
VISTO per ATIVA S.p.A.

TORINO - IVREA - QUINCINETTO
IVREA - SANTHIA'

SISTEMA AUTOSTRADALE TANGENZIALE DI TORINO

Amministratore Delegato

Dott. Ing. LUIGI CRESTA

AUTOSTRADA A5 TORINO QUINCINETTO

NODO IDRAULICO DI IVREA 2° FASE DI COMPLETAMENTO LOTTO 2B

PROGETTO ESECUTIVO

BARRIERE ACUSTICHE RELAZIONE GEOTECNICA MURI BARRIERE ANTIRUMORE

IL PROGETTISTA		REDATTO					CONTROLLATO					APPROVATO												
						ATIVA ENGINEERING				IG	ATIVA ENGINEERING													
		ECOPLAN						V. Palmisano						V. Palmisano										
ATIVA	DA.	DATA						REVISIONE					DATA											
ENGINEERING		OTTOBRE 2021																						
	SCALA																							
Il Direttore Tecnico																								
Ing. GIUSEPPE PASQUALATO		UFF	ICIO				COM	MESSA			N	l° PRO	GETT	0	FA	SE	ARC	SOME	NTO	N° E	LABO	RATO	RI	EV
ordine degli Ingegneri della Provincia di Milano n° 19116										1			4									4		
11 19116	S	S	Ρ	0	1	0	1	A	0	5	0	0	1	3	l۲	E	A	C	U	10	0	4	0	0

SOMMARIO

1	Ger	neralita	2
2	Nor	mativa di riferimento e riferimenti bibliografici	4
3		atteristiche geotecniche	
	3.1	Muri di sostegno barriere tipo 1	5
	3.2	Muro controterra tipo 2	5
4	Ana	ılisi dei carichi	6
	4.1	Peso delle barriere fonoassorbenti	6
	4.2	Parametri sismici per il calcolo dei muri	6
	4.3	Azioni dovute ai carichi da traffico	6
	4.4	Spinta "attiva" del terrapieno in condizioni statiche	6
	4.5	Spinta "attiva" della terra in condizioni sismiche	7
	4.6	Spinta passiva della terra in condizioni statiche e sismiche	8
5	Cor	nbinazioni di carichi considerate	8
	5.1	Azioni sulla struttura in elevazione	8
	5.2	Azioni sulla struttura di fondazione	8
	5.3	Combinazioni di carico considerate	8
6	Crit	eri e metodi delle verifiche	9
	6.1	Verifiche di capacità portante della fondazione	9
	6.2	Verifiche di stabilità globale	11
7	Mur	o tipo 1 - Verifiche muri di sostegno barriere fonoassorbenti	12
	7.1	Verifiche geotecniche	12
8	Mur	o tipo 2 - Verifiche muro controterra	25
	8.1	Verifiche geotecniche	25

1 GENERALITÀ

La presente relazione, redatta sulla base delle risultanze della Relazione Geologica redatta al fine di definire il modello geologico per il progetto esecutivo della risistemazione idraulica di quella porzione del territorio canavesano posta allo sbocco della Valle d'Aosta e compresa nella parte centro meridionale del bacino idrografico del Fiume Dora Baltea, riguarda le verifiche geotecniche delle strutture di sostegno delle barriere fonoassorbenti da collocare nell'ambito dei lavori di completamento del Nodo Idraulico di Ivrea dell' Autostrada A4/A5.

Gli elementi sono realizzati in calcestruzzo armato ordinario, gettato in opera.

Sono previste barriere fonoassorbenti in PMMA e alluminio di altezza variabile da 2.00 m a 5.00 m innestate su muri di fondazione in c.a. gettato in opera.

Si presentano i seguenti casi:

- Muri di sostegno Tipo 1 delle barriere realizzati lateralmente all'allargamento dell'autostrada; la fondazione diretta può essere indifferentemente sul rilevato stradale o sul terreno naturale.
- Muro controterra Tipo 2: un caso particolare si presenta lungo la barriera n° 02 tra le sezioni 20 e 37 in cui nell'allargamento si incontra uno sperone roccioso sovrastante l'autostrada per cui si realizza un muro controterra in c.a., di altezza variabile, su cui è impostata la barriera.

Nelle figure seguenti sono esemplificati i casi possibili di realizzazione.

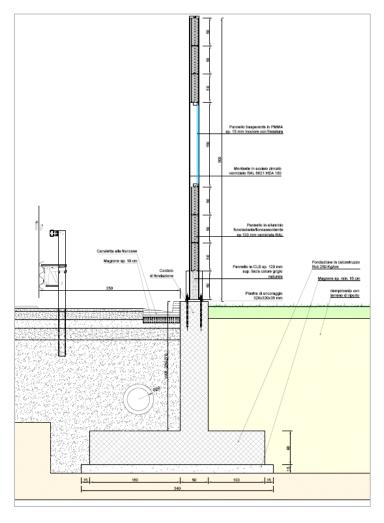


FIGURA 1.1: MURO BARRIERA CON FONDAZIONE SU TERRENO IN SITU

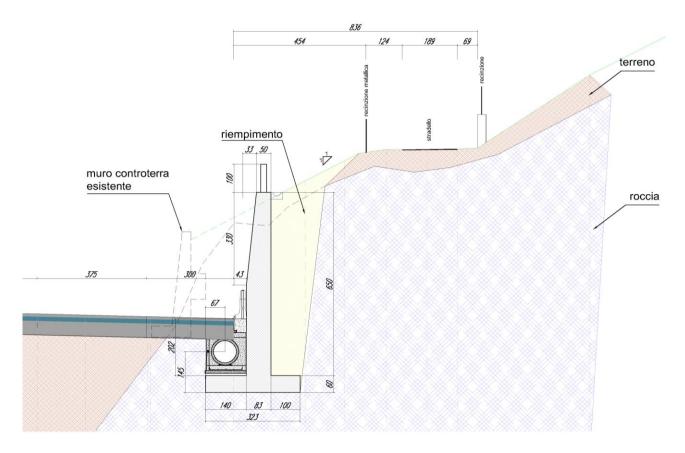


FIGURA 1.2: MURO CONTROTERRA

2 NORMATIVA DI RIFERIMENTO E RIFERIMENTI BIBLIOGRAFICI

NORME ITALIANE ED EUROPEE

- Legge 05/11/1971 n.1086 "Norme per la disciplina delle opere in conglomerato cementizio armato, normale, precompresso e per le strutture metalliche.
- Legge 02/02/1974, n.64 "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".
- D.M. 17/01/2018 Aggiornamento delle "Norme tecniche per le costruzioni"
- Circolare C.S.LL.PP. n. 7 del 21/01/2019 "Istruzioni per l'applicazione dell' Aggiornamento delle "Norme tecniche per le costruzioni" »."
- UNI EN 206:2016 Calcestruzzo Specificazione, prestazione, produzione e conformità.
- UNI 11104:2016 Calcestruzzo Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206.

RIFERIMENTI BIBLIOGRAFICI

- Mueller-Breslau (1906) "Erddruck anf Stuetzmanern", ed. Kroener
- Okabe S. (1926) "General theory of earth pressure", Journal of Japanese Society of Civil engineers, Vol.12, No.1
- Mononobe N., Matuo H.(1929) "On the determination of earth pressure during earthquakes", Proc. World Engineering Conference, vol. 9.
- Brinch-Hansen J. (1970) "A Revised and Extended Formula for Bearing Capacity". Bull. n°28 Danish Geotechnical Institute - Copenhagen.
- Vesic A.S. (1975) "Bearing capacity of shallow foundations", Foundation Engineering Handbook edited by Winterkorn H.F. & Fang H.Y., Van Nostrand Reinhold Company.
- Bowles J.E. (1996) "Foundation Analysis and Design", 5° edizione, McGraw-Hill.

3 CARATTERISTICHE GEOTECNICHE

3.1 Muri di sostegno barriere tipo 1

a) Rilevato stradale:

 $\begin{array}{lll} \text{- peso specifico apparente:} & \gamma_t = 20 \text{ kN/m}^3 \\ \text{- angolo di attrito interno:} & \phi = 35^\circ \\ \text{- coesione drenata:} & c' = 0 \\ \text{- inclinazione terrapieno a monte:} & \epsilon = 0 \end{array}$

b) Terreno in situ: riporti sciolti; limi sabbiosi e sabbie fini:

 $\begin{array}{lll} \text{- peso specifico apparente:} & \gamma_t = 17 \text{ kN/m}^3 \\ \text{- angolo di attrito interno:} & \phi = 23^\circ \\ \text{- coesione drenata:} & c' = 0 \\ \text{- inclinazione piano di campagna:} & \epsilon = 0 \end{array}$

3.2 MURO CONTROTERRA TIPO 2

a) Riempimento (rilevato):

 $\begin{array}{lll} \text{- peso specifico apparente:} & \gamma_t = 20 \text{ kN/m}^3 \\ \text{- angolo di attrito interno:} & \phi = 33^\circ \\ \text{- coesione drenata:} & c' = 0 \\ \text{- inclinazione terrapieno a monte:} & \epsilon = 1:2 \end{array}$

c) Substrato: roccia metamorfica; si assumono parametri cautelativi, considerati validi per ogni stato di alterazione/fratturazione dell'ammasso:

 $\begin{array}{lll} \text{- peso specifico apparente:} & \gamma_t = 20 \text{ kN/m}^3 \\ \text{- angolo di attrito interno:} & \phi = 45^\circ \\ \text{- coesione drenata:} & \text{c'} = 0 \\ \text{- inclinazione piano di campagna:} & \epsilon = 0 \end{array}$

Il livello di falda risulta ovunque relativamente profondo, tale da non interferire con le opere in progetto.

4 ANALISI DEI CARICHI

4.1 PESO DELLE BARRIERE FONOASSORBENTI

Il peso proprio per tutte le barriere è assunto pari a 0.70 kN/m².

4.2 PARAMETRI SISMICI PER IL CALCOLO DEI MURI

La determinazione delle azioni sismiche viene effettuata secondo NTC 2018; l'analisi è condotta secondo il metodo pseudo-statico.

Le coordinate geografiche di calcolo ED50 sono le seguenti:

Latitudine: 45.4560° Longitudine: 7.8395°

Si assume il valore dell'accelerazione massima su suolo rigido massima dell'intero progetto con:

- Vita nominale: $V_N = 100$ anni

- Classe: IV: Costruzioni con funzioni pubbliche o strategiche importanti...

- Coefficiente d'uso: $c_u = 2$

Si ottengono i seguenti parametri sismici.

STATO	T _R	a_g	Fo	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	120	0.0309	2.669	0.224
SLD	201	0.0356	2.674	0.241
SLV	1898	0.0603	2.820	0.314
SLC	2475	0.0637	2.849	0.320

Inoltre si assume:

- Categoria di sottosuolo: C

- Coefficiente stratigrafico: $S_s = 1.5$

Categoria topografica: T1
 Coefficiente di topografia: St = 1

- Coefficiente riduttivo: $\beta_m = 0.38$ (opere di sostegno che ammettono spostamenti, allo SLV)

Si determinano quindi i coefficienti sismici che interessano tutte le masse:

- Coefficiente sismico orizzontale: $k_h = 1.5 \cdot 0.0603 \cdot 0.38 = 0.0344$ - Coefficiente sismico verticale: $k_V = \pm 0.5 \cdot 0.0344 = \pm 0.0177$

4.3 AZIONI DOVUTE AI CARICHI DA TRAFFICO

Muri di sostegno barriere: si considera una pressione distribuita uniforme sul terrapieno a monte pari a:

- combinazioni statiche: $q = 20 \text{ kN/m}^2$

- combinazioni sismiche: $q = 0.20 \times 20 = 4 \text{ kN/m}^2$

Muri controterra: si considera una pressione distribuita uniforme sul terrapieno a monte pari a:

- combinazioni statiche: $q = 10 \text{ kN/m}^2$

- combinazioni sismiche: q = 0.20 x 10 = 2 kN/m²

Il contributo del peso del sovraccarico sul plinto viene trascurato.

4.4 SPINTA "ATTIVA" DEL TERRAPIENO IN CONDIZIONI STATICHE

Nella valutazione delle spinte attive in condizioni statiche si tiene conto del contributo stabilizzante dell'attrito terreno/struttura per mezzo di un angolo (δ) pari a:

$$\delta = 17.5^{\circ}$$
 ($\delta/\phi = 0.5$)

Si assume che la tipologia dell'opera di sostegno sia tale da consentire che si sviluppi un regime di spinta "attiva" in seguito alla quale viene esercitata una pressione con andamento linearmente crescente con la profondità:

$$P_t = K_a \times \gamma_t \times z$$

Le sollecitazioni esercitate dalla spinta attiva vengono determinate con il metodo di Mueller-Breslau, basato sulla teoria di Coulomb.

$$K_{a} = \frac{sen^{2}(\beta - \phi)}{sen^{2}\beta \times sen(\beta + \delta) \times \left[1 + \sqrt{\frac{sin(\delta + \phi) \times sin(\phi - \epsilon)}{sen(\beta + \delta) \times sen(\beta - \epsilon)}}\right]^{2}}$$

dove: φ = angolo d'attrito del terreno

ε= Inclinazione del piano campagna rispetto al piano orizzontale, positiva se antioraria

 $\delta < (\beta - \phi - \varepsilon)$ = angolo d'attrito terreno-parete

β = Inclinazione della parete interna rispetto al piano orizzontale passante per il piede

La spinta del terreno S_t è applicata ad 1/3 dell'altezza dell'opera di sostegno (H) e vale:

$$S_{t} = \frac{1}{2} \gamma_{t} \cdot H^{2} \cdot K_{a}$$

La pressione costante (Pq) indotta da un carico uniforme (q) applicato a livello del piano campagna risulta:

$$P_q = K_a \times q \times \text{sen } \beta / \text{sen } (\beta + \epsilon)$$

Cui corrisponde una spinta di intensità pari a Sq:

$$S_q = K_a \cdot Q \cdot H \frac{\operatorname{sen}\beta}{\operatorname{sen}(\beta + \epsilon)}$$

Con punto di applicazione ad H/2.

L'effetto della coesione efficace genera un diagramma uniforme di pressioni negative che nel caso di terrapieno orizzontale sono pari a:

$$P_c = -2 \cdot c' \cdot \sqrt{K_a}$$

Non essendo possibile stabilire a priori quale sia il decremento di spinta indotto si calcola l'altezza critica Z_c che rappresenta l'altezza di scavo "auto-sostenuto":

$$Z_{c} = \frac{2 \cdot c'}{\gamma_{t} \cdot \sqrt{K_{a}}} - \frac{Q \cdot \frac{sen\beta}{sen(\beta + \epsilon)}}{\gamma_{t}}$$

SPINTA "ATTIVA" DELLA TERRA IN CONDIZIONI SISMICHE

Nella valutazione delle spinte attive in condizioni sismiche si tiene conto del contributo stabilizzante dell'attrito terreno/struttura per mezzo di un angolo (δ) pari a:

$$\delta = 17.5^{\circ}$$
 ($\delta/\phi = 0.5$)

L'effetto del sisma viene messo in conto mediante un approccio di tipo pseudo-statico con il metodo dell'equilibrio limite.

Nel caso in studio si omette la maggiorazione della spinta dovuta all'acqua libera di muoversi nello scheletro solido in quanto i muri sono impostati fuori falda.

