PARTE GENERALE – OPERA 2 E 3 Elettrodotto aereo 150 kV "Assoro-Regalbuto" e "Regalbuto Sferro" RELAZIONE TECNICA ILLUSTRATIVA

Opere sulla RTN a 150 kV per la connessione della Sottostazione Elettrica RFI di Regalbuto-Catenanuova

_						
<u>N</u>						
SIN						
RE	00	23.06.2021	Prima emissione	M. Tigre SPS-SVP-PRA	G. Savica SPS-SVP-PRA	L. Simeone SPS-SVP-PRA
	N.	DATA	DESCRIZIONE	ELABORATO	VERIFICATO	APPROVATO

CODIFICA ELABORATO

REGR20005B2047039

Questo documento contiene informazioni di proprietà Terna Rete Italia S.p.A. e deve essere utilizzato esclusivamente dal destinatario in relazione alle finalità per le quali è stato ricevuto. È vietata qualsiasi forma di riproduzione o di divulgazione senza l'esplicito consenso di Terna Rete Italia S.p.A.

This document contains information proprietary to Terna Rete Italia S.p.A. and it will have to be used exclusively for the purposes for which it has been furnished. Whichever shape of spreading or reproduction without the written permission of Terna Rete Italia S.p.A. is prohibit.

RELAZIONE TECNICA ILLUSTRATIVA

Codifica Elaborato:

REGR20005B2047039

Rev. 00 Data 23/06/2021

INDICE

1 PREMESSA	3
2 MOTIVAZIONI DELL'OPERA	4
3 UBICAZIONE DELL' OPERA	4
3.1 Premessa	4
3.2 Criteri localizzativi e progettuali	4
3.3 Opere attraversate	5
4 DESCRIZIONE DELL'OPERA	5
4.1 Consistenza dell'opera	5
4.2 Descrizione del tracciato	6
4.3 Vincoli ambientali	7
4.4 Distanze di sicurezza rispetto alle attività soggette a controllo prevenzione incendi	7
5 TEMPI DI REALIZZAZIONE DELLE OPERE	9
6 CARATTERISTICHE TECNICHE DELL'OPERA	9
6.1 Premessa	9
6.2 Caratteristiche elettriche dell'elettrodotto aereo	10
6.3 Componenti dell'Elettrodotto	10
6.4 Fondazioni	11
6.5 Sostegni	14 15
6.6 Messe a terra dei sostegni 6.7 Distanza tra i sostegni	15
6.8 Isolamento	15
Caratteristiche geometriche	15
Caratteristiche elettriche	16
6.9 Morsetteria ed Armamenti	18
6.10 Conduttori e corde di guardia	19
Stato di tensione meccanica	19
6.11 Capacità di Trasporto	20
7 TERRE E ROCCE DA SCAVO	20
8 RUMORE	21
9 INQUADRAMENTO GEOLOGICO PRELIMINARE	21
10 VALUTAZIONE DEI CAMPI ELETTRICI E MAGNETICI	21
10.1Richiami normativi	21
10.2 Campi elettrici e magnetici	23
11 NORMATIVA DI RIFERIMENTO	24
11.1 Leggi	24
11.2 Norme tecniche	25
Norme CEI	25
Norme tecniche diverse	25
12 AREE IMPEGNATE	25
13 PISTE DI CANTIERE	26
14 SICUREZZA NEI CANTIERI	27

RELAZIONE TECNICA ILLUSTRATIVA

Codifica Elaborato:

REGR20005B2047039

Rev. 00 Data 23/06/2021

1 PREMESSA

La società Terna – Rete Elettrica Nazionale S.p.A. è la società concessionaria in Italia della trasmissione e del dispacciamento dell'energia elettrica sulla rete ad alta e altissima tensione ai sensi del Decreto del Ministero delle Attività Produttive del 20 aprile 2005 (Concessione).

La pianificazione dello sviluppo della Rete di Trasmissione Nazionale (RTN) è effettuata da Terna al fine di perseguire gli obiettivi indicati dal Disciplinare di Concessione come previsto dal D.lgs. 93/2011 e modificato dal decreto legislativo 76/2020 art.60 e ss.mm.ii..

In conformità a quanto stabilito nel D. Lgs. n.79 del 16 marzo 1999 e nel rispetto del Codice di Rete, le richieste di connessione pervenute a Terna vengono esaminate per definire, caso per caso, la soluzione di collegamento più idonea, sulla base di criteri che, tenendo conto della congruità economica delle opere di allacciamento, possano garantire la continuità e la sicurezza di esercizio della rete su cui il nuovo impianto si va ad inserire.

Il Piano di Sviluppo a partire dall'edizione 2017 nella Tabella 5 – "Connessioni Utenti di consumo" prevede la realizzazione di un nuovo collegamento 150 kV della nuova SSE di Catenanuova alla CP di Assoro e alla SE RTN 150 kV di Sferro.

Ai sensi della Legge 23 agosto 2004 n. 239, al fine di garantire la sicurezza del sistema energetico e di promuovere la concorrenza nei mercati dell'energia elettrica, la costruzione e l'esercizio degli elettrodotti facenti parte della rete nazionale di trasporto dell'energia elettrica sono attività di preminente interesse statale e sono soggetti a un'autorizzazione unica, rilasciata dal Ministero della Transizione Ecologica (già Ministero dello Sviluppo Economico di concerto con il Ministero dell'Ambiente e della Tutela del Territorio e del Mare), previa intesa con la Regione o le Regioni interessate, la quale sostituisce autorizzazioni, concessioni, nulla osta e atti di assenso comunque denominati previsti dalle norme vigenti, costituendo titolo a costruire e ad esercire tali infrastrutture in conformità al progetto approvato.

Ai sensi del Decreto Legislativo n°140 del 2 Agosto 2007, pubblicato in Gazzetta Ufficiale N. 205 del 4 Settembre 2007, denominato "Norme di attuazione dello statuto speciale della Regione Siciliana, concernenti modifiche ed integrazioni al decreto del Presidente della Repubblica 30 luglio 1950, n. 878, in materia di opere pubbliche", la Regione Siciliana, in qualità di regione a statuto speciale, d'intesa con le competenti amministrazioni statali, autorizza le linee elettriche con tensione pari o inferiore a 150.000 Volt facenti parte della rete elettrica di trasmissione nazionale.

RELAZIONE TECNICA ILLUSTRATIVA

Codifica Elaborato:

REGR20005B2047039

Rev. 00 Data 23/06/2021

2 MOTIVAZIONI DELL'OPERA

Per le motivazioni dell'opera si rimanda al paragrafo 2 della Relazione Generale facente parte del presente pacchetto progettuale.

3 UBICAZIONE DELL' OPERA

3.1 Premessa

La progettazione dell'opera è stata sviluppata tenendo in considerazione un sistema di indicatori sociali, ambientali e territoriali, che hanno permesso di valutare gli effetti della pianificazione elettrica nell'ambito territoriale considerato nel pieno rispetto degli obiettivi della salvaguardia, tutela e miglioramento della qualità dell'ambiente, della protezione della salute umana e dell'utilizzazione accorta e razionale delle risorse naturali.

Tra le possibili soluzioni, è stato individuato il tracciato più funzionale, che tenga conto di tutte le esigenze e delle possibili ripercussioni sull'ambiente, con riferimento alla legislazione nazionale e regionale vigente in materia.

3.2 Criteri localizzativi e progettuali

Il tracciato dell'elettrodotto è stato studiato in armonia con quanto dettato dall'art. 121 del T.U. 11/12/1933 n. 1775, comparando le esigenze della pubblica utilità delle opere con gli interessi pubblici e privati coinvolti, cercando in particolare di:

- contenere per quanto possibile la lunghezza del tracciato per occupare la minor porzione possibile di territorio;
- minimizzare l'interferenza con le zone di pregio ambientale, naturalistico, paesaggistico e archeologico;
- recare minor sacrificio possibile alle proprietà interessate, avendo cura di vagliare le situazioni esistenti sui fondi da asservire rispetto anche alle condizioni dei terreni limitrofi;
- evitare, per quanto possibile, l'interessamento di aree urbanizzate o di sviluppo urbanistico;
- assicurare la continuità del servizio, la sicurezza e l'affidabilità della Rete di Trasmissione Nazionale:
- permettere il regolare esercizio e manutenzione degli elettrodotti.

L'ubicazione dell'opera in oggetto è riportata nei seguenti documenti allegati:

- Doc. n. DGGR20005B2047694 Planimetria generale su carta IGM;
- Doc. n. DGGR20005B2047262 Inquadramento territoriale.

Dal punto di vista **urbanistico** si è fatto riferimento alle disposizioni presenti negli strumenti urbanistici vigenti nei Comuni interessati dall'opera, così come riportati nella planimetria allegata:

RELAZIONE TECNICA ILLUSTRATIVA

Codifica Elabora	ato:
REGR	20005B2047039
Pour 00	Data 22/06/2024

- Doc. n. DEGR20005B2047807 Planimetria con stralci PRG Agira;
- Doc. n. DEGR20005B2047472
 – Planimetria con stralci PRG Assoro;
- Doc. n. DEGR20005B2047146 Planimetria con stralci PRG Castel di Ludica;
- Doc. n. DEGR20005B2047593 Planimetria con stralci PRG Raddusa;
- Doc. n. DEGR20005B2047808 Planimetria con stralci PRG Ramacca;
- Doc. n. DEGR20005B2047381 Planimetria con stralci PRG Regalbuto;
- Doc. n. DEGR20005B2047809 Planimetria con stralci PRG Paternò.

