\wedge	AUTORITA' PORTUALE DI LIVORNO	Λ
	Comune di Capraia Isola	

NUOVO ATTRACCO PER TRAGHETTI E MESSA IN SICUREZZA DELL'APPRODO TURISTICO

PROGETTO ESECUTIVO

Titolo elaborato :

CALCOLI ESECUTIVI	DELLE STRUTTU	RE E DEGLI IMPIANTI

Scala:				Ε	G	S		0	3		0	0	4	R		0	0	4	0
Committente: AUTORITA' PORTUALE DI LIVORNO R.U.P. Dott. Ing. Umberto CAMPANA				Prog MOI Prof Dott Dott Dott Dott	Progettisti: Dott. Ing. Davide SALTARI MODIMAR S.r.I. Dott. Ing. Davide SALTARI Prof. Ing. Alberto NOLI Dott. Ing. Pietro CHIAVACCINI Prof. Ing. Alessandro TOGNA Dott. Ing. Pietro CHIAVACCINI Dott. Ing. Maurizio VERZONI Dott. Ing. Mauro TARTAGLINI Dott. Ing. Mauro MARINI Dott. Ing. Paolo CONTINI Dott. Ing. Giancarlo MILANA Dott. Ing. Giancarlo MILANA														
	marzo 2006	0	EMISSIONE											R. PAREGGI	ANI	M. TAR	TAGLIN		A. TOGNA
Rif. Dis.	Data	Rev.		DESCRIZIONE					Disegnat	:o:	Verif	icato:	A	pprovato:					
Dimensioni foglio:				La MODIMAR s.r.I. si riserva la proprietà di questo disegno con la proibizione di riprodurlo o trasferirlo a terzi senza autorizzazione scritta. This document is property of MODIMAR s.r.I. Reproduction and divulgation forbidden without written permission															
Visto del Committente:																			

PORTO DI CAPRAIA

NUOVO ATTRACCO PER I TRAGHETTI E MESSA IN SICUREZZA DELL'APPRODO TURISTICO

PROGETTO ESECUTIVO

CALCOLI ESECUTIVI DELLE STRUTTURE E DEGLI IMPIANTI

INDICE

1.	Introduzione	
2.	Quadro legislativo	4
3.	Classificazione sismica	6
4	Caratteristiche dei materiali	7
т.	4.1 Calcostruzzo di classe R : 45	7
	4.7 Acciaio per armature tipo $FeR44k$	7
	4.3 Acciaio zincato tino \$35510	
5	Prolungamento molo di sottaflutto (intervento R)	8
5.	5.1 Dimensionamento e verifiche di stabilità	0 ج
	5.2. Contenimento dello spostamento dei massi della mantellata per effetto delle orde	0
	5.3. Contenimento della perdita di massi della strato sottostante la mantellata e del mate	riala fino dal
	nucleo (filtro)	11 III 11
6.	Intervento A	
•••	6.1. Tratto di banchina a cassoni cellulari	14
	6.1.1. Verifiche di stabilità al galleggiamento e all'affondamento	
	6.1.2. Analisi dei carichi	
	6.1.3. Combinazione dei carichi	
	6.1.4. Verifiche di stabilità	
	6.1.5. Calcoli statici	
	6.2. Banchina a micropali e jet-grouting	
	6.2.1. Modello di calcolo	
	6.2.2. Analisi dei carichi	
	6.2.3. Combinazioni di carico	
	6.2.4. Calcoli statici	
	6.2.5. Verifiche di resistenza	55
	6.3. Elemento prefabbricato	
7.	Intervento B	
	7.1. Cassoncini	
	7.1.1. Analisi dei carichi	
	7.1.2. Combinazioni di carico	65
	7.1.3. Calcoli statici e verifiche di stabilità (traslazione e ribaltamento)	
	7.1.4. Verifica delle pressioni in fondazione	
	7.1.5. Calcoli statici e verifiche di resistenza	
	7.2. Sovrastruttura	
	7.2.1. Calcoli statici e verifiche di resistenza	
8.	Intervento C	94
	8.1. Cassoncini	

	8.1.1. Analisi dei carichi	
	8.1.2. Combinazioni di carico	
	8.1.3. Calcoli statici e verifiche di stabilità (traslazione e ribaltamen	nto) 102
	8.1.4. Verifica delle pressioni in fondazione	
	8.1.5. Calcoli statici e verifiche di resistenza	
	8.2. Sovrastruttura	
	8.2.1. Calcoli statici e verifiche di resistenza	
	8.3. Palancolati metallici	
	8.3.1. Micropali di ancoraggio	
	8.3.2. Verifica cordolo di coronamento trave palancolato	
9.	9. Intervento D	
	9.1. Cassoncini	
	9.2. Sovrastruttura	
	9.3. Soletta di collegamento con la struttura esistente	
1	10. Verifiche di stabilità di insieme	
	10.1. Caratterizzazione geotecnica dei terreni	
	10.2. Verifiche di stabilità	
	10.2.1. Definizione delle configurazioni simulate	
	10.2.2. Risultati delle verifiche di stabilità d'insieme	

Allegato 1 – Intervento C – Muro di banchina a palancole – Tabulati di out-put Allegato 2 – Verifiche di stabilità di insieme – Tabulati di out-put

1. Introduzione

Nella presente relazione sono riportati i calcoli statici delle opere previste nel progetto esecutivo del "*Nuovo attracco per traghetti e messa in sicurezza dell'approdo turistico*" del porto di Capraia che consistono in:

- o la realizzazione della nuova banchina destinata all'attracco dei traghetti (intervento A);
- l'adeguamento delle opere a gettata dell'esistente molo sud, con l'ampliamento e prolungamento dell'attuale opera di difesa a scogliera e la realizzazione di due nuove testate (intervento B)
- la risagomatura della parte settentrionale del porto in modo da ridurre la risacca e di consentire un più agevole passaggio degli automezzi sbarcati o diretti all'imbarco (intervento C);
- l'aggiunta di un pontile fisso a T all'estremità del corto pennello al quale ormeggiano le imbarcazioni da pesca (intervento D);

Nei paragrafi seguenti, dopo le verifiche dell'opera a difesa a scogliera prevista per il prolungamento del molo di sottoflutto, sono riportati i calcoli statici e le verifiche di tutti gli elementi strutturali previsti negli altri interventi di progetto.

2. Quadro legislativo

La normativa di riferimento per i calcoli statici e le verifiche strutturali è la seguente:

Legge n. 1086 05/11/1971	•	Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica
Circolare Min. LL.PP. n. 11951 14/02/1974	•	Istruzioni per l'applicazione delle "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica."
D. M. LL.PP. 11/03/1988	•	Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e nelle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione
Circolare Min. LL.PP. n. 30483 24/09/1988	•	Istruzioni per l'applicazione delle "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e nelle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione" di cui al D.M. 11/03/1988
D.M. LL.PP. 14/02/1992	•	Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche
Circolare Min. LL.PP. n. 37406/STC del 24/06/1993	•	Legge n. 1086 del 05/11/1971. Istruzioni relative alle "Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche" di cui al D.M. 14/2/1996
D.M. LL.PP. 09/01/1996	•	Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche
Circolare Min. LL.PP. n. 252 AA.GG./STC 15/10/1996	•	Istruzioni per l'applicazione delle "Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche" di cui al D.M. 09/01/1996
D.M. LL.PP. 16/01/1996	•	Norme tecniche per la verifica di sicurezza delle costruzioni e dei carichi e dei sovraccarichi
D.M. LL.PP. 16/01/1996	•	Norme tecniche per le costruzioni in zone sismiche
Circolare Min. LL.PP. n. 156 AA.GG./STC 04/07/1996	•	Istruzioni per l'applicazione delle "Norme tecniche relative ai criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi" di cui al D.M. 16/01/1996
Circolare Min. LL.PP. n. 65 AA.GG./STC 10/04/1997	•	Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni in zone sismiche" di cui al D.M. 16/01/1996
Presidenza del Consiglio Superiore dei LL.PP. Servizio Tecnico Centrale, 12/1996	•	Linee guida sul calcestruzzo strutturale

Ordinanza del Presidente del Consiglio dei Ministri n. 3274	•	Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica
Ordinanza del Presidente del Consiglio dei Ministri n. 3316	•	Modifiche ed integrazioni all'Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20/03/2003
Ordinanza del Presidente del Consiglio dei Ministri n. 3431		Ulteriori modifiche ed integrazioni all'Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20/03/2003, recante "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica"
D.M. dei Trasporti e delle Infrastrutture, 14/09/2005		Norme tecniche per le costruzioni

3. Classificazione sismica

L'O.P.C.M. n. 3274 del 20/03/2003 con le relative modifiche ed integrazioni precisa nell'Allegato 1 i "*Criteri per l'individuazione delle zone sismiche – individuazione, formazione ed aggiornamento degli elenchi nelle medesime zone*", articolando la nuova classificazione in 4 zone, di cui le prime tre corrispondono, dal punto di vista della relazione con gli adempimenti previsti dalla Legge 64/74, alle zone di sismicità alta (S=12), media (S=9) e bassa (S=6), mentre la zona 4 è di nuova introduzione ed in essa è data facoltà alle Regioni di imporre l'obbligo della progettazione antisismica.

L'Ordinanza stabilisce inoltre che le Regioni possono modificare gli elenchi delle zone sismiche, utilizzando come mappa di riferimento l'Allegato A in essa contenuto avendo rispetto ad esso una tolleranza di attribuzione pari ad una zona.

La Giunta della Regione Toscana con "*Delibera n. 604 del 16 giugno 2003*" prende atto dell'elenco dei Comuni del territorio classificati sismici secondo il quale "*Capraia Isola*" in provincia di Livorno cade in <u>zona sismica 4</u>.

4. Caratteristiche dei materiali

4.1. Calcestruzzo di classe R_{ck} 45

La sovrastruttura è realizzata in calcestruzzo di classe R_{ck} 45 le cui caratteristiche meccaniche sono riportate nel prospetto seguente.

Tensione ammissibile a compressione:	$\sigma_{c,a}$	=	135 daN/cm^2
Tensione tangenziale ammissibile "minima":	τ_{c0}	=	12.6 daN/cm^2
Tensione tangenziale ammissibile "massima":	τ_{c1}	=	22.6 daN/cm^2
Tensione tangenziale d'aderenza:	τ_{ad}	=	37.8 daN/cm^2
Modulo elastico:	Ec	=	38184 MPa

4.2. Acciaio per armature tipo FeB44k

Le armature sono realizzate con barre ad aderenza migliorata in acciaio tipo FeB44k zincato a caldo le cui caratteristiche meccaniche sono riportate nel prospetto seguente.

Tensione ammissibile:	$\sigma_{a,a}$	=	2550 daN/cm^2
Modulo elastico:	Ec	=	210000 MPa

4.3. Acciaio zincato tipo S355JO

Le armature dei micropali sono in acciaio zincato tipo S355JO (equivalente Fe510) le cui caratteristiche meccaniche sono riportate nel prospetto seguente.

Tensione ammissibile (Condizione I):	σ_{I}	$= 2400 \text{ daN/cm}^2$
Tensione ammissibile (Condizione II):	$\sigma_{\rm II}$	$= 2700 \text{ daN/cm}^2$
Modulo elastico:	E_{c}	= 210000 MPa

5. Prolungamento molo di sottoflutto (intervento B)

L'opera di difesa esterna (molo sud) lunga circa 230 m, che delimita in sinistra idrografica il principale corso fluviale dell'isola, termina con una doppia testata che poggia su fondali variabili da -5 a -7.5 m s.l.m. Considerate le sollecitazioni prodotte dalle onde frangenti sui fondali di posa e volendo limitare nel tempo gli eventuali oneri di interventi futuri di manutenzione delle scogliere (che peraltro non riprodurrebbero l'originaria compattezza del rivestimento), si è ritenuto opportuno dimensionare il molo in oggetto per resistere alle massime onde frangenti a ridosso dell'opera per condizioni estreme del livello marino.

Il nucleo di tout-venant composto da pietrame di cava avente pezzatura di $0.5 \div 500$ kg, è stato posto a quote variabili fra $+0.2 \div -1.5$ m s.l.m. sia per minimizzare l'elevazione finale della scogliera che per il suo impatto sull'ambiente circostante.

Un elemento critico della progettazione del molo è costituito dalla massima quota da assegnare alla cresta. Si è infatti voluto limitarla ad una quota pari a +2.5 m s.m., dettata da esigenze esecutive (doppio strato di massi per la mantellata della sezione corrente e triplo strato per la testata), idrauliche (contenimento sormonti) e per quelle di visuale paesaggistica.

5.1. Dimensionamento e verifiche di stabilità

Come precedentemente accennato, per la protezione degli specchi acquei portuali e la realizzazione di nuovi punti di ormeggio, è prevista la costruzione del nuovo molo di Sud in luogo di quello esistente che separa il bacino portuale dalle acque del principale corso fluviale dell'isola (vado del Porto). La struttura di tale molo (avente una lunghezza complessiva di circa 230 m) è costituita da una scogliera di base in massi naturali. Di seguito vengono descritte, con maggiore dettaglio, le differenti tipologie costruttive con cui verranno realizzati i successivi tronchi:

- <u>Sezione F-F:</u> costituisce i primi 60 m circa della diga foranea e rappresenta il tronco in cui è previsto il rifacimento del molo esistente. Essa avrà la seguente struttura:
- <u>un nucleo in tout-venant di cava</u>, ossia materiale lapideo di pezzatura assortita con peso variabile tra 0,5 e 500 kg. Tale gradazione conferisce al nucleo il richiesto grado di impermeabilità, utilizzando il materiale più "povero" ottenuto dalla cava; la pendenza dei paramenti è di 2/3 lato mare e lato interno. La quota sommitale del nucleo è funzione sia del metodo di costruzione utilizzato che del tipo di opera a gettata; nel caso in esame si è assunta una quota pari a +0,20 m s.l.m.;
- <u>una mantellata esterna</u>, costituita da massi naturali che assicurano una struttura robusta ed una buona dissipazione dell'energia del moto ondoso; la posa in opera dei massi naturali dovrà essere effettuata alla rinfusa, nel senso che i massi saranno collocati in maniera disordinata ma tale da garantire comunque una porosità minima di circa il 30÷35%. E' quindi sconsigliato l'uso di pezzature troppo assortite e posa troppo regolare che pur aumentando l'intasamento e la stabilità del rivestimento, riducono l'assorbimento per permeazione incrementando i sormonti. La mantellata della sezione corrente è costituita da massi naturali da 1÷3 t con pendenza 2/3 per il lato mare e da massi 0,5÷1,25 t per il lato interno con uguale inclinazione;
- <u>Sezione EE:</u> che costituisce i successivi 30 m circa e presenta le stesse caratteristiche del tratto precedente limitatamente al lato esposto al mare aperto, mentre il lato interno è munito di una banchina a parete verticale imbasata a quota -2.00 m s.m. su uno

scanno in pietrame scapolo. La larghezza complessiva del coronamento, analogamente al tratto precedente, si mantiene pari a circa 6,0 m.

- <u>Sezione DD:</u> che rappresenta il tratto successivo di lunghezza pari a 20 m, è composta da una mantellata esterna in massi naturali, in doppio strato, con peso compreso fra 1÷3 t con pendenza 2/3 poggiante sul nucleo del molo esistente e da una banchina destinata al bunkeraggio, sul lato interno, realizzata mediante cassoni cellulari con pareti antiriflettenti.
- <u>Sezione CC e BB:</u> che rappresenta la rimanente parte del molo, avente una lunghezza di circa 110 m e la cui sezione corrente è costituita da:
- un nucleo di materiale lapideo con peso variabile tra 0,5 e 500 kg;
- uno strato filtro, realizzato con massi naturali da 0.5-1,25 t in doppio strato, interposto tra il nucleo e la mantellata esterna al fine di impedire l'asportazione del materiale costituente il nucleo a causa del moto ondoso (sifonamento);
- mantellate su entrambe i lati in massi naturali da 3÷7 t aventi inclinazione 1/2;
- <u>Sezione AA:</u> che costituisce le parti terminali del molo in oggetto (testata principale e secondaria). Le mantellate delle testate sono realizzate con massi naturali da 5÷10 t disposti su 3 strati con sottostante materiale scapolo di pezzatura variabile fra 500 e 1250 kg.

5.2. Contenimento dello spostamento dei massi della mantellata per effetto delle onde

Per il predimensionamento dei massi naturali si è utilizzata la collaudata formula di Hudson:

$$W_{50} = \frac{\gamma_m \times H_s^3}{\left(\frac{\gamma_m}{\gamma_w} - 1\right)^3 \times k_d \times \cot g\alpha}$$

dove :

H_s = altezza d'onda significativa (in m);

- W_{50} = peso medio teorico dei singoli massi (t);
- $\gamma_{\rm m}$ = il peso specifico di volume dei massi, assunto pari a 2,6 t/m³ per i massi naturali;

 $\gamma_{\rm w}$ = peso specifico dell'acqua marina, pari a 1,03 t/m³;

- k_d = coefficiente di stabilità dipendente da numerosi parametri quali il tipo di masso, la pendenza, il tipo di onda, il numero di strati, la percentuale di danneggiamento assunta < 5%. Nel caso in esame la testata della diga è stata verificata per onde non frangenti e con massi naturali disposti in doppio strato (sezione corrente) il k_d è uguale a 4.0, mentre per la testata si è adottata la disposizione su 3 strati per cui il k_d è uguale a 4.2;
- α = pendenza della scarpata sull'orizzontale, pari a 1/2 e a 2/3.

Il predimensionamento della scogliera è stato eseguito considerando il tratto di opera sottoposto alle azioni di maggiore intensità da parte del moto ondoso incidente. Sono stati quindi considerati i massi della testata del molo (sez. AA), che risulta investita ortogonalmente dalle onde ed è ubicata in corrispondenza dei fondali di maggiore profondità, per cui risulta essere quella che subisce le azioni più gravose. Oltre alla testata è stato eseguito il calcolo considerando l'onda frangente sia per la sezione corrente (sezioni CC ed EE,) che per la testata secondaria considerando la massima altezza d'onda che in questi casi risulta limitata dal fondale.

I risultati del predimensionamento degli elementi suddetti mediante la formula di Hudson sono riportati nella seguente tabella, in cui sono indicate le corrispondenti categorie dei massi da adottare:

Sezione considerata	Pendenza del paramento	Profondità al piede [m]	Altezza d'onda Hs [m]	Peso dei massi W ₅₀ [t]	Categoria di massi equivalente [t]
Testata principale	1:2	7.5	4.30	6.95	5 - 10
Sezione corrente (lato mare)	1:2	5.0	3.20	6.10	3 - 7
Testata secondaria	1:2	5.0	3.20	7.50	5 - 10
Sezione corrente (lato mare)	2:3	2.5	1.80	1.43	1 - 3

In particolare, per quanto riguarda i tratti di scogliera immediatamente retrostanti la testata principale, considerando che l'opera di difesa viene investita da onde praticamente parallele ad essa, le azioni del moto ondoso risultano notevolmente ridotte, per cui la stabilità dei massi della mantellata (di peso variabile fra 3÷7 t) costituente la sezione corrente dell'opera di difesa a gettata è sicuramente soddisfatta.

Per un migliore dimensionamento dell'opera, si è anche utilizzata la più recente e completa relazione di Van Der Meer (valida solo per massi naturali e per la sezione corrente) nella quale il diametro nominale dei massi è legato all'altezza d'onda significativa dalle seguenti espressioni:

Per onda frangente tipo plunging ($\xi_m < \xi_{mc}$):

$$\frac{H_{S}}{\Delta D_{n\,50}} = 6.2 P^{0.18} \left(\frac{S}{\sqrt{N}}\right)^{0.2} \xi_{m}^{-0.5}$$

Per onda frangente tipo surging ($\xi_m > \xi_{mc}$):

$$\frac{H_{S}}{\Delta D_{n\,50}} = 1.0 P^{-0.13} \left(\frac{S}{\sqrt{N}}\right)^{0.2} \sqrt{\cot \alpha} \xi_{m}^{P}$$

con H_s = altezza d'onda significativa al piede della scoglicita $\xi_{\rm m} = 2.0$ parametro di surf o numero di Iribarren per il periodo medio $\xi_{\rm m} = \frac{\tan \alpha}{\sqrt{\frac{2\pi H_{\rm s}}{gT_{\rm m}^2}}}$

 $T_z \approx T_m = 8 \text{ s}$ - periodo d'onda medio (s) $\alpha = 26.56^{\circ} (1:2) e 33.69^{\circ} (2:3)$ - pendenza della mantellata (°) $\Delta = (\gamma_m / \gamma_a - 1)$ massa relativa del masso (= 1.52) $\gamma_a = 1030 \text{ kg/m}^3$ - peso specifico dell'acqua marina γ_m = 2600 kg/m³ - peso specifico del masso naturale $D_{n50} = 1.24 \text{ m e } 0.9 \text{ m}$ - diametro nominale del masso, $D_{n50} = (W_{50} / \gamma_m)^{1/3}$ W_{50} = 5000 kg - valore del peso corrispondente al 50% nella curva di distribuzione

- P = 0.4 coefficiente di permeabilità della struttura (scogliere convenzionali)
- S = livello di danneggiamento ammesso, $S = A/D_{n50}^{2}$ (v. tab. 1)
- A = area erosa nella sezione
- N = 2700 numero di onde (tipicamente tra 1000 e 7500 si assume che la durata della mareggiata sia di 6 ore).

Il parametro critico di surf per paramenti ripidi ($\cot \alpha < 3$) è calcolato come

$$\xi_{\rm mc} = \left[6.2 \, {\rm P}^{0.31} \, \sqrt{\tan \alpha} \, \right]^{\frac{1}{{\rm P}+0.5}}$$

Mentre per pendenze lievi ($\cot \alpha > 3$) è pari a:

Pendenza	Livello di danno S							
	Danno iniziale	Danno intermedio	Danno totale					
1:1.5	2	3-5	8					
1:2	2	4-6	8					
1:3	2	6-9	12					
1:4	3	8-12	17					
1:6	3	8-12	17					

$$\xi_{\rm mc} = \left[3.58 \, {\rm P}^{0.31} \right]^{\frac{1}{{\rm P}+0.5}}$$

Livelli di danno di riferimento per mantellate in doppio strato in funzione della pendenza

Per i casi in esaminati, ossia per le mantellate lato mare delle sezioni correnti con pendenze 1/2 e 2/3, si ottiene rispettivamente $\xi_m = 2,8 < \xi_{mc} = 3,8$ (frangimento tipo plunging sulla scogliera avente pendenza 1/2) e $\xi_m = 4,9 > \xi_{mc} = 4,4$ (frangimento tipo surging sulla scogliera con pendenza 2/3) e livelli di danno pari rispettivamente a S=4.1 e S=1.7 che comportano un danno ammissibile per la mantellata con pendenza $\frac{1}{2}$ mentre si ottiene un danno iniziale per quella con pendenza 2/3, come si evince anche dalla precedente tabella. In occasione di mareggiate di una certa importanza sarà quindi necessario rifiorire la mantellata.

5.3. Contenimento della perdita di massi dello strato sottostante la mantellata e del materiale fino del nucleo (filtro)

Al di sopra il nucleo e al di sotto della mantellata delle scogliere tradizionali è necessario, per evitare la perdita di materiale dal nucleo (sifonamento), interporre almeno uno strato filtro costituito da massi naturali di peso medio variabile tra 1/15 e 1/10 del peso dei massi sovrastanti; nel caso in esame i massi naturali appartengono alla classe 0.5 - 1.25 t (con uno spessore teorico di 1.45 m).

Per determinare lo spessore della mantellata della sezione corrente si è utilizzata la seguente espressione:

 $S = n \times k \times (P / \gamma_m)^{1/3}$ dove: n = numero degli strati k=1.00 per massi naturali - coefficiente di strato $\gamma_m = 2600 \text{ kg/m}^3$ - peso specifico della roccia P è il peso medio dei massi naturali (W₅₀) <u>mantellata in massi naturali da 0.5 -1.25 t (sezione corrente)</u>: P = W₅₀ = 5 t - k = 1.05 - n = 2 S = 1.45 m

mantellata in massi naturali da 1 - 3 t (sezione corrente): $P = W_{50} = 2 t - k = 1.05 - n = 2$ S = 1.90 m

mantellata in massi naturali da 3-7 t (sezione corrente): $P = W_{50} = 5$ t - k = 1.05 - n = 2S = 2.60 m

mantellata in massi naturali da 7 –10 t (testata): $P = W_{50} = 8.5 t - k = 1.05 - n = 3$ S = 4.50 m

6. Intervento A

Nel progetto del completamento dell'attracco per traghetti dell'Isola di Capraia è stata prevista la realizzazione di una banchina con fondale al piede pari a 8,00 m, lunga circa 90 m, orientata secondo la direzione Est- Nordest, innestata nello spigolo Sud del dente di attracco esistente. La banchina termina con un nuovo dente lungo 25 m e con un risvolto di 20 m che assicura il collegamento con il molo di sopraflutto del porto turistico.

La banchina verrà realizzata, nella parte più orientale, per mezzo di due cassoni cellulari di c.a. impostati su uno scanno di pietrame spianato alla quota –8,00 m s.m.m.

La parte occidentale della banchina, comprendente anche il dente di attracco ed il risvolto, non può essere realizzata con cassoni galleggianti in quanto lo scavo necessario per l'imbasamento metterebbe a rischio la stabilità della Via Annunziata, unico collegamento con il dente di attracco esistente, la cui efficienza deve essere salvaguardata durante i lavori. Infatti al fine di permettere lo scavo della cunetta di imbasamento dei cassoni è stato necessario prevedere un intervento di protezione e sostegno del terrapieno della strada così da evitare inaccettabili interruzioni di operatività dell'attuale attracco per i traghetti.

Pertanto si è deciso di adottare una soluzione già impiegata con successo in situazioni del genere e consistente nell'eseguire tre pareti, una lato mare, una centrale ed una lato terra, di micropali ϕ 250 mm. La parete lato mare è formata da micropali accostati, le altre due da micropali distanziati l'uno dall'altro di due diametri.

Fra le due pareti foranee viene eseguito un trattamento colonnare di consolidamento con il metodo denominato jet-grouting continuo a ridosso dalle parete più esterna, discontinuo e su due file nella zona fra le due pareti foranee.

A consolidamento eseguito si procede, previa asportazione di parte del materiale in sito fino alla quota -1,60 m s.m.m., all'esecuzione di un getto di calcestruzzo subacqueo, detto di prima fase, che perviene alla quota -1,30 m s.m.

Scopo di tale getto è di collegare superiormente i micropali, al fine di assicurare un comportamento d'insieme "rigido" a tutta la struttura.

Sopra al getto di completamento verranno poi realizzate delle celle assorbenti mediante la posa in opera di elementi prefabbricati di c.a. opportunamente sagomati.

La sezione tipo della banchina è completata da una sovrastruttura di c.a che superiormente perviene fino a quota +1.75 m s.m.

Per la chiusura del del "giunto" tra il primo cassone della nuova banchina ed il cassone del dente di attracco esistente è prevista l'esecuzione di un getto subacqueo di cls contenuto da cassaforme subacquee (c.d. getto in paratia).

Ovviamente la banchina ed il terrapieno verranno completati con la pavimentazione, la rete di smaltimento delle acque meteoriche e gli arredi (bitte, parabordi, anelloni, scalette, etc.).

La quota di progetto del fondale al piede delle nuove banchine è pari a - 8.00 m s.m. mentre la quota di sommità è pari a +1.75 m s.m.

Per la realizzazione del terrapieno a tergo dei nuovi muri di banchina è previsto l'impiego di tout-venant di cava e/o del materiale proveniente dai dragaggi dei fondali prospicienti l'opera.

6.1. Tratto di banchina a cassoni cellulari

La larghezza del cassone impiegato per la realizzazione del porzione occidentale della nuova banchina di accosto è pari a 8.70 m (B), mentre la sua lunghezza, dovuta essenzialmente ad esigenze costruttive (come ad es. le dimensioni della piattaforma) è stata assunta pari a 25.00 m.

