### Regione Puglia

COMUNE DI SALICE SALENTINO - COMUNE DI VEGLIE PROVINCIA DI LECCE

PROGETTO PER LA REALIZZAZIONE DI IMPIANTO PER LA PRODUZIONE DI ENERGIA ELETTRICA DA FONTI RINNOVABILI, NONCHE' OPERE CONNESSE ED INFRASTRUTTURE, DI POTENZA PREVISTA IMMESSA IN RETE PARI A 60 MW ALIMENTATO DA FONTE EOLICA DENOMINATO "SAVE ENERGY"

OPERE DI CONNESSIONE E INFRASTRUTTURE PER IL COLLEGAMENTO ALLA RTN:
Comuni di Frchie (Br.)-San Pancrazio Salentino (Br.) - Avetrana (Ta.)

|                                                                                                                                                                                                                                                                                                                                       |                        | Comuni di Ercine (Br)-San Fanciazio Salentino (Br) - Avetralia (Ta) |                                                                                                                                                                                                                                                                                                                                                   |               |                 |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|--|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                       | Р                      |                                                                     | DEFINITIV                                                                                                                                                                                                                                                                                                                                         | ′0            |                 |  |  |  |  |  |
| R39b                                                                                                                                                                                                                                                                                                                                  | QUADRO PROGETTUALE SIA |                                                                     |                                                                                                                                                                                                                                                                                                                                                   |               |                 |  |  |  |  |  |
| Cod.Identificativo elaborato :                                                                                                                                                                                                                                                                                                        | 6QT                    | ZQR9_StudioF                                                        | attibilitàAmbientale                                                                                                                                                                                                                                                                                                                              | e_R39b        |                 |  |  |  |  |  |
| Progetto:  ENERWIND S.r.l.  Via San Lorenzo 155 - cap 72023 MESAGNE (BR) P.IVA 02549880744 - REA BR-154453 - enerwind@pec.it  MSC Innovative Solutions s.r.l.s. Via Milizia n.55 - 73100 Lecce Tel. +39 3383137911 Email: msc.innovativesolutions@gmail.com - P. IVA 05030190754 Responsabile progettazione: Dott. Ing. Santo Masilla |                        |                                                                     | Committente:  AVETRANA ENERGIA s.r.l.  Piazza del Grano n.3 - cap 39100 BOLZANO (BZ) P.IVA 03050420219 - REA BZ 227626 - avetrana.energia@legalmail.it  SOCIETA' DEL GRUPPO FRI-EL GREEN POWER S.p.A. Piazza della Rotonda, 2 - 00186 Roma (RM) - Italia Tel. +39 06 6880 4163 - Fax. +39 06 6821 2764 Email: info@fri-el.it - P. IVA 01533770218 |               |                 |  |  |  |  |  |
| Indagine Specialistiche :                                                                                                                                                                                                                                                                                                             |                        | Data 20.06.2021                                                     | Revisione<br>Prima Emissione                                                                                                                                                                                                                                                                                                                      | Redatto<br>SM | Approvato<br>MT |  |  |  |  |  |
| Data: Giugno 2021                                                                                                                                                                                                                                                                                                                     | Scala :                | File: 6QTZQR9_Stu                                                   | L<br>udioFattibilitàAmbientale_R39b                                                                                                                                                                                                                                                                                                               | Controllato:  | Formato: A4     |  |  |  |  |  |

#### 1. QUADRO PROGETTUALE

Il quadro di riferimento progettuale descriverà il progetto e le soluzioni adottate, espliciterà le motivazioni che hanno guidato la definizione del progetto nonché misure, provvedimenti ed interventi, anche non strettamente riferibili al progetto, adottati ai fini del migliore inserimento dell'opera nell'ambiente.

Il quadro di riferimento progettuale preciserà le caratteristiche dell'opera progettata, con particolare riferimento a:

- la natura dei beni e dei servizi offerti, anche in relazione alla domanda;
- le motivazioni tecniche della scelta progettuale rispetto alle principali alternative prese in esame, inclusa l'opzione "zero";
- le caratteristiche tecniche e fisiche del progetto e le aree occupate durante la fase di costruzione e di esercizio;
- l'identificazione delle attività in fase di cantiere, di esercizio e di dismissione di impianto e dei corrispondenti fattori di impatto;
- l'identificazione dei possibili guasti e malfunzionamenti e l'analisi degli effetti conseguenti.

Per informazioni di maggiore dettaglio si rimanda al progetto definitivo di cui il presente Studio di Impatto Ambientale rappresenta parte integrante.

#### 1.0 Descrizione delle soluzioni progettuali considerate

#### 1.0.1.1 Alternativa zero

L'opzione zero consiste nel rinunciare alla realizzazione del Progetto.

I vantaggi principali dovuti alla realizzazione del progetto sono:

- Opportunità di produrre energia da fonte rinnovabile coerentemente con le azioni di sostegno che vari governi, tra cui quello italiano, continuano a promuovere anche sotto la spinta degli organismi sovranazionali che hanno individuato in alcune FER, quali l'eolico, una concreta alternativa all'uso delle fonti energetiche fossili, le cui riserve seppure in tempi medi sono destinate ad esaurirsi;
- Riduzioni di emissione di gas con effetto serra, dovute alla produzione della stessa quantità di energia con fonti fossili, in coerenza con quanto previsto, fra l'altro, dalla Strategia Energetica Nazionale 2017 il cui documento, è stato approvato dai Ministri dello Sviluppo Economico e dell'Ambiente con Decreto del 10 novembre 2017, e che prevede, la de-carbonizzazione al 2030, ovvero la dismissione entro tale data di tutte le centrali termo elettriche alimentate a carbone sul territorio

nazionale, segnando tra gli obiettivi prioritari un ulteriore incremento di produzione da fonte rinnovabile.

- Delocalizzazione nella produzione di energia, con conseguente diminuzione dei costi di trasporto sulle reti elettriche di alta tensione;
- Riduzione dell'importazioni di energia nel nostro paese, e conseguente riduzione di dipendenza dai paesi esteri;
- Ricadute economiche sul territorio interessato dall'impianto in termini fiscali, occupazionali soprattutto nelle fasi di costruzione e dismissione dell'impianto;
- Possibilità di creare nuove figure professionali legate alla gestione tecnica del parco eolico nella fase di esercizio.

Inoltre, gli aerogeneratori di grossa taglia e di ultima generazione, proposti in progetto, permettono di sfruttare al meglio la risorsa vento presente nell'area, così da rendere produttivo l'investimento.

Rinunciare alla realizzazione dell'impianto (opzione zero), significherebbe rinunciare a tutti i vantaggi e le opportunità sia a livello locale sia a livello nazionale e sovra-nazionale sopra elencati. Significherebbe non sfruttare la risorsa vento presente nell'area a fronte di un impatto (soprattutto quello visivo – paesaggistico) non trascurabile ma comunque accettabile e soprattutto completamente reversibile.

#### 1.0.2 Alternative tecnologiche e localizzative

#### 1.0.2.1 Alternativa tecnologica 1 – utilizzo di aerogeneratori di media taglia

Per quanto riguarda le eventuali alternative di carattere tecnologico viene valutata la realizzazione di un campo eolico della medesima potenza complessiva mediante aerogeneratori di taglia minore rispetto a quella di progetto.

In linea generale, dal punto di vista delle dimensioni, gli aerogeneratori si possono suddividere nelle seguenti taglie:

- macchine di piccola taglia, con potenza compresa nell'intervallo 5-200 kW, diametro del rotore da 3 a 25 m, altezza del mozzo variabile tra 10 e 35 m;
- macchine di media taglia, con potenza compresa nell'intervallo 200-1.000 kW, diametro del rotore da 25 a 60 m, altezza del mozzo variabile tra 35 e 60 m;
- macchine di grande taglia, con potenza compresa nell'intervallo 1.000-5.000 kW, diametro del rotore superiore a 80 m, altezza del mozzo variabile tra 80 e 150 m.

Per quanto riguarda la piccola taglia, tali macchine hanno un campo applicativo efficace soprattutto nell'alimentazione delle utenze remote, singolarmente o abbinate ad altri sistemi (fotovoltaico e diesel).

Si tratta di impianti di scarsa efficienza, anche in considerazione della loro modesta altezza, e che producono una significativa occupazione di suolo per Watt prodotto.

Per ottenere la potenza installata equivalente si dovrebbe fare ricorso a oltre 300macchine di piccola taglia, con un'ampissima superficie occupata, impatti notevoli, anche sul paesaggio, dovendo essere diffusi su ampie superfici, e scarsa economicità.

Nel caso in oggetto, si è pertanto ritenuto utile effettuare un confronto con impianti di media taglia.

Supponendo di utilizzare macchine con potenza di 800 kW, che costituisce una tipica taglia commerciale per aerogeneratori di taglia media, verifichiamo innanzi tutto che se ne dovrebbero installare 75 anziché 10 per poter raggiungere la potenza prevista di progetto (60 MW).

Le principali differenze tra i due tipi di progetto sono di seguito riportate.

- 1. Utilizzando macchine di media taglia, a parità di potenza complessiva installata, l'energia prodotta sarebbe comunque minore, poiché queste macchine hanno una efficienza sicuramente inferiore alle macchine di grande taglia. Con molta probabilità l'investimento potrebbe non essere remunerativo;
- 2. L'utilizzo del territorio aumenta sia per la realizzazione delle piazzole sia per la realizzazione delle piste di accesso agli aerogeneratori, con conseguenti maggiori disturbi su flora, fauna, consumo di terreno agricolo, impatto su elementi caratteristici del paesaggio agrario (muretti a secco);
- 3. Il numero maggiore di aerogeneratori sicuramente comporta la possibilità di coinvolgere un numero maggiore di ricettori sensibili al rumore prodotto dalla rotazione delle pale degli aerogeneratori;
- 4. Trattandosi di un'area pianeggiante la disposizione sarebbe a cluster con aerogeneratori più vicini poiché dotati di rotori più piccoli. Potrebbe pertanto verificarsi un maggiore impatto visivo prodotto dal cosiddetto effetto selva. Sottolineiamo inoltre che gli aerogeneratori di media taglia hanno comunque altezze considerevoli (60 metri circa) e rotori con diametri non trascurabili (50-60 m). A causa delle dimensioni pertanto, producono anch'essi un impatto visivo non trascurabile;
- 5. La realizzazione di un numero maggiore di aerogeneratori produce maggiori impatti in fase di costruzione e dismissione dell'impianto.

Possiamo pertanto concludere che l'alternativa tecnologica di utilizzare aerogeneratori di media taglia invece di quelli di grossa taglia, previsti in progetto, diminuisce la produzione di energia (a parità di potenza installata) e sostanzialmente aumenta gli impatti.

1.0.2.2 Alternativa tecnologica 2 – Impianto fotovoltaico

Un'altra alternativa tecnologica potrebbe essere quella di realizzare un impianto fotovoltaico.

Di seguito le principali differenze rispetto alla realizzazione dell'impianto eolico proposto in progetto.

- 1. A parità di potenza installata (60 MW), l'impianto eolico ha una produzione di almeno 135,78 GWh/anno, l'impianto fotovoltaico non supera i 115 GWh/anno. In termini di costo i due impianti sostanzialmente si equivalgono.
- 2. L'impianto fotovoltaico con potenza di 60 MW, occuperebbe una superficie di almeno90 ettari.

Queste invece le principali differenze in termini di impatto ambientale.

**Impatto visivo**. L'impatto visivo prodotto dall'impianto eolico è di gran lunga maggiore, sebbene un impianto fotovoltaico di estensione pari a 90 ha, produce sicuramente un impatto visivo non trascurabile almeno nell'area ristretta limitrofa all'impianto.

Impatto su flora, fauna ed ecosistema. Come vedremo nel presente studio, l'impatto prodotto dall'impianto eolico in progetto su flora, fauna ed ecosistema è basso e reversibile. L'impatto prodotto dall'impianto fotovoltaico che come detto occuperebbe un'area di almeno 90 ettari è sicuramente non trascurabile. Inoltre l'utilizzazione di un'area così vasta per un periodo di tempo medio (superiore a 20 anni), potrebbe provocare dei danni su flora, fauna ma soprattutto sull'ecosistema reversibili in un periodo di tempo più lungo, rispetto a quelli prodotti da un eolico.

Uso del suolo. L'occupazione territoriale complessiva dell'impianto eolico in fase di esercizio è di circa 3,5 ettari, contro i 90 ettari previsti per l'eventuale installazione dell'impianto fotovoltaico.

**Rumore**. L'impatto prodotto dal parco eolico sarebbe non trascurabile anche se ovviamente reversibile, mentre praticamente trascurabile quello prodotto dalla realizzazione dell'impianto fotovoltaico.

**Impatto elettromagnetico**. Per l'impianto eolico l'impatto è trascurabile, per quello fotovoltaico è anche trascurabile, anche se di maggiore entità nelle aree immediatamente limitrofe al perimetro dell'impianto.

In definitiva possiamo concludere che:

- a. A parità di potenza installata l'impianto eolico produce il doppio con un costo praticamente uguale a quello dell'impianto fotovoltaico;
- b. L'impianto eolico produce un impatto visivo e paesaggistico non trascurabile, ma sicuramente reversibile al momento dello smantellamento dell'impianto;

c. L'impianto fotovoltaico, avendo una estensione notevole, rischia di produrre un impatto su flora fauna ed ecosistema non reversibile o reversibile in un tempo medio lungo, dopo lo smantellamento dell'impianto.

Per quanto sopra esposto si ritiene meno impattante ed economicamente più vantaggioso realizzare l'impianto eolico.

#### 1.0.2.3 Alternativa localizzativa

Per quanto attiene all'area in cui è localizzato l'impianto osserviamo che esso presenta le seguenti caratteristiche:

- 1) E' sufficientemente lontano dalla costa (8,5 km circa)
- 2) Gli aerogeneratori distano almeno 500 m da edifici rurali abitati
- 3) L'area è pressocchè pianeggiante, lontana da rilievi critici, essendo questa una condizione ideale per attenuare l'impatto paesaggistico
- 4) Non ha interazioni dirette con le componenti tutelate dal PPTR
- 5) Ai sensi di quanto riportato nella tavola 3.2.7.b dell'Elaborato 5.10 Schede degli Ambiti Paesaggistici Tavoliere Salentino l'area di progetto ricade in una zona classificabile di valenza ecologica "bassa/nulla" o al più "medio/bassa".
- 6) L'area presenta caratteristiche anemologiche idonee alla realizzazione dell'impianto
- 7) Gli aerogeneratori sono sufficientemente lontani (almeno 300 m) da strade statali e provinciali
- 8) Nella stessa area di impianto è presente una importante infrastruttura elettrica (SE TERNA di Erchie), ove è possibile collegare l'impianto alla Rete di Trasmissione Nazionale.

Riteniamo evidente che sia difficile trovare aree con caratteristiche di idoneità tali e pertanto risulta molto difficile proporre una alternativa localizzativa.

#### 1.1 <u>Localizzazione dell'impianto</u>

#### Criteri paesaggistico - ambientali per la localizzazione dell'impianto

L'intera opera (plinti di fondazione, strade di nuova realizzazione, cavidotti interrati, SSE elettrica di trasformazione e connessione) interesserà un'area ricadente nei Comuni di:

- N.5 aerogeneratori nel Comune Salice Salentino (LE) e n.5 aerogeneratori nel Comune Veglie (LE) - (per l'ubicazione degli aerogeneratori);
- San Pancrazio Salentino
   – BR (in piccola parte, lungo un breve tratto di strada comunale), Avetrana - TA, Erchie - BR (per il cavidotto);
- Erchie–BR (per la SSE).

I criteri di valutazione per l'individuazione dell'area di impianto sono stati tecnici ma anche paesaggistico- ambientali. Pur partendo da criteri progettuali e tecnici sono stati sempre tenuti in considerazione gli aspetti ambientali e si è sempre cercato di superare per quanto più possibile gli elementi di criticità individuati da tutti gli strumenti di pianificazione territoriale ed in particolare quelli introdotti dal PPTR e dal PAI.

Individuata la porzione di territorio, tra i centri abitati di San Pancrazio (a Nord), Avetrana (a ovest), SaliceSalentino e Veglie a Est (a ovest), Erchie (a sud-est), a 8 kmdalla costa ionica, quale possibile area di intervento, area con caratteristiche tecniche ed ambientali idonee all'installazione di un parco eolico, si è passati alla verifica di idoneità rispetto ai principali strumenti di pianificazione territoriale, in particolare è stata verificata la compatibilità dell'area di intervento rispetto a:

- 1. Piano Paesaggistico Territoriale Regionale (PPTR);
- 2. Allegato 1 al Regolamento Regionale n.24 del 30 Dicembre 2010;
- 3. Piano Territoriale di Coordinamento Provinciale (PTCP) di Lecce (aerogeneratori);
- 4. Piano Territoriale di Coordinamento Provinciale (PTCP) di Brindisi (sottostazione);
- 5. Piano Faunistico Venatorio Regionale 2018-2023;
- 6. Piano Regolatore Generale Comunale (PRGC) di Veglie (aerogeneratori);
- 7. Piano Regolatore Generale Comunale (PRGC) di Salice Salentino (aerogeneratori);
- 8. Piano Regolatore Generale Comunale (PRGC) di Erchie (sottostazione);
- 9. Piano di bacino stralcio per l'Assetto Idrogeologico (PAI) dell'Autorità di Bacino della Regione Puglia;
- 10. Carta Idrogeomorfologica redatta dall'Autorità di Bacino della Regione Puglia.
- 11. SIC, ZPS, IBA, Parchi Regionali, Zone Ramsar e altre aree protette individuate nella cartografia ufficiale dell'Ufficio Parchi della Regione Puglia;
- 12. Vincoli e segnalazioni architettoniche e archeologiche;
- 13. Coni visuali così come definiti nel R.R. 24/2010;
- 14. Aree non idonee FER così come definite nel R.R. 24/2010;
- 15. Piano di Tutela delle Acque;

\_\_\_\_\_

16. Aree perimetrate dal Piano Regionale Attività Estrattive (PRAE).

Lo Studio è stato poi approfondito, individuando puntualmente le principali criticità ambientali segnalate dagli strumenti di pianificazione territoriale o individuate in campo, nel corso dei numerosi sopralluoghi, e verificando l'effettivo impatto prodotto dall'impianto eolico su di esse.