3.3 Opere attraversate

Le opere attraversate dal nuovo elettrodotto da realizzare sono geograficamente ed univocamente individuate nel seguente elaborato:

• Doc. n. DEGR20005B2046922 - Planimetria CTR con indicazione opere attraversate

L'amministrazione, società o ente competente per ciascuna opera attraversata e/o interferita dall'elettrodotto da realizzare è individuata nel seguente elaborato:

• Doc. n. EEGR20005B2047805 - Elenco delle opere attraversate.

4 DESCRIZIONE DELL'OPERA

4.1 Consistenza dell'opera

L'opera oggetto del seguente paragrafo consiste in un nuovo elettrodotto da realizzarsi su palificata semplice terna. Il nuovo elettrodotto costituirà un collegamento elettrico diretto tra la C.P. di Assoro e la futura S.E. 150 kV di Regalbuto e tra questa e la S.E. di Sferro.

Opera 2 Elettrodotto aereo 150kV "Assoro-Regalbuto"				
Comune interessato	Lunghezza [km]	Sostegni [n°]		
Agira	5,22	18		
Assoro	2,5	8		
Castel di Iudica	0,89	2		
Raddusa	2,34	6		
Ramacca	3,85	12		
Regalbuto	0,51	2		
Totale	15,31	48		

RELAZIONE TECNICA ILLUSTRATIVA

Codifica Elaborato:

REGR20005B2047039

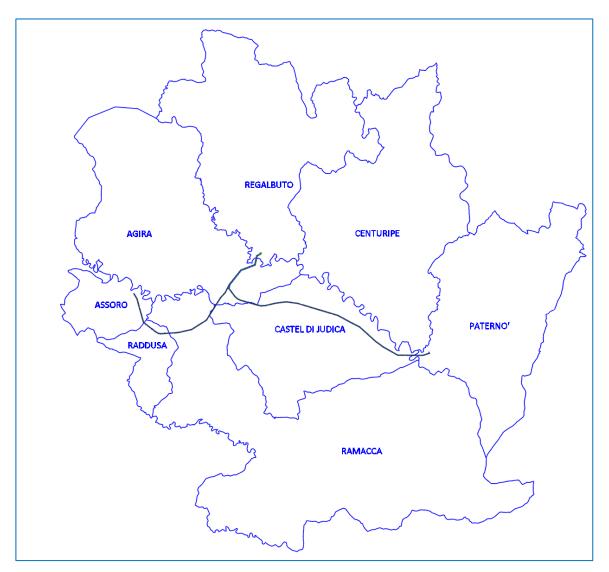
Rev. 00 Data 23/06/2021

Opera 3				
Elettrodotto aereo 150kV "Regalbuto-Sferro"				
Comune interessato	Lunghezza [km]	Sostegni [n°]		
Agira	5,82	17		
Castel di Iudica	14,18	39		
Paternò	1,56	6		
Regalbuto	0,47	2		
Totale	22,03	64		

4.2 Descrizione del tracciato

Il tracciato dell'elettrodotto aereo "CP di Assoro - SE 150 kV di Regalbuto" ha origine dal palo gatto della cabina primaria di Assoro e si estende per una lunghezza complessiva di circa 15,31 km fino ad arrivare al palo gatto della futura stazione di Regalbuto. Il tracciato, a partire dal Comune di Assoro, si sviluppa inizialmente in direzione sud-est, attraversando la ferrovia dello stato Caltanissetta-Xirbi-Bicocca, la strada statale S.S. 192 della Valle del Dittaino e il Vallone Cuticchi con la campata 2-3 e la strada comunale Capo Bianco Madre Rotonde con la campata 6-7 nel medesimo Comune di Assoro. Il tracciato prosegue nel Comune di Raddusa, in direzione sud-est, attraversando il Vallone Destricella con la campata 7-8 e una strada comunale con la campata 13-14. Il tracciato prosegue in direzione nord-est nel Comune di Ramacca attraversando la strada provinciale n. 123 con la campata 22-23, segue un tratto di circa 942 metri nel Comune di Castel di Judica attraversando il Vallone Terre Salse e la strada comunale Agira-Giardinelli con la campata 27-28 che termina nel Comune di Agira e prosegue in direzione nord verso Regalbuto. Nel Comune di Agira, i due elettrodotti "CP Assoro-SE Regalbuto" e "SE Regalbuto-SS.ne Sferro" confluiscono, rispettivamente in corrispondenza del sostegno 35 e 51, per proseguire con tracciati paralleli verso la futura stazione elettrica di Regalbuto, di cui all'opera 1, e attraversando la strada statale S.S. 192 della Valle del Dittaino e l'acquedotto dell'ente Acquedotto Siciliani in corrispondenza delle campate 38-39 e 54-55, il solo acquedotto con le successive campate 39-40 e 55-56, la Regia trazzera Regalbuto Caltagirone con la campata 40-41 e 56-57, l'autostrada A19 Palermo-Catania in corrispondenza delle campate 44-45 e 60-61, il fiume Dittaino e la ferrovia dello stato Caltanissetta-Xirbi-Bicocca in corrispondenza delle campate 45-46 e 61-62. I due tratti proseguono nel Comune di Regalbuto per terminare in corrispondenza dei pali gatto previsti nella futura stazione di smistamento attraversando l'acquedotto dell'ente Acquedotto Siciliani in prossimità della Stazione di Regalbuto, ultima campata.

Il tracciato dell'elettrodotto aereo "SE Regalbuto- SS.ne RFI Sferro", prosegue in direzione sud-ovest, in parallelo al tratto già descritto fino al Comune di Castel di Judica, proseguendo in direzione est e attraversando la strada comunale strada comunale Agira-Lavina con la campata 43-42, la strada comunale Girdinelli Indica S. Nicola con la campata 35-34, la strada comunale Girdinelli con la campata 32-31, la Strada comunale Dragonia Accitello con la campata 31-30, una strada comunale con la campata 26-25, il Vallone Lavinia in corrispondenza della campata 22-23, la strada di bonifica n.77 della Provincia di Catania con la


RELAZIONE TECNICA ILLUSTRATIVA

Codifica Elaborato:

**REGR20005B2047039*

**Rev. 00 Data 23/06/2021*

campata 11-10 attraversata anche con la successiva campata 9-8. Infine, il tracciato prosegue in direzione est fino alla Sotto stazione RFI di Sferro, attraversando il fiume Dittaino con la campata 5-4.

Tracciati elettrodotti Opera 2 e 3 con evidenza dei Comuni attraversati

4.3 Vincoli ambientali

Si rimanda al Paragrafo 4.2 della Relazione Tecnica Generale (Doc. n. RGGR20005B2047377) del PTO.

4.4 Distanze di sicurezza rispetto alle attività soggette a controllo prevenzione incendi

Recependo quanto richiesto dal Ministero dell'Interno, Dipartimento Vigili del Fuoco, Soccorso Pubblico e Difesa Civile, con Circolare Prot. DCPST/A4/RA/1200 del 4 maggio 2005 e con successiva nota inviata a Terna n. DCPST/A4/RA/EL/ sott.1/1893 del 09/07/08 e con Lettera Circolare Prot.3300 del 06 marzo 2019, si è prestata particolare attenzione a verificare il rispetto delle distanze di sicurezza tra l'elettrodotto in progetto e le attività soggette al controllo dei Vigili del Fuoco o a rischio di incidente rilevante di cui al D. Lgs. 105/2015.

RELAZIONE TECNICA ILLUSTRATIVA

Codifica Elaborato:

REGR20005B2047039

Rev. 00 Data 23/06/2021

Di seguito si riportano i principali riferimenti normativi in materia considerati:

- Decreto Ministeriale del 31/07/1934, "Approvazione delle norme di sicurezza per la lavorazione, l'immagazzinamento, l'impiego o la vendita di oli minerali, e per il trasporto degli oli stessi";
- Circolare 10 del 10/02/1969 del Ministero dell'Interno, "Distributori stradali di carburanti";
- Decreto Ministero dell'Interno 3 febbraio 2016 (GU n. 35 del 12-2-2016) recante "Approvazione della regola tecnica di prevenzione incendi per la progettazione, la costruzione e l'esercizio dei depositi di gas naturale con densità non superiore a 0,8 e dei depositi di biogas, anche se di densità superiore a 0,8";
- Decreto Ministeriale del 13/10/1994, "Approvazione della regola tecnica di prevenzione incendi per la progettazione, la costruzione, l'installazione e l'esercizio dei depositi di g.p.l. in serbatoi fissi di capacità complessiva superiore a 5 m3 e/o in recipienti mobili di capacità complessiva superiore a 5.000 kg";
- Decreto Ministeriale del 14/05/2004, "Approvazione della regola tecnica di prevenzione incendi per l'installazione e l'esercizio dei depositi di gas di petrolio liquefatto con capacità complessiva non superiore a 13 metri cubi";
- D.P.R. 340 del 24/10/2003, "Regolamento recante disciplina per la sicurezza degli impianti di distribuzione stradale di G.P.L. per autotrazione";
- Decreto del 24/05/2002, "Norme di prevenzione incendi per la progettazione, costruzione ed esercizio degli impianti di distribuzione stradale di gas naturale per autotrazione";
- Decreto Ministeriale del 18/05/1995, "Approvazione della regola tecnica di prevenzione incendi per la progettazione, costruzione ed esercizio dei depositi di soluzioni idroalcoliche";
- Decreto Ministero dell'Interno del 23/10/2018, "Regola tecnica di prevenzione incendi per la progettazione, costruzione ed esercizio degli impianti di distribuzione di idrogeno per autotrazione";
- Circolare n. 99 del 15/10/1964, "Contenitori di ossigeno liquido. Tank ed evaporatori freddi per uso industriale";
- Decreto Legislativo 26/06/2015, n. 105 "Attuazione della direttiva 2012/18/UE relativa al controllo del pericolo di incidenti rilevanti connessi con sostanze pericolose";
- Regio Decreto 6 maggio 1940, n. 635 "Regolamento per l'esecuzione del Testo Unico 18 giugno 1921, n.773 delle Leggi di Pubblica Sicurezza";
- Decreto Ministero dell'Interno del 22/11/2017, "Approvazione della regola tecnica di prevenzione incendi per l'installazione e l'esercizio di contenitori-distributori, ad uso privato, per l'erogazione di carburante liquido di categoria C";
- Decreto Ministero dello Sviluppo Economico, 16/04/2008 "Regola tecnica per la progettazione, costruzione, collaudo, esercizio e sorveglianza delle opere e dei sistemi di distribuzione e di linee dirette del gas naturale con densità non superiore a 0,8".

