

REGIONE SICILIA

PROVINCIA DI AGRIGENTO **COMUNE DI MENFI** LOCALITÀ "GENOVESE"

Oggetto:

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO AGRO-FOTOVOLTAICO DELLA POTENZA DI 49,06605 MW DA UBICARSI NEL TERRITORIO DEL **COMUNE DI MENFI LOCALITÀ GENOVESE**

Elaborato:

RS06REL0009A0 RELAZIONE VALUTAZIONE PRELIMINARE CAMPI ELETTROMAGNETICI

TAVOLA:

PROPONENTE:

REL0009

GPE MENFI s.r.l. Via Pietro Triboldi, 4 26015 Soresina (CR)

PROGETTAZIONE:

Tecnico Ing. Gaetano Voccia

Via Gioacchino da Fiore 74 87021 Belvedere Marittimo (CS)

SCALA:

DATA:

REDAZIONE:

CONTROLLO:

APPROVAZIONE:

Settembre 2021

Rev.: 00 - Presentazione Istanza VIA e AU

Codice Progetto: F.19.010

Gamian Consulting Srl si riserva la proprietà di questo documento e ne vieta la riproduzione e la divulgazione a terzi se non espressamente autorizzato

SPAZIO RISERVATO ALL'ENTE PUBBLICO

VALUTAZIONE PRELIMINARE CAMPI ELETTROMAGNETICI Impianto Agro-Fotovoltaico "FV_MENFI" Comune di: Menfi - Prov. Agrigento

1	PREMESSA	2
2	NORMATIVA DI RIFERIMENTO	3
3	DESCRIZIONE SOMMARIA DEGLI IMPIANTI	5
3.1	Generalita'	5
	Cabine elettriche inverter trasformatore storage	
4	CALCOLO DEI CAMPI ELETTROMAGNETICI	17
4.1	Campi elettromagnetici impianto agro-fotovoltaico1	.7
4.2	Campi elettromagnetici delle opere connesse	20

1 PREMESSA

Scopo del presente documento è quello di descrivere le emissioni elettromagnetiche associate alle infrastrutture elettriche presenti nell'impianto agro-fotovoltaico in oggetto e connesse ad esso, ai fini della verifica del rispetto dei limiti della legge n.36/2001 e dei relativi Decreti attuativi.

L'impianto che la La GPE Menfi s.r.l presenta in autorizzazione è composto da:

- Campi agro-fotovoltaici, sitio nel comune di Menfi (AG) in località Genovese.
- Stazione di trasformazione e consegna Rete-Utente, nel comune di Sambuca di Sicilia (AG).
- Cavidotti di collegamento MT, nei territori dei comuni di Menfi (AG) e nel comune di Sambuca di Sicilia (AG).

L'impianto si sviluppa su una superficie lorda complessiva di circa 70,1859 Ha (701.859 m²).

L'impianto avrà una potenza di 49.066,05 kWp e l'energia prodotta sarà ceduta alla rete elettrica di alta tensione, tramite collegamento in antenna a 220 kV con la stazione elettrica (SE) della RTN a 220 kV denominata "Sambuca".

Le coordinate geografiche (baricentro approssimativo) del sito di impianto e della stazione sono:

Coordinate impianto	Coordinate stazione
Lat. 37.6476139	Lat. 37.62466711054927
Long. 12.99520895	Long. 13.021481037139894

Figura 1 - Ubicazione area impianti e stazione di consegna (Google Earth)

VALUTAZIONE PRELIMINARE CAMPI ELETTROMAGNETICI Impianto Agro-Fotovoltaico "FV_MENFI" Comune di: Menfi - Prov. Agrigento Rev. 00/FV_MENFI/2021 Impianto Agro-Fotovoltaico 49,06605 MWp

In particolare per l'impianto saranno valutate le emissioni elettromagnetiche dovute agli inverter, ai cavidotti e alla stazione

utente per la trasformazione. Si individueranno, in base al DM del MATTM del 29.05.2008, le DPA per le opere sopra dette.

Nel presente studio sono state prese in considerazione le condizioni maggiormente significative al fine di valutare la

rispondenza ai requisiti di legge dei nuovi elettrodotti. Verrà riportata l'intensità del campo elettromagnetico sulla verticale

dei cavidotti e nelle immediate vicinanze, fino ad una distanza massima di 15 m dall'asse del cavidotto; la rilevazione del

campo magnetico è stata fatta alle quote di 0m, +1,5m, +2m, +2,5m e +3m dal livello del suolo.

Si fa presente che la quota di +1,5m dal livello del suolo è la quota nominale cui si fa riferimento nelle misure di campo

elettromagnetico.

2 NORMATIVA DI RIFERIMENTO

DPCM 8 luglio 2003: "Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la

protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete (50 Hz) generati

dagli elettrodotti".

DL 9 aprile 2008 n° 81 "Testo unico sulla sicurezza sul lavoro"

Norma CEI 0-2 "Guida per la definizione della documentazione di progetto degli impianti elettrici"

Norma CEI 211-4 "Guida ai metodi di calcolo dei campi elettrici e magnetici generati da linee elettriche"

Norma CEI 106-11 "Guida per la determinazione delle fasce di rispetto per gli elettrodotti secondo le disposizioni del

DPCM 8 luglio 2003 (Art. 6). Parte 1: Linee elettriche aree e in cavo."

DM del MATTM del 29.05.2008 "Approvazione della metodologia di calcolo per la determinazione delle fasce di

rispetto per gli elettrodotti"

Il panorama normativo italiano in fatto di protezione contro l'esposizione dei campi elettromagnetici si riferisce alla legge

22/2/01 nº36 che è la legge quadro sulla protezione dalle esposizioni ai campi elettrici, magnetici ed elettromagnetici

completata a regime con l'emanazione del D.P.C.M. 8.7.2003.

Nel DPCM 8 Luglio 2003 "Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la

protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete (50 Hz) generati dagli

elettrodotti", vengono fissati i limiti di esposizione e i valori di attenzione, per la protezione della popolazione dalle

esposizioni a campi elettrici e magnetici alla frequenza di rete (50 Hz) connessi al funzionamento e all'esercizio degli

elettrodotti. In particolare negli articoli 3 e 4 vengono indicate le seguenti soglie di rispetto per l'induzione magnetica:

"Nel caso di esposizione a campi elettrici e magnetici alla frequenza di 50 Hz generati da elettrodotti non deve essere

superato il limite di esposizione di 100 μT per l'induzione magnetica e 5kV/m per il campo elettrico intesi come valori

efficaci" [art. 3, comma 1];

"A titolo di misura di cautela per la protezione da possibili effetti a lungo termine, eventualmente connessi con l'esposizione ai campi magnetici generati alla frequenza di rete (50 Hz), nelle aree gioco per l'infanzia, in ambienti abitativi, in ambienti scolastici e nei luoghi adibiti a permanenze non inferiori a quattro ore giornaliere, si assume per l'induzione magnetica il valore di attenzione di $10~\mu T$, da intendersi come mediana dei valori nell'arco delle 24 ore nelle normali condizioni di esercizio." [art. 3, comma 2];

"Nella progettazione di nuovi elettrodotti in corrispondenza di aree gioco per l'infanzia, di ambienti abitativi, di ambienti scolastici e di luoghi adibiti a permanenze non inferiori a quattro ore e nella progettazione dei nuovi insediamenti e delle nuove aree di cui sopra in prossimità di linee ed installazioni elettriche già presenti nel territorio, ai fini della progressiva minimizzazione dell'esposizione ai campi elettrici e magnetici generati dagli elettrodotti operanti alla frequenza di 50 Hz, è fissato l'obiettivo di qualità di 3 μ T per il valore dell'induzione magnetica, da intendersi come mediana dei valori nell'arco delle 24 ore nelle normali condizioni di esercizio".

