

Direzione Progettazione e Realizzazione Lavori

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE - SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389

PROGETTO DEFINITIVO

CA22 COD.

ANAS – DIREZIONE PROGETTAZIONE E REALIZZAZIONE LAVORI PROGETTAZIONE:

PROGETTISTA E RESPONSABILE INTEGRATORE PRESTAZIONI **SPECIALISTICHE**

Ing. M. RASIMELLI

Ordine Ingegneri Provincia di Perugia n. A632

GRUPPO DI PROGETTAZIONE

Ing. D. BONADIES Ing. P. LOSPENNATO Ing. S. PELLEGRINI Ing. A. POLLI

Ing. M. PROCACCI Ing. R. CERQUIGLINI Ing. M. CARAFFINI Geom. M. BINAGLIA

Ing. M. MARELLI Ing. A. LUCIA

IL RESPONSABILE DEL S.I.A.

Arch. E. RASIMELLI

IL GEOLOGO

Dott. S. PIAZZOLI

COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE

Ina. L. IOVINE

VISTO: IL RESP. DEL PROCEDIMENTO

Ing. F. RUGGIERI

DATA: **PROTOCOLLO**

IL GRUPPO DI PROGETTAZIONE:

MANDATARIA

MANDANTE

MANDANTE

OPERE D'ARTE MAGGIORI Opere d'arte maggiori – Viadotto VI07 Relazione di calcolo impalcato 2

CODICE PROGETTO		NOME FILE T00_VI07_STR_RE02_A	REVISIONE	PAG.		
D P C A	1 2 2 D N. PROG. 2 0 0 2	CODICE T 0 0 V I 0 7	А	1 di 117		
D						
С						
В						
А	PRIMA EMISSIONE		AGOSTO 2020	MARELLI	POLLI	RASIMELLI
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A Data: Agosto 2020

Pag. 1 di 117

INDICE

1.	F	PREMESSA	4
2.	F	RIFERIMENTI NORMATIVI	7
3.	C	CARATTERISTICHE DEI MATERIALI	8
3	.1	CONGLOMERATI CEMENTIZI	В
3	.2	ACCIAIO AD ADERENZA MIGLIORATA	9
3	.3	ACCIAIO DA CARPENTERIA	9
3	.4	CONTROVENTI10	0
3	.5	BULLONI AD ALTA RESISTENZA10	0
		3.5.1 Coppia di Serraggio dei Bulloni1	1
3	.6	PIOLI CON TESTA TIPO "NELSON"1	1
3	.7	SALDATURE12	2
4.	C	CRITERI DI CALCOLO	.13
4	.1	CODICI DI CALCOLO13	3
4	.2	METODOLOGIA DI ANALISI13	3
		4.2.2 Statica trasversale15	5
5.	C	CRITERI DI VERIFICA	.16
5	.1	PREMESSA10	6
5	.2	VERIFICHE CONSIDERATE10	6
		5.2.1 Verifiche agli SLU16	6
		5.2.2 Verifiche agli SLE16	6
		5.2.3 Verifiche allo SLF16	6
5	.3	PROPRIETÀ DELLE SEZIONI RESISTENTI17	7
5	.4	AZIONI AGENTI – ANALISI DEI CARICHI2	1
		5.4.1 Pesoproprio	2
		5.4.2 Sovraccarichi permanenti	
		5.4.3 Ritiro	2
		5.4.4 Variazioni termiche differenziali25	5
		5.4.5 Vento	6
		5.4.6 Carichi variabili da traffico	8
		5.4.7 Carichi variabili da traffico pesante per analisi della fatica	1
		5.4.8 Azione longitudinale di frenamento	1
		5.4.9 Azione centrifuga32	2

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2 File: T00_VI07_STR_RE02_A Data: Agosto 2020

Pag. 2 di 117

	5.4.10	Azione sismica	32
	5.4.11	Resistenze passive dei vincoli	33
5.5	COMB	NAZIONI DEI CARICHI	33
6.	ANALIS	I E VERIFICHE SLU	36
6.1	VERIF	CHE DI RESISTENZA AGLI SLU	36
6.2	CONNI	ESSIONE SOLETTA-TRAVI - RESISTENZA PIOLI TIPO "NELSON"	37
6.3	COMB	INAZIONI DI CARICO	38
6.4	ANALI	SI MODALE	38
6.5	VERIF	CA DELL'IMPALCATO ACCIAIO-CLS	41
	6.5.1 Sc	ollecitazioni - SLU	41
	6.5.2 Ri	sultati dell'analisi	44
	6.5.3 Pi	oli	46
7.	ANALIS	I E VERIFICHE IN ESERCIZIO	48
7.1	VERIFI	CHE "A RESPIRO" DELLE ANIME	48
7.2	VERIF	CHE DI RESISTENZA PER LO STATO LIMITE DI FATICA	48
	7.2.1 Ri	sultati – SLF	54
7.3	ABBAS	SSAMENTI	61
8.	VERIFIC	CA ELEMENTI SECONDARI	63
8.1	TRAVE	RSI	63
	8.1.1 Ve	erifica SLU-SLV	63
	8.1.2 G	iunto flangiato	68
8.2	CONTR	ROVENTI A K	74
	8.2.1 Ve	erifica SLU-SLV	74
8.3	CONTR	ROVENTI DI FALDA	75
8.4	SOLET	TA	77
	8.4.1 Aı	nalisi dei carichi	78
	8.4.2 U	rto di veicolo in svio	90
8.5	VERIF	CA PREDALLE IN FASE DI GETTO	96
8.6	APPO	GGI E GIUNTI	102
9. (GIUDIZI	O MOTIVATO DI ACCETTABILITÀ	116

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE - SVINCOLO DI ARZANA DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

Pag. 3 di 117

Data: Agosto 2020

File: T00_VI07_STR_RE02_A

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A Data: Agosto 2020

Pag. 4 di 117

1. PREMESSA

La presente relazione ha per oggetto la variante della SS389 nel tratto tra Villagrande Strisaili e Arzana, a due corsie (categoria C ex DM 05.11.2001) per una lunghezza di circa 6 km. La variante si sviluppa nell'ambito del corridoio già interessato dalla statale esistente, e prevede la realizzazione di diversi viadotti, gallerie artificiali ed opere di sostegno, oltre a svincoli di allaccio alla statale esistente.

Nel presente elaborato sono riportati i calcoli statici e le verifiche di sicurezza dell'impalcato del viadotto VI07.

La sezione dell'impalcato, di lunghezza totale di 300.0 m circa su 5 campate con luci 60.0 + 60.0 + 60.0 + 60.0 m, è costituita da:

- quattro travi a doppio T, collegate, in corrispondenza degli appoggi, da traversi ad anima piena posti circa a metà altezza delle travi, in campata da controventi a "K", nelle prime due campate;
- tre travi a doppio T, collegate, in corrispondenza degli appoggi, da traversi ad anima piena posti circa a metà altezza delle travi, in campata da controventi a "K", nelle successive tre.

Le caratteristiche geometriche della sezione corrente sono riportate in

Figura 1.1-1.2.

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A

Data: Agosto 2020

Pag. 5 di 117

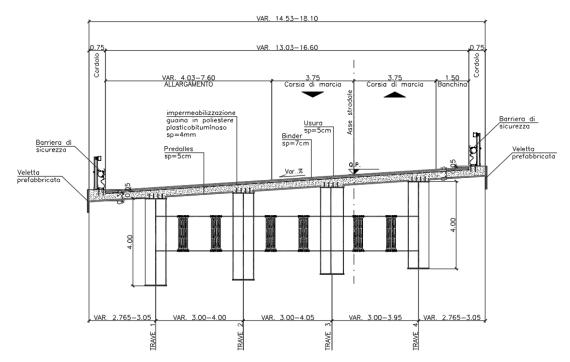


Figura 1.1 - Sezione trasversale dell'impalcato – 1° impalcato

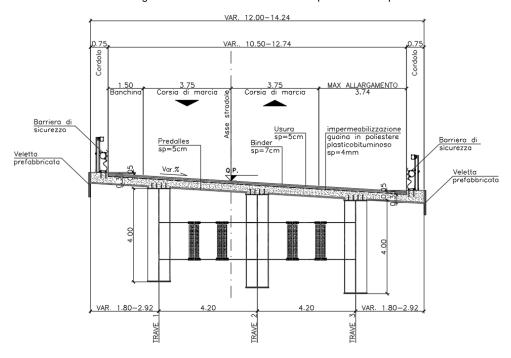


Figura 1.2 - Sezione trasversale dell'impalcato – 2° impalcato

L'impalcato n°1 ha una larghezza complessiva variabile tra 12,00 e 18,10m, così suddivisa:

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ
LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA
DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389
Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A
Data: Agosto 2020
Pag. 6 di 117

- due corsie di marcia da 3,75 m, due banchine da 1,50 m ed allargamento da 0-6,1 m che costituiscono la sede stradale;
- un cordolo da 0,75 m per l'alloggiamento della barriera di sicurezza;

Le travi metalliche sono ad altezza costante con valore pari a 4,0 m. Le travi sono collegate da traversi posizionati ad interasse costante di circa 5,0 m. L'interasse tra le travi è variabile da 3,0 a 4,00 m. Gli sbalzi laterali hanno lunghezza variabile di 1,50-3,05 m.

La soletta ha spessore costante di 35cm e verrà gettata su predalles autoportanti aventi spessore di 5 cm. La solidarizzazione della soletta alla trave metallica sarà garantita tramite connettori a piolo tipo Nelson.

L'impalcato n°2 ha una larghezza complessiva variabile tra 12,00 e 14,24m, così suddivisa:

- due corsie di marcia da 3,75 m, due banchine da 1,50 m ed allargamento da 0-2,24 m che costituiscono la sede stradale;
- un cordolo da 0,75 m per l'alloggiamento della barriera di sicurezza;

Le travi metalliche sono ad altezza costante con valore pari a 4,0 m. Le travi sono collegate da traversi posizionati ad interasse costante di circa 5,0 m. L'interasse tra le travi è costante pari a 4,20 m. Gli sbalzi laterali hanno lunghezza variabile di 1,80-2,92 m.

La soletta ha spessore costante di 35cm e verrà gettata su predalles autoportanti aventi spessore di 5 cm. La solidarizzazione della soletta alla trave metallica sarà garantita tramite connettori a piolo tipo Nelson.

Nella presente relazione si tratterà del secondo impalcato a 3 travi.

Viadotto VI07 - Relazione di calcolo impalcato 2

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ
LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA
DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389

File: T00_VI07_STR_RE02_A
Data: Agosto 2020
Pag. 7 di 117

2. RIFERIMENTI NORMATIVI

Le analisi delle azioni e le verifiche di sicurezza sono state condotte facendo riferimento alle seguenti normative:

- D.M. 17/01/2018 "Norme Tecniche per le Costruzioni";
- Circ. Min. Infrastrutture e Trasporti 21/01/2019, n. 7 "Istruzioni per l'applicazione delle «Norme tecniche per le costruzioni» di cui al decreto ministeriale 17 gennaio 2018";
- EN 1991-1-4:2005 Parte 1-4: Azioni del vento;
- EN 1993-1-5:2007 Parte 1-5: Elementi strutturali a lastra;
- EN 1993-2:2007 Parte 2: Ponti di acciaio;
- EN 1994-2:2006 Parte 2: Regole generali e regole per i ponti;
- UNI EN 206-1:2006 Parte 1: Calcestruzzo-Specificazione, prestazione, produzione e conformità;
- *UNI 11104: 2004*: Calcestruzzo-Specificazione, prestazione, produzione e conformità istruzioni complementari per l'applicazione della. EN 206-1.

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ
LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA
DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389
Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A Data: Agosto 2020

Pag. 8 di 117

3. CARATTERISTICHE DEI MATERIALI

3.1Conglomerati cementizi

SOLETTE:

SOLETTE:			
Classe di resistenza			. C32/40
Classe di esposizione			. XC4
Classe di resistenza:	C32/40		
Resistenza a compressione cubica caratteristica	R _{ck} =	40	N/mm²
Resistenza a compressione cilindrica caratteristica	$f_{ck} =$	33.2	N/mm²
Resistenza a compressione cilindrica media	$f_{cm} =$	41.2	N/mm²
Resistenza a trazione semplice	$f_{ctm} =$	3.10	N/mm²
Resistenza a trazione per flessione	$f_{ctm} =$	3.72	N/mm²
Modulo elastico secante medio	E _{cm} =	33643	N/mm²
Resistenza caratteristica a trazione semplice (5%)	$f_{ctk} =$	2.17	N/mm²
Resistenza caratteristica a trazione semplice (95%)	$f_{ctk} =$	4.03	N/mm²
Coefficiente di sicurezza SLU:	$\gamma_c =$	1.5	
Resistenza di calcolo a compressione cilindrica SLU:	$f_{cd} =$	18.8	N/mm²
Resistenza di calcolo a trazione semplice (5%) - SLU:	f _{ctd} =	1.45	N/mm ²
CORDOLI E VELETTE:			
Classe di resistenza			. C32/40
Classe di resistenzaClasse di esposizione			
Classe di esposizione			
Classe di esposizione Classe di resistenza:	C32/40	40	. XC4
Classe di esposizione Classe di resistenza: Resistenza a compressione cubica caratteristica	C32/40 R _{ck} =	40	. XC4 N/mm² N/mm²
Classe di esposizione Classe di resistenza: Resistenza a compressione cubica caratteristica Resistenza a compressione cilindrica caratteristica	C32/40 R _{ck} = f _{ck} = f _{cm} =	40 33.2	N/mm² N/mm² N/mm²
Classe di esposizione Classe di resistenza: Resistenza a compressione cubica caratteristica Resistenza a compressione cilindrica caratteristica Resistenza a compressione cilindrica media	C32/40 R _{ck} = f _{ck} = f _{cm} = f _{ctm} =	40 33.2 41.2	N/mm² N/mm² N/mm² N/mm²
Classe di esposizione Classe di resistenza: Resistenza a compressione cubica caratteristica Resistenza a compressione cilindrica caratteristica Resistenza a compressione cilindrica media Resistenza a trazione semplice	C32/40 R _{ck} = f _{ck} = f _{cm} = f _{ctm} =	40 33.2 41.2 3.10	N/mm² N/mm² N/mm² N/mm² N/mm²
Classe di esposizione Classe di resistenza: Resistenza a compressione cubica caratteristica Resistenza a compressione cilindrica caratteristica Resistenza a compressione cilindrica media Resistenza a trazione semplice Resistenza a trazione per flessione	C32/40 R _{ck} = f _{ck} = f _{cm} = f _{ctm} = f _{ctm} =	40 33.2 41.2 3.10 3.72	N/mm² N/mm² N/mm² N/mm² N/mm²
Classe di esposizione Classe di resistenza: Resistenza a compressione cubica caratteristica Resistenza a compressione cilindrica caratteristica Resistenza a compressione cilindrica media Resistenza a trazione semplice Resistenza a trazione per flessione Modulo elastico secante medio	C32/40 R _{ck} = f _{ck} = f _{cm} = f _{ctm} = f _{ctm} = E _{cm} =	40 33.2 41.2 3.10 3.72 33643	N/mm² N/mm² N/mm² N/mm² N/mm² N/mm²
Classe di esposizione Classe di resistenza: Resistenza a compressione cubica caratteristica Resistenza a compressione cilindrica caratteristica Resistenza a compressione cilindrica media Resistenza a trazione semplice Resistenza a trazione per flessione Modulo elastico secante medio Resistenza caratteristica a trazione semplice (5%)	C32/40 R _{ck} = f _{ck} = f _{cm} = f _{ctm} = f _{ctm} = E _{cm} = f _{ctk} =	40 33.2 41.2 3.10 3.72 33643 2.17 4.03	N/mm² N/mm² N/mm² N/mm²
Classe di esposizione Classe di resistenza: Resistenza a compressione cubica caratteristica Resistenza a compressione cilindrica caratteristica Resistenza a compressione cilindrica media Resistenza a trazione semplice Resistenza a trazione per flessione Modulo elastico secante medio Resistenza caratteristica a trazione semplice (5%) Resistenza caratteristica a trazione semplice (95%)	$C32/40$ $R_{ck} = f_{ck} = f_{cm} = f_{ctm} = f_{ctm} = E_{cm} = f_{ctk} = f_{ctk} = r_{ct} = r_{ct}$	40 33.2 41.2 3.10 3.72 33643 2.17 4.03	N/mm² N/mm² N/mm² N/mm² N/mm² N/mm² N/mm²
Classe di esposizione Classe di resistenza: Resistenza a compressione cubica caratteristica Resistenza a compressione cilindrica caratteristica Resistenza a compressione cilindrica media Resistenza a trazione semplice Resistenza a trazione per flessione Modulo elastico secante medio Resistenza caratteristica a trazione semplice (5%) Resistenza caratteristica a trazione semplice (95%) Coefficiente di sicurezza SLU:	$C32/40$ $R_{ck} = f_{ck} = f_{cm} = f_{ctm} = f_{ctm} = f_{ctk} = f_{ctk} = f_{ctk} = f_{cd} = f_{cd$	40 33.2 41.2 3.10 3.72 33643 2.17 4.03 1.5	N/mm² N/mm² N/mm² N/mm² N/mm² N/mm² N/mm² N/mm²
Classe di resistenza: Resistenza a compressione cubica caratteristica Resistenza a compressione cilindrica caratteristica Resistenza a compressione cilindrica media Resistenza a trazione semplice Resistenza a trazione per flessione Modulo elastico secante medio Resistenza caratteristica a trazione semplice (5%) Resistenza caratteristica a trazione semplice (95%) Coefficiente di sicurezza SLU: Resistenza di calcolo a compressione cilindrica SLU:	$C32/40$ $R_{ck} = f_{ck} = f_{cm} = f_{ctm} = f_{ctm} = f_{ctk} = f_{ctk} = f_{ctk} = f_{cd} = f_{cd$	40 33.2 41.2 3.10 3.72 33643 2.17 4.03 1.5 18.8	N/mm² N/mm² N/mm² N/mm² N/mm² N/mm² N/mm² N/mm²
Classe di resistenza: Resistenza a compressione cubica caratteristica Resistenza a compressione cilindrica caratteristica Resistenza a compressione cilindrica media Resistenza a trazione semplice Resistenza a trazione per flessione Modulo elastico secante medio Resistenza caratteristica a trazione semplice (5%) Resistenza caratteristica a trazione semplice (95%) Coefficiente di sicurezza SLU: Resistenza di calcolo a compressione cilindrica SLU: Resistenza di calcolo a trazione semplice (5%) - SLU:	$C32/40$ $R_{ck} = f_{ck} = f_{cm} = f_{ctm} = f_{ctm} = f_{ctk} = f_{ctk} = f_{ctk} = f_{cd} = f_{ctd} =$	40 33.2 41.2 3.10 3.72 33643 2.17 4.03 1.5 18.8 1.45	N/mm² N/mm² N/mm² N/mm² N/mm² N/mm² N/mm² N/mm²

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2 File: T00_VI07_STR_RE02_A Data: Agosto 2020

Pag. 9 di 117

Classe di resistenza:	C40/50		
Resistenza a compressione cubica caratteristica	R _{ck} =	50	N/mm ²
Resistenza a compressione cilindrica caratteristica	f _{ck} =	41.5	N/mm ²
Resistenza a compressione cilindrica media	$f_{cm} =$	49.5	N/mm ²
Resistenza a trazione semplice	$f_{ctm} =$	3.60	N/mm ²
Resistenza a trazione per flessione	$f_{ctm} =$	4.32	N/mm ²
Modulo elastico secante medio	E _{cm} =	35547	N/mm ²
Resistenza caratteristica a trazione semplice (5%)	$f_{ctk} =$	2.52	N/mm ²
Resistenza caratteristica a trazione semplice (95%)	$f_{ctk} =$	4.67	N/mm ²
Coefficiente di sicurezza SLU:	$\gamma_c =$	1.5	
Resistenza di calcolo a compressione cilindrica SLU:	$f_{cd} =$	23.5	N/mm ²
Resistenza di calcolo a trazione semplice (5%) - SLU:	$f_{ctd} =$	1.68	N/mm ²

VALORI MINIMI DEL COPRIFERRO PER LE ARMATURE

•	Predalle	. 35 r	nm
•	Solette	. 40 r	nm
•	Marciapiedi e cordoli	. 40 r	nm

3.2 Acciaio ad aderenza migliorata

Le armature da porre in opera non dovranno presentare tracce di ossidazione, corrosione e di qualsiasi altra sostanza che possa ridurne l'aderenza al conglomerato; dovranno inoltre presentare sezione integra e priva di qualsiasi difetto.

Si utilizzeranno barre ad aderenza migliorata tipo B 450 C controllato in stabilimento conforme alle UNI EN ISO 15360-1:2004 (accertamento proprietà meccaniche), aventi le seguenti caratteristiche:

•	tensione caratteristica di snervamento	$f_{sk} \ge f_{y,nom} = 450 \text{ MPa}$
•	tensione caratteristica di rottura	$f_{tk} \ge f_{t,nom} 540 \text{ MPa}$
•	allungamento percentuale	$A_{gt,k} \geq 7,5 \%$
•	modulo elastico	$E_s = 210.000 \text{ MPa}$

3.3 Acciaio da carpenteria

La carpenteria metallica sarà realizzata in acciaio tipo "CORTEN"

- tipo S355J2W+N UNI EN 10025-5 per spessori ≤ 40 mm.
- tipo S355K2W+N UNI EN 10025-5 per spessori > 40 mm.

Entrambi gli acciai devono essere conformi alle prescrizioni del D.M. 17.1.2018 e presentare le seguenti caratteristiche:

tensione di rottura a trazione
 f_t ≥ 510 MPa

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 10 di 117

tensione di snervamento
 f_v ≥ 355 MPa

allungamento (lamiere) ε_t ≥ 21%

modulo elastico
 E a = 210.000 MPa

Classe di esecuzione EXC3 secondo UNI EN 1090-2:

Table C.1 - Choice of execution class (EXC)								
Reliability Class (RC) or Consequences Class (CC)	Type of I	oading						
	Static, quasi-static or seismic DCL ^a	Fatigue ^b or seismic DCM or DCH ^a						
RC3 or CC3	EXC3 ^c	EXC3 ^c						
RC2 or CC2	EXC2	EXC3						
RC1 or CC1	EXC1	EXC2						
^a Seismic ductility classes are defined in EN 1998-1: Low=DCL; Medium=DCM; High=DCH.								

^b See EN 1993-1-9.

Tutte le giunzioni per l'assemblaggio dei conci delle travi portanti, sia quelle da eseguire in officina che quelle in cantiere, saranno di tipo saldato a completa penetrazione.

I traversi intermedi di pila e di spalla saranno collegati alle travi principali attraverso giunzioni bullonate ad attrito.

3.4 Controventi

Le aste del controvento orizzontale ed i relativi elementi di collegamento saranno realizzati in acciaio tipo S355J0W+N - UNI EN 10025-5, conforme alle prescrizioni del D.M. 17.1.2018, ovvero con le seguenti caratteristiche:

tensione di rottura a trazione f_t ≥ 510 MPa
 tensione di snervamento f_y ≥ 355 MPa
 allungamento (lamiere) ε_t ≥ 21%

modulo elastico
 E a = 210.000 MPa

3.5 Bulloni ad alta resistenza

Le giunzioni bullonate saranno realizzate con bulloni ad alta resistenza per giunzioni ad attrito conformi alle specifiche contenute nelle UNI EN 14399:

vite classe 10.9
dado classe 10
rosette classe C50

I bulloni dovranno essere montati con una rosetta sotto la testa della vite e una rosetta sotto il dado, inoltre dovranno essere contrassegnati con le indicazioni del produttore, la classe di resistenza e la marcatura C.E.

I bulloni disposti verticalmente avranno la testa della vite rivolta verso l'alto e il dado verso il basso.

^c EXC4 may be specify for structures with extreme consequences of structural failure.

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2 File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 11 di 117

3.5.1 Coppia di Serraggio dei Bulloni

I bulloni ad alta resistenza della classe 10.9, precaricati con serraggio controllato, per giunzioni ad attrito devono essere conformi alla norma armonizzata UNI EN 13499-1 e recare la marchiatura CE. Al p.to 4.3 la norma armonizzata UNI EN 13499-1 prescrive che viti, dadi e rondelle siano forniti dal medesimo produttore.

La coppia di serraggio per i bulloni delle giunzioni ad attrito è quella indicata sulle targhette confezioni dei bulloni.

Nel caso che la coppia di serraggio non sia riportata sulle targhette delle confezioni, ma compaia il solo fattore k secondo la classe funzionale, la coppia di serraggio è pari a:

$$M = k \cdot d \cdot_{Fp,C} = k \cdot d \cdot 0.7 \cdot A_{res} \cdot f_{tb}$$

dove:

- d è il diametro nominale della vite:
- A_{res} è l'area resistente della vite;
- f_{tb} è la resistenza a ultima a trazione del bullone.

Nella tabella seguente, riportata al p.to C4.2.8.1.1.1 delle Istruzioni per l'applicazione delle NTC 2018 (Circolare n. 7 /19), sono contenuti i valori della coppia di serraggio al variare del valore di k per diversi diametri dei bulloni.

Tabella C4.2.XXI Coppie di serraggio per bulloni 10.9

VITE	k=0.10	k=0.12	k=0.14	k=0.16	k=0.18	k=0.20	k=0.22	$F_{p,C}[kN]$	$A_{res} [mm^2]$
M12	70.8	85.0	99.1	113	128	142	156	59.0	84.3
M14	113	135	158	180	203	225	248	80.5	115
M16	176	211	246	281	317	352	387	110	157
M18	242	290	339	387	435	484	532	134	192
M20	343	412	480	549	617	686	755	172	245
M22	467	560	653	747	840	933	1027	212	303
M24	593	712	830	949	1067	1186	1305	247	353
M27	868	1041	1215	1388	1562	1735	1909	321	459
M30	1178	1414	1649	1885	2121	2356	2592	393	561
M36	2059	2471	2882	3294	3706	4118	4529	572	817

3.6 Pioli con testa tipo "nelson"

Acciaio tipo S235J2+C450 secondo EN ISO 13918 avente le seguenti caratteristiche meccaniche:

tensione di snervamento

 $f_{vk} \ge 350 \text{ Mpa}$

tensione di rottura a trazione

f_u ≥ 450 Mpa

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ
LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA
DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389
Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A Data: Agosto 2020

Pag. 12 di 117

3.7 Saldature

Procedimenti di saldatura omologati e qualificati secondo D.M. 17.01.2018.

Tutte le giunzioni per l'unione dei conci delle travi principali saranno eseguite con saldature testa a testa a completa penetrazione.

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2 File: T00_VI07_STR_RE02_A

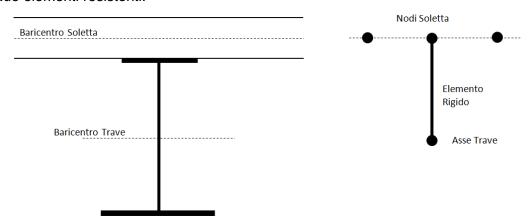
Data: Agosto 2020 Pag. 13 di 117

4. CRITERI DI CALCOLO

4.1 Codici di calcolo

Tutti i codici di calcolo automatico per l'analisi e la verifica delle strutture sono di sicura ed accertata validità e sono stati impiegati conformemente alle loro caratteristiche.

SAP2000


Codice di calcolo strutturale agli elementi finiti commercializzato dalla CSI Italia Srl e realizzato dall'università di Berkeley negli USA. Consente il calcolo di strutture spaziali composte da elementi mono- e/o bi-dimensionali anche con non linearità di materiale o con effetti dinamici. (Licenza 641d393f-9df6-4397-95c7-96796027e51c)

RC-SEC 2020

Le verifiche delle sezioni in c.a. sono state condotte per mezzo del software RC-SEC2020 sviluppato dalla Geostru

4.2 Metodologia di analisi

La struttura è rappresentata da un modello tridimensionale, in cui si sono considerati tutti gli elementi strutturali opportunamente modellati. Il comportamento della soletta di calcestruzzo, per la diffusione dei carichi applicati, è stato considerato con degli elementi shell e le travi sono state schematizzate tramite elementi frame. Le connessioni, invece, tra i nodi delle travi con quelli della soletta vengono rappresentate mediante link rigidi per permettere il trasferimento degli sforzi tra i due elementi resistenti.

I controventi sono stati considerati incernierati alle estremità, le aste dei trasversi incastrate alle estremità. Infine per tener conto degli effetti a lungo termine dovuti alla viscosità, si è ridotto il modulo elastico del calcestruzzo per un fattore proporzionale al coefficiente di viscosità, ovvero (1+φ).

L'analisi delle sollecitazioni nelle diverse fasi è stata condotta su 3 modelli FEM, aventi in comune la geometria e i vincoli a terra. Le azioni, le caratteristiche geometriche delle sezioni nonché gli eventuali spostamenti ai vincoli imposti, sono stati assegnati ai diversi modelli in funzione delle fasi di analisi considerate, con riferimento a quanto esposto al § 5.2.

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 14 di 117

Tutti i modelli di analisi hanno in comune il fatto che sono grigliati di travi, cioè:

- le travi principali (con, eventualmente, la soletta collaborante in cls) sono modellate come travi (elementi finiti tipo "beam") continue;
- gli elementi secondari "controventi" sono modellati come bielle (solo sforzo assiale) e sono presenti in tutti i modelli di analisi, i trasversi sono modellati come travi (elementi finiti tipo "beam").
- la soletta è presente, a partire dal momento in cui è efficace (dopo l'indurimento), solo come elemento di ripartizione dei carichi, sotto forma di strisce trasversali di travi.

Nell'analisi strutturale si tiene conto delle fasi transitorie e di esercizio e si opera con i seguenti modelli:

Modello 1: Varo delle travi e getto della soletta collaborante. La sezione reagente è costituita dalla sola struttura metallica mentre i carichi agenti sono il peso proprio della struttura, quello della soletta in calcestruzzo e delle lastre predalles. I moduli elastici utilizzati sono: per l'acciaio E_a =210000 MPa e E_c =0 MPa

Modello 2: Azione dei carichi permanenti portati. La struttura reagente è costituita da trave composta acciaio-calcestruzzo omogeneizzata con il coefficiente n_g = 17.19. I carichi agenti in questa fase sono i carichi permanenti portati ossia: pavimentazione, marciapiede, guard-rail, parapetto e veletta ed il ritiro. I moduli elastici utilizzati sono: per l'acciaio E_a =210000 MPa e per il calcestruzzo E_c = E_a/n_g = 12844.8 MPa.

Modello 3: Azioni di breve durata quali carichi da traffico, temperatura, vento e azione sismica. La sezione reagente è la trave acciaio-calcestruzzo con coefficiente di omogeneizzazione n_0 =6.242. I moduli elastici utilizzati sono: per l'acciaio E_a =210000 MPa e per il calcestruzzo E_c = E_a/n_0 =33643 MPa.

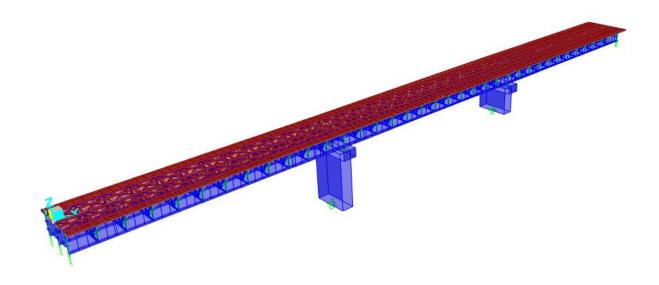


Figura 4.1 -. Modello di FEM

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2 File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 15 di 117

4.2.1.1 Larghezza collaborante della soletta

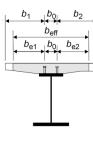
La valutazione della larghezza collaborante della soletta, sia in fase di modellazione che in fase di verifica, è effettuata con riferimento alle indicazioni del punto 4.3.2.3 del DM 2018.

La larghezza collaborante b_{eff} si ottiene come somma delle due aliquote b_{e1} e b_{e2} ai due lati dell'asse della trave e della larghezza b_0 impegnata direttamente dai connettori:

$$b_{eff} = b_{e1} + b_{e2} + b_0$$

dove b_0 è la distanza tra gli assi dei connettori e le aliquote b_{e1} e b_{e2} (b_{ei} ; i=1,2), che costituiscono il valore della larghezza collaborante da ciascun lato della sezione composta, si assumono pari a:

$$b_{ei} = \min \left[\frac{L_e}{8}; b_i - \frac{b_0}{2} \right].$$


Il valore di L_e nelle travi semplicemente appoggiate coincide con la luce della trave; nelle travi continue L_e è la distanza indicata in Figura 4.2.

Negli appoggi d'estremità la determinazione della larghezza collaborante b_{eff} si ottiene con la formula:

$$b_{eff} = \beta_1 b_{e1} + \beta_2 b_{e2} + b_0$$

dove
$$\beta_i = \left(0.55 + 0.025 \frac{L_e}{b_{ei}}\right)$$
.

Legenda:

- 1 $L_{\rm e}$ = 0,85 $L_{\rm 1}$ for $b_{\rm eff,1}$
- 2 $L_e = 0.25(L_1 + L_2)$ for b_{eff} .
- 3 $L_{\rm e}$ = 0,70 $L_{\rm 2}$ for $b_{\rm eff.1}$
- 4 L_e = 2 L_3 for $b_{eff.2}$

Figura 4.2 – Luci equivalenti (Le) per il calcolo della larghezza efficace della soletta per travi continue

4.2.2 Statica trasversale

Il calcolo della soletta è stato effettuato mediante analisi agli elementi finiti.

Per le caratteristiche delle sollecitazioni e i particolari delle verifiche effettuate sulla soletta si rimanda al paragrafo dedicato.

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ
LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2 File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 16 di 117

CRITERI DI VERIFICA

5.1 Premessa

L'analisi delle azioni agenti e le verifiche vengono eseguite sulla base di una suddivisione del comportamento dell'impalcato in tre macro-fasi, corrispondenti al grado di maturazione del getto di calcestruzzo e, quindi, ai diversi livelli di rigidezza e caratteristiche statiche delle sezioni.

FASE 1: Considera il peso proprio della struttura metallica, delle lastre prefabbricate e del getto della soletta che, in questa fase, è ancora inerte. La sezione resistente corrisponde alla sola parte metallica.

FASE 2: Ai successivi carichi permanenti applicati alla struttura (ritiro, pavimentazione, barriere, ecc.) corrisponde invece una sezione resistente mista acciaio-calcestruzzo. Per tenere in considerazione i fenomeni "lenti" che accompagnano questa fase (viscosità e ritiro) si adotta, per il calcestruzzo, un valore del modulo elastico effettivo in accordo con § 5.4.2.2 della norma [27].

FASE 3: Corrisponde al transito dei carichi da traffico stradale e alle azioni variabili (vento, variazioni termiche, etc.). La sezione resistente acciaio-calcestruzzo viene calcolata considerando il rapporto tra i moduli elastici effettivi dei due materiali (per il cls si assume il modulo elastico medio a 28 gg).

5.2 Verifiche considerate

Il quadro normativo di cui al § 3 prevede le verifiche sotto riportate.

