

REGIONE PUGLIA

Provincia di Taranto

Committente:

Manduria-Oria Wind Energy S.r.l.

via Sardegna, 40 00187 Roma (RM) P.IVA/C.F. 15856951007

Documento:

PROGETTO DEFINITIVO

Titolo del Progetto:

PARCO EOLICO "MANDURIA"

Elaborato:

Relazione Tecnico Descrittiva Opere Elettriche

ID PROGETTO	DISCIPLINA	CAPITOLO	TIPO	REVISIONE	SCALA	FORMATO		
IT-VesMaO-Gem	E	-	-	-	NA	A4		
NOME FILE:	IT-VesMaO-Gem-EW-TR-01-Rev.0							

Progettazione:

Ing. Saverio Pagliuso

Ing. Raffaele Ciotola

Rev:	Prima Emissione	Descrizione Revisione	Redatto	Controllato	Approvato
00	09/2021	PRIMA EMISSIONE	GEMSA	GEMSA	MANDURIA-ORIA

INDICE

1	OGGETTO	0	4	
2	SCOPO		4	
3	NORMAT	TIVA DI RIFERIMENTO	4	
4	DESCRIZ	IONE DEGLI IMPIANTI ELETTRICI	7	
5	LINEE IN	TERRATE 30 kV	7	
	5.1 Cara	atteristiche dei cavi	7	
	5.2 Prof	fondità di posa e disposizione dei cavi	8	
	5.3 Rete	e di terra	9	
	5.4 Cad	ute di tensione e perdite di potenza	9	
6	STAZION	IE DI TRASFORMAZIONE 30/150 kV (SET)	11	
	6.1 Siste	ema a 150 kV	11	
	6.1.1	Caratteristiche apparati		11
	6.1.2	Interruttori Automatici		13
	6.1.3	Sezionatori rotatvi orizzontali		14
	6.1.4	Trasformatori di corrente TA		15
	6.1.5	Trasformatori di tensione capacitivi TVC		16
	6.1.6	Trasformatori di tensione induttivi TVI		17
	6.1.7	Scaricatori di sovratensione		18
	6.1.8	Trasformatore di potenza		19
	6.2 Sezi	one 30 kV	20	
	6.2.1	Tensioni di esercizio (distanze minime)		21
	6.2.2	Carpenterie metalliche		21
	6.2.3	Struttura metallica per apparecchiature a $150\ kV$		21
	6.2.4	Strutture metalliche a 30 kV		22
	6.2.5	Sbarre		22
	6.2.6	Sbarra da 30 kV		22
	6.2.7	Celle di media tensione (30 kV)		24
	6.2.8	Tipo di celle		24
	6.2.9	Caratteristiche dell'apparecchiatura		25
	6.2.9.1	Interruttori		25
	6.2.9.2	Trasformatori di corrente		25
	6.2.9.3	Trasformatori di tensione delle sbarre		26
	6.2.9.4	Sezionatori tripolari		26

6.2.	10	Reattanza di messa a terra		26
6.2.	11	Caratteristiche		27
6.2.	12	Servizi ausiliari		28
6.2.	13	Servizi ausiliari in c.a.		28
6.2.	13.1	Trasformatori di servizi ausiliari		28
6.2.	13.2	Gruppo elettrogeno		28
6.2.	14	Servizi ausiliari in c.c.		28
6.3	Misu	ıra energia	29	
6.3.	6.3.1 Misure di energia (fatturazione)			29
6.3.	2	Ulteriori apparati di misura		30
6.4	Tele	controllo e telecominicazioni	30	
6.5	Ope	re civili	30	
6.5.	1	Piattaforma		30
6.5.	2	Fondazioni		30
6.5.	3	Basamento e deposito di olio del trasformatore MT/AT		31
6.5.	4	Drenaggio di acqua pluviale		31
6.5.	5	Canalizzazioni elettriche		31
6.5.	6	Acceso e viali interni		31
6.5.	7	Recinzione		31
6.6	Edifi	cio di Controllo SET	32	
6.7	Mess	sa a terra	32	
6.8	Cario	chi elettrici	34	
6.8.	1	Massima corrente di impiego		34
6.8.2		Correnti nominali lato 150 e 30 kV		35

1 OGGETTO

La società Manduria Wind Energy s.r.l. intende realizzare nel Comune di Manduria (TA) un parco eolico "Manduria", da realizzare nei Comune di Manduria in provincia di Taranto. L'impianto eolico sarà composto da n° 16 aerogeneratori eolici della potenza unitaria di 6 MW, per una potenza complessiva massima non superiore a 96 MW.

2 SCOPO

Scopo del presente documento è la descrizione ed il calcolo degli impianti elettrici che convogliano l'energia prodotta dal parco eolico (PE) nella rete di AT di proprietà della società TERNA – Rete Elettrica Nazionale SpA (TERNA).

La connessione alla rete AT avverrà per mezzo di un collegamento in antenna a 150 kV con il futuro ampliamento della Stazione Elettrica di Trasformazione (SE) della RTN a 380/150 kV di "Erchie", così come indicato nella Soluzione Tecnica Minima Generale Cod. Prat. 202100122 di TERNA del 27/05/2021.

3 NORMATIVA DI RIFERIMENTO

- R.D. 11 Dicembre 1933 n° 1775 "Testo Unico delle disposizioni di Legge sulle Acque e sugli Impianti Elettrici",
- Legge 22/02/01 n° 36, "Legge quadro sulla protezione dalle esposizioni a campi elettrici, magnetici ed elettromagnetici", (G.U. n° 55 del 7 marzo 2001);
- DPCM 08/07/03, "Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete (50 Hz) generati dagli elettrodotti", (GU n° 200 del 29/08/03);
- DPCM 08/06/01 n°327 "Testo unico delle disposizioni legislative e regolamentari in materia di Pubblica Utilità".
- Legge 24/07/90 n° 241, "Norme sul procedimento amministrativo in materia di conferenza dei servizi".
- D.Lgs 22/01/04 n° 42 "Codice dei Beni Ambientali e del Paesaggio".
- DM 21/03/88 "Disciplina per la costruzione delle linee elettriche aeree esterne" e successive modifiche ed integrazioni.

