

PROGETTO DEFINITIVO

OPERE COMPLEMENTARI

PORTALI SEGNALETICA VERTICALE

TIPOLOGICO PORTALE A BANDIERA TIPO B RELAZIONE DI CALCOLO DELLE FONDAZIONI

IL RESPONSABILE PROGETTAZIONE SPECIALISTICA

Ing. Marco Pietro D'Angelantonio Ord. Ingg. Milano N.20155

RESPONSABILE UFFICIO APE

IL RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE

Ing. Sara Frisiani Ord. Ingg. Genova N. 9810A

CAPO COMMESSA

IL DIRETTORE TECNICO

Ing. Maurizio Torresi Ord. Ingg. Milano N. 16492

RESPONSABILE DIREZIONE OPERATIVA TECNICA E PROGETTAZIONE

WBS		RIFERIMENTO EL	ABORATO	DATA:		REVISIONE	
	DIRETTORIO		FILE				
_	codice commessa	N.Prog. unita'	ufficio n. progressivo				
					SCALA:		
	1 1 0 0 1 3	1012 IS ITI P	APE0026	-	_		
	' ' 0 0 0	• • • • • • • • • •					

snea	ingegneria	RESPONSABILE PROGETTO GENOVA	ELABORAZIONE GRAFICA A CURA DI :	
autostrado	europea	Ing. Orlando Mazza Ord. Ingg. Pavia N. 1496	ELABORAZIONE PROGETTUALE A CURA DI :	
CONSULENZA A CURA DI :			IL RESPONSABILE UNITA' STP	Ing. Andrea Tanzi O.I. Parma N.1154

VISTO DEL COMMITTENTE

autostrade per l'italia

R.U.P. - Ing. Andrea Frediani

VISTO DEL CONCEDENTE

Ministero delle Infrastrutture e dei Trasporti dipartimento per le infrastrutture, gli affari generali ed il personale struttura di vigilanza sulle concessionarie autostradali

SPEA Ingegneria Europea

COLLEGAMENTO TRA LA VALFONTANABUONA E L'AUTOSTRADA A12 GENOVA-ROMA

TIPOLOGICO PORTALE A BANDIERA TIPO B RELAZIONE DI CALCOLO OPERE DI FONDAZIONE

Portale a bandiera Tipo B – Relazione di Calcolo fondazioni

INDICE

1	INTRODUZIONE	2
2	DESCRIZIONE DELLE OPERE	3
3	VERIFICA GEOTECNICA DELLE FONDAZIONI	4
3.1	Profilo stratigrafico e caratterizzazione geotecnica dell'area	4
3.2	Criteri di verifica e di calcolo delle fondazioni profonde	4
3.3	Resistenza caratteristica (R _k) di micropali soggetti a carichi assiali	5
3.4	Comportamento di pali in gruppo soggetti a carichi trasversali	5
3.5	Azioni di calcolo in fondazione	6
3.6	Risultati analisi palificata e verifiche	9
3.6.1	Premessa	9
3.6.2	Risultati delle analisi	9
3.6.3	Verifica del tubo di armatura	19
3.6.4	Analisi di capacità portante	19

Portale a bandiera Tipo B – Relazione di Calcolo fondazioni

1 INTRODUZIONE

La presente Relazione ha per oggetto il dimensionamento geotecnico delle fondazioni per il portale tipologico denominato "Portale a bandiera Tipo B", con posa in piano, avente lunghezza massima dello sbraccio pari a 13.75 m.

Si richiama il fatto che come normativa di riferimento si sono utilizzate le *Norme Tecniche per le Costruzioni – D.M. del 14 gennaio 2008 (cfr. par. 2.2).*

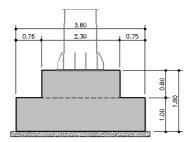
Portale a bandiera Tipo B – Relazione di Calcolo fondazioni

2 DESCRIZIONE DELLE OPERE

Il plinto ha la forma quadrata in pianta di dimensioni 3.80, e 1.80 x 2.30 m alla quota di base della colonna, e viene realizzata su fondazione profonda. Sono previsti 16 micropali di lunghezza di 9.0 m con diametro di perforazione 240 mm, armati con tubi 168.3 sp 12.5, disposti a maglia quadrata a interasse 1.0 m.

Si riassumono qui di seguito le caratteristiche dei micropali di fondazione:

tubo di armatura diametro 168.3 mm


spessore 12.5 mm

perforazione diametro 240 mm

lunghezza totale 9.0 m

iniezione a pressione uniforme

Nella figura seguente si riporta uno stralcio planimetrico della fondazione analizzata. Per ulteriori dettagli si rimanda agli elaborati specifici.

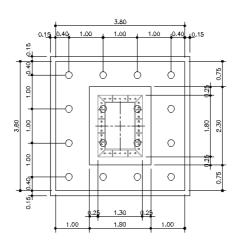


Figura 1: Carpenteria del plinto di fondazione - Posa in piano

Portale a bandiera Tipo B – Relazione di Calcolo fondazioni

3 VERIFICA GEOTECNICA DELLE FONDAZIONI

Il presente paragrafo riportano le verifiche geotecniche delle fondazioni del portale a bandiera tipo B in piano.