RELAZIONE TECNICA ILLUSTRATIVA

Codifica Elaborato:

REGR20005B2047039

Rev. 00 Data 23/06/2021

• Decreto Ministero dello Sviluppo Economico, 17/04/2008 "Regola tecnica per la progettazione, costruzione, collaudo, esercizio e sorveglianza delle opere e degli impianti di trasporto di gas naturale con densità non superiore a 0,8".

 DPR 151 01/08/11 Regolamento recante semplificazione della disciplina dei procedimenti relativi alla prevenzione degli incendi, a norma dell'articolo 49, comma 4-quater, del decreto-legge 31 maggio 2010, n. 78, convertito, con modificazioni, dalla legge 30 luglio 2010, n. 122. (11G0193).

Dai sopralluoghi effettuati lungo il tracciato descritto nel piano tecnico delle opere, emerge che non risultano situazioni ostative alla sicurezza di attività soggette al controllo del VV.F.

L'analisi dettagliata della distanza di sicurezza rispetto alle attività soggette a controllo prevenzione incendi è riportata nella documentazione specifica allegata e raccolta nell'Appendice H:

• Doc. n. EEGR20005B2047041 - Appendice H - Elenco documenti

5 TEMPI DI REALIZZAZIONE DELLE OPERE

Si rimanda al Paragrafo 5 della Relazione Tecnica Generale (Doc. n. RGGR20005B2047377) del PTO.

6 CARATTERISTICHE TECNICHE DELL'OPERA

6.1 Premessa

L'opera è stata progettata e sarà realizzata in conformità alle leggi vigenti e alle normative di settore, quali: CEI, EN, IEC e ISO applicabili.

Per quanto concerne le strutture componenti gli elettrodotti aerei, si fa presente che i relativi calcoli delle fondazioni e dei sostegni sono stati depositati presso il Ministero delle Infrastrutture – D.G. Dighe, Infrastrutture Idriche ed Elettriche con note dedicate:

- TE/P20100001404 05/02/2010: Calcoli progetto unificato TERNA Spa per la realizzazione degli elettrodotti (per quanto attiene le fondazioni di tipo unificato)
- TE/PE20090015918 25/11/2009: Trasmissione calcoli 132 150 kV semplice e doppia terna I calcoli delle frecce e delle sollecitazioni dei conduttori di energia, delle corde di guardia, dell'armamento, dei sostegni e delle fondazioni, sono rispondenti alla Legge n. 339 del 28/06/1986 ed alle norme contenute nei Decreti del Ministero dei LL.PP. del 21/03/1988 e del 16/01/1991 con particolare riguardo agli elettrodotti di classe terza, così come definiti dall'art. 1.2.07 del Decreto del 21/03/1988 suddetto; per quanto concerne le distanze tra conduttori di energia e fabbricati adibiti ad abitazione o ad altra attività che comporta tempi di permanenza prolungati, queste sono conformi anche al dettato del D.P.C.M. 08/07/2003.

Il progetto dell'opera è conforme al Progetto Unificato per gli elettrodotti elaborato fin dalla prima metà degli anni '70 a cura della Direzione delle Costruzioni di ENEL, aggiornato nel pieno rispetto della normativa

RELAZIONE TECNICA ILLUSTRATIVA

Codifica Elaborato:

REGR20005B2047039

Rev. 00 Data 23/06/2021

prevista dal DM 21-10-2003 (Presidenza del Consiglio di Ministri Dipartimento Protezione Civile) e tenendo conto delle Norme Tecniche per le Costruzioni, Decreto 14/09/2005.

Per quanto attiene gli elettrodotti, nel Progetto Unificato ENEL, sono inseriti tutti i componenti (sostegni e fondazioni, conduttori, morsetteria, isolatori, ecc.) con le relative modalità di impiego.

Le principali caratteristiche tecniche dei componenti utilizzati per la realizzazione dell'opera sono riportate nel documento:

Doc. n. REGR20005B2047697 - Caratteristiche dei Componenti

L'elettrodotto sarà costituito da sostegni in semplice terna armati con un conduttore per ciascuna fase, per un totale di tre conduttori di energia ed una fune di guardia per la protezione dalle scariche atmosferiche. Ai sensi della normativa vigente che classifica il territorio nazionale in zona A e B in funzione della quota altimetrica e della collocazione geografica, è possibile affermare che l'elettrodotto si sviluppa per la totalità del tracciato in zona A.

6.2 Caratteristiche elettriche dell'elettrodotto aereo

Le caratteristiche elettriche nominali dell'elettrodotto sono le seguenti:

PARAMETRO	VALORE
Frequenza nominale	50 Hz
Tensione nominale	150 kV
Portata massima in corrente	870 A
Tipo di conduttore	AllAcc.
Diametro del conduttore	31,5 mm

6.3 Componenti dell'Elettrodotto

Un elettrodotto aereo è tipicamente costituito dai seguenti componenti:

- Fondazioni
- Sostegni
- Isolatori
- Morsetteria
- Conduttori di energia
- Fune di guardia

Di seguito sono descritti i diversi componenti su citati analizzandone le caratteristiche e funzionalità.

RELAZIONE TECNICA ILLUSTRATIVA

Codifica Elaborato:

REGR20005B2047039

Rev. 00 Data 23/06/2021

6.4 Fondazioni

Per fondazione è intesa la struttura (mista in acciaio-calcestruzzo) interrata, incaricata di trasmettere gli sforzi generati dai conduttori e dal peso proprio del sostegno (compressione e/o strappamento) al terreno.

Le fondazioni unificate per i sostegni della serie 150 kV semplice e doppia terna sono del tipo a piedini separati e sono utilizzabili su terreni normali, di buona o media consistenza.

Ciascun piedino di fondazione è composto di tre parti:

- a) un blocco di calcestruzzo armato costituito da una base, che appoggi sul fondo dello scavo, formata da una serie di platee (parallelepipedi a pianta quadrata) sovrapposte; detta base è simmetrica rispetto al proprio asse verticale;
- b) un colonnino a sezione circolare, inclinato secondo la pendenza del montante del sostegno;
- c) un "moncone" annegato nel calcestruzzo al momento del getto, collegato al montante del "piede" del sostegno. Il moncone è costituito da un angolare, completo di squadrette di ritenuta, che si collega con il montante del piede del sostegno mediante un giunto a sovrapposizione. I monconi sono raggruppati in tipi, caratterizzati dalla dimensione dell'angolare, ciascuno articolato in un certo numero di lunghezze.

Dal punto di vista del calcolo dimensionale è stata seguita la normativa di riferimento per le opere in cemento armato di seguito elencata:

- D.M. 9 gennaio 1996, "Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche";
- D.M. 14 febbraio 1992: "Norme tecniche per l'esecuzione delle opere in cemento armato normale e precompresso e per le strutture metalliche";
- D.M. 16 Gennaio 1996: Norme tecniche relative ai "Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi;
- Circolare Ministero LL.PP. 14 Febbraio 1974 n.11951: Applicazione delle norme sul cemento armato L. 5/11/71 n. 1086;
- Circolare Min. LL.PP. 4 Luglio 1996 n.156 AA.GG./STC.: Istruzioni per l'applicazione delle "Norme tecniche relative ai criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi" di cui al Decreto Ministeriale 16 gennaio 1996.

Sono inoltre osservate le prescrizioni della normativa specifica per elettrodotti, costituita dal D.M. 21/3/1988; in particolare per la verifica a strappamento delle fondazioni, viene considerato anche il contributo del terreno circostante come previsto dall'articolo 2.5.06 dello stesso D.M. 21/3/1988.

L'articolo 2.5.08, infine, prescrive che le fondazioni verificate sulla base degli articoli sopramenzionati, siano idonee ad essere impiegate anche nelle zone sismiche per qualunque grado di sismicità.

I sostegni utilizzati sono tuttavia stati verificati anche secondo le disposizioni date dal D.M. 9/01/96 (Norme tecniche per le costruzioni in zone sismiche).

L'abbinamento tra ciascun sostegno e la relativa fondazione è determinato nel progetto unificato mediante le "Tabelle delle corrispondenze" che sono le seguenti:

RELAZIONE TECNICA ILLUSTRATIVA

Codifica Elaborato:

REGR20005B2047039

Rev. 00 Data 23/06/2021

- Tabella delle corrispondenze tra sostegni, monconi e fondazioni;
- Tabella delle corrispondenze tra fondazioni ed armature colonnino

Con la prima tabella si definisce il tipo di fondazione corrispondente al sostegno impiegato mentre con la seconda si individua la dimensione ed armatura del colonnino corrispondente.