[art. 4] L'obiettivo qualità da perseguire nella realizzazione dell'impianto è pertanto quello di avere un valore di intensità di campo magnetico non superiore ai 3µT come mediana dei valori nell'arco delle 24 ore nelle normali condizioni di esercizio.

A tal proposito occorre precisare che nelle valutazioni che seguono è stata considerata normale condizione di esercizio quella in cui l'impianto FV trasferisce alla Rete di Trasmissione Nazionale la massima produzione. Come detto, il 22 febbraio 2001 l'Italia ha promulgato la Legge Quadro n.36 sulla protezione dalle esposizioni a campi elettrici, magnetici ed elettromagnetici (CEM) a copertura dell'intero intervallo di frequenze da 0 a 300.000 MHz. Tale legge delinea un quadro dettagliato di controlli amministrativi volti a limitare l'esposizione umana ai CEM e l'art. 4 di tale legge demanda allo Stato le funzioni di stabilire, tramite Decreto del Presidente del Consiglio dei Ministri: i livelli di esposizione, dei valori di attenzione e degli obiettivi di qualità, le tecniche di misurazione e rilevamento.

Il 28 agosto 2003 G.U. n.199, è stato pubblicato il Decreto del Presidente del Consiglio dei Ministri 8 luglio 2003: "Fissazione dei limiti di esposizione, di attenzione e degli obiettivi di qualità per la protezione della popolazione dalla esposizione a campi elettrici, magnetici ed elettromagnetici generati a frequenze comprese tra 100 kHz e 300 GHz". L'art. 3 di tale Decreto riporta i limiti di esposizione e i valori di attenzione come riportato nelle Tabelle 1 e 2:

Intervallo di FREQUENZ A (MHz)	Valore efficace di CAMPO ELETTRICO (V/m)	Valore efficace di intensità di CAMPO MAGNETICO (A/m)	DENSITÀ DI POTENZA dell'onda piana equivalente (W/m²)
0.1-3	60	0,2	-
>3 - 3000	20	0,005	1
>3000 - 300000	40	0,01	4

Tabella 1 - Limiti di esposizione di cui all'art.3 del DPCM 8 luglio 2003.

VALUTAZIONE PRELIMINARE CAMPI ELETTROMAGNETICI Impianto Agro-Fotovoltaico "FV_MENFI" Comune di: Menfi - Prov. Agrigento

Intervallo di FREQUENZ A (MHz)	Valore efficace di CAMPO ELETTRICO (V/m)	Valore efficace di intensità di CAMPO MAGNETICO (A/m)	DENSITÀ DI POTENZA dell'onda piana equivalente (W/m²)
0.1 - 300.000	6	0,016	0.10 (3 MHz - 300 GHz)

Tabella 2 - Valori di attenzione di cui all'art.3 del DPCM 8 luglio 2003 in presenza di aree, all'interno di edifici adibiti a permanenze non inferiori a

L'art. 4, invece, riporta i valori di immissione che non devono essere superati in aree intensamente frequentate come riportato in Tabella 3:

Intervallo di FREQUENZ A (MHz)	Valore efficace di CAMPO ELETTRICO (V/m)	Valore efficace di intensità di CAMPO MAGNETICO (A/m)	DENSITÀ DI POTENZA dell'onda piana equivalente (W/m²)
0.1 - 300.000	6	0,016	0.10 (3 MHz - 300 GHz)

Tabella 3 Obiettivi di qualità di cui all'art.4 del DPCM 8 luglio2003 all'aperto in presenza di aree intensamente frequentate.

Per quanto riguarda la metodologia di rilievo il D.P.C.M. 8 luglio 2003 fa riferimento alla norma CEI 211-7.

3 DESCRIZIONE SOMMARIA DEGLI IMPIANTI

3.1 Generalita'

L'impianto agro-fotovoltaico "FV_MENFI" avrà un'estensione complessiva del campo fotovoltaico pari a ca 70,1859 ha e la potenza complessiva dell'impianto sarà pari a 49.066,05 kWp.

L'impianto del progetto "FV_MENFI" sorgerà nel comune di Menfi (AG) in particolare nelle particelle catastali n. 2-6-69-118-121-123-124-142-178-221-223-241-245-246-248-253-254-255-256- 259-260-261-296-302-304-329-384 del foglio di mappa catastale n. 23 e particelle n. 10-11-40-62-63-102-103-104-111- 116-154 del foglio di mappa catastale n. 9.

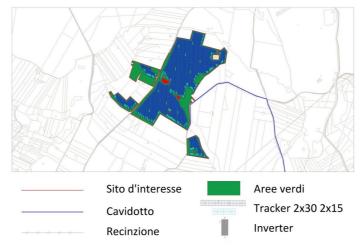


Figura 2 - Layout dell'area d'impianto ricadente nel territorio di Menfi (AG) località Genovese, su base catastale.

Il parco fotovoltaico, mediante i cavidotti interrati uscenti dalle cabine di impianto alla tensione di 30 kV, sarà collegato alla costruenda stazione utente a 220 kV e successivamente sarà connesso alla stazione di rete, come prescritto nella soluzione tecnica. La stazione di utenza verrà realizzata in prossimità della stazione di rete dalla società "GPE Menfi s.r.l" su un'area di circa 10.729 m² individuata catastalmente al foglio 54 particelle catastali n. 356-364-365-366 del comune di Sambuca di Sicilia (AG) e sarà costituita da una sezione a 220 kV ed uno stallo trafo 220/30kV.

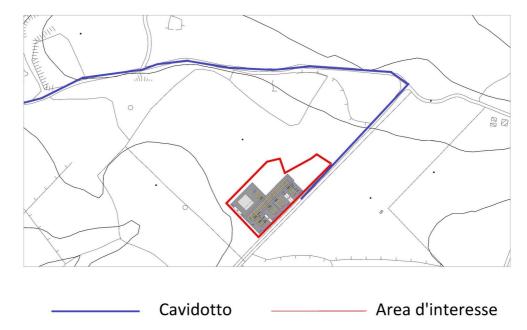


Figura 3 - Area della stazione utente-rete ricadente nel territorio di Sambuca di Sicilia (AG) su base catastale.