5.2.1 Verifiche agli SLU

Agli Stati Limite Ultimi sono condotte le verifiche:

- a) di resistenza globale della sezione composta (stato limite elastico) con riferimento alle tensioni normali e tangenziali sugli elementi della trave metallica e sulle fibre della soletta c.a, tenendo conto delle instabilità locali per compressione e taglio di anima e piattabande (sez. di classe 4 con irrigidimenti longitudinali e trasversali) e delle armature longitudinali presenti nella larghezza collaborante
- b) di resistenza della connessione tra travi e soletta, con riferimento alle caratteristiche resistenti dei connettori, delle armature e del calcestruzzo

5.2.2 Verifiche agli SLE

Agli Stati Limite di Esercizio sono condotte le verifiche:

- c) Abbassamenti
- d) di web-breathing limitazione dello sfogo dell'anima (SLE F).

5.2.3 Verifiche allo SLF

Allo Stato Limite di Fatica sono condotte le verifiche:

- e) Verifica a vita illimitata dei giunti saldati a completa penetrazione longitudinali
- f) Verifica dei pioli a danneggiamento equivalente

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 17 di 117

5.3 Proprietà delle sezioni resistenti

TABLE: SteellCompUltimate-Prop											
Station	Location	Girder	WSlabEff	ThFlgTop	WdthFlgTop	ThFlgBot	WdthFlgBot	DepthWeb	ThickWeb		
m	Text	Text	m	m	m	m	m	m	m		
0.0	After	Girder	3.9	0.02	0.8	0.02	0.8	3.96	0.02		
1.7	Before	Girder	3.9	0.02	0.8	0.02	0.8	3.96	0.02		
1.7	After	Girder	3.9	0.02	0.8	0.02	0.8	3.96	0.02		
3.3	Before	Girder	3.9	0.02	0.8	0.02	0.8	3.96	0.02		
3.3	After	Girder	3.9	0.02	0.8	0.02	0.8	3.96	0.02		
5.0	Before	Girder	3.9	0.02	0.8	0.02	0.8	3.96	0.02		
5.0	After	Girder	3.9	0.02	0.8	0.02	0.8	3.96	0.02		
6.7	Before	Girder	3.9	0.02	0.8	0.02	0.8	3.96	0.02		
6.7	After	Girder	3.9	0.02	0.8	0.02	0.8	3.96	0.02		
8.3	Before	Girder	3.9	0.02	0.8	0.02	0.8	3.96	0.018		
8.3	After	Girder	3.9	0.02	0.8	0.02	0.8	3.96	0.018		
10.0	Before	Girder	3.9	0.02	0.8	0.02	0.8	3.96	0.018		

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 18 di 117

10.0	After	Girder	3.9	0.02	0.8	0.02	0.8	3.96	0.018
11.7	Before	Girder	3.9	0.02	0.8	0.02	8.0	3.96	0.018
11.7	After	Girder	3.9	0.02	0.8	0.02	0.8	3.96	0.018
13.3	Before	Girder	3.9	0.02	0.8	0.02	0.8	3.96	0.018
13.3	After	Girder	3.9	0.02	0.8	0.02	0.8	3.96	0.018
15.0	Before	Girder	3.9	0.02	0.8	0.02	0.8	3.96	0.018
15.0	After	Girder	3.9	0.02	0.8	0.02	0.8	3.96	0.018
16.7	Before	Girder	3.9	0.02	0.8	0.02	0.8	3.96	0.018
16.7	After	Girder	3.9	0.02	0.8	0.02	0.8	3.96	0.018
18.3	Before	Girder	3.9	0.02	0.8	0.02	0.8	3.96	0.018
18.3	After	Girder	3.9	0.02	0.8	0.02	0.8	3.96	0.018
20.0	Before	Girder	3.9	0.02	0.8	0.02	0.8	3.96	0.018
20.0	After	Girder	3.9	0.02	0.8	0.02	0.8	3.96	0.018
21.7	Before	Girder	3.9	0.02	0.8	0.02	0.8	3.96	0.018
21.7	After	Girder	3.9	0.02	0.8	0.02	0.8	3.96	0.018
23.3	Before	Girder	3.9	0.02	0.8	0.02	0.8	3.96	0.018
23.3	After	Girder	3.9	0.02	0.8	0.02	0.8	3.96	0.018
25.0	Before	Girder	4.0	0.02	0.8	0.02	0.8	3.96	0.018
25.0	After	Girder	4.0	0.02	0.8	0.02	0.8	3.96	0.018
26.7	Before	Girder	4.0	0.02	0.8	0.02	0.8	3.96	0.018
26.7	After	Girder	4.0	0.02	0.8	0.02	0.8	3.96	0.018
28.3	Before	Girder	4.0	0.02	0.8	0.02	0.8	3.96	0.018
28.3	After	Girder	4.0	0.02	0.8	0.02	0.8	3.96	0.018
30.0	Before	Girder	4.0	0.02	0.8	0.02	0.8	3.96	0.018
30.0	After	Girder	4.0	0.02	0.8	0.02	0.8	3.96	0.018
31.7	Before	Girder	4.0	0.02	0.8	0.02	0.8	3.96	0.018
31.7	After	Girder	4.0	0.02	0.8	0.02	0.8	3.96	0.018
33.3	Before		4.0	0.02	0.8	0.02	0.8	3.96	0.018
33.3	After	Girder	4.0	0.02	0.8	0.02	0.8	3.96	0.018
		Girder							
35.0	Before	Girder	4.0	0.02	0.8	0.02	0.8	3.96	0.018
35.0	After	Girder	4.0	0.02	0.8	0.02	0.8	3.96	0.018
36.7	Before	Girder	4.0	0.02	0.8	0.02	0.8	3.96	0.018
36.7	After	Girder	4.0	0.02	0.8	0.02	0.8	3.96	0.018
38.3	Before	Girder	4.0	0.02	0.8	0.02	0.8	3.96	0.018
38.3	After	Girder	4.0	0.02	0.8	0.02	0.8	3.96	0.018
40.0	Before	Girder	4.0	0.02	0.8	0.02	0.8	3.96	0.018
40.0	After	Girder	4.0	0.02	0.8	0.02	0.8	3.96	0.018
41.7	Before	Girder	4.0	0.02	0.8	0.02	0.8	3.96	0.018
41.7	After	Girder	4.0	0.02	0.8	0.02	0.8	3.96	0.018
43.3	Before	Girder	4.0	0.02	0.8	0.02	0.8	3.96	0.018
43.3	After	Girder	4.0	0.02	0.8	0.02	0.8	3.96	0.018
45.0	Before	Girder	4.0	0.02	0.8	0.02	0.8	3.96	0.018
45.0	After	Girder	4.0	0.02	0.8	0.02	8.0	3.96	0.018
46.7	Before	Girder	4.0	0.03	1	0.04	1	3.93	0.02
46.7	After	Girder	4.0	0.03	1	0.04	1	3.93	0.02
48.3	Before	Girder	4.0	0.03	1	0.04	1	3.93	0.02
48.3	After	Girder	4.0	0.03	1	0.04	1	3.93	0.02
50.0	Before	Girder	4.0	0.03	1	0.04	1	3.93	0.02
50.0	After	Girder	4.0	0.03	1	0.04	1	3.93	0.02
51.7	Before	Girder	4.0	0.03	1	0.04	1	3.93	0.02
51.7	After	Girder	4.0	0.03	1	0.04	1	3.93	0.02
53.3	Before	Girder	4.0	0.03	1	0.04	1	3.93	0.02
53.3	After	Girder	4.0	0.03	1	0.04	1	3.93	0.02
55.0	Before	Girder	4.0	0.04	1	0.07	1	3.89	0.022
55.0	After	Girder	4.0	0.04	1	0.07	1	3.89	0.022
56.7	Before	Girder	4.0	0.04	1	0.07	1	3.89	0.022

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 19 di 117

56.7	After	Girder	4.0	0.04	1	0.07	1	3.89	0.022
58.3	Before	Girder	4.0	0.04	1	0.07	1	3.89	0.022
58.3	After	Girder	4.0	0.04	1	0.07	1	3.89	0.022
60.0	Before	Girder	4.0	0.04	1	0.07	1	3.89	0.022
60.0	After	Girder	4.0	0.04	1	0.07	1	3.89	0.022
61.7	Before	Girder	4.0	0.04	1	0.07	1	3.89	0.022
61.7	After	Girder	4.0	0.04	1	0.07	1	3.89	0.022
63.3	Before	Girder	4.1	0.04	1	0.07	1	3.89	0.022
63.3	After	Girder	4.1	0.04	1	0.07	1	3.89	0.022
65.0	Before	Girder	4.1	0.04	1	0.07	1	3.89	0.022
65.0	After	Girder	4.1	0.04	1	0.07	1	3.89	0.022
66.7	Before	Girder	4.1	0.03	1	0.04	1	3.93	0.02
66.7	After	Girder	4.1	0.03	1	0.04	1	3.93	0.02
68.3	Before	Girder	4.1	0.03	1	0.04	1	3.93	0.02
68.3	After	Girder	4.1	0.03	1	0.04	1	3.93	0.02
70.0	Before	Girder	4.2	0.03	1	0.04	1	3.93	0.02
70.0	After	Girder	4.2	0.03	1	0.04	1	3.93	0.02
71.7	Before	Girder	4.2	0.03	1	0.04	1	3.93	0.02
71.7	After Before	Girder	4.2	0.03	1	0.04	1	3.93	0.02
73.3		Girder	4.2	0.03	1	0.04	1	3.93	0.02
73.3 75.0	After	Girder	4.2 4.2	0.03	1 0.8	0.04	1	3.93	0.02
75.0 75.0	Before After	Girder Girder	4.2 4.2	0.02 0.02	0.8	0.03 0.03	0.8 0.8	3.95 3.95	0.018 0.018
75.0 76.7	Before	Girder	4.2	0.02	0.8	0.03	0.8	3.95 3.95	0.018
76.7 76.7	After	Girder	4.3 4.3	0.02	0.8	0.03	0.8	3.95	0.018
78.3	Before	Girder	4.3	0.02	0.8	0.03	0.8	3.95	0.018
78.3 78.3	After	Girder	4.3	0.02	0.8	0.03	0.8	3.95	0.018
80.0	Before	Girder	4.3	0.02	0.8	0.03	0.8	3.95	0.018
80.0	After	Girder	4.3	0.02	0.8	0.03	0.8	3.95	0.018
81.7	Before	Girder	4.3	0.02	0.8	0.03	0.8	3.95	0.018
81.7	After	Girder	4.3	0.02	0.8	0.03	0.8	3.95	0.018
83.3	Before	Girder	4.4	0.02	0.8	0.03	0.8	3.95	0.018
83.3	After	Girder	4.4	0.02	0.8	0.03	0.8	3.95	0.018
85.0	Before	Girder	4.4	0.02	0.8	0.03	0.8	3.95	0.018
85.0	After	Girder	4.4	0.02	0.8	0.03	0.8	3.95	0.018
86.7	Before	Girder	4.4	0.02	0.8	0.03	0.8	3.95	0.018
86.7	After	Girder	4.4	0.02	0.8	0.03	0.8	3.95	0.018
88.3	Before	Girder	4.4	0.02	0.8	0.03	0.8	3.95	0.018
88.3	After	Girder	4.4	0.02	0.8	0.03	0.8	3.95	0.018
90.0	Before	Girder	4.5	0.02	0.8	0.03	0.8	3.95	0.018
90.0	After	Girder	4.5	0.02	0.8	0.03	0.8	3.95	0.018
91.7	Before	Girder	4.5	0.02	0.8	0.03	0.8	3.95	0.018
91.7	After	Girder	4.5	0.02	0.8	0.03	0.8	3.95	0.018
93.3	Before	Girder	4.5	0.02	0.8	0.03	0.8	3.95	0.018
93.3	After	Girder	4.5	0.02	0.8	0.03	0.8	3.95	0.018
95.0	Before	Girder	4.5	0.02	0.8	0.03	0.8	3.95	0.018
95.0	After	Girder	4.5	0.02	0.8	0.03	0.8	3.95	0.018
96.7	Before	Girder	4.6	0.02	0.8	0.03	0.8	3.95	0.018
96.7	After	Girder	4.6	0.02	0.8	0.03	0.8	3.95	0.018
98.3	Before	Girder	4.6	0.02	0.8	0.03	0.8	3.95	0.018
98.3	After	Girder	4.6	0.02	0.8	0.03	0.8	3.95	0.018
100.0	Before	Girder	4.6	0.02	0.8	0.03	0.8	3.95	0.018
100.0	After	Girder	4.6	0.02	0.8	0.03	0.8	3.95	0.018
101.7	Before	Girder	4.6	0.02	0.8	0.03	0.8	3.95	0.018
101.7	After	Girder	4.6	0.02	0.8	0.03	0.8	3.95	0.018
103.3	Before	Girder	4.7	0.02	0.8	0.03	0.8	3.95	0.018

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2 File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 20 di 117

103.3	After	Girder	4.7	0.02	0.8	0.03	0.8	3.95	0.018
105.0	Before	Girder	4.7	0.02	0.8	0.03	0.8	3.95	0.018
105.0	After	Girder	4.7	0.02	0.8	0.03	0.8	3.95	0.018
106.7	Before	Girder	4.7	0.03	1	0.04	1	3.93	0.02
106.7	After	Girder	4.7	0.03	1	0.04	1	3.93	0.02
108.3	Before	Girder	4.7	0.03	1	0.04	1	3.93	0.02
108.3	After	Girder	4.7	0.03	1	0.04	1	3.93	0.02
110.0	Before	Girder	4.8	0.03	1	0.04	1	3.93	0.02
110.0	After	Girder	4.8	0.03	1	0.04	1	3.93	0.02
111.7	Before	Girder	4.8	0.03	1	0.04	1	3.93	0.02
111.7	After	Girder	4.8	0.03	1	0.04	1	3.93	0.02
113.3	Before	Girder	4.8	0.03	1	0.04	1	3.93	0.02
113.3	After	Girder	4.8	0.03	1	0.04	1	3.93	0.02
115.0	Before	Girder	4.8	0.04	1	0.07	1	3.89	0.022
115.0	After	Girder	4.8	0.04	1	0.07	1	3.89	0.022
116.7	Before	Girder	4.9	0.04	1	0.07	1	3.89	0.022
116.7	After	Girder	4.9	0.04	1	0.07	1	3.89	0.022
118.3	Before	Girder	4.9	0.04	1	0.07	1	3.89	0.022
118.3	After	Girder	4.9	0.04	1	0.07	1	3.89	0.022
120.0	Before	Girder	4.9	0.04	1	0.07	1	3.89	0.022
120.0	After	Girder	4.9	0.04	1	0.07	1	3.89	0.022
121.7	Before	Girder	4.9	0.04	1	0.07	1	3.89	0.022
121.7	After	Girder	4.9	0.04	1	0.07	1	3.89	0.022
123.3	Before	Girder	4.9	0.04	1	0.07	1	3.89	0.022
123.3	After	Girder	4.9	0.04	1	0.07	1	3.89	0.022
125.0	Before	Girder	4.9	0.04	1	0.07	1	3.89	0.022
125.0	After	Girder	4.9	0.04	1	0.07	1	3.89	0.022
126.7	Before	Girder	4.9	0.04	1	0.07	1	3.93	0.022
126.7	After	Girder	4.9	0.03	1	0.04	1	3.93	0.02
128.3	Before	Girder	4.9	0.03	1	0.04	1	3.93	0.02
128.3	After	Girder	4.9	0.03	1	0.04	1	3.93	0.02
130.0	Before	Girder	4.9	0.03	1	0.04	1	3.93	0.02
130.0	After	Girder	4.9 4.9	0.03	1	0.04	1	3.93	0.02
131.7	Before	Girder	4.9	0.03	1	0.04	1	3.93	0.02
									0.02
131.7	After	Girder	4.9	0.03	1	0.04	1	3.93	0.02
133.3	Before	Girder	4.9	0.03	1 1	0.04	1	3.93	
133.3	After	Girder	4.9	0.03		0.04	1	3.93	0.02
135.0	Before	Girder	4.9	0.02	0.8	0.02	0.8	3.96	0.018
135.0	After	Girder	4.9	0.02	0.8	0.02	0.8	3.96	0.018
136.7	Before	Girder	4.9	0.02	0.8	0.02	0.8	3.96	0.018
136.7	After	Girder	4.9	0.02	0.8	0.02	0.8	3.96	0.018
138.3	Before	Girder	4.9	0.02	0.8	0.02	0.8	3.96	0.018
138.3	After	Girder	4.9	0.02	0.8	0.02	0.8	3.96	0.018
140.0	Before	Girder	4.9	0.02	0.8	0.02	0.8	3.96	0.018
140.0	After	Girder	4.9	0.02	0.8	0.02	0.8	3.96	0.018
141.7	Before	Girder	4.9	0.02	0.8	0.02	0.8	3.96	0.018
141.7	After	Girder	4.9	0.02	0.8	0.02	0.8	3.96	0.018
143.3	Before	Girder	4.9	0.02	0.8	0.02	0.8	3.96	0.018
143.3	After	Girder	4.9	0.02	0.8	0.02	0.8	3.96	0.018
145.0	Before	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
145.0	After	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
146.7	Before	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
146.7	After	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
148.3	Before	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
148.3	After	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
150.0	Before	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 21 di 117

150.0	After	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
151.7	Before	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
151.7	After	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
153.3	Before	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
153.3	After	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
155.0	Before	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
155.0	After	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
156.7	Before	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
156.7	After	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
158.3	Before	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
158.3	After	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
160.0	Before	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
160.0	After	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
161.7	Before	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
161.7	After	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
163.3	Before	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
163.3	After	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
165.0	Before	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
165.0	After	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
166.7	Before	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
166.7	After	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
168.3	Before	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
168.3	After	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
170.0	Before	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
170.0	After	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
171.7	Before	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
171.7	After	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.018
173.3	Before	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.02
173.3	After	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.02
175.0	Before	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.02
175.0	After	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.02
176.7	Before	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.02
176.7	After	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.02
178.3	Before	Girder	5.0	0.02	0.8	0.02	8.0	3.96	0.02
178.3	After	Girder	5.0	0.02	0.8	0.02	8.0	3.96	0.02
180.0	Before	Girder	5.0	0.02	0.8	0.02	0.8	3.96	0.02

5.4 Azioni agenti – analisi dei carichi

LM5

Le azioni prese in considerazione ai fini delle verifiche dell'impalcato in acciaio-calcestruzzo sono:

G1	Peso permanenti strutturali
G2	Sovraccarichi permanenti (peso marciapiedi, pavimentazione, barriere, finiture, impianti, etc.)
Ritiro	Effetto di ritiro e viscosità a lungo termine
Δ T+	Variazione termica differenziale positiva (T soletta > T acciaio)
Δ T-	Variazione termica differenziale negativa (T soletta < T acciaio)
Vento	Azione trasversale del vento su impalcato in esercizio (carico)
TS	Azione equivalente al traffico stradale - modello di carico 1 - assi di carico
UDL	Azione equivalente al traffico stradale - modello di carico 1 - carico distribuito

Azione equivalente all'azione della folla su marciapiedi praticabili

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ
LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A
Data: Agosto 2020
Pag. 22 di 117

LMF3 Azione da traffico stradale - modello di carico 3 equivalente per analisi fatica

Ek Azione sismica

Per la verifica degli elementi secondari (trasversi) dell'impalcato si è presa in considerazione anche l'azione sismica, quando più sfavorevole.

5.4.1 Pesoproprio

Il peso proprio delle travi metalliche è valutato in automatico dal software di analisi. Il peso proprio della soletta di calcestruzzo è pari a $25 \times 0.35 = 8.75 \text{ kN/m}^2$

Sul cordolo 25 x $0.55 = 13.75 \text{ kN/m}^2$

5.4.2 Sovraccarichi permanenti

Pavimentazione: 22.00 x 0.11 = 2.42	. 3.00 kN/m²
Barriere di sicurezza (su entrambi i lati)	2.00 kN/m
Velette (su entrambi i lati)	3.00 kN/m
Collettori di drenaggio (su ambo i lati)	2.00 kN/m

5.4.3 Ritiro

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2 File: T00_VI07_STR_RE02_A Data: Agosto 2020

Pag. 23 di 117

Cls a t=0

R_{ck}	=	40	N/mm ²
\mathbf{f}_{ck}	=	33.2	N/mm ²
\mathbf{f}_{cm}	=	41.2	N/mm^2
α	=	1.0E-05	
E_{cm}	=	33643	N/mm^2

Resistenza a compressione cubica caratteristica

Resistenza a compressione cilindrica

caratteristica

Resistenza a compressione cilindrica

media

Modulo elastico secante medio

Tempo e ambiente

t _s	=	2	gg
t ₀	=	28	gg
t	=	25500000	gg
$h_0 \!\!=\!\! 2A_c/u$	=	700	mm
Ac	=	4970000	mm ²
u	=	14200	mm
RH	=	75	%

età del calcestruzzo in giorni, all'inizio del ritiro per essiccamento età del calcestruzzo in giorni al momento del carico età del calcestruzzo in giorni

dimensione fittizia dell'elemento di cls

sezione dell'elemento

perimetro a contatto con l'atmosfera umidità relativa percentuale

Coefficiente di viscosità φ (t,t0) e modulo elastico ECt a tempo "t"

$$\phi(t,t_0) = \varphi_0 \beta_c(t,t_0) =$$

$$\phi_0 = \phi RH \beta_c(f_{cm}) \beta_c(t_0) =$$

93.22 coeff nominale di viscosità

$$\varphi_{RH} = 1 + \left[\frac{1 - RH/100}{0.1 \sqrt[5]{h_0}} \alpha_1 \right] \alpha_2 =$$

1.243 coeff che tiene conto dell'umidità

$$\alpha_1 = \begin{cases} (35/f_{cm})^{0.7} & per f_{cm} > 35MPa \\ 1 & per f_{cm} \leq 35MPa \end{cases} =$$

0.892 coeff per la resistenza del cls

$$\alpha_2 = \begin{cases} (35/f_{cm})^{0.2} & per f_{cm} > 35MPa \\ 1 & per f_{cm} \le 35MPa \end{cases} =$$

0.968 coeff per la resistenza del cls

$$\beta_C(f_{cm}) = \frac{16.8}{\sqrt{f_{cm}}} =$$

2.617 coeff che tiene conto della resistenza

$$\beta_c(t_0) = \frac{1}{(0.1 + t_0^{0.20})} =$$

0.475 coeff. per l'evoluzione della viscosità nel tempo

$$t_o = t_0 \left(\frac{9}{2 + t_0^{1.2}} + 1 \right)^{\alpha} \ge 0.5 =$$

32.46 coeff. per la variabilità della viscosità nel tempo

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE - SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A

Data: Agosto 2020

Pag. 24 di 117

coeff per il tipo di cemento (-1 per classe S, 0 per classe N, 1 per classe

 $\beta_c(t, t_0) = \left[\frac{(t - t_0)}{(\beta_u + t - t_0)}\right]^{0.3} =$

1.000 coeff per la variabilità della viscosità

 $\beta_H = 1.5[1 + (0.012 RH)^{18}] h_0 + 250\alpha_3 \le 1500\alpha_3 =$

1382.5 coeff che tiene conto dell'umidità

 $\alpha_3 = \begin{cases} (35/f_{cm})^{0.5} & per f_{cm} > 35MPa \\ 1 & per f_{cm} \le 35MPa \end{cases} =$

0.922 coeff per la resistenza del calcestruzzo

Il modulo elastico a tempo "t" è pari a:

$$E_{cm}(t,t_0) = \frac{E_{cm}}{1+\varphi(t,t_0)} =$$

11281951 kN/m2

Deformazioni di ritiro

$$\varepsilon_s(t,t_0) = \varepsilon_{cd}(t) + \varepsilon_{ca}(t) =$$

0.000349 deformazione di ritiro ε (t,t a)

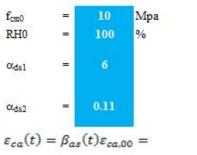
$$\varepsilon_{cd}(t) = \beta_{ds}(t, t_s) K_b \varepsilon_{cd,0} =$$

0.000291 deformazione al ritiro per essiccamento

$$\beta_{ds}(t, t_s) = \left[\frac{(t - t_s)}{(t - t_s) + 0.04 \sqrt{h_0^3}} \right] =$$

Kh =

parametro che dipende da h secondo il prospetto seguente


Valori di k

h ₀	*
100	1,0
200	0,85
300	0,75
≥500	0.70

Valori di Kh intermedi a quelli del prospetto vengono calcolati tramite interpolazione lineare

$$\varepsilon_{cd,0} = 0.85 \left[(200 + 100 \, \alpha_{ds1}) \exp\left(-\alpha_{ds2} \frac{f_{em}}{f_{em0}}\right) \right] 10^{-6} \beta_{RH} = 0.000416$$

$$\beta_{RH} = 1.55 \left[1 - \left(\frac{RH}{RHO}\right)^3 \right] = 0.896094$$

coeff per il tipo di cemento (3 per classe S, 4 per classe N, 6 per classe coeff per il tipo di cemento (0.13 per

classe S, 0.12 per classe N, 0.11 per classe R) 0.000058 deformazione dovuta al ritiro

 $\beta_{as}(t) = 1 - \exp(-0.2t^{0.5}) =$

1

 $\varepsilon_{ca00} = 2.5(f_{ck} - 10)10^{-6}$

0.000058

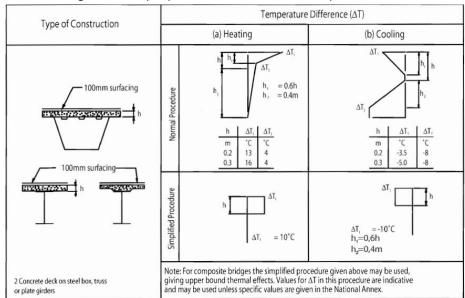
Il ritiro del calcestruzzo è stato schematizzato attraverso le seguenti azioni statiche equivalenti:

autogeno

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2 File: T00_VI07_STR_RE02_A
Data: Agosto 2020

Pag. 25 di 117


- Forza assiale d'estremità...... $N_{cr} = E_a \times e_c \times A_{collrit} / n_r = -19593$ kN

Le eccentricità geometriche sono prese in conto direttamente nel modello.

5.4.4 Variazioni termiche differenziali

Ai fini delle verifiche dell'impalcato sono state prese in considerazione due azioni termiche differenziali, in accordo agli schemi proposti nel EC 1991-1-5 cap.6:

Gli effetti prodotti dalle variazioni termiche differenziali fra la soletta in calcestruzzo e le travi metalliche sono stati valutati con azioni statiche equivalenti concentrate alle estremità dell'impalcato.

Sono state prese in esame le seguenti variazioni termiche:

Variazione termica differenziale positiva 10 °C

- Forza assiale d'estremità $N_{cdT+} = E_a x a x + 10 x A_{colldT} / n_0 = 16724 kN$

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A
Data: Agosto 2020
Pag. 26 di 117

Variazione termica differenziale negativa -10 °C

- Forza assiale d'estremità $N_{cdT+} = E_a x a x + 10 x A_{colldT} / n_0 = -16724 kN$

avendo assunto:

coefficiente di dilatazione termica	a = 1,00E-05
coefficiente di omogeneizzazione a t ₀	n ₀ = 6,24
modulo elastico dell'acciaio	E _a = 210000 MPa
area della soletta	$A_{colldT} = 4.97E + 06 \text{ mm}^2$

Le eccentricità geometriche sono prese in conto direttamente nel modello.

5.4.5 Vento

L'azione del vento è stata valutata, secondo quanto specificato nel par. 3.3 del DM 17 gennaio 2018, assimilandola ad un carico orizzontale statico diretto ortogonalmente all'asse del ponte e agente sulla proiezione nel piano verticale delle superfici direttamente investite. La superficie dei carichi transitanti sul ponte esposte al vento si assimila ad una parete rettangolare continua alta 3,0 m dal piano stradale. Tale azione dà luogo ad una sollecitazione torcente che provoca una flessione differenziale dalle travi portanti.

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE - SVINCOLO DI ARZANA

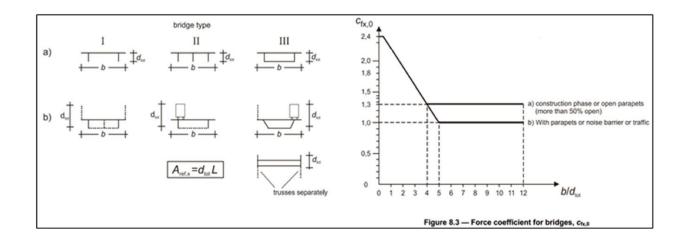
DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 27 di 117

Azione del Vento - generale - NTC e EC 1-1-4:2005

Condizione (ponte carico o scarico)		scarico	carico	
Altitudine sul livello del mare	as	800	800	m
Zona	Z	5	5	
Parametri	Vb,0	28	28	m/s
Parametri	a0	750	750	m
Parametri	ks	0.4	0.4	1/s
Velocità di riferimento (Tr=50anni)	vb=vb0 * (1+ ks(as/ao-1)	28.75	28.75	m/s
Periodo di ritorno considerato	TR	100	100	anni
	αR	1.04	1.04	
Velocità di riferimento	Vb(TR)	29.87	29.87	m/s
Densità dell'aria	ρ	1.25	1.25	kg/mc
Pressione cinetica di riferimento	qb=0.5*p*vb²	0.56	0.56	kN/mq
Classe di rugostità del terreno		D	D	
Distanza dalla costa		>10	>10	km
Altitudine sul livello del mare		>750	>750	m
Categoria di esposizione del sito	Cat	II	II	


Componente trasversale

Vanta su impalanta

Pressione statica equivalente

Forza statica equivalente a m/l considerata

Vento su impalcato				
Parametri	kr	0.19	0.19	
Parametri	z0	0.05	0.05	m
Parametri	zmin	4	4	m
Altezza di riferimento per l'impalcato (EC punto 8.3.1(6))	z	18	18	m
Coefficiente di topografia	ct	1	1	
Coefficiente di esposizione (z)	ce(z)	2.74	2.74	
Larghezza impalcato	ь	14.2	14.2	m
Altezza impalcato	h1	4.5	4.5	m
Altezza veicoli o parapetto	h2	1.5	3	m
Altezza totale impalcato (comprese le barriere o veicoli)	dtot	6	7.5	m
Rapporto di forma	b/dtot	2.37	1.89	
Coefficiente di forza (figura 8.3 EC)	cfx	1.79	1.93	
Riepilogo				
Pressione cinetica di riferimento	qb	0.56	0.56	kN/mq
Coefficiente di esposizione	ce	2.74	2.74	
Coefficiente di forza	cfx	1.79	1.93	
Altezza di riferimento (EC punto 8.3.1 (4) e (5))	đ	6	7.5	m
Forza statica equivalente a m/l	f=prodotto	16.4	22.1	kN/m

p=f/d

f

2.73

16.4

kN/m

kN/mq

2.95

22.1

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A Data: Agosto 2020

Pag. 28 di 117

Da cui

 $M_{w,x} = 22.1 kN/m \cdot 1m = 22.1 kN$

Dove 1m è pari all'eccentricità tra il baricentro della trave ed il punto di applicazione della forza Carico sulla singola trave = 22.1kN/8.4 m = $\pm 2.63kN/m$ (con 8.4m = distanza travi esterne)

Componente verticale

 $A_{ref} = 14.2m^2$

 $C_{f_7} = 0.9$

 $F_{wz} = A_{ref} \cdot c_f z \cdot c_e \cdot q_{ref} = 19.5 \text{ kN/m}$

Carico sulla singola trave = 19.5 kN/m /3 = 6.5 kN/m (con 3 = N° di travi)

 $M_{w,z}$ = 19.5 · 14.2/4 = 69.3kN per eccentricità verticale = d/4 = 17/4 = 3.55m

Carico sulla singola trave = 69.3kN/8.4m = ± 8.25 kN/m

Carico totale sulla singola trave = 2.63+6.5 +8.25 = 17.4 kN/m

Carico totale sulla singola trave = -2.63+6.5 -8.25= -4.4 kN/m

5.4.6 Carichi variabili da traffico

Il carico variabile da traffico è multi-componente, ossia si caratterizza sotto forma di gruppo di carico (cfr. tabella sotto) ossia può presentarsi sotto forma di azione GR, 1a, ovvero GR 1b, e così via. Ciascuna componente dei ciascun gruppo è costituita da uno Schema di Carico - o Load Model LM secondo la notazione anglosassone - che può essere o meno presente o eventualmente ridotto a seconda del coefficiente di partecipazione di cui alla tabella 6.1.

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 29 di 117

Tabella 5.1.IV - Valori caratteristici delle azioni dovute al traffico

			Carichi su marciapiedi e piste ciclabili			
	Carichi verticali			Carichi orizz	ontali	Carichi verticali
Gruppo di azioni	Modello principale (Schemi di carico 1, 2, 3, 4, 6)	Veicoli speciali	Folla (Schema di carico 5)	Frenatura q ₃	Forza centrifuga q ₄	Carico uniformemente. distribuito
1	Valore caratteristico					Schema di carico 5 con valore di combinazione 2,5 kN/m ²
2 a	Valore frequente			Valore caratteristico		
2 в	Valore frequente				Valore caratteristico	
3 (*)						Schema di carico 5 con valore caratteristico 5,0 kN/m ²
4 (**)			Schema di carico 5 con valore caratteristico 5,0 kN/m ²			Schema di carico 5 con valore caratteristico 5,0 kN/m ²
5 (***)	Da definirsi per il singolo progetto	Valore caratteristico o nominale				

^(***) Da considerare solo se si considerano veicoli speciali

Tabella 1: Gruppi di carico da traffico per ponti stradali

Ai fini della definizione dei diversi LM si considerano fino a tre colonne di carico convenzionali (ciascuna di ingombro trasversale convenzionale pari a $3.00\,\mathrm{m}$) ed una parte rimanente di larghezza pari a $\mathrm{w}-3^*\mathrm{ni}$. Si dispongono n. 3 colonne di carico convenzionali, sulla restante parte si dispone un carico distribuito pari a $2.50\,\mathrm{kN/m^2}$.

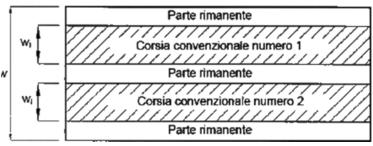


Figura 5.1: Disposizione delle colonne di carico

Allo Schema di carico 1 (LM1), illustrato in figura, si associano per ciascuna corsia le seguenti intensità:

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A Data: Agosto 2020

Pag. 30 di 117

Posizione	Carico asse Qik [kN]	$q_{ik}[kN/m^2]$
Corsia Numero 1	300	9,00
Corsia Numero 2	200	2,50
Corsia Numero 3	100	2,50
Altre corsie	0,00	2,50

Figura 5.2 Intensità degli assi di carico TS (Qk) e UDL (qk)

I "treni di carico" $Q_{i,k}$ e $q_{i,k}$ (per $i=1,\,2,\,3\,\ldots$) che compongono il LM1 sono considerati viaggianti lungo le corsie (convenzionali di carico) allo scopo di massimizzare gli effetti su ciascun elemento o connessione strutturale da verificare.