- Circolare Ministero Ambiente e Tutela del Territorio DSA/2004/25291 del 14/11/04 in merito ai criteri per la determinazione della fascia di rispetto;
- DM 29/05/08 "Approvazione della metodologia di calcolo per la determinazione delle fasce di rispetto per gli elettrodotti".
- Legge 28/03/86 n. 339 "Nuove norme per la disciplina della costruzione e dell'esercizio di linee elettriche aeree esterne",
- D.M.LL.PP 21/03/88 n° 449 "Approvazione delle norme tecniche per la progettazione, l'esecuzione e l'esercizio delle linee elettriche aeree esterne",
- D.M.LL.PP 16/01/91 n° 1260 "Aggiornamento delle norme tecniche per la disciplina della costruzione e l'esercizio delle linee elettriche aeree esterne",
- D.M.LL.PP. 05/08/98 "Aggiornamento delle norme tecniche per la progettazione, esecuzione ed esercizio delle linee elettriche esterne",
- Artt. 95 e 97 del D.Lgs n° 259 del 01/08/03,
- Circola Ministeriale n. DCST/3/2/7900/42285/2940 del 18/02/82 "Protezione delle linee di telecomunicazione per perturbazioni esterne di natura elettrica Aggiornamento delle Circolare del Mini. P.T. LCI/43505/3200 del 08/01/68,
- Circolare "Prescrizione per gli impianti di telecomunicazione allacciati alla rete pubblica, installati nelle cabine, stazioni e centrali elettriche AT", trasmessa con nota Ministeriale n. LCI/U2/2/71571/SI del 13/03/73,
- D.lgs 16/03/99, n. 79 Attuazione della direttiva 96/92/CE recante norme comuni per il mercato interno dell'energia elettrica,
- D.lgs 387/03 Attuazione della direttiva 2001/77/CE relativa alla promozione dell'energia elettrica prodotta da fonti energetiche rinnovabili nel mercato interno dell'elettricità,
- DM 5 luglio 2012 Decreto FER,
- DPR 151/11 Regolamento recante semplificazione della disciplina dei procedimenti relativi alla prevenzione incendi, a norma dell'articolo 49 comma 4-quater, decreto-legge 31 maggio 2010, n. 78, convertito con modificazioni, dalla legge 30 luglio 2010, n. 122
- CEI 7-6 Norme per il controllo della zincatura a caldo per immersione su elementi di materiale ferroso destinati a linee e impianti elettrici,

- CEI 99-2 Impianti elettrici con tensione superiore a 1 kV in c.a Parte 1: Prescrizioni comuni I Ed. 2011
- CEI 99-3 Messa a terra degli impianti elettrici a tensione superiore a 1 kV in c.a. I Ed. 2011
- CEI 11-4 Esecuzione delle linee elettriche aeree esterne,
- CEI 99-27 Impianti di produzione, trasmissione e distribuzione pubblica di energia elettrica: Linee in cavo,
- CEI 11-25 Calcolo delle correnti di cortocircuito nelle reti trifasi a corrente alternata,
- CEI 11-27 Lavori su impianti elettrici
- CEI EN 50110-1-2 esercizio degli impianti elettrici,
- CEI 33-2 Condensatori di accoppiamento e divisori capacitivi
- CEI 36-12 Caratteristiche degli isolatori portanti per interno ed esterno destinati a sistemi con tensioni nominali superiori a 1000 V
- CEI 57-2 Bobine di sbarramento per sistemi a corrente alternata
- CEI 57-3 Dispositivi di accoppiamento per impianti ad onde convogliate
- CEI 64-2 Impianti elettrici in luoghi con pericolo di esplosione
- CEI 64-8 Impianti elettrici utilizzatori a tensione nominale non superiore a 1000 V in corrente alternata e a 1500 V in corrente continua,
- CEI 11-32 Impianti di produzione di energia elettrica connessi a sistemi di III categoria,
- CEI 11-32 V1 Impianti di produzione eolica,
- CEI 103-6 fascicolo 4091 Edizione agosto 1997, Protezione delle linee di telecomunicazione dagli effetti dell'induzione elettromagnetica provocata dalle linee elettriche vicine in caso di guasto,
- CEI 11-60, "Portata al limite termico delle linee elettriche aeree esterne", 2a Ed.;
- Codice di Rete TERNA.

4 DESCRIZIONE DEGLI IMPIANTI ELETTRICI

Gli impianti elettrici sono costituiti da:

- Parco Eolico: costituito da nº16 aerogeneratori della potenza unitaria di 6 MW che convertono l'energia cinetica del vento in energia elettrica per mezzo di un generatore elettrico. Un trasformatore elevatore 0,690/30 kV porta la tensione al valore di trasmissione interno dell'impianto;
- *le linee interrate in MT a 30 kV*: convogliano la produzione elettrica degli aerogeneratori alla Stazione di Trasformazione 30/150 kV;
- *la stazione di trasformazione 30/150 kV (SET)*: trasforma l'energia al livello di tensione della rete AT. In questa stazione vengono posizionati gli apparati di protezione e misura dell'energia prodotta;
- *Stazione di Condivisione*: impianto in alta tensione a cui sono connesse le stazioni di trasformazione 30/150 kV del parco eolico "Manduria" e altri futuri produttori;
- Cavidotto interrato a 150 kV: cavo di collegamento a 150 kV tra la Stazione di condivisione e il futuro ampliamento della Stazione Elettrica di Trasformazione (SE) della RTN a 380/150 kV di "Erchie";
- *Stallo di consegna TERNA a 150 kV (IR impianto di rete per la connessione)*: è il nuovo stallo di consegna a 150 kV che verrà realizzato nel futuro ampliamento della Stazione Elettrica di Trasformazione (SE) della RTN a 380/150 kV di "Erchie".

5 LINEE INTERRATE 30 kV

La rete di media tensione a 30 kV sarà composta da n° 6 circuiti con posa completamente interrata. Il tracciato planimetrico della rete è mostrato nelle tavole allegate.

Nelle tavole allegate vengono anche riportati lo schema unifilare dove con indicazione della lunghezza e della sezione corrispondente di ciascuna terna di cavo e viene descritta la modalità e le caratteristiche di posa interrata.

5.1 Caratteristiche dei cavi

La rete a 30 kV sarà realizzata per mezzo di cavi unipolari del tipo ARP1H5E (o equivalente) con conduttore in alluminio. Le caratteristiche elettriche di portata e resistenza dei cavi in alluminio sono riportate nella seguente tabella (portata valutata per posa interrata a 1,2 m

di profondità, temperatura del terreno di 20° C e resistività termica del terreno di 1 K m /W):

Sezione	Portata	Resistenza
[mm ²]	[A]	[Ohm/km]
240	433	0,161
630	735	0,061

Caratteristiche elettriche cavo MT

5.2 Profondità di posa e disposizione dei cavi

I cavi verranno posati con una protezione meccanica (lastra o tegolo) ed un nastro segnalatore. Su terreni pubblici e su strade pubbliche la profondità di posa dovrà essere comunque non inferiore a 1,2 m previa autorizzazione della Provincia. I cavi verranno posati in una trincea scavata a sezione obbligata. Mantenendo valide le ipotesi di temperatura e resistività del terreno, i valori di portata indicati nel precedente paragrafo vanno moltiplicati per dei coefficienti di correzione che tengono conto della profondità di posa di progetto, del numero di cavi presenti in ciascuna trincea e della ciclicità di utilizzo dei cavi.

