

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI

RAMPE SVINCOLO A12

RELAZIONE DI CALCOLO DELLE FONDAZIONI RAMPA D SEMIVIADOTTO

IL RESPONSABILE PROGETTAZIONE SPECIALISTICA

Ing. Marco Pietro D'Angelantonio Ord. Ingg. Milano N.20155

RESPONSABILE UFFICIO APE

IL RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE

Ing. Sara Frisiani Ord. Ingg. Genova N. 9810A

CAPO COMMESSA

IL DIRETTORE TECNICO

Ing. Maurizio Torresi Ord. Ingg. Milano N. 16492

RESPONSABILE DIREZIONE OPERATIVA TECNICA E PROGETTAZIONE

WBS	RIF	ERIMENTO ELABORATO	DATA:	REVISIONE
	DIRETTORIO	FILE	DICEMBRE 2014	n. data
_	codice commessa N.Pr	og. unita' ufficio n. progressivo Rev.	5.025.K2	
			SCALA:	
_	 1 1 0 0 1 3 0 2	2 S P P	-	

snea	ingegneria	RESPONSABILE PROGETTO GENOVA	ELABORAZIONE GRAFICA A CURA DI :	
autostrade	europea	Ing. Orlando Mazza Ord. Ingg. Pavia N. 1496	ELABORAZIONE PROGETTUALE A CURA DI :	
CONSULENZA A CURA DI :			IL RESPONSABILE UNITA' STP	Ing. Andrea Tanzi O.I. Parma N.1154

VISTO DEL COMMITTENTE

autostrade per l'italia

R.U.P. — Ing. Andrea Frediani

VISTO DEL CONCEDENTE

Ministero delle Infrastrutture e dei Trasporti dipartimento per le infrastrutture, gli affari generali ed il personale struttura di vigilanza sulle concessionarie autostradali

SPEA Ingegneria Europea

COLLEGAMENTO TRA LA VALFONTANABUONA E L'AUTOSTRADA A12 GENOVA-ROMA

SEMIVIADOTTO RAMPA D RELAZIONE DI CALCOLO DELLE FONDAZIONI

INDICE

1.	INTRODUZIONE	4
1.	.1 OGGETTO E SCOPO DEL LAVORO	4
2.	DOCUMENTI DI RIFERIMENTO	5
2.	.1 NORMATIVE, RACCOMANDAZIONI E LINEE GUIDE	5
2.	2 Bibliografia	5
2.	3 ELABORATI DI PROGETTO	5
3.	SOFTWARE DI CALCOLO	5
4.	CARATTERISTICHE DEI MATERIALI	6
4.	.1 Acciaio	6
4.	.2 CALCESTRUZZO	6
4.	3 MICROPALI	7
5.	STRATIGRAFIA E CARATTERIZZAZIONE GEOTECNICA DI RIFERIMENTO	8
5.	.1 Premessa	8
5.	2 INDAGINI E PROVE DI LABORATORIO DI RIFERIMENTO	8
5.		
5.	4 Caratterizzazione Geotecnica	9
5.	.5 STRATIGRAFIE DI RIFERIMENTO E PARAMETRI DI CALCOLO	13
5.	.6 DETERMINAZIONE DELLA CATEGORIA DI SUOLO	14
6.	TIPOLOGIA DI FONDAZIONE ADOTTATE	15
6.	.1 CARATTERISTICHE DELLE FONDAZIONI	15
7.	CRITERI DI VERIFICA E DI CALCOLO	17
7.	.1 Premessa	17
7.	.2 CRITERI DI PROGETTAZIONE AGLI STATI LIMITE	17
7.	3 FONDAZIONI SU MICROPALI	19
	7.3.1 Verifiche di sicurezza	20
	7.3.2 Resistenza caratteristica (Rk) di pali soggetti a carichi assiali	21
	7.3.2.1 Stima della resistenza dei micropali soggetti a carichi assiali	23
	7.3.3 Comportamento di pali in gruppo soggetti a carichi trasversali	27
8.	AZIONI DI CALCOLO IN FONDAZIONE	32
8.	.1 AZIONI DI CALCOLO – SPALLA 2	32
8.	.2 AZIONI DI CALCOLO – PILE	34

Semiviadotto Rampa D - Relazione di calcolo fondazioni

9.	FO	NDAZIONI SU MICROPALI	49
	9.1 I	PARAMETRI DEL MODELLO GEOTECNICO DELLE PALIFICATE	49
	9.2 I	RESISTENZA DEI MICROPALI SOGGETTI A CARICHI ASSIALI	49
	9.3 I	RISULTATI SPALLA	51
	9.3	3.1 Premessa	51
	9.3	3.2 Risultati	52
	9.3	3.3 Verifiche geotecniche	52
	9.3	3.4 Verifica del tubo di armatura	52
	9.4 l	RISULTATI PILA 1	54
	9.4	1.1 Premessa	54
	9.4	1.2 Risultati	54
	9.4	1.3 Verifiche geotecniche	55
	9.4	1.4 Verifica del tubo di armatura	55
	9.5 I	RISULTATI PILA 2	57
	9.5	5.1 Premessa	57
	9.5	5.2 Risultati	57
	9.5	5.3 Verifiche geotecniche	58
	9.5	5.4 Verifica del tubo di armatura	58
	9.6 I	RISULTATI PILA 3	60
	9.6	S.1 Premessa	60
	9.6	6.2 Risultati	60
	9.6	S.3 Verifiche geotecniche	61
	9.6	6.4 Verifica del tubo di armatura	61
	9.7 I	RISULTATI PILA 4	62
	9.7	7.1 Premessa	62
	9.7	7.2 Risultati	62
	9.7	7.3 Verifiche geotecniche	63
	9.7	7.4 Verifica del tubo di armatura	63
	9.8 I	RISULTATI PILA 5	64
	9.8	3.1 Premessa	64
	9.8	3.2 Risultati	64
	9.8	3.3 Verifiche geotecniche	65
	9.8	3.4 Verifica del tubo di armatura	65
	9.9 I	RISULTATI PILA 6	66
	9.9	0.1 Premessa	66
	9.9	0.2 Risultati	66
	9.9	0.3 Verifiche geotecniche	67
	9.9	9.4 Verifica del tubo di armatura	67
	9.10	RISULTATI PILA 7	68

Semiviadotto Rampa D - Relazione di calcolo fondazioni

9.10.1	Premessa	68
9.10.2	Risultati	68
9.10.3	Verifiche geotecniche	68
9.10.4	Verifica del tubo di armatura	69
9.11 Ris	ULTATI PILA 8	70
9.11.1	Premessa	70
9.11.2	Risultati	70
9.11.3	Verifiche geotecniche	71
9.11.4	Verifica del tubo di armatura	71

Semiviadotto Rampa D - Relazione di calcolo fondazioni

1. INTRODUZIONE

1.1 Oggetto e scopo del lavoro

I presente documento riporta le verifiche geotecniche delle fondazioni delle opere previste per il semiviadotto della Rampa D dello svincolo sulla A12, nell'ambito della progettazione definitiva dei lavori di collegamento tra la Valfontanabuona e l'Autostrada A12 Genova – Roma. Le verifiche sono state condotte ai sensi della Normativa vigente (Doc. Rif.[1] e [2]).

La tipologia di fondazione è stata scelta in funzione della posizione delle stesse, dell'entità dei carichi agenti a livello di imposta delle fondazioni e della natura dei terreni presenti.

In particolare le fondazioni prevedono:

•	fondazione spalla 2	fondazione su 104 micropali;
•	fondazione pila 1,	fondazione su 60 micropali;
•	fondazione pila 2,	fondazione su 45 micropali;
•	fondazione pila 3,	fondazione su 40 micropali;
•	fondazione pila 4,	fondazione su 35 micropali;
•	fondazione pila 5,	fondazione su 30 micropali;
•	fondazione pila 6,	fondazione su 30 micropali;
•	fondazione pila 7,	fondazione su 25 micropali;
•	fondazione pila 8,	fondazione su 20 micropali.

Le opere in oggetto ricadono nel comune di Genova caratterizzato <u>da una accelerazione di progetto su suolo di categoria A associata ad un tempo di ritorno di 949 anni e periodo di riferimento di 50 anni pari <u>a 0.108g</u> (1). Per quanto riguarda le informazioni relative alla vita nominale, classe d'uso, il corrispondente coefficiente d'uso ed il periodo di riferimento per l'azione sismica della struttura in esame si rimanda alla relazione di calcolo strutturale.</u>

⁽¹) Fonte: Allegato B alle Nuove Norme Tecniche per le Costruzioni – Tabelle dei parametri che definiscono l'azione sismica.

Semiviadotto Rampa D - Relazione di calcolo fondazioni

2. DOCUMENTI DI RIFERIMENTO

2.1 Normative, raccomandazioni e linee guide

- [1] Decreto Ministeriale del 14 gennaio 2008: "Approvazione delle Nuove Norme Tecniche per le Costruzioni", G.U. n.29 del 04.2.2008, Supplemento Ordinario n.30.
- [2] Circolare 2 febbraio 2009, n. 617 Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008.
- [3] UNI EN 1997-1 : Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali
- [4] UNI EN 1998-5 : Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici
- [5] Bustamante M. et Doix B., "Une mèthode pour le calcul des tirants et des *micropieux injectès*", Bulletin liasion LCPC, Nov. Dec. 1985.

2.2 Bibliografia

- [6] LANCELLOTTA R. (1991): "Geotecnica" Edizioni Zanichelli.
- [7] GEO-SLOPE (2004): "Slope 5.20".
- [8] Poulos and Davis (1974): "Rectangle on Semi-infinite Mass".
- [9] BOWLES J.E. (1991): "Fondazioni Progetto e analisi" McGraw & Hill.

2.3 Elaborati di progetto

[10] Relazione geotecnica generale

APE0001

3. SOFTWARE DI CALCOLO

Group for Windows - Version 6, Ensoft Inc (1985-2003).

POZZIJ - ver. 1.0

Semiviadotto Rampa D - Relazione di calcolo fondazioni

4. CARATTERISTICHE DEI MATERIALI

Il progetto strutturale, svolto secondo il metodo degli stati limite, prevede l'uso dei materiali con le caratteristiche meccaniche minime riportate nei paragrafi seguenti.

4.1 Acciaio

Acciaio per armatura strutture in c.a.

Barre ad aderenza migliorata, saldabile, tipo B450C dotato delle seguenti caratteristiche meccaniche:

modulo elastico $E_s = 210000 \, \text{MPa}$ resistenza caratteristica a rottura $f_{tk} \geq 540 \, \text{MPa}$ resistenza caratteristica a snervamento $f_{yk} \geq 450 \, \text{MPa}$ resistenza di calcolo acciaio $f_{vd} = f_{vk} / \gamma_s$

con $\gamma_s = 1.15 \text{ per SLU}$

 $\gamma_{\rm s} = 1.00 \ {\rm per \ SLE}$

resistenza di calcolo SLU $f_{yd} = f_{yk} / \gamma_s = 391.3 \text{ MPa}$

resistenza di calcolo SLE $f_{yd} = f_{yk} / \gamma_s = 450.0 \text{ MPa}$

con

limite di trazione (combinazione rara) $\sigma_s \le 0.80 \text{ x f}_{vk} = 360 \text{ MPa}$

4.2 Calcestruzzo

Calcestruzzo per fondazioni

Classe di resistenza	C28/35
classe di esposizione	XC2

copriferro minimo $c_{f,min} \geq 40 \; (-0 \; +5) \; mm \\$ modulo elastico C28/35 $E_c = 32308 \; MPa \\$ resistenza caratteristica cubica $R_{ck} = 35 \; MPa \\$ resistenza caratteristica cilindrica $f_{ck} = 28 \; MPa \\$ resistenza di calcolo calcestruzzo $f_{cd} = f_{ck} \; / \; \gamma_c$

con γ_c = 1.50 per SLU

 γ_c = 1.00 per SLE

resistenza di calcolo SLU $f_{cd} = f_{ck} x 0.85 / \gamma_c = 15.9$

MPa

resistenza di calcolo SLE $f_{cd} = f_{ck}x0.85/\gamma_c = 23.8$

MPa con

limite di compressione (combinazione rara) $\sigma_c \leq 0.60 \text{ x f}_{ck} = 16.8$

MPa

Semiviadotto Rampa D - Relazione di calcolo fondazioni

Semiviadotto Rampa D - Relazione di calcolo fondazioni

limite di apertura delle fessure agli SLE

 w_{lim} = 0.20 mm

4.3 Micropali

Acciaio per micropali (acciaio in profili a sezione cava)

Tipo EN 10210-1 S355 J0H+N.

Malta e/o miscela cementizia per micropali:

Classe resistenza minima C25/30;

Classe di esposizione XC2;

Eventuali additivi secondo NTA.

Semiviadotto Rampa D - Relazione di calcolo fondazioni

5. STRATIGRAFIA E CARATTERIZZAZIONE GEOTECNICA DI RIFERIMENTO

5.1 Premessa

Di seguito viene esposta la caratterizzazione geotecnica e la stratigrafia di riferimento utilizzata nei calcoli per la verifica/dimensionamento delle fondazioni.

I valori caratteristici dei parametri geotecnici e la stratigrafia di riferimento sono stati ottenuti mediante l'interpretazione di prove e misure effettuate in sito. Per eventuali approfondimenti si rimanda alla Relazione Geotecnica allegata la progetto (elaborato: APE0001).

5.2 Indagini e prove di laboratorio di riferimento

In corrispondenza dell'opera in progetto sono disponibili i risultati dei seguenti sondaggi:

 n. 1 sondaggi geognostici a carotaggio continuo, con esecuzione di prove penetrometriche dinamiche SPT nella coltre e determinazione del RQD nel substrato.

Le indagini a disposizione sono riassunte nella Tabella 1

Sondaggio Campagna indagini		lunghezza (m)	Piezometri A = tubo aperto C= tipo Casagrande
SV4	2011	40	Α

Tabella 1: Verticali di riferimento

5.3 Misure piezometriche e livelli di falda

Per quanto riguarda la falda, il livello piezometrico di riferimento per ciascuna fondazione è stato considerato in funzione della posizione delle stesse, sulla base delle indicazioni riportane nei profili geotecnici. In ogni caso la quota di falda risulta variabile da 7.0 a 20.0 m da p.c.

Semiviadotto Rampa D - Relazione di calcolo fondazioni

5.4 Caratterizzazione Geotecnica

La relazione geotecnica allegata al progetto individua nell'area in esame le seguenti unità geotecniche di progetto:

- 1. cop. materiale di copertura;
- 2. FAN formazione del Monte Antola

Nelle seguenti Tabella 2 e Tabella 3 sono riassunti i parametri geotecnici caratteristici assunti per ogni unità presente, ricavati dalla Relazione Geotecnica di progetto, relativi ai materiali di copertura e alla formazione sottostante.

Ove presente, si è tenuto conto della presenta del materiale di riporto, utilizzato per la sistemazione finale della valle.

