08	55 13	Senigallia	76	7-8 5.48
4	₫ 1930 04	4 07	17	17 18	Monti Sibillini	28	5-6 4.50
4	₽ 1930 10	30	07	13	Senigallia	268	8 5.83
3	₽ 1938 08	3 12	02	28 33	Appennino laziale-abruzzese	55	5-6 4.56
4	4 1940 10	16	13	17	Val di Paglia	106	7-8 5.29
4	₽ 1948 12	2 31	03	32	Monti Reatini	95	8 5.42
5-6	₽ 1950 09	9 05	04	08	Gran Sasso	386	8 5.69

ANAS S.p.A. DG 03-17 PROGETTO ESECUTIVO

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

F Q 1951 08 08 19 5 6												
NF	F	ŵ	1951	08	08	19	56		Gran Sasso	94	7	5.25
6-7	NF	ŵ	1954	03	23	17	55		Collestatte	20	5	4.16
3	NF	ŵ	1957	03	12	16	20		Valnerina	62	5	4.16
2-3	6-7	ŵ	1957	07	19	09	04	07	Valle Umbra	58	6-7	4.58
3	3	ŵ	1960	02	06	12	00	30	Valle Umbra	11	5	4.18
## 1960 07 12 14 08 Monti Martani 35 7-8 4.93 ## 1962 08 30 12 10 Valnerina 7 7-8 5.34 ## 1962 08 30 12 10 Valnerina 7 7-8 5.34 ## 1969 09 26 23 40 39 Teramano 97 5 4.39 ## 1970 09 07 14 02 21 Appennino umbro-marchigiano 56 5 4.35 ## 1971 04 02 01 43 54 Valnerina 68 6 4.50 ## 1972 11 26 16 03 Marche meridionali 73 8 5.48 ## 1972 11 26 16 03 Marche meridionali 73 8 5.48 ## 1974 12 02 01 55 15 Valnerina 27 7-8 4.58 ## 1974 12 02 01 55 15 Valnerina 27 7-8 4.58 ## 1978 07 30 05 19 23 Ternano 25 7 4.32 ## 1978 07 30 05 19 23 Ternano 25 7 4.32 ## 1978 07 30 05 19 23 Ternano 25 7 4.32 ## 1980 02 28 21 04 40 Valnerina 694 8-9 5.83 ## 1980 02 28 21 04 40 Valnerina 694 8-9 5.83 ## 1980 02 28 21 04 40 Valnerina 694 8-9 6.81 ## 1980 05 24 20 06 40 Monti Sibillini 58 5-6 4.48 ## 1980 05 24 20 05 02 Umbria settentrionale 709 7 5.62 ## 1984 04 29 05 02 05 Umbria settentrionale 709 7 5.62 ## 1984 05 11 10 41 4 Monti della Meta 911 8 5.86 ## 1980 12 22 06 48 1 Valle Umbra 14 6 6 4.72 ## 1980 12 22 06 48 1 Valle Umbra 14 6 6 4.72 ## 1980 12 22 06 48 1 Valle Umbra 62 5-6 4.46 ## 1980 19 10 20 19 06 5 Appennino laziale-abruzzese 100 5 4.36 ## 1980 10 20 19 06 5 Appennino laziale-abruzzese 100 5 6 6.72 ## 1997 05 12 13 50 1 Monti Martani 57 6 6 4.72 ## 1997 05 12 13 50 1 Monti Martani 57 6 6 4.72	2-3	ŵ	1960	02	24	01	51		Appennino umbro-marchigiano	25	5	4.32
3	3	ŵ	1960	04	23	11	44		Monti Martani	21	6	4.66
1962 10 20 09 27 Valle Umbra 7 7-8 5.34 3	F	ď	1960	07	12	14	08		Monti Martani	35	7-8	4.93
1969 99 26 23 40 39 Teramano 97 5 4.35 1970 99 07 14 02 21 Appennino umbro-marchigiano 56 5 4.35 1971 04 02 01 43 54 Valnerina 68 6 4.50 1972 11 26 16 03 Marche meridionali 73 8 5.48 1974 12 02 01 55 15 Valnerina 27 7-8 4.58 1976 05 06 20 00 1 Friuli 770 9-10 6.45 1978 07 30 05 19 23 Ternano 25 7 4.32 6-7 1979 09 19 21 35 37 Valnerina 694 8-9 5.83 1980 02 28 21 04 40 Valnerina 694 8-9 5.83 1980 03 24 20 16 04 Monti Sibillini 58 5-6 4.48 NF 1980 03 04 05 07 07 05 05 05 05 05	3	ŵ	1962	08	30	12	10		Valnerina	35	7	5.02
## 1970 09 07 14 02 21 Appennino umbro-marchigiano	5	ŵ	1962	10	20	09	27		Valle Umbra	7	7-8	5.34
\$\begin{array}{cccccccccccccccccccccccccccccccccccc	3	ŵ	1969	09	26	23	40	39	Teramano	97	5	4.39
### ### ### ### ### ### ### ### ### ##	4	ŵ	1970	09	07	14	02	21	Appennino umbro-marchigiano	56	5	4.35
5	5	ŵ	1971	04	02	01	43	54	Valnerina	68	6	4.50
F	4	₫ ⁷	1972	11	26	16	03		Marche meridionali	73	8	5.48
5	5	₫ ⁷	1974	12	02	01	55	15	Valnerina	27	7-8	4.58
6-7	F	₫ ⁷	1976	05	06	20	00	1	Friuli	770	9-10	6.45
4	5	₫ ⁷	1978	07	30	05	19	23	Ternano	25	7	4.32
4	6-7	₫ ⁷	1979	09	19	21	35	37	Valnerina	694	8-9	5.83
NF	4	ŵ	1980	02	28	21	04	40	Valnerina	146	6	4.97
4-5	4	ď	1980	05	24	20	16	04	Monti Sibillini	58	5-6	4.48
3	NF	ď	1980	11	23	18	34	52	Irpinia-Basilicata	1394	10	6.81
NF	4-5	ŵ	1984	04	29	05	02	59	Umbria settentrionale	709	7	5.62
3	3	ŵ	1984	05	07	17	50		Monti della Meta	911	8	5.86
NF	NF	ŵ	1984	05	11	10	41	4	Monti della Meta	342	7	5.47
4	3	ŵ	1986	10	13	05	10	0	Monti Sibillini	322	5-6	4.46
5-6	NF	ŵ	1987	07	03	10	21	5	Costa Marchigiana	359	7	5.06
3-4	4	ŵ	1989	12	22	06	48	1	Valle Umbra	114	5	4.44
4-5	5-6	ŵ	1990	09	12	02	59	4	Valle Umbra	62	5-6	4.12
5	3-4	ŵ	1993	06	05	19	16	1	Valle del Topino	326	6	4.72
NF 2 1997 09 07 23 28 0 Appennino umbro-marchigiano 57 5-6 4.19	4-5	Ø	1996	10	20	19	06	5	Appennino laziale-abruzzese	100	5	4.36
, 	5	Ø	1997	05	12	13	50	1	Monti Martani	57	6	4.72
6 🗗 1997 09 26 00 33 1 Appennino umbro-marchigiano 760 7-8 5.66	NF	Ø	1997	09	07	23	28	0	Appennino umbro-marchigiano	57	5-6	4.19
	6	Ø	1997	09	26	00	33	1	Appennino umbro-marchigiano	760	7-8	5.66

T00EG00GENRE01_A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

6	æ	1997	0.0	26	0.0	40	0	Appennino umbro-marchigiano	869	0_0	5.97
	_							• • • • • • • • • • • • • • • • • • • •		0-9	
5-6	Ġ	1997	10	03	08	55	2	Appennino umbro-marchigiano	490		5.22
4-5	ď	1997	10	06	23	24	5	Appennino umbro-marchigiano	437		5.47
5	ď	1997	10	14	15	23	1	Valnerina	786		5.62
3-4	ď	1997	10	23	08	58	4	Appennino umbro-marchigiano	56		3.86
4-5	ŵ	1997	11	09	19	07	3	Valnerina	180		4.87
3	ŵ	1998	02	07	00	59	4	Appennino umbro-marchigiano	62		4.41
NF	ŵ	1998	02	16	13	45	19	Valnerina	33		3.75
4	ŵ	1998	03	21	16	45	0	Appennino umbro-marchigiano	141		5.00
4-5	ŵ	1998	03	26	16	26	1	Appennino umbro-marchigiano	409		5.26
NF	ď	1998	04	05	15	52	2	Appennino umbro-marchigiano	395		4.78
NF	ď	1998	08	15	05	18	0	Reatino	233	5-6	4.42
2-3	ď	1999	10	10	15	35	5	Alto Reatino	79	4-5	4.21
4	ŵ	1999	11	29	03	20	3	Monti della Laga	62	5-6	4.15
NF	ŵ	2000	09	02	05	17	0	Appennino umbro-marchigiano	115	5	4.40
NF	ď	2000	12	16	07	31	0	Ternano	129	5-6	4.29
4-5	ď	2005	12	15	13	28	3	Val Nerina	350	5	4.14
F	ď	2009	12	15	13	11	5	Valle del Tevere	26	7	4.23
5	ď	2016	08	24	01	36	32	Monti della Laga	221	10	6.18
5	ŵ	2016	10	30	06	40	1	Valnerina	379		6.61
F	ď	2017	01	18	10	14	9	Aquilano	280		5.70