Il dimensionamento di massima sarà realizzato con un modulo fotovoltaico composto da 132 celle fotovoltaiche in silicio monocristallino da 2,384 x 1,303 m, ad alta efficienza e connesse elettricamente in serie, per una potenza complessiva di 655 Wp.

L'impianto sarà costituito da un totale di 74.910 moduli per una conseguente potenza di picco pari a 49.066,05 kWp. La conversione da corrente continua a corrente alternata sarà realizzata mediante n° 24 convertitori statici trifase (inverter) della SANTERNO.

I trasformatori di elevazione BT/MT saranno della potenza di 2.000kVA a singolo secondario ed avranno una tensione primaria di 30 kV ed una tensione secondaria di 640 V. Ognuno di essi sarà alloggiato all'interno di una cabina di trasformazione in accoppiamento con un inverter di competenza.

Le stringhe verranno collegate alle cassette di parallelo stringa della SANTERNO modello SUNWAY STRING BOX LT- 1500V 24 inputs ubicate su appositi supporti alloggiati sotto le strutture, protetti da agenti atmosferici e saranno realizzati in policarbonato ignifugo, dotato di guarnizioni a tenuta stagna grado isolamento IP65 cercando di minimizzare le lunghezze dei cavi di connessione.

VALUTAZIONE PRELIMINARE CAMPI ELETTROMAGNETICI Impianto Agro-Fotovoltaico "FV_MENFI" Comune di: Menfi - Prov. Agrigento

Rev. 00/FV_MENFI/2021 Impianto Agro-Fotovoltaico 49,06605 MWp

3.2 Cabine elettriche inverter trasformatore storage

SUNWAY STATION 2000 1500V 640 LS

Fully Integrated Solar Power Station

Designed for large utility scale applications, SUNWAY STATIONS feature best-in-class technology without compromises providing the highest power density and reliability.

With all the technical advantages and flexibility of SUNWAY TG inverters, SUNWAY STATIONS allow optimum configuration of medium and large PV plants providing the lowest system cost and the maximum efficiency.

BENEFITS

- Based on SUNWAY TG solar inverters
- Pre-assembled substations, fully fitted out and tested to reduce the plant costs to a minimum, ensuring easy laying and wiring
- Built with sandwich sheet panels and integrated vibrated reinforced concrete foundations for easy transport (structure fully made of concrete optionally available, LC version)
- High efficiency MV distribution transformer
- Extended configurability of the MV section to adapt to any specific plant requirement
- Full access to inverters and accessories for optimum reliability and serviceability
- Grid Code integrated features (LVRT, Reactive Power Control, Frequency and Voltage control) in compliance with the most advanced European, North American and WW standards
- Integrated DC-side protection provided by DC fuses and disconnect switch with release coil
- Integrated Ground Fault Detection system and miswiring protection on DC side
- Integrated Modbus on RS485 and TCP/IP on Ethernet data connection, integrated fiber optic ports
- Remote monitoring optionally available via Santerno Web Portal (www.sunwayportal.it)
- Integrated inputs for environmental sensors
- Possibility to install photovoltaic modules requiring one grounded pole, both positive and negative pole
- Thorough manufacture with first class materials

Elettronica Santerno S.p.A. reserves the right to make any technical changes to this document without prior notice.

Page 2 of 6 R02_DB1433 11/06/2017

Main features			
Model	SUNWAY	STATION 1800 1500	V 640 LS
Inverter	1 x SUNWAY TG 1800 1500V TE 640 STD		
Number of indipendent MPPT	2		
Rated output frequency		50 Hz / 60 Hz	
Power Factor @ rated power		1 - 0.9 lead/lag	
Maximum operating altitude ⁽²⁾		4000 m a.s.l.	
Maximum value for relative humidity		100% condensing	
Input (DC)			
Max. Open-circuit voltage		1500 V	
PV Voltage Ripple		< 1%	
Maximum DC inputs fuse-protected	7 (wi	th DC fuses on both p	ooles)
Maximum short circuit PV input current		1500 A	
Output (AC)			
Ambient Temperature	25 °C	45 °C	50 °C
Rated output current, LV side	1800 A	1600 A	1500 A
Rated output power, LV side	1995 kVA	1774 kVA	1663 kVA
Power threshold	< 1% of R	ated AC inverter out	out power
Total AC current distortion	≤3%		
Rated AC voltage, MV side	6 to 24 kV (up to 30 kV on request)		
Connection phases, MV side	3Ø3W		
Inverter efficiency - LV side (3)			
Maximum / EU/ CEC efficiency	9	8.5% / 98.2 % / 98.09	%
MV transformer			
Туре	Cast resin (st	andard) / Oil (availat	ole as option)
Transformer rated power		Up to 2000 kVA	
Fuse protection		Yes	
Temperature control		Yes	
Oil pressure control (4)		Yes	
MV Cabinet			
Туре	Compact	SF6 for secondary di	stribution
Standard Configuration (6)	R+CB (Input Line + Transfomer Protection by Circuit Breaker)		
Insulation Class	17.5 / 24 / 36 kV (Others available)		
Dimensions and weight (5)			
Cabinet Dimensions (WxHxD)	8250 x 32	230 x 2400 mm (for r	eference)
Overall Weight	23000 kg (for reference)		

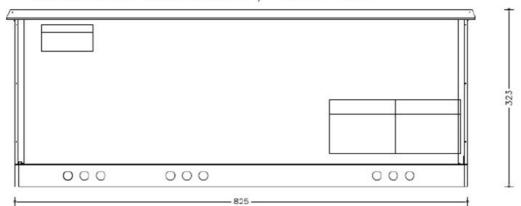
NOTES

- (1) At rated Vac and Cos φ =1
- (2) Up to 1000 m without derating
- (3) Auxiliary consumptions are not considered when calculating the conversion efficiency
- (4) Only for oil type transformers
- [5] Dimensions and weight not applicable to Sunway Station LC version with structure fully made of concrete
- (6) The MV cabinet composition can be customized

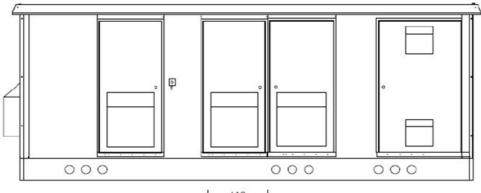
Elettronica Santerno S.p.A. reserves the right to make any technical changes to this document without prior notice.