La spinta attiva (componente statica + sismica) viene calcolata con il metodo di Mononobe & Okabe:

$$\begin{split} E_d = & \frac{1}{2} \cdot \gamma \cdot (1 \pm k_V) \cdot H^2 \cdot K_{as} \\ K_{as} = & \frac{\sin^2(\alpha + \phi - \vartheta)}{\cos\vartheta \cdot \sin^2\alpha \cdot \sin(\alpha - \vartheta - \delta) \left[1 - \frac{\sqrt{\sin(\phi + \delta)\sin(\phi - \beta - \vartheta)}}{\sqrt{\sin(\alpha - \vartheta - \delta)\sin(\alpha + \beta)}}\right]^2} \end{split}$$
 Dove (terreno sopra falda):
$$\vartheta = \arctan\frac{k_h}{1 \pm k_v}$$

Si assume che l'incremento di spinta attiva dovuto al sisma agisca ad H/3.

Per il contributo del sovraccarico (ridotto per fase sismica) e il contributo della coesione lo svolgimento è analogo a quello riportato al paragrafo precedente.

4.6 SPINTA PASSIVA DELLA TERRA IN CONDIZIONI STATICHE E SISMICHE

Si trascura, prudenzialmente, il contributo stabilizzante della spinta passiva sul plinto sia in condizione di carico statico che sismico.

5 COMBINAZIONI DI CARICHI CONSIDERATE

5.1 AZIONI SULLA STRUTTURA IN ELEVAZIONE

In condizioni statiche, le azioni sulla struttura in elevazione sono:

- Peso proprio dei muri e delle barriere
- Spinta statica del terreno
- Azione del vento trasversale
- Spinta statica dovuta dal sovraccarico stradale

In condizioni sismiche, le azioni sulla struttura in elevazione sono:

- Peso proprio dei muri e delle barriere
- Spinta statica del terreno e incremento sismico della spinta
- Azioni dovute al sisma sulle masse strutturali dell'elevazione
- Spinta statica e incremento sismico del sovraccarico stradale ridotto al 20%

5.2 AZIONI SULLA STRUTTURA DI FONDAZIONE

In condizioni statiche, le azioni sulla struttura di fondazione sono:

- Azioni dalla struttura in elevazione, con i criteri descritti al paragrafo precedente
- Peso proprio del plinto di fondazione e del terreno sullo stesso
 - Spinta statica del terreno
 - Azione del vento trasversale
 - Spinta statica dovuta dal sovraccarico stradale

In condizioni sismiche, le azioni sulla struttura in elevazione sono:

- Peso proprio del plinto di fondazione e del terreno portato dallo stesso
 - Spinta statica del terreno e incremento sismico della spinta
 - Azioni dovute al sisma sulle masse strutturali e sul terreno portato
 - Spinta statica e incremento sismico del sovraccarico stradale ridotto al 20%

5.3 COMBINAZIONI DI CARICO CONSIDERATE

Le azioni sono combinate con i coefficienti parziali indicati nella seguente tabella.

Combinazioni	statiche SLE: verifiche stati limite di eserci	izio (fessurazione	e)							
	Combinazione	Permanenti	Traffico	Vento	Sisma Orizz.	Sisma Vert.	Descrizione			
	Ra-I (Vento)	1	0.75	1	0	0	Carichi permanenti e variabili con vento dominante			
	Ra-II (Traffico)	1	1	0.6	0	0	Carichi permanenti e variabili con sovraccarico da traffico dominante			
	Fr-I (Fessurazione)	1	0	0.2	0	0	Fessurazione; combinazione frequente con vento dominante			
	Fr-II (Fessurazione)	1	0.75	0	0	0	Fessurazione; combinazione frequente con sovraccarico dominante			
Combinazioni STR/GEO, A1+M1: metodo degli stati limite ultimi: verifiche strutturali e geotecniche										
	Combinazione	Permanenti	Traffico	Vento	Sisma Orizz.	Sisma Vert.	Descrizione			
	U1-I (Vento)	1.3	1.125	1.5	0	0	Carichi permanenti e variabili con vento dominante			
	U1-II (Traffico)	1.3	1.5	0.9	0	0	Carichi permanenti e variabili con sovraccarico da traffico dominante			
	S1-I (sisma v.alto)	1	0.2	0	1	-1	Combinazione sismica; sisma verticale verso l'alto			
	S1-II (sisma v.basso)	1	0.2	0	1	1	Combinazione sismica; sisma verticale verso il basso			
Combinazioni	EQU, A1+M1: metodo degli stati limite ulti	mi: verifiche di rit	altamento							
	Combinazione	Permanenti	Traffico	Vento	Sisma Orizz.	Sisma Vert.	Descrizione			
	E1-I (Vento)	0.9	1.125	1.5	0	0	Carichi permanenti e variabili con vento dominante			
	E1-II (Traffico)	0.9	1.5	0.9	0	0	Carichi permanenti e variabili con sovraccarico da traffico dominante			
	SE1-I (sisma v.alto)	1	0.2	0	1	-1	Combinazione sismica; sisma verticale verso l'alto			
	SE1-II (sisma v.basso)	1	0.2	0	1	1	Combinazione sismica; sisma verticale verso il basso			

TABELLA 5.1: COMBINAZIONI DI CARICO

6 CRITERI E METODI DELLE VERIFICHE

In tutte le successive verifiche si trascura l'eventuale sottoplinto.

6.1 VERIFICHE DI CAPACITÀ PORTANTE DELLA FONDAZIONE

Per il calcolo della capacità portante limite del terreno di fondazione (o carico a rottura) si fa riferimento ai tradizionali metodi basati sulla teoria dell'equilibrio limite così come proposti da Vesic (1975).

I calcoli sono eseguiti in direzione trasversale; si assume che sia sempre la direzione più gravosa in quanto in direzione longitudinale non si hanno eccentricità di carico né carichi tangenziali né inclinazioni sfavorevoli del piano di campagna.

Con riguardo alla posizione della fondazione relativamente ai terreni interessati si possono presentare i seguenti casi:

- 1) Il piano di fondazione è sul terreno in situ (figura 6.3); si assume:
 - i parametri del terreno corrispondono a quelli efficaci del terreno in situ in condizioni drenate;
 - il piano di campagna si suppone orizzontale.

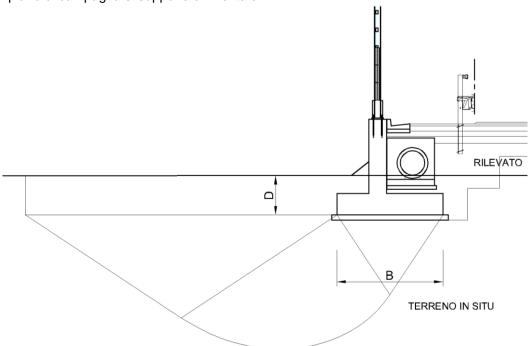


FIGURA 6.1_TERRENO IN SITO PER VERIFICA CAPACITA' PORTANTE

Utilizzando le caratteristiche drenate, la portata limite unitaria (pressione) è data dalla seguente formula:

$$q_{\text{lim}} = \ c' N_{\text{C}} s_{\text{C}} d_{\text{C}} i_{\text{C}} b_{\text{C}} g_{\text{C}} + q' N_{\text{q}} s_{\text{q}} d_{\text{q}} i_{\text{q}} b_{\text{q}} g_{\text{q}} + \frac{1}{2} \gamma B' N_{\gamma} s_{\gamma} d_{\gamma} i_{\gamma} b_{\gamma} g_{\gamma}$$

in cui e nel seguito:

γ: massa volumica efficace del terreno

B': larghezza netta della fondazione (Meyerhof)

c': coesione del terreno

q': sovraccarico dovuto al terreno sopra il piano di fondazione

φ: angolo di attrito di calcolo del terreno

V: carico perpendicolare al piano di posa

H: carico tangenziale al piano di posa

A_f = B' x L': area efficace fondazione

ω: angolo di inclinazione piano di campagna (+ verso il basso, ω< φ)

η: angolo di inclinazione del piano di fondazione (+ verso l'alto, η < φ)

Coefficienti di capacità portante:

$$N_{q} = tan^{2} \left(45 + \frac{\varphi}{2} \right) \times e^{\pi tan \varphi}$$

$$N_{C} = (N_{q} - 1)\cot \varphi$$

$$N_{\gamma} = 2(N_{Q} + 1)\tan\varphi$$

Fattori di forma:

$$s_{c} = 1 + \frac{N_{q}}{N_{c}} \times \frac{B}{L}$$

$$s_q = 1 + \frac{B}{I} tan \phi$$

$$s_{\gamma} = 1 - 0.4 \frac{B}{L}$$
 (> 0.6)

Fattori di profondità del piano di fondazione: si definisce k:

$$k = \frac{D}{B}$$

er:
$$\frac{D}{B} \le 1$$

$$k = tan^{-1} \left(\frac{D}{B} \right) \hspace{1cm} per: \hspace{0.2cm} \frac{D}{B} > 1$$

per:
$$\frac{D}{B}$$
 >

$$d_C = 1 + 0.4k$$

$$d_{q} = 1 + 2 \tan \varphi (1 - \operatorname{sen}\varphi)^{2} k$$

$$d_{\nu} = 1$$

Fattori di inclinazione della risultante; si definisce m:

$$m = \frac{2 + B/L}{1 + B/L}$$

$$i_C = i_q - \frac{1 - i_q}{N_q - 1}$$

$$i_{q} = \left(1 - \frac{H}{V + A_{f}c_{a}\cot\phi}\right)^{m}$$

$$i_{\gamma} = \left(1 - \frac{H}{V + A_f c_a \cot \varphi}\right)^{m+1}$$

Fattori di inclinazione della base fondazione (η):

$$b_{C} = 1 - \frac{2\eta}{5.14 \cdot \tan \varphi}$$

$$b_q = (1 - \eta \cdot tan \, \phi)^2$$

$$b_{\gamma} = b_{q}$$

Fattori di inclinazione del piano di campagna:

$$g_{c} = g_{q} - \frac{1 - g_{q}}{5.14 \cdot \tan \varphi}$$

$$g_q = (1 - \tan \omega)^2$$

$$g_{\gamma} = g_{q}$$

Trovandoci in presenza di carichi eccentrici si ricorre al criterio proposto da Meyerhof (figura n. 6.4) che prevede di calcolare la capacità del terreno con riferimento all'area "netta":

$$A' = B'x L'$$

 $B' = B - 2e_1$
 $L' = L - 2e_2$

L,B = dimensioni "reali" della fondazione;

e₁,e₂ = eccentricità del carico nelle direzioni considerate

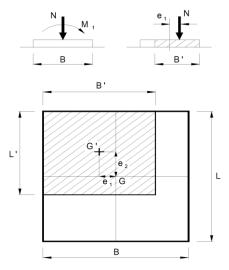


FIGURA N. 6.2 - CRITERIO DI MEYERHOF PER IL CALCOLO DELLA FONDAZIONE REAGENTE

Le verifiche sono condotte in accordo all' NTC 2018:

- Combinazione 1: (A1+M1+R1)

 $\sigma_{md} = \frac{N_d}{L \cdot B'}$: pressione di progetto agente sull'area efficace della fondazione

qod: pressione geostatica efficace alla quota di imposta fondazione

q_{lim,d}: pressione limite di progetto

 $S_d = \sigma_{md} - q_{od}$: sollecitazione unitaria di progetto

 $R_d = q_{lim,d} - q_{od}$: resistenza di progetto

per ogni combinazione di carico deve risultare: $R_d / S_d \ge 1.40$.

6.2 VERIFICHE DI STABILITÀ GLOBALE

Per il muro tipi 1 la disposizione dell'elemento porta barriera non altera la condizione originaria in situ (Figura 1.1); si omettono quindi le verifiche relative alla stabilità globale della struttura.

Per il muro tipo 2 (Figura 1.2) invece le caratteristiche fisico-meccanche dell'ammasso coesivo di monte rendono le verifiche non significative.

7 MURO TIPO 1 - VERIFICHE MURI DI SOSTEGNO BARRIERE FONOASSORBENTI

Le verifiche vengono svolte per i muri con barriera di altezza massima H = 5 m e si assumono valide per le altezze inferiori.

7.1 VERIFICHE GEOTECNICHE

Le verifiche geotecniche sono eseguite per ogni combinazione di carico statica e sismica indicata al punto 5.3. Nel seguito ci si riferisce a una larghezza dell'elemento unitaria, salvo esplicite indicazioni diverse.

Si sono considerati diversi casi con diverse disposizioni del piano di fondazione in funzione dell'altezza del rilevato:

- Casi 1-2-3: altezza rilevato 1 m, 2 m o 3 m: la fondazione si svolge sul terreno in situ per le verifiche di scorrimento e di capacità portante

Si nota che cautelativamente si trascurano sempre:

- La resistenza passiva del terreno a valle;
- La presenza del sottoplinto non armato.
- Rapporto B/L; la dimensione longitudinale si suppone indefinita

Seguono i risultati ottenuti nelle verifiche geotecniche eseguite in condizioni statiche e sismiche:

- Verifica al ribaltamento
- Verifica allo scorrimento
- Verifica di capacità portante

Il tabulato di calcolo viene riportato per intero per la prima altezza di rilevato dopodichè si riportano solo le verifiche geotecniche dato che le sollecitazioni sul muro e sul plinto rimangono costanti per ogni altezza di rilevato.

A 4 - B 44

MURI PER SOSTEGNO BARRIERE FONOASSORBENTI - FONDAZIONE SU RILEVATO - ALTEZZA RILEVATO Hr= 1 m ALTEZZA BARRIERA: 5.00~m - ALTEZZA MURO: 2.50+0.60~mLavoro: Titolo:

5.00 m Altezza barriera fonoassorbente: Altezza rilevato: Larghezza plinto di fondazione: Hr= 1.00 m 3.10 m

COMBINAZIONI DI CARICO

Nelle seguenti tabelle sono riportati i coefficienti moltiplicativi dei carichi per le combinazioni di carico esaminate.