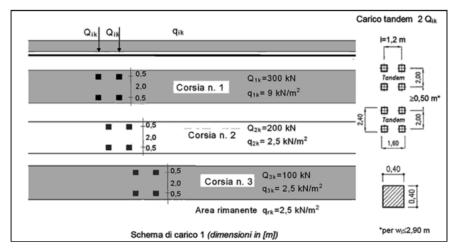


Figura 5.3: Schema di carico 1 (LM1)

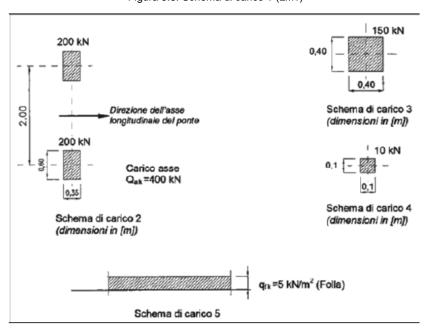


Figura 5.4: Schemi di carico 2, 3 e 4 (LM2, LM3, LM 4)

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

seguito lo schema rappresentativo delle corsie di carico:

File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 31 di 117

Nella figura sono descritti i modelli LM2, LM3 ed LM4. Lo schema di carico 5 (LM5) è rappresentativo dalla folla compatta e si considera agente (qualora necessario per massimizzare le sollecitazioni), sui marciapiedi non adibiti solo a manutenzione; si assume una intensità nominale di 5.0 kN/m², comprensiva degli effetti dinamici, e valore di combinazione pari a 2.5 kN/m². Sull'impalcato in oggetto il cordolo è considerato non transitabile. Si riporta di

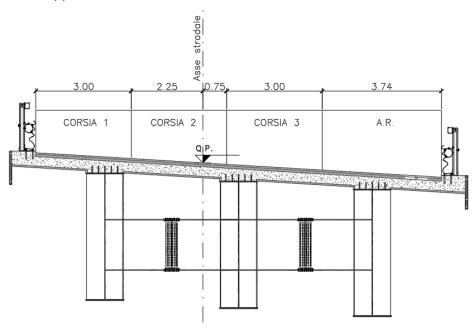


Figura 5.5: Schema di carico

Grazie all'analisi di tipo "Lanes" il software effettua tutte le permutazioni, sia in senso longitudinale che trasversale, delle corsie e dei relativi carichi. Durante l'analisi a carichi mobili vengono generate linee di influenza e superfici di influenza per analizzare la risposta delle strutture soggette all'azione dei veicoli in movimento all'interno di corsie designate.

5.4.7 Carichi variabili da traffico pesante per analisi della fatica

Ai fini delle verifiche a fatica - secondo il criterio della vita illimitata - Il modello di carico di fatica 1 è costituito dallo Schema di Carico 1 assumendo il 70% dei carichi concentrati ed il 30% di quelli distribuiti.

5.4.8 Azione longitudinale di frenamento

La forza di frenamento o di accelerazione q3 è funzione del carico verticale totale agente sulla corsia convenzionale n. 1 ed è uguale a

$$180 \text{ kN} \le q3 = 0.6 (2Q1\text{k}) + 0.10 \text{ q1k W1 L} \le 900 \text{ kN}$$

Per L=180m si ha q3=846 kN

Tale azione, non dimensionante ai fini delle verifiche dell'impalcato, è presa in conto nelle verifiche delle sottostrutture, delle fondazioni e degli apparecchi di appoggio.

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A

Data: Agosto 2020

Pag. 32 di 117

5.4.9 Azione centrifuga

L'azione centrifuga è stata valutata secondo la tabella seguente. Essa è applicata alla quota della pavimentazione.

Raggio di curvatura [m]	Q ₄ [kN]
R < 200	$0.2 \cdot Q_v$
200 ≤R ≤ 1500	40·Q _v /R
1500 ≤R	0

Tabella 2: azione centrifuga

Centrifuga					
Raggio planimetrico	550	m			
n° corsie	3				
Qv	1200	kN			
q4	87.3	kN			

5.4.10 Azione sismica

Sulla base delle indicazioni delle NTC2018 si assumono i seguenti valori per determinare l'azione sismica di riferimento nei comuni di Arzana e Villagrande Strisali interessati dall'opera:

- vita nominale: VN = 50 anni (costruzioni con livelli di prestazione ordinari)
- coefficiente d'uso: CU = 2
- periodo di riferimento: VR = VN x CU = 100 anni:
- stato limite ultimo di salvaguardia della vita, SLV
- probabilità di superamento associata allo stato limite SLV: PVR = 10% periodo di ritorno:
 TR = VR / In (1 PVR) = 949 anni
- categoria di sottosuolo: B
- categoria topografica: T1

I parametri sismici principali sono riassunti nella seguente Tabella 3 (le accelerazioni di riferimento sono riportate all'allegato 2 del DM2008 cui il DM2018 rimanda).

Tabella 3 – Valori dei parametri per la definizione del sisma di progetto

	P_{VR}	T_R	a_g	F_0	T _C *
	[%]	[anni]	[g]	[-]	[s]
SLO	81%	60	0,0254	2,685	0,300
SLD	63%	101	0,0313	2,730	0,307
SLV	10%	949	0,0599	2,976	0,371
SLC	5%	1950	0,0707	3,061	0,393

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 33 di 117

5.4.11 Resistenze passive dei vincoli

Si è tenuto conto di questa azione nel dimensionamento degli appoggi, delle sottostrutture, delle fondazioni e dei collegamenti tra impalcato e sottostrutture.

5.5 Combinazioni dei carichi

Le combinazioni di azioni per le verifiche agli stati limite ultimi, definite al punto 2.5.3 del D.M. 17 gennaio 2018, sono espresse complessivamente dalle seguenti relazioni:

$$\begin{split} &\sum_{j>1} \gamma_{G,j} \cdot G_{k,j} + \gamma_P \cdot P + \gamma_{Q,1} \cdot Q_{k,1} + \sum_{i>1} \gamma_{Q,i} \cdot \psi_{0,i} \cdot Q_{k,i} \\ &E + \sum_{i>1} G_{k,j} + P + \sum_{i>1} \psi_{2,i} \cdot Q_{k,i} \end{split} \qquad \qquad \text{comb. fondamentale}$$

dove:

- G_k è il valore caratteristico delle azioni permanenti;
- *E* è l'azione del sisma per lo stato limite considerato;
- P è il valore caratteristico delle azioni di precompressione;
- Q_k è il valore caratteristico delle azioni variabili;
- γ_G , γ_P e γ_O sono i coefficienti parziali delle azioni per gli SLU;
- ψ_0, ψ_2 sono i coefficienti di combinazione delle azioni variabili.

I valori dei coefficienti ψ_0 , γ_G , γ_P e γ_Q sono riportati in Tabella 5.4 e Tabella 5.6.

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 34 di 117

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	$\gamma_{\rm G1}$	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	$\gamma_{\rm G2}$	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γο	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γ ε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	γε2, γε3, γε4	0,00 1,20	0,00 1,20	0,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

(4) 1,20 per effetti locali

Tabella 5.4. – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

Per quanto riguarda i carichi mobili, la simultaneità dei sistemi di carico definiti nel DM 17 gennaio 2018 (modelli di carico 1, 2, 3, 4, 6 - forze orizzontali - carichi agenti su ponti pedonali), deve essere tenuta in conto considerando i "gruppi di carico" definiti nella tabella seguente. Ognuno dei "gruppi di carico", indipendente dagli altri, deve essere considerato come azione caratteristica per la combinazione con gli altri carichi agenti sul ponte.

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 35 di 117

	Carichi sulla carreggiata				Carichi su marciapiedi e piste ciclabili	
	Carichi verticali			Carichi orizzontali		Carichi verticali
Gruppo di azioni	Modello principale (Schemi di carico 1, 2, 3, 4, 6)	Veicoli speciali	Folla (Schema di carico 5)	Frenatura q ₃	Forza centrifuga q ₄	Carico uniformemente. distribuito
1	Valore caratteristico					Schema di carico 5 con valore di combinazione 2,5 kN/m ²
2 a	Valore frequente			Valore caratteristico		
2 b	Valore frequente				Valore caratteristico	
3 (*)						Schema di carico 5 con valore caratteristico 5,0 kN/m ²
4 (**)			Schema di carico 5 con valore caratteristico 5,0 kN/m ²			Schema di carico 5 con valore caratteristico 5,0 kN/m ²
5 (***)	Da definirsi per il singolo progetto	Valore caratteristico o nominale				
(*) Ponti di 3ª categoria (**) Da considerare solo se richiesto dal particolare progetto (ad es. ponti in zona urbana) (***) Da considerare solo se si considerano veicoli speciali						

Tabella 5.5 - Gruppi di carico da traffico per le combinazioni di carico

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente Ψ ₀ di combinazione	Coefficiente Ψ ₁ (valori frequenti)	Coefficiente Ψ2 (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
Vento q ₅	Vento a ponte scarico			
	SLU e SLE	0,6	0,2	0,0
	Esecuzione	0,8		0,0
	Vento a ponte carico	0,6		
Neve q5	SLU e SLE	0,0	0,0	0,0
	esecuzione	0,8	0,6	0,5
Temperatura	T_k	0,6	0,6	0,5

Tabella 5.6. - Coefficienti $\,\psi_{\,0}\,$, $\,\psi_{\,1},\,\psi_{\,2}\,$ per le azioni variabili per ponti stradali e pedonali

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2 File: T00_VI07_STR_RE02_A Data: Agosto 2020

Pag. 36 di 117

ANALISI E VERIFICHE SLU

6.1 Verifiche di resistenza agli SLU

La resistenza di calcolo della sezione di acciaio nei confronti delle tensioni normali è funzione della classificazione della sezione trasversale.

Nel caso di sezioni di classe 4 tale resistenza è valutata in campo elastico, tenendo conto degli effetti dell'instabilità locale.

La verifica è soddisfatta se risulta:

$$\eta_{1} = \frac{N_{Ed}^{s}}{f_{vk} \cdot A_{eff} / \gamma_{M0}} + \frac{M_{Ed}^{s} + N_{Ed}^{s} \cdot e_{N}}{f_{vk} \cdot W_{eff} / \gamma_{M0}} \le 1,0$$

con

- N_{Ed}^{s} e M_{Ed}^{s} sollecitazioni assiali e flessionali di progetto sulla sola parte metallica;
- A_{eff} e W_{eff} proprietà efficaci della sezione trasversale;
- e_N spostamento della posizione del baricentro;
- γ_{M0} coefficiente parziale di sicurezza.

Nel caso di sezioni di classe 1,2 e 3 si fà riferimento, con espressioni analoghe, ai moduli plastici (classi 1 e 2) ed elastici (classe 3).

La sollecitazione tagliante è supposta agente solo sull'anima della trave metallica.

La resistenza di progetto a taglio è definita come (EN 1993-1-1, eq. (6.18)):

$$V_{b,Rd} = V_{bw,Rd} = A_v(f_{yk}/\sqrt{3}) / \gamma_{M0}$$

Qualora la resistenza sia determinata dall'instabilità dell'anima, ovvero nel caso in cui risulti (EN 1993-1-1, eq. (6.22)):

$$\frac{h_w}{t} > 72 \frac{\varepsilon}{\eta}$$

dove:

- $\eta = 1.20$ per gradi di acciaio inferiori a S460;
- h_{ij} e t sono rispettivamente l'altezza e lo spessore dell'anima;

Allora la resistenza a taglio è determinata come (EN 1993-1-5 (eq 5.2)):

$$V_{b,Rd} = V_{bw,Rd} = \chi_w h_w t (f_{yk}/\sqrt{3}) / \gamma_{M1}$$

dove:

- γ_w determinato secondo EN 1993-1-5 Tabella 5.1;
- γ_{M1} è il fattore parziale di sicurezza.

Il contributo delle flange e della soletta composita viene sempre ignorato.

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2 File: T00_VI07_STR_RE02_A

Data: Agosto 2020

Pag. 37 di 117

La verifica a taglio è posta in forma adimensionale come rapporto tra le azioni sollecitanti e la capacità resistente:

$$\eta_3 = \frac{V_{Ed}}{V_{b,Rd}} \le 1,0$$

dove $V_{\rm Ed}$ è la sollecitazione tagliante di progetto.

Per valori di η_3 inferiori a 0,5 non è necessario controllare l'interazione tra le sollecitazioni normali e tangenziali; per valori superiori si adotta la seguente espressione del dominio di resistenza (EN 1993-1-2006,7.1 (1)):

$$\overline{\eta_1} + \left(1 - \frac{M_{f,Rd}}{M_{Pl,Rd}}\right) \cdot \left(2 \cdot \overline{\eta_3} - 1\right)^2 \le 1,0$$

in cui

- $M_{f,Rd}$ è il momento resistente di progetto delle sole flange efficaci;
- $M_{Pl,Rd}$ è la resistenza plastica della sezione trasversale composta dall'area effettiva delle flange e dall'intera anima senza tener conto della classe di quest'ultima.

$$\bullet \qquad \overline{\eta_1} = \frac{M_{Ed}}{M_{Pl,Rd}}$$

$$\bullet \qquad \overline{\eta_3} = \frac{V_{Ed}}{V_{box Pd}}$$

6.2 Connessione soletta-travi - resistenza pioli tipo "Nelson"

Il sistema di collegamento e collaborazione strutturale nelle fasi II e III è realizzato mediante degli elementi connettori a piolo tipo Nelson \varnothing 20 mm in acciaio S235J2G3 saldati all'ala superiore delle travi in acciaio.

Si ipotizza la realizzazione di un sistema di piolatura in grado di assicurare un grado di connessione n pari a 1.

d = 20 mm

 $f_t = 450 \text{ N/mm}^2$

yv = 1.25

 $\alpha = 1.0$

diametro pioli tipo "Nelson"

resistenza a rottura acciaio del piolo

coefficiente parziale di sicurezza

larghezza destra

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2 File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 38 di 117

$$P_{Rda} = 0.8 \pi \frac{f_t d^2}{4 y_p} = 90.5 \text{ kN}$$

$$P_{Rdc} = 0.29 \ \alpha \ d^2 \ \frac{\sqrt{f_{ck} E_{cm}}}{y_v} = 96.5 \ kN$$

$$P_{Rd} = min (P_{Rda}, P_{Rdc}) = 90.5 \text{ kN}$$

resistenza di progetto piolo lato acciaio
resistenza di progetto piolo lato cls
resistenza di progetto piolo

6.3 Combinazioni di carico

Le combinazioni di carico adottate per le verifiche di resistenza agli SLU sono le seguenti:

$$Arr$$
 F_d = 1,35 · G_k + 1,20 · ε₂ + 1,35 · Q_k + 1,5 · 0,6 · Q₅ + 1,2 · 0,6 · ε₃

essendo:

- Gk pesi propri e carichi permanenti (g₁ + g₂);
- Q_k carichi mobili;
- Q₅ azione compatibile del vento F_w *;
- ε₂ ritiro del calcestruzzo;
- ε₃ (-10 °C) variazione termica differenziale negativa;

$$ightharpoonup$$
 $F_d = 1,35 \cdot G_k + 1,20 \cdot \varepsilon_2 + 1,35 \cdot Q_k + 1,5 \cdot 0,6 \cdot Q_5 + 1,2 \cdot 0,6 \cdot \varepsilon_3$

• ε₃ (+10 °C) variazione termica differenziale positiva;

6.4 Analisi Modale

Si riportano in termini numerici, come output del modello di calcolo, i risultati dell'analisi modale dell'impalcato. Si riportano i modi di vibrare che garantiscono l'eccitazione dell'85% della massa in tutte le componenti di spostamento.

Si evidenziano i primi 4 periodi propri di vibrare.

TABLE: Modal Participating Mass Ratios															
OutputCa	StepTy	StepNu	Perio				SumU	SumU	SumU				SumR	SumR	SumR
se	pe	m	d	UX	UY	UZ	Х	Y	Z	RX	RY	RZ	Х	Y	Z
		Unitles		Unitle											
Text	Text	S	Sec	SS											
MODAL	Mode	1	0.59	13%	0%	7%	13%	0%	7%	0%	3%	0%	0%	3%	0%
MODAL	Mode	2	0.53	0%	0%	0%	13%	0%	7%	1%	0%	0%	1%	3%	0%
MODAL	Mode	3	0.45	9%	0%	0%	22%	0%	7%	0%	38%	0%	1%	41%	0%
MODAL	Mode	4	0.41	0%	0%	0%	22%	1%	7%	0%	0%	6%	1%	41%	6%
MODAL	Mode	5	0.33	0%	50%	0%	22%	50%	7%	3%	0%	1%	4%	41%	6%
MODAL	Mode	6	0.31	17%	0%	17%	39%	50%	24%	0%	9%	0%	4%	50%	6%

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 39 di 117

MODAL	Mode	7	0.30	0%	7%	0%	39%	57%	24%	22%	0%	23%	26%	50%	29%
MODAL	Mode	8	0.28	0%	9%	0%	39%	66%	24%	15%	0%	46%	40%	50%	76%
MODAL	Mode	9	0.24	24%	0%	24%	63%	66%	49%	0%	6%	0%	40%	55%	76%
MODAL	Mode	10	0.24	0%	4%	0%	63%	70%	49%	3%	0%	0%	44%	55%	76%
MODAL	Mode	11	0.18	0%	0%	0%	63%	70%	49%	0%	0%	0%	44%	55%	76%
MODAL	Mode	12	0.18	0%	0%	0%	63%	70%	49%	0%	0%	0%	44%	55%	76%
MODAL	Mode	13	0.18	0%	0%	0%	63%	70%	49%	0%	0%	0%	44%	55%	76%
MODAL	Mode	14	0.17	14%	0%	0%	77%	70%	49%	0%	0%	0%	44%	55%	76%
MODAL	Mode	15	0.17	0%	0%	0%	77%	70%	49%	0%	0%	0%	44%	55%	76%
MODAL	Mode	16	0.16	0%	0%	0%	77%	70%	49%	0%	0%	1%	44%	55%	77%
MODAL	Mode	17	0.15	0%	0%	0%	77%	71%	49%	0%	0%	1%	44%	55%	78%
MODAL	Mode	18	0.15	1%	0%	0%	77%	71%	49%	0%	3%	0%	44%	59%	78%
MODAL	Mode	19	0.15	0%	0%	0%	78%	71%	49%	0%	3%	0%	44%	61%	78%
MODAL	Mode	20	0.14	0%	0%	0%	78%	71%	49%	0%	0%	0%	44%	62%	78%
MODAL	Mode	21	0.14	0%	0%	0%	78%	71%	49%	0%	0%	5%	44%	62%	83%
MODAL	Mode	22	0.14	0%	0%	1%	78%	71%	49%	0%	0%	0%	44%	62%	83%
MODAL	Mode	23	0.13	0%	0%	0%	78%	71%	49%	0%	0%	0%	44%	62%	83%
MODAL	Mode	24	0.11	0%	0%	0%	78%	71%	50%	0%	0%	0%	44%	62%	83%
MODAL	Mode	25	0.11	0%	1%	0%	78%	71%	50%	1%	0%	0%	45%	62%	83%
MODAL	Mode	26	0.10	0%	0%	1%	78%	71%	51%	0%	2%	0%	45%	64%	83%
MODAL	Mode	27	0.09	0%	0%	0%	78%	71%	51%	0%	0%	4%	45%	64%	87%
MODAL	Mode	28	0.09	2%	0%	1%	81%	71%	52%	0%	3%	0%	45%	67%	87%
MODAL	Mode	29	0.08	0%	0%	3%	81%	71%	54%	0%	0%	0%	45%	67%	87%
MODAL	Mode	30	0.08	0%	1%	0%	81%	72%	54%	0%	0%	1%	45%	67%	88%
MODAL	Mode	31	0.07	0%	0%	5%	81%	72%	59%	0%	1%	0%	45%	68%	88%
MODAL	Mode	32	0.06	9%	0%	0%	90%	72%	59%	0%	0%	0%	45%	68%	88%
MODAL	Mode	33	0.06	0%	5%	0%	90%	77%	59%	2%	0%	0%	47%	68%	89%
MODAL	Mode	34	0.06	0%	6%	0%	90%	83%	59%	7%	0%	4%	53%	68%	93%
MODAL	Mode	35	0.05	1%	0%	5%	91%	83%	64%	0%	0%	0%	53%	68%	93%
MODAL	Mode	36	0.04	1%	0%	2%	92%	83%	66%	0%	0%	0%	53%	69%	93%
MODAL	Mode	37	0.03	0%	9%	0%	92%	93%	66%	2%	0%	4%	56%	69%	97%
MODAL	Mode	38	0.02	6%	0%	1%	98%	93%	66%	0%	0%	0%	56%	69%	97%
MODAL	Mode	39	0.02	0%	4%	0%	98%	97%	66%	24%	0%	2%	80%	69%	99%
MODAL	Mode	40	0.02	0%	0%	26%	98%	97%	93%	0%	1%	0%	80%	70%	99%

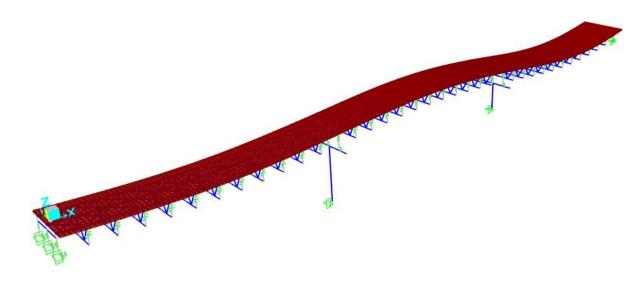


Figura 6.1 -. Modo 1

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ
LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA
DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389

Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 40 di 117

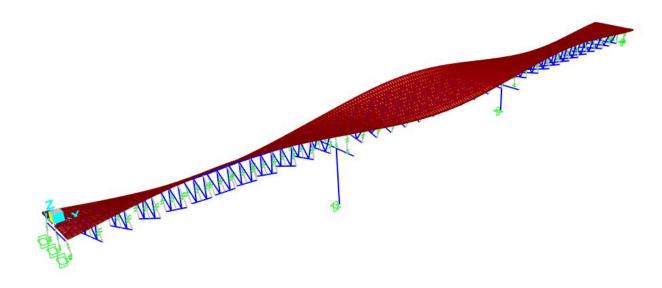


Figura 6.2 -. Modo 2

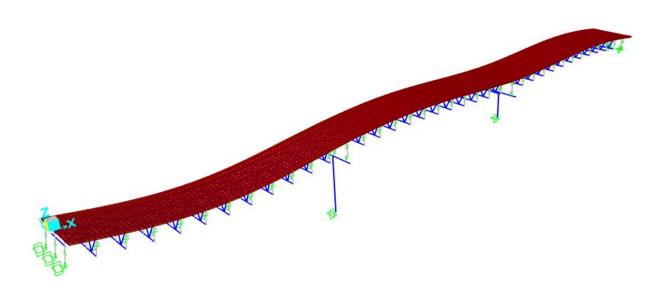


Figura 6.3 -. Modo 3

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 41 di 117

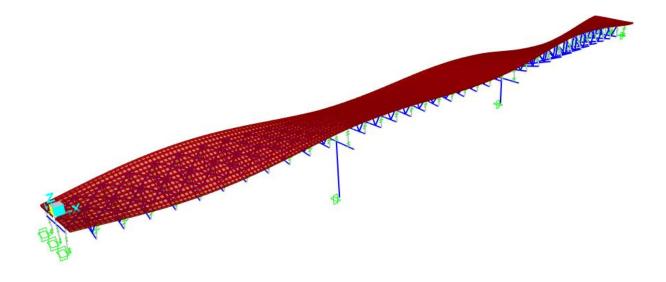


Figura 6.4 -. Modo 4

6.5 Verifica dell'impalcato acciaio-cls

6.5.1 Sollecitazioni - SLU

Fase1:

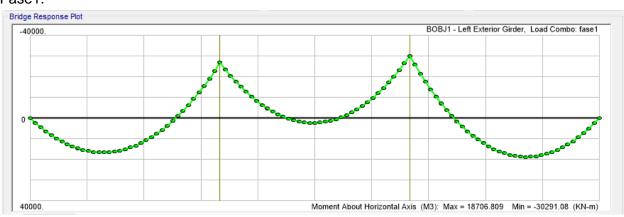


Figura 6.5 -. Momento flettente (kN*m)

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A Data: Agosto 2020

Pag. 42 di 117

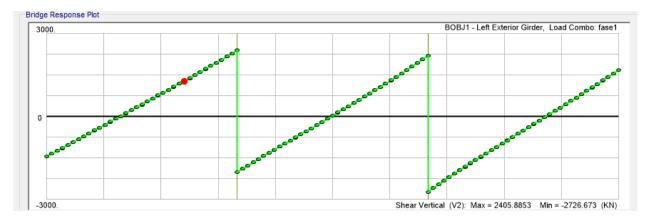


Figura 6.6 -. Taglio (kN)

Figura 6.7 -. Sforzo Normale (kN)

Fase2:

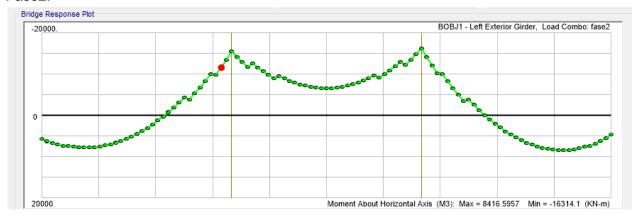


Figura 6.8 -. Momento flettente (kN*m)

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2 File: T00_VI07_STR_RE02_A Data: Agosto 2020

Pag. 43 di 117

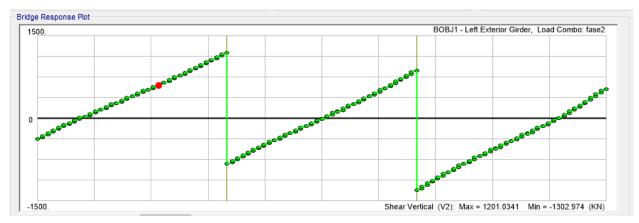


Figura 6.9 -. Taglio (kN)

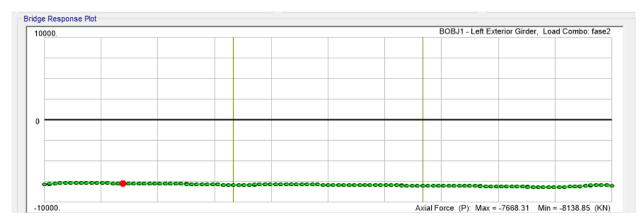


Figura 6.10 -. Sforzo Normale (kN)

Fase3:

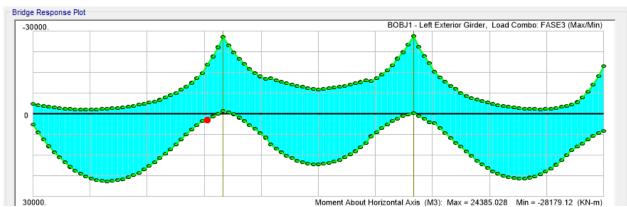


Figura 6.11 -. Momento flettente (kN*m)

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A
Data: Agosto 2020

Pag. 44 di 117

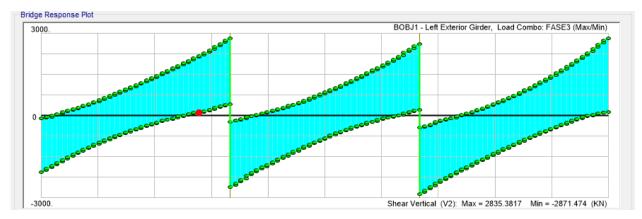


Figura 6.12 -. Taglio (kN)

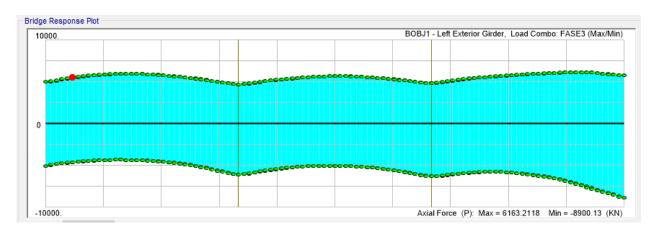


Figura 6.13 -. Sforzo Normale (kN)

6.5.2 Risultati dell'analisi

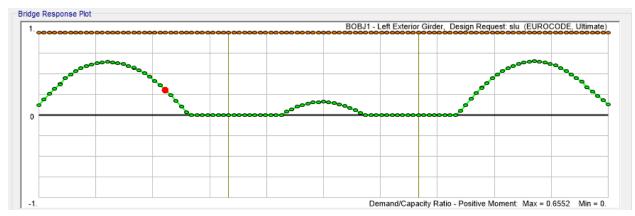


Figura 6.14 -. Verifica momento positivo

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** Data: Agosto 2020

File: T00_VI07_STR_RE02_A

Pag. 45 di 117

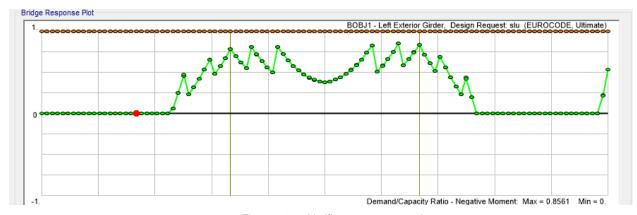


Figura 6.15 -. Verifica momento negativo

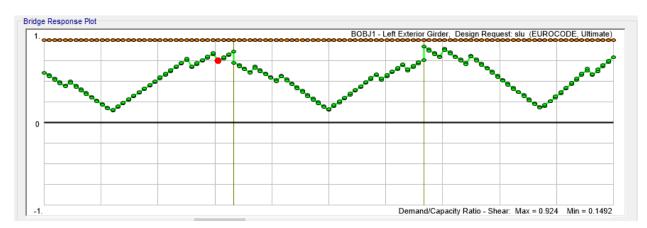


Figura 6.16 -. Verifica taglio

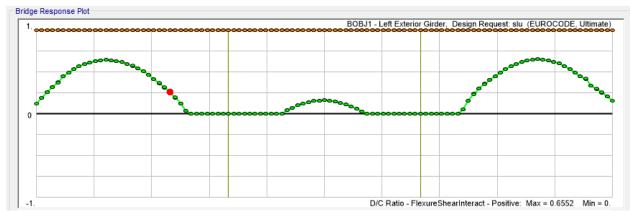


Figura 6.17 -. Verifica interazione taglio/momento positivo

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A Data: Agosto 2020

Pag. 46 di 117

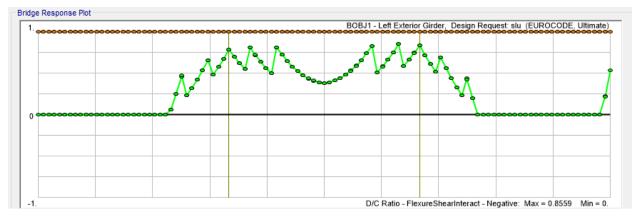


Figura 6.18 -. Verifica interazione taglio/momento negativo

6.5.3Pioli

fyk	tensione caratteristica acciaio S355	355	МРа
fsk	tensione caratteristica acciaio B450C	450	МРа
fck	resistenza caratteristica cls C32/40	32	МРа
γа	fattore parziale acciaio S355	1.05	
γs	fattore parziale acciaio B450C	1.15	
γс	fattore parziale cls C32/40	1.5	
sp	spessore soletta	0.35	m
d	diametro armatura	20	mm
р	passo armatura	0.1	m
n	numero strati	2	
beff	larghezza efficace	5	m
Aa	area del profilo in acciaio	0.200	m2
Ac	area della soletta	1.75	m2
Ase	area armatura	0.031	m2
Vld	forza di scorrimento campata esterna C4.3.3	44027	kN

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 47 di 117

Vld	forza di scorrimento campata interna C4.3.4	56320	kN
L kp Fpn	lunghezza trave campata esterna numero di pioli per riga resistenza caratteristica piolo	60 4 90.5	m kN
np min np p	numero minimo di righe numero di righe passo	121.62 122 0.492	m
L kp Fpn	lunghezza trave campata interna numero di pioli per riga resistenza caratteristica piolo	60 4 90.5	m kN
np min np p	numero minimo di righe numero di righe passo	155.58 156 0.385	m

Si ha inoltre che per spessori di flangia tf pari a 20mm il passo massimo consentito è pari ad: $pmax = 22* tf (235/fyk)^0.5= 357mm$ (si adotterà pmax=300mm)

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389

Viadotto VI07 - Relazione di calcolo impalcato 2

389 Pag. 48 di 117

File: T00_VI07_STR_RE02_A

Data: Agosto 2020

7. ANALISI E VERIFICHE IN ESERCIZIO

7.1 Verifiche "a respiro" delle anime

Le verifiche a respiro sono condotte con riferimento alla norma EN 1993-2: 2006 relativa al progetto dei ponti in acciaio.

La snellezza dell'anima deve essere limitata per evitare fenomeni di "respiro" ovvero deformazioni laterali fuori dal piano che possono arrecare danneggiamenti per fatica, nella zona di collegamento fra anima e piattabande.

La verifica a respiro può essere trascurata per i pannelli d'anima senza irrigidimenti longitudinali o per pannelli secondari di anime irrigidite, dove è soddisfatto il sequente criterio:

$$b/t \le 30 + 4.0 L \le 300$$
 (per ponti stradali)

dove L è la lunghezza della campata in m, ma non inferiore a 20 m.

Se la disposizione precedente non è soddisfatta la verifica "a respiro" risulta soddisfatta se:

$$\sqrt{\left(\frac{\sigma_{x,Ed,ser}}{k_{\sigma} \cdot \sigma_{E}}\right)^{2} + \left(\frac{1,1 \cdot \tau_{x,Ed,ser}}{k_{\tau} \cdot \sigma_{E}}\right)^{2}} \leq 1,1$$

dove:

- $\sigma_{x,Ed,ser}$ e $\tau_{x,Ed,ser}$ sono le tensioni calcolate per le combinazioni di carico frequente;
- k_{σ} e k_{τ} sono i coefficienti di imbozzamento in campo elastico;

•
$$\sigma_E = 190000 \cdot \left(\frac{t}{b}\right)^2$$
 [MPa]

• "b" è l'altezza del pannello d'anima.

Le verifiche risultano sempre soddisfatte in quanto risulta che:

- $b/t=3950/18=219 \le 30 + 4.0 L = 270 per la campata da 60m$

7.2 Verifiche di resistenza per lo stato limite di fatica

Le verifiche a fatica sono eseguite in conformità al D.M. 17/01/2018 (carichi di progetto e coefficienti di sicurezza), ed alle indicazioni riportate della Circ. Min. Infrastrutture e Trasporti 2 Febbraio 2009, n. 617, relative alle metodologie ed i particolari costruttivi (par. *C.4.2.4.1.4.*).

I ponti a sezione composta sono soggetti ad azioni dinamiche variabili nel tempo, e possono manifestare, in tempi più o meno lunghi, problemi legati alla fatica, con conseguente limitazione della funzionalità in esercizio e, nelle situazioni più critiche, il collasso della struttura.