T00EG00GENRE01 A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

Terremoti INGV3 dal 2000 al 04/2021

Data e Ora (Italia) 🗜 🗨	Magnitudo ↓ 🖹 😯	Zona 😯	Profondità ↓=	Latitudine	Longitudine
2019-09-01 02:02:39	Mw 4.0	3 km E Norcia (PG)	10	42.80	13.13
2018-04-10 05:11:30	Mw 4.6	2 km SW Muccia (MC)	8	43.07	13.04
2018-04-04 04:19:45	Mw 4.0	2 km NW Pieve Torina (MC)	8	43.06	13.03
2017-12-04 00:34:11	Mw 4.0	3 km E Amatrice (RI)	8	42.62	13.33
2017-04-27 23:19:42	Mw 4.0	4 km NW Visso (MC)	8	42.95	13.05
2017-04-27 23:16:58	Mw 4.0	5 km NW Visso (MC)	8	42.96	13.05
2017-02-03 05:10:05	Mw 4.2	1 km E Monte Cavallo (MC)	7	42.99	13.02
2017-02-03 04:47:55	Mw 4.0	1 km E Monte Cavallo (MC)	7	42.99	13.02
2017-01-18 20:32:31	Mw 4.2	6 km N Montereale (AQ)	11	42.58	13.23
2017-01-18 16:16:10	Mw 4.3	3 km S Amatrice (RI)	9	42.60	13.29
2017-01-18 12:07:37	Mw 4.1	3 km W Amatrice (RI)	11	42.62	13.26
2017-01-18 11:39:24	ML 4.1	2 km E Montereale (AQ)	10	42.53	13.27
2017-01-18 11:16:39	ML 4.6	2 km NE Montereale (AQ)	8	42.54	13.27
2017-01-18 10:25:40	Mw 5.1	3 km NW Capitignano (AQ)	10	42.55	13.28

I terremoti che si sono verificati nel raggio di 50 km dal 2017 ai nostri giorni con magnitudo più elevate sono relativi al gennaio 2017 (epicentro Monreale) e aprile 2018 (comune di Muccia).

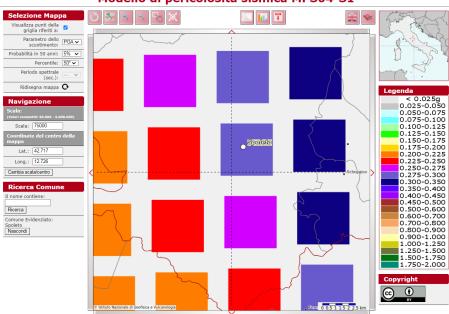
5.3 Pericolosità sismica di base

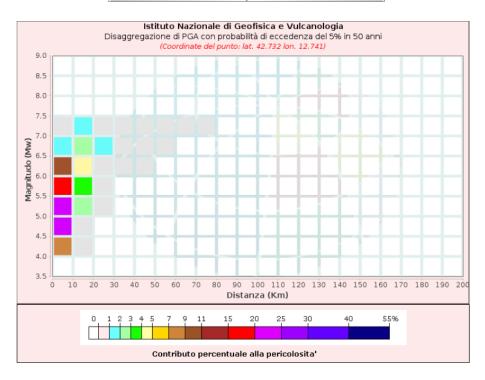
I parametri di pericolosità sismica sono ricavati mediante le consultazioni di banche dati ufficiali (INGV) sia per quanto riguarda i parametri di disaggregazione sia per quanto riguarda la determinazione dello spettro di input (riferito a Categoria di sottosuolo tipo A come da normativa NTC 2018, con parametri progettuali Classe d'uso II, Periodo di ritorno 475 anni, smorzamento 5%).

Di seguito si allegano i report delle seguenti probabilità di scuotimento in 50 anni al 5% al 10% al 63% e all'81% solitamente associati ai limiti di normativa.

Coordinate di riferimento:

WGS84 Lat 42.716521 Lng 12.725191 ED50 Lat 42.717491 Lng 12.726124

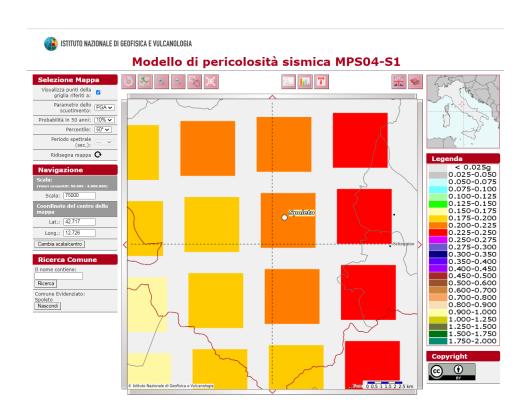

_


³ I dati e i risultati pubblicati su queste pagine (INGV TERREMOTI) dall'Istituto Nazionale di Geofisica e Vulcanologia sono distribuiti sotto licenza Creative Commons Attribution 4.0 International License. Il Gruppo di Lavoro ISIDe presso Osservatorio Nazionale Terremoti ha beneficiato del contributo finanziario della Presidenza del Consiglio dei Ministri, Dipartimento della Protezione Civile.

ANAS S.p.A. DG 03-17 PROGETTO ESECUTIVO

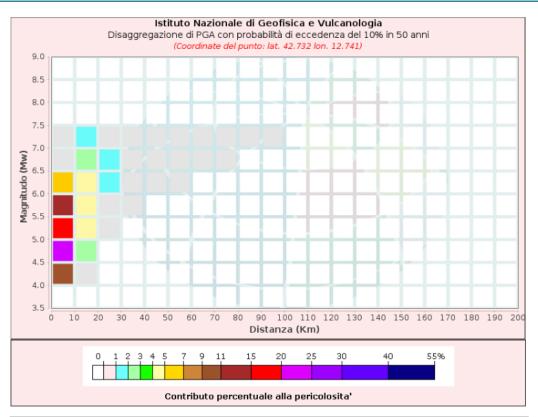
S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

Modello di pericolosità sismica MPS04-S1


ANAS S.p.A. DG 03-17 PROGETTO ESECUTIVO

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

	Disaggregazione di PGA con probabilità di eccedenza del 5% in 50 anni (Coordinate del punto: lat. 42.732 lon. 12.741)													
Distanza		Magnitudo (Mw)												
(Km)	3.5- 4.0	4.0- 4.5	4.5-5.0	5.0-5.5	5.5-6.0	6.0- 6.5	6.5- 7.0	7.0- 7.5	7.5- 8.0	8.0- 8.5	8.5- 9.0			
0-10	0.0000	8.9900	23.5000	21.2000	15.5000	9.0500	1.3700	0.6360	0.0000	0.0000	0.0000			
10-20	0.0000	0.0001	0.5280	2.1900	3.7400	4.3700	2.8500	1.7200	0.0000	0.0000	0.0000			
20-30	0.0000	0.0000	0.0000	0.0016	0.2600	0.9250	1.1100	0.9190	0.0000	0.0000	0.0000			
30-40	0.0000	0.0000	0.0000	0.0000	0.0000	0.0950	0.3630	0.4150	0.0000	0.0000	0.0000			
40-50	0.0000	0.0000	0.0000	0.0000	0.0000	0.0003	0.0792	0.1650	0.0000	0.0000	0.0000			
50-60	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0041	0.0385	0.0000	0.0000	0.0000			
60-70	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0058	0.0000	0.0000	0.0000			
70-80	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000			
80-90	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
90-100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
100-110	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
110-120	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
120-130	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
130-140	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
140-150	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
150-160	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
160-170	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
170-180	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
180-190	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
190-200	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
					Valori Med	11								


6.83

Per lo stato SLC (corrispondente a probabilità di eccedenza del 5%) l'Intervallo Magnitudo da 4.0 a 7.5 distanza da 0 a 30 km. Magnitudo media 5.45.

