



# COLLEGAMENTO TRA LA VALFONTANABUONA E L'AUTOSTRADA A12 GENOVA-ROMA

### PROGETTO DEFINITIVO

# **GEOLOGIA**

# INDAGINI GEOFISICHE CAMPAGNA 2013 Volume 2

IL GEOLOGO

Dott. Vittorio Boerio Ord. Geologi Lombardia N. 794

RESPONSABILE UFFICIO GEO

IL RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE

Ing. Sara Frisiani Ord. Ingg. Genova N. 9810A

CAPO COMMESSA

IL DIRETTORE TECNICO

Ing. Maurizio Torresi Ord. Ingg. Milano N. 16492 RESPONSABILE DIREZIONE OPERATIVA TECNICA E PROGETTAZIONE

| WBS |                 |    |   |        |       |                | RI   | FER  | IME1      | NTO   | EL | ABO            | RATO | 5    |      |    |    |       |          |     | DATA:         |    | REV | /ISIONE |  |
|-----|-----------------|----|---|--------|-------|----------------|------|------|-----------|-------|----|----------------|------|------|------|----|----|-------|----------|-----|---------------|----|-----|---------|--|
|     |                 |    |   | DIRETT | rorio |                |      |      |           |       |    |                |      | F    | TLE  |    |    |       |          |     | DICEMBRE 2014 | n. |     | data    |  |
|     | codice commessa |    |   |        | N.F   | N.Prog. unita' |      |      | ufficio n |       | n. | n. progressivo |      | R    | Rev. |    |    |       |          |     |               |    |     |         |  |
|     | 1.              |    | _ | _      |       |                |      |      |           |       |    |                |      |      |      |    |    | 7     |          |     | SCALA:        |    |     |         |  |
| 6   | 11              | 11 | 0 | 0      | 11    | 31             | ıO١  | 2    | S         | T     | P  | G              | E    | 0    | 0    | 0  | 12 | 3     | <b>-</b> | -   | -             |    |     |         |  |
|     |                 | L. |   |        |       |                |      |      |           |       | Ľ  |                |      |      |      |    |    |       |          |     |               |    |     |         |  |
|     |                 |    |   |        |       |                | T    |      |           |       |    |                |      |      |      | T  | E  | LABOR | RAZIO    | ONE |               |    |     |         |  |
|     |                 |    |   |        |       |                | al v | orer | MANE      | CADII | FF | POC            | ETTO | 1 00 | MOLA | /A |    | GRAF  |          |     |               |    |     |         |  |

RESPONSABILE PROGETTO GENOVA
Ing. Orlando Mazza
Ord. Ingg. Pavia N. 1496

CONSULENZA
A CURA DI:

RESPONSABILE PROGETTO GENOVA
Ing. Orlando Mazza
Ord. Ingg. Pavia N. 1496

RESPONSABILE PROGETTO GENOVA
Ing. Orlando Mazza
Ord. Ingg. Pavia N. 1496

RESPONSABILE PROGETTO GENOVA
Ing. Orlando Mazza
Ord. Ingg. Pavia N. 1496

RESPONSABILE PROGETTO GENOVA
A CURA DI:

RESPONSABILE UNITA' STP

IL RESPONSABILE
UNITA' STP

Ing. Andrea Tanzi O.I. Parma N.1154

VISTO DEL COMMITTENTE

autostrade per l'italia

R.U.P. - Ing. Andrea Frediani

VISTO DEL CONCEDENTE



Ministero delle Infrastrutture e dei Trasporti
DIPARTIMENTO PER LE INFRASTRUTTURE, GLI AFFRANGENERALI EDIL PERSONALE
ENTRE PER





### SPEA INGEGENERIA EUROPEA SPA

### **Tunnel Val Fontanabuona (GE)**

# Fascicolo 2 Indagini geofisiche



| 012cm13  COMMESSA | REV. | Giugno 2013  DATA | SPERIMENTATORE    | DIRETTORE       |
|-------------------|------|-------------------|-------------------|-----------------|
|                   |      |                   | Pado Pareno le 10 | Then I come who |

VICENZETTO s. r. l. unipersonale

35040, Villa Estense (PD), Via Municipio n° 18 Tel. +39-429-91798 – Fax +39-429-91200 **info@vicenzetto.it** – www.vicenzetto.it





### SPEA INGEGENERIA EUROPEA SPA

### **Tunnel Val Fontanabuoona (GE)**

#### **INDICE**

- 1 PREMESSA
- **2 RILIEVI SISMICI A RIFRAZIONE**
- 3 RILIEVI SISMICI IN FORO CON METODOLOGIA CROSS-HOLE

### **Appendice**

Dati analitici rilievi sismici in foro Cross-Hole

#### Allegati

Allegato1 Planimetrie
Allegato2 Dromocrone
Stendimento 1

Stendimenti 2 – 3 Stendimenti 4-5-6-7-8 Stendimenti9-10-11

Tracce sismiche

Allegato3 Documentazione fotografica

Allegato4 Coordinate Gauss Boaga geofoni e shots



#### 1 PREMESSA

La scrivente società, su incarico della soc. Vicenzetto srl, ha effettuato un'indagine geofisica consistente nell'esecuzione di sismica a rifrazione mediante onde P e SH e misura cross-hole nel territorio comunale di Moconesi e Garbarini in provincia di Genova.

Scopo dell'indagine è quello di verificare lo stato di rigidezza dei mezzi indagati nonché la presenza di discontinuità stratigrafiche e tettoniche.

Nei paragrafi che seguono si riportano le generalità e le modalità esecutive adottate per le misure effettuate.

Le indagini geofisiche sono state eseguite nel periodo Giugno 2013.

Di seguito si riporta il dettaglio delle indagini:

#### 2. RILIEVI SISMICI A RIFRAZIONE

| Profilo sismico a rifrazione n° | Tipologia di<br>acquisizione | Interdistanza<br>Geofoni (m) | Geofoni<br>n° | Lunghezza<br>complessiva * (m) |
|---------------------------------|------------------------------|------------------------------|---------------|--------------------------------|
| 1                               | onde P ed S <sub>H</sub>     | 5                            | 24            | 125                            |
| 2                               | onde P ed S <sub>H</sub>     | 5                            | 24            | 125                            |
| 3                               | onde P ed S <sub>H</sub>     | 5                            | 24            | 125                            |
| 4                               | onde P ed S <sub>H</sub>     | 5                            | 24            | 125                            |
| 5                               | onde P ed S <sub>H</sub>     | 5                            | 24            | 125                            |
| 6                               | onde P ed S <sub>H</sub>     | 5                            | 12            | 125                            |
| 7                               | onde P ed S <sub>H</sub>     | 5                            | 24            | 125                            |
| 8                               | onde P ed S <sub>H</sub>     | 5                            | 24            | 125                            |
| 9                               | onde P ed S <sub>H</sub>     | 5                            | 24            | 125                            |
| 10                              | onde P ed S <sub>H</sub>     | 5                            | 16            | 85                             |
| 11                              | onde P ed S <sub>H</sub>     | 5                            | 24            | 110                            |

<sup>\*</sup> Si ricorda che la misura riportata per il profilo è comprensiva dei punti di scoppio esterni allo stendimento geofonico realizzato.

#### **PROVE CROSS HOLE**

| Sondaggi   | Profondità (m) |  |  |  |  |
|------------|----------------|--|--|--|--|
| FB9bis/ter | 40             |  |  |  |  |

La prova Cross-Hole è stata eseguita anch'essa a Giugno 2013.



Le registrazioni sismiche sono state eseguite con un'interdistanza fra le misure pari ad 1,0 metri, a partire da fondo foro fino al piano campagna. La prima misura a fondo foro è stata realizzata a 39 m da p.c. per la presenza di fanghi di perforazione depositati sul fondo del foro.

### Strumentazioni impiegate

Per l'esecuzione delle misure sperimentali sono state utilizzate le seguenti strumentazioni ed attrezzature:

| n° | Strumentazione per i rilievi topografici              |
|----|-------------------------------------------------------|
| 1  | Sistema GPS a doppia antenna – ASHTECH mod. ProMark 3 |
|    | Materiale d'uso vario                                 |

| n° | Strumentazione per i profili sismici                                                |
|----|-------------------------------------------------------------------------------------|
| 1  | Sismografo ABEM "RAS24" 24 ch - 24 bit ABEM Instrument - Sweden                     |
| 1  | Notebook ACER Aspire one per registrazione dei dati di campagna                     |
| 24 | Geofoni verticali con frequenza pari a 14 Hz                                        |
| 24 | Geofoni orizzontali con frequenza pari a 14 Hz                                      |
| 1  | Cavi geofonici con 12 take-outs spaziate di 5 metri                                 |
| 1  | Hammer switch per dispositivo time-break                                            |
| 1  | Fucile sismico / Massa battente da 8 kg                                             |
|    | Cavi e prolunghe per il dispositivo di time-break e per il collegamento sismografo- |
|    | notebook                                                                            |

| n° | Strumentazione per le prove Cross-Hole                                                                                          |
|----|---------------------------------------------------------------------------------------------------------------------------------|
| 1  | Sismografo ABEM "RAS24" 24 ch - 24 bit ABEM Instrument - Sweden                                                                 |
| 1  | Notebook ACER Aspire one per registrazione dei dati di campagna                                                                 |
| 1  | Cavo di collegamento per il geofono a 5 componenti                                                                              |
| 1  | Geofono 5D da foro GEOTOMOGRAPHIE MOD. bgk5, a frequenza propria di 10 Hz, munito di ancoraggio pneumatico alla parete del foro |
| 1  | Hammer da foro per energizzazione P e S con dispositivo di ancoraggio meccanico                                                 |
| 1  | Bombola ad idrogeno per ancoraggio geofoni e Hammer                                                                             |



| 1 | Sonda inclinometrica                     |
|---|------------------------------------------|
| 1 | Hammer switch per dispositivo time-break |
|   | Cavi e prolunghe per collegamenti vari   |

| Softw                    | are per interpretazione      | e dati sismici                                                                          |
|--------------------------|------------------------------|-----------------------------------------------------------------------------------------|
| Seistronix RAS24         | Seistronix - USA             | Sistema di gestione del sismografo RAS24, acquisizione e registrazione dei dati sismici |
| Geogiga E-Fit            | Geogiga Corp<br>Canada       | Editing dati sismici                                                                    |
| Geogiga DW Tomo          | Geogiga Corp<br>Canada       | Tomografia sismica a rifrazione                                                         |
| GeoTomographie Sort & CO | Geotomographie -<br>Germania | Sismica in foro                                                                         |
|                          | Software per editir          | ng                                                                                      |
| Word 2007                | Microsoft                    | Editor di testi                                                                         |
| Excel 2007               | Microsoft                    | Foglio di calcolo                                                                       |
| ProgeCad 2012            | Intellicad                   | Editing disegni                                                                         |

#### Indagine di sismica a rifrazione

Lo scopo della prova consiste nel determinare il profilo di rigidezza del sito attraverso la misura diretta della velocità di propagazione delle onde di compressione (Vp) e delle onde di taglio (Vs<sub>H</sub>), in maniera tale da determinare le geometrie sepolte (spessori e superfici di contatto) dei sismostrati individuati.

L'indagine sismica a rifrazione è stata condotta secondo il capitolato predisposto dalla stazione appaltante e in particolare:

ogni stendimento è composto da 24 geofoni verticali e orizzontali da 14 Hz distanziati di 5 m l'uno dall'altro. In realtà, per le misure con onde SH, si sono utilizzate copie di geofoni collegate elettricamente come da fig. 1 in maniera tale da dimezzare i tempi di acquisizione e/o migliorare il rapporto segnale/rumore.



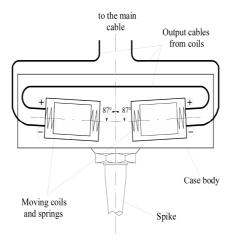



Fig. 1: schema di collegamento a coppie di geofoni orizzontali (da Deidda et al.)

- Per ogni stendimento sono state effettuate 7 acquisizioni (2 esterne e 5 interne).
- Come sorgente per onde SH si è utilizzato un pendolo da 20 kg battuto energicamente su una traversina ferroviaria opportunamente zavorrata per gli stendimenti eseguiti lungo la strada e il fucile sismico per quelli su pendio.
- Come sorgente per onde P si è utilizzato il fucile sismico con cartucce industriali tipo 8KILN.

Le indagini sismiche hanno consentito di tracciare dei profili di velocità che hanno delineato la distribuzione spaziale dei sismostrati per qualche decina di m di profondità. E' stato pertanto possibile definire lo spessore e la distribuzione volumetrica di massima della suddetta porzione di terreno.

Come è noto, la velocità di propagazione delle onde sismiche cambia al passaggio fra i terreni in funzione principalmente della loro densità e del modulo elastico. La velocità di propagazione delle onde sismiche può infatti variare in funzione del grado di compattazione / cementazione di uno stesso litotipo.

L'elaborazione e interpretazione dei dati acquisiti sono riassumibili negli allegati riportati e nelle note che seguono consistenti in:

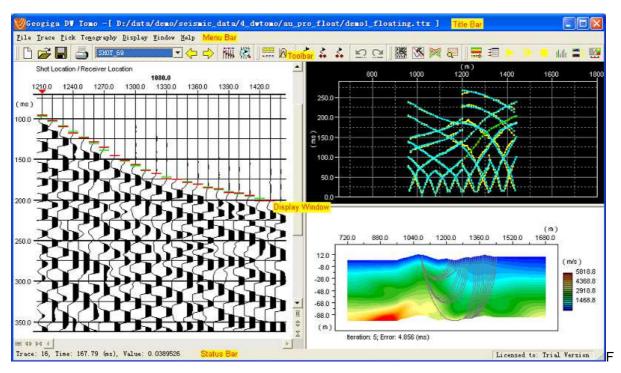
Allegato 1: Ubicazione misure.