Semiviadotto Rampa D - Relazione di calcolo fondazioni

γ _t (kN/m³)	~19.0 ÷ 20.0
N _{SPT} (colpi/30 cm)	10÷30 colpi/piede
D _r (%)	-
n! (9)	28 ÷ 30 materiale limoso/argilloso (*)
φ' (°)	34 materiale sabbioso
c' (kPa)	0.0
c _u (kPa)	80.0
GSC	~ 1.0
k _o (-)	0.43
k (m/s)	1.0 10 ⁻⁷ ÷ 1.0 10 ⁻⁴
V _s (m/s)	125 ÷ 250
G _o (MPa)	25 ÷ 45
E _o (MPa)	50 ÷ 100
E _{op} (MPa)	10 ÷ 15

^(*) parametro desunto da back analysis, valutato a titolo di esempio su imbocco Sud galleria Caravaggio, da confermare nei contesti delle singole opere

Tabella 2: Copertura su FAN - Parametri geotecnici caratteristici

Simbologia:

 γ_t = peso di volume naturale

N_{SPT} = resistenza penetrometrica dinamica in prova SPT;

GSC = grado di sovraconsolidazione;

c_u = resistenza al taglio non drenata;

c' = intercetta di coesione operativa;

 φ ' = angolo di attrito operativo;

k_o = coefficiente di spinta del terreno a riposo;

V_s = velocità di propagazione delle onde di taglio;

G_o = modulo di taglio iniziale;

E_o = modulo di Young iniziale;

 E_{op} = modulo elastico operativo;

k = coefficiente di permeabilità

Semiviadotto Rampa D - Relazione di calcolo fondazioni

	Matrice lapidea		Ammasso roccioso compatto	Ammasso roccioso fessurato/alterato
γ_t (kN/m ³)	26 ÷ 27	γ_t (kN/m ³)	26 ÷ 27	
σ _c (MPa) ^(*)	45 ÷ 115	RMR ₈₉ (-)	35 ÷ 45	
I _{s50} (MPa)	2.0 ÷ 3.0	GSI (-)	40	25-30
σ _c (MPa) ^(**)	diametrale 50 assiale 65	JRC (-)	4	
σ _τ (MPa)		JCS (MPa)	40 ÷ 65	
E _{t50} (GPa)	15 ÷ 50	k (m/s)	$1 \cdot 10^{-7} \div 5 \cdot 10^{-6}$	
MR (-)	200 ÷ 900	E _d (GPa)	5 ÷ 10	
V _P (m/s)	3000 - 6500	E _u (GPa)	10 ÷ 15	
V _s (m/s)	1500 - 3500	E _{op} D=0.5 (GPa)	2.0 ÷ 5.0	
E _{din} (GPa)	20 ÷ 80	E _{op} D=1.0 (GPa)		0.8 ÷ 2.0
G _{din} (GPa)	5 ÷ 30	c (kPa)	200 ÷ 220 (σ=0.5MPa)	80 ÷ 100 (σ=0.2MPa) 150 ÷ 170 (σ=0.5MPa)
v (-)	0.25	φ (°)	40 (σ=0.5MPa)	42 ÷ 44 (σ=0.2MPa) 36 (σ=0.5MPa)
m _i (-)	8	т _ь (-)	≈ 0.296	≈ 0.171
m _b		s (-)	≈ 0.0002	≈ 3.93·10 ⁻⁵
s		a (-)	0.511	0.522
a (-)		φ _{p,joint} (°), c _{p,joint} (kPa)		
		φ _{r,joint} (°), c _{r,joint} (kPa)		

Tabella 3: Parametri FAN

Simbologia:

 γ_t =peso di volume naturale;

s_c (*) = resistenza compressione monoassiale

 s_{c} (**) = resistenza compressione monoassiale da prova Point Load (s_{c} = 24·I $_{s50}$)

 s_T = resistenza a trazione indiretta (prova brasiliana)

 E_{t50} = modulo di Young tangente MR = rapporto di modulo (E_{t50}/s_c)

v = rapporto di Poisson

Semiviadotto Rampa D - Relazione di calcolo fondazioni

V_P = velocità di propagazione delle onde di compressione

V_s = velocità di propagazione delle onde di taglio

E_{din} = modulo elastico dinamicoG_{din} = modulo di taglio dinamico

m_i = coefficiente relativo alla roccia intatta

m_b = parametro criterio di rottura di Hoek-Brown
 s = parametro criterio di rottura di Hoek-Brown
 a = parametro criterio di rottura di Hoek-Brown

c_{p,joint} = coesione di picco (da prova di taglio su giunto)

 $\phi_{\text{p,joint}}$ = angolo di attrito di picco (da prova di taglio su giunto)

 $c_{r,joint}$ = intercetta di coesione residua (da prova di taglio su giunto)

 $\varphi_{r,joint}$ = angolo di attrito residuo (da prova di taglio su giunto)

RMR₈₉ = Rock Mass Rating

GSI = Geological Strength Index

JRC = rugosità del giunto

JCS = resistenza a compressione del giunto

k = coefficiente di permeabilità da prova Lugeon

E_d = modulo di deformabilità di carico dell'ammasso (da prova dilatometrica)

E_u = modulo di scarico (da prova dilatometrica)E_{UR} = modulo elastico (da prova dilatometrica)

c = intercetta di coesione (criterio di rottura di Hoek & Brown)

φ = angolo di attrito (criterio di rottura di Hoek & Brown)

 σ = pressione di confinamento

Semiviadotto Rampa D - Relazione di calcolo fondazioni

5.5 Stratigrafie di riferimento e parametri di calcolo

Sulla base delle analisi eseguite e della caratterizzazione geotecnica dell'area, nei calcoli sono stati assunti i seguenti parametri caratteristici di resistenza del terreno:

Materiale di riempimento

 $\gamma_K = 21 \text{ KN/m}^3$

 $\phi_k = 35^\circ$

c' = 0 kPa

Materiale di copertura

 $\gamma_{\rm K} = 19.5 \, {\rm KN/m^3}$

 $\phi_k = 30^\circ$

c' = 0 kPa

FAN alt

 $\gamma_K = 26 \text{ KN/m}^3$

 $\phi_k = 42^{\circ}$

c' = 80 kPa

Per ottenere i parametri di progetto, i parametri caratteristici sono stati fattorizzati con i coefficienti parziali pari all'unità:

γ_{ϕ} = 1.0 γ_{c} = 1.0	$\gamma_{cu} = 1.0$
--	---------------------

La stratigrafia di calcolo adottata nel calcoli è la seguente:

Spalla 2 - Pile 1÷8		
profondità	formazione	
da 0 a 2 m	materiale di copertura	
da 2 m in poi	FAN alt	

Tabella 4: Stratigrafie di riferimento

Semiviadotto Rampa D - Relazione di calcolo fondazioni

5.6 Determinazione della categoria di suolo

La determinazione della categoria di suolo, in accordo con le prescrizioni della Normativa (Doc. Rif. [1]), è basata sulla stima dei valori di velocità media di propagazione delle onde di taglio $V_{\rm S,30}$ o alternativamente sui valori della resistenza penetrometrica dinamica equivalente $N_{\rm SPT,30}$ entro i primi 30m di profondità (per terreni a grana grossa), o sulla resistenza non drenata equivalente media sempre entro i primi 30m di profondità $C_{\rm U,30}$ (per terreni a grana fina).

Sulla base della definizione delle categorie di suolo di cui al par. 3.2.2 del Doc. Rif. [1], l'area di intervento risulta caratterizzabile come sito di **categoria A**.

Semiviadotto Rampa D - Relazione di calcolo fondazioni

6. TIPOLOGIA DI FONDAZIONE ADOTTATE

6.1 Caratteristiche delle Fondazioni

Le fondazioni sono previste profonde, su micropali, in quanto la posizione delle pile comporta spazi di lavoro ridotti, su più livelli.

In particolare si prevedono:

Spalla 2	104 micropali, armati con tubolare 168.3 mm spessore 12.5 mm, di	liametro di
	perforazione 240 mm, lunghezza 15.0 m	
Pila 1	60 micropali, armati con tubolare 168.3 mm spessore 14.0 mm, di	liametro di
	perforazione 240 mm, lunghezza 18.0 m	
Pila 2	45 micropali, armati con tubolare 168.3 mm spessore 14.0 mm, di	liametro di
	perforazione 240 mm, lunghezza 15.0 m	
Pila 3	40 micropali, armati con tubolare 168.3 mm spessore 12.5 mm, di	liametro di
	perforazione 240 mm, lunghezza 15.0 m	
Pila 4	35 micropali, armati con tubolare 168.3 mm spessore 12.5 mm, di	liametro di
	perforazione 240 mm, lunghezza 15.0 m	
Pila 5	30 micropali, armati con tubolare 168.3 mm spessore 12.5 mm, di	liametro di
	perforazione 240 mm, lunghezza 12.0 m	
Pila 6	30 micropali, armati con tubolare 168.3 mm spessore 12.5 mm, di	liametro di
	perforazione 240 mm, lunghezza 12.0 m	
Pila 7	25 micropali, armati con tubolare 168.3 mm spessore 14.0 mm, di	liametro di
	perforazione 240 mm, lunghezza 18.0 m	
Pila 8	20 micropali, armati con tubolare 168.3 mm spessore 14.0 mm, di	liametro di
	perforazione 240 mm, lunghezza 18.0 m	

Le verifiche del comportamento di gruppo dei micropali soggetti a carichi assiali e trasversali sono state condotte con l'ausilio del programma GROUP. Le azione sui singoli micropali determinate con GROUP, sono state utilizzate per la verifica del tubo di armatura.

Semiviadotto Rampa D - Relazione di calcolo fondazioni

Figura 1: Stralcio planimetrico

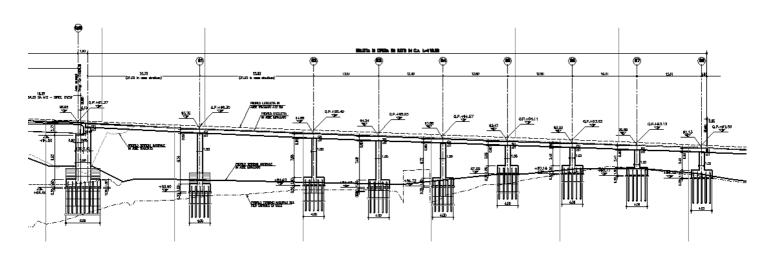


Figura 2: Profilo longitudinale semiviadotto rampa D

Spea ingegneria europea

COLLEGAMENTO TRA LA VALFONTANABUONA E L'AUTOSTRADA A12 GENOVA-ROMA

Semiviadotto Rampa D - Relazione di calcolo fondazioni

7. CRITERI DI VERIFICA E DI CALCOLO

7.1 Premessa

Le verifiche contenute nel presente documento fanno riferimento a quanto descritto per i sistemi fondazionali nel Doc. rif [1] e successiva circolare esplicativa (doc. rif. [2]).

Le verifiche, sia per il caso statico e sia per quello sismico, sono state eseguite adottando l'Approccio 1 delle NTC (Doc. rif. [1]) nei confronti degli stati limiti ultimi (SLU), riferiti allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che compongono la fondazione, e degli stati limite di esercizio (SLE), in modo da verificare la compatibilità tra requisiti prestazionali dell'opera e gli spostamenti e distorsioni previste.

7.2 Criteri di Progettazione agli Stati Limite

In accordo con quanto definito nel par. 6.2.3. del Doc. Rif. [1], devono essere svolte le seguenti verifiche di sicurezza e delle prestazioni attese:

- Verifiche agli stati limite ultimi (SLU);
- Verifiche agli stati limite d'esercizio (SLE).

Per ogni Stato Limite Ultimo (SLU) deve essere rispettata la condizione

 $E_d \le R_d$ (Eq. 6.2.1 del Doc. Rif.[1])

dove

E_d è il valore di progetto dell'azione o dell'effetto dell'azione, e

R_d è il valore di progetto della resistenza.

Per quanto concerne le azioni di progetto E_d, tali forze possono essere determinate applicando i coefficienti parziali sulle azioni caratteristiche, oppure, successivamente, sulle sollecitazioni prodotte dalle azioni caratteristiche, quest'ultima relativamente a verifiche strutturali.

La verifica della condizione ($E_d \le R_d$) deve essere effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali.

Semiviadotto Rampa D - Relazione di calcolo fondazioni

CARICHI	EFFETTO	Coefficiente parziale γ_F (o γ_E)	(A1) STR	(A2) GEO
Permanenti	Favorevole	24-	1.0	1.0
remanenti	Sfavorevole	γG1	1.3	1.0
Permanenti non strutturali (1)	Favorevole	~	0.0	GEO 1.0
r emianemi non sudidian (1)	Sfavorevole	γ̃G2	1.5	1.3
Variabili	Favorevole	24	0.0	0.0
variabili	Sfavorevole	γQi	1.5	1.3

⁽¹⁾ = Nel caso in cui i carichi permanenti non strutturali (ad es. i carichi permanenti portati) siano completamente definiti, si potranno adottare gli stessi coefficienti validi per le azioni permanenti

Tabella 5: Coefficienti parziali sulle azioni

PARAMETRO	Coefficiente parziale	(M1)	(M2)
Tangente dell'angolo di resistenza al taglio	γ_{ϕ}	1.0	1.25
Coesione efficace	γ _c ,	1.0	1.25
Resistenza non drenata	γcu	1.0	1.4
Peso dell'unità di volume	γ_{γ}	1.0	1.0

Tabella 6: Coefficienti parziali sulle caratteristiche meccaniche dei terreni

Spea ingegneria europea

COLLEGAMENTO TRA LA VALFONTANABUONA E L'AUTOSTRADA A12 GENOVA-ROMA

Semiviadotto Rampa D - Relazione di calcolo fondazioni

Le verifiche di sicurezza in campo sismico devono contemplare le medesime verifiche definite in campo statico, in cui tuttavia i coefficienti sulle azioni sono posti pari ad uno (Par.7.11.1 del Doc. Rif.[1]).

Per ogni Stato Limite d'Esercizio (SLE) deve essere rispettata la condizione

 $E_d \le C_d$

(Eq. 6.2.7 del Doc. Rif.[1])

dove

E_d è il valore di progetto dell'effetto dell'azione, e

C_d è il valore limite prescritto dell'effetto delle azioni.

All'interno del progetto devono essere quindi definite le prescrizioni relative agli spostamenti compatibili per l'opera e le prestazioni attese.

7.3 Fondazioni su micropali

Per l'approccio progettuale adottato (*Approccio 1*) sono previste due diverse combinazioni di gruppi di coefficienti:

- la prima combinazione (STR), per la quale si adottano i coefficienti parziali sulle azioni del gruppo (A1), è generalmente più severa nei confronti del dimensionamento strutturale delle opere a contatto con il terreno,
- la seconda combinazione (GEO), per la quale si adottano i coefficienti parziali sulle azioni del gruppo (A2), è generalmente più severa nei riguardi del dimensionamento geotecnico.

Per entrambe le combinazioni i coefficienti parziali sui materiali (M1) sono identici, mentre sulle resistenze (R1) e (R2) sono definiti specificatamente in funzione della differente combinazione.

Sinteticamente le verifiche di cui sopra devono essere svolte considerando:

Approccio 1:

<u>Combinazione 1 (STR)</u>: A1 + M1 + R1

- <u>Combinazione 2 (GEO)</u>: A2 + M1 + R2

tenendo conto dei coefficienti parziali estratti dalle NTC (Doc. rif. [1]).

Semiviadotto Rampa D - Relazione di calcolo fondazioni

Resistenza		Pa	ali infis	si	Pali trivellati			Pali ad elica continua		
	γR	R1	R2	R3	R1	R2	R3	R1	R2	R3
Base	γ _b	1.0	1.45	1.15	1.0	1.7	1.35	1.0	1.6	1.3
Laterale (compressione)	γs	1.0	1.45	1.15	1.0	1.45	1.15	1.0	1.45	1.15
Totale (3)	γт	1.0	1.45	1.15	1.0	1.6	1.30	1.0	1.55	1.25
Laterale (trazione)	γ _{st}	1.0	1.6	1.25	1.0	1.6	1.25	1.0	1.6	1.25

^{(3) –} da applicare alle resistente caratteristiche dedotte da risultati di prove di carico di progetto.