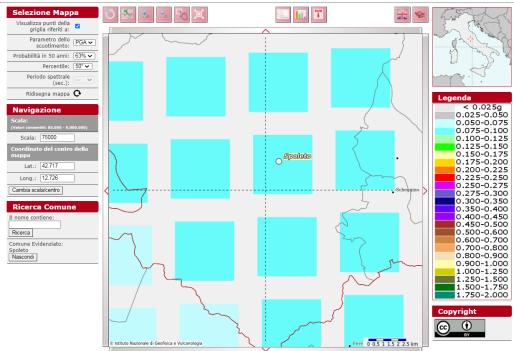
ANAS S.p.A. DG 03-17 PROGETTO ESECUTIVO

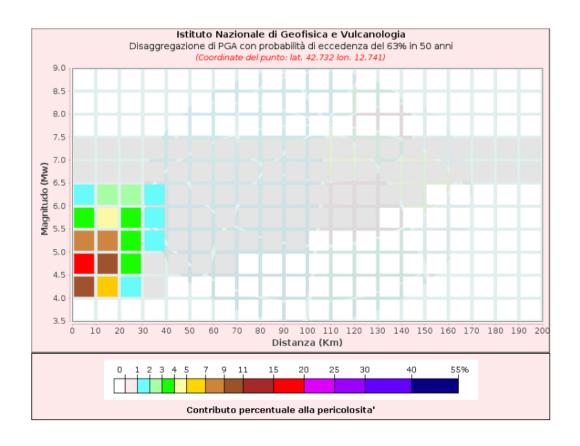
S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

	Disaggregazione di PGA con probabilità di eccedenza del 10% in 50 anni (Coordinate del punto: lat. 42.732 lon. 12.741)										
Dietana					Magni	tudo (Mw	1)				
Distanza (Km)	3.5- 4.0	4.0-4.5	4.5-5.0	5.0-5.5	5.5-6.0	6.0- 6.5	6.5- 7.0	7.0- 7.5	7.5- 8.0	8.0- 8.5	8.5- 9.0
0-10	0.0000	10.9000	24.6000	18.8000	11.8000	6.1900	0.9180	0.3790	0.0000	0.0000	0.0000
10-20	0.0000	0.3080	2.0900	4.0100	4.7400	4.4900	2.4400	1.2800	0.0000	0.0000	0.0000
20-30	0.0000	0.0000	0.0000	0.1870	0.8800	1.4600	1.2900	0.8950	0.0000	0.0000	0.0000
30-40	0.0000	0.0000	0.0000	0.0000	0.0639	0.4100	0.5750	0.5040	0.0000	0.0000	0.0000
40-50	0.0000	0.0000	0.0000	0.0000	0.0000	0.0649	0.2250	0.2510	0.0000	0.0000	0.0000
50-60	0.0000	0.0000	0.0000	0.0000	0.0000	0.0029	0.0512	0.0846	0.0000	0.0000	0.0000
60-70	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0088	0.0332	0.0000	0.0000	0.0000
70-80	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0005	0.0113	0.0000	0.0000	0.0000
80-90	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0024	0.0000	0.0000	0.0000
90-100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0002	0.0000	0.0000	0.0000
100-110	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
110-120	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
120-130	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
130-140	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
140-150	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
150-160	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
160-170	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
170-180	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
180-190	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
190-200	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

	Valori Medi	
Magnitudo	Distanza	Epsilon
5.37	8.15	1.02

Per lo stato SLV (corrispondente a probabilità di eccedenza del 10%) l'Intervallo Magnitudo da 4.0 a 7.5 distanza da 0 a 30 km. Magnitudo media 5.37.

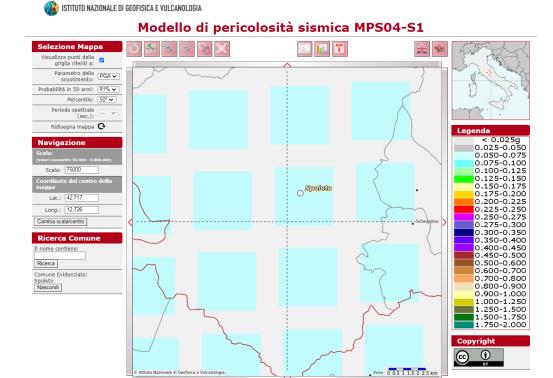

ANAS S.p.A. DG 03-17


PROGETTO ESECUTIVO

S.S. 3 "Flaminia" - Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

👔 ISTITUTO NAZIONALE DI GEOFISICA E VULCANOLOGIA

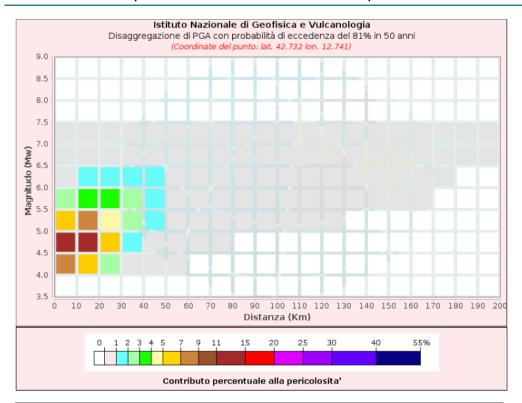
Modello di pericolosità sismica MPS04-S1


ANAS S.p.A. DG 03-17 PROGETTO ESECUTIVO

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

	D)isaggrega	zione di PG (Coordina	GA con pro ate del pu					anni					
Distance	Magnitudo (Mw)													
Distanza (Km)	3.5- 4.0	4.0-4.5	4.5-5.0	5.0- 5.5	5.5- 6.0	6.0- 6.5	6.5- 7.0	7.0- 7.5	7.5- 8.0	8.0- 8.5	8.5- 9.0			
0-10	0.0000	10.5000	16.2000	7.5800	3.1200	1.1900	0.1550	0.0501	0.0000	0.0000	0.0000			
10-20	0.0000	5.1300	10.9000	7.8000	4.5900	2.4500	0.7950	0.2840	0.0000	0.0000	0.0000			
20-30	0.0000	1.1700	3.4900	3.6900	3.0200	2.1500	0.9550	0.4000	0.0000	0.0000	0.0000			
30-40	0.0000	0.1330	0.9690	1.5800	1.6900	1.5200	0.8530	0.4150	0.0000	0.0000	0.0000			
40-50	0.0000	0.0000	0.1550	0.6310	0.8890	0.9560	0.6220	0.3440	0.0000	0.0000	0.0000			
50-60	0.0000	0.0000	0.0101	0.2030	0.4140	0.4940	0.3050	0.1890	0.0000	0.0000	0.0000			
60-70	0.0000	0.0000	0.0001	0.0530	0.2110	0.2920	0.1800	0.1230	0.0000	0.0000	0.0000			
70-80	0.0000	0.0000	0.0000	0.0092	0.1030	0.1770	0.1090	0.0817	0.0000	0.0000	0.0000			
80-90	0.0000	0.0000	0.0000	0.0009	0.0462	0.1080	0.0687	0.0562	0.0000	0.0000	0.0000			
90-100	0.0000	0.0000	0.0000	0.0005	0.0278	0.0559	0.0440	0.0392	0.0000	0.0000	0.0000			
100-110	0.0000	0.0000	0.0000	0.0000	0.0141	0.0298	0.0284	0.0275	0.0000	0.0000	0.0000			
110-120	0.0000	0.0000	0.0000	0.0000	0.0045	0.0138	0.0187	0.0197	0.0000	0.0000	0.0000			
120-130	0.0000	0.0000	0.0000	0.0000	0.0008	0.0055	0.0129	0.0151	0.0000	0.0000	0.0000			
130-140	0.0000	0.0000	0.0000	0.0000	0.0001	0.0017	0.0090	0.0120	0.0000	0.0000	0.0000			
140-150	0.0000	0.0000	0.0000	0.0000	0.0000	0.0003	0.0059	0.0093	0.0000	0.0000	0.0000			
150-160	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0033	0.0067	0.0000	0.0000	0.0000			
160-170	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0014	0.0041	0.0000	0.0000	0.0000			
170-180	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0009	0.0037	0.0000	0.0000	0.0000			
180-190	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0004	0.0030	0.0000	0.0000	0.0000			
190-200	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0002	0.0021	0.0000	0.0000	0.0000			

	Valori Medi	
Magnitudo	Distanza	Epsilon
5.2	17.0	0.534


Per lo stato SLD (corrispondente a probabilità di eccedenza del 63%) l'Intervallo Magnitudo da 4.0 a 6.5 distanza da 0 a 40 km. Magnitudo media 5.20.