Allegato 2: Curve tempi / distanze (dromocrone) e Sezioni tomografiche con relative velocità.



Per quanto concerne la metodologia di analisi seguita, essa è consistita nella elaborazione dei dati acquisiti con metodo tomografico. Si è quindi proceduto alla elaborazione dei dati secondo i seguenti steps:

Costruzione di un modello di velocità mediante il programma E-Fit (Interactive Event Fitting Tool) della Geogiga (Canada), previo filtraggio e amplificazione;


riconoscimento dei primi arrivi delle onde S (picking dei dati) mediante il programma DW Tomo della Geogiga (Canada) e costruzione delle relative dromocrone;

elaborazione secondo la tecnica tomografica mediante il programma DW Tomo della Geogiga (Canada), a partire dal modello di velocità ottenuto.

La tomografia sismica è una tecnica cosiddetta di "Imaging" che consente di ricostruire una sezione bidimensionale di velocità sismica dei terreni, mediante l'analisi di una molteplicità di percorsi di onde sismiche fra stazioni trasmittenti, corrispondenti ai punti di energizzazione e i singoli geofoni dello stendimento. L'elaborazione consiste essenzialmente nella risoluzione di un problema inverso a partire da una griglia bidimensionale di celle, a cui è possibile attribuire una velocità sismica iniziale. Modificando i valori di velocità di ciascuna cella, si cerca di ridurre in modo iterativo, la differenza esistente fra i dati calcolati e quelli realmente misurati sul terreno. Il risultato finale è costituito da un modello di velocità sismiche del terreno, che meglio risponde alle misure sperimentali.

In particolare, il programma utilizzato (DW Tomo della Geogiga Corp. – Canada), utilizza algoritmi genetici nel processo iterativo. La figura che segue (fig. 2) visualizza i vari passaggi del processing: dal dato di campagna (sismogramma) si passa al riconoscimento dei primi arrivi (l'istante in cui arriva il treno d'onde generato) per la ricostruzione delle curve dromocrone (curve tempi-distanze), a seguito del quale si impostano i parametri di inversione del dato per arrivare alla sezione sismica tomografica.





ig. 2: Esempio di processing dei dati

#### **Metodologie Operative**

Come detto, gli stendimenti sono stati eseguiti con una geometria a 24 geofoni. E' stata utilizzata un'interdistanza di 5 m per tutti i profili, come richiesto dalle specifiche tecniche.

In definitiva, l'analisi ha conseguito i seguenti scopi:

- determinazione del numero di intervalli sismici;
- determinazione delle velocità sismiche di ogni intervallo;
- determinazione delle potenze di ogni intervallo.

Per le misure é stato utilizzato 1 sismografo a 24 canali mod. RAS24 a 24 bits con scarico dei dati direttamente su p.c..

Il sismografo consente di amplificare e di filtrare il segnale stesso per una lettura più precisa dei primi arrivi. E' inoltre dotato del dispositivo "signal enhancement", la qual cosa facilita il riconoscimento dei primi arrivi nel caso che il segnale risultasse troppo debole.

Di seguito si riporta in foto il sismografo utilizzato





Fig. 3: Sismografo ABEM RAS24

#### Risultati

I risultati delle indagini sono riportati negli elaborati allegati.

In linea di massima le velocità misurate per le onde P (Vp) variano dai 350 m/s per i terreni superficiali sciolti, ai 5600 m/s per la roccia in posto massiccia.

Le onde S hanno fatto registrare velocità comprese tra 200 m/s e 3500 m/s.

Per poter confrontare direttamente le varie sezioni la scala cromatica è stata uniformata sia per le onde P che per le onde S e risulta compresa tra 350 m/s e 3800 m/s. Per questo motivo, talvolta, alcune "anomalie" ad elevata velocità Vp risultano poco visibili rispetto a quelle Vs. I terreni sciolti presentano velocità Vp comprese tra 325 e 700 m/s e Vs comprese tra 160 e 350 m/s. La fascia di transizione composta verosimilmente da rocce fratturate fa registrare velocità max di 1700 m/s (Vp) e 1000-1200 m/s (Vs).

In genere comunque il substrato lapideo è ovunque sub-affiorante e sovente si passa da terreni sciolti superficiali a rocce che presentano velocità piuttosto elevate, senza una apprezzabile fascia di transizione di rocce alterate.

Nelle sezioni allegate si è comunque cercato di evidenziare il passaggio tra terreni e rocce e, ove presenti, tra rocce alterate e rocce massicce. Si sono inoltre evidenziate



alcune discontinuità sismiche laterali che possono essere interpretate come discontinuità tettoniche o come semplici anisotropie laterali.

#### SISMICA IN FORO CON METODOLOGIA CROSS-HOLE

La strumentazione utilizzata, nonché le caratteristiche tecniche delle stesse, sono descritte nei precedenti paragrafi. Per l'esecuzione della prova è stata seguita la specifica dettata dalla ISRM: "Suggested methods for Seismic Testing Within and Between Boreholes", nonché le specifiche tecniche generali di progettazione.

Il foro su cui sono state condotte le misure, coincide con la postazione FB9; in realtà si tratta di una coppia di fori posizionati a 4.9 m di interasse l'uno dall'altro: l'esatto schema di ubicazione reciproca è riportato in allegato. In corrispondenza di ognuno di essi sono state condotte le prove secondo lo schema indicato in fig. 5. I tubi, attrezzati con rivestimento in PVC di 3" cementati all'esterno e riempiti con acqua, sono stati perforati fino alla profondità di 40 metri da piano campagna.

La distanza fra ogni foro è di 4.9 m (bocca foro); le misure sismiche sono state precedute dalla misura di verticalità dei fori, di cui si riportano i risultati in termini di distanze lineari nelle tabelle allegate.

Le letture inclinometriche vengono effettuate calando la sonda di misura lungo due guide del tubo inclinometrico. Nella fattispecie, non avendo guide il rivestimento del foro, la sonda inclino metrica è stata dotata anche di un sensore magnetoresistivo (bussola elettronica), in grado di misurare la direzione della sonda stessa rispetto al nord magnetico con precisione di 1°.

La sonda utilizzata è il mod. INC MOB 2A-5 fabbricato dalla soc. Tecno Penta di Padova, che ne cura le costanti verifiche di taratura. Questa è dotata di sensori biassiali, disposti fra di loro ortogonalmente e in asse al corpo sonda.

Il passo delle misure adottato è pari a 2 m.

Il sensore inclinometrico posto nella parte superiore ha le seguenti caratteristiche:

- campo di misura +/- 40 gradi a f.s.;
- tensione di ingresso 8 V dc max;
- impedenza di ingresso: 7 ohm +/- 30;
- sensibilità di uscita: 0.75 +/- 0.15 % V in/1 grado;



- linearità: +/- 1 % f.s. (= +/- 0.2 %);

- tempo di risposta: 0.3 sec (appr.);

- olio smorzatore: olio siliconico 200 CS;

- sensibilità di inclinazione (inclusa isteresi): 0.01 grado.

Le componenti dell'inclinazione sono visualizzate e registrate dal display digitale a cristalli liquidi della centralina, che costituisce l'unità di lettura inclinometrica.

Nella sonda inclinometrica, esiste un sensore che serve per la misurazione in continuo della temperatura che viene rilevata nel display della centralina di acquisizione.

Questa possibilità risulta utile nel caso che in un tubo inclinometrico si verifichino grossi sbalzi di temperatura, e permette eventuali correzioni dei dati prima di effettuare l'interpretazione definitiva con programma automatico. Nel caso specifico non si è dovuti ricorrere ad alcuna correzione.

La centralina di misura ha le seguenti caratteristiche tecniche:

- display 4 1/2 digits;

- lettura 20000 sen a:

- risoluzione: 1/20000 sen a;

- temperatura di utilizzo: - 5/+ 50 °C;

- alimentazione: 12 V dc;

- batteria: 12 V dc;

- consumo: 4 mA;

- K strumentale: 10000.

Le caratteristiche del termometro sono le seguenti:

- campo di misura: 0/50 °C;

- precisione: 0.2 °C.

#### Rilievi cross-hole (onde P ed S)

 Energizzazione: dispositivo meccanico con sistema di trigger da contatto (chiusura diretta del circuito elettrico).

 Accuratezza del timing misurato mediante apposito test dal sismografo pari a 30 μs (±3 μs) su tutti i canali collegati.



- Ricevitori: n. 2 geofoni triassiali con ancoraggio alle pareti dei tubi del tipo pneumatico con freq. pari a 15 Hz.
- Sismografo ABEM RAS24 da 24 canali, 24 bit.

I dati ottenuti dall'acquisizione di campagna sono stati opportunamente elaborati e interpretati così da ottenere le tavole finali.

#### Introduzione

La prova sismica in foro con metodologia cross-hole (CH) consiste nel misurare il tempo di percorso, e quindi la velocità, delle onde dirette P ed S generate da una sorgente meccanica, nel tragitto sorgente-ricevitori in una data sezione di sottosuolo tra due fori di sondaggio all'interno dei quali sono posti, alla stessa profondità, in uno la sorgente e nell'altro i ricevitori.

Si studiano, quindi, i treni d'onde, P, e Sv, che si propagano all'interno del terreno alle varie profondità, con vibrazioni polarizzate nella direzione di propagazione (onde P), e dirette perpendicolarmente alla direzione di propagazione e polarizzate su un piano verticale (onde SV). Mediante un ricevitore (geofono) disposto nel foro, a profondità note, viene valutato l'istante di arrivo del treno di onde P e S, rispetto all'istante in cui vengono indotte le sollecitazioni dalla sorgente; dividendo quindi per tali valori la distanza (nota) tra sorgente e ricevitori, si può ricavare la velocità delle onde P e S.

#### Modalità di acquisizione

Come sorgente energizzante sia per le onde P che per le onde S è stato utilizzato un martello sismico da foro in grado di generare onde elastiche ad alta frequenza ricche di energia con forme d'onda ripetibili e direzionali, e con la possibilità di ottenere onde di taglio di tipo SV di buon contenuto energetico, uniformi sia nella direzione di propagazione sia nella polarizzazione (+ e -). A tal proposito è stata utilizzata l'opzione di "negative stacking", che consente di sommare le due acquisizioni a polarizzazione invertita così da amplificare il segnale delle onde S e minimizzare quello delle onde P.

Per la ricezione delle onde P e delle onde S è stato utilizzato un geofono da foro Geotomographie a 5 componenti (una componente verticale e quattro componenti orizzontali) con frequenza propria di 10 Hz (vedi figura 4) dotato di meccanismo di ancoraggio alle pareti del foro pneumatico.





Fig. 4: sistema pneumatico di ancoraggio

Durante le registrazioni sono state effettuate misure ogni metro di profondità (dal basso verso l'alto e viceversa), come schematizzato in figura 5.

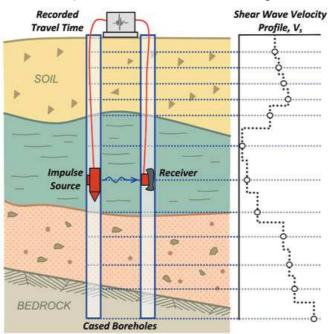



Fig. 5: schema prova cross hole

#### Elaborazione dati

Il risultato finale della fase di acquisizione è costituito da una serie di files in formato SEG-2 poi uniti in un unico file formato sgy. Per quanto riguarda l'interpretazione dei tracciati e la determinazione delle velocità di propagazione delle onde sismiche, si è proceduto con un'analisi visuale delle registrazioni e con opportuni filtraggi al fine di migliorare la qualità del segnale.

Successivamente su ciascuna traccia è stato individuato il tempo di primo arrivo.

Mediante software opportuni, i tempi letti sono stati corretti in funzione della geometria del sistema (distanza effettiva dei fori).



Ogni punto sui diagrammi Profondità-Velocità rappresenta la velocità di propagazione delle onde sismiche registrate dal geofono ad una determinata profondità.

#### Parametrizzazione elasto-dinamica

L'importanza di una corretta valutazione della velocità delle onde di compressione e di taglio, insieme con la densità del mezzo attraversato, è fondamentale per una giusta determinazione dei parametri elasto-dinamici del mezzo.

Determinare esattamente i valori dei moduli che caratterizzano il mezzo permette di ottenere utili informazioni circa la sua natura e il tipo di risposta alle sollecitazioni dinamiche.

Per ciò che concerne la velocità delle onde di taglio S, essendo sensibili alla presenza di fluidi, esse forniscono un'idea più chiara dello stato fisico della matrice dei *porous media*; infatti individuano le aree a maggior fratturazione, con cadute di velocità molto più evidenti, soprattutto nelle formazioni sature, in cui i valori di velocità delle matrice non sono molto diversi da quelle dell'acqua.

#### Coefficiente di Poisson dinamico

Il coefficiente di Poisson dinamico è stato calcolato a partire dalla velocità delle onde longitudinali Vp e di taglio Vs, poiché tra i moduli elastodinamici è l'unico che non richiede la conoscenza della densità per la sua determinazione, ed è definito dalla seguente relazione:

$$\sigma = \frac{1}{2} * \frac{\left(\frac{Vp}{Vs}\right)^2 - 2}{\left(\frac{Vp}{Vs}\right)^2 - 1}$$

In teoria è considerato stress indipendente e pertanto, nei vari campi di sforzodeformazioni può assumere valori diversi (il campo di deformazioni oggetto di indagine geofisica è di circa 10<sup>6</sup>).

In questo campo di deformazione il limite minimo non è rappresentato dal valore di 0.25 tipico di corpi perfettamente elastici, ma può assumere anche valori negativi, come nel caso di sedimenti incoerenti, saturi in aria in cui la disposizione dei granuli è a porosità maggiore di quella esagonale. In generale i valori di questo coefficiente varia tra 0.25 e 0.33, ma nei mezzi porosi il campo di variazione è molto più ampio (anche fino a 0.5).