Dove necessario si dovrà provvedere alla posa indiretta dei cavi in tubi, condotti o cavedi. Per i condotti e i cunicoli, essendo manufatti edili resistenti non è richiesta una profondità minima di posa né una protezione meccanica supplementare. Lo stesso dicasi per i tubi 450 o 750, mentre i tubi 250 devono essere posati almeno a 0,6 m con una protezione meccanica. In questi casi si applicheranno i seguenti coefficienti:

- lunghezza ≤ 15m: nessun coefficiente riduttivo,
- lunghezza ≥ 15 m: 0,8 m,
- Si installerà una terna per tubo che dovrà avere un diametro doppio di quello apparente della terna di cavi.

Nella stessa trincea verranno posati i cavi di energia, la fibra ottica necessaria per la comunicazione e la corda di terra.

5.3 Rete di terra

La rete di terra sarà costituita dai seguenti elementi:

- anello posato attorno a ciascun aerogeneratore (raggio R=15 m),
- la corda di collegamento tra ciascun anello e la stazione elettrica (posata nella stessa trincea dei cavi di potenza),
- maglia di terra della stazione di trasformazione,
- maglia di terra della stazione di connessione alla rete AT.

La rete sarà formata da un conduttore nudo in rame da 50 mm² e si assumerà un valore di resistività ρ del terreno pari a 150 Ω m.

5.4 Cadute di tensione e perdite di potenza

Sulla base dei calcoli svolti e di seguito riportati, sono stati ottenuti i seguenti risultati:

• Cadute di tensione massima nel circuito 3: 3,32%

• Perdite totali rete MT: 1,37 % (1.315 kW)

CADUTE DI TENSIONE E PERDITE DI POTENZA

CIRCUITO 1								
TRATTO	P (kW)	Lungh. (m)	I (A)	COEF.	CABLE	Iz (A)	e total (%)	P.PERD (kW)
MM10 - MM13	6000	1490	122	0,90	240	390	2,44	11
MM13 - SET	12000	14660	243	0,50	630	368	2,24	159
								169

CIRCUITO 2									
TRATTO	P [kW]	Lungh. (m)	lb [A]	COEF. RID.	CAVO (mm2)	Iz (A)	e total (%)	Perdite (kW)	
MM14 - MM11	6000	1840	122	0,90	240	390	2,17	13	
MM11 - SET	12000	12540	243	0,50	630	368	1,92	136	
								149	

CIRCUITO 3									
TRATTO	P (kW)	Lungh.	I (A)	COEF.	CABLE	Iz (A)	e total	P.PERD	
IIVATIO	r (KVV)	(m)	I (A)	COLI.	CABLE	12 (A)	(%)	(kW)	
MM15 - MM12	6000	2560	122	0,70	240	303	3,32	18	
MM16 - MM12	6000	1500	122	0,70	240	303	3,17	11	
MM12 - SET	18000	12960	365	0,50	630	368	2,97	315	
								344	

CIRCUITO 4										
TRATTO	P [kW]	Lungh.	IL [A]	COEF.	CAVO	I (A)	e total	Perdite		
IRATIO		(m)	lb [A]	RID.	(mm2)	Iz (A)	(%)	(kW)		
MM09 - MM05	6000	2150	122	0,60	240	260	2,17	15		
MM04 - MM05	6000	1790	122	0,60	240	260	2,12	13		
MM05 - SET	18000	8190	365	0,50	630	368	1,88	199		
								227		

CIRCUITO 5									
TRATTO	P (kW)	Lungh. (m)	I (A)	COEF.	CABLE	Iz (A)	e total (%)	P.PERD (kW)	
MM06 - MM07	6000	2560	122	0,50	240	217	1,86	18	
MM08 - MM07	6000	2100	122	0,70	240	303	1,80	15	
MM07 - SET	18000	6600	365	0,50	630	368	1,51	161	
								194	

CIRCUITO 6									
TRATTO	P (kW)	Lungh. (m)	I (A)	COEF.	CABLE	Iz (A)	e total (%)	P.PERD (kW)	
MM01 - MM02	6000	820	122	0,90	240	390	2,39	6	
MM02 - MM03	12000	3030	243	0,90	630	662	2,28	33	
MM03 - SET	18000	7910	365	0,50	630	368	1,81	192	
								231	

6 STAZIONE DI TRASFORMAZIONE (SET) E DI CONDIVISIONE

La stazione elettrica di trasformazione è necessaria ad elevare la tensione da 30 kV a 150 kV al fine di poter essere immessa nella rete di TERNA; è costituita da una sezione a 150 kV e una sezione a 30 kV avente n°6 montanti di collegamento ai generatori.

6.1 Stazione di trasformazione

La stazione di trasformazione è costituita dalle seguenti apparecchiature isolate in aria: n°2 STALLI TRASFORMATORE, ciascuno composto da:

- N° 1 trasformatore 30/150 kV di potenza 50/60 MVA (ONAN/ONAF) con variatore di rapporto sotto carico, TRAFO;
- N° 3 scaricatori di sovratensione, SC;
- N° 3 trasformatori di tensione induttivi (fatturazione), TVI;
- N° 3 trasformatori di corrente (protezione e fatturazione), TA;
- N° 1 interruttore automatico, isolato in SF₆ con comando tripolare, INT;
- N° 1 sezionatore di isolamento rotativo (tripolare), SEZ.

La stazione di condivisione è costituita dalle seguenti apparecchiature isolate in ari: SBARRE AT:

- N° 1 sistema di sbarre, SB;
- N° 3 trasformatori di tensione capacitivi (protezione), TVC;
- N° 3 sezionatori di isolamento rotativi (tripolare), SEZ.

n°1 STALLO DI CONSEGNA, composto da:

- N° 3 trasformatori di corrente (protezione e misura), TA;
- N° 1 interruttore automatico, isolato in SF₆ con comando tripolare, INT;
- N° 1 sezionatore di isolamento rotativo (tripolare) con lame di terra, SEZ.
- N° 3 scaricatori di sovratensione, SC;
- N° 3 terminali cavo, TC;

6.1.1 Caratteristiche apparati

Come dati di progetto si adottano i seguenti valori:

_	Tensione massima:	170 kV
_	Livello di isolamento:	
	- Tensione a frequenza industriale (1 minuto 50 Hz) (valore efficace)	315 kV
	- Tensione a impulso atmosferico (onda 1,2 / 50 μ s) (cresta)	750 kV
•	Corrente nominale montante di linea	800 A
•	Corrente nominale montante trasformatore:	270 A
•	Massima corrente di cortocircuito	31,5 kA
•	Tempo di estinzione dei guasti:	0,5 s
•	Altezza dell'installazione<	1000 m

La norma CEI 99-2 definisce le distanze minime che bisogna rispettare dai punti in tensione. Si adotteranno distanze sempre superiori a quelle specificate nella suddetta norma, in particolare:

• Distanza fase-terra: 3,3 m

• Distanza fase-fase: 2,2 m

• Distanza fase-suolo: 4,5 m

La corrente massima di esercizio in AT è di 390 A, corrispondente al regime di piena potenza del PE, inferiore alle correnti nominali degli apparati e dei conduttori utilizzati.