Page 3 of 6 R02_DB1433 11/06/2017

Protective devices	
Protection against overvoltage (SPD), DC side	Yes
DC input current monitoring	Optional (Zone Monitoring)
DC side disconnection device	DC disconnect switch
Ground fault monitoring	Yes
AC disconnection device, LV side	AC circuit breaker
AC disconnection device, MV side	AC disconnect switch
AC ground fault monitoring, LV side	Optional
Grid fault monitoring	Yes
Compartment temperature control	Yes
Emergency stop switch	Yes
Safety key distribution system	Yes
Communication Interfaces	
Power modulation	Via Remote Control (RS485, Ethernet)/analog inputs
PV plant monitoring	Optional (via Santerno Web Portal)
Protocols	Modbus RTU/Modbus TCP/IP
Ethernet/RS485/Optical fiber	Yes/Yes/Optional
Premium Remote Monitoring	Optional
Additional features	
Ethernet switch	Yes
Anticondensation heater	Optional
Environmental sensors	Up to 6 per Inverter
Cooling system	Forced air ventilation
UPS, LV side	Optional 4/6/10 kVA
Fiscal meter	Optional
Grid interface device protection	Optional
Self-consumption meter	Optional
Kit for earthed negative/positive pole	Optional
Fire sensors	Optional
Personal protective kit: fire extinguisher, dielectric gloves and insulating rubber mat	Yes


Elettronica Santerno S.p.A. reserves the right to make any technical changes to this document without prior notice.

Page 4 of 6 R02_DB1433 11/06/2017

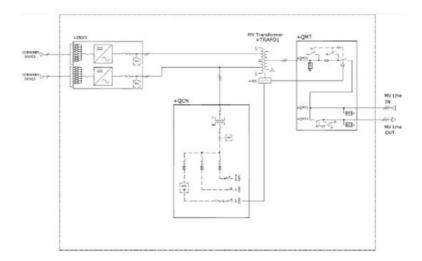


Layout

PROSPETTO POSTERIORE / BACK VIEW

PROSPETTO FRONTALE / FRONT VIEW

110-


Elettronica Santerno S.p.A. reserves the right to make any technical changes to this document without prior notice.

R02_DB1433 11/06/2017 Page 5 of 6

Block Diagram

The Sunway Station is supplied complete with internal wiring (power wiring and auxiliary wiring). Standard supply does NOT include outgoing cables and wiring. Medium Voltage cabinet composition can be customized.

Main Normative References

SANTERNO SUNWAY STATIONS have been developed, designed and manufactured in accordance with the latest requirements of the Low Voltage directives, Electromagnetic Compatibility directives and Grid Connection standards.

Standards (7)		
Compliance	IEC 61000-6-4, IEC 61000-6-2 IEC 61000-6-3, IEC 61000-6-1	
MV Cabinet	IEC 62271-200, CEI EN 62271-102	
LV/MV Transformer	IEC 62271-200, CEI EN 62271-102	
Cabinet structure/internal wiring	CEI 64-8, CEI 11-35, CEI EN 61330	
Grid connection	CEI 0-16, A.70, BDEW, Arrêté du 23 Avril 2008, RD 1699/2011, RD 661/2007, CQC, IEEE 1547 RD 1633/2000, RD 661/2007	

NOTES

(7) Additional certificates available on request

Elettronica Santerno S.p.A. reserves the right to make any technical changes to this document without prior notice.

Page 6 of 6 R02_DB1433 11/06/2017

mail: info@gamianconsulting.com

SUNWAY STRING BOX LT – 1500V 24 inputs

Combiner Boxes

Sede legale: via della Concia, 7 - 40023 Castel Guelfo (Bo) | t +39 0542 489711 | f +39 0542 489722 Pec: santerno.group@legalmail.it | info@santerno.com | www.santerno.com Cap. Soc. € 4.412.000 | C.F. – P.IVA: 03686440284 | R.E.A. BO 457978 | Cod. Ident IVA Intracom. IT03686440284 Società soggetta all'attività di direzione e coordinamento di Enertronica S.p.A. | www.enertronica.it

The SUNWAY STRING BOX LT series are combiner box for PV strings designed in Italy by the technicians of Elettronica Santerno S.p.A.. They feature the most reliability, easy installation and maintainability.

KEY FEATURES

The main integrated standard functions of SUNWAY STRING BOX SB-24-LT03-1500V are listed below:

- Possibility to connect up to 24 strings
- String fuses protection on each pole
- Configurable fuse size (up to 30A)
- Load Break Switch
- Signaling contact for Load break switch status
- Signaling contact for SPD status
- Polyester flameproof and UV ray-resistant box
- Lockable enclosure
- Degree of protection IP65
- Suitable both for floating or earthed PV configuration
- Thorough manufacturing with first class materials

Page 2 of 4 PS266 03272018

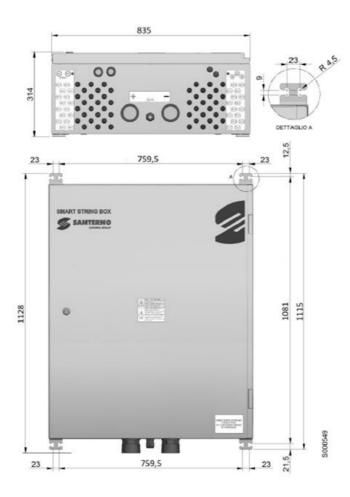
Technical Data

SUNWAY STRING BOX		
Model	SB-24-LT03-1500V	
Input Ratings		
Max. number of string	24	
Max. DC voltage (max. Udc)	1500 V	
String DC fuses size (1)	8 A up to 30 A	
Number of DC fuses	Up to 24 + 24	
Max. input current per channel (Isc) @45°C	20 A	
String cable cross-section	4 ÷ 6 mm²	
String connector type (2)	Cable glands	
Output Ratings		
Max. output current (max. OPV) @45°C	280 A	
Max. output cable cross-section	Configurable: 2 x max 185 mm² or 1 x max 300 mm²	
Grounding cable cross-section	35 mm²	
Dimensions and weight		
Dimensions (WxHxD)	835x1115x310 mm	
Weight	33 kg	
Additional features		
Fuse protection	On both poles	
Load break switch	Yes (In=400A)	
Load break switch status	Clean Contact	
Protection against DC overvoltage (SPD)	Yes, class II (class I+II available as option)	
SPD status	Clean Contact	
Degree of protection	IP65	
Insulation Class	Ш	
Lockable enclosure	Optional	

Elettronica Santerno reserves the right to make any technical changes to this document without prior notice.

NOTE

(1) Fuses are not included. Fuse rating to be defined by customer in agreement with PV module manufacturer.


(2) In case of MC option, the mating connectors (string side) are not included. Always use mating connectors of the same brand as the connectors installed on the string box. The use of other connectors may damage the product.

Page 3 of 4 PS266 03272018

mail: info@gamianconsulting.com

Layout

Page 4 of 4 PS266 03272018

VALUTAZIONE PRELIMINARE CAMPI ELETTROMAGNETICI Impianto Agro-Fotovoltaico "FV_MENFI" Comune di: Menfi - Prov. Agrigento

Rev. 00/FV_MENFI/2021 Impianto Agro-Fotovoltaico 49,06605 MWp

CALCOLO DEI CAMPI ELETTROMAGNETICI

4.1 Campi elettromagnetici impianto agro-fotovoltaico

Moduli fotovoltaici

I moduli fotovoltaici lavorano in corrente e tensione continue e non in corrente alternata; per cui la generazione di campi

variabili è limitata ai soli transitori di corrente (durante la ricerca del MPP da parte dell'inverter e durante l'accensione o lo

spegnimento) e sono comunque di brevissima durata.