Come già detto le fondazioni unificate sono utilizzabili solo su terreni normali di buona e media consistenza, pertanto le fondazioni per sostegni posizionati su terreni con scarse caratteristiche geomeccaniche, su terreni instabili o su terreni allagabili sono oggetto di indagini geologiche e sondaggi mirati, sulla base dei quali vengono, di volta in volta, progettate ad hoc.

Dunque, qualora i sostegni risultino posizionati su terreni con più bassi valori delle caratteristiche geomeccaniche, saranno utilizzate fondazioni profonde (pali trivellati e/o micropali), che verranno definite e dimensionate con esattezza in fase di progettazione esecutiva sulla base dei risultati di apposite indagini geotecniche.

La realizzazione delle fondazioni con pali trivellati avviene come segue:

- pulizia del terreno; posizionamento della macchina operatrice; realizzazione di un fittone per ogni
 piedino mediante trivellazione fino alla quota prevista in funzione della litologia del terreno desunta
 dalle prove geognostiche eseguite in fase esecutiva (mediamente 15 m) con diametri che variano da
 1,5 a 1,0 m; posa dell'armatura; getto del calcestruzzo fino alla quota di imposta della fondazione del
 traliccio;
- dopo almeno sette giorni di stagionatura del calcestruzzo del trivellato si procederà al montaggio e
 posizionamento della base del traliccio; alla posa dei ferri d'armatura ed al getto di calcestruzzo per
 realizzare il raccordo di fondazione al trivellato; ed infine al ripristino del piano campagna ed
 all'eventuale rinverdimento.

Durante la realizzazione dei trivellati, per limitare gli inconvenienti dovuti alla presenza di falda, verrà utilizzata, in alternativa al tubo forma metallico, di materiale polimerico che a fine operazioni dovrà essere recuperata e/o smaltita secondo le vigenti disposizioni di legge.

La realizzazione delle fondazioni con micropali avviene come segue:

- pulizia del terreno; posizionamento della macchina operatrice; realizzazione di una serie di micropali per ogni piedino con trivellazione fino alla quota prevista; posa dell'armatura; iniezione malta cementizia.
- scavo per la realizzazione della fondazione di raccordo micropali-traliccio; messa a nudo e pulizia delle armature dei micropali; montaggio e posizionamento della base del traliccio; posa in opera delle armature del dado di collegamento; getto del calcestruzzo.

RELAZIONE TECNICA ILLUSTRATIVA

Codifica Elaborato:

REGR20005B2047039

Rev. 00 Data 23/06/2021

A seconda del tipo di calcestruzzo si attenderà un tempo di stagionatura variabile tra 36 e 72 ore e quindi si procederà al disarmo dei dadi di collegamento, al ripristino del piano campagna ed all'eventuale rinverdimento.

Durante la realizzazione dei micropali, per limitare gli inconvenienti dovuti alla presenza di falda, verrà utilizzato un tubo forma metallico, per contenere le pareti di scavo, che contemporaneamente alla fase di getto sarà recuperato.

Lì dove i sostegni risultino posizionati invece in aree particolarmente rocciose, la realizzazione delle fondazioni potrà avvenire mediante l'impiego di "Tiranti in roccia". Per la realizzazione di questo tipo di fondazioni si utilizzano micropali, ovvero delle fondazioni di tipo indiretto (profonde) caratterizzati da un diametro di perforazione compreso tra 90 e 300 mm e lunghezze variabili. Il foro di perforazione può essere attrezzato con tubi metallici/profilati o armature ad aderenza migliorata che sono connessi al terreno mediante riempimento a gravità con resine. Tale tipologia di micropalo viene impiegata per la realizzazione delle fondazioni dei sostegni in roccia ed è classificata come "Fondazione con ancoraggi/tiranti in roccia". Generalmente i micropali vengono realizzati in opera con attrezzature di dimensioni ridotte che facilitano l'accesso nelle zone più impervie e sono facilmente elitrasportabili. Le fasi esecutive previste per la realizzazione della "Fondazione con ancoraggi/tiranti in roccia" possono essere così schematizzate:

- pulizia del banco di roccia con asportazione del "cappellaccio" superficiale degradato (circa 30 cm)
 nella posizione del piedino, fino a trovare la parte di roccia più consistente;
- posizionamento della macchina operatrice per realizzare una serie di ancoraggi per ogni piedino;
- esecuzione del foro fino alla quota prevista (con utensili quali martelli fondoforo, eliche, tricono, trilama, tubo forma, aventi diametri variabili e con tecnologia di perforazione differenti in funzione delle caratteristiche dei terreni);
- posa in opera dell'armatura metallica (tubo metallico, gabbia metallica, profilo metallico);
- iniezione di resina sigillante (biacca o miscela cementizia) fino alla quota prevista (calcestruzzo ad alto dosaggio di cemento, miscele costituite da acqua/cemento e/o bentonite);
- successivamente si prevede lo scavo, tramite demolitore, per la realizzazione di un dado di collegamento tiranti-traliccio delle dimensioni 1,5 x 1,5 x 1 m;
- montaggio e posizionamento della base del traliccio;
- posa in opera dei ferri d'armatura del dado di collegamento e getto del calcestruzzo;
- trascorso il periodo di stagionatura dei getti, si procede al disarmo delle casserature;
- si esegue quindi il reinterro con il materiale proveniente dagli scavi, se ritenuto idoneo.

RELAZIONE TECNICA ILLUSTRATIVA

Codifica Elaborato:

REGR20005B2047039

Rev. 00

Data 23/06/2021

A seconda del tipo di calcestruzzo si attende un tempo di stagionatura variabile tra 36 e 72 ore, quindi si procede al disarmo delle casserature. Si esegue quindi il reinterro con il materiale proveniente dagli scavi, se ritenuto idoneo ai sensi della normativa vigente, o con materiale differente."

6.5 Sostegni

I sostegni saranno del tipo semplice terna di varie altezze secondo le caratteristiche altimetriche del terreno. Essi saranno costituiti da angolari di acciaio ad elementi zincati a caldo e bullonati. Gli angolari di acciaio sono raggruppati in elementi strutturali. Il calcolo delle sollecitazioni meccaniche ed il dimensionamento delle membrature sono stati eseguiti conformemente a quanto disposto dal D.M. 21/03/1988 e le verifiche sono state effettuate per l'impiego in zona "A".

Essi avranno un'altezza tale da garantire, anche in caso di massima freccia del conduttore, il franco minimo prescritto dalle vigenti norme. I sostegni saranno provvisti di difese parasalita.

Per quanto concerne detti sostegni, fondazioni e relativi calcoli di verifica, TERNA si riserva di apportare nel progetto esecutivo modifiche di dettaglio dettate da esigenze tecniche ed economiche, senza però modificare sostanzialmente la tipologia dei sostegni stessi e ricorrendo, se necessario, all'impiego di opere di sottofondazione.

Ciascun sostegno si può considerare composto dai piedi, dalla base, da un tronco e dalla testa, della quale fanno parte le mensole. Ad esse sono applicati gli armamenti (cioè l'insieme di elementi che consente di ancorare meccanicamente i conduttori al sostegno pur mantenendoli elettricamente isolati da esso) che possono essere di sospensione o di amarro. Infine, vi è il cimino, atto a sorreggere la corda di guardia.

I piedi del sostegno, che sono l'elemento di congiunzione con il terreno, possono essere di lunghezza diversa, consentendo un migliore adattamento, in caso di terreni acclivi.

La serie 150 kV doppia terna è composta da diversi tipi di sostegno, che variano a seconda delle prestazioni a cui possono resistere, disponibili in diverse altezze utili (di norma da 9 m a 45 m).

I tipi di sostegno 150 kV utilizzati e le loro prestazioni nominali, riferiti alla zona A ed alla zona B, con riferimento al conduttore alluminio-acciaio Φ 31,5 mm, in termini di campata media (Cm), angolo di deviazione (δ) e costante altimetrica (k) sono le seguenti:

Sostegni 150 kV semplice terna - ZONA A - EDS 21 %

TIPO	ALTEZZA	CAMPATA MEDIA	ANGOLO DEVIAZIONE	COSTANTE ALTIMETRICA
"N" Normale	9 ÷ 42 m	350 m	4°	0,15000
" M " Medio	9 ÷ 33 m	350 m	8°	0,18000
'V' Vertice	9 ÷ 42 m	350 m	35°4'	0,36000
"E" Eccezionale	9 ÷ 33 m	350 m	90°	0,36000
"C"	9 ÷ 33 m	350 m	60°	0,24000
" V "	9 ÷ 42 m	350 m	32°	0,36000
"P"	9 ÷ 48 m	350 m	16°	0,24000

RELAZIONE TECNICA ILLUSTRATIVA

Codifica Elabora	ato:
DEOD	2225
REGRZ	20005B2047039
Rev 00	Data 23/06/2021

	1			
PG	9 (21) ÷ 27,5	350 m	25°	0,3

Partendo dai valori di Cm, δ e K relativi alle prestazioni nominali, si calcolano le forze (azione trasversale e azione verticale) che i conduttori trasferiscono all'armamento.