I valori più bassi, in natura, si registrano per litotipi ad alta porosità, sottoposti a bassa pressione litostatica e gas saturati; in alcuni sedimenti incoerenti e saturi i



valori possono risultare uguali o superiori a 0.49, mentre nelle sospensioni assume il valore di 0.5. In generale riesce a discriminare rocce in posto, anche se estremamente alterate, dai depositi recenti quali colluvioni, accumuli di frana, etc.

Altri parametri elastici determinati sono:

G = modulo di taglio dinamico

$$G = \rho \cdot V_s^2$$

E = modulo elastico dinamico

$$E = (2 \cdot G) \cdot (1 + \nu)$$

$$\mu = \frac{v \cdot E}{(1+v) \cdot (1-2v)}$$

Lame' = costante di Lame'

Bulk = modulo di compressibilità volumetrico

$$k = \mu + 2/3 \cdot G$$

In allegato sono riportati i grafici relativi ai risultati delle elaborazioni.

#### Risultati

Nelle tabelle seguenti sono riportati i risultati della parametrizzazione elasto-dinamica per il Cross-Hole effettuato.

#### Conclusioni

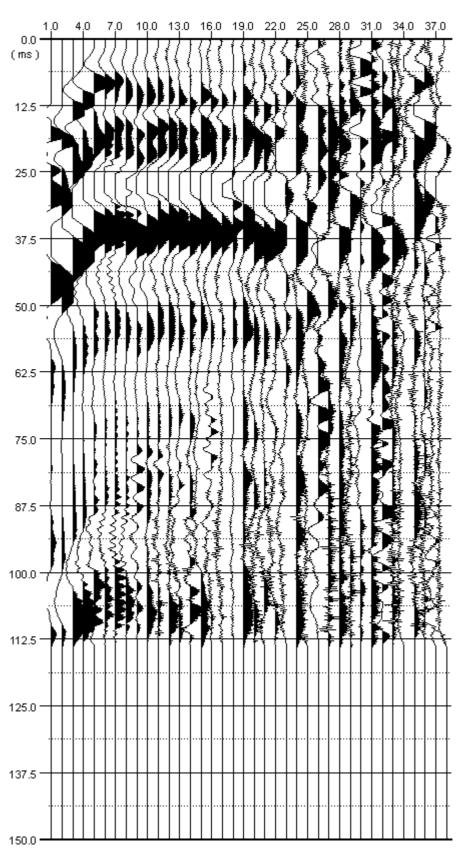
Sulla base dei risultati ottenuti con la metodologia sismica in foro tipo CROSS-HOLE nei siti oggetto di studio, si è proceduto a costruire il diagramma delle velocità delle onde P e Sh.

Sono stati calcolati alcuni parametri elasto-dinamici (tra cui il Poisson dinamico) che hanno permesso di caratterizzare il sottosuolo nei siti indagati. Tali parametri sono di seguito elencati in appendice (Dati Analitici Cross-Hole).



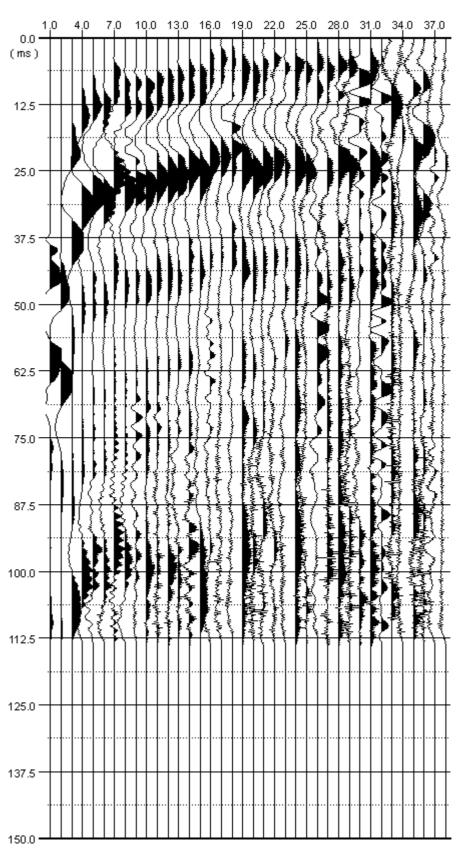
# **APPENDICE**

Dati Analitici rilievi Cross-Hole

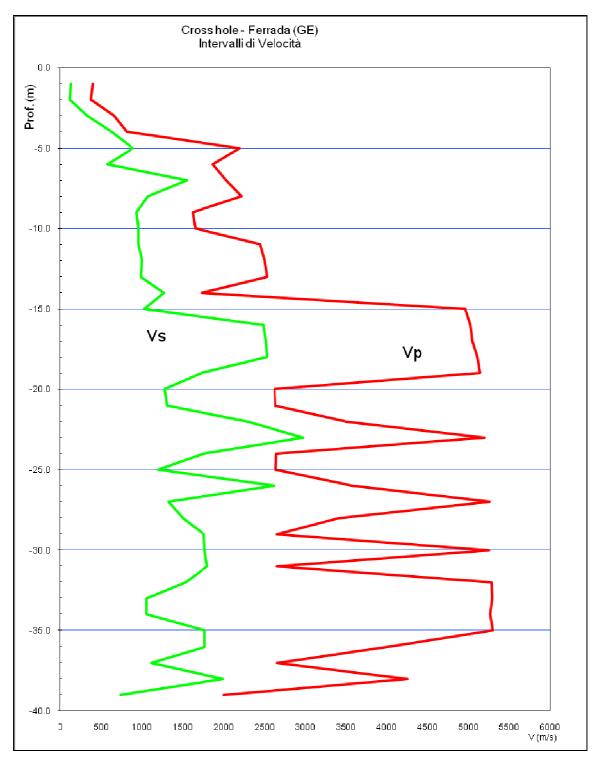



|           | •         | Vs1   |       |                |         |         |         |       |       | ı      |        |
|-----------|-----------|-------|-------|----------------|---------|---------|---------|-------|-------|--------|--------|
| Prof. (m) | Vp1 (m/s) | (m/s) | Vp/Vs | Densità (t/mc) | Poisson | G (MPa) | E (MPa) | Lamè  | Bulk  | Tpcorr | Tscorr |
| -1        | 398       | 134   | 2.97  | 1.6            | 0.44    | 29      | 82      | 195   | 214   | 12.31  | 36.52  |
| -2        | 372       | 119   | 3.14  | 1.6            | 0.44    | 22      | 64      | 173   | 188   | 13.17  | 41.31  |
| -3        | 651       | 330   | 1.97  | 1.7            | 0.33    | 190     | 505     | 361   | 488   | 7.52   | 14.85  |
| -4        | 812       | 625   | 1.30  | 1.8            |         | 711     | 1102    |       | 253   | 6.03   | 7.84   |
| -5        | 2195      | 892   | 2.46  | 2.2            | 0.40    | 1749    | 4903    | 7103  | 8270  | 2.23   | 5.50   |
| -6        | 1866      | 580   | 3.22  | 2.1            | 0.45    | 719     | 2079    | 5994  | 6473  | 2.63   | 8.44   |
| -7        | 2034      | 1553  | 1.31  | 2.2            |         | 5227    | 8384    |       | 2002  | 2.41   | 3.16   |
| -8        | 2219      | 1072  | 2.07  | 2.2            | 0.35    | 2535    | 6832    | 5781  | 7471  | 2.21   | 4.57   |
| -9        | 1617      | 935   | 1.73  | 2.1            | 0.25    | 1817    | 4537    | 1797  | 3008  | 3.03   | 5.24   |
| -10       | 1652      | 956   | 1.73  | 2.1            | 0.25    | 1905    | 4757    | 1880  | 3150  | 2.97   | 5.13   |
| -11       | 2446      | 960   | 2.54  | 2.2            | 0.41    | 2070    | 5832    | 9297  | 10677 | 2.00   | 5.10   |
| -12       | 2500      | 1004  | 2.49  | 2.3            | 0.40    | 2272    | 6380    | 9550  | 11065 | 1.96   | 4.88   |
| -13       | 2532      | 988   | 2.56  | 2.3            | 0.41    | 2207    | 6223    | 10076 | 11547 | 1.94   | 4.96   |
| -14       | 1726      | 1269  | 1.36  | 2.1            |         | 3387    | 6168    |       | 1744  | 2.84   | 3.86   |
| -15       | 4960      | 1033  | 4.80  | 2.6            | 0.48    | 2739    | 8092    | 57714 | 59540 | 0.99   | 4.75   |
| -16       | 5020      | 2485  | 2.02  | 2.6            | 0.34    | 15904   | 42548   | 33083 | 43685 | 0.98   | 1.97   |
| -17       | 5043      | 2519  | 2.00  | 2.6            | 0.33    | 16346   | 43606   | 32847 | 43744 | 0.97   | 1.95   |
| -18       | 5108      | 2534  | 2.02  | 2.6            | 0.34    | 16588   | 44347   | 34221 | 45279 | 0.96   | 1.93   |
| -19       | 5140      | 1727  | 2.98  | 2.6            | 0.44    | 7717    | 22167   | 52893 | 58037 | 0.95   | 2.84   |
| -20       | 2621      | 1280  | 2.10  | 2.3            | 0.34    | 3728    | 10016   | 8170  | 10655 | 1.87   | 3.83   |
| -21       | 2633      | 1313  | 2.01  | 2.3            | 0.33    | 3924    | 10473   | 7935  | 10551 | 1.86   | 3.73   |
| -22       | 3500      | 2302  | 1.52  | 2.4            | 0.12    | 12741   | 28508   | 3967  | 12461 | 1.40   | 2.13   |
| -23       | 5194      | 2976  | 1.75  | 2.6            | 0.26    | 22944   | 57621   | 24012 | 39308 | 0.94   | 1.65   |
| -24       | 2645      | 1751  | 1.51  | 2.3            | 0.11    | 6992    | 15517   | 1963  | 6625  | 1.85   | 2.80   |
| -25       | 2641      | 1200  | 2.20  | 2.3            | 0.37    | 3281    | 8990    | 9327  | 11514 | 1.86   | 4.08   |
| -26       | 3575      | 2624  | 1.36  | 2.4            |         | 16620   | 30448   |       | 8690  | 1.37   | 1.87   |
| -27       | 5264      | 1324  | 3.98  | 2.6            | 0.47    | 4552    | 13349   | 62871 | 65906 | 0.93   | 3.70   |
| -28       | 3400      | 1504  | 2.26  | 2.4            | 0.38    | 5408    | 14909   | 16822 | 20427 | 1.44   | 3.26   |
| -29       | 2656      | 1763  | 1.51  | 2.3            | 0.11    | 7087    | 15681   | 1916  | 6640  | 1.85   | 2.78   |
| -30       | 5254      | 1767  | 2.97  | 2.6            | 0.44    | 8109    | 23291   | 55464 | 60870 | 0.93   | 2.77   |
| -31       | 2658      | 1803  | 1.28  | 2.3            |         | 7417    | 15934   | 1291  | 6236  | 1.84   | 2.72   |
| -32       | 5291      | 1538  | 3.44  | 2.6            | 0.45    | 6151    | 17886   | 60500 | 64601 | 0.93   | 3.19   |
| -33       | 5299      | 1064  | 1.44  | 2.6            | 0.48    | 2944    | 8710    | 67150 | 69113 | 0.92   | 4.61   |
| -34       | 5272      | 1063  | 4.96  | 2.6            | 0.48    | 2937    | 8686    | 66355 | 68313 | 0.93   | 4.61   |
| -35       | 5303      | 1769  | 3.00  | 2.6            | 0.44    | 8137    | 23394   | 56900 | 62325 | 0.92   | 2.77   |
| -36       | 4001      | 1772  | 2.25  | 2.5            | 0.38    | 7747    | 21349   | 23981 | 29146 | 1.22   | 2.76   |
| -37       | 2657      | 1112  | 2.39  | 2.3            | 0.39    | 2821    | 7864    | 10464 | 12345 | 1.84   | 4.41   |
| -38       | 4249      | 1998  | 2.13  | 2.5            | 0.36    | 9957    | 27046   | 25127 | 31765 | 1.15   | 2.45   |
| -39       | 2002      | 730   | 2.74  | 2.2            | 0.41    | 1172    | 3305    | 5339  | 6120  | 2.45   | 6.71   |

Tab. 1: Parametri elasto-dinamici prova Cross-Hole e tempi corretti relativi per ogni intervallo