La corrente di cortocircuito che l'impianto (apparati e cavi) può sopportare per 0,5 s è di 31,5 kA. Tale valore di corrente è notevolmente superiore alla reale corrente di cortocircuito al punto di connessione del parco sulla linea a 150 kV.

6.1.2 Interruttori Automatici

GRANDEZZE NOMINALI		
Tipologia	Tipo 1	Tipo 2
Salinità di tenuta a 98 kV (Kg/m³) valori minimi consigliati	da 14 a 56 (*)	
Poli (n°)	3	
Tensione massima (kV)	17	70
Corrente nominale (A)	2000	1250
Frequenza nominale (Hz)	5	0
Tensione nominale di tenuta ad impulso atmosferico verso massa (kV)	750	
Tensione nominale di tenuta a frequenza industriale verso massa (kV)	325	
Corrente nominale di corto circuito (kA)	40-31.5	31.5
Potere di stabilimento nominale in corto circuito (kA)	100-80	80
Durata nominale di corto circuito (s)	1	
Sequenza nominale di operazioni	O-0,3"-CO-1'-CO	
Potere di interruzione nominale in discordanza di fase (kA)	8 5	
Potere di interruzione nominale su linee a vuoto (A)	63	
Potere di interruzione nominale su cavi a vuoto (A)	160	
Potere di interruzione nominale su batteria di condensatori (A)	600	
Potere di interruzione nominale di correnti magnetizzanti (A)	15	
Durata massima di interruzione (ms)	60	
Durata massima di stabilimento/interruzione (ms)	80	
Durata massima di chiusura (ms)	150	
Massima non contemporaneità tra i poli in chiusura (ms)	5,0	
Massima non contemporaneità tra i poli in apertura (ms)	3,3	

^(*)Valori superiori, per condizioni particolari, potranno essere adottati.

6.1.3 Sezionatori rotatvi orizzontali

GRANDEZZE NOMINALI	
Poli (n°)	3
Tensione massima (k∀)	145-170
Corrente nominale (A)	2000
Frequenza nominale (Hz)	50
Corrente nominale di breve durata:	
- valore efficace (kA)	40-31.5
- valore di cresta (kA)	100-80
Durata ammissibile della corrente di breve durata (s)	1
Tensione di prova ad impulso atmosferico:	
- verso massa (kV)	650
- sul sezionamento (k∀)	750
Tensione di prova a frequenza di esercizio:	
- verso massa (kV)	275
- sul sezionamento (k∀)	315
Sforzi meccanici nominali sui morsetti:	
- orizzontale longitudinale (N)	800
- orizzontale trasversale (N)	250
- verticale (N)	1000
Tempo di apertura/chiusura (s)	≤15
Prescrizioni aggiuntive per il sezionatore di terra	
- Classe di appartenenza	A o B, secondo CEI EN 61129
- Tensioni e correnti induttive nominali elettromagnetiche ed elettrostatiche (kV, A)	Secondo classe A o B, Tab.1 CEI EN 61129

6.1.4 Trasformatori di corrente TA

GRANDEZZE NOMINALI			
Tensione massima	(kV)	170	
Frequenza	(Hz)	50	
Rapporto di trasformazione(**)	(A/A)	400/5 800/5 1600/5	
Numero di nuclei(**)	(n°)	3	
Corrente massima permanente	(p.u.)	1,2	
Corrente termica di corto circuito	(kA)	31,5-40	
Impedenza secondaria II e III nucleo a 75°C	(Ω)	≤0,4	
Reattanza secondaria alla frequenza industriale	(Ω)	Trascurabile	
Prestazioni(**) e classi di precisione:			
- I nucleo	(VA)	30/0,2 50/0,5	
- II e III nucleo	(VA)	30/5P30	
Fattore sicurezza nucleo misure		≤10	
Tensione di tenuta a f.i. per 1 minuto	(k∀)	325	
Tensione di tenuta a impulso atmosferico	(k∀)	750	
Salinità di tenuta alla tensione di 98 kV	(kg/m³)	da 14 a 56(*)	
Sforzi meccanici nominali sui morsetti			
Secondo la Tab.8, Classe II della Norma CEI EN 600	044-1.		

(*) Valori superiori potranno essere adottati

(**) I valori relativi ai rapporti di trasformazione, alle prestazioni e al numero di nuclei devo intendersi come raccomandati. Altri valori potranno essere adottati in funzione delle esigenze dell'impianto.

6.1.5 Trasformatori di tensione capacitivi TVC

GRANDEZZE NOMINALI	
Tensione massima di riferimento per l'isolamento (kV)	170
Rapporto di trasformazione	$150.000/\sqrt{3}$
	$\frac{100/\sqrt{3}}{}$
Frequenza nominale (Hz)	50
Capacità nominale (pF)	4000
Prestazioni nominali (VA/classe)	40/0,2-75/0,5-100/3P(**)
Fattore di tensione nominale con tempo di funzionamento di 30 s	1,5
Tensione di tenuta a f.i. per 1 minuto (kV)	325
Tensione di tenuta a impulso atmosferico (kV)	750
Salinità di tenuta alla tensione di 98 kV (kg/m³)	Da 14 a 56(*)
Scarti della capacità equivalente serie in AF dal valore nominale a frequenza di rete	-20% ÷ 50%
Resistenza equivalente in AF (Ω)	≤ 40
Capacità e conduttanza parassite del terminale di bassa tensione a frequenza compresa tra 40 e 500 kHz, compresa l'unità elettromagnetica di misura:	
- C _{pa} (pF)	≤(300+0,05 C _n)
- G _{pa} (μS)	≤50
Sforzi meccanici nominali sui morsetti:	
- orizzontale, applicato a 600 mm sopra la flangia B (N)	2000
- verticale, applicato sopra alla flangia B (N)	5000

(*) Valori superiori potranno essere adottati

(**) I valori relativi alle prestazioni e al numero di nuclei devo intendersi come raccomandati. Altri valori potranno essere adottati in funzione delle esigenze dell'impianto.

6.1.6 Trasformatori di tensione induttivi TVI

GRANDEZZE NOMINALI		
Tensione massima di riferimento per l'isolamento (kV)	170	
Tensione nominale primaria (V)	150.000/√3	
Tensione nominale secondaria (V)	100/√3	
Frequenza nominale (Hz)	50	
Prestazione nominale (VA)(**)	50	
Classe di precisione	0,2-0,5-3P	
Fattore di tensione nominale con tempo di funzionamento di 30 s	1,5	
Tensione di tenuta a f.i. per 1 minuto (kV)	325	
Tensione di tenuta a impulso atmosferico (kV)	750	
Salinità di tenuta alla tensione di 98 kV (kg/m³)	Da 14 a 56(*)	
Sforzi meccanici nominali sui morsetti:		
- orizzontale (N)	Tab. 9 Norma	
- verticale (N)	CEI EN 60044- 2	

(*) Valori superiori potranno essere adottati

(**) I valori relativi alle prestazioni e al numero di nuclei devo intendersi come raccomandati. Altri valori potranno essere adottati in funzione delle esigenze dell'impianto.