Nella certificazione dei moduli fotovoltaici alla norma CEI 82-8 (IEC 61215) non sono comunque menzionate prove di

compatibilità elettromagnetica, poiché assolutamente irrilevanti.

Inverter

Gli inverter sono apparecchiature che al loro interno utilizzano un trasformatore ad alta frequenza per ridurre le perdite di

conversione. Essi pertanto sono costituiti per loro natura da componenti elettronici operanti ad alte frequenze. D'altro

canto il legislatore ha previsto che tali macchine, prima di essere immesse sul mercato, possiedano le necessarie

certificazioni a garantirne sia l'immunità dai disturbi elettromagnetici esterni, sia le ridotte emissioni per minimizzarne

l'interferenza elettromagnetica con altre apparecchiature elettroniche posizionate nelle vicinanze o con la rete elettrica

stessa (via cavo). A questo scopo gli inverter prescelti possiedono la certificazione di rispondenza alle normative di

compatibilità elettromagnetica (EMC) (CEI EN 50273 (CEI 95-9), CEI EN 61000- 6-3 (CEI 210-65), CEI EN 61000-2-2 (CEI 110-

10), CEI EN 61000-3-2 (CEI 110-31), CEI EN 61000-3-3 (CEI 110-28), CEI EN 55022 (CEI 110-5), CEI EN 55011 (CEI 110-6)).

Tra gli altri aspetti queste norme riguardano:

i livelli armonici: le direttive del gestore di rete prevedono un THD globale (non riferito al massimo della singola

armonica) inferiore al 5% (inferiore all'8% citato nella norma CEI 110-10). Gli inverter presentano un THD globale

contenuto entro il 3%:

Disturbi alle trasmissioni di segnale operate dal gestore di rete in superim-posizione alla trasmissione di energia sulle sue

linee;

Variazioni di tensione e frequenza. La propagazione in rete di queste ultime è limitata dai relè di controllo della

protezione di interfaccia asservita al dispositivo di interfaccia. Le fluttuazioni di tensione e frequenze sono però

causate per lo più dalla rete stessa. Si rendono quindi necessarie finestre abbastanza ampie, per evitare una continua

inserzione e disinserzione dell'impianto agro-fotovoltaico.

La componente continua immessa in rete. Il trasformatore elevatore contribuisce a bloccare tale componente. In ogni

modo il dispositivo di interfaccia di ogni inverter interviene in presenza di componenti continue maggiori dello 0,5%della

corrente nominale.

Progettazione:

VALUTAZIONE PRELIMINARE CAMPI ELETTROMAGNETICI Impianto Agro-Fotovoltaico "FV_MENFI" Comune di: Menfi - Prov. Agrigento Rev. 00/FV_MENFI/2021 Impianto Agro-Fotovoltaico 49,06605 MWp

Le questioni di compatibilità elettromagnetica concernenti i buchi di tensione (fino ai 3 s in genere) sono in genere dovute al coordinamento delle protezioni effettuato dal gestore di rete locale.

Linee elettriche in corrente alternata

Per quanto riguarda il rispetto delle distanze da ambienti presidiati ai fini dei campi elettrici e magnetici, si è tenuto conto del limite di qualità dei campi magnetici, fissato dalla suddetta legislazione a 3 μ T. La tipologia di cavidotti presenti nell'impianto prevede all'interno del campo fotovoltaico l'utilizzo di soli cavi elicordati, per i quali vale quanto riportato nella norma CEI 106-11 e nella norma CEI 11-17.

Come illustrato nella suddetta norma CEI 106-11 la ridotta distanza tra le fasi e la loro continua trasposizione, dovuta alla cordatura, fa sì che l'obiettivo di qualità di $3\mu T$, anche in condizioni limite con conduttori di sezione elevata, venga raggiunto già a brevissima distanza (50÷80 cm) dall'asse del cavo stesso.

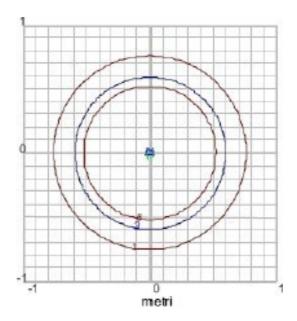


Figura 4: Curve di equilivello per il campo magnetico di una linea MT in cavo elicordato interrata (dalla Norma CEI 106-11)

Si fa notare peraltro che anche il decreto del 29.05.2008, sulla determinazione delle fasce di rispetto, ha esentato dalla procedura di calcolo le linee MT in cavo interrato e/o aereo con cavi elicordati, pertanto a tali fini si ritiene valido quanto riportato nella norma richiamata.

Ne consegue che in tutti i tratti realizzati mediante l'uso di cavi elicordati si può considerare che l'ampiezza della semi-fascia di rispetto sia pari a 1 m, a cavallo dell'asse del cavidotto, pertanto uguale alla fascia di asservimento della linea.

VALUTAZIONE PRELIMINARE CAMPI ELETTROMAGNETICI Impianto Agro-Fotovoltaico "FV_MENFI" Comune di: Menfi - Prov. Agrigento Rev. 00/FV_MENFI/2021 Impianto Agro-Fotovoltaico 49,06605 MWp

Cabine elettriche Inverter Trasformatore

Per quanto riguarda i componenti dell'impianto sono da considerare le cabine elettriche di trasformazione, all'interno delle quali, la principale sorgente di emissione è il trasformatore BT/MT. In questo caso si valutano le emissioni dovute ai

trasformatori collocati nelle cabine di trasformazione.

La presenza del trasformatore BT/MT viene usualmente presa in considerazione limitatamente alla generazione di un

campo magnetico nei locali vicini a quelli di cabina.

In base al DM del MATTM del 29.05.2008, cap.5.2.1, l'ampiezza delle DPA si determina come di seguito descritto. Tale determinazione si basa sulla corrente di bassa tensione del trasformatore e considerando una distanza dalle fasi pari

al diametro dei cavi reali in uscita dal trasformatore.

Per determinare le DPA si applica:

$$\frac{DPA}{\sqrt{I}} = 0.40942 \cdot x^{0.5242}$$

dove:

DPA = distanza di prima approssimazione (m)

I =corrente nominale (A)

x = diametro dei cavi (m)

Considerando che la corrente lato BT è pari a I = 3.472,22 A e che il cavo scelto sul lato BT del trasformatore è 3(7x300) mm², con diametro esterno pari a circa 34,06 mm, si ottiene una DPA, arrotondata per eccesso all'intero superiore, pari a 4

m. D'altra parte, nel caso in questione la cabina è posizionata all'aperto e normalmente non è permanentemente presidiata.