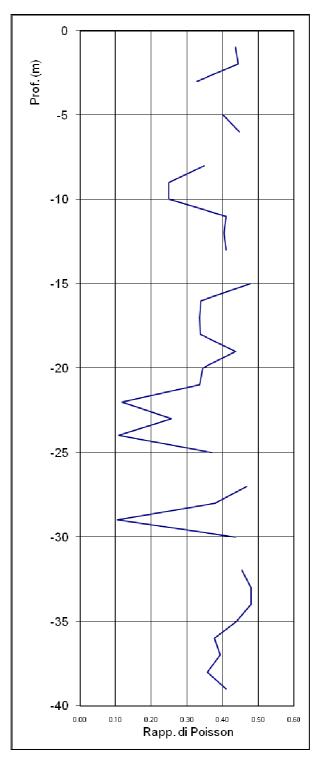



### SISMOGRAMMI ONDE P - PROVA CROSS - HOLE



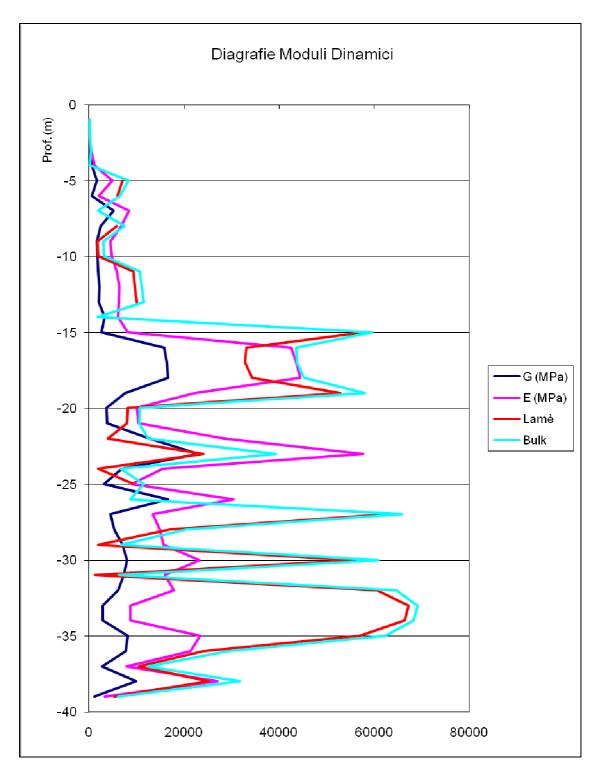



### SISMOGRAMMI ONDE s - PROVA CROSS - HOLE









Diagrafia velocità Vp e Vs

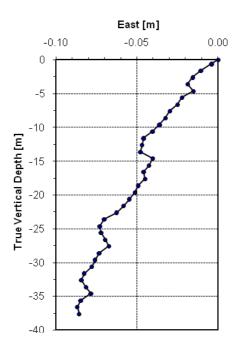




Diagrafia coeff. Di Poisson





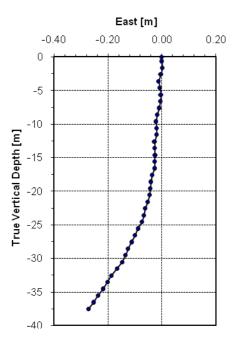

Diagrafie moduli elastici dinamici

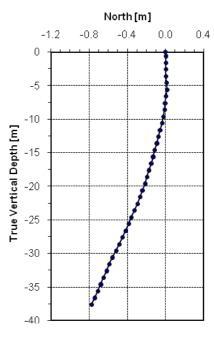



## Misure di verticalità dei fori

FB9ter

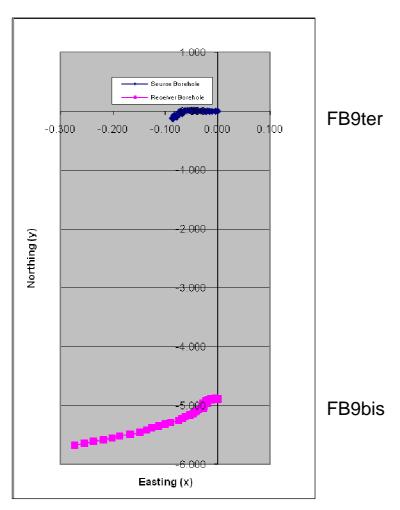
| Depth | Probe F | leadings | Dev        | riation | TVD     |        | Coordinates |           |
|-------|---------|----------|------------|---------|---------|--------|-------------|-----------|
|       | U       | 8        | East       | North   |         | East   | North       | Elevation |
| [m]   | [*]     | [*]      | [m]        | [m]     | [m]     | [m]    | [m]         | [m]       |
| 0.0   | -       | -        | 0.000      | 0.000   | 0.000   | 0.000  | 0.000       | 100.000   |
| 0.6   | 0.39    | 266.2    | -0.004     | 0.000   | -0.600  | -0.004 | 0.000       | 99.400    |
| 1.6   | 0.42    | 244.2    | -0.011     | -0.003  | -1.600  | -0.011 | -0.003      | 98.400    |
| 2.6   | 0.31    | 295.0    | -0.016     | -0.001  | -2.600  | -0.016 | -0.001      | 97.400    |
| 3.6   | 0.34    | 328.0    | -0.019     | 0.004   | -3.600  | -0.019 | 0.004       | 96.400    |
| 4.6   | 0.52    | 156.6    | -0.015     | -0.004  | -4.600  | -0.015 | -0.004      | 95.400    |
| 5.6   | 0.41    | 264.6    | -0.022     | -0.005  | -5.600  | -0.022 | -0.005      | 94,400    |
| 6.6   | 0.39    | 336.0    | -0.025     | 0.001   | -6.600  | -0.025 | 0.001       | 93,400    |
| 7.6   | 0.33    | 304.3    | -0.030     | 0.004   | -7.600  | -0.030 | 0.004       | 92,400    |
| 8.6   | 0.19    | 233.1    | -0.032     | 0.002   | -8.600  | -0.032 | 0.002       | 91,400    |
| 9.6   | 0.22    | 283.9    | -0.036     | 0.003   | -9.600  | -0.036 | 0.003       | 90,400    |
| 10.6  | 0.30    | 305.6    | -0.040     | 0.006   | -10,600 | -0.040 | 0.006       | 89,400    |
| 11.6  | 0.34    | 291.8    | -0.046     | 0.009   | -11.600 | -0.046 | 0.009       | 88,400    |
| 12.6  | 0.29    | 189.8    | -0.047     | 0.004   | -12.600 | -0.047 | 0.004       | 87,400    |
| 13.6  | 0.37    | 189.5    | -0.048     | -0.003  | -13,600 | -0.048 | -0.003      | 86,400    |
| 14.6  | 0.48    | 63.4     | -0.040     | 0.001   | -14.600 | -0.040 | 0.001       | 85,400    |
| 15.6  | 0.39    | 341.0    | -0.043     | 0.007   | -15,600 | -0.043 | 0.007       | 84.400    |
| 16.6  | 0.46    | 335.6    | -0.046     | 0.015   | -16,600 | -0.046 | 0.015       | 83,400    |
| 17.6  | 0.52    | 174.8    | -0.045     | 0.006   | -17.600 | -0.045 | 0.006       | 82,400    |
| 18.6  | 0.42    | 325.3    | -0.049     | 0.012   | -18,600 | -0.049 | 0.012       | 81,400    |
| 19.6  | 0.12    | 263.2    | -0.051     | 0.011   | -19,600 | -0.051 | 0.011       | 80,400    |
| 20.6  | 0.19    | 272.8    | -0.055     | 0.012   | -20,600 | -0.055 | 0.012       | 79,400    |
| 21.6  | 0.22    | 289.2    | -0.058     | 0.013   | -21.600 | -0.058 | 0.013       | 78,400    |
| 22.6  | 0.32    | 230.6    | -0.063     | 0.009   | -22.600 | -0.063 | 0.009       | 77.400    |
| 23.6  | 0.66    | 221.5    | -0.070     | 0.001   | -23.599 | -0.070 | 0.001       | 76,401    |
| 24.6  | 0.60    | 195.4    | -0.073     | -0.009  | -24.599 | -0.073 | -0.009      | 75.401    |
| 25.6  | 0.73    | 176.4    | -0.072     | -0.022  | -25.599 | -0.072 | -0.022      | 74,401    |
| 26.6  | 0.54    | 163.5    | -0.070     | -0.031  | -26.599 | -0.070 | -0.031      | 73,401    |
| 27.6  | 0.62    | 168.5    | -0.067     | -0.042  | -27.599 | -0.067 | -0.042      | 72,401    |
| 28.6  | 0.39    | 241.8    | -0.073     | -0.045  | -28.599 | -0.073 | -0.045      | 71.401    |
| 29.6  | 0.46    | 197.5    | -0.076     | -0.053  | -29.599 | -0.076 | -0.053      | 70,401    |
| 30.6  | 0.42    | 195.4    | -0.078     | -0.060  | -30.599 | -0.078 | -0.060      | 69.401    |
| 31.6  | 0.51    | 212.3    | -0.082     | -0.067  | -31.599 | -0.082 | -0.067      | 68.401    |
| 32.6  | 0.69    | 188.8    | -0.084     | -0.079  | -32.599 | -0.084 | -0.079      | 67.401    |
| 33.6  | 0.63    | 165.1    | -0.081     | -0.090  | -33.599 | -0.081 | -0.090      | 66,401    |
| 34.6  | 0.61    | 163.1    | -0.078     | -0.100  | -34.599 | -0.078 | -0.100      | 65,401    |
| 35.6  | 0.47    | 230.1    | -0.085     | -0.105  | -35.599 | -0.085 | -0.105      | 64.401    |
| 36.6  | 0.64    | 190.8    | -0.087     | -0.116  | -36.599 | -0.087 | -0.116      | 63,401    |
| 37.6  | 0.85    | 175.2    | -0.086     | -0.131  | -37.599 | -0.086 | -0.131      | 62,401    |
|       |         |          | e vertical |         | -07.000 | -0.000 | -0.101      | 02.401    |