ANAS S.p.A. DG 03-17

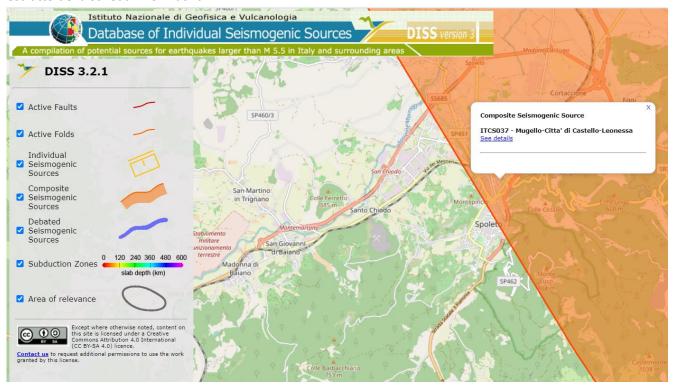
PROGETTO ESECUTIVO

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

	Disaggregazione di PGA con probabilità di eccedenza del 81% in 50 anni (Coordinate del punto: lat. 42.732 lon. 12.741)													
Distanza	Magnitudo (Mw)													
(Km)	3.5- 4.0	4.0- 4.5	4.5-5.0	5.0- 5.5	5.5- 6.0	6.0- 6.5	6.5- 7.0	7.0- 7.5	7.5- 8.0	8.0- 8.5	8.5- 9.0			
0-10	0.0000	8.8100	12.7000	5.4200	2.0800	0.7540	0.0963	0.0307	0.0000	0.0000	0.0000			
10-20	0.0000	6.2300	11.8000	7.3000	3.7700	1.8100	0.5380	0.1830	0.0000	0.0000	0.0000			
20-30	0.0000	2.0500	5.0800	4.4200	3.0600	1.9000	0.7390	0.2830	0.0000	0.0000	0.0000			
30-40	0.0000	0.5870	1.9900	2.3200	2.0400	1.5600	0.7500	0.3260	0.0000	0.0000	0.0000			
40-50	0.0000	0.0866	0.7010	1.1500	1.2400	1.1100	0.6090	0.2960	0.0000	0.0000	0.0000			
50-60	0.0000	0.0022	0.1740	0.5060	0.6520	0.6320	0.3290	0.1780	0.0000	0.0000	0.0000			
60-70	0.0000	0.0000	0.0295	0.2320	0.3840	0.4100	0.2120	0.1260	0.0000	0.0000	0.0000			
70-80	0.0000	0.0000	0.0027	0.0951	0.2300	0.2730	0.1390	0.0895	0.0000	0.0000	0.0000			
80-90	0.0000	0.0000	0.0000	0.0336	0.1390	0.1840	0.0944	0.0658	0.0000	0.0000	0.0000			
90-100	0.0000	0.0000	0.0000	0.0177	0.0968	0.1080	0.0651	0.0487	0.0000	0.0000	0.0000			
100-110	0.0000	0.0000	0.0000	0.0077	0.0627	0.0686	0.0452	0.0362	0.0000	0.0000	0.0000			
110-120	0.0000	0.0000	0.0000	0.0017	0.0300	0.0409	0.0323	0.0275	0.0000	0.0000	0.0000			
120-130	0.0000	0.0000	0.0000	0.0001	0.0110	0.0237	0.0247	0.0222	0.0000	0.0000	0.0000			
130-140	0.0000	0.0000	0.0000	0.0000	0.0035	0.0134	0.0194	0.0187	0.0000	0.0000	0.0000			
140-150	0.0000	0.0000	0.0000	0.0000	0.0013	0.0070	0.0148	0.0154	0.0000	0.0000	0.0000			
150-160	0.0000	0.0000	0.0000	0.0000	0.0004	0.0029	0.0105	0.0118	0.0000	0.0000	0.0000			
160-170	0.0000	0.0000	0.0000	0.0000	0.0001	0.0010	0.0062	0.0078	0.0000	0.0000	0.0000			
170-180	0.0000	0.0000	0.0000	0.0000	0.0000	0.0003	0.0051	0.0076	0.0000	0.0000	0.0000			
180-190	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0039	0.0068	0.0000	0.0000	0.0000			
190-200	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0028	0.0054	0.0000	0.0000	0.0000			

	Valori Medi	
Magnitudo	Distanza	Epsilon
5.17	20.7	0.455

Per lo stato SLO (corrispondente a probabilità di eccedenza del 81%) l'Intervallo Magnitudo da 4.0 a 6.5 distanza da 0 a 50 km. Magnitudo media 5.17.



T00EG00GENRE01 A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

5.4 Banca Dati Faglie Sismogenetiche

Consultando la banca dati ufficiale INGV (http://diss.rm.ingv.it/diss/) emerge che i terreni oggetto di studio ricadono nella sorgente sismogenetica ITCS037 Mugello-Città di Castello Leonessa di cui di seguito si riporta un estratto della scheda informativa.

Dati e mappe estratte dalla banca dati INGV (DISS - http://diss.rm.ingv.it/diss/).

DISS-ID	ITCS037
Name	Mugello-Citta' di Castello-Leonessa
Compiler(s)	Burrato P.(1), Vannoli P.(1), Fracassi U.(1)
Contributor(s)	Burrato P.(1), Vannoli P.(1), Fracassi U.(1)
Affiliation(s)	 Istituto Nazionale di Geofisica e Vulcanologia; Sismologia e Tettonofisica; Via di Vigna Murata, 605, 00143 Roma, Italy
Created	08-Jan-2005
Updated	30-Apr-2010
Display map	
Related sources	TIS060

PARAMETER		QUALITY	EVIDENCE
Min depth [km]	0.5	EJ	Inferred from regional tectonic considerations.
Max depth [km]	8.0	EJ	Inferred from regional tectonic considerations.
Strike [deg] min max	280330	EJ	Inferred from regional geologic
Din Ideal min man	OF 40	EI	Informed from regional goalegie

PARAMETRIC INFORMATION

Strike [deg] min... max 280...330 EJ Inferred from regional geological data.

Dip [deg] min... max 25...40 EJ Inferred from regional geological data.

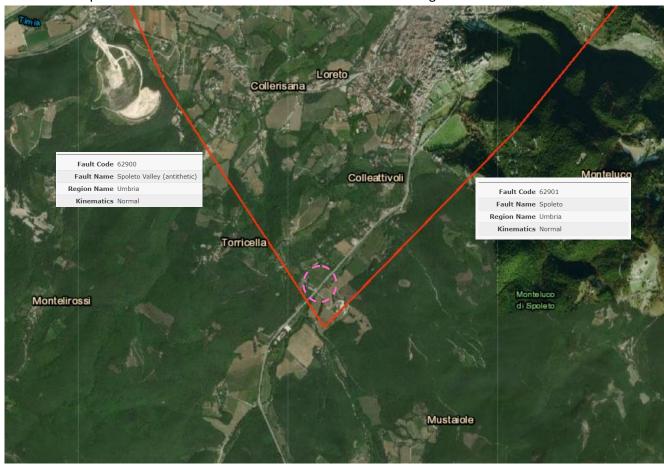
Rake [deg] min... max 260...280 EJ Inferred from regional geological data.

Slip Rate [mm/y] min... max 0.1...1.0 EJ Unknown, values assumed from geodynamic constraints.

Max Magnitude [Mw] 6.2 OD Derived from maximum magnitude of associated individual source(s).

LD=LITERATURE DATA; OD=ORIGINAL DATA; ER=EMPIRICAL RELATIONSHIP; AR=ANALYTICAL RELATIONSHIP; EJ=EXPERT JUDGEMENT;

T00EG00GENRE01 A


S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

La struttura è descritta come segue:

"Questa sorgente corre per oltre 200 km lungo la spina dorsale dell'Appennino settentrionale, dalla città di Pistoia (a nord-ovest) verso l'alta valle della Nera R. (a sud-est). Costituisce il nucleo dell'Etrurian Fault System extensional belt Che segna il confine estensionale occidentale dell'Appennino settentrionale. I cataloghi storici e strumentali (Boschi et al., 2000; Gruppo di Lavoro CPTI, 2004; Pondrelli et al., 2006; Guidoboni et al., 2007) mostrano valori di Mw compresi tra: 4,5 <Mw< 5.0, in particolare nei settori nordoccidentale e sudorientale. Inoltre, si sono verificati i principali terremoti dannosi e distruttivi (da nord-ovest a sud-est): 13 giugno 1542 (Mw 5,9, Mugello), 29 giugno 1919 (Mw 6,2, Mugello), 26 aprile 1917 (Mw 5,8, Monterchi-Citerna), 25 dicembre 1352 (Mw 6,0, Monterchi), 26 aprile 1458 (Mw 5,9, Città di Castello), 13 gennaio 1832 (Mw 5,8, Foligno), 15 settembre 1878 (Mw 5,5, Montefalco) e 5 giugno 1767 (Mw 5,4, Spoletino).