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A Data: Agosto 2020

Pag. 49 di 117

L'esecuzione delle verifiche di resistenza a fatica dei componenti degli impalcati metallici o a sezione composta prevede l'individuazione dei dettagli maggiormente sensibili e la loro classificazione in base alle curve S-N, nonché alla scelta del relativo coefficiente parziale di sicurezza γ_{Mf} . Il coefficiente γ_{Mf} dipende sia dalla accessibilità per l'ispezione, sia dall'entità delle conseguenze delle crisi per fatica dell'elemento o della struttura. Si possono utilizzare due diversi approcci progettuali:

- criterio del danneggiamento accettabile per strutture poco sensibili alla rottura per fatica.
- criterio della vita utile a fatica per strutture sensibili alla rottura per fatica.

Criteri di valutazione	Conseguenze moderate (γмr)	Conseguenze significative (γ _{Mf})		
Danneggiamento accettabile	1,00	1,15		
Vita utile a fatica	1,15	1,35		

Tabella 7.1 - Coefficienti parziali γ_{Mf}

La verifica a fatica può essere condotta controllando che i valori massimi dei delta di tensione sulla struttura siano inferiori ai limiti di fatica per i diversi dettagli costruttivi (verifica per "Vita Illimitata") oppure controllando che, per un definito numero di cicli di tensione, la struttura possa subire delta di tensione in grado di creare danneggiamento ma con effetto complessivo non significativo nella vita di progetto dell'opera (verifica a "Danneggiamento").

I modelli di carico da utilizzarsi per la verifica a fatica degli impalcati stradali sono:

• il modello di carico LM1 costituito da dallo schema di carico 1, ma con valori dei carichi concentrati ridotti del 30 % e carichi distribuiti ridotti del 70 % (utilizzabile per verifiche a vita illimitata):

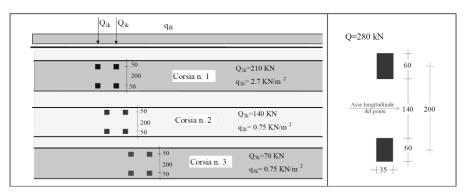


Figura 7.1 - Modello di carico a fatica LM1

 il modello di carico LM2 costituito da un set di veicoli con ingombro geometrico e peso definiti (utilizzabile per verifiche a vita illimitata);

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A Data: Agosto 2020

Pag. 50 di 117

SAGOMA del VEICOLO	Distanza tra gli assi (m)	Carico frequente per asse (kN)	Tipo di ruota (Tab. 5.1.IX)
	4,5	90 190	A B
	4,20 1,30	80 140 140	A B B
	3,20 5,20 1,30 1,30	90 180 120 120 120	A B C C
	3,40 6,00 1,80	90 190 140 140	A B B B
0 0 0 0	4,80 3,60 4,40 1,30	90 180 120 110 110	A B C C

Figura 7.2 - Modello di carico a fatica LM2

 il modello di carico LM3, che si compone di un veicolo convenzionale dal peso complessivo di 480 kN (utilizzabile per verifiche a danneggiamento)

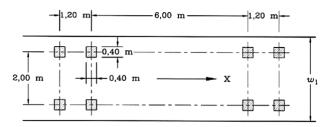


Figura 7.3 -. Modello di carico a fatica LM3 (4 assi da 120 kN)

 il modello di carico LM4 costituito da un set di veicoli con ingombro geometrico e peso definiti (utilizzabile per verifiche a danneggiamento)

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 51 di 117

	-		-	Composizione del traffico			
Sagoma del veicolo	Tipo di pneumatico (Tab.5.1- IX)	Interassi [m]	Valori equivalenti dei carichi asse [kN]	Lunga percorrenza	Media percorrenza	Traffico locale	
	A B	4,50	70 130	20,0	40,0	80,0	
000	A B B	4,20 1,30	70 120 120	5,0	10,0	5,0	
0-0 000	A B C C	3,20 5,20 1,30 1,30	70 150 90 90 90	50,0	30,0	5,0	
0 00	A B B B	3,40 6,00 1,80	70 140 90 90	15,0	15,0	5,0	
0000	A B C C	4,80 3,60 4,40 1,30	70 130 90 80 80	10,0	5,0	5,0	

Figura 7.4 -. Modello di carico a fatica LM4

Le <u>verifiche a fatica per vita illimitata</u> sono condotte, per dettagli caratterizzati da limite di fatica ad ampiezza costante, controllando che il massimo delta di tensione $\Delta\sigma_{max} = (\sigma_{max} - \sigma_{min})$ indotto nel dettaglio stesso dallo spettro di carico significativo risulti minore del limite di fatica del dettaglio stesso. Ai fini del calcolo del $\Delta\sigma_{max}$ si possono impiegare, in alternativa, i modelli di carico di fatica 1 e 2, disposti sul ponte nelle due configurazioni che determinano la tensione massima e minima, rispettivamente, nel dettaglio considerato.

$$\gamma_F \cdot \Delta \sigma_{\max} \leq \frac{\Delta \sigma_D}{\gamma_{Mf}}$$

Le <u>verifiche a danneggiamento</u> consistono nel verificare che nel dettaglio considerato lo spettro di carico produca un danneggiamento D≤1. Il danneggiamento D è valutato mediante la legge di Palmgren-Miner, considerando la curva S-N caratteristica del dettaglio e la vita nominale dell'opera.

$$D = \sum_{i=1}^{p} D_i = \sum_{i=1}^{p} \frac{n_i}{N_i} \le 1$$

Tali verifiche sono condotte considerando lo spettro di tensione indotto nel dettaglio dal modello di fatica semplificato n. 3, o, in alternativa, dallo spettro di carico equivalente costituente il modello di fatica n. 4.

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2 File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 52 di 117

In alcuni casi è possibile ricondurre la verifica a danneggiamento alla determinazione del delta di tensione equivalente $\Delta \sigma_{\scriptscriptstyle E}$ mediante una serie di coefficienti λ , opportunamente calibrati, funzione della luce della campata, del volume di traffico atteso, della vita di progetto dell'opera e della simultaneità di più veicoli lenti nella carreggiata:

$$\Delta \sigma_{E} = \lambda_{1} \cdot \lambda_{2} \cdot \lambda_{3} \cdot \lambda_{4} \cdot \varphi_{fat} \cdot \left[\sigma_{FLM, \max} - \sigma_{FLM, \min}\right] = \lambda \cdot \varphi_{fat} \cdot \Delta \sigma_{\max}$$

con
$$\lambda_1 \cdot \lambda_2 \cdot \lambda_3 \cdot \lambda_4 \leq \lambda_{\max}$$
.

Il coefficiente dinamico equivalente $\varphi_{_{\it fut}}$ per ponti stradali è assunto diverso dall'unità solo nelle prossimità dei giunti di dilatazione. In definitiva, si conduce la verifica a danneggiamento controllando che risulti

$$\gamma_F \cdot \Delta \sigma_E(\lambda) \leq \frac{\Delta \sigma_C}{\gamma_{Mf}}$$
.

Le "Istruzioni per l'applicazione delle «Norme tecniche per le costruzioni» di cui al decreto ministeriale 17 gennaio 2018" definisce le diverse categorie di dettagli ed i valori caratteristici dei delta di tensione resistenti, determinati a 2·10⁶ cicli. Le sezioni critiche maggiormente significative sono le giunzioni di testa saldate a completa penetrazione, gli impilaggi delle lamiere e le giunzioni saldate degli elementi secondari con le travi principali.

Nel caso in esame le verifiche sono condotte a vita illimitata con riferimento al modello di carico LM1.

In particolare si fa riferimento ad:

Tabella C4.2.XIV - Dettagli costruttivi per saldature a piena penetrazione (Δσ)

Classe del dettaglio	Dettaglio costruttivo	Dettaglio costruttivo Descrizione	
112		Saldature senza piatto di sostegno 1) Giunti trasversali in piatti e lamiere 2) Giunti di anime e piattabande in travi composte eseguiti prima dell'assemblaggio 3) Giunti trasversali completi di profili laminati, in assenza di lunette di scarico 4) Giunti trasversali di lamiere e piatti con rastremazioni in larghezza e spessore con pendenza non mag-giore di 1:4. Nelle zone di transi-zione gli intagli nelle saldature devono essere eliminati Per spessori t>25 mm, si deve adot-tare una classe ridotta del coefficiente k _s = (25/t) ^{0,2}	

Per cui:

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A
Data: Agosto 2020
Pag. 53 di 117

$$\Delta \sigma_{\rm D} = 0.737 \Delta \sigma_{\rm C}; \qquad \Delta \sigma_{\rm L} = 0.549 \Delta \sigma_{\rm C} \quad [C4.2.95]$$

 $\Delta \sigma_d = 0.737 *112 = 82.5 \text{ MPa}$

$$\Delta \sigma_L = 0.549 *112 = 61.5 MPa$$

Inoltre:

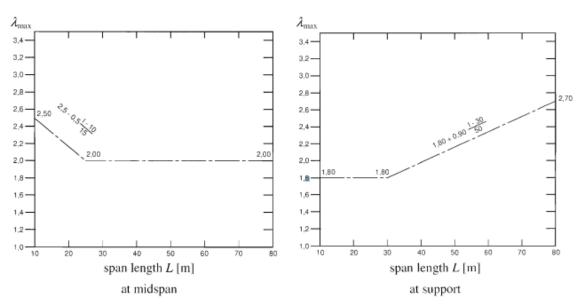
 $ks = (25/t)^0.2$

ad esempio, per una piattabanda di spessore 50mm risulta:

ks= (25/50)^0.2=0.87

Deve risultare dunque:

Verifica a vita illimitata.


La verifica a vita illimitata si esegue controllando che sia:

$$\Delta \sigma_{\text{max,d}} = \gamma_{\text{Mf}} \cdot \Delta \sigma_{\text{max}} \le \Delta \sigma_{\text{D}}$$
 [4.2.55]

Per cui l'escursione massima deve risultare:

 $\Delta \sigma$ max_d = $\Delta \sigma$ _d *ks/ γ Mf= 82.5 MPa*0.87/1.35 = 53.2 MPa

Per i pioli le verifiche sono condotte a danneggiamento con riferimento al modello di carico LM3.

Deve risultare dunque:

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A Data: Agosto 2020

Pag. 54 di 117

 $\Delta \tau_{\text{ed}} = \lambda_{\text{max}} * \gamma_{\text{MF}} * \Delta \tau_{\text{k}} < \Delta \tau_{\text{c}} / \gamma_{\text{MFs}} = 90$ MPa (C4.2.4.1.4.4)

Dove:

 λ_{max} = 1.8+0.9*(L-30)/50 = 2.34 campata 60m

 $\gamma_{MF} = \gamma_{MFs} = 1$ (EN1994-2,2.4.1.2(6))

 $\Delta \tau_k$ = tensione di taglio agente sul piolo

7.2.1Risultati - SLF

Modello di carico 1:

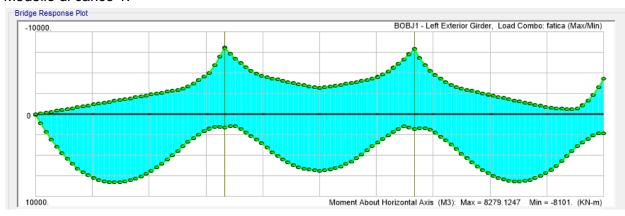


Figura 7.5 -. Momento flettente (kN*m)

m	m	МРа	МРа	МРа	МРа		
S		$\Delta\sigma$ am	$\Delta\sigma$ am	$\Delta\sigma$ piatt. su	$\Delta\sigma$ piatt. In	Ver	Ver
sup	s inf	m	m	р	f		
	0.0						
0.02	2	63.9	63.9	0.0	0.0	SI	SI
	0.0						
0.02	2	63.9	63.9	0.0	0.0	SI	SI
	0.0						
0.02	2	63.9	63.9	0.0	0.0	SI	SI
	0.0						
0.02	2	63.9	63.9	0.0	0.0	SI	SI
	0.0						,
0.02	2	63.9	63.9	0.0	0.0	SI	SI
	0.0						
0.02	2	63.9	63.9	2.8	18.1	SI	SI

		FLES. NEGATIVA								
m	m	МРа	МРа	МРа	МРа					
S		$\Delta\sigma$ am	$\Delta\sigma$ am	$\Delta\sigma$ piatt. su	$\Delta\sigma$ piatt. In	Ver	Ver			
sup	s inf	m	m	р	f					
	0.0									
0.02	2	63.9	63.9	0.1	0.4	SI	SI			
	0.0									
0.02	2	63.9	63.9	0.5	1.3	SI	SI			
	0.0									
0.02	2	63.9	63.9	0.5	1.2	SI	SI			
	0.0									
0.02	2	63.9	63.9	1.0	2.6	SI	SI			
	0.0									
0.02	2	63.9	63.9	1.0	2.6	SI	SI			
	0.0									
0.02	2	63.9	63.9	1.5	4.0	SI	SI			

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2 File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 55 di 117

	0.0				1	ĺ	
0.02	0.0	63.9	63.9	2.8	18.0	SI	SI
0.02	2	63.9	63.9	3.6	23.1	SI	SI
0.02	0.0 2	63.9	63.9	3.6	23.1	SI	SI
0.02	0.0 2	63.9	63.9	4.2	29.3	SI	SI
0.02	0.0	63.9	63.9	4.2	29.3	SI	SI
0.02	0.0	63.9	63.9	4.9	33.7	SI	SI
0.02	0.0				33.7		
	0.0	63.9	63.9	4.9		SI	SI
0.02	0.0	63.9	63.9	5.4	37.5	SI	SI
0.02	0.0	63.9	63.9	5.4	37.5	SI	SI
0.02	2 0.0	63.9	63.9	5.9	40.9	SI	SI
0.02	2	63.9	63.9	5.9	40.9	SI	SI
0.02	0.0	63.9	63.9	6.3	43.8	SI	SI
0.02	0.0 2	63.9	63.9	6.3	43.7	SI	SI
0.02	0.0	63.9	63.9	6.6	46.1	SI	SI
0.02	0.0	63.9	63.9	6.6	46.1	SI	SI
0.02	0.0	63.9	63.9	6.9	48.0	SI	SI
	0.0						
0.02	0.0	63.9	63.9	6.9	48.0	SI	SI
0.02	0.0	63.9	63.9	7.1	49.5	SI	SI
0.02	0.0	63.9	63.9	7.1	49.5	SI	SI
0.02	2 0.0	63.9	63.9	7.2	50.5	SI	SI
0.02	2 0.0	63.9	63.9	7.2	50.5	SI	SI
0.02	2	63.9	63.9	7.3	51.2	SI	SI
0.02	0.0 2	63.9	63.9	7.3	51.2	SI	SI
0.02	0.0 2	63.9	63.9	7.3	51.4	SI	SI
0.02	0.0	63.9	63.9	7.3	51.4	SI	SI
0.02	0.0	63.9	63.9	7.3	51.2	SI	SI
0.02	0.0	63.9	63.9	7.3	51.2	SI	SI
	0.0						
0.02	0.0	63.9	63.9	7.2	50.7	SI	SI
0.02	0.0	63.9	63.9	7.2	50.7	SI	SI
0.02	0.0	63.9	63.9	7.1	49.8	SI	SI
0.02	2	63.9	63.9	7.1	49.8	SI	SI
0.02	0.0	63.9	63.9	6.9	48.5	SI	SI
0.02	0.0	63.9	63.9	6.9	48.5	SI	SI
0.02	0.0	63.9	63.9	6.7	46.9	SI	SI
0.02	0.0	63.9	63.9	6.7	46.9	SI	SI

1	0.0	Ī	l i		I	I	l
0.02	2	63.9	63.9	1.5	3.9	SI	SI
0.02	0.0	63.9	63.9	2.1	5.3	SI	SI
0.02	0.0 2	63.9	63.9	2.1	5.3	SI	SI
0.02	0.0	63.9	63.9	2.6	7.3	SI	SI
0.02	0.0	63.9	63.9	2.6	7.3	SI	SI
0.02	0.0	63.9	63.9	3.2	8.8	SI	SI
0.02	0.0	63.9	63.9	3.2	8.8	SI	SI
0.02	0.0	63.9	63.9	3.7	10.3	SI	SI
0.02	0.0	63.9			10.3	SI	SI
	0.0		63.9	3.7			
0.02	0.0	63.9	63.9	4.3	11.8	SI	SI
0.02	0.0	63.9	63.9	4.3	11.8	SI	SI
0.02	0.0	63.9	63.9	4.8	13.3	SI	SI
0.02	0.0	63.9	63.9	4.8	13.2	SI	SI
0.02	2	63.9	63.9	5.3	14.7	SI	SI
0.02	2	63.9	63.9	5.3	14.7	SI	SI
0.02	0.0 2	63.9	63.9	5.9	16.2	SI	SI
0.02	0.0 2	63.9	63.9	5.9	16.2	SI	SI
0.02	0.0 2	63.9	63.9	6.4	17.7	SI	SI
0.02	0.0 2	63.9	63.9	6.4	17.7	SI	SI
0.02	0.0	63.9	63.9	6.9	19.1	SI	SI
0.02	0.0	63.9	63.9	6.9	19.1	SI	SI
0.02	0.0	63.9	63.9	7.5	20.6	SI	SI
0.02	0.0	63.9	63.9	7.5	20.6	SI	SI
0.02	0.0	63.9	63.9	8.0	22.1	SI	SI
0.02	0.0	63.9	63.9	8.0	22.1	SI	SI
0.02	0.0	63.9	63.9	8.5	23.6	SI	SI
0.02	0.0	63.9	63.9	8.5	23.6	SI	SI
0.02	0.0	63.9	63.9	9.1	25.0	SI	SI
0.02	0.0	63.9	63.9	9.1	25.0	SI	SI
	0.0						
0.02	0.0	63.9	63.9	9.6	26.5	SI	SI
0.02	0.0	63.9	63.9	9.6	26.5	SI	SI
0.02	0.0	63.9	63.9	10.2	28.0	SI	SI
0.02	0.0	63.9	63.9	10.2	28.0	SI	SI
0.02	2	63.9	63.9	10.7	29.5	SI	SI
0.02	2	63.9	63.9	10.7	29.5	SI	SI

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2 File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 56 di 117

	0.0					İ	
0.02	2 0.0	63.9	63.9	6.4	45.0	SI	SI
0.02	2	63.9	63.9	6.4	45.0	SI	SI
0.02	0.0 2	63.9	63.9	6.1	42.7	SI	SI
0.02	0.0 2	63.9	63.9	6.1	42.8	SI	SI
0.02	0.0	63.9	63.9	5.7	40.2	SI	SI
0.02	0.0	63.9	63.9	5.7	40.2	SI	SI
0.02	0.0	63.9	63.9	5.3	37.4	SI	SI
0.02	0.0	63.9	63.9	5.3	37.4	SI	SI
	0.0						
0.02	0.0	63.9	63.9	4.8	34.3	SI	SI
0.02	0.0	63.9	63.9	4.9	34.3	SI	SI
0.02	0.0	63.9	63.9	4.4	30.9	SI	SI
0.02	2 0.0	63.9	63.9	4.4	30.9	SI	SI
0.02	2	63.9	63.9	3.9	27.4	SI	SI
0.02	0.0	63.9	63.9	3.9	27.4	SI	SI
0.03	0.0 4	59.0	55.7	3.3	14.7	SI	SI
0.03	0.0 4	59.0	55.7	3.3	14.7	SI	SI
0.03	0.0 4	59.0	55.7	2.9	12.8	SI	SI
0.03	0.0 4	59.0	55.7	2.9	12.8	SI	SI
0.03	0.0	59.0	55.7	2.5	11.1	SI	SI
	0.0						
0.03	0.0	59.0	55.7	2.5	11.1	SI	SI
0.03	0.0	59.0	55.7	2.1	9.4	SI	SI
0.03	0.0	59.0	55.7	2.1	9.4	SI	SI
0.03	4 0.0	59.0	55.7	1.8	7.9	SI	SI
0.03	4 0.0	59.0	55.7	1.8	7.9	SI	SI
0.04	7	55.7	49.8	1.5	4.5	SI	SI
0.04	0.0 7	55.7	49.8	1.5	4.5	SI	SI
0.04	0.0 7	55.7	49.8	1.3	4.0	SI	SI
0.04	0.0 7	55.7	49.8	1.3	4.0	SI	SI
0.04	0.0 7	55.7	49.8	1.3	4.1	SI	SI
0.04	0.0 7	55.7	49.8	1.3	4.1	SI	SI
0.04	0.0 7	55.7	49.8	1.4	4.2	SI	SI
	0.0						
0.04	0.0	55.7	49.8	0.0	0.0	SI	SI
0.04	7 0.0	55.7	49.8	0.0	0.0	SI	SI
0.04	7	55.7	49.8	0.0	0.0	SI	SI
0.04	7	55.7	49.8	0.0	0.0	SI	SI

1	0.0	İ	i i		Ī	I	l
0.02	2	63.9	63.9	11.3	31.0	SI	SI
0.02	0.0 2	63.9	63.9	11.2	31.0	SI	SI
0.02	0.0 2	63.9	63.9	11.8	32.5	SI	SI
0.02	0.0	63.9	63.9	11.8	32.5	SI	SI
0.02	0.0	63.9	63.9	12.4	34.1	SI	SI
0.02	0.0	63.9	63.9	12.3	34.0	SI	SI
0.02	0.0	63.9	63.9	12.9	35.6	SI	SI
0.02	0.0	63.9	63.9	12.9	35.6	SI	SI
0.02	0.0	63.9	63.9	13.5	37.1	SI	SI
	0.0						
0.02	0.0	63.9	63.9	13.5	37.1	SI	SI
0.02	0.0	63.9	63.9	14.0	38.7	SI	SI
0.02	0.0	63.9	63.9	14.0	38.7	SI	SI
0.02	0.0	63.9	63.9	14.7	40.4	SI	SI
0.02	0.0	63.9	63.9	14.7	40.4	SI	SI
0.03	4 0.0	59.0	55.7	11.2	17.3	SI	SI
0.03	4 0.0	59.0	55.7	11.2	17.3	SI	SI
0.03	4	59.0	55.7	12.1	18.7	SI	SI
0.03	0.0 4	59.0	55.7	12.1	18.7	SI	SI
0.03	0.0	59.0	55.7	13.3	20.5	SI	SI
0.03	0.0	59.0	55.7	13.3	20.5	SI	SI
0.03	0.0 4	59.0	55.7	14.6	22.6	SI	SI
0.03	0.0 4	59.0	55.7	14.6	22.6	SI	SI
0.03	0.0 4	59.0	55.7	16.2	25.1	SI	SI
0.03	0.0 4	59.0	55.7	16.2	25.1	SI	SI
0.04	0.0 7	55.7	49.8	15.1	16.6	SI	SI
0.04	0.0 7	55.7	49.8	15.1	16.6	SI	SI
0.04	0.0 7	55.7	49.8	17.8	19.6	SI	SI
0.04	0.0 7	55.7	49.8	17.8	19.5	SI	SI
0.04	0.0 7	55.7	49.8	20.9	22.9	SI	SI
0.04	0.0 7	55.7	49.8	20.9	22.9	SI	SI
0.04	0.0	55.7	49.8	24.2	26.5	SI	SI
0.04	0.0	55.7	49.8	24.2	26.5	SI	SI
	0.0						
0.04	7 0.0	55.7	49.8	22.1	24.2	SI	SI
0.04	0.0	55.7	49.8	22.1	24.2	SI	SI
0.04	7	55.7	49.8	20.2	22.2	SI	SI

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2 File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 57 di 117

	0.0]	ĺ		l	
0.04	7 0.0	55.7	49.8	0.0	0.0	SI	SI
0.04	7	55.7	49.8	0.0	0.0	SI	SI
0.04	0.0 7	55.7	49.8	0.0	0.0	SI	SI
0.03	0.0 4	59.0	55.7	0.0	0.0	SI	SI
0.03	0.0 4	59.0	55.7	0.0	0.0	SI	SI
0.03	0.0 4	59.0	55.7	0.0	0.0	SI	SI
0.03	0.0 4	59.0	55.7	0.0	0.0	SI	SI
0.03	0.0	59.0	55.7	0.0	0.0	SI	SI
	0.0						
0.03	0.0	59.0	55.7	0.0	0.0	SI	SI
0.03	0.0	59.0	55.7	2.9	13.4	SI	SI
0.03	0.0	59.0	55.7	2.9	13.4	SI	SI
0.03	4 0.0	59.0	55.7	3.3	15.4	SI	SI
0.03	4 0.0	59.0	55.7	3.3	15.4	SI	SI
0.02	3	63.9	59.0	3.8	23.9	SI	SI
0.02	0.0	63.9	59.0	3.8	23.8	SI	SI
0.02	0.0 3	63.9	59.0	4.1	26.3	SI	SI
0.02	0.0 3	63.9	59.0	4.1	26.3	SI	SI
0.02	0.0	63.9	59.0	4.4	28.4	SI	SI
0.02	0.0	63.9	59.0	4.4	28.4	SI	SI
0.02	0.0	63.9	59.0	4.7	30.4	SI	SI
0.02	0.0	63.9	59.0	4.7	30.3	SI	SI
0.02	0.0	63.9	59.0	4.9	31.9	SI	SI
0.02	0.0	63.9	59.0	4.9	31.9	SI	SI
0.02	0.0	63.9	59.0	5.1	33.2	SI	SI
0.02	0.0	63.9	59.0	5.1	33.2	SI	SI
	0.0						
0.02	0.0	63.9	59.0	5.2	34.2	SI	SI
0.02	0.0	63.9	59.0	5.2	34.2	SI	SI
0.02	0.0	63.9	59.0	5.3	34.9	SI	SI
0.02	3 0.0	63.9	59.0	5.3	34.9	SI	SI
0.02	3	63.9	59.0	5.3	35.3	SI	SI
0.02	3	63.9	59.0	5.3	35.3	SI	SI
0.02	0.0	63.9	59.0	5.3	35.4	SI	SI
0.02	0.0	63.9	59.0	5.3	35.4	SI	SI
0.02	0.0 3	63.9	59.0	5.2	35.1	SI	SI
0.02	0.0	63.9	59.0	5.2	35.1	SI	SI

0.04	0.0 7	55.7	49.8	20.2	22.2	SI	SI
0.04	0.0	55.7	49.8	18.5	20.3	SI	SI
	0.0						
0.04	7	55.7	49.8	18.6	20.4	SI	SI
0.03	0.0	59.0	55.7	20.3	31.4	SI	SI
0.03	0.0	59.0	55.7	20.3	31.5	SI	SI
0.03	4 0.0	59.0	55.7	18.8	29.1	SI	SI
0.03	4	59.0	55.7	18.8	29.1	SI	SI
0.03	4	59.0	55.7	17.6	27.2	SI	SI
0.03	0.0 4	59.0	55.7	17.6	27.2	SI	SI
0.03	0.0 4	59.0	55.7	16.5	25.5	SI	SI
0.03	0.0 4	59.0	55.7	16.5	25.6	SI	SI
0.03	0.0 4	59.0	55.7	15.8	24.5	SI	SI
0.03	0.0	59.0	55.7	15.8	24.5	SI	SI
0.02	0.0	63.9	59.0	19.8	37.6	SI	SI
	0.0						
0.02	0.0	63.9	59.0	19.8	37.6	SI	SI
0.02	0.0	63.9	59.0	19.2	36.4	SI	SI
0.02	3 0.0	63.9	59.0	19.2	36.4	SI	SI
0.02	3 0.0	63.9	59.0	18.5	35.2	SI	SI
0.02	3	63.9	59.0	18.5	35.2	SI	SI
0.02	0.0	63.9	59.0	17.9	34.1	SI	SI
0.02	0.0 3	63.9	59.0	17.9	34.1	SI	SI
0.02	0.0 3	63.9	59.0	17.3	32.9	SI	SI
0.02	0.0	63.9	59.0	17.3	32.9	SI	SI
0.02	0.0	63.9	59.0	16.7	31.8	SI	SI
0.02	0.0	63.9	59.0	16.7	31.8	SI	SI
0.02	0.0	63.9	59.0	16.2	30.7	SI	SI
	0.0						
0.02	0.0	63.9	59.0	16.2	30.7	SI	SI
0.02	0.0	63.9	59.0	15.6	29.6	SI	SI
0.02	3 0.0	63.9	59.0	15.6	29.6	SI	SI
0.02	3 0.0	63.9	59.0	15.1	28.6	SI	SI
0.02	3	63.9	59.0	15.1	28.6	SI	SI
0.02	3	63.9	59.0	14.6	27.8	SI	SI
0.02	0.0	63.9	59.0	14.6	27.8	SI	SI
0.02	0.0	63.9	59.0	14.9	28.2	SI	SI
0.02	0.0	63.9	59.0	14.9	28.2	SI	SI

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 58 di 117

	0.0		1			Ī	
0.02	3 0.0	63.9	59.0	5.1	34.6	SI	SI
0.02	3	63.9	59.0	5.1	34.6	SI	SI
0.02	0.0	63.9	59.0	5.0	33.8	SI	SI
0.02	0.0 3	63.9	59.0	5.0	33.8	SI	SI
0.02	0.0	63.9	59.0	4.8	32.6	SI	SI
0.02	0.0	63.9	59.0	4.8	32.6	SI	SI
0.02	0.0	63.9	59.0	4.5	31.2	SI	SI
0.02	0.0	63.9	59.0	4.5	31.2	SI	SI
	0.0		59.0		-	SI	SI
0.02	0.0	63.9		4.3	29.5		
0.02	0.0	63.9	59.0	4.3	29.5	SI	SI
0.02	3 0.0	63.9	59.0	3.9	27.5	SI	SI
0.02	3 0.0	63.9	59.0	3.9	27.5	SI	SI
0.02	3	63.9	59.0	3.6	25.2	SI	SI
0.02	3	63.9	59.0	3.6	25.2	SI	SI
0.02	0.0	63.9	59.0	3.2	22.7	SI	SI
0.02	0.0 3	63.9	59.0	3.2	22.8	SI	SI
0.03	0.0 4	59.0	55.7	2.8	14.6	SI	SI
0.03	0.0 4	59.0	55.7	2.8	14.6	SI	SI
0.03	0.0 4	59.0	55.7	2.5	12.9	SI	SI
0.03	0.0	59.0	55.7	2.5	12.9	SI	SI
0.03	0.0	59.0	55.7	2.1	11.2	SI	SI
	0.0						
0.03	0.0	59.0	55.7	2.1	11.2	SI	SI
0.03	0.0	59.0	55.7	1.8	9.6	SI	SI
0.03	0.0	59.0	55.7	1.8	9.6	SI	SI
0.03	4 0.0	59.0	55.7	1.5	8.1	SI	SI
0.03	4 0.0	59.0	55.7	1.5	8.1	SI	SI
0.04	7	55.7	49.8	1.2	4.5	SI	SI
0.04	0.0	55.7	49.8	1.2	4.5	SI	SI
0.04	0.0 7	55.7	49.8	1.0	3.8	SI	SI
0.04	0.0 7	55.7	49.8	1.0	3.8	SI	SI
0.04	0.0 7	55.7	49.8	1.1	4.1	SI	SI
0.04	0.0 7	55.7	49.8	1.1	4.1	SI	SI
0.04	0.0 7	55.7	49.8	1.3	4.7	SI	SI
	0.0						
0.04	0.0	55.7	49.8	0.0	0.0	SI	SI
0.04	7	55.7	49.8	0.0	0.0	SI	SI

1		ı ı	i i		I	Í	1 1
0.02	0.0	63.9	59.0	15.4	29.2	SI	SI
0.02	0.0 3	63.9	59.0	15.4	29.2	SI	SI
0.02	0.0	63.9	59.0	15.9	30.1	SI	SI
0.02	0.0	63.9	59.0	15.9	30.1	SI	SI
0.02	0.0	63.9	59.0	16.4	31.1	SI	SI
0.02	0.0	63.9	59.0	16.4	31.1	SI	SI
0.02	0.0	63.9	59.0	16.9	32.1	SI	SI
0.02	0.0	63.9	59.0	16.9	32.1	SI	SI
0.02	0.0	63.9	59.0	17.4	33.1	SI	SI
0.02	0.0	63.9				SI	SI
	0.0		59.0	17.4	33.1		
0.02	0.0	63.9	59.0	18.0	34.1	SI	SI
0.02	0.0	63.9	59.0	18.0	34.1	SI	SI
0.02	0.0	63.9	59.0	18.5	35.1	SI	SI
0.02	0.0	63.9	59.0	18.5	35.1	SI	SI
0.02	0.0	63.9	59.0	19.0	36.1	SI	SI
0.02	0.0	63.9	59.0	19.0	36.1	SI	SI
0.03	4 0.0	59.0	55.7	15.2	23.6	SI	SI
0.03	4 0.0	59.0	55.7	15.2	23.6	SI	SI
0.03	4 0.0	59.0	55.7	16.1	24.9	SI	SI
0.03	4 0.0	59.0	55.7	16.1	24.9	SI	SI
0.03	4	59.0	55.7	17.2	26.7	SI	SI
0.03	0.0	59.0	55.7	17.2	26.6	SI	SI
0.03	0.0 4	59.0	55.7	18.6	28.7	SI	SI
0.03	0.0	59.0	55.7	18.5	28.7	SI	SI
0.03	0.0 4	59.0	55.7	20.1	31.1	SI	SI
0.03	0.0 4	59.0	55.7	20.1	31.1	SI	SI
0.04	0.0 7	55.7	49.8	18.4	20.2	SI	SI
0.04	0.0 7	55.7	49.8	18.4	20.2	SI	SI
0.04	0.0 7	55.7	49.8	20.0	22.0	SI	SI
0.04	0.0 7	55.7	49.8	20.0	22.0	SI	SI
0.04	0.0 7	55.7	49.8	21.9	24.0	SI	SI
0.04	0.0	55.7	49.8	21.9	24.0	SI	SI
0.04	0.0 7	55.7	49.8	23.9	26.2	SI	SI
0.04	0.0	55.7	49.8	23.9	26.2	SI	SI
	0.0						
0.04	7	55.7	49.8	20.5	22.5	SI	SI

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2 File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 59 di 117