L'impianto sarà collocato ad opportuna distanza dai centri abitati, in particolare:

- Salice Salentino (LE) Km 1,90 a est dell'aerogeneratore S10
- Veglie (LE) 3,10 Km a est dell'aerogeneratore S10
- Avetrana (TA) 8,90 km a ovest dell'aerogeneratore S02;
- San Pancrazio Salentino (BR) 3,97 km a ovest dell'aerogeneratore S02;
- Erchie (BR) 10,5 km a ovest dell'aerogeneratore S02;
- Boncore, frazione di Porto Cesareo (LE) 7,20 a sud dell'aerogeneratore S01
- Porto Cesareo (LE) 9,25 Km a su dall'aerogeneratore S01
   La distanza dalla costa ionica è di circa 8,60 km (aerogeneratore S01).



Come da soluzione tecnica e da progetto di connessione validato da TERNA S.p.a., è previsto che la connessione alla Rete di Trasmissione Nazionale avvenga in corrispondenza del nodo rappresentato dalla SE TERNA di Erchie (in agro di Erchie - BR), nelle immediate vicinanze della quale sarà realizzata una Sottostazione Elettrica Utente (SSE) di trasformazione e consegna. Il cavidotto in media tensione di connessione Parco Eolico – SSE Utente sarà interrato ed interesserà i territori comunali di Avetrana (TA), San Pancrazio

Salentino (BR) ed Erchie (BR). La connessione tra SSE Utente - SE TERNA Erchie avverrà in cavo interrato AT a 150 kV ed avrà una lunghezza di circa 235 m.

L'Area di Intervento propriamente detta è delimitata:

- a ovest dal confine provinciale Taranto Brindisi, tra i territori comunali di Avetrana (TA) e Erchie (BR);
- a nord dal confine provinciale di Brindisi, tra il territorio di San Pancrazio Salentino (BR) e Guagnano (LE)
- a est dai Comuni di Salice Salentino e Veglie in provincia di Lecce
- a sud dal territorio del Comune di Nardo' (LE)
- l'impianto è posto in un'area quadrangolare delimitata approssimativamente a Sud dalla SP111-SP255-SP107 che confluiscono nell'abitato di Salice Salentino (LE) nonchè a Ovest da SP 109 che collega San Pancrazio Salentino (BR) all'area Jonica.

L'Area di Intervento presenta le caratteristiche tipiche del "mosaico" del Tavoliere Salentino: uliveti che si alternano a vigneti con abbondanti aree a seminativo separati fra loro e delimitati da sporadici muretti a secco. All'interno dell'area di intervento, a nord, è anche presente una zona a macchia di tipo relittuale non interessata direttamente dagli aerogeneratori e dalle infrastrutture di impianto (strade, piazzole, cavidotti). Tutti gli aerogeneratori ricadono in aree a seminativo e non interessano vigneti ed uliveti di particolare pregio o alberature secolari.

Le masserie più vicine sono:

- Masseria Mazzetta, in agro di Salice S.no: 1120m dall'aerogeneratore n. S02 di progetto;
- Masseria Cantalupi, in agro di Salice S.no: 900m dall'aerogeneratore S02 di progetto;
- Masseria Cantalupi, in agro di Salice S.no: 600m dall'aerogeneratore S03 di progetto;
- Masseria Donna Sandra, in agro di Veglie: 980m dall'aerogeneratore S03 di progetto;
- Masseria La Casa, in agro di Veglie: 500m dall'aerogeneratore S01 di progetto;
- Masseria La Casa, in agro di Veglie: 740m dall'aerogeneratore S01 di progetto;
- Masseria Cerfeta, in agro di Salice S.no: 680m dall'aerogeneratore S08 di progetto;
- Masseria Palombaro, in agro di Salice S.no: 560m dall'aerogeneratore S09 di progetto;
- Masseria Sa Chirico, in agro di Salice S.no: 770m dall'aerogeneratore S10 di progetto;
- Masseria Cognazzi, in agro di Salice S.no: 965m dall'aerogeneratore S10 di progetto;
- Masseria II Pastore, in agro di Salice S.no: 600m dall'aerogeneratore S10 di progetto;

- Masseria Orsi, in agro di Salice S.no: 660m dall'aerogeneratore S06 di progetto;
- Masseria Casaute, in agro di Salice S.no: 600m dall'aerogeneratore S06 di progetto;
- Masseria San Giovanni, in agro di Salice S.no: 775m dall'aerogeneratore S05 di progetto;
- Masseria Filippi, in agro di Salice S.no: 760m dall'aerogeneratore S04 di progetto;
- Masseria Monaci, in agro di Salice S.no: 1450m dall'aerogeneratore S04 di progetto;

La distanza dall'edificio rurale abitato più vicino è di circa 500 m. La distanza minima da Strade Provinciali è di circa 300 m, mentre la distanza da strade Statali(SS7ter) è superiore a 1 km.

Tutti gli aerogeneratori ricadono per la maggior parte in aree a seminativo e non interessano vigneti. Tuttavia per la realizzazione delle strade di accesso agli aerogeneratori (piste) si rende necessario realizzare l'espianto di 698 di piccoli ulivi in corrispondenza di dieciadeguamenti e/o allargamenti stradali, e l'espianto di circa 1.300 mq di vigneto, n.11 alberature varie non tutelate da leggi speciali, oltre che all'abbattimento di alcuni tratti di muretto a secco, lungo una strada comunale. Gli ulivi saranno reimpiantati in posizioni limitrofe a quelle di reimpianto ("nello stesso fondo o in fondi limitrofi"), i muretti a secco terminata la costruzione dell'impianto saranno integralmente ricostruiti.

Gli edifici rurali abitati sono rappresentati essenzialmente dalle Masserie che sorgono nell'intorno dell'Area di Intervento.

La rete viaria esistente è sufficiente a raggiungere i siti con i mezzi speciali necessari al trasporto dei tronchi delle torri, degli aerogeneratori, dei rotori e delle pale. Sono previsti allargamenti temporanei (nella fase di cantiere) per l'accesso dalle Strade Provinciali, adeguamento di alcune strade comunali (allargamento), in particolare in corrispondenza dell'accesso alle piazzole delle torri.

I principali valori patrimoniali dell'Area di Intervento su cui sarà valutato il potenziale impatto sono:

- 1) Masserie
- 2) Muretti a secco ed eventuale vegetazione intorno ad essi
- 3) Lembi residuali di aree che hanno conservato la naturalità (praterie steppiche)
- 4) Bacini endoreici e principali linee di deflusso
- 5) Forme carsiche (vore e doline)
- 6) Ecosistema spiaggia-duna-macchia
- 7) Oliveti e vigneti di eccellenza
- 8) Sistema insediativo (centri abitati, masserie e sistema binario masserie torri costiere)

#### 1.2 Criteri progettuali per la localizzazione dell'impianto

I criteri progettuali per una localizzazione dell'impianto che riducessero per quanto più possibile gli impatti su ambiente e paesaggio sono stati diversi e sono descritti nei paragrafi successivi. In sintesi, l'area di impianto è stata scelta poiché in possesso dei seguenti requisiti:

- Distanza dalla costa sufficiente a minimizzare l'impatto visivo;
- Distanza da centri abitati sufficiente ad annullare l'impatto acustico e a contenere l'impatto visivo
- Distanza da edifici rurali sufficiente ad annullare l'impatto acustico e altri rischi (rottura elementi rotanti)
- Distanza da strade provinciali sufficiente ad annullare il rischio di incidenti
- Possibilità di installare un numero minimo di aerogeneratori che potesse nel contempo assicurare un profitto nella realizzazione dell'impianto
- Possibilità di posizionamento a cluster (su tre file) e interdistanza sufficiente fra gli aerogeneratori (no effetto selva)
- Riduzione dell'uso del suolo nella fase di esercizio rispetto a quella di cantiere
- Possibilità di installare gli aerogeneratori al di fuori di oliveti e vigneti
- Contiguità ad un nodo della Rete di Trasmissione Nazionale: SE TERNA Erchie nell'area di impianto

#### 1.2.1.1 Land use

Tutti gli aerogeneratori di progetto e la SSE sono installati in aree maggiormente a seminativo. I cavidotti interrati saranno realizzati in corrispondenza di strade esistenti o di piste realizzate nell'ambito del presente progetto per l'accesso agli aerogeneratori. In corrispondenza di alcune svolte lungo il percorso di accesso agli aerogeneratori, per permettere il passaggio dei mezzi speciali che trasportano i componenti di impianto (pale, tronchi di torre tubolari, navicelle, hub) si renderà necessario effettuare gli interventi descritti al paragrafo 3.1 e che qui elenchiamo per facilità di lettura:

- 1) l'espianto e reimpianto (nell'ambito della stessa area) di n.1 alberi varie (fichi)all'incrocio uscita SS7 ter Km VI 46;
- 2) l'espianto e reimpianto (nell'ambito della stessa area) di n.2 alberi varie (fichi)e n.47 alberi di ulivo all'incrocio SP144-SP107;
- 3) l'espianto e reimpianto (nell'ambito della stessa area) di n.1 albero di ulivoall'incrocio SP109-SP111;
- 4) l'espianto e reimpianto (nell'ambito della stessa area) di n.3 alberi varie (mandorle)e n.10 alberi di ulivo all'incrocio SP111-SP255;

- 5) l'espianto e reimpianto (nell'ambito della stessa area) di n.3 alberi varie (fichi)all'incrocio da SP107 su strada comunale per accedere alla S03,S04,S05,S06,S07,S01;
- 6) l'espianto e reimpianto (nell'ambito della stessa area) di n.34 alberi di ulivi per la curva di accesso alla S01;
- 7) l'espianto e reimpianto (nell'ambito della stessa area) din.166 alberelli di ulivo per la piazzola e strada di accesso alla S01;
- 8) l'espianto e reimpianto (nell'ambito della stessa area) di n.50 alberi di ulivo per l'accesso alla S02 dalla SP107;
- 9) l'espianto e reimpianto (nell'ambito della stessa area) di 970 mq di vigneto per la curva di accesso alla S03;
- 10) l'espianto e reimpianto (nell'ambito della stessa area) di n.16 alberi di ulivo per la curva di accesso alla S03;
- 11) l'espianto e reimpianto (nell'ambito della stessa area) di 60 mq di vigneto per la curva di accesso alla S04;
- 12) l'espianto e reimpianto (nell'ambito della stessa area) di n.11 alberi di ulivo per la strada S05;

Gli aerogeneratori ricadono in aree a prevalenza seminativo:



Localizzazione su area agricola WTG S01- Area in rosso



Localizzazione su area agricola WTG S02- Area in rosso



Localizzazione su area agricola WTG S03- Area in rosso



Localizzazione su area agricola WTG S04- Area in rosso



Localizzazione su area agricola WTG S05- Area in rosso



Localizzazione su area agricola WTG S06- Area in rosso



Localizzazione su area agricola WTG S07- Area in rosso



Localizzazione su area agricola WTG S08- Area in rosso



Localizzazione su area agricola WTG S09- Area in rosso



Localizzazione su area agricola WTG S10- Area in rosso

Per quanto concerne gli espianti / reimpianti degli alberi di ulivo, il reimpianto avverrà nell'ambito delle stesse aree in posizioni limitrofe a quelle originarie, seguendo opportune e collaudate regole agro – tecniche.

Per la costruzione e l'esercizio dell'impianto sarà utilizzata per quanto più possibile la viabilità esistente. Per la costruzione dell'impianto

- saranno realizzati circa 4,3 km di nuove piste (in media circa 285 ml per aerogeneratore.,
- sarà effettuato l'adeguamento (allargamento) di strade esistenti per 12.400 ml circa.

Le piste di nuova realizzazione avranno una larghezza di 5-6 m nei tratti rettilinei, saranno realizzate per l'accesso alle piazzole antistanti gli aerogeneratori a partire dalle strade esistenti.

In corrispondenza di curve ed incroci saranno poi realizzati degli allargamenti 8sino a 7 m circa). Finita la costruzione dell'impianto:

- tutti gli allargamenti saranno eliminati, con ripristino dello stato dei luoghi
- la larghezza delle strade sarà ridotta e portata a 4 ml circa.

Per quanto concerne l'adeguamento delle strade esistenti questo interesserà in gran parte strade non asfaltate. L'adeguamento consisterà nella sistemazione del fondo stradale e dell'allargamento lungo un lato o entrambi i lati per portare la carreggiata ad una larghezza di 5-6 m. Terminata la costruzione dell'impianto sarà ripristinata la larghezza originaria.

Per i tratti di strada asfaltata non si prevedono particolari adeguamenti, fatta eccezione per allargamenti in alcuni brevi tratti, comunque realizzati con materiale naturale proveniente da cave di prestito, che sarà rimosso a fine cantiere.

Saranno inoltre realizzate 10 piazzole di montaggio degli aerogeneratori.

Ciascuna piazzola si compone di:

- un'area principale utilizzata per il posizionamento della gru principale di dimensioni pari a 36x21,5 m. Tale area è inglobata nella piazzola di maggiore estensione di 30x50 che diventerà la piazzola definitiva di esercizio. La gru principale è utilizzata per il montaggio della torre tubolare e dell'aerogeneratore (compreso ovviamente il rotore),
- un'area secondaria per lo stoccaggio dei tronchi di torre tubolare (tipicamente a destra della piazzola principale guardando l'aerogeneratore)
- un'area secondaria per lo stoccaggio delle pale (a sinistra della piazzola principale)

Inoltre è previsto uno spazio libero da utilizzare per il montaggio del braccio della gru principale, a fianco del quale dovranno essere realizzate delle piccole piazzole in cui si dovrà posizionare la gru di appoggio durante il montaggio del braccio stesso.

Piste e piazzole di cantiere, necessarie al trasporto dei componenti di impianto ed alla costruzione delle torri eoliche, saranno realizzate con materiale naturale permeabile (materiale lapideo duro)rinvenente dagli scavi dei plinti degli aerogeneratori e/o proveniente da cave di prestito.

Finita la costruzione dell'impianto la viabilità di cantiere sarà ridotta, saranno eliminati gli allargamenti così come saranno ridotte le dimensione delle piazzole a 30x50 m. La larghezza delle strade sarà ridotta a 4 m circa. Nelle aree in cui sarà effettuata la rimozione di strade e piazzole sarà ricostituita la condizione *ex ante* con ripristino del terreno vegetale.

I plinti di fondazione saranno circolare con diametro di 24 m, e profondità di 3,5 m circa dal piano campagna. In questa fase progettuale è previsto, in base a conoscenze della tipologia di terreno ed alla Relazione Geologica preliminare, che per alcune posizioni si abbiano fondazioni di tipo diretto, per altre fondazioni profonde, con 10 pali di fondazione del diametro di 1 m e lunghezza variabile da posizione a posizione in base alle caratteristiche del terreno, comunque non superiore a 30 m. In fase esecutiva a seguito delle indagini geologiche puntuali e di dettaglio per ogni posizione ed ai calcoli esecutivi sarà definita precisamente la tipologia di fondazioni. Ad ogni modo ciascun plinto di fondazione occuperà un'area di 415 mq circa.

Terminata la costruzione in parte con lo stesso materiale utilizzato per strade e piazzole, in parte nella parte superficiale con terreno vegetale.

Alla fine della vita utile dell'impianto i plinti saranno parzialmente rimossi sino ad una profondità di almeno 1 m dal piano campagna.

In definitiva, in fase di esercizio l'occupazione territoriale sarà la seguente:

- strade di esercizio (4.300 x 4 = 17.200 mg) ovvero 1,72 ha circa

- plinti di fondazione aerogeneratori (24x24 x 10= 5760 mq) ovvero 0,576 ha circa
- piazzole antistati aerogeneratori (26 x 24 x 10=6.240 mq) ovvero 0,624 ha circa
- sottostazione elettrica 3.580 mq per complessivi 3,278 ha circa (3.278 mq per aerogeneratore)

I cavidotti MT di collegamento tra aerogeneratori e dagli aerogeneratori alla sottostazione saranno tutti interrati ed avranno uno sviluppo lineare complessivo esterno di 11,5 km circa. Il percorso del cavidotto sarà in gran parte su strade non asfaltate esistenti, in parte su strade provinciali asfaltate in piccola parte su terreni agricoli. La profondità di interramento sarà 1,2 m, profondità che fra l'altro non pregiudica l'utilizzo agricolo del terreno. Il percorso del cavidotto interseca:

- condotte AQP
- condotte Consorzio di Bonifica (usi irrigui)

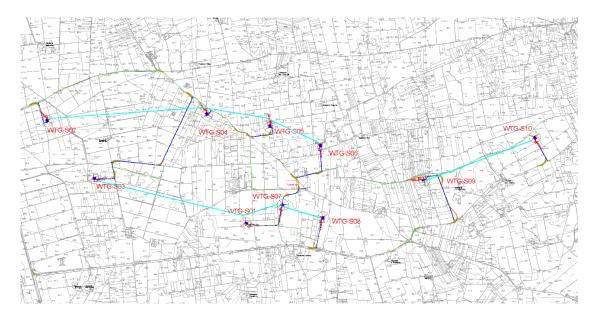
La definizione puntuale di tutti gli attraversamenti potrà avvenire solo in fase esecutiva e comunque dopo che le società o le amministrazioni proprietarie delle condotte avranno fornito precise indicazione cartografiche per l'individuazione puntuale delle interferenze e le profondità di posa in corrispondenza delle interferenze. L'attraversamento delle condotte idriche avverrà sicuramente in sottopasso al di sotto di almeno 50 cm dalle tubazioni stesse. Preferenzialmente gli attraversamenti saranno realizzati con tecnica TOC (Trivellazione Orizzontale Controllata) e non a cielo aperto.

Più in generale l'attraversamento di tutte le condotte, così come di eventuali linee elettriche o telefoniche avverrà in sottopasso o in sovra passo a seconda le indicazioni della società proprietaria.