Per la fondazione sono previsti n°16 micropali aventi diametro 240 mm e lunghezza 9.0 m. Le verifiche sono state condotte ai sensi della Normativa vigente e con l'ausilio del programma di calcolo "Group for Windows - Version 6, Ensoft Inc (1985-2003)".

3.1 Profilo stratigrafico e caratterizzazione geotecnica dell'area

La presente caratterizzazione è stata effettuata sulla base dei dati relativi alle campagne di indagini svolte lungo il tracciato. Per eventuali approfondimenti si rimanda alla Relazione Geotecnica di progetto.

Nella seguente Tabella 1 sono riassunti i parametri geotecnici caratteristici.

UNITA'	Peso di volume γ _{n,k} (kN/m³)	Parametri di resistenza	Modulo elastico
Rilevato	19.0	φ = 35°, c' = 0 kPa	E' = 20÷30 MPa
Materiale in sito / riporto	19.0	φ = 35°, c' = 0 kPa	E' = 20÷30 MPa

Tabella 1: Valori caratteristici dei parametri geotecnici

Essendo:

 $\gamma_{n,k}$ = peso di volume naturale (kN/m³) ϕ = angolo di resistenza al taglio (°)

c' = coesione drenata (kPa)

La falda è stata assunta circa a 15 m da piano campagna.

3.2 Criteri di verifica e di calcolo delle fondazioni profonde

Le verifiche contenute nel presente paragrafo fanno riferimento a quanto descritto per i sistemi fondazionali nelle Norme Tecniche per le Costruzioni del gennaio 2008 e successiva circolare esplicativa (Circolare 2 febbraio 2009, n. 617).

Le verifiche, sia per il caso statico e sia per quello sismico, sono eseguite adottando

Portale a bandiera Tipo B - Relazione di Calcolo fondazioni

l'Approccio 1 delle NTC 2008 nei confronti degli stati limiti ultimi (SLU), riferiti allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che compongono la fondazione, e degli stati limite di esercizio (SLE), in modo da verificare la compatibilità tra requisiti prestazionali dell'opera e gli spostamenti e distorsioni previste.

3.3 Resistenza caratteristica (R_k) di micropali soggetti a carichi assiali

I calcoli della capacità portante dei micropali con riferimento ad un'analisi agli stati limite sono state condotte come previsto dalle Norme Tecniche per le Costruzioni del gennaio 2008.

Per il calcolo della resistenza caratteristica dei micropali si è fatto riferimento ai seguenti parametri, in funzione della tipologia esecutiva:

aderenza limite palo-terreno complessiva (α x τ):

100-130 kPa per iniezione a pressione uniforme (I.G.U.) 200-225 kPa per iniezione ripetuta in pressione (I.R.S.)

 $0.7 \times tan(\phi') \times \sigma_{v'}$ per iniezione a gravità

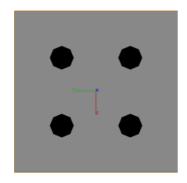
portata di base limite q_{base} = 4000 kPa

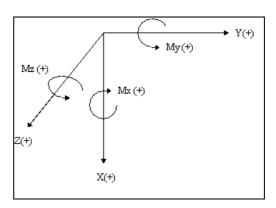
3.4 Comportamento di pali in gruppo soggetti a carichi trasversali.

Il comportamento di pali in gruppo soggetti a carichi trasversali è stato studiato mediante il programma di calcolo GROUP. Il programma di calcolo permette di analizzare il comportamento di una palificata sottoposta a carichi orizzontali e verticali modellando l'interazione terreno struttura mediante curve p-y. Le curve p-y, che esprimono la resistenza del terreno in funzione della profondità e dello spostamento del palo, possono essere ricavate in relazione alla tipologia di terreni e alle proprietà meccaniche che li caratterizzano, in accordo alle procedure proposte da:

Reese, Cox e Koop (1975) per sabbie

Welch e Reese (1975) per argille tenere sotto falda Reese, Cox e Koop (1975) per argille dure sotto falda Reese–Welch (1972) per argille dure sopra falda


Il programma permette di scegliere tra uno dei modelli sopra esposti.


Portale a bandiera Tipo B – Relazione di Calcolo fondazioni

3.5 Azioni di calcolo in fondazione

Nel presente paragrafo si riportano i valori di carico utilizzati per i calcoli, dedotti dalla relazione di calcolo strutturale a cui si rimanda. Le azioni sono riferite a intradosso plinto e al baricentro della fondazione; il sistema di riferimento è quello del programma di calcolo Group.

I segni convenzionali sono rappresentati nella Figura 2.

Schema di riferimento dei carichi

L'asse Y coincide con la direzione dello sbraccio del portale;

L'asse Z coincide con la direzione trasversale allo sbraccio del portale;

L'asse X coincide con la direzione verticale della palificata.