Lo spessore delle pareti esterne è pari a 0.40 m, mentre quello delle pareti interne è di 0.25 m. Il solettone di base è la parte strutturale maggiormente sollecitata durante la fase di esercizio, pertanto lo spessore deve essere adeguato ed è stato assunto pari a 0.80 m. Inoltre per distribuire su una maggiore superficie di terreno le forze esercitate sul cassone, si è ritenuto utile allargare il solettone con due sbalzi di 1.0 m lato porto e lato mare (direzione di maggiore sollecitazione); pertanto le dimensioni del piastra di base del cassone sono pari a 10.70 m di larghezza e 25.00 di lunghezza.

La struttura dovrà essere verificata in tutte le fasi di lavorazione, in particolar modo nella fase di galleggiamento e nella fase finale di esercizio.

6.1.1. Verifiche di stabilità al galleggiamento e all'affondamento

Nel presente paragrafo sono riportate le verifiche al galleggiamento dei cassoni cellulari (vedere figura).

Figura 1. Intervento A – Fase di galleggiamento: Cassone cellulare

Le caratteristiche geometriche e meccaniche, ottenute a partire dal disegno tridimensionale del cassone con l'ausilio del programma di calcolo AutoCAD, sono sinteticamente riportate nel seguito.

Cassone cellulare:

Volume:	$V^1 = 579.72 \text{ m}^3$		
Peso di volume:	$\gamma_c = 25.00 \text{ kN/m}^3$		
Peso:	$P^1 = 14493 \text{ kN}$		
Baricentro:	$X^1 = 0.00 m$	$Y^1 = 0.02 m$	$Z^1 = 3.11 m$

Dalle di chiusura delle celle antiriflettenti:

88 m

Soletta di copertura del cassone:

Volume:	$V^3 = 32.58 \text{ m}^3$		
Peso di volume:	$\gamma_{\rm c} = 25.00 \text{ kN/m}^3$		
Peso:	$P^3 = 815 \text{ kN}$		
Baricentro:	$X^3 = 0.00 m$	$Y^3 = 0.00 m$	$Z^3 = 8.83 m$

Le caratteristiche del cassone, riferite alla condizione di galleggiamento, sono pertanto le seguenti:

Cassone in galleggiamento:

Peso:

$$P = \sum_{i=1}^{3} P^{i} = 15388 \text{ kN}$$

Baricentro:

$$X = \frac{\sum_{i=1}^{3} (X^{i} \times P^{i})}{P} = 0.00 \text{ m}$$
$$Y = \frac{\sum_{i=1}^{3} (Y^{i} \times P^{i})}{P} = 0.00 \text{ m}$$
$$Z = \frac{\sum_{i=1}^{3} (Z^{i} \times P^{i})}{P} = 3.44 \text{ m}$$

L'immersione del cassone è ottenuta dall'equilibrio verticale delle forze:

$$\mathbf{P} - \mathbf{S}_{\mathbf{A}} = \mathbf{0}$$

dove P è il peso del cassone in galleggiamento ed S_A è la spinta di Archimede. Quest'ultima è data dalla somma dei 2 contributi relativi rispettivamente al volume di acqua spostato dalla soletta di fondo (S_A^s) e da quello spostato dal fusto del cassone (S_A^F):

$$S_A = S_A^S + S_A^F$$

dove:

-
$$S_A^s = (A^s \times H^s) \times \gamma_w = (267.20 \times 0.80) \times 10.30 = 2272 \text{ kN}$$

- $S_A^F = (A^F \times H^F) \times \gamma_w = (217.20 \times H^F) \times 10.30 = 2237 \times H^F$

Si ricava pertanto:

$$H^{F} = \frac{P - S^{S}_{A}}{A^{F} \times \gamma_{w}} = 5.89 \text{ m}$$

da cui:

$$H_{imm} = H^{S} + H^{F} = 6.69 m$$

Nel prospetto seguente si riporta la verifica del cassone nelle condizioni di galleggiamento.

Calcolo del baricentro del centro di carena

$$Z_{\rm C} = \frac{S_{\rm A}^{\rm S} \times Z_{\rm G}^{\rm S} + S_{\rm A}^{\rm F} \times Z_{\rm G}^{\rm F}}{S_{\rm A}^{\rm S} + S_{\rm A}^{\rm F}} = 3.27 \text{ m}$$

dove:

- $Z_G^s = 0.80/2 = 0.40$ m è il baricentro del volume immerso della soletta di fondo;
- $Z_G^F = 0.80+5.89/2 = 3.75$ m è il baricentro del volume immerso del fusto;
- $S_A^s = 2272 \text{ kN}$ è la spinta di Archimede relativa alla soletta di fondo;
- $S_{A}^{F} = 2237 \times 5.89 = 13176$ kN è la spinta di Archimede relativa al fusto.

Calcolo dell'altezza metacentrica

$$Z_{\rm M} = \frac{J_{\rm F}}{V} = 0.92 \, {\rm m}$$

dove:

- $J_F = 1369.71 \text{ m}^4$ è il momento di inerzia del fusto (calcolato con l'ausilio del codice di calcolo AutoCAD);
- $V = 1493.98 \text{ m}^3$ è il volume della parte immersa del cassone ottenuto come somma del volume della soletta di fondo e del volume immerso del fusto;

Calcolo della distanza del baricentro dal centro di carena

$$Z_{GC} = Z_{G} - Z_{C} = 3.44 - 3.27 = 0.17 \text{ m}$$

Calcolo del franco metacentrico

$$Z_{\rm M} - Z_{\rm GC} = 0.92 - 0.17 = 0.75 \text{ m}$$

Nel prospetto seguente si riporta la verifica del cassone nelle condizioni di affondamento.

Calcolo del baricentro del centro di carena

$$Z_{\rm C} = \frac{S_{\rm A}^{\rm S} \times Z_{\rm G}^{\rm S} + S_{\rm A}^{\rm F} \times Z_{\rm G}^{\rm F}}{S_{\rm A}^{\rm S} + S_{\rm A}^{\rm F}} = 3.27 \text{ m}$$

dove:

- $Z_G^s = 0.80/2 = 0.40$ m è il baricentro del volume immerso della soletta di fondo;
- $Z_G^F = 0.80+5.89/2 = 3.75$ m è il baricentro del volume immerso del fusto;
- $S_A^s = 2272$ kN è la spinta di Archimede relativa alla soletta di fondo;
- $S_{A}^{F} = 2237 \times 5.89 = 13176 \text{ kN}$ è la spinta di Archimede relativa al fusto.

Calcolo dell'altezza metacentrica

$$Z_{\rm M} = \frac{J_{\rm F} - J_{\rm C}}{\rm V} = 0.31 \, {\rm m}$$

dove:

- $J_F = 1369.71 \text{ m}^4$ è il momento di inerzia del fusto (calcolato con l'ausilio del codice di calcolo AutoCAD);
- $J_C = 908.28 \text{ m}^4$ è il momento di inerzia del primo specchio d'acqua immesso nelle celle nelle fasi di affondamento del cassone calcolato ipotizzando che le celle siano tra di loro tutte collegate (calcolato con l'ausilio del codice di calcolo AutoCAD);
- $V = 1493.98 \text{ m}^3$ è il volume della parte immersa del cassone ottenuto come somma del volume della soletta di fondo e del volume immerso del fusto;

Calcolo della distanza del baricentro dal centro di carena

$$Z_{GC} = Z_{G} - Z_{C} = 3.44 - 3.27 = 0.17 \text{ m}$$

Calcolo del franco metacentrico

$$Z_{\rm M} - Z_{\rm GC} = 0.31 - 0.17 = 0.14 \, {\rm m}$$

Si riporta infine il calcolo dell'altezza minima della zavorra liquida da immettere nelle celle per far affondare il cassone:

$$H^{Z} = \frac{S_{A}^{S} + S_{A}^{F} - P}{A^{Z} \times \gamma_{w}} = 1.67 \text{ m}$$

dove:

- P = 15388 kN è il peso del cassone senza la zavorra necessaria per l'affondamento;
- $S_A^s = 2272 \text{ kN}$ è la spinta di Archimede relativa alla soletta di fondo;
- $S_A^F = 2237 \times 7.20 = 16106 \text{ kN}$ è la spinta di Archimede relativa al fusto (affondamento); $A^Z = 169.90 \text{ m}^2$ è l'area delle celle/zavorra liquida necessaria per l'affondamento.

6.1.2. Analisi dei carichi

Il cassone è soggetto alle seguenti azioni:

- Peso proprio, peso del riempimento e spinta di galleggiamento
- Spinta del terreno a tergo del cassone
- Sovraccarico accidentale e tiro alla bitta

Per aumentare la stabilità globale della struttura, il cassone viene riempito con materiale arido e con calcestruzzo. Si assume, in favore di sicurezza, che il peso dell'unità di volume del riempimento sia pari a 19.00 kN/m³ per il materiale arido e 23.50 kN/m³ per il calcestruzzo.

Le caratteristiche geometriche del cassone e dei carichi agenti, quelle del terreno di rinfianco e le risultanti delle forze agenti su di esso vengono sintetizzate nelle pagine seguenti in alcuni prospetti riepilogativi.

Dato che sulla struttura possono transitare mezzi pesanti, il sovraccarico accidentale è stato assunto, cautelativamente, pari a 30 kN/m^2 (3 t/m²). Infine, su ogni cassone, è prevista la posa in opera di una bitta da 800 kN (80 t). Nei calcoli di seguito riportati il tiro alla bitta è stato applicato a quota +2.00 m s.m., 25 cm superiore alla quota del piano di banchina (+1.75 m s.m.).

6.1.3. Combinazione dei carichi

La struttura deve poter resistere alle seguenti combinazioni dei carichi:

- Peso proprio struttura + Spinta del terreno + Tiro alla bitta
- Peso proprio struttura + Spinta del terreno

6.1.4. Verifiche di stabilità

Secondo le Istruzioni Tecniche, le verifiche convenzionali di stabilità sono generalmente quattro:

- Verifica a ribaltamento (coefficiente di sicurezza massimo ammissibile = 1.5);
- Verifica a scorrimento della struttura sull'imbasamento (coefficiente di sicurezza massimo ammissibile = 1.4);
- verifica a schiacciamento dell'imbasamento della scogliera (massima tensione sul terreno 5 kg/cm²);
- verifica a slittamento di zolle comprendenti il terreno di imbasamento del cassone ed il terreno naturale (opera÷terreno) per la quale si adotta un coefficiente di sicurezza massimo ammissibile pari a 1.3.

Verifica al ribaltamento

Le sopra citate istruzioni tecniche prevedono che il rapporto tra il momento delle forze stabilizzanti (M_s) e quello delle forze ribaltanti (M_r) deve essere maggiore di 1.5, dove gli assi

di ribaltamento per la valutazione dei momenti passano per il piano d'imbasamento e per lo spigolo del solettone di base (lato mare):

$$\eta = M_{stab} / M_{rib}$$

Nella seguente tabella sono riassunti i valori dei coefficienti di sicurezza per il cassone considerato e per le due combinazioni di carico prese in esame:

combin	azione di	carico 1	combin	azione di	i carico 2
Ms	Mr	η	Ms	Mr	η
tm	tm		tm	tm	
16788	4528	3.71	16788	3090	5.43

Verifica allo scorrimento dell'opera sul piano di fondazione

Il rapporto tra la somma delle forze resistenti nella direzione dello slittamento e la somma delle componenti nella stessa direzione delle azioni sul cassoni deve essere maggiore di 1.4 (η) .

La superficie di scorrimento è quella di separazione tra il piano di fondazione ed il terreno sottostante; il coefficiente d'attrito terreno - fondazione è stato assunto pari a $0.60 (\mu)$:

$$\eta = \frac{\mu \cdot R_v}{R_o}$$

dove:

- R_v Reazione verticale offerta dal terreno (Peso cassone immerso con la sottrazione delle sottopressioni)
- R_o Risultante delle forze orizzontali

Nella tabella seguente sono riassunti i coefficienti di sicurezza per il cassone esaminato e per le combinazioni di carico considerate:

Ro t/m	Rv t/m	η	Ro t/m	Rv t/m	η
858546	2428626	1.72	752533	2750586	2.19

Verifica a schiacciamento dell'imbasamento a scogliera

Per valutare le tensioni indotte dal cassone sull'imbasamento si ipotizza che le tensioni abbiano un andamento lineare. Tale ipotesi è valida solo se la piastra di fondazione è sufficientemente rigida. Le Istruzioni tecniche ammettono un carico massimo sulla fondazione di 500 kPa.

Se la sezione è interamente reagente (il punto di applicazione della forza cade all'interno del nocciolo centrale di inerzia – $|e| \le H/6$), si utilizza la nota espressione di Navier:

$$\sigma_{\max} = \frac{N}{B \times H} \times \left(1 + \frac{6 \cdot e}{H}\right)$$
$$\sigma_{\min} = \frac{N}{B \times H} \times \left(1 - \frac{6 \cdot e}{H}\right)$$

nel caso di sezione parzializzata le precedenti espressioni diventano:

$$\sigma_{\max} = \frac{4}{3} \times \frac{N}{B \cdot (H - 2e)}$$
$$\sigma_{\min} = 0$$

dove:

- H = 10.70 m Larghezza base del cassone,
- B = 1.00 m Lunghezza unitaria del cassone
- e eccentricità del carico
- N Risultante delle forze verticali

Nella seguente tabella sono riassunte le tensioni massime e minime con l'eccentricità e la risultante dei carichi per le due combinazioni di carico esaminate:

combi	nazione	di carico) 1	combii	nazione	di carico	2
Ν	е	σ_{max}	σ_{min}	N	е	σ_{max}	σ_{min}
t/m	m	(kg/cm ²)	(kg/cm ²)	t/m	m	(kg/cm ²)	(kg/cm ²)
2750586.3	0.89	1.54	0.51	2750586.27	0.37	1.24	0.81

La massima tensione è pari a 154 kPa, inferiore a 500 kPa, per cui, nel caso preso in esame, la verifica s schiacciamento dell'imbasamento a scogliera risulta soddisfatta con ampi margini di sicurezza.

6.1.5. Calcoli statici

Nel presente paragrafo sono riportati i calcoli statici e le verifiche di resistenza degli elementi strutturali dei cassoni.

Soletta di fondo

La soletta di fondo è stata calcolata nelle condizioni di esercizio (*combinazione n. 1*). La soletta è stata schematizzata in direzione trasversale come una trave continua di larghezza unitaria semplicemente appoggiata in corrispondenza delle pareti e del setto interno del cassone e caricata dal basso verso l'alto dalla reazione del terreno e dall'alto verso il basso dal peso proprio alleggerito della soletta stessa, del terreno sulla mensola interna e del riempimento delle celle. Nel seguito si riporta l'analisi dei carichi agenti sulla soletta.

Reazione del terreno:	$p_1 = -154.00 \text{ kPa}$	$p_2 = -51.00 \text{ kPa}$
Peso proprio della soletta:	$p_1 = p_2 = 13.20 \times 0.80 =$	= 10.56 kPa
Peso riempimento cella n. 1:	$p_1 = p_2 = 9.70 \times 4.70 + 1$	$3.20 \times 0.50 = 52.19$ kPa
Peso riempimento cella n. 2:	$p_1 = p_2 = 9.70 \times 7.20 + 1$	8.00×0.75 = 83.34 kPa
Peso terreno mensola interna:	$p_1 * = p_2 = 9.70 \times 7.20 +$	$18.00 \times 1.80 = 102.24$ kPa

Nella figura seguente è riportato lo schema di calcolo della soletta e la distribuzione dei carichi agenti sulla trave.

Figura 2. Intervento A – Schema di calcolo della soletta di fondo dei cassoni

Nella figura seguente sono riportate le sezioni della soletta di fondo che sono state verificate a flessione, taglio e nei confronti dello stato limite di apertura delle fessure.

Figura 3. Intervento A – Sezioni di verifica della soletta di fondo

Nella tabella seguente sono riportate le sollecitazioni agenti nelle sezioni di calcolo. I momenti flettenti positivi indicano che le fibre tese sono inferiori mentre quelli negativi che le fibre tese sono superiori. I momenti flettenti sono espressi in kNm ed i tagli in kN.

Tabena 1. Intervento A – Sonecitazioni						
SEZIONE	M [kNm]	V [kN]				
1	70.12	-138.63				
2	71.66	+136.38				
3	-58.09	-				
4	26.87	-89.64				
5	39.35	+8.92				
6	-30.88	51.21				
7	-29.30	-56.99				

Tabella 1. Intervento A – Sollecitazioni

La soletta è realizzata con calcestruzzo di classe $R_{ck}45$ ed è armata con barre in acciaio ad aderenza migliorata tipo FeB44k, le cui caratteristiche meccaniche sono riportate nel paragrafo 4.1 e sinteticamente elencate di seguito:

 $\sigma_{c,amm} = 13.50 \text{ MPa}$ $\tau_{c0} = 1.26 \text{ MPa}$ $\sigma_{a,amm} = 255.0 \text{ MPa}$ $w_{amm} = 0.15 \text{ mm}$

Nella verifica allo stato limite di apertura delle fessure sono stati utilizzati i seguenti valori dei parametri normativi:

Resistenza media a trazione: Resistenza caratteristica a trazione:	$\begin{array}{l} f_{ctm} = 3.42 \text{ MPa} \\ f_{ctk} = 2.39 \text{ MPa} \end{array}$
Aderenza calcestruzzo-acciaio (" <i>migliorata</i> "):	$\beta_1 = 1.000$
Condizione di carico (" <i>azioni di lunga durata</i> "):	$\beta_2 = 0.500$
Aderenza calcestruzzo-acciaio (" <i>migliorata</i> "):	$k_2 = 0.400$
Diagramma delle tensioni (" <i>triangolare</i> "):	$k_3 = 0.125$

Nella tabella seguente sono riportati i risultati delle verifiche di resistenza ed allo stato limite di apertura delle fessure. Le tensioni sono espresse in MPa, mentre il valore di apertura delle fessure in mm.

SEZIONE	Μ	Arn	Armatura		σ_{a}	$\mathbf{w}_{\mathbf{k}}$
SEZIONE	[kNm]	Superiore	Inferiore	[MPa]	[MPa]	[mm]
1	70.12	5Ф14	5Φ14	1.53	127.0	0.1053
2	71.66	5Ф14	5Φ14	1.57	129.8	0.1076
3	-58.09	5Ф14	5Φ14	1.27	105.2	0.0872
4	26.87	5Ф14	5Φ14	0.59	48.3	0.0400
5	39.35	5Ф14	5Φ14	0.86	71.0	0.0589
6	-30.88	5014	5014	0.68	55.6	0.0461
7	-29.30	5Φ14	5Φ14	0.64	52.7	0.0437

Tabella 2. Intervento A – Verifiche di resistenza ed allo stato limite di apertura delle fessure

Nella tabella seguente sono riportate le verifiche a taglio delle sezioni.

	1 abena 0. mee		i mene a tagno	
SEZIONE	V	B	h	τ
	K N	[m]	[m]	[MPa]
1	-138.63	100	0.753	0.20
2	+136.38	100	0.753	0.20
3	-	-	-	-
4	-89.64	100	0.753	0.13
5	+8.92	100	0.753	0.01
6	51.21	100	0.753	0.08
7	-56.99	100	0.753	0.08

Tabella 3. Intervento A – Verifiche a taglio

Nella direzione longitudinale (parallelamente al lato maggiore del cassone) la soletta si comporta come una trave appoggiata in corrispondenza delle pareti e dei setti del cassone ma soggetta a carichi distribuiti minori. Essendo la soletta armata simmetricamente nelle due direzioni, si omettono le verifiche di resistenza ed allo stato limite di apertura delle fessure che risultano soggette a sollecitazioni minori.

Pareti perimetrali

La condizione di carico più gravosa per le pareti perimetrali si ha nelle fasi di affondamento durante le quali sono soggette alla spinta dell'acqua dall'esterno all'interno ed alla spinta della zavorra liquida necessaria per affondare il cassone dall'interno verso l'esterno.

Le pareti possono pertanto essere studiate come piastre incastrate su tre lati, in corrispondenza della soletta di fondo e dei setti, e semplicemente appoggiate sul rimanente lato, in corrispondenza della dalla di copertura del cassone.

Nei calcoli si è trascurata cautelativamente la spinta della zavorra liquida dall'interno verso l'esterno. La pressione massima agente sulla parete risulta pertanto pari a:

$$p = 10.30 \times 7.20 = 74.16 \text{ kPa}$$

Nel seguito si riportano lo schema di calcolo (vincoli e carichi agenti) ed i contour delle sollecitazioni ottenute.

Figura 4. Intervento A – Schema di calcolo e carichi delle pareti perimetrali

Figura 5. Intervento A – Sollecitazioni M_{11} in kNm/m e V_{13} in kN/m

Figura 6. Intervento A – Sollecitazioni M₁₁ in kNm/m e V₁₃ in kN/m

Nella tabella seguente sono riportate le sollecitazioni massime agenti sulla parete riferite alle sezioni orizzontali e verticali di larghezza unitaria.

QUOTA [m s.l.m.]	Sezione	N [kN/m]	M [kNm/m]	V [kN/m]	
-4.60	Orizzontale	96.00	+51.36	88.57	
-4.60	Orizzontale	96.00	-24.75	0.00	
-7.20	Verticale	140.04	+48.61	98.43	
-5.60	Verticale	118.92	-13.94	0.00	

	Tabella	4. Intervento	A – Sollecitazio
--	---------	---------------	------------------

La soletta è realizzata con calcestruzzo di classe $R_{ck}45$ ed è armata con barre in acciaio ad aderenza migliorata tipo FeB44k, le cui caratteristiche meccaniche sono riportate nel paragrafo 4.1 e sinteticamente elencate di seguito:

$$\begin{split} \sigma_{c,amm} &= 13.50 \text{ MPa} \\ \tau_{c0} &= 1.26 \text{ MPa} \\ \sigma_{a,amm} &= 255.0 \text{ MPa} \\ w_{amm} &= 0.15 \text{ mm} \end{split}$$

Nella verifica allo stato limite di apertura delle fessure sono stati utilizzati i seguenti valori dei parametri normativi:

Resistenza media a trazione:	$f_{ctm} = 3.42 \text{ MPa}$
Resistenza caratteristica a trazione:	$f_{ctk} = 2.39 \text{ MPa}$
Aderenza calcestruzzo-acciaio (" <i>migliorata</i> "):	$\beta_1 = 1.000$
Condizione di carico (" <i>azioni di lunga durata</i> "):	$\beta_2 = 0.500$
Aderenza calcestruzzo-acciaio (" <i>migliorata</i> "):	$k_2 = 0.400$
Diagramma delle tensioni (" <i>triangolare</i> "):	$k_3 = 0.125$

Nella tabella seguente sono riportati i risultati delle verifiche di resistenza.

SEZIONE	Ν	М	V	Arma	atura	σ	σa	τ
SELIUNE	[kN/m]	[kNm/m]	[kN/m]	Superiore	Inferiore	[MPa]	[MPa]	[MPa]
Orizzontale	96.00	+51.36	88.57	4Φ14	4 Φ 14	4.12	178.0	0.28
Orizzontale	96.00	-24.75	0.00	4Φ14	4 Φ 14	1.85	50.2	0.00
Verticale	140.04	+48.61	98.43	5Ф14	5Ф14	3.47	108.0	0.31
Verticale	118.92	-13.94	0.00	5Φ10	5Ф10	0.88	4.4	0.00

Tabella 5. Intervento A – Verifiche di resistenza

Sovrastruttura

Le fasi realizzative della sovrastruttura sono le seguenti:

- 1. Posizionamento sulle celle di dalle in c.a. (spessore pari a 0.20 m) da utilizzare come casseri a perdere per il getto della sovrastruttura.
- 2. Realizzazione della sovrastruttura (getto di calcestruzzo di spessore pari a 0.85 m).
- 3. Fasi di esercizio della sovrastruttura.

I carichi agenti sulla sovrastruttura nelle diverse fasi di vita della sovrastruttura sono i seguenti:

1.	Peso proprio dalla (25.00×0.20):	5.00 kPa
2.	Peso proprio sovrastruttura (25.00×0.85):	21.25 kPa
3.	Sovraccarico accidentale:	20.00 kPa

Nelle fasi n. 1 e 2 la sezione di calcolo è quella della sola dalla in c.a. di spessore pari a 0.20 m. La dalla è schematizzata come una piastra appoggiata lungo il perimetro e caricata superficialmente dal peso proprio della dalla (carico n. 1) e dal peso proprio della sovrastruttura (carico n. 2). Il momento flettente massimo nella sezione centrale della piastra risulta pari a (Ing. L. Santarella, "*Prontuario del cemento armato*", Trento 2003, HOEPLI):

 $M = (5.00+21.25) \times 3.80^2 / 22.60 = 16.77 \text{ kNm/m}$

La sezione resistente della dalla presenta le seguenti caratteristiche:

B = 1.00 m H = 0.20 m C = 0.04 m A inferiore = 7.70 cm² (5 Φ 14) A superiore = 3.95 cm² (5 Φ 10)

Le tensioni massime nei materiali sono pertanto pari a:

$\sigma_c = 5.0 \text{ MPa} \le 13.5 \text{ MPa}$	verificato
$\sigma_a = 159.9 \text{ MPa} \le 255.0 \text{ MPa}$	verificato

Nella fase n. 3 la sezione di calcolo è quella della sola sovrastruttura di spessore pari a 0.85 m. La sovrastruttura è schematizzata come una piastra incastrata lungo il perimetro e caricata superficialmente dal peso proprio della sovrastruttura (carico n. 2) e dal sovraccarico accidentale (carico n. 3). Il momento flettente massimo nella sezione centrale ed in quella di incastro della piastra risultano pari a (Ing. L. Santarella, "*Prontuario del cemento armato*", Trento 2003, HOEPLI):

 $M_{\text{mezzeria}} = (21.25+20.00) \times 3.80^2/43.25 = 13.77 \text{ kNm/m}$ $M_{\text{incastro}} = -(21.25+20.00) \times 3.80^2/19.50 = -30.55 \text{ kNm/m}$

La sezione resistente presenta le seguenti caratteristiche:

B = 1.00 m H = 0.85 m C = 0.04 m A inferiore = 6.16 cm² (4 Φ 14) A superiore = 6.16 cm² (4 Φ 14)

Le tensioni massime nei materiali ed il valore dell'apertura delle fessure sono pertanto pari a:

Sez. incastro $\sigma_c = 0.7 \text{ MPa} \le 13.5 \text{ MPa}$ $\sigma_a = 64.0 \text{ MPa} \le 255.0 \text{ MPa}$ $w_k = 0.06 \text{ mm} < 0.15 \text{ mm}$	verificato verificato verificato
Sez. centrale $\sigma_c = 0.3 \text{ MPa} \le 13.5 \text{ MPa}$ $\sigma_a = 28.4 \text{ MPa} \le 255.0 \text{ MPa}$ $w_k = 0.03 \text{ mm} \le 0.15 \text{ mm}$	verificato verificato verificato

6.2. Banchina a micropali e jet-grouting

Per la realizzazione della porzione occidentale della banchina, comprendente anche il dente di attracco ed il risvolto, è stata prevista una soluzione già impiegata con successo in situazioni del genere e consistente nell'eseguire tre pareti, una lato mare, una centrale ed una lato terra, ad una distanza reciproca di 3,90 m e di 3,05 m di micropali ϕ 250 mm, armati con profilati metallici cilindrici cavi Ø101,6 con spessore pari a 10 mm, a partire dalla quota – 1,60 m s.m.m. fino alla quota –14,00 m s.m.m. La parete lato mare è formata da micropali accostati, le altre due da micropali distanziati l'uno dall'altro di due diametri.

Fra le due pareti foranee viene eseguito un trattamento colonnare di consolidamento con il metodo denominato jet-grouting continuo a ridosso dalle parete più esterna, discontinuo e su due file nella zona fra le due pareti foranee. A consolidamento eseguito si procede, previa asportazione di parte del materiale in sito fino alla quota -1,60 m s.m.m., all'esecuzione di un getto di calcestruzzo subacqueo, detto di prima fase, che perviene alla quota -1,30 m s.m.