5.5 Banca Dati Faglie Capaci ITHACA

La banca dati faglie sismogenetiche ITHACA (ITaly HAzards from CApable faults) colleziona le informazioni disponibili sulle faglie capaci che interessano il territorio italiano sulla base di una revisione critica della letteratura disponibile. Nel territorio di 9intereesse sono censite due faglie normali.

Tratto da:ITHACA Working Group (2019). ITHACA (ITaly HAzard from CApable faulting), A database of active capable faults of the Italian territory. Version December 2019. ISPRA Geological Survey of Italy. Web Portal http://sgi2.isprambiente.it/ithacaweb/Mappatura.aspx

T00EG00GENRE01 A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

In sintesi, le caratteristiche dei due lineamenti tettonici:

	Fault description		Fault description
GENERAL IDENTIFICATION		GENERAL IDENTIFICATION	N
Fault Code	62900	Fault Code	62901
Fault Name	Spoleto Valley (antithetic)	Fault Name	Spoleto
Region Name	Umbria	Region Name	Umbria
Tectonic Environment	ND	Tectonic Environment	ND
System Name	Spoleto Valley (antithetic)	System Name	Spoleto Valley (antithetic)
Synopsis		Synopsis	
Rank	Secondary	Rank	Secondary
GEOMETRY AND KINEMATICS	S	GEOMETRY AND KINEMA	TICS
Segmentation	Single Segment	Segmentation	Single Segment
Average Strike (°)	330	Average Strike (°)	230
Dip (°)	Undefined	Dip (°)	Undefined
Dip Direction	ENE	Dip Direction	NW
Fault Length (km)	14.3	Fault Length (km)	8.0
Mapping Scale	1:	Mapping Scale	1:
Fault Depth (m)		Fault Depth (m)	
Kinematics	Normal	Kinematics	Normal
ACTIVITY		ACTIVITY	
Surface Evidence	ND	Surface Evidence	ND
Last Activity	Pleistocene generic	Last Activity	Pleistocene generic
		,	<u> </u>

Gli stessi immergenti rispettivamente verso ENE (fault 62900) e verso NW (62901) sono disposte in senso appenninico e trasversale e fanno parte del sistema di faglie della "Spoleto valley"⁴.

5.6 Verifica alla liquefazione

Nell'area non si hanno testimonianze storiche di fenomeni di liquefazione.

L'indagine realizzata ed i rilevamenti di campagna hanno evidenziato la presenza di depositi grossolani fino a circa 6-7 mt. Al di sotto si ha uno spesso orizzonte argilloso.

In riferimento alle NTC2018 al punto 7.11.3.4.2 "Esclusione della verifica a liquefazione" si afferma che la verifica a liquefazione può essere omessa quando si manifesta almeno una delle seguenti circostanze:

- "1. accelerazioni massime attese al piano campagna in assenza di manufatti (condizioni di campo libero) minori di 0,1g;
- 2. profondità media stagionale della falda superiore a 15 m dal piano campagna, per piano campagna suborizzontale e strutture con fondazioni superficiali;
- 3. depositi costituiti da sabbie pulite con resistenza penetrometrica normalizzata (N1)60 > 30 oppure qc1N > 180 dove (N1)60 è il valore della resistenza determinata in prove penetrometriche dinamiche (Standard Penetration Test) normalizzata ad una tensione efficace verticale di 100 kPa e qc1N è il valore della resistenza determinata in prove penetrometriche statiche (Cone Penetration Test) normalizzata ad una tensione efficace verticale di 100 kPa;
- 4. distribuzione granulometrica esterna alle zone indicate nella Fig. 7.11.1(a) nel caso di terreni con coefficiente di uniformità Uc < 3,5 e in Fig. 7.11.1(b) nel caso di terreni con coefficiente di uniformità Uc > 3,5.".

Authors	Title	Reference	Year
AMBROSETTI P., BOSI C., CARRARO F., CIARANFI N., PANIZZA M., PAPANI G., VEZZANI L. & ZANFERRARI A. (1987)	Neotectonic Map of Italy, scale 1:500,000.	C.N.RP.F.G., Sottoprogetto Neotettonica, Fogli 1-6.	1987


T00EG00GENRE01 A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

Il sondaggio S1 ha intercettato la falda a 7 mt dal p.c. e pertanto si esegue la verifica alla liquefazione.

È stata effettuata una verifica mediante il software LiqIT della Geologismiki. Per l'elaborazione dei dati si è utilizzato il metodo di calcolo Eurocode 8.

Per quanto riguarda la magnitudo da usare in analisi sulla liquefazione, il consiglio è quello di usare la magnitudo massima attesa in ogni zona sismogenetica (si è scelta la magnitudo massima della zona 919 confinante con la 920 pari a 6.37). L'accelerazione di riferimento per lo SLV ha il valore di 0.38 (agmax). La falda è posta a 7 mt. Per la caratterizzazione del sottosuolo sono stati utilizzati i valori spt della prova penetromentrica P1.

T00EG00GENRE01_A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

:: Liquefa	ection po	tential acc	ording to Iwas	ak
Point ID	F	Wz	IL	
1	0.00	9.90	0.00	
2	0.00	9.80	0.00	
3	0.00	9.70	0.00	
4	0.00	9.60	0.00	
5	0.00	9.50	0.00	
6	0.00	9.40	0.00	
7	0.00	9.30	0.00	
8	0.00	9.20	0.00	
9	0.00	9.10	0.00	
10	0.00	9.00	0.00	
11	0.00	8.90	0.00	
12	0.00	8.80	0.00	
13	0.00	8.70	0.00	
14	0.00	8.60	0.00	
15	0.00	8.50	0.00	
16	0.00	8.40	0.00	
17	0.00	8.30	0.00	
18	0.00	8.20	0.00	
19	0.00	8.10	0.00	
20	0.00	8.00	0.00	
21	0.00	7.90	0.00	
22	0.00	7.80	0.00	
23	0.00	7.70	0.00	
24	0.00	7.60	0.00	
25	0.00	7.50	0.00	
26	0.00	7.40	0.00	
27	0.00	7.30	0.00	
28	0.00	7.20	0.00	
29	0.00	7.10	0.00	
30	0.00	7.00	0.00	
31	0.00	6.90	0.00	
32	0.00	6.80	0.00	
33	0.00	6.70	0.00	
34	0.00	6.60	0.00	

:: Liquefa	ction po	tential acc	ording to Iv	vasaki ::
Point ID	F	Wz	\mathbf{I}_{L}	
35	0.00	6.50	0.00	
36	0.00	6.40	0.00	
37	0.00	6.30	0.00	
38	0.00	6.20	0.00	
39	0.00	6.10	0.00	
40	0.00	6.00	0.00	
41	0.00	5.90	0.00	
42	0.00	5.80	0.00	
43	0.00	5.70	0.00	
44	0.00	5.60	0.00	
45	0.00	5.50	0.00	
46	0.00	5.40	0.00	
47	0.00	5.30	0.00	
48	0.00	5.20	0.00	
49	0.00	5.10	0.00	
50	0.00	5.00	0.00	
51	0.00	4.90	0.00	
52	0.00	4.80	0.00	
53	0.00	4.70	0.00	
54	0.00	4.60	0.00	
55	0.00	4.50	0.00	
56	0.00	4.40	0.00	
57	0.00	4.30	0.00	
58	0.00	4.20	0.00	
59	0.00	4.10	0.00	
60	0.00	4.00	0.00	
61	0.00	3.90	0.00	
62	0.00	3.80	0.00	
63	0.00	3.70	0.00	
64	0.00	3.60	0.00	
65	0.00	3.50	0.00	
66	0.00	3.40	0.00	
67	0.00	3.30	0.00	
68	0.00	3.20	0.00	
69	0.00	3.10	0.00	
70	0.00	3.00	0.00	
71	0.00	2.90	0.00	
72	0.00	2.80	0.00	
73	0.00	2.70	0.00	
74	0.00	2.60	0.00	
75	0.00	2.50	0.00	

Overall potential I_L: 0.00

Dalla verifica eseguita risulta che il potenziale di liquefazione è nullo I_L=0.00.