Combinazioni statia	ho CI E. vorificho	atati limita di acar	cizio (fessurazione)

Combinazione	Permanenti	Traffico	vento	Sisma Orizz. Sis	ma vert.	Descrizione
Ra-I (Vento)	1	0.75	1	0	0	Carichi permanenti e variabili con vento dominante
Ra-II (Traffico)	1	1	0.6	0	0	Carichi permanenti e variabili con sovraccarico da traffico dominante
Fr-I (Fessurazione)	1	0	0.2	0	0	Fessurazione; combinazione frequente con vento dominante
Fr-II (Fessurazione)	1	0.75	0	0	0	Fessurazione; combinazione frequente con sovraccarico dominante

Combinazioni STR/GEO, A1+M1: metodo degli stati limite ultimi: verifiche strutturali e geotecniche Combinazione Permanenti Traffico Vento Sisma Orizz. Sisma Vert. Descrizione

Combinazione	Permanenti	Tranico	vento	Sisma Orizz. Si	sma vert.	Descrizione
U1-I (Vento)	1.3	1.125	1.5	0	0	Carichi permanenti e variabili con vento dominante
U1-II (Traffico)	1.3	1.5	0.9	0	0	Carichi permanenti e variabili con sovraccarico da traffico dominante
S1-I (sisma v.alto)	1	0.2	0	1	-1	Combinazione sismica; sisma verticale verso l'alto
S1-II (sisma v hasso)	1	0.2	0	1	1	Combinazione sismica: sisma verticale verso il basso

Combinazioni EQU, A1+M1: metodo degli stati limite ultimi: verifiche di ribaltamento

Combinazione	Permanenti	Traffico	Vento	Sisma Orizz. S	Sisma Vert.	Descrizione
E1-I (Vento)	0.9	1.125	1.5	0	0	Carichi permanenti e variabili con vento dominante
E1-II (Traffico)	0.9	1.5	0.9	0	0	Carichi permanenti e variabili con sovraccarico da traffico dominante
SE1-I (sisma v.alto)	1	0.2	0	1	-1	Combinazione sismica; sisma verticale verso l'alto
SE1-II (sisma v.basso)	1	0.2	0	1	1	Combinazione sismica; sisma verticale verso il basso

CARATTERISTICHE GEOTECNICHE DEL TERRAPIENO SPINGENTE

TITERISTICHE GEOTECNICHE DEL TERRAFIENO SFINGENTE		
		A1+M1
Peso specifico del terreno	γt=	20.00 kN/m ³
Angolo di inclinazione terrapieno (>0 verso l'alto, <∅)	=3	0.00 °
Angolo di attrito del terreno	φ=	35.00 °
Coesione efficace del terreno	C=	0.00 kN/m ²
Angolo di attrito muro-terreno	δ=	17.50 °
Sovraccarico sul terrapieno (spinte)	q=	20.00 kN/m ²
Sovraccarico sul plinto (peso)	qp=	0.00 kN/m ²
Condizioni di spinta del terrapieno (calcolo coefficienti di spinta)		Attiva

CARATTERISTICHE GEOTECNICHE DEL TERRENO DI FONDAZIONE

		A1+M1
Peso specifico (efficace) del terreno	$\gamma t =$	17.00 kN/m ³
Angolo di attrito del terreno	φ=	23.00 °
Coesione del terreno	C=	0.00 kN/m ²
Altezza del terreno sullo sbalzo anteriore del sottoplinto	ht=	1.50 m
Angolo di inclinazione del terreno a valle (>0 verso il basso)	ω=	33.69 °
Sovraccarico sul piano di campagna a valle	qv=	0.00 kN/m ²
Angolo di attrito tra sottoplinto e terreno di base	δa=	23.00 °
Coefficiente di attrito tra sottoplinto e terreno di base (fa=tan(\delta))	fa=	0.424
Coefficiente di aderenza tra sottoplinto e terreno di base	ca=	0.00 kN/m^2
Modulo di deformabilità assiale del terreno	Ft=	17380 kN/m ²

CARATTERISTICHE SISMICHE (NTC 2018)

Categoria suolo di fondazione (A-B-C-D-E)	F=	С
Coefficiente opere di sostegno:	β=	0.38
Accelerazione orizzontale/gravità	a _g /g=	0.0603
Coefficiente stratigrafico e di topografia	S= Ss x St=	1.5
Coefficiente sismico orizzontale	Kh=	0.0344
Coefficiente sismico verticale	Kv=	±0.0172

CARATTERISTICHE GEOMETRICHE DEL MURO

Altezza terreno a monte (da estradosso plinto)	Ht=	2.400 m
Altezza parete (da estradosso plinto)	Hp=	2.500 m
Larghezza di calcolo	Bp=	1.000 m
Spessore parete in testa	Sp1=	0.500 m
Spessore massimo parete all'incastro nel plinto	Sp3=	0.500 m
Indinazione enteriore pereto (» O verso mento)	Dn-	0.000.9/

CARATTERISTICHE GEOMETRICHE DEL PLINTO

Altezza plinto (all'incastro)	Hpl=	0.600 m
Altezza anteriore plinto	Hantpl=	0.600 m
Altezza posteriore plinto	Hpospl=	0.600 m
Larghezza plinto	Bpl=	3.100 m
Sbalzo anteriore plinto	Sant=	1.000 m
Distanza tra filo posteriore plinto e filo posteriore parete	Spos1=	1.600 m

MASSE AGGIUNTIVE SULLA STRUTTURA

Componente verticale della forza di massa	FV
Componente orizzontale della forza di massa (sisma)	FH
Ascissa del punto di applicazione della forza di massa da bordo ant. plinto	x
Ordinata del punto di applicazione della forza di massa da bordo inf. plinto	V

	FV	FH	x	у	
	(kN)	(kN)	(m)	(m)	Agente su
Barriera fonoassorbente	3.50	0.12	1.250	5.600	Parete
Deduzione terreno per tubo Ø 70	-7.70	-0.26	1.850	1.450	Fondazione
	·		<u></u>	·	·

AZIONI VARIABILI AGGIUNTIVE SULLA STRUTTURA

Calcolo della pressione del vent	o secondo NTC 2018		
Zona		1	
Classe di rugosità		D	
Categoria di esposizione		II	
Altezza del sito		250	mslmm
Coefficienti tabella 3.3.I	vb,0=	25	m/s
	a0=	1000	mslmm
	ks=	0.40	
Periodo di ritorno di progetto:		100.00	anni
Coefficiente di ritorno:	cr=	1.04	
Velocità di riferimento		25.98	m/s
Pressione di riferimento		421.88	N/mq
Coefficienti tabella 3.3.II	kr=	0.19	
	z0=	0.05	m
	zmin=	4	m
Coefficiente di forma	cp=	1.2	
Coefficiente dinamico	cd=	1	
Coefficiente di topografia:	ct=	1	
Altezza esposta	Z=	5.10	
Coefficiente di esposizione:	ce=	1.941	
Pressione del vento:	p=	982.61	N/mq

Componente verticale della forza esterna FV
Componente orizzontale della forza esterna FH
Ascissa del punto di applicazione della forza da bordo ant. plinto x
Ordinata del punto di applicazione della forza da bordo inf. plinto y

			FV	FH	х	у
			(kN)	(kN)	(m)	(m)
Vento su barriera fonoassorbente:	q=	0.983 kN/mg	0.00	5.01	1.250	5.550

SOLLECITAZIONI ALLA SEZIONE DI BASE DELLA PARETE

Parametri di spinta per la verifica del pannello prefabbricato				A1+M1		
			(caratteristiche)		
Peso specifico del terreno			$\gamma t =$	20.00 k	:N/m ³	
Angolo di inclinazione terrapieno (>0 verso l'alto, <=\psi)			ε=	0.00 °		
Angolo di attrito del terreno			φ=	35.00 °		
Coesione efficace del terreno			C=	0.00 H	:N/m ²	
Angolo di attrito muro-terreno			δ=	17.50 °		
Sovraccarico sul terrapieno			q=	20.00 k	:N/m ²	
Angolo di inclinazione paramento del muro			β=	0.00 °		
Altezza di verifica dal lembo superiore del pannello			Hv=	2.500 r	n	
Spinte statiche						
Angolo della superficie di scivolamento			Ω=	59.739 °		
Coefficienti di spinta attiva			totale	orizz.	ver	t.
Statici	A1+M1	Ka=	0.2461	0.2347	0.074	0
Spinte dinamiche (con sisma orizzontale e verticale verso l'alto):						
Coefficiente sismico orizzontale			Kh =	0.0344		
Coefficiente sismico verticale			Kv=	-0.0172		
Angolo incremento sismico			$\theta =$	2.003 °		rad)
Angolo della superficie di scivolamento			Ω=	58.131 °		
Coefficienti di spinta attiva			totale	orizz.	ver	t.
Statici+Dinamici (sisma verticale verso l'alto)	A1+M1	Kas=	0.2655	0.2532	0.079	9
Spinte dinamiche (con sisma orizzontale e verticale verso il basso):						
Coefficiente sismico orizzontale			Kh =	0.0344		
Coefficiente sismico verticale			Kv=	0.0172		
Angolo incremento sismico			$\theta =$	1.935 °	(0.0338)	rad)
Angolo della superficie di scivolamento			Ω=	58.186 °		
Coefficienti di spinta attiva			totale	orizz.	ver	t.
Statici+Dinamici (sisma verticale verso il basso)	A1+M1	Kas=	0.2648	0.2526	0.079	6

Nella tabella seguente sono riportati i carichi, i bracci di leva, i momenti stabilizzanti e ribaltanti calcolati rispetto al bordo anteriore inferiore della parete Le sollecitazioni caratteristiche sono riferite a una larghezza unitaria.

	FV	FH	bv	bh	M(stab)	M(rib)
	(kN)	(kN)	(m)	(m)	(kNm)	(kNm)
Parete muro	31.25	1.07	0.250	1.250	7.81	1.34
Spinte terreno (statiche)	4.26	13.52	0.500	0.800	2.13	10.82
Spinte sovraccarico (statiche)	3.55	11.27	0.500	1.200	1.78	13.52
Spinte terreno (statiche + sismiche v.alto)	4.52	14.33	0.500	0.800	2.26	11.47
Spinte sowaccarico (statiche + sismiche v.alto)	3.83	12.15	0.500	1.200	1.92	14.59
Spinte terreno (statiche + sismiche v.basso)	4.67	14.80	0.500	0.800	2.33	11.84
Spinte sowaccarico (statiche + sismiche v.basso)	3.82	12.12	0.500	1.200	1.91	14.55
Masse aggiuntive	3.50	0.12	0.250	5.000	0.87	0.60
Vento su barriera fonoassorbente: q= 0.983 kN/mq	0.00	5.01	0.000	4.950	0.00	24.81
Effetti sisma verticale sulle masse (verso il basso)	0.60	0.00	0.250	0.000	0.15	0.00

		FV	FH	bv	bh	M(stab)	M(rib)
		(kN)	(kN)	(m)	(m)	(kNm)	(kNm)
Combinazione:	Ra-I (Vento)	41.67	27.10	0.292	1.711	12.15	46.37
Combinazione:	Ra-II (Traffico)	42.56	27.92	0.296	1.427	12.59	39.82
Combinazione:	Fr-I (Fessurazione)	39.01	14.64	0.277	1.119	10.82	16.38
Combinazione:	Fr-II (Fessurazione)	41.67	22.09	0.292	0.976	12.15	21.56
Combinazione:	U1-I (Vento)	54.71	37.93	0.294	1.774	16.06	67.26
Combinazione:	U1-II (Traffico)	56.04	39.15	0.298	1.468	16.73	57.45
Combinazione:	S1-I (sisma v.alto)	39.44	17.96	0.283	0.834	11.18	14.99
Combinazione:	S1-II (sisma v.basso)	40.77	18.42	0.283	0.833	11.55	15.35

SOLLECITAZIONI ALLA BASE DEL PLINTO

Parametri di spinta per la verifica della fondazione				A1+M1			
				(caratteristiche)			
Peso specifico del terreno			$\gamma t =$	20.00			
Angolo di inclinazione terrapieno (>0 verso l'alto, <=φ)			=3	0.00 °			
Angolo di attrito del terreno			φ=	35.00 °	•		
Coesione efficace del terreno			c=	0.00 H			
Angolo di attrito muro-terreno			δ=	17.50 °			
Sovraccarico sul terrapieno (spinte)			q=	20.00 H			
Sovraccarico sul plinto (peso)			qp=	0.00 H			
Angolo di inclinazione parete sulla verticale			β=	0.00 °			
Altezza di calcolo delle spinte			H=	3.000 r	m		
Spinte statiche							
Angolo della superficie di scivolamento			Ω=	59.738 °			
Coefficienti di spinta attiva			totale	orizz.	vert.		
Statici	A1+M1	Ka=	0.2461	0.2347	0.0740		
Spinte dinamiche (con sisma orizzontale e verticale verso l'alto):							
Coefficiente sismico orizzontale			Kh =	0.0344			
Coefficiente sismico verticale			Kv=	-0.0172			
Angolo incremento sismico [arctan Kh]			θ =	2.003 °	(0.0350		
Angolo della superficie di scivolamento			Ω=	58.130 °			
Coefficienti di spinta attiva			totale	orizz.	vert.		
Statici+Dinamici (sisma verticale verso l'alto)	A1+M1	Kas=	0.2655	0.2532	0.0798		
Spinte dinamiche (con sisma orizzontale e verticale verso il basso):							
Coefficiente sismico orizzontale			Kh =	0.0344			
Coefficiente sismico verticale			Kv=	0.0172			
Angolo incremento sismico			θ =	1.935 °	(0.0338		
Angolo della superficie di scivolamento			Ω=	58.186 °			
Coefficienti di spinta attiva			totale	orizz.	vert.		

	FV	FH	bv	bh	M(stab)	M(rib)
	(kN)	(kN)	(m)	(m)	(kNm)	(kNm)
Parete muro	31.25	1.07	1.250	1.850	39.06	1.99
Terreno sul plinto	76.80	2.64	2.300	1.800	176.65	4.75
Plinto	46.50	1.60	1.550	0.300	72.08	0.48
Terreno sul plinto anteriore	9.63	0.00	0.402	0.000	3.87	0.00
Spinte terreno (statiche)	6.66	21.13	3.100	1.000	20.65	21.13
Spinte sovraccarico (statiche)	4.44	14.08	3.100	1.500	13.77	21.13
Spinte terreno (statiche + sismiche v.alto)	7.06	22.40	3.100	1.000	21.89	22.40
Spinte sovraccarico (statiche + sismiche v.alto)	4.79	15.19	3.100	1.500	14.85	22.79
Spinte terreno (statiche + sismiche v.basso)	7.29	23.12	3.100	1.000	22.60	23.12
Spinte sovraccarico (statiche + sismiche v.basso)	4.78	15.15	3.100	1.500	14.81	22.73
Masse aggiuntive	-4.20	-0.14	2.350	-2.011	-9.86	0.29
Vento su barriera fonoassorbente: q= 0.983 kN/mq	0.00	5.01	0.000	5.550	0.00	27.81
Effetti sisma verticale sulle masse (verso il basso)	2.75	0.00	1.761	0.000	4.84	0.00

		FV	FH	M(stab)	M(rib)	D	E
		(kN)	(kN)	(kNm)	(kNm)	(m)	(m)
Combinazione:	Ra-I (Vento)	169.98	36.56	312.76	65.07	1.457	0.093
Combinazione:	Ra-II (Traffico)	171.09	38.07	316.20	59.23	1.502	0.048
Combinazione:	Fr-I (Fessurazione)	166.65	21.98	302.43	26.98	1.653	-0.103
Combinazione:	Fr-II (Fessurazione)	169.98	31.54	312.76	37.26	1.621	-0.071
Combinazione:	U1-I (Vento)	221.64	50.64	408.65	93.33	1.423	0.127
Combinazione:	U1-II (Traffico)	223.30	52.91	413.81	84.56	1.474	0.076
Combinazione:	S1-I (sisma v.alto)	165.26	30.60	301.80	34.46	1.618	-0.068
Combinazione:	S1-II (sisma v.basso)	170.98	31.32	312.19	35.18	1.620	-0.070
Combinazione:	E1-I (Vento)	154.98	42.24	287.68	84.76	1.309	0.241
Combinazione:	E1-II (Traffico)	156.64	44.52	292.84	75.99	1.384	0.166
Combinazione:	SE1-I (sisma v.alto)	165.26	30.60	301.80	34.46	1.618	-0.068
Combinazione:	SE1-II (sisma v.basso)	170.98	31.32	312.19	35.18	1.620	-0.070