Tabella 7: Coefficienti parziali da applicare alle resistenze caratteristiche di pali soggetti a carichi assiali (vedi tab. 6.4.II NTC)

7.3.1 Verifiche di sicurezza

Come riportato al par. 6.4.3.1 della Normativa di riferimento (Doc. Rif.[1]), per le opere di fondazione su micropali, sono state prese in considerazione le seguenti verifiche agli stati limite ultimi in campo statico e in campo sismico (SLU) e agli stati limite di esercizio (SLE):

- SLU di tipo Geotecnico (Comb. GEO), relative a condizioni di:
 - collasso per carico limite della palificata nei riguardi dei carichi assiali di compressione la verifica del collasso per carico limite nei confronti dei carichi assiali è condotta confrontando la massima azione di compressione agente in testa al palo E_d con la resistenza di progetto a compressione del palo singolo R_{c,d}. ;la massima azione E_d agente sui singoli pali è determinata mediante un'analisi di gruppo dei micropali con il codice di calcolo Group a partire dalle combinazioni di carico definite dal Progettista Strutturale;
 - o collasso per carico limite di sfilamento nei riguardi dei carichi assiali di trazione – la verifica del collasso per carico limite nei confronti dei carichi assiali di trazione è condotta confrontando la massima azione di trazione agente in testa al palo E_d con la resistenza di progetto a trazione del palo singolo R_{t,d}.; la massima azione E_d agente sui singoli pali è determinata mediante un'analisi di gruppo dei micropali con il codice di calcolo Group a partire dalle combinazioni di carico definite dal Progettista Strutturale;
 - collasso per carico limite del blocco di fondazione terreno/micropali (per le fondazioni circolari)
 la verifica per carico limite del blocco di fondazione è valutata considerando il comportamento a "pozzo" dell'insieme terreno/micropali mediante un'analisi con il codice di calcolo Pozzi-J a partire dalle combinazioni di carico definite dal Progettista Strutturale;

Semiviadotto Rampa D - Relazione di calcolo fondazioni

- <u>SLU di tipo strutturale (Comb. STR)</u>, relative a condizioni di:
 - Verifica della resistenza strutturale dei micropali valutata confrontando le resistenze strutturali di progetto con la massima azione agente sui singoli micropali tramite l'analisi del comportamento in gruppo dei micropali a partire dalle combinazioni di carico definite dal Progettista Strutturale;
- SLE relative a condizioni statiche e sismiche:
 - verifica dei requisiti prestazionali della fondazione valutata mediante l'analisi del comportamento in gruppo dei micropali con il codice di calcolo Group a partire dalle combinazioni di carico definite dal Progettista Strutturale;

Nel caso specifico è stata verificata la sola resistenza strutturale dei micropali (STR), in quanto le verifiche GEO e SLE sono state analizzate tenendo conto del comportamento complessivo della fondazione, a pozzo.

7.3.2 Resistenza caratteristica (R_k) di pali soggetti a carichi assiali

I calcoli della capacità portante dei pali con riferimento ad una analisi agli stati limite sono state condotte come previsto dalle Norme Tecniche per le Costruzioni del gennaio 2008.

La resistenza caratteristica (R_k) del palo singolo può essere determinata mediante tre approcci distinti secondo quanto indicato nelle (NTC):

- a) da risultati di prove di carico statico di progetto su pali pilota;
- b) da metodi di calcolo analitici a partire da valori caratteristici dei parametri geotecnici oppure con relazioni empiriche che utilizzino direttamente i risultati di prove in sito (CPT, SPT, pressiometriche, ecc.);
- c) da risultati da prove dinamiche di progetto su pali pilota.

Nelle verifiche condotte nel presente documento la resistenza caratteristica (R_k) è stata stimata adottando l'approccio "b".

Si è proceduto come di seguito descritto.

<u>Caso</u> <u>b</u>) con riferimento alle procedure analitiche di seguito illustrate (paragrafo. 7.3.2.1), il valore caratteristico della resistenza a compressione e a trazione è ottenuto come:

$$R_{k} = min \left\{ \frac{R_{\text{MEDIA}}}{\xi_{3}}; \frac{R_{\text{MIN}}}{\xi_{4}} \right\};$$

Semiviadotto Rampa D - Relazione di calcolo fondazioni

con: R_{MEDIA} e R_{MIN} le resistenze calcolate e i fattori di correlazione ξ in funzione del numero di verticali indagate.

Qualora si abbiamo a disposizione prove in sito continue (prova tipo CPT o DMT) o discontinue (SPT, pressiometriche, ecc.), ma con passi di campionamenti sufficientemente fitti da considerare una misura continua con la profondità, la stima della resistenza caratteristica è condotta secondo i seguenti passi:

- 1 per ogni verticale di indagine si calcola il profilo di resistenza con la profondità in funzione delle prove in sito e di laboratorio assumendo i valori medi a disposizione nella singola verticale
- 2 stima, tra quelli calcolati, del profilo di resistenza medio (R_{MEDIA}) e di resistenza minimo (R_{MIN});
- 3 la resistenza caratteristica R_k, a compressione o a trazione, sarà il minore dei valori ottenuti:

$$R_{k} = min \left\{ \frac{R_{\text{MEDIA}}}{\xi_{3}}; \frac{R_{\text{MIN}}}{\xi_{4}} \right\}$$

con ξ_3 e ξ_4 fattori di correlazione funzione del numero di verticali indagate (Tabella 8).

Qualora, invece, si abbiano a disposizione prove in sito o di laboratorio discrete si procederà secondo il seguente schema:

- 1 per ogni strato vengono scelti il valore medio e minimo tra tutti i valori a disposizione necessari per il calcolo del profilo di resistenza con la profondità;
- 2 stima del profilo di resistenza medio (R_{MEDIA}) e di resistenza minimo (R_{MIN}) adottando i parametri medi e minimi ottenuti al punto presedente;
- 3 la resistenza caratteristica (Rk), a compressione o a trazione, sarà il minore dei valori ottenuti:

$$R_k = min \left\{ \frac{R_{\text{MEDIA}}}{\xi_3}; \frac{R_{\text{MIN}}}{\xi_4} \right\}$$

con ξ_3 e ξ_4 fattori di correlazione funzione del numero di verticali indagate (Tabella 8).

Numero prove di indagine	1	2	3	4	5	7	≥10
ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40
ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21

Tabella 8: Fattori di correlazione ξ (vedi tab. 6.4.IV NTC)

Semiviadotto Rampa D - Relazione di calcolo fondazioni

La resistenza di progetto R_d si ottiene applicando alla resistenza caratteristica R_k i coefficienti parziali γ_R indicati Tabella 7.

In seguito la resistenza di progetto R_d viene confrontata con le azioni assiali, di compressione o di trazione, provenienti dall'analisi della fondazione di pali al variare delle combinazioni di carico.

I criteri utilizzati per la stima delle curve di capacità portante a compressione e trazione sono illustrati nel successivo paragrafo 7.3.2.1.

7.3.2.1 Stima della resistenza dei micropali soggetti a carichi assiali.

La portata limite (Q_{LIM}) di un micropalo è stata calcolata con riferimento all'equazione:

$$Q_{\text{LIM}} = Q_{\text{B,LIM}} + Q_{\text{L,LIM}} = q_{\text{b}} \cdot A_{\text{B}} + \sum_{\text{i}} \pi \cdot D_{\text{Si}} \cdot \Delta H_{\text{i}} \cdot \tau_{\text{LIM,i}} \qquad \text{compressione}$$

$$Q_{\text{LIM}} = W + Q_{\text{L,LIM}} = \gamma'_{\text{cls}} \left(\sum_{i} \Delta H_{i} \right) \cdot A_{\text{B}} + \sum_{i} \pi \cdot D_{\text{Si}} \cdot \Delta H_{i} \cdot \tau_{\text{LIM,i}} \quad \text{trazione}$$

con:

Q_{B,LIM} = portata limite di base <u>che viene assunta nulla nel caso di trazione</u>;

Q_{L,LIM} = portata limite laterale; W = peso proprio del palo; q_b = portata unitaria di base;

 γ'_{cls} = peso di volume sommerso del calcestruzzo armato

 A_B = area di base;

D_{Si} = diametro del concio i^{mo} di palo;

ΔHi = altezza del concio i^{mo} di micropalo della zona iniettata;

 $\tau_{\text{LIM,i}}$ = attrito laterale unitario limite del concio i^{mo} di palo;

Per il calcolo della capacità portante dei micropali è stata adottata la teoria di Bustamante e Doix (1985).

Gli autori distinguono fra micropali eseguiti con iniezioni ripetute e controllate con tubo e valvole e doppio otturatore (IRS, *injection répétitive et sélective*) e getto dell'intero palo in un'unica soluzione (IGU, *injection globale unique*).

Per il calcolo del carico limite in particolare risulta:

Semiviadotto Rampa D - Relazione di calcolo fondazioni

 D_{Si} = d α = diametro del concio i^{mo} di palo, con d diametro di perforazione e α coefficiente maggiorativo; i valori di α sono riportati in Tabella 9.

Terreno	Valor	idiα	Quantità minima di miscela
	IRS	IGU	consigliata
Ghiaia	1,8	1,3 - 1,4	1,5 V _S
Ghiaia sabbiosa	1,6 - 1,8	1,2 - 1,4	1,5 V ₅
Sabbia ghiaiosa	1,5 - 1,6	1,2 - 1,3	1,5 V _S
Sabbia grossa	1,4 - 1,5	1,1 - 1,2	1,5 V _s
Sabbia media	1,4 - 1,5	1,1 - 1,2	1,5 V _S
Sabbia fine	1,4 - 1,5	1,1 - 1,2	1,5 V _s
Sabbia limosa	1,4 - 1,5	1,1 - 1,2	IRS: (1,5 - 2)V _S ; IGU: 1,5 V _S
Limo	1,4 - 1,6	1,1 - 1,2	IRS: 2V _S ; IGU: 1,5V _S
Argilla	1,8 - 2,0	1,2	IRS: (2,5 - 3)V _S ; IGU: (1,5-2)V _S
Marne	1,8	1,1 - 1,2	(1,5 - 2)V _S per strati compatti
Calcari marnosi	8,1	1,1 - 1,2	
Calcari alterati 1,8		1,1 - 1,2	(2 - 6)V _S o più per strati fratturati
Roccia alterata e/o fratturata	1,2	1,1	(1,1-1,5)V _S per strati poco fratturati 2V _S o più per strati fratturati

Tabella 9: Valori coefficiente α

I valori della resistenza tangenziale limite τ all'interfaccia fra tratto iniettato e terreno dipendono sia dalla natura e dalle caratteristiche del terreno, sia dalla tecnologia. I valori di τ , sono forniti nei diagrammi da Figura 3 a Figura 6, cui è associata la Tabella 10.

Тегтепо	Tipo di iniezione			
Terreno	IRS	IGU		
Da ghiaia a sabbia limosa	SG1	SG2		
Limo e argilla	AL1	AL2		
Marna, calcare marnoso, calcare tenero fratturato	MC1	MC2		
Roccia alterata e/o fratturata	≥ R1	≥ R2		

Tabella 10: Indicazione per la scelta del valore di au.

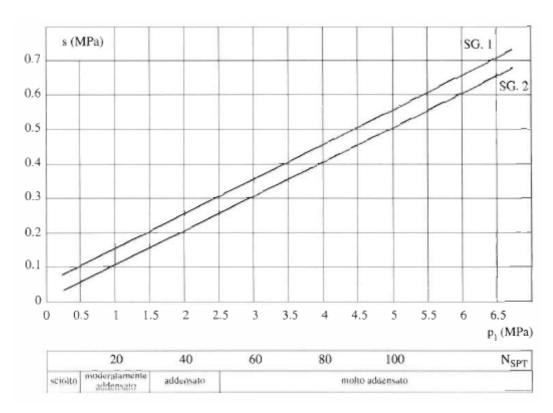


Figura 3: Abaco per il calcolo di τ =s per sabbie e ghiaie

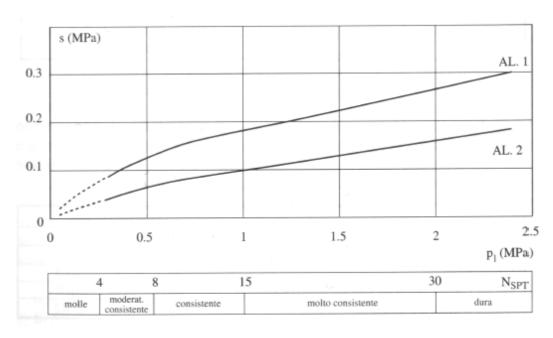


Figura 4: Abaco per il calcolo di τ=s per argille e limi

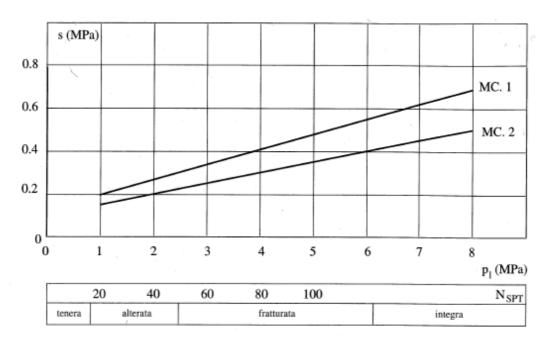


Figura 5: Abaco per il calcolo di *τ*=s per gessi, marne, marne calcaree

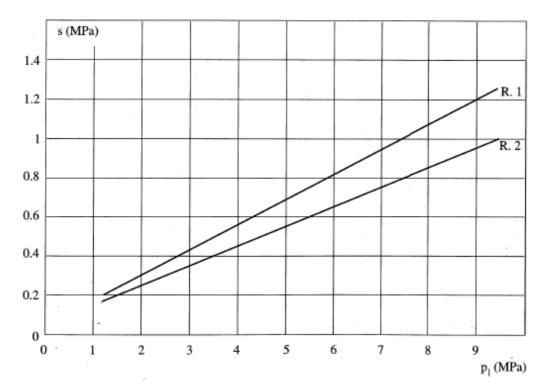


Figura 6: Abaco per il calcolo di τ=s per rocce alterate e fratturate

Semiviadotto Rampa D - Relazione di calcolo fondazioni

7.3.3 Comportamento di pali in gruppo soggetti a carichi trasversali.

Il comportamento di pali in gruppo soggetti a carichi trasversali è stata effettuata mediante il programma di calcolo GROUP. Il programma di calcolo permette di analizzare il comportamento di una palificata sottoposta a carichi orizzontali e verticali modellando l'interazione terreno struttura mediante curve p-y. Le curve p-y, che esprimono la resistenza del terreno in funzione della profondità e dello spostamento del palo, possono essere ricavate in relazione alla tipologia di terreni e alle proprietà meccaniche che li caratterizzano, in accordo alle procedure proposte da:

Reese, Cox e Koop (1975)

per sabbie

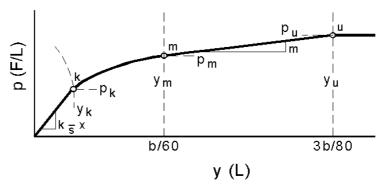
Welch e Reese (1975)

per argille tenere sotto falda

Reese, Cox e Koop (1975)

per argille dure sotto falda

Reese-Welch (1972)


per argille dure sopra falda

Il programma permette di scegliere tra uno dei modelli sopra esposti.

I metodi di calcolo sono descritti sinteticamente nelle pagine seguenti con riferimento sia a carichi statici sia a carichi ciclici.

Semiviadotto Rampa D - Relazione di calcolo fondazioni

Modello per sabbie Cox e Reese (1975)

1- calcolo di p = $min(p_{u1};p_{u2})$

$$\begin{aligned} \text{pu}_1 &= \gamma \cdot z \cdot \frac{\mathsf{K}_0 \cdot z \cdot \tan^3 \phi \cdot \sin \beta}{\tan(\beta - \phi) \cdot \cos \alpha} \cdot \mathsf{A}_1 + \frac{\tan \beta}{\tan(\beta - \phi)} \cdot \left(\mathsf{D} \cdot \mathsf{A}_3 + z \cdot \tan \beta \cdot \tan \alpha \cdot \mathsf{A}_3^2 \right) + \\ &+ \gamma \cdot z \cdot \left[+ \mathsf{K}_0 \cdot z \cdot \tan \beta \cdot \left(\tan \phi \cdot \sin \beta - \tan \alpha \right) \cdot \mathsf{A}_1 - \mathsf{K}_3 \cdot \mathsf{D} \right] \\ \text{pu}_2 &= \mathsf{K}_3 \cdot \mathsf{D} \cdot \gamma \cdot z \cdot \left(\tan^3 \beta - 1 \right) + \mathsf{K}_0 \cdot \mathsf{D} \cdot \tan \phi \cdot \tan^4 \beta \\ &= \mathsf{A}_1 = \left(4 \cdot \mathsf{A}_2^3 - 3 \cdot \mathsf{A}_2^2 + 1 \right) \end{aligned}$$

$$A_2 = (\tan \beta \cdot \tan \delta) I(\tan \beta \cdot \tan \delta + 1)$$

$$A_3 = 1 - A_2$$

dove:

p_u resistenza laterale unitaria ultima

y spostamento orizzontale

γ peso di volume efficace

z profondità da p.c.