Successivamente con i valori delle azioni così calcolate, per ogni valore di campata media, si vanno a determinare i valori di δ e K che determinano azioni di pari intensità.

In ragione di tale criterio, all'aumentare della campata media diminuisce sia il valore dell'angolo di deviazione sia la costante altimetrica con cui è possibile impiegare il sostegno. La disponibilità dei diagrammi di utilizzazione agevola la progettazione, in quanto consente di individuare rapidamente se il punto di lavoro di un sostegno, di cui si siano determinate la posizione lungo il profilo della linea e l'altezza utile, e quindi i valori a picchetto di Cm, δ e K, ricade o meno all'interno dell'area delimitata dal diagramma di utilizzazione stesso.

6.6 Messe a terra dei sostegni

Per ogni sostegno, in funzione della resistività del terreno misurata in sito, viene scelto, in base alle indicazioni riportate nel Progetto Unificato, anche il tipo di messa a terra da utilizzare.

Il Progetto Unificato ne prevede di 6 tipi, adatti ad ogni tipo di terreno.

6.7 Distanza tra i sostegni

La distanza tra due sostegni consecutivi dipende dall'orografia del terreno e dall'altezza utile dei sostegni impiegati; mediamente in condizioni normali, si ritiene possa essere pari a 350 m.

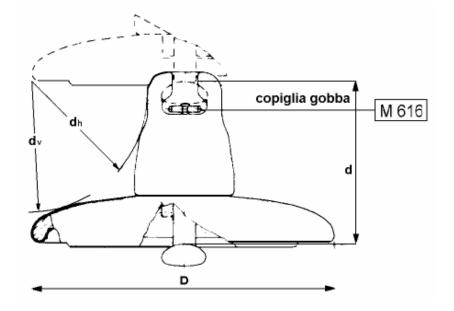
La distribuzione dei sostegni dell'elettrodotto in oggetto è stata effettuata prevedendo anche la possibilità di impiego di sostegni tubolari monostelo per ampi tratti del tracciato in progetto.

6.8 Isolamento

L'isolamento degli elettrodotti, previsto per una tensione massima di esercizio di 150 kV, sarà realizzato con isolatori a cappa e perno in vetro temprato, con carico di rottura di 70 kN (o in alternativa 120 kN) nei due tipi "normale" e "antisale", connessi tra loro a formare catene di almeno 9 elementi. Le catene di sospensione saranno del tipo a I semplici o doppia, mentre le catene in amarro saranno del tipo ad I doppia. Le caratteristiche degli isolatori rispondono a quanto previsto dalle norme CEI.

Caratteristiche geometriche

Nelle tabelle LJ1 e LJ2 allegate sono riportate le caratteristiche geometriche tradizionali ed inoltre le due distanze "dh" e "dv" (vedi figura) atte a caratterizzare il comportamento a sovratensione di manovra sotto pioggia.



RELAZIONE TECNICA ILLUSTRATIVA

Codifica Elaborato:

REGR20005B2047039

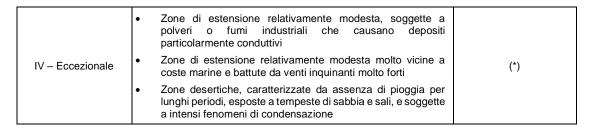
Rev. 00 Data 23/06/2021

Caratteristiche elettriche

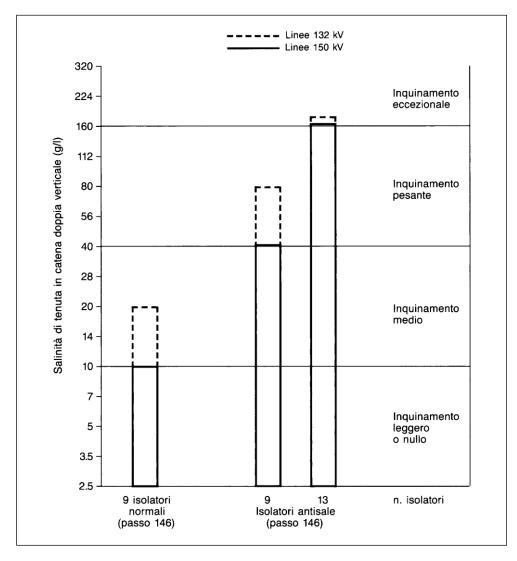
Le caratteristiche geometriche di cui sopra sono sufficienti a garantire il corretto comportamento delle catene di isolatori a sollecitazioni impulsive dovute a fulminazione o a sovratensioni di manovra. Per quanto riguarda il comportamento degli isolatori in presenza di inquinamento superficiale, nelle tabelle LJ1 e LJ2 allegate sono riportate, per ciascun tipo di isolatore, le condizioni di prova in nebbia salina, scelte in modo da porre ciascuno di essi in una situazione il più possibile vicina a quella di effettivo impiego.

Nella tabella che segue è poi indicato il criterio per individuare il tipo di isolatore ed il numero di elementi da impiegare con riferimento ad una scala empirica dei livelli di inquinamento.

LIVELLO DI INQUINAMENTO	DEFINIZIONE	MINIMA SALINITA' DI TENUTA (kg/m²)
	Zone prive di industrie e con scarsa densità di abitazioni dotate di impianto di riscaldamento	
I – Nullo o leggero	Zone con scarsa densità di industrie e abitazioni, ma frequentemente soggette a piogge e/o venti.	
(1)	Zone agricole (2)	10
	Zone montagnose	
	Occorre che tali zone distino almeno 10-20 km dal mare e non siano direttamente esposte a venti marini (3)	
	Zone con industrie non particolarmente inquinanti e con media densità di abitazioni dotate di impianto di riscaldamento	
II – Medio	Zone ad alta densità di industrie e/o abitazioni, ma frequentemente soggette a piogge e/o venti.	40
	Zone esposte ai venti marini, ma non troppo vicine alla costa (distanti almeno alcuni chilometri) (3)	
III - Pesante	Zone ad alta densità industriale e periferie di grandi agglomerati urbani ad alta densità di impianti di riscaldamento producenti sostanze inquinanti	160
	Zone prossime al mare e comunque esposte a venti marini di entità relativamente forte	



RELAZIONE TECNICA ILLUSTRATIVA


Codifica Elaborato:

**REGR20005B2047039*

**Rev. 00 **Data 23/06/2021*

- (1) Nelle zone con inquinamento nullo o leggero una prestazione dell'isolamento inferiore a quella indicata può essere utilizzata in funzione dell'esperienza acquisita in servizio.
- (2) Alcune pratiche agricole quali la fertirrigazione o la combustione dei residui, possono produrre un incremento del livello di inquinamento a causa della dispersione via vento delle particelle inquinanti.
- (3) Le distanze dal mare sono strettamente legate alle caratteristiche topografiche della zona e da alle condizioni di vento più severe.
- (4) (*) per tale livello di inquinamento non viene dato un livello di salinità di tenuta, in quanto risulterebbe più elevato del massimo valore ottenibile in prove di salinità in laboratorio. Si rammenta inoltre che l'utilizzo di catene di isolatori antisale di lunghezze superiori a quelle indicate nelle tabelle di unificazione (criteri per la scelta del numero e del tipo degli isolatori) implicherebbe una linea di fuga specifica superiore a 33 mm/kV fase-fase oltre la quale interviene una non linearità nel comportamento in ambiente inquinato.

Per le linee che attraversano zone prive di inquinamento atmosferico è previsto l'impiego di catene (di sospensione o di amarro) composto da 9 elementi di tipo "normale".

RELAZIONE TECNICA ILLUSTRATIVA

Codifica Elaborato:

**REGR20005B2047039*

**Rev. 00 Data 23/06/2021*

Tale scelta rimane invariata, come si vede dal diagramma sopra riportato, per inquinamento "molto leggero" e che può essere accettata anche per inquinamento "leggero" (linee a 150 kV) secondo la classificazione riportata nella tabella precedente.

Negli altri casi, al crescere dell'inquinamento, occorrerebbe aumentare il numero di elementi per catena.

L'allungamento delle catene, d'altra parte, riduce ovviamente l'altezza utile del sostegno, ed anche le prestazioni geometriche dei gruppi mensole. Si ha perciò un aumento dei costi dello stesso ordine di quello derivante dall'impiego degli "antisale". Perciò se risultano insufficienti 9 elementi di tipo "normale" si passerà direttamente a 9 elementi "antisale". Nei pochi casi in cui anche tale soluzione risulta insufficiente si adotteranno fino a 13 elementi "antisale" che garantiscono una completa "copertura" del livello di inquinamento "pesante" (tenendo in conto le necessarie modifiche alle prestazioni dei gruppi mensole e all'altezza utile dei sostegni).

Nei rari casi di caso di inquinamento "eccezionale" si dovrà ricorrere a soluzioni particolari quali lavaggi periodici, in grassaggi, ecc.

Le caratteristiche della zona interessata dall'elettrodotto in esame sono di inquinamento atmosferico medio e quindi si è scelta la soluzione dei n. 9 isolatori (passo 146) tipo J1/2 (normale) per tutti gli armamenti in sospensione e quella dei n. 9 isolatori (passo 146) tipo J1/2 (normale) per gli armamenti in amarro.

6.9 Morsetteria ed Armamenti

Gli elementi di morsetteria per linee a 150 kV sono stati dimensionati in modo da poter sopportare gli sforzi massimi trasmessi dai conduttori agli isolatori, ovvero da questi alle mensole.

Sono stati previsti tre tipi di equipaggiamento: due in sospensione e uno in amarro.