Pressioni anteriori e pos	teriori sul terr	eno:		St(ant)	X(St(ant))	St(post)	X(St(post))		
			Combinazione	(kN/mq)	(m)	(kN/mq)	(m)		
			Ra-I (Vento)	64.68	0.00	44.98	3.10		
			Ra-II (Traffico)	60.32	0.00	50.06	3.10		
		Fr-I (Fessurazione)	43.05	0.00	64.47	3.10		
		Fr-II (Fessurazione)	47.32	0.00	62.34	3.10		
	U1-I (Vento)			89.11	0.00	53.88	3.10		
			U1-II (Traffico)	82.56	0.00	61.50	3.10		
		S1-	(sisma v.alto)	46.32	0.00	60.30	3.10		
	S1-II (sisma v.basso)			47.67	0.00	62.64	3.10		
Verifiche di ribaltamento	o:			M(stab)	M(rib)	Kr	Kr(min)	Kr ≥ Kr(min)	
			Combinazione	(kNm)	(kNm)				
			E1-I (Vento)	287.68	84.76	3.394	1.15	Verificato	
			E1-II (Traffico)	292.84	75.99	3.853	1.15	Verificato	
		SE1-	(sisma v.alto)	301.80	34.46	8.757	1.15	Verificato	
		SE1-II (s	isma v.basso)	312.19	35.18	8.875	1.15	Verificato	
					_				
Verifiche di scorrimento				N * tan(φ)	Т	Ks	Ks(min)	Ks ≥ Ks(min)	
			Combinazione	(kN)	(kN)				
			U1-I (Vento)	94.08	50.64	1.858	1.10	Verificato	
			U1-II (Traffico)	94.79	52.91	1.791	1.10	Verificato	
			(sisma v.alto)	70.15	30.60	2.292	1.10	Verificato	
		S1-II (s	isma v.basso)	72.58	31.32	2.317	1.10	Verificato	
Verifiche di capacità poi	rtante della fo	ndazione							
Combinazione	N	Т	B'	σ_{m}	q _{lim}	q_0	FS	FS(min)	FS ≥ FS(min)
	(kN/m)	(kN/m)	(m)	(kN/m ²)	(kN/m ²)	(kN/m ²)			
U1-I (Vento)	221.64	50.64	2.845	77.89	302.03	34.00	6.11	1.40	Verificato
U1-II (Traffico)	223.30	52.91	2.949	75.72	297.66	34.00	6.32	1.40	Verificato
S1-I (sisma v.alto)	165.26	30.60	2.965	55.74	347.06	34.00	14.40	1.40	Verificato
S1-II (sisma v.basso)	170.98	31.32	2.960	57.77	348.87	34.00	13.25	1.40	Verificato

MURI PER SOSTEGNO BARRIERE FONOASSORBENTI - FONDAZIONE SU RILEVATO - ALTEZZA RILEVATO Hr= 2 m ALTEZZA BARRIERA: $5.00~\mathrm{m}$ - ALTEZZA MURO: $2.50+0.60~\mathrm{m}$ Lavoro: Titolo:

5.00 m 2.00 m 3.10 m Altezza barriera fonoassorbente: Altezza rilevato: Larghezza plinto di fondazione: Hr= Bp=

	FV	FH	bv	bh	M(stab)	M(rib)
	(kN)	(kN)	(m)	(m)	(kNm)	(kNm)
Parete muro	31.25	1.07	1.250	1.850	39.06	1.99
Terreno sul plinto	76.80	2.64	2.300	1.800	176.65	4.75
Plinto	46.50	1.60	1.550	0.300	72.08	0.48
Terreno sul plinto anteriore	9.63	0.00	0.402	0.000	3.87	0.00
Spinte terreno (statiche)	6.66	21.13	3.100	1.000	20.65	21.13
Spinte sovraccarico (statiche)	4.44	14.08	3.100	1.500	13.77	21.13
Spinte terreno (statiche + sismiche v.alto)	7.06	22.40	3.100	1.000	21.89	22.40
Spinte sovraccarico (statiche + sismiche v.alto)	4.79	15.19	3.100	1.500	14.85	22.79
Spinte terreno (statiche + sismiche v.basso)	7.29	23.12	3.100	1.000	22.60	23.12
Spinte sovraccarico (statiche + sismiche v.basso)	4.78	15.15	3.100	1.500	14.81	22.73
Masse aggiuntive	-4.20	-0.14	2.350	-2.011	-9.86	0.29
Vento su barriera fonoassorbente: q= 0.983 kN/mq	0.00	5.01	0.000	5.550	0.00	27.81
Effetti sisma verticale sulle masse (verso il basso)	2.75	0.00	1.761	0.000	4.84	0.00

		FV	FH	M(stab)	M(rib)	D	E
		(kN)	(kN)	(kNm)	(kNm)	(m)	(m)
Combinazione:	Ra-I (Vento)	169.98	36.56	312.76	65.07	1.457	0.093
Combinazione:	Ra-II (Traffico)	171.09	38.07	316.20	59.23	1.502	0.048
Combinazione:	Fr-I (Fessurazione)	166.65	21.98	302.43	26.98	1.653	-0.103
Combinazione:	Fr-II (Fessurazione)	169.98	31.54	312.76	37.26	1.621	-0.071
Combinazione:	U1-I (Vento)	221.64	50.64	408.65	93.33	1.423	0.127
Combinazione:	U1-II (Traffico)	223.30	52.91	413.81	84.56	1.474	0.076
Combinazione:	S1-I (sisma v.alto)	165.26	30.60	301.80	34.46	1.618	-0.068
Combinazione:	S1-II (sisma v.basso)	170.98	31.32	312.19	35.18	1.620	-0.070
Combinazione:	E1-I (Vento)	154.98	42.24	287.68	84.76	1.309	0.241
Combinazione:	E1-II (Traffico)	156.64	44.52	292.84	75.99	1.384	0.166
Combinazione:	SE1-I (sisma v.alto)	165.26	30.60	301.80	34.46	1.618	-0.068
Combinazione:	SE1-II (sisma v.basso)	170.98	31.32	312.19	35.18	1.620	-0.070

Combinazione:	SE1-II (sisma v.basso)	170.98	31.32	312.19	35.18	1.620
essioni anteriori e posteriori	sul terreno:	St(ant)	X(St(ant))	St(post)	X(St(post))	
occom unionon o pocionon	Combinazione	(kN/mg)	(m)	(kN/mg)	(m)	
	Ra-I (Vento)	64.68	0.00	44.98	3.10	
	Ra-II (Traffico)	60.32	0.00	50.06	3.10	
	Fr-I (Fessurazione)	43.05	0.00	64.47	3.10	
	Fr-II (Fessurazione)	47.32	0.00	62.34	3.10	
	U1-I (Vento)	89.11	0.00	53.88	3.10	
	U1-II (Traffico)	82.56	0.00	61.50	3.10	
	S1-I (sisma v.alto)	46.32	0.00	60.30	3.10	
	S1-II (sisma v.basso)	47.67	0.00	62.64	3.10	
rifiche di ribaltamento:		M(stab)	M(rib)	Kr	Kr(min)	Kr ≥ Kr(min)
	Combinazione	(kNm)	(kNm)			, ,
	E1-I (Vento)	287.68	84.76	3.394	1.15	Verificato
	E1-II (Traffico)	292.84	75.99	3.853	1.15	Verificato
	SE1-I (sisma v.alto)	301.80	34.46	8.757	1.15	Verificato
	SE1-II (sisma v.basso)	312.19	35.18	8.875	1.15	Verificato
			_			
rifiche di scorrimento		N * tan(φ)	Т	Ks	Ks(min)	Ks ≥ Ks(min)
	Combinazione	(kN)	(kN)			
	U1-I (Vento)	94.08	50.64	1.858	1.10	Verificato
	U1-II (Traffico)	94.79	52.91	1.791	1.10	Verificato
	S1-I (sisma v.alto)	70.15	30.60	2.292	1.10	Verificato
	S1-II (sisma v.basso)	72.58	31.32	2.317	1.10	Verificato

Combinazione	N	Т	B'	σ_{m}	q_{lim}	q_0	FS	FS(min)	FS ≥ FS(min)
	(kN/m)	(kN/m)	(m)	(kN/m^2)	(kN/m ²)	(kN/m^2)			
U1-I (Vento)	221.64	50.64	2.845	77.89	187.66	17.00	2.80	1.40	Verificato
U1-II (Traffico)	223.30	52.91	2.949	75.72	185.78	17.00	2.87	1.40	Verificato
S1-I (sisma v.alto)	165.26	30.60	2.965	55.74	219.50	17.00	5.23	1.40	Verificato
S1-II (sisma v.basso)	170.98	31.32	2.960	57.77	220.68	17.00	5.00	1.40	Verificato

MURI PER SOSTEGNO BARRIERE FONOASSORBENTI - FONDAZIONE SU RILEVATO - ALTEZZA RILEVATO Hr= 3 m ALTEZZA BARRIERA: $5.00~\mathrm{m}$ - ALTEZZA MURO: $2.50+0.60~\mathrm{m}$ Lavoro: Titolo:

5.00 m 3.00 m 3.10 m Altezza barriera fonoassorbente: Altezza rilevato: Larghezza plinto di fondazione: Hr= Bp=

	FV	FH	bv	bh	M(stab)	M(rib)
	(kN)	(kN)	(m)	(m)	(kNm)	(kNm)
Parete muro	31.25	1.07	1.250	1.850	39.06	1.99
Terreno sul plinto	76.80	2.64	2.300	1.800	176.65	4.75
Plinto	46.50	1.60	1.550	0.300	72.08	0.48
Terreno sul plinto anteriore	9.63	0.00	0.402	0.000	3.87	0.00
Spinte terreno (statiche)	6.66	21.13	3.100	1.000	20.65	21.13
Spinte sovraccarico (statiche)	4.44	14.08	3.100	1.500	13.77	21.13
Spinte terreno (statiche + sismiche v.alto)	7.06	22.40	3.100	1.000	21.89	22.40
Spinte sovraccarico (statiche + sismiche v.alto)	4.79	15.19	3.100	1.500	14.85	22.79
Spinte terreno (statiche + sismiche v.basso)	7.29	23.12	3.100	1.000	22.60	23.12
Spinte sovraccarico (statiche + sismiche v.basso)	4.78	15.15	3.100	1.500	14.81	22.73
Masse aggiuntive	-4.20	-0.14	2.350	-2.011	-9.86	0.29
Vento su barriera fonoassorbente: q= 0.983 kN/mq	0.00	5.01	0.000	5.550	0.00	27.81
Effetti sisma verticale sulle masse (verso il basso)	2.75	0.00	1.761	0.000	4.84	0.00

		FV	FH	M(stab)	M(rib)	D	Е
		(kN)	(kN)	(kNm)	(kNm)	(m)	(m)
Combinazione:	Ra-I (Vento)	169.98	36.56	312.76	65.07	1.457	0.093
Combinazione:	Ra-II (Traffico)	171.09	38.07	316.20	59.23	1.502	0.048
Combinazione:	Fr-I (Fessurazione)	166.65	21.98	302.43	26.98	1.653	-0.103
Combinazione:	Fr-II (Fessurazione)	169.98	31.54	312.76	37.26	1.621	-0.071
Combinazione:	U1-I (Vento)	221.64	50.64	408.65	93.33	1.423	0.127
Combinazione:	U1-II (Traffico)	223.30	52.91	413.81	84.56	1.474	0.076
Combinazione:	S1-I (sisma v.alto)	165.26	30.60	301.80	34.46	1.618	-0.068
Combinazione:	S1-II (sisma v.basso)	170.98	31.32	312.19	35.18	1.620	-0.070
Combinazione:	E1-I (Vento)	154.98	42.24	287.68	84.76	1.309	0.241
Combinazione:	E1-II (Traffico)	156.64	44.52	292.84	75.99	1.384	0.166
Combinazione:	SE1-I (sisma v.alto)	165.26	30.60	301.80	34.46	1.618	-0.068
Combinazione:	SE1-II (sisma v.basso)	170.98	31.32	312.19	35.18	1.620	-0.070

COMBINAZIONE.	3E I-II (SISIIIA V.DASSU)	170.90]	31.32	312.19	33.10;	1.020
		0 ./ .\				
ressioni anteriori e posteriori s		St(ant)	X(St(ant))	St(post)	X(St(post))	
	Combinazione	(kN/mq)	(m)	(kN/mq)	(m)	
	Ra-I (Vento)	64.68	0.00	44.98	3.10	
	Ra-II (Traffico)	60.32	0.00	50.06	3.10	
	Fr-I (Fessurazione)	43.05	0.00	64.47	3.10	
	Fr-II (Fessurazione)	47.32	0.00	62.34	3.10	
	U1-I (Vento)	89.11	0.00	53.88	3.10	
	U1-II (Traffico)	82.56	0.00	61.50	3.10	
	S1-I (sisma v.alto)	46.32	0.00	60.30	3.10	
	S1-II (sisma v.basso)	47.67	0.00	62.64	3.10	
erifiche di ribaltamento:		M(stab)	M(rib)	Kr	Kr(min)	Kr ≥ Kr(min)
	Combinazione	(kNm)	(kNm)			
	E1-I (Vento)	287.68	84.76	3.394	1.15	Verificato
	E1-II (Traffico)	292.84	75.99	3.853	1.15	Verificato
	SE1-I (sisma v.alto)	301.80	34.46	8.757	1.15	Verificato
	SE1-II (sisma v.basso)	312.19	35.18	8.875	1.15	Verificato
- Waha di aaandaa aa ta		N. * (/)	-	IV-	Ka (asta)	K- > K- (!)
erifiche di scorrimento		N * tan(φ)	T	Ks	Ks(min)	Ks ≥ Ks(min)
	Combinazione	(kN)	(kN)			
	U1-I (Vento)	94.08	50.64	1.858	1.10	Verificato
	U1-II (Traffico)	94.79	52.91	1.791	1.10	Verificato
	S1-I (sisma v.alto)	70.15	30.60	2.292 2.317	1.10	Verificato
	S1-II (sisma v.basso)	72.58	31.32		1.10	Verificato

Verifiche di capacità	portante dell	a fondazione

Combinazione	N	Т	B'	σ_{m}	q_{lim}	q_0	FS	FS(min)	FS ≥ FS(min)
	(kN/m)	(kN/m)	(m)	(kN/m ²)	(kN/m ²)	(kN/m ²)			
U1-I (Vento)	221.64	50.64	2.845	77.89	116.52	13.97	1.60	1.40	Verificato
U1-II (Traffico)	223.30	52.91	2.949	75.72	115.50	13.97	1.64	1.40	Verificato
S1-I (sisma v.alto)	165.26	30.60	2.965	55.74	136.98	13.97	2.94	1.40	Verificato
S1-II (sisma v.basso)	170.98	31.32	2.960	57.77	137.72	13.97	2.83	1.40	Verificato

MURI PER SOSTEGNO BARRIERE FONOASSORBENTI - FONDAZIONE SU RILEVATO - ALTEZZA RILEVATO Hr= 1 m ALTEZZA BARRIERA: 5.00~m - ALTEZZA MURO: 3.30+0.60~mLavoro: Titolo:

5.00 m Altezza barriera fonoassorbente: Altezza rilevato: Larghezza plinto di fondazione: Hr= 1.00 m 3.50 m

COMBINAZIONI DI CARICO

Nelle seguenti tabelle sono riportati i coefficienti moltiplicativi dei carichi per le combinazioni di carico esaminate.