Figura 2: Convenzioni di segno del programma di calcolo GROUP

	Fx	Fy	Mz	Fz	Му	Mx
	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
SLEr 1	683	0	469	88	814	-782
SLEr 2	696	0	559	-53	-489	469
SLEr 3	689	0	514	88	814	-782
SLEr 4	683	0	469	-88	-814	782
SLEr 5	696	0	559	53	489	-469
SLEr 6	683	0	469	-88	-814	782
SLEr 7	683	0	469	-88	-814	782
SLEr 8	689	0	514	88	814	-782
SLEr 9	696	0	559	53	489	-469
SLEr 10	683	0	469	-88	-814	782
SLEr 11	683	0	469	-88	-814	782
SLEr 12	689	0	514	88	814	-782

Tabella 2: Azioni - SLE

	Fx	Fy	Mz	Fz	Му	Mx
	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
SLU STR 1	683	0	469	132	1221	-1174
SLU STR 2	945	0	791	-79	-733	704
SLU STR 3	935	0	723	132	1221	-1174
SLU STR 4	683	0	469	-132	-1221	1174
SLU STR 5	945	0	791	79	733	-704
SLU STR 6	683	0	469	-132	-1221	1174
SLU STR 7	683	0	469	-132	-1221	1174
SLU STR 8	935	0	723	132	1221	-1174
SLU STR 9	945	0	791	79	733	-704
SLU STR 10	683	0	469	-132	-1221	1174
SLU STR 11	683	0	469	-132	-1221	1174
SLU STR 12	935	0	723	132	1221	-1174

Tabella 3: Azioni SLU - A1 (STR)

	Fx	Fy	Mz	Fz	My	Mx
	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
SLU GEO 1	683	0	469	114	1058	-1017
SLU GEO 2	756	0	655	-69	-635	610
SLU GEO 3	748	0	596	114	1058	-1017
SLU GEO 4	683	0	469	-114	-1058	1017
SLU GEO 5	756	0	655	69	635	-610
SLU GEO 6	683	0	469	-114	-1058	1017
SLU GEO 7	683	0	469	-114	-1058	1017
SLU GEO 8	748	0	596	114	1058	-1017
SLU GEO 9	756	0	655	69	635	-610
SLU GEO 10	683	0	469	-114	-1058	1017
SLU GEO 11	683	0	469	-114	-1058	1017
SLU GEO 12	748	0	596	114	1058	-1017

Tabella 4: Azioni SLU – A2 (GEO)

	Fx	Fy	Mz	Fz	My	Mx
	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
SLU SIS 1	709	-153	788	49	-70	98
SLU SIS 2	657	153	150	-49	70	-98
SLU SIS 3	700	-46	572	163	-235	326
SLU SIS 4	666	46	366	-163	235	-326
SLU SIS 5	729	-48	595	49	-70	98
SLU SIS 6	637	48	342	-49	70	-98
SLU SIS 7	677	30	520	-93	-405	326
SLU SIS 8	690	-30	417	93	405	-326
SLU SIS 9	709	-153	788	49	-70	98
SLU SIS 10	657	153	150	-49	70	-98
SLU SIS 11	677	30	520	-93	-405	326
SLU SIS 12	690	-30	417	93	405	-326

Tabella 5: Azioni SISMA

3.6 Risultati analisi palificata e verifiche

3.6.1 Premessa

Nella **Figura 3** si riporta lo schema della palificata, con il sistema di riferimento del programma Group e la numerazione dei micropali utilizzata nei calcoli.

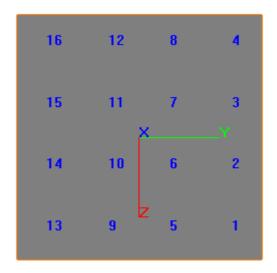


Figura 3: Numerazione pali

Per maggiori informazioni circa la geometria delle opere si rimanda agli elaborati grafici di progetto.

3.6.2 Risultati delle analisi

Si riportano le azioni sui micropali

Portale a bandiera Tipo B – Relazione di Calcolo fondazioni

Azione assiale

Palo	SLU STR 1	SLU STR 2	SLU STR 3	SLU STR 4	SLU STR 5	SLU STR 6	SLU STR 7	SLU STR 8	SLU STR 9	SLU STR 10
1	106	-58	104	-88.7	59.2	-88.7	-88.7	104	59.2	-88.7
2	40.5	-21.1	37.3	-26.8	19.9	-26.8	-26.8	37.3	19.9	-26.8
3	-26.8	19.9	-30.3	40.5	-21.1	40.5	40.5	-30.3	-21.1	40.5
4	-88.7	59.2	-92.7	106	-58	106	106	-92.7	-58	106
5	130	-21.1	140	-66.6	98.6	-66.6	-66.6	140	98.6	-66.6
6	64.1	20	73.9	-4.69	59.3	-4.69	-4.69	73.9	59.3	-4.69
7	-4.69	59.3	6.06	64.1	20	64.1	64.1	6.06	20	64.1
8	-66.6	98.6	-58.3	130	-21.1	130	130	-58.3	-21.1	130
9	154	20.1	176	-44.4	138	-44.4	-44.4	176	138	-44.4
10	87.7	59.4	110	21.7	98.7	21.7	21.7	110	98.7	21.7
11	21.7	98.7	44	87.7	59.4	87.7	87.7	44	59.4	87.7
12	-44.4	138	-24	154	20.1	154	154	-24	20.1	154
13	176	59.5	207	-22.3	176	-22.3	-22.3	207	176	-22.3
14	111	98.7	147	45.3	138	45.3	45.3	147	138	45.3
15	45.3	138	80.6	111	98.7	111	111	80.6	98.7	111
16	-22.3	176	14.2	176	59.5	176	176	14.2	59.5	176