E' previsto che la connessione elettrica avvenga sulla SE TERNA di Erchie. In prossimità di tale Stazione Elettrica sarà realizzata una Sottostazione Elettrica di trasformazione e consegna (SSE) di competenza del Produttore, ove afferiranno le linee MT in cavo interrato a 30 kV provenienti dagli aerogeneratori. Sempre nella SSE sarà realizzata la trasformazione di tensione da 30 a 150 kV, e quindi ancora con un cavo interrato a 150 kV di lunghezza pari a 235 ml l'energia prodotta sarà consegnata nella SE di Terna.

#### 1.2.1.2 *Land form*

Gli aerogeneratori saranno installati in un'area pianeggiante, con altezza (base torre) di installazione intorno da 47,7 m (S10) a 65,9 m (S02) circa s.l.m. Gli aerogeneratori hanno il classico posizionamento a cluster con i 10 aerogeneratori disposti su tre file formate da uno, due o tre aerogeneratori ciascuna.


La disposizione degli aerogeneratori è tale che le file siano pressoché perpendicolari alle direzioni principali da cui spira il vento NW e SE, con il notevole vantaggio che si tratta anche delle direzione opposte.

Ciò in assoluto accordo a con letteratura tecnica di riferimento che allo scopo di limitare l'impatto, suggerisce di avere una disposizione a cluster in aree pianeggianti.

Il territorio si presenta come il tipico mosaico del Piana Salentina senza una direzione preferenziale. Le geometrie del territorio sono allora dettate dalla viabilità principale, in particolare la SS7ter nella direzione E-O da San Pancrazio a Manduria sostanzialmente parallela alle file degli aerogeneratori, così come più a sud la SP107.

Gli aerogeneratori restano confinati in un'area di forma quadrangolare delimitata a nord dalla SP107Avetrana-Salice Salentino, a ovest dalla SP109 (da San Pancrazio verso il mare), a sud dalle SP111 e SP255 vino a convergere al Comune di Veglie.

Possiamo pertanto affermare che il posizionamento degli aerogeneratori tende ad assecondare le principali geometrie del territorio.



Geometria di impianto – Gli aerogeneratori sono posti su file parallele



Geometria di impianto- Gli aerogeneratori sono confinati in un'area di forma quadrangolare delimitata

dalla viabilità principale

#### 1.2.2 Motivazione della soluzione progettuale prescelta

Per quanto riguarda le motivazioni della **soluzione progettuale** prescelta, oltre alle considerazioni di cui al precedente paragrafo, si sottolinea che l'utilizzo di aerogeneratori di grossa taglia permette di ottenere una maggiore quantità di energia con un numero ridotto di aerogeneratori e che l'efficienza produttiva aumenta proporzionalmente alla taglia dell'aerogeneratore.

Inoltre, gli aerogeneratori di grossa taglia, con rotori di grosse dimensioni (170 m di diametro), permettono di ottenere un'elevata efficienza produttiva anche con regimi anemometrici medi, quali quelli dell'area d'intervento.

Gli aerogeneratori di progetto, in relazione alle condizioni anemologiche e anemometriche rilevate, si stima possano produrre (in media, per singolo aerogeneratore) almeno 1135.780MWh/anno, e quindi avere complessivamente una produzione di 135,78 GWh/anno per l'intero parco eolico. Per avere un'idea del quantitativo di energia prodotta essa corrisponde al fabbisogno medio annuo di 50.289 famiglie composte da 4 persone (fabbisogno nazionale medio 2.700 kWh/anno – famiglia composta da 4 perone).

Per quanto riguarda la localizzazione degli aerogeneratori, questi sono stati distribuiti su tre file, le file hanno una distanza maggiore di 5d, mentre gli aerogeneratori su una stessa fila distano almeno 3d (d= 170 m, diametro rotore). Ciò ha effetti positivi non solo sull'impatto visivo, di cui si dirà diffusamente nei capitoli successivi, ma anche sulla

producibilità tra gli aerogeneratori. Infatti, in tal modo si ridurranno notevolmente gli effetti scia prodotti dagli aerogeneratori sopra vento nei confronti di quelli sotto vento.

#### 2. DESCRIZIONE DEL PROGETTO

Nel presente paragrafo si fa riferimento ai seguenti aspetti:

- caratteristiche dimensionali e tecniche del Progetto;
- impiego delle migliori tecnologie disponibili e di misure di mitigazione per rendere minimo l'uso delle risorse naturali, i quantitativi dei residui, le emissioni degli inquinanti e per ottimizzare l'inserimento dell'opera nel territorio.

Per qualsiasi ulteriore dettaglio si rimanda agli specifici elaborati di Progetto.

#### 2.0 Principali caratteristiche del progetto

Il progetto prevede la costruzione e la messa in esercizio, su torre tubolare in acciaio, di 10 aerogeneratori della potenza di 6,0MW, per una potenza totale di 60 MW. La tipologia di aerogeneratore prescelta è di tipo Siemens-Gamesa SG170. L'energia elettrica prodotta sarà immessa nella Rete di Trasmissione Nazionale AT.

Nella tabella seguente sono riportati sinteticamente i principali dati di progetto.

#### Caratteristiche delle opere in Progetto

| PRINCIPALI CARATTERISTICHE TORRI EOLICHE                 |                                                                                      |  |  |  |  |
|----------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|--|--|
| Aerogeneratore                                           | Pnom = 6,0 MW – diametro rotore 170 m                                                |  |  |  |  |
| Torre                                                    | Tubolare –altezza 115 m                                                              |  |  |  |  |
| Fondazioni in c.a. parte superficiale                    | Diametro = 24 m - Altezza max 3,5 m - Volume 1495 mc                                 |  |  |  |  |
| PRINCIPALI CARATTERISTICHE AREA DI INTERVENTO            |                                                                                      |  |  |  |  |
| Morfologia                                               | Pianeggiante                                                                         |  |  |  |  |
| Utilizzo del suolo                                       | Agricolo                                                                             |  |  |  |  |
| ATE A o B ai sensi del PUTT                              | No                                                                                   |  |  |  |  |
| ZPS                                                      | No                                                                                   |  |  |  |  |
| SIC                                                      | No                                                                                   |  |  |  |  |
| Zona ripopolamento e cattura                             | No                                                                                   |  |  |  |  |
| Biotopi                                                  | No                                                                                   |  |  |  |  |
| PRINCIPALI CARATTERISTICHE IMPIANTO EOLICO               |                                                                                      |  |  |  |  |
| N° torri eoliche                                         | 10                                                                                   |  |  |  |  |
| Potenza nominale complessiva                             | 60 MW                                                                                |  |  |  |  |
| Occupazione territoriale plinti di fondazione            | (12x12x3,14) mq x n. 10 torri = 4.522 mq                                             |  |  |  |  |
| Occupazione territoriale piazzole in fase di esercizio   | 30x50-452,2 mq x n. 10 torri = 10.478 mq                                             |  |  |  |  |
| Occupazione territoriale strade di progetto in esercizio | 4.300x 5 =22.150 mq                                                                  |  |  |  |  |
| Occupazione territoriale SSE                             | 37.150 mq                                                                            |  |  |  |  |
| Vita utile impianto                                      | Un impianto eolico è autorizzato all'esercizio, dalla<br>Regione Puglia, per 20 anni |  |  |  |  |

annua totale per l'intero parco eolico di oltre 135,78 GWh/anno.

Per quanto concerne la produzione ci si aspetta una produzione pari a circa 2.263 ore equivalenti anno, in pratica con la potenza installata di 60 MW, ci si aspetta una produzione

#### 2.1 Aerogeneratori

Le turbine in progettosaranno montate su torri tubolari di altezza (base-mozzo) pari a 115 m, con rotori a 3 pale ed aventi diametro di 170 m. La colorazione della torre tubolare e delle pale del rotore sarà bianca e non riflettente. Le pale degli aerogeneratori ubicati nelle posizioni più esterne, inoltre, saranno colorate a bande orizzontali bianche e rosse, allo scopo di facilitarne la visione diurna e tutti gli aerogeneratori saranno dotati di luce rossa fissa di media intensità per la segnalazione notturna, omologate ICAO, e comunque con le caratteristiche che saranno indicate dall'Ente Nazionale per l'Aviazione Civile (ENAC).

Il posizionamento degli aerogeneratori nell'area di progetto è tale da evitare il cosiddetto effetto selva. La distanza minima tra aerogeneratori su una stessa fila è di 510 m mentre la distanza minima tra aerogeneratori su file diverse è di 850m. In ogni caso la distanza minima tra aerogeneratori su una stessa fila è superiore a 3d (510 m), mentre la distanza tra aerogeneratori su file diverse è superiore a 5d (850) m.

Inoltre il posizionamento degli aerogeneratori sarà tale da rispettare le seguenti distanze di rispetto:

- Distanza minima da centri abitati: 1,9 km da Salice Salentino (S10);
- Distanza minima da Strade Provinciali: superiore a 320 m;
- Distanza minima da Strade Statali: la SS7 ter ha una distanza superiore a 3,4 km(S05);
- Distanza minima da edifici rurali abitati o abitabili: 500 m.

Le distanze minime degli aerogeneratori da strade provinciali, abitazioni rurali e centri abitati saranno ampiamente maggiori ai valori della gittata di elementi rotanti in caso di rottura accidentale, che è stata calcolata essere di 210 m.

Nella seguente tabella sono riportate le coordinate geografiche dei punti di installazione degli aerogeneratori.UTM WGS84 Fuso 33.

| WTG | Х      | Υ       | Z    | Comune      | Provincia | Foglio | P.lla         |
|-----|--------|---------|------|-------------|-----------|--------|---------------|
| S01 | 744797 | 4471762 | 57,6 | Veglie      | Lecce     | 4      | 490-755       |
| S02 | 741791 | 4473304 | 65,9 | Salice S.no | Lecce     | 12     | 21            |
| S03 | 742491 | 4472439 | 65,7 | Veglie      | Lecce     | 3      | 287           |
| S04 | 744212 | 4473403 | 54,1 | Veglie      | Lecce     | 1      | 13-124        |
| S05 | 745163 | 4473219 | 52,7 | Salice S.no | Lecce     | 25     | 327           |
| S06 | 745934 | 4472948 | 52   | Salice S.no | Lecce     | 36     | 1-143-144     |
| S07 | 745363 | 4472038 | 56,4 | Veglie      | Lecce     | 4      | 1269          |
| S08 | 745973 | 4471848 | 58,8 | Veglie      | Lecce     | 4      | 1152          |
| S09 | 747503 | 4472407 | 49,6 | Salice S.no | Lecce     | 44     | 87-130-175-86 |
| S10 | 749180 | 4473062 | 47,7 | Salice S.no | Lecce     | 39     | 24            |
| SSE | 733710 | 4475780 | 67   | Erchie      | Br        | 37     | 256-46        |

Coordinate WGS84 Aerogeneratori

Ciascuna torre eolica, in acciaio e con pale in materiale composito non conduttore, sarà dotata di un impianto di protezione dalle scariche atmosferiche.

Il progetto prevede la realizzazione di un impianto esterno di protezione dai fulmini (LPS) e un LPS interno atto ad evitare il verificarsi di scariche pericolose all'interno della struttura da proteggere durante il passaggio della corrente di fulmine sull'LPS esterno. L'LPS è progettato per la protezione di tutte le apparecchiature interne della torre eolica.

Alcuni aerogeneratori (quelli con posizioni più esterne) saranno dotati di segnalazione diurna e notturna. La segnalazione diurna verrà attuata colorando le pale di 8 aerogeneratori (su 15) con due bande rosse (colorazione RAL 2009) di lunghezza pari a 6 m, a partire dall'estremità delle pale stesse, alternate ad una fascia bianca di pari lunghezza. Gli stessi otto aerogeneratori dotati di segnalazione diurno, saranno dotati anche di lampade per la segnalazione notturna, conformi alle normative per la segnalazione aerea (Specifiche ICAO).

#### 2.2 Fondazioni

Sono previste in base alla tipologia di terreno, alcune fondazioni di tipo diretto di forma circolare con diametro 24 m e profondità 3,5 m, altre fondazioni di tipo profondo (con pali), sempre di forma circolare diametro di 24 m e profondità di 3,5 m, con 10 pali da 1 m, di profondità variabile e comunque non superiore a 30 m.

Le fondazioni saranno progettate sulla base di puntuali indagini geotecniche per ciascuna torre, saranno realizzate in c.a., con la definizione di un'armatura in ferro che terrà conto di carichi e sollecitazioni in riferimento al sistema fondazione suolo ed al regime di vento misurato sul sito.

La progettazione strutturale esecutiva sarà riferita ai plinti di fondazione del complesso torre tubolare – aerogeneratore.

Partendo dalle puntuali indagini geologiche effettuate, essa verrà redatta secondo i dettami e le prescrizioni riportate nelle "D.M. 17 gennaio 2018 - Norme tecniche per le costruzioni".

In linea con la filosofia di detto testo normativo, le procedure di calcolo e di verifica delle strutture, nonché le regole di progettazione che saranno seguite nella fase esecutiva,

• mantenimento del criterio prestazionale;

seguiranno i seguenti indirizzi:

- coerenza con gli indirizzi normativi a livello comunitario, sempre nel rispetto delle esigenze di sicurezza del Paese e, in particolare, coerenza di formato con gli Eurocodici, norme europee EN ormai ampiamente diffuse;
- approfondimento degli aspetti connessi alla presenza delle azioni sismiche;
- approfondimento delle prescrizioni ed indicazioni relative ai rapporti delle opere con il terreno e, in generale, agli aspetti geotecnici;
- concetto di vita nominale di progetto;
- classificazione delle varie azioni agenti sulle costruzioni, con indicazione delle diverse combinazioni delle stesse nelle le verifiche da eseguire.

Le indagini geologiche, effettuate puntualmente in corrispondenza dei punti in cui verrà realizzato il plinto di fondazione, permetteranno di definire:

- la successione stratigrafica con prelievo di campioni fino a 35 m di profondità;
- la natura degli strati rocciosi (compatti o fratturati);
- la presenza di eventuali "vuoti" colmi di materiale incoerente.

Le successive analisi di laboratorio sui campioni prelevati (uno per plinto) permetteranno di definire la capacità portante del terreno (secondo il metodo definito dalla relazione di BRINCH- HANSEN).

In sintesi le dimensioni e le caratteristiche dei plinti di fondazione saranno definite secondo:

- il livello di sicurezza che per legge sarà definito dal progettista di concerto con il Committente;
- le indagini geognostiche;
- l'intensità sismica.

Inoltre, le strutture e gli elementi strutturali saranno progettati in modo da soddisfare i seguenti requisiti:

- sicurezza nei confronti degli Stati Limite Ultimi (SLU);
- sicurezza nei confronti degli Stati Limite di Esercizio (SLE);
- robustezza nei confronti di azioni accidentali.

Il metodo di calcolo sarà quello degli Stati Limite, con analisi sismica, la cui accelerazione di calcolo sarà quella relativa alla zona, in cui ricade l'intervento, secondo l'attuale classificazione sismica del territorio nazionale (O.P.C.M. 3274/2003).

In definitiva, sulla base della tipologia di terreno e dell'esperienza di fondazioni simili, ci si aspetta di avere fondazioni di tipo diretto con le seguenti caratteristiche:

Fondazioni dirette:

- Ingombro in pianta: circolare
- Forma: tronco conica
- diametro massimo 24 m
- altezza massima 3,5 m circa

completamente interrate, ad una profondità misurata in corrispondenza della parte più alta del plinto di circa

0,5 m

- volume complessivo calcestruzzo 1120 mc circa

Fondazioni profonde, stesse caratteristiche delle fondazioni dirette, con pali aventi le seguenti caratteristiche

• Pali di fondazione (n. 10 per ):

- Ingombro in pianta: circolare a corona

- Forma: cilidrica
- diametro pali 1000 mm

- lunghezza pali variabile da posizione a posizione (al massimo 30 m)

I principali riferimenti normativi, per i calcoli e la realizzazione dei plinti di fondazione saranno:

- D.M. 17 gennaio 2018 Norme tecniche per le costruzioni
- Circ. Min. 11 dicembre 2009
- Legge del 05/11/1971 n. 1086 Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso e a struttura metallica.
- D. M. del 09/01/1996 Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche.
- UNI 9858 Calcestruzzo Prestazioni, produzione, posa in opera e criteri di conformità.
- O.P.C.M. n. 3274 del 20/03/2003 e s.m.i. Criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica.

#### 2.3 Trincee ed elettrodotti

Le linee MT interne al parco eolico, di connessione tra gli aerogeneratori e tra questi e la SSE, saranno realizzate con cavi direttamente interrati. La posa interrata avverrà ad una profondità di 1,2 m. L'utilizzo di cavi tipo airbag con doppia guina in materiali termoplastici (PE e PVC) ne migliora notevolmente la resistenza meccanica allo schiacciamento rendendoli equivalenti, ai sensi della Norma CEI 11-17, a cavi armati, consentendo la posa interrata senza utilizzo di ulteriore protezione meccanica.

Gli scavi saranno effettuati usando mezzi meccanici ed evitando scoscendimenti,

franamenti ed in modo tale che le acque di ruscellamento non si riversino negli scavi.

Il percorso dei cavidotti correrà, quasi totalmente, su strade esistenti, in modo tale da ridurre al minimo l'impatto dovuto all'occupazione di suolo. Inoltre, il percorso dei cavidotti sarà segnalato in superficie da appositi cartelli.

I cavidotti MT di collegamento tra aerogeneratori e dagli aerogeneratori alla sottostazione saranno tutti interrati ed avranno uno sviluppo lineare complessivo di 24 km circa. Il percorso del cavidotto sarà in gran parte su strade non asfaltate esistente, in parte su strade provinciali asfaltate in parte su terreni agricoli. La profondità di interramento sarà 1,2 m, profondità che fra l'altro non pregiudica l'utilizzo agricolo del terreno.

Le linee in cavo a 30 kV permetteranno di convogliare l'energia prodotta dagli aerogeneratori allaSottostazione Elettrica di Trasformazione (SSE), dove avverrà l'innalzamento di tensione 30/150 kV e la cessione alla Rete di Trasmissione Nazionale,

La connessione tra la SSE di proprietà Avetrana Energia S.r.l. e la SE TERNA di Erchie avverrà con linea in cavo interrata AT 150kV, della lunghezza di circa 235 m circa.