Combinazioni statiche	SLF: verifiche	stati limite di	esercizio	(fessurazione)

Combinazione	Permanenti	Traffico	Vento	Sisma Orizz. S	Sisma Vert.	Descrizione
Ra-I (Vento)	1	0.75	1	0	0	Carichi permanenti e variabili con vento dominante
Ra-II (Traffico)	1	1	0.6	0	0	Carichi permanenti e variabili con sovraccarico da traffico dominante
Fr-I (Fessurazione)	1	0	0.2	0	0	Fessurazione; combinazione frequente con vento dominante
Fr-II (Fessurazione)	1	0.75	0	0	0	Fessurazione; combinazione frequente con sovraccarico dominante

Combinazioni STR/GEO, A1+M1: metodo degli stati limite ultimi: verifiche strutturali e geotecniche

Combinazione	Permanenti	Traffico	Vento	Sisma Orizz. Si	sma Vert.	Descrizione
U1-I (Vento)	1.3	1.125	1.5	0	0	Carichi permanenti e variabili con vento dominante
U1-II (Traffico)	1.3	1.5	0.9	0	0	Carichi permanenti e variabili con sovraccarico da traffico dominante
S1-I (sisma v.alto)	1	0.2	0	1	-1	Combinazione sismica; sisma verticale verso l'alto
S1-II (sisma v.basso)	1	0.2	0	1	1	Combinazione sismica; sisma verticale verso il basso

Combinazioni EQU, A1+M1: metodo degli stati limite ultimi: verifiche di ribaltamento

Combinazione	Permanenti	Traffico	Vento	Sisma Orizz.	Sisma Vert.	Descrizione
E1-I (Vento)	0.9	1.125	1.5	0	0	Carichi permanenti e variabili con vento dominante
E1-II (Traffico)	0.9	1.5	0.9	0	0	Carichi permanenti e variabili con sovraccarico da traffico dominante
SE1-I (sisma v.alto)	1	0.2	0	1	-1	Combinazione sismica; sisma verticale verso l'alto
SE1-II (sisma v.basso)	1	0.2	0	1	1	Combinazione sismica; sisma verticale verso il basso

CARATTERISTICHE GEOTECNICHE DEL TERRAPIENO SPINGENTE

TENSTICIE GEOTECHICIE DEL TENNATIENO STINGENTE		
		A1+M1
Peso specifico del terreno	γt=	20.00 kN/m ³
Angolo di inclinazione terrapieno (>0 verso l'alto, <φ)	=3	0.00 °
Angolo di attrito del terreno	φ=	35.00 °
Coesione efficace del terreno	C=	0.00 kN/m ²
Angolo di attrito muro-terreno	δ=	17.50 °
Sovraccarico sul terrapieno (spinte)	q=	20.00 kN/m ²
Sovraccarico sul plinto (peso)	qp=	0.00 kN/m ²
Condizioni di spinta del terrapieno (calcolo coefficienti di spinta)		Attiva

CARATTERISTICHE GEOTECNICHE DEL TERRENO DI FONDAZIONE

		A1+M1
Peso specifico (efficace) del terreno	$\gamma t =$	17.00 kN/m ³
Angolo di attrito del terreno	φ=	23.00 °
Coesione del terreno	C=	0.00 kN/m ²
Altezza del terreno sullo sbalzo anteriore del sottoplinto	ht=	1.50 m
Angolo di inclinazione del terreno a valle (>0 verso il basso)	ω=	33.69 °
Sovraccarico sul piano di campagna a valle	qv=	0.00 kN/m ²
Angolo di attrito tra sottoplinto e terreno di base	δa=	23.00 °
Coefficiente di attrito tra sottoplinto e terreno di base (fa=tan(8a))	fa=	0.424
Coefficiente di aderenza tra sottoplinto e terreno di base	ca=	0.00 kN/m ²
Modulo di deformabilità assiale del terreno	Ft=	17380 kN/m ²

CARATTERISTICHE SISMICHE (NTC 2018)

Categoria suolo di fondazione (A-B-C-D-E)	F=	С	
Coefficiente opere di sostegno:	β=	0.38	
Accelerazione orizzontale/gravità	a _g /g=	0.0603	
Coefficiente stratigrafico e di topografia	S= Ss x St=	1.5	
Coefficiente sismico orizzontale	Kh=	0.0344	
Coefficiente sismico verticale	Kv=	±0.0172	

CARATTERISTICHE GEOMETRICHE DEL MURO

Altezza terreno a monte (da estradosso plinto)	Ht=	3.200 m
Altezza parete (da estradosso plinto)	Hp=	3.300 m
Larghezza di calcolo	Bp=	1.000 m
Spessore parete in testa	Sp1=	0.500 m
Spessore massimo parete all'incastro nel plinto	Sp3=	0.500 m
Inclinazione enteriore pereto (> 0 pere mento)	Dn-	0.000.9/

CARATTERISTICHE GEOMETRICHE DEL PLINTO

Altezza plinto (all'incastro)	Hpl=	0.600 m
Altezza anteriore plinto	Hantpl=	0.600 m
Altezza posteriore plinto	Hpospl=	0.600 m
Larghezza plinto	Bpl=	3.500 m
Sbalzo anteriore plinto	Sant=	1.200 m
Distanza tra filo posteriore plinto e filo posteriore parete	Spos1=	1.800 m

MASSE AGGIUNTIVE SULLA STRUTTURA

Componente verticale della forza di massa	FV
Componente orizzontale della forza di massa (sisma)	FH
Ascissa del punto di applicazione della forza di massa da bordo ant. plinto	x
Ordinata del punto di applicazione della forza di massa da bordo inf. plinto	у

	FV	FH	Х	у	
	(kN)	(kN)	(m)	(m)	Agente su
Barriera fonoassorbente	3.50	0.12	1.450	6.400	Parete
Deduzione terreno per tubo Ø 70	-7.70	-0.26	1.850	1.450	Fondazione
<u></u>	A				

AZIONI VARIABILI AGGIUNTIVE SULLA STRUTTURA

Calcolo della pressione del ver	nto secondo NTC	2018		
Zona		1		
Classe di rugosità		D		
Categoria di esposizione		II		
Altezza del sito		250	mslmm	
Coefficienti tabella 3.3.1	vb,0=	25	m/s	
	a0=	1000	mslmm	
	ks=	0.40		
Periodo di ritorno di progetto:		100.00	anni	
Coefficiente di ritorno:	cr=	1.04		
Velocità di riferimento		25.98	m/s	
Pressione di riferimento		421.88	N/mq	
Coefficienti tabella 3.3.II	kr=	0.19		
	z0=	0.05	m	
	zmin=	4	m	
Coefficiente di forma	cp=	1.2		
Coefficiente dinamico	cd=	1		
Coefficiente di topografia:	ct=	1		
Altezza esposta	Z=	5.10		
Coefficiente di esposizione:	ce=	1.941		
Pressione del vento:	p=	982.61	N/mq	
Componente verticale della for	za esterna			FV
Componente orizzontale della	forza esterna			FH
Ascissa del punto di applicazione	one della forza da	a bordo ant. plinto		х
Ordinata del punto di applicazi	ione della forza d	a bordo inf. plinto		у

SOLLECITAZIONI ALLA SEZIONE DI BASE DELLA PARETE

Vento su barriera fonoassorbente: q= 0.983 kN/mq

Parametri di spinta per la verifica del pannello prefabbricato				A1+M1		
			(ca	aratteristiche)		
Peso specifico del terreno			$\gamma t =$	20.00 k		
Angolo di inclinazione terrapieno (>0 verso l'alto, <= \$\phi\$)			ε =	0.00 °		
Angolo di attrito del terreno			φ=	35.00 °		
Coesione efficace del terreno			C=	0.00 k	:N/m ²	
Angolo di attrito muro-terreno			δ=	17.50 °		
Sovraccarico sul terrapieno			q=	20.00 k	:N/m ²	
Angolo di inclinazione paramento del muro			β=	0.00 °		
Altezza di verifica dal lembo superiore del pannello			Hv=	3.300 n	n	
Spinte statiche						
Angolo della superficie di scivolamento			Ω=	59.739 °		
Coefficienti di spinta attiva			totale	orizz.	vert.	
Statici	A1+M1	Ka=	0.2461	0.2347	0.0740	
Spinte dinamiche (con sisma orizzontale e verticale verso l'alto):						
Coefficiente sismico orizzontale			Kh =	0.0344		
Coefficiente sismico verticale			Kv=	-0.0172		
Angolo incremento sismico			θ =			rad)
Angolo della superficie di scivolamento			Ω=	58.131 °		
Coefficienti di spinta attiva			totale	orizz.	vert.	
Statici+Dinamici (sisma verticale verso l'alto)	A1+M1	Kas=	0.2655	0.2532	0.0798	
Spinte dinamiche (con sisma orizzontale e verticale verso il basso):						
Coefficiente sismico orizzontale			Kh =	0.0344		
Coefficiente sismico verticale			Kv=	0.0172		
Angolo incremento sismico			θ =	1.935 °	(0.0338	rad)
Angolo della superficie di scivolamento			Ω=	58.186 °		,
Coefficienti di spinta attiva			totale	orizz.	vert.	
Statici+Dinamici (sisma verticale verso il basso)	A1+M1	Kas=	0.2648	0.2526	0.0796	
Totalion Dinamici (Jisma verticale voiso il basso)	/ (TTIVI I	11143=	0.20401	0.2020	0.0730	

(kN)

(kN)

Nella tabella seguente sono riportati i carichi, i bracci di leva, i momenti stabilizzanti e ribaltanti calcolati rispetto al bordo anteriore inferiore della parete Le sollecitazioni caratteristiche sono riferite a una larghezza unitaria.

	FV	FH	bv	bh	M(stab)	M(rib)
	(kN)	(kN)	(m)	(m)	(kNm)	(kNm)
Parete muro	41.24	1.42	0.250	1.650	10.31	2.34
Spinte terreno (statiche)	7.58	24.04	0.500	1.067	3.79	25.64
Spinte sovraccarico (statiche)	4.74	15.02	0.500	1.600	2.37	24.04
Spinte terreno (statiche + sismiche v.alto)	8.04	25.48	0.500	1.067	4.02	27.18
Spinte sovraccarico (statiche + sismiche v.alto)	5.11	16.21	0.500	1.600	2.55	25.93
Spinte terreno (statiche + sismiche v.basso)	8.30	26.31	0.500	1.067	4.15	28.0
Spinte sovraccarico (statiche + sismiche v.basso)	5.10	16.16	0.500	1.600	2.55	25.86
Masse aggiuntive	3.50	0.12	0.250	5.800	0.87	0.70
Vento su barriera fonoassorbente: q= 0.983 kN/mq	0.00	5.01	0.000	5.750	0.00	28.81
Effetti sisma verticale sulle masse (verso il basso)	0.77	0.00	0.250	0.000	0.19	0.00

		FV	FH	bv	bh	M(stab)	M(rib)
		(kN)	(kN)	(m)	(m)	(kNm)	(kNm)
Combinazione:	Ra-I (Vento)	55.88	40.44	0.300	1.810	16.75	73.18
Combinazione:	Ra-II (Traffico)	57.06	42.19	0.304	1.604	17.34	67.66
Combinazione:	Fr-I (Fessurazione)	52.32	25.16	0.286	1.276	14.97	32.10
Combinazione:	Fr-II (Fessurazione)	55.88	35.43	0.300	1.252	16.75	44.37
Combinazione:	U1-I (Vento)	73.35	55.82	0.302	1.872	22.13	104.50
Combinazione:	U1-II (Traffico)	75.13	58.45	0.306	1.646	23.02	96.23
Combinazione:	S1-I (sisma v.alto)	53.03	30.26	0.293	1.093	15.52	33.07
Combinazione:	S1-II (sisma v.basso)	54.83	31.08	0.292	1.092	16.03	33.93

SOLLECITAZIONI ALLA BASE DEL PLINTO

Parametri di spinta per la verifica della fondazione					A1+M1		
			_	(cara	atteristiche)	3	
Peso specifico del terreno			γt =		20.00 k		
Angolo di inclinazione terrapieno (>0 verso l'alto, <=φ)			=3		0.00 °		
Angolo di attrito del terreno			φ=		35.00 °		
Coesione efficace del terreno			C=		0.00 k		
Angolo di attrito muro-terreno			δ=		17.50 °		
Sovraccarico sul terrapieno (spinte)			q=		20.00 k		
Sovraccarico sul plinto (peso)			qp=		0.00 k		
Angolo di inclinazione parete sulla verticale			β=		0.00 °		
Altezza di calcolo delle spinte			H=		3.800 m	n	
Spinte statiche							
Angolo della superficie di scivolamento			Ω=		59.738 °		
Coefficienti di spinta attiva				totale	orizz.	vert	
Statici	A1+M1	Ka=	().2461	0.2347	0.0740	
Spinte dinamiche (con sisma orizzontale e verticale verso l'alto):							
Coefficiente sismico orizzontale			Kh =		0.0344		
Coefficiente sismico verticale			Kv=		-0.0172		
Angolo incremento sismico [arctan Kh]			θ =		2.003 °	(0.0350	rad)
Angolo della superficie di scivolamento			Ω=		58.130 °		
Coefficienti di spinta attiva				totale	orizz.	vert	.]
Statici+Dinamici (sisma verticale verso l'alto)	A1+M1	Kas=	(0.2655	0.2532	0.0798	3
Spinte dinamiche (con sisma orizzontale e verticale verso il basso):							
Coefficiente sismico orizzontale			Kh =		0.0344		
Coefficiente sismico verticale			Kv=		0.0172		
Angolo incremento sismico			θ =		1 935 °	(0.0338	rad)
Angolo della superficie di scivolamento			Ω=		58.186 °	(0.0000	iaa,
Coefficienti di spinta attiva				totale	orizz.	vert	٦
Statici+Dinamici (sisma verticale verso il basso)	A1+M1	Kas=	-	0.2648	0.2526	0.0796	
Otation Dinamior (Sisma venticale verso II Dasso)	AITIVII	Na3=		7.2040	0.2320	0.0790	1

	FV	FH	bv	bh	M(stab)	M(rib)
	(kN)	(kN)	(m)	(m)	(kNm)	(kNm)
Parete muro	41.24	1.42	1.450	2.250	59.80	3.19
Terreno sul plinto	115.20	3.96	2.600	2.200	299.53	8.71
Plinto	52.50	1.80	1.750	0.300	91.88	0.54
Terreno sul plinto anteriore	10.20	0.00	0.440	0.000	4.49	0.00
Spinte terreno (statiche)	10.69	33.90	3.500	1.267	37.40	42.93
Spinte sovraccarico (statiche)	5.62	17.84	3.500	1.900	19.69	33.90
Spinte terreno (statiche + sismiche v.alto)	11.33	35.94	3.500	1.267	39.66	45.52
Spinte sovraccarico (statiche + sismiche v.alto)	6.07	19.24	3.500	1.900	21.24	36.56
Spinte terreno (statiche + sismiche v.basso)	11.70	37.10	3.500	1.267	40.94	46.99
Spinte sovraccarico (statiche + sismiche v.basso)	6.05	19.19	3.500	1.900	21.18	36.47
Masse aggiuntive	-4.20	-0.14	2.184	-2.678	-9.16	0.39
Vento su barriera fonoassorbente: q= 0.983 kN/mq	0.00	5.01	0.000	6.350	0.00	31.82
Effetti sisma verticale sulle masse (verso il basso)	3.69	0.00	2.077	0.000	7.67	0.00