Palo	SLU SIS 1	SLU SIS 2	SLU SIS 3	SLU SIS 4	SLU SIS 5	SLU SIS 6	SLU SIS 7	SLU SIS 8	SLU SIS 9	SLU SIS 10	SLU SIS 11	SLU SIS 12
1	-24.6	39.5	-12.1	26.9	-4.97	19.5	-29.5	45.6	-24.6	39.5	-29.5	45.6
2	-22.5	37.4	-5.8	20.1	-2.89	17.3	-8.26	23	-22.5	37.4	-8.26	23
3	-20.4	35.2	0.844	13.3	-0.795	15	17	-2.62	-20.4	35.2	17	-2.62

4	-18.4	33	10.4	4.75	1.95	12.8	39.7	-23.9	-18.4	33	39.7	-23.9
5	20	42.7	19.5	43.6	27.9	35.3	-6.4	66.9	20	42.7	-6.4	66.9
6	22.2	40.5	26.2	36.8	30.1	33.1	19	44.3	22.2	40.5	19	44.3
7	24.4	38.4	33	30	32.4	30.8	41.7	21.6	24.4	38.4	41.7	21.6
8	26.6	36.2	39.8	23.2	34.6	28.6	64.4	-3.91	26.6	36.2	64.4	-3.91
9	63	45.9	48.7	60.3	58	51.1	21	88.2	63	45.9	21	88.2
10	65.2	43.7	55.5	53.5	60.2	48.8	43.7	65.5	65.2	43.7	43.7	65.5
11	67.4	41.6	62.2	46.7	62.4	46.6	66.4	42.9	67.4	41.6	66.4	42.9
12	69.6	39.4	69	39.9	64.6	44.4	89.1	20.2	69.6	39.4	89.1	20.2
13	106	49.1	78	77	88	66.8	45.7	109	106	49.1	45.7	109
14	108	46.9	84.7	70.2	90.3	64.6	68.4	86.8	108	46.9	68.4	86.8
15	110	44.7	91.5	63.4	92.5	62.4	91	64.1	110	44.7	91	64.1
16	113	42.6	98.3	56.6	94.7	60.1	114	41.5	113	42.6	114	41.5

Palo	SLU GEO 1	SLU GEO 2	SLU GEO 3	SLU GEO 4	SLU GEO 5	SLU GEO 6	SLU GEO 7	SLU GEO 8	SLU GEO 9	SLU GEO 10
1	93	-51.8	87.6	-75.4	49.6	-75.4	-75.4	87.6	49.6	-75.4
2	36.2	-20	30.7	-22.2	15.7	-22.2	-22.2	30.7	15.7	-22.2
3	-22.2	15.7	-27.5	36.2	-20	36.2	36.2	-27.5	-20	36.2
4	-75.4	49.6	-80.9	93	-51.8	93	93	-80.9	-51.8	93
5	116	-21.3	118	-53.4	82	-53.4	-53.4	118	82	-53.4
6	59.7	14.3	60.6	-0.145	48.2	-0.145	-0.145	60.6	48.2	-0.145
7	-0.145	48.2	0.839	59.7	14.3	59.7	59.7	0.839	14.3	59.7
8	-53.4	82	-52.8	116	-21.3	116	116	-52.8	-21.3	116

9	140	12.9	147	-31.4	115	-31.4	-31.4	147	115	-31.4
10	83.2	46.8	90.6	26.5	80.6	26.5	26.5	90.6	80.6	26.5
11	26.5	80.6	33.7	83.2	46.8	83.2	83.2	33.7	46.8	83.2
12	-31.4	115	-24.8	140	12.9	140	140	-24.8	12.9	140
13	163	45.4	176	-9.33	147	-9.33	-9.33	176	147	-9.33
14	107	79.2	120	49.9	113	49.9	49.9	120	113	49.9
15	49.9	113	63.6	107	79.2	107	107	63.6	79.2	107
16	-9.33	147	5	163	45.4	163	163	5	45.4	163
Palo	SLEr 1	SLEr 2	SLEr 3	SLEr 4	SLEr 5	SLEr 6	SLEr 7	SLEr 8	SLEr 9	SLEr 10
1	73.3	-37	70.3	-56.5	41.2	-56.5	-56.5	70.3	41.2	-56.5
2	29.9	-12.8	26.9	-15.7	15.4	-15.7	-15.7	26.9	15.4	-15.7
3	-15.7	15.4	-18.5	29.9	-12.8	29.9	29.9	-18.5	-12.8	29.9
4	-56.5	41.2	-59.3	73.3	-37	73.3	73.3	-59.3	-37	73.3
5	96.6	-11.1	95.8	-34.7	68.8	-34.7	-34.7	95.8	68.8	-34.7
6	53.1	17.1	52.4	9.24	43	9.24	9.24	52.4	43	9.24
7	9.24	43	8.19	53.1	17.1	53.1	53.1	8.19	17.1	53.1
8	-34.7	68.8	-35.4	96.6	-11.1	96.6	96.6	-35.4	-11.1	96.6
9	120	18.9	121	-12.8	96.3	-12.8	-12.8	121	96.3	-12.8
10	76.4	44.7	77.9	32.9	70.5	32.9	32.9	77.9	70.5	32.9
11	32.9	70.5	34.4	76.4	44.7	76.4	76.4	34.4	44.7	76.4
12	-12.8	96.3	-11.4	120	18.9	120	120	-11.4	18.9	120
13	143	46.5	147	12.7	124	12.7	12.7	147	124	12.7