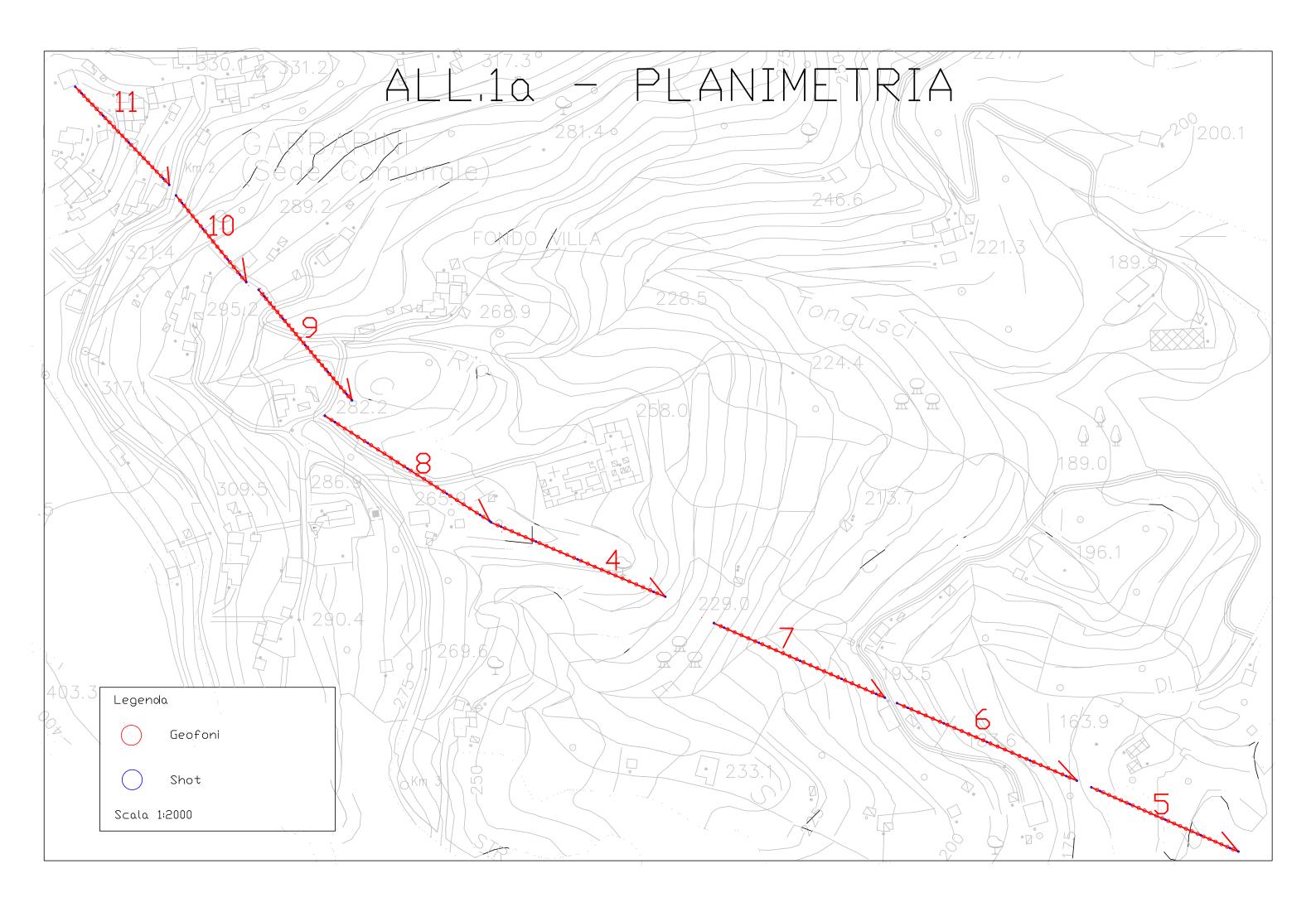


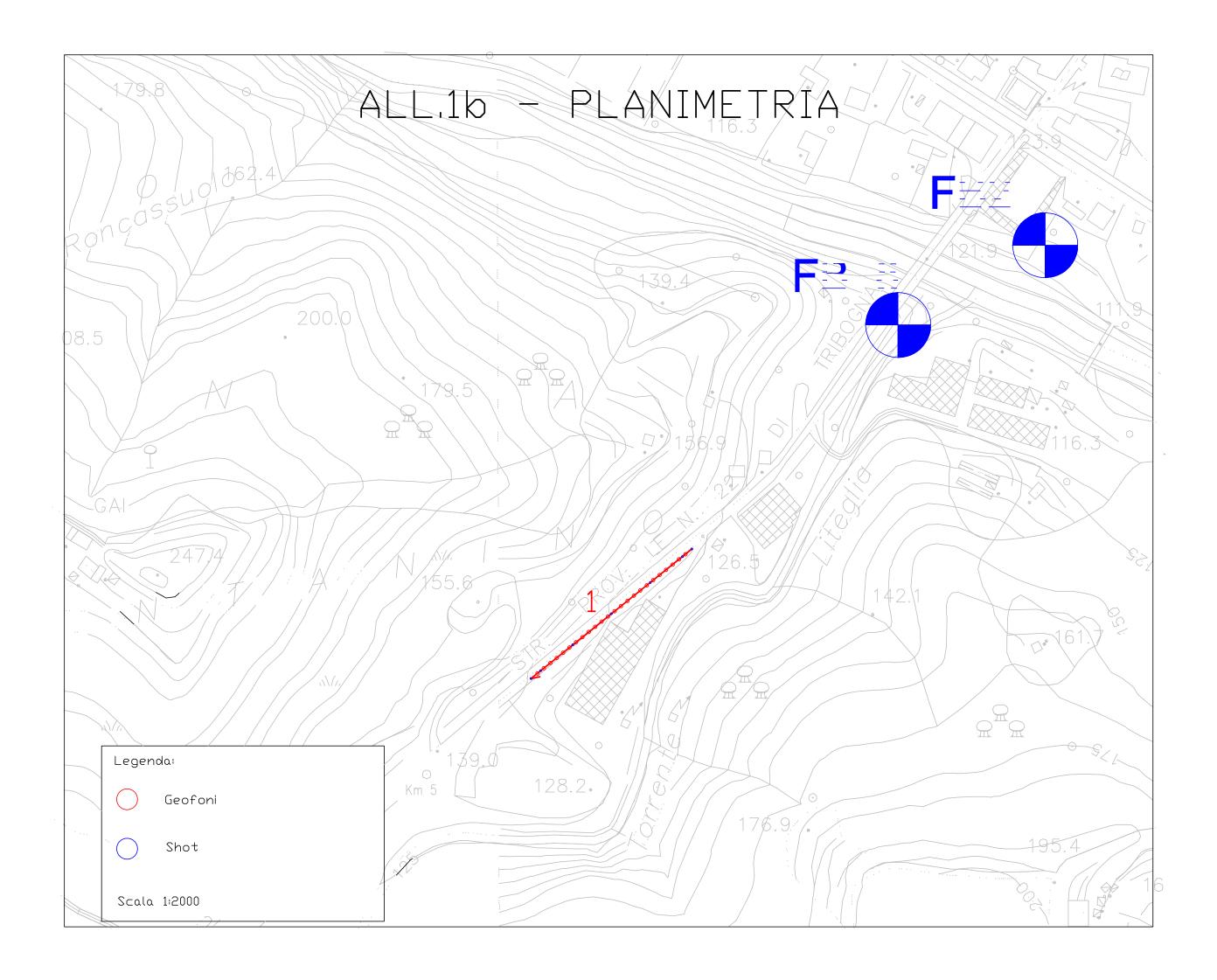

FB9bis

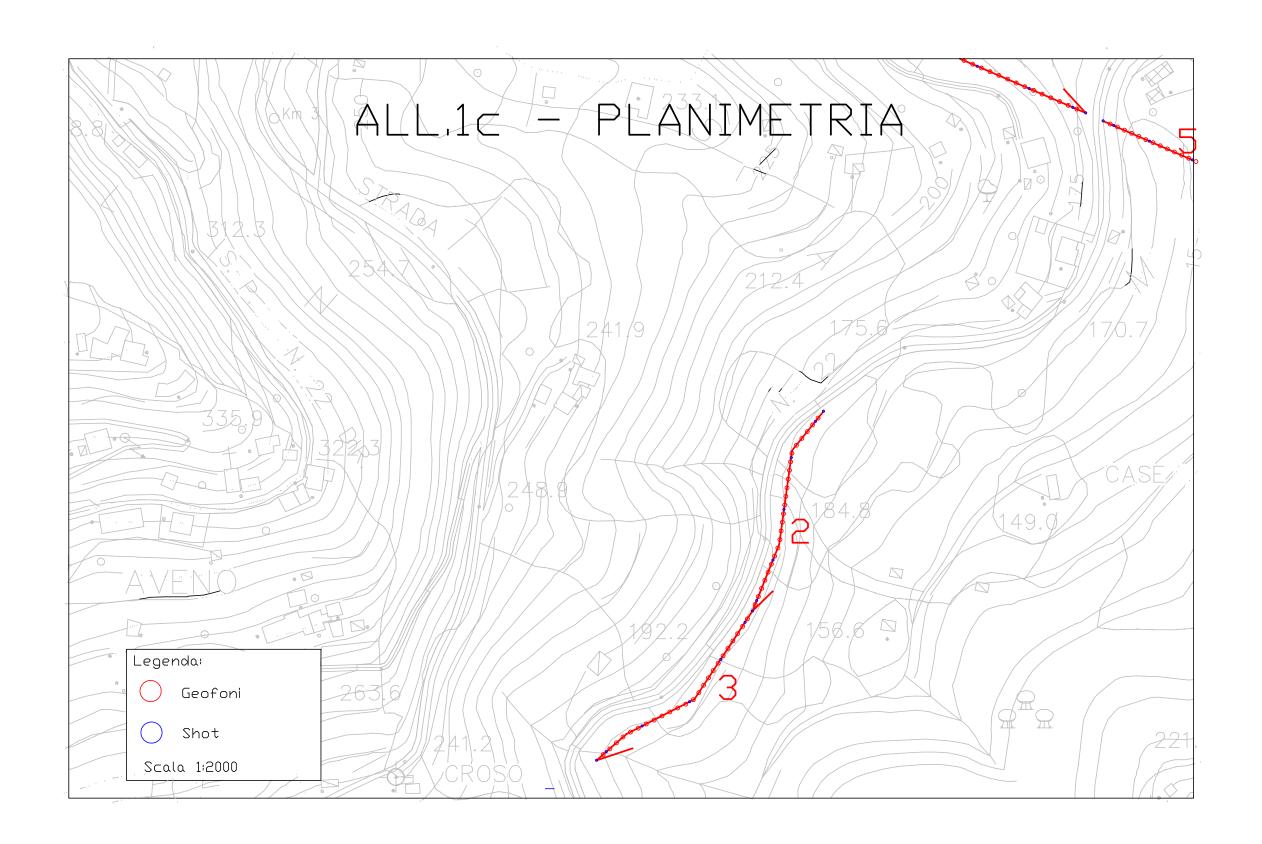

| Depth   | Drohe D   | leadings     | Devi   | ation  | TVD     |        | Coordinates |           |
|---------|-----------|--------------|--------|--------|---------|--------|-------------|-----------|
| Deptili | U PIODE N | eauliys<br>δ | East   | North  | 100     | East   | North       | Elevation |
| [m]     | ľ         | [*]          | [m]    | [m]    | [m]     | [m]    | [m]         | [m]       |
| • •     |           |              |        |        | · · ·   | • •    |             | · · ·     |
| 0.0     |           | -            | 0.000  | 0.000  | 0.000   | 0.000  | -4.900      | 100.000   |
| 0.6     | 0.48      | 354.2        | -0.001 | 0.005  | -0.600  | -0.001 | -4.895      | 99.400    |
| 1.6     | 0.13      | 104.1        | 0.002  | 0.004  | -1.600  | 0.002  | -4.896      | 98.400    |
| 2.6     | 0.36      | 292.0        | -0.004 | 0.007  | -2.600  | -0.004 | -4.893      | 97.400    |
| 3.6     | 0.49      | 267.2        | -0.013 | 0.006  | -3.600  | -0.013 | -4.894      | 96.400    |
| 4.6     | 0.38      | 44.0         | -0.008 | 0.011  | -4.600  | -0.008 | -4.889      | 95.400    |
| 5.6     | 0.46      | 30.6         | -0.004 | 0.018  | -5.600  | -0.004 | -4.882      | 94.400    |
| 6.6     | 0.67      | 186.6        | -0.005 | 0.006  | -6.600  | -0.005 | -4.894      | 93.400    |
| 7.6     | 0.67      | 205.6        | -0.010 | -0.004 | -7.600  | -0.010 | -4.904      | 92.400    |
| 8.6     | 0.41      | 254.3        | -0.017 | -0.006 | -8.600  | -0.017 | -4.906      | 91.400    |
| 9.6     | 0.93      | 199.2        | -0.023 | -0.021 | -9.600  | -0.023 | -4.921      | 90.400    |
| 10.6    | 0.87      | 170.6        | -0.020 | -0.036 | -10.599 | -0.020 | -4.936      | 89.401    |
| 11.6    | 1.21      | 178.9        | -0.020 | -0.057 | -11.599 | -0.020 | -4.957      | 88.401    |
| 12.6    | 0.99      | 206.7        | -0.027 | -0.073 | -12.599 | -0.027 | -4.973      | 87.401    |
| 13.6    | 0.97      | 175.5        | -0.026 | -0.090 | -13.599 | -0.026 | -4.990      | 86.401    |
| 14.6    | 1.30      | 178.1        | -0.025 | -0.112 | -14.599 | -0.025 | -5.012      | 85.401    |
| 15.6    | 0.96      | 184.4        | -0.027 | -0.129 | -15.599 | -0.027 | -5.029      | 84.401    |
| 16.6    | 1.15      | 179.8        | -0.027 | -0.149 | -16.598 | -0.027 | -5.049      | 83.402    |
| 17.6    | 1.46      | 201.6        | -0.036 | -0.173 | -17.598 | -0.036 | -5.073      | 82.402    |
| 18.6    | 1.15      | 192.3        | -0.040 | -0.193 | -18.598 | -0.040 | -5.093      | 81.402    |
| 19.6    | 1.26      | 185.5        | -0.042 | -0.214 | -19.598 | -0.042 | -5.114      | 80.402    |
| 20.6    | 1.63      | 187.2        | -0.046 | -0.243 | -20.597 | -0.046 | -5.143      | 79.403    |
| 21.6    | 1.45      | 195.3        | -0.053 | -0.267 | -21.597 | -0.053 | -5.167      | 78.403    |
| 22.6    | 1.60      | 199.8        | -0.062 | -0.293 | -22.596 | -0.062 | -5.193      | 77,404    |
| 23.6    | 1.82      | 189.4        | -0.067 | -0.325 | -23.596 | -0.067 | -5.225      | 76,404    |
| 24.6    | 2.00      | 191.5        | -0.074 | -0.359 | -24.595 | -0.074 | -5.259      | 75,405    |
| 25.6    | 1.77      | 207.7        | -0.089 | -0.386 | -25.595 | -0.089 | -5.286      | 74.405    |
| 26.6    | 1.90      | 199.7        | -0.100 | -0.417 | -26.594 | -0.100 | -5.317      | 73,406    |
| 27.6    | 1.99      | 201.3        | -0.112 | -0.450 | -27.594 | -0.112 | -5.350      | 72.406    |
| 28.6    | 2.03      | 202.3        | -0.126 | -0.483 | -28.593 | -0.126 | -5.383      | 71.407    |
| 29.6    | 2.06      | 195.1        | -0.135 | -0.517 | -29.592 | -0.135 | -5.417      | 70,408    |
| 30.6    | 2.29      | 198.6        | -0.148 | -0.555 | -30.592 | -0.148 | -5.455      | 69.408    |
| 31.6    | 2.15      | 209.5        | -0.166 | -0.588 | -31.591 | -0.166 | -5.488      | 68,409    |
| 32.6    | 2.02      | 215.5        | -0.187 | -0.616 | -32.590 | -0.187 | -5.516      | 67.410    |
| 33.6    | 2.07      | 204.2        | -0.202 | -0.649 | -33.590 | -0.202 | -5.549      | 66.410    |
| 34.6    | 1.94      | 209.3        | -0.218 | -0.679 | -34.589 | -0.218 | -5.579      | 65.411    |
| 35.6    | 2.01      | 211.9        | -0.237 | -0.709 | -35.588 | -0.237 | -5.609      | 64.412    |
| 36.6    | 2.11      | 207.7        | -0.254 | -0.741 | -36.588 | -0.254 | -5.641      | 63.412    |
| 37.6    | 2.15      | 209.4        | -0.272 | -0.774 | -37.587 | -0.272 | -5.674      | 62.413    |



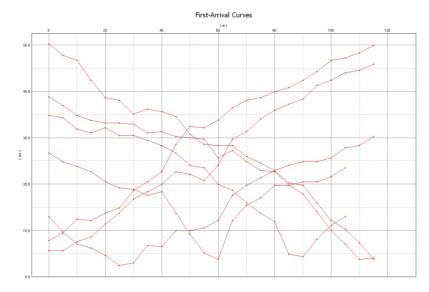




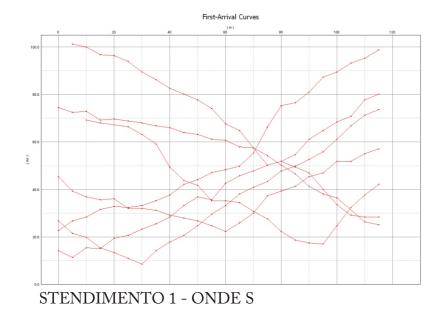


# Risultanti reciproche



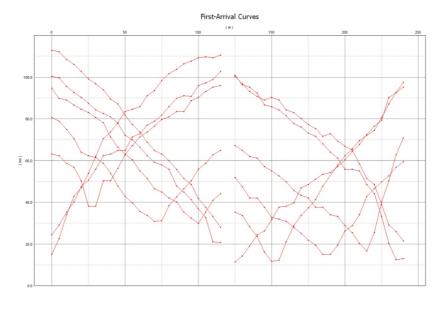




| Effective distances (m) |                  | Depth        |            |
|-------------------------|------------------|--------------|------------|
| E comp                  | N comp           | Dist. (m)    | [m]        |
| 0.000                   | 4 000            | 4.00         |            |
| 0.000                   | -4.900           | 4.90         | 0.0        |
| 0.004                   | -4.895           | 4.89         | 0.6        |
| 0.012<br>0.011          | -4.892           | 4.89         | 1.6        |
| 0.011                   | -4.892<br>-4.897 | 4.89<br>4.90 | 2.6<br>3.6 |
| 0.008                   | -4.884           | 4.88         |            |
| 0.007                   | -4.877           | 4.88         | 4.6<br>5.6 |
| 0.018                   | -4.895           | 4.89         | 5.6<br>6.6 |
| 0.020                   | -4.908           | 4.91         | 7.6        |
| 0.015                   | -4.908           | 4.91         | 8.6        |
| 0.013                   | -4.925           | 4.92         | 9.6        |
| 0.020                   | -4.943           | 4.94         | 10.6       |
| 0.026                   | -4.966           | 4.97         | 11.6       |
| 0.020                   | -4.976           | 4.98         | 12.6       |
| 0.022                   | -4.987           | 4.99         | 13.6       |
| 0.015                   | -5.013           | 5.01         | 14.6       |
| 0.016                   | -5.036           | 5.04         | 15.6       |
| 0.019                   | -5.064           | 5.06         | 16.6       |
| 0.009                   | -5.079           | 5.08         | 17.6       |
| 0.009                   | -5.104           | 5.10         | 18.6       |
| 0.009                   | -5.126           | 5.13         | 19.6       |
| 0.009                   | -5.154           | 5.15         | 20.6       |
| 0.006                   | -5.180           | 5.18         | 21.6       |
| 0.000                   | -5.203           | 5.20         | 22.6       |
| 0.003                   | -5.225           | 5.23         | 23.6       |
| -0.001                  | -5.249           | 5.25         | 24.6       |
| -0.016                  | -5.264           | 5.26         | 25.6       |
| -0.030                  | -5.286           | 5.29         | 26.6       |
| -0.045                  | -5.308           | 5.31         | 27.6       |
| -0.052                  | -5.337           | 5.34         | 28.6       |
| -0.059                  | -5.365           | 5.36         | 29.6       |
| -0.070                  | -5.395           | 5.40         | 30.6       |
| -0.084                  | -5.420           | 5.42         | 31.6       |
| -0.103                  | -5.437           | 5.44         | 32.6       |
| -0.120                  | -5.460           | 5.46         | 33.6       |
| -0.140                  | -5.479           | 5.48         | 34.6       |
| -0.152                  | -5.503           | 5.51         | 35.6       |
| -0.167                  | -5.525           | 5.53         | 36.6       |
| -0.187                  | -5.543           | 5.55         | 37.6       |