Cabina elettrica MT e di Stazione utente

Per quanto riguarda i componenti dell'impianto resta da considerare la cabina elettrica MT d'impianto, alla quale confluiscono i cavidotti MT provenienti dalle cabine di trasformazione, all'interno della quale, la principale sorgente di emissione sono le stesse correnti dei quadri MT, in quanto in questo caso il trasformatore MT/BT è utilizzato solo per l'alimentazione dei servizi ausiliari. La massima corrente BT servizi ausiliari, considerando un trasformatore da 100 kVA, è pari a 173,61 A. Mentre la massima corrente MT dovuta alla massima produzione è pari a circa 993,81 A. Considerando che il cavo scelto in uscita dalla cabina d'impianto è, come detto, (3x1x630), con un diametro esterno massimo pari a 58 mm, si ottiene una DPA, arrotondata per eccesso all'intero superiore, pari a 3 m. D'altra parte, anche nel caso in questione la cabina normalmente non è presidiata.

VALUTAZIONE PRELIMINARE CAMPI ELETTROMAGNETICI Impianto Agro-Fotovoltaico "FV_MENFI" Comune di: Menfi - Prov. Agrigento Rev. 00/FV_MENFI/2021 Impianto Agro-Fotovoltaico 49,06605 MWp

Altri cavi

Altri campi elettromagnetici dovuti al monitoraggio e alla trasmissione dati possono essere trascurati, essendo le linee dati realizzate normalmente in cavo schermato.

4.2 Campi elettromagnetici delle opere connesse

Linee elettriche in corrente alternata in media tensione

Il campo magnetico è calcolato in funzione della corrente circolante nei cavidotti in esame e della disposizione geometrica dei conduttori. Per quanto riguarda il valore del campo elettrico, trattandosi di linee interrate, esso è da ritenersi insignificante grazie anche all'effetto schermante del rivestimento del cavo e del terreno. Nel seguito verranno pertanto esposti i risultati del solo calcolo del campo magnetico.

Visto l'impianto agro-fotovoltaico, è stata esaminata come unica situazione significativa ai fini del calcolo dell'intensità del campo di induzione magnetica, quella generata dal tratto di posa del cavo che evacua la potenza elettrica generata dall'intero impianto FV, posta in parallelo, alla distanza di circa 25 cm con un' analoga terna di cavi MT che trasporta verso la medesima stazione di utenza, l'intera potenza di un impianto FV non lontano da quello in esame, caratterizzato dalle sezioni riportate nelle seguenti figure.

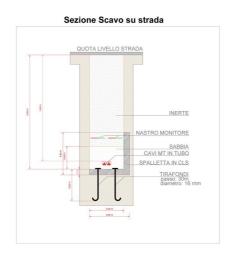


Figura 5: Sezione tipica di posa della linea in cavo

All'interno del cavidotto in esame si trovano due terne di cavi MT isolati a 30 kV che trasferiscono l'intera potenza dei due impianti FV verso la stazione di utenza.

Per quanto concerne i cavidotti MT esterni, per il collegamento della cabina d'impianto al quadro MT della stazione d'utenza, si prevede invece l'utilizzo di cavi unipolari di sezione pari a 630 mm², posati a trifoglio. La corrente massima che può interessare la linea di collegamento MT per l'impianto in oggetto è la seguente:

$$I_{b_max} = \frac{P_{max}}{\sqrt{3} V_n \cos \varphi} = \frac{49 \cdot 10^6}{0.95 \cdot \sqrt{3} \cdot 30 \cdot 10^3} = 993,81 A$$

Nel calcolo, essendo il valore della induzione magnetica proporzionale alla corrente transitante nella linea, è stata presa in considerazione la configurazione di carico che prevede, come detto, una posa dei cavi a trifoglio, ad una profondità di 1 m, con un valore di corrente pari a 710 A, pari alla portata massima della linea elettrica in cavo, secondo la Norma CEI 20-21. La configurazione dell'elettrodotto è quella di assenza di schermature e distanza minima dei conduttori dal piano viario. Il calcolo è stato effettuato a differenti altezze. La portata del cavo è ampiamente rispettata, considerato l'utilizzo di due terne di cavi, quanto corrente circolante in ogni terna 496.91 pari Nella seguente Figura 3 è riportato l'andamento dell'induzione magnetica per una sezione trasversale a quella di posa, considerando che lungo il tracciato del cavidotto saranno posate sette terne di cavi, relative a due differenti impianti fotovoltaici, nella medesima trincea. Non è invece rappresentato il calcolo del campo elettrico prodotto dalla linea in cavo, poiché in un cavo schermato il campo elettrico esterno allo schermo è nullo.

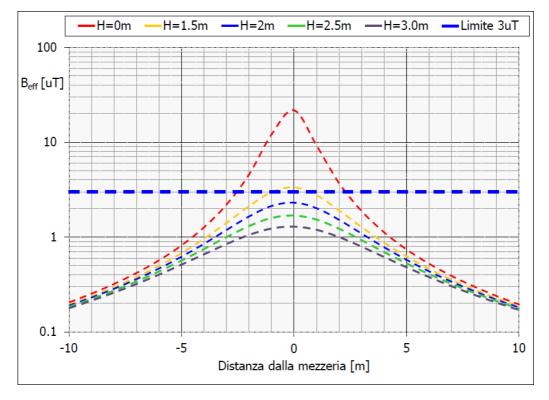


Figura 6: Andamento dell'induzione magnetica prodotta dalla linea in cavo per la massima corrente del cavo

Si può osservare come nel caso peggiore il valore di 3 µT è raggiunto a circa 2,6 m dall'asse del cavidotto.

È da notare che la condizione di calcolo è ampiamente cautelativa, in quanto la corrente che fluirà nel cavidotto sarà quella prodotta dall'impianto agro-fotovoltaico, che, come detto, è pari a 993,81 A e che quindi, in ogni terna di cavi, fluirà una corrente pari a 496,91 A, ampiamente inferiore rispetto alla portata del cavo che è pari a 710 A. Se si tiene conto della effettiva corrente, il grafico sopra riportato si modifica come in figura seguente, dove per ciascuna delle due terne si è considerato un valore di corrente di impiego pari a 496,91 A. In tal caso il valore di 3 µT è raggiunto a circa 1,85 m dall'asse del cavidotto.



Figura 7: Andamento dell'induzione magnetica prodotta dalla linea in cavo per la massima corrente dell'impianto

Il tracciato di posa dei cavi è stato studiato in modo che il valore di induzione magnetica sia sempre inferiore a 3 μ T in corrispondenza dei ricettori sensibili (abitazioni e aree in cui si prevede una permanenza di persone per più di 4 ore nella giornata), pertanto è esclusa la presenza di tali recettori all'interno della fascia calcolata.

Per la determinazione dell'ampiezza della fascia di rispetto è stata effettuata la simulazione di calcolo per il caso di due terne di cavi, posati alla distanza di 250 mm alla profondità di 1 m, secondo quanto riportato nel presente documento e con la corrente massima per ciascuno dei cavi utilizzati pari a 496,91 A inferiore, cioè alla portata di 710 A. Il risultato del calcolo è riportato nella figura seguente.