 $I_{\rm c}=0.00$ – No liquefaction $I_{\rm c}$ between 0.00 and 5 - Liquefaction not probable $I_{\rm c}$ between 5 and 15 - Liquefaction probable $I_{\rm c}>15$ - Liquefaction certain

T00EG00GENRE01_A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

5.7 Carta delle Microzone Omogenee

Di seguito si riporta la cartografia (MOPS) rielaborata partendo dal file .SHP liberamente scaricabile dal sito istituzionale della Regione ed in particolare all'indirizzo internet del sito Umbriageo:

http://www.umbriageo.regione.umbria.it/catalogostazioni/catalogo.aspx.

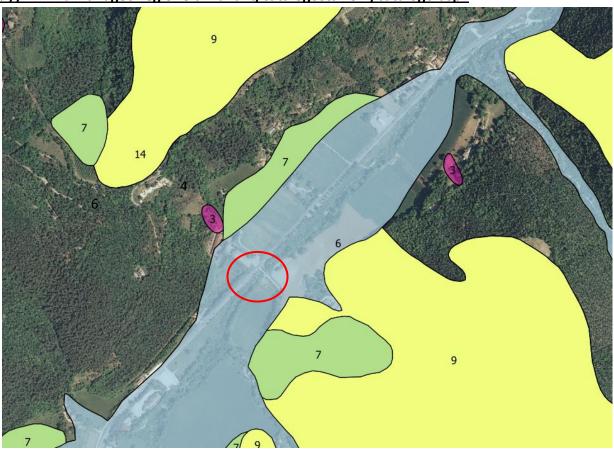


Figura 18: Carta di pericolosità sismica sezione 336050

- 1 Area caratterizzata da movimenti franosi attivi
 2 Area caratterizzata da movimenti franosi quiescenti
 3 Area potenzialmente franosa o esposta a rischio di frana
 - 4 Aree con terreni di fondazione particolamente scadenti (riporti pocoaddensati, terreni granulari fini con falda superficiale)
 - 6 Area di fondovalle con depositi alluvionali
 - 7 Area pedemontana di falda di detrito e cono di deiezione
 - 9 Zona dei depositi delle unità sintemiche non diversamente classificate
 - 14 Aree stabili non suscettibili di amplificazioni locali

Il sito di interesse ricade nelle seguenti zone stabili e suscettibili di amplificazione sismica locale:

6 - Area di fondovalle con depositi alluvionali.

PROGETTO ESECUTIVO T00EG00GENRE01_A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

6 MODELLO GEOLOGICO-TECNICO PARAMETRIZZAZIONE

Il sondaggio realizzato ha evidenziato la presenza di un orizzonte superficiale rimaneggiato celato da coltre agraria. Tale orizzonte caratterizzato da limi di colore marrone con ghiaia, sabbie frustoli vegetali e resti antropici (spessore 1.2 m). La penetrometria evidenzia un valore di Nspt per tale orizzonte pari a 3 (<4 colpi) e quindi si tratta di un terreno incoerente di consistenza "poco sciolto".

Al di sotto si estende un deposito prevalentemente ghiaioso sabbioso di natura calcarea. I clasti e ciottoli sono da sub arrotondati ad angolari (spessore 2.8 mt). La penetrometria evidenzia un valore di Nspt per tale orizzonte pari a 7 (4<Nspt<10 colpi) e quindi si tratta di un terreno incoerente di consistenza "sciolto".

Da 4.0 a 6.6 mt dal p.c. il deposito alluvionale è costituito da sabbia medio grossolana di natura calcarea in matrice argillosa di coltre nocciola (spessore 2.6 mt). La penetrometria evidenzia un valore di Nspt per tale orizzonte pari a 41 confrontabile con quello determinato con prove in situ (SPT nel foro di sondaggio) in tale intervallo di profondità (4<Nspt<10 colpi) ovvero 45. Si tratta di un terreno incoerente di consistenza "denso".

Da 6.6 mt a 30 mt (profondità massima indagata dal sondaggio S1) si rinviene la presenza di argilla grigia di consistenza "Durissima" con intercalazioni di frustoli carboniosi e torbe.

Le Nspt realizzate nelle argille evidenziano consistenza cha va da "molto duro" a "Durissimo".

L'indagine geofisica non ha rinvenuto la presenza di bedrock sismico fino a 30 mt dal p.c..

Per l'identificazione della categoria di sottosuolo in questa fase si è fatto riferimento alle informazioni derivanti dalla acquisizione delle conoscenze della geologia del sito e dall'indagine geofisica condotta. La classificazione si effettua in base ai valori della velocità equivalente Vs30 definita mediante l'equazione 3.2.II delle NTC2018. La prova sismica evidenzia una velocità Vs equivalente riconducibile alla Categoria di sottosuolo C.

Tab. 3.2.II – Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato.

Categoria	Caratteristiche della superficie topografica
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consi- stenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consi- stenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del- le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consi- stenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del- le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
Е	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le catego- rie C o D, con profondità del substrato non superiore a 30 m.

T00EG00GENRE01 A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800

La categoria topografica è legata alla configurazione del piano campagna ed è determinabile attraverso la Tabella 3.2.III delle NTC2018.

Tab. 3.2.III - Categorie topografiche

Categoria	Caratteristiche della superficie topografica								
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°								
T2	Pendii con inclinazione media i > 15°								
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° ≤ i ≤ 30°								
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°								

I valori massimi del coefficiente di amplificazione topografica sono presentati nella Tabella 3.2.V delle NTC2018.

Tab. 3.2.V - Valori massimi del coefficiente di amplificazione topografica S_T

Categoria topografica	Ubicazione dell'opera o dell'intervento	S _T
T1	-	1,0
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta di un rilievo con	1,2
	pendenza media minore o uguale a 30°	
T4	In corrispondenza della cresta di un rilievo con	1,4
	pendenza media maggiore di 30°	

L'area in esame ricade in un pendio con pendenza inferiore a 15°, ne consegue che la classe per il sito in esame è:

Categoria topografica	Descrizione	Valore massimo coefficiente S_T
T1	Pendii con inclinazione media i < 15°	1.0