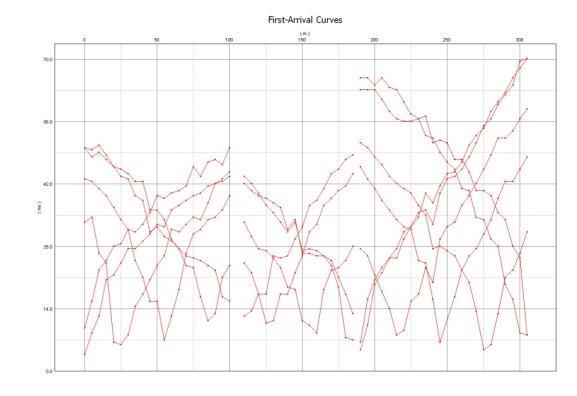




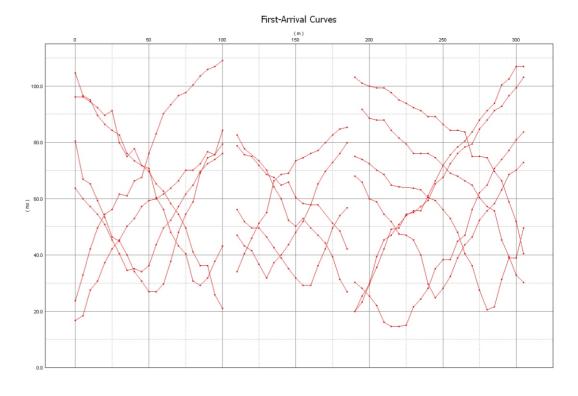




# ALL. 2 - STENDIMENTI SISMICI: DROMOCRONE, SEZIONI ONDE P E ONDE S

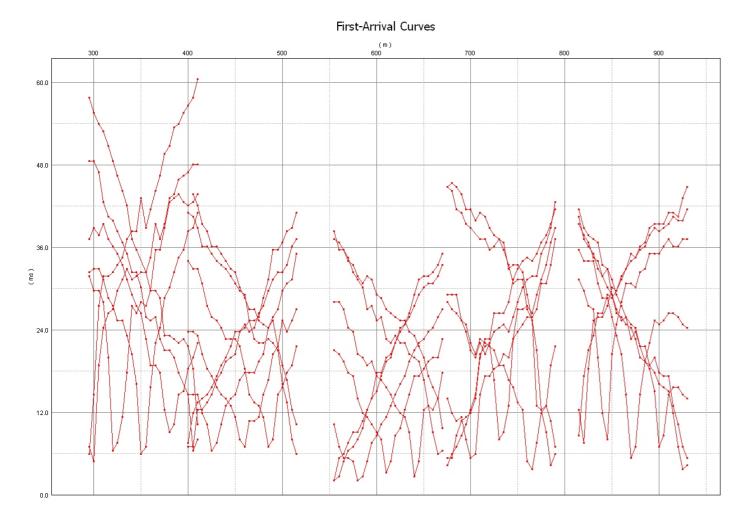


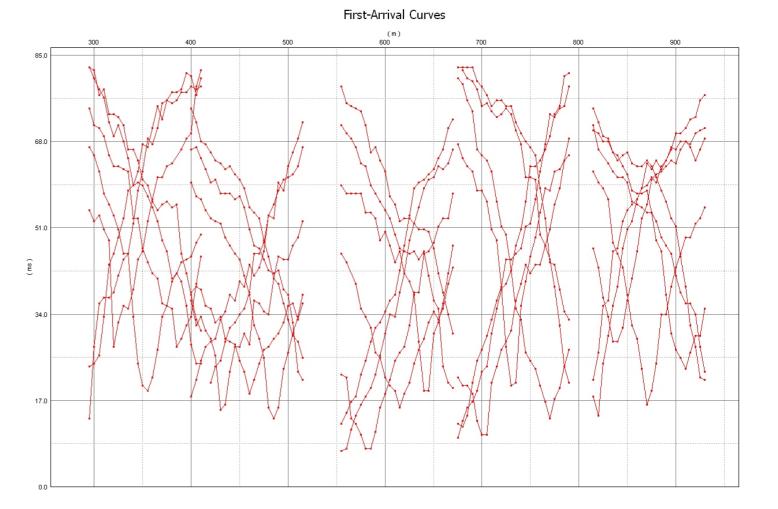

#### STENDIMENTO 1 - ONDE P




### STENDIMENTO 2-3 - ONDE P



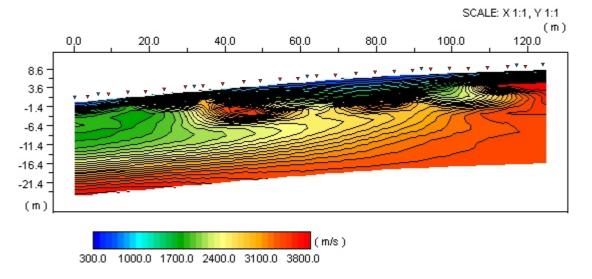

STENDIMENTO 2-3 - ONDE S



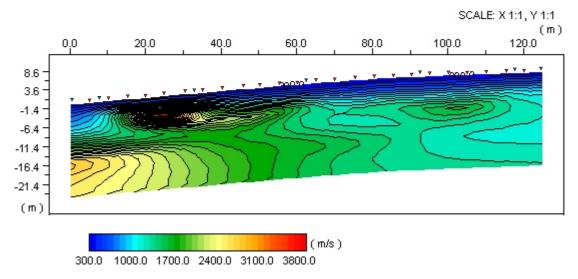

#### STENDIMENTO 9-10-11 - ONDE P



STENDIMENTO 9-10-11 - ONDE S







STENDIMENTO 8-4-7-6-5 - ONDE P

STENDIMENTO 8-4-7-6-5 - ONDE S

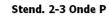
Stend. 1 Onde P

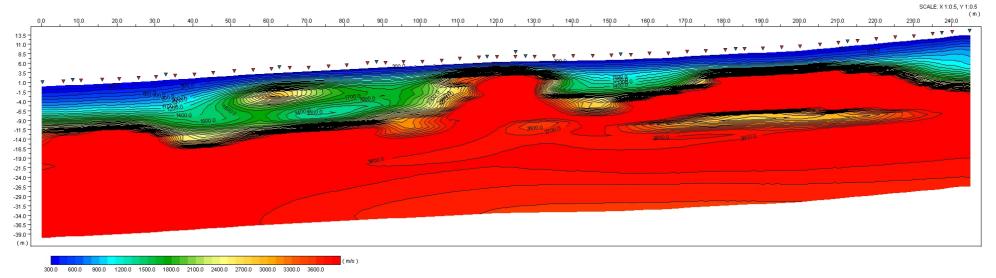


Stend. 1 Onde S

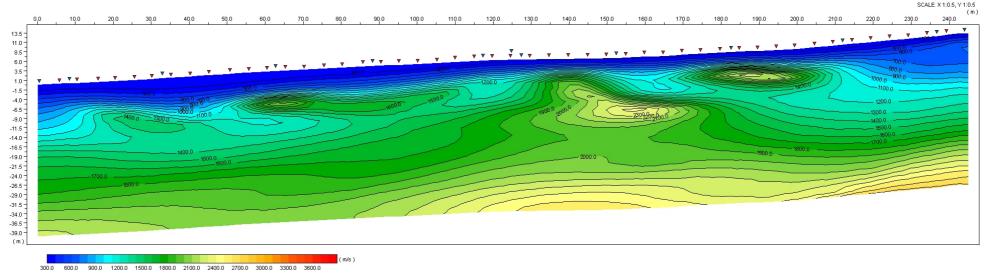


SCALA 1:1000




Posizione geofoni




Shot

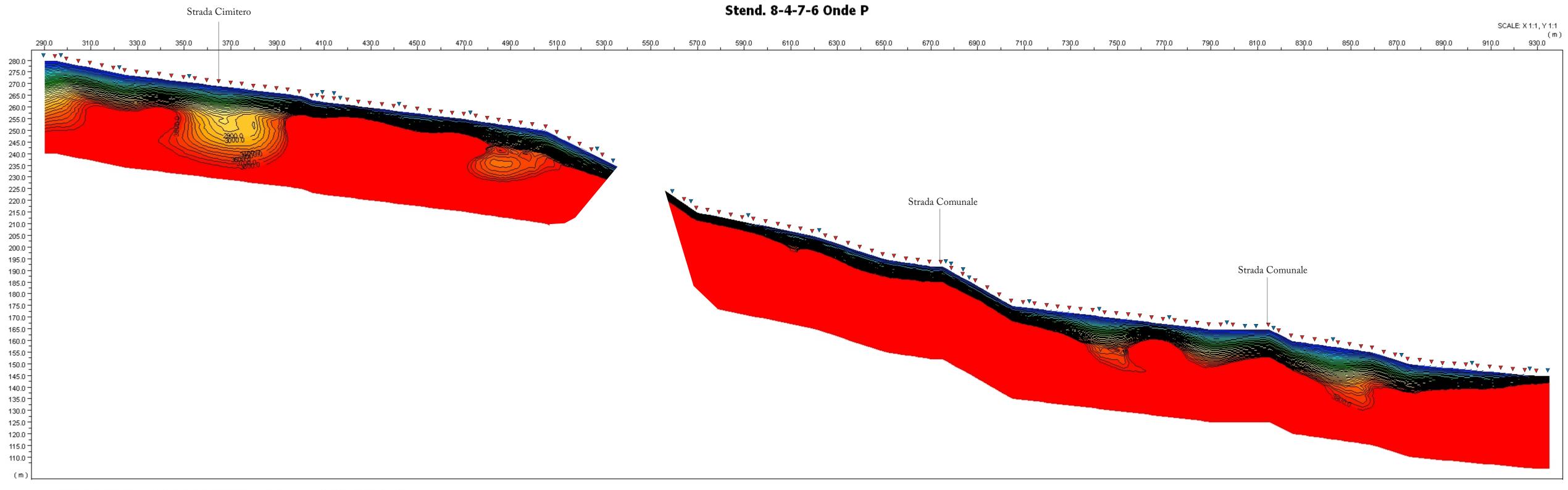








## SCALA 1:1000


# LEGENDA:

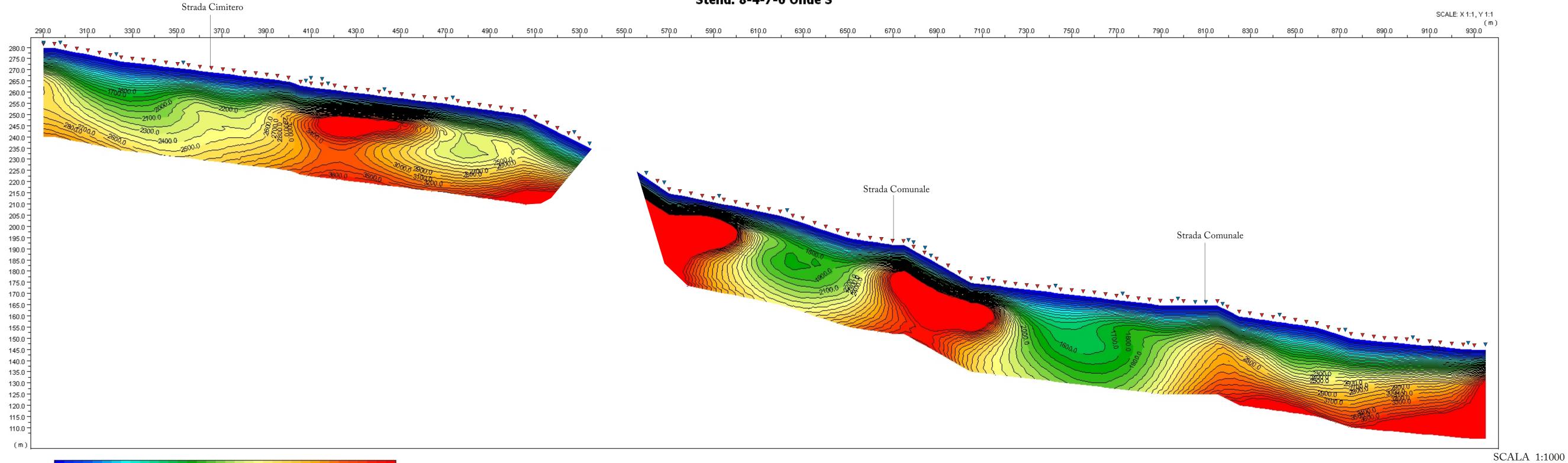


Posizione geofoni



Shot




SCALA 1:1000

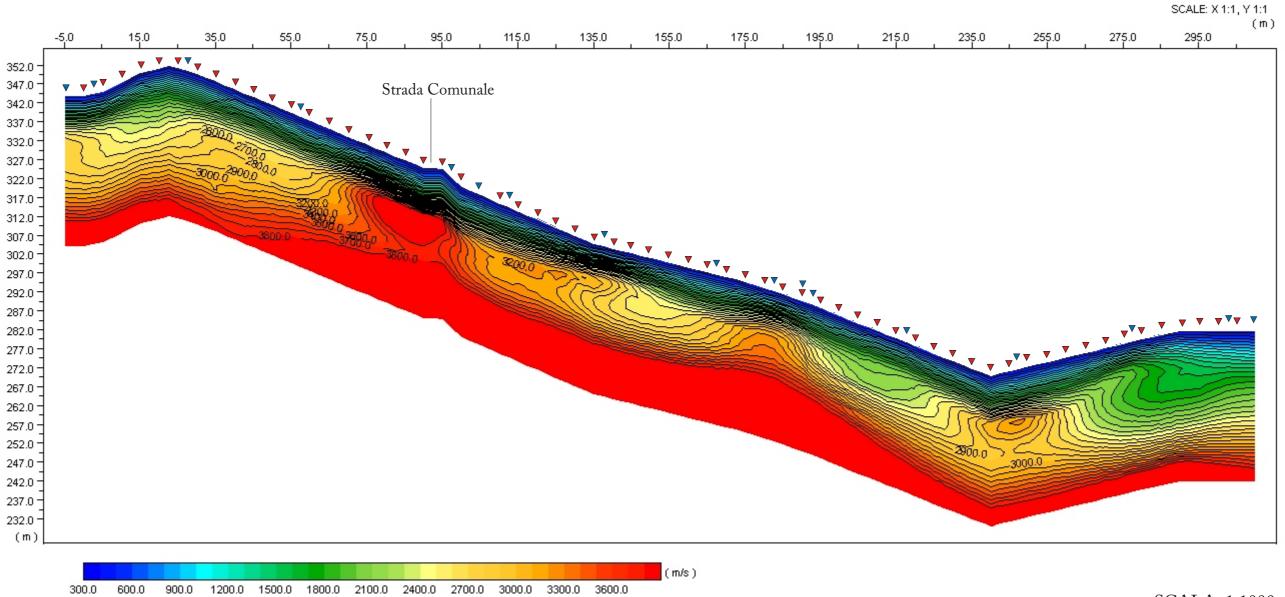
SCALA 1:1000

300.0 600.0 900.0 1200.0 1500.0 1500.0 1500.0 2400.0 2700.0 3000.0 3600.0



# Stend. 8-4-7-6 Onde S

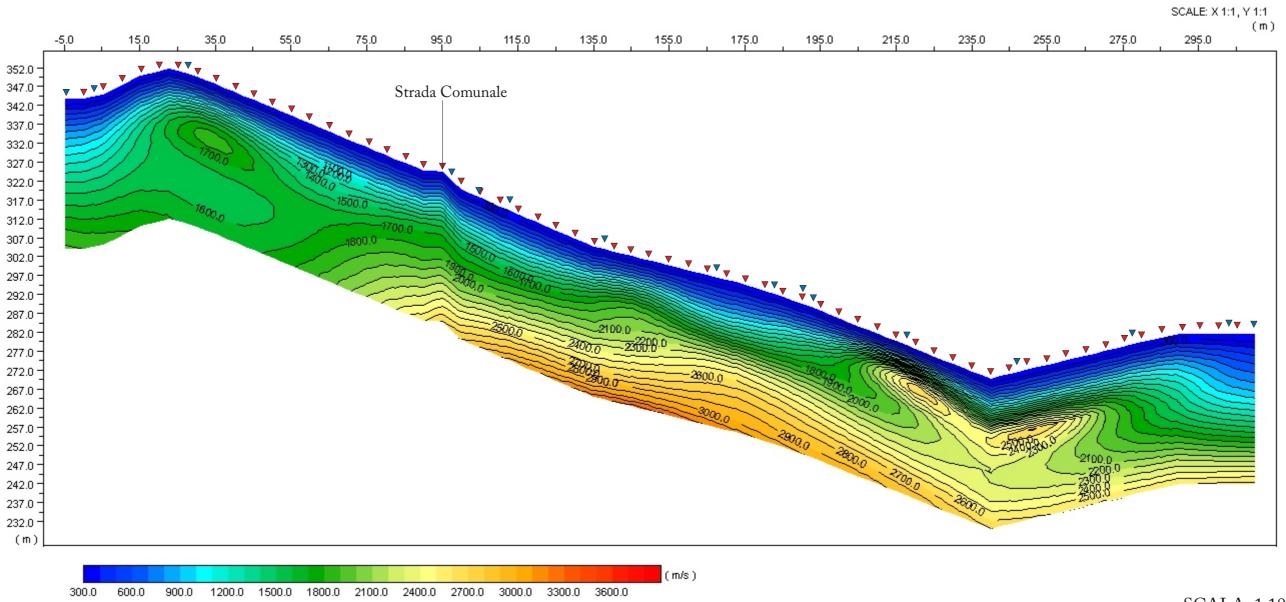



SCALA 1:1000 300.0 600.0 900.0 1200.0 1500.0 1800.0 2100.0 2400.0 2700.0 3000.0 3300.0 3600.0

LEGENDA:

Posizione geofoni

Shot

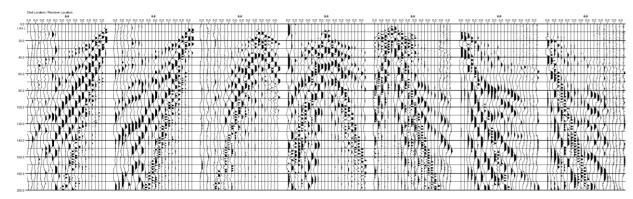

# Stend. 11-10-9 Onde P



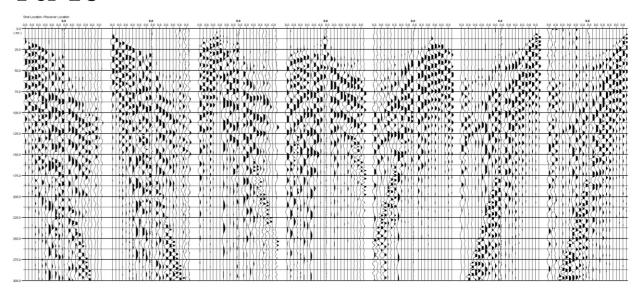
SCALA 1:1000



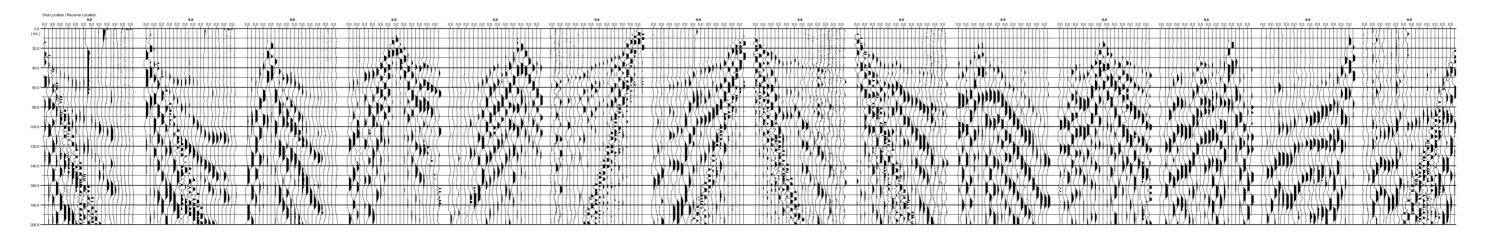
# Stend. 11-10-9 Onde S



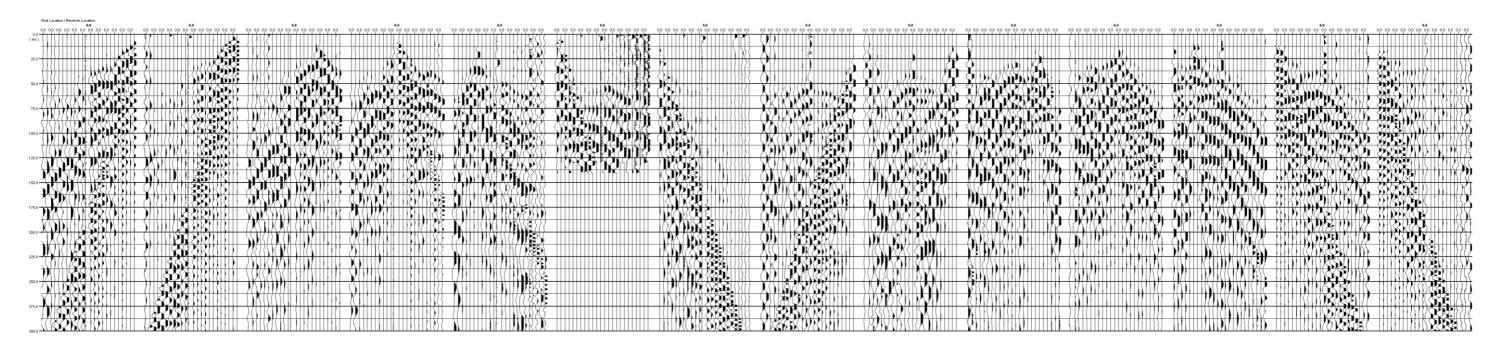

SCALA 1:1000



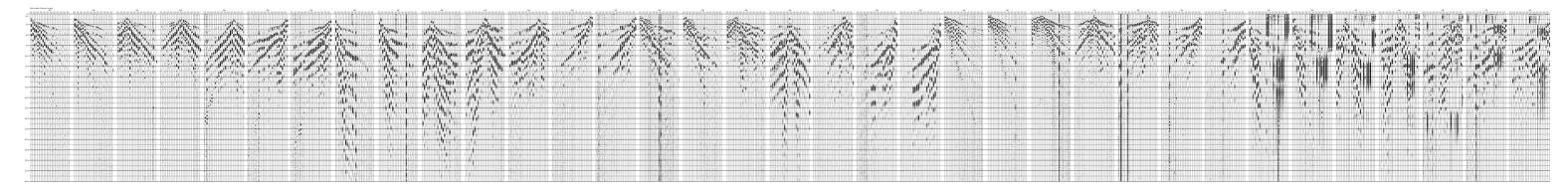