Per equipaggiamento si intende il complesso degli elementi di morsetteria che collegano le morse di sospensione o di amarro agli isolatori e questi ultimi al sostegno.

Per le linee a 150 kV si distinguono i tipi di armamento riportati nella tabella seguente:

CODIFICA	OGGETTO
LIN_0000M550	Morsetti di sospensione per conduttori ad alta temperatura di lega di alluminio – lega Fe-Ni rivestita di alluminio
LIN_0000M551	Morsetti di sospensione per conduttori ad alta temperatura di lega di alluminio – lega Fe-Ni rivestita di alluminio con dispositivo di attacco per contrappeso
LIN_0000M552	Morse di amarro a compressione esagonale per conduttori ad alta temperatura di lega di alluminio - lega Fe-Ni rivestita di alluminio
LIN_0000M571	Morsetti di sospensione per conduttori ad alta temperatura di lega termoresistente di alluminio con dispositivo di attacco per contrappeso
LIN_0000M572	Morse di amarro a compressione esagonale per conduttori ad alta temperatura di lega termoresistente di alluminio

RELAZIONE TECNICA ILLUSTRATIVA

Codifica Elaborato:

REGR20005B2047039

Rev. 00 Data 23/06/2021

LIN_0000M623	Morsetti di sospensione per richiamo collo morto di conduttori ad alta temperatura con carico di rottura R=20kN
LIN_0000M222	Armamento di sospensione della fune di guardia con fibre ottiche Ø 11,5
LIN_0000M223	Armamento di amarro in corrispondenza di giunto ottico della fune di guardia con f.o. Ø 11,5
LIN_0000M224	Armamento di amarro passante per fune di guardia con f.o. Ø 11,5
LIN_0000M225	Armamento di amarro con isolamento della fune di guardia con f.o. Ø 11,5
LIN_0000M226	Armamento di amarro in sospensione per fune di guardia con f.o. Ø 11,5
LIN_0000M227	Armamento di amarro capolinea della fune di guardia con f.o. Ø 11,5

La scelta degli equipaggiamenti viene effettuata, per ogni singolo sostegno, fra quelli disponibili nel Progetto Unificato, riportati nella tabella di cui sopra, in funzione delle azioni (trasversale, verticale e longitudinale) determinate dal tiro dei conduttori e dalle caratteristiche di impiego del sostegno esaminato (campata media, dislivello a monte e a valle, ed angolo di deviazione).

Per le caratteristiche tecniche degli armamenti si rimanda agli elaborati menzionati nella tabella di cui sopra.

6.10 Conduttori e corde di guardia

Ciascuna fase elettrica sarà costituita da tre conduttori di energia in alluminio-acciaio della sezione complessiva di 585.30 mm², composta da un'anima di 19 fili in acciaio rivestita di alluminio, del diametro 10,5 mm, e da un mantello di 54 fili in lega di alluminio, con un diametro complessivo di 31,5 mm e con carico di rottura teorico di 16852 daN.

I conduttori avranno un'altezza da terra non inferiore a metri 10 nella condizione di massima freccia, valore arrotondato per eccesso rispetto a quello massimo previsto dall'art. 2.1.05 del D.M. 16/01/1991.

L'elettrodotto sarà inoltre equipaggiato con una corda di guardia destinata, oltre che a proteggere l'elettrodotto stesso dalle scariche atmosferiche, a migliorare la messa a terra dei sostegni.

La corda di guardia è in acciaio rivestito di alluminio del diametro di 11.50 mm e sezione di 78.94 mm², sarà costituita da n° 19 fili del diametro di 2.3 mm (tavola LC 23 allegata). Il carico di rottura teorico della corda sarà di 12231 daN.

In alternativa è possibile l'impiego di una corda di guardia in alluminio-acciaio con fibre ottiche sempre del diametro di 11.50 mm. (tavola LIN_00000C59 allegata).

Stato di tensione meccanica

È stato fissato il tiro dei conduttori e delle corde di guardia in modo che risulti costante, in funzione della campata equivalente, nella condizione "normale" di esercizio linea, cioè alla temperatura di 15°C ed in assenza di sovraccarichi (EDS - "Every Day Stress"): ciò assicura una uniformità di comportamento nei

RELAZIONE TECNICA ILLUSTRATIVA

Codifica Elaborato:

REGR20005B2047039

Rev. 00 Data 23/06/2021

riguardi delle sollecitazioni prodotte dal fenomeno delle vibrazioni. Nelle altre condizioni o "stati" il tiro risulta, ovviamente, funzione della campata equivalente di ciascuna tratta. Gli "stati" che interessano, da diversi punti di vista, il progetto delle linee sono riportati nello schema seguente:

• EDS – Condizione di tutti i giorni: +15°C, in assenza di vento e ghiaccio

• MSA – Condizione di massima sollecitazione (zona A): -5°C, vento a 130 km/h

MSB – Condizione di massima sollecitazione (zona B): -20°C, manicotto di ghiaccio di 12 mm, vento a 65 km/h

• MPA – Condizione di massimo parametro (zona A): -5°C, in assenza di vento e ghiaccio

• MPB – Condizione di massimo parametro (zona B): -20°C, in assenza di vento e ghiaccio

• MFA – Condizione di massima freccia (Zona A): +55°C, in assenza di vento e ghiaccio

• MFB – Condizione di massima freccia (Zona B): +40°C, in assenza di vento e ghiaccio

• CVS1 – Condizione di verifica sbandamento catene: 0°C, vento a 26 km/h

• CVS2 – Condizione di verifica sbandamento catene: +15°C, vento a 130 km/h

Il tiro dei conduttori è stato fissato in modo che risulti compatibile con le massime sollecitazioni ammissibili sui sostegni in condizioni di MSA e MSB.

Nel seguente prospetto sono riportati i valori dei tiri in EDS per i conduttori, in valore percentuale rispetto al carico di rottura:

• **ZONA A** EDS = 16.4% per il conduttore tipo LIN_00000C20 conduttore a corda di lega di alluminio – lega Fe-Ni rivestita di alluminio allo zirconio Φ 29,3 mm;

Il corrispondente valore di EDS per la corda di guardia è stato fissato con il criterio di avere un parametro del 15% più elevato, rispetto a quello del conduttore in condizione EDS.

Sono stati ottenuti i sequenti valori in percentuale rispetto al carico di rottura:

ZONA A EDS = 13.6% per corda di guardia tipo LIN_00000C59 La linea in oggetto si sviluppa in "**ZONA A**".

6.11 Capacità di Trasporto

La capacità di trasporto dell'elettrodotto è funzione lineare della corrente di fase. Il conduttore in oggetto corrisponde al "conduttore ad alta temperatura", per il quale non risultano applicabili le Norme CEI 11-60 e 11-75; pertanto, alla portata in regime continuativo di esercizio verranno verificati i franchi elettrici in rispetto al D.M. 21/03/1988.

7 TERRE E ROCCE DA SCAVO

La realizzazione di un elettrodotto è suddivisibile in tre fasi principali:

esecuzione delle fondazioni dei sostegni;

RELAZIONE TECNICA ILLUSTRATIVA

Codifica Elaborato:

REGR20005B2047039

Rev. 00 Data 23/06/2021

- 2. montaggio dei sostegni;
- 3. messa in opera dei conduttori e delle corde di guardia.

Per le considerazioni inerenti la gestione delle terre e rocce da scavo si rimanda all'elaborato "Piano preliminare di riutilizzo delle terre e rocce da scavo RGGR20005B2100878" e relativi allegrati.

8 RUMORE

La produzione di rumore da parte di un elettrodotto in esercizio è dovuta essenzialmente a due fenomeni fisici: il vento e l'effetto corona. Il vento, se particolarmente intenso, può provocare il "fischio" dei conduttori, fenomeno peraltro locale e di modesta entità. L'effetto corona, invece, è responsabile del leggero ronzio che viene talvolta percepito nelle immediate vicinanze dell'elettrodotto, soprattutto in condizioni di elevata umidità dell'aria.

La produzione di rumore da parte di un elettrodotto a 150 kV in esercizio è dovuta essenzialmente a un fenomeno fisico: il vento.

Occorre rilevare che il rumore si attenua con la distanza in ragione di 3 dB(A) al raddoppiare della distanza stessa e che, a detta attenuazione, va aggiunta quella provocata dalla vegetazione e/o dai manufatti. In queste condizioni, tenendo conto dell'attenuazione con la distanza, si riconosce che già a poche decine di metri dalla linea risultano rispettati anche i limiti più severi tra quelli di cui al D.P.C.M. marzo 1991, e alla Legge quadro sull'inquinamento acustico (Legge n. 447 del 26/10/1995).

Si deve infine tenere conto del fatto che il livello del fenomeno è sempre modesto e che l'intensità massima è legata a cattive condizioni meteorologiche (vento forte e pioggia battente) alle quali corrispondono una minore propensione della popolazione alla vita all'aperto e l'aumento del naturale rumore di fondo (sibilo del vento, scroscio della pioggia, tuoni). Fattori, questi ultimi, che riducono sia la percezione del fenomeno che il numero delle persone interessate.

9 INQUADRAMENTO GEOLOGICO PRELIMINARE

Le prime considerazioni dal punto di vista geologico sulle aree oggetto di intervento, che verranno implementate in sede di progettazione esecutiva, sono riportate nel documento "Relazione Geologica Preliminare RGGR20005B2099566 e relativi allegati".