6.1.7 Scaricatori di sovratensione

GRANDEZZE NOMINALI	
Tensione di servizio continuo (kV)	108
Frequenza (Hz)	50
Salinità di tenuta alla tensione di 98 kV (kg/m³)	Da 14 a 56(*)
Massima tensione temporanea per 1s (kV)	158
Tensione residua con impulsi atmosferici di corrente	396
Tensione residua con impulsi di corrente a fronte ripido (10 kA - fronte 1 μ s) (kV)	455
Tensione residua con impulsi di corrente di manovra $$ (500 A, 30/60 $\mu s)$ (kV)	318
Corrente nominale di scarica (kA)	10
Valore di cresta degli impulsi di forte corrente (kA)	100
Classe relativa alla prova di tenuta ad impulsi di lunga durata	3
Valore efficace della corrente elevata per la prova del dispositivo di sicurezza contro le esplosioni (kA)	40

^(*) Valori superiori potranno essere adottati

6.1.8 Trasformatore di potenza

Per la trasformazione $30/150~\rm kV$ si prevede un trasformatore di potenza trifase, isolato in olio, installato all'aperto.

1. Caratteristiche costruttive

Tipo di servizio	continuo
Raffreddamento	ONAN/ONAF
Potenza nominale	50/60MVA
Tensioni a vuoto	
- Primario	150± 10x1,2%
- Secondario	30 kV
• Frequenza	50 Hz
Connessione	Stella/triangolo
Gruppo di connessione	YNd11
Tensione di cortocircuito	12%
2. Isolamento	
 Tensione a impulso atmosferico (1,2/50μs): 	
Primario	650 kV
Neutro del primario	250 kV
Secondario	170 kV
Tensione a frequenza industriale:	
Primario	275 kV
Neutro del primario	95 kV
Secondario	70 kV

6.2 Sezione 30 kV

Il sistema è costituito da elementi necessari a connettere la rete di media tensione del PE ai secondari dei trasformatori di potenza e ad alimentare i Servizi Ausiliari (ss.aa).

Esterno Edificio tecnico:

- Tre scaricatori di sovratensione,
- Tre sezionatori unipolari destinati ad isolare la reattanza di messa a terra,
- Una reattanza di messa a terra del secondario del trasformatore di potenza

Interno Edificio tecnico:

- N°1 cella con interruttore automatico e sezionatore con funzioni di protezione del trasformatore,
- N°6 celle con interruttore automatico e sezionatore con funzioni di protezione della rete a 30 kV del Parco Eolico,
- N°1 cella congiuntore,
- N°1 celle di misura (opzionali),
- N°1 cella con interruttore automatico e sezionatore con funzioni di protezione del trasformatore dei servizi ausiliari.

All'interno dell'edificio tecnico saranno installati inoltre gli apparati di misura, comando, controllo e protezione necessari per la corretta funzionalità dell'impianto.

Come dati di progetto si adottano i seguenti valori:

_	Tensione nominale:	30 kV
_	Tensione massima:	36 kV
_	Livello di isolamento	
	-Tensione a impulso atmosferico	170 kV
	-Tensione a frequenza industriale	70 kV
_	Corrente nominale del trasformatore 1:	867 A
_	Corrente nominale di cortocircuito ² :	31,5 kA
_	Tempo di estinzione del guasto:	0,5 s

¹ Corrispondente all'elemento con minor corrente nominale

.

² Corrispondente al potere di interruzione degli interruttori installati nella cella a 30 kV.

6.2.1 Tensioni di esercizio (distanze minime)

	Fissata in questo	Fissata in questo
	CLI 77-2	progetto
Distanza minima fase-terra in aria	0,32 m	0,5 m
Distanza minima fase-fase in aria	0,32 m	0,5 m
Altitudine minima fase-suolo	3,2 m	3,6 m

Tab. 4: Verifica distanze minime (Vn = 30 kV, $V 1,2/50 \text{ } \mu\text{s} = 170 \text{ kV}$)

Nel sistema a 30 kV all'interno della sottostazione si utilizzano cavi isolati e segregati in apposite celle prefabbricate, collaudate e certificate dal Costruttore secondo procedure a norma di legge per il livello di isolamento indicato.

6.2.2 Carpenterie metalliche

Tutti gli apparati dell'impianto elettrico esterno saranno installati su idonei supporti metallici. L'altezza dei supporti sarà superiore a 2,25 m per evitare di posizionare barriere di protezione da elementi in tensione. La base della struttura dei supporti sarà realizzata in acciaio ed in grado di sopportare gli sforzi nelle condizioni peggiori. Le fondazioni necessarie per l'ancoraggio delle strutture sono dimensionate per assicurare la stabilità ed evitare ribaltamenti.

La struttura metallica necessaria a supportare gli apparati consta di:

6.2.3 Struttura metallica per apparecchiature a 150 kV

- Sei supporti per trasformatori di tensione,
- Un supporto per sezionatore di consegna,
- Tre supporti per trasformatori di corrente
- Tre supporti per interruttori
- Tre supporti per scaricatori di sovratensione

Le strutture potranno sopportare il tiro totale previsto dei conduttori.

6.2.4 Strutture metalliche a 30 kV

Per ogni trasformatore di potenza:

- Un supporto per il lato sbarra esterna 30 kV in uscita del trasformatore
- Un supporto per l'altro lato della sbarra esterna 30 kV, scaricatori, reattanza di messa a terra ed il suo sezionatore di isolamento.

6.2.5 Sbarre

Le sbarre (di due tipi: sbarre principali e interconnessioni tra gli apparati) saranno scelte in modo tale da sopportare gli sforzi elettrodinamici e termici delle correnti di cortocircuito previste, senza la produzione di deformazioni permanenti.

6.2.6 Sbarra da 30 kV

Sbarre esterne

Comprende dai morsetti dell'avvolgimento secondario del trasformatore di potenza, alla connessione con i cavi isolati che vanno alla cella a 30 kV; la sbarra sarà costituita da:

- Materiale: Tubo di rame 80/70 mm.
- Sezione equivalente del conduttore: 1180 mm²
- Portata nominale conduttore: 2095 A

<u>Isolatore supporto sbarre</u>

La sbarra da 30 kV da esterno è sostenuta da isolatori di appoggio con le seguenti caratteristiche:

_	Tensione massima	36 kV
_	Tensione a impulso atmosferico	170 kV
_	Tensione a frequenza industriale (sotto la pioggia)	70 kV
_	Linea di fuga	850 mm
_	Carica di rottura a flessione	4000 N
_	Carica di rottura a torsione	1200 Nm

Sezionatore

Si installerà un sezionatore per la connessione / disconnessione della reattanza di messa a terra, con le seguenti caratteristiche:

_	Tensione nominale	. 36 kV
---	-------------------	---------

- Tensione a impulso atmosferico:

- Tensione a frequenza industriale:

Il sezionatore è formato da tre sezionatori unipolari e sarà del tipo a due colonne per fase, con apertura verticale e azionamento manuale, senza lama di messa a terra.