# TRACCE SISMICHE


Fer 1P

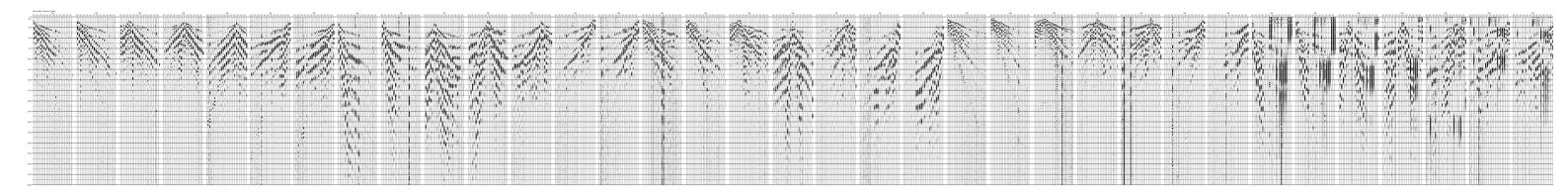



Fer 1S

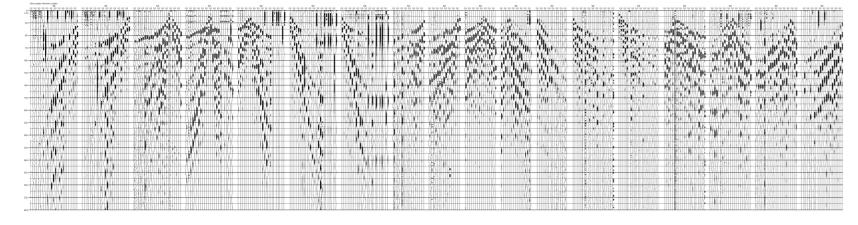



Fer 2-3 P

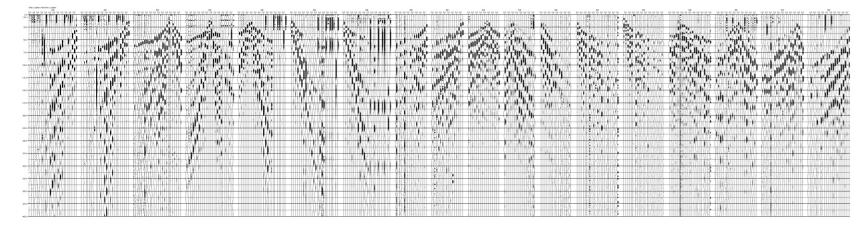



Fer 2-3 S




Fer 8-4-7-6-5 P




Fer 8-4-7-6-5 S



Fer11-10-9 P



Fer 11-10-9 S



ALL. 3: Documentazione fotografica



Posizionamento stend. 1



Sistema GPS ProMark3 utilizzato per i rilievi



Unità di acquisizione in



due posizionamenti differenti



Piazzamento al centro dello stend. 11



Piazzamento per prova Cross-Hole

| linea 4 | long Est    | lat Nord    |
|---------|-------------|-------------|
| 1       | 1515782.114 | 4917834.606 |
| 2       | 1515786.61  | 4917832.69  |
| 3       | 1515791.105 | 4917830.773 |
| 4       | 1515795.601 | 4917828.856 |
| 5       | 1515800.097 | 4917826.94  |
| 6       | 1515804.592 | 4917825.023 |
| 7       | 1515809.088 | 4917823.106 |
| 8       | 1515813.583 | 4917821.19  |
| 9       | 1515818.079 | 4917819.273 |
| 10      | 1515822.574 | 4917817.357 |
| 11      | 1515827.07  | 4917815.44  |
| 12      | 1515831.565 | 4917813.523 |
| 13      | 1515836.061 | 4917811.607 |
| 14      | 1515840.556 | 4917809.69  |
| 15      | 1515845.052 | 4917807.774 |
| 16      | 1515849.547 | 4917805.857 |
| 17      | 1515854.043 | 4917803.94  |
| 18      | 1515858.539 | 4917802.024 |
| 19      | 1515863.034 | 4917800.107 |
| 20      | 1515867.53  | 4917798.19  |
| 21      | 1515872.025 | 4917796.274 |
| 22      | 1515876.521 | 4917794.357 |
| 23      | 1515881.016 | 4917792.441 |
| 24      | 1515885.512 | 4917790.524 |