1	0.0		İ		Ī	l	
0.04	7 0.0	55.7	49.8	0.0	0.0	SI	SI
0.04	7	55.7	49.8	0.0	0.0	SI	SI
0.04	0.0 7	55.7	49.8	0.0	0.0	SI	SI
0.04	0.0 7	55.7	49.8	0.0	0.0	SI	SI
0.04	0.0 7	55.7	49.8	0.0	0.0	SI	SI
0.03	0.0 4	59.0	55.7	0.0	0.0	SI	SI
0.03	0.0 4	59.0	55.7	0.0	0.0	SI	SI
0.03	0.0	59.0	55.7	0.0	0.0	SI	SI
	0.0						
0.03	0.0	59.0	55.7	0.0	0.0	SI	SI
0.03	0.0	59.0	55.7	0.0	0.0	SI	SI
0.03	0.0	59.0	55.7	0.0	0.0	SI	SI
0.03	4 0.0	59.0	55.7	0.0	0.0	SI	SI
0.03	4 0.0	59.0	55.7	0.0	0.0	SI	SI
0.03	4	59.0	55.7	2.9	15.9	SI	SI
0.03	0.0 4	59.0	55.7	2.9	15.9	SI	SI
0.02	0.0 2	63.9	63.9	3.2	29.3	SI	SI
0.02	0.0	63.9	63.9	3.2	29.3	SI	SI
0.02	0.0	63.9	63.9	3.6	32.7	SI	SI
0.02	0.0	63.9	63.9	3.6	32.7	SI	SI
0.02	0.0	63.9	63.9	4.0	35.9	SI	SI
0.02	0.0	63.9	63.9	4.0	36.0	SI	SI
0.02	0.0	63.9	63.9	4.3	38.9	SI	SI
0.02	0.0	63.9	63.9	4.3	38.9	SI	SI
0.02	0.0	63.9	63.9	4.6	41.5	SI	SI
0.02	0.0	63.9	63.9		41.6	SI	SI
	0.0			4.6			
0.02	0.0	63.9	63.9	4.8	43.8	SI	SI
0.02	0.0	63.9	63.9	4.8	43.9	SI	SI
0.02	0.0	63.9	63.9	5.0	45.8	SI	SI
0.02	0.0	63.9	63.9	5.0	45.8	SI	SI
0.02	0.0	63.9	63.9	5.2	47.4	SI	SI
0.02	2	63.9	63.9	5.2	47.4	SI	SI
0.02	0.0	63.9	63.9	5.3	48.6	SI	SI
0.02	0.0	63.9	63.9	5.3	48.7	SI	SI
0.02	0.0 2	63.9	63.9	5.4	49.5	SI	SI
0.02	0.0	63.9	63.9	5.4	49.5	SI	SI

0.04	0.0 7	55.7	49.8	20.6	22.6	SI	SI
	0.0						
0.04	0.0	55.7	49.8	17.9	19.6	SI	SI
0.04	7 0.0	55.7	49.8	17.9	19.6	SI	SI
0.04	7	55.7	49.8	15.9	17.4	SI	SI
0.04	7	55.7	49.8	15.9	17.4	SI	SI
0.03	4	59.0	55.7	17.0	26.2	SI	SI
0.03	0.0	59.0	55.7	17.0	26.3	SI	SI
0.03	0.0 4	59.0	55.7	15.3	23.6	SI	SI
0.03	0.0 4	59.0	55.7	15.3	23.6	SI	SI
0.03	0.0 4	59.0	55.7	13.8	21.4	SI	SI
0.03	0.0 4	59.0	55.7	13.8	21.4	SI	SI
0.03	0.0	59.0	55.7	12.7	19.6	SI	SI
	0.0	59.0					SI
0.03	0.0		55.7	12.7	19.6	SI	
0.03	0.0	59.0	55.7	11.8	18.2	SI	SI
0.03	0.0	59.0	55.7	11.8	18.2	SI	SI
0.02	2 0.0	63.9	63.9	15.4	42.3	SI	SI
0.02	2	63.9	63.9	15.4	42.4	SI	SI
0.02	2	63.9	63.9	14.6	40.3	SI	SI
0.02	0.0 2	63.9	63.9	14.6	40.3	SI	SI
0.02	0.0 2	63.9	63.9	13.9	38.3	SI	SI
0.02	0.0	63.9	63.9	13.9	38.3	SI	SI
0.02	0.0 2	63.9	63.9	13.2	36.3	SI	SI
0.02	0.0	63.9	63.9	13.2	36.4	SI	SI
	0.0				34.4	SI	SI
0.02	0.0	63.9	63.9	12.5			
0.02	0.0	63.9	63.9	12.5	34.4	SI	SI
0.02	0.0	63.9	63.9	11.8	32.4	SI	SI
0.02	0.0	63.9	63.9	11.8	32.4	SI	SI
0.02	2	63.9	63.9	11.1	30.5	SI	SI
0.02	2	63.9	63.9	11.1	30.5	SI	SI
0.02	0.0	63.9	63.9	10.4	28.5	SI	SI
0.02	0.0 2	63.9	63.9	10.4	28.6	SI	SI
0.02	0.0 2	63.9	63.9	9.7	26.6	SI	SI
0.02	0.0 2	63.9	63.9	9.7	26.7	SI	SI
0.02	0.0	63.9	63.9	9.0	24.7	SI	SI
0.02	0.0	63.9	63.9	9.0	24.8	SI	SI
0.02	2	03.9	05.9	5.0	24.8	اد	ЭI

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2 File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 60 di 117

	0.0					l	
0.02	2 0.0	63.9	63.9	5.5	49.9	SI	SI
0.02	2	63.9	63.9	5.5	49.9	SI	SI
0.02	0.0 2	63.9	63.9	5.5	49.9	SI	SI
0.02	0.0	63.9	63.9	5.5	50.0	SI	SI
0.02	0.0	63.9	63.9	5.4	49.6	SI	SI
0.02	0.0	63.9	63.9	5.4	49.6	SI	SI
0.02	0.0	63.9	63.9	5.3	48.8	SI	SI
0.02	0.0	63.9	63.9	5.3	48.8	SI	SI
	0.0						
0.02	0.0	63.9	63.9	5.2	47.6	SI	SI
0.02	0.0	63.9	63.9	5.2	47.6	SI	SI
0.02	0.0	63.9	63.9	5.0	45.9	SI	SI
0.02	2	63.9	63.9	5.0	46.0	SI	SI
0.02	2	63.9	63.9	4.8	43.8	SI	SI
0.02	0.0	63.9	63.9	4.8	43.9	SI	SI
0.02	0.0 2	63.9	63.9	4.5	41.3	SI	SI
0.02	0.0	63.9	63.9	4.5	41.4	SI	SI
0.02	0.0 2	63.9	63.9	4.2	38.3	SI	SI
0.02	0.0	63.9	63.9	4.2	38.4	SI	SI
0.02	0.0	63.9	63.9	3.8	34.9	SI	SI
	0.0						
0.02	0.0	63.9	63.9	3.8	34.9	SI	SI
0.02	0.0	63.9	63.9	3.4	31.0	SI	SI
0.02	0.0	63.9	63.9	3.4	31.1	SI	SI
0.02	2 0.0	63.9	63.9	2.9	27.1	SI	SI
0.02	2	63.9	63.9	3.0	27.2	SI	SI
0.02	2	63.9	63.9	2.5	23.4	SI	SI
0.02	0.0	63.9	63.9	2.5	23.4	SI	SI
0.02	0.0 2	63.9	63.9	2.3	19.6	SI	SI
0.02	0.0	63.9	63.9	2.3	19.6	SI	SI
0.02	0.0	63.9	63.9	2.0	17.2	SI	SI
0.02	0.0	63.9	63.9	2.0	17.2	SI	SI
0.02	0.0		63.9			SI	
	0.0	63.9		1.8	14.9		SI
0.02	0.0	63.9	63.9	1.8	14.9	SI	SI
0.02	0.0	63.9	63.9	1.6	13.2	SI	SI
0.02	2 0.0	63.9	63.9	1.6	13.1	SI	SI
0.02	2	63.9	63.9	1.5	13.1	SI	SI

1	0.0	İ	i i		Ī	I	l
0.02	2	63.9	63.9	8.3	22.8	SI	SI
0.02	0.0 2	63.9	63.9	8.3	22.9	SI	SI
0.02	0.0	63.9	63.9	7.6	21.0	SI	SI
0.02	0.0	63.9	63.9	7.6	21.0	SI	SI
0.02	0.0	63.9	63.9	7.0	19.2	SI	SI
	0.0					SI	SI
0.02	0.0	63.9	63.9	7.0	19.2		
0.02	0.0	63.9	63.9	6.3	17.4	SI	SI
0.02	0.0	63.9	63.9	6.3	17.4	SI	SI
0.02	0.0	63.9	63.9	5.7	15.6	SI	SI
0.02	2 0.0	63.9	63.9	5.7	15.7	SI	SI
0.02	2	63.9	63.9	5.0	13.9	SI	SI
0.02	0.0	63.9	63.9	5.0	13.9	SI	SI
0.02	2	63.9	63.9	4.4	12.1	SI	SI
0.02	0.0 2	63.9	63.9	4.4	12.2	SI	SI
0.02	0.0 2	63.9	63.9	3.9	10.7	SI	SI
0.02	0.0	63.9	63.9	3.9	10.7	SI	SI
0.02	0.0 2	63.9	63.9	3.6	10.0	SI	SI
0.02	0.0	63.9	63.9	3.6	9.9	SI	SI
0.02	0.0	63.9	63.9	3.3	9.2	SI	SI
	0.0						
0.02	0.0	63.9	63.9	3.3	9.2	SI	SI
0.02	0.0	63.9	63.9	3.1	8.5	SI	SI
0.02	0.0	63.9	63.9	3.1	8.5	SI	SI
0.02	2 0.0	63.9	63.9	3.1	8.5	SI	SI
0.02	2	63.9	63.9	3.1	8.5	SI	SI
0.02	2 0.0	63.9	63.9	3.7	10.2	SI	SI
0.02	2	63.9	63.9	3.7	10.1	SI	SI
0.02	0.0	63.9	63.9	5.4	13.8	SI	SI
0.02	0.0 2	63.9	63.9	5.3	13.7	SI	SI
0.02	0.0	63.9	63.9	8.1	20.8	SI	SI
0.02	0.0	63.9	63.9	8.0	20.6	SI	SI
0.02	0.0	63.9	63.9	11.6	29.7	SI	SI
0.02	0.0	63.9	63.9	11.5	29.5	SI	SI
	0.0						
0.02	0.0	63.9	63.9	15.9	40.8	SI	SI
0.02	0.0	63.9	63.9	15.9	40.7	SI	SI
0.02	2	63.9	63.9	21.2	54.3	SI	SI

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A Data: Agosto 2020

Pag. 61 di 117

Le verifiche risultano dunque soddisfatte in quanto $\Delta \sigma < \Delta \sigma max_d$

Modello di carico 3:

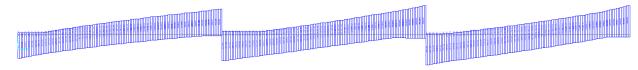


Figura 7.6 -. Taglio (kN)

 $V_{Ed} = 440 \text{ kN (campata 60m)}$

 $\Delta F scor = 116 kN/m$

 $\Delta \tau_k = 37 \text{ MPa (n. 4 pioli passo 300 ; d= 20mm)}$

 $\Delta \tau_{ed} = \lambda_{max} * \gamma_{MF} * \Delta \tau_{k} = 2.34*1*37 = 87 \text{ MPa} < \Delta \tau_{c} = 90 \text{ MPa}$

7.3 Abbassamenti

La freccia dovuta Carichi accidentali (mobili + vento + ΔT) dovrà essere inferiore a limite di 1/500L= 0.12m.

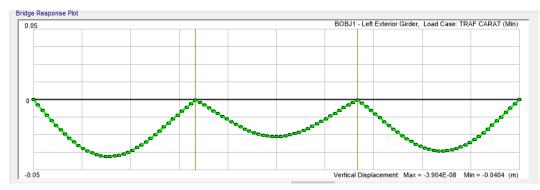


Figura 7.7 -. Abbassamento traffico 0.04m

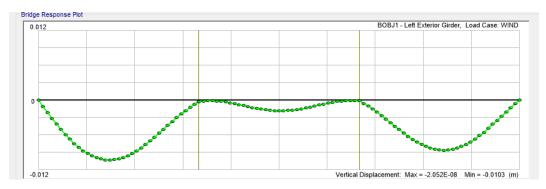


Figura 7.8 -. Abbassamento vento 0.001m

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 62 di 117

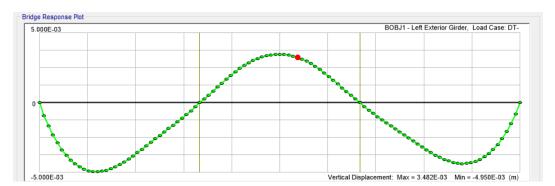


Figura 7.9 -. Abbassamento temperatura 0.005m

Wmax = 0.04+0.01 + 0.005 = 0.055m < 0.12m Verificato

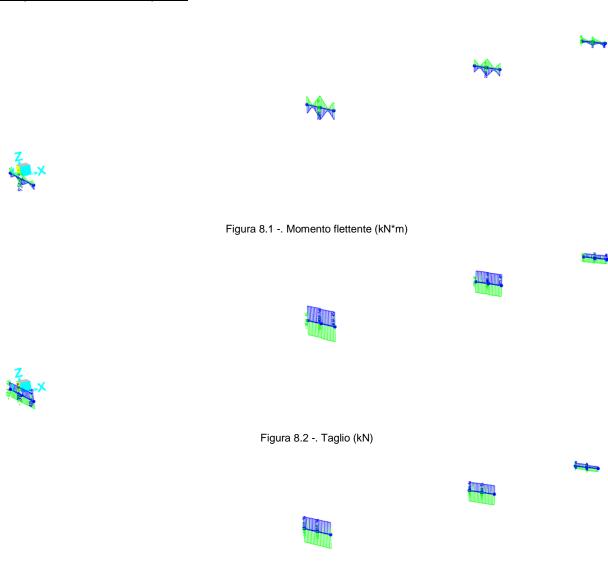
Viadotto VI07 - Relazione di calcolo impalcato 2

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ
LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA
DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389

File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 63 di 117

8. VERIFICA ELEMENTI SECONDARI


8.1 Traversi

8.1.1 Verifica SLU-SLV

I Traversi sono costituiti da profili saldati simmetrici di altezza H1600mm, spessore piattabande pari a 23mm, spessore anima pari a 18mm; campata da 60m.

Si riportano di seguito le sollecitazioni agenti sui trasversi:

SLU (fase1+fase2+fase3)/SLV

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE - SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389

Data: Agosto 2020

File: T00_VI07_STR_RE02_A

Pag. 64 di 117 Viadotto VI07 - Relazione di calcolo impalcato 2

Figura 8.3 -. Sforzo Normale (kN)

SOLEVAMENTO:

Si prevede il sollevamento sul trasverso in corrispondenza della campata. In questa fase si considerano agenti solo i pesi permanenti.

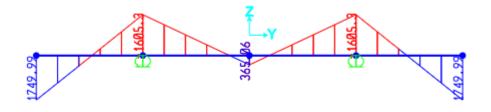


Figura 8.4 -. Momento flettente (kN*m)

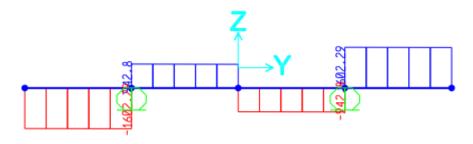


Figura 8.5 -. Taglio (kN)

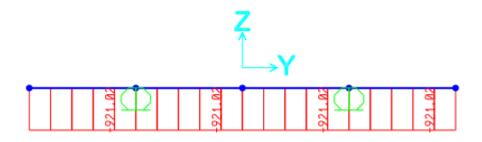


Figura 8.6 -. Sforzo Normale (kN)

RIEPILOGO SOLLECITAZIONI

SLU/SLV	SOLLEVAMENTO

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2 File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 65 di 117

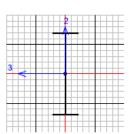
kN	kN*m	kN	kN	kN*m	kN
N	М	Т	N	М	Т
1490	2540	1072	921	1749	1602

VERIFICA

S.S. 389 TRONCO VILLANOVA - LANUSEI - TORTOLÌ LOTTO BIVIO VILLAGRANDE - SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A


Data: Agosto 2020 Pag. 66 di 117

14311.276

0.87

0.663

Units KN, m, C V

Eurocode 3-2005 STEEL SECTION CHECK (Summary for Combo and Station) Units : KN, m, C Frame : 199 Length: 4.2 Loc : 4.2 X Mid: 60. Y Mid: 2.1 Z Mid: -0.4 Combo: ENV SLU/SLV Design Type: Beam Shape: TRASV1600 Frame Type: Secndr Class: Class 3 Rolled: No Frame Type: Secndry Country=CEN Default Combination=Eq. 6.10 Reliability=Class 2 Interaction=Method 2 (Annex B) MultiResponse=Envelopes P-Delta Done? No Consider Torsion? Yes Ignore Seismic Code? No Ignore Special EQ Load? No D/P Plug Welded? Yes GammaM0=1.05 GammaM1=1.1 GammaM2=1.25 q=1. Omega=1. GammaOV=1.1 An/Ag=1. RLLF=1. PLLF=0.75 D/C Lim=0.95 Aeff=0.051 eNy=0. eNz=0. Iyy=0.02 A=0.051 iyy=0.625 Wel,yy=0.025 Weff, yy=0.025 It=6.937E-06 Izz=4.799E-04 izz=0.097 Wel,zz=0.002 Weff,zz=0.002 Iw=2.984E-04 Ivz=0. h=1.6 Wp1,yy=0.029 Av, y=0.023 fu=510000. fy=355000. Wpl,zz=0.003 Av, z=0.034 E=210000000. STRESS CHECK FORCES & MOMENTS Veu,_ -51.353 Ved, z Location Ned Med, yy Med,zz Ted -1490.919 -2540.388 107.007 1072.537 -0.138 PMM DEMAND/CAPACITY RATIO (Governing Equation EC3 6.3.3(4)-6.62) D/C Ratio: 0.703 = 0.113 + 0.373 + 0.217 < 0.95 OK = NEd/(Chi_z NRk/GammaM1) + kzy (My,Ed+NEd eNy)/(Chi_LT My,Rk/GammaM1) + kzz (Mz,Ed+NEd eNz)/(Mz,Rk/GammaMl) (EC3 6.3.3(4)-6.62) AXIAL FORCE DESIGN Nc, Rd Nt, Rd Ned Force Capacity Capacity Axial -1490.919 17233.39 17233.39 Npl.Rd Nu.Rd Ncr.T Nor, TF An/Ag 17233.39 18716.918 88954.964 88954.964 LambdaBar Phi Chi Nb, Rd Alpha 1. 0.088 Major (y-y) b 0.34 2341684.061 0.485 16450.055 MajorB(y-y) b 0.34 2341684.061 0.088 0.485 16450.055 0.566 0.566 0.451 Minor (z-z) c
MinorB(z-z) c
Torsional TF c 0.75 0.75 0.805 0.49 56388.564 13243.445 56388.564 0.805 13243.445 0.49 0.49

88954.964

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

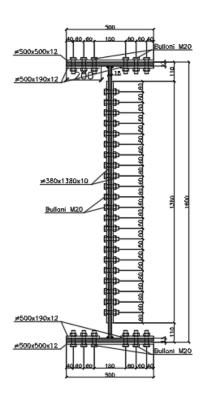
DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2 File: T00_VI07_STR_RE02_A Data: Agosto 2020

Pag. 67 di 117

MENT DESIGN						
HENT DESIGN	Med	Med, span	Mc.Rd	Mv. Rd	Mn, Rd	Mb, Rd
	Moment				Capacity	
Major (y-y)	-2540.388					6769.07
Minor (z-z)			649.037	649.037	649.037	
	Curve AlphaLT	LambdaBarLT	PhiLT	ChiLT	Iw	Mer
LTB	d 0.76	0.412	0.665	0.842	2.984E-04	52159.426
Factors	kw C1	C2	C3			
	1. 1.164	0.	0.616			
	za zs	zg	22	zj		
	0.8 0.	0.8	0.	0.		
	kуу	_	kzy	kzz		
Factors	0.889	0.931	0.995	0.931		
	Ved		_		V/Vpl.T.Rd	
Madan (a)	Force					Factor
Major (z)	1072.537		6547.565			1.
Minor (y)	68.255	4489.584	4485.58	0.015	0.015	1.
EAR DESIGN						
	Ved	Ted	Vpl.Rd	Vpl.T.Rd	Stress	Status
	Force	Torsion	Capacity	Capacity	Ratio	Check
Major (z)	1072.537	0.102	3522.341	6547.565	0.304	OK
Minor (y)	68.255	0.138	4489.584	4485.58	0.015	OK
	Ted	Tau,t,Ed	Doduction			
	Torsion					
Major (z)	0.102		0.999			
Minor (y)	0.138	456.684	0.999			
.27	11200					
	Vp1,Rd	Eta	Lambdabar	Chi		
	Capacity	Factor	Ratio	Factor		
Minor (y)	6552.137	1.2	1.228	0.676		
Major (y)	4489.584	1.2	0.309	1.2		
RSION DESIGN						
ROION DESIGN	Ted	T.Rd				
		Capacity				
	-0.138					
	11200					
NNECTION SHEA	R FORCES FOR I					
	VMajor	_				
	Left					
Major (V2)	1054.411	1072.537				

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE - SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389


Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 68 di 117

8.1.2 Giunto flangiato

Il giunto è a parziale ripristino; le sollecitazioni utilizzate sono le più sfavorevoli (si veda paragrafo precedente)

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 69 di 117

RESISTENZA DELLA GIUNZIONE D'ALA CON DOPPIO COPRIGIUNTO

CARATTERISTICHE GEOMETRICHE DEI PROFILI DA GIUNTARE

Altezza della sezione	h
Larghezza della sezione	b
Spessore delle ali	tf
Spessore dell'anima	t _w
Raggio di raccordo	r
Distanza tra i profili	s
Area della sezione trasversale	Α
Momento d'inerzia	ly
Modulo di resistenza elastico	$\mathbf{W}_{el,y}$
Modulo di resistenza plastico	$\mathbf{W}_{pl,y}$
Resistenza a snervamento dell'acciaio	f _y
Resistenza a rottura dell'acciaio	fυ

1600	[mm]
500	[mm]
23	[mm]
18	[mm]
0	[mm]
2	[mm]
50970	[mm ²]
1.99E+10	[mm ⁴]
2.49E+07	[mm³]
2.90E+07	[mm³]
355	[MPa]
510	[MPa]
	500 23 18 0 2 50970 1.99E+10 2.49E+07 2.90E+07 355

CARATTERISTICHE DEI BULLONI D'ALA

Diametro del bullone
Diametro del foro
Area del gambo filettato
Numero di bulloni su metà giunto
Numero di bulloni trasversali
Numero piani di taglio per bullone
Distanza dai bordi e passi

do 21.5 [mm] As 245 [mm²] nb 24 [-] nb,trasv 6 [-] e [-] [-] e1 40 [mm] e2 40 [mm] p1 60 [mm] p2 60 [mm] p3 82 [mm] e'1 40 [mm] e'2 40 [mm] fvb 1000 [MPa]	d	20	[mm]
nb 24 [-] nb,trasv 6 [-] n 2 [-] e1 40 [mm] e2 40 [mm] p1 60 [mm] p2 60 [mm] p3 82 [mm] e'1 40 [mm] e'2 40 [mm]	d_0	21.5	[mm]
n 6 [-] n 2 [-] e1 40 [mm] e2 40 [mm] p1 60 [mm] p2 60 [mm] p3 82 [mm] e'1 40 [mm] e'2 40 [mm]	\mathbf{A}_{s}	245	[mm ²]
n 2 [-] e1 40 [mm] e2 40 [mm] p1 60 [mm] p2 60 [mm] p3 82 [mm] e'1 40 [mm] e'2 40 [mm]	n _b	24	[-]
e1 40 [mm] e2 40 [mm] p1 60 [mm] p2 60 [mm] p3 82 [mm] e'1 40 [mm] e'2 40 [mm]	n _{b,trasv}	6	[-]
e2 40 [mm] p1 60 [mm] p2 60 [mm] p3 82 [mm] e'1 40 [mm] e'2 40 [mm]	n	2	[-]
p1 60 [mm] p2 60 [mm] p3 82 [mm] e'1 40 [mm] e'2 40 [mm]	e ₁	40	[mm]
p2 60 [mm] p3 82 [mm] e'1 40 [mm] e'2 40 [mm]	e ₂	40	[mm]
p3 82 [mm] e'1 40 [mm] e'2 40 [mm]	p ₁	60	[mm]
e' ₁ 40 [mm] e' ₂ 40 [mm]	p ₂	60	[mm]
e ' ₂ 40 [mm]	p ₃	82	[mm]
	e ' ₁	40	[mm]
f _{ub} 1000 [MPa]	e' ₂	40	[mm]
	f _{ub}	1000	[MPa]

Verifica della geometria
OK
OK
OK
OK
OK
OK
OK

Resistenza a rottura del bullone

CARATTERISTICHE GEOMETRICHE DEL COPRIGIUNTO SUPERIORE

Lunghezza del coprigiunto	L _c	522	[mm]
Larghezza del coprigiunto	b _c	500	[mm]
Spessore del coprigiunto	tc	12	[mm]
Resistenza a snervamento dell'acciaio	f _{y,c}	355	[MPa]
Resistenza a rottura dell'acciaio	f _{u,c}	510	[MPa]

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ
LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA
DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389
Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 70 di 117

DETERMINAZIONE DELLA RESISTENZA DELLA GIUNZIONE D'ALA

1	Momento plastico trasferibile dal profilo	M _{pl,Rd}	8040.10	[kNm]
2		pina		
	Area della singola ala	Af	11500.00	[mm²]
	Massima trazione assunta dall'ala	F _{t,Rd}	3711.36	[kN]
	Distanza tra i baricentri delle ali	Z	1577.00	[mm]
	Momento plastico assunto dalle ali	M _{f,pl,Rd}	5852.82	[kNm]
3	Resistenza del giunto offerta dai bulloni			
	Coefficiente di riduzione per la resistenza a taglio	α_{\vee}	0.50	[-]
	Resistenza a taglio per ciascun piano di taglio	F _{v,Rd}	98.00	[kN]
	Coefficiente di riduzione per la lunghezza del giunto	β_{Lf}	1.02	[-]
		β_{Lf}	1.00	[-]
	Distanza tra i baricentri delle ali	Z	1577.00	[mm]
	Momento associato al collasso dei bulloni	M _{1j,Rd}	7418.21	[kNm]
4	Resistenza della sezione netta delle ali			
	Area della sezione netta delle ali	$A_{f,net}$	8533.00	[mm²]
	Massima trazione assunta dall'ala al netto dei fori	F _{t,net,Rd}	3133.32	[kN]
	Distanza tra i baricentri delle ali	Z	1577.00	[mm]
	Momento plastico assunto dalle ali al netto dei fori	M _{2j,Rd}	4941.24	[kNm]
5	Resistenza a rifollamento delle ali			
	Coefficiente di riduzione per geometria	α/k	0.62	2.206977
	Resistenza di ogni singolo bullone	F _{b,Rd}	256.87	[kN]
	Distanza tra i baricentri delle ali	Z	1577.00	[mm]
	Momento plastico assunto dalle ali	M _{3j,Rd}	9722.07	[kNm]
6	Resistenza a rifollamento dei coprigiunti			
	Coefficiente di riduzione per geometria	α/k	0.62	2.21
	Resistenza di ogni singolo bullone	F _{b,c,Rd}	268.04	[kN]
	Distanza tra i baricentri delle ali	Z	1577.00	[mm]
	Momento plastico assunto dai coprigiunti	M _{4j,Rd}	10144.77	[kNm]
7	Resistenza della sezione lorda dei coprigiunti			
	Area della sezione lorda dei coprigiunti	Ac	10800.00	[mm²]
	Massima trazione assunta dai coprigiunti	F _{t,c,Rd}	3485.45	[kN]
	Distanza tra i baricentri delle ali	Z	1577.00	[mm]
	Momento plastico assunto dai coprigiunti	M _{5j,Rd}	5496.56	[kNm]
8	Resistenza della sezione netta dei coprigiunti			
	Area della sezione netta dei coprigiunti	A _{c,net}	7704.00	[mm²]
	Massima trazione assunta dai coprigiunti	F _{t,c,net,Rd}	2828.91	[kN]
	Distanza tra i baricentri delle ali	Z	1577.00	[mm]
	Momento plastico assunto dai coprigiunti al netto dei fori	M _{6j,Rd}	4461.19	[kNm]

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 71 di 117

VERIFICA DEL GIUNTO CON LE AZIONI SOLLECITANTI DI PROGETTO

Forza normale di progetto Forza di taglio di progetto	N _{Ed}	1490 [kN] 1072 [kN]
Momento flettente di progetto	M _{Ed}	2540 [kNm]
Ripartizione delle azioni sulle ali		
Momento d'inerzia del profilo	ly	1.993E+10 [mm ⁴]
Momento d'inerzia delle ali	l _{y,ati}	1.43E+10 [mm ⁴]
Area del profilo	Α	50970 [mm²]
Area delle ali	A _{ali}	23000 [mm²]
Momento assorbito dalle ali	$M_{f,Ed}$	1822.59 [kNm]
Forza normale assorbita dalle ali	N _{f,Ed}	672.36 [kN]

Ripartizione delle azioni sull'anima

Forza di taglio assorbita dall'anima	V _{w,Ed}	1072.00	[kN]
Forza normale assorbita dall'anima	$N_{w,Ed}$	817.64	[kN]
Momento assorbito dall'anima	M _{w.Ed}	717.41	[kNm]

Verifica della giunzione d'ala

Forza di scorrimento agente sulle ali	$F_{s,Ed}$	1491.91	[kN]
Momento flettente agente sulle ali	$M_{f,Ed}$	2352.74	[kNm]
Momento resistente minimo	$M_{fj,Rd,min}$	4461.19	[kNm]
Tasso di lavoro	Δ	52.74%	[-]

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 72 di 117

RESISTENZA DELLA GIUNZIONE D'ANIMA CON COPRIGIUNTI

CARATTERISTICHE GEOMETRICHE DEI PROFILI DA GIUNTARE

Altezza della sezione	h	1600	[mm]
Larghezza della sezione	b	500	[mm]
Spessore delle ali	† _f	23	[mm]
Spessore dell'anima	t _w	18	[mm]
Raggio di raccordo	r	0	[mm]
Distanza tra i profili	s	2	[mm]
Area della sezione trasversale	Α	50970	[mm ²]
Momento d'inerzia	l _y	1.993E+10	[mm ⁴]
Modulo di resistenza elastico	W el,y	24913000	[mm ³]
Modulo di resistenza plastico	$\mathbf{W}_{pl,y}$	29003000	[mm ³]
Resistenza a snervamento dell'acciaio	f _y	355	[MPa]
Resistenza a rottura dell'acciaio	$\mathbf{f}_{\mathbf{U}}$	510	[MPa]

CARATTERISTICHE DEI BULLONI D'ANIMA

Diametro del bullone
Diametro del foro
Area del gambo filettato
Numero di bulloni su metà giunto
Numero piani di taglio per bullone
Distanza dai bordi e passi

Resistenza a rottura del bullone

d	20	[mm]
d ₀	21.5	[mm]
A s	245	[mm ²]
n _b	66	[-]
n	2	[-]
e ₁	40	[mm]
e ₂	40	[mm]
p ₁	60	[mm]
P ₂	60	[mm]
p ₃	82	[mm]
e ' ₁	40	[mm]
f _{ub}	1000	[MPa]

Verifica della geometria
OK
OK
OK
OK
OK
ОК

CARATTERISTICHE GEOMETRICHE DEL COPRIGIUNTO

Lunghezza del coprigiunto	Lc	402	[mm]
Altezza del coprigiunto	h _c	1340	[mm]
Spessore del coprigiunto	tc	10	[mm]
Resistenza a snervamento dell'acciaio	f _{y,c}	355	[MPa]
Resistenza a rottura dell'acciaio	f _{u,c}	510	[MPa]

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ
LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA
DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389
Viadotto VI07 - Relazione di calcolo impalcato 2

Data: Agosto 2020 Pag. 73 di 117

File: T00_VI07_STR_RE02_A

DETERMINAZIONE DELLA RESISTENZA DELLA GIUNZIONE D'ANIMA

α_{\vee}	0.50	[-]
$F_{V,Rd}$	98.00	[kN]
F _{v,Ed}	34.67	[kN]
Δ	35.37%	[-]
F _{bz,Ed}	21.34	[kN]
F _{by,Ed}	65.96	[kN]
α_z/k_z	0.680	2.21
α_x/k_x	0.620	2.21
F _{bz,Rd}	220.50	[kN]
F _{by,Rd}	201.03	[kN]
Δ_z	9.68%	[-]
Δ_z	32.81%	[-]
F _{bz,Ed}	21.34	[kN]
F _{by,Ed}	65.96	[kN]
α_z/k_z	0.620	2.21
α_x/k_x	0.620	2.21
F _{bz,Rd}	223.37	[kN]
F _{by,Rd}	223.37	[kN]
Δ_z	9.56%	[-]
Δ_z	29.53%	[-]
$W_{c,pl}$	8978000	[mm³]
A _{c,v}	26800	[mm²]
$M_{c,pl,Rd}$	2897.45	[kNm]
$V_{c,pl,Rd}$	4993.55	[kN]
$M_{W,tot,Rd}$	826.76	[kNm]
V _{Ed}	1072.00	[kN]
Δ_{M}	28.53%	[-]
Δ_{V}	21.47%	[-]
W _{c,net,pl}	5856200	[mm³]
A _{c,v}	17340	[mm²]
M _{c,pl,Rd}	2389.33	[kNm]
$V_{c,pl,Rd}$	4084.59	[kN]
M _{w,pl,Rd}	826.76	[kNm]
V _{Ed}	1072	[kN]
Δ_{M}	34.60%	[-]
Δ_{V}	26.24%	[-]
	F _{V,Rd} F _{V,Ed} A Fbz,Ed Fby,Ed α_z/k_z α_x/k_x Fbz,Rd Fby,Rd Az Az Fbz,Ed Fby,Rd Az Az Vc,pi,Rd Av Vc,pi,Rd Av Vc,pi,Rd Av Vc,pi,Rd Av Vc,pi,Rd Av Vc,pi,Rd Av Vc,pi,Rd Av Vc,pi,Rd Av	F _{V,Rd} 98.00 F _{V,Ed} 34.67 Δ 35.37% F _{DZ,Ed} 21.34 F _{DY,Ed} 65.96 α _Z /k _Z 0.680 α _X /k _X 0.620 F _{DZ,Rd} 220.50 F _{DY,Rd} 201.03 Δ _Z 7.68% Δ _Z 32.81% F _{DZ,Ed} 65.96 α _Z /k _Z 0.620 α _X /k _X 0.620 F _{DY,Rd} 201.03 Δ _Z 7.68% Δ _Z 32.81% F _{DZ,Ed} 65.96 α _Z /k _Z 0.620 α _X /k _X 0.620 F _{DZ,Rd} 223.37 F _{DY,Rd} 223.37 F _{DY,Rd} 223.37 Δ _Z 7.56% Δ _Z 27.53% W _{C,Pl} 8978000 A _{C,V} 26800 M _{C,Pl,Rd} 4993.55 M _{W,101,Rd} 4983.53% Δ _V 21.47%

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 74 di 117

8.2 Controventi a K

8.2.1 Verifica SLU-SLV

I controventi sono costituiti da profili accoppiati di tipo L150x10.