Ko coefficiente di spinta a riposo

angolo di attrito

β 45+ φ/2

 α $\phi/2$

D diametro del palo

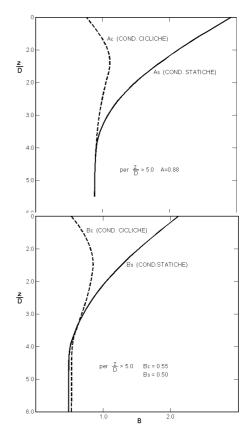
Ka $tan^{2}(45+\phi/2)$

δ inclinazione del piano campagna rispetto all'orizzontale

2- calcolo di p_u= A_i . p .

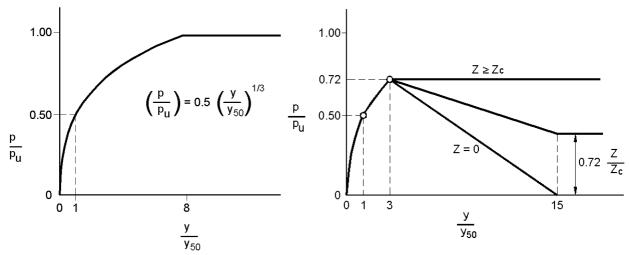
3- calcolo di p_m= B_i . p

4- definizione del tratto iniziale della curva p-y


5- definizione del tratto parabolico della curva p-y

$$p=Cy^{1/n}$$

dove:


n=p_m/my_m

 $C=p_{m}/(y_{m})^{1/n}$

Semiviadotto Rampa D - Relazione di calcolo fondazioni

Modello Welch e Reese (1975) per argille tenere sotto falda

per carichi statici

 $p_{u1} = [3+\sigma'/c_u+(J/D)z]c_u D \alpha$

 $p_{u2} = 9 c_u D \alpha$

 $\alpha = 1/(1+\tan\delta)$

 $p_u = min (p_{u1}; p_{u2})$

 $p/p_u = 0.5 (y/y_{50})^{1/3}$

 y_{50} = 2.5 ϵ_{50} D

dove:

p_u resistenza laterale unitaria ultima

 σ' pressione geostatica verticale efficace alla quota z

c_u coesione non drenata

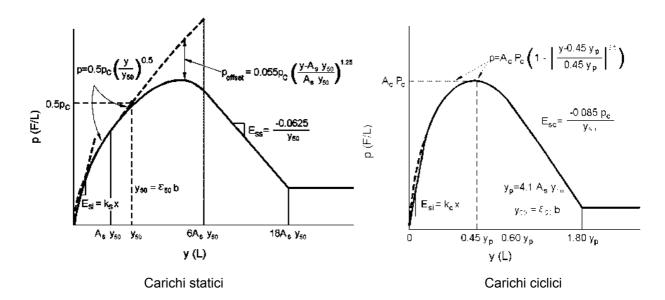
z profondità da p.c.

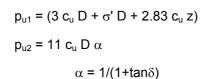
D diametro del palo

δ inclinazione del piano campagna rispetto all'orizzontale

y spostamento orizzontale

y₅₀ spostamento orizzontale per p=0.5 p_u


 ϵ_{50} deformazione unitaria corrispondente ad una mobilitazione delle tensioni tangenziali pari al 50% della resistenza al taglio


per carichi ciclici

$$z_c$$
 = [6 c_u D] / [γ ' D + 0.5 c_u] α

 γ' = peso di volume efficace

Modello Reese, Cox e Koop (1975) per argille dure sotto falda

 $p_u = min (p_{u1}; p_{u2})$

p_u resistenza laterale unitaria ultima

z profondità da p.c.

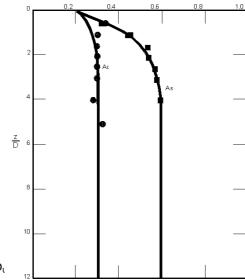
σ' pressione geostatica verticale efficace a

lla profondità z

cu coesione non drenata

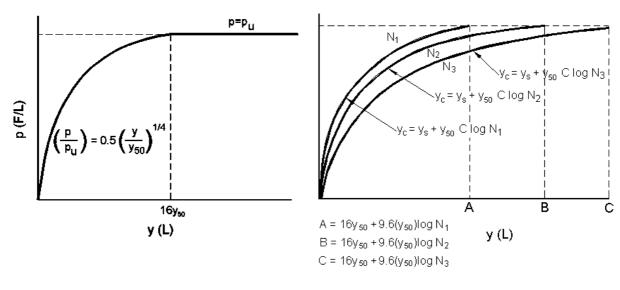
D diametro del palo

y spostamento orizzontale


 y_{50} = 2.5 ε_{50} D = spostamento orizzontale per p=0.5 p.

ε₅₀ deformazione unitaria corrispondente ad una mobilitazione delle tensioni tangenziali pari al 50% della resistenza al taglio

Ks pendenza del tratto iniziale della curva carichi statici


K_c pendenza del tratto iniziale della curva carichi ciclici

A_c parametro empirico

Semiviadotto Rampa D - Relazione di calcolo fondazioni

Modello Welch-Reese (1972) e Reese-Welch () per argille dure sopra falda

Carichi statici Carichi ciclici

$$p_{u1} = [3c_u D + \gamma' D z + 2.83c_u z] \alpha$$

 $p_{u2} = 9 c_u D \alpha$

$$\alpha = 1/(1 + \tan \delta)$$

 $p_u = \min (p_{u1}; p_{u2})$

dove:

p_u resistenza laterale unitaria ultima

γ' peso di volume unitario
 c_u coesione non drenata
 z profondità da p.c.
 D diametro del palo

δ inclinazione del piano campagna rispetto all'orizzontale

y spostamento orizzontale

y₅₀ spostamento orizzontale per p=0.5 p_u (= 2.5 ϵ_{50} D)

 ϵ_{50} deformazione unitaria corrispondente ad una mobilitazione delle tensioni

tangenziali pari al 50% della resistenza al taglio

K_s pendenza del tratto iniziale della curva

Semiviadotto Rampa D - Relazione di calcolo fondazioni

8. AZIONI DI CALCOLO IN FONDAZIONE

Le sollecitazioni sono state valutate rispetto a intradosso del plinto di fondazione. Per l'analisi di dettaglio dei carichi si rimanda alla relazione strutturale dell'opera.

8.1 Azioni di calcolo – Spalla 2

Di seguito sono riassunti i carichi esaminati.

	Fx	Fy	Mz	Fz	Му	Mx
	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
SLU STR 1	28656.44	407.0264	2175.752	-82.2561	-16287.9	97.13
SLU STR 2	29356.44	-284.301	10486.94	-289.782	5341.066	172.8
SLU STR 3	33166.44	-90.2938	11173.22	-164.449	3973.985	106.8
SLU STR 4	19526.44	352.5923	-1306.15	-78.0055	-21724.6	84.91
SLU STR 5	29656.44	-283.797	10708.67	-289.591	5200.614	172.8
SLU STR 6	22126.44	11.5562	4510.475	-0.31843	-594.267	1.39
SLU STR 7	23076.44	-517.085	11162.95	62.68392	7772.759	-95.46
SLU STR 8	22386.44	174.3422	2847.739	270.1985	-13863.3	-171.1
SLU STR 9	19246.44	111.1871	1186.305	170.1854	-21485.1	-110.8
SLU STR 10	31346.44	-509.154	14493.29	64.39576	4811.606	-95.37
SLU STR 11	21946.44	173.7388	2519.251	270.009	-13729.3	-171.2
SLU STR 12	22126.44	11.5562	4510.475	-0.31843	-594.267	1.39
SIS 1	19515.73	5954.448	-37648.4	1234.269	-4809.96	5810
SIS 2	24255.73	1408.976	-1287.83	-4540.28	-4017.36	3019
SIS 3	24265.73	1576.439	-3160.77	-4515.2	-3716.4	3019
SIS 4	19515.73	5954.448	-37648.4	1234.269	-4809.96	5810
SIS 5	22885.73	5513.496	-30335.5	-1509.45	4223.547	6519
SIS 6	20885.73	11.5562	4510.475	-0.31843	-1648.88	1.39
SIS 7	21935.73	-6056.78	47825.97	-1252.49	-1508.72	-5809
SIS 8	17185.73	-1511.31	11459.29	4522.065	-2303.03	-3018
SIS 9	17175.73	-1678.77	13334.3	4496.984	-2602.35	-3018
SIS 10	21935.73	-6056.78	47825.97	-1252.49	-1508.72	-5809
SIS 11	18555.73	-5616.81	40504.45	1492.254	-10538.9	-6518
SIS 12	20885.73	11.5562	4510.475	-0.31843	-1648.88	1.39
SLU GEO 1	21485.73	341.7818	1237.211	-72.786	-13245.8	84.15
SLU GEO 2	22025.73	-237.285	8171.415	-249.197	4786.221	149.3
SLU GEO 3	25275.73	-75.8928	8793.656	-141.597	3618.402	92.09
SLU GEO 4	18725.73	296.4285	-341.178	-69.714	-19270.9	74.27
SLU GEO 5	22285.73	-236.784	8360.781	-249.105	4666.657	149.3
SLU GEO 6	20885.73	11.5562	4510.475	-0.31843	-1648.88	1.39
SLU GEO 7	21675.73	-432.881	10089.57	56.45341	5330.065	-82.69

Semiviadotto Rampa D - Relazione di calcolo fondazioni

SLU GEO 8	21135.73	146.1849	3159.486	232.7842	-12709	-147.8
SLU GEO 9	18485.73	93.87905	1744.044	146.3839	-19045.6	-95.35
SLU GEO 10	23725.73	-429.553	11592.99	58.00557	4347.769	-83.03
SLU GEO 11	20755.73	145.6832	2880.186	232.6929	-12594	-147.9
SLU GEO 12	20885.73	11.5562	4510.475	-0.31843	-1648.88	1.39
SLEr 1	20315.73	295.4402	866.0016	-40.3823	-20196	54.2
SLEr 2	21985.73	-243.974	8211.903	-202.673	4887.543	116.5
SLEr 3	24815.73	-80.6603	8501.685	-113.91	3893.549	72.44
SLEr 4	18695.73	292.4157	-312.836	-41.7597	-19218.5	54.6
SLEr 5	22205.73	-243.573	8377.143	-202.58	4783.561	116.5
SLEr 6	20885.73	11.5562	4510.475	-0.31843	-1648.88	1.39
SLEr 7	22335.73	-353.722	9714.394	30.47794	10241.38	-54.29
SLEr 8	20945.73	152.4758	2949.16	186.3673	-12672.1	-115.1
SLEr 9	18515.73	97.92667	1723.324	118.709	-19107.4	-75.82
SLEr 10	24125.73	-350.798	11016.15	31.81712	9387.054	-54.58
SLEr 11	20615.73	152.0724	2706.057	186.1743	-12576.7	-115.2
SLEr 12	20885.73	11.5562	4510.475	-0.31843	-1648.88	1.39
SLEfr 1	19545.73	172.0664	1680.301	30.95174	-12086.8	-6.185
SLEfr 2	21705.73	-243.535	7992.721	-74.3911	3962.082	27.91
SLEfr 3	23425.73	-77.7626	7426.45	-17.8056	3506.234	6.022
SLEfr 4	19545.73	172.0664	1680.301	30.95174	-12086.8	-6.185
SLEfr 5	21705.73	-243.535	7992.721	-74.3911	3962.082	27.91
SLEfr 6	20885.73	11.5562	4510.475	-0.31843	-1648.88	1.39
SLEfr 7	21835.73	-266.462	8346.821	-47.0768	5225.719	7.025
SLEfr 8	19735.73	140.8105	2179.395	56.67115	-10280	-26.7
SLEfr 9	19535.73	4.506416	3553.455	5.886249	-12386.1	-5.919
SLEfr 10	23425.73	-245.286	9299.576	-42.8757	3205.394	6.283
SLEfr 11	19735.73	140.8105	2179.395	56.67115	-10280	-26.7
SLEfr 12	20885.73	11.5562	4510.475	-0.31843	-1648.88	1.39
SLEqp 1	19765.73	145.2715	2152.055	25.74858	-10346.8	-4.922
SLEqp 2	21675.73	-248.096	8019.202	-43.4667	4029.314	6.13
SLEqp 3	21675.73	-80.5333	6147.014	-18.3973	4330.271	5.865
SLEqp 4	19765.73	145.2715	2152.055	25.74858	-10346.8	-4.922
SLEqp 5	21675.73	-248.096	8019.202	-43.4667	4029.314	6.13
SLEqp 6	20885.73	11.5562	4510.475	-0.31843	-1648.88	1.39
SLEqp 7	21675.73	-248.096	8019.202	-43.4667	4029.314	6.13
SLEqp 8	19765.73	145.2715	2152.055	25.74858	-10346.8	-4.922
SLEqp 9	19765.73	-22.2416	4025.14	0.674272	-10646.1	-4.657
SLEqp 10	21675.73	-248.096	8019.202	-43.4667	4029.314	6.13
SLEqp 11	19765.73	145.2715	2152.055	25.74858	-10346.8	-4.922

Tabella 11: Valori di calcolo delle azioni della fondazione Spalla 2

Semiviadotto Rampa D - Relazione di calcolo fondazioni

8.2 Azioni di calcolo – Pile

Si riportano le azioni utilizzate per il dimensionamento delle fondazioni.