Scopo di tale getto è di collegare superiormente i micropali, al fine di assicurare un comportamento d'insieme "rigido" a tutta la struttura.

Si provvederà quindi alla posa in opera di elementi prefabbricati di c.a., a doppio T, con spessore costante pari a 30 m, anima lunga 3,40 m e ali larghe 2,04 m, posti in opera con un interasse di 2.04 m, ed alla esecuzione di un getto "di seconda fase" alla quota -1,00 m s.m. L'insieme degli elementi prefabbricati verrà definitivamente collegato con un getto in opera su solette prefabbricate dalla quota +0,75 alla +1,75 m s.m.m.

All'interno delle celle venutasi a creare tra le pareti degli elementi prefabbricati, sopra il getto a quota –1,00 m s.m., verrà disposta una scogliera di pietrame di peso compreso fra 50 e 200 kg, con pendenza delle scarpate 2/3 e larghezza in testa (alla quota +0,20 m s.m.m.) pari a 1,50 m. La scogliera si "appoggia" all'ala posteriore degli elementi a doppio T.

Nel seguito si riportano i calcoli statici e le verifiche di resistenza dei struttura portante (micropali) del nuovo muro di banchina.

6.2.1. Modello di calcolo

I calcoli statici della banchina sono stati svolti in riferimento ad una sezione di larghezza pari a 4.08 m corrispondente alla larghezza di una cella assorbente. Nel modello la fila di micropali lato mare è quindi costituita da 16 micropali, mentre le file centrali e lato terra sono costituite da 8 micropali.

La struttura è stata quindi modellata come un telaio piano costituito da elementi trave monodimensionali il cui schema statico è rappresentato nella Figura 7.

Figura 7. Intervento A - Schema statico

Nel modello i micropali sono stati simulati assegnando alle aste una sezione rettangolare con caratteristiche geometriche e meccaniche equivalenti alla sezione di micropali corrispondente (Figura 8):

Figura 8. Intervento A – Sezione equivalente

- La sezione lato mare è costituita da 16 micropali Φ 250 avente le seguenti caratteristiche geometriche e meccaniche:

• A =
$$n_{\text{micropali}} \times \frac{\pi \phi^2}{4} = 16 \times \frac{\pi \times 0.25^2}{4} = 16 \times 0.0491 = 0.7856 \text{ m}^2$$

• I = $n_{\text{micropali}} \times \frac{\pi \phi^4}{64} = 16 \times \frac{\pi \times 0.25^4}{64} = 16 \times 0.00019175 = 0.00306796 \text{ m}^4$

La sezione rettangolare equivalente è stata ottenuta come segue:

$$H = \sqrt{\frac{12 \times I}{A}} = 0.217 \text{ m}$$
$$B = \frac{A}{H} = 3.620 \text{ m}$$

- Le sezioni centrale e lato terra sono costituite da 8 micropali Φ 250 avente le seguenti caratteristiche geometriche e meccaniche:

o
$$A = n_{\text{micropali}} \times \frac{\pi \phi^2}{4} = 8 \times \frac{\pi \times 0.25^2}{4} = 8 \times 0.0491 = 0.3928 \text{ m}^2$$

o $I = n_{\text{micropali}} \times \frac{\pi \phi^4}{64} = 8 \times \frac{\pi \times 0.25^4}{64} = 8 \times 0.00019175 = 0.00153398 \text{ m}^4$

La sezione rettangolare equivalente è stata ottenuta come segue:

•
$$H = \sqrt{\frac{12 \times I}{A}} = 0.217 \text{ m}$$
•
$$B = \frac{A}{H} = 1.810 \text{ m}$$

La sovrastruttura in c.a. è stata simulata schematizzando l'elemento prefabbricato in c.a. con elementi trave verticali a sezione rettangolare aventi le caratteristiche geometriche e meccaniche mostrate nella Figura 9.

Figura 9. Intervento A - Schematizzazione elemento prefabbricato in c.a.

La sovrastruttura in c.a. e la trave di collegamento dei micropali sono state modellate con elementi trave a sezione rettangolare:

-	Sovrastruttura in c.a.:	B = 4.08 m	H = 1.00 m
-	Trave di collegamento:	B = 4.08 m	H = 0.60 m

Il terreno naturale compreso tra la fila centrale e la fila lato terra dei micropali è stato modellato con molle elastoplastiche di rigidezza variabile con la profondità poste ad interasse costante $i_{molle} = 0.50$ m ("*Reese e Matlock, 1965*").

Cautelativamente per il terreno naturale è stato assunto uno stato di addensamento "*medio*" per il quale la letteratura consiglia il valore $n_h = 5000 \text{ kN/m}^3$ (C. Viggiani, "Fondazioni", Hevelius Edizioni, Benevento, 2000).

La rigidezza delle molle del terreno è ottenuta applicando la seguente espressione:

$$k_{molle}(z) = n_{micropali} \times i_{molle} \times n_h \times z [kN/m]$$

dove si è assunta l'origine dell'asse z coincidente con la testa dei micropali, trascurando pertanto lo strato misto di terreno naturale e di riporto al di sopra dei micropali. Nella tabella seguente sono riportate le rigidezze delle molle del terreno naturale.

1 5000 15000 25000 25000 55000 55000 55000 75000 85000 05000 105000		4.75	4.25	3.75	3.25	2.75	2.25	1.75	1.25	0.75	0.25	0.00	z
$[K_{\rm m}]$ 5000 [15000] 25000 [35000] 45000 [55000] 65000 [75000] 85000 [95000] 105000	115000	105000 1	95000	85000	75000	65000	55000	45000	35000	25000	15000	5000	k _m

Tabella 6. Intervento A – Terreno naturale – Rigidezza	delle	molle
z in [m] k _m in [kN/m]		

z	6.25	6.75	7.25	7.75	8.25	8.75	9.25	9.75	10.25	10.75	11.25	11.75
k _m	125000	135000	145000	155000	165000	175000	185000	195000	205000	215000	225000	235000

Il terreno naturale tra la fila lato mare e la fila centrale è consolidato con colonne di jetgrouting Φ 800. L'effetto del consolidamento del terreno naturale ghiaioso è quello di creare una struttura rigida di connessione tra le due file di micropali.

Per il terreno naturale è stato pertanto assunto uno stato di addensamento "*denso*" per il quale la letteratura consiglia il valore $n_h = 12000 \text{ kN/m}^3$ (C. Viggiani, "Fondazioni", Hevelius Edizioni, Benevento, 2000).

In questo caso per simulare la mutua interazione tra le strutture dei micropali lato mare e centrali il terreno è stato modellato con elementi trave orizzontali (Figura 7) in grado di trasferire solo azioni assiali.

La rigidezza assiale delle aste è stata calcolata a partire da quella delle molle elastoplastiche di rigidezza variabile con la profondità e poste ad interasse costante $i_{molle} = 0.50$ m ("*Reese e Matlock, 1965*"):

$$\frac{\mathrm{EA}(z)}{\mathrm{L}} = \mathrm{k}_{\mathrm{molle}}(z) = \mathrm{n}_{\mathrm{micropali}} \times \mathrm{i}_{\mathrm{molle}} \times \mathrm{n}_{\mathrm{h}} \times z \ [\mathrm{kN/m}]$$

Alle aste sono state pertanto assegnate sezioni circolari di rigidezza equivalente a quella delle molle ed avente diametro pari a:

$$D = \sqrt{\frac{4 \times A(z)}{\pi}} = \sqrt{\frac{4 \times k_{molle}(z) \times L}{\pi \times E}} \quad [m]$$

dove E è il modulo elastico del materiale assunto pari a 3×10^7 kPa ed L è la lunghezza dell'asta (interasse tra i la fila lato mare e centrale dei micropali) pari a 3.53 m.

Tabella 7. Intervento A – Terreno naturale consolidato con jet-grouting – Diametro aste z e D in [m]

Z	0.00	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25	4.75	5.25
D	0.000	0.042	0.073	0.095	0.112	0.127	0.141	0.153	0.164	0.175	0.185	0.194

Z	0.00	0.25	0.75	1.25	1.75	2.25	2.75	3.25	3.75	4.25	4.75	5.25
D	0.212	0.22	0.228	0.236	0.244	0.251	0.258	0.265	0.271	0.278	0.284	0.291

Il terreno naturale a valle della paratia di micropali è stato modellato con molle elastoplastiche di rigidezza variabile con la profondità poste ad interasse costante $i_{molle} = 0.50$ m ("*Reese e Matlock, 1965*").

Cautelativamente per il terreno è stato assunto uno stato di addensamento "*medio*" per il quale la letteratura consiglia il valore $n_h = 5000 \text{ kN/m}^3$ (C. Viggiani, "Fondazioni", Hevelius Edizioni, Benevento, 2000). L'origine dell'asse z è stata assunta coincidente con la quota del fondale dragato.

Nella tabella seguente sono riportate le rigidezze delle molle del terreno naturale.

Z	0.00	0.40	0.90	1.40	1.90	2.40	2.90	3.40	3.90	4.40	4.90	5.40
k _m	8000	18000	28000	38000	48000	58000	68000	78000	88000	98000	108000	118000

Tabella 8 . Intervento A – Terreno naturale a valle – Rigidezza delle molle z in [m] k_m in [kN/m]
6.2.2. Analisi dei carichi

I carichi agenti sulla banchina sono riportati schematicamente nel prospetto seguente:

- Peso proprio delle strutture.
- Peso proprio del terreno.
- Spinta del terreno in condizioni statiche.
- Spinta del terreno in condizioni statiche dovuta al sovraccarico accidentale.
- Azione verticale indotta dal sovraccarico accidentale.
- Tiro alla bitta.
- Incremento sismico della spinta del terreno in condizioni sismiche.
- Spinta idrodinamica.

Nella figura seguente sono riportati qualitativamente i carichi assegnati alla struttura.

Figura 10. Intervento A – Carichi agenti sulla banchina

Peso proprio delle strutture

Il peso proprio delle strutture è calcolato automaticamente dal modello numerico assegnando alle sezioni delle aste i corrispondenti materiali. Nell'analisi sono stati differenziati i pesi dei materiali asciutti da quelli immersi per tenere conto della spinta dell'acqua.

Peso proprio del terreno

Il terreno di riempimento alle spalle della sovrastruttura grava sulla trave di collegamento dei micropali che risulta pertanto soggetta all'azione di un carico uniformemente distribuito di intensità pari a:

$$p = (\gamma_d \times H_1 + \gamma_s \times H_2) \times L = (18.00 \times 1.65 + 20.00 \times 1.00) \times 4.08 = 202.78 \text{ kN/m}$$

dove:

- γ_d è il peso asciutto del terreno (18.00 kN/m³);
- γ_s è il peso saturo del terreno (20.00 kN/m³);
- H_1 è lo spessore di terreno asciutto (1.65 m);
- H_2 è lo spessore di terreno saturo (1.30 m);
- L è la lunghezza del tratto su cui agisce il carico (4.08 m).

Spinta del terreno in condizioni statiche

La spinta del terreno in condizioni statiche è stata suddivisa in due spinte distinte agenti rispettivamente sulla sovrastruttura in c.a. (da quota +1.65 m s.l.m. a quota -1.30 m s.l.m.) e sulla fila centrale di micropali (da quota -1.30 m s.l.m. a quota -14.00 m s.l.m.), assumendo che il diagramma triangolare delle pressioni orizzontali sia nullo rispettivamente alla quota del piano banchina ed alla quota della testa dei micropali.

L'azione è stata calcolata in condizioni attive valutando il coefficiente di spinta orizzontale con l'espressione di Rankine e trascurando quindi cautelativamente l'attrito che si sviluppa all'interfaccia micropali-terreno:

$$k_a = \frac{1 - \operatorname{sen} \varphi'}{1 + \operatorname{sen} \varphi'} = 0.271$$

Nell'espressione di cui sopra si è assunto per il terreno naturale un angolo di attrito efficace φ ' pari a 35°. Nel seguito si riporta il calcolo delle pressioni orizzontali del terreno.

Spinta del terreno sulla sovrastruttura:

Quota +1.65 m s.l.m.	$p_0 =$	0.00 kN/m
Quota 0.00 m s.l.m.	$p_1 = k_a \times \gamma_d \times z_1 \times L =$	32.84 kN/m
Quota -1.30 m s.l.m.	$p_2'=p_1+k_a\times\gamma'\times(z_2-z_1)\times L=$	52.78 kN/m

Spinta del terreno sulla fila centrale di micropali:

Quota -1.30 m s.l.m.	$p_0 =$	0.00 kN/m
Quota -14.00 m s.l.m.	$p_1 = k_a \times \gamma' \times z_1 \times L =$	136.21 kN/m

Spinta del terreno dovuta al sovraccarico accidentale in condizioni statiche

La spinta attiva del terreno indotta dalla presenza del sovraccarico accidentale sul terreno alle spalle della banchina è considerata agente soltanto sulla sovrastruttura in c.a. ed è pari a:

$$q_h = k_a \times Q \times L = 0.271 \times 20.00 \times 4.08 = 22.11 \text{ kN/m}$$

dove Q è il sovraccarico accidentale sulla banchina assunto pari a 20.00 kPa.

Azione verticale indotta dal sovraccarico accidentale

La presenza del sovraccarico accidentale sulla banchina induce comunque un incremento del carico uniformemente distribuito agente sulla trave di collegamento dei micropali pari a:

$$q_h = Q \times L = 20.00 \times 4.08 = 81.60 \text{ kN/m}$$

Tiro alla bitta

Le bitte aventi un tiro da 800 kN sono disposte ad interasse i = 20.00 m. Sulla sezione è pertanto considerato agente un'azione orizzontale pari a:

$$F = \frac{T}{i} \times L = \frac{800}{20.00} \times 4.08 = 163.20 \text{ kN}$$

Incremento sismico della spinta del terreno

La spinta attiva del terreno in condizioni sismiche è stata calcolata valutando il coefficiente di spinta orizzontale con l'espressione di Mononobe-Okabe come riportato sinteticamente nel seguito.

L'opera è classificata in zona sismica di categoria 4 alla quale l'OPCM 3274 attribuisce un'accelerazione orizzontale: $a_g = 0.05g$

Il terreno naturale è costituito da ghiaie e sabbie mediamente addensate riconducibili alle categorie B, C, E dell'OPCM 3274 alle quali è associato il coefficiente: S = 1.25.

Tenuto inoltre conto che l'opera di sostegno è una struttura rigida, che non ammette spostamenti e che si è in presenza di terreni non coesivi saturi l'OPCM 3274 prescrive l'adozione di un coefficiente: r = 1.

Pertanto il coefficiente sismico orizzontale che interessa tutte le masse è ottenuto come:

$$k_{h} = S \times \frac{1}{r} \times \left(\frac{a_{g}}{g}\right) = 1.25 \times \frac{1}{1} \times \left(\frac{0.05g}{g}\right) = 0.0625$$

Trattandosi di un'opera non a gravità la componente verticale dell'accelerazione sismica agente sulla struttura può essere trascurata.

Il coefficiente di spinta del terreno è valutato nei due casi di terreno al di sopra ed al di sotto del livello marino con l'espressione di Mononobe-Okabe:

$$K = \frac{\operatorname{sen}^{2}(\psi + \varphi - \theta)}{\cos \theta \times \operatorname{sen}^{2} \psi \times \operatorname{sen}(\psi - \theta - \delta) \times \left[1 + \sqrt{\frac{\operatorname{sen}(\varphi + \delta) \times \operatorname{sen}(\varphi - \beta - \theta)}{\operatorname{sen}(\psi - \theta - \delta) \times \operatorname{sen}(\psi + \beta)}}\right]^{2}}$$

dove:

- φ è il valore di calcolo dell'angolo di resistenza a taglio del terreno in condizioni di sforzo efficace: φ=35°;
- ψ è l'angolo di inclinazione rispetto all'orizzontale della parete del muro rivolta a monte: $\psi=90^{\circ}$;
- β è l'angolo di inclinazione rispetto all'orizzontale della superficie del terrapieno:
 β=0°;
- δ è il valore di calcolo dell'angolo di resistenza a taglio tra terreno e muro: $\delta = 0^{\circ}$;
- θ è l'angolo definito come segue:

sopra falda:

$$\theta = a \tan\left(\frac{k_{h}}{1 \pm k_{v}}\right) = 3.58^{\circ}$$

sotto falda:
 $\theta = \frac{\gamma_{s}}{\gamma_{s} - \gamma_{w}} a \tan\left(\frac{k_{h}}{1 \pm k_{v}}\right) = 7.37^{\circ}$

Il coefficiente di spinta attiva del terreno in condizioni sismiche assume pertanto i seguenti valori:

• sopra falda:
$$K_{AD} = 0.305$$

• sotto falda: $K_{AS} = 0.346$

Nel seguito si riporta il calcolo della risultante della spinta del terreno in condizioni statiche e sismiche e quindi dell'incremento sismico della spinta. La forza dovuta alla spinta dinamica del terreno è applicata a metà altezza dell'opera di sostegno.

Spinta del terreno sulla sovrastruttura (dalla +1.65 m s.l.m. alla 0.00 m s.l.m.)

> Rankine (cond. statiche) – Terreno al di sopra del livello del mare $S_{AD} = 0.5 \times k_A \times \gamma_d \times H_1^2 \times L =$ $S_{AD} = 0.5 \times 0.271 \times 18.00 \times 1.65^2 \times 4.08 =$ $S_{AD} = 27.09 \text{ kN}$

Mononobe-Okabe (cond. sismiche) – Terreno al di sopra del livello del mare $E_{AD} = 0.5 \times k_{AD} \times \gamma_d \times H_1^2 \times L =$ $E_{AD} = 0.5 \times 0.305 \times 18.00 \times 1.65^2 \times 4.08 =$ $E_{AD} = 30.49 \text{ kN}$

 $\begin{array}{l} \mbox{Incremento sismico-Terreno al di sopra del livello del mare} \\ \Delta E_{AD} = E_{AD} - S_{AD} = 30.49\mbox{-}27.09 = 3.40 \ kN \\ \Delta p_{AD} = \Delta E_{AD}/L_{ASTA} = 3.40/1.08 = 3.15 \ kN \end{array}$

Rankine (cond. statiche) – Terreno al di sotto del livello del mare $S_A = (k_A \times \gamma_d \times H_1 \times H_2 + 0.5 \times k_A \times \gamma' \times H_2^2) \times L =$ $S_A = (0.271 \times 18.00 \times 1.65 \times 1.30 + 0.5 \times 0.271 \times 9.70 \times 1.30^2) \times 4.08 =$ $S_A = 51.75 \text{ kN}$

Mononobe-Okabe (cond. sismiche) – Terreno al di sotto del livello del mare $E_{AS} = (k_{AS} \times \gamma_d \times H_1 \times H_2 + 0.5 \times k_{AS} \times \gamma' \times H_2^2) \times L =$ $E_{AS} = (0.346 \times 18.00 \times 1.65 \times 1.30 + 0.5 \times 0.346 \times 9.70 \times 1.30^2) \times 4.08 =$ $E_{AS} = 66.08 \text{ kN}$

 $\begin{array}{l} \textit{Incremento sismico-Terreno al di sotto del livello del mare} \\ \Delta E_{AS} = E_{AS} - S_{AS} = 66.08\text{-}51.75 = 14.33 \text{ kN} \\ \Delta p_{AS} = \Delta E_{AS} / L_{ASTA} = 14.33 / 1.30 = 11.02 \text{ kN} \end{array}$

Spinta del terreno sulla fila centrale di micropali (dalla -1.30 m s.l.m. alla -14.00 m s.l.m.)

> Rankine (cond. statiche) – Terreno al di sotto del livello del mare $S_{AS} = 0.5 \times k_A \times \gamma' \times H^2 \times L =$ $S_{AS} = 0.5 \times 0.271 \times 9.70 \times 12.70^2 \times 4.08 =$ $S_{AS} = 864.93 \text{ kN}$

Mononobe-Okabe (cond. sismiche) – Terreno al di sotto del livello del mare $E_{AS} = 0.5 \times k_{AS} \times \gamma' \times H^2 \times L =$ $E_{AS} = 0.5 \times 0.346 \times 9.70 \times 12.70^2 \times 4.08 =$ $E_{AS} = 1104.30 \text{ kN}$

 $\begin{array}{l} \mbox{Incremento sismico-Terreno al di sotto del livello del mare} \\ \Delta E_{AS} = E_{AS} - S_{AS} = 1104.30\text{-}864.93 = 239.37 \ kN \\ \Delta p_{AS} = \Delta E_{AS}/L_{ASTA} = 239.37/12.70 = 18.85 \ kN \end{array}$

Spinta idrodinamica

La sovrapressione dell'acqua libera sul muro dovuto all'effetto idrodinamico è stata assegnata come carico uniformemente distribuito sulla paratia di micropali lato mare ed è stata calcolata come:

$$q = \frac{\frac{7}{12} \times k_{h} \times \gamma_{w} \times H_{w}^{2} \times L}{H_{w}} = \frac{\frac{7}{12} \times 0.0625 \times 10.30 \times 8.00^{2} \times 4.08}{8.00} = 12.26 \text{ kN/m}$$

6.2.3. Combinazioni di carico

Nel seguito sono riportate le combinazioni di carico considerate nei calcoli statici.

Combinazione n. 1 ("*Esercizio – 1*")

- Peso proprio delle strutture.
- Peso proprio del terreno.
- Spinta del terreno in condizioni statiche.
- Spinta del terreno in condizioni statiche dovuta al sovraccarico accidentale.
- Azione verticale indotta dal sovraccarico accidentale.

Combinazione n. 2 ("Esercizio – 2")

- Peso proprio delle strutture.
- Peso proprio del terreno.
- Spinta del terreno in condizioni statiche.
- Spinta del terreno in condizioni statiche dovuta al sovraccarico accidentale.
- Azione verticale indotta dal sovraccarico accidentale.
- Tiro alla bitta.

Combinazione n. 3 ("Sisma")

- Peso proprio delle strutture.
- Peso proprio del terreno.
- Spinta del terreno in condizioni statiche.
- Spinta del terreno in condizioni statiche dovuta al sovraccarico accidentale.
- Azione verticale indotta dal sovraccarico accidentale.
- Tiro alla bitta.
- Incremento sismico della spinta del terreno.
- Spinta idrodinamica

6.2.4. Calcoli statici

Nelle figure seguenti sono riportati i diagrammi delle sollecitazioni (sforzo normale, momento flettente, taglio) e le deformate ottenute dall'analisi numerica per ciascuna combinazione dei carichi.

Figura 11. Intervento A – Combinazione n. 1 – "Esercizio – 1": Deformata

Figura 12. Intervento A – Combinazione n. 1 – "Esercizio – 1": Sforzo normale

Figura 13. Intervento A – Combinazione n. 1 – "Esercizio – 1": Diagramma momento flettente

Figura 14. Intervento A – Combinazione n. 1 – "Esercizio – 1": Diagramma taglio

Figura 15. Intervento A - Combinazione n. 2 - "Esercizio - 2": Deformata

Figura 16. Intervento A – Combinazione n. 2 – "Esercizio – 2": Sforzo normale

Figura 17. Intervento A – Combinazione n. 2 – "Esercizio – 2": Diagramma momento flettente

Figura 18. Intervento A – Combinazione n. 2 – "Esercizio – 2": Diagramma taglio

Figura 19. Intervento A – Combinazione n. 3 – "Sisma": Deformata

Figura 20. Intervento A – Combinazione n. 3 – "Sisma": Sforzo normale

Figura 21. Intervento A – Combinazione n. 3 – "Sisma": Diagramma momento flettente

Figura 22. Intervento A – Combinazione n. 3 – "Sisma": Diagramma taglio

6.2.5. Verifiche di resistenza

Le massime sollecitazioni flettenti e taglianti si verificano nella combinazione di carico n. 2 ("*Esercizio – 2*") in corrispondenza della sezione di testa della fila di micropali lato terra. Le azioni agiscono su una sezione di larghezza 4.08 m e devono pertanto essere ripartite tra gli 8 micropali:

Sforzo normale:	N = 508.12/8 = 63.52 kN
Momento flettente:	M = 384.36/8 = 48.05 kNm
Taglio:	V = 403.58/8 = 50.45 kN

I micropali di diametro Φ 250 sono armati con un tubo di acciaio tipo S355JO (equivalente Fe510) di diametro Φ 168.3 sp. 10 mm.

Le verifiche sono state svolte con il metodo delle tensioni ammissibili con l'ausilio del codice di calcolo PresFLE+ v. 5.4 della Concrete S.rl.

Verifica a pressoflessione

N = 508.12/8 = 63.52 kNM = 384.36/8 = 48.05 kNm Micropalo $\Phi 250$ Armatura $\Phi 168.3 \text{ sp. 10 mm}$

 $\sigma_{malta} = 16.1 \text{ MPa}$ $\sigma_{acciaio} = 192 \text{ MPa}$

Verifica a taglio

Il taglio è affidato interamente all'armatura tubolare dei micropali avente area pari a 49.73 cm^2 .

V = 50.45 kNMicropalo $\Phi 250$ Armatura $\Phi 168.3 \text{ sp. } 10 \text{ mm}$ A = 49.73 cm²

 $\tau = 5045/49.73 = 10.1$ MPa

6.3. Elemento prefabbricato

Nel presente paragrafo si riportano i calcoli statici dell'elemento prefabbricato della sovrastruttura della banchina a micropali e jet-grouting. In particolare sono riportate le verifiche di resistenza ed allo stato limite di apertura delle fessure per le ali lato terra dell'elemento prefabbricato.

Figura 23. Intervento A – Elemento prefabbricato

Le ali sono state calcolate come travi di larghezza unitaria e spessore 0.30 m incastrate in corrispondenza dell'anima dell'elemento prefabbricato.

Nelle condizioni di esercizio della banchina la mensola è caricata come segue:

Spinta del terreno e del sovraccarico (Q = 20.00 kPa):

$$\begin{split} & S = ((0.271 \times 18.00 \times 1.05) + (0.271 \times 18.00 \times 1.80)) \times 0.75/2 \times 1.96 + \\ & + ((0.271 \times 18.00 \times 1.80) + (0.271 \times 18.00 \times 1.80 + 0.271 \times 9.71 \times 1.00)) \times 1.00/2 \times 1.96 + \\ & + (0.271 \times 20.00) \times 1.75 \times 1.96 = \\ & = 10.22 + 19.79 + 18.59 = 48.60 \text{ kN} \end{split}$$

$$q = S/(H \times L) = 48.60/(1.75 \times 1.96) = 14.17 \text{ kPa}$$

Le sollecitazioni massime nella sezione di incastro valgono:

 $M = 14.17 \times 1.96^{2}/2 = 27.22 \text{ kNm/m}$ $V = 14.17 \times 1.96 = 27.77 \text{ kN/m}$

Nel seguito si riportano le verifiche di resistenza dei materiali ed allo stato limite di apertura delle fessure. La struttura è armata simmetricamente con una rete Φ 14/20.

Le caratteristiche geometriche e meccaniche della soletta in entrambe le direzioni di calcolo sono le seguenti:

B = 1.00 m H = 0.30 m c = 0.04 m $A_1 = 7.70 \text{ cm}^2 (5\Phi 14) - \text{armatura inferiore}$ $A_2 = 7.70 \text{ cm}^2 (5\Phi 14) - \text{armatura superiore}$

L'elemento è realizzato con calcestruzzo di classe $R_{ck}45$ le cui caratteristiche meccaniche sono riportate nel paragrafo 4.1 e sinteticamente elencate di seguito:

$$\begin{split} \sigma_{c,amm} &= 13.50 \text{ MPa} \\ \tau_{c0} &= 1.26 \text{ MPa} \\ \sigma_{a,amm} &= 255.0 \text{ MPa} \\ w_{amm} &= 0.15 \text{ mm} \end{split}$$

 $w_k = 0.1148 \text{ mm} \le 0.15 \text{ mm}$

Nella verifica allo stato limite di apertura delle fessure sono stati utilizzati i seguenti valori dei parametri normativi:

$f_{ctm} = 3.42 \text{ MPa}$
$f_{ctk} = 2.39 \text{ MPa}$
$\beta_1 = 1.000$ $\beta_2 = 0.500$
P ₂ 0.500
$k_2 = 0.400$
$k_3 = 0.125$
verificato
verificato
verificato

verificato

7. **Intervento B**

L'intervento B prevede l'allargamento, il prolungamento ed il rafforzamento del molo di sottoflutto esistente.