#### 2.4 <u>Sottostazione elettrica di connessione e consegna (SSE)</u>

La sottostazione di connessione e consegna (SSE) saràrealizzata in prossimità della Stazione ElettricaTERNA ERCHIE e sarà ad essa connessa in antenna tramite linea interrata a 150kV.

In estrema sintesi, nella SSE si avrà:

- Arrivo delle linee MT a 30 KV interrate, provenienti dall'impianto eolico;
- Trasformazione 30/150 kV, tramite opportuno trasformatore di potenza;
- Sistema di sbarre AT 150 kV in comune con due altri produttori
- Partenza di una linea interrata AT, di lunghezza pari a 235 m circa, che permetterà la connessione allo stallo a 150 kV della SE TERNA ERCHIE, dedicato all'impianto in oggetto.

Il produttore Avetrana Energia avrà lo stallo AT nell'ambito della stessa area di Tre Torri Energia, mentre il produttore Mysun avrà a disposizione un'area dedicata. Ad ogni modo tutti e tre saranno collegati alle stesse sbarre AT.

Le due aree di pertinenza specifica dei produttori e l'area delle sbarre AT saranno fisicamente separate tra loro tramite una recinzione, realizzata con elementi prefabbricati del tipo "a pettine", ed avranno tre accessi indipendenti.

Si sottolinea che la SSE della società MYSUN (altro produttore) non sarà oggetto di questa progettazione e del relativo iter autorizzativo.

Tutti gli impianti in bassa, media ed alta tensione saranno realizzati secondo le prescrizioni delle norme CEI applicabili, con particolare riferimento alla scelta dei componenti della disposizione circuitale, degli schemi elettrici, della sicurezza di esercizio.

Le modalità di connessione saranno conformi alle disposizioni tecniche emanate dall'autorità per l'energia elettrica e il gas (delibera ARG/elt 99/08 del 23 luglio 2008 – Testo integrato delle condizioni tecniche ed economiche per la connessione alle reti elettriche con obbligo di connessione di terzi degli impianti di produzione di energia elettrica - TICA), e in completo accordo con le disposizioni tecniche definite nell'Allegato A (CEI 0-16) della delibera ARG/elt 33/08).

#### 2.5 Strade e piste

La viabilità esistente nell'area di intervento, sufficientemente sviluppata, sarà integrata con la realizzazione di piste necessarie al raggiungimento dei singoli aerogeneratori, sia nella fase di cantiere sia in quella di esercizio dell'impianto.

Prima dell'inizio dell'installazione degli aerogeneratori saranno tracciate le piste necessarie al movimento dei mezzi di cantiere (betoniere, gru, pale meccaniche) oltre che dei mezzi utilizzati per il trasporto delle navicelle con gli aerogeneratori, le pale dei rotori ed i tronchi tubolari delle torri.

Tali piste di nuova realizzazione, necessarie per raggiungere le torri con i mezzi di cantiere, avranno ampiezza massima pari a 7 m e raggio interno di curvatura fino a 70 m e dovranno permettere il passaggio di veicoli con carico massimo per asse di 12,5 t ed un peso totale di oltre 120 t. Lo sviluppo lineare delle strade di adeguamento dell'esistente da realizzazione all'interno dell'area di intervento sarà di 4.300m circa, e comunque sarà ridotto al minimo indispensabile. Per raggiungere le torri saranno utilizzate, per quanto possibile, strade già esistenti, come si evince dagli elaborati grafici di progetto. In particolare le strade secondarie da adeguare avranno sviluppo lineare di circa 4,3 ml.

Le strade avranno pendenze ed inclinazioni laterali trascurabili. Il manto stradale dovrà essere piano, dal momento che alcuni autocarri hanno una luce libera da terra di soli 10 cm.

Le strade saranno realizzate con:

- Scavo di sbancamento per apertura della sede stradale, con uno spessore medio di 20-30 cm;
- Eventuale posa di geotessile di separazione del piano di posa degli inerti;
- Strato di fondazione per struttura stradale, dello spessore di 20 cm, da eseguirsi con materiale lapideo duro proveniente da cave di prestito (misto cava), avente assortimento granulometrico con pezzatura 7-10 cm;
- Formazione di strato di base per struttura stradale, dello spessore di 10 cm e pezzatura 0,2-2 cm, da eseguirsi con materiali idonei alla compattazione, provenienti da cave di prestito o dagli scavi di cantiere. Si prevede il compattamento a strati, fino a

raggiungere in sito una densità (peso specifico apparente a secco) pari al 100% della densità massima ASHO modificata in laboratorio.

Laddove le strade di cantiere intersecano muretti a secco, o si necessita di allargamenti di strade esistenti che generano interferenze con i muretti a secco questi saranno momentaneamente abbattuti e quindi ricostruiti una volta che è terminata la costruzione dell'impianto eolico. La ricostruzione sarà effettuata da ditte specializzate utilizzando per quanto più possibile lo stesso pietrame e ricostituendo forma e dimensioni esistenti. Si fa presente inoltre che si prevede l'interferenza con alcuni muretti già crollati, anche in tal caso si procederà alla ricostruzione dei muretti.

Negli interventi di realizzazione delle piste di cantiere e delle piazzole verrà garantita la regimazione delle acque meteoriche mediante la verifica della funzionalità idraulica della rete naturale esistente.

Ove necessario, si procederà alla realizzazione di fosso di guardia lungo le strade e le piazzole, o di altre opere quali canalizzazioni passanti o altre opere di drenaggio e captazione, nel caso di interferenze con esistenti canali o scoline.

#### 2.6 Aree di cantiere per l'installazione degli aerogeneratori (piazzole)

Intorno a ciascuna torre sarà realizzato un piazzale per il lavoro delle gru, durante la fase di costruzione delle torri stesse.

In corrispondenza di ciascun aerogeneratore sarà realizzata una piazzola con funzione di servizio. Tali piazzole saranno utilizzate nel corso dei lavori per il posizionamento delle gru necessarie all'assemblaggio ed alla posa in opera delle strutture degli aerogeneratori.

L'area direttamente interessata dall'installazione della gru, avrà dimensioni di metri 21,5x27, dovrà essere tale da sopportare un carico di 200 ton, con un massimo unitario di 185 kN/m². La pendenza massima non potrà superare lo 0,25%. In continuità con questa piazzola sarà realizzata un'altra aerea di dimensioni 21,5x9m utilizzata come area di lavoro.

Le caratteristiche strutturali delle piazzole di nuova realizzazione saranno:

- Scavo di sbancamento per apertura della sede stradale, con uno spessore medio di 50 cm:
- Eventuale posa di geotessile di separazione del piano di posa degli inerti;
- Strato di fondazione per struttura stradale, dello spessore di 50 cm per l'area destinata ad ospitare la gru di montaggio dell'aerogeneratore e di 20 cm per l'area di lavoro e stoccaggio, da eseguirsi con materiale lapideo duro proveniente da cave di prestito (misto cava), avente assortimento granulometrico con pezzatura 7-10 cm;
- Formazione di strato di base per struttura stradale, dello spessore di 20 cm per l'area destinata ad ospitare la gru di montaggio dell'aerogeneratore e di 20 cm per l'area di lavoro e stoccaggio, pezzatura 0,2-2 cm, da eseguirsi con materiali idonei alla compattazione, provenienti da cave di prestito o dagli scavi di cantiere. Si prevede il compattamento a strati, fino a raggiungere in sito una densità (peso specifico apparente a secco) pari al 100% della densità massima ASHO modificata in laboratorio.

La superficie terminale dovrà garantire la planarità per la messa in opera delle gru e

comunque lo smaltimento superficiale delle acque meteoriche.

Per la fase di esercizio dell'impianto si prevede di mantenere una porzione della piazzola, delle dimensioni di 27,5x21 m; sulla restante superficie si procederà alle operazioni di ripristino ambientale.

#### 2.7 Mezzi d'opera ed accesso all'area di intervento

Per la realizzazione del Progetto saranno impiegati i seguenti mezzi d'opera:

- automezzi speciali fino a lunghezze di 98 m, utilizzati per il trasporto dei tronchi delle torri, delle navicelle, delle pale del rotore;
- betoniere per il trasporto del cls;
- camion per il trasporto dei trasformatori elettrici e di altri componenti dell'impianto di distribuzione elettrica;
- altri mezzi di dimensioni minori, per il trasporto di attrezzature e maestranze;
- n°2 autogru: quella principale, con capacità di sollevamento di almeno 600 t e lunghezza del braccio di 120/140 m, e quella ausiliaria, con capacità di sollevamento di 160 t, necessarie per il montaggio delle torri e degli aerogeneratori.

Nella fase di cantiere il numero di mezzi impiegati sarà il seguente:

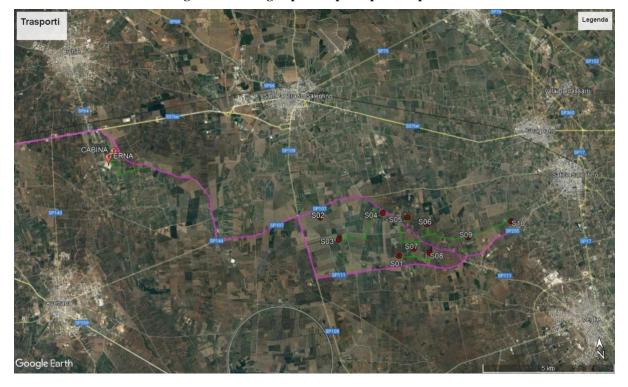
- circa otto mezzi speciali a settimana per il trasporto dei tronchi delle torri, della navicella, delle pale del rotore;
- alcune decine di autobetoniere al giorno per la realizzazione dei plinti di fondazione;
- alcuni mezzi, di dimensioni minori, al giorno, per il trasporto di attrezzature e maestranze.

Le gru stazioneranno in cantiere per tutto il tempo necessario ad erigere le torri e ad installare gli aerogeneratori.

L'accesso alle aree del sito sarà oggetto di studio dettagliato in fase di redazione del progetto esecutivo.

Il trasporto degli aerogeneratori nell'area di installazione avverrà con l'ausilio di mezzi eccezionali provenienti, dal porto di Taranto o dal porto di Brindisi.

A partire da tali infrastrutture sarà possibile raggiungere il sito di impianto utilizzando prima la strada di grande comunicazione SS 7 (Taranto – Brindisi), e quindi a partire dall'uscita di Grottaglie est il seguente percorso:


 18 km circa su SS7 direzione Brindisi, sino all'uscita Grottaglie Est, dopo lo svincolo si entra su SP exSS7 (Provincia Taranto);

- 3,2 km circa su SP exSS7, prima rotonda, svolta a sx su SC Esterna Misicuro-Monache;
- 0,55 km circa su SC Esterna Misicuro-Monache, quindi svolta a sx su SP 84 (Provincia Taranto);
- 3 km circa si risale la SP 84 verso nord direzione Grottaglie, quindi svolta a dx su SP 86 (Prov. TA);
- 4,7 km circa su SP 86 verso sud sino all'incrocio con SP ex SS603 (Prov. TA), dove in corrispondenza di una rotonda si svolta a sx verso Francavilla Fontana;
- 2,2 km circa su SP ex SS603, sino al limite della Provincia di Taranto, qui la strada (che è sempre la stessa) cambia denominazione in SP 4 (Provincia di Brindisi). La si percorre ancora per 1,4 km, qui in prossimità della Masseria Cantagallo, si svolta a dx nella SP 51 (Prov. BR), in direzione Oria;
- 13,8 km su SP 51, nell'ultimo tratto la SP 51 diventa la circonvallazione di Oria piegando verso sud, e la si percorre sino all'incrocio con la SP 58 (Prov. BR), dove si svolta a dx nella SP 58, verso sud in direzione Erchie – Manduria;
- Da SP 58 (Provincia di BR) si continua su SP 98 (Provincia di TA), la strada è la stessa, dopo il confine di provincia cambia denominazione;
- 4,6 km su SP 98 (Prov. TA), sino alla circonvallazione di Manduria, qui si svolta a sx su SS 7 ter
- 8 km su SS7ter direzione San Pancrazio Salentino;
- Uscita SP64dir (BR) e raggiungere una parte delle posizioni degli aerogeneratori
- Oppure uscita e SP65 (BR,) e infine proseguire su SP 144 (TA), SP 107 (LE), ancora strade comunali e la strada consortile (Consorzio di Bonifica Arneo) per raggiungere l'area SP109 e SP107 con ingresso nella strada comunale tra Salice S.no e Veglie

Nel caso di accesso dal porto di Brindisi, si percorrerà la SS7 in direzione di Taranto, fino ad imboccare l'uscita Grottaglie Est e da qui si procederà secondo il percorso sopra esposto.



Tragitto del convoglio per trasporto pale dal porto di Taranto



Tragitto del convoglio per trasporto pale-viabilità interna

I componenti di impianto da trasportare saranno, per ogni aerogeneratore:

- Pale del rotore dell'aerogeneratore (n. 3 trasporti);
- Navicella;
- Sezioni tronco coniche della torre tubolare di sostegno (n. 5 trasporti).

La dimensione dei componenti è notevole (in particolarele pale hanno lunghezza di 79m) ed il mezzo eccezionale che le trasporta ha lunghezza di circa 85 m. Per questo motivo si renderanno necessari opportuni adeguamenti in prossimità di alcuni incroci stradali lungo il percorso che va dal porto di provenienza al sito dove è prevista l'installazione degli aerogeneratori.

Gli adeguamenti saranno limitati nel tempo al periodo strettamente necessario al trasporto dei componenti di tutti gli aerogeneratori, circa un mese, e saranno effettuati garantendo il mantenimento in qualsiasi momento di tutte le prescrizioni di carattere di sicurezza stradale. Ad esempio si utilizzeranno segnali stradali con innesto a baionetta o moduli spartitraffico tipo "New Jersey" di colore rosso e bianco, in polietilene ad alta densità (plastica), da rimuovere manualmente al passaggio dei mezzi eccezionali.

#### 2.8 <u>Esercizio e funzionamento dell'impianto</u>

L'impianto funzionerà in determinate condizioni di vento ovvero quando la velocità del vento sarà superiore a 3 m/s.

Al momento dell'entrata in funzione, gli aerogeneratori si disporranno in modo tale da avere il rotore controvento. Il comando di avviamento dell'impianto sarà gestito telematicamente e sarà dato solo dopo l'acquisizione di dati relativi alle condizioni atmosferiche, velocità e direzione del vento.

Il funzionamento dell'impianto sarà gestito da sistemi di controllo della velocità e del passo, parametri che interagiscono per ottenere il rapporto ottimale tra massima resa e minimo carico.

Con bassa velocità del vento e a carico parziale, il generatore eolico opererà a passo delle pale costante e velocità del rotore variabile.

A potenza nominale e ad alte velocità del vento, il sistema di controllo del rotore agirà sull'attuatore del passo delle pale per mantenere una generazione di potenza costante.

Il sistema di controllo costituirà anche il sistema di sicurezza primario. Nell'ipotesi in cui la velocità del vento superi i 23 m/s gli aerogeneratori si arresteranno automaticamente ed il rotore si disporrà nella stessa direzione del vento in modo tale da offrire la minore opposizione possibile.

Nella navicella dell'aerogeneratore, sarà installato un trasformatore, affinché l'energia a 30 kV venga convogliata, tramite una linea in cavo, alla base della torre.

L'energia elettrica prodotta dagli aerogeneratori sarà convogliata con cavidotti interrati(a 30 kV) alla Sottostazione di Trasformazione per essere immessa (dopo innalzamento di tensione a 150 kV) nella rete elettrica nazionale, tramite linea AT.

L'energia prodotta dalla centrale eolica verrà consegnata alla rete elettrica nazionale mediante la suddetta Sottostazione di Trasformazione MT/AT, attraverso una connessione in antenna da realizzarsi su stallo dedicato nellaSE Terna di Erchie.

La taratura del sistema di protezione avverrà di concerto con Terna S.p.A.

Le prestazioni tipiche, in base alla tipologia di appartenenza dei generatori, saranno comunicate a Terna S.p.A.

I criteri di esercizio degli impianti saranno conformi alle prescrizioni delle norme CEI-EN 50110-1 e 50110-2 e concordati con il gestore della rete pubblica.

#### 2.9 Utilizzazione delle risorse naturali

Il processo di produzione di energia elettrica dal vento è per definizione "pulito", ovvero privo di emissioni nocive nell'ambiente.

L'unica risorsa necessaria al funzionamento del parco eolico, oltre ovviamente al vento, è l'occupazione territoriale.

In particolare, il Progetto richiederà l'occupazione territoriale, durante la fase di costruzione, per strade (bianche di nuova realizzazione), aree di movimentazione gru (in prossimità delle torri) ed area principale di cantiere di circa 5 ha.

Durante la fase di esercizio l'area occupata si ridurrà a circa 2,6 ha, corrispondenti all'effettivo utilizzo di terreno agricolo, per un periodo di 20 anni.

In tutte le aree non direttamente interessate dall'installazione dell'impianto si potranno mantenere le normali attività agricole (uliveti, seminativi, aree incolte utilizzate per il pascolo).

Come visto l'impatto sulla vegetazione è molto limitato:

- Saranno espiantati 43 ulivi per permettere la realizzazione di quattro allargamenti necessari al passaggio dei mezzi di trasporto dei componenti di impianto. Gli ulivi espiantati saranno reimpiantati seguendo opportune tecniche agronomiche, nell'ambito delle stesse aree.
- Sempre per l'allargamento delle sedi stradali si renderà necessario la potatura di alcuni arbusti di macchia mediterranea. La potatura sarà manuale in modo da consentire una rapida ripresa dell'attività vegetativa.

Al fine di eliminare rischi e limitare l'impatto paesaggistico e quello dovuto alle radiazioni non ionizzanti, le linee elettriche dell'intero impianto saranno interrate, ivi compreso la linea AT di collegamento della SSE alla SE TERNA di Erchie, di lunghezza pari a circa 235 m.Ad ogni modo l'impatto elettromagnetico è limitato sia nell'entità, sia nelle aree interessate che sono quelle (agricole), nell'immediato intorno dei cavidotti e della SSE.