	Fx	Fy	Mz	Fz	My	Mx
	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
SLU STR 1	11575.5	185.7767	-2214.96	-74.9266	-13514.7	144.2
SLU STR 2	13031.5	-97.4631	1144.844	-178.786	3691.76	-74.24
SLU STR 3	20701.5	-103.178	1196.715	-108.721	-1404.56	-79.41
SLU STR 4	15731.5	184.4035	-2205.84	-73.4112	-16151.9	142.7
SLU STR 5	11575.5	185.7749	-2214.96	-74.9465	-13514.7	144.2
SLU STR 6	11516.5	-2.10239	9.261236	3.001657	-2113.59	-2.748
SLU STR 7	17311.5	-232.771	2715.589	77.04051	1785.596	-182
SLU STR 8	15321.5	50.41284	-642.671	180.4931	-15059.6	36.42
SLU STR 9	8638.5	99.48231	-1222.37	118.6812	-17686.1	74.63
SLU STR 10	12571.5	-231.436	2707.421	75.08674	4813.36	-180.5
SLU STR 11	17141.5	-232.784	2716.245	76.89108	1892.836	-182
SLU STR 12	11516.5	-2.10239	9.261236	3.001657	-2113.59	-2.748
SIS 1	10580	2085.539	-19376.4	-704.447	-12255.8	2435
SIS 2	13575	399.8423	-3459.06	-1773.6	-4999.94	506
SIS 3	13575	399.8423	-3459.06	-1773.6	-4999.94	506
SIS 4	9545	2169.858	-20162.4	316.6895	-8463.01	2534
SIS 5	9545	2169.858	-20162.4	316.6895	-8463.01	2534
SIS 6	10990	-2.10239	9.261236	3.001657	-3034.97	-2.748
SIS 7	11062	-2127.72	19829.69	704.2228	4072.482	-2468
SIS 8	8065	-441.633	3911.87	1773.239	-3184.61	-539.3
SIS 9	8065	-441.633	3911.87	1773.239	-3184.61	-539.3
SIS 10	12095	-2212.04	20615.93	-316.914	277.666	-2567
SIS 11	12095	-2212.04	20615.93	-316.914	277.666	-2567
SIS 12	10990	-2.10239	9.261236	3.001657	-3034.97	-2.748
SLU GEO 1	11072	156.8285	-1872.04	-65.036	-12578.1	121.6
SLU GEO 2	12265	-81.1719	950.9526	-154.011	1778.462	-62.01
SLU GEO 3	16035	-85.4674	993.2295	-94.1091	-738.482	-65.65
SLU GEO 4	11855	156.2613	-1867.46	-64.635	-12998.8	121.1
SLU GEO 5	11072	156.8276	-1872.04	-65.0459	-12578.2	121.6
SLU GEO 6	10990	-2.10239	9.261236	3.001657	-3034.97	-2.748
SLU GEO 7	13155	-196.111	2289.653	66.95695	1991.111	-153.2
SLU GEO 8	11506	41.85582	-531.915	155.5439	-12054.8	30.36
SLU GEO 9	8587	82.30561	-1014.65	102.7175	-15995.5	61.53
SLU GEO 10	11865	-195.576	2285.582	66.1874	2750.165	-152.7
SLU GEO 11	13005	-196.122	2289.621	66.82745	2083.264	-153.3
SLU GEO 12	10990	-2.10239	9.261236	3.001657	-3034.97	-2.748
SLEr 1	9971	94.52636	-1156.89	-46.7364	-17706.1	71.17

SLEr 2	12205	-83.5992	978.8769	-121.175	1924.2	-63.93
SLEr 3	15495	-86.9035	1010.568	-74.8407	-287.65	-66.75
SLEr 4	10654	94.08517	-1152.88	-46.3866	-18076.7	70.75
SLEr 5	9971	94.51553	-1156.88	-46.7455	-17706.1	71.18
SLEr 6	10990	-2.10239	9.261236	3.001657	-3034.97	-2.748
SLEr 7	13635	-122.385	1437.516	50.25784	5737.785	-94.05
SLEr 8	11279	44.33547	-560.04	122.5021	-11986	32.35
SLEr 9	8615	83.81644	-1030.61	83.04091	-16086.4	62.73
SLEr 10	12505	-121.942	1433.21	49.58666	6397.977	-93.59
SLEr 11	13505	-122.395	1437.532	50.14826	5817.926	-94.06
SLEr 12	10990	-2.10239	9.261236	3.001657	-3034.97	-2.748
SLEfr 1	9626	52.48994	-649.962	11.82018	-11034.5	38.95
SLEfr 2	11815	-83.4722	973.3995	-32.4082	1430.504	-63.92
SLEfr 3	13725	-85.4096	992.317	-9.23119	148.6548	-65.62
SLEfr 4	9626	52.48994	-649.962	11.82018	-11034.5	38.95
SLEfr 5	9626	52.48994	-649.962	11.82018	-11034.5	38.95
SLEfr 6	10990	-2.10239	9.261236	3.001657	-3034.97	-2.748
SLEfr 7	11945	-91.4069	1068.268	-11.5774	2443.316	-70.04
SLEfr 8	9825	41.714	-520.092	32.18687	-9618.82	30.66
SLEfr 9	9626	52.48994	-649.962	11.82018	-11034.5	38.95
SLEfr 10	11945	-91.4069	1068.268	-11.5774	2443.316	-70.04
SLEfr 11	11945	-91.4069	1068.268	-11.5774	2443.316	-70.04
SLEfr 12	10990	-2.10239	9.261236	3.001657	-3034.97	-2.748
SLEqp 1	9853	43.39695	-540.175	10.34708	-9703.31	32
SLEqp 2	11785	-85.1551	992.7603	-10.5685	1520.95	-65.26
SLEqp 3	11785	-85.1551	992.7603	-10.5685	1520.95	-65.26
SLEqp 4	9853	43.39695	-540.175	10.34708	-9703.31	32
SLEqp 5	9853	43.39695	-540.175	10.34708	-9703.31	32
SLEqp 6	10990	-2.10239	9.261236	3.001657	-3034.97	-2.748
SLEqp 7	11785	-85.1551	992.7603	-10.5685	1520.95	-65.26
SLEqp 8	9853	43.39695	-540.175	10.34708	-9703.31	32
SLEqp 9	9853	43.39695	-540.175	10.34708	-9703.31	32
SLEqp 10	11785	-85.1551	992.7603	-10.5685	1520.95	-65.26
SLEqp 11	11785	-85.1551	992.7603	-10.5685	1520.95	-65.26
SLEqp 12	10990	-2.10239	9.261236	3.001657	-3034.97	-2.748

Tabella 12: Valori di calcolo delle azioni della fondazioni pila 1

	Fx	Fy	Mz	Fz	Му	Mx
	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
SLU STR 1	7893.5	93.38839	-856.445	-78.7563	-3799.65	42.57
SLU STR 2	7217.5	-3.56287	40.69127	-129.907	-2392.69	-3.963

SLU STR 3	12407.5	-13.3321	139.7356	-72.1823	-5413.08	-7.096
SLU STR 4	10788.5	91.90556	-837.444	-77.9995	-5881.59	41.74
SLU STR 5	7986.5	94.68563	-866.476	69.00087	-3368.72	43.73
SLU STR 6	7065.5	-2.35422	31.00932	0.529515	-1838.96	-1.446
SLU STR 7	10570.5	-103.964	981.2498	77.80677	-3460.73	-49.06
SLU STR 8	10539.5	-7.11701	83.29411	128.3155	-4251.51	-2.608
SLU STR 9	6660.5	2.550248	-10.9565	71.29325	-2819.38	0.4651
SLU STR 10	7023.5	-102.709	963.8907	76.4015	-813.111	-48.41
SLU STR 11	9518.5	-105.338	990.1772	-70.6588	-3139.12	-50.29
SLU STR 12	7065.5	-2.35422	31.00932	0.529515	-1838.96	-1.446
SIS 1	7150	1455.712	-10448.7	-681.484	-5432.86	1059
SIS 2	7811	226.5187	-1625.26	-1323.54	-7121.49	163.9
SIS 3	7855	220.1215	-1566.94	-1319.24	-6663.44	161.8
SIS 4	6543	1591.528	-11414.9	53.91269	-2786.89	1158
SIS 5	6543	1591.528	-11414.9	53.91269	-2786.89	1158
SIS 6	6683	-2.35422	31.00932	0.529515	-2317.08	-1.446
SIS 7	6193	-1465.18	10550.45	679.9617	615.7526	-1064
SIS 8	5532	-235.435	1727.144	1322.216	2304.87	-169.3
SIS 9	5486	-230.118	1677.969	1318.126	1879.165	-167.5
SIS 10	6800	-1600.99	11517.56	-55.4348	-2030.03	-1164
SIS 11	6800	-1600.99	11517.56	-55.4348	-2030.03	-1164
SIS 12	6683	-2.35422	31.00932	0.529515	-2317.08	-1.446
SLU GEO 1	7392	79.03515	-723.729	-68.0102	-3974.16	35.99
SLU GEO 2	6813	-3.4129	39.36233	-112.312	-2794.72	-3.581
SLU GEO 3	9618	-10.8488	112.9584	-62.6408	-4210.68	-5.757
SLU GEO 4	8246	78.45787	-716.548	-67.521	-4582.41	35.72
SLU GEO 5	7469	80.18009	-732.688	60.0441	-3598.08	37
SLU GEO 6	6683	-2.35422	31.00932	0.529515	-2317.08	-1.446
SLU GEO 7	8053	-87.982	829.1163	67.26357	-2540.14	-41.46
SLU GEO 8	8030	-5.59171	65.5222	111.0064	-3194.88	-1.96
SLU GEO 9	6342	1.753536	-4.03458	61.95367	-3122.95	0.1621
SLU GEO 10	6644	-87.6411	823.5145	66.23972	-1450.6	-41.35
SLU GEO 11	7159	-89.161	836.8507	-61.3851	-2275.57	-42.53
SLU GEO 12	6683	-2.35422	31.00932	0.529515	-2317.08	-1.446
SLEr 1	7312	3.408195	-20.7446	-85.1345	-3961.66	0.1085
SLEr 2	6791	-3.1423	37.23152	-87.6508	-2695.92	-3.357
SLEr 3	9241	-10.648	110.7354	-48.0817	-3873.41	-5.612
SLEr 4	9027	3.027643	-13.8415	-51.4021	-5133.31	0.04698
SLEr 5	7280	8.758297	-67.0437	43.46746	-4064.49	2.518
SLEr 6	6683	-2.35422	31.00932	0.529515	-2317.08	-1.446
SLEr 7	7859	-12.3092	125.3728	84.25674	-2335.99	-5.555
SLEr 8	7856	-5.81295	67.00458	86.28445	-3146.17	-2.153
SLEr 9	6365	1.652684	-3.34072	47.24263	-3189.74	0.06867
<u></u>	·				·	

6725	-15.1866	148.6122	52.42087	-1151.49	-6.659
7160	-16.3914	159.2927	-45.7326	-1815.52	-7.588
6683	-2.35422	31.00932	0.529515	-2317.08	-1.446
4132	18.75045	-163.959	-12.5992	-1855.08	-3.09
5154	-12.9326	114.9475	-18.217	2878.767	1.235
6163	-0.14277	-0.86803	-5.02203	2473.818	-0.8698
4030	20.42363	-178.167	1.668645	-2201.68	-3.197
5257	-15.0479	133.3168	-5.24816	3477.768	1.556
4551	-1.60671	17.92743	-0.64039	219.5194	0.03841
5125	-12.6774	112.895	9.252959	2991.977	1.37
4103	19.00588	-165.919	14.86665	-1742.88	-2.955
4029	7.652597	-61.225	2.567997	-2196.6	-1.007
5257	-15.0479	133.3168	-5.24816	3477.768	1.556
4030	20.42363	-178.167	1.668645	-2201.68	-3.197
4551	-1.60671	17.92743	-0.64039	219.5194	0.03841
4117	18.88307	-164.946	1.132751	-1798.98	-3.022
5140	-12.8004	114.0588	-4.48192	2934.891	1.303
5141	-0.03238	-2.87865	-5.38068	2929.816	-0.8866
4117	18.88307	-164.946	1.132751	-1798.98	-3.022
5140	-12.8004	114.0588	-4.48192	2934.891	1.303
4551	-1.60671	17.92743	-0.64039	219.5194	0.03841
5140	-12.8004	114.0588	-4.48192	2934.891	1.303
4117	18.88307	-164.946	1.132751	-1798.98	-3.022
4116	6.109285	-48.0982	2.033657	-1793.93	-0.833
5140	-12.8004	114.0588	-4.48192	2934.891	1.303
4117	18.88307	-164.946	1.132751	-1798.98	-3.022
4551	-1.60671	17.92743	-0.64039	219.5194	0.03841
	7160 6683 4132 5154 6163 4030 5257 4551 5125 4103 4029 5257 4030 4551 4117 5140 5141 4117 5140 4151 5140 4117 4116 5140 4117	7160 -16.3914 6683 -2.35422 4132 18.75045 5154 -12.9326 6163 -0.14277 4030 20.42363 5257 -15.0479 4551 -1.60671 5125 -12.6774 4103 19.00588 4029 7.652597 5257 -15.0479 4030 20.42363 4551 -1.60671 4117 18.88307 5140 -12.8004 4551 -1.60671 5140 -12.8004 4117 18.88307 4116 6.109285 5140 -12.8004 4117 18.88307	7160 -16.3914 159.2927 6683 -2.35422 31.00932 4132 18.75045 -163.959 5154 -12.9326 114.9475 6163 -0.14277 -0.86803 4030 20.42363 -178.167 5257 -15.0479 133.3168 4551 -1.60671 17.92743 5125 -12.6774 112.895 4103 19.00588 -165.919 4029 7.652597 -61.225 5257 -15.0479 133.3168 4030 20.42363 -178.167 4551 -1.60671 17.92743 4117 18.88307 -164.946 5140 -12.8004 114.0588 4551 -1.60671 17.92743 5140 -12.8004 114.0588 4551 -1.60671 17.92743 5140 -12.8004 114.0588 4117 18.88307 -164.946 4116 6.109285 -48.0982	7160 -16.3914 159.2927 -45.7326 6683 -2.35422 31.00932 0.529515 4132 18.75045 -163.959 -12.5992 5154 -12.9326 114.9475 -18.217 6163 -0.14277 -0.86803 -5.02203 4030 20.42363 -178.167 1.668645 5257 -15.0479 133.3168 -5.24816 4551 -1.60671 17.92743 -0.64039 5125 -12.6774 112.895 9.252959 4103 19.00588 -165.919 14.86665 4029 7.652597 -61.225 2.567997 5257 -15.0479 133.3168 -5.24816 4030 20.42363 -178.167 1.668645 4551 -1.60671 17.92743 -0.64039 4117 18.88307 -164.946 1.132751 5140 -12.8004 114.0588 -4.48192 4117 18.88307 -164.946 1.132751 411	7160 -16.3914 159.2927 -45.7326 -1815.52 6683 -2.35422 31.00932 0.529515 -2317.08 4132 18.75045 -163.959 -12.5992 -1855.08 5154 -12.9326 114.9475 -18.217 2878.767 6163 -0.14277 -0.86803 -5.02203 2473.818 4030 20.42363 -178.167 1.668645 -2201.68 5257 -15.0479 133.3168 -5.24816 3477.768 4551 -1.60671 17.92743 -0.64039 219.5194 5125 -12.6774 112.895 9.252959 2991.977 4103 19.00588 -165.919 14.86665 -1742.88 4029 7.652597 -61.225 2.567997 -2196.6 5257 -15.0479 133.3168 -5.24816 3477.768 4030 20.42363 -178.167 1.668645 -2201.68 4551 -1.60671 17.92743 -0.64039 219.5194 <

Tabella 13: Valori di calcolo delle azioni della fondazioni pila 2

	Fx	Fy	Mz	Fz	My	Mx
	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
SLU STR 1	4975.5	100.872	-912.934	-59.1236	-3867.72	-16.64
SLU STR 2	6785.5	-19.4386	171.7846	-109.808	2753.846	1.361
SLU STR 3	9081.5	-3.93008	32.74083	-68.5496	1852.75	-1.01
SLU STR 4	6643.5	100.2639	-905.056	-59.1072	-4537.68	-16.6
SLU STR 5	7678.5	-94.551	862.0865	55.48051	2940.878	14.7
SLU STR 6	4738.5	-1.60671	17.92743	-0.64039	-277.356	0.03841
SLU STR 7	6884.5	-94.7331	862.764	55.06768	3305.038	14.69
SLU STR 8	5309.5	25.92884	-224.35	105.6944	-3371.99	-3.347
SLU STR 9	3528.5	17.5192	-145.071	67.27318	-4810.27	-1.768
SLU STR 10	5421.5	-93.7229	852.2893	55.02411	3932.798	14.61