Inoltre in prossimità dell'attuale testata del molo esistente è prevista la realizzazione di un piazzale banchinato che dovrà ospitare la stazione di rifornimento carburante (bunkeraggio). Tale area, che si estende per una lunghezza complessiva di circa 20.00 m ed ha una larghezza di circa 12.50 m, e, lato porto, è delimitata da una banchina a cassoncini prefabbricati di c.a. imbasati a quota -3.00 m s.m. su uno scanno di pietrame scapolo.

Per la realizzazione del piazzale a tergo dei nuovi banchinamenti è previsto l'uso di toutvenant e materiale proveniente dagli scavi e dai dragaggi, mentre la pavimentazione verrà realizzata con cubeti di porfido impostati su una fondazione in misto cementato spessa 40 cm. Di seguito sono riportate le verifiche di stabilità ed i calcoli stati degli elementi strutturali del

Cassoncini

7.1.

Nel presente paragrafo sono riportati i calcoli statici dei cassoncini in c.a. In particolare sono state svolte le verifiche di stabilità allo scorrimento sul piano di posa, al ribaltamento rispetto al piede esterno del muro ed allo schiacciamento del terreno di fondazione e le verifiche di resistenza dei materiali.

7.1.1. Analisi dei carichi

L'analisi dei carichi agenti sui cassoncini è stata svolta per metro lineare di banchina.

Peso proprio delle strutture

muro di banchina del bunkeraggio.

Il peso proprio degli elementi strutturali in c.a. è stato calcolato assumendo cautelativamente un peso per unità di volume del calcestruzzo γ_c pari a 23.50 kN/m³ e a 13.20 kN/m³ rispettivamente per le parti emerse e per quelle immerse:

Azioni verticali

Sovrastruttura (23.50×2.88):	67.68 kN/m
Cassoncino (23.50×0.09×2+13.20×0.81×2+13.20×1.05):	39.47 kN/m
Totale	107.15 kN/m

Momento stabilizzante

Sovrastruttura (23.50×2.88×1.90):	128.59 kNm/m
Cassoncino (2×(23.50×0.09+13.20×0.81)×2.00+13.20×1.05×1.75):	75.48 kNm/m
Totale	204.07 kNm/m

Carichi permanenti

I carichi permanenti considerati nei calcoli sono il riempimento del cassoncino con materiale arido ed il tappo di calcestruzzo magro aventi rispettivamente peso immerso per unità di volume γ ' pari a 9.70 kN/m³ e 13.20 kN/m³:

Azioni verticali

Tappo di calcestruzzo (13.20×0.72):	9.50 kN/m
Riempimento con materiale arido (9.70×2.40):	23.28 kN/m
Totale	32.78 kN/m

Momento stabilizzante

Tappo di calcestruzzo (13.20×0.72×2.00):	19.00 kNm/m
Riempimento con materiale arido (9.70×2.40):	46.56 kNm/m
Totale	65.56 kNm/m

Spinta del terreno in condizioni statiche

L'azione del terreno è stata calcolata in condizioni attive valutando il coefficiente di spinta orizzontale con l'espressione di Rankine e trascurando quindi cautelativamente l'attrito che si sviluppa all'interfaccia muro-terreno:

$$k_a = \frac{1 - \operatorname{sen} \varphi'}{1 + \operatorname{sen} \varphi'} = 0.271$$

Nell'espressione di cui sopra si è assunto per il terreno di riporto un angolo di attrito efficace φ ' pari a 35°. Nei calcoli sono assunti i seguenti valori dei pesi di volume del terreno:

-	peso asciutto per unità di volume:	$\gamma_{\rm d} = 18.00 \ \rm kN/m^3$
-	peso saturo per unità di volume:	$\gamma_{\rm s} = 20.00 \text{ kN/m}^3$
-	peso immerso per unità di volume:	$\gamma' = 9.70 \text{ kN/m}^3$

Il calcolo della spinta del terreno in condizioni statiche agente sul cassoncino è riportata di seguito. La quota del terreno alle spalle del cassoncino è a +0.00 m s.l.m.

Azioni orizzontali

Spinta "triangolare" (0.5×0.271×9.70×3.00 ²):	11.83 kN/m
Totale	11.83 kN/m
Momento ribaltante	
Spinta "triangolare" (0.5×0.271×9.70×3.00 ² ×3.00/3):	11.83 kNm/m
Totale	11.83 kNm/m

Spinta del terreno dovuta al sovraccarico permanente alle spalle della banchina

La pavimentazione dell'area di bunkeraggio è realizzata con blocchi in calcestruzzo di altezza 1.20 m, equivalenti pertanto ad un carico uniformemente distribuito alle spalle del muro pari a $23.50 \times 1.20 \times 1.00 = 28.20$ kN/m.

Azioni orizzontali

Sovraccarico (0.271×28.20×3.00):	22.93 kN/m
Totale	22.93 kN/m

Momento ribaltante

Sovraccarico (0.271×10.00×3.00×3.00/2):	34.40 kNm/m
Totale	34.40 kNm/m

Spinta del terreno dovuta al sovraccarico accidentale alle spalle della banchina

Sulla banchina alle spalle dei cassoncini si ipotizza un sovraccarico accidentale di 10.00 kPa. Nel seguito si riporta l'incremento di spinta attiva del terreno per la presenza del sovraccarico suddetto.

Azioni orizzontali

Sovraccarico (0.271×10.00×3.00):	8.13 kN/m
Totale	8.13 kN/m

Momento ribaltante

Sovraccarico (0.271×10.00×3.00×3.00/2):	12.20 kNm/m
Totale	12.20 kNm/m

Tiro alla bitta

Sulla banchina sono disposte bitte da 50 kN ad interasse di 5.00 m.

Azioni orizzontali

Bitta (50/5.00):	10.00 kN/m
Totale	10.00 kN/m

Momento ribaltante

Sovraccarico (100/10.00×(3.00+1.20+0.20)):	44.00 kNm/m
Totale	44.00 kNm/m

Sovraccarico sulla sovrastruttura della banchina

Sul molo di sottoflutto sarà impedito l'accesso ai mezzi e pertanto il sovraccarico di esercizio della banchina è assunto pari a 4.00 kPa (Cat. 3 "Ambienti suscettibili di grande affollamento...").

Azioni verticali

Sovraccarico (4.00×3.20):	12.80 kN/m
Totale	12.80 kN/m

Momento stabilizzante

Sovraccarico (4.00×3.20×1.90):	24.32 kNm/m
Totale	24.32 kNm/m

Spinta del terreno e del sovraccarico permanente in condizioni sismiche

La spinta attiva del terreno e del sovraccarico permanente in condizioni sismiche è stata calcolata valutando il coefficiente di spinta orizzontale con l'espressione di Mononobe-Okabe come riportato sinteticamente nel seguito.

L'opera è classificata in zona sismica di categoria 4 alla quale l'OPCM 3274 attribuisce un'accelerazione orizzontale: $a_g = 0.05g$.

Il terreno naturale è costituito da ghiaie e sabbie mediamente addensate riconducibili alle categorie B, C, E dell'OPCM 3274 alle quali è associato il coefficiente: S = 1.25.

Tenuto inoltre conto che, anche se l'opera di sostegno è una struttura che ammette spostamenti, si è in presenza di terreni non coesivi saturi l'OPCM 3274 prescrive l'adozione di un coefficiente: r = 1.

Pertanto il coefficiente sismico orizzontale che interessa tutte le masse è ottenuto come:

$$k_{h} = S \times \frac{1}{r} \times \left(\frac{a_{g}}{g}\right) = 1.25 \times \frac{1}{1} \times \left(\frac{0.05g}{g}\right) = 0.0625$$

Il coefficiente sismico verticale che interessa tutte le masse è ottenuto come:

$$k_v = \pm \frac{k_h}{2} = \pm \frac{0.0625}{2} = \pm 0.03125$$

Il coefficiente di spinta del terreno è valutato nei due casi di terreno al di sopra ed al di sotto del livello marino con l'espressione di Mononobe-Okabe:

$$K = \frac{\operatorname{sen}^{2}(\psi + \varphi - \theta)}{\cos \theta \times \operatorname{sen}^{2} \psi \times \operatorname{sen}(\psi - \theta - \delta) \times \left[1 + \sqrt{\frac{\operatorname{sen}(\varphi + \delta) \times \operatorname{sen}(\varphi - \beta - \theta)}{\operatorname{sen}(\psi - \theta - \delta) \times \operatorname{sen}(\psi + \beta)}}\right]^{2}$$

dove:

- ϕ è il valore di calcolo dell'angolo di resistenza a taglio del terreno in condizioni di sforzo efficace: $\phi=35^{\circ}$;
- ψ è l'angolo di inclinazione rispetto all'orizzontale della parete del muro rivolta a monte: $\psi=90^{\circ}$;
- β è l'angolo di inclinazione rispetto all'orizzontale della superficie del terrapieno: $\beta=0^{\circ}$;
- δ è il valore di calcolo dell'angolo di resistenza a taglio tra terreno e muro: $\delta=0^{\circ}$;
- θ è l'angolo definito come segue:

sopra falda:
$$\theta = a \tan\left(\frac{k_{h}}{1 \mp k_{v}}\right) = 3.58^{\circ}$$

sotto falda: $\theta = \frac{\gamma_{s}}{\gamma_{s} - \gamma_{w}} a \tan\left(\frac{k_{h}}{1 \mp k_{v}}\right) = 7.37^{\circ}$

Il coefficiente di spinta attiva del terreno in condizioni sismiche assume pertanto i seguenti valori:

- sopra falda:
$$K_{AD} = 0.305$$

- sotto falda: $K_{AS} = 0.346$

Ai fini del calcolo della spinta efficace di progetto E_d il coefficiente di spinta attiva orizzontale del terreno, calcolato con l'espressione di Mononobe-Okabe, deve essere modificato in funzione del coefficiente di spinta verticale come segue:

- Sisma verticale verso l'alto:
 - o sopra falda: $(1+k_v) \times K_{AD} = (1+0.03125) \times 0.305 = 0.315$
 - o sotto falda: $(1+k_v) \times K_{AS} = (1+0.03125) \times 0.346 = 0.357$
- Sisma verticale verso il basso:
 - o sopra falda: $(1-k_v) \times K_{AD} = (1-0.03125) \times 0.305 = 0.295$
 - o sotto falda: $(1-k_v) \times K_{AS} = (1-0.03125) \times 0.346 = 0.335$

SISMA VERTICALE VERSO L'ALTO

Azioni orizzontali

Spinta "triangolare" (0.5×0.357×9.70×3.00 ²):	15.58 kN/m
Spinta rettangolare (0.357×28.20×3.00):	30.20 kN/m
Totale	45.78 kN/m
Momento ribaltante	
Spinta "triangolare" (0.5×0.357×9.70×3.00 ² ×3.00/3):	15.58 kNm/m
Spinta rettangolare (0.357×28.20×3.00×3.00/2):	45.30 kNm/m
Totale	60.88 kNm/m
SISMA VERTICALE VERSO IL BASSO	
Azioni orizzontali	
Spinta "triangolare" (0.5×0.335×9.70×3.00 ²):	14.62 kN/m
Spinta rettangolare (0.335×28.20×3.00):	28.34 kN/m
Totale	42.96 kN/m
Momento ribaltante	
Spinta "triangolare" (0.5×0.335×9.70×3.00 ² ×3.00/3):	14.62 kNm/m
Spinta rettangolare (0.335×28.20×3.00×3.00/2):	42.51 kNm/m
Totale	57.13 kNm/m

Forza sismica orizzontale indotta dalle masse

Il calcolo della forza sismica orizzontale indotta dalla massa del cassoncino, della sovrastruttura, del tappo di calcestruzzo e del riempimento con materiale arido e del sovraccarico permanente alle spalle del muro è riportato nel seguito.

Azione sismica orizzontale

Sovrastruttura (23.50×2.88×0.0625):	4.23 kN/m
Cassoncino (23.50×2.85×0.0625):	4.19 kN/m
Tappo di calcestruzzo (23.50×0.72×0.0625):	1.06 kN/m
Riempimento con materiale arido (20.00×2.40×0.0625):	3.00 kN/m
Sovraccarico permanente (28.20×0.0625):	1.76 kN/m
Totale	14.24 kN/m

Momento ribaltante dovuto all'azione sismica orizzontale

Sovrastruttura (23.50×2.88×0.0625×3.75):	15.86 kN/m
Cassoncino (23.50×2.85×0.0625×1.19):	4.99 kN/m
Tappo di calcestruzzo (23.50×0.72×0.0625×1.45):	1.54 kN/m

Riempimento con materiale arido (20.00×2.40×0.0625×0.80):	2.40 kN/m
Sovraccarico permanente (28.20×0.0625×(3.00+1.20/2)):	6.34 kN/m
Totale	31.13 kN/m

Forza sismica verticale indotta dalle masse

Il calcolo della forza sismica verticale indotta dalla massa del cassoncino, della sovrastruttura, del tappo di calcestruzzo e del riempimento con materiale arido è riportato nel seguito.

Azione sismica verticale

Sovrastruttura (±23.50×2.88×0.03125):	±2.06 kN/m
Cassoncino (±23.50×2.85×0.03125):	±2.01 kN/m
Tappo di calcestruzzo (±23.50×0.72×0. 03125):	±0.53 kN/m
Riempimento con materiale arido ($\pm 20.00 \times 2.40 \times 0.03125$):	±1.50 kN/m
Totale	±6.10 kN/m

Momento ribaltante dovuto all'azione sismica orizzontale

Sovrastruttura (±23.50×2.88×0.03125×1.90):	±3.91 kN/m
Cassoncino (±23.50×2.85×0.03125×1.91):	±3.84 kN/m
Tappo di calcestruzzo (±23.50×0.72×0.03125×2.00):	±1.06 kN/m
Riempimento con materiale arido (±20.00×2.40×0.03125×2.00):	±3.00 kN/m
Totale	±11.81 kN/m

7.1.2. Combinazioni di carico

Nel seguito si riportano le combinazioni di carico prese in considerazione nei calcoli statici.

Combinazione n. 1

- 1. Peso proprio delle strutture.
- 2. Carichi permanenti.
- 3. Spinta del terreno in condizioni statiche.
- 4. Spinta del terreno indotta dal sovraccarico permanente alle spalle della banchina.
- 5. Spinta del terreno indotta dal sovraccarico accidentale alle spalle della banchina.
- 6. Tiro alla bitta.

Combinazione n. 2

- 1. Peso proprio delle strutture.
- 2. Carichi permanenti.
- 3. Spinta del terreno in condizioni statiche.
- 4. Spinta del terreno indotta dal sovraccarico permanente alle spalle della banchina.
- 5. Sovraccarico accidentale sulla banchina.

Combinazione n. 3

- 1. Peso proprio delle strutture.
- 2. Carichi permanenti.
- 3. Spinta del terreno e del sovraccarico permanente in condizioni sismiche (sisma ↑).
- 4. Forza sismica orizzontale indotta dalle masse.
- 5. Forza sismica verticale verso l'alto indotta dalle masse.

Combinazione n. 4

- 1. Peso proprio delle strutture
- 2. Carichi permanenti
- 3. Spinta del terreno e del sovraccarico permanente in condizioni sismiche (sisma \downarrow)
- 4. Forza sismica orizzontale indotta dalle masse.
- 5. Forza sismica verticale verso il basso indotta dalle masse.

7.1.3. Calcoli statici e verifiche di stabilità (traslazione e ribaltamento)

Nel presente paragrafo si riportano, per ciascuna combinazione di carico, il calcolo delle azioni risultanti e le verifiche di stabilità alla traslazione sul piano di posa ed al ribaltamento rispetto al piede esterno del muro.

La verifica allo scorrimento sul piano di posa è considerata soddisfatta se il rapporto tra le azioni stabilizzanti e quelle destabilizzanti risulta maggiore o uguale a 1.30 (p.to D. 4.2 del D.M. 11/03/1988).

La verifica al ribaltamento rispetto al piede esterno dell'opera è considerata soddisfatta se il rapporto tra i momenti stabilizzanti e quelli destabilizzanti risulta maggiore o uguale a 1.50 (p.to D. 4.3 del D.M. 11/03/1988).

Combinazione n. 1

Verifica allo scorrimento sul piano di posa

Peso proprio delle strutture:	107.15 kN/m
Carichi permanenti:	32.78 kN/m
Risultante dei carichi verticali	139.93 kN/m
Forza di attrito/Azione stabilizzante ($\mu = 0.60$)	83.96 kN/m
Spinta del terreno in condizioni statiche:	11.83 kN/m
Spinta dovuta al sovraccarico permanente alle spalle della banchina	22.93 kN/m
Spinta dovuta al sovraccarico accidentale alle spalle della banchina:	8.13 kN/m
Tiro alla bitta:	10.00 kN/m
Risultante dei carichi orizzontali/Azione destabilizzante	52.89 kN/m

Verifica allo scorrimento (83.96/52.59):

 $1.60 \ge 1.30$ Verificato

Verifica al ribaltamento rispetto al piede esterno dell'opera

Peso proprio delle strutture:	204.07 kNm/m
Carichi permanenti:	65.56 kNm/m
Momenti stabilizzanti	269.63 kNm/m
	11.00.101 /
Spinta del terreno in condizioni statiche:	11.83 kNm/m
Spinta dovuta al sovraccarico permanente alle spalle della banchina	34.40 kNm/m
Spinta dovuta al sovraccarico accidentale alle spalle della banchina:	12.20 kNm/m
Tiro alla bitta:	44.00 kNm/m
Momenti destabilizzanti	102.43 kNm/m
Verifica al ribaltamento (269.63/102.43):	$2.63 \ge 1.50$ Verificato

Combinazione n. 2

Verifica allo scorrimento sul piano di posa

Peso proprio delle strutture:	107.15 kN/m
Carichi permanenti:	32.78 kN/m
Sovraccarico accidentale sulla banchina	12.80 kN/m
Risultante dei carichi verticali	152.73 kN/m
Forza di attrito/Azione stabilizzante ($\mu = 0.60$)	91.64 kN/m
Spinta del terreno in condizioni statiche:	11.83 kN/m
Spinta dovuta al sovraccarico permanente alle spalle della banchina	22.93 kN/m
Risultante dei carichi orizzontali/Azione destabilizzante	34.76 kN/m
Verifica allo scorrimento (91.64/34.76):	$2.64 \ge 1.30$ Verificato
Verifica al ribaltamento rispetto al piede esterno dell	l'opera
Peso proprio delle strutture:	204.07 kNm/m
Carichi permanenti:	65.56 kNm/m
Sovraccarico accidentale sulla banchina	24.32 kNm/m
Momenti stabilizzanti	293.95 kNm/m
Spinta del terreno in condizioni statiche:	11.83 kNm/m
Spinta dovuta al sovraccarico permanente alle spalle della banchina:	34.40 kNm/m
Momenti destabilizzanti	46.23 kNm/m

Verifica al ribaltamento (293.95/46.23):

 $6.34 \ge 1.50$ Verificato

Combinazione n. 3

Verifica allo scorrimento sul piano di posa

Peso proprio delle strutture:	107.15 kN/m
Carichi permanenti:	32.78 kN/m
Forza sismica indotta dalle masse (sisma ↑):	-6.10 kN/m
Risultante dei carichi verticali	133.83 kN/m
Forza di attrito/Azione stabilizzante ($\mu = 0.60$)	80.30 kN/m
Spinta del terreno e del sovraccarico permanente in cond. sismiche (sisma 1): 45.78 kN/m
Forza sismica indotta dalle masse:	14.24 kN/m
Risultante dei carichi orizzontali/Azione destabilizzante	60.02 kN/m
Verifica allo scorrimento (80.30/60.02): 1.34	$4 \ge 1.30$ Verificato
Verifica al ribaltamento rispetto al piede esterno dell'oper	ra
Peso proprio delle strutture:	204.07 kNm/m
Carichi permanenti:	65.56 kNm/m
Momenti stabilizzanti	269.63 kNm/m
Spinta del terreno e del sovraccarico permanente in cond. sismiche (sisma 1): 60.88 kNm/m
Forza sismica indotta dalle masse (sisma ↑) (31.13+11.81):	42.95 kNm/m

Verifica al ribaltamento (269.63/103.83):

Momenti destabilizzanti

 $2.60 \ge 1.50$ Verificato

103.83 kNm/m

Combinazione n. 4

Verifica allo scorrimento sul piano di posa

Peso proprio delle strutture:	107.15 kN/m
Carichi permanenti:	32.78 kN/m
Forza sismica indotta dalle masse (sisma \downarrow):	6.10 kN/m
Risultante dei carichi verticali	146.03 kN/m
Forza di attrito/Azione stabilizzante ($\mu = 0.60$)	87.62 kN/m
Spinta del terreno e del sovraccarico permanente in cond. sismiche (sisma 1)): 45.78 kN/m
Forza sismica indotta dalle masse:	14.24 kN/m
Risultante dei carichi orizzontali/Azione destabilizzante	60.02 kN/m
<i>Verifica allo scorrimento</i> (87.62/60.02): 1.46	≥1.30 Verificato
Verifica al ribaltamento rispetto al piede esterno dell'oper	a
Peso proprio delle strutture:	204.07 kNm/m
Carichi permanenti:	65.56 kNm/m
Momenti stabilizzanti	269.63 kNm/m
Spinta del terreno e del sovraccarico permanente in cond. sismiche (sisma 1)): 60.88 kNm/m
Forza sismica indotta dalle masse (sisma ↑) (31.13-11.81):	19.32 kNm/m

Verifica al ribaltamento (269.63/80.20):

Momenti destabilizzanti

 $3.36 \ge 1.50$ Verificato

80.20 kNm/m

7.1.4. Verifica delle pressioni in fondazione

Nel presente paragrafo sono riportate le pressioni di contatto sul piano di fondazione. Nei calcoli si è assunto per il terreno un valore ammissibile della tensione pari a 200 kPa.

Combinazione n. 1

Azione verticale: Momento stabilizzante: Momento ribaltante:	N = 139.93 kN/m M _s = 269.63 kNm/m M _r = 102.43 kNm/m
Altezza sezione:	H = 3.50 m
Nocciolo centrale:	H/6 = 0.58 m
Eccentricità del carico:	$e = \frac{H}{2} - \frac{M_s - M_r}{N} = 0.56 \text{ m} \le H/6 \rightarrow \text{sez. int. reagente}$

Tensione massima:	$\sigma_1 = \frac{N}{H} + 6 \times \frac{N \times e}{H^2} = 78 \text{ kPa} \le 200 \text{ kPa} \text{ Verificato}$
Tensione minima:	$\sigma_2 = \frac{N}{H} - 6 \times \frac{N \times e}{H^2} = 2 \text{ kPa} \le 200 \text{ kPa} \text{ Verificato}$

Combinazione n. 2

Azione verticale:	N = 152.73 kN/m
Momento stabilizzante:	M _s = 293.95 kNm/m
Momento ribaltante:	M _r = 46.23 kNm/m
Altezza sezione:	H = 3.50 m
Nocciolo centrale:	H/6 = 0.58 m
Eccentricità del carico:	$e = \frac{H}{2} - \frac{M_s - M_r}{N} = 0.13 \text{ m} \le H/6 \rightarrow \text{sez. int. reagente}$
Tensione massima: $\sigma_1 = \frac{N}{H}$	$+6 \times \frac{N \times e}{H^2} = 53 \text{ kPa} \le 200 \text{ kPa}$ Verificato

Tensione minima:	$\sigma_2 = \frac{N}{H} - 6 \times \frac{N \times e}{H^2} = 34 \text{ kPa} \le 200 \text{ kPa}$	Verificato
------------------	---	------------

Combinazione n. 3

Azione verticale:	N = 133.83 kN/m
Momento stabilizzante:	$M_s = 269.63 \text{ kNm/m}$
Momento ribaltante:	$M_r = 103.83 \text{ kNm/m}$

Altezza sezione: H = 3.50 mNocciolo centrale: H/6 = 0.58 mEccentricità del carico: $e = \frac{H}{2} - \frac{M_s - M_r}{N} = 0.51 \text{ m} \le H/6 \rightarrow \text{sez. int. reagente}$ Tensione massima: $\sigma_1 = \frac{N}{H} + 6 \times \frac{N \times e}{H^2} = 72 \text{ kPa} \le 200 \text{ kPa Verificato}$ Tensione minima: $\sigma_2 = \frac{N}{H} - 6 \times \frac{N \times e}{H^2} = 5 \text{ kPa} \le 200 \text{ kPa Verificato}$

Combinazione n. 4

Azione verticale: Momento stabilizzante: Momento ribaltante:	N = 146.03 kN/m M _s = 269.63 kNm/m M _r = 80.20 kNm/m
Altezza sezione:	H = 3.50 m
Nocciolo centrale:	H/6 = 0.58 m
Eccentricità del carico:	$e = \frac{H}{2} - \frac{M_s - M_r}{N} = 0.45 \text{ m} \le H/6 \rightarrow \text{sez. int. reagente}$
Tensione massima: $\sigma_1 = \frac{N}{H}$	$+6 \times \frac{N \times e}{H^2} = 74 \text{ kPa} \le 200 \text{ kPa}$ Verificato
Tensione minima: $\sigma_2 = \frac{N}{H}$	$-6 \times \frac{N \times e}{H^2} = 10 \text{ kPa} \le 200 \text{ kPa}$ Verificato
7.1.5. Calcoli statici e verifiche di resistenza

Nel seguito sono riportati i calcoli statici e le verifiche di resistenza della soletta di fondo e delle pareti perimetrali dei cassoncini in c.a.

Soletta di fondo

La soletta di fondo è stata calcolata come una piastra semplicemente appoggiata sulle pareti perimetrali di lunghezza 4.70 m, larghezza 3.35 m e spessore di 0.30 m.

La piastra è caricata dal basso verso l'alto dalla reazione del terreno e dall'alto verso il basso dal peso proprio della soletta e dal carico permanente dovuto al tappo di calcestruzzo ed al riempimento con materiale arido, come illustrato nella figura seguente.

Figura 24. Intervento B – Soletta di fondo dei cassoncini – Carichi agenti

Nel seguito si riporta il calcolo delle azioni agenti sulla soletta di fondo. Le reazioni del terreno di fondazione sono ricavate dalle pressioni di contatto calcolate nel paragrafo precedente. Per le combinazioni di carico, alle quali si fa riferimento nei calcoli strutturali, si rimanda a quelle delle verifiche di stabilità.

<i>Peso proprio soletta</i> (13.20×0.30):	$\sigma_1 = 3.96 \text{ kPa}$	$\sigma_2 = 3.96 \text{ kPa}$
<i>Carichi permanenti</i> (9.70×1.00+13.20×0.30):	$\sigma_1 = 13.66 \text{ kPa}$	$\sigma_2 = 13.66 \text{ kPa}$
Reazione del terreno (combinazione n. 1)	$\sigma_1 = 78 \text{ kPa}$	$\sigma_2 = 2 \text{ kPa}$
Reazione del terreno (combinazione n. 2)	$\sigma_1 = 53 \text{ kPa}$	$\sigma_2 = 34 \text{ kPa}$
Reazione del terreno (combinazione n. 3)	$\sigma_1 = 72 \text{ kPa}$	$\sigma_2 = 5 \text{ kPa}$
Reazione del terreno (combinazione n. 4)	$\sigma_1 = 74 \text{ kPa}$	$\sigma_2 = 10 \text{ kPa}$

Nelle figure seguenti sono stati riportati lo schema di calcolo della soletta, i carichi agenti ed i diagrammi delle sollecitazioni (in forma di contour) per le 4 combinazioni di carico analizzate.