10 VALUTAZIONE DEI CAMPI ELETTRICI E MAGNETICI

10.1Richiami normativi

Le linee guida per la limitazione dell'esposizione ai campi elettrici e magnetici variabili nel tempo ed ai campi elettromagnetici sono state indicate nel 1998 dalla ICNIRP (Commissione Internazionale per la Protezione dalle Radiazioni Non Ionizzanti).

RELAZIONE TECNICA ILLUSTRATIVA

Codifica Elaborato:

REGR20005B2047039

Rev. 00 Data 23/06/2021

Il 12-7-99 il Consiglio dell'Unione Europea (UE) ha emesso una Raccomandazione agli Stati Membri volta alla creazione di un quadro di protezione della popolazione dai campi elettromagnetici, che si basa sui migliori dati scientifici esistenti; a tale proposito il Consiglio ha avallato proprio le linee guida dell'ICNIRP. Successivamente nel 2001, a seguito di un'ultima analisi condotta sulla letteratura scientifica, un Comitato di esperti della Commissione Europea ha raccomandato alla UE di continuare ad adottare tali linee guida.

Lo Stato Italiano è successivamente intervenuto, con finalità di riordino e miglioramento della normativa in materia allora vigente in Italia attraverso la Legge quadro 36/2001, che ha individuato ben tre livelli di esposizione ed ha affidato allo Stato il compito di determinarli e aggiornarli periodicamente in relazione agli impianti che possono comportare esposizione della popolazione a campi elettrici e magnetici con freguenze comprese tra 0Hz e 300 GHz.

L'art. 3 della Legge 36/2001 ha definito:

- *limite di esposizione* il valore di campo elettromagnetico da osservare ai fini della tutela della salute da effetti acuti;
- valore di attenzione, come quel valore del campo elettromagnetico da osservare quale misura di cautela ai fini della protezione da possibili effetti a lungo termine;
- *obiettivo di qualità*, come criterio localizzativo e standard urbanistico, oltre che come valore di campo elettromagnetico ai fini della progressiva minimizzazione dell'esposizione.

Tale legge quadro italiana (36/2001), come ricordato dal citato Comitato di esperti della Commissione Europea, è stata emanata nonostante le raccomandazioni del Consiglio dell'Unione Europea del 12-7-99 sollecitassero gli Stati membri ad utilizzare le linee guida internazionali stabilite dall'ICNIRP. Tutti i paesi dell'Unione Europea hanno accettato il parere del Consiglio della UE, mentre l'Italia ha adottato misure più restrittive di quelle indicate dagli organismi internazionali.

In esecuzione della predetta Legge quadro, è stato infatti emanato il D.P.C.M. 08.07.2003 "Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete (50 Hz) generati dagli elettrodotti.", che ha fissato il limite di esposizione in 100 microtesla (μ T) per l'induzione magnetica e 5 kV/m per il campo elettrico; ha stabilito il valore di attenzione di 10 μ T, a titolo di cautela per la protezione da possibili effetti a lungo termine nelle aree gioco per l'infanzia, in ambienti abitativi, in ambienti scolastici e nei luoghi adibiti a permanenze non inferiori a quattro ore giornaliere; ha fissato, quale obiettivo di qualità, da osservare nella progettazione di nuovi elettrodotti, il valore di 3 μ T. È stato altresì esplicitamente chiarito che tali valori sono da intendersi come mediana di valori nell'arco delle 24 ore, in condizioni normali di esercizio. Si segnala come i valori di attenzione e gli obiettivi di qualità stabiliti dal Legislatore italiano siano rispettivamente 10 e 33 volte più bassi di quelli internazionali.

RELAZIONE TECNICA ILLUSTRATIVA

Codifica Elaborato:

REGR20005B2047039

Rev. 00 Data 23/06/2021

Al riguardo è opportuno anche ricordare che, in relazione ai campi elettromagnetici, la tutela della salute viene attuata – nell'intero territorio nazionale – esclusivamente attraverso il rispetto dei limiti prescritti dal D.P.C.M. 08.07.2003, al quale soltanto può farsi utile riferimento.

In tal senso, con sentenza n. 307 del 7.10.2003 la Corte Costituzionale ha dichiarato l'illegittimità di alcune leggi regionali in materia di tutela dai campi elettromagnetici, per violazione dei criteri in tema di ripartizione di competenze fra Stato e Regione stabiliti dal nuovo Titolo V della Costituzione1. Come emerge dal testo della sentenza, una volta fissati i valori-soglia di cautela per la salute, a livello nazionale, non è consentito alla legislazione regionale derogarli neanche in melius.

10.2 Campi elettrici e magnetici

Un elettrodotto in tensione in cui circola una corrente è fonte di un campo elettrico, proporzionale alla tensione della linea stessa, ed un campo magnetico proporzionale alla corrente che vi circola. Entrambi i campi decrescono rapidamente con la distanza, anche se descritti da leggi fisiche differenti.

Il campo magnetico generato dall'elettrodotto in oggetto è stato valutato mediante il programma EMF Tools, sviluppato dal CESI per Terna.

Lo studio del campo magnetico e delle fasce di rispetto è approfondito negli allegati:

 Doc. n. REGR20005B2048468 - Relazione tecnica di valutazione del campo elettrico e magnetico e calcolo della fascia di rispetto;

¹ Nella sentenza (pagg. 51 e segg.) si legge testualmente: "L'esame di alcune delle censure proposte nei ricorsi presuppone che si risponda all'interrogativo se i valori-soglia (limiti di esposizione, valori di attenzione, obiettivi di qualità definiti come valori di campo), la cui fissazione è rimessa allo Stato, possano essere modificati dalla Regione, fissando valori-soglia più bassi, o regole più rigorose o tempi più ravvicinati per la loro adozione. La risposta richiede che si chiarisca la ratio di tale fissazione. Se essa consistesse esclusivamente nella tutela della salute dai rischi dell'inquinamento elettromagnetico, potrebbe invero essere lecito considerare ammissibile un intervento delle Regioni che stabilisse limiti più rigorosi rispetto a quelli fissati dallo Stato, in coerenza con il principio, proprio anche del diritto comunitario, che ammette deroghe alla disciplina comune, in specifici territori, con effetti di maggiore protezione dei valori tutelati (cfr. sentenze n. 382 del 1999 e n. 407 del 2002). Ma in realtà, nella specie, la fissazione di valori-soglia risponde ad una ratio più complessa e articolata. Da un lato, infatti, si tratta effettivamente di proteggere la salute della popolazione dagli effetti negativi delle emissioni elettromagnetiche (e da questo punto di vista la determinazione delle soglie deve risultare fondata sulle conoscenze scientifiche ed essere tale da non pregiudicare il valore protetto); dall'altro, si tratta di consentire, anche attraverso la fissazione di soglie diverse in relazione ai tipi di esposizione, ma uniformi sul territorio nazionale, e la graduazione nel tempo degli obiettivi di qualità espressi come valori di campo, la realizzazione degli impianti e delle reti rispondenti a rilevanti interessi nazionali, sottesi alle competenze concorrenti di cui all'art. 117, terzo comma, della Costituzione, come quelli che fanno capo alla distribuzione dell'energia e allo sviluppo dei sistemi di telecomunicazione. Tali interessi, ancorché non resi espliciti nel dettato della legge quadro in esame, sono indubbiamente sottesi alla considerazione del "preminente interesse nazionale alla definizione di criteri unitari e di normative omogenee" che, secondo l'art. 4, comma 1, lettera a, della legge quadro, fonda l'attribuzione allo Stato della funzione di determinare detti valori-soglia. In sostanza, la fissazione a livello nazionale dei valori-soglia, non derogabili dalle Regioni nemmeno in senso più restrittivo, rappresenta il punto di equilibrio fra le esigenze contrapposte di evitare al massimo l'impatto delle emissioni elettromagnetiche, e di realizzare impianti necessari al paese, nella logica per cui la competenza delle Regioni in materia di trasporto dell'energia e di ordinamento della comunicazione è di tipo concorrente, vincolata ai principi fondamentali stabiliti dalle leggi dello Stato. Tutt'altro discorso è a farsi circa le discipline localizzative e territoriali. A questo proposito è logico che riprenda pieno vigore l'autonoma capacità delle Regioni e degli enti locali di regolare l'uso del proprio territorio, purché, ovviamente, criteri localizzativi e standard urbanistici rispettino le esigenze della pianificazione nazionale degli impianti e non siano, nel merito, tali da impedire od ostacolare ingiustificatamente l'insediamento degli stessi".

RELAZIONE TECNICA ILLUSTRATIVA

Codifica Elaborato:

REGR20005B2047039

Rev. 00 Data 23/06/2021

• Doc. n. DEGR20005B2048580 - Planimetria Cartografia - Ortofoto - Catastale con DPA - Opera 2 e 3.

a cui si rimanda.

11 NORMATIVA DI RIFERIMENTO

In questo capitolo si riportano i principali riferimenti normativi da prendere in considerazione per la progettazione, la costruzione e l'esercizio dell'intervento oggetto del presente documento.