#### 2.10 Piano di dismissione dell'impianto

#### Descrizione delle fasi di dismissione

L'Autorizzazione Unica ex D.lgs 387/03 è una titolo per la costruzione ed esercizio dell'impianto eolico. La Regione Puglia prevede che l'autorizzazione all'esercizio abbia validità di 20 anni. Trascorso questo periodo verosimilmente si procederà ad un *revamping* dell'impianto ovvero alla sostituzione degli aerogeneratori. Il *revamping* dovrà comunque essere autorizzato con opportuno titolo rilasciato sempre dalla Regione Puglia. Qualora non si proceda con l'aggiornamento tecnologico dell'impianto (revamping) si dovrà procedere con il suo smantellamento, di fine esercizio.

I costi di dismissione saranno garantiti da una fidejussione bancaria a favore del Comune in conformità a quanto prescritto dalla D.G.R. 3029 del 30 dicembre 2010. La polizza fideiussoria avrà un valore non inferiore a 50 €/kW di potenza elettrica installata (complessivamente circa 3,15 milioni di euro).

Le fasi principali del piano di dismissione sono riassumibili nelle seguenti attività.

- lo smontaggio delle torri, delle navicelle e dei rotori;
- l'allontanamento dal sito, per il recupero o per il trasporto a rifiuto, di tutti i componenti dell'aerogeneratore, in particolare le apparecchiature elettriche;
- la demolizione del plinto di fondazione almeno sino alla profondità di 1 m dal piano campagna, con trasporto a rifiuto del materiale rinvenente dalla demolizione costituito da cemento armato frammisto a ferro di armatura, la copertura con terra vegetale di tutte le cavità createsi con lo smantellamento dei plinti. Il trasporto a rifiuto potrà avvenire in discariche ovvero in centro di recupero di materiali provenienti da demolizioni edilizie;
- la demolizione di tutte le piste di esercizio e le piazzole con trasporto a rifiuto o in centri di recupero degli inerti con cui sono realizzate le strade;
- la rimozione completa delle linee elettriche (cavidotti interrati) e conferimento agli impianti di recupero e trattamento secondo la normativa vigente;
- completo smantellamento della SSE.
- dovrà essere ottemperato l'obbligo di comunicazione a tutti gli assessorati regionali interessati, della dismissione o sostituzione di ciascun aerogeneratore.

### Normativa di riferimento per lo smaltimento dei rifiuti appartenenti alla categoria RAEE (Rifiuti da Apparecchiature Elettriche ed Elettroniche)

L'Unione europea ha disposto, con la Direttiva 2012/19/UE sui rifiuti di apparecchiature elettriche ed elettroniche (RAEE), che i responsabili della gestione dei RAEE fossero i produttori delle apparecchiature stesse, proporzionalmente alla quantità dei nuovi prodotti immessi sul mercato, attraverso l'organizzazione e il finanziamento di sistemi di raccolta, trasporto, trattamento e recupero ambientalmente compatibile dei rifiuti. La direttiva

è stata recepita dall'Italia con il Decreto Legislativo n. 49 del 14 marzo 2014. In pratica apparecchiature elettriche ed elettroniche non più utilizzabili saranno avviati a centri di recupero autorizzati e specializzati, che effettueranno lo smontaggio dei componenti, con recupero dei materiali riutilizzabili e trasporto a rifiuto degli altri.

#### Codici CER

Si riportano di seguito i codici CER dei principali materiali provenienti dalla dismissione del parco eolico

- Apparecchiature elettriche ed elettroniche fuori uso (inverter, quadri elettrici, trasformatori,moduli fotovoltaici) - codice CER 20 01 36
- Cemento (derivante dalla demolizione dei fabbricati che alloggiano le apparecchiature elettriche) codice CER 17 01 03
- Plastica (derivante dalla demolizione delle tubazioni per il passaggio dei cavi elettrici) - codice CER 17 02 03
- Ferro, Acciaio (derivante dalla demolizione delle strutture di sostegno dei moduli fotovoltaici) - codice CER 17 04 05
- Cavi codice **CER17 04 11**
- Pietrisco derivante dalla rimozione della ghiaia per la realizzazione della viabilità - codice CER17 05 08
- Asfalto derivante dallo smantellamento del piazzale all'interno della Sottostazione Utente (SSE) codice **CER17 03 02**
- Olio sintetico isolante per Trasformatore codice **CER 130301**

#### Smontaggio aerogeneratori

Lo smontaggio degli aerogeneratori avverrà con l'utilizzo di gru del tipo utilizzato per il montaggio.

E' praticamente certo che una volta smontati le navicelle, le pale del rotore, l'hub, i tronchi di torre tubolare saranno avviati in una officina specializzata per la rigenerazione di tutti i componenti sia meccanici sia elettrici, per poi essere rivenduti sul mercato degli aerogeneratori usati.

Il trasporto a rifiuto potrà interessare singoli componenti in particolare apparecchiature elettriche (RAEE) che saranno avviate ai centri di recupero autorizzati e specializzati, ovvero componenti in ferro non più utilizzabili che dovranno essere avviati a centri di recupero di materiale ferroso per il riutilizzo.

Costo dismissione: dal recupero degli aerogeneratori si prevede di incassare 200.000,00 € per ciascun aerogeneratore al netto dei costi di smontaggio, corrispondenti per 15 aerogeneratori a 3 miloni di euro.

#### Demolizione plinti di fondazione

La demolizione del plinto di fondazione avverrà con l'ausilio di mezzi meccanici (escavatori attrezzati con martello demolitore di grosse dimensioni). Il materiale proveniente dalla demolizione sarà costituito da cemento derivante da demolizione di manufatto (codice CER 17 01 03) e ferro proveniente dai ferri di armatura (codice CER 17 04 05). Il cemento sarà avviato in discarica o in centro di recupero di materiale da demolizione edilizia, il ferro a centro di recupero per riutilizzo.

Terminata la demolizione sino alla profondità di almeno 1 m dal piano di campagna sarà effettuato il riempimento con materiale di origine vegetale. Sarà effettuato un opportuno spandimento nella parte superficiale in modo da rispettare il naturale andamento del terreno.

**Costo demolizione**: il costo è stimato in 40.000,00 € per aerogeneratore per complessivi 400.000,00 €, comprensivo dei costi di smaltimento in centro di recupero e/o in discarica.

#### Demolizione piste e piazzole

Le piazzole di montaggio e le piste per l'accesso agli aerogeneratori saranno realizzate come visto con materiale rinvenente dagli scavi (dei plinti) o da materiale inerte di varia pezzatura proveniente da cave di prestito. La demolizione consisterà nella raccolta di questo materiale ed il successivo trasporto in centri di recupero degli inerti effettuata la opportuna e necessaria caratterizzazione, volta a verificare che gli stessi materiali non siano stati contaminati da sostanze tossiche. Anche in questo caso le cavità residue saranno riempite con terreno vegetale in modo da ristabilire le condizioni *ex ante*. Abbiamo visto che in media saranno realizzate 221,5 m (larghezza media 5 m) di piste per ciascun aerogeneratore, per complessivi 4,3 km, mentre la superficie di ciascuna piazzola sarà di circa 1500 mq (30 x 50 m) che al netto della superficie del plinto diventa di 1048 mq.

**Costo demolizione**. Considerando uno spessore medio di 0,4 m di materiale da rimuovere per le piste e 0,5 m per le piazzole, stimiamo complessivamente:

$$(4.300 \times 5 \times 0.4) + 10 \times (1.048 \times 0.5) = 8600 + 5240 = 13.840 \text{ mc}$$

di materiale inerte da smaltire in centro di recupero. Approssimando per eccesso a 15.000 mc e considerando un prezzo di demolizione, smaltimento, e ripristino con terreno vegetale di 35,00 €/mc, stimiamo un costo complessivo di 525.000,00 €.

#### Rimozione cavidotti interrati

Si stima la posa di circa 15.705 m di cavi MT interni, 47.100 m esterni e 250 m circa (compreso scorta) di cavo AT. I cavidotti sono di tipo direttamente interrati, pertanto la loro rimozione presuppone l'apertura delle trincee, il rinterro con lo stesso materiale proveniente dagli scavi, il costipamento dei materiali ed il ripristino della parte superficiale con particolare

miforimente al minuistino dei tuetti esfelteti. I covi comenno everieti e contri di moccomen non mifort

riferimento al ripristino dei tratti asfaltati. I cavi saranno avviati a centri di recupero per rifiuti RAEE.

Costo rimozione cavi interrati. La posa dei cavi avverrà per 4.370 m su strade non asfaltate e 15.420 m su strade asfaltate, 4.240 m su terreno agricolo; considerando una larghezza media di 0,6 m e la profondità di 1,2 m, abbiamo un volume di scavo e successivo rinterro di circa 14.803,6 mc, arrotondato per eccesso a 15.000 mc. Con queste quantità abbiamo i seguenti costi e ricavi dalla vendita dell'alluminio dei cavi.

| Descrizione                                                                                                       | Quantità  | P                 | Costo        | Ricavi      |
|-------------------------------------------------------------------------------------------------------------------|-----------|-------------------|--------------|-------------|
|                                                                                                                   |           | rezzo<br>unitario | totale       |             |
| Scavo                                                                                                             | 15.000 mc | 10 €/mc           | 150.000,00€  |             |
| Rinterro con materiale rinvenente dagli scavi con costipatura                                                     | 15.000 mc | 4 €/mc            | 60.000,00 €  |             |
| Ripristino mezza carreggiata con strato di base in cemento, bynder e tappetino di 15.420 ml di strada provinciale | 7.710 ml  | 70 €/ml           | 539.700,00 € |             |
| Rimozione cavi e trasporto in centro di recupero                                                                  |           |                   | 100.000,00 € |             |
| Ricavo da vendita alluminio cavi                                                                                  |           |                   |              | 80.000,00 € |
| TOTALE                                                                                                            |           |                   | 849.700,00 € | 80.000,00 € |

In definitiva il costo di rimozione dei cavi, compreso i ripristini, con opportuno arrotondamento per eccesso è stimabile in 769..000,00 €.

#### Rimozione SSE

La rimozione della SSE prevede, le seguenti principali attività:

- Lo smontaggio di tutte le apparecchiature elettromeccaniche ed il trasporto nei centri di recupero RAEE
- Il recupero di alcuni componenti o materiali lo smaltimento di altri materiali non recuperabili
- Il recupero del trasformatore MT/AT, che produrrà un ricavo
- Il recupero di tutti i cavi interrati, in questo caso posati in vie cavi e quindi con semplice sfilaggio

- L'abbattimento dei locali tecnici compreso fondazioni, il trasporto dei materiali provenienti dalla demolizione in discariche o centri di recupero
- La demolizione delle superfici asfaltate ed il trasporto del materiali bituminosi in discariche autorizzate
- L'asporto degli inerti e trasporto in centri di recupero
- Ripristino stato dei luoghi con apporto di terreno vegetale sul sito precedentemente occupato dalla SSE

E' evidente che si tratta di un'attività complessa il cui costo è stimabile in circa 400.000,00 € al netto dei costi di vendita dei componenti riutilizzabili (in particolare il trasformatore MT/AT).

#### Costi totali di dismissione Parco Eolico

Sulla base delle stime riportate nei paragrafi precedenti si prevede il seguente costo totale di dismissione e ripristino

|   | TOTALE PREVISTO                                         | € | 2.494.700,00 |
|---|---------------------------------------------------------|---|--------------|
| • | Altri costi di dismissione (ingegneria, costi generali) | € | 400.000,00   |
| • | Demolizione SSE                                         | € | 400.000,00   |
| • | Rimozione cavidotti interrati                           | € | 769.700,00   |
| • | Dismissione piste e piazzole                            | € | 525.000,00   |
| • | Demolizione plinti fondazione e ripristino aree         | € | 400.000,00   |

A fronte di questi costi abbiamo ricavi dalla vendita degli aerogeneratori (mercato dell'usato) al netto dei costi di smontaggio:

• Ricavo netto da vendita aerogeneratori € 3.000.000,00

Possiamo pertanto concludere che i costi di dismissione e ripristino saranno sicuramente coperti dai ricavi dalla vendita degli aerogeneratori.

Come già ricordato sopra, ai sensi della D.G.R. 3029 del 29.12.2010 della Regione Puglia, l'Autorizzazione Unica alla costruzione ed esercizio dell'impianto ai sensi del D.lgs 387/03, la società proponente dovrà, tra l'altro rilasciare una polizza fidejussoria del valore di 50 €/kW installato, per il ripristino dello stato dei luoghi. Nel caso in esame (impianto eolico da 60 MW) l'ammontare di tale fidejussione corrisponde a 3.000.000,00 €. Cifra che in ogni caso copre i costi di ripristino dello stato dei luoghi.

### 2.11 Programma di attuazioneper la costruzione

|      | Attività                                                        |   |   | Mesi |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |
|------|-----------------------------------------------------------------|---|---|------|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|
| Fasi |                                                                 | 1 | 2 | 3    | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 1    | Progetto esecutivo                                              |   |   |      |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |
| 1    | Convenzioni per attraversamenti e<br>interferenze               |   |   |      |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |
| 1    | Espropri                                                        |   |   |      |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |
| 1    | Affidamento lavori                                              |   |   |      |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |
| 1    | Allestimento del cantiere                                       |   |   |      |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |
| 2    | Opere civili – strade                                           |   |   |      |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |
| 3    | Opere civili – fondazioni torri                                 |   |   |      |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |
| 4    | Opere civili ed elettriche – cavidotti                          |   |   |      |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |
| 5    | Trasporto componenti torri ed<br>aerogeneratori                 |   |   |      |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |
| 5    | Montaggio torri ed aerogeneratori                               |   |   |      |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |
| 6    | Costruzione SSE – Opere elettriche e di<br>connessione alla RTN |   |   |      |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |
| 7    | Collaudi                                                        |   |   |      |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |
| 8    | Dismissione del cantiere e ripristini<br>ambientali             |   |   |      |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |

Ottenute tutte le autorizzazioni si procederà alla stesura del Progetto Esecutivo edall'affidamento dei lavori. L'esecuzione dei lavori durerà circa 13mesi, compreso collaudi e ripristini ambientali.

Le fasi di cantiere prevedono la realizzazione delle seguenti opere:

- Allestimento dell'area di cantiere;
- Realizzazione delle vie di accesso e di transito interno al parco e delle piazzole necessarie al montaggio degli aerogeneratori;
- Realizzazione delle fondazioni degli aerogeneratori (scavi, armature e getti in cls);
- Montaggio torri tubolari;
- Montaggio aerogeneratori;
- Scavo delle trincee per la posa dei cavi e posa dei cavi stessi;
- Connessioni elettriche;
- Realizzazione di una Sottostazione Elettrica di Trasformazione (SSE), con relativi locali tecnici;
- Ripristini ambientali, alla fine delle attività di cantiere.

Contestualmente, come riportato nell'elenco sopra, sarà realizzata la SSE all'interno dell'area di intervento. La distanza dalle torri alla sottostazione sarà coperta con una rete in

L'andamento pianeggiante del terreno favorirà, a lavori ultimati, il ripristino delle condizioni preesistenti in corrispondenza dell'area di lavoro delle gru, degli adeguamenti stradali e dell'area principale di lavoro. Per tali aree è previsto quanto segue:

- La rimozione ed il trasporto a rifiuto degli inerti utilizzati per la realizzazione del fondo (per le piazzole resterà solo una superficie di 30x50 m compresa quella del plinto del diametro di 24 m);
- La posa di terreno vegetale in corrispondenza delle aree in cui è stato rimosso il materiale.

Dopo quasi un anno dall'inizio dei lavori, finiti tutti i collaudi, l'impianto sarà pronto per entrare in funzione.

#### 2.12 Misure di mitigazione e compensazione

Il Progetto prevede l'adozione di una serie di misure atte a mitigare l'impatto della costruzione, esercizio e dismissione del medesimo sulle varie componenti ambientali caratterizzanti l'area d'intervento.

Alcune misure di mitigazione saranno adottate prima che prenda avvio la fase di cantiere, altre durante questa fase ed altre ancora durante la fase di esercizio del parco eolico. Le misure di mitigazione consisteranno in:

- protezione del suolo dalla dispersione di oli e altri residui;
- conservazione del suolo vegetale;
- trattamento degli inerti;

cavo interrata a 30 kV.

- integrazione paesaggistica delle strutture;
- protezione di eventuali ritrovamenti di interesse archeologico.
- ripristino per quanto più possibile dei muretti a secco.

#### 2.13 Protezione del suolo dalla dispersione di oli e altri residui

Al fine di evitare possibili contaminazioni dovute a dispersioni accidentali che si potrebbero verificare durante la costruzione ed il funzionamento dell'impianto, saranno adottate le seguenti misure preventive e protettive:

 durante la costruzione dell'impianto e durante il suo funzionamento, in caso di spargimento di combustibili o lubrificanti, sarà asportata la porzione di terreno contaminata e trasportata alla discarica autorizzata più vicina; le porzioni di terreno

contaminate saranno definite, trattate e monitorate con i criteri prescritti dalla Parte Quarta del D.Lgs 152/06;

- durante il funzionamento dell'impianto si effettuerà un'adeguata gestione degli oli e
  degli altri residui dei macchinari. Tali residui sono classificati come rifiuti pericolosi e
  pertanto, una volta terminato il loro utilizzo, saranno consegnati ad un ente
  autorizzato, affinché vengano trattati adeguatamente.
- La vasca posta alla base del trasformatore MT/AT nella SSE, sarà a tenuta stagna ed avrà capienza superiore di almeno il 20% rispetto alla quantità di olio contenuto nel trasformatore stesso. Ciò assicurerà in caso di rotture accidentali di evitare che l'olio si disperda nell'ambienta e ne faciliterà il suo recupero e trasporto a rifiuto con l'utilizzo di opportune tecniche e mezzi.
- Il piazzale della SSE sarà dotato di un sistema di raccolta, trattamento (grigliatura, dissabbiatura e disoleazione) delle acque piovane, che effettuata la chiarificazione saranno smaltite tramite sub irrigazione.

#### 2.14 Conservazione del suolo vegetale

Nel momento in cui saranno realizzate le operazioni di scavo e riporto, per rendere pianeggianti le aree di cantiere, saranno realizzate anche le nuove strade e gli accessi alle aree di cantiere. Inoltre, durante le operazioni di scavo per la costruzione delle fondazioni delle torri e delle trincee per la posa dei cavidotti, si procederà ad asportare e conservare lo strato di suolo fertile, ove questo fosse presente.