Figura 26. Intervento B – Soletta di fondo dei cassoncini – Carichi (1)

Figura 28. Intervento B – Soletta di fondo dei cassoncini – Carichi (3)

Figura 30. Intervento B – Soletta di fondo dei cassoncini – Comb. n. 2: Sollecitazioni taglianti

Figura 32. Intervento B – Soletta di fondo dei cassoncini – Comb. n. 2: Sollecitazioni taglianti

Figura 34. Intervento B – Soletta di fondo dei cassoncini – Comb. n. 3: Sollecitazioni taglianti

Figura 36. Intervento B – Soletta di fondo dei cassoncini – Comb. n. 4: Sollecitazioni taglianti

Nella tabella seguente sono riportati i valori estremi delle sollecitazioni flettenti e taglianti. Le sollecitazioni flettenti sono espresse in kNm/m mentre le sollecitazioni taglianti sono in kN/m. I momenti flettenti e le azioni di taglio che sollecitano le fibre parallele al lato maggiore della piastra (asse x nelle figure) sono indicati rispettivamente con M_{11} e V_{13} , mentre quelli agenti nell'altra direzione (asse y nelle figure) sono indicati rispettivamente con M_{22} e V_{23} .

Combinazione	M ₁₁	M ₂₂	V ₁₃	V ₂₃
1	-2.46	-6.38	-13.86	-33.06
1	+2.96	+9.79	+13.86	+34.09
2	-5.28	-12.64	-12.37	-24.51
2	+1.92	+7.85	+12.37	+32.21
2	-2.41	-6.16	-12.61	-30.00
5	+2.67	+9.06	+12.61	+31.01
4	-3.35	-8.35	-11.32	-31.36
	+2.26	+9.42	+11.32	+33.55

Tabella 9. Intervento B – Soletta di fondo dei cassoncini – Sollecitazioni

La soletta di fondo è armata nelle due direzioni con una doppia rete di armatura $\Phi 12/20$ (A = 5.65 cm²/m \ge A_{min} = 4.50 cm²/m - p.to 5.1.6.2 del D.M. 23/09/2005). Nel seguito si riporta la verifica della soletta di fondo per le sollecitazioni flettenti e taglianti massime e le verifiche allo stato limite di esercizio di apertura delle fessure.

Le caratteristiche geometriche e meccaniche della soletta in entrambe le direzioni di calcolo sono le seguenti:

B = 1.00 m H = 0.30 m c = 0.04 m $A_1 = 5.65 \text{ cm}^2 (5\Phi 12)$ $A_2 = 5.65 \text{ cm}^2 (5\Phi 12)$

La soletta è realizzata con calcestruzzo di classe $R_{ck}45$ le cui caratteristiche meccaniche sono riportate nel paragrafo 4.1 e sinteticamente elencate di seguito:

 $\sigma_{c,amm} = 13.50 \text{ MPa}$ $\tau_{c0} = 1.26 \text{ MPa}$ $\sigma_{a,amm} = 255.0 \text{ MPa}$ $w_{amm} = 0.15 \text{ mm}$ Nella verifica allo stato limite di apertura delle fessure sono stati utilizzati i seguenti valori dei parametri normativi:

Resistenza media a trazione:	$f_{ctm} = 3.42 \text{ MPa}$
Resistenza caratteristica a trazione:	$f_{ctk} = 2.39 \text{ MPa}$
Aderenza calcestruzzo-acciaio (" <i>migliorata</i> "):	$\beta_1 = 1.000$
Condizione di carico (" <i>azioni di lunga durata</i> "):	$\beta_2 = 0.500$
Aderenza calcestruzzo-acciaio (" <i>migliorata</i> "):	$k_2 = 0.400$
Diagramma delle tensioni (" <i>triangolare</i> "):	$k_3 = 0.125$

Il massimo momento flettente si ha nella combinazione n. 2 mentre il taglio massimo si ha nella combinazione di carico n. 1:

$$\begin{split} M_{22} &= 12.64 \ kNm/m \\ V_{23} &= 34.09 \ kN/m \end{split}$$

Verifica a flessione:

$\sigma_c = 1.8 \text{ MPa} \le 13.5 \text{ MPa}$	verificato
$\sigma_a = 94.7 \text{ MPa} \le 255.0 \text{ MPa}$	verificato

verificato

Verifica a taglio:	
$\tau = 34.09/(0.9 \times 1.00 \times 0.254) = 0.15 \text{ MPa} \le 1.26 \text{ MPa}$	verificato

Verifica dell'apertura della fessure:

 $s_r = 242.6 \text{ mm}$ $w_m = 0.0446 \text{ mm}$ $w_k = 0.0759 \text{ mm} \le 0.15 \text{ mm}$

Pareti perimetrali

In esercizio, la parete lato terra dei cassoncini in c.a. è sollecitata da terra verso mare dalla spinta del terreno e del sovraccarico permanente (in condizioni attive) e di eventuali sovraccarichi sul terrapieno (Q = 10.00 kPa) e da mare verso terra dalla spinta del materiale arido di riempimento. Trascurando a favore di sicurezza quest'ultima azione sulla parete lato terra del cassoncino agiscono le seguenti pressioni:

Condizioni statiche	
quota +0.00 m s.l.m.	$p_2 = 0.271 \times 38.20 = 10 \text{ kPa}$
quota -3.00 m s.l.m.	$p_3 = 0.271 \times (9.70 \times 3.00 + 38.20) = 18 \text{ kPa}$
Condizioni sismiche (sisma † a	in assenza del sovraccarico accidentale)
quota +0.00 m s.l.m.	$p_2 = 0.357 \times 28.20 = 10 \text{ kPa}$
quota -3.00 m s.l.m.	$p_3 = 0.357 \times (9.70 \times 3.00 + 28.20) = 20 \text{ kPa}$

In analogia alla soletta di fondo, le pareti del cassoncino possono essere schematizzate con piastre rettangolari appoggiate o incastrate lungo i bordi. Essendo le pressioni applicate alla pareti minori di quelle della soletta, dai calcoli statici si ottengono pertanto delle sollecitazioni flettenti e taglianti più piccole.

Essendo le pareti armate come la soletta di fondo, cioè simmetricamente in entrambe le direzioni con una doppia rete di armatura $\Phi 12/20$ (A = 5.65 cm²/m \ge A_{min} = 4.50 cm²/m - p.to 5.1.6.2 del D.M. 23/09/2005), ed essendo le pressioni applicate minori di quelle della soletta, le verifiche delle pareti possono ritenersi ampiamente soddisfatte.

7.2. Sovrastruttura

La sovrastruttura dei cassoncini previsti nel nuovo molo per il bunkeraggio ha un'altezza di 0.90 m (da quota +0.30 m s.l.m. a quota +1.20 m s.l.m.). la sovrastruttura è gettata in opera e risulta disconnessa in corrispondenza di ciascun cassoncino. Il getto è realizzato direttamente su una dalla in c.a. prefabbricata a perdere semplicemente appoggiata sulle pareti del cassoncino ed aggettante lato mare di 0.20 m per consentire a sua volta la realizzazione della sovrastruttura sporgente. La sovrastruttura è realizzata in due fasi ciascuna caratterizzata da un getto di calcestruzzo di 0.40 m.

La dalla in c.a. prefabbricata di spessore 0.10 m, lunghezza 4.80 m e larghezza 3.00 m è stata progettata per sostenere il getto di prima fase della sovrastruttura. In corrispondenza dell'apertura della cella antiriflettente deve essere garantito l'appoggio continuo della dalla.

7.2.1. Calcoli statici e verifiche di resistenza

La sovrastruttura dei cassoncini è realizzata in opera utilizzando una dalla in c.a. prefabbricata come cassero a perdere. La dalla è stata pertanto dimensionata in modo da sostenere in fase di realizzazione il peso proprio ed il peso del getto di I fase di calcestruzzo per uno spessore di 0.40 m. I carichi agenti sono pertanto:

<i>Peso proprio dalla</i> (25.00×0.10):	p = 2.50 kPa
Peso getto di I fase (25.00×0.40):	p = 10.00 kPa

La dalla è stata calcolata come una piastra rettangolare di lunghezza 4.80 m, larghezza 2.65 m, sbalzo 0.35 m e spessore 0.30 m vincolata in corrispondenza delle pareti perimetrali del cassoncino con appoggi. Si è ipotizzato che il vincolo sia continuo anche in corrispondenza del foro della cella antiriflettente.

Nelle figure seguenti sono stati riportati lo schema di calcolo della soletta, i carichi agenti ed i diagrammi delle sollecitazioni (in forma di contour).

Figura 38. Intervento B – Sovrastruttura dei cassoncini (dalla) – Carichi

Figura 40. Intervento B – Sovrastruttura dei cassoncini (dalla) – Sollecitazioni taglianti

Nella tabella seguente sono riportati i valori estremi delle sollecitazioni flettenti e taglianti. Le sollecitazioni flettenti sono espresse in kNm/m mentre le sollecitazioni taglianti sono in kN/m. I momenti flettenti e le azioni di taglio che sollecitano le fibre parallele al lato maggiore della piastra (asse x nelle figure) sono indicati rispettivamente con M_{11} e V_{13} , mentre quelli agenti nell'altra direzione (asse y nelle figure) sono indicati rispettivamente con M_{22} e V_{23} .

Combinazione	M ₁₁	M ₂₂	V ₁₃	V ₂₃
1	-0.64	-2.23	-9.09	-46.33
1	+3.19	+7.70	+9.09	+29.78

Tabella 10.	. Intervento B –	Sovrastruttura	dei cassoncini	(dalla) – S	Sollecitazioni
-------------	------------------	----------------	----------------	-------------	----------------

Nella tabella i momenti flettenti negativi tendono le fibre superiori, mentre quelli positivi le fibre inferiori.

La dalla in c.a. prefabbricata è armata inferiormente con una rete $\Phi 12/20$ e superiormente con una rete $\Phi 8/20$. Nel seguito si riporta la verifica della soletta di fondo per le sollecitazioni flettenti e taglianti massime; si omettono invece le verifiche allo stato limite di apertura delle fessure non trattandosi di condizioni di esercizio ed essendo la dalla utilizzata solamente come cassero a perdere.

Le caratteristiche geometriche e meccaniche della soletta in entrambe le direzioni di calcolo sono le seguenti:

B = 1.00 m
H = 0.10 m
c = 0.02 m
$$A_1 = 5.65 \text{ cm}^2 (5\Phi 12) - \text{armatura inferiore}$$

 $A_2 = 2.50 \text{ cm}^2 (5\Phi 8) - \text{armatura superiore}$

La soletta è realizzata con calcestruzzo di classe $R_{ck}45$ le cui caratteristiche meccaniche sono riportate nel paragrafo 4.1 e sinteticamente elencate di seguito:

$$\begin{split} \sigma_{c,amm} &= 13.50 \text{ MPa} \\ \tau_{c0} &= 1.26 \text{ MPa} \\ \sigma_{a,amm} &= 255.0 \text{ MPa} \end{split}$$

Le sollecitazioni massime si hanno nella direzione parallela al lato minore della dalla ed assumono i seguenti valori:

Fibre tese superiori	Fibre tese inferiori
$M_{22} = -2.23 \text{ kNm/m}$	$M_{22} = +7.70 \text{ kNm/m}$
$V_{23} = -29.78 \text{ kN/m}$	$V_{23} = +46.33 \text{ kN/m}$

Verifiche di resistenza:

Fibre tese superiori	Fibre tese inferiori
$\sigma_c = 3.3 \text{ MPa} \le 13.5 \text{ MPa}$	$\sigma_c = 8.4 \text{ MPa} \le 13.5 \text{ MPa}$
$\sigma_a = 123.4 \text{ MPa} \le 255.0 \text{ MPa}$	$\sigma_a = 211.8 \text{ MPa} \le 255.0 \text{ MPa}$
$\tau = 0.44 \text{ MPa} \le 1.26 \text{ MPa}$	$\tau = 0.70 \text{ MPa} \le 1.26 \text{ MPa}$

A maturazione avvenuta del getto di I fase viene eseguito il getto di completamento della sovrastruttura (getto di II fase) di spessore 0.40 m. In questa fase la dalla in c.a. prefabbricata anche se connessa al getto sovrastante non è considerata più reagente e la struttura resistente è quindi costituita dal solo getto di I fase. I carichi agenti sulla sovrastruttura "*parziale*" sono pertanto:

<i>Peso proprio dalla</i> (25.00×0.10):	p = 2.50 kPa
Peso getto di I fase (25.00×0.40):	p = 10.00 kPa
Peso getto di II fase (25.00×0.40):	p = 10.00 kPa

La sovrastruttura "*parziale*" è stata calcolata come una piastra rettangolare di lunghezza 4.90 m, larghezza 2.70 m, sbalzo 0.35 m e spessore 0.40 m vincolata in corrispondenza delle pareti perimetrali del cassoncino con appoggi. Si è ipotizzato che il vincolo sia continuo anche in corrispondenza del foro della cella antiriflettente.

Nelle figure seguenti sono stati riportati lo schema di calcolo della soletta, i carichi agenti ed i diagrammi delle sollecitazioni (in forma di contour).

Figura 41. Intervento B – Sovrastruttura dei cassoncini (getto I fase) – Schema di calcolo

Figura 43. Intervento B – Sovrastruttura dei cassoncini (getto I fase) – Carichi (2)

Figura 45. Intervento B – Sovrastruttura dei cassoncini (getto I fase) – Sollecitazioni taglianti

Nella tabella seguente sono riportati i valori estremi delle sollecitazioni flettenti e taglianti. Le sollecitazioni flettenti sono espresse in kNm/m mentre le sollecitazioni taglianti sono in kN/m. I momenti flettenti e le azioni di taglio che sollecitano le fibre parallele al lato maggiore della piastra (asse x nelle figure) sono indicati rispettivamente con M_{11} e V_{13} , mentre quelli agenti nell'altra direzione (asse y nelle figure) sono indicati rispettivamente con M_{22} e V_{23} .

Combinazione	M ₁₁	M ₂₂	V ₁₃	V ₂₃
1	-1.18	-1.58	-25.15	-21.37
1	+5.97	+14.34	+25.15	+30.59

1 abella 11. Intervento B – Getto di 1 fase – Sollecitazio
--

La sovrastruttura "*parziale*" è armata inferiormente con una rete $\Phi 12/20$ posizionata direttamente sulla dalla e superiormente con una rete $\Phi 8/20$. Nel seguito si riporta la verifica della soletta di fondo per le sollecitazioni flettenti e taglianti massime e le verifiche allo stato limite di esercizio di apertura delle fessure.

Le caratteristiche geometriche e meccaniche della soletta in entrambe le direzioni di calcolo sono le seguenti:

B = 1.00 m H = 0.40 m $c_1 = 0.00$ m $c_2 = 0.04$ m $A_1 = 5.65$ cm² (5 Φ 12) – armatura inferiore $A_2 = 2.50$ cm² (5 Φ 8) – armatura superiore

La soletta è realizzata con calcestruzzo di classe $R_{ck}45$ le cui caratteristiche meccaniche sono riportate nel paragrafo 4.1 e sinteticamente elencate di seguito:

 $\sigma_{c,amm} = 13.50 \text{ MPa}$ $\tau_{c0} = 1.26 \text{ MPa}$ $\sigma_{a,amm} = 255.0 \text{ MPa}$ $w_{amm} = 0.15 \text{ mm}$

Nella verifica allo stato limite di apertura delle fessure sono stati utilizzati i seguenti valori dei parametri normativi:

Resistenza media a trazione:	$f_{ctm} = 3.42 \text{ MPa}$
Resistenza caratteristica a trazione:	$f_{ctk} = 2.39 \text{ MPa}$
	0 4 6 6 6
Aderenza calcestruzzo-acciaio (" <i>migliorata</i> "):	$\beta_1 = 1.000$
Condizione di carico ("azioni di lunga durata"):	$\beta_2 = 0.500$
	1 0.400
Aderenza calcestruzzo-acciaio (<i>"migliorata"</i>):	$k_2 = 0.400$
Diagramma delle tensioni ("triangolare"):	$k_3 = 0.125$

Le sollecitazioni massime si hanno nella direzione parallela al lato minore della dalla ed assumono i seguenti valori:

Fibre tese superiori	Fibre tese inferiori
$M_{22} = -1.58 \text{ kNm/m}$	$M_{22} = +14.38 \text{ kNm/m}$
$V_{23} = -31.27 \text{ kN/m}$	$V_{23} = +30.59 \text{ kN/m}$

Verifiche di resistenza:

Fibre tese superiori	Fibre tese inferiori
$\sigma_c = 0.2 \text{ MPa} \le 13.5 \text{ MPa}$	$\sigma_c = 1.0 \text{ MPa} \le 13.5 \text{ MPa}$
$\sigma_a = 16.5 \text{ MPa} \le 255.0 \text{ MPa}$	$\sigma_a = 67.6 \text{ MPa} \le 255.0 \text{ MPa}$
$\tau = 0.01 \text{ MPa} \le 1.26 \text{ MPa}$	$\tau = 0.09 \text{ MPa} \le 1.26 \text{ MPa}$
$s_r = 261.6 \text{ mm}$	$s_r = 129.1 \text{ mm}$
$w_m = 0.0084 mm$	$w_m = 0.0169 mm$
$w_k = 0.0143 \text{ mm} \le 0.15 \text{ mm}$	$w_k = 0.0288 \text{ mm} \le 0.15 \text{ mm}$

In esercizio la sovrastruttura presenta un'altezza di 0.90 m (da quota +0.30 m s.l.m. a quota +1.20 m s.l.m.). La sezione resistente è però costituita dai 2 getti di calcestruzzo e presenta pertanto un'altezza di 0.80 m. I carichi agenti sulla sovrastruttura sono pertanto:

Peso proprio dalla (25.00×0.10):	p = 2.50 kPa
Peso proprio sovrastruttura (25.00×0.80):	p = 20.00 kPa
Sovraccarico accidentale (4.00):	q = 4.00 kPa

In questa condizione il foro della cella antiriflettente risulta aperto andando così a modificare lo schema vincolare utilizzato nei calcoli precedenti.

Cautelativamente la sovrastruttura è stata calcolata come una piastra rettangolare di lunghezza 4.90 m, larghezza 2.70 m, sbalzo 0.35 m e spessore 0.80 m vincolata in corrispondenza delle pareti perimetrali del cassoncino con appoggi.

Nelle figure seguenti sono stati riportati lo schema di calcolo della soletta, i carichi agenti ed i diagrammi delle sollecitazioni (in forma di contour).

Figura 47. Intervento B – Sovrastruttura dei cassoncini – Carichi (1)

Figura 49. Intervento B - Sovrastruttura dei cassoncini - Sollecitazioni flettenti

Figura 50. Intervento B – Sovrastruttura dei cassoncini – Sollecitazioni taglianti

Nella tabella seguente sono riportati i valori estremi delle sollecitazioni flettenti e taglianti. Le sollecitazioni flettenti sono espresse in kNm/m mentre le sollecitazioni taglianti sono in kN/m. I momenti flettenti e le azioni di taglio che sollecitano le fibre parallele al lato maggiore della piastra (asse x nelle figure) sono indicati rispettivamente con M_{11} e V_{13} , mentre quelli agenti nell'altra direzione (asse y nelle figure) sono indicati rispettivamente con M_{22} e V_{23} .

Combinazione	M ₁₁	M ₂₂	V ₁₃	V ₂₃
1	-33.06	-31.41	-303.71	-475.90
1	+7.59	+16.67	+303.71	+495.01

Tabella 12. Intervento B - Getto di I fase - Sollecitazioni

La sovrastruttura è armata simmetricamente con doppia rete Φ 12/20. Nel seguito si riporta la verifica della sovrastruttura per le sollecitazioni flettenti e taglianti massime e le verifiche allo stato limite di esercizio di apertura delle fessure.

Le caratteristiche geometriche e meccaniche della soletta in entrambe le direzioni di calcolo sono le seguenti:

B = 1.00 mH = 0.80 m $c_1 = 0.00 \text{ m}$ $c_2 = 0.04 \text{ m}$ $A_1 = 5.65 \text{ cm}^2 (5\Phi 12) - \text{armatura inferiore}$ $A_2 = 5.65 \text{ cm}^2 (5\Phi 12) - \text{armatura superiore}$

La soletta è realizzata con calcestruzzo di classe $R_{ck}45$ le cui caratteristiche meccaniche sono riportate nel paragrafo 4.1 e sinteticamente elencate di seguito:

$$\begin{split} \sigma_{c,amm} &= 13.50 \text{ MPa} \\ \tau_{c0} &= 1.26 \text{ MPa} \\ \sigma_{a,amm} &= 255.0 \text{ MPa} \\ w_{amm} &= 0.15 \text{ mm} \end{split}$$

Nella verifica allo stato limite di apertura delle fessure sono stati utilizzati i seguenti valori dei parametri normativi:

Resistenza media a trazione:	$f_{ctm} = 3.42 \text{ MPa}$
Resistenza caratteristica a trazione:	$f_{ctk} = 2.39 \text{ MPa}$
Aderenza calcestruzzo-acciaio (" <i>migliorata</i> "):	$\beta_1 = 1.000$
Condizione di carico (" <i>azioni di lunga durata</i> "):	$\beta_2 = 0.500$
Aderenza calcestruzzo-acciaio (" <i>migliorata</i> "):	$k_2 = 0.400$
Diagramma delle tensioni (" <i>triangolare</i> "):	$k_3 = 0.125$

Le sollecitazioni massime assumono i seguenti valori:

Fibre tese superiori	Fibre tese inferiori
$M_{11} = -33.06 \text{ kNm/m}$	$M_{22} = +16.67 \text{ kNm/m}$
V ₂₃ = -303.71 kN/m	$V_{23} = +495.01 \text{ kN/m}$

Verifiche di resistenza:

Fibre tese inferiori
$\sigma_c = 0.4 \text{ MPa} \le 13.5 \text{ MPa}$
$\sigma_a = 37.8 \text{ MPa} \le 255.0 \text{ MPa}$
$\tau = 0.69 \text{ MPa} \le 1.26 \text{ MPa}$
$s_r = 129.1 \text{ mm}$
$w_m = 0.0095 \text{ mm}$
$w_k = 0.0161 \text{ mm} \le 0.15 \text{ mm}$

8. Intervento C

L'intervento C prevede la risagomatura della banchina delimitante il porto a nord attraverso l'avanzamento del filo banchina in moda da perseguire l'obiettivi di eliminare l'attuale strettoia di via Assunzione nel tratto più prossimo alla radice del molo di sopraflutto. La struttura di banchina nel tratto centrale è costituita da cassoni cellulari imbasati a quota - 2.50 m s.m. su uno scanno in pietrame scapolo, mentre nel tratto di raccordo con la banchina esistente è costituita da una parete di palancole metalliche infisse fino a quota -6.00 m s.m. La struttura di ancoraggio delle palancole è costituita da n°8 micropali che verranno compensati a misura.

8.1. Cassoncini

Nel presente paragrafo sono riportati i calcoli statici dei cassoncini in c.a. In particolare sono state svolte le verifiche di stabilità allo scorrimento sul piano di posa, al ribaltamento rispetto al piede esterno del muro ed allo schiacciamento del terreno di fondazione e le verifiche di resistenza dei materiali.

8.1.1. Analisi dei carichi

L'analisi dei carichi agenti sui cassoncini è stata svolta per metro lineare di banchina.

Peso proprio delle strutture

Il peso proprio degli elementi strutturali in c.a. è stato calcolato assumendo cautelativamente un peso per unità di volume del calcestruzzo γ_c pari a 23.50 kN/m³ e a 13.20 kN/m³ rispettivamente per le parti emerse e per quelle immerse:

Azioni verticali

Sovrastruttura (23.50×2.56):	60.16 kN/m
Cassoncino (2.37×13.20+0.18×23.50):	36.51 kN/m
Totale	95.67 kN/m

Momento stabilizzante

Sovrastruttura (23.50×2.56×1.90):	114.30 kNm/m
Cassoncino (2.37×13.20×1.89+0.18×23.50×2.00):	67.59 kNm/m
Totale	181.89 kNm/m

Carichi permanenti

I carichi permanenti considerati nei calcoli sono il riempimento del cassoncino con materiale arido ed il tappo di calcestruzzo magro aventi rispettivamente peso immerso per unità di volume γ ' pari a 9.70 kN/m³ e 13.20 kN/m³:

Azioni verticali

Tappo di calcestruzzo (13.20×0.72):	9.50 kN/m
Riempimento con materiale arido (9.70×1.20):	11.64 kN/m
Totale	21.14 kN/m

Momento stabilizzante

Tappo di calcestruzzo (13.20×0.72×2.00):	19.01 kNm/m
Riempimento con materiale arido (9.70×1.20×2.00):	23.28 kNm/m
Totale	42.29 kNm/m

Spinta del terreno in condizioni statiche

L'azione del terreno è stata calcolata in condizioni attive valutando il coefficiente di spinta orizzontale con l'espressione di Rankine e trascurando quindi cautelativamente l'attrito che si sviluppa all'interfaccia micropali-terreno:

$$k_a = \frac{1 - \operatorname{sen} \varphi'}{1 + \operatorname{sen} \varphi'} = 0.271$$

Nell'espressione di cui sopra si è assunto per il terreno di riporto un angolo di attrito efficace φ ' pari a 35°. Nei calcoli sono assunti i seguenti valori dei pesi di volume del terreno:

-	peso asciutto per unità di volume:	$\gamma_{\rm d} = 18.00 \ \rm kN/m^3$
-	peso saturo per unità di volume:	$\gamma_{\rm s} = 20.00 \text{ kN/m}^3$
-	peso immerso per unità di volume:	$\gamma' = 9.70 \text{ kN/m}^3$

Il calcolo della spinta del terreno in condizioni statiche agente sul cassoncino è riportata di seguito. La quota del terreno alle spalle del cassoncino è a +0.80 m s.l.m.

Azioni orizzontali

Componente n. 1 "triangolare" $(0.5 \times 0.271 \times 18.00 \times 0.80^2)$:	1.56 kN/m
Componente n. 2 "rettangolare" (0.271×18.00×0.80×2.50):	9.76 kN/m
Componente n. 3 "triangolare" $(0.5 \times 0.271 \times 9.70 \times 2.50^2)$:	8.21 kN/m
Totale	19.53 kN/m

Momento ribaltante

Componente n. 1 "triangolare" (0.5×0.271×18.00×0.80 ² ×(2.50+0.80/2)	3)): 4.32 kNm/m
Componente n. 2 "rettangolare" (0.271×18.00×0.80×2.50×2.50/2):	12.20 kNm/m
Componente n. 3 "triangolare" $(0.5 \times 0.271 \times 9.70 \times 2.50^2 \times 2.50/3)$:	6.85 kNm/m
Totale	23.36 kNm/m

Spinta del terreno dovuta al sovraccarico alle spalle della banchina

Sulla banchina alle spalle dei cassoncini si ipotizza un sovraccarico accidentale di 10.00 kPa. Nel seguito si riporta l'incremento di spinta attiva del terreno per la presenza del sovraccarico suddetto.

Azioni orizzontali

Sovraccarico (0.271×10.00×(0.80+2.50)):	8.94 kN/m
Totale	8.94 kN/m

Momento ribaltante

Sovraccarico (0.271×10.00×(0.80+2.50)×(0.80+2.50)/2):	14.76 kNm/m
Totale	14.76 kNm/m

<u>Tiro alla bitta</u>

Sulla banchina sono disposte bitte da 25 kN ad interasse di 2.50 m.

Azioni orizzontali

Bitta (2.50/2.5):	10.00 kN/m
Totale	10.00 kN/m
Momente	o ribaltante

Sovraccarico (2.50/2.5×(2.50+1.10+0.20)):	38.00 kNm/m
Totale	38.00 kNm/m

Sovraccarico sulla banchina

Il sovraccarico di esercizio della banchina è assunto pari a 4.00 kPa (Cat. 3 "Ambienti suscettibili di grande affollamento...").