SLU STR 11	4975.5	100.8663	-912.925	-59.153	-3867.76	-16.64
SLU STR 12	4738.5	-1.60671	17.92743	-0.64039	-277.356	0.03841
SIS 1	4427	1221.368	-8989.02	-550.665	-4586.45	11.63
SIS 2	5899	177.2648	-1291.61	-1082.72	-1761.06	0.1179
SIS 3	5900	189.9223	-1408.68	-1084.16	-1767	-2.071
SIS 4	3919	1334.274	-9807.78	51.14827	-2386.82	15.31
SIS 5	4941	1302.612	-9528.9	45.48567	2346.968	19.64
SIS 6	4401	-1.60671	17.92743	-0.64039	-530.481	0.03841
SIS 7	4530	-1214.9	8937.062	547.2682	4222.193	-13.35
SIS 8	3058	-171.07	1240.75	1079.475	1397.164	-1.838
SIS 9	3057	-184.016	1357.955	1079.954	1401.609	0.3518
SIS 10	5038	-1327.8	9755.739	-54.5454	2022.948	-17.03
SIS 11	4016	-1296.14	9476.94	-48.8827	-2711.23	-21.35
SIS 12	4401	-1.60671	17.92743	-0.64039	-530.481	0.03841
SLU GEO 1	4616	85.2213	-771.056	-51.436	-3539.25	-14.1
SLU GEO 2	5154	-16.0305	141.2019	-94.854	2382.713	1.112
SLU GEO 3	7109	-3.09874	25.33716	-59.0843	1617.72	-0.8558
SLU GEO 4	5060	85.13185	-769.241	-51.2149	-3699.55	-14.08
SLU GEO 5	5912	-79.9997	728.9749	48.37343	2552.571	12.49
SLU GEO 6	4401	-1.60671	17.92743	-0.64039	-530.481	0.03841
SLU GEO 7	5236	-80.1489	729.605	48.02549	2862.837	12.48
SLU GEO 8	4897	21.3747	-184.4	91.42118	-3107.3	-2.766
SLU GEO 9	3388	14.35101	-118.457	58.00746	-4298.82	-1.457
SLU GEO 10	4966	-79.7259	725.6245	47.79047	2987.136	12.42
SLU GEO 11	4616	85.20576	-771.033	-51.4636	-3539.29	-14.1
SLU GEO 12	4401	-1.60671	17.92743	-0.64039	-530.481	0.03841
SLEr 1	4167	26.40857	-229.071	-37.1923	-5050.46	-4.123
SLEr 2	5138	-15.8195	139.4925	-74.215	2464.336	1.214
SLEr 3	6843	-2.94255	23.76502	-46.8085	1783.995	-0.8003
SLEr 4	4553	26.32321	-228.134	-37.0025	-5190.6	-4.105
SLEr 5	6283	-23.939	210.6874	33.1264	4725.189	2.821
SLEr 6	4401	-1.60671	17.92743	-0.64039	-530.481	0.03841
SLEr 7	5695	-24.0688	211.3623	32.82564	4994.791	2.814
SLEr 8	4774	21.16684	-182.931	70.75107	-3123.82	-2.866
SLEr 9	3413	14.23333	-117.11	45.68349	-4354.77	-1.516
SLEr 10	5461	-23.7127	207.8845	32.6138	5102.904	2.765
SLEr 11	4167	26.38512	-228.845	-37.2081	-5051.46	-4.125
SLEr 12	4401	-1.60671	17.92743	-0.64039	-530.481	0.03841
SLEfr 1	3982	18.75045	-163.959	-12.5992	-2605.08	-3.09
SLEfr 2	5004	-12.9326	114.9475	-18.217	2128.767	1.235
SLEfr 3	6013	-0.14277	-0.86803	-5.02203	1723.818	-0.8698
SLEfr 4	3880	20.42363	-178.167	1.668645	-2951.68	-3.197
SLEfr 5	5107	-15.0479	133.3168	-5.24816	2727.768	1.556

SLEfr 6	4401	-1.60671	17.92743	-0.64039	-530.481	0.03841
SLEfr 7	4975	-12.6774	112.895	9.252959	2241.977	1.37
SLEfr 8	3953	19.00588	-165.919	14.86665	-2492.88	-2.955
SLEfr 9	3879	7.652597	-61.225	2.567997	-2946.6	-1.007
SLEfr 10	5107	-15.0479	133.3168	-5.24816	2727.768	1.556
SLEfr 11	3880	20.42363	-178.167	1.668645	-2951.68	-3.197
SLEfr 12	4401	-1.60671	17.92743	-0.64039	-530.481	0.03841
SLEqp 1	3967	18.88307	-164.946	1.132751	-2548.98	-3.022
SLEqp 2	4990	-12.8004	114.0588	-4.48192	2184.891	1.303
SLEqp 3	4991	-0.03238	-2.87865	-5.38068	2179.816	-0.8866
SLEqp 4	3967	18.88307	-164.946	1.132751	-2548.98	-3.022
SLEqp 5	4990	-12.8004	114.0588	-4.48192	2184.891	1.303
SLEqp 6	4401	-1.60671	17.92743	-0.64039	-530.481	0.03841
SLEqp 7	4990	-12.8004	114.0588	-4.48192	2184.891	1.303
SLEqp 8	3967	18.88307	-164.946	1.132751	-2548.98	-3.022
SLEqp 9	3966	6.109285	-48.0982	2.033657	-2543.93	-0.833
SLEqp 10	4990	-12.8004	114.0588	-4.48192	2184.891	1.303
SLEqp 11	3967	18.88307	-164.946	1.132751	-2548.98	-3.022
SLEqp 12	4401	-1.60671	17.92743	-0.64039	-530.481	0.03841

Tabella 14: Valori di calcolo delle azioni della fondazioni pila 3

	Fx	Fy	Mz	Fz	Му	Mx
	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
SLU STR 1	4032.25	122.9776	-1024.23	-49.1686	-3775	-67.5
SLU STR 2	6178.25	-37.3876	303.9571	-92.1899	4092.733	18.95
SLU STR 3	8092.25	-3.57529	21.16957	-56.9135	3898.832	0.7629
SLU STR 4	4779.25	70.41701	-576.504	-48.6704	-6243.23	-38.48
SLU STR 5	6204.25	-104.184	866.5598	46.79916	4583.637	56.62
SLU STR 6	4043.25	-1.45099	13.36432	-0.42627	-9.99111	0.6411
SLU STR 7	6215.25	-104.181	866.7449	46.8188	4582.685	56.62
SLU STR 8	4199.25	56.55377	-464.168	89.74795	-3288.67	-29.99
SLU STR 9	2617.25	38.35205	-307.884	56.37791	-5417.3	-20.07
SLU STR 10	5808.25	-58.3427	473.9055	45.53899	7898.891	31.22
SLU STR 11	4043.25	122.9814	-1024.04	-49.149	-3775.96	-67.5
SLU STR 12	4043.25	-1.45099	13.36432	-0.42627	-9.99111	0.6411
SIS 1	3552.5	1077.291	-7345.23	-458.582	-4013.49	-399
SIS 2	5115.5	-511.679	3484.328	-782.341	464.3536	184.8
SIS 3	5213.5	165.7827	-1139.72	-906.997	42.95106	-65.56
SIS 4	3151.5	1173.423	-7993.29	46.45384	-2319.88	-431.4
SIS 5	4533.5	-1156.47	7847.574	-48.3233	2929.746	421.4
SIS 6	3739.5	-1.45099	13.36432	-0.42627	-125.416	0.6411

SIS 7	4133.5	-1059.35	7198.039	456.522	4623.07	389
SIS 8	2570.5	529.0261	-3629.71	780.3951	145.8801	-194.7
SIS 9	2472.5	-148.337	993.661	905.032	566.8451	55.6
SIS 10	4533.5	-146.337	7847.574	-48.3233	2929.746	421.4
SIS 11	3151.5	1173.423	-7993.29	46.45384	-2319.88	-431.4
SIS 12						
SLU GEO 1	3739.5 3745.5	-1.45099 103.541	13.36432 -861.56	-0.42627 -42.7724	-125.416 -3273.2	0.6411 -56.83
SLU GEO 2		†		-42.7724		15.71
SLU GEO 2	4726.5	-31.0068	251.8144		3431.552	
	6356.5	-2.81633	16.00669	-49.115	3268.665	0.5518
SLU GEO 4	3578.5	58.85045	-482.434	-42.2454	-5181.94	-32.15
SLU GEO 5	4746.5	-87.8446	730.7358	40.7706	3857.882	47.8
SLU GEO 6	3739.5	-1.45099	13.36432	-0.42627	-125.416	0.6411
SLU GEO 7	4755.5	-87.8426	730.9238	40.78042	3856.915	47.8
SLU GEO 8	3885.5	46.91724	-385.142	77.64431	-2851.44	-24.88
SLU GEO 9	2548.5	31.73753	-253.569	48.65818	-4624.95	-16.62
SLU GEO 10	5208.5	-48.846	396.9202	39.62834	6472.709	26.13
SLU GEO 11	3755.5	103.5429	-861.563	-42.7626	-3273.18	-56.83
SLU GEO 12	3739.5	-1.45099	13.36432	-0.42627	-125.416	0.6411
SLEr 1	3214.5	58.97279	-483.758	-31.868	-5087.13	-32.14
SLEr 2	4708.5	-30.8074	250.3562	-62.1638	3497.358	15.74
SLEr 3	6164.5	-21.7618	169.5207	-40.8889	6013.069	10.69
SLEr 4	3451.5	58.92915	-483.067	-31.7781	-5116.42	-32.12
SLEr 5	5342.5	-49.223	399.8536	29.19865	6387.233	26.24
SLEr 6	3739.5	-1.45099	13.36432	-0.42627	-125.416	0.6411
SLEr 7	5350.5	-49.2211	400.0416	29.20847	6386.266	26.24
SLEr 8	3788.5	46.72772	-383.751	60.10829	-2890.77	-24.91
SLEr 9	2564.5	31.64519	-253.568	38.17316	-4666.17	-16.65
SLEr 10	5218.5	-48.9285	397.0969	29.14141	6430.502	26.09
SLEr 11	3222.5	58.97469	-483.57	-31.8582	-5088.1	-32.14
SLEr 12	3739.5	-1.45099	13.36432	-0.42627	-125.416	0.6411
SLEfr 1	3079.5	46.03276	-378.943	1.504171	-2935.16	-25
SLEfr 2	4508.5	-25.4254	207.2227	-14.77	3032.919	13.27
SLEfr 3	5373.5	2.440412	-26.5702	-3.20962	2942.648	-1.878
SLEfr 4	3079.5	46.03276	-378.943	1.504171	-2935.16	-25
SLEfr 5	4647.5	-30.0771	244.879	-3.63989	3717.744	15.83
SLEfr 6	3739.5	-1.45099	13.36432	-0.42627	-125.416	0.6411
SLEfr 7	4647.5	-30.0771	244.879	-3.63989	3717.744	15.83
SLEfr 8	3177.5	42.85926	-353.266	12.79719	-2423.14	-23.23
SLEfr 9	3078.5	18.2497	-145.652	1.804955	-2933.12	-9.809
SLEfr 10	4647.5	-30.0771	244.879	-3.63989	3717.744	15.83
SLEfr 11	3079.5	46.03276	-378.943	1.504171	-2935.16	-25
SLEfr 12	3739.5	-1.45099	13.36432	-0.42627	-125.416	0.6411
SLEqp 1	3189.5	42.74154	-352.447	1.133353	-2466.99	-23.26

SLEqp 2	4496.5	-25.3073	206.4037	-3.10418	3076.78	13.3
SLEqp 3	4496.5	2.469709	-27.0695	-3.4048	3075.719	-1.892
SLEqp 4	3189.5	42.74154	-352.447	1.133353	-2466.99	-23.26
SLEqp 5	4496.5	-25.3073	206.4037	-3.10418	3076.78	13.3
SLEqp 6	3739.5	-1.45099	13.36432	-0.42627	-125.416	0.6411
SLEqp 7	4496.5	-25.3073	206.4037	-3.10418	3076.78	13.3
SLEqp 8	3189.5	42.74154	-352.447	1.133353	-2466.99	-23.26
SLEqp 9	3188.5	14.96829	-118.98	1.432229	-2465.93	-8.067
SLEqp 10	4496.5	-25.3073	206.4037	-3.10418	3076.78	13.3
SLEqp 11	3189.5	42.74154	-352.447	1.133353	-2466.99	-23.26
SLEqp 12	3739.5	-1.45099	13.36432	-0.42627	-125.416	0.6411

Tabella 15: Valori di calcolo delle azioni della fondazioni pila 4

	Fx	Fy	Mz	Fz	My	Mx
	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
SLU STR 1	3666.75	148.947	-831.199	-43.9683	-1445.53	-106.9
SLU STR 2	4009.75	-53.7348	299.558	-73.5686	205.7763	37.23
SLU STR 3	5891.75	-1.43655	5.226107	-43.1487	1046.013	0.1181
SLU STR 4	4365.75	148.4104	-828.058	-44.1084	-1503.35	-106.5
SLU STR 5	4249.75	-116.3	648.8948	43.69378	1303.557	83.19
SLU STR 6	3177.75	-1.36445	7.949558	-0.46846	-104.949	0.869
SLU STR 7	4250.75	-116.296	648.9817	43.71342	1302.586	83.19
SLU STR 8	4017.75	86.64348	-483.39	73.22296	-325.763	-61.13
SLU STR 9	2729.75	57.47099	-316.893	42.00578	-1868.76	-40.39
SLU STR 10	4360.75	-85.9583	476.6841	47.01543	2286.329	61.14
SLU STR 11	3667.75	148.9489	-831.202	-43.9584	-1445.51	-106.9
SLU STR 12	3177.75	-1.36445	7.949558	-0.46846	-104.949	0.869
SIS 1	2726.5	963.8459	-4711.65	36.35752	-804.583	-560.6
SIS 2	3294.5	-422.634	2068.179	-587.858	-1226.02	242.7
SIS 3	3474.5	136.0748	-669.467	-679.346	-919.968	-83.86
SIS 4	2726.5	963.8459	-4711.65	36.35752	-804.583	-560.6
SIS 5	3104.5	-934.171	4545.466	-36.7265	724.5018	539.2
SIS 6	2905.5	-1.36445	7.949558	-0.46846	-113.117	0.869
SIS 7	3104.5	-934.171	4545.466	-36.7265	724.5018	539.2
SIS 8	2537.5	452.2293	-2234.24	587.6066	1146.118	-264.1
SIS 9	2357.5	-106.498	504.0198	678.9959	840.03	62.4
SIS 10	3104.5	-934.171	4545.466	-36.7265	724.5018	539.2
SIS 11	2726.5	963.8459	-4711.65	36.35752	-804.583	-560.6
SIS 12	2905.5	-1.36445	7.949558	-0.46846	-113.117	0.869
SLU GEO 1	3326.5	125.0146	-697.873	-38.1651	-1235.55	-89.77
SLU GEO 2	3018.5	-44.641	248.832	-63.733	179.8893	30.91

SLU GEO 3	4617.5	-1.04802	3.403439	-37.3869	882.5389	-0.00892
SLU GEO 4	3326.5	125.0165	-697.527	-38.1553	-1243.62	-89.75
SLU GEO 5	3217.5	-97.9627	546.4509	37.92902	1105.208	70.07
SLU GEO 6	2905.5	-1.36445	7.949558	-0.46846	-113.117	0.869
SLU GEO 7	3218.5	-97.9588	546.3661	37.94865	1105.121	70.07
SLU GEO 8	3620.5	72.0033	-401.716	63.41626	-291.599	-50.8
SLU GEO 9	2530.5	47.67372	-262.69	36.41242	-1579.15	-33.51
SLU GEO 10	3905.5	-71.8442	398.6154	40.59435	1883.601	51.1
SLU GEO 11	3327.5	125.0165	-697.876	-38.1553	-1235.54	-89.78
SLU GEO 12	2905.5	-1.36445	7.949558	-0.46846	-113.117	0.869
SLEr 1	3120.5	90.47008	-502.663	-31.6133	-1836.59	-64.71
SLEr 2	3006.5	-44.447	247.8386	-48.8466	221.0306	30.91
SLEr 3	4419.5	-0.92363	2.800516	-28.477	909.5756	-0.01654
SLEr 4	3120.5	90.43273	-502.542	-31.5959	-1842.66	-64.69
SLEr 5	3348.5	-72.1469	400.1414	31.64773	1832.697	51.23
SLEr 6	2905.5	-1.36445	7.949558	-0.46846	-113.117	0.869
SLEr 7	3348.5	-72.145	400.3293	31.65755	1831.73	51.23
SLEr 8	3527.5	71.82098	-400.756	48.53768	-324.785	-50.8
SLEr 9	2541.5	47.58265	-262.32	27.50617	-1603.67	-33.52
SLEr 10	3823.5	-71.9195	398.9455	31.66465	1855.987	51.08
SLEr 11	3121.5	90.47199	-502.666	-31.6035	-1836.57	-64.71
SLEr 12	2905.5	-1.36445	7.949558	-0.46846	-113.117	0.869
SLEfr 1	2717.5	71.21355	-396.267	-1.2308	-1057.75	-50.81
SLEfr 2	2962.5	-36.7966	205.4214	-9.27936	252.4645	25.86
SLEfr 3	3859.5	6.562336	-38.553	1.015505	823.1659	-5.047
SLEfr 4	2717.5	71.21355	-396.267	-1.2308	-1057.75	-50.81
SLEfr 5	3118.5	-43.8125	243.0453	0.956385	1006.766	30.92
SLEfr 6	2905.5	-1.36445	7.949558	-0.46846	-113.117	0.869
SLEfr 7	3118.5	-43.8125	243.0453	0.956385	1006.766	30.92
SLEfr 8	2869.5	66.40464	-370.916	8.933532	-332.396	-47.32
SLEfr 9	2717.5	27.83963	-153.425	-1.47719	-1058.2	-19.8
SLEfr 10	3118.5	-43.8125	243.0453	0.956385	1006.766	30.92
SLEfr 11	2717.5	71.21355	-396.267	-1.2308	-1057.75	-50.81
SLEfr 12	2905.5	-1.36445	7.949558	-0.46846	-113.117	0.869
SLEqp 1	2749.5	66.345	-369.443	-1.06886	-900.09	-47.37
SLEqp 2	2955.5	-36.6836	204.849	0.631148	279.8841	25.87
SLEqp 3	3082.5	6.639314	-38.9549	0.960812	820.8889	-5.099
SLEqp 4	2749.5	66.345	-369.443	-1.06886	-900.09	-47.37
SLEqp 5	3082.5	-36.7378	203.8703	0.719108	820.0354	25.91
SLEqp 6	2905.5	-1.36445	7.949558	-0.46846	-113.117	0.869
SLEqp 7	3082.5	-36.7378	203.8703	0.719108	820.0354	25.91
SLEqp 8	2876.5	66.29155	-370.343	-0.97697	-359.816	-47.33
SLEqp 9	2749.5	22.97223	-126.545	-1.30936	-900.825	-16.36