Il terreno asportato verrà stoccato in cumuli che non superino i 2 m di altezza, al fine di evitare la perdita delle proprietà organiche e biotiche. I cumuli verranno protetti con teli impermeabili per evitare la dispersione del suolo in caso di intense precipitazioni.

Tale terreno sarà successivamente utilizzato come ultimo strato di riempimento sulle aree in cui saranno eseguiti i ripristini.

#### 2.15 Trattamento degli inerti

I materiali inerti prodotti, che in nessun caso potrebbero divenire suolo vegetale, saranno riutilizzati per il riempimento di terrapieni, di scavi, per la pavimentazione delle strade di servizio, eccetera. Non saranno create quantità di detriti incontrollate né saranno abbandonati materiali da costruzione o resti di escavazione in prossimità delle opere. Gli inerti eventualmente non utilizzati saranno conferiti alla discarica autorizzata per inerti più vicina o nel cantiere più vicino che ne faccia richiesta.

### Ripristino dell'area interessata, al termine delle attività di costruzione

Ultimata la costruzione dell'impianto saranno effettuate le seguenti operazioni di ripristino ambientale, mediante adozione di tecniche di ingegneria naturalistica:

 riduzione delle piazzole utilizzate per il montaggio e il posizionamento della gru principale, nonchè per lo stoccaggio dei componenti dell'aerogeneratore (navicella, tronchi di torre tubolare, pale con rimozione del materiale apportato e riempimento con terreno vegetale;

• riduzione dell'ampiezza delle strade, laddove siano stati eseguiti degli allargamenti/adeguamenti per favorire il passaggio dei mezzi speciali.

#### Integrazione paesaggistica delle strutture

Al fine di rendere minimo l'impatto visivo delle varie strutture del progetto e favorire la loro integrazione paesaggistica, saranno adottate le seguenti soluzioni:

- le rifiniture delle torri degli aerogeneratori saranno di colore bianco opaco;
- la disposizione scelta per gli aerogeneratori segue un allineamento abbastanza regolare che, come risulta da studi effettuati sull'impatto visivo di impianti di questo tipo, è la più gradita dagli osservatori;
- opportuna spaziatura tra le turbine, per evitare l'effetto selva;
- la scelta di utilizzare turbine moderne, ad alta efficienza e potenza, ridurrà il numero di turbine installate;
- saranno installati aerogeneratori a tre pale;
- le strade di collegamento dell'impianto con la rete viabile pubblica avranno la lunghezza minima possibile. Saranno realizzati nuovi tratti stradali esclusivamente dove vi sia l'assenza di viabilità esistente e solo se strettamente necessario;
- la larghezza della carreggiata utilizzata per i trasporti speciali sarà ridotta al minimo indispensabile per il successivo transito dei mezzi ordinari;
- i piazzali di pertinenza dell'impianto eolico determineranno la minima occupazione possibile del suolo e, dove possibile, interesseranno aree degradate o comunque suoli già degradati, evitando – fatte salve le esigenze di carattere puramente tecnico – l'impermeabilizzazione delle superfici;
- la struttura di fondazione delle torri (in cls armato) sarà annegata sotto il profilo del suolo;
- il cantiere occuperà la minima superficie di suolo, aggiuntiva a quella occupata dall'impianto, ed interesserà, ove possibile, aree degradate da recuperare o comunque suoli già alterati;
- saranno predisposti opportuni accorgimenti per evitare il dilavamento delle superfici del cantiere;

- durante la fase di cantiere saranno impiegati tutti gli accorgimenti tecnici possibili per ridurre la dispersione di polveri sia nel sito che nelle aree circostanti;
- sarà realizzato il massimo ripristino possibile della vegetazione eliminata durante la fase di cantiere e la restituzione alle condizioni iniziali delle aree interessate dall'opera non più necessarie alla fase di cantiere;
- la connessione alla rete elettrica nazionale avrà un'estensione minima, in quanto il sitoin cui sarà realizzata la sottostazione elettrica sarà adiacente alla linea elettrica di AT, utilizzata per la connessione;
- al fine di eliminare i rischi di elettrocuzione e collisione, le linee elettriche saranno interrate ed interruttori e trasformatori saranno posti all'interno dell'aerogeneratore, in navicella o a base torre. La connessione alla rete elettrica nazionale avverrà all'interno di una sottostazione completamente recintata.

### Protezione degli eventuali ritrovamenti di interesse archeologico

Dalla carta del rischio archeologico allegata al progetto non risulta che siano presenti beni archeologici nelle aree interessate dalle strutture dell'impianto, ma qualora, durante l'esecuzione dei lavori di costruzione del parco, si dovessero rinvenire resti archeologici, verrà tempestivamente informato l'ufficio della sovrintendenza competente per l'analisi archeologica.

#### 2.16 Guasti e malfunzionamenti

Per quanto concerne i potenziali guasti e malfunzionamenti dell'impianto, il Progetto ha esaminato il rischio di incidenti derivante dalla rottura accidentale degli aerogeneratori.

In particolare, è stata verificata la gittata massima degli elementi rotanti degli aerogeneratori nel caso di rottura.

Il rischio è stato valutato come combinazione di due fattori:

- la probabilità che possa accadere un determinato evento;
- la probabilità che tale evento abbia conseguenze sfavorevoli.

Appare evidente che, durante il funzionamento dell'impianto, il più grande rischio per le persone possa essere dovuto alla caduta di oggetti dall'alto.

Tali cadute possono essere dovute essenzialmente alla rottura accidentale di pezzi meccanici in rotazione ed a pezzi di ghiaccio formatisi sulle pale nei periodi invernali. Per quanto riguarda il distacco di frammenti di ghiaccio dalle pale, considerate le caratteristiche climatiche della zona in oggetto, si ritiene che tale possibilità incidentale sia praticamente nulla.

Nel seguito viene pertanto indagato solo il rischio derivante dal possibile distacco di elementi rotanti in caso di rottura, con particolare riferimento alla gittata massima di tali frammenti.

Per quanto riguarda il distacco di frammenti di pala occorre innanzitutto osservare che le pale dei rotori in progetto sono realizzate in fibra di vetro rinforzato con materiali plastici, quali il poliestere o le fibre epossidiche. L'utilizzo di questi materiali limita, sino a quasi annullare, la probabilità di distacco di parti meccaniche in rotazione: anche in caso di gravi rotture le fibre che compongono la pala la mantengono di fatto unita in un unico pezzo (seppure gravemente danneggiato).

La statistica riporta fra le maggiori cause di danno quelle prodotte direttamente o indirettamente dalle fulminazioni. Proprio per questo motivo il sistema navicella – rotoretorre tubolare sarà protetto con un parafulmine. In conformità a quanto previsto dalla norma CEI 81-1, la classe di protezione sarà quella più alta (Classe I). In termini probabilistici ciò significa un livello di protezione del 98% (il 2% di probabilità che a fulminazione avvenuta si abbiano danni al sistema).

Pertanto, in base alle caratteristiche di progetto, si evince che la probabilità che si produca un danno al sistema con successivi incidenti è molto bassa.

È stata comunque calcolata la gittata massima nel caso in cui si verifichino distacchi di parti meccaniche in rotazione.

Il valore calcolato per la Gittata massima dell'intera pala o di un suo frammento nel caso di rottura accidentale è il seguente:

#### $G_{Max}$ = 210 m (pala intera)

Il valore della gittata massima è pertanto pari a 210 m (distacco del frammento di pala di lunghezza pari a 1 m). Tale valore è stato calcolato nella specifica relazione di progetto, a cui si rimanda per le modalità di esecuzione del calcolo. Qui sottolineiamo che, tale valore è inferiore:

- alla distanza da strade statali e provinciali, che sarà pari almeno a 1.000 m per le strade statali e 300 m per le strade provinciali;
- alla distanza da centri abitati, che sarà pari almeno a 1,9 km (equivalente alla distanza tra l'aerogeneratore S10 e l'abitato di Salice Salentino.);
- alla distanza da edifici rurali abitati, che sarà pari almeno a 500 m.

In conclusione, si analizzano i principali rischi di incidente connessi con la fase di costruzione dell'impianto. Tali rischi sono quelli tipici della realizzazione di opere in elevato, quali carichi sospesi, cadute accidentali dall'alto, ecc. In fase di cantiere è previsto l'utilizzo di tutti i dispositivi di sicurezza e delle modalità operative per ridurre al minimo il rischio di incidenti, con ovvia conformità alla legislazione vigente in materia di sicurezza nei cantieri.

#### 2.17 Bilancio dei costi e benefici

Il presente paragrafo analizza il rapporto tra i costi ed i benefici derivanti dalla realizzazione e dall'esercizio del Parco Eolico.

In particolare, l'analisi ha compreso l'individuazione e la valutazione degli aspetti economici del Progetto, in termini di costi e ricadute positive, e confrontando questi con gli effetti ambientali, positivi e negativi, conseguenti alla realizzazione del Progetto stesso.

Nel bilancio sono stati presi in considerazione gli aspetti della programmazione di settore, in particolare gli andamenti della produzione energetica e gli obiettivi della pianificazione energetica italiana.

Le ricadute economiche dirette ed indirette sul territorio, dovute alla realizzazione del parco eolico, saranno, nella fase di costruzione:

- pagamento dei diritti di superficie ai proprietari dei terreni, nell'area di intervento;
- benefici diretti conseguenti alla progettazione dell'impianto ed agli studi preliminari necessari per la verifica di produttività dell'area, di compatibilità ambientale, ecc.;
- coinvolgimento di imprese locali in :
  - opere civili per la realizzazione di scavi, plinti di fondazione in c.a., strade di servizio;
  - opere elettromeccaniche per la realizzazione dell'impianto all'interno del parco eolico e per la connessione elettrica alla rete AT;
  - costruzione in officina e installazione in cantiere di torri tubolari;
  - costruzione pale del rotore da parte di imprese locali;
  - trasporti e movimentazione componenti di impianto.

I benefici diretti e indiretti che si verificano nella fase operativa, ovvero, nella fase di gestione dell'impianto e alla fine di ogni ciclo di vita dell'impianto.

#### Fase operativa:

- benefici locali legati alla manutenzione annuale delle torri, del verde perimetrale e delle strade;
- assunzione di 2 tecnici per la gestione dell'impianto e per tutta la sua vita utile;
- benefici locali legati ai canoni di affitto dei terreni su cui si collocano le strutture dell'impianto eolico;

- benefici connessi alle misure compensative a favore dei Comuni interessati;
- benefici legati all'attivazione di iniziative imprenditoriali locali che conciliano la produzione energetica con iniziative didattiche, divulgative e escursionistiche.

#### Fine ciclo:

- benefici diretti connessi al coinvolgimento di imprese locali per il ripristino della viabilità;
- benefici indiretti connessi all'ospitalità dei tecnici preposti al ripristino delle torri,
   ecc.;
- benefici diretti legati alla manutenzione straordinaria dell'elettrodotto, della sottostazione di trasformazione, ecc.

#### Ambiente: mancate emissioni

I benefici che la realizzazione del Progetto comporterebbe sull'ambiente sono dovuti essenzialmente alla mancata emissione di gas con effetto serra, come di seguito illustrato.

La produzione di energia elettrica mediante combustibili fossili comporta l'emissione di sostanze inquinanti e di gas serra. Il livello delle emissioni dipende dal combustibile e dalla tecnologia di combustione e controllo dei fumi. Di seguito sono riportati i fattori di emissione per i principali inquinanti emessi in atmosfera per la generazione di energia elettrica da combustibile fossile:

- CO<sub>2</sub> (anidride carbonica): 1.000 g/kWh;
- SO<sub>2</sub> (anidride solforosa): 1,4 g/kWh;
- NO<sub>2</sub> (ossidi di azoto): 1,9 g/kWh.

Tra questi gas, il più rilevante è l'anidride carbonica (o biossido di carbonio), il cui progressivo incremento potrebbe contribuire all'effetto serra e quindi ai cambiamenti climatici da esso indotti.

<u>Il Progetto con una produzione attesa di circa 104GWh annui, si stima possa evitare l'emissione di circa 43 milioni di kg di CO<sub>2</sub> ogni anno. Inoltre il Progetto eviterebbe l'emissione di circa 145 tonnellate di SO<sub>2</sub> e 197.6tonnellate di NO<sub>2</sub> ogni anno.</u>

Nell'ambito della strategia europea per la promozione di una crescita economica sostenibile, lo sviluppo delle fonti rinnovabili rappresenta un obiettivo prioritario per tutti gli Stati membri. Secondo quanto stabilito dalla direttiva 2009/28/CE, nel 2020 l'Italia avrebbe dovuto coprire il 17% dei consumi finali di energia mediante fonti rinnovabili. In realtà tale obiettivo è stato già raggiunto nel 2016 con 5 anni di anticipo.

\_\_\_\_\_

Nel nuovo documento sulla Strategia Energetica Nazionale approvato definitivamente con Decreto del Ministero dello Sviluppo Economico e Ministero dell'Ambiente in data 10 novembre 2017, sono indicate le seguenti priorità di azione:

- 1) Migliorare la competitività del paese riducendo il prezzo dell'energia e soprattutto il gap di costo rispetto agli altri paesi dell'UE;
- 2) Raggiungere gli obiettivi ambientali e di de-carbonizzazione al 2030 definiti a livello europeo, ma anche nel COP21;
- 3) Migliorare la sicurezza di approvvigionamento e di conseguenza flessibilità e sicurezza delle infrastrutture.

In tutti gli scenari previsti nella SEN sia di base che di policy, intesi in ogni caso come supporto alle decisioni, si prevede un aumento di consumi di energia da fonte rinnovabile al 2030 mai inferiore al 24% (rispetto al 17,5% registrato del 2016).

Passando al caso specifico è indubbio inoltre che, come ribadito in più punti nello stesso SEN, la realizzazione di un impianto eolico di grossa taglia, del tipo di quello proposto, possa contribuire al raggiungimento degli obiettivi proposti.

Dall'analisi dell'andamento dei costi medi di produzione dell'energia di alcune tecnologie rinnovabili, emerge chiaramente che nel volgere di pochi anni, non avranno più bisogno di incentivi. Questa considerazione vale in particolare per impianti eolici e fotovoltaici di grossa taglia i cui costi di realizzazione (e quindi di produzione) hanno comportato trend di riduzione tali che ormai li porta verso la cosiddetta *market parity*.

*Market parity* significa produzione di energia senza bisogno di incentivi e quindi diminuzione della componente di sostegno alle rinnovabili nella fatturazione elettrica. L'obiettivo del *marketparity*, ormai vicino, potrà essere raggiunto:

- grazie all'efficienza degli operatori e dei componenti (macchine di grossa taglia significa anche macchine più efficienti);
- grazie all'ammodernamento delle reti (così come peraltro previsto nella SEN) che permetteranno di avere nuovi assetti impiantistici in cui gli impianti da rinnovabili si integreranno meglio (produzione diffusa ed elevata interconnettività tra le reti).

Anche se nel breve-medio periodo (almeno fino al 2020) dovranno essere predisposte misure di sostegno e accompagnamento. A tal proposito, l'orientamento del legislatore ripreso nella SEN è quello di adottare meccanismi di gara competitiva eliminando "floor price" (Contratti per differenza, Contratti con premio) ed ancora introducendo strumenti che favoriscano la compra–vendita di energia verde con contratti di lungo termine.

Lo sviluppo delle rinnovabili concorre, non solo alla riduzione delle emissioni, ma anche al contenimento della dipendenza energetica. Quest'ultimo obiettivo sarà favorito da investimenti nel settore infrastrutturale che tengano conto sempre più della produzione distribuita dell'energia (ed anche ovviamente dell'autoconsumo) e da interventi legislativi che favoriscano sempre più la liberalizzazione del mercato elettrico a cui potranno e dovranno

affacciarsi nuovi *players*, ponendosi l'obiettivo ultimo di creare un mercato unico europeo dell'energia.

Considerato quanto già detto sulla disponibilità di tecnologie vicine alla *market parity*, o comunque con costi in diminuzione, va rimarcato ancora una volta come la nuova sfida per una completa integrazione nel sistema elettrico di queste fonti si sposterà dagli incentivi sulla produzione agli investimenti sulle infrastrutture di rete che dovranno svilupparsi in tempi congrui a garantire adeguatezza e flessibilità al nuovo assetto. A completamento di ciò, andranno, inoltre, definite nuove regole per l'integrazione nel mercato elettrico.

In sintesi, un impianto eolico di grossa taglia, quale quello proposto, nel giro di pochi anni potrà produrre energia ad un costo paragonabile a quello delle fonti fossili e contribuire alla diversificazione del mix energetico e direttamente o indirettamente alla diminuzione del prezzo dell'energia.

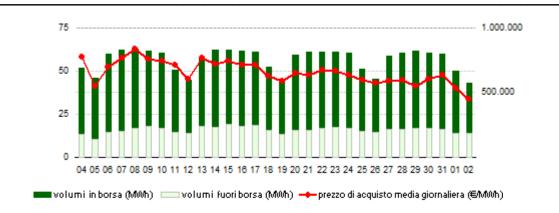
Per considerare l'efficienza dell'investimento dal punto di vista territoriale, si riporta una valutazione dei benefici e dei costi dell'intervento sia a livello locale (considerando solo i flussi di benefici e *costi esterni*che si verificano localmente), sia a livello globale (considerando i flussi di benefici e costi che si verificano a livello globale).