| linea 5 | long Est    | lat Nord    |
|---------|-------------|-------------|
| 1       | 1516168.619 | 4917664.328 |
| 2       | 1516172.457 | 4917662.648 |
| 3       | 1516176.295 | 4917660.969 |
| 4       | 1516180.133 | 4917659.289 |
| 5       | 1516183.971 | 4917657.61  |
| 6       | 1516187.809 | 4917655.93  |
| 7       | 1516191.647 | 4917654.251 |
| 8       | 1516195.485 | 4917652.572 |
| 9       | 1516199.323 | 4917650.892 |
| 10      | 1516203.162 | 4917649.213 |
| 11      | 1516207     | 4917647.533 |
| 12      | 1516210.838 | 4917645.854 |
| 13      | 1516214.676 | 4917644.175 |
| 14      | 1516218.514 | 4917642.495 |
| 15      | 1516222.352 | 4917640.816 |
| 16      | 1516226.19  | 4917639.136 |
| 17      | 1516230.028 | 4917637.457 |
| 18      | 1516233.866 | 4917635.777 |
| 19      | 1516237.704 | 4917634.098 |
| 20      | 1516241.543 | 4917632.419 |
| 21      | 1516245.381 | 4917630.739 |
| 22      | 1516249.219 | 4917629.06  |
| 23      | 1516253.057 | 4917627.38  |
| 24      | 1516256.895 | 4917625.701 |
|         |             |             |

| Linea 6 | long Est    | lat Nord    |
|---------|-------------|-------------|
| 1       | 1516043.203 | 4917718.656 |
| 2       | 1516047.875 | 4917716.644 |
| 3       | 1516052.548 | 4917714.632 |
| 4       | 1516057.22  | 4917712.62  |
| 5       | 1516061.893 | 4917710.608 |
| 6       | 1516066.565 | 4917708.596 |
| 7       | 1516071.238 | 4917706.584 |
| 8       | 1516075.91  | 4917704.573 |
| 9       | 1516080.583 | 4917702.561 |
| 10      | 1516085.255 | 4917700.549 |
| 11      | 1516089.928 | 4917698.537 |
| 12      | 1516094.6   | 4917696.525 |
| 13      | 1516099.273 | 4917694.513 |
| 14      | 1516103.945 | 4917692.501 |
| 15      | 1516108.618 | 4917690.49  |
| 16      | 1516113.29  | 4917688.478 |
| 17      | 1516117.963 | 4917686.466 |
| 18      | 1516122.635 | 4917684.454 |
| 19      | 1516127.308 | 4917682.442 |
| 20      | 1516131.98  | 4917680.43  |
| 21      | 1516136.652 | 4917678.418 |
| 22      | 1516141.325 | 4917676.407 |
| 23      | 1516145.997 | 4917674.395 |
| 24      | 1516150.67  | 4917672.383 |

| Linea 7 | long Est    | lat Nord    |
|---------|-------------|-------------|
| 1       | 1515924.111 | 4917770.687 |
| 2       | 1515928.588 | 4917768.736 |
| 3       | 1515933.066 | 4917766.786 |
| 4       | 1515937.543 | 4917764.836 |
| 5       | 1515942.02  | 4917762.885 |
| 6       | 1515946.497 | 4917760.935 |
| 7       | 1515950.974 | 4917758.984 |
| 8       | 1515955.452 | 4917757.034 |
| 9       | 1515959.929 | 4917755.083 |
| 10      | 1515964.406 | 4917753.133 |
| 11      | 1515968.883 | 4917751.182 |
| 12      | 1515973.361 | 4917749.232 |
| 13      | 1515977.838 | 4917747.282 |
| 14      | 1515982.315 | 4917745.331 |
| 15      | 1515986.792 | 4917743.381 |
| 16      | 1515991.269 | 4917741.43  |
| 17      | 1515995.747 | 4917739.48  |
| 18      | 1516000.224 | 4917737.529 |
| 19      | 1516004.701 | 4917735.579 |
| 20      | 1516009.178 | 4917733.629 |
| 21      | 1516013.655 | 4917731.678 |
| 22      | 1516018.133 | 4917729.728 |
| 23      | 1516022.61  | 4917727.777 |
| 24      | 1516027.087 | 4917725.827 |

| linea 8 | long Est    | lat Nord    |
|---------|-------------|-------------|
| 1       | 1515674.082 | 4917903.083 |
| 2       | 1515678.368 | 4917900.344 |
| 3       | 1515682.654 | 4917897.605 |
| 4       | 1515686.939 | 4917894.865 |
| 5       | 1515691.225 | 4917892.126 |
| 6       | 1515695.510 | 4917889.387 |
| 7       | 1515699.796 | 4917886.647 |
| 8       | 1515704.082 | 4917883.908 |
| 9       | 1515708.367 | 4917881.169 |
| 10      | 1515712.653 | 4917878.429 |
| 11      | 1515716.938 | 4917875.69  |
| 12      | 1515721.224 | 4917872.951 |
| 13      | 1515725.510 | 4917870.211 |
| 14      | 1515729.795 | 4917867.472 |
| 15      | 1515734.081 | 4917864.733 |
| 16      | 1515738.367 | 4917861.994 |
| 17      | 1515742.652 | 4917859.254 |
| 18      | 1515746.938 | 4917856.515 |
| 19      | 1515751.223 | 4917853.776 |
| 20      | 1515755.509 | 4917851.036 |
| 21      | 1515759.795 | 4917848.297 |
| 22      | 1515764.080 | 4917845.558 |
| 23      | 1515768.366 | 4917842.818 |
| 24      | 1515772.651 | 4917840.079 |

| inea 9 | long Est    | lat Nord    |
|--------|-------------|-------------|
| 1      | 1515629.128 | 4917984.725 |
| 2      | 1515631.556 | 4917981.845 |
| 3      | 1515633.983 | 4917978.965 |
| 4      | 1515636.411 | 4917976.085 |
| 5      | 1515638.838 | 4917973.205 |
| 6      | 1515641.266 | 4917970.325 |
| 7      | 1515643.693 | 4917967.446 |
| 8      | 1515646.121 | 4917964.566 |
| 9      | 1515648.548 | 4917961.686 |
| 10     | 1515650.975 | 4917958.806 |
| 11     | 1515653.403 | 4917955.926 |
| 12     | 1515655.830 | 4917953.046 |
| 13     | 1515658.258 | 4917950.166 |
| 14     | 1515660.685 | 4917947.286 |
| 15     | 1515663.113 | 4917944.406 |
| 16     | 1515665.540 | 4917941.527 |
| 17     | 1515667.968 | 4917938.647 |
| 18     | 1515670.395 | 4917935.767 |
| 19     | 1515672.823 | 4917932.887 |
| 20     | 1515675.250 | 4917930.007 |
| 21     | 1515677.678 | 4917927.127 |
| 22     | 1515680.105 | 4917924.247 |
| 23     | 1515682.533 | 4917921.367 |
| 24     | 1515684.960 | 4917918.487 |

| linea 10 | long Est    | lat Nord    |
|----------|-------------|-------------|
| 1        | 1515575.696 | 4918045.643 |
| 2        | 1515578.385 | 4918042.31  |
| 3        | 1515581.074 | 4918038.977 |
| 4        | 1515583.763 | 4918035.644 |
| 5        | 1515586.452 | 4918032.311 |
| 6        | 1515589.141 | 4918028.978 |
| 7        | 1515591.830 | 4918025.644 |
| 8        | 1515594.519 | 4918022.311 |
| 9        | 1515597.208 | 4918018.978 |
| 10       | 1515599.897 | 4918015.645 |
| 11       | 1515602.586 | 4918012.312 |
| 12       | 1515605.275 | 4918008.979 |
| 13       | 1515607.964 | 4918005.646 |
| 14       | 1515610.653 | 4918002.312 |
| 15       | 1515613.342 | 4917998.979 |
| 16       | 1515616.031 | 4917995.646 |

| 53 |
|----|
| 52 |
| 52 |
| 51 |
| 06 |
| 16 |
| 59 |
| 8  |
| 8  |
| 57 |
| 66 |
| 66 |
| 55 |
| 54 |
| 54 |
| 53 |
| 53 |
| 52 |
| 51 |
| 51 |
| 55 |
|    |

| Linea 1 | long Est    | lat Nord    |
|---------|-------------|-------------|
| 1       | 1516646.183 | 4918191.643 |
| 2       | 1516642.221 | 4918188.454 |
| 3       | 1516638.26  | 4918185.265 |
| 4       | 1516634.298 | 4918182.076 |
| 5       | 1516630.337 | 4918178.887 |
| 6       | 1516626.375 | 4918175.698 |
| 7       | 1516622.414 | 4918172.509 |
| 8       | 1516618.452 | 4918169.32  |
| 9       | 1516614.49  | 4918166.131 |
| 10      | 1516610.529 | 4918162.942 |
| 11      | 1516606.567 | 4918159.753 |
| 12      | 1516602.606 | 4918156.564 |
| 13      | 1516598.644 | 4918153.375 |
| 14      | 1516594.683 | 4918150.186 |
| 15      | 1516590.721 | 4918146.997 |
| 16      | 1516586.759 | 4918143.808 |
| 17      | 1516582.798 | 4918140.619 |
| 18      | 1516578.836 | 4918137.43  |
| 19      | 1516574.875 | 4918134.241 |
| 20      | 1516570.913 | 4918131.052 |
| 21      | 1516566.952 | 4918127.863 |
| 22      | 1516562.99  | 4918124.674 |
| 23      | 1516559.029 | 4918121.485 |
| 24      | 1516555.067 | 4918118.296 |

| Linea 2 | long Est    | lat Nord    |
|---------|-------------|-------------|
| 1       | 1516010.439 | 4917507.532 |
| 2       | 1516007.446 | 4917503.854 |
| 3       | 1516004.626 | 4917500.25  |
| 4       | 1516001.651 | 4917496.568 |
| 5       | 1515998.742 | 4917492.896 |
| 6       | 1515996.301 | 4917488.621 |
| 7       | 1515995.651 | 4917484.001 |
| 8       | 1515995.024 | 4917479.386 |
| 9       | 1515994.353 | 4917474.72  |
| 10      | 1515993.716 | 4917470.052 |
| 11      | 1515993.059 | 4917465.4   |
| 12      | 1515992.457 | 4917460.734 |
| 13      | 1515991.795 | 4917456.1   |
| 14      | 1515991.152 | 4917451.488 |
| 15      | 1515990.525 | 4917446.802 |
| 16      | 1515989.862 | 4917442.153 |
| 17      | 1515988.77  | 4917437.609 |
| 18      | 1515987.013 | 4917433.235 |
| 19      | 1515985.285 | 4917428.882 |
| 20      | 1515983.507 | 4917424.541 |
| 21      | 1515981.755 | 4917420.208 |
| 22      | 1515980.017 | 4917415.85  |
| 23      | 1515978.242 | 4917411.455 |
| 24      | 1515976.532 | 4917407.174 |

| Linea 3 | long Est    | lat Nord    |
|---------|-------------|-------------|
| 1       | 1515972.41  | 4917399.492 |
| 2       | 1515969.802 | 4917395.456 |
| 3       | 1515967.104 | 4917391.479 |
| 4       | 1515964.517 | 4917387.568 |
| 5       | 1515961.896 | 4917383.541 |
| 6       | 1515959.41  | 4917379.815 |
| 7       | 1515956.611 | 4917375.61  |
| 8       | 1515953.984 | 4917371.637 |
| 9       | 1515951.418 | 4917367.715 |
| 10      | 1515948.781 | 4917363.722 |
| 11      | 1515946.213 | 4917359.754 |
| 12      | 1515943.286 | 4917355.963 |
| 13      | 1515939.158 | 4917353.566 |
| 14      | 1515934.834 | 4917351.526 |
| 15      | 1515930.578 | 4917349.345 |
| 16      | 1515926.367 | 4917347.202 |
| 17      | 1515922.162 | 4917344.986 |
| 18      | 1515917.9   | 4917342.868 |
| 19      | 1515913.657 | 4917340.659 |
| 20      | 1515909.422 | 4917338.521 |
| 21      | 1515905.413 | 4917335.939 |
| 22      | 1515901.837 | 4917332.756 |
| 23      | 1515898.323 | 49173295085 |
| 24      | 1515894.745 | 4917326.468 |