Si riportano di seguito le sollecitazioni agenti sui controventi:

SLU (fase1+fase2+fase3)/SLV

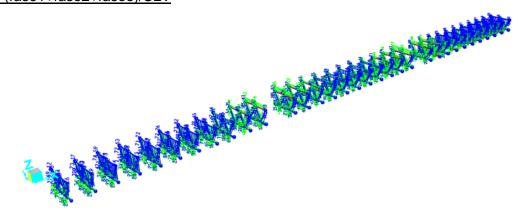
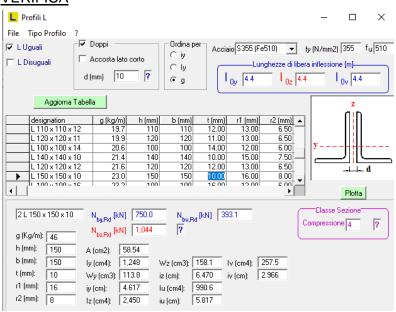



Figura 8.7 -. Sforzo Normale (kN)

RIEPILOGO SOLLECITAZIONI

Nmax /min= -290/ 583 kN

VERIFICA

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A Data: Agosto 2020

Pag. 75 di 117

Resistenza all'instabilità - EC3 #6.3.1				□ ×	
2 L 150 x 150 x 10 Acciaio S355 (Fe510) fy (N/mm2) 355					
$\gamma_{M1} = 1.05$ $\beta_{A} = 0.79$ $\epsilon = 0.81$ $\lambda_{1} = 93.9 \epsilon = 76.4$					
	Instab	ilità attorno all	'asse		
	у-у	z - z	v-	v	
Snellezza 3.	95.3	68.01	148	3.35	
Snellezza adimensionale $\bar{\lambda} = \lambda/\lambda_1$ $\beta_A^{0.5}$	1.1089	0.7914	1.7	262	
Curva di instabilità	С	С	С		
Coefficiente di imperfezione α	0.49	0.49	0.4	9	
$\phi = 0.5 \left[1 + \alpha (\lambda - 0.2)^2 + \lambda \right]$	1.3375	0.958	2.3	638	
$\chi = 1 / [\phi + (\phi^2 - \lambda^2)^{0.5}]$	0.4795	0.6676	0.2	513	
$N_{b,Rd} = \chi \beta_A A f_y / \gamma_{M1} \qquad (kN)$	750.049	1044.207	393	3.137	

Nrd = -393 kN > NminNrd = 750 kN > Nmax

8.3 Controventi di falda

In fase di getto i controventi si rendono necessari per la stabilità delle travi principali (svergolamento).

Nella fase 1 sono soggetti al peso della soletta, delle travi in acciaio ed al vento:

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 76 di 117

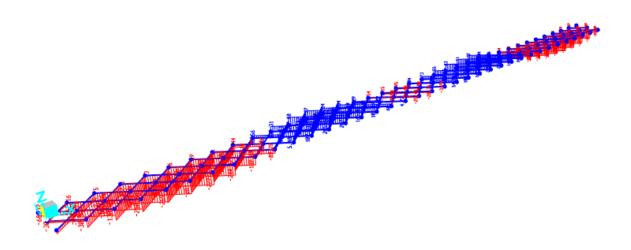
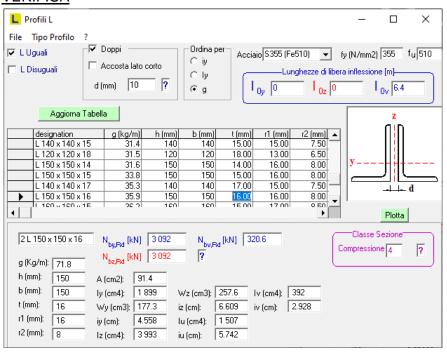



Figura 8.8 -. Sforzo Normale (kN)

RIEPILOGO SOLLECITAZIONI

Nmax /min= -312/ 249 kN

VERIFICA

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A Data: Agosto 2020 Pag. 77 di 117

L Resistenza all'instabilità - EC3 #6.3.1			×	
2 L 150 x 150 x 16 Acciaio S355 (Fe510) fy (N/mm2) 355				
$\gamma_{M1} = 1.05 \beta_{A} = 1.0 \epsilon = 0.81 \lambda_{1} = 93.9 \epsilon = 76.4$				
	Instab	ilità attorno all	'asse	
	y-y	z - z	V-V	
Snellezza).	0.0	0.0	218.58	
Snellezza adimensionale $\bar{\lambda} = \lambda/\lambda_1 \beta_A^{0.5}$	0.0	0.0	2.8617	
Curva di instabilità	С	С	С	
Coefficiente di imperfezione a	0.49	0.49	0.49	
$\phi = 0.5 \left[1 + \alpha(\lambda - 0.2)^2 + \lambda\right]$	0.451	0.451	5.2468	
$\chi = 1 / [\phi + (\phi^2 - \lambda^2)^{0.5}]$	1.0	1.0	0.1037	
$N_{b,Rd} = \chi \beta_A A f_y / \gamma_{M1} $ (kN)	3091.62	3091.62	320.56	

Nrd = -252 kN > Nmin Nrd = 2104 kN > Nmax Verificato

8.4 Soletta

Si considera una striscia di soletta pari ad 1 m.

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2 File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 78 di 117

La soletta è completa e deve sopportare i carichi permanenti portati ed i carichi mobili previsti dalla normativa.

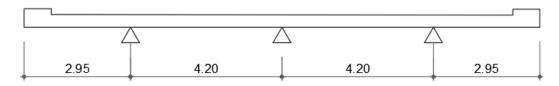


Figura 8.9 -. Schema statico

8.4.1 Analisi dei carichi

Permanenti

- Soletta 25 * 0.35 = 8.75 kN/m - Cordolo 25 * (0.55) = 13.75 kN/m - Pavimentazione = 3.00 kN/m

- Velette, collettori, guard rail = 7.00 kN

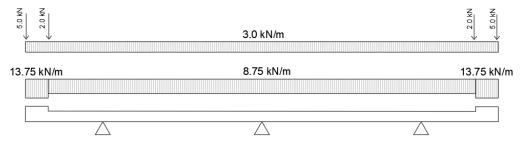


Figura 8.10 -. Carichi permanenti

Variabili

I carichi variabili da traffico sono definiti nel 5.1.3.3.3 della NTC 2018.

Le azioni variabili del traffico, comprensive degli effetti dinamici, sono definite dai seguenti schemi di carico:

Schema di Carico 1: è costituito da carichi concentrati su due assi in tandem, applicati su impronte di pneumatico di forma quadrata e lato 0,40 m, e da carichi uniformemente distribuiti. Questo schema è da assumere a riferimento sia per le verifiche globali, sia per le verifiche locali, considerando un solo carico tandem per corsia, disposto in asse alla corsia stessa. Il carico tandem, se presente, va considerato per intero.

Schema di Carico 2: è costituito da un singolo asse applicato su specifiche impronte di pneumatico di forma rettangolare, di larghezza 0,60 m ed altezza 0,35 m. Questo schema va considerato autonomamente con asse longitudinale nella posizione più gravosa ed è da assumere a riferimento solo per verifiche locali. Qualora sia più gravoso si considererà il peso di una singola ruota di 200 kN.

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 79 di 117

Schema di Carico 3: è costituito da un carico isolato da 150kN con impronta quadrata di lato 0,40m. Si utilizza per verifiche locali su marciapiedi non protetti da sicurvia.

Schema di Carico 4: è costituito da un carico isolato da 10 kN con impronta quadrata di lato 0,10m. Si utilizza per verifiche locali su marciapiedi protetti da sicurvia e sulle passerelle pedonali.

Schema di Carico 5: costituito dalla folla compatta, agente con intensità nominale, comprensiva degli effetti dinamici, di 5,0 kN/m2. Il valore di combinazione è invece di 2,5 kN/m2. Il carico folla deve essere applicato su tutte le zone significative della superficie di influenza, inclusa l'area dello spartitraffico centrale, ove rilevante.

Vedi capitoli precedenti per la configurazione geometrica dei carichi mobili.

Diffusione dei carichi concentrati

I carichi concentrati da considerarsi ai fini delle verifiche locali ed associati agli Schemi di Carico 1, 2, 3 e 4 si assumono uniformemente distribuiti sulla superficie della rispettiva impronta. La diffusione attraverso la pavimentazione e lo spessore della soletta si considera avvenire secondo un angolo di 45°, fino al piano medio della struttura della soletta sottostante.

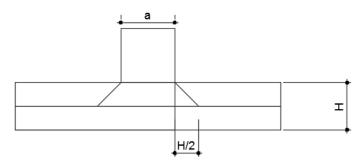


Figura 8.11 -. Diffusione nella soletta

Per tener conto dell'effetto lastra, si diffonde il carico verso le travi principali con un angolo di 26.7°.

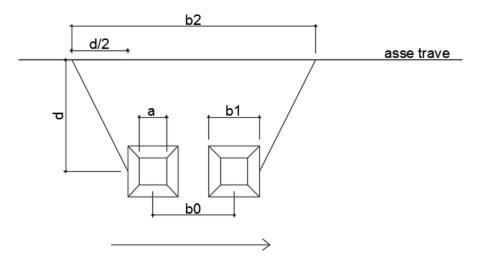


Figura 8.12 -. Diffusione verso trave

In cui si è indicato con:

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 80 di 117

a= larghezza impronta di carico
H=altezza soletta+pavimentazione
d=distanza carico/trave
b0=distanza carico tandem
di conseguenza si ricavano le altre grandezze:
b1= a+2*H/2

il carico sulla striscia unitaria sarà pertanto:

F=Qi/d

b2=b0+b1+2*d/2

IMPRONTA DI CARICO 1

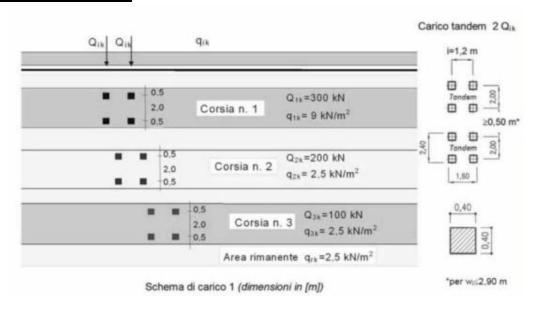


Figura 8.13 -. Impronta di carico 1

IMPRONTA DI CARICO 2

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A
Data: Agosto 2020

Pag. 81 di 117

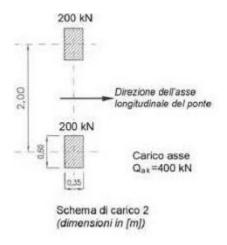


Figura 8.14 -. Impronta di carico 2

DISPOSIZIONE DEI CARICHI VARIABILI DA TRAFFICO

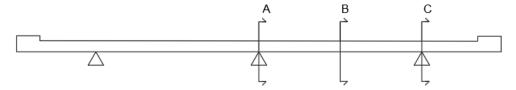
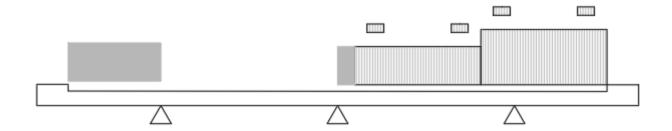



Figura 8.15 -. sezioni di interesse per la massimizzazione delle sollecitazioni

Il posizionamento dei carichi variabili da traffico viene eseguito in modo tale da massimizzare le azione in corrispondenza delle sezioni A-A, B-B, C-C.

Le configurazioni di carico verranno illustrate nelle figure che seguono (con un tratteggio pieno si indica "l'area di carico rimanente"):

Condizione di carico 1

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ
LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 82 di 117

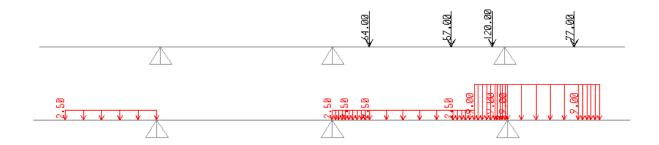


Figura 8.16 -. Condizione di carico 1

Condizione di carico 2

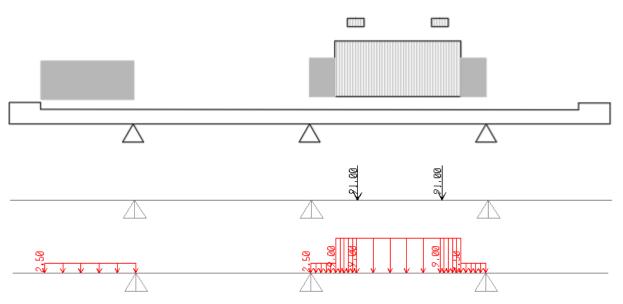


Figura 8.17 -. Condizione di carico 2

Condizione di carico 3

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 83 di 117

Figura 8.18 -. Condizione di carico 3

Le corrispondenti forze valgono:

CASO 1										
		Q	Pav.	H sol	а	b0	d	b1	b2	F
Tandem 1	SX	300	0.13	0.35	0.40	1.20	0.3	1.01	2.51	120
randenii	dx	300	0.13	0.35	0.40	1.20	1.7	1.01	3.91	77
		Q	Pav.	H sol	а	b0	d	b1	b2	F
Tandem 2	SX	200	0.13	0.35	0.40	1.20	0.9	1.01	3.11	64
randem 2	dx	200	0.13	0.35	0.40	1.20	1.3	1.01	3.51	57
CASO 2										
		Q	Pav.	H sol	а	b0	d	b1	b2	F
Tandem 1	SX	300	0.13	0.35	0.40	1.20	1.1	1.01	3.31	91
randem 1	dx	300	0.13	0.35	0.40	1.20	1.1	1.01	3.31	91
CASO 3										
		Q	Pav.	H sol	а	b0	d	b1	b2	F
Tandem 1	SX	300	0.13	0.35	0.40	1.20	1.1	1.01	3.31	91
Tandenii	dx	300	0.13	0.35	0.40	1.20	1.1	1.01	3.31	91
		Q	Pav.	H sol	а	b0	d	b1	b2	F
Tandem 2	SX	200	0.13	0.35	0.40	1.20	1.1	1.01	3.31	60
ranuem 2	dx	200	0.13	0.35	0.40	1.20	1.1	1.01	3.31	60

Vengono di seguito riportati gli inviluppi dei diagrammi di momento flettente e taglio. Le sollecitazioni sono ottenute con carichi già fattorizzati allo stato limite ultimo .

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

con

Combinazione SLU

 $\gamma_{G1} = 1.35$ (carichi strutturali)

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 84 di 117

 $\gamma_{G2} = 1.50$ (carichi non strutturali)

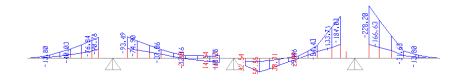
 $\gamma_{Q1} = 1.35$ (carichi variabili da traffico)

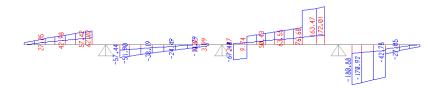
Combinazione SLE-rara/frequente/QP

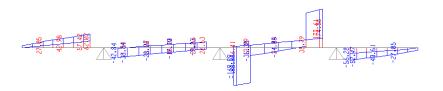
 $\gamma_{G1} = 1.00/1.00/1.00$ (carichi strutturali)

 $\gamma_{G2} = 1.00/1.00/1.00$ (carichi non strutturali)

 $\gamma_{Q1} = 1.00/0.75/0.00$ (carichi variabili da traffico)






Figura 8.19 -. inviluppo momento flettente SLU

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 85 di 117

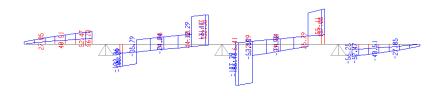
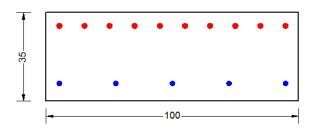


Figura 8.20 -. inviluppo taglio SLU


Figura 8.21 -. inviluppo momento flettente SLE -rara

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 86 di 117

Verifica delle sezioni

Armatura soletta: ϕ 22/10 sup. e ϕ 20/20 inf.

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

0.0000		
		MPa
20.10.110.110.110.110.120.002.		
Def.unit. ultima ecu:	0.0035	
Diagramma tensione-deformaz.:	Parabola-Rettangolo	
Modulo Elastico Normale Ec:	33643.0	MPa
Resis. media a trazione fctm:	3.100	MPa
Coeff. Omogen. S.L.E.:	15.00	
Coeff. Omogen. S.L.E.:	15.00	
Sc limite S.L.E. comb. Frequenti:	199.20	daN/cm ²
Ap.Fessure limite S.L.E. comb. Freque	enti: 0.300	mm
Sc limite S.L.E. comb. Q.Permanenti:	0.00	Мра
Ap.Fess.limite S.L.E. comb. Q.Perm.:	0.200	mm
Tipo:	B450C	
The state of the s	450.00	MPa
Resist. caratt. rottura ftk:	450.00	MPa
Resist, snerv, di progetto fvd:	391.30	MPa
, ,	391.30	MPa
	0.068	
Modulo Elastico Ef	2000000	daN/cm ²
Diagramma tensione-deformaz.:	Bilineare finito	
Coeff. Aderenza istantaneo ß1*ß2:	1.00	
Coeff. Aderenza differito ß1*ß2:	0.50	
Sf limite S.L.E. Comb. Rare:	360.00	MPa
	Modulo Elastico Normale Ec: Resis. media a trazione fctm: Coeff. Omogen. S.L.E.: Coeff. Omogen. S.L.E.: Sc limite S.L.E. comb. Frequenti: Ap.Fessure limite S.L.E. comb. Freque Sc limite S.L.E. comb. Q.Permanenti: Ap.Fess.limite S.L.E. comb. Q.Perm.: Tipo: Resist. caratt. snervam. fyk: Resist. caratt. rottura ftk: Resist. snerv. di progetto fyd: Resist. ultima di progetto ftd: Deform. ultima di progetto Epu: Modulo Elastico Ef Diagramma tensione-deformaz.: Coeff. Aderenza istantaneo ß1*ß2: Coeff. Aderenza differito ß1*ß2:	Resis. compr. di progetto fcd: 18.800 Def. unit. max resistenza ec2: 0.0020 Def. unit. ultima ecu: 0.0035 Diagramma tensione-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 33643.0 Resis. media a trazione fctm: 3.100 Coeff. Omogen. S.L.E.: 15.00 Coeff. Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Frequenti: 199.20 Ap.Fessure limite S.L.E. comb. Frequenti: 0.300 Sc limite S.L.E. comb. Q.Permanenti: 0.00 Ap.Fess.limite S.L.E. comb. Q.Perm.: 0.200 Tipo: B450C Resist. caratt. snervam. fyk: 450.00 Resist. caratt. rottura ftk: 450.00 Resist. snerv. di progetto fyd: 391.30 Resist. ultima di progetto ftd: 391.30 Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef 2000000 Diagramma tensione-deformaz.: Bilineare finito Coeff. Aderenza istantaneo ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1 2	0.0 0.0	0.0 35.0
3	100.0	35.0
1	100.0	0.0

DATI BARRE ISOLATE

N°Barra X	[cm]	Y [cm]	DiamØ[mm]
-----------	------	--------	-----------

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389

Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 87 di 117

1	5.2	7.0	20
2	5.2	29.8	22
3	94.8	29.8	22
4	94.8	7.0	20

DATI GENERAZIONI LINEARI DI BARRE

N°Gen.	Numero assegnato alla singola generazione lineare di barre
N°Barra Ini.	Numero della barra iniziale cui si riferisce la generazione
N°Barra Fin.	Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

N°Gen.	N°Barra Ini.	N°Barra Fin.	N°Barre	Ø
1	1	4	3	20
2	2	3	8	22

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N		Sforzo normale [kN] app	Sforzo normale [kN] applicato nel Baric. (+ se di compressione)			
Mx		Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate con verso positivo se tale da comprimere il lembo sup. della sez.				
Vy		Componente del Taglio [kN] parallela all'asse Y di riferimento delle coo				
N°Comb.	N	Mx	Vy			
1	0.00	-229.00	188.00			
2	0.00	107.00	0.00			

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione)
	con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	0.00	-167.00	0.00
2	0.00	71.00	0.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

0.00

2

N Mx	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione) Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom.Fessurazione con verso positivo se tale da comprimere il lembo superiore della sezione					
N°Comb.	N	Mx	Му			
1	0.00	-136.00 (-87.60)	0.00 (0.00)			

50.00 (77.65)

0.00 (0.00)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [kN] applicato nel Baricentro (+ se di compressione)
Mx	Momento flettente [kNm] intorno all'asse X di riferimento (tra parentesi Mom Fessurazione)

S.S. 389 TRONCO VILLANOVA - LANUSEI - TORTOLÌ LOTTO BIVIO VILLAGRANDE - SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 88 di 117

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb.	N	Mx	Му
1	0.00	-61.00 (-87.60)	0.00 (0.00)
2	0.00	18.00 (77.65)	0.00 (0.00)

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 4.1 cm Interferro netto minimo barre longitudinali: 7.8 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione) Ν

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia

N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My) Mx Res

Mis.Sic. Verifica positiva se tale rapporto risulta >=1.000

As Tesa Area armature trave [cm²] in zona tesa. [Tra parentesi l'area minima ex (4.1.15)NTC]

N°Comb	Ver	N	Mx	N Res	Mx Res	Mis.Sic.	As Tesa
1	S 20 0/5 2)	0.00	-229.00	0.00	-383.94		
1.68 2 1.53	38.0(5.3) S 15.7(5.3)	0.00	107.00	0.00	163.77		

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Deform. unit. massima del conglomerato a compressione
Rapporto di duttilità [§ 4.1.2.1.2.1 NTC] deve essere < 0.45
Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Deform. unit. minima nell'acciaio (negativa se di trazione)
Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Deform. unit. massima nell'acciaio (positiva se di compress.)
Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	x/d	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	0.285	0.0	0.0	0.00062	5.2	7.0	-0.00878	94.8	29.8
2	0.00350	0.177	0.0	35.0	-0.00018	5.2	29.8	-0.01633	5.2	7.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C Bid	Cooff, di riduz, momenti per sola flossione in travi continue

 $N^{\circ}Comb$ x/d C.Rid. а

1	0.000000000	-0.000411928	0.003500000	0.285	0.796
2	0.000000000	0.000708185	-0.021286484	0.177	0.700

S.S. 389 TRONCO VILLANOVA - LANUSEI - TORTOLÌ LOTTO BIVIO VILLAGRANDE - SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

Data: Agosto 2020

File: T00_VI07_STR_RE02_A

Pag. 89 di 117

METODO SLU - VERIFICHE A TAGLIO SENZA ARMATURE TRASVERSALI (\$ 4.1.2.1.3.1 NTC)

Ver Ved Vwct d bw Ro Scp		Taglio a Taglio tr Altezza Larghez Rapport	S = comb.verificata a taglio/ N = comb. non verificata Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta) Taglio trazione resistente [kN] in assenza di staffe [formula (4.1.23)NTC Altezza utile sezione [cm] Larghezza minima sezione [cm] Rapporto geometrico di armatura longitudinale [<0.02] Tensione media di compressione nella sezione [Mpa]						
N°Comb	Ver	Ved	Vwct	d	bw	Ro	Scp		
1	S	188.00	226.76 254 47	29.8 29.8	100.0	0.0128	0.00		

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

	0 1 10 1 10 1	
Ver	S = comb. verificata/ N = comb. non verificata	

Massima tensione (positiva se di compressione) nel conglomerato [Mpa] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [Mpa] Sf min

Ascissa, Ordinata [cm] della barra corrisp. a Sf min (sistema rif. X,Y,O) Xs min, Ys min Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max Y	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	8.86	0.0	0.0	-174.9	84.8	29.8	750	38.0
2	S	4.87	0.0	35.0	-184.5	72.4	7.0	900	15.7

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	7.21	0.0	0.0	-142.4	84.8	29.8	750	38.0
2	S	3.43	0.0	35.0	-129.9	72.4	7.0	900	15.7

0.500 20.0

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [8 7.3.4 FC2]

S

77.65

(0.30)

-0.00088

0.00

COMBIN	IAZIONI	FREQUENTIIN	ESERCIZ	IO - APE	RIURA	FESSURE	[§ 7.3.4 EC2]			
Ver. e1 e2 k1 kt k2 k3 k4 Ø Cf e sm	ı - e cm	La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm Esito della verifica Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] = 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali = 0.425 Coeff. in eq.(7.11) come da annessi nazionali Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Copriferro [mm] netto calcolato con riferimento alla barra più tesa Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC] Massima distanza tra le fessure [mm]								
Mx fe	wk Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi Mx fess. Componente momento di prima fessurazione intorno all'asse X [kNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [kNm]									
Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max	wk	Mx fessMy fess	
1 87.60	S 0.00	-0.00093	0	0.500	22.0	41	0.00047 (0.00043) 213	0.101 (0.30)	-	

60

0.00039 (0.00039)

399

0.155

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 90 di 117

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max Y	c max	Sf min	Xs min	Ys min	Ac eff.	As eff.
1	S	3.23	0.0	0.0	-63.9	84.8	29.8	750	38.0
2	S	1.24	0.0	35.0	-46.8	72.4	7.0	900	15.7

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fessMy fess
1 87.60	S 0.00	-0.00042	0	0.500	22.0	41	0.00019 (0.00019)	213	0.041 (0.20)	-
2 (0.20)	S 77.65	-0.00032 0.00	0	0.500	20.0	60	0.00014 (0.00014)	399	0.056	

8.4.2Urto di veicolo in svio

Alla forza di urto, pari a 100 kN, si associa il passaggio di un carico tandem (schema 2): Si adotta una diffusione a 45° fino all'asse trave:

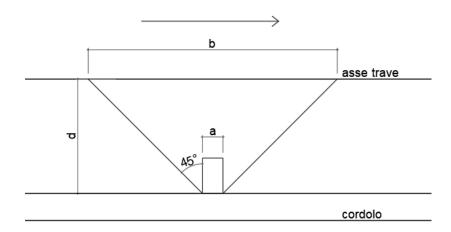


Figura 8.22 -. Schema diffusione carico

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 91 di 117

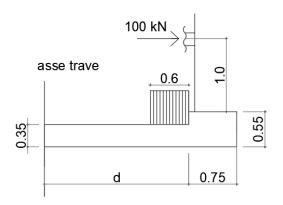


Figura 8.23 -. Schema applicazione carico

TOT

Pertanto, indicando con:

V/m= entità del carico per metro di lunghezza

b = lunghezza di carico considerata, ottenuta tramite diffusione a 45°

V =V/m*b = entità del carico complessivo

Dist. = punto di applicazione del carico rispetto all'asse della trave/soletta

M = V*dist = momento agente

N = sforzo normale agente

nella sezione di incastro sulla trave, si ha:

	kN/m	m	kN	m	kN*m	kN
G1	V/m	b	V	dist.	M	N
soletta h=35cm	25.6	4.34	111	1.46	162	
G2						
pavimentazione	6.51	4.34	28	0.7	20	
cordolo	3.75	4.34	16	2.5	41	
barriere	2	4.34	9	2.5	22	
veletta	3	4.34	13	2.9	38	
collettori	2	4.34	9	2.9	25	
Q						
tandem 1			200	1.87	374	
tandem 2			0	0	0	
urto				1.31	131	-100
			386		813	-100

Che riportato al metro di soletta:

 $v_{Ak} = V/b = 386/4.34 = 89 \text{ kN/m}$

 $n_{Ak} = N/b = -100/4.34 = -23 \text{ kN/m}$

 $m_{Ak} = M/b = -813/4.34 = -187 \text{ kN*m/m}$

Verifica delle sezioni

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 92 di 117

-								
D	at	п	S	ω,	71	n	n	0

Ъ	1000	mm	Base sezione
h	350	mm	Altezza sezione
c	60	mm	Copriferro
fck	32	Mpa	Resistenza caratteristica
d	290	mm	Altezza utile
Ned	-23	kN	Azione Normale agente
γс	1.5		Fattore parziale

Senza staffe

Senza statte			
ø1	22	mm	Diametro 1 ferri
n1	10		
ø2	0	mm	Diametro 2 ferri
n2	0		
k	1.83		
k filtrato	1.83		
ρ	0.013		Rapporto geometrico di armatura longitudinale (≤0.02)
ρ filtrato	0.013		
σ	-0.07	Mpa	Tensione media di compressione nella sezione (≤0.2fcd)
Vrd	218.5	kN	Resistenza a Taglio
Vmin	139	kN	

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe: Resis. compr. di progetto fcd: Def.unit. max resistenza ec2: Def.unit. ultima ecu: Diagramma tensione-deformaz.:	C32/40 18.800 0.0020 0.0035 Parabola-Rettangolo	MPa
	Modulo Elastico Normale Ec:	33643.0	MPa
	Resis. media a trazione fctm:	3.100	MPa
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. snervam. fyk:	450.00	MPa
	Resist. caratt. rottura ftk:	450.00	MPa
	Resist. snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef	2000000	daN/cm ²
	Diagramma tensione-deformaz.:	Bilineare finito	

CARATTERISTICHE DOMINIO CONGLOMERATO

Forma del Do Classe Conglo		Poligonale C32/40
N°vertice:	X [cm]	Y [cm]
1	-50.0 -50.0	0.0 35.0

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389

Viadotto VI07 - Relazione di calcolo impalcato 2

Pag. 93 di 117

Data: Agosto 2020

File: T00_VI07_STR_RE02_A

3	50.0	35.0
4	50.0	0.0

DATI BARRE ISOLATE

N°Barra	X [cm]	Y [cm]	DiamØ[mm]
1	-44.9	29.9	22
2	44.9	29.9	22

DATI GENERAZIONI LINEARI DI BARRE

 N°Gen.
 Numero assegnato alla singola generazione lineare di barre

 N°Barra Ini.
 Numero della barra iniziale cui si riferisce la generazione

 N°Barra Fin.
 Numero della barra finale cui si riferisce la generazione

N°Barre Numero di barre generate equidistanti cui si riferisce la generazione

Ø Diametro in mm delle barre della generazione

 N°Gen.
 N°Barra Ini.
 N°Barra Fin.
 N°Barre
 Ø

 1
 1
 2
 8
 22

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel Baric. (+ se di compressione)
Mx Momento flettente [daNm] intorno all'asse X di riferimento delle coordinate
con verso positivo se tale da comprimere il lembo sup. della sez.
Vy Componente del Taglio [kN] parallela all'asse Y di riferimento delle coordinate

N°Comb. N Mx Vy 1 -23.00 -187.00 0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 4.0 cm Interferro netto minimo barre longitudinali: 7.8 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale assegnato [kN] nel baricentro B sezione cls.(positivo se di compressione)

Mx Componente del momento assegnato [kNm] riferito all'asse x princ. d'inerzia N Res Sforzo normale resistente [kN] nel baricentro B sezione cls.(positivo se di compress.)

Mx Res Momento flettente resistente [kNm] riferito all'asse x princ. d'inerzia
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

 N°Comb
 Ver
 N
 Mx
 N Res
 Mx Res
 Mis.Sic.
 As Totale

 1
 S
 -23.00
 -187.00
 -23.13
 -382.04

 2.06
 38.0(10.5)
 -382.04
 -382.04

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max Deform. unit. massima del conglomerato a compressione

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389

Viadotto VI07 - Relazione di calcolo impalcato 2

Data: Agosto 2020 Pag. 94 di 117

File: T00_VI07_STR_RE02_A

	Deform. unit. massima del conglomerato a compressione
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xs min	Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xs max	Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb	ec max	Xc max	Yc max	es min	Xs min	Ys min	es max	Xs max	Ys max
1	0.00350	-50.0	0.0	-0.00736	-44.9	29.9	-0.00736	44.9	29.9

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a, b, c	Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45
C D:4	Cook di sido a monorati non colo finazione in travi continue

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb	а	b	С	x/d	C.Rid.
1	0.000000000	-0.000363359	0.003500000		

VERIFICA CORDOLI

Le verifiche strutturali dei cordoli sono state effettuate considerando, a favore di sicurezza, le sollecitazioni derivanti dall'azione dell'urto pari a $F_{urto} = 100$ kN, applicata a 1.0m dal piano della pavimentazione, come da normativa.

Pertanto le azioni prodotte dall'urto sono:

 $F_{urto} = 100 \text{ kN}$

 $T_{urto} = 100 * 1 = 100 kN*m$

Verifica a Taglio/Torsione

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe: Resistenza compress. di progetto fcd:	C32/40 18.80	MPa
	Resistenza compress. ridotta fcd':	9.400	MPa
	Deform. unitaria max resistenza ec2:	0.0020	
	Deformazione unitaria ultima ecu:	0.0035	
	Diagramma tensioni-deformaz.:	Parabola-Rettangolo	
	Modulo Elastico Normale Ec:	33643.0	MPa
	Resis. media a trazione fctm:	3.100	MPa
		2.500	
ACCIAIO -	Tipo:	B450C	
	Resist. caratt. a snervamento fyk:	450.00	MPa
	Resist. caratt. a rottura ftk:	450.00	MPa
	Resist. a snerv. di progetto fyd:	391.30	MPa
	Resist. ultima di progetto ftd:	391.30	MPa
	Deform. ultima di progetto Epu:	0.068	
	Modulo Elastico Ef:	200000.0	MPa
	Diagramma tensioni-deformaz.:	Bilineare finito	

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

S.S. 389 TRONCO VILLANOVA - LANUSEI - TORTOLÌ LOTTO BIVIO VILLAGRANDE - SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389

Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A Data: Agosto 2020

Pag. 95 di 117

Base:	75.0	cm
Altezza:	55.0	cm
Barre inferiori:	4Ø20	(12.6 cm ²)
Barre superiori:	4Ø20	(12.6 cm ²)
Barre laterali:	1+1Ø20	(6.3 cm ²)
Coprif.Inf.(dal baric. barre):	6.0	cm
Coprif.Sup.(dal baric. barre):	6.0	cm
Coprif.Lat. (dal baric.barre):	6.0	cm

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Ν Sforzo normale [kN] applicato nel baricentro (posit. se di compress.) Momento flettente [kNm] intorno all'asse x baric. della sezione Mx con verso positivo se tale da comprimere il lembo sup. della sezione

VY Taglio [kN] in direzione parallela all'asse Y del riferim. generale

Momento torcente [kN m] MT

N°Comb. Mx Ν Vy MT 0.00 0.10 100.00 100.00 1

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.0 cm Interferro netto minimo barre longitudinali: 19.0 cm

Interferro massimo barre longitudinali: 21.5 cm [deve essere < 30.0]

Copriferro netto minimo staffe: 4.2 cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE ULTIMO

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale baricentrico assegnato [kN] (positivo se di compressione) Ν

Momento flettente assegnato [kNm] riferito all'asse x baricentrico Mx

N Ult Sforzo normale alla massima resistenza [kN] nella sezione (positivo se di compress.)

Momento resistente ultimo [kNm] riferito all'asse x baricentrico Mx rd Misura sicurezza = rapporto vettoriale tra (N rd,Mx rd) e (N,Mx) Mis.Sic.

Verifica positiva se tale rapporto risulta >=1.000

Yn Ordinata [cm] dell'asse neutro alla massima resistenza nel sistema di rif. X,Y,O sez. Area complessiva armature long. pilastro [cm²]. (tra parentesi l'area minima di normativa) As Tot.