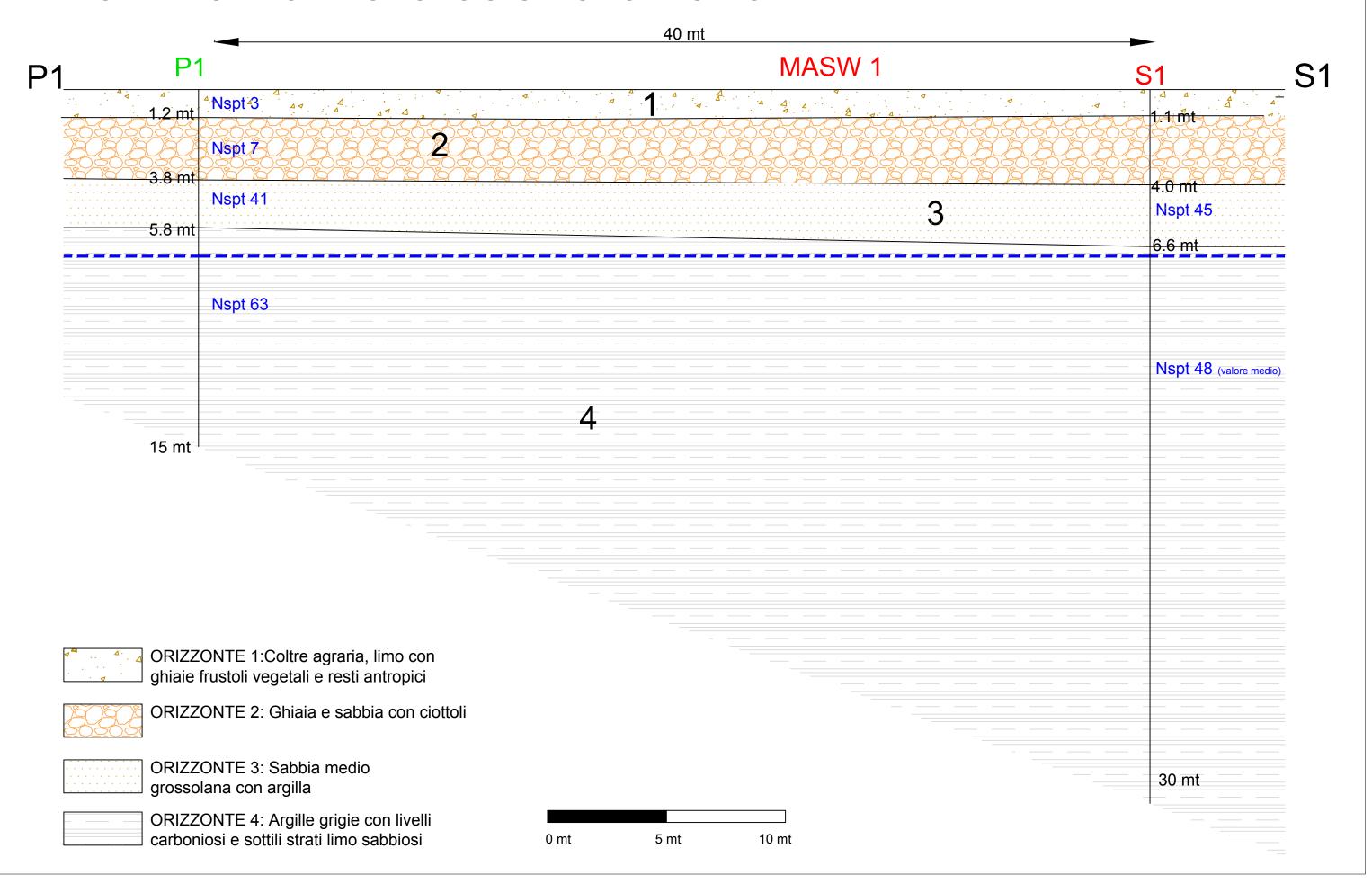
6.1 Profilo geotecnico di riferimento

Il profilo geotecnico di riferimento tine conto di tutti i dati relativi all'indagine condotta. Sono stati individuati n°4 livelli. Di seguito la sintesi della parametrizzazione riportata anche in allegato. Per approfondimenti sulle indagini condotte si rimanda allo specifico report di indagine redatto dalla GEOSERVING SRL.

•					•		_													
IINIA 3 PUNTO (CRITICO 29) - PARA	AMENTRIZZAZIO!	NE GEO	TECNICA	A E SISM	ИICA														
Profondità media	Orizzonti geologici				Comportamento geomeccanico	PROVE IN SITU (da Cestelli Guidi)			DA PROVE PENETROMETRICHE					DA LABORATORIO GEOMECCANICO						
orizzonti	descrizione	pravalente	Nspt	Cu kPa	phi	Nspt	y= kN/mc	phi*	Cu kPa**	Dr%***	y= kN/mc	phi	C' kPa	Dr%	limite liquido LL	limite plastico LP	indice plasticità			
0-1.2 mt	_	attritivo	-	-	-	3	16.6	23.3	21	16.4	-	-	-	-	-	-	-			
1.2-4.0 mt	Ghiaia e sabbia con ciottoli	attritivo	-	-	-	7	18.9	26.9	45	26.3	-	-	-	-	-	-	-			
4.0-6.6 mt	Sabbia medio grossolana con argilla	attritivo	45	-	38°	41	21.0	43.7	278	73.3	-	1	-	-	-	-	-			
			32																	
6 6-30 mt	Argille grigie	coesivo	47	1	40°	63	22.0	_	126		10.3	29 2	23.0	28.3	51	29	21			
0.0 00	, a gaine gargae	0000110	55			00	22.0		120		13.3	23.2	20.0	20.5	51					
			59																	
ki & Iwasaki	** Terzaghi e Peck			***Ske	mpton	1986														
i sottosuolo "C"	da NTC 2018 (M	ASW - Vs30=345	m/s)																	
	Profondità media orizzonti 0-1.2 mt 1.2-4.0 mt 4.0-6.6 mt 6.6-30 mt	Profondità media orizzonti geologici descrizione 0-1.2 mt 1.2-4.0 mt 4.0-6.6 mt 6.6-30 mt Coltre agraria, limo con ghiaie frustoli vegetali e resti antropici Sabbia medio grossolana con argilla Argille grigie ** Terzaghi e Peck	Profondità media orizzonti geologici descrizione comportamento geomeccanico pravalente functione descrizione con geomeccanico pravalente functione con ghiaie frustoli vegetali e resti antropici con ciottoli con ciottoli descrizione attritivo descrizione con ciottoli con ciottoli descrizione della con ciottoli descrizione con ciottoli descrizione della con ciottoli descrizione con ciottoli descrizione della con ciottoli descrizione della con ciottoli della ciottoli della con ciottoli della con ciottoli della con ciottoli	Profondità media orizzonti geologici descrizione Comportamento geomeccanico pravalente Nspt	Profondità media orizzonti geologici descrizione Comportamento geomeccanico pravalente Nspt Cu kPa	Profondità media orizzonti geologici descrizione Comportamento geomeccanico pravalente Nspt Cu kPa phi	Profondità media orizzonti geologici descrizione geomeccanico pravalente Nspt Cu kPa phi Nspt Coltre agraria, limo con ghiaie frustoli vegetali e resti antropici 1.2-4.0 mt Ghiaia e sabbia con ciottoli sono con ciottoli sabbia medio grossolana con argilla 4.0-6.6 mt Argille grigie coesivo 45 - 38° 41 6.6-30 mt Argille grigie coesivo 47 - 55 - 59 ***Skempton 1986	Profondità media orizzonti Orizzonti geologici descrizione Comportamento geomeccanico pravalente Nspt Gu kPa phi Nspt y=kN/mc	Profondità media orizzonti Comportamento geomeccanico pravalente Nspt Guidi) Nspt Y= kN/mc phi*	Profondità media orizzonti Orizzonti geologici descrizione Comportamento geomeccanico pravalente Nspt Cu kPa phi Nspt y= kN/mc phi* Cu kPa*** O-1.2 mt Coltre agraria, limo con ghiaie frustoli vegetali e resti antropici 1.2-4.0 mt Ghiaia e sabbia con ciottoli attritivo - 7 18.9 26.9 45	Profondità media orizzonti Orizzonti geologici descrizione Comportamento geometcanico pravalente Nspt Cu kPa phi Nspt y=kN/mc phi* Cu kPa** Dr%***	Profondità media orizzonti Comportamento geomeccanico descrizione Comportamento geomeccanico pravalente Nspt Cu kPa phi Nspt y= kN/mc phi* Cu kPa** Dr%*** y= kN/mc	Profondità media orizzonti Orizzonti geologici descrizione Comportamento geometcanico pravalente Nspt Cu kPa phi Nspt y=kN/mc phi* Cu kPa* Dr%*** y=kN/mc phi Nspt V=kN/mc phi* Nspt V=kN/mc phi* Nspt V=kN/mc phi* DA PROVE PENETROMETRICHE Dr%*** y=kN/mc phi Nspt V=kN/mc phi* Dr%*** y=kN/mc phi* Dr%	Profondità media orizzonti Profondità Profondità media orizzonti P	Profondità media orizzonti Profondità orizzonti Pr	Profondità media orizzonti Comportamento geomeccanico pravalente Orizzonti geologici descrizione Comportamento geomeccanico pravalente Nspt Cu kPa phi Nspt y=kN/mc phi* Cu kPa** DA PROVE PENETROMETRICHE DA LABORATORIO GEOMECCANICO geomeccanico pravalente Nspt Cu kPa phi Nspt y=kN/mc phi* Cu kPa** Driventa Province P	Profondità media orizzonti Profondità med			

T00EG00GENRE01_A

S.S. 3 "Flaminia" – Progettazione definitiva ed esecutiva dei lavori di potenziamento e riqualificazione dell'infrastruttura – Intersezione ponte in muratura al km 122+800


7 CONSIDERAZIONI CONCLUSIVE

Il progetto in esame interessa un'area non gravata da vincoli geologici idrogeologici e di pericolosità sismica. L'intervento realizzato ai sensi della normativa vigente dovrà tener conto dell'assetto geologico stratigrafico e della parametrizzazione geotecnica sismica desunta dallo studio eseguito.

Le strutture fondali del vecchio ponte sul torrente Tessino sono state protette da fenomeni di scalzamento al piede da opere di regimazione idraulica (briglie), di cui si consiglia la salvaguardia e la manutenzione a garanzia della stabilità del ponte.

Per ogni altro particolare si rimanda agli specifici elaborati progettuali.