Scaricatori di sovratensione

Gli scaricatori di sovratensione saranno ad ossido di zinco con isolamento polimerico.

Si installeranno un totale di tre scaricatori di sovratensione a 30 kV per trasformatori. L'insieme degli scaricatori di sovratensione sarà montato sul supporto della reattanza di messa a terra e sarà equipaggiato con un unico contatore di scarica.

Conduttori interconnessione sbarre esterne – sbarre interne

La connessione tra la sbarra esterna e la cella a 30 kV del trasformatore di potenza, si effettua attraverso:

- Materiale: due terne di cavi di rame
- Tipo di cavo: ARP1H5E (o equivalente)
- Sezione equivalente del singolo conduttore: 630 mm²
- Corrente nominale: 2064 A.

Sbarre interne

Nella sbarra interna delle celle la distanza tra le fasi è di 14,5 cm (sbarre isolate) e permette un passaggio di corrente di 2.000 A.

6.2.7 Celle di media tensione (30 kV)

Da punto di vista della struttura, queste celle saranno del tipo incapsulato metallico, isolamento in SF₆, per installazione all'interno.

Le celle da installare sono le seguenti:

- N° 2 cella del trasformatore di potenza (con interruttore automatico);
- N° 6 celle di linea;
- N° 2 celle TSA (con interruttore automatico);
- N° 1 cella congiuntore,
- N° 2 celle misura (opzinali),

6.2.8 Tipo di celle

Le caratteristiche strutturali di ogni cella sono analoghe, variando unicamente la apparecchiatura installata, compatibilmente alle necessità relative ad ogni servizio.

Le apparecchiature con le quali sarà dotata ogni tipo di cella è la seguente:

Celle dei trasformatori

- Sbarra da 2000 A
- Derivazione a 2000 A
- 1 sezionatore tripolare
- 1 interruttore automatico
- 3 trasformatori di corrente
- 3 trasformatori di tensione

Cella di linea

- Sbarra da 2000 A
- Derivazione a 1250 A
- 1 sezionatore tripolare
- 1 interruttore automatico
- 3 trasformatori di corrente

- 3 trasformatori di tensione

Oltre alle apparecchiature menzionate, si dispone di 3 trasformatori di tensione nelle sbarre per poter realizzare misure di tensione e potenza.

6.2.9 Caratteristiche dell'apparecchiatura

Le caratteristiche elettriche dell'apparecchiatura descritta per ciascuna cella sono le seguenti:

6.2.9.1 Interruttori

- Tensione massima
- Tensione a impulso atmosferico
- Tensione a frequenza industriale
– Intensità massime:
- Cella del trasformatore
- Celle di linea
 Intensità di cortocircuito:
- Cella del trasformatore31,5 kA
- Celle di linea31,5 kA
- Isolamentoin SF6
6.2.9.2 Trasformatori di corrente
- Tensione massima
 Rapporti di trasformazione:
- Cella del trasformatore
- Celle di linea (linee C1, C2, C3, C4, C5, C6)
 Potenza e classi di precisione:
- Cella del trasformatore:
■ Primo nucleo (misura)
 Secondo nucleo (protezioni)
■ Terzo nucleo (protezioni)
- Celle di linea:
■ Primo nucleo (misura)

Secondo nucleo (protezioni)	5 VA; 5P20
6.2.9.3 Trasformatori di tensione delle sbarre	
- Tensione massima	36 kV
– Rapporto di trasformazione30.000:√3/1	00:√3/100:3 V
 Potenza e classe di precisione: 	
Primo nucleo (misura)	100 VA; 0,5
Secondo nucleo (protezioni)	50 VA: 3P

6.2.9.4 Sezionatori tripolari

I sezionatori delle celle saranno tripolari con tre posizioni (sbarre, disinserito, messa a terra) con azionamento manuale per manovre improvvise e blocco meccanico e elettrico con l'interruttore.

_	Tensione massima	
_	Tensione a impulso atmosferico (1,2/50μs)	
_	Tensione a frequenza industriale	
_	Corrente massima:	
	- Cella del trasformatore	
	- Cella di linea	
_	Corrente di cortocircuito31,5 kA	
_	Isolamentoin SF6	

6.2.10 Reattanza di messa a terra

I collegamenti a triangolo del lato 30 kV dei trasformatori di potenza e del lato 30 kV dei trasformatori dei singoli aerogeneratori bloccano la componente omopolare della corrente di guasto a terra con conseguente difficoltà da parte delle protezioni MT nel rilevare i guasti a terra.

Per superare tale difficoltà si installa una reattanza di messa a terra avente un collegamento a "zig-zag" sul lato 30 kV. Essa permette di avere neutro artificiale attraverso il quale la componente omopolare della corrente di guasto monofase a terra nella rete MT può scorrere facilitando l'individuazione dei guasti stessi da parte delle protezioni MT.

L'impedenza omopolare offerta alle correnti di guasto a terra ha per componenti la resistenza ohmica degli avvolgimenti e la reattanza di dispersione degli avvolgimenti della reattanza.

La reattanza viene dimensionata in modo da ottenere:

I guasto monofase =
$$3 \cdot I_0 < 500 \text{ A}$$

6.2.11 Caratteristiche

Si installerà una reattanza trifase di messa a terra, insieme al trasformatore di potenza in olio a 30/150 kV, le cui caratteristiche principali sono:

-	Tensione nominale	30 kV
_	Frequenza	50 Hz
_	Gruppo di connessione	Zig-Zag
_	Corrente di guasto a terra per il neutro	500 A
_	Durata del guasto a terra per il neutro	$30 \mathrm{s}$
_	Isolante di parti attiveolio	minerale
_	Refrigerazione	ONAN
_	Tensione a impulso atmosferico (1,2/50μs)	170 kV
_	Sovratensione indotta a 150 Hz e 40 s	60 kV
_	Resistenza del Neutro	$7,25~\Omega$
_	Reattanza del Neutro	103,6 Ω
_	Impedenza omopolare (*)	103,9 Ω

In ogni fase e sul neutro si disporrà un trasformatore di corrente per protezione di tipo Bushing aventi le seguenti caratteristiche:

- Sulla fase
- 3 T.A. tipo BR, rapporto 300/5 A, 15 VA, 5P20
 - Sul neutro
- 1 T.A. tipo BR, rapporto 300/5 A, 15 VA, 5P20

Le protezioni della reattanza saranno termometro e relè Buchholtz con comando di allarme.

6.2.12 Servizi ausiliari

I servizi ausiliari (ss.aa.) della sottostazione sono costituiti da due sistemi di tensione (c.a. e c.c.) necessari per il funzionamento della sottostazione. Si installeranno sistemi di alimentazione in corrente alternata e in corrente continua per alimentare i distinti componenti di controllo, protezione e misura.