### Costo di produzione dell'energia da fonte eolica (LCOE)

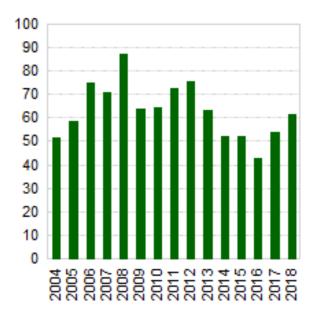
Ai costi sopra stimati va aggiunto il costo di produzione dell'energia elettrica perl'impianto in studio. In generale, i costi della generazione di elettricità dal vento dipendono da vari fattori, in particolare dall'intensità del vento nel sito prescelto, dal costo delle turbine e delle relativeattrezzature, dalla vicinanza alla rete elettrica nazionale e dall'accessibilità al sito. Innanzitutto è opportuno ricordare come l'individuazione e le caratteristicheanemologiche del sito prescelto abbiano un'indubbia importanza economica, in quanto lafisica chiarisce che la potenza della vena fluida è proporzionale al cubo della velocità delvento: se quest'ultima dovesse raddoppiare, matematicamente si potrebbe ottenere un'energiaotto volte maggiore. Inoltre, rispetto ad una tradizionale centrale alimentata con combustibili fossili, unacentrale a fonte rinnovabile è caratterizzata dall'assenza di oneri per il "combustibile", inquanto il vento è una risorsa assolutamente gratuita e perciò disponibile liberamente. Si deve tener anche conto del fatto che, nel breve termine, i costi iniziali diinvestimento predominano rispetto a quelli di esercizio, comportando una particolareattenzione alla copertura finanziaria dell'investimento, in modo particolare se si ricorre afinanziamenti di terzi.

Da oltre venti anni, ossia da quando l'industria del settore ha cominciato a raggiungere la sua maturità commerciale, il costo dell'energia eolica è in continua diminuzione, grazie alle economie di scala legate all'ottimizzazione dei processi produttivi, alle innovazioni e al conseguente miglioramento delle prestazioni delle macchine eoliche. In letteratura esistono vari studi che stimano i costi dell'energia generata da impianti eolici. Il più utilizzato è quello che utilizza l'approccio del "costo di produzione costante dell'energia", rapportato all'intera vita operativa dell'impianto, meglio conosciuto con l'acronimo LCOE (Levelized Cost of

Energy). Questo tipo di approccio, utilizzato, fra l'altro, per confrontare il costo della generazione elettrica delle diverse fonti (fossili e non), tiene conto dei costi di investimento del capitale (costi finanziari), costi di produzione e del costo delle operazioni di manutenzione degli impianti (costi industriali) e del costo del combustibile; costituisce inoltre un punto di riferimento nelle analisi dei costi di produzione dell'energia elettrica derivante dalle diverse fonti esistenti. E' evidente che il costo del capitale risulti essere il principale componente per le tecnologie rinnovabili, mentre, al contrario, il costo del combustibile ha un peso molto grande per la maggior parte di quelle fossili.


Il valore medio europeo del LCOE (Levelized Cost of Electricity) dell'eolico nel 2018 è stimato in 43,3 €/MWh. L'Italia però rimane la più costosa, con 61,5 €/MWh contro il minimo di 35,0 €/MWh dei Paesi Bassi, in calo sul 2017 del 2% (Fonte: Irex Report di Althesys, 2019).

Per il calcolo del LCOE si tengono in conto i costi industriali di realizzazione dell'impianto, i costi finanziari, i costi operativi e di manutenzione dell'impianto che si ripetono annualmente. Inoltre tale valore tiene in conto anche del tasso di rendimento netto (depurato dall'inflazione), che remunera il capitale dell'investimento iniziale. In definitiva il valore del LCOE tiene in conto anche la remunerazione della società che detiene l'impianto.


Per l'impianto in esame del tipo utility scale è evidente che l'LCOE è in realtà più basso rispetto alla media nazionale poiché le dimensioni dell'impianto permettono di avere economie di scala nei costi di costruzione, gestione e manutenzione dell'impianto, e poiché si utilizzano macchine di ultima generazione molto efficienti che sfruttano al meglio la risorsa eolica dell'area. Queste economie possono essere quantificate nell'ordine di almeno 10 punti percentuali, possiamo pertanto fissare il prezzo dell'energia prodotta dall'impianto eolico in esame con ottima approssimazione intorno ai 55,5 €/MW.

Analizziamo di seguito qual è il prezzo di vendita (medio) dell'energia in Italia, per paragonarlo con LCOE della produzione di energia da fonte eolica. Verificheremo che il prezzo di vendita è paragonabile al costo di produzione. A tal proposito riportiamo l'andamento grafico del prezzo di vendita dell'energia (PUN – Prezzo Unico Nazionale) in Italia nel mese di maggio 2019 (Fonte: sito internet Gestore Mercato Elettrico, gme.it)

€/MWh MWh



#### E ancora l'andamento del PUN nel periodo 2004-2018



PUN (Prezzo medio di vendita dell'energia in Italia) in €/MWh – fonte gme.it

Dai grafici si evince che è stata ormai raggiunta la cosiddetta "grid parity" per un impianto eolico quale quello in progetto, ovvero la produzione di energia da fonte eolica è remunerata dal prezzo di vendita sul mercato dell'energia. Il prezzo medio di vendita dell'energia per il 2018 è infatti superiore a 60 €/MWh a fronte di un LCOE medio per l'impianto eolico in studio stimato in circa 55,5 €/MWh. Rimarchiamo che tale prezzo tiene in conto anche la remunerazione della società che detiene l'impianto.

#### Costi esterni

Per quanto visto al paragrafo precedente è evidente, che l'LCOE, considera costi industriale e finanziari, ma non considera i "costi esterni" generati dalla produzione di energia da fonte solare fotovoltaica. In realtà l'effettivo costo dell'energia prodotta con una

determinata tecnologia è dato dalla somma dei costi industriali e finanziari sostenuti per la generazione elettrica lungo l'intero arco di vita degli impianti e dei *Costi Esterni* al perimetro dell'impresa sull'ambiente e sulla salute.

La produzione di energia da fonti convenzionali fossili (carbone, petrolio, gas naturale) genera come noto un problema di natura ambientale che stimola ormai da decenni la ricerca di soluzioni alternative, in grado di far fronte ai futuri crescenti fabbisogni energetici in modo sostenibile, ovvero con impatti per quanto più possibile limitati sull'ambiente.

L'elemento strategico per un futuro sostenibile è certamente il maggior ricorso alle energie rinnovabili, le quali presentano la caratteristica della "rinnovabilità", ossia della capacità di produrre energia senza pericolo di esaurimento nel tempo, se ben gestite; esse producono inoltre un tipo di energia "pulita", cioè con minori emissioni inquinanti e gas serra. Tra queste l'eolico, sembra essere al momento una delle tecnologie rinnovabili più mature con costi di produzione sempre più competitivi e vicini a quelli delle fonti fossili convenzionali.

Tuttavia anche la produzione di energia da fonte eolica, come d'altra parte tutte le energie rinnovabili, ha il suo costo ambientale. I costi ambientali non rientrano nel prezzo di mercato e pertanto non ricadono sui produttori e sui consumatori, ma vengono globalmente imposti alla società, ovvero si tratta esternalità negative o diseconomie. Tali costi sono tutt'altro che trascurabili e vanno identificati e stimati in ogni progetto.

Nella seconda metà degli anni Novanta del secolo scorso è stato sviluppato dall'Unione Europea un progetto denominato ExternE (Externalities of Energy), con l'obiettivo di sistematizzare i metodi ed aggiornare le valutazioni delle esternalità ambientali associate alla produzione di energia, con particolare riferimento all'Europa e alle diverse tecnologie rinnovabili. Il progetto in questione è basato su una metodologia di tipo bottom-up, la Impact PathwayMethodology, per valutare i costi esterni associati alla produzione di energia. La metodologia del progetto ExternE, definisce prima gli impatti rilevanti e poi ne dà una quantificazione economica. Purtroppo i valori economici riportati,poiché riferiti alla seconda metà degli anni novanta, non sono del tutto attendibili. Tuttaviapartiremo dalle conclusioni di questo Studio relative alla generazione eolica per poi arrivare aquantificare i costi ambientali facendo riferimento a studi più recenti.

Le esternalità rilevanti nel caso di impianti per la produzione di energia da fonte eolica individuate dallo studio ExternE sono dovute a rumore e l'impatto visivo ritenendo gli altri impatti trascurabili anche nella quantificazione monetaria. In particolare si afferma che l'impatto su flora, fauna, avifauna ed in generale sull'ecosistema è rilevante solo nel caso in cui l'impianto sia realizzato in aree di particolare valore naturalistico o in prossimità di aree di particolare valore per fauna e avifauna. Considera poi gli altri impatti (elettromagnetico, impatto sul suolo) del tutto trascurabili, dà una quantificazione monetaria ad eventi accidentali quali incidenti durante l'esercizio dell'impianto e incidenti sul lavoro durante la costruzione.

Passando al caso in esame (Parco Eolico SAVE Energy) è evidente che l'area di progetto è sufficientemente lontana da aree di interesse naturalistico in particolare dalle aree protette umide costiere. Inoltre l'area presenta caratteristiche del tutto differente dalle aree

umide costiere ed è caratterizzata da una pressoché totale antropizzazione agricola, non costituendo unecosistema fragile che potrebbe essere alterato o distrutto dalla realizzazione del parco eolico.

#### Impatto acustico - costo esterno

Dall'Analisi previsionale di impatto acustico di progetto si evince che gli effetti del rumore prodotto dalle pale che ruotano nell'aria (rumore bianco) sono significativi sino aduna distanza di 400-500 m dagli aerogeneratori. In linea teorica, pertanto, i terreni agricoli e le abitazioni poste entro questa distanza dagli aerogeneratori potrebbero subire un deprezzamento dovuto all'esercizio del parco eolico. Ora considerando l'inviluppo dell'area individuata da ipotetici cerchi di raggio 500 m intorno agli aerogeneratori questa, per il parco eolico SAVE ENERGY ha una estensione complessiva di 19,625 ha x10 = 196,25 ha. Rileviamo inoltre che in tale intorno (500 m dagli aerogeneratori) non ci sono edifici abitati, di rilevante valore (solo alcuni ruderi, e depositi agricoli) pertanto non daremo una stima della perdita di valore di alcun edificio,generata dal rumore prodotto dagli aerogeneratori.

Il prezzo commerciale dei terreni agricoli a seminativo, uliveto e vigneto nell'area varia da un minimo di 10k€/ha ad un massimo di 25 k€/ha. Volendo fare una stima per eccesso possiamo dire che il prezzo medio dei terreni agricoli nell'area è di 20 k€/ha.

Supponendo ora che il rumore generato dalle turbine eoliche comporti un deprezzamento dei terreni del 25% (valore assolutamente sovrastimato dal momento che si tratta di terreni ad uso agricolo, attività compatibile con la realizzazione di un impianto eolico), possiamo concludere che la realizzazione del parco eolico genera una perdita di valore e quindi un costo esterno di 5 k€/ha, e complessivamente un costo ambientale di:

Questo valore va poi rapportato alla quantità di energia prodotta. Così come indicato nell'Analisi di Producibilità di progetto, il parco eolico produce in un anno 135.780MWh dienergia e quindi in 20 anni:

135,780 GWh/anno x 20 anni= 2.715.600.000 kWh

Pertanto il costo esterno (o ambientale) dovuto al rumore prodotto dagli aerogeneratori lo stimiamo in:

 $981.300 \notin /2.715.600.000 \text{ kWh} = 0.00036 \notin /\text{kWh}$ 

Ovvero poco meno di 0,4 millesimi di euro per kWh prodotto. Dal momento che la produzione annua è come detto di 135.780 MWh/anno, il costo esterno dovuto all'impatto acustico è stimato su base annua in:

135.780.000 kWh x 0,00036 €/kWh= 48.880,8 €/anno

Impatto visivo – costo esterno

una baia dell'Alaska procurando un disastro naturale di notevole entità.

Per la stima del costo ambientale dell'impatto visivo generato dal Parco Eolico, faremo riferimento ad uno studio redatto dal Professore Domenico Tirendi dell'Università di Napoli che da una stima monetaria dell'impatto paesaggistico con il metodo della valutazione di contingenza. La valutazione di contingenza è una metodologia nata negli Stati Uniti per stimare il danno prodotto su una risorsa ambientale la cui gestione è pubblica. Questa metodologia fu applicata con successo per la prima volta nel 1989 per stimare il danno

ambientale prodotto dallo sversamento di petrolio da una petroliera che naufragò nei pressi di

Il Prof. Tirendi ha utilizzato tale metodologia per valutare l'impatto paesaggistico prodotto dalla realizzazione di due parchi eolici nei Comuni di Accadia e Sant'Agata di Puglia, nel sub appennino Dauno. Riprendendo un passaggio dello Studio."Il paesaggio in quanto bene pubblico viene consumato da turisti e residenti senza alcuna spesa. Il fatto che non sia pagato, però, non significa che il paesaggio non abbia un suo valore. Un consumatore, infatti, potrebbe essere disposto a pagare per la sua fruizione/mantenimento (valore d'uso corrente), per poterne usufruire in futuro (valore d'opzione), perché ne possano usufruire le future generazioni (valore di lascito), per il piacere che altri individui possano goderne (valore vicario) e per il solo fatto che un bene territoriale con quelle caratteristiche esista (valore di esistenza). La valutazione di contingenza consiste nel domandare ad un campionedi individui quale sia la massima disponibilità a pagare (DAP) per il mantenimento/miglioramento della qualità di una risorsa mirando a tracciare una curva di domanda altrimenti latente. Questo strumento, fondato su questionari compilati attraverso interviste del tipo "in persona" ad un campione casuale di 200 residenti dei comuni di Accadia e Sant'Agata (per un totale di 400 interviste complessive ha avuto come obiettivo principale la misurazione del possibile danno arrecato al paesaggio dalla presenza delle turbine eoliche."

In pratica, nel caso specifico, è stato chiesto a questo campione significativo di abitanti dei due comuni quanto fossero disposti a pagare per una delocalizzazione dei Parchi Eolici in altre aree indicando nella stessa domanda i valori di 5€, 10 €, 25€, 50 €. E' evidente che questa "valorizzazione" è stata richiesta solo a chi era disposto a pagare ovvero ad autotassarsi per non avere l'impianto eolico nel territorio comunale. Nel questionario dopo una serie di domande preparatorie è stato richiesto all'intervistato di esprimere la propria disponibilità a pagare (DAP) per ottenere la delocalizzazione degli impianti eolici presenti nel proprio ambito comunale. La richiesta relativa alla DAP è stata preceduta dalla descrizione del seguente scenario: «La Giunta Regionale della Puglia sta studiando un Piano di localizzazione dei nuovi impianti eolici, per quelli già attivi, laddove sia evidente la presenza di impatti negativi sul paesaggio circostante sta valutando la possibilità di delocalizzare gli impianti «off-shore» (sul mare) sul basso adriatico a notevole distanza dalla costa in modo da risultare non visibile anche attraverso l'uso di colori in grado di renderne minimo l'impatto visivo. Lei sarebbe a favore di uno spostamento delle turbine? (SI - NO). Essendo la delocalizzazione molto onerosa la Regione interverrà nella misura del 50% dei costi,

lasciando la restante parte a carico dei cittadini. Se la sua famiglia fosse chiamata a contribuire con un contributo di  $\in$  x da pagare una sola volta per attuare questo programma, lei come voterebbe?».

Nella quantificazione della DAP, come detto, è stato proposto un ammontare monetario di 5€, 10€, 25 €, 50€

I risultati sono stati i seguenti: ad Accadia sul campione di 200 abitanti, 87 persone (43,5%)sono disposte a pagare e mediamente sono disposte a pagare  $17,6 \in$ .

A Sant'Agata di Puglia sul campione di 200 abitanti sono disposte a pagare 95 persone (47,5%) e mediamente sono disposte a pagare  $17,6 \in$ .

Mediando ulteriormente i dati dei due comuni possiamo dire che il 45,5% dei residenti è disposto a pagare una somma di 17,6 €, per delocalizzare il parco eolico e non avere l'impatto visivo da esso prodotto. Considerando inoltre che la ricerca è del 2006 e che l'indice di rivalutazione ISTAT da gennaio 2006 ad ottobre 2019 (ultimo dato disponibile) è pari a 1,189, abbiamo

$$17,6 \in x1,189 = 20,93 \in$$
.

Passando ora al caso del Parco Eolico di Save Energy di Salice Salentino e Veglie e sovrastimando i risultati della ricerca condotta nei due comuni dauni, possiamo considerare che il 70% della popolazione residente sia disposta a pagare 100 € per delocalizzare il parco eolico.

La popolazione residente la riferiamo a quella complessiva di tutti i comuni che si trovano in un intorno di 15 km dal Parco Eolico (dati ISTAT).

| Comune           | Provincia | Distanza(km) | Popolazione (ab.) | Data Rilevamento |
|------------------|-----------|--------------|-------------------|------------------|
| Avetrana         | Taranto   | 8,7          | 6357              | 1/1/2021         |
| Erchie           | Brindisi  | 10,5         | 8349              | 1/1/2021         |
| San Pancrazio S  | Brindisi  | 4            | 9493              | 1/1/2021         |
| Cellino S.M.     | Brindisi  | 10,5         | 6242              | 1/1/2021         |
| San Donaci       | Brindisi  | 8,8          | 6249              | 1/1/2021         |
| Guagnano         | Lecce     | 3,3          | 5558              | 1/1/2021         |
| Salice Salentino | Lecce     | 1,9          | 7926              | 1/1/2021         |
| Veglie           | Lecce     | 3,4          | 13623             | 1/1/2021         |
| Porto Cesareo    | Lecce     | 10,5         | 6240              | 1/1/2021         |
| Carmiano         | Lecce     | 8,9          | 11641             | 1/1/2021         |

| Novoli          | Lecce | 9,2  | 7766    | 1/1/2021 |
|-----------------|-------|------|---------|----------|
| Leverano        | Lecce | 9,2  | 13794   | 1/1/2021 |
| Squinzano       | Lecce | 10,5 | 13541   | 1/1/2021 |
| Campi Salentina | Lecce | 6,7  | 9890    | 1/1/2021 |
| TOTALE          |       |      | 112.700 |          |

E quindi il costo ambientale stimato per l'impatto visivo prodotto dalla realizzazione del parco eolico è di

Rapportandolo anche in questo caso alla quantità di energia prodotta nei venti anni, abbiamo:

$$7.889.000.00 \notin / 2.715.600.000 \text{ kWh} = 0.0029 \notin / \text{kWh}$$

Questo costo esterno non tiene conto del valore assegnato al paesaggio dai turisti e non residenti che attraversano l'area. Non trattandosi comunque di un'area turistica, ma tipicamente agricola, incrementiamo il costo ambientale calcolato per i residenti del 30%, ottenendo infine una stima del costo esterno dovuto all'impatto paesaggistico:

#### costo esterno dovuto all'impatto paesaggistico = 0,0038 €/kWh

Dal momento che la produzione annua è come detto di 152.271 MWh/anno, il costo esterno dovuto all'impatto visivo è stimato su base annua in:

#### 135.780.000 kWh x 0,0038 €/kWh= 515.964 €/anno

#### Benefici globali

La produzione di energia da fonti rinnovabili genera degli indubbi benefici su scala globale dovuti essenzialmente alla mancata emissione di CO<sub>2</sub> ed altri gas che emessi in atmosfera sono nocivi per la saluta umana, oltre ad essere una delle principali cause del cosiddetto cambiamento climatico. I costi esterni evitati per mancata produzione di CO<sub>2</sub>, tengono in conto le esternalità imputabili a diversi fattori collegate:

- ai cambiamenti climatici: da una minore produzione agricola,
- ad una crescita dei problemi (e quindi dei costi) sanitari per i cittadini,
- dalla minor produttività dei lavoratori,
- dai costi di riparazione dei danni ambientali generati da fenomeni meteo climatici estremi

Uno studio dell'Università di Stanford pubblicato nel 2015 ha fissato il "costo sociale" (o costo esterno) di ogni tonnellata di CO2 emessa in atmosfera in 220 dollari. Valore ben superiore al volare di 37 \$/t di CO2 (pari a circa 33 €/t di CO2), che gli USA utilizzano come riferimento per ponderare le proprie strategie di politica energetica ed indirizzare le azioni di mitigazione climatica.