Azioni verticale

Sovraccarico (4.00×3.20):	12.80 kN/m
Totale	12.80 kN/m

Momento ribaltante

Sovraccarico (4.00×3.20×1.90):	-24.32 kNm/m
Totale	-24.32 kNm/m

Spinta del terreno in condizioni sismiche

La spinta attiva del terreno in condizioni sismiche è stata calcolata valutando il coefficiente di spinta orizzontale con l'espressione di Mononobe-Okabe come riportato sinteticamente nel seguito.

L'opera è classificata in zona sismica di categoria 4 alla quale l'OPCM 3274 attribuisce un'accelerazione orizzontale: $a_g = 0.05g$

Il terreno naturale è costituito da ghiaie e sabbie mediamente addensate riconducibili alle categorie B, C, E dell'OPCM 3274 alle quali è associato il coefficiente: S = 1.25.

Tenuto inoltre conto che, anche se l'opera di sostegno è una struttura che ammette spostamenti, si è in presenza di terreni non coesivi saturi l'OPCM 3274 prescrive l'adozione di un coefficiente: r = 1.

Pertanto il coefficiente sismico orizzontale che interessa tutte le masse è ottenuto come:

$$k_{h} = S \times \frac{1}{r} \times \left(\frac{a_{g}}{g}\right) = 1.25 \times \frac{1}{1} \times \left(\frac{0.05g}{g}\right) = 0.0625$$

Il coefficiente sismico verticale che interessa tutte le masse è ottenuto come:

$$k_v = \pm \frac{k_h}{2} = \pm \frac{0.0625}{2} = \pm 0.03125$$

Il coefficiente di spinta del terreno è valutato nei due casi di terreno al di sopra ed al di sotto del livello marino con l'espressione di Mononobe-Okabe:

$$K = \frac{\operatorname{sen}^{2}(\psi + \varphi - \theta)}{\cos \theta \times \operatorname{sen}^{2} \psi \times \operatorname{sen}(\psi - \theta - \delta) \times \left[1 + \sqrt{\frac{\operatorname{sen}(\varphi + \delta) \times \operatorname{sen}(\varphi - \beta - \theta)}{\operatorname{sen}(\psi - \theta - \delta) \times \operatorname{sen}(\psi + \beta)}}\right]^{2}$$

dove:

- ϕ è il valore di calcolo dell'angolo di resistenza a taglio del terreno in condizioni di sforzo efficace: $\phi=35^{\circ}$;
- ψ è l'angolo di inclinazione rispetto all'orizzontale della parete del muro rivolta a monte: $\psi=90^{\circ}$;
- β è l'angolo di inclinazione rispetto all'orizzontale della superficie del terrapieno: $\beta=0^{\circ}$;
- δ è il valore di calcolo dell'angolo di resistenza a taglio tra terreno e muro: $\delta=0^{\circ}$;
- θ è l'angolo definito come segue:

sopra falda:
$$\theta = a \tan\left(\frac{k_{h}}{1 \mp k_{v}}\right) = 3.58^{\circ}$$

sotto falda: $\theta = \frac{\gamma_{s}}{\gamma_{s} - \gamma_{w}} a \tan\left(\frac{k_{h}}{1 \mp k_{v}}\right) = 7.37^{\circ}$

Il coefficiente di spinta attiva del terreno in condizioni sismiche assume pertanto i seguenti valori:

- sopra falda:
$$K_{AD} = 0.305$$

- sotto falda: $K_{AS} = 0.346$

Ai fini del calcolo della spinta efficace di progetto E_d il coefficiente di spinta attiva orizzontale del terreno, calcolato con l'espressione di Mononobe-Okabe, deve essere modificato in funzione del coefficiente di spinta verticale come segue:

- Sisma verticale verso l'alto:
 - o sopra falda: $(1+k_v) \times K_{AD} = (1+0.03125) \times 0.305 = 0.315$
 - o sotto falda: $(1+k_v) \times K_{AS} = (1+0.03125) \times 0.346 = 0.357$
- Sisma verticale verso il basso:

0	sopra falda:	$(1-k_v) \times K_{AD} =$	$(1-0.03125) \times 0.305 = 0.2$	95

o sotto falda: $(1-k_v) \times K_{AS} = (1-0.03125) \times 0.346 = 0.335$

SISMA VERTICALE VERSO L'ALTO

Azioni orizzontali

Componente n. 1 "triangolare" $(0.5 \times 0.315 \times 18.00 \times 0.80^2)$:	1.81 kN/m
Componente n. 2 "rettangolare" (0.357×18.00×0.80×2.50):	12.85 kN/m
Componente n. 3 "triangolare" $(0.5 \times 0.357 \times 9.70 \times 2.50^2)$:	10.82 kN/m
Totale	25.49 kN/m

Momento ribaltante

.

Componente n. 1 "triangolare" (0.5×0.315×18.00×0.80 ² ×(2.50+0.80/3)): 5.02 kNm/m
Componente n. 2 "rettangolare" (0.357×18.00×0.80×2.50×2.50/2):	16.07 kNm/m
Componente n. 3 "triangolare" $(0.5 \times 0.357 \times 9.70 \times 2.50^2 \times 2.50/3)$:	9.02 kNm/m
Totale	30.10 kNm/m

SISMA VERTICALE VERSO IL BASSO

Azioni orizzontali

Componente n. 1 "triangolare" $(0.5 \times 0.295 \times 18.00 \times 0.80^2)$:	1.70 kN/m
Componente n. 2 "rettangolare" (0.335×18.00×0.80×2.50):	12.06 kN/m
Componente n. 3 "triangolare" $(0.5 \times 0.335 \times 9.70 \times 2.50^2)$:	10.15 kN/m
Totale	23.91 kN/m

Momento ribaltante

Componente n. 1 "triangolare" (0.5×0.295×18.00×0.80 ² ×(2.50+0.80/3	5)): 4.70 kNm/m
Componente n. 2 "rettangolare" (0.335×18.00×0.80×2.50×2.50/2):	15.08 kNm/m
Componente n. 3 "triangolare" $(0.5 \times 0.335 \times 9.70 \times 2.50^2 \times 2.50/3)$:	8.46 kNm/m
Totale	28.24 kNm/m

Forza sismica orizzontale indotta dalle masse

Il calcolo della forza sismica orizzontale indotta dalla massa del cassoncino, della sovrastruttura, del tappo di calcestruzzo e del riempimento con materiale arido è riportato nel seguito.

Azione sismica orizzontale

Sovrastruttura (23.50×2.56×0.0625):	3.75 kN/m
Cassoncino (23.50×(2.37+0.18)×0.0625):	4.19 kN/m
Tappo di calcestruzzo (23.50×0.72×0.0625):	1.06 kN/m
Riempimento con materiale arido (20.00×2.40×0.0625):	1.50 kN/m
Totale	10.06 kN/m

Momento ribaltante dovuto all'azione sismica orizzontale

Sovrastruttura (23.50×2.56×0.0625×3.20):	12.03 kN/m
Cassoncino (23.50×(2.37×0.85+0.18×2.65)×0.0625):	3.66 kN/m
Tappo di calcestruzzo (23.50×0.72×0.0625×0.95):	1.00 kN/m
Riempimento con materiale arido (20.00×1.20×0.0625×0.55):	0.83 kN/m
Totale	17.52 kN/m

Forza sismica verticale indotta dalle masse

Il calcolo della forza sismica verticale indotta dalla massa del cassoncino, della sovrastruttura, del tappo di calcestruzzo e del riempimento con materiale arido è riportato nel seguito.

Azione sismica verticale

Sovrastruttura (± 23.50×2.56×0.03125):	± 1.88 kN/m
Cassoncino (± 23.50×(2.37+0.18)×0.03125):	\pm 1.87 kN/m
Tappo di calcestruzzo ($\pm 23.50 \times 0.72 \times 0.03125$):	± 0.53 kN/m
Riempimento con materiale arido ($\pm 20.00 \times 1.20 \times 0.03125$):	± 0.75 kN/m
Totale	± 5.03 kN/m

Momento ribaltante dovuto all'azione sismica orizzontale

Sovrastruttura (± 23.50×2.56×0.03125×1.90):	\pm 3.57 kN/m
Cassoncino (± 23.50×(2.37×1.89+0.18×2.00)×0.03125):	\pm 3.55 kN/m
Tappo di calcestruzzo (± 23.50×0.72×0.03125×2.00):	\pm 1.06 kN/m
Riempimento con materiale arido ($\pm 20.00 \times 2.40 \times 0.03125 \times 2.00$):	\pm 1.50 kN/m
Totale	± 9.68 kN/m

8.1.2. Combinazioni di carico

Nel seguito si riportano le combinazioni di carico prese in considerazione nei calcoli statici.

Combinazione n. 1

- 1. Peso proprio delle strutture.
- 2. Carichi permanenti.
- 3. Spinta del terreno in condizioni statiche.
- 4. Spinta del terreno indotta dal sovraccarico alle spalle della banchina.
- 5. Tiro alla bitta.

Combinazione n. 2

- 1. Peso proprio delle strutture.
- 2. Carichi permanenti.
- 3. Spinta del terreno in condizioni statiche.
- 4. Sovraccarico accidentale sulla banchina.

Combinazione n. 3

- 1. Peso proprio delle strutture.
- 2. Carichi permanenti.
- 3. Spinta del terreno in condizioni sismiche (sisma verso l'alto).
- 4. Forza sismica orizzontale indotta dalle masse.
- 5. Forza sismica verticale verso l'alto indotta dalle masse.

Combinazione n. 4

- 1. Peso proprio delle strutture
- 2. Carichi permanenti
- 3. Spinta del terreno in condizioni sismiche (sisma verso il basso)
- 4. Forza sismica orizzontale indotta dalle masse.
- 5. Forza sismica verticale verso il basso indotta dalle masse.

8.1.3. Calcoli statici e verifiche di stabilità (traslazione e ribaltamento)

Nel seguito si riporta il calcolo delle azioni stabilizzanti e destabilizzanti per ciascuna combinazione di carico analizzata e le rispettive verifiche di stabilità dei cassoncini.

La verifica allo scorrimento sul piano di posa è considerata soddisfatta se il rapporto tra le azioni stabilizzanti e quelle destabilizzanti risulta maggiore o uguale a 1.30.

La verifica al ribaltamento rispetto al piede esterno dell'opera è considerata soddisfatta se il rapporto tra i momenti stabilizzanti e quelli destabilizzanti risulta maggiore o uguale a 1.50.

Combinazione n. 1

Verifica allo scorrimento sul piano di posa

Peso proprio delle strutture:	95.67 kN/m
Carichi permanenti:	21.14 kN/m
Risultante dei carichi verticali	116.82 kN/m
Forza di attrito/Azione stabilizzante ($\mu = 0.60$)	70.09 kN/m
Spinta del terreno in condizioni statiche:	19 53 kN/m
Spinta del terreno indotta dal sovraccarico alle spalle della banchina:	8.94 kN/m
Tiro alla bitta:	10.00 kN/m
Risultante dei carichi orizzontali/Azione destabilizzante	38.47 kN/m
Verifica allo scorrimento (70.09/38.47):	$1.82 \ge 1.30$ Verificato
Verifica al ribaltamento rispetto al piede esterno del	l'opera
Peso proprio delle strutture:	181.89 kNm/m
Carichi permanenti:	42.29 kNm/m
Momenti stabilizzanti	224.18 kNm/m
	22.26 I-NI /

Spinta del terreno in condizioni statiche:	23.36 kNm/m
Spinta del terreno indotta dal sovraccarico alle spalle della banchina:	14.76 kNm/m
Tiro alla bitta:	38.00 kNm/m
Momenti destabilizzanti	76.12 kNm/m
Verifica al ribaltamento (224.18/76.12):	$2.95 \ge 1.50$ Verificato

Verifica allo scorrimento sul piano di posa

Peso proprio delle strutture:	95.67 kN/m
Carichi permanenti:	21.14 kN/m
Sovraccarico accidentale sulla banchina	12.80 kN/m
Risultante dei carichi verticali	129.62 kN/m
Forza di attrito/Azione stabilizzante ($\mu = 0.60$)	77.77 kN/m
Spinta del terreno in condizioni statiche:	19.53 kN/m
Risultante dei carichi orizzontali/Azione destabilizzante	19.53 kN/m
Verifica allo scorrimento (77.77/19.53):	$3.98 \ge 1.30$ Verificato
Verifica al ribaltamento rispetto al piede esterno del	l'opera
<i>Verifica al ribaltamento rispetto al piede esterno del</i> Peso proprio delle strutture:	'l'opera 181.89 kNm/m
<i>Verifica al ribaltamento rispetto al piede esterno del</i> Peso proprio delle strutture: Carichi permanenti:	'l'opera 181.89 kNm/m 42.29 kNm/m
Verifica al ribaltamento rispetto al piede esterno del Peso proprio delle strutture: Carichi permanenti: Sovraccarico accidentale sulla banchina	<i>l'opera</i> 181.89 kNm/m 42.29 kNm/m 24.32 kNm/m
Verifica al ribaltamento rispetto al piede esterno del Peso proprio delle strutture: Carichi permanenti: Sovraccarico accidentale sulla banchina Momenti stabilizzanti	l'opera 181.89 kNm/m 42.29 kNm/m 24.32 kNm/m 248.50 kNm/m
Verifica al ribaltamento rispetto al piede esterno del Peso proprio delle strutture: Carichi permanenti: Sovraccarico accidentale sulla banchina Momenti stabilizzanti Spinta del terreno in condizioni statiche:	l'opera 181.89 kNm/m 42.29 kNm/m 24.32 kNm/m 248.50 kNm/m 23.36 kNm/m
Verifica al ribaltamento rispetto al piede esterno del Peso proprio delle strutture: Carichi permanenti: Sovraccarico accidentale sulla banchina Momenti stabilizzanti Spinta del terreno in condizioni statiche: Momenti destabilizzanti	l'opera 181.89 kNm/m 42.29 kNm/m 24.32 kNm/m 248.50 kNm/m 23.36 kNm/m 23.36 kNm/m

103

Verifica allo scorrimento sul piano di posa

Peso proprio delle strutture:	95.67 kN/m
Carichi permanenti:	21.14 kN/m
Forza sismica indotta dalle masse (sisma verso l'alto):	-1.87 kN/m
Risultante dei carichi verticali	114.95 kN/m
Forza di attrito/Azione stabilizzante ($\mu = 0.60$)	68.97 kN/m
Spinta del terreno in condizioni sismiche (sisma verso l'alto):	25.49 kN/m
Forza sismica indotta dalle masse:	10.06 kN/m
Risultante dei carichi orizzontali/Azione destabilizzante	35.55 kN/m
Verifica allo scorrimento (68.97/35.55):	$1.94 \ge 1.30$ Verificato

Verifica al ribaltamento rispetto al piede esterno dell'opera

Peso proprio delle strutture: Carichi permanenti:	181.89 kNm/m 42.29 kNm/m
Momenti stabilizzanti	224.18 kNm/m
Spinta del terreno in condizioni sismiche (sisma verso l'alto): Forza sismica indotta dalle masse (sisma verso l'alto) (17.52+9.68):	30.10 kNm/m 27.20 kNm/m
Momenti destabilizzanti	57.30 kNm/m
Verifica al ribaltamento (224.18/57.30):	$3.91 \ge 1.50$ Verificato

Verifica allo scorrimento sul piano di posa

Peso proprio delle strutture:	95.67 kN/m
Carichi permanenti:	21.14 kN/m
Forza sismica indotta dalle masse (sisma verso l'alto):	1.87 kN/m
Risultante dei carichi verticali	118.69 kN/m
Forza di attrito/Azione stabilizzante ($\mu = 0.60$)	71.21 kN/m
Spinta del terreno in condizioni sismiche (sisma verso il basso):	23.91 kN/m
Forza sismica indotta dalle masse:	10.06 kN/m
Risultante dei carichi orizzontali/Azione destabilizzante	33.98 kN/m
Verifica allo scorrimento (71.21/33.98):	$2.10 \ge 1.30$ Verificato

Verifica al ribaltamento rispetto al piede esterno dell'opera

Peso proprio delle strutture: Carichi permanenti:	181.89 kNm/m 42.29 kNm/m
Momenti stabilizzanti	224.18 kNm/m
Spinta del terreno in condizioni sismiche (sisma verso il basso): Forza sismica indotta dalle masse (sisma verso il basso) (17.52-9.68)	28.24 kNm/m 7.84 kNm/m
Momenti destabilizzanti	36.08 kNm/m
Verifica al ribaltamento (224.18/36.08):	$6.21 \ge 1.50$ Verificato

8.1.4. Verifica delle pressioni in fondazione

Nel seguito per ciascuna combinazione di carico considerata si riporta il calcolo delle pressioni sullo scanno di imbasamento.

Combinazione n. 1

Azione verticale: Momento stabilizzante:	N = 116.82 kN/m M = 224.18 kNm/m
Momento ribaltante:	$M_{\rm r} = 76.12 \text{ kNm/m}$
Altezza sezione:	H = 3.50 m
Nocciolo centrale:	H/6 = 0.58 m
Eccentricità del carico:	$e = \frac{H}{2} - \frac{M_s - M_r}{N} = 0.48 \text{ m} \le H/6 \rightarrow \text{Sez. interamente reagente}$
Tensione massima:	$\sigma_1 = \frac{N}{H} + 6 \times \frac{N \times e}{H^2} = 61 \text{ kPa} \le 200 \text{ kPa}$ Verificato
Tensione minima:	$\sigma_2 = \frac{N}{H} - 6 \times \frac{N \times e}{H^2} = 6 \text{ kPa} \le 200 \text{ kPa} \text{ Verificato}$

Combinazione n. 2

Azione verticale: Momento stabilizzante: Momento ribaltante:	N = 129.62 kN/m $M_s = 248.50 \text{ kNm/m}$ $M_r = 23.36 \text{ kNm/m}$
Altezza sezione:	H = 3.50 m
Nocciolo centrale:	H/6 = 0.58 m
Eccentricità del carico:	$e = \frac{H}{2} - \frac{M_s - M_r}{N} = 0.01 \text{ m} \le H/6 \rightarrow \text{Sez. interamente reagente}$
Tensione massima:	$\sigma_1 = \frac{N}{H} + 6 \times \frac{N \times e}{H^2} = 38 \text{ kPa} \le 200 \text{ kPa}$ Verificato
Tensione minima:	$\sigma_2 = \frac{N}{H} - 6 \times \frac{N \times e}{H^2} = 36 \text{ kPa} \le 200 \text{ kPa}$ Verificato

Azione verticale: Momento stabilizzante: Momento ribaltante:	$N = 114.95 \text{ kN/m} M_s = 224.18 \text{ kNm/m} M_r = 57.31 \text{ kNm/m}$	
Altezza sezione:	H = 3.50 m	
Nocciolo centrale:	H/6 = 0.58 m	
Eccentricità del carico:	$e = \frac{H}{2} - \frac{M_s - M_r}{M_s} = 0.30 \text{ m} \le H/6 \rightarrow \text{Sez. interamente reagente}$	
Tensione massima:	2 N	
Tensione minima:	$\sigma_{1} = \frac{N}{H} + 6 \times \frac{N \times e}{H^{2}} = 50 \text{ kPa} \le 200 \text{ kPa} \text{ Verificato}$ $\sigma_{2} = \frac{N}{H} - 6 \times \frac{N \times e}{H^{2}} = 16 \text{ kPa} \le 200 \text{ kPa} \text{ Verificato}$	
Combinazione n. 4		
Azione verticale: Momento stabilizzante: Momento ribaltante:	$N = 118.69 \text{ kN/m} M_s = 224.18 \text{ kNm/m} M_r = 36.08 \text{ kNm/m}$	
Altezza sezione:	H = 3.50 m	
Nocciolo centrale:	H/6 = 0.58 m	
Eccentricità del carico:	$e = \frac{H}{2} - \frac{M_s - M_r}{N} = 0.17 \text{ m} \le H/6 \rightarrow \text{Sez. interamente reagente}$	
Tensione massima:	$\sigma_{1} = \frac{N}{H} + 6 \times \frac{N \times e}{H^{2}} = 44 \text{ kPa} \le 200 \text{ kPa } Verificato$	
Tensione minima:	$\sigma_{2} = \frac{N}{H} - 6 \times \frac{N \times e}{H^{2}} = 24 \text{ kPa} \le 200 \text{ kPa } Verificato$	
8.1.5. Calcoli statici e verifiche di resistenza

Per i calcoli statici e le verifiche di resistenza della soletta di fondo e delle pareti dei cassoncini si rimanda ai cassoncini dell'intervento B.

8.2. Sovrastruttura

La sovrastruttura dei cassoncini previsti nel nuovo molo per il bunkeraggio ha un'altezza di 0.80 m (da quota +0.30 m s.l.m. a quota +1.10 m s.l.m.). La sovrastruttura è gettata in opera e risulta disconnessa in corrispondenza di ciascun cassoncino. Il getto è realizzato direttamente su una dalla in c.a. prefabbricata a perdere semplicemente appoggiata sulle pareti del cassoncino ed aggettante lato mare di 0.20 m per consentire a sua volta la realizzazione della sovrastruttura sporgente. La sovrastruttura è realizzata in due fasi ciascuna caratterizzate rispettivamente da un getto di calcestruzzo di I fase di 0.40 m ed uno di II fase di 0.30 m. La dalla in c.a. prefabbricata di spessore 0.10 m, lunghezza 4.80 m e larghezza 3.00 m è stata progettata per sostenere il getto di prima fase della sovrastruttura. In corrispondenza dell'apertura della cella antiriflettente deve essere garantito l'appoggio continuo della dalla.

8.2.1. Calcoli statici e verifiche di resistenza

Per i calcoli statici e le verifiche di resistenza della sovrastruttura nelle condizioni di esercizio ed in quelle di costruzione e della dalla in c.a. prefabbricata utilizzata come cassero a perdere nelle fasi di realizzazione dell'opera si rimanda ai calcoli della sovrastruttura dei cassoncini del polo bunkeraggio previsto nell'ambito dell'intervento B.

8.3. Palancolati metallici

I calcoli statici sono stati elaborati solo per le condizioni statiche (assenza di sisma) La determinazione delle sollecitazioni è stata effettuata considerando l'analisi non lineare, che tiene conto dell'effettiva deformabilità del sistema palancola-tirante e dell'influenza che esso ha sulla mobilitazione delle pressioni del terreno circostante.

Nell'allegato 1 è riportato il fascicolo dei calcoli strutturali

Il sistema è stato verificato per la stabilità globale del pendio comparando i metodi Bishop e Bell ottenendo una buona analogia di risultati.

8.3.1. Micropali di ancoraggio

Il palancolato metallico è vincolato in sommità mediante una serie di micropali inclinati di 45 gradi sull'orizzontale costituiti da un anima tubolare di 88.9 mm di diametro e spessore 14.2 mm e da un bulbo reso di malta cementizia di 200 mm di diametro minimo.

I micropali, che saranno del tipo permanente, saranno della lunghezza di 14 m, e si considerano reagenti dalla profondità di 2.8 m.

La portata d'esercizio degli ancoraggi risulta pari a 6900 kgf considerando un coefficiente di sicurezza pari a 2.5, superiore alla forza sollecitante pari a 6500 kgf.

Per i risultati numerici delle verifiche svolte si rimanda all'allegato 1.

8.3.2. Verifica cordolo di coronamento trave palancolato

La trave di coronamento si può ricondurre ad una trave ad anima piena di altezza pari a 110 cm, base 1050 cm, con armatura resistente costituita da 3 Φ 14, copriferro c=5 cm, e staffe Φ 14 con passo 25 cm

Il calcolo delle sollecitazioni sul cordolo di collegamento si determinano considerando una trave continua appoggiata in corrispondenza dei tiranti. La sollecitazione per metro lineare è pari, come visto al punto sopra a 1.67 t/m. Il momento massimo sollecitante è dato da:

 $M=(1/8)\cdot p\cdot l^2=(1/8)\cdot 1.67\cdot 2.522=1.33$ tm.

La tensione massima sull'acciaio in queste condizioni risulta

 $\sigma_{acc} = 192 \text{ kg/cm}^2 < \sigma_{amm} = 2400 \text{ kg/cm}^2$

mentre quella sul calcestruzzo è

 $\sigma_c = 1.8 \text{ kg/cm}^2 < \sigma_{amm} = 135 \text{ kg/cm}^2 (\text{Rck 450})$

La tensione dovuta al taglio è pari a:

 $\tau{=}0.4~kg/cm^2 < \tau_{c0}{=}8~kg/cm^2$

Per i risultati numerici delle verifiche svolte si rimanda all'allegato 1.

9. Intervento D

L'intervento D prevede la riqualificazione del molo attuale dell'approdo turistico attraverso il prolungamento del moletto esistente con 4 cassoncini in c.a. disposti in pianta a forma di T ed imbasati alla quota di -4.00 m s.l.m. Nell'ambito dell'intervento in esame è inoltre previsto il consolidamento della banchina esistente con 12 micropali con anima tubolare Φ 89 (vedere figura).

Figura 51. Intervento D – Planimetria dell'intervento

9.1. Cassoncini

I cassoncini presentano le stesse caratteristiche geometriche dei cassoncini previsti negli interventi B e C con le seguenti variazioni:

- 1. Altezza maggiore di 1.00 m.
- 2. n. 2 cassoncini hanno il piede su entrambi i lati maggiori.

Data la loro posizione i cassoncini sono soggetti ai soli pesi propri ed agli eventuali sovraccarichi accidentali per ambienti suscettibili di affollamento (Q = 4.00 kPa). Pertanto si omettono le verifiche di stabilità allo scorrimento sul piano di posa ed al ribaltamento rispetto al piede esterno della struttura.

Per le verifiche di resistenza dei materiali e per le verifiche allo stato limite di apertura delle fessure (stato limite di esercizio) si rimanda invece alle considerazioni svolte per i cassoncini previsti nell'intervento C avendo ciascun elemento strutturale le stesse armature dei cassoncini di banchina ed essendo sottoposti a carichi minori.

9.2. Sovrastruttura

La sovrastruttura dei cassoncini è realizzata con una dalla in c.a. prefabbricata a perdere di dimensioni in pianta 4.50 m × 3.50 m e spessore 0.10 m sulla quale viene realizzato il getto di completamento di 0.40 m. La dalla sporge dal filo della parete maggiore del cassoncino di 0.25 m ed è appoggiata sulle pareti minori per 0.10 m. La sovrastruttura è armata simmetricamente con una doppia rete Φ 12/20.

Per i calcoli statici della sovrastruttura si rimanda a quella dei cassoncini dell'intervento B. Infatti la sezione resistente della sovrastruttura dei cassoncini dell'intervento D ha uno spessore di 0.40 m pari proprio al getto di calcestruzzo di I fase che è stato dimensionato, oltre che per i pesi propri ed il sovraccarico accidentale, anche per il peso proprio del getto di calcestruzzo si II fase.

9.3. Soletta di collegamento con la struttura esistente

Il collegamento con la struttura esistente è realizzato con una soletta in c.a. di spessore 0.30 m e dimensioni in pianta di 2.00 m \times 3.50 m semplicemente appoggiata lungo i lati maggiori sul pontile esistente e sul prolungamento.

La soletta è stata studiata come una trave semplicemente appoggiata di luce 2.00 m soggetta al peso proprio ed al sovraccarico accidentale della folla (per *"ambienti suscettibili di affollamento"*). Assumendo per il calcestruzzo un peso di volume pari a:

 $\gamma = 25.00 \text{ kN/m}^3$

il valore del carico uniformemente distribuito agente sulla soletta risulta:

Peso proprio soletta:	$p = 25.00 \times 0.30 \times 3.50 =$	26.25 kN/m
Sovraccarico accidentale:	$q = 4.00 \times 3.50 =$	14.00 kN/m
Totale carico:	$q^* = 26.25 + 14.00 =$	40.25 kN/m

Le sollecitazioni massime nella soletta sono riportate nel seguito insieme alle verifiche di resistenza a flessione ed a taglio ed alle verifiche allo stato limite di apertura delle fessure.