SLEqp 10	3082.5	-36.7378	203.8703	0.719108	820.0354	25.91
SLEqp 11	2749.5	66.345	-369.443	-1.06886	-900.09	-47.37
SLEqp 12	2905.5	-1.36445	7.949558	-0.46846	-113.117	0.869

Tabella 16: Valori di calcolo delle azioni della fondazioni pila 5

	Fx	Fy	Mz	Fz	Му	Mx
	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
SLU STR 1	2525.75	150.4508	-756.368	-34.1355	-2071.92	-176.5
SLU STR 2	3401.75	-60.2071	298.1548	-56.8158	1800.757	69.71
SLU STR 3	4904.75	-59.9703	294.4694	-33.1665	3015.257	69.65
SLU STR 4	1625.15	124.1074	-620.468	-37.5915	-3546.71	-145.5
SLU STR 5	3652.75	-112.936	563.0179	-35.4318	2620.756	131.8
SLU STR 6	2410.75	-1.14143	4.886282	-0.18582	-88.4215	1.28
SLU STR 7	3609.75	-112.091	558.9247	34.95003	2802.183	131.4
SLU STR 8	2732.75	98.81321	-496.87	57.53259	-1070.71	-115.1
SLU STR 9	1580.55	124.9505	-623.68	32.78059	-3366.15	-145.8
SLU STR 10	4729.75	-97.6966	481.2706	38.77377	4806.949	114.4
SLU STR 11	2481.75	151.296	-760.462	36.24732	-1890.49	-177
SLU STR 12	2410.75	-1.14143	4.886282	-0.18582	-88.4215	1.28
SIS 1	1842.5	771.9187	-3572.56	30.06332	-1305.04	-862.7
SIS 2	2729.5	-340.781	1575.513	-441.385	251.3053	377.8
SIS 3	2885.5	58.76202	-258.298	-508.454	599.3931	-67.08
SIS 4	1842.5	771.9187	-3572.56	30.06332	-1305.04	-862.7
SIS 5	2624.5	-737.287	3395.246	-29.5622	1778.486	821.9
SIS 6	2183.5	-1.14143	4.886282	-0.18582	18.38603	1.28
SIS 7	2624.5	-737.287	3395.246	-29.5622	1778.486	821.9
SIS 8	1737.8	375.4133	-1753.77	441.8865	221.7559	-418.5
SIS 9	1582.2	-24.1301	80.57375	508.9552	-126.127	26.33
SIS 10	2624.5	-737.287	3395.246	-29.5622	1778.486	821.9
SIS 11	1842.5	771.9187	-3572.56	30.06332	-1305.04	-862.7
SIS 12	2183.5	-1.14143	4.886282	-0.18582	18.38603	1.28
SLU GEO 1	2290.5	126.168	-634.453	-29.611	-1635.07	-148.1
SLU GEO 2	2595.5	-50.0536	247.8918	-49.2848	1479.096	57.95
SLU GEO 3	3871.5	-49.8487	244.8045	-28.7873	2500.514	57.89
SLU GEO 4	1529	103.1894	-515.822	-32.5271	-2866.94	-121.1
SLU GEO 5	2805.5	-95.0065	473.6145	-30.7163	2164.229	110.9
SLU GEO 6	2183.5	-1.14143	4.886282	-0.18582	18.38603	1.28
SLU GEO 7	2768.5	-94.2244	470.0514	30.2751	2321.468	110.5
SLU GEO 8	2463.5	82.17476	-413.44	49.8665	-792.487	-95.73
SLU GEO 9	1490.4	103.9205	-519.014	28.464	-2709.65	-121.3
SLU GEO 10	3714.5	-81.2686	401.1112	33.51251	3996.565	95.14

SLU GEO 11	2252.5	126.9212	-637.972	31.389	-1477.82	-148.4
SLU GEO 12	2183.5	-1.14143	4.886282	-0.18582	18.38603	1.28
SLEr 1	1966.5	103.4449	-516.94	-25.4478	-2756.63	-121.2
SLEr 2	2585.5	-49.8896	247.1231	-37.5403	1508.836	57.86
SLEr 3	3716.5	-49.7437	244.3391	-21.748	2472.301	57.83
SLEr 4	1528.2	103.3345	-516.29	-25.4915	-2848.29	-121.1
SLEr 5	3126.5	-82.0967	405.4455	-20.4306	3653.422	95.62
SLEr 6	2183.5	-1.14143	4.886282	-0.18582	18.38603	1.28
SLEr 7	3097.5	-81.4934	401.8716	26.48631	3774.215	95.35
SLEr 8	2398.5	82.01461	-412.629	38.14164	-838.691	-95.65
SLEr 9	1498.5	103.837	-518.633	21.43072	-2727.28	-121.3
SLEr 10	3627.5	-81.3326	401.2048	26.47541	3949.335	95.16
SLEr 11	1937.5	103.9995	-519.656	21.48063	-2635.67	-121.5
SLEr 12	2183.5	-1.14143	4.886282	-0.18582	18.38603	1.28
SLEfr 1	1796.5	81.49923	-408.672	-1.09083	-1661.26	-95.4
SLEfr 2	2492.5	-41.3695	204.9345	-6.49567	1321.494	48.19
SLEfr 3	3219.5	-41.3717	203.3352	1.406934	2052.25	48.27
SLEfr 4	1796.5	81.49923	-408.672	-1.09083	-1661.26	-95.4
SLEfr 5	2691.5	-49.3472	243.1814	1.726611	2222.163	57.59
SLEfr 6	2183.5	-1.14143	4.886282	-0.18582	18.38603	1.28
SLEfr 7	2691.5	-49.3472	243.1814	1.726611	2222.163	57.59
SLEfr 8	1975.5	76.02868	-382.739	7.032247	-848.284	-88.94
SLEfr 9	1796.5	81.49923	-408.672	-1.09083	-1661.26	-95.4
SLEfr 10	2691.5	-49.3472	243.1814	1.726611	2222.163	57.59
SLEfr 11	1796.5	81.49923	-408.672	-1.09083	-1661.26	-95.4
SLEfr 12	2183.5	-1.14143	4.886282	-0.18582	18.38603	1.28
SLEqp 1	1860.5	75.98117	-381.37	-0.86376	-1381.46	-88.95
SLEqp 2	2487.5	-41.2653	204.5278	1.325139	1341.326	48.15
SLEqp 3	2606.5	-41.3105	203.5475	1.407265	1854.679	48.2
SLEqp 4	1860.5	75.98117	-381.37	-0.86376	-1381.46	-88.95
SLEqp 5	2606.5	-41.3105	203.5475	1.407265	1854.679	48.2
SLEqp 6	2183.5	-1.14143	4.886282	-0.18582	18.38603	1.28
SLEqp 7	2606.5	-41.3105	203.5475	1.407265	1854.679	48.2
SLEqp 8	1980.5	75.92582	-382.278	-0.78169	-868.401	-88.89
SLEqp 9	1860.5	75.98117	-381.37	-0.86376	-1381.46	-88.95
SLEqp 10	2606.5	-41.3105	203.5475	1.407265	1854.679	48.2
SLEqp 11	1860.5	75.98117	-381.37	-0.86376	-1381.46	-88.95
SLEqp 12	2183.5	-1.14143	4.886282	-0.18582	18.38603	1.28

Tabella 17: Valori di calcolo delle azioni della fondazioni pila 6

	Fx	Fy	Mz	Fz	Му	Mx
	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
SLU STR 1	1416.85	140.1768	-696.577	-25.149	-3047.4	-281.4
SLU STR 2	2998.25	-59.9665	287.7327	-42.2134	4020.872	119.7
SLU STR 3	4304.25	-98.4827	471 -22.9197		8178.616	197.1
SLU STR 4	541.25	125.0499	-615.128	-28.5502	-5550.18	-250.9
SLU STR 5	3162.25	-101.803	495.397	-26.6345	4692.807	203.8
SLU STR 6	1727.65	-0.90408	2.424065	0.063065	-97.377	1.787
SLU STR 7	3128.25	-101.096	492.0224	26.5254	4815.901	202.8
SLU STR 8	1546.75	99.32261	-493.197	43.48734	-2253.64	-198.7
SLU STR 9	506.95	125.7066	-618.428	24.61632	-5427.07	-251.7
SLU STR 10	4270.25	-97.825	467.8893	30.2517	8300.746	196.3
SLU STR 11	1382.85	140.9307	-700.023	27.99347	-2924.33	-282.4
SLU STR 12	1727.65	-0.90408	2.424065	0.063065	-97.377	1.787
SIS 1	1051.8	615.0323	-2868.02	24.80198	-2045.46	-1223
SIS 2	2318.5	-273.117	1268.031	-329.643	2054.154	540.4
SIS 3	2448.5	35.97504	-161.858	-378.315	2366.864	-74.14
SIS 4	1051.8	615.0323	-2868.02	24.80198	-2045.46	-1223
SIS 5	2249.5	-579.697	2685.371	-23.8264	3168.621	1152
SIS 6	1558.9	-0.90408	2.424065	0.063065	135.498	1.787
SIS 7	2249.5	-579.697	2685.371	-23.8264	3168.621	1152
SIS 8	982.4	308.4522	-1450.79	330.6189	-930.406	-611.3
SIS 9	852.5	-0.66913	-20.7813	379.2964	-1243.5	3.264
SIS 10	2249.5	-579.697	2685.371	-23.8264	3168.621	1152
SIS 11	1051.8	615.0323	-2868.02	24.80198	-2045.46	-1223
SIS 12	1558.9	-0.90408	2.424065	0.063065	135.498	1.787
SLU GEO 1	1307.5	117.4003	-583.957	-21.7843	-2318.48	-235.8
SLU GEO 2	2329.5	-49.8826	239.5488	-36.6656	3299.068	99.55
SLU GEO 3	3426.5	-81.9696	392.2493	-19.9867	6775.451	164
SLU GEO 4	570.41	104.0055	-512.202	-24.6603	-4410.29	-208.8
SLU GEO 5	2465.5	-85.5142	416.146	-23.1281	3860.82	171.2
SLU GEO 6	1558.9	-0.90408	2.424065	0.063065	135.498	1.787
SLU GEO 7	2436.5	-84.8633	413.9996	22.93303	3967.377	170.4
SLU GEO 8	1414.8	82.6366	-410.68	37.72531	-1651.19	-165.3
SLU GEO 9	540.69	104.598	-514.261	21.41522	-4303.72	-209.5
SLU GEO 10	3397.5	-81.407	389.4443	26.09258	6880.862	163.3
SLU GEO 11	1278.1	118.101	-586.963	24.2712	-2212.09	-236.6
SLU GEO 12	1558.9	-0.90408	2.424065	0.063065	135.498	1.787
SLEr 1	868.9	104.1257	-513.119	-19.325	-4139.6	-209
SLEr 2	2315.5	-49.7482	238.8619	-27.7983	3313.293	99.38
SLEr 3	3358.5	-81.8944	392.1871	-14.6734	6720.27	163.9
SLEr 4	569.397	104.1208	-512.539	-19.35	-4396.25	-208.9
SLEr 5	2991.5	-82.1262	394.011	-14.608	6340.674	164.4

SLEr 6	1558.9	-0.90408	2.424065	0.063065	135.498	1.787
SLEr 7	2968.5	-81.6264	391.8451	20.82363	6422.07	163.7
SLEr 8	1375.1	82.5139	-410.1	28.86596	-1711.06	-165.1
SLEr 9	546.53	104.5326	-514.572	16.10004	-4314.82	-209.4
SLEr 10	3335.5	-81.4624	389.932	20.77647	6802.675	163.4
SLEr 11	846.3	104.6561	-515.522	16.1066	-4057.23	-209.6
SLEr 12	1558.9	-0.90408	2.424065	0.063065	135.498	1.787
SLEfr 1	968	82.1329	-406.669	-0.76576	-2550.06	-164.7
SLEfr 2	2135.5	-41.32	198.3835	-4.40673	2788.788	82.71
SLEfr 3	2670.5	-41.2747	196.1718	1.538858	3670.33	82.69
SLEfr 4	968	82.1329	-406.669	-0.76576	-2550.06	-164.7
SLEfr 5	2369.5	-49.3414	235.8823	1.860984	3844.268	98.85
SLEfr 6	1558.9	-0.90408	2.424065	0.063065	135.498	1.787
SLEfr 7	2369.5	-49.3414	235.8823	1.860984	3844.268	98.85
SLEfr 8	1165.3	76.63165	-381.032	5.417527	-1665.38	-153.6
SLEfr 9	968	82.1329	-406.669	-0.76576	-2550.06	-164.7
SLEfr 10	2369.5	-49.3414	235.8823	1.860984	3844.268	98.85
SLEfr 11	968	82.1329	-406.669	-0.76576	-2550.06	-164.7
SLEfr 12	1558.9	-0.90408	2.424065	0.063065	135.498	1.787
SLEqp 1	1066.5	76.58158	-379.745	-0.55261	-2102.98	-153.6
SLEqp 2	2132.5	-41.2329	197.8877	1.492016	2802.659	82.6
SLEqp 3	2234.5	-41.2703	197.0975	1.561436	3226.385	82.67
SLEqp 4	1066.5	76.58158	-379.745	-0.55261	-2102.98	-153.6
SLEqp 5	2234.5	-41.2703	197.0975	1.561436	3226.385	82.67
SLEqp 6	1558.9	-0.90408	2.424065	0.063065	135.498	1.787
SLEqp 7	2234.5	-41.2703	197.0975	1.561436	3226.385	82.67
SLEqp 8	1169.1	76.55376	-380.686	-0.48608	-1679.08	-153.5
SLEqp 9	1066.5	76.58158	-379.745	-0.55261	-2102.98	-153.6
SLEqp 10	2234.5	-41.2703	197.0975	1.561436	3226.385	82.67
SLEqp 11	1066.5	76.58158	-379.745	-0.55261	-2102.98	-153.6
SLEqp 12	1558.9	-0.90408	2.424065	0.063065	135.498	1.787