Portale a bandiera Tipo B – Relazione di Calcolo fondazioni

14	99.6	72.3	103	56.2	98.1	56.2	56.2	103	98.1	56.2
15	56.2	98.1	60	99.6	72.3	99.6	99.6	60	72.3	99.6
16	12.7	124	16.5	143	46.5	143	143	16.5	46.5	143

Momento flettente

Palo	SLU STR 1	SLU STR 2	SLU STR 3	SLU STR 4	SLU STR 5	SLU STR 6	SLU STR 7	SLU STR 8	SLU STR 9	SLU STR 10
1	39.541	22.242	39.681	39.363	22.48	39.363	39.363	39.681	22.48	39.363
2	27.8	15.531	27.8	27.64	15.675	27.64	27.64	27.8	15.675	27.64
3	27.64	15.675	27.64	27.8	15.531	27.8	27.8	27.64	15.531	27.8
4	39.363	22.48	39.363	39.541	22.242	39.541	39.541	39.363	22.242	39.541
5	29.742	16.482	29.839	29.443	16.88	29.443	29.443	29.839	16.88	29.443
6	11.75	6.1789	11.747	11.366	6.537	11.366	11.366	11.747	6.537	11.366
7	11.366	6.537	11.363	11.75	6.1789	11.75	11.75	11.363	6.1789	11.75
8	29.443	16.88	29.442	29.742	16.482	29.742	29.742	29.442	16.482	29.742
9	33.403	18.578	33.403	33.055	18.931	33.055	33.055	33.403	18.931	33.055
10	20.357	11.254	20.408	20.205	11.441	20.205	20.205	20.408	11.441	20.205
11	20.205	11.441	20.156	20.357	11.254	20.357	20.357	20.156	11.254	20.357
12	33.055	18.931	33.105	33.403	18.578	33.403	33.403	33.105	18.578	33.403
13	43.996	24.754	44.059	43.807	24.943	43.807	43.807	44.059	24.943	43.807
14	35.99	20.258	36.1	35.899	20.354	35.899	35.899	36.1	20.354	35.899
15	35.899	20.354	35.985	35.99	20.258	35.99	35.99	35.985	20.258	35.99
16	43.807	24.943	43.822	43.996	24.754	43.996	43.996	43.822	24.754	43.996

Palo	SLU SIS 1	SLU SIS 2	SLU SIS 3	SLU SIS 4	SLU SIS 5	SLU SIS 6	SLU SIS 7	SLU SIS 8	SLU SIS 9	SLU SIS 10	SLU SIS 11	SLU SIS 12
1	8.6182	8.7833	16.014	16.132	5.0986	5.2477	7.6035	7.7946	8.6182	8.7833	7.6035	7.7946
2	7.4488	7.6132	14.129	14.193	4.3219	4.4321	4.19	4.2582	7.4488	7.6132	4.19	4.2582
3	6.3199	6.4687	13.62	13.61	3.8202	3.8716	5.6945	5.5367	6.3199	6.4687	5.6945	5.5367
4	5.3123	5.4412	14.627	14.544	3.7463	3.7061	9.868	9.6646	5.3123	5.4412	9.868	9.6646
5	7.3306	7.5213	11.529	11.696	3.872	4.0578	6.162	6.3767	7.3306	7.5213	6.162	6.3767
6	6.0815	6.2642	8.9586	9.0518	2.921	3.0773	1.8515	2.0011	6.0815	6.2642	1.8515	2.0011
7	4.929	5.1161	8.1901	8.1749	2.2778	2.357	4.0087	3.8124	4.929	5.1161	4.0087	3.8124
8	3.876	4.0454	9.7214	9.6026	2.2003	2.1581	8.4651	8.2365	3.876	4.0454	8.4651	8.2365
9	7.0579	7.2563	9.2517	9.4593	3.3838	3.5965	8.3947	8.556	7.0579	7.2563	8.3947	8.556
10	5.7416	5.9491	5.4536	5.6185	2.2222	2.4252	6.2333	6.2769	5.7416	5.9491	6.2333	6.2769
11	4.4852	4.6909	3.7908	3.7576	1.2146	1.3718	7.0675	6.9486	4.4852	4.6909	7.0675	6.9486
12	3.2504	3.4519	6.6205	6.4378	1.0087	0.9359	10.117	9.9341	3.2504	3.4519	10.117	9.9341
13	7.0242	7.2237	8.6938	8.902	3.2755	3.494	11.821	11.928	7.0242	7.2237	11.821	11.928
14	5.6878	5.8968	4.2953	4.4976	2.0546	2.2715	10.455	10.48	5.6878	5.8968	10.455	10.48
15	4.4237	4.6223	1.4157	1.3155	0.8693	1.0762	10.869	10.801	4.4237	4.6223	10.869	10.801
16	3.1552	3.3525	5.7132	5.496	0.5276	0.3672	13.005	12.872	3.1552	3.3525	13.005	12.872