I servizi di corrente alternata e continua saranno alloggiati in diversi armadi destinati a realizzare le rispettive distribuzioni.

6.2.13 Servizi ausiliari in c.a.

6.2.13.1 Trasformatori di servizi ausiliari

Per disporre di questi servizi è prevista l'installazione di un trasformatore esterno da 100 kVA.

Le caratteristiche sono le seguenti:

- Trifase isolato in olio

- Tensione secondaria (trifase)
 0,420 kV
- Connessioni......Zig-zag / Stella
- Gruppo di connessioneZNyn11

6.2.13.2 Gruppo elettrogeno

La sottostazione è dotata di un gruppo elettrogeno fisso che è disponibile come riserva in caso di guasto del trasformatore di servizi ausiliari o fuori servizio del trasformatore 30/150 kV per manutenzione o guasto.

6.2.14 Servizi ausiliari in c.c.

L'alimentazione dei servizi in corrente continua é assicurata da un idoneo sistema raddrizzatore/batterie a 125 Vcc. Le caratteristiche di raddrizzatore e batterie sono:

Raddrizzatore:

- Ingresso (c.a.): 3 x 400 / 230 Vca
- Uscita (c.c.): 125 V_{cc} +10%, -15%
- Corrente nominale: 40 A

Batteria:

Capacità: 120 Ah

- Autonomia minima (guasto c.a.): 8 h

Le apparecchiature alimentate alla tensione di 110 V_{cc} funzioneranno ininterrottamente. Il

processo di carica delle batterie sarà gestito automaticamente, senza la necessità di alcun

tipo di vigilanza o controllo, quindi più sicuro per il mantenimento di un servizio

permanente.

Le apparecchiature saranno idonee a funzionare con temperature interne all'edificio

comprese tra 10°C e 40°C.

In condizioni di normale funzionamento (corrente alternata presente), il raddrizzatore

fornirà sia la corrente di funzionamento degli ausiliari in corrente continua, sia la corrente

di mantenimento o di carica necessaria per la batteria.

In assenza di corrente alternata di alimentazione, la batteria deve essere in grado di

alimentare i circuiti ausiliari in corrente continua per il tempo prefissato.

6.3 Misura energia

6.3.1 Misure di energia (fatturazione)

L'energia esportata e importata del parco si misurerà a valle di ciascun trasformatore di

potenza.

La misura sarà effettuata tramite i tre trasformatori di tensione induttivi dedicati e i tre

trasformatori di corrente (dai secondari di classe di precisione 0,2).

Caratteristiche degli apparati di misura:

1. Trasformatori di tensione:

150: $\sqrt{3}/0,100$: $\sqrt{3}$ 50 VA cl 0,2

2. Trasformatori di corrente:

800/5-5-5-5 A

30VA cl 0,2s (sul secondario di fatturazione)

3. Contatore-registratore elettronico:

Tipo: contatore bidirezionale,

Precisione di misura: Energia attiva (classe 0.2) / Energia reattiva (classe 0.5)

Entrate: $3 \times 100: \sqrt{3} \text{ V e } 3 \times 5 \text{ A}$

29

N° Registri: 6 (Attiva +, Attiva -, Reattiva Induttiva +, Reattiva Induttiva -, Reattiva Capacitiva +, Reattiva Capacitiva -)

Comunicazioni: via modem GSM, incorporato nel contatore-registratore.

6.3.2 Ulteriori apparati di misura

Si disporrà delle seguenti misure nelle UCP.

Montanti 150 kV:

Tensione (V), Corrente (A), Potenza attiva (W), Potenza reattiva (VAr), Frequenza (Hz), Fattore di potenza ($\cos \varphi$)

Celle 30 kV

Tensione (V), Corrente (A), Potenza attiva (W), Potenza reattiva (VAr), Frequenza (Hz), Fattore di potenza ($\cos \varphi$)

6.4 Telecontrollo e telecominicazioni

La UCS sarà connessa via porta di comunicazione RS232 con il computer situato nella sala di controllo. Le informazioni della UCS, unitamente a quelle provenienti dagli aerogeneratori e dalle torri meteorologiche, saranno elaborate con un programma informatico al fine di permettere il controllo in remoto del parco e della sottostazione.

6.5 Opere civili

Le opere civili per la costruzione della ST sono di seguito descritte.

6.5.1 Piattaforma

I lavori riguarderanno l'intera area della sottostazione e consisteranno nell'eliminazione del mantello vegetale, scavo, riempimento e compattamento fino ad arrivare alla quota di appianamento prevista.

6.5.2 Fondazioni

Si realizzeranno le fondazioni necessarie alla stabilità delle apparecchiature esterne a $150~\rm kV$ e $30~\rm kV$.

6.5.3 Basamento e deposito di olio del trasformatore MT/AT

Per l'istallazione dei trasformatori di potenza si costruirà un idoneo basamento, formato da fondazioni di appoggio, una vasca intorno alle fondazioni per la raccolta di olio che, durante un'eventuale fuoriuscita, raccoglierà l'olio isolandolo. Detta vasca dovrà essere impermeabile all'olio ed all'acqua, così come prescritto dalla CEI 99-2.

6.5.4 Drenaggio di acqua pluviale

Il drenaggio di acqua pluviale sarà realizzato tramite una rete di raccolta formata da tubature drenanti che canalizzeranno l'acqua attraverso un collettore verso l'esterno, orientandosi verso le cunette vicine alla sottostazione.

6.5.5 Canalizzazioni elettriche

Si costruiranno le canalizzazioni elettriche necessarie alla posa dei cavi di potenza e controllo. Queste canalizzazioni saranno formate da solchi, archetti o tubi, per i quali passeranno i cavi di controllo necessari al corretto controllo e funzionamento dei distinti elementi dell'impianto.

6.5.6 Acceso e viali interni

E'stato progettato l'accesso alla SET da una strada che passa vicino alla stessa. Si costruiranno i viali interni (4 m di larghezza) necessari a permettere l'accesso dei mezzi di trasporto e manutenzione richiesti per il montaggio e la manutenzione degli apparati della sottostazione.

6.5.7 Recinzione

La recinzione dell'area della SET sarà realizzata da un cordolo di fondazione in calcestruzzo armato gettato in opera sul quale verranno inseriti dei pilastrini prefabbricato in calcestruzzo armato, così come descritto nell'elaborato grafico di dettaglio allegato alla presente relazione tecnica. La recinzione sarà alta 2,3 m dal suolo, rispettando il regolamento che ne stabilisce un'altezza minima di 2 m (CEI 99-2).

L'accesso alla SET sarà costituito da un cancello metallico scorrevole della larghezza di 7 metri.

6.6 Edifici di Controllo

L'edificio di controllo SET sarà composto dai seguenti vani:

- Locale celle MT
- Locale BT e trafo MT/BT,
- Locale Gruppo Elettrogeno
- Locale comando e controllo,
- Locale servizi igienici
- Magazzino,

L'edificio della Stazione di condivisione sarà un unico vano tecnico di dimensioni 6 ×4 ×3 m.