 $M_{max} = 40.25 \times 2.00^{2}/8 = 20.13 \text{ kNm}$ $V_{max} = 40.25 \times 2.00/2 = 40.25 \text{ kN}$

Caratteristiche geometriche:

$$B = 3.50 \text{ m}$$

H = 0.30 m
c = 0.04 m
A_{inf} = 14×1.54 = 21.56 cm² (Φ14/25)
A_{sup} = 14×1.54 = 21.56 cm² (Φ14/25)

Verifica di resistenza a flessione

 $\begin{array}{l} \sigma_c = 0.80 \ MPa \leq 13.50 \ MPa \\ \sigma_a = 40.3 \ MPa \leq 255.0 \ MPa \end{array}$

Verifica di resistenza a taglio

 $\tau = 40.25/(0.9 \times 3.50 \times 0.253) = 0.05 \text{ MPa} \le 1.26 \text{ MPa}$

Verifica allo stato limite di apertura delle fessure

Resistenza media a trazione:	$f_{ctm} = 3.42 \text{ MPa}$
Resistenza caratteristica a trazione:	$f_{ctk} = 2.39 \text{ MPa}$
Aderenza calcestruzzo-acciaio (" <i>migliorata</i> "):	$\beta_1 = 1.000$
Condizione di carico (" <i>azioni di lunga durata</i> "):	$\beta_2 = 0.500$
Aderenza calcestruzzo-acciaio (" <i>migliorata</i> "):	$k_2 = 0.400$
Diagramma delle tensioni (" <i>triangolare</i> "):	$k_3 = 0.125$

 $w_k \,{=}\, 0.0339 \; mm \,{\leq}\, 0.15 \; mm$

10. Verifiche di stabilità di insieme

10.1. Caratterizzazione geotecnica dei terreni

Per la definizione della successione stratigrafica dei fondali del sito in esame e per la definizione delle caratteristiche geomeccaniche delle varie formazioni coinvolte nelle verifiche di stabilità delle opere in progetto si è fatto riferimento ai risultati dell'apposita campagna di indagini (sondaggi geognostici + prove penetrometriche SPT a fondo foro) eseguita nel novembre del 2000 da una società specializzata.

In particolare nello specchio di mare antistante l'attuale sporgente utilizzato per l'attracco dei traghetti sono stati eseguiti n°4 sondaggi a carotaggio continuo spinti fino a profondità di circa 30 m dal fondale marino.

Durante i sondaggi, a causa della natura granulare dei terreni attraversati, non è stato possibile prelevare campioni indisturbati; comunque durante le perforazioni, al fine di raccogliere informazioni sulle caratteristiche dei terreni attraversati, sono state eseguite 16 prove penetrometriche dinamiche tipo S.P.T. a fondo foro.

Dall'esame dei risultati della campagna di indagini svolta si constata l'esistenza di uno strato superficiale di materiale di recente deposizione (depositi melmosi di fondale) di modesto spessore (circa 30 cm) al disotto del quale si rileva la presenza di un complesso detritico ghiaioso costituito da sedimenti sciolti di natura vulcanica in cui la frazione granulometrica prevalente è quella ghiaiosa. Si tratta di un complesso di spessore variabile tra 15 e 18 m circa il cui grado di addensamento cresce con la profondità come evidenziato dalle prove penetrometriche eseguite. Infatti già al disotto dei primi 2.50÷3.00 m in tutte le prove penetrometriche eseguite sono state raggiunte le condizioni di "rifiuto".

Al disotto del complesso detritico ghiaioso è stata rilevata la presenza della formazione in situ. Si tratta di un litotipo costituito prevalentemente da blocchi e ghiaia, di colore scuro, la cui struttura è insita nelle modalità di messa in posto a mare: i litotipi effusivi che vengono a contatto con l'acqua, infatti, raffreddandosi rapidamente si sono scomposti in blocchi interrompendo la continuità tipica delle colate.

Tutti i dati disponibili sono stati quindi elaborati ed interpretati in modo da preconfigurare valori medi di riferimento significativi ancorché, nel complesso, cautelativi delle diverse formazioni. In tal modo il volume di terreno significativamente interessato dalle opere è stato schematizzato con riferimento a due strati di riferimento che, a partire della quota media del fondale di progetto posto a –8.0 metri possono essere così rappresentati:

- I. Tra -8 e –23 m Ghiaie a debole matrice sabbiosa $\gamma_s = 22 \text{ kN/m}^3$; c' =0; $\phi' = 38^\circ$
- II. Al disotto di quota–23 Formazione rocciosa di base (Latite) $\gamma_s = 25 \text{ kN/m}^3$; c'=0.1 kPa; $\phi' = 45^\circ$

Ai terreni del "rinterro" a tergo dei muri di banchina (tout-venant e pietrame) ed al pietrame scapolo utilizzato per la formazione dello scanno di imbasamento del muro di banchina a cassoni, infine, sono stati attribuiti i seguenti parametri

III. Tout-venant $\gamma_d = 18 \text{ kN/m}^3$; $\gamma_s = 19 \text{ kN/m}^3$; c' =0; ϕ ' =30°

- IV. Pietrame per rinfianco $\gamma_d = 17 \text{ kN/m}^3$; $\gamma_s = 19 \text{ kN/m}^3$; c' =0; ϕ ' =38°
- V. Pietrame per scanno di imbasamento $\gamma_d = 16.5 \text{ kN/m}^3$; $\gamma_s = 19 \text{ kN/m}^3$; c' =0; ϕ ' =35°

10.2. Verifiche di stabilità

Il problema della stabilità di un pendio naturale o di un rilevato artificiale consiste nello schematizzare la situazione naturale con un modello al quale possano essere applicati i procedimenti di analisi propri della Meccanica delle Terre.

La validità del procedimento adottato è confermata dai validi risultati ottenuti in molti casi di studio: tuttavia vari sono gli aspetti che meritano approfondimento perché le difficoltà di ordine concettuale e pratico e gli ostacoli che si incontrano sono numerosi. Infatti, la verifica della sicurezza di un pendio si presenta come un problema staticamente indeterminato; le indeterminazioni, che si cerca di risolvere introducendo ipotesi semplificative, riguardano la distribuzione degli sforzi al contorno, il regime delle pressioni interstiziali, le azioni applicate, le modalità di transizione dall'equilibrio statico alla rottura che spesso si manifesta con meccanismi complicati e con il carattere di rottura progressiva.

Nelle verifiche di seguito riportate sono state esaminate le due sezioni tipo relative alla realizzazione della nuova banchina destinata all'attracco dei traghetti, cassoni cellulari e struttura costituita da diaframmi di micropali accostati e colonne di terreno consolidato con sovrastruttura di cls, nei confronti di possibili scivolamenti globali secondo superfici di scorrimento circolari.

L'analisi delle superfici di scorrimento è stata condotta secondo i metodi dell'equilibrio limite, comunemente denominati "metodi delle strisce".

Il principio generale da cui traggono origine tali metodi è quello per cui la tensione normale agente in un punto lungo la superficie di scorrimento risulta influenzata principalmente dal peso del terreno sovrastante. Allora il corpo del terreno viene suddiviso in strisce di terreno verticali e viene determinata la distribuzione delle forze agenti su ogni striscia. Operando in tal senso, è possibile confrontare le tensioni tangenziali lungo la base della striscia stessa con la resistenza del terreno e verificarne le condizioni di stabilità.

Nei più usuali modelli di calcolo i dati di input vengono immediatamente riportati in forma grafica, in tal modo si ha un controllo diretto dei dati digitati. La procedura di input prevede una prima fase di definizione dell'estensione del pendio da analizzare e l'impostazione della stratigrafia e dei carichi agenti su di esso.

Una volta definiti gli strati è possibile assegnare il tipo di terreno ad ogni strato. I tipi di terreno, le caratteristiche fisiche e meccaniche da fornire per ognuno dei terreni definiti sono le più comuni (peso di volume asciutto e saturo, angolo di attrito ed eventuale coesione).

Nel caso in esame, è stata introdotta anche la presenza dell'acqua corrispondente al livello medio marino da entrambe le parti dell'ammasso artificiale preso in esame.

I carichi agenti possono essere:

- concentrati, orizzontali o verticali
- distribuiti, costanti o variabili linearmente sia orizzontali che verticali.

La valutazione dei fattori di sicurezza alla stabilità d'insieme dell'opera considerata è stata condotta utilizzando il programma di calcolo automatico "Slope CAD" che utilizza il metodo di Bishop per l'individuazione delle superfici di scivolamento.

Il metodo di Bishop è un metodo iterativo molto usato che considera anche le forze di taglio fra i conci nei quali viene diviso il pendio. Nel calcolo con tale metodo si possono ipotizzare unicamente superfici di scorrimento circolari.

Le ipotesi e la procedura di calcolo fanno riferimento all'area delimitata dalla superficie topografica e dalla superficie di scivolamento, che viene suddivisa in n conci supposti rigidi, con parete di interconcio verticale.

Con riferimento al concio i-esimo viene adottata la seguente simbologia:

- W= peso del concio

- -c = coesione alla base del concio
- u = pressione neutrale alla base del concio
- α = angolo alla base del concio

- ϕ = angolo d'attrito interno alla base del concio

- σ = sforzo normale alla base del concio

- $\Delta X =$ larghezza del concio

- $\Delta l = lunghezza della base del concio$

- FS = fattore di sicurezza

Si assume che la superficie di scivolamento possa essere assimilata ad un arco di circonferenza.

Avendo suddiviso la massa interessata dallo scivolamento in n conci, il fattore di sicurezza può essere espresso in termini di momenti generati dalle forze agenti sui singoli conci rispetto al centro della circonferenza stessa

$$F_{S} = \frac{M_{S}}{M_{R}}$$

in cui M_R è il momento delle forze ribaltanti pari a

$$M_R = r \cdot \sum_{i=1}^n W_i \cdot \sin \alpha_i$$

M_s è il momento stabilizzante dato da

$$M_{S} = r \cdot \sum_{i=1}^{n} (c + \sigma_{i} \cdot \tan \phi_{i}) \cdot \Delta l_{i}$$

dove r rappresenta il raggio dell'arco di circonferenza considerato. Nel metodo di Bishop si assume che le azioni agenti all'interfaccia dei conci abbiano risultante orizzontale, per cui, se si esprime T_i come un'aliquota della resistenza al taglio tramite il fattore di sicurezza F_s (assunto uguale a quello dell'equazione generale), e si ricava N_i dall'equilibrio alla traslazione verticale:

$$N_{i} = \frac{W_{i} - u_{i} \cdot \Delta x_{i} - (1/FS) \cdot c \cdot \Delta x_{i} \cdot \tan \alpha_{i}}{\cos \alpha_{i} \cdot [1 + (\tan \alpha_{i} \cdot \tan \phi_{i})/FS]}$$

si ottiene:

$$FS = \frac{\sum_{i=1}^{n} \left[c \cdot \Delta x_i + \left(W_i - u_i \cdot \Delta x_i \right) \cdot \tan \alpha_i \right] \cdot \left[1 / M_i(\alpha) \right]}{\sum_{i=1}^{n} W_i \cdot \sin \alpha_i}$$

con

$$M_i(\alpha) = \cos \alpha_i \cdot \left(1 + \frac{\tan \alpha_i \cdot \tan \phi_i}{FS_i}\right)$$

Per la determinazione di F_S è richiesta una procedura per successive approssimazioni: si fissa dapprima un valore di tentativo di F_S , calcolato secondo il metodo di Fellenius, e si ricava un successivo valore da introdurre nelle sommatorie, fino a raggiungere attraverso iterazioni un grado di approssimazione pari a 0.001.

Al fine di individuare la sezione contraddistinta dal minore valore del coefficiente di sicurezza, si è proceduto alla verifica delle due sezioni caratteristiche dell'opera, che differiscono fra loro per la quota di imbasamento, posta rispettivamente alle profondità di -8,0 m s.l.m. per i cassoni (quota di imbasamento dei cassoni) e -14,0 m s.l.m. per la struttura con micropali e coronamento in elementi di cls armato (quota alla quale pervengono i diaframmi di micropali e le colonne di terreno consolidato).

Le simulazioni sono state effettuate in assenza delle azioni sismiche, poiché l'Isola di Capraia non si trova nell'elenco delle località sismiche di prima e seconda categoria, come riportato nell'allegato alla legge del 25 novembre 1962, n° 1684 aggiornata con successive modificazioni ed integrazioni.

Il piazzale a tergo dei nuovi muri di banchina verrà utilizzato esclusivamente come area di parcheggio a disposizione dei mezzi (prevalentemente autovetture) in attesa di essere imbarcate. La normativa attualmente vigente in materia (D.M. dei LL. PP. 16 gennaio 1996 " Norme tecniche relative ai Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi") per autorimesse e parcheggi prevede un sovraccarico accidentale pari a 300 kg/m². Nelle verifiche di stabilità svolte, per entrambe le configurazioni esaminate, si è cautelativamente ipotizzato che sul terrapieno a tergo dei muri di banchina sia applicato un sovraccarico accidentale di intensità pari a 1000 kg/m² (10 kN/m²) superiore quindi al valore prescritto dalla normativa.

10.2.1. Definizione delle configurazioni simulate

Le verifiche di stabilità, nei confronti di possibili scivolamenti d'insieme del pendio, costituito dall'ammasso detritico ghiaioso, con sottostante substrato roccioso, sono state condotte per le due differenti configurazioni geometriche e strutturali (ovvero per la sezione che prevede l'adozione del tratto di banchina in cassoni cellulari e per quella costituita da una paratia di micropali consolidati con jet-grouting e sovrastruttura in cls armato – vedi elaborati grafici di progetto).

Per una risoluzione esaustiva del problema legato alla stabilità d'insieme delle opere progettate sono state, infatti, prese in esame le differenti soluzioni che si fondano su tecniche realizzative differenti ed allo stesso tempo alternative fra loro.

Le configurazioni esaminate, considerando le buone caratteristiche degli ammassi di fondazione, sono risultate stabili, per cui non si è reso necessario effettuare altri interventi

(come quelli che prevedono di far "interessare" le superfici di scorrimento, porzioni di terreno ubicate a maggiori profondità) al fine di migliorare la stabilità delle sezioni considerate.

10.2.2. Risultati delle verifiche di stabilità d'insieme

La stabilità dell'opera è stata verificata analizzando sia superfici passanti all'interno dello scanno di imbasamento che superfici passanti al disotto di esso e che quindi interessano il complesso detritico ghiaioso superficiale naturale.

Nel caso della soluzione di progetto che utilizza i micropali ed il consolidamento del terreno con jet-grouting, si è ipotizzato che per effetto dell'intervento di consolidamento si venga a creare un "solido" di dimensioni coincidenti al volume di terreno compreso tra i diaframmi di micropali e si è imposto quindi il passaggio delle superfici di scivolamento al di sotto del suddetto volume di terreno consolidato, in quanto la resistenza meccanica dei terreni così trattati è ottima e non consente il passaggio di una superficie di rottura al suo interno.

Dall'esame dei tabulati di output (v. allegato 1) si ricava che la stabilità dell'opera sia nel caso del tratto realizzato con i cassoni cellulari che in quella che prevede l'utilizzo dei micropali unitamente alla tecnologia del jet-grouting è assicurata con discreti margini di sicurezza. Infatti, i coefficienti di stabilità dell'opera, per le condizioni di carico simulate che prendono in esame le sollecitazioni trasmesse al terreno di fondazione dal cassone risultano sempre superiori al limite $F_s = 1,30$, come prescritto dalla normativa vigente in materia per opere di sostegno delle terre (D.M. 11.03.1988, punto D.4.5.), e precisamente sono pari per la superficie più critica a:

- Sezione a cassoni (profondità di imbasamento -8.0 m s.l.m.): Fs_{min}= 1.327 > 1,30

- Sezione con micropali (profondità di imbasamento -14.0 m s.l.m.): Fs_{min}= 2.937 > 1,30

Per maggiori dettagli si rimanda alle figure allegate ed ai tabulati di out-put riportati in allegato.

Allegato 1

INTERVENTO C MURO DI BANCHINA A PALANCOLE TABULATI DI OUT-PUT

GEOMETRIA PARATIA

GEOMETRIA DIAFRAMMA
Spessore parete [m] : 0.30
Modulo elastico paratia [kg/cmq] : 2100000.00
Quota estradosso terrapieno [m] : 0.00
Spessore terrapieno [m] : 3.80
Profondita' di infissione [m] : 3.50
Quota falda di monte [m] : 0.80
Quota falda di valle [m] : 0.80
Inclinazione terrapieno di monte [°] : 0.0000
Inclinazione terrapieno di valle [°] : 0.0000
Distanza terrapieno orizzontale [m] : 0.00
Passo di discretizzazione [m] : 0.50
Rigidezza alla trasl. orizz. [t/m] : 0
Rigidezza alla rotazione [t] : 0

GEOMETRIA PARATIA

	С	0	R	D	0	Г	0	D	I	т	E	s	т	А	I	N	c.	L.	s.	
Aggetto	lat	0	va	al]	Le	[r	n]	:	0	.3	0									
Aggetto	lat	0	ma	ont	:e	[1	n]	:	0	. 8	0									
Altezza	[m]	:			131 			÷	0	. 5	0	- 25								

GEOMETRIA PARATIA

	N	GEOME	FRIA	TIRANT	I		
N.ro	Quota (m)	Inclinaz. (Grd)	Area (cmq/ml)	Mod. Elast. (kg/cmq)	Lunghezza (m)	Sup.bulbo (mq/ml)	Pretens. (t)
1	0.60	0.00	13.20	2100000	14.00	3.50	0.00

SOFTWARE: C.D.B. - Computer Design of Bulkheads - Rel.16.2 - Lic. Nro: 10550

Pag. 1

STRATIGRAFIA

SIKALIGKAFIA												
Strato	Spess.	Coes.	Rapp.	Ang.attr	Peso spec	Peso effic	Attr.	Descrizione				
N.ro	m	kg/cmq	ader/co	Grd	kg/mc	kg/mc	terra-muro					
1	3.00	0.000	0.500	33.00	1900	900	20.00					
2	12.00	0.000	0.000	35.00	1900	900	22.00					
3	15.00	0.000	0.000	38.00	1900	900	26.00					

SOVRACCARICHI

	SOVRACCARICHI
	Sovraccarico uniform. distrib. sul terrapieno [kg/mq]: 1000.00
	Distanza del sovraccarico distrib. dalla paratia [m] : 0.00
	Sovraccarico lineare sul terrapieno [kg/m]: 0.00
	Distanza del sovraccarico lineare dalla paratia [m] : 0.00
	Coeff. sismico orizzontale : 0.0000
	Forza verticale concentrata sulla paratia [kg] : 0
	Eccentricita' forza verticale dalla mezzeria paratia [m] : 0.00
_	Forza orizzontale concentrata sulla paratia [kg] : 0
	Sovraccarico uniform. distrib. terrap. valle [kg/mq]: 0.00

COEFFICENTI DI SPINTA

	COEF	'F. DI	SPIN	ТА
N.ro	Quota m	Ka	Kas	Kp
1 2 3 4 5 6 7 8 9 10	0.50 0.60 1.30 1.80 2.30 2.80 3.00 3.50 3.80	$\begin{array}{c} 0.26509\\ 0.26509\\ 0.26509\\ 0.26509\\ 0.26509\\ 0.26509\\ 0.26509\\ 0.26509\\ 0.26509\\ 0.26509\\ 0.26509\\ 0.24455\\ 0.24455\\ 0.24455\\ \end{array}$	$\begin{array}{c} 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ 0.00000\\ \end{array}$	$\begin{array}{c} 7,32592\\ 7,32592\\ 7,32592\\ 7,32592\\ 7,32592\\ 7,32592\\ 7,32592\\ 7,32592\\ 7,32592\\ 7,32592\\ 9,25023\\ 9,25023\\ 9,25023\\ \end{array}$

PRESSIONI ORIZZONTALI

				RESSI	ONI O	RIZZOF	TALI				
N.ro	Quota m	Pa Kg/m	Pq Kg/m	Pl Kg/m	PC Kg/m	Ps Kg/m	Pn Kg/m	Pp Kg/m	Ppc Kg/m	Pwm Kg/m	Pwv Kg/m
1	0.50	0 237	249 249	0	0	0	0	00	0	0	(
2	0.60	237 284	249 249	o	0	00	0	00	o	o	(
3	0.80	284 379	249 249	0	0	0	0	0	0	0	(

```
SOFTWARE: C.D.B. - Computer Design of Bulkheads - Rel.16.2 - Lic. Nro: 10550
```

Pag. 2

PRESSIONI ORIZZONTALI

N.ro	Quota	Pa Kg/m	Fq Kg/m	Fl Kg/m	PC Kg/m	F8 Kg/m	Pn Kg/m	Pp Kg/m	Ppc Kg/m	Pwm Kg/m	Pwv Kg/m
4	1.30	379 491	249 249	0	0	00	0	00	0	500	500
5	1.80	491 603	249 249	o	0	00	0	00	o	1000	1000
6	2.30	603 715	249 249	0	o	00	0	00	0	1500	1500
7	2.80	715 827	249 249	0	0	00	0	00	0	2000	2000
8	3.00	827 872	249 249	0	0	00	o	00	0	2200	2200
9	3.50	794 896	227 227	0	0	0	0	00	0	2700	2700
10	3.80	896 957	227 227	0	0	0	0	8	0	3000	3000

PRESS.	RISULTANTI	+	SOLLECITAZIONI	FASE	FINALE

		PRESSIO	ONI RISULTAN	TI E SOLLECITA	ZIONI	
N.ro	Quota m	Pr Kg/m	Pv Kg/m	Mf Kg·m/m	N Kg/m	Tg Kg/m
1	0.50	249 486	91 177	-46	-442	0 184
2	0.60	486 533	177 194	-67	-535	184 -1592
3	0.80	533 628	194 228	240	-728	-1592 -1476
4	1.30	628 740	228 269	893	-1227	-1476 -1134
5	1.80	740 852	269 310	1361	-1747	-1134 -737
6	2.30	852 964	310 351	1615	-2287	-737 -283
7	2.80	964 1076	351 392	1629	-2848	-283 227
8	3.00	1076 1071	392 390	1562	-3078	227 442
9	3.50	1071 1122	433 453	1204	-3669	442 990
10	3.80	1122 1184	453 478	855	-4034	990 1188
11	4.30	1184 -865	478 -350	187	-4561	1188 904
12	4.80	-865 -962	-350 -389	-265	-4664	904 423
13	5.30	-962 -858	-389 -347	-476	-4758	423
14	5.80	-858 -593	-347 -240	-473	-4900	-6 -303

SOFTWARE: C.D.B. - Computer Design of Bulkheads - Rel.16.2 - Lic. Nro: 10550

Pag. 3

PRESS. RISULTANTI + SOLLECITAZIONI FASE	FINALE
---	--------

PRESSIONI RISULTANTI E SOLLECITAZIONI						
N.ro	Quota m	Pr Kg/m	Pv Kg/m	Mf Kg·m/m	N Kg/m	Tg Kg/m
15	6.30	-593 -198	-240 -80	-322	-5135	-303 -402
16	6.80	-198 319	-80 129	-121	-5502	-402 -242
17	7.30	319 969	129 391	0	-6039	-242

VERIFICHE DI SICUREZZA

RISULTATI DI CALCOLO
Momento flettente massimo [kg·m]: 1629
Quota di momento flettente massimo [m] : 2.80
Spostamento a fondo scavo [mm] : 0.89
Scarto finale della analisi non lineare (E-04): 0
Flag di convergenza analisi non lineare 0=OK;1=KO: 0
Flag di infissione analisi non lineare 0=OK;1=KO: 0

VERIFICHE DI RESISTENZA TIRANTI FASE FINALE

		VERIFI	CA TIRANTI		
N.ro	L. min. m	Coeff.sic	Trazione Kg	Sigma Kg/cmq	Allungam.
1	3.64	0.4018	1827	138.42	0.9228

VERIFICA DEI MICROPALI (TIRANTI)

STRATIGRAFIA TERRENO

Altezza falda

$$h_W \coloneqq 0.8 \cdot m \qquad \qquad \gamma_W \coloneqq 1000 \cdot \frac{\text{kgf}}{m^3}$$

Angolo di attrito a variare della profondità

 $\phi(x)\coloneqq if(x<3{\cdot}m,33{\cdot}\text{deg},if(3{\cdot}m\leq x\leq 14{\cdot}m,35{\cdot}\text{deg},38{\cdot}\text{deg}))$

Coefficiente di attrito palo terreno

$$\mu(\mathbf{x}) \coloneqq \frac{3}{4} \cdot \phi(\mathbf{x})$$

Tensioni dovute al terreno al variare della profondità

Peso specifico strato	Quota	Tensione
	$h_0 := 0 \cdot m$	$\sigma_{v0} \coloneqq 1000 \frac{\text{kgf}}{\text{m}^2}$
$\gamma_{01} \coloneqq 1900 \cdot \frac{\text{kgf}}{\text{m}^3}$	$h_{1} := 2 {\cdot} m$	$\sigma_{v1} \coloneqq \sigma_{v0} + \gamma_{01} \cdot (h_1 - h_0)$
$\gamma_{12} \coloneqq 1900 \cdot \frac{\text{kgf}}{\text{m}^3}$	$h_2 := 9 \cdot m$	$\sigma_{v2} := \sigma_{v1} + \gamma_{12} \cdot \left(h_2 - h_1\right)$
$\gamma_{23} \coloneqq 1900 \cdot \frac{\text{kgf}}{\text{m}^3}$	h3 := 12∙m	$\sigma_{v3} := \sigma_{v2} + \gamma_{23} \cdot \left(h_3 - h_2\right)$
$\gamma_{34} := 1900 \cdot \frac{\text{kgf}}{\text{m}^3}$	$h_4 := 17 \cdot m$	$\sigma_{v4} := \sigma_{v3} + \gamma_{34} \cdot \left(h_4 - h_3\right)$
$\gamma_{45} \coloneqq 2000 \cdot \frac{\text{kgf}}{\text{m}^3}$	$h_5 \coloneqq 35 \cdot m$	$\sigma_{v5} := \sigma_{v4} + \gamma_{45} \cdot \left(h_5 - h_4\right)$
$\begin{pmatrix} h_0 \end{pmatrix}$	$\left(\sigma_{v0}\right)$	
hı	σ _{v1}	
hr in h2	σ _{v2}	$(z) := \text{linterp}(b; \sigma, z)$
h ₃ h ₃	σ _{v3}	$v_{VV}(z) := \operatorname{interp}(u_1, v_V, z)$
h ₄	σ _{v4}	
(h5)	(σ_{v5})	

Tensione efficace

 $\sigma_{\text{Veff}}(z) \coloneqq if \Big[z \leq h_W, \sigma_{\text{VV}}(z), \Big[\sigma_{\text{VV}}(z) - \gamma_W \cdot \big(z - h_W \big) \Big] \Big]$

DATI MICROPALO

Diametro D := 0.2·m

Inclinazione sull'orizzontale $\beta := 45 \cdot \text{deg}$

```
Quota punta palo L<sub>p</sub> := 10.5m
```

Quota testa palo $L_t := 0.5 \cdot m$

Lunghezza micropalo

$$\mathbf{L} := \frac{\mathbf{L}_p - \mathbf{L}_t}{\cos(\beta)} \qquad \qquad \mathbf{L} = 14.142 \text{ m}$$

Quota alla quale il micropalo si considera reagente $\ \ \, L_{pb}\coloneqq 2.8{\text{\cdot}m}$

PORTATA LATERALE PER PALO

Adesione terreno palo

 $s_{c}\!(z) \coloneqq \mu(z) {\boldsymbol{\cdot}} \sigma_{veff}\!(z)$

$$Q_{l} := \int_{L_{pb}}^{L_{p}} \pi \cdot D \cdot s_{c}(z) dz \qquad \qquad Q_{l} = 17242 kgf$$

PORTATA AMMISSIBILE

$$Q_{amm} \coloneqq \frac{Q_l}{2.5} \qquad \qquad Q_{amm} = 6897 \, \text{kgf}$$

SOLLECITAZIONI SUL MICROPALO

Tiro sull'ancoraggio $T_{w} = 1830 \cdot \frac{\text{kgf}}{\text{m}}$

Interasse degli ancoraggi i := 2.52·m

Sollecitazione di trazione totale sul micropalo $F = \frac{T \cdot i}{\cos(\beta)}$ $F = 6522 \, kgf$