Palo	SLEr 1	SLEr 2	SLEr 3	SLEr 4	SLEr 5	SLEr 6	SLEr 7	SLEr 8	SLEr 9	SLEr 10
1	25.261	14.145	25.261	25.023	14.31	25.023	25.023	25.261	14.31	25.023
2	17.616	9.8009	17.62	17.516	9.9099	17.516	17.516	17.62	9.9099	17.516
3	17.516	9.9099	17.512	17.616	9.8009	17.616	17.616	17.512	9.8009	17.616

Portale a bandiera Tipo B – Relazione di Calcolo fondazioni

4	25.023	14.31	25.023	25.261	14.145	25.261	25.261	25.023	14.145	25.261
5	18.89	10.453	18.89	18.692	10.652	18.692	18.692	18.89	10.652	18.692
6	7.3213	3.7864	7.3309	7.0717	4.0384	7.0717	7.0717	7.3309	4.0384	7.0717
7	7.0717	4.0384	7.0621	7.3213	3.7864	7.3213	7.3213	7.0621	3.7864	7.3213
8	18.692	10.652	18.691	18.89	10.453	18.89	18.89	18.691	10.453	18.89
9	21.223	11.763	21.223	20.962	12.025	20.962	20.962	21.223	12.025	20.962
10	12.823	7.013	12.828	12.696	7.1534	12.696	12.696	12.828	7.1534	12.696
11	12.696	7.1534	12.691	12.823	7.013	12.823	12.823	12.691	7.013	12.823
12	20.962	12.025	20.962	21.223	11.763	21.223	21.223	20.962	11.763	21.223
13	28.003	15.752	28.003	27.877	15.915	27.877	27.877	28.003	15.915	27.877
14	22.924	12.816	22.926	22.856	12.882	22.856	22.856	22.926	12.882	22.856
15	22.856	12.882	22.853	22.924	12.816	22.924	22.924	22.853	12.816	22.924
16	27.877	15.915	27.877	28.003	15.752	28.003	28.003	27.877	15.752	28.003

Taglio

Palo	SLU STR 1	SLU STR 2	SLU STR 3	SLU STR 4	SLU STR 5	SLU STR 6	SLU STR 7	SLU STR 8	SLU STR 9	SLU STR 10
1	60.06	36.34	60.12	60.461	36.2	60.461	60.461	60.12	36.2	60.461
2	43.782	26.237	43.782	43.792	26.237	43.792	43.792	43.782	26.237	43.792
3	43.792	26.237	43.792	43.782	26.237	43.782	43.782	43.792	26.237	43.782
4	60.461	36.2	60.461	60.06	36.34	60.06	60.06	60.461	36.34	60.06
5	43.873	26.403	43.971	44.076	26.402	44.076	44.076	43.971	26.402	44.076
6	18.917	10.956	18.911	18.728	11.055	18.728	18.728	18.911	11.055	18.728

7	18.728	11.055	18.718	18.917	10.956	18.917	18.917	18.718	10.956	18.917
8	44.076	26.402	44.073	43.873	26.403	43.873	43.873	44.073	26.403	43.873
9	48.783	29.434	48.783	49.106	29.347	49.106	49.106	48.783	29.347	49.106
10	31.456	18.7	31.456	31.443	18.715	31.443	31.443	31.456	18.715	31.443
11	31.443	18.715	31.443	31.456	18.7	31.456	31.456	31.443	18.7	31.456
12	49.106	29.347	49.106	48.783	29.434	48.783	48.783	49.106	29.434	48.783
13	62.579	37.7	62.579	63.172	37.622	63.172	63.172	62.579	37.622	63.172
14	52.106	31.356	52.106	52.248	31.278	52.248	52.248	52.106	31.278	52.248
15	52.248	31.278	52.151	52.106	31.356	52.106	52.106	52.151	31.356	52.106
16	63.172	37.622	63.094	62.579	37.7	62.579	62.579	63.094	37.7	62.579