Il protocollo di Kyoto ha indicato, tra l'altro, ai Paesi sottoscrittori la necessità di creare dei mercati delle emissioni di CO2 (Carbon Emission Market). Il primo mercato attivo è stato quello europeo chiamato EU ETS (EuropeanEmission Trading Scheme), esso è il principale strumento adottato dall'Unione europea per raggiungere gli obiettivi di riduzione della CO2 nei principali settori industriali e nel comparto dell'aviazione. Il sistema è stato introdotto e disciplinato nella legislazione europea dalla Direttiva 2003/87/CE (Direttiva ETS), ed è stato istituito nel 2005.

Il meccanismo è di tipo *cap&trade* ovvero fissa un tetto massimo complessivo alle emissioni consentite sul territorio europeo nei settori interessati (cap) cui corrisponde un equivalente numero "quote" (1 ton di CO2eq. = 1 quota) che possono essere acquistate/vendute su un apposito mercato (trade). Ogni operatore industriale/aereo attivo nei settori coperti dallo schema deve "compensare" su base annuale le proprie emissioni effettive (verificate da un soggetto terzo indipendente) con un corrispondente quantitativo di quote. La contabilità delle compensazioni è tenuta attraverso il Registro Unico dell'Unione mentre il controllo su scadenze e rispetto delle regole del meccanismo è affidato alle Autorità Nazionali Competenti (ANC).

Le quote possono essere allocate a titolo oneroso o gratuito. Nel primo caso vengono vendute attraverso aste pubbliche alle quali partecipano soggetti accreditati che acquistano principalmente per compensare le proprie emissioni ma possono alimentare il mercato secondario del carbonio. Nel secondo caso, le quote vengono assegnate gratuitamente agli operatori a rischio di delocalizzazione delle produzioni in Paesi caratterizzati da standard ambientali meno stringenti rispetto a quelli europei (c.d. carbon leakage o fuga di carbonio). Le assegnazioni gratuite sono appannaggio dei settori manifatturieri e sono calcolate prendendo a riferimento le emissioni degli impianti più "virtuosi" (c.d. benchmarks, prevalentemente basati sulle produzioni più efficienti).

Indipendentemente dal metodo di allocazione, il quantitativo complessivo di quote disponibili per gli operatori (cap) diminuisce nel tempo imponendo di fatto una riduzione delle emissioni di gas serra nei settori ETS: in particolare, al 2030, il meccanismo garantirà un calo del 43% rispetto ai livelli del 2005.

L'EU ETS, in tutta Europa, interessa oltre 11.000 impianti industriali e circa 600 operatori aerei. In Italia sono disciplinati più di 1.200 soggetti che coprono circa il 40% delle emissioni di "gas serra" nazionali.

I diritti europei per le emissioni di anidride carbonica, in pratica i "permessi ad inquinare", sono stati scambiati nel 2018 ad un prezzo medio di 15,43 €/t CO2, come

chiaramente indicato nella tabella sotto. I prezzi di aggiudicazione ottenuti dall'Italia sono i medesimi degli altri Stati membri aderenti alla piattaforma comune europea

Tabella 4: Proventi d'asta mensili per l'Italia nel 2018 da quote EUA

| Anno | Mese      | Quote collocate Italia | Prezzo d'aggiudicazione IT €/tCO2 | Proventi italiani ( |
|------|-----------|------------------------|-----------------------------------|---------------------|
| 2018 | gennaio   | 7.667.000              | € 8,35                            | € 64.117.030        |
|      | febbraio  | 8.364.000              | € 9,33                            | € 78.057.030        |
|      | marzo     | 8.364.000              | € 11,27                           | € 94.227.430        |
|      | aprile    | 9.061.000              | € 13,19                           | € 119.558.025       |
|      | maggio    | 6.273.000              | € 14,89                           | € 93.391.030        |
|      | giugno    | 8.364.000              | € 15,18                           | € 126.972.490       |
|      | luglio    | 9.758.000              | € 16,26                           | € 158.637.200       |
|      | agosto    | 4.158.000              | € 18,61                           | € 77.369.985        |
|      | settembre | 7.667.000              | € 21,74                           | € 166.694.520       |
|      | ottobre   | 9.758.000              | € 19,49                           | € 190.169.480       |
|      | novembre  | 9.061.000              | € 18,77                           | € 170.061.030       |
|      | dicembre  | 4.862.500              | € 20,74                           | € 100.846.180       |
|      | Totale    | 93.357.500             | € 15,43                           | € 1.440.101.430     |

Prezzo medio ponderato delle EUA (European Union Allowances) nel 2018 (Fonte GSE – Rapporto Annuale aste di quote europee di emissione)

Tuttavia tale valore è destinato sicuramente a salire in relazione a situazioni contingenti (Brexit), ma anche, come detto in considerazione che il meccanismo stesso prevede una diminuzione nel tempo (fino a 2030) di quote disponibili per gli operatori (cap).

In relazione a questi fatti già nell'aprile del 2019 l'EUA è salito a 26,89 €/t CO2, ed è intuibile che questo valore cresca. E' evidente, inoltre, che il valore dell'EUA costituisca comunque una indicazione del costo esterno associato all'emissione di CO2 in atmosfera.

Sulla base delle considerazioni sopra esposte possiamo considerare valido il valore di 33 €/t di CO₂ emessa in atmosfera come costo esterno (ovvero il costo utilizzato negli USA) da prendere in considerazione per la valutazione dei benefici (globali) introdotti dalla mancata emissione di CO₂ per ogni kWh prodotto da fonte fotovoltaica.

Sulla base del mix di produzione energetica nazionale italiana, ISPRA (Istituto Superiore per la Protezione e Ricerca Ambientale) in uno studio del 2015, valuta che la sostituzione di un kWh prodotto da fonti fossili con uno prodotto da fonti rinnovabili consente di evitare l'emissione di 554,6 g CO2. Tale valore tiene anche in conto il fatto che sebbene nella fase di esercizio le fonti rinnovabili non producano emissioni nocive, nella fase di costruzione dei componenti di impianto (p.e. moduli fotovoltaici), si genera una pur piccola quantità di emissioni di gas nocivi con effetto serra.

In considerazione dei dati sopra riportati in definitiva possiamo considerare che per ogni kWh prodotto dall'impianto eolico in oggetto sia abbia una mancata emissione di CO2 in atmosfera quantificabile da un punto di vista monetario in:

#### $0.033 \notin kg \times 0.5546 \text{ kg/kWh} = 0.018 \notin kWh$

L'impianto eolico SAVE Energy ha una potenza installata di 60 MW e una produzione annua netta attesa di 135.780 MWh.

Con beneficio annuo per mancata emissione di CO2, pari a:

#### 135.780.000 kWh x 0.018 €/kWh= 2.444.040 €/anno

Altri benefici globali o meglio non locali, peraltro difficilmente quantificabili in termini monetari, almeno per un singolo impianto, sono:

- 1. La riduzione del prezzo dell'energia elettrica. Negli anni il prezzo dell'energia elettrica è sceso per molte cause calo della domanda (dovuta alla crisi economica), calo del prezzo dei combustibili, aumento dell'offerta. La crescita di eolico e fotovoltaico con costi marginali di produzione quasi nulli ha contribuito ad abbassare i prezzi sul mercato dell'energia, portando a forti riduzioni del PUN. Ricordiamo a tal proposito che per l'impianto in progetto non sono previsti incentivi statali (impianto in *gridparity*), che, tipicamente,a loro volta sono pagati, di fatto, nelle bollette elettriche.
- 2. Riduzione del *fuel risk* e miglioramento del mix e della sicurezza nazionale nell'approvvigionamento energetico. La crescente produzione da fonti rinnovabili comporta una minore necessità di importazione di combustibili fossili, riducendo la dipendenza energetica dall'estero.
- 3. Altre esternalità evitate. La produzione di energia da combustili fossili comporta oltre alle emissioni di CO<sub>2</sub>, anche l'emissione di altri agenti inquinanti NH3, NOx, NMVOC, PM e SO<sub>2</sub>, che generano aumento delle malattie, danni all'agricoltura, e agli edifici, che generano ulteriori costi esterni, ovvero costi sociali, evitabili con un diverso mix energetico.
- 4. Altre ricadute economiche dirette. La realizzazione di impianti quali quello in progetto generano un valore aggiunto per tutta la catena del valore della filiera nelle fasi di finanziamento dell'impianto (banche, compagnie assicurative, studi legali, fiscali, notarili), realizzazione dei componenti (ad esempio inverter, strutture di sostegno dei moduli), progettazione, installazione, gestione e manutenzione dell'impianto ed ovviamente anche nella produzione di energia.
- 5. Altre ricadute economiche indirette. La crescita di una filiera comporta un aumento di PIL e quindi di ricchezza pubblica e privata del Paese, con effetti positivi sui consumi, sulla creazione di nuove attività economiche e nei servizi.

Infine è proficuo rammentare che la realizzazione dell'impianto fotovoltaica in progetto è in linea con quanto definito nella SEN (Strategia Energetica Nazionale). La SEN si pone come obiettivi al 2030:

- l'aumento della competitività del Paese allineando i prezzi energetici a quelli europei,
- il miglioramento della sicurezza nell'approvvigionamento e nella fornitura dell'energia,
- la decarbonizzazione del sistema di approvvigionamento energetico.

E' evidente che un ulteriore sviluppo delle energie rinnovabili costituisce uno dei punti principali (se non addirittura il principale) per il conseguimento degli obiettivi del SEN. Benché l'Italia abbia raggiunto con largo anticipo gli obiettivi rinnovabili del 2020, con una penetrazione del 17,5% sui consumi già nel 2015, l'obiettivo indicato nel SEN è del 28% al 2030. In particolare le rinnovabili elettriche dovrebbero essere portate al 48-50% nel 2030, rispetto al 33,5% del 2015.Il SEN propone di concentrare l'attenzione sulle tecnologie rinnovabili mature, quali il fotovoltaico, il cui LCOE è vicino al market parity, che dovranno essere sostenute non più con incentivi alla produzione ma con sistemi che facilitino gli investimenti

In conclusione è evidente che la realizzazione dell'impianto fotovoltaico in progetto comporterebbe dei benefici globali ben superiori al costo esterno generato dalla stessa realizzazione dell'impianto.

#### Benefici Locali

A fronte dei benefici globali sopra individuati e quantificati dobbiamo considerare, d'altra parte, che i costi esterni sono sopportati soprattutto dalla Comunità e dall'area in cui sorge l'impianto, dal momento che gli impatti prodotti dall'impianto fotovoltaico sono esclusivamente locali.

Vediamo allora quali sono le contropartite *economiche*del territorio a fronte dei costi esterni sostenuti.

Innanzi tutto il Comune di Salice Salentino e Veglie, in cui è prevista l'installazione dell'impianto percepirà in termini di IMU un introito annuale quantificabile in 12.000,00 € per ogni aerogeneratore e quindi complessivamente

I proprietari dei terreni percepiranno in media 20.000,00 € (aree per plinti di fondazione, piazzole e strade di esercizio) per aerogeneratore per la cessione del diritto di superficie, e quindi

$$20 \times 20.000,00 \in = 400.000,00 \in /anno$$

L'attività di gestione e manutenzione dell'impianto è stimata essere di 50.000,00 €/anno per ogni aerogeneratore. Assumendo cautelativamente che solo il 20% (10.000,00 €/WTG) si appannaggio di imprese locali (sorveglianza, piccole opere di manutenzione), stimiamo cautelativamente, un ulteriore vantaggio economico per il territorio di:

$$10 \times 10.000,00 \in = 100.000,00 \in /anno$$

Per quanto concerne i costi di costruzione dell'impianto e delle relative opere di connessione si stima un costo di 800.000,00 €/MW. Considerando, ancora in maniera conservativa, che il 10% (80.000,00 €/MW) sia appannaggio di imprese locali, abbiamo complessivamente un introito di:

Non considerando (conservativamente) alcun tasso di attualizzazione e dividendo semplicemente per 20 anni (durata del periodo di esercizio dell'impianto così come autorizzato dalla Regione Puglia), abbiamo:

In pratica consideriamo un ulteriore introito per il Territorio di circa 240 mila euro ogni anno per 20 anni.

Per la gestione operativa di un impianto eolico quale quello in progetto, necessita l'assunzione di almeno due operatori che con cadenza giornaliera si rechino presso l'impianto. Necessariamente pertanto queste maestranze dovranno essere locali. La ricaduta economica sul territorio è quantificabile in 60.000,00 €/anno.

Infine tra i benefici locali non andiamo a quantificare introiti legati soprattutto alle attività di consulenza, quali servizi tecnici di ingegneria, servizi di consulenza fiscale, che tipicamente (ma non necessariamente) sono affidati a professionisti locali.

In definitiva abbiamo la seguente quantificazione dei benefici locali.

|                                                 | BENEFICI LOCALI   |
|-------------------------------------------------|-------------------|
| IMU                                             | 120.000,00 €/anno |
| Diritto di superficie a proprietari dei terreni | 400.000,00 €/anno |
| Manutenzione impianto                           | 100.000,00 €/anno |
| Lavori di costruzione                           | 240.000,00 €/anno |
| Assunzioni per gestione operativa impianto      | 60.000,00 €/anno  |
| TOTALE                                          | 920.000,00 €/anno |

#### Confronto tra costi esterni e benefici locali e globali

I benefici globali e locali sopra individuati e quantificati vanno infine confrontati con la stima dei costi esterni stimati.

Abbiamo visto che i costi esterni nel caso di un impianto eolico sono sostanzialmente dovuti all'impatto acustico e a quello paesaggistico/ visivo. Dalla stima effettuata abbiamo

- Costi esterni imputabili ad impatto visivo 517.721,40 €/anno
- Costi esterni imputabili ad impatto acustico 295.406,00 /anno
- Costi esterni totali 813.127,40 €/anno

In tabella è riportato il confronto tra la quantificazione dei costi esterni, benefici locali, benefici locali, ribadendo peraltro che i benefici globali e locali sono sicuramente sottostimati.

| COSTI ESTERNI    | BENEFICI GLOBALI   | BENEFICI LOCALI   |
|------------------|--------------------|-------------------|
| 516.012,88€/anno | 2.444.000,00€/anno | 920.000,00 €/anno |

E' evidente dalle stime effettuate che

- i benefici globali (ampiamente sottostimati) sono più del triplo dei costi esterni
- i benefici locali sono comunque superiori (15%) dei costi esterni.

Il bilancio costi – benefici (sia a livello globale sia a livello locale) riferito all'impianto in progetto è sempre positivo. In definitiva abbiamo un saldo ambientale in positivo anche se consideriamo benefici locali e impatti locali

### Sommario

| 1. | QU      | ADRO PROGETTUALE                                                     | 1  |
|----|---------|----------------------------------------------------------------------|----|
|    | 1.0     | Descrizione delle soluzioni progettuali considerate                  | 1  |
|    | 1.0.    | 2 Alternative tecnologiche e localizzative                           | 2  |
|    | 1.1     | Localizzazione dell'impianto                                         | 5  |
|    | Criteri | paesaggistico - ambientali per la localizzazione dell'impianto       | 5  |
|    | 1.2     | Criteri progettuali per la localizzazione dell'impianto              | 10 |
|    | 1.2.    | 2 Motivazione della soluzione progettuale prescelta                  | 20 |
| 2. | Des     | scrizione del Progetto                                               | 21 |
|    | 2.0     | Principali caratteristiche del progetto                              | 21 |
|    | 2.1     | Aerogeneratori                                                       |    |
|    | 2.2     | Fondazioni                                                           | 23 |
|    | 2.3     | Trincee ed elettrodotti                                              | 25 |
|    | 2.4     | Sottostazione elettrica di connessione e consegna (SSE)              | 26 |
|    | 2.5     | Strade e piste                                                       | 27 |
|    | 2.6     | Aree di cantiere per l'installazione degli aerogeneratori (piazzole) | 28 |
|    | 2.7     | Mezzi d'opera ed accesso all'area di intervento                      | 29 |
|    | 2.8     | Esercizio e funzionamento dell'impianto                              | 32 |
|    | 2.9     | Utilizzazione delle risorse naturali                                 | 33 |
|    | 2.10    | Piano di dismissione dell'impianto                                   | 34 |
|    | 2.11    | Programma di attuazioneper la costruzione                            | 39 |
|    | 2.12    | Misure di mitigazione e compensazione                                | 40 |
|    | 2.13    | Protezione del suolo dalla dispersione di oli e altri residui        | 40 |
|    | 2.14    | Conservazione del suolo vegetale                                     | 41 |
|    | 2.15    | Trattamento degli inerti                                             | 41 |
|    | 2.16    | Guasti e malfunzionamenti                                            | 43 |
|    | 2.17    | Bilancio dei costi e benefici                                        | 45 |