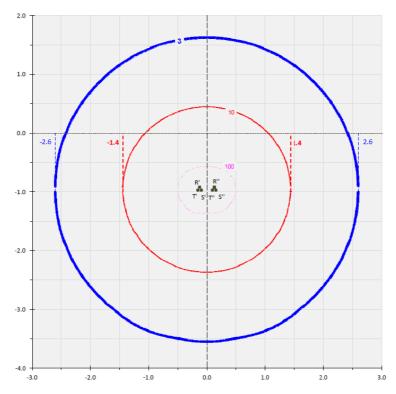


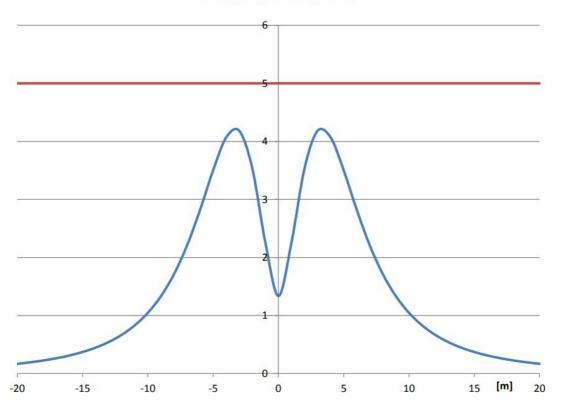
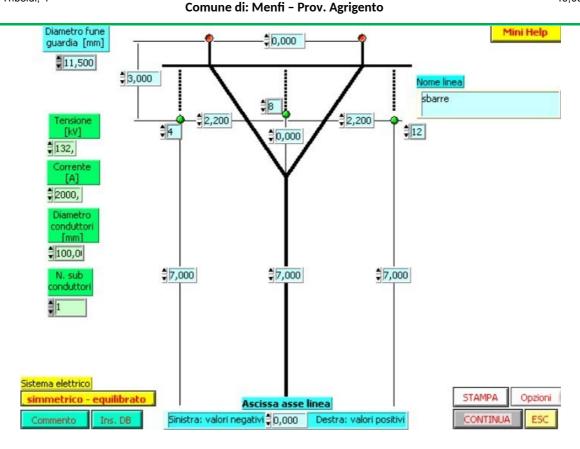
Figura 8: Curve di equilivello per il campo di induzione magnetica generato da una linea MT posata a trifoglio (Imax=710°; formazione (3x1x630))

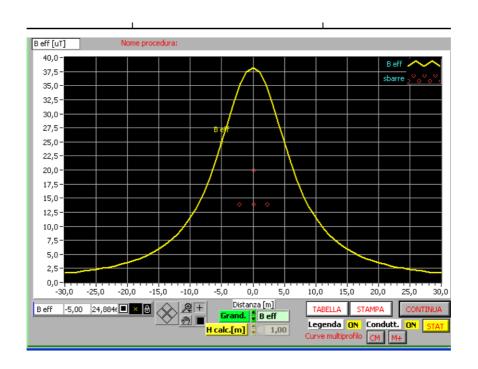
Si pu quindi considerare che l'ampiezza della fascia di rispetto sia pari a 3 m, a cavallo dell'asse del cavidotto. Infine, poich in un cavo schermato il campo elettrico esterno allo schermo è nullo, non è rappresentato il calcolo del campo elettrico prodotto dalla linea in oggetto.

Stazione elettrica e Linee in corrente alternata in Alta tensione

Le apparecchiature previste e le geometrie dell'impianto di AT sono analoghe a quelle di altri impianti già in esercizio, dove sono state effettuate verifiche sperimentali dei campi elettromagnetici al suolo nelle diverse condizioni di esercizio, particolare attenzione alle zone di transito del personale (strade interne fabbricati). con I valori di campo elettrico al suolo risultano massimi in corrispondenza delle apparecchiature AT a 220 kV con valori attorno a qualche kV/m, ma si riducono a meno di 1 kV/m a ca. 10 m di distanza da queste ultime.

Campo Elettrico [kV/m]

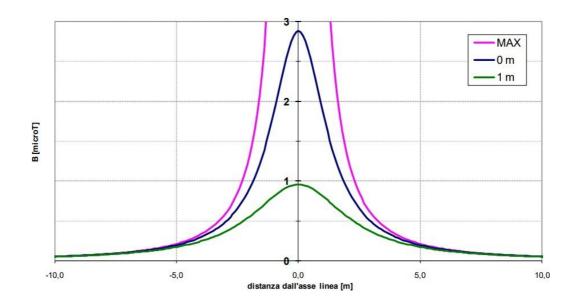




Figura 9: Campo elettrico al suolo generato dal sistema di sbarre a 220 kV

I valori di campo magnetico al suolo sono massimi nelle stesse zone di cui sopra ed in corrispondenza delle via cavi, ma variano in funzione delle correnti in gioco: con correnti sulle linee pari al valore di portata massima in esercizio normale delle linee si hanno valori pari a qualche decina di microtesla, che si riducono a meno di $3~\mu T$ a 4~m di distanza dalla proiezione dell'asse della linea.

I valori in corrispondenza della recinzione della stazione sono notevolmente ridotti ed ampiamente sotto i limiti di legge. A titolo orientativo nel seguito si riporta il profilo di campo magnetico dovuto ad un sistema trifase con caratteristiche e disposizione dei conduttori analoghe a quelle dei condotti sbarre presenti in stazione, Nella seguente figura è riportata la geometria di un sistema trifase con disposizione dei conduttori assimilabile a quella delle sbarre della stazione d'utenza.

Con conduttori percorsi da una terna trifase (corrente max sopportabile dalle sbarre), estremamente cautelativa rispetto alla max corrente reale, si ha un andamento di campo magnetico come riportato nella figura seguente.


Si può notare che ad una distanza di circa 22 m dall'asse del sistema di sbarre l'induzione magnetico è inferiore al valore di 3 μt. Ciascun cavo d'energia a 220 kV sarà costituito da un conduttore in alluminio compatto di sezione indicativa pari a circa 400 mm² tamponato, schermo semiconduttivo sul conduttore, isolamento in politenereticolato (XLPE), schermo semiconduttivo sull'isolamento, nastri in materiale igroespandente, guaina in alluminio longitudinalmente saldata, rivestimento in politene con grafitatura esterna.

Tali dati potranno subire adattamenti comunque non essenziali dovuti alla successiva fase di progettazione esecutiva e di cantierizzazione, anche in funzione delle soluzioni tecnologiche adottate dai fornitori e/o appaltatori.

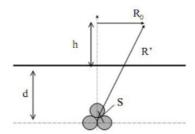
DATI CONDIZIONI DI POSA E DI INSTALLAZIONE

Posa	Interrata in letto di sabbia a bassa resistività termica
Messa a terra degli schermi	"cross bonding" o "single point-bonding"
Profondità di posa del cavo	Minimo 1,60 m
Formazione	Una terna a Trifoglio
Tipologia di riempimento	Con sabbia a bassa resistività termica o letto di cemento magro h 0,50 m
Profondità del riempimento	Minimo 1,10 m
Copertura con piastre di protezione in C.A. (solo per riempimento con sabbia)	spessore minimo 5 cm
Tipologia di riempimento fino a piano terra	Terra di riporto adeguatamente selezionata
Posa di Nastro Monitore in PVC – profondità	1,00 m circa

Di seguito viene esposto il grafico dell'andamento dell'induzione magnetica rispetto all'asse dell'elettrodotto. Nel calcolo, essendo il valore dell'induzione magnetica proporzionale alla corrente transitante nella linea, è stata presa in considerazione la configurazione di carico che prevede una posa dei cavi a trifoglio, ad una profondità di 1,5 m, con un valore di corrente (AT) pari a 139,78 A, dove la configurazione dell'elettrodotto è quella in assenza di schermature.