		FV	FH	M(stab)	M(rib)	D	E
		(kN)	(kN)	(kNm)	(kNm)	(m)	(m)
Combinazione:	Ra-I (Vento)	229.86	52.14	498.70	100.56	1.732	0.018
Combinazione:	Ra-II (Traffico)	231.26	54.60	503.62	96.31	1.761	-0.011
Combinazione:	Fr-I (Fessurazione)	225.64	34.75	483.93	49.68	1.925	-0.175
Combinazione:	Fr-II (Fessurazione)	229.86	47.13	498.70	68.74	1.871	-0.121
Combinazione:	U1-I (Vento)	299.66	71.46	651.26	142.18	1.699	0.051
Combinazione:	U1-II (Traffico)	301.77	75.15	658.64	135.80	1.733	0.017
Combinazione:	S1-I (sisma v.alto)	223.80	46.82	482.76	65.66	1.864	-0.114
Combinazione:	S1-II (sisma v.basso)	231.55	47.97	499.38	67.11	1.867	-0.117
Combinazione:	E1-I (Vento)	209.40	57.96	457.69	124.85	1.589	0.161
Combinazione:	E1-II (Traffico)	211.51	61.65	465.07	118.47	1.639	0.111
Combinazione:	SE1-I (sisma v.alto)	223.80	46.82	482.76	65.66	1.864	-0.114
Combinazione:	SE1-II (sisma v.basso)	231.55	47.97	499.38	67.11	1.867	-0.117

Pressioni anteriori e pos	steriori sul terr	eno:		St(ant)	X(St(ant))	St(post)	X(St(post))		
			Combinazione	(kN/mq)	(m)	(kN/mq)	(m)		
			Ra-I (Vento)	67.69	0.00	63.66	3.50		
			Ra-II (Traffico)	64.80	0.00	67.35	3.50		
		Fr-I (Fessurazione)	45.18	0.00	83.76	3.50		
		Fr-II (Fessurazione)	52.10	0.00	79.24	3.50		
			U1-I (Vento)	93.12	0.00	78.11	3.50		
			U1-II (Traffico)	88.79	0.00	83.65	3.50		
		S1-I	(sisma v.alto)	51.48	0.00	76.41	3.50		
		S1-II (s	isma v.basso)	52.91	0.00	79.41	3.50		
Verifiche di ribaltamente	0:			M(stab)	M(rib)	Kr	Kr(min)	Kr ≥ Kr(min)	
			Combinazione	(kNm)	(kNm)				
			E1-I (Vento)	457.69	124.85	3.666	1.15	Verificato	
			E1-II (Traffico)	465.07	118.47	3.926	1.15	Verificato	
		SE1-I	(sisma v.alto)	482.76	65.66	7.352	1.15	Verificato	
		SE1-II (s	isma v.basso)	499.38	67.11	7.441	1.15	Verificato	
Verifiche di scorrimento				N * tan(φ)	Т	Ks	Ks(min)	Ks ≥ Ks(min)	
7011110110 01 0001111101110			Combinazione	(kN)	(kN)	110	110(11111)	110 = 110(11111)	
			U1-I (Vento)	127.20	71.46	1.780	1.10	Verificato	
			U1-II (Traffico)	128.09	75.15	1.705	1.10	Verificato	
		S1-I	(sisma v.alto)	95.00	46.82	2.029	1.10	Verificato	
		S1-II (s	isma v.basso)	98.29	47.97	2.049	1.10	Verificato	
Verifiche di capacità po	rtante della fo	ndazione							
Combinazione	N	Т	B'	σ_{m}	q _{lim}	q_0	FS	FS(min)	FS ≥ FS(min)
	(kN/m)	(kN/m)	(m)	(kN/m^2)	(kN/m^2)	(kN/m^2)			
U1-I (Vento)	299.66	71.46	3.398	88.19	403.96	47.60	8.78	1.40	Verificato
U1-II (Traffico)	301.77	75.15	3.465	87.08	393.45	47.60	8.76	1.40	Verificato
S1-I (sisma v.alto)	223.80	46.82	3.273	68.39	435.64	47.60	18.67	1.40	Verificato
S1-II (sisma v.basso)	231.55	47.97	3.266	70.89	437.95	47.60	16.76	1.40	Verificato

MURI PER SOSTEGNO BARRIERE FONOASSORBENTI - FONDAZIONE SU RILEVATO - ALTEZZA RILEVATO Hr= 2 m ALTEZZA BARRIERA: $5.00~\mathrm{m}$ - ALTEZZA MURO: $3.30+0.60~\mathrm{m}$ Lavoro: Titolo:

5.00 m 2.00 m 3.50 m Altezza barriera fonoassorbente: Altezza rilevato: Larghezza plinto di fondazione: Hr= Bp=

	FV	FH	bv	bh	M(stab)	M(rib)
	(kN)	(kN)	(m)	(m)	(kNm)	(kNm)
Parete muro	41.24	1.42	1.450	2.250	59.80	3.19
Terreno sul plinto	115.20	3.96	2.600	2.200	299.53	8.71
Plinto	52.50	1.80	1.750	0.300	91.88	0.54
Terreno sul plinto anteriore	10.20	0.00	0.440	0.000	4.49	0.00
Spinte terreno (statiche)	10.69	33.90	3.500	1.267	37.40	42.93
Spinte sovraccarico (statiche)	5.62	17.84	3.500	1.900	19.69	33.90
Spinte terreno (statiche + sismiche v.alto)	11.33	35.94	3.500	1.267	39.66	45.52
Spinte sovraccarico (statiche + sismiche v.alto)	6.07	19.24	3.500	1.900	21.24	36.56
Spinte terreno (statiche + sismiche v.basso)	11.70	37.10	3.500	1.267	40.94	46.99
Spinte sovraccarico (statiche + sismiche v.basso)	6.05	19.19	3.500	1.900	21.18	36.47
Masse aggiuntive	-4.20	-0.14	2.184	-2.678	-9.16	0.39
Vento su barriera fonoassorbente: q= 0.983 kN/mq	0.00	5.01	0.000	6.350	0.00	31.82
Effetti sisma verticale sulle masse (verso il basso)	3.69	0.00	2.077	0.000	7.67	0.00

		FV	FH	M(stab)	M(rib)	D	E
		(kN)	(kN)	(kNm)	(kNm)	(m)	(m)
Combinazione:	Ra-I (Vento)	229.86	52.14	498.70	100.56	1.732	0.018
Combinazione:	Ra-II (Traffico)	231.26	54.60	503.62	96.31	1.761	-0.011
Combinazione:	Fr-I (Fessurazione)	225.64	34.75	483.93	49.68	1.925	-0.175
Combinazione:	Fr-II (Fessurazione)	229.86	47.13	498.70	68.74	1.871	-0.121
Combinazione:	U1-I (Vento)	299.66	71.46	651.26	142.18	1.699	0.051
Combinazione:	U1-II (Traffico)	301.77	75.15	658.64	135.80	1.733	0.017
Combinazione:	S1-I (sisma v.alto)	223.80	46.82	482.76	65.66	1.864	-0.114
Combinazione:	S1-II (sisma v.basso)	231.55	47.97	499.38	67.11	1.867	-0.117
Combinazione:	E1-I (Vento)	209.40	57.96	457.69	124.85	1.589	0.161
Combinazione:	E1-II (Traffico)	211.51	61.65	465.07	118.47	1.639	0.111
Combinazione:	SE1-I (sisma v.alto)	223.80	46.82	482.76	65.66	1.864	-0.114
Combinazione:	SE1-II (sisma v.basso)	231.55	47.97	499.38	67.11	1.867	-0.117

SE I-II (SISIIIA V.DASSO)	231.33	47.97	499.30	67.11	1.007	
-						
		. ,				
. ,						
, ,						
,						
,						
U1-I (Vento)	93.12	0.00	78.11	3.50		
U1-II (Traffico)	88.79	0.00	83.65	3.50		
S1-I (sisma v.alto)	51.48	0.00	76.41	3.50		
S1-II (sisma v.basso)	52.91	0.00	79.41	3.50		
	M(stab)	M(rib)	Kr	Kr(min)	Kr ≥ Kr(min)	
Combinazione	(kNm)	(kNm)				
E1-I (Vento)	457.69	124.85	3.666	1.15	Verificato	
E1-II (Traffico)	465.07	118.47	3.926	1.15	Verificato	
SE1-I (sisma v.alto)	482.76	65.66	7.352	1.15	Verificato	
SE1-II (sisma v.basso)	499.38	67.11	7.441	1.15	Verificato	
	N * tan(ω)	т	Ks	Ks(min)	Ks ≥ Ks(min)	
Combinazione		(kN)		- ()	, ,	
114 1 0 (1-)	127.20	71.46	1.780	1.10	Verificato	
U1-I (Vento)						
U1-I (Vento) U1-II (Traffico)		75.15	1.705	1.10	Verificato	
U1-I (Vento) U1-II (Traffico) S1-I (sisma v.alto)	128.09 95.00	75.15 46.82	1.705 2.029	1.10 1.10	Verificato Verificato	
	S1-I (sisma v.alto) S1-II (sisma v.basso) Combinazione E1-I (Vento) E1-II (Traffico) SE1-I (sisma v.alto) SE1-II (sisma v.basso)	Combinazione (kN/mq) Ra-I (Vento) 67.69 Ra-I (Traffico) 64.80 Fr-I (Fessurazione) 45.18 Fr-II (Fessurazione) 52.10 U1-I (Vento) 93.12 U1-II (Traffico) 88.79 S1-I (sisma v.alto) 51.48 S1-II (sisma v.basso) 52.91 M(stab) Combinazione (kNm) E1-I (Vento) 457.69 E1-II (Traffico) 465.07 SE1-I (sisma v.basso) 499.38 N * tan(φ)	Combinazione (kN/mq) (m) Ra-I (Vento) 67.69 0.00 Ra-II (Traffico) 64.80 0.00 Fr-I (Fessurazione) 45.18 0.00 Fr-II (Fessurazione) 52.10 0.00 U1-I (Vento) 93.12 0.00 U1-II (Traffico) 88.79 0.00 S1-I (sisma v.alto) 51.48 0.00 S1-II (sisma v.basso) 52.91 0.00 M(stab) M(rib) Combinazione (kNm) (kNm) E1-I (Vento) 457.69 124.85 E1-II (Traffico) 465.07 118.47 SS1-I (sisma v.basso) 499.38 67.11 N * tan(q) T	Combinazione (kN/mq) (m) (kN/mq) Ra-I (Vento) 67.69 0.00 63.66 Ra-I (Traffico) 64.80 0.00 67.35 Fr-I (Fessurazione) 45.18 0.00 83.76 Fr-II (Fessurazione) 52.10 0.00 79.24 U1-I (Vento) 93.12 0.00 78.11 U1-II (Traffico) 88.79 0.00 83.65 S1-I (sisma valto) 51.48 0.00 76.41 S1-II (sisma v.basso) 52.91 0.00 79.41 M(stab) M(rib) Kr Combinazione (kNm) (kNm) (kNm) E1-I (Traffico) 465.07 118.47 3.926 SE1-I (sisma valto) 482.76 65.66 7.352 SE1-II (sisma v.basso) 499.38 67.11 7.441	Combinazione (kN/mq) (m) (kN/mq) (m) Ra-I (Vento) 67.69 0.00 63.66 3.50 Ra-II (Traffico) 64.80 0.00 67.35 3.50 Fr-I (Fessurazione) 45.18 0.00 83.76 3.50 Fr-II (Fessurazione) 52.10 0.00 79.24 3.50 U1-I (Vento) 93.12 0.00 78.11 3.50 U1-II (Traffico) 88.79 0.00 83.65 3.50 S1-I (sisma v.lato) 51.48 0.00 76.41 3.50 S1-II (sisma v.basso) 52.91 0.00 79.41 3.50 M(stab) M(rib) Kr Kr(min) Combinazione (kNm) (kNm) E1-II (Traffico) 465.07 118.47 3.926 1.15 SE1-I (sisma v.basso) 492.76 65.66 7.352 1.15 SE1-II (sisma v.basso) 499.38 67.11 7.441 1.15	Combinazione (kN/mq) (m) (kN/mq) (m) Ra-I (Vento) 67.69 0.00 63.66 3.50 Ra-I (Traffico) 64.80 0.00 67.35 3.50 Fr-I (Fessurazione) 45.18 0.00 83.76 3.50 Fr-II (Fessurazione) 52.10 0.00 79.24 3.50 U1-I (Vento) 93.12 0.00 78.11 3.50 S1-I (I (Traffico) 88.79 0.00 83.65 3.50 S1-I (sisma v.alto) 51.48 0.00 76.41 3.50 S1-II (sisma v.basso) 52.91 0.00 79.41 3.50 M(stab) M(rib) Kr Kr(min) Kr ≤ Kr(min) Combinazione (kNm) (kNm) (kNm) (kNm) (kNm) (kNm) (kNm) (xima v.basso) 482.76 65.66 7.352 1.15 Verificato SE1-I (sisma v.alto) 482.76 65.66 7.352 1.15 Verificato SE1-I (sisma v.alto) 482.76 65.6

Combinazione	N	Т	B'	σ_{m}	q_{lim}	q_0	FS	FS(min)	FS ≥ FS(min)
	(kN/m)	(kN/m)	(m)	(kN/m^2)	(kN/m^2)	(kN/m^2)			
U1-I (Vento)	299.66	71.46	3.398	88.19	283.21	30.60	4.39	1.40	Verificato
U1-II (Traffico)	301.77	75.15	3.465	87.08	276.01	30.60	4.34	1.40	Verificato
S1-I (sisma v.alto)	223.80	46.82	3.273	68.39	305.42	30.60	7.27	1.40	Verificato
S1-II (sisma v.basso)	231.55	47.97	3.266	70.89	307.07	30.60	6.86	1.40	Verificato

MURI PER SOSTEGNO BARRIERE FONOASSORBENTI - FONDAZIONE SU RILEVATO - ALTEZZA RILEVATO Hr= 3 m ALTEZZA BARRIERA: $5.00~\mathrm{m}$ - ALTEZZA MURO: $3.30+0.60~\mathrm{m}$ Lavoro: Titolo:

5.00 m Altezza barriera fonoassorbente: Altezza rilevato: Larghezza plinto di fondazione: 3.00 m 3.50 m Hr= Bp=

Nella tabella seguente sono riportati i carichi, i bracci di leva, i momenti stabilizzanti e ribaltanti calcolati rispetto al bordo anteriore inferiore del plinto, la distanza della risultante dal bordo anteriore del plinto D e l'eccentricità della risultante dal baricentro del plinto E.

Le caratteristiche di sollecitazione sono riferite a una larghezza unitaria.

Il sovraccarico sul plinto posteriore (peso) non viene considerato.