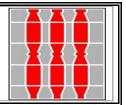
TAVOLA 1: SEZIONE GEOLOGICA-GEOTECNICA

TAVOLA 2: TABELLA PARAMETRIZZAZIONE GEOTECNICA E SISMICA

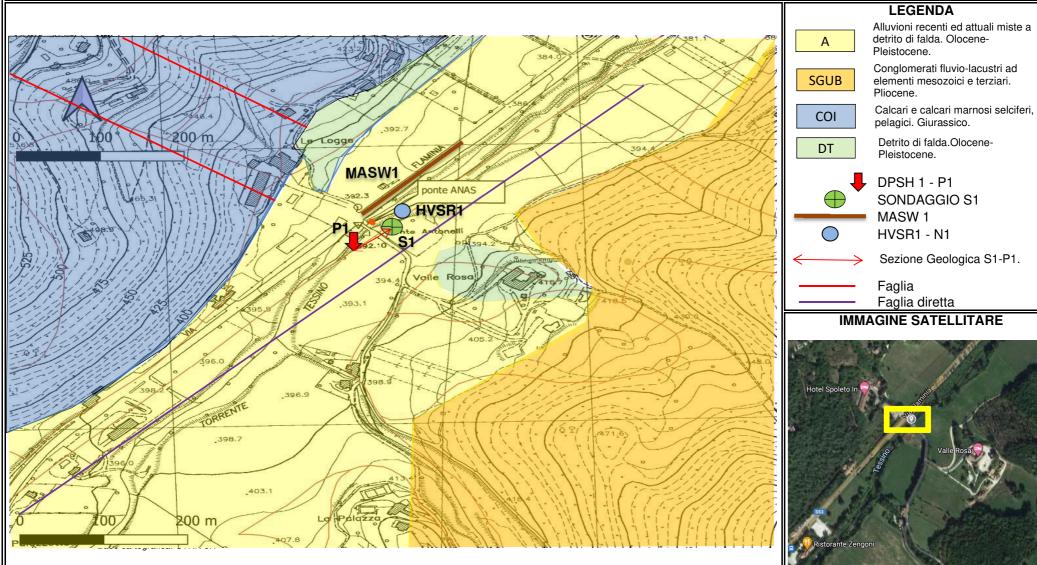
Orizzonti	Profondità media orizzonti					Comportamento geomeccanico	PROVE IN SITU (da Cestelli Guidi)			DA PROVE PENETROMETRICHE						DA L	ABORATO	RIO GEOMECO	ANICO	
		descrizione	pravalente	Nspt	Cu kPa	phi	Nspt	y= kN/mc	phi*	Cu kPa**	Dr%***	y= kN/mc	phi	C' kPa	Dr%	limite liquido LL	limite plastico LP	indice plasticità IP		
1	0-1.2 mt	Coltre agraria, limo con ghiaie frustoli vegetali e resti antropici	attritivo	-	_	-	3.4	16.6	23.25	21	16.44	-	+	-	-	-	-	-		
2	1.2-4.0 mt	Ghiaia e sabbia con ciottoli	attritivo	-	-	-	7.13	18.9	26.94	45	26.29	-	-	-	-	-	-	-		
3	4.0-6.6 mt	Sabbia medio grossolana con argilla	attritivo	45	_	38°	41.13	21	43.68	278	73.27		-	-	·	-	-	-		
4	6.6-30 mt	Argille grigie con livelli carboniosi e sottili strati limo sabbiosi	coesivo	32 47 55 59		40°	63	22.0	-	426	-	19.3	29.2	23.0	28.3	51	29	21		

*Owasaki & Iwasaki ** Terzaghi e Peck ***Skempton 1986

Classe di sottosuolo "C" da NTC 2018 (MASW - Vs30=345 m/s)

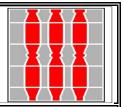

ALLEGATO 1a: CARTA GEOLOGICA CON UBICAZIONE PROVE IN SITO

Base cartografica: CTR 5K

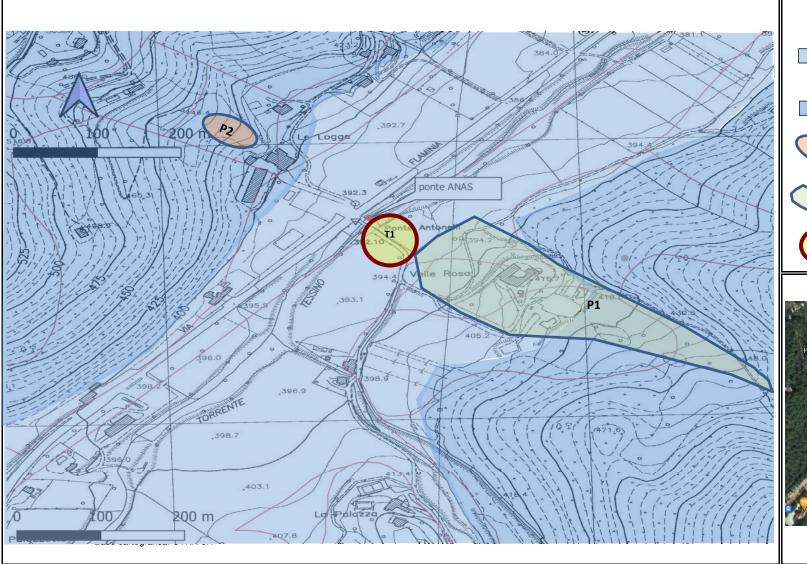


REGIONE UMBRIA

RICHIEDENTE: ANAS S.p.A. - Struttura Territoriale Umbra


ALLEGATO 1b: CARTA GEOMORFOLOGICA

Base cartografica: CTRN 5K



REGIONE UMBRIA

RICHIEDENTE: ANAS S.p.A. - Struttura Territoriale Umbra

LEGENDA

Pendenze geomorfologiche comprese tra 0÷20° (0÷36%).

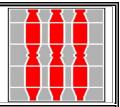
Pendenze geomorfologiche comprese tra 20÷30° (36÷58%).

Frana per scivolamento (fenomeno quiescente). Pericolosità media P2.

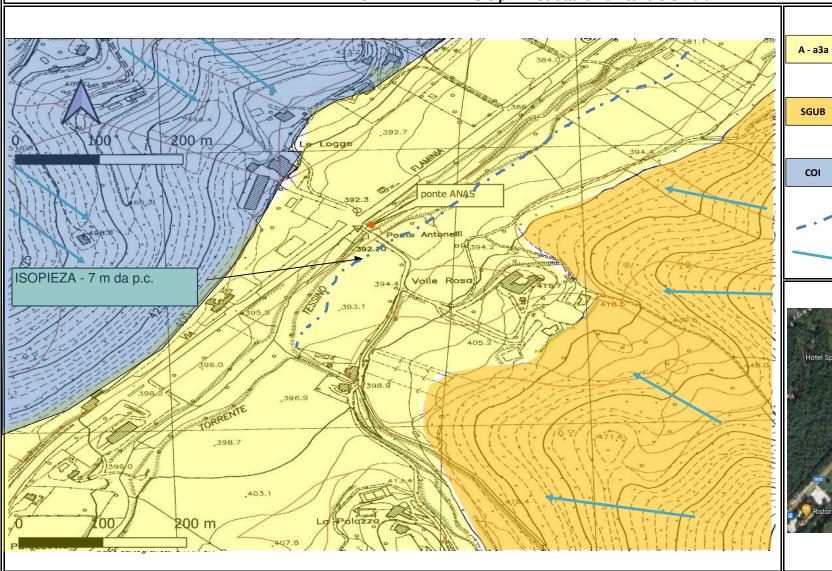
Falda e/o Cono di Detrito (fenomeno attivo). Pericolosità moderata P1.

Area di progetto con Categoria Topografica T1.

IMMAGINE SATELLITARE


ALLEGATO 1c: CARTA IDROGEOLOGICA

Base cartografica: CTRN 5K



REGIONE UMBRIA

RICHIEDENTE: ANAS S.p.A. - Struttura Territoriale Umbra

LEGENDA

Complesso Idrogeologico delle alluvioni recenti ed attuali miste a detrito di falda della Valle Umbra. A-a3a. Olocene-Pleistocene. Permeabilità e Vulnerabilità per porosità medio-alta.

Complesso Idrogeologico dei conglomerati fluvio-lacustri ad elementi mesozoici e terziari. Pliocene. SGUB. Permeabilità e Vulnerabilità per porosità medio-alta.

Complesso Idrogeologico dei calcari e calcari marnosi selciferi, pelagici. Giurassico. COI. Permeabilità per fratturazione alta.

 ISOPIEZA - 7 m da piano campagna ottenuta dai punti di

Direzione del del deflusso idrico in profondità.

IMMAGINE SATELLITARE