Palo	SLU SIS 1	SLU SIS 2	SLU SIS 3	SLU SIS 4	SLU SIS 5	SLU SIS 6	SLU SIS 7	SLU SIS 8	SLU SIS 9	SLU SIS 10	SLU SIS 11	SLU SIS 12
1	15.863	15.858	27.127	27.127	9.9	9.8857	14.045	14.05	15.863	15.858	14.045	14.05
2	13.95	13.945	24.253	24.247	8.4956	8.4846	8.0455	8.0337	13.95	13.945	8.0455	8.0337
3	12.065	12.027	23.423	23.424	7.5356	7.5205	10.491	10.492	12.065	12.027	10.491	10.492
4	10.322	10.288	24.843	24.839	7.3118	7.2731	17.348	17.348	10.322	10.288	17.348	17.348
5	12.984	12.984	19.105	19.173	7.3087	7.3257	11.104	11.104	12.984	12.984	11.104	11.104
6	10.92	10.92	15.098	15.102	5.622	5.6292	3.8495	3.8169	10.92	10.92	3.8495	3.8169
7	9.0695	9.0695	13.834	13.834	4.4037	4.3996	7.2016	7.1755	9.0695	9.0695	7.2016	7.1755
8	7.3969	7.3945	16.166	16.155	4.1516	4.1419	14.31	14.211	7.3969	7.3945	14.31	14.211
9	12.495	12.595	15.732	15.829	6.515	6.5369	14.497	14.497	12.495	12.595	14.497	14.497
10	10.417	10.419	9.7597	9.7868	4.4439	4.4569	11.016	11.016	10.417	10.419	11.016	11.016
11	8.3781	8.3899	6.8359	6.8423	2.4978	2.4905	12.195	12.19	8.3781	8.3899	12.195	12.19

12	6.3887	6.3914	11.374	11.36	1.8135	1.814	16.86	16.86	6.3887	6.3914	16.86	16.86
13	12.425	12.525	14.929	14.929	6.3393	6.3686	19.596	19.513	12.425	12.525	19.596	19.513
14	10.331	10.331	7.9807	7.993	4.1766	4.1854	17.309	17.312	10.331	10.331	17.309	17.312
15	8.2622	8.2919	2.6123	2.643	1.9341	1.9211	17.966	17.957	8.2622	8.2919	17.966	17.957
16	6.224	6.2339	9.9376	9.9137	0.8182	0.8103	21.06	21.06	6.224	6.2339	21.06	21.06

Palo	SLEr 1	SLEr 2	SLEr 3	SLEr 4	SLEr 5	SLEr 6	SLEr 7	SLEr 8	SLEr 9	SLEr 10
1	40.2	24.28	40.2	40.34	24.2	40.34	40.34	40.2	24.2	40.34
2	29.191	17.393	29.191	29.191	17.381	29.191	29.191	29.191	17.381	29.191
3	29.191	17.381	29.191	29.191	17.393	29.191	29.191	29.191	17.393	29.191
4	40.34	24.2	40.34	40.2	24.28	40.2	40.2	40.34	24.28	40.2
5	29.315	17.569	29.315	29.415	17.569	29.415	29.415	29.315	17.569	29.415
6	12.302	7.0825	12.302	12.302	7.0948	12.302	12.302	12.302	7.0948	12.302
7	12.302	7.0948	12.3	12.302	7.0825	12.302	12.302	12.3	7.0825	12.302
8	29.415	17.569	29.415	29.315	17.569	29.315	29.315	29.415	17.569	29.315
9	32.659	19.622	32.659	32.709	19.617	32.709	32.709	32.659	19.617	32.709
10	20.925	12.346	20.925	20.875	12.346	20.875	20.875	20.925	12.346	20.875
11	20.875	12.346	20.875	20.925	12.346	20.925	20.925	20.875	12.346	20.925
12	32.709	19.617	32.709	32.659	19.622	32.659	32.659	32.709	19.622	32.659
13	41.746	25.253	41.746	41.964	25.175	41.964	41.964	41.746	25.175	41.964
14	34.797	20.909	34.797	34.873	20.917	34.873	34.873	34.797	20.917	34.873
15	34.873	20.917	34.873	34.797	20.909	34.797	34.797	34.873	20.909	34.797
16	41.964	25.175	41.964	41.746	25.253	41.746	41.746	41.964	25.253	41.746

Portale a bandiera Tipo B – Relazione di Calcolo fondazioni

Nelle successiva tabella sono riportati i risultati delle analisi in termini di azione assiale massima N_{max} e minima N_{min} , momento massimo M_{max} , azione massima di taglio T_{max} agenti sui singoli pali nelle combinazioni di carico più gravose.

	SLU STR	SLU SIS	SLU GEO	SLE
N _{max}	207	114	176	147
N _{min}	-92.7	-29.5	-80.9	-59.3
M _{max}	44.059	16.132	37.53	28.003
T _{max}	63.172	27.127	54.63	41.964

Tabella 6: Risultati delle analisi

Si riportano, inoltre, gli spostamenti a quota intradosso plinto nella condizione di stato limite di esercizio:

	d _z (m)	d _y (m)	d _x (m)	θ_x (rad)	θ _y (rad)	θ _z (rad)
SLEr 3	0.52 10-4	-0.17 10-4	-0.65 10-3	-0.17 10-2	-0.56 10-4	0.33 10-4

Tabella 7: Spostamenti intradosso fondazione - SLE

Portale a bandiera Tipo B – Relazione di Calcolo fondazioni

3.6.3 Verifica del tubo di armatura

La verifica dei tubi di armatura dei micropali viene eseguita secondo il criterio valido per sezioni tubolari compatte (classe 1 o 2) con il metodo plastico – par. 4.2 – Costruzioni in Acciaio – N.T.C.-08 - D.M. 14 gennaio 2008, adottando per il materiale f_{tk} = 510 MPa (tensione caratteristica di rottura) e f_{yk} = 355 MPa (tensione caratteristica di snervamento) – acciaio S355 - par. 11.3.4 – Acciai per Strutture Metalliche e per Strutture Composte - N.T.C.-08 - D.M. 14 gennaio 2008.