	FV	FH	bv	bh	M(stab)	M(rib)
	(kN)	(kN)	(m)	(m)	(kNm)	(kNm)
Parete muro	41.24	1.42	1.450	2.250	59.80	3.19
Terreno sul plinto	115.20	3.96	2.600	2.200	299.53	8.71
Plinto	52.50	1.80	1.750	0.300	91.88	0.54
Terreno sul plinto anteriore	10.20	0.00	0.440	0.000	4.49	0.00
Spinte terreno (statiche)	10.69	33.90	3.500	1.267	37.40	42.93
Spinte sovraccarico (statiche)	5.62	17.84	3.500	1.900	19.69	33.90
Spinte terreno (statiche + sismiche v.alto)	11.33	35.94	3.500	1.267	39.66	45.52
Spinte sovraccarico (statiche + sismiche v.alto)	6.07	19.24	3.500	1.900	21.24	36.56
Spinte terreno (statiche + sismiche v.basso)	11.70	37.10	3.500	1.267	40.94	46.99
Spinte sovraccarico (statiche + sismiche v.basso)	6.05	19.19	3.500	1.900	21.18	36.47
Masse aggiuntive	-4.20	-0.14	2.184	-2.678	-9.16	0.39
Vento su barriera fonoassorbente: q= 0.983 kN/mq	0.00	5.01	0.000	6.350	0.00	31.82
Effetti sisma verticale sulle masse (verso il basso)	3.69	0.00	2.077	0.000	7.67	0.00
	FV	FH	M(stab)	M(rib)	D	E
	(kN)	(kN)	(kNm)	(kNm)	(m)	(m)

		FV	FH	M(stab)	M(rib)	D	E
		(kN)	(kN)	(kNm)	(kNm)	(m)	(m)
Combinazione:	Ra-I (Vento)	229.86	52.14	498.70	100.56	1.732	0.018
Combinazione:	Ra-II (Traffico)	231.26	54.60	503.62	96.31	1.761	-0.011
Combinazione:	Fr-I (Fessurazione)	225.64	34.75	483.93	49.68	1.925	-0.175
Combinazione:	Fr-II (Fessurazione)	229.86	47.13	498.70	68.74	1.871	-0.121
Combinazione:	U1-I (Vento)	299.66	71.46	651.26	142.18	1.699	0.051
Combinazione:	U1-II (Traffico)	301.77	75.15	658.64	135.80	1.733	0.017
Combinazione:	S1-I (sisma v.alto)	223.80	46.82	482.76	65.66	1.864	-0.114
Combinazione:	S1-II (sisma v.basso)	231.55	47.97	499.38	67.11	1.867	-0.117
Combinazione:	E1-I (Vento)	209.40	57.96	457.69	124.85	1.589	0.161
Combinazione:	E1-II (Traffico)	211.51	61.65	465.07	118.47	1.639	0.111
Combinazione:	SE1-I (sisma v.alto)	223.80	46.82	482.76	65.66	1.864	-0.114
Combinazione:	SE1-II (sisma v.basso)	231.55	47.97	499.38	67.11	1.867	-0.117

Combinazione:		SE1-I (sisma v.a	ilto)	223.80	46.82	482.76	65.66	1.864	-0.114
Combinazione:		SE1-II (sisma v.I	oasso)	231.55	47.97	499.38	67.11	1.867	-0.117
essioni anteriori e pos	steriori sul teri	reno:		St(ant)	X(St(ant))	St(post)	X(St(post))		
			Combinazione	(kN/mq)	(m)	(kN/mq)	(m)		
			Ra-I (Vento)	67.69	0.00	63.66	3.50		
			Ra-II (Traffico)	64.80	0.00	67.35	3.50		
			Fessurazione)	45.18	0.00	83.76	3.50		
		Fr-II (Fessurazione)	52.10	0.00	79.24	3.50		
			U1-I (Vento)	93.12	0.00	78.11	3.50		
			U1-II (Traffico)	88.79	0.00	83.65	3.50		
		S1-	l (sisma v.alto)	51.48	0.00	76.41	3.50		
		S1-II (s	sisma v.basso)	52.91	0.00	79.41	3.50		
rifiche di ribaltament	o:			M(stab)	M(rib)	Kr	Kr(min)	Kr ≥ Kr(min)	
			Combinazione	(kNm)	(kNm)				
			E1-I (Vento)	457.69	124.85	3.666	1.15	Verificato	
			E1-II (Traffico)	465.07	118.47	3.926	1.15	Verificato	
		SE1-	l (sisma v.alto)	482.76	65.66	7.352	1.15	Verificato	
		SE1-II (s	sisma v.basso)	499.38	67.11	7.441	1.15	Verificato	
erifiche di scorrimento				N * tan(φ)	т	Ks	Ks(min)	Ks ≥ Ks(min)	
miche di scommento	'		Combinazione	in tan(φ) (kN)	(kN)	1/2	KS(IIIII)	NS = NS(IIIII)	
			U1-I (Vento)	127.20	71.46	1.780	1.10	Verificato	
			U1-II (Traffico)	128.09	75.15	1.705	1.10	Verificato	
			I (sisma v.alto)	95.00	46.82	2.029	1.10	Verificato	
			sisma v.basso)	98.29	47.97	2.029	1.10	Verificato	
		31-11 (3	iisiiia v.bassoj	30.23	41.51	2.043	1.10	Verillicato	
rifiche di capacità po	rtante della fo	ondazione							
Combinazione	N	Т	B'	σ_{m}	q _{lim}	q_0	FS	FS(min)	FS ≥ FS(min)
	(kN/m)	(kN/m)	(m)	(kN/m ²)	(kN/m ²)	(kN/m^2)			
U1-I (Vento)	299.66	71.46	3.398	88.19	177.84	13.60	2.20	1.40	Verificato
U1-II (Traffico)	301.77	75.15	3.465	87.08	173.53	13.60	2.18	1.40	Verificato
04144		40.00	0.070		101 70				

68.39 70.89

191.79 192.85

13.60 13.60

3.25 3.13

1.40 1.40

Verificato Verificato

S1-I (sisma v.alto) S1-II (sisma v.basso)

223.80 231.55

46.82 47.97

3.273 3.266

8 MURO TIPO 2 - VERIFICHE MURO CONTROTERRA

Un caso particolare si presenta lungo la barriera n° 02 tra le sezioni 20 e 37 in cui nell'allargamento si incontra uno sperone roccioso sovrastante l'autostrada per cui si realizza un muro controterra in c.a., di altezza variabile, su cui è impostata la barriera.

Il paramento esterno del muro è inclinato del 10% sulla verticale fino al ciglio autostrada; il plinto di fondazione ha sbalzo anteriore di 1.40 m e posteriore di 1.00 m; la larghezza complessiva del plinto vale quindi 3.23 m. Nel tratto considerato la fondazione del muro si svolge sul substrato roccioso affiorante per il quale si sono assunte caratteristiche geotecniche cautelative che si considerano valide per ogni stato di alterazione e/o fratturazione dell'ammasso.

8.1 VERIFICHE GEOTECNICHE

Le verifiche geotecniche sono eseguite per ogni combinazione di carico statica e sismica indicata. Nel seguito ci si riferisce a una larghezza dell'elemento unitaria, salvo esplicite indicazioni diverse. Le verifiche sono svolte per il muro alla sez. 30, avente la massima altezza.

Si nota che cautelativamente si trascurano sempre:

- La resistenza passiva del terreno a valle;
- La presenza del sottoplinto non armato.
- Rapporto B/L; la dimensione longitudinale si suppone indefinita

Seguono i risultati ottenuti nelle verifiche geotecniche eseguite in condizioni statiche e sismiche:

- Verifica al ribaltamento
- Verifica allo scorrimento
- Verifica di capacità portante

Segue il tabulato di calcolo.

MURI PER SOSTEGNO BARRIERE FONOASSORBENTI - BARRIERA 02 SEZ. 30 CONTROTERRA ALTEZZA BARRIERA: 1.00 m - ALTEZZA MURO: 6.50+0.60 m Lavoro:

Altezza barriera fonoassorbente: Altezza rilevato: Larghezza plinto di fondazione: 3.23 m

COMBINAZIONI DI CARICO

Nelle seguenti tabelle sono riportati i coefficienti moltiplicativi dei carichi per le combinazioni di carico esaminate.

Combinazioni statiche SLE: verifiche stati limite di esercizio (fessur	(agoire	

Combinazione	Permanenti	Traffico	Vento	Sisma Orizz. Sis	sma Vert.	Descrizione
Ra-I (Vento)	1	0.75	1	0	0	Carichi permanenti e variabili con vento dominante
Ra-II (Traffico)	1	1	0.6	0	0	Carichi permanenti e variabili con sovraccarico da traffico dominante
Fr-I (Fessurazione)	1	0	0.2	0	0	Fessurazione; combinazione frequente con vento dominante
Fr-II (Fessurazione)	1	0.75	0	0	0	Fessurazione: combinazione frequente con sovraccarico dominante

Combinazioni STR/GEO, A1+M1: metodo degli stati limite ultimi: verifiche strutturali e geotecniche

Combinazione	Permanenti	Traffico	Vento	Sisma Orizz.	Sisma Vert.	Descrizione
U1-I (Vento)	1.3	1.125	1.5	0	0	Carichi permanenti e variabili con vento dominante
U1-II (Traffico)	1.3	1.5	0.9	0	0	Carichi permanenti e variabili con sovraccarico da traffico dominante
S1-I (sisma v.alto)	1	0.2	0	1	-1	Combinazione sismica; sisma verticale verso l'alto
S1-II (sisma v.basso)	1	0.2	0	1	1	Combinazione sismica: sisma verticale verso il basso

Combinaz	ioni EQU, A1+M1: metodo degli sta	ti limite ultimi: verifich	e di ribaltamen	to			
	Combinazione	Permanenti	Traffico	Vento	Sisma Orizz. S	isma Vert.	Descrizione
	E1-I (Vento)	0.9	1.125	1.5	0	0	Carichi permanenti e variabili con vento dominante
	E1-II (Traffico)	0.9	1.5	0.9	0	0	Carichi permanenti e variabili con sovraccarico da traffico dominante
	SE1-I (sisma v.alto)	1	0.2	0	1	-1	Combinazione sismica; sisma verticale verso l'alto
	SE1-II (sisma v.basso)	1	0.2	0	1	1	Combinazione sismica: sisma verticale verso il basso

CARATTERISTICHE GEOTECNICHE DEL TERRAPIENO SPINGENTE

Peso specifico del terreno	γt=	20.00 kN/m ³
Angolo di inclinazione terrapieno (>0 verso l'alto, < b)	=3	26.57 °
Angolo di attrito del terreno	φ=	33.00 °
Coesione efficace del terreno	C=	0.00 kN/m ²
Angolo di attrito muro-terreno	δ=	16.50 °
Sovraccarico sul terrapieno (spinte)	q=	10.00 kN/m ²
Sovraccarico sul plinto (peso)	qp=	0.00 kN/m ²
Condizioni di spinta del terrapieno (calcolo coefficienti di spinta)		Attiva

CARATTERISTICHE GEOTECNICHE DEL TERRENO DI FONDAZIONE

		A1+M1
Peso specifico (efficace) del terreno	$\gamma t =$	20.00 kN/m ³
Angolo di attrito del terreno	φ=	45.00 °
Coesione del terreno	C=	0.00 kN/m ²
Altezza del terreno sullo sbalzo anteriore del sottoplinto	ht=	2.60 m
Angolo di inclinazione del terreno a valle (>0 verso il basso)	ω=	0.00 °
Sovraccarico sul piano di campagna a valle	qv=	0.00 kN/m ²
Angolo di attrito tra sottoplinto e terreno di base	δa=	45.00 °
Coefficiente di attrito tra sottoplinto e terreno di base (fa=tan(&a))	fa=	1.000
Coefficiente di aderenza tra sottoplinto e terreno di base	ca=	0.00 kN/m ²
Modulo di deformabilità assiale del terreno	E+_	20000000 kN/m ²

CARATTERISTICHE SISMICHE (NTC 2018)

Categoria suolo di fondazione (A-B-C-D-E)	F=	С
Coefficiente opere di sostegno:	β=	0.38
Accelerazione orizzontale/gravità	a _g /g=	0.0603
Coefficiente stratigrafico e di topografia	S= Ss x St=	1.5
Coefficiente sismico orizzontale	Kh=	0.0344
Coefficiente sismico verticale	Kv=	±0.0172

CARATTERISTICHE GEOMETRICHE DEL MURO Alterna terrana a mente (de estradoses plinto)

Altezza terreno a monte (da estradosso pinto)	ni=	0.400 111
Altezza parete (da estradosso plinto)	Hp=	6.500 m
Larghezza di calcolo	Bp=	1.000 m
Spessore parete in testa	Sp1=	0.500 m
Spessore massimo parete all'incastro nel plinto	Sp3=	0.830 m
Inclinazione anteriore parete (>0 verso monte)	Pp=	5.077 %
Distanza tra le costole	dc=	0.000 m
Altezza costola	Hc=	6.500 m
Larghezza totale costole per pannello	Bc=	1.000 m
Spessore costola in sommita'	Sc'=	0.000 m
Inclinazione posteriore costola (>0 verso valle)	Pc=	0.000 %
Spessore costola alla base	Sc"=	0.000 m
Spessore complessivo sezione alla base	Sb=	0.830 m

CARATTERISTICHE GEOMETRICHE DEL PLINTO

Altezza plinto (all'incastro)	Hpl=	0.600 m
Altezza anteriore plinto	Hantpl=	0.600 m
Altezza posteriore plinto	Hpospl=	0.600 m
Larghezza plinto	Bpl=	3.230 m
Sbalzo anteriore plinto	Sant=	1.400 m
Distanza tra filo posteriore plinto e filo posteriore parete	Spos1=	1.000 m

MASSE AGGIUNTIVE SULLA STRUTTURA

Componente verticale della forza di massa	FV
Componente orizzontale della forza di massa (sisma)	FH
Ascissa del punto di applicazione della forza di massa da bordo ant. plinto	х
Ordinata del punto di applicazione della forza di massa da bordo inf. plinto	v

		FV	FH	x	у		
		(kN)	(kN)	(m)	(m)	Agente su	
Barriera fonoassor	bente	0.70	0.02	1.980	7.600	Parete	
Deduzione terreno	per tubo Ø 70	-7.70	-0.26	0.670	1.450	Fondazione	

AZIONI VARIABILI AGGIUNTIVE SULLA STRUTTURA

Calcolo della pressione del vento	secondo NTC 2018		
Zona		1	
Classe di rugosità		D	
Categoria di esposizione		II	
Altezza del sito		250	mslmm
Coefficienti tabella 3.3.1	vb,0=	25	m/s
	a0=	1000	mslmm
	ks=	0.4	
Periodo di ritorno di progetto:		100.00	anni
Coefficiente di ritorno:	cr=	1.04	
Velocità di riferimento		25.98	m/s
Pressione di riferimento		421.88	N/mq
Coefficienti tabella 3.3.II	kr=	0.19	
	z0=	0.05	m
	zmin=	4	m
Coefficiente di forma	cp=	1.2	
Coefficiente dinamico	cd=	1	
Coefficiente di topografia:	ct=	1	
Altezza esposta	Z=	1.10	
Coefficiente di esposizione:	ce=	1.801	
Pressione del vento:	p=	911.54	N/mq
Componente verticale della forza	esterna		
Componente orizzontale della fo			
Ascissa del punto di applicazion		ant plinto	
Ordinata del punto di applicazion			
Ordinata dei purito di applicazion	ic uciia ivi2a da DUIDO	iii. piiito	

			FV	FH	х	у
			(kN)	(kN)	(m)	(m)
Vento su barriera fonoassorbente:	q=	0.912 kN/mq	0.00	1.00	1.980	7.550

SOLLECITAZIONI ALLA SEZIONE DI BASE DELLA PARETE

Parametri di spinta per la verifica del pannello prefabbricato				A1+M1		
			(ca	aratteristiche)		
Peso specifico del terreno			$\gamma t =$	20.00 k	N/m ³	
Angolo di inclinazione terrapieno (>0 verso l'alto, <=φ)			=3	26.57 °		
Angolo di attrito del terreno			φ=	33.00 °		
Coesione efficace del terreno			C=	0.00 k	N/m ²	
Angolo di attrito muro-terreno			δ=	16.50 °		
vraccarico sul terrapieno			q=	10.00 k	N/m ²	
Angolo di inclinazione paramento del muro			β=	0.00 °		
Altezza di verifica dal lembo superiore del pannello			Hv=	6.500 n	n	
Spinte statiche						
Angolo della superficie di scivolamento			Ω=	48.325 °		
Coefficienti di spinta attiva			totale	orizz.	ver	t.
Statici	A1+M1	Ka=	0.4241	0.4066	0.120	4
Spinte dinamiche (con sisma orizzontale e verticale verso l'alto):						
Coefficiente sismico orizzontale			Kh =	0.0344		
Coefficiente sismico verticale			Kv=	-0.0172		
Angolo incremento sismico			θ =	2.003 °	(0.0350	rad)
Angolo della superficie di scivolamento			Ω=	44.530 °		
Coefficienti di spinta attiva			totale	orizz.	ver	t.
Statici+Dinamici (sisma verticale verso l'alto)	A1+M1	Kas=	0.4859	0.4659	0.138	0
Spinte dinamiche (con sisma orizzontale e verticale verso il basso):						
Coefficiente sismico orizzontale			Kh =	0.0344		
Coefficiente sismico verticale			Kv=	0.0172		
Angolo incremento sismico			θ =	1.935 °	(0.0338	rad)
Angolo della superficie di scivolamento			Ω=	44.671 °	(,
Coefficienti di spinta attiva			totale	orizz.	ver	t.]
Statici+Dinamici (sisma verticale verso il basso)	A1+M1	Kas=	0.4835	0.4636	0.137	2000
1						

FH x y

Nella tabella seguente sono riportati i carichi, i bracci di leva, i momenti stabilizzanti e ribaltanti calcolati rispetto al bordo anteriore inferiore della parete Le sollecitazioni caratteristiche sono riferite a una larghezza unitaria.