Area efficace a flessione barre inf. (per presenza di torsione)= 6.8 cm² Area efficace a flessione barre sup. (per presenza di torsione)= 6.8 cm²

C.Rid. N°Comb Ver Ν N rd Mx rd Mis.Sic. Yn As Tot. Mx x/d S 0.00 0.10 0.04 135.18 1351.790 50.8 31.4 (12.4)

DEFORMAZIONI UNITARIE ALLO STATO LIMITE ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
es min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Ys min	Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max	Deform. unit. massima nell'acciaio (positiva se di compressione)
Ys max	Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb ec max Yc max es min Ys min es max Ys max

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE - SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 96 di 117

0.00350 55.0 -0.00153 -0.03757 6.0 1 49.0

ARMATURE A TAGLIO E/O TORSIONE DI INVILUPPO PER LE COMBINAZIONI ASSEGNATE

Diametro staffe: 8 mm

Passo staffe: 18.2 [Passo massimo di normativa = 24.0 cm] cm

N.Bracci staffe:

[Area Staffe Minima NTC = 2.4 cm²/m] Area staffe/m: 11.0 cm²/m

Barre long. tors.: 6Ø20 (18.8 cm²)

VERIFICHE A TAGLIO-TORSIONE

S = comb.verificata a taglio-tors./ N = comb. non verificata Ver Taglio agente [kN] uguale al taglio Vy di comb. (sollecit. retta) Ved Vrd Taglio resistente [kN] in assenza di staffe [formula (4.1.23)NTC]

Taglio compressione resistente [kN] lato conglomerato [formula (4.1.28)NTC] Vcd Vwd Taglio trazione resistente [kN] assorbito dalle staffe [formula (4.1.27)NTC] Momento torcente assegnato nella combinazione corrente [kNm] Tsdu

Trdu Momento torcente resistente ultimo [kNm] (lato conglomerato) Misura sicur. = Vsdu/Vcd + Tsdu/Trdu. Verifica OK se Mis.Sic <=1 Mis.Sic.

bw|z Larghezza minima [cm] sezione misurata parallelam. all'asse neutro | Braccio coppia interna

Cotangente dell'angolo di inclinazione dei puntoni di conglomerato Ctg Coefficiente maggiorativo della resistenza a taglio per compressione Acw Ast Area staffe/metro strettamente necessaria per taglio e torsione [cm²/m]

Ver **ASt** N°Comb Ved Vrd Vcd Trdu Mis.Sic. Vwd Tsdu bw | z Acw Ctq S 238.02 0.507 1 100.00 1150.61 306.98 100.00 75.0

47.3 2.500 2.2 1.000

RISULTATI DEL SOLO CALCOLO A TORSIONE

Area del nucleo della sezione tubolare resistente [cm²] Per.Nucl. Perimetro del nucleo della sezione tubolare resistente [cm] Sp.Nucl. Spessore del nucleo della sezione tubolare resistente [cm] Ast Area calcolata delle staffe al metro per sola torsione [cm²/m] Area dei ferri longitudinali calcolati per sola torsione [cm²] As long Momento torcente assegnato nella combinazione corrente [kNm] Tsdu Momento torc. resist. reso dall'area staffe riservata alla torsione [kNm] Trsd Trld

Momento torc. resist. reso da apposite barre longitudinali(compresa una

aliquota delle barre longitudinali soggette a flessione)

N°Comb Area Nucl. Per.Nucl. Sp.Nucl. Trld As long. Tsdu Trsd 2314 197 2.2 100.00 100.00 15.9 27.1 111.79

8.5 Verifica predalle in fase di getto

Nella presente sezione si verifica l'armatura delle predalles in fase di getto. Tutte le armature principali della soletta saranno realizzate con acciaio B450C.

Le solette degli impalcati saranno realizzate con l'ausilio di predalles autoportanti, aventi spessore di 5 cm e larghezza pari a 120 cm, tessute trasversalmente e appoggiate sulle travi metalliche principali.

Le predalles sono dotate di tralicci tipo HD 20/20/10, H = 25 cm. Il getto della soletta è previsto mediante 2 fasi di getto distinte, mostrate in figura, così definite:

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2 File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 97 di 117

- Fase 1: getto nella zona compresa fra le travi metalliche e sullo sbalzo per una larghezza pari a 50 cm dall'asse della trave principale;
- Fase 2: getto nella zona rimanente dello sbalzo; tale getto di completamento sarà realizzato soltanto dopo che il calcestruzzo del getto di prima fase abbia raggiunto una resistenza maggiore di 25 MPa.

Di seguito sono stati riportati gli schemi di calcolo delle fasi di getto della soletta, definendo per ognuno le sollecitazioni massime. Si prescrive che i tempi di getto tra una fase e l'altra siano tali da consentire la maturazione del calcestruzzo gettato (maggiori a 03 giorni). A favore si sicurezza non si tiene conto negli schemi che seguono delle zone di soletta già maturate. I grafici che seguono riportano i parametri della sollecitazione sulla singola lastra predalle, avente larghezza pari a 1.20 m, con i loro valori già amplificati con il coefficiente di norma per ottenere i valori allo SLU.

Si sono considerate tutte le disposizioni di carico accidentale al fine di massimizzare le sollecitazioni massime (sono trascurate quelle ottenute per simmetria). La verifica è eseguita sulla larghezza massima dello sbalzo e sull'interasse massimo tra gli appoggi.

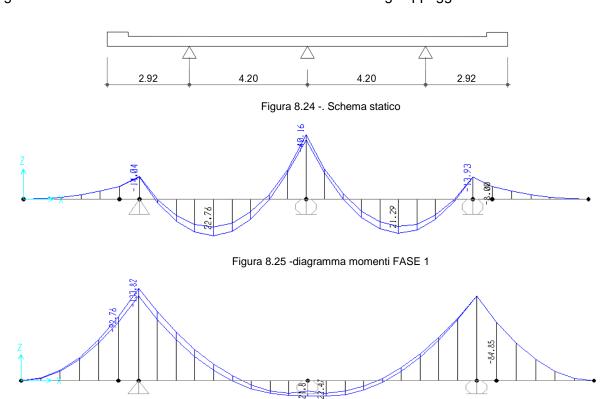


Figura 8.26 -diagramma momenti FASE 2

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ
LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA
751-1100 00 DELLA S.S. 380 VAR AL Km 177-1030 00 DELLA S.S.

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 98 di 117

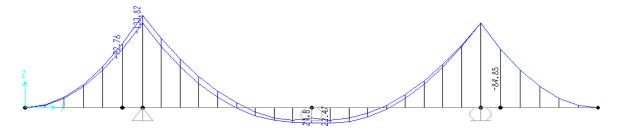
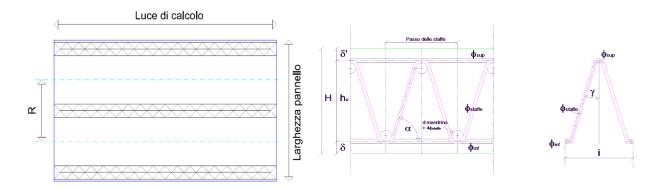



Figura 8.27 -diagramma taglio FASE 1

Figura 8.28 -diagramma taglio FASE 2

La verifica delle lastre predalle autoportanti è di seguito riportata effettuata, a favore di sicurezza, sulla sezione trasversale più sfavorevole.

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 99 di 117

Predalla:	spessore predalla	0.05 n	n
	spessore soletta + predalla	0.35 n	n
	larghezza pannello	1.20 n	n
	varco tra coppelle (vedi figura)	0.50 n	n
	lunghezza dello sbalzo di sola coppella (l sbalzi)	2.92 n	n
	luce tra gli appoggi	4.20 n	n
	lunghezza di getto in 1° fase dello sbalzo da "a ₁ " a "c" (l _{1°fase, sb})	0.50 n	n
Tralicci:	numero di tralicci per predalla	5	
	altezza fuoritutto del traliccio	0.250 n	n
	diametro delle barre del corrente superiore	20 n	nm
	diametro delle barre del corrente inferiore	20 n	
	diametro delle barre diagonali	10 n	
	passo degli elementi diagonali	0.20 n	
	lunghezza del tratto di saldatura degli elementi diagonali al corrente superiore	0.03 n	
	lunghezza del tratto di saldatura degli elementi diagonali al corrente inferiore	0.03 n	
	interasse tra le barre del corrente inferiore (vedi schema nell'immagine)	0.10 n	
	copriferro inferiore	0.035 n	n
	SOLLECITAZIONI MASSIME		
	Massimo momento positivo di calcolo sull'intera predalla		(Nm/lastra
	Massimo momento negativo di calcolo sull'intera predalla	-133.82 k	
	Massimo sforzo di taglio di calcolo sull'intera predalla	87.58 k	cN/lastra
	<u>DATI CALCOLATI</u>		
	Interasse verticale fra correnti superiore e inferiore:	i _c =	0.23 m
	Lunghezza della proiezione longitudinale sul piano della coppella della diagonale:	a =	0.07 m
	Inclinazione della diagonale rispetto alla verticale sul piano longitudinale:	ο. =	16.93 °
	Lunghezza della proiezione trasversale sul piano della coppella della diagonale:	b=	0.050 m
	Inclinazione del diagonale rispetto alla verticale sul piano trasversale:	β=	12.26 °
	ANALISI DEI CARICHI		

ANALISI DEI CARICHI									
Peso proprio dell'impalcato	25.00 kN/m ³	* 0.350 m * 1.20 m *	1.35 = 14.18 kN/m						
Sovr. mezzi d'opera	1.00 kN/m ²	* 1.20 m *	1.50 = 1.80 kN/m						
Altri sovraccarichi	0.00 kN/m ²	* 1.20 m *	1.50 = 0.00 kN/m						

Totale carichi su impalcato = 15.98 daN/m

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ
LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA
DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389

Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A
Data: Agosto 2020
Pag. 100 di 117

VERIFICA TRALICCI PREDALLE

Convenzione: sforzi e tensioni >0 se di trazione

MATERIALI

 $\begin{array}{lll} f_{yk} & 450 \ MPa \\ E & 210000 \ MPa \end{array}$

c curva di stabilità (a,b,c,d) EN1993-1-1 Table 6.2

α 0.49 Fattore di imperfezione EN1993-1-1 Table 6.2

γ_{M0} 1.10 γ_{M0} 1.05

VERIFICA CORRENTE SUPERIORE

$M_{camp} =$	-22.76 kl	Nm/coppella	Compressione			
$M_{app} =$	133.82 kl	Nm/coppella	Trazione			
Ø _{corr, sup} =	20 m	nm				
$A_{corr, sup} =$	314 m	nm²	Area			
$I_{min} =$	7854 m	nm ⁴	Momento d'inerzia minimo			
10 =	200 m	nm	Lunghezza libera di inflessione			
N _{cr} =	-406957 N	1	Carico critico elastico			
$\lambda =$	0.59		Snellezza adimensionale	EN1	993-1-1	6.3.1.2 (6.49)
Ø=	0.77			EN1	993-1-1	6.3.1.2 (6.49)
χ=	√ 0.79			EN1	993-1-1	6.3.1.2 (6.49)
$N_{b,Rd} =$	-101.74 kl	N	Carico critico elastico	EN1	993-1-1	6.3.1.1 (6.47)
$N_{t,Rd} =$	134.64 kl	N	Resistenza plastica della sezione lorda	EN1	993-1-1	6.2.3 (6.6)
$N_{Ed} =$	-19.79 kl	N/barra	Verificato a compressione c.s.=	4	0.195	
$N_{Ed} =$	116.37 k	N/barra	Verificato a trazione c.s.=	4	0.864	

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A Data: Agosto 2020

Pag. 101 di 117

VERIFICA CORRENTE INFERIORE

 $N_{t,Rd} =$

 $N_{Ed} =$

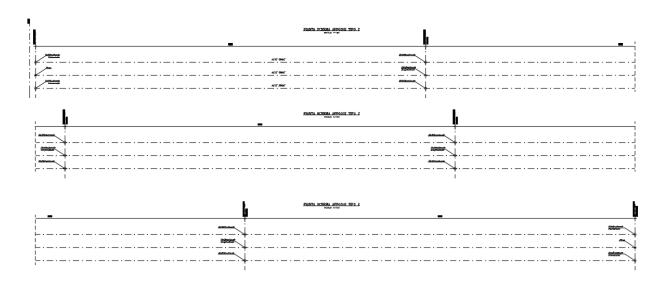
33.66 kN

9.37 kN/barra

$M_{app} =$	-133.82	kNm/coppella	Compressione	
$M_{camp} =$	22.76	kNm/coppella	Trazione	
$\varnothing_{corr, inf} =$	20	mm		
$A_{corr, inf} =$	314	mm ²	Area	
$I_{min} =$	7854		Momento d'inerzia minimo	
10 =	280	mm	Lunghezza libera di inflessione	
$N_{cr} =$			Carico critico elastico	
λ =	0.83		Snellezza adimensionale	EN1993-1-1 6.3.1.2 (6.49)
Ø=	0.99			EN1993-1-1 6.3.1.2 (6.49)
<u>χ=</u>	√ 0.65			EN1993-1-1 6.3.1.2 (6.49)
$N_{b,Rd} =$	-83.07	kN	Carico critico elastico	EN1993-1-1 6.3.1.1 (6.47)
$N_{t,Rd} =$	134.64	kN	Resistenza plastica della sezione lorda	EN1993-1-1 6.2.3 (6.6)
$N_{Ed} =$	-58.18	kN/barra	Verificato a compressione c.s.=	√ 0.700
N _{Ed} =	9.90	kN/barra	Verificato a trazione c.s.=	√ 0.073
<u>VERIFICA</u>	A DLAGON	ALE		
$T_{max} =$	87.58	kN/coppella	Compressione	
$\varnothing_{corr, sup} =$	10	mm		
$A_{corr, sup} =$	79	mm ²	Area	
$I_{min} =$	491	mm ⁴	Momento d'inerzia minimo	
10 =	246	mm	Lunghezza libera di inflessione	
N _{cr} =	-16808	N	Carico critico elastico	
λ =	1.45		Snellezza adimensionale	EN1993-1-1 6.3.1.2 (6.49)
Ø=	1.86			EN1993-1-1 6.3.1.2 (6.49)
χ=	0.33			EN1993-1-1 6.3.1.2 (6.49)
N _{b,Rd} =	10.64	kN	Carico critico elastico	EN1993-1-1 6.3.1.1 (6.47)

Resistenza plastica della sezione lorda EN1993-1-1 6.2.3 (6.6)

Verificato a compressione c.s.=


S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 102 di 117

8.6 Appoggi e giunti

Lo schema dei vincoli della travata metallica è il seguente:

Si riportano di seguito le reazioni agli appoggi per le principali combinazioni di carico: FISSO:

TABLE:	Element Forces	- Links						
Link	LinkElem	Station	OutputCase	CaseType	StepType	P	V2	V3
Text	Text	Text	Text	Text	Text	KN	KN	KN
110	110	I-End	COMB2	Combination	Min	-3452	-1015	-620
110	110	J-End	COMB2	Combination	Min	-3452	-1015	-620
110	110	I-End	COMB1	Combination	Min	-3276	-1015	-690
110	110	J-End	COMB1	Combination	Min	-3276	-1015	-690
110	110	I-End	EX	Combination	Min	-1802	-230	-1637
110	110	J-End	EX	Combination	Min	-1802	-230	-1637
110	110	I-End	COMB2	Combination	Max	-1703	-385	-140
110	110	J-End	COMB2	Combination	Max	-1703	-385	-140
110	110	I-End	EZ	Combination	Min	-1635	-230	-790
110	110	J-End	EZ	Combination	Min	-1635	-230	-790
110	110	I-End	EY	Combination	Min	-1605	-765	-666
110	110	J-End	EY	Combination	Min	-1605	-765	-666
110	110	I-End	COMB1	Combination	Max	-1527	-385	-209
110	110	J-End	COMB1	Combination	Max	-1527	-385	-209
110	110	I-End	EY	Combination	Max	-1410	765	274
110	110	J-End	EY	Combination	Max	-1410	765	274
110	110	I-End	EZ	Combination	Max	-1381	230	398
110	110	J-End	EZ	Combination	Max	-1381	230	398
110	110	I-End	EX	Combination	Max	-1214	230	1245
110	110	J-End	EX	Combination	Max	-1214	230	1245

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2 File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 103 di 117

TABLE:	Element Forces	- Links						
Link	LinkElem	Station	OutputCase	CaseType	StepType	Р	V2	V3
Text	Text	Text	Text	Text	Text	KN	KN	KN
109	109	I-End	COMB2	Combination	Min	-5645	0	-606
109	109	J-End	COMB2	Combination	Min	-5645	0	-606
109	109	I-End	COMB1	Combination	Min	-5501	0	-572
109	109	J-End	COMB1	Combination	Min	-5501	0	-572
111	111	I-End	COMB2	Combination	Min	-3082	0	-3599
111	111	J-End	COMB2	Combination	Min	-3082	0	-3599
111	111	I-End	COMB1	Combination	Min	-2939	0	-3564
111	111	J-End	COMB1	Combination	Min	-2939	0	-3564
109	109	I-End	COMB2	Combination	Max	-2759	0	4068
109	109	J-End	COMB2	Combination	Max	-2759	0	4068
109	109	I-End	COMB1	Combination	Max	-2616	0	4103
109	109	J-End	COMB1	Combination	Max	-2616	0	4103
109	109	I-End	EY	Combination	Min	-2412	0	-973
109	109	J-End	EY	Combination	Min	-2412	0	-973
111	111	I-End	EY	Combination	Min	-2412	0	-973
111	111	J-End	EY	Combination	Min	-2412	0	-973
109	109	I-End	EX	Combination	Min	-2252	0	-1523
109	109	J-End	EX	Combination	Min	-2252	0	-1523
111	111	I-End	EX	Combination	Min	-2252	0	-1523
111	111	J-End	EX	Combination	Min	-2252	0	-1523
109	109	I-End	EZ	Combination	Min	-2080	0	-679
109	109	J-End	EZ	Combination	Min	-2080	0	-679
111	111	I-End	EZ	Combination	Min	-2080	0	-679
111	111	J-End	EZ	Combination	Min	-2080	0	-679
109	109	I-End	EZ	Combination	Max	-1509	0	875
109	109	J-End	EZ	Combination	Max	-1509	0	875
111	111	I-End	EZ	Combination	Max	-1509	0	875
111	111	J-End	EZ	Combination	Max	-1509	0	875
109	109	I-End	EX	Combination	Max	-1337	0	1719
109	109	J-End	EX	Combination	Max	-1337	0	1719
111	111	I-End	EX	Combination	Max	-1337	0	1719
111	111	J-End	EX	Combination	Max	-1337	0	1719
109	109	I-End	EY	Combination	Max	-1177	0	1169
109	109	J-End	EY	Combination	Max	-1177	0	1169
111	111	I-End	EY	Combination	Max	-1177	0	1169
111	111	J-End	EY	Combination	Max	-1177	0	1169
111	111	I-End	COMB2	Combination	Max	-1018	0	958
111	111	J-End	COMB2	Combination	Max	-1018	0	958
111	111	I-End	COMB1	Combination	Max	-875	0	993
111	111	J-End	COMB1	Combination	Max	-875	0	993

UNI:

TABLE: Element Forces - Links										
Link	LinkElem	Station	OutputCase	CaseType	StepType	P	V2	V3		
Text	Text	Text	Text	Text	Text	KN	KN	KN		
124	124	I-End	COMB1	Combination	Min	-12283	0	0		
124	124	J-End	COMB1	Combination	Min	-12283	0	0		
124	124	I-End	COMB2	Combination	Min	-12103	0	0		
124	124	J-End	COMB2	Combination	Min	-12103	0	0		
118	118	I-End	COMB1	Combination	Min	-11603	0	0		
118	118	J-End	COMB1	Combination	Min	-11603	0	0		
118	118	I-End	COMB2	Combination	Min	-11368	0	0		

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 104 di 117

118	118	J-End	COMB2	Combination	Min	-11368	0	0
128	128	I-End	COMB1	Combination	Min	-9081	0	0
128	128	J-End	COMB1	Combination	Min	-9081	0	0
128	128	I-End	COMB2	Combination	Min	-8902	0	0
128	128	J-End	COMB2	Combination	Min	-8902	0	0
124	124	I-End	COMB1	Combination	Max	-8388	0	0
124	124	J-End	COMB1	Combination	Max	-8388	0	0
122	122	I-End	COMB1	Combination	Min	-8360	0	0
122	122	J-End	COMB1	Combination	Min	-8360	0	0
124	124	I-End	COMB2	Combination	Max	-8209	0	0
124	124	J-End	COMB2	Combination	Max	-8209	0	0
122	122	I-End	COMB2	Combination	Min	-8125	0	0
122	122	J-End	COMB2	Combination	Min	-8125	0	0
118	118	I-End	COMB1	Combination	Max	-7726	0	0
118	118	J-End	COMB1	Combination	Max	-7726	0	0
118	118	I-End	COMB2	Combination	Max	-7491	0	0
118	118	J-End	COMB2	Combination	Max	-7491	0	0
124	124	I-End	EY	Combination	Min	-6682	0	0
124	124	J-End	EY	Combination	Min	-6682	0	0
128	128	I-End	EY	Combination	Min	-6682	0	0
128	128	J-End	EY	Combination	Min	-6682	0	0
124	124	I-End	EX	Combination	Min	-6128	0	0
124	124	J-End	EX	Combination	Min	-6128	0	0
128	128	I-End	EX	Combination	Min	-6128	0	0
128	128	J-End	EX	Combination	Min	-6128	0	0
118	118	I-End	EY	Combination	Min	-6116	0	0
118	118	J-End	EY	Combination	Min	-6116	0	0
122	122	I-End	EY	Combination	Min	-6116	0	0
122	122	J-End	EY	Combination	Min	-6116	0	0
124	124	I-End	EZ	Combination	Min	-5799	0	0
124	124	J-End	EZ	Combination	Min	-5799	0	0
128	128	I-End	EZ	Combination	Min	-5799	0	0
128	128	J-End	EZ	Combination	Min	-5799	0	0
128	128	I-End	COMB1	Combination	Max	-5741	0	0
128	128	J-End	COMB1	Combination	Max	-5741	0	0
128	128	I-End	COMB2	Combination	Max	-5561	0	0
128	128	J-End	COMB2	Combination	Max	-5561	0	0
118	118	I-End	EX	Combination	Min	-5503	0	0
118	118	J-End	EX	Combination	Min	-5503	0	0
122	122	I-End	EX	Combination	Min	-5503	0	0
122	122	J-End	EX	Combination	Min	-5503	0	0
118	118	I-End	EZ	Combination	Min	-5220	0	0
118	118	J-End	EZ	Combination	Min	-5220	0	0
122	122	I-End	EZ	Combination	Min	-5220	0	0
122	122	J-End	EZ	Combination	Min	-5220	0	0
122	122	I-End	COMB1	Combination	Max	-5031	0	0
122	122	J-End	COMB1	Combination	Max	-5031	0	0
122	122	I-End	COMB2	Combination	Max	-4797	0	0
122	122	J-End	COMB2	Combination	Max	-4797	0	0
124	124	I-End	EZ	Combination	Max	-4444	0	0
124	124	J-End	EZ	Combination	Max	-4444	0	0
128	128	I-End	EZ	Combination	Max	-4444	0	0
128	128	J-End	EZ	Combination	Max	-4444	0	0
1	1	I-End	COMB2	Combination	Min	-4338	0	0
1	1	J-End	COMB2	Combination	Min	-4338	0	0
1	1	I-End	COMB1	Combination	Min	-4194	0	0

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 105 di 117

1	1	J-End	COMB1	Combination	Min	-4194	0	0
124	124	I-End	EX	Combination	Max	-4115	0	0
124	124	J-End	EX	Combination	Max	-4115	0	0
128	128	I-End	EX	Combination	Max	-4115	0	0
128	128	J-End	EX	Combination	Max	-4115	0	0
118	118	I-End	EZ	Combination	Max	-3913	0	0
118	118	J-End	EZ	Combination	Max	-3913	0	0
122	122	I-End	EZ	Combination	Max	-3913	0	0
122	122	J-End	EZ	Combination	Max	-3913	0	0
118	118	I-End	EX	Combination	Max	-3629	0	0
118	118	J-End	EX	Combination	Max	-3629	0	0
122	122	I-End	EX	Combination	Max	-3629	0	0
122	122	J-End	EX	Combination	Max	-3629	0	0
124	124	I-End	EY	Combination	Max	-3561	0	0
124	124	J-End	EY	Combination	Max	-3561	0	0
128	128	I-End	EY	Combination	Max	-3561	0	0
128	128	J-End	EY	Combination	Max	-3561	0	0
118	118	I-End	EY	Combination	Max	-3016	0	0
118	118	J-End	EY	Combination	Max	-3016	0	0
122	122	I-End	EY	Combination	Max	-3016	0	0
122	122	J-End	EY	Combination	Max	-3016	0	0
3	3	I-End	COMB2	Combination	Min	-2916 -2016	0	0
3	3	J-End	COMB2	Combination	Min	-2916	0	0
3	3	I-End	COMB1	Combination	Min	-2772 2772	0	0
3	3 1	J-End	COMB1	Combination	Min	-2772	0 0	0 0
1		I-End	COMB2	Combination	Max	-2360	_	
1 1	1 1	J-End I-End	COMB2 COMB1	Combination Combination	Max Max	-2360 -2216	0 0	0 0
1	1	J-End	COMB1	Combination	Max	-2216	0	0
1	1	J-End	EY	Combination	Min	-2025	0	0
1	1	J-End	EY	Combination	Min	-2025	0	0
3	3	I-End	EY	Combination	Min	-2025	0	0
3	3	J-End	EY	Combination	Min	-2025	0	0
1	1	I-End	EX	Combination	Min	-1874	0	0
1	1	J-End	EX	Combination	Min	-1874	0	0
3	3	I-End	EX	Combination	Min	-1874	0	0
3	3	J-End	EX	Combination	Min	-1874	0	0
1	1	I-End	EZ	Combination	Min	-1742	0	0
1	1	J-End	EZ	Combination	Min	-1742	0	0
3	3	I-End	EZ	Combination	Min	-1742	0	0
3	3	J-End	EZ	Combination	Min	-1742	0	0
3	3	I-End	COMB2	Combination	Max	-1372	0	0
3	3	J-End	COMB2	Combination	Max	-1372	0	0
1	1	I-End	EZ	Combination	Max	-1303	0	0
1	1	J-End	EZ	Combination	Max	-1303	0	0
3	3	I-End	EZ	Combination	Max	-1303	0	0
3	3	J-End	EZ	Combination	Max	-1303	0	0
3	3	I-End	COMB1	Combination	Max	-1227	0	0
3	3	J-End	COMB1	Combination	Max	-1227	0	0
1	1	I-End	EX	Combination	Max	-1171	0	0
1	1	J-End	EX	Combination	Max	-1171	0	0
3	3	I-End	EX	Combination	Max	-1171	0	0
3	3	J-End	EX	Combination	Max	-1171	0	0
1	1	I-End	EY	Combination	Max	-1020	0	0
1	1	J-End	EY	Combination	Max	-1020	0	0
3	3	I-End	EY	Combination	Max	-1020	0	0

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 106 di 117

3 3 J-End EY Combination Max -1020 0 0

UNI-LONG.:

TABLE: Element Forces - Links Link		Floment Forces	- Links						
Text			1	Output Cose	CosoTymo	ChanTuna		V2	V/2
126									
126									
126									
126									
120									
120 120									
120 120									
120 120							_		
126									
126									
126									
126									_
120									
120									
120									
120									
126									
126 126 J-End EX Combination Min -5271 -810 0 120 120 I-End EX Combination Min -4991 -865 0 120 120 J-End EX Combination Min -4991 -865 0 126 126 I-End EZ Combination Min -4938 -810 0 126 126 J-End EZ Combination Min -4938 -810 0 126 126 J-End EY Combination Min -4873 -2699 0 126 126 J-End EY Combination Min -4873 -2699 0 120 120 J-End EZ Combination Min -4697 -865 0 120 120 J-End EY Combination Min -4697 -865 0 120 120 J-End									
120									
120 120 J-End EX Combination Min -4991 -865 0 126 126 I-End EZ Combination Min -4938 -810 0 126 126 J-End EZ Combination Min -4873 -2699 0 126 126 J-End EY Combination Min -4873 -2699 0 120 120 J-End EY Combination Min -4873 -2699 0 120 120 J-End EZ Combination Min -4697 -865 0 120 120 J-End EZ Combination Min -4633 -2885 0 120 120 J-End EY Combination Min -4633 -2885 0 120 126 I-End EY Combination Max -4476 2699 0 126 126 I-End									
126 126 I-End EZ Combination Min -4938 -810 0 126 126 J-End EZ Combination Min -4938 -810 0 126 126 I-End EY Combination Min -4873 -2699 0 126 126 J-End EY Combination Min -4873 -2699 0 120 120 J-End EZ Combination Min -4873 -2699 0 120 120 J-End EZ Combination Min -4697 -865 0 120 120 J-End EZ Combination Min -4633 -2885 0 120 120 J-End EY Combination Min -4633 -2885 0 120 120 J-End EY Combination Max -4476 2699 0 126 126 I-End									
126 126 J-End EZ Combination Min -4938 -810 0 126 126 I-End EY Combination Min -4873 -2699 0 126 126 J-End EY Combination Min -4873 -2699 0 120 120 I-End EZ Combination Min -4697 -865 0 120 120 J-End EZ Combination Min -4697 -865 0 120 120 J-End EY Combination Min -4697 -865 0 120 120 J-End EY Combination Min -4633 -2885 0 120 120 J-End EY Combination Max -4476 2699 0 126 126 J-End EY Combination Max -4411 810 0 126 126 J-End									
126 126 I-End EY Combination Min -4873 -2699 0 126 126 J-End EY Combination Min -4873 -2699 0 120 120 I-End EZ Combination Min -4697 -865 0 120 120 J-End EZ Combination Min -4697 -865 0 120 120 J-End EY Combination Min -4697 -865 0 120 120 J-End EY Combination Min -4633 -2885 0 120 120 J-End EY Combination Max -4476 2699 0 126 126 I-End EY Combination Max -4476 2699 0 126 126 J-End EZ Combination Max -4411 810 0 126 126 J-End									
126 126 J-End EY Combination Min -4873 -2699 0 120 120 I-End EZ Combination Min -4697 -865 0 120 120 I-End EY Combination Min -4633 -2885 0 120 120 J-End EY Combination Min -4633 -2885 0 120 120 J-End EY Combination Min -4633 -2885 0 126 126 I-End EY Combination Max -4476 2699 0 126 126 I-End EY Combination Max -4411 810 0 126 126 I-End EZ Combination Max -4411 810 0 120 120 I-End EY Combination Max -4271 2885 0 120 120 I-End									
120 120 I-End EZ Combination Min -4697 -865 0 120 120 J-End EZ Combination Min -4697 -865 0 120 120 I-End EY Combination Min -4633 -2885 0 120 120 J-End EY Combination Min -4633 -2885 0 126 126 I-End EY Combination Max -4476 2699 0 126 126 I-End EY Combination Max -4476 2699 0 126 126 I-End EZ Combination Max -4411 810 0 126 126 I-End EZ Combination Max -4411 810 0 120 120 I-End EY Combination Max -4271 2885 0 120 120 I-End									
120 120 J-End EZ Combination Min -4697 -865 0 120 120 I-End EY Combination Min -4633 -2885 0 120 120 J-End EY Combination Min -4633 -2885 0 126 126 I-End EY Combination Max -4476 2699 0 126 126 J-End EY Combination Max -4471 810 0 126 126 I-End EZ Combination Max -4411 810 0 126 126 J-End EZ Combination Max -4411 810 0 120 120 I-End EZ Combination Max -4271 2885 0 120 120 J-End EZ Combination Max -4271 2885 0 120 120 J-End <									
120 120 I-End EY Combination Min -4633 -2885 0 120 120 J-End EY Combination Min -4633 -2885 0 126 126 I-End EY Combination Max -4476 2699 0 126 126 J-End EY Combination Max -4476 2699 0 126 126 I-End EZ Combination Max -4471 810 0 126 126 J-End EZ Combination Max -4411 810 0 120 120 I-End EZ Combination Max -4271 2885 0 120 120 J-End EY Combination Max -4271 2885 0 120 120 J-End EZ Combination Max -4271 2885 0 120 120 J-End									
120 120 J-End EY Combination Min -4633 -2885 0 126 126 I-End EY Combination Max -4476 2699 0 126 126 J-End EY Combination Max -4476 2699 0 126 126 I-End EZ Combination Max -4411 810 0 126 126 J-End EZ Combination Max -4411 810 0 120 120 I-End EY Combination Max -4411 810 0 120 120 I-End EY Combination Max -4271 2885 0 120 120 J-End EY Combination Max -4271 2885 0 120 120 J-End EZ Combination Max -4271 2885 0 120 120 J-End <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
126 126 I-End EY Combination Max -4476 2699 0 126 126 J-End EY Combination Max -4476 2699 0 126 126 I-End EZ Combination Max -4411 810 0 126 126 J-End EZ Combination Max -4411 810 0 120 120 I-End EY Combination Max -4271 2885 0 120 120 J-End EY Combination Max -4271 2885 0 120 120 J-End EY Combination Max -4271 2885 0 120 120 J-End EZ Combination Max -4206 865 0 120 120 J-End EX Combination Max -4077 810 0 126 126 J-End									
126 126 J-End EY Combination Max -4476 2699 0 126 126 I-End EZ Combination Max -4411 810 0 126 126 J-End EZ Combination Max -4411 810 0 120 120 I-End EY Combination Max -4271 2885 0 120 120 J-End EY Combination Max -4271 2885 0 120 120 I-End EZ Combination Max -4271 2885 0 120 120 I-End EZ Combination Max -4206 865 0 120 120 J-End EZ Combination Max -4077 810 0 120 126 I-End EX Combination Max -3913 865 0 120 120 I-End E									
126 126 I-End EZ Combination Max -4411 810 0 126 126 J-End EZ Combination Max -4411 810 0 120 120 I-End EY Combination Max -4271 2885 0 120 120 J-End EY Combination Max -4271 2885 0 120 120 I-End EZ Combination Max -4271 2885 0 120 120 I-End EZ Combination Max -4206 865 0 120 120 J-End EZ Combination Max -4206 865 0 126 126 I-End EX Combination Max -4077 810 0 120 120 I-End EX Combination Max -3913 865 0 120 120 J-End EX									
126 126 J-End EZ Combination Max -4411 810 0 120 120 I-End EY Combination Max -4271 2885 0 120 120 J-End EY Combination Max -4206 865 0 120 120 J-End EZ Combination Max -4206 865 0 120 120 J-End EZ Combination Max -4206 865 0 126 126 I-End EX Combination Max -4077 810 0 126 126 J-End EX Combination Max -4077 810 0 120 120 I-End EX Combination Max -3913 865 0 120 120 J-End EX Combination Max -3913 865 0 120 120 J-End COMB									
120 120 I-End EY Combination Max -4271 2885 0 120 120 J-End EY Combination Max -4271 2885 0 120 120 J-End EZ Combination Max -4206 865 0 120 120 J-End EZ Combination Max -4206 865 0 126 126 I-End EX Combination Max -4077 810 0 126 126 J-End EX Combination Max -4077 810 0 120 120 I-End EX Combination Max -3913 865 0 120 120 J-End EX Combination Max -3913 865 0 120 120 J-End EX Combination Max -3913 865 0 2 2 J-End COMB2 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
120 120 J-End EY Combination Max -4271 2885 0 120 120 I-End EZ Combination Max -4206 865 0 120 120 J-End EZ Combination Max -4206 865 0 126 126 I-End EX Combination Max -4077 810 0 126 126 J-End EX Combination Max -4077 810 0 120 120 I-End EX Combination Max -3913 865 0 120 120 J-End EX Combination Max -3913 865 0 120 120 J-End EX Combination Max -3913 865 0 120 120 J-End COMB2 Combination Min -3433 -531 0 2 2 J-End COMB									
120 120 I-End EZ Combination Max -4206 865 0 120 120 J-End EZ Combination Max -4206 865 0 126 126 I-End EX Combination Max -4077 810 0 126 126 J-End EX Combination Max -4077 810 0 120 120 I-End EX Combination Max -3913 865 0 120 120 J-End EX Combination Max -3913 865 0 120 120 J-End EX Combination Max -3913 865 0 120 120 J-End EX Combination Min -3433 -531 0 120 2 1-End COMB2 Combination Min -3433 -531 0 120 2 1-End COMB									
120 120 J-End EZ Combination Max -4206 865 0 126 126 I-End EX Combination Max -4077 810 0 126 126 J-End EX Combination Max -4077 810 0 120 120 I-End EX Combination Max -3913 865 0 120 120 J-End EX Combination Max -3913 865 0 2 2 I-End COMB2 Combination Min -3433 -531 0 2 2 J-End COMB2 Combination Min -3433 -531 0 2 2 I-End COMB1 Combination Min -3433 -531 0 2 2 I-End COMB1 Combination Min -3206 -531 0 2 2 I-End COMB2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
126 126 I-End EX Combination Max -4077 810 0 126 126 J-End EX Combination Max -4077 810 0 120 120 I-End EX Combination Max -3913 865 0 120 120 J-End EX Combination Max -3913 865 0 2 2 I-End COMB2 Combination Min -3433 -531 0 2 2 J-End COMB2 Combination Min -3433 -531 0 2 2 I-End COMB1 Combination Min -3433 -531 0 2 2 I-End COMB1 Combination Min -3206 -531 0 2 2 J-End COMB2 Combination Max -1763 -468 0 2 2 J-End COMB2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
126 126 J-End EX Combination Max -4077 810 0 120 120 I-End EX Combination Max -3913 865 0 120 120 J-End EX Combination Max -3913 865 0 2 2 I-End COMB2 Combination Min -3433 -531 0 2 2 J-End COMB2 Combination Min -3433 -531 0 2 2 I-End COMB1 Combination Min -3206 -531 0 2 2 J-End COMB1 Combination Min -3206 -531 0 2 2 I-End COMB2 Combination Max -1763 -468 0 2 2 J-End COMB2 Combination Max -1763 -468 0									
120 120 I-End EX Combination Max -3913 865 0 120 120 J-End EX Combination Max -3913 865 0 2 2 I-End COMB2 Combination Min -3433 -531 0 2 2 J-End COMB2 Combination Min -3433 -531 0 2 2 I-End COMB1 Combination Min -3206 -531 0 2 2 J-End COMB1 Combination Min -3206 -531 0 2 2 I-End COMB2 Combination Max -1763 -468 0 2 2 J-End COMB2 Combination Max -1763 -468 0									-
120 120 J-End EX Combination Max -3913 865 0 2 2 I-End COMB2 Combination Min -3433 -531 0 2 2 J-End COMB2 Combination Min -3433 -531 0 2 2 I-End COMB1 Combination Min -3206 -531 0 2 2 J-End COMB1 Combination Min -3206 -531 0 2 2 I-End COMB2 Combination Max -1763 -468 0 2 2 J-End COMB2 Combination Max -1763 -468 0			J-End		Combination	Max		810	0
2 2 I-End COMB2 Combination Min -3433 -531 0 2 2 J-End COMB2 Combination Min -3433 -531 0 2 2 I-End COMB1 Combination Min -3206 -531 0 2 2 J-End COMB1 Combination Min -3206 -531 0 2 2 I-End COMB2 Combination Max -1763 -468 0 2 2 J-End COMB2 Combination Max -1763 -468 0						Max			0
2 2 J-End COMB2 Combination Min -3433 -531 0 2 2 I-End COMB1 Combination Min -3206 -531 0 2 2 J-End COMB1 Combination Min -3206 -531 0 2 2 I-End COMB2 Combination Max -1763 -468 0 2 2 J-End COMB2 Combination Max -1763 -468 0	120		J-End		Combination	Max	-3913	865	0
2 2 I-End COMB1 Combination Min -3206 -531 0 2 2 J-End COMB1 Combination Min -3206 -531 0 2 2 I-End COMB2 Combination Max -1763 -468 0 2 2 J-End COMB2 Combination Max -1763 -468 0	2		I-End			Min	-3433	-531	0
2 2 J-End COMB1 Combination Min -3206 -531 0 2 2 I-End COMB2 Combination Max -1763 -468 0 2 2 J-End COMB2 Combination Max -1763 -468 0					Combination				0
2 2 I-End COMB2 Combination Max -1763 -468 0 2 2 J-End COMB2 Combination Max -1763 -468 0	2		I-End			Min	-3206	-531	0
2 2 J-End COMB2 Combination Max -1763 -468 0	2		J-End		Combination	Min	-3206	-531	0
	2		I-End	COMB2	Combination	Max	-1763	-468	0
2 2 I-End EX Combination Min -1688 -252 0			J-End		Combination	Max	-1763	-468	0
	2	2	I-End	EX	Combination	Min	-1688	-252	0