6.7 Messa a terra

Descrizione

La sottostazione sarà dotata di una rete di dispersione interrata a 0,7 m di profondità.

Messa a terra di Servizio

Si connetteranno direttamente a terra i seguenti elementi, che si considerano messa a terra di servizio:

- I neutri dei trasformatori di potenza e misura
- Le prese di terra dei sezionatori di messa a terra
- Le prese di terra degli scaricatori di sovratensione
- I cavi di terra delle linee aeree che entrano nella sottostazione.

Messa a terra di protezione

Tutti gli elementi metallici dell'impianto saranno connessi alla rete di terra, rispettando le prescrizioni nella CEI 99-2.

Si connetteranno a terra (protezione delle persone contro contatto indiretto) tutte le parti metalliche normalmente non sottoposte a tensione, ma che possano esserlo in conseguenza di avaria, incidenti, sovratensione o tensione indotta. Per questo motivo si connetteranno alla rete di terra:

le carcasse di trasformatori, motori e altre macchine,

- le carpenterie degli armadi metallici (controllo e celle MT),
- gli schermi metallici dei cavi MT,
- le tubature ed i conduttori metallici.

Nell'edificio non si metteranno a terra:

- Le porte metalliche esterne dell'edificio
- Le sbarre anti-intrusione delle finestre
- Le griglie esterne di ventilazione.

I cavi di messa a terra si fisseranno alla struttura e carcasse delle attrezzature con viti e graffe speciali di lega di rame. Si utilizzeranno saldature alluminotermiche Cadweld ad alto potere di fusione per l'unione sotterranea, per resistere alla corrosione galvanica.

Ipotesi di progetto

Secondo i calcoli, si considerano i seguenti dati di partenza:

Corrente di cortocircuito monofase	31,5 kA
Tempo durata del guasto	0,5 s
Resistenza del terreno (ipotesi)	150 Ωm
Resistenza manto superficiale (10 cm di ghiaia, de Ø 2-4 cm)	3000 Ωm

La rete di terra sarà formata da una maglia di circa 4 m x 4 m, e si realizzerà con un conduttore a corda di rame nuda di sezione 95 mm². Per il collegamento degli apparati alla rete di terra si utilizzerà corda di rame nuda di sezione 125 mm².

La rete di terra della sottostazione sarà connessa alla rete di terra del parco eolico, in modo da ridurre il valore totale della resistenza di terra e agevolare il drenaggio della corrente di guasto. Conformemente alla CEI 99-2, la terra della SET sarà a sua volta collegata alla rete di terra della cabina di consegna.

6.8 Carichi elettrici

6.8.1 Massima corrente di impiego

La massime correnti di impiego su ciascuna sezione dell'impianto si calcolano per mezzo della seguente formula:

$$I_{IMP}(A) = \frac{S_N(MW)}{\sqrt{3}xU_N(kV)} \times 1000$$

Essendo S_N la potenza nominale del circuito e U_N la corrispondente tensione nominale. Assumendo come ipotesi di calcolo le tensioni e potenze di ciascuna sezione dell'impianto, si ottengono le correnti di impiego riassunte nella seguente tabella:

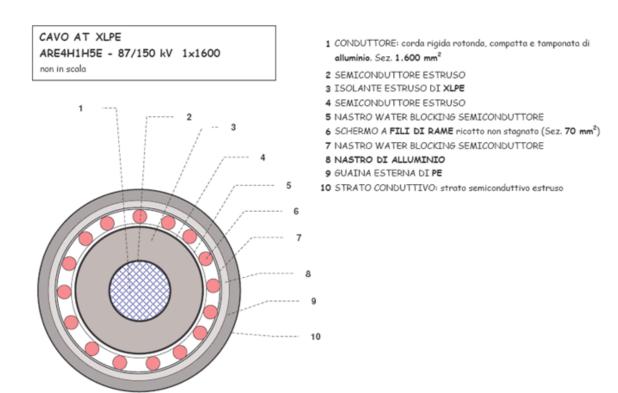
Sezione	Tensione (kV)	Potenza (MW)	Corrente (A)
Circuito 1	30	12	243
Circuito 2	30	12	243
Circuito 3	30	18	365
Circuito 4	30	18	365
Circuito 5	30	18	365
Circuito 6	30	18	365
Trafo TR1 lato MT	30	48	973
Trafo TR1 lato AT	150	48	195
Trafo TR2 lato MT	30	48	973
Trafo TR2 lato AT	150	48	195

6.8.2 Correnti nominali lato 150 e 30 kV

Le correnti nominali degli apparati dovranno essere superiori alle massime correnti di impiego sopra definite.

Sugli stalli AT del trasformatore e sullo stallo di consegna gli apparati avranno le seguenti correnti nominale:

Apparato	Corrente Nom. (A)
Sezionatore	2000
Trasformatore di corrente	1600
Interruttore	2500
Trasformatori di Potenza	50/60 (ONAN/ONAF)


Sui circuiti e sui lati a 30 kV degli apparati le correnti nominali degli apparati sono riassunti nella seguente tabella:

Apparecchiatura	Corrente Nom. (A)
Trasformatore MT/AT di potenza	964/1.156 (ONAN/ONAF)
TA cella trasformatore	2000
Interruttore cella trasformatore	2500
Sezionatore cella trasformatore	2000
Barre celle	2000
Sezionatore cella linee	1250
Interruttore cella Linee	2500
Trasformatori corrente cella linee	800

7 CAVIDOTTO A 150 kV

Per collegare la stazione di condivisione al nuovo stallo di consegna TERNA del futuro ampliamento della Stazione Elettrica di Trasformazione (SE) della RTN a 380/150 kV di "Erchie" verrà realizzato un breve tratto di linea interrata a 150 kV della lunghezza di circe 800 m.

Verrà utilizzata una terna di cavi unipolari di tipo estruso per la posa diretta nel terreno, secondo quanto descritto negli elaborati grafici allegati.

8 STALLO DI CONSEGNA TERNA (IR - IMPIANTO DI RETE)

Il nuovo stallo di consegna TERNA sarà realizzato all'interno del futuro ampliamento della Stazione Elettrica di Trasformazione (SE) della RTN a 380/150 kV di "Erchie", di proprietà di TERNA, e sarà composto da:

- N° 1 portale sbarre;
- N° 3 trasformatori di tensione, TV;
- N° 1 sezionatore di isolamento rotativo (tripolare), SEZ;
- N° 3 trasformatori di corrente, TA;
- N° 1 interruttore automatico, isolato in SF₆ con comando tripolare, INT;
- N° 2 sezionatori a pantografo (tripolare), SEZ.P.

La corrente nominale dello stallo sarà pari a 1250 A.

Tutte le opere, se non diversamente specificato, dovranno essere realizzate in osservanza delle Norme CEI, IEC, CENELEC, ISO, UNI in vigore.