	FV	FH	bv	bh	M(stab)	M(rib)
	(kN)	(kN)	(m)	(m)	(kNm)	(kNm)
Parete muro	108.06	3.71	0.504	2.981	54.50	11.07
Spinte terreno (statiche)	49.33	166.55	0.608	2.133	30.01	355.30
Spinte sovraccarico (statiche)	7.71	26.02	0.662	3.200	5.11	83.27
Spinte terreno (statiche + sismiche v.alto)	55.55	187.54	0.608	2.133	33.79	400.08
Spinte sovraccarico (statiche + sismiche v.alto)	8.83	29.82	0.662	3.200	5.85	95.41
Spinte terreno (statiche + sismiche v.basso)	57.21	193.14	0.608	2.133	34.80	412.04
Spinte sovraccarico (statiche + sismiche v.basso)	8.79	29.67	0.662	3.200	5.82	94.94
Masse aggiuntive	0.70	0.02	0.580	7.000	0.41	0.17
Vento su barriera fonoassorbente: q= 0.912 kN/mq	0.00	1.00	0.000	6.950	0.00	6.97
Effetti sisma verticale sulle masse (verso il basso)	1.87	0.00	0.505	0.000	0.94	0.00

		FV	FH	bv	bh	M(stab)	M(rib)
		(kN)	(kN)	(m)	(m)	(kNm)	(kNm)
Combinazione:	Ra-I (Vento)	163.88	187.09	0.542	2.271	88.74	424.89
Combinazione:	Ra-II (Traffico)	165.80	193.19	0.543	2.293	90.02	442.92
Combinazione:	Fr-I (Fessurazione)	158.09	166.77	0.537	2.140	84.91	356.86
Combinazione:	Fr-II (Fessurazione)	163.88	186.09	0.542	2.246	88.74	417.92
Combinazione:	U1-I (Vento)	214.19	247.32	0.542	2.290	116.13	566.24
Combinazione:	U1-II (Traffico)	217.09	256.48	0.544	2.313	118.05	593.29
Combinazione:	S1-I (sisma v.alto)	164.21	197.24	0.542	2.126	88.92	419.33
Combinazione:	S1-II (sisma v.basso)	169.60	202.82	0.541	2.126	91.81	431.20

SOLLECITAZIONI	ALLA	BASE	DEL	PLINTO

rametri di spinta per la verifica della fondazione				A1+M1				
			(ca	ratteristiche)				
Peso specifico del terreno			γt =	20.00 kN/m ³				
Angolo di inclinazione terrapieno (>0 verso l'alto, <=φ)			=3	26.57 °				
Angolo di attrito del terreno			φ=	33.00°				
Coesione efficace del terreno			C=	0.00 kN/m ²				
Angolo di attrito muro-terreno			δ=	16.50 °				
Sovraccarico sul terrapieno (spinte)			q=	10.00 kN/m ²				
Sovraccarico sul plinto (peso)			qp=	0.00 kN/m ²				
Angolo di inclinazione parete sulla verticale			β=	0.00 °				
Altezza di calcolo delle spinte			H=	7.500 m				
Spinte statiche								
Angolo della superficie di scivolamento			Ω=	48.325 °				
Coefficienti di spinta attiva			totale	orizz.	ert.			
Statici	A1+M1	Ka=	0.4241	0.4066 0.1	204			
Spinte dinamiche (con sisma orizzontale e verticale verso l'alto):								
Coefficiente sismico orizzontale			Kh =	0.0344				
Coefficiente sismico verticale								
			Kv=	-0.0172				
Angolo incremento sismico [arctan Kh]			Kν= θ =	-0.0172 2.003 ° (0.0350	rad)			
					rad)			
Angolo incremento sismico [arctan Kh] Angolo della superficie di scivolamento Coefficienti di spinta attiva			θ = Ω = totale	2.003 ° (0.0350 44.530 °	ert.			
Angolo incremento sismico [arctan Kh] Angolo della superficie di scivolamento Coefficienti di spinta attiva	A1+M1	Kas=	θ = Ω=	2.003 ° (0.0350 44.530 °				
Angolo incremento sismico [arctan Kh] Angolo della superficie di scivolamento Coefficienti di spinta attiva	A1+M1	Kas=	θ = Ω = totale	2.003 ° (0.0350 44.530 °	ert.			
Angolo incremento sismico [arctan Kh] Angolo della superficie di scivolamento (Coefficienti di spinta attiva Statici+Dinamici (sisma verticale verso l'alto)	A1+M1	Kas=	θ = Ω = totale	2.003 ° (0.0350 44.530 °	ert.			
Angolo incremento sismico [arctan Kh] Angolo della superficie di scivolamento Coefficienti di spinta attiva Stattici+Dinamici (sisma verticale verso l'alto) Spinte dinamiche (con sisma orizzontale e verticale verso il basso):	A1+M1	Kas=	θ = Ω= totale 0.4859	2.003 ° (0.0350 44.530 ° orizz. 0.4659 0.1	ert.			
Angolo incremento sismico [arctan Kh] Angolo della superficie di scivolamento Coefficienti di spinta attiva Statici+Dinamici (sisma verticale verso l'alto) Spinte dinamiche (con sisma orizzontale e verticale verso il basso): Coefficiente sismico orizzontale	A1+M1	Kas=	$\theta = \Omega = \Omega = \frac{1}{\Omega}$ totale 0.4859	2.003 ° (0.0350 44.530 ° orizz. 0.4659 0.1	ert.			
Angolo incremento sismico [arctan Kh] Angolo incremento sismico [arctan Kh] Angolo della superficie di scivolamento Coefficienti di spinta attiva Statici-Uniamici (sisma verticale verso l'alto) Spinte dinamiche (con sisma orizzontale e verticale verso il basso): Coefficiente sismico orizzontale Coefficiente sismico verticale	A1+M1	Kas=	θ = Ω= totale 0.4859	2.003 ° (0.0350 44.530 ° 0rizz. ° 0.4659 0.1	ert. 380			
Angolo incremento sismico [arctan Kh] Angolo della superficie di scivolamento Coefficienti di spinta attiva Statici+Dinamici (sisma verticale verso l'alto) Spinte dinamiche (con sisma orizzontale e verticale verso il basso): Coefficiente sismico orizzontale Coefficiente sismico verticale Angolo incremento sismico	A1+M1	Kas=	θ = Ω= totale 0.4859 Kh = Kν= θ =	2.003 ° (0.0350 44.530 ° 0rizz.	ert. 380			

		FV	FH	bv	bh	M(stab)	M(rib)
		(kN)	(kN)	(m)	(m)	(kNm)	(kNm)
Parete muro		108.06	3.71	1.904	3.581	205.78	13.3
Terreno sul plinto		133.00	4.57	2.736	3.925	363.92	17.9
Plinto		48.45	1.67	1.615	0.300	78.25	0.5
Terreno sul plinto anteri	ore	56.00	0.00	0.700	0.000	39.20	0.0
Spinte terreno (statiche)	67.75	228.72	3.230	2.500	218.83	571.7
Spinte sovraccarico (sta	itiche)	9.03	30.50	3.230	3.750	29.18	114.3
Spinte terreno (statiche	+ sismiche v.alto)	76.29	257.55	3.230	2.500	246.41	643.8
Spinte sovraccarico (st	atiche + sismiche v.alto)	10.35	0.00	3.230	3.750	33.43	0.0
Spinte terreno (statiche	e + sismiche v.basso)	78.57	265.24	3.230	2.500	253.78	663.
Spinte sovraccarico (st	atiche + sismiche v.basso)	10.30	0.00	3.230	3.750	33.27	0.0
Masse aggiuntive		-7.00	-0.24	0.539	0.835	-3.77	-0.2
Vento su barriera fonoassorbente: q= 0.912 kN/mq		0.00	1.00	0.000	7.550	0.00	7.
Effetti sisma verticale sulle masse (verso il basso)		5.82	0.00	2.019	0.000	11.74	0.0
		FV	FH	M(stab)	M(rib)	D	E
	į	(kN)	(kN)	(kNm)	(kNm)	(m)	(m)
Combinazione:	Ra-I (Vento)	413.04	252.35	924.09	664.92	0.627	0.98
Combinazione:	Ra-II (Traffico)	415.30	259.57	931.39	690.49	0.580	1.03
Combinazione: Combinazione:	Ra-II (Traffico) Fr-I (Fessurazione)	415.30 406.26	259.57 228.68	931.39 902.21	690.49 573.10	0.580	1.0
Combinazione:							0.8
Combinazione:	Fr-I (Fessurazione)	406.26	228.68	902.21	573.10	0.810	0.8 0.9
Combinazione: Combinazione:	Fr-I (Fessurazione) Fr-II (Fessurazione)	406.26 413.04	228.68 251.35	902.21 924.09	573.10 657.36	0.810 0.646	
Combinazione: Combinazione: Combinazione:	Fr-I (Fessurazione) Fr-II (Fessurazione) U1-I (Vento)	406.26 413.04 538.30	228.68 251.35 332.83	902.21 924.09 1205.70	573.10 657.36 883.08	0.810 0.646 0.599	0.8 0.9 1.0
Combinazione: Combinazione: Combinazione: Combinazione:	Fr-I (Fessurazione) Fr-II (Fessurazione) U1-I (Vento) U1-II (Traffico)	406.26 413.04 538.30 541.69	228.68 251.35 332.83 343.66	902.21 924.09 1205.70 1216.64	573.10 657.36 883.08 921.42	0.810 0.646 0.599 0.545	0.8 0.9 1.0 1.0
Combinazione: Combinazione: Combinazione: Combinazione: Combinazione: Combinazione: Combinazione:	Fr-I (Fessurazione) Fr-II (Fessurazione) U1-I (Vento) U1-II (Traffico) S1-I (sisma v.alto)	406.26 413.04 538.30 541.69 411.06	228.68 251.35 332.83 343.66 267.26	902.21 924.09 1205.70 1216.64 924.74	573.10 657.36 883.08 921.42 675.41	0.810 0.646 0.599 0.545 0.607	0.8 0.9 1.0 1.0 1.0
Combinazione: Combinazione: Combinazione: Combinazione: Combinazione: Combinazione:	Fr-I (Fessurazione) Fr-II (Fessurazione) U1-I (Vento) U1-II (Traffico) S1-I (sisma v.alto) S1-II (sisma v.basso)	406.26 413.04 538.30 541.69 411.06 424.96	228.68 251.35 332.83 343.66 267.26 274.95	902.21 924.09 1205.70 1216.64 924.74 955.56	573.10 657.36 883.08 921.42 675.41 694.65	0.810 0.646 0.599 0.545 0.607 0.614	0.8 0.9 1.0 1.0 1.0
Combinazione: Combinazione: Combinazione: Combinazione: Combinazione: Combinazione: Combinazione:	Fr-I (Fessurazione) Fr-II (Fessurazione) U-I-I (Vento) U1-II (Traffico) S1-I (sisma valto) S1-II (sisma vbasso) E1-I (Vento)	406.26 413.04 538.30 541.69 411.06 424.96 375.80	228.68 251.35 332.83 343.66 267.26 274.95 241.44	902.21 924.09 1205.70 1216.64 924.74 955.56 844.81	573.10 657.36 883.08 921.42 675.41 694.65 654.44	0.810 0.646 0.599 0.545 0.607 0.614 0.507	0.8 0.9 1.0 1.0 1.0 1.0

Combinazione:	SE1-l (sisma v.alto)	411.06	267.26	924.74	675.41	0.607	1.008
Combinazione:	SE1-II (sisma v.basso)	424.96	274.95	955.56	694.65	0.614	1.001
Pressioni anteriori e pos	steriori sul terreno:	St(ant)	X(St(ant))	St(post)	X(St(post))		
	Combinazi	one (kN/mq)	(m)	(kN/mq)	(m)		
	Ra-I (Ve			0.00	1.88		
	Ra-II (Traff	co) 477.30	0.00	0.00	1.74		
	Fr-I (Fessurazio	ne) 334.34	0.00	0.00	2.43		
	Fr-II (Fessurazio	ne) 426.39	0.00	0.00	1.94		
	U1-I (Ve	ito) 598.78	0.00	0.00	1.80		
	U1-II (Traff	co) 662.62	0.00	0.00	1.63		
	S1-I (sisma v.a	lto) 451.79	0.00	0.00	1.82		
	S1-II (sisma v.bas	so) 461.44	0.00	0.00	1.84		
Verifiche di ribaltament	0.	M(stab)	M(rib)	Kr	Kr(min)	Kr ≥ Kr(min)	
vormono ai ribanamoni	Combinazi				()	=()	
	E1-I (Ve			1.291	1.15	Verificato	
	E1-II (Traff			1.235	1.15	Verificato	
	SE1-I (sisma v.a			1.369	1.15	Verificato	
	SE1-II (sisma v.bas			1.376	1.15	Verificato	
		,					
Verifiche di scorrimento		N * ton(-)	т	Ks	Va(min)	Va > Va(min)	
verifiche di scorrimento		N * tan(φ)		KS	KS(MIN)	Ks ≥ Ks(min)	
	Combinazi			4.047	4.40	Verificato	
	U1-I (Ve			1.617	1.10		
	U1-II (Traff			1.576	1.10	Verificato	
	S1-I (sisma v.a			1.538	1.10	Verificato	
	S1-II (sisma v.bas	so) 424.96	274.95	1.546	1.10	Verificato	
Verifiche di capacità po	rtante della fondazione						
	N T	B' σ _m	q _{lim}	q_0	FS	FS(min)	FS ≥ FS(min)
Combinazione	(kN/m) (kN/m)	(m) (kN/m ²)		(kN/m ²)			
U1-I (Vento)		99 449.09		52.00	3.25	1.40	Verificato
U1-II (Traffico)	541.69 343.66 1.	90 496.97	1211.46	52.00	2.61	1.40	Verificato
S1-I (sisma v.alto)		213 338.84	1117.97	52.00	3.72	1.40	Verificato
S1-II (sisma v.basso)	424.96 274.95 1.	228 346.08	1141.35	52.00	3.70	1.40	Verificato
,							