NTC - DM 14 GENNAIO	2008 - 4.2	2 Costruzio	oni di ACC I	AIO - Verifica di SEZIONI TU	JBOLARI	COMPAT	TE (CLAS	SE 1 0 2) 0	on il MET	ODO PLAS	STICO
Materiale			Azioni di calcolo			A1-M1-R1	SISMA				
Acciaio	classe	S 355	-	Azione assiale	n _s	kN/m	207.00	114.00			
Coefficiente di sicurezza	Yмо	1.05	-	Taglio	V _S	kN/m	63.17	27.13			
Tensione di snervamento	f _{vk}	355	MPa	Momento	m _s	kNm/m	44.06	16.13			
Tensione di calcolo	f _{vd}	338	MPa	Combinazioni	di carico		A1-M1-R1	SISMA			
Sezione (UNI EN 10219-2:2006)			Coefficiente di sicurezza	γ	-	1	1	1	1		
Diametro esterno	D	168.3	mm	Interasse	i	m	1	1	1	1	
Spessore (s <= 40 mm)	S	12.5	mm	Azioni di progetto			A1-M1-R1	SISMA			
Diametro interno	d	143.3	mm	Azione assiale	N _{sd}	kN	207.00	114.00	0	0	0
Momento d'inerzia	I	2.99E-04	m ⁴	Taglio	V _{sd}	kN	63.17	27.13	0	0	0
Area sezione trasversale	А	6.12E-03	m ²	Momento	M _{sd}	kNm	44.06	16.13	0	0	0
Modulo resistente a flessione	W _{pl}	3.04E-04	m ³	Effetto delle azioni cor	Effetto delle azioni combinate (N, V, M)		A1-M1-R1	SISMA			
Modulo resistente a taglio	A _v =2A/π	3.90E-03	m ²	[(2·V _{sd} /V _{pl,Rd})-1] ²	ρ	-	0.000	0.000	0.000	0.000	0.000
Area resistente a taglio	A* _v =A	6.12E-03	m ²	N _{sd} /[A·(1-ρ·a _v)·f _{yd}]	n	-	0.100	0.055	0.000	0.000	0.000
A* _v /A	a _v	1.000	-	Momento resistente ridotto	$M_{pl,Rd,V,N}$	kN⋅m	102	102	103	103	103
Azioni resistenti elementari			Verifiche			A1-M1-R1	SISMA				
Azione assiale resistente	$N_{pl,Rd}$	2069	kN	Azione assiale	N _{sd} <=N _{pl,Rd}		О.К.	O.K.	O.K.	O.K.	О.К.
Taglio resistente	$V_{pl,Rd}$	760	kN	Taglio	V _{sd} <=V _{pl,Rd}		О.К.	O.K.	O.K.	O.K.	O.K.
Momento resistente	M _{pl,Rd}	103	kN⋅m	Presso(Tenso)-Flessione	M _{sd} <=M _{pl,Rd,V,N}		O.K.	0.K.	0.K.	0.K.	O.K.

3.6.4 Analisi di capacità portante

L'analisi di capacità portante dei micropali viene svolta utilizzando i parametri indicati al paragrafo 3.3 e prendendo a riferimento i coefficienti parziali ai sensi della *Normativa vigente – par.* 6.4.3 – Fondazioni su pali (N.T.C.-08 - D.M. 14 gennaio 2008)

	A2-M1				A1-M			
	COMPR	TRAZ	BASE	COMPR	TRAZ	BASE		
γ̈́R	1.45	1.60	1.70	1.00	1.00	1.00		
ξ3	1.70	1.70	1.70	1.70	1.70	1.70		
	RISULTATI (SROUP				AZIONI DI VEF	RIFICA	
		A2-M1		0.4.004				
	A2-M1	SISMA	URTO	A1-M1		A2-M1	A1-M1	
Nmax COMPR	176	114	0	207		176	207	
Nmin TRAZ	80.9	29.5	0	92.7		80.9	92.7	
DATI MICROPALI								
portata base	4000	kPa						
diam perf.	240	mm		phi'	35	(°)		
Lmicr compr	0	m	I.G.U.	gamma	20	kN/m3		
Lmicr traz	0	m	I.G.U.					
τ lim	100	kPa						
Lmicr libera compr	9	m						
Lmicr libera traz	9	m						
	RESISTENZA					ESITO VERIFI		0.17
	184	kN			A2	Nmax compr	176	O.K.
	110	kN				Nmax traz	80.9	O.K.
Singoli micropali								
	283	kN			A 4	Nmax compr	207	O.K.
	176	kN			A 1	Nmax traz	92.7	O.K.