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 107 di 117

2	2	J-End	EX	Combination	Min	-1688	-252	0
2	2	I-End	EZ	Combination	Min	-1557	-252	0
2	2	J-End	EZ	Combination	Min	-1557	-252	0
2	2	I-End	EY	Combination	Min	-1539	-839	0
2	2	J-End	EY	Combination	Min	-1539	-839	0
2	2	I-End	COMB1	Combination	Max	-1537	-468	0
2	2	J-End	COMB1	Combination	Max	-1537	-468	0
2	2	I-End	EY	Combination	Max	-1397	839	0
2	2	J-End	EY	Combination	Max	-1397	839	0
2	2	I-End	EZ	Combination	Max	-1379	252	0
2	2	J-End	EZ	Combination	Max	-1379	252	0
2	2	I-End	EX	Combination	Max	-1248	252	0
2	2	J-End	EX	Combination	Max	-1248	252	0

Si riportano di seguito le reazioni massime agli appoggi:

	FISSO			ZIONALE ERSALE	UNIDIREZIONALE LONGITUDINALE		MULTIDIREZIONALE
Nmax	Hmax	Hmax	Nmax	HTmax	Nmax	HTmax	Nmax
SLU	DIR.1	DIR.2	SLU	SIS	SLU	SIS	
3600	1800	1200	6000	4200	10500	3000	13000

Si riportano di seguito le reazioni agli appoggi per le principali condizioni di carico:

FISSO:

TABLE	Element Ford	es - Links						
Link	LinkElem	Station	OutputCase	CaseType	StepType	P	V2	V3
Text	Text	Text	Text	Text	Text	KN	KN	KN
110	110	I-End	Barriers and Sidewalks	StagedConst	Max	-64	0	-109
110	110	J-End	Barriers and Sidewalks	StagedConst	Max	-64	0	-109
110	110	I-End	Barriers and Sidewalks	StagedConst	Min	-64	0	-109
110	110	J-End	Barriers and Sidewalks	StagedConst	Min	-64	0	-109
110	110	I-End	Deck Plus	StagedConst	Max	-818	0	-88
110	110	J-End	Deck Plus	StagedConst	Max	-818	0	-88
110	110	I-End	Deck Plus	StagedConst	Min	-818	0	-88
110	110	J-End	Deck Plus	StagedConst	Min	-818	0	-88
110	110	I-End	Girders and Diaphragms	StagedConst	Max	-262	0	-5
110	110	J-End	Girders and Diaphragms	StagedConst	Max	-262	0	-5
110	110	I-End	Girders and Diaphragms	StagedConst	Min	-262	0	-5
110	110	J-End	Girders and Diaphragms	StagedConst	Min	-262	0	-5
110	110	I-End	TRAF CARAT	LinMoving	Max	141	166	189
110	110	J-End	TRAF CARAT	LinMoving	Max	141	166	189
110	110	I-End	TRAF CARAT	LinMoving	Min	-1154	-301	-167
110	110	J-End	TRAF CARAT	LinMoving	Min	-1154	-301	-167
110	110	I-End	Wearing Surface	StagedConst	Max	-288	0	-18
110	110	J-End	Wearing Surface	StagedConst	Max	-288	0	-18

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2 File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 108 di 117

110	110	I-End	Wearing Surface	StagedConst	Min	-288	0	-18
110	110	J-End	Wearing Surface	StagedConst	Min	-288	0	-18

UNI – T:

TABLE:	Element Forc	es - Links						
Link	LinkElem	Station	OutputCase	CaseType	StepType	P	V2	V3
Text	Text	Text	Text	Text	Text	KN	KN	KN
109	109	I-End	Barriers and Sidewalks	StagedConst	Max	-241	0	55
109	109	J-End	Barriers and Sidewalks	StagedConst	Max	-241	0	55
109	109	I-End	Barriers and Sidewalks	StagedConst	Min	-241	0	55
109	109	J-End	Barriers and Sidewalks	StagedConst	Min	-241	0	55
111	111	I-End	Barriers and Sidewalks	StagedConst	Max	-241	0	55
111	111	J-End	Barriers and Sidewalks	StagedConst	Max	-241	0	55
111	111	I-End	Barriers and Sidewalks	StagedConst	Min	-241	0	55
111	111	J-End	Barriers and Sidewalks	StagedConst	Min	-241	0	55
109	109	I-End	Deck Plus	StagedConst	Max	-1039	0	44
109	109	J-End	Deck Plus	StagedConst	Max	-1039	0	44
109	109	I-End	Deck Plus	StagedConst	Min	-1039	0	44
109	109	J-End	Deck Plus	StagedConst	Min	-1039	0	44
111	111	I-End	Deck Plus	StagedConst	Max	-1039	0	44
111	111	J-End	Deck Plus	StagedConst	Max	-1039	0	44
111	111	I-End	Deck Plus	StagedConst	Min	-1039	0	44
111	111	J-End	Deck Plus	StagedConst	Min	-1039	0	44
109	109	I-End	Girders and Diaphragms	StagedConst	Max	-261	0	3
109	109	J-End	Girders and Diaphragms	StagedConst	Max	-261	0	3
109	109	I-End	Girders and Diaphragms	StagedConst	Min	-261	0	3
109	109	J-End	Girders and Diaphragms	StagedConst	Min	-261	0	3
111	111	I-End	Girders and Diaphragms	StagedConst	Max	-261	0	3
111	111	J-End	Girders and Diaphragms	StagedConst	Max	-261	0	3
111	111	I-End	Girders and Diaphragms	StagedConst	Min	-261	0	3
111	111	J-End	Girders and Diaphragms	StagedConst	Min	-261	0	3
109	109	I-End	TRAF CARAT	LinMoving	Max	315	0	2224
109	109	J-End	TRAF CARAT	LinMoving	Max	315	0	2224
109	109	I-End	TRAF CARAT	LinMoving	Min	-1822	0	-1238
109	109	J-End	TRAF CARAT	LinMoving	Min	-1822	0	-1238
111	111	I-End	TRAF CARAT	LinMoving	Max	580	0	1207
111	111	J-End	TRAF CARAT	LinMoving	Max	580	0	1207
111	111	I-End	TRAF CARAT	LinMoving	Min	-950	0	-2169
111	111	J-End	TRAF CARAT	LinMoving	Min	-950	0	-2169
109	109	I-End	Wearing Surface	StagedConst	Max	-298	0	9
109	109	J-End	Wearing Surface	StagedConst	Max	-298	0	9
109	109	I-End	Wearing Surface	StagedConst	Min	-298	0	9
109	109	J-End	Wearing Surface	StagedConst	Min	-298	0	9
111	111	I-End	Wearing Surface	StagedConst	Max	-298	0	9
111	111	J-End	Wearing Surface	StagedConst	Max	-298	0	9
111	111	I-End	Wearing Surface	StagedConst	Min	-298	0	9
111	111	J-End	Wearing Surface	StagedConst	Min	-298	0	9

UNI:

TABLE:	: Element Ford	es - Links						
Link	LinkElem	Station	OutputCase	CaseType	StepType	Р	V2	V3
Text	Text	Text	Text	Text	Text	KN	KN	KN

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2 File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 109 di 117

1	1	I-End	Barriers and Sidewalks	StagedConst	Max	-213	0	0
1	1	J-End	Barriers and Sidewalks	StagedConst	Max	-213	0	0
1	1	I-End	Barriers and Sidewalks	StagedConst	Min	-213	0	0
1	1	J-End	Barriers and Sidewalks	StagedConst	Min	-213	0	0
3	3	I-End	Barriers and Sidewalks	StagedConst	Max	-213	0	0
3	3	J-End	Barriers and Sidewalks	StagedConst	Max	-213	0	0
3	3	I-End	Barriers and Sidewalks	StagedConst	Min	-213	0	0
3	3	J-End	Barriers and Sidewalks	StagedConst	Min	-213	0	0
118	118	I-End	Barriers and Sidewalks	StagedConst	Max	-621	0	0
118	118	J-End	Barriers and Sidewalks	StagedConst	Max	-621	0	0
118	118	I-End	Barriers and Sidewalks	StagedConst	Min	-621	0	0
118	118	J-End	Barriers and Sidewalks	StagedConst	Min	-621	0	0
122	122	I-End	Barriers and Sidewalks	StagedConst	Max	-621	0	0
122	122	J-End	Barriers and Sidewalks	StagedConst	Max	-621	0	0
122	122	I-End	Barriers and Sidewalks	StagedConst	Min	-621	0	0
122	122	J-End	Barriers and Sidewalks	StagedConst	Min	-621	0	0
124	124	I-End	Barriers and Sidewalks	StagedConst	Max	-642	0	0
124	124	J-End	Barriers and Sidewalks	StagedConst	Max	-642	0	0
124	124	I-End	Barriers and Sidewalks	StagedConst	Min	-642	0	0
124	124	J-End	Barriers and Sidewalks	StagedConst	Min	-642	0	0
128	128	I-End	Barriers and Sidewalks	StagedConst	Max	-642	0	0
128	128	J-End	Barriers and Sidewalks	StagedConst	Max	-642	0	0
128	128	I-End	Barriers and Sidewalks	StagedConst	Min	-642	0	0
128	128	J-End	Barriers and Sidewalks	StagedConst	Min	-642	0	0
1	1	I-End	Deck Plus	StagedConst	Max	-846	0	0
1	1	J-End	Deck Plus	StagedConst	Max	-846	0	0
1	1	I-End	Deck Plus	StagedConst	Min	-846	0	0
1	1	J-End	Deck Plus	_	Min	-846 -846	0	0
3	3	I-End	Deck Plus	StagedConst	Max	-846 -846	0	0
3	3			StagedConst				0
		J-End	Deck Plus	StagedConst	Max	-846	0	
3	3	I-End	Deck Plus	StagedConst	Min	-846	0	0
3	3	J-End	Deck Plus	StagedConst	Min	-846 2250	0	0
118	118	I-End	Deck Plus	StagedConst	Max	-2350	0	0
118	118	J-End	Deck Plus	StagedConst	Max	-2350	0	0
118	118	I-End	Deck Plus	StagedConst	Min	-2350	0	0
118	118	J-End	Deck Plus	StagedConst	Min	-2350	0	0
122	122	I-End	Deck Plus	StagedConst	Max	-2350	0	0
122	122	J-End	Deck Plus	StagedConst	Max	-2350	0	0
122	122	I-End	Deck Plus	StagedConst	Min	-2350	0	0
122	122	J-End	Deck Plus	StagedConst	Min	-2350	0	0
124	124	I-End	Deck Plus	StagedConst	Max	-2738	0	0
124	124	J-End	Deck Plus	StagedConst	Max	-2738	0	0
124	124	I-End	Deck Plus	StagedConst	Min	-2738	0	0
124	124	J-End	Deck Plus	StagedConst	Min	-2738	0	0
128	128	I-End	Deck Plus	StagedConst	Max	-2738	0	0
128	128	J-End	Deck Plus	StagedConst	Max	-2738	0	0
128	128	I-End	Deck Plus	StagedConst	Min	-2738	0	0
128	128	J-End	Deck Plus	StagedConst	Min	-2738	0	0
1	1	I-End	Girders and Diaphragms	StagedConst	Max	-260	0	0
1	1	J-End	Girders and Diaphragms	StagedConst	Max	-260	0	0
1	1	I-End	Girders and Diaphragms	StagedConst	Min	-260	0	0
1	1	J-End	Girders and Diaphragms	StagedConst	Min	-260	0	0
3	3	I-End	Girders and Diaphragms	StagedConst	Max	-260	0	0
3	3	J-End	Girders and Diaphragms	StagedConst	Max	-260	0	0
3	3	I-End	Girders and Diaphragms	StagedConst	Min	-260	0	0
3	3	J-End	Girders and Diaphragms	StagedConst	Min	-260	0	0

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 110 di 117

118	118	I-End	Girders and Diaphragms	StagedConst	Max	-851	0	0
118	118	J-End	Girders and Diaphragms	StagedConst	Max	-851	0	0
118	118	I-End	Girders and Diaphragms	StagedConst	Min	-851	0	0
118	118	J-End	Girders and Diaphragms	StagedConst	Min	-851	0	0
122	122	I-End	Girders and Diaphragms	StagedConst	Max	-851	0	0
122	122	J-End	Girders and Diaphragms	StagedConst	Max	-851	0	0
122	122	I-End	Girders and Diaphragms	StagedConst	Min	-851	0	0
122	122	J-End	Girders and Diaphragms	StagedConst	Min	-851	0	0
124	124	I-End	Girders and Diaphragms	StagedConst	Max	-851	0	0
124	124	J-End	Girders and Diaphragms	StagedConst	Max	-851	0	0
124	124	I-End	Girders and Diaphragms	StagedConst	Min	-851	0	0
124	124	J-End	Girders and Diaphragms	StagedConst	Min	-851	0	0
128	128	I-End	Girders and Diaphragms	StagedConst	Max	-851	0	0
128	128	J-End	Girders and Diaphragms	StagedConst	Max	-851	0	0
128	128	I-End	Girders and Diaphragms	StagedConst	Min	-851	0	0
128	128	J-End	Girders and Diaphragms	StagedConst	Min	-851	0	0
1	1	I-End	TRAF CARAT	LinMoving	Max	164	0	0
1	1	J-End	TRAF CARAT	LinMoving	Max	164	0	0
1	1	I-End	TRAF CARAT	LinMoving	Min	-1301	0	0
1	1	J-End	TRAF CARAT	LinMoving	Min	-1301	0	0
3	3	I-End	TRAF CARAT	LinMoving	Max	183	0	0
3	3	J-End	TRAF CARAT	LinMoving	Max	183	0	0
3	3	I-End	TRAF CARAT	LinMoving	Min	-960	0	0
3	3	J-End	TRAF CARAT	LinMoving	Min	-960	0	0
118	118	I-End	TRAF CARAT	LinMoving	Max	362	0	0
118	118	J-End	TRAF CARAT	LinMoving	Max	362	0	0
118	118	I-End	TRAF CARAT	LinMoving	Min	-2510	0	0
118	118	J-End	TRAF CARAT	LinMoving	Min	-2510	0	0
122	122	I-End	TRAF CARAT	LinMoving	Max	390	0	0
122	122	J-End	TRAF CARAT	LinMoving	Max	390	0	0
122	122	I-End	TRAF CARAT	LinMoving	Min	-2076	0	0
122	122	J-End	TRAF CARAT	LinMoving	Min	-2076	0	0
124	124	I-End	TRAF CARAT	LinMoving	Max	398	0	0
124	124	J-End	TRAF CARAT	LinMoving	Max	398	0	0
124	124	I-End	TRAF CARAT	LinMoving	Min	-2487	0	0
124	124	J-End	TRAF CARAT	LinMoving	Min	-2487	0	0
128	128	I-End	TRAF CARAT	LinMoving	Max	368	0	0
128	128	J-End	TRAF CARAT	LinMoving	Max	368	0	0
128	128	I-End	TRAF CARAT	LinMoving	Min	-2107	0	0
128	128	J-End	TRAF CARAT	LinMoving	Min	-2107	0	0
1	1	I-End	Wearing Surface	StagedConst	Max	-239	0	0
1	1	J-End	Wearing Surface	StagedConst	Max	-239	0	0
1	1	I-End	Wearing Surface	StagedConst	Min	-239	0	0
1	1	J-End	Wearing Surface	StagedConst	Min	-239	0	0
3	3	I-End	Wearing Surface	StagedConst	Max	-239	0	0
3	3	J-End	Wearing Surface	StagedConst	Max	-239	0	0
3	3	I-End	Wearing Surface	StagedConst	Min	-239	0	0
3	3	J-End	Wearing Surface	StagedConst	Min	-239	0	0
118	118	I-End	Wearing Surface	StagedConst	Max	-693	0	0
118	118	J-End	Wearing Surface	StagedConst	Max	-693	0	0
118	118	I-End	Wearing Surface	StagedConst	Min	-693	0	0
118	118	J-End	Wearing Surface	StagedConst	Min	-693	0	0
122	122	I-End	Wearing Surface	StagedConst	Max	-693	0	0
122	122	J-End	Wearing Surface	StagedConst	Max	-693	0	0
122	122	I-End	Wearing Surface	StagedConst	Min	-693	0	0
122	122	J-End	Wearing Surface	StagedConst	Min	-693	0	0
		2 2110		3100000000			•	Ü

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2 File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 111 di 117

124	124	I-End	Wearing Surface	StagedConst	Max	-826	0	0
124	124	J-End	Wearing Surface	StagedConst	Max	-826	0	0
124	124	I-End	Wearing Surface	StagedConst	Min	-826	0	0
124	124	J-End	Wearing Surface	StagedConst	Min	-826	0	0
128	128	I-End	Wearing Surface	StagedConst	Max	-826	0	0
128	128	J-End	Wearing Surface	StagedConst	Max	-826	0	0
128	128	I-End	Wearing Surface	StagedConst	Min	-826	0	0
128	128	J-End	Wearing Surface	StagedConst	Min	-826	0	0

UNI-LONG.:

TABLE:	Element Ford	es - Links						
Link	LinkElem	Station	OutputCase	CaseType	StepType	P	V2	V3
Text	Text	Text	Text	Text	Text	KN	KN	KN
2	2	I-End	Barriers and Sidewalks	StagedConst	Max	-119	0	0
2	2	J-End	Barriers and Sidewalks	StagedConst	Max	-119	0	0
2	2	I-End	Barriers and Sidewalks	StagedConst	Min	-119	0	0
2	2	J-End	Barriers and Sidewalks	StagedConst	Min	-119	0	0
120	120	I-End	Barriers and Sidewalks	StagedConst	Max	-328	0	0
120	120	J-End	Barriers and Sidewalks	StagedConst	Max	-328	0	0
120	120	I-End	Barriers and Sidewalks	StagedConst	Min	-328	0	0
120	120	J-End	Barriers and Sidewalks	StagedConst	Min	-328	0	0
126	126	I-End	Barriers and Sidewalks	StagedConst	Max	-286	0	0
126	126	J-End	Barriers and Sidewalks	StagedConst	Max	-286	0	0
126	126	I-End	Barriers and Sidewalks	StagedConst	Min	-286	0	0
126	126	J-End	Barriers and Sidewalks	StagedConst	Min	-286	0	0
2	2	I-End	Deck Plus	StagedConst	Max	-777	0	0
2	2	J-End	Deck Plus	StagedConst	Max	-777	0	0
2	2	I-End	Deck Plus	StagedConst	Min	-777	0	0
2	2	J-End	Deck Plus	StagedConst	Min	-777	0	0
120	120	I-End	Deck Plus	StagedConst	Max	-2588	0	0
120	120	J-End	Deck Plus	StagedConst	Max	-2588	0	0
120	120	I-End	Deck Plus	StagedConst	Min	-2588	0	0
120	120	J-End	Deck Plus	StagedConst	Min	-2588	0	0
126	126	I-End	Deck Plus	StagedConst	Max	-2826	0	0
126	126	J-End	Deck Plus	StagedConst	Max	-2826	0	0
126	126	I-End	Deck Plus	StagedConst	Min	-2826	0	0
126	126	J-End	Deck Plus	StagedConst	Min	-2826	0	0
2	2	I-End	Girders and Diaphragms	StagedConst	Max	-264	0	0
2	2	J-End	Girders and Diaphragms	StagedConst	Max	-264	0	0
2	2	I-End	Girders and Diaphragms	StagedConst	Min	-264	0	0
2	2	J-End	Girders and Diaphragms	StagedConst	Min	-264	0	0
120	120	I-End	Girders and Diaphragms	StagedConst	Max	-983	0	0
120	120	J-End	Girders and Diaphragms	StagedConst	Max	-983	0	0
120	120	I-End	Girders and Diaphragms	StagedConst	Min	-983	0	0
120	120	J-End	Girders and Diaphragms	StagedConst	Min	-983	0	0
126	126	I-End	Girders and Diaphragms	StagedConst	Max	-984	0	0
126	126	J-End	Girders and Diaphragms	StagedConst	Max	-984	0	0
126	126	I-End	Girders and Diaphragms	StagedConst	Min	-984	0	0
126	126	J-End	Girders and Diaphragms	StagedConst	Min	-984	0	0
2	2	I-End	TRAF CARAT	LinMoving	Max	85	25	0
2	2	J-End	TRAF CARAT	LinMoving	Max	85	25	0
2	2	I-End	TRAF CARAT	LinMoving	Min	-1151	-21	0
2	2	J-End	TRAF CARAT	LinMoving	Min	-1151	-21	0
120	120	I-End	TRAF CARAT	LinMoving	Max	208	44	0
120	120	J-End	TRAF CARAT	LinMoving	Max	208	44	0

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 112 di 117

120	120	I-End	TRAF CARAT	LinMoving	Min	-2075	-49	0
120	120	J-End	TRAF CARAT	LinMoving	Min	-2075	-49	0
126	126	I-End	TRAF CARAT	LinMoving	Max	205	294	0
126	126	J-End	TRAF CARAT	LinMoving	Max	205	294	0
126	126	I-End	TRAF CARAT	LinMoving	Min	-2108	-160	0
126	126	J-End	TRAF CARAT	LinMoving	Min	-2108	-160	0
2	2	I-End	Wearing Surface	StagedConst	Max	-257	0	0
2	2	J-End	Wearing Surface	StagedConst	Max	-257	0	0
2	2	I-End	Wearing Surface	StagedConst	Min	-257	0	0
2	2	J-End	Wearing Surface	StagedConst	Min	-257	0	0
120	120	I-End	Wearing Surface	StagedConst	Max	-775	0	0
120	120	J-End	Wearing Surface	StagedConst	Max	-775	0	0
120	120	I-End	Wearing Surface	StagedConst	Min	-775	0	0
120	120	J-End	Wearing Surface	StagedConst	Min	-775	0	0
126	126	I-End	Wearing Surface	StagedConst	Max	-846	0	0
126	126	J-End	Wearing Surface	StagedConst	Max	-846	0	0
126	126	I-End	Wearing Surface	StagedConst	Min	-846	0	0
126	126	J-End	Wearing Surface	StagedConst	Min	-846	0	0

Lo spostamento massimo è dato dal contributo di:

- Spostamento relativo terreno deg

deg = è lo spostamento relativo tra le parti dovuto agli spostamenti relativi del terreno, da valutare secondo il §3.2.3.3 e §3.2.4.2 delle NTC;

In favore di sicurezza deg = dij max =

$$d_{ij\,max}\,=1{,}25\,\sqrt{d_{gi}^{\,2}\,+\,d_{gj}^{\,2}}$$

Dove dgi e dgi sono gli spostamenti massimi del suolo nei punti i e j, calcolati con riferimento alle caratteristiche locali del sottosuolo:

$$d_g = 0.025 \cdot a_g \cdot S \cdot T_C \cdot T_D$$

Risulta dij max = 3.5cm

- Allungamento dovuto alla variazione termica

L'azione termica viene valutata secondo C5.1.4.5:

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2 File: T00_VI07_STR_RE02_A

Data: Agosto 2020

Pag. 113 di 117

C5.1.4.5 VERIFICHE ALLO STATO LIMITE DI DEFORMAZIONE

Per la valutazione della domanda relativa alla componente cinematica dei vincoli e per il calcolo della dimensione dei varchi, ovvero della distanza tra costruzioni contigue in corrispondenza delle interruzioni strutturali, si potranno prendere in conto, oltre alle combinazioni sismiche, anche le combinazioni SLU delle altre azioni significative per il caso in esame (ritiro, viscosità, variazioni termiche, frenatura, azione centrifuga, vento, precompressione, ecc.).

I valori di progetto della variazione termica uniforme per la valutazione agli SLU della massima espansione/contrazione si possono esprimere come segue:

$$\Delta T_{exp,d} = \Delta T_{exp} + \Delta T_0$$
 [C5.1.3]

$$\Delta T_{con,d} = \Delta T_{con} + \Delta T_0$$
 [C5.1.4]

In cui:

$$\Delta T_{exp} = +T_{e,max} - T_0$$
 [C5.1.5]

$$\Delta T_{con} = -T_{e,min} + T_0$$
 [C5.1.6]

- Te,max e Te,min sono rispettivamente la massima e minima temperatura uniforme del ponte ricavabili, come indicato nel Capitolo 6 delle UNI EN 1991-1-5, in funzione della Tmin e Tmax dell'aria esterna di cui al § 3.5 delle NTC.
- To è la temperatura iniziale all'atto della regolazione degli appoggi del ponte di cui al § 3.5.4 delle NTC.
- ΔT₀ è indicato nella tabella seguente.

ΔT_0 = 5°C per strutture di c.a., c.a.p. e acciaio/cls	Installazione con la misurazione accurata della temperatura		
ΔT_0 = 5°C per strutture di acciaio	della struttura e con preregolazione per effetti termici a fine costruzione.		
$\Delta T_0 = 10$ °C per strutture di c.a., c.a.p. e acciaio/cls	Installazione con la stima della temperatura della struttura e		

ΔT_0 = 15°C per strutture di acciaio	con preregolazione per effetti termici a fine costruzione. Per stima della temperatura della struttura si intende la valutazione secondo quanto indicato nel Capitolo 6 delle UNI EN 1991-1-5 con una accurata misura della temperatura dell'aria esterna.	
ΔT_0 = 20°C per strutture di c.a., c.a.p. e acciaio/cls		
$\Delta T_0 = 30$ °C per strutture di acciaio	Installazione senza alcuna preregolazione per effetti termici.	

I valori caratteristici della variazione termica uniforme per la massima espansione/contrazione si possono esprimere con la seguente formulazione.

$$\Delta T_{exp,k} = \Delta T_{exp}$$
 [C5.1.7]

$$\Delta T_{con,k} = \Delta T_{con}$$
 [C5.1.8]

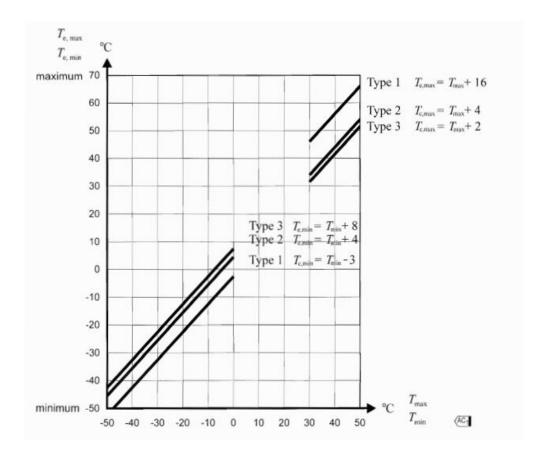
Da cui:

Zona II

Liguria, Toscana, Umbria, Lazio, Sardegna, Campania, Basilicata:

$$T_{\min} = -8 - 6 \cdot a_{s} / 1000$$
 [3.5.3]

$$T_{\text{max}} = 42 - 2 \cdot a_s / 1000$$
 [3.5.4]


Tmin= -12.8°C

Tmax= 40.4°C

To=15°C

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389

AL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. Viadotto VI07 - Relazione di calcolo impalcato 2 File: T00_VI07_STR_RE02_A
Data: Agosto 2020
Pag. 114 di 117

Te min= Tmin +4 = -8.8°C (type 2 composite deck) Te max= Tmax +4 = 44.4°C (type 2 composite deck)

 Δ Texp= Te max- To= 25.4°C Δ Tcon= -Te min+ To= 23.8 °C

 ΔTd exp= $\Delta Texp$ + ΔTo = 45.4°C (in favore di sicurezza si adotta ΔTo =20°C) ΔTd con= $\Delta Tcon$ + ΔTo = 43.8°C

 α dT*L = 1.2*E-05 * 45.4° * 120m = 7.0cm per primo impalcato α dT*L = 1.2*E-05 * 45.4° * 180m = 10.0cm per secondo impalcato

- Spostamento delle strutture

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 **Viadotto VI07 - Relazione di calcolo impalcato 2** File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 115 di 117

In direzione longitudinale lo spostamento della spalla è nullo; in direzione trasversale lo spostamento della pila è pari a 0.4cm.

Lo spostamento massimo in direzione longitudinale è dunque pari ad:

MAX (dT; dSisma+0.5dT)= MAX(17.0; 3.5+0.5*17.0)= 17 cm

Lo spostamento massimo in direzione trasversale è dunque pari ad: 0.4cm

Si adotta un giunto con spostamento massimo di 340mm (±170mm).

S.S. 389 TRONCO VILLANOVA – LANUSEI – TORTOLÌ LOTTO BIVIO VILLAGRANDE – SVINCOLO DI ARZANA

DAL Km 51+100,00 DELLA S.S. 389 VAR AL Km 177+930,00 DELLA S.S. 389 Viadotto VI07 - Relazione di calcolo impalcato 2

File: T00_VI07_STR_RE02_A

Data: Agosto 2020 Pag. 116 di 117

9. GIUDIZIO MOTIVATO DI ACCETTABILITÀ

Si riportano i controlli effettuati confrontando modelli semplificati analitici di calcolo e risultati ottenuti dalle analisi FEM, in accordo a quanto prescritto al paragrafo 10.2 del "DM. 17/01/2018".

Si controlla il taglio agente per carichi mobili sulla trave esterna:

Il taglio su una trave in corrispondenza della pila può essere calcolato come risultante del carico distribuito, per area di influenza, e del tandem in transito sull'appoggio della stessa:

V = [(9kN/m2*3m+2.5 kN/m2*9.5M)*60m]/3+600 kN = 1615 kN

Dal calcolo risulta un taglio pari a 1659 kN confrontabile con quanto calcolato.

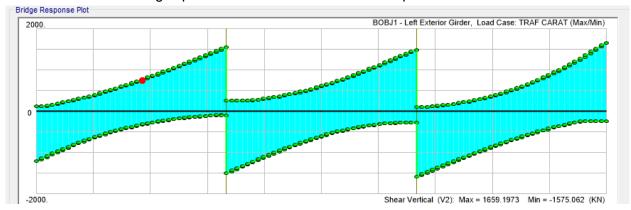


Figura 9.1 -. Taglio carichi mobili (kN)