Andamento dell'Induzione magnetica prodotta dalla linea in cavo

VALUTAZIONE PRELIMINARE CAMPI ELETTROMAGNETICI Impianto Agro-Fotovoltaico "FV_MENFI" Comune di: Menfi - Prov. Agrigento


Rev. 00/FV_MENFI/2021 Impianto Agro-Fotovoltaico 49,06605 MWp

Il limite di 3 μT si raggiunge nel caso peggiore ad una distanza dall'asse linea di circa 1,5 m. Il tracciato di posa dei cavi è tale per cui intorno ad esso non vi sono ricettori sensibili (zone in cui si prevede una permanenza di persone per più di 4 ore nella giornata) per distanze molto più elevate di quelle calcolate. Non è rappresentato il calcolo del campo elettrico prodotto dalla linea in cavo, poiché in un cavo schermato il campo elettrico esterno allo schermo è nullo. Secondo quanto riportato nel DM del MATTM del 29.05.2008, il calcolo delle fasce di rispetto può essere effettuato usando le formule della norma CEI 106-11, che prevedono l'applicazione dei modelli semplificati della norma CEI 211-4. Pertanto, il calcolo della fascia di rispetto si può intendere in via cautelativa pari al raggio della circonferenza che rappresenta il luogo dei punti d' induzione magnetica pari a 3° T.

La formula da applicare è la seguente, in quanto si considera la posa dei conduttori a trifoglio:

$$R' = 0.286 \cdot \sqrt{S \cdot I}$$
 [m]

Con il significato dei simboli di figura seguente:

Pertanto ponendo: S = 0,11 m I = 139,78 A si ottiene R' = 1,12 m

che, arrotondato al metro, fornisce un valore della fascia di rispetto pari a 2 m per parte, rispetto all'asse del cavidotto.

Come anticipato, non si ravvisano ricettori all'interno della suddetta fascia.

Analisi dei risultati ottenuti

Come mostrato nelle tabelle e figure dei paragrafi precedenti le azioni di progetto fanno sì che sia possibile riscontrare intensità del campo di induzione magnetica superiore al valore obiettivo di 3 µT, sia in corrispondenza delle cabine di trasformazione che in corrispondenza del cavidotto MT; d'altra parte è stato dimostrato come la fascia entro cui tale limite viene superato è circoscritto intorno alle opere suddette e, in particolare, ha una semi-ampiezza complessiva di circa 3m a cavallo della mezzeria di tutto il cavidotto MT. D'altra parte trattandosi di cavidotti che si sviluppano sulla viabilità stradale esistente o in territori scarsissimamente antropizzati, si può certamente escludere la presenza di recettori sensibili entro le predette fasce, venendo quindi soddisfatto l'obiettivo di qualità da conseguire nella realizzazione di nuovi elettrodotti fissato dal DPCM 8 luglio 2003. La stessa considerazione può ritenersi certamente valida per una fascia di circa 4 m attorno alle cabine di trasformazione e Stazione utente, oltre che nelle immediate vicinanze della stazione di utenza AT/MT e del cavidotto MT che collega l'impianto alla Stazione utente.

VALUTAZIONE PRELIMINARE CAMPI ELETTROMAGNETICI Impianto Agro-Fotovoltaico "FV_MENFI" Comune di: Menfi - Prov. Agrigento

Rev. 00/FV_MENFI/2021 Impianto Agro-Fotovoltaico 49,06605 MWp

5 CONCLUSIONI

Le uniche radiazioni associabili a questo tipo di impianti sono le radiazioni non ionizzanti costituite dai campi elettrici e magnetici a bassa frequenza (50 Hz), prodotti rispettivamente dalla tensione di esercizio degli elettrodotti e dalla corrente che li percorre. I valori di riferimento, per l'esposizione ai campi elettrici e magnetici, sono stabiliti dalla Legge n. 36 del 22/02/2001 e dal successivo DPCM 8 Luglio 2003 "Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete di 50 Hz degli elettrodotti". In generale, per quanto riguarda il campo elettrico in media tensione esso è notevolmente inferiore a 5kV/m (valore imposto dalla normativa) e per il livello 220 kV esso diventa inferiore a 5 kV/m già a pochi metri dalle parti in tensione. Mentre per quel che riguarda il campo di induzione magnetica il calcolo nelle varie sezioni di impianto ha dimostrato come non ci siano fattori di rischio per la salute umana a causa delle azioni di progetto, poiché è esclusa la presenza di recettori sensibili entro le fasce per le quali i valori di induzione magnetica attesa non sono inferiori agli obiettivi di qualità fissati per legge; mentre il campo elettrico generato è nullo a causa dello schermo dei cavi o assolutamente trascurabile negli altri casi per distanze superiori a qualche cm dalle parti in tensione. Infatti per quanto riguarda il campo magnetico, relativamente ai cavidotti MT, in tutti i tratti interni realizzati mediante l'uso di cavi elicordati, si può considerare che l'ampiezza della semi-fascia di rispetto sia pari a 1 m, a cavallo dell'asse del cavidotto, pertanto uguale alla fascia di asservimento della linea. Per quanto concerne i tratti esterni, realizzati mediante l'uso di cavi unipolari posati a trifoglio, è stata calcolata un'ampiezza della semi-fascia di rispetto pari a 4 m e, sulla base della scelta del tracciato, si esclude la presenza di luoghi adibiti alla permanenza di persone per durate non inferiori alle 4 ore al giorno. Per ciò che riguarda le cabine di trasformazione l'unica sorgente di emissione è rappresentata dal trasformatore BT/MT, quindi in riferimento al DPCM 8 luglio 2003 e al DM del MATTM del 29.05.2008, l'obiettivo di qualità si raggiunge, nel caso peggiore (trasformatore da 2000 kVA), già a circa 4 m (DPA) dalla cabina stessa. Per quanto riguarda la cabina d'impianto, vista la presenza del solo trasformatore per l'alimentazione dei servizi ausiliari in BT e l'entità delle correnti circolanti nei quadri MT l'obbiettivo di qualità si raggiunge a circa 3 m (DPA) dalla cabina stessa. Comunque considerando che nelle cabine di trasformazione e nella cabina d'impianto non è prevista la presenza di persone per più di quattro ore al giorno e che l'intera area dell'impianto agro-fotovoltaico sarà racchiusa all'interno di una recinzione metallica che impedisce l'ingresso di personale non autorizzato, si può escludere pericolo per la salute umana. L'impatto elettromagnetico può pertanto essere considerato non significativo.