 $\label{eq:VERIFICA} \begin{array}{cc} \mathsf{F} = 6.522 \times \ 10^3 \, \text{kgf} & \text{<} & \mathrm{Q}_{amm} = 6.897 \times \ 10^3 \, \text{kgf} \end{array}$

VERIFICA PALANCOLE

CARATTERISTICHE GEOMETRICHE

J:= 34200 cm²

 $A = 150 \text{ cm}^2$

CARATTERISTICHE DEL MATERIALE

Si utilizzano palancole in acciaio S240 GP equivalente all'acciaio Fe360

 $W := 1800 \cdot \text{cm}^3$

$$\sigma_{\text{amm}} \coloneqq 1600 \cdot \frac{\text{kgf}}{\text{cm}^2}$$

SOLLECITAZIONI La condizione più critica determina

 $M := 1650 \cdot kgf \cdot m$

N:= 3000⋅kgf

VERIFICA

VERIFICA TRAVE CORONAMENTO

$$\begin{split} & R_{ck} := 450 \quad \text{kg/cm}^2 \\ & \sigma_{c,amm} := \left(60 + \frac{R_{ck} - 150}{4} \right) \frac{\text{kgf}}{\text{cm}^2} \quad \sigma_{c,amm} = 135 \frac{\text{kgf}}{\text{cm}^2} \\ & \tau_{c0} := \left(4 + \frac{R_{ck} - 150}{75} \right) \frac{\text{kgf}}{\text{cm}^2} \quad \tau_{c0} = 8 \frac{\text{kgf}}{\text{cm}^2} \\ & \tau_{c1} := \left(14 + \frac{R_{ck} - 150}{35} \right) \frac{\text{kgf}}{\text{cm}^2} \quad \tau_{c1} = 22.571 \frac{\text{kgf}}{\text{cm}^2} \\ & \sigma_{a,amm} := 2400 \frac{\text{kgf}}{\text{cm}^2} \end{split}$$

n := 15 coefficiente di omogeneizzazione

Dati geometrici sezione

H:= 110 cm

$$n_{a} := 5 \qquad \qquad A_{a} := n_{a} \cdot \pi \cdot \frac{\phi^{2}}{4} \qquad A_{a} = 5.655 \text{ cm}^{2}$$

$$n_{ac} := 5 \qquad \qquad A_{ac} := n_{ac} \cdot \pi \cdot \frac{\phi^{2}}{4} \qquad A_{ac} = 5.655 \text{ cm}^{2}$$

Sollecitazione sul cordolo di coronamento

Si considera una trave semplicemente appoggiata sollecitata da un carico pari a 1.8 t/m Luce

L= 2.52·m

Sollecitazione del tirante $\mathbf{x} = 1850 \cdot \frac{\text{kgf}}{\text{m}}$

Momento sollecitante

$$M := T \cdot \frac{L^2}{8} \qquad M = 1.469 \times 10^3 \text{ kgf} \cdot \text{m}$$

VERIFICA

Copriferro c:= 5.cm

$$h \coloneqq H - c - \frac{\phi}{2} \qquad \qquad h \equiv 1.044 \ m$$

Given

$$B \cdot \frac{y^2}{2} - n \cdot A_a \cdot \left(h - y - \frac{\phi}{2}\right) + n \cdot A_{ac} \cdot \left(y - c - \frac{\phi}{2}\right) = 0$$

$$x := Find(y) \qquad x = 12.032 \text{ cm}$$

$$J_a := B \cdot \frac{x^3}{3} + n \cdot A_{a'} \left(h - c - \frac{\phi}{2}\right)^2 + n \cdot A_{ac} \cdot \left(x - c - \frac{\phi}{2}\right)^2 \qquad J = 8.896 \times 10^{-3} \text{ m}^4$$

$$\sigma_{c.max} := \frac{M}{J} \cdot x \qquad \sigma_{c.max} = 1.986 \frac{\text{kgf}}{\text{cm}^2} \qquad < \sigma_{c.amm} = 135 \frac{\text{kgf}}{\text{cm}^2}$$

$$\sigma_{a.max} := n \cdot \frac{M}{J} \cdot (h - x) \qquad \sigma_{a.max} = 228.727 \frac{\text{kgf}}{\text{cm}^2} \qquad < \sigma_{a.amm} = 2.4 \times 10^3 \frac{\text{kgf}}{\text{cm}^2}$$
Taglio sollecitante

$$V = 1.662 \times 10^3 \text{ kgf}$$

Momento statico di metà sezione rispetto all'asse neutro

$$\begin{split} \mathbf{S}_{r} &\coloneqq \frac{\mathbf{x}^{2}}{2} \cdot \mathbf{B} + \mathbf{n} \cdot \mathbf{A}_{a} \cdot \left(\mathbf{x} - \mathbf{c} - \frac{\phi}{2}\right) & \mathbf{S}_{r} = 7.784 \times 10^{3} \, \mathrm{cm}^{3} \\ \tau &\coloneqq \frac{V}{J} \cdot \frac{\mathbf{S}_{r}}{\mathbf{B}} & \tau = 0.408 \, \frac{\mathrm{kgf}}{\mathrm{cm}^{2}} & \leq \tau_{c0} = 8 \, \frac{\mathrm{kgf}}{\mathrm{cm}^{2}} \end{split}$$

Allegato 2

VERIFICHE DI STABILITA' DI INSIEME TABULATI DI OUT-PUT

ANALISI DI STABILITA' DEI PENDII METODO DI BISHOP CON INTRODUZIONE DI SUPERFICI DI SCORRIMENTO IRREGOLARI

DESCRIZIONE PROBLEMA: Isola di Capraia Sezione tipo tratto realizzato con cassoni cellulari

COORDINATE DEI SEGMENTI DI CONFINE

6 CONFINI SUPERFICIALI 25 CONFINI TOTALI

CONFINE	X-SIN.	Y-SIN.	X-DEST.	Y-DEST.	TIPO SUOLO
NO.	(m)	(m)	(m)	(m)	SOTTO CONF.
1	100.00	115.00	151.91	115.00	б
2	151.91	115.00	154.91	115.00	5
3	154.91	115.00	154.91	123.00	2
4	154.91	123.00	154.91	124.59	1
5	154.91	124.59	163.61	124.59	1
6	163.61	124.59	209.64	125.00	3
7	163.61	124.59	163.61	123.00	1
8	154.91	123.00	163.61	123.00	2
9	163.61	123.00	163.64	115.00	2
10	163.64	123.00	166.28	123.00	4
11	166.28	123.00	172.02	118.69	4
12	151.90	115.00	154.91	115.00	5
13	154.91	115.00	163.64	115.00	5
14	163.64	115.00	167.11	115.00	5
15	151.91	115.00	153.24	114.00	6
16	153.24	114.00	165.77	114.00	6
17	165.77	114.00	167.11	115.00	6
18	167.11	115.00	172.02	118.69	6
19	172.02	118.69	177.23	122.59	б
20	177.23	122.59	185.89	124.50	б
21	185.89	124.50	209.54	124.50	6
22	100.00	100.00	172.11	100.00	7
23	172.11	100.00	183.63	108.64	7
24	183.63	108.64	187.52	109.50	7
25	187.52	109.50	209.54	109.50	7

1 SUPERFICIE(I) PIEZOMETRICA(E) SPECIFICATA(E)

PESO SPECIFICO DELL'ACQUA = 1030.00 kg/mc

SUPERFICIE PIEZOMETRICA NO. 1 SPECIFICATA DA 2 PUNTI

PUNTO	X-ACQUA	Y-ACQUA
NO.	(m)	(m)
1	100.00	123.00
2	209.50	123.00

PARAMETRI DEL SUOLO

7 TIPO(I) DI SUOLO SPECIFICATO(I)

TIPO	PESO UN.	PESO UN.	COESIONE	ANGOLO	PARAMETRO	COSTANTE DI	SUPERFICIE
SUOLO	TOTALE	SATURO		ATTRITO	PRESSIONI	PRESSIONE	PIEZOMETRICA
NO.	kg/mc	kg/mc	kg/mq	gradi	NEUTRE	kg/mq	N0.
1	1990.0	1990.0	1000.0	80.0	0.00	0.0	1
2	1990.0	1990.0	1000.0	80.0	0.00	0.0	1
3	1800.0	1900.0	0.0	30.0	0.00	0.0	1
4	1700.0	1900.0	0.0	38.0	0.00	0.0	1
5	1650.0	1900.0	0.0	38.0	0.00	0.0	1
б	1950.0	2200.0	0.0	38.0	0.00	0.0	1
7	2500.0	2500.0	1.0) 4	5.0 0	.00	0.0

1

CARICO(I)

1 CARICO(I) SPECIF.

CARICO	X-SIN.	X-DEST.	INTENSITA'	INCLINAZ.
NO.	(m)	(m)	(kg/m2)	(gradi)
1	154.90	163.69	1000.0	0.0

NOTA - INTENSITA' DELLA FORZA SPECIFICATA COME DISTRIBUITA UNIFORMEMENTE SU UNA SUPERFICIE ORIZZONTALE.

E' STATA SPECIFICATA UNA RICERCA DI SUPERFICI DI SCORRIMENTO CIRCOLARI MEDIANTE UNA PROCEDURA CASUALE.

10000 SUPERFICI DI SCORRIMENTO GENERATE.

100 SUPERFICI INIZIANO DA OGNUNO DI100 PUNTI EQUAMENTE SPAZIATI LUNGO LA SUPERFICIE TRA I PUNTI X = 100.00 m E X = 154.90 m

OGNI SUPERFICIE TERMINA TRA X = 170.70 mE X = 209.00 m

A MENO DI SUCCESSIVE LIMITAZIONI L'ELEVAZIONE MINIMA DI UNA SUPERFICIE E' PARI A Y = 0.00 m

OGNI SEGMENTO DELLA SUPERFICIE DI SCORRIMENTO E' LUNGO 2.00 m

DI SEGUITO VENGONO STAMPATE LE DIECI SUPERFICI PIU' CRITICHE TRA QUELLE ESAMINATE. ESSE SONO ORDINATE SECONDO VALORI CRESCENTI DEL FATTORE DI SICUREZZA.

SUPERFICIE DI SCORRIMENTO SPECIFICATA DA 15 PUNTI

PUNTO	X-SUP.	Y-SUP.
NO.	(m)	(m)
1	148.80	115.00
2	150.61	114.14
3	152.51	113.53
4	154.48	113.17
5	156.48	113.08
б	158.47	113.24
7	160.42	113.67
8	162.30	114.35
9	164.08	115.28
10	165.72	116.42
11	167.19	117.78
12	168.47	119.31
13	169.54	121.00
14	170.38	122.82
15	170.95	124.66

*** Fs = 1.327 ***

SUPERFICIE DI SCORRIMENTO SPECIFICATA DA 16 PUNTI

PUNTO	X-SUP.	Y-SUP.
NO.	(m)	(m)
1	147.69	115.00
2	149.50	114.15
3	151.40	113.53
4	153.37	113.15
5	155.36	113.00
б	157.36	113.09
7	159.33	113.43
8	161.25	113.99
9	163.08	114.79

10	164.81	115.80
11	166.40	117.02
12	167.83	118.41
13	169.09	119.97
14	170.14	121.67
15	170.99	123.48
16	171.37	124.66

*** Fs = 1.340 ***

SUPERFICIE DI SCORRIMENTO SPECIFICATA DA 16 PUNTI

PUNTO NO.	X-SUP. (m)	Y-SUP. (m)
1	148.25	115.00
2	150.03	114.10
3	151.92	113.43
4	153.87	113.01
5	155.86	112.85
6	157.86	112.94
7	159.83	113.29
8	161.74	113.88
9	163.56	114.72
10	165.25	115.79
11	166.79	117.06
12	168.16	118.52
13	169.33	120.14
14	170.28	121.90
15	170.99	123.77
16	171.20	124.66

*** Fs = 1.351 ***

SUPERFICIE DI SCORRIMENTO SPECIFICATA DA 17 PUNTI

PUNTO	X-SUP.	Y-SUP.
NO.	(m)	(m)
1	146.03	115.00
2	147.86	114.19
3	149.76	113.57
4	151.71	113.15
5	153.70	112.93
б	155.70	112.91
7	157.69	113.10
8	159.65	113.49
9	161.57	114.08
10	163.41	114.85
11	165.16	115.82
12	166.81	116.95
13	168.33	118.25
14	169.71	119.70
15	170.93	121.28
16	171.99	122.98
17	172.82	124.67

*** Fs = 1.359 ***

SUPERFICIE DI SCORRIMENTO SPECIFICATA DA 17 PUNTI

PUNTO	X-SUP.	Y-SUP.
NO.	(m)	(m)
1	147.14	115.00
2	148.97	114.21
3	150.89	113.62
4	152.85	113.25
5	154.84	113.09
6	156.84	113.14
7	158.82	113.42
8	160.76	113.91
9	162.64	114.60
10	164.43	115.50

11	166.11	116.58
12	167.66	117.84
13	169.07	119.26
14	170.31	120.83
15	171.38	122.52
16	172.25	124.32
17	172.38	124.67

*** Fs = 1.364 ***

SUPERFICIE DI SCORRIMENTO SPECIFICATA DA 17 PUNTI

PUNTO	X-SUP.	Y-SUP.
NO.	(m)	(m)
1	147.14	115.00
2	148.86	113.99
3	150.71	113.22
4	152.64	112.68
5	154.62	112.40
6	156.62	112.38
7	158.60	112.62
8	160.54	113.11
9	162.40	113.85
10	164.15	114.82
11	165.76	116.01
12	167.20	117.39
13	168.45	118.95
14	169.49	120.66
15	170.30	122.49
16	170.87	124.41
17	170.91	124.66

*** Fs = 1.380 ***

SUPERFICIE DI SCORRIMENTO SPECIFICATA DA 17 PUNTI

PUNTO	X-SUP.	Y-SUP.
NO.	(m)	(m)
1	146.03	115.00
2	147.78	114.03
3	149.62	113.27
4	151.55	112.73
5	153.53	112.42
б	155.53	112.35
7	157.52	112.51
8	159.48	112.90
9	161.38	113.53
10	163.19	114.37
11	164.90	115.42
12	166.46	116.66
13	167.87	118.08
14	169.11	119.66
15	170.15	121.36
16	170.98	123.18
17	171.45	124.66

*** Fs = 1.381 ***

SUPERFICIE DI SCORRIMENTO SPECIFICATA DA 17 PUNTI

PIINTO	X-SUP	Y-SIIP
101110	A 801.	1 001.
NO.	(m)	(m)
1	145.47	115.00
2	147.17	113.95
3	148.99	113.11
4	150.89	112.50
5	152.86	112.13
б	154.85	112.00
7	156.85	112.12
8	158.82	112.48
9	160.73	113.08

10	162.55	113.91
11	164.25	114.96
12	165.81	116.21
13	167.21	117.64
14	168.42	119.23
15	169.43	120.96
16	170.22	122.79
17	170.76	124.65

*** Fs = 1.387 ***

SUPERFICIE DI SCORRIMENTO SPECIFICATA DA 16 PUNTI

PUNTO	X-SUP.	Y-SUP.
1	149.36	115.00
2	151.13	114.07
3	153.01	113.39
4	154.96	112.98
5	156.96	112.84
6	158.95	112.98
7	160.91	113.40
8	162.79	114.08
9	164.56	115.01
10	166.18	116.18
11	167.63	117.57
12	168.87	119.13
13	169.88	120.86
14	170.65	122.71
15	171.15	124.64
16	171.15	124.66

*** Fs = 1.397 ***

SUPERFICIE DI SCORRIMENTO SPECIFICATA DA 15 PUNTI

PUNTO	X-SUP.	Y-SUP.
NO.	(m)	(m)
1	150.46	115.00
2	152.26	114.11
3	154.16	113.50
4	156.13	113.17
5	158.13	113.13
б	160.12	113.39
7	162.04	113.93
8	163.87	114.74
9	165.55	115.82
10	167.06	117.13
11	168.37	118.65
12	169.43	120.34
13	170.24	122.17
14	170.77	124.10
15	170.84	124.65
*** Fs =	1.405	* * *

ANALISI DI STABILITA' DEI PENDII METODO DI BISHOP CON INTRODUZIONE DI SUPERFICI DI SCORRIMENTO IRREGOLARI

DESCRIZIONE PROBLEMA : Isola di Capraia Sezione tipo tratto realizzato con micropali, jet-grouting e sovrastruttura in cls

COORDINATE DEI SEGMENTI DI CONFINE

4 CONFINI SUPERFICIALI 16 CONFINI TOTALI

CONFINE	X-SIN.	Y-SIN.	X-DEST.	Y-DEST.	TIPO SUOLO
NO.	(m)	(m)	(m)	(m)	SOTTO CONF.
1	100.00	115.00	154.84	115.00	3
2	154.84	115.00	154.91	124.59	2
3	154.91	124.59	161.86	124.59	2
4	161.86	124.59	209.64	125.00	1
5	161.86	124.59	161.89	115.00	2
6	154.84	115.00	154.91	109.00	3
7	154.91	109.00	161.86	109.00	3
8	161.86	109.00	161.89	115.00	3
9	161.89	115.00	167.11	115.00	3
10	167.11	115.00	177.23	122.59	3
11	177.23	122.59	185.89	124.50	3
12	185.89	124.50	209.74	124.50	3
13	100.00	100.00	172.11	100.00	4
14	172.11	100.00	183.63	108.64	4
15	183.63	108.64	187.52	109.50	4
16	187.52	109.50	209.54	109.50	4

1 SUPERFICIE(I) PIEZOMETRICA(E) SPECIFICATA(E)

PESO SPECIFICO DELL'ACQUA = 1030.00 kg/mc

SUPERFICIE PIEZOMETRICA NO. 1 SPECIFICATA DA 2 PUNTI

PUNTO	X-ACQUA	Y-ACQUA
NO.	(m)	(m)
1	100.00	123.00
2	209.14	123.00

PARAMETRI DEL SUOLO

4 TIPO(I) DI SUOLO SPECIFICATO(I)

TIPO SUOLO NO.	PESO UN. TOTALE kg/mc	PESO UN. SATURO kg/mc	COESIONE kg/mq	ANGOLO ATTRITC gradi	PARAMETRO PRESSIONI NEUTRE) COSTANTE DI PRESSIONE kg/mq	SUPERFICIE PIEZOMETRICA N0.	ł
1	1800.0	1900.0	0.0	30.0	0.00	0.0	1	
2	1990.0	1990.0	1000.0	80.0	0.00	0.0	1	
3	1950.0	2200.0	0.0	38.0	0.00	0.0	1	
4	2500.0	2500.0	1.0)	45.0	0.00	0.0	1

CARICO(I)

1 CARICO(I) SPECIF.

CARICO	X-SIN.	X-DEST.	INTENSITA'	INCLINAZ.
NO.	(m)	(m)	(kg/m2)	(gradi)
1	154.91	161.86	1000.0	0.0

NOTA - INTENSITA' DELLA FORZA SPECIFICATA COME DISTRIBUITA UNIFORMEMENTE SU UNA SUPERFICIE ORIZZONTALE.

ROUTINE DI RICERCA LIMITATA AD UN' AREA DEFINITA DA 2 CONFINI DEI QUALI I PRIMI 0 DEFLETTONO LE LINEE VERSO L'ALTO

CONFINE	X-SIN.	Y-SIN.	X-DEST.	Y-DEST.
NO.	(m)	(m)	(m)	(m)
1	154.90	108.92	158.50	108.65
2	158.50	108.65	161.85	108.93

E' STATA SPECIFICATA UNA RICERCA DI SUPERFICI

DI SCORRIMENTO CIRCOLARI MEDIANTE UNA PROCEDURA CASUALE.

10000 SUPERFICI DI SCORRIMENTO GENERATE.

100 SUPERFICI INIZIANO DA OGNUNO DI100 PUNTI EQUAMENTE SPAZIATI LUNGO LA SUPERFICIE TRA I PUNTI X = 100.00 m E X = 154.90 m

OGNI SUPERFICIE TERMINA TRA X = 170.70 mE X = 209.00 m

A MENO DI SUCCESSIVE LIMITAZIONI L'ELEVAZIONE MINIMA DI UNA SUPERFICIE E' PARI A~Y = 0.00 m

OGNI SEGMENTO DELLA SUPERFICIE DI SCORRIMENTO E' LUNGO 2.00 m

DI SEGUITO VENGONO STAMPATE LE DIECI SUPERFICI PIU' CRITICHE TRA QUELLE ESAMINATE. ESSE SONO ORDINATE SECONDO VALORI CRESCENTI DEL FATTORE DI SICUREZZA.

SUPERFICIE DI SCORRIMENTO SPECIFICATA DA 25 PUNTI

X-SUP.	Y-SUP.
(m)	(m)
141.04	115.00
142.46	113.59
144.01	112.33
145.67	111.22
147.43	110.27
149.27	109.49
151.18	108.88
153.13	108.46
155.12	108.23
157.12	108.18
159.11	108.33
161.09	108.66
163.02	109.17
164.89	109.87
166.69	110.74
168.41	111.78
170.01	112.97
	X-SUP. (m) 141.04 142.46 144.01 145.67 147.43 149.27 151.18 153.13 155.12 157.12 157.12 159.11 161.09 163.02 164.89 166.69 168.41 170.01

18	171.50	114.31
19	172.85	115.78
20	174.05	117.38
21	175.11	119.08
22	175.99	120.87
23	176.70	122.74
24	177.24	124.67
25	177.25	124.72

*** Fs = 2.937 ***

SUPERFICIE DI SCORRIMENTO SPECIFICATA DA 25 PUNTI

PUNTO	X-SUP.	Y-SUP.
NO.	(m)	(m)
1	141.04	115.00
2	142.46	113.59
3	144.01	112.33
4	145.67	111.22
5	147.43	110.26
6	149.27	109.48
7	151.17	108.87
8	153.13	108.44
9	155.11	108.20
10	157.11	108.15
11	159.11	108.29
12	161.08	108.61
13	163.02	109.11
14	164.90	109.80
15	166.70	110.66
16	168.42	111.68
17	170.03	112.87
18	171.53	114.19
19	172.89	115.66
20	174.11	117.24
21	175.18	118.93
22	176.08	120.72
23	176.81	122.58
24	177.36	124.50
25	177.41	124.72

*** Fs = 2.948 ***

SUPERFICIE DI SCORRIMENTO SPECIFICATA DA 25 PUNTI

PUNTO	X-SUP.	Y-SUP.
NO.	(m)	(m)
1	141.04	115.00
2	142.45	113.59
3	144.00	112.32
4	145.65	111.20
5	147.41	110.24
б	149.25	109.45
7	151.15	108.84
8	153.10	108.41
9	155.09	108.17
10	157.09	108.11
11	159.08	108.25
12	161.06	108.57
13	162.99	109.08
14	164.87	109.77
15	166.67	110.63
16	168.39	111.66
17	170.00	112.85
18	171.49	114.19
19	172.84	115.66
20	174.06	117.25
21	175.11	118.94
22	176.00	120.74
23	176.72	122.60

24	177.26	124.53
25	177.29	124.72
*** Fs =	2.950	* * *

SUPERFICIE DI SCORRIMENTO SPECIFICATA DA 24 PUNTI

PUNTO	X-SUP.	Y-SUP.
NO.	(m)	(m)
1	142.15	115.00
2	143.60	113.62
3	145.17	112.38
4	146.85	111.30
5	148.62	110.38
б	150.47	109.62
7	152.39	109.04
8	154.35	108.65
9	156.34	108.43
10	158.34	108.41
11	160.33	108.57
12	162.30	108.91
13	164.23	109.44
14	166.10	110.15
15	167.90	111.02
16	169.61	112.06
17	171.21	113.26
18	172.70	114.60
19	174.05	116.07
20	175.26	117.66
21	176.32	119.36
22	177.21	121.15
23	177.94	123.01
24	178.43	124.73

*** Fs = 2.971 ***

SUPERFICIE DI SCORRIMENTO SPECIFICATA DA 26 PUNTI

PUNTO	X-SUP.	Y-SUP.
NO.	(m)	(m)
1	138.82	115.00
2	140.24	113.59
3	141.78	112.31
4	143.42	111.18
5	145.16	110.19
б	146.99	109.37
7	148.87	108.71
8	150.81	108.22
9	152.79	107.91
10	154.78	107.77
11	156.78	107.81
12	158.77	108.03
13	160.73	108.43
14	162.65	108.99
15	164.51	109.73
16	166.29	110.63
17	167.99	111.69
18	169.59	112.89
19	171.08	114.23
20	172.44	115.70
21	173.66	117.28
22	174.74	118.96
23	175.66	120.74
24	176.42	122.59
25	177.02	124.50
26	177.06	124.72
*** Fs =	2.974	* * *

SUPERFICIE DI SCORRIMENTO SPECIFICATA DA 24 PUNTI

PUNTO	X-SUP.	Y-SUP.
NO.	(m)	(m)
1	142.70	115.00
2	144.13	113.60
3	145.68	112.34
4	147.35	111.24
5	149.12	110.31
6	150.97	109.55
7	152.89	108.97
8	154.85	108.58
9	156.84	108.39
10	158.84	108.38
11	160.83	108.57
12	162.79	108.95
13	164.71	109.52
14	166.56	110.27
15	168.34	111.20
16	170.01	112.30
17	171.57	113.55
18	173.00	114.94
19	174.29	116.47
20	175.43	118.12
21	176.40	119.86
22	177.20	121.70
23	177.82	123.60
24	178.07	124.73

*** Fs = 2.975 ***

SUPERFICIE DI SCORRIMENTO SPECIFICATA DA 25 PUNTI

PUNTO	X-SUP.	Y-SUP.
NO.	(m)	(m)
1	141.04	115.00
2	142.50	113.64
3	144.08	112.41
4	145.76	111.33
5	147.53	110.40
6	149.38	109.63
7	151.28	109.03
8	153.24	108.60
9	155.22	108.34
10	157.22	108.26
11	159.22	108.36
12	161.20	108.64
13	163.15	109.09
14	165.05	109.72
15	166.88	110.50
16	168.65	111.45
17	170.31	112.56
18	171.88	113.80
19	173.33	115.18
20	174.65	116.68
21	175.83	118.30
22	176.86	120.01
23	177.74	121.81
24	178.45	123.68
25	178.75	124.73

*** Fs = 2.979 ***

SUPERFICIE DI SCORRIMENTO SPECIFICATA DA 25 PUNTI

PUNTO	X-SUP.	Y-SUP.
NO.	(m)	(m)

1	141.04	115.00
2	142.52	113.66
3	144.12	112.46
4	145.82	111.40
5	147.60	110.49
б	149.45	109.73
7	151.36	109.14
8	153.31	108.72
9	155.30	108.46
10	157.30	108.38
11	159.29	108.47
12	161.28	108.74
13	163.23	109.17
14	165.14	109.77
15	166.99	110.53
16	168.76	111.45
17	170.45	112.52
18	172.04	113.73
19	173.52	115.08
20	174.88	116.55
21	176.11	118.13
22	177.20	119.80
23	178.13	121.57
24	178.91	123.41
25	179.35	124.74

*** Fs = 2.985 ***

SUPERFICIE DI SCORRIMENTO SPECIFICATA DA 26 PUNTI

PUNTO	X-SUP.	Y-SUP.
NO.	(m)	(m)
1	139.37	115.00
2	140.80	113.60
3	142.35	112.34
4	144.01	111.21
5	145.75	110.24
6	147.58	109.42
7	149.47	108.77
8	151.41	108.29
9	153.39	107.98
10	155.38	107.84
11	157.38	107.89
12	159.37	108.10
13	161.33	108.50
14	163.25	109.06
15	165.11	109.80
16	166.90	110.69
17	168.60	111.74
18	170.21	112.93
19	171.70	114.26
20	173.07	115.72
21	174.30	117.29
22	175.39	118.97
23	176.33	120.74
24	177.11	122.58
25	177.73	124.48
26	177.78	124.73
*** Fs =	2.993	} ***