11.1 Leggi

- Regio Decreto 11 dicembre 1933 nº 1775 "Testo Unico delle disposizioni di legge sulle acque e impianti elettrici";
- Legge 23 agosto 2004, n. 239 "Riordino del settore energetico, nonché delega al Governo per il riassetto delle disposizioni vigenti in materia di energia";
- Legge 22 febbraio 2001, n. 36, "Legge quadro sulla protezione dalle esposizioni a campi elettrici, magnetici ed elettromagnetici";
- DPCM 8 luglio 2003, "Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete (50 Hz) generati dagli elettrodotti";
- Decreto 29 maggio 2008, "Approvazione della metodologia di calcolo per la determinazione delle fasce di rispetto per gli elettrodotti";
- DPR 8 giugno 2001 n°327 "Testo unico delle disposizioni legislative e regolamentari in materia di Pubblica Utilità" e smi;
- Legge 24 luglio 1990 n° 241, "Norme sul procedimento amministrativo in materia di conferenza dei servizi" come modificato dalla Legge 11 febbraio 2005, n. 15, dal Decreto legge 14 marzo 2005, n. 35 e dalla Legge 2 aprile 2007, n. 40;
- Decreto Legislativo 22 gennaio 2004 n° 42 "Codice dei Beni Ambientali e del Paesaggio, ai sensi dell'articolo 10 della legge 6 luglio 2002, n. 137 ";
- Decreto del Presidente del Consiglio dei Ministri 12 dicembre 2005 "Individuazione della documentazione necessaria alla verifica della compatibilità paesaggistica degli interventi proposti, ai sensi dell'articolo 146, comma 3, del Codice dei beni culturali e del paesaggio di cui al decreto legislativo 22 gennaio 2004, n. 42";
- Decreto Legislativo 3 aprile 2006, n. 152 "Norme in materia ambientale" e ss.mm.ii.;
- Legge 5 novembre 1971 n. 1086. "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica. Applicazione delle norme sul cemento armato";

RELAZIONE TECNICA ILLUSTRATIVA

Codifica Elaborato:

REGR20005B2047039

Rev. 00 Data 23/06/2021

• Decreto Interministeriale 21 marzo 1988 n. 449 "Approvazione delle norme tecniche per la progettazione, l'esecuzione e l'esercizio delle linee aeree esterne";

- Decreto Interministeriale 16 gennaio 1991 n. 1260 "Aggiornamento delle norme tecniche per la disciplina della costruzione e dell'esercizio di linee elettriche aeree esterne";
- Decreto Interministeriale del 05/08/1998 "Aggiornamento delle norme tecniche per la progettazione, esecuzione ed esercizio delle linee elettriche aeree esterne";
- Decreto Ministero Infrastrutture e Trasporti 14 settembre 2005 n. 159 "Norme tecniche per le costruzioni".

11.2 Norme tecniche

Norme CEI

Si riportano le norme CEI applicabili:

- CEI 211-4, "Guida ai metodi di calcolo dei campi elettrici e magnetici generati da linee elettriche", seconda edizione, 2008-09
- CEI 211-6, "Guida per la misura e per la valutazione dei campi elettrici e magnetici nell'intervallo di frequenza 0 Hz 10 kHz, con riferimento all'esposizione umana", prima edizione, 2001-01
- CEI 103-6 "Protezione delle linee di telecomunicazione dagli effetti dell'induzione elettromagnetica provocata dalle linee elettriche vicine in caso di guasto", terza edizione, 1997:12
- CEI 304-1 Interferenza elettromagnetica prodotta da linee elettriche su tubazioni metalliche Identificazione dei rischi e limiti di interferenza;
- CEI 106-11, "Guida per la determinazione delle fasce di rispetto per gli elettrodotti secondo le disposizioni del DPCM 8 luglio 2003 (Art. 6) Parte 1: Linee elettriche aeree e in cavo", prima edizione, 2006:02
- CEI 11-4, "Esecuzione delle linee elettriche esterne", quinta edizione, 1998:09

Norme tecniche diverse

Per l'elenco dell'Unificazione Terna applicabile, si rimanda a:

- Unificazione TERNA, "Linee a 150 kV Semplice Terna conduttori Ø 31.5 mm"
- Unificazione TERNA, "Conduttori e morsetteria ad alta temperatura"

12 AREE IMPEGNATE

In merito all'attraversamento di aree da parte degli elettrodotti, si possono individuare, con riferimento al Testo Unico 327/01, le **aree impegnate**, cioè le aree necessarie per la sicurezza dell'esercizio e manutenzione dell'elettrodotto che sono di norma pari:

• 15 m dall'asse linea per parte per elettrodotti aerei a 150 kV semplice terna

RELAZIONE TECNICA ILLUSTRATIVA

Codifica Elaborato:

REGR20005B2047039

Rev. 00 Data 23/06/2021

Il vincolo preordinato all'esproprio sarà apposto sulle "aree potenzialmente impegnate" (previste dalla L. 239/04) che equivalgono alle "zone di rispetto" di cui all'articolo 52 quater, comma 6, del Decreto Legislativo 27 dicembre 2004, n. 330, all'interno delle quali poter inserire eventuali modeste varianti al tracciato dell'elettrodotto senza che le stesse comportino la necessità di nuove autorizzazioni. L'estensione dell'area potenzialmente impegnata sarà di:

30 m dall'asse linea per lato per elettrodotti aerei a 150 kV in semplice terna

Le planimetrie catastali in scala 1:2000, che riportano l'asse indicativo del tracciato del nuovo elettrodotto con il posizionamento preliminare dei sostegni e la fascia delle aree potenzialmente impegnate sulle quali sarà apposto il vincolo preordinato all'imposizione della servitù di elettrodotto, nonché i proprietari dei terreni interessati dalle aree potenzialmente impegnate (ed aventi causa delle stesse) e relativi numeri di foglio e particella, così come desunti dal catasto, sono riportati nell'Appendice A al Piano Tecnico delle Opere, Doc. n. EEGR20005B2047806 - Appendice A - Elenco Documenti.

I proprietari dei terreni interessati dalle aree potenzialmente impegnate (aventi causa delle stesse) e relativi numeri di foglio e particella, così come desunti dal catasto, sono riportati nei documenti:

- Doc. n. EEGR20005B2047148 Elenco beni soggetti ad occupazione temporanea - Agira;

Doc. n. EEGR20005B2047383 Elenco beni soggetti ad occupazione temporanea - Assoro;

- Doc. n. EEGR20005B2047149 Elenco beni soggetti ad occupazione temporanea - Castel di Iudica;

- Doc. n. EEGR20005B2048356 Elenco beni soggetti ad occupazione temporanea - Raddusa;

- Doc. n. EEGR20005B2047915 Elenco beni soggetti ad occupazione temporanea - Ramacca;

Doc. n. EEGR20005B2048247 Elenco beni soggetti ad occupazione temporanea - Regalbuto;

- Doc. n. EEGR20005B2047264 Elenco beni soggetti ad occupazione temporanea - Paternò.

In fase di progetto esecutivo dell'opera si procederà alla delimitazione delle aree effettivamente impegnate dalla stessa (asservimento), con conseguente riduzione delle porzioni di territorio soggette a vincolo preordinato all'imposizione della servitù di elettrodotto.

13 PISTE DI CANTIERE

Al fine di poter garantire un percorso che permetta con i mezzi di lavoro il raggiungimento di ciascun microcantiere ove verrà realizzato il rispettivo sostegno, a completamento della documentazione progettuale sono state individuate le possibili piste di accesso. Per le aree che individuano ciascuna pista, ai sensi dell'ex artt. 49 e 50 D.P.R. 327/2001 e ss.mm.ii. è richiesta l'occupazione temporanea dei suoli.

Il documento DEGR20005B2048582 individua su planimetria catastale le aree in cui ricadono le piste di accesso a ciascun sostegno e su cui è richiesta l'occupazione temporanea dei suoli.

RELAZIONE TECNICA ILLUSTRATIVA

Codifica Elaborato:

REGR20005B2047039

Rev. 00 Data 23/06/2021

I proprietari dei terreni interessati dall'occupazione temporanea dei suoli (aventi causa delle stesse) e relativi numeri di foglio e particella, così come desunti dal catasto, suddivisi per i per comune sono riportati nei documenti:

- Doc. n. EEGR20005B2047148 Elenco beni soggetti ad occupazione temporanea - Agira;

- Doc. n. EEGR20005B2047383 Elenco beni soggetti ad occupazione temporanea - Assoro;

- Doc. n. EEGR20005B2047149 Elenco beni soggetti ad occupazione temporanea - Castel di Iudica;

- Doc. n. EEGR20005B2048356 Elenco beni soggetti ad occupazione temporanea - Raddusa;

- Doc. n. EEGR20005B2047915 Elenco beni soggetti ad occupazione temporanea - Ramacca;

- Doc. n. EEGR20005B2048247 Elenco beni soggetti ad occupazione temporanea - Regalbuto;

- Doc. n. EEGR20005B2047264 Elenco beni soggetti ad occupazione temporanea - Paternò.

14 SICUREZZA NEI CANTIERI

I lavori si svolgeranno in ossequio alla normativa vigente, con particolare riferimento al Testo Unico sulla Sicurezza (Decreto Legislativo 9 aprile 2008, n. 81 e ss.mm.ii).

Pertanto, ai sensi della predetta normativa, in fase di progettazione la TERNA S.p.A. provvederà a nominare un Coordinatore per la Sicurezza in fase di Progettazione abilitato che redigerà il Piano di Sicurezza e di Coordinamento nonché il fascicolo adattato alle caratteristiche dell'opera. Successivamente, in fase di realizzazione dell'opera, sarà nominato un Coordinatore per la Sicurezza in fase di Esecuzione dei lavori, anch'esso abilitato, che vigilerà durante tutta la durata dei lavori sul rispetto da parte delle ditte appaltatrici delle norme di legge in materia di sicurezza e delle disposizioni previste nel Piano di Sicurezza.