Tabella 18: Valori di calcolo delle azioni della fondazioni pila 7

	Fx	Fx Fy Mz Fz		My	Mx	
	(kN)	(kN)	(kNm)	(kN)	(kNm)	(kNm)
SLU STR 1	359.75	118.837	-601.025	-17.0138	-2692.52	-176.2
SLU STR 2	2195.75	-53.1377	261.2382	-29.1464	3681.019	78.42
SLU STR 3	3555.75	-88.0369	431.5301	-15.4048	7087.341	130.2
SLU STR 4	-177.05	111.9495	-561.507	-19.9536	-4552.45	-165.8
SLU STR 5	3231.75	-88.2569	432.7685	-15.3315	6784.05	130.5
SLU STR 6	1112.35	-0.71939	2.540631	0.243336	91.68885	1.056

SLU STR 7	3201.75	-87.672	430.1209	21.84801	6875.131	129.9
SLU STR 8	630.58	88.31513	-446.169	30.67221	-2107.75	-130.5
SLU STR 9	-207.15	112.4593	-564.233	17.25884	-4460.34	-166.3
SLU STR 10	3525.75	-87.527	428.9951	21.80761	7178.471	129.7
SLU STR 11	329.95	119.4431	-603.802	20.16976	-2601.45	-176.8
SLU STR 12	1112.35	-0.71939	2.540631	0.243336	91.68885	1.056
SIS 1	426.5634	465.7944	-2218.62	19.58202	-1689.17	-680.8
SIS 2	1885.5	-208.055	986.8723	-233.389	2163.913	302.8
SIS 3	1938.5	19.95581	-88.5011	-266.606	2246.591	-29.97
SIS 4	426.5634	465.7944	-2218.62	19.58202	-1689.17	-680.8
SIS 5	1771.5	-434.186	2052.923	-18.3912	2855.889	633.9
SIS 6	984.1	-0.71939	2.540631	0.243336	182.7463	1.056
SIS 7	1771.5	-434.186	2052.923	-18.3912	2855.889	633.9
SIS 8	312.7	239.6633	-1152.11	234.58	-996.388	-349.7
SIS 9	260.1	11.72029	-77.0954	267.8855	-1078.68	-16.95
SIS 10	1771.5	-434.186	2052.923	-18.3912	2855.889	633.9
SIS 11	426.5634	465.7944	-2218.62	19.58202	-1689.17	-680.8
SIS 12	984.1	-0.71939	2.540631	0.243336	182.7463	1.056
SLU GEO 1	357.58	99.51847	-503.469	-14.7266	-2138.51	-147.5
SLU GEO 2	1887.5	-44.4214	218.2089	-25.2886	3170.998	65.55
SLU GEO 3	2865.5	-73.2912	359.5957	-13.4933	5875.775	108.3
SLU GEO 4	-90.1	93.14854	-467.468	-17.205	-3688.59	-138
SLU GEO 5	2589.5	-73.472	361.2143	-13.4276	5617.382	108.6
SLU GEO 6	984.1	-0.71939	2.540631	0.243336	182.7463	1.056
SLU GEO 7	2563.5	-72.964	358.4637	18.79653	5696.912	108.1
SLU GEO 8	420.846	73.69313	-372.076	26.56679	-1788.6	-108.9
SLU GEO 9	-116.3	93.59092	-469.439	15.04849	-3609.9	-138.5
SLU GEO 10	2839.5	-72.8481	356.9425	18.76382	5955.355	107.9
SLU GEO 11	331.71	100.0064	-505.895	17.49938	-2058.92	-148
SLU GEO 12	984.1	-0.71939	2.540631	0.243336	182.7463	1.056
SLEr 1	-74.1	93.20871	-467.748	-13.4889	-3663.7	-138.1
SLEr 2	1882.5	-44.3256	217.8037	-19.0829	3186.368	65.44
SLEr 3	2819.5	-73.229	359.5001	-9.76669	5844.691	108.3
SLEr 4	-91.5	93.20947	-467.636	-13.485	-3678.95	-138.1
SLEr 5	2579.5	-73.3822	360.6704	-9.71653	5619.813	108.5
SLEr 6	984.1	-0.71939	2.540631	0.243336	182.7463	1.056
SLEr 7	2559.5	-72.9955	358.4558	15.07069	5681.125	108.1
SLEr 8	417.44	73.61881	-371.644	20.36707	-1811.08	-108.9
SLEr 9	-111.6	93.54043	-469.276	11.3298	-3617.5	-138.4
SLEr 10	2799.5	-72.8892	357.3559	15.04126	5906.034	108
SLEr 11	-93.9	93.60533	-469.585	11.29682	-3602.31	-138.5
SLEr 12	984.1	-0.71939	2.540631	0.243336	182.7463	1.056
SLEfr 1	338.85	73.50175	-370.667	-0.41237	-2111.03	-108.8

SLEfr 2	1723.5	-36.8416	180.7744	-2.74982	2718.905	54.49
SLEfr 3	2041.5	-36.8848	180.0646	1.430225	3162.054	54.58
SLEfr 4	338.85	73.50175	-370.667	-0.41237	-2111.03	-108.8
SLEfr 5	1905.5	-44.0915	216.2011	1.66973	3439.334	65.25
SLEfr 6	984.1	-0.71939	2.540631	0.243336	182.7463	1.056
SLEfr 7	1905.5	-44.0915	216.2011	1.66973	3439.334	65.25
SLEfr 8	475.52	68.5007	-346.345	3.941874	-1551.12	-101.4
SLEfr 9	338.85	73.50175	-370.667	-0.41237	-2111.03	-108.8
SLEfr 10	1905.5	-44.0915	216.2011	1.66973	3439.334	65.25
SLEfr 11	338.85	73.50175	-370.667	-0.41237	-2111.03	-108.8
SLEfr 12	984.1	-0.71939	2.540631	0.243336	182.7463	1.056
SLEqp 1	446.24	68.52331	-346.226	-0.23926	-1728.51	-101.5
SLEqp 2	1719.5	-36.7821	180.7018	1.38175	2728.162	54.42
SLEqp 3	1752.5	-36.864	180.655	1.432298	2896.293	54.55
SLEqp 4	446.24	68.52331	-346.226	-0.23926	-1728.51	-101.5
SLEqp 5	1752.5	-36.864	180.655	1.432298	2896.293	54.55
SLEqp 6	984.1	-0.71939	2.540631	0.243336	182.7463	1.056
SLEqp 7	1752.5	-36.864	180.655	1.432298	2896.293	54.55
SLEqp 8	478.87	68.44069	-346.081	-0.19264	-1561.37	-101.3
SLEqp 9	446.24	68.52331	-346.226	-0.23926	-1728.51	-101.5
SLEqp 10	1752.5	-36.864	180.655	1.432298	2896.293	54.55
SLEqp 11	446.24	68.52331	-346.226	-0.23926	-1728.51	-101.5
SLEqp 12	984.1	-0.71939	2.540631	0.243336	182.7463	1.056

Tabella 19: Valori di calcolo delle azioni della fondazioni pila 8

Semiviadotto Rampa D - Relazione di calcolo fondazioni

9. FONDAZIONI SU MICROPALI

9.1 Parametri del modello geotecnico delle palificate

Secondo le NTC'08, nel modello di calcolo dei pali, i coefficienti parziali vengono applicati direttamente alle resistenze laterali e di base (conservando quindi l'impostazione dei metodi di calcolo tradizionali), e non ai parametri geotecnici caratteristici del terreno, per tener conto dei numerosi fattori che concorrono alla portanza del palo legati alle modalità ed alle incertezze esecutive.

I parametri di input introdotti nel modello di calcolo sono i seguenti:

Pile D2 e D5							
profondità	γ	$ au_{lim}$	ф	q_{b}	K		
da 0 a 2 m	20	100	35	2000	15000		
da 2 in poi	26	200	42	4500	339000		

 $\gamma \Rightarrow \text{Peso di volume (kN/m}^3)$

 $\begin{array}{lll} \tau_{lim} & \Rightarrow & \text{Attrito unitario laterale limite (kPa)} \\ q_b & \Rightarrow & \text{Resistenza ultima alla punta (kPa)} \\ \phi & \Rightarrow & \text{Angolo di resistenza al taglio (°)} \\ K & \Rightarrow & \text{Modulo di reazione iniziale (kN/m³)} \end{array}$

9.2 Resistenza dei micropali soggetti a carichi assiali

In accordo a quanto descritto nel paragrafo 7, di seguito è condotta la stima della resistenza di progetto dei micropali R_d , in funzione della profondità.

Utilizzando le formulazioni indicate al par. 7.3.2.1 è possibile ottenere i profili di resistenza caratteristica e di progetto riportate nelle figure seguenti. La resistenza caratteristica è stimata secondo quanto descritto al par. 7.3.2 adottando i coefficienti parziali ξ_3 e ξ_4 relativi a n.1 verticale di indagine a disposizione per sistema di fondazione.

I valori delle resistenze di progetto, così trovati sono poi confrontati con i valori delle sollecitazioni assiali risultanti dai calcoli secondo le combinazioni GEO e sismiche.

In particolare sono stati adottate i seguenti parametri per la resistenza a capacità portante dei micropali:

Semiviadotto Rampa D - Relazione di calcolo fondazioni

Micropali D240:

tratto libero τ =0.7 x tan(ϕ ') x σ_v ' iniezione a gravità

peso di volume naturale $\gamma_n = 20 \text{ N/m3}$ coesione efficace c' = 0.0 kPa

angolo d'attrito efficare $\phi' = 35^{\circ}$

tratto di bulbo aderenza limite palo-terreno complessiva (αχτ):

 $\alpha x\tau = 100-120 \text{ kPa}$ per iniezione a pressione uniforme (I.G.U.)

 $\alpha x\tau$ =200-220 kPa per iniezione ripetuta in pressione (I.R.S.)

portata di base limite $q_{base} = 4000-4500 \text{ kPa}$

Semiviadotto Rampa D - Relazione di calcolo fondazioni

9.3 Risultati Spalla

9.3.1 Premessa

Nella figura seguente è illustrato lo schema della palificata, con il sistema di riferimento globale e la numerazione dei pali utilizzata nei calcoli.

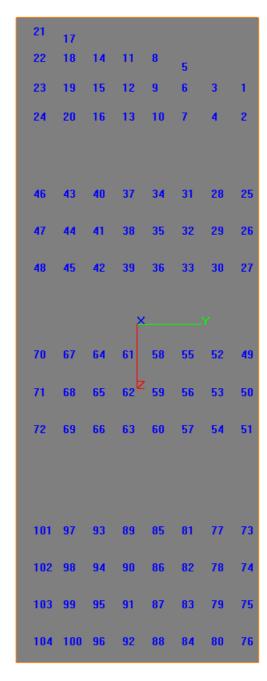


Figura 7: Schema spalla

Semiviadotto Rampa D - Relazione di calcolo fondazioni

9.3.2 Risultati

Nella successiva tabella sono riportate le azioni assiali, di taglio e di momento dimensionanti.

SPALLA	SLU GEO	SLU STR	SISMA	SLE
N _{max}	325	426	616	315
N _{min}	67.9	57.6	-235	68.2
M _{max}	-	3.78	76.99	2.42
T _{max}	-	7.30	95.59	4.97

Tabella 20: Massime sollecitazioni di calcolo - Spalla

9.3.3 Verifiche geotecniche

Le resistenze di progetto R_d , per un micropalo con D_{perf} =240mm, L = 15 m (5 + 10) risultano:

Resistenza a compressione (M2): 712 kN

Resistenza a trazione (M2): 588 kN

Le verifiche pertanto risultano soddisfatte

9.3.4 Verifica del tubo di armatura

Si riportano le verifiche del tubo di armatura dei micropali sulla base delle massime azioni ricavate dall'analisi con GROUP.

Tenendo conto di tubo di armatura 168.3 sp 12.5, le verifiche risultano soddisfatte:

NTC - DM 14 GENNAIC	2008 - 4.2	2 Costruzio	oni di ACC I	AIO - Verifica di SEZIONI TU	JBOLARI	COMPAT	TE (CLAS	SE 1 0 2) 0	on il MET	ODO PLAS	STICO
Materiale				Azioni di ca	Icolo		A1-M1-R1	SISMA			
Acciaio	classe	S 355	-	Azione assiale	n _s	kN/m	426.00	616.00			
Coefficiente di sicurezza	Yмо	1.05	-	Taglio	V _S	kN/m	7.30	95.59			
Tensione di snervamento	f _{yk}	355	MPa	Momento	m _s	kNm/m	3.78	76.99			
Tensione di calcolo	f _{yd}	338	MPa	Combinazioni	di carico		A1-M1-R1	SISMA			
Sezione (UNI	EN 10219	-2:2006)		Coefficiente di sicurezza	Υ	-	1	1	1	1	
Diametro esterno	D	168.3	mm	Interasse	i	m	1	1	1	1	
Spessore (s <= 40 mm)	s	12.5	mm	Azioni di pro	getto		A1-M1-R1	SISMA			
Diametro interno	d	143.3	mm	Azione assiale	N _{sd}	kN	426.00	616.00	0	0	0
Momento d'inerzia	I	1.87E-05	m ⁴	Taglio	V _{sd}	kN	7.30	95.59	0	0	0
Area sezione trasversale	Α	6.12E-03	m ²	Momento	M _{sd}	kNm	3.78	76.99	0	0	0
Modulo resistente a flessione	W _{pl}	3.04E-04	m ³	Effetto delle azioni cor	nbinate (N	N, V, M)	A1-M1-R1	SISMA			
Modulo resistente a taglio	A _v =2A/π	3.90E-03	m ²	[(2·V _{sd} /V _{pl,Rd})-1] ²	ρ	-	0.000	0.000	0.000	0.000	0.000
Area resistente a taglio	A* _v =A	6.12E-03	m ²	$N_{sd}/[A\cdot(1-\rho\cdot a_v)\cdot f_{yd}]$	n	-	0.206	0.298	0.000	0.000	0.000
A* _v /A	a _v	1.000	-	Momento resistente ridotto	$M_{pl,Rd,V,N}$	kN⋅m	97	92	103	103	103
Azioni resis	tenti elem	entari		Verifich	е		A1-M1-R1	SISMA			
Azione assiale resistente	$N_{pl,Rd}$	2069	kN	Azione assiale	N _{sd} <=	=N _{pl,Rd}	О.К.	O.K.	О.К.	О.К.	О.К.
Taglio resistente	$V_{pl,Rd}$	760	kN	Taglio	V _{sd} <=	=V _{pl,Rd}	0.K.	O.K.	O.K.	O.K.	O.K.
Momento resistente	M _{pl,Rd}	103	kN·m	Presso(Tenso)-Flessione	M _{sd} <=N	Λ _{pl,Rd,V,N}	О.К.	O.K.	O.K.	О.К.	O.K.

Semiviadotto Rampa D - Relazione di calcolo fondazioni

9.4 Risultati Pila 1

9.4.1 Premessa

Nella figura seguente è illustrato lo schema della palificata, con il sistema di riferimento globale e la numerazione dei pali utilizzata nei calcoli.

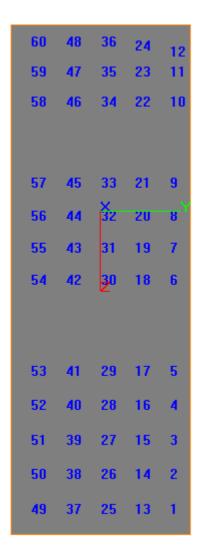


Figura 8: Schema pila

9.4.2 Risultati

Nella successiva tabella sono riportate le azioni assiali, di taglio e di momento dimensionanti.

Semiviadotto Rampa D - Relazione di calcolo fondazioni

PILA	SLU GEO	SLU STR	SISMA	SLE
N _{max}	485	628	832	467
N _{min}	-95.2	-112	-488	-105
M _{max}	-	5.31	89.16	2.44
T _{max}	-	8.30	78.61	4.48

Tabella 21: Massime sollecitazioni di calcolo - Pila 1

9.4.3 Verifiche geotecniche

Le resistenze di progetto R_d , per un micropalo con D_{perf} =240mm, L = 18 m (5 + 13) risultano:

Resistenza a compressione (M2): 895 kN

Resistenza a trazione (M2): 755 kn

Le verifiche pertanto risultano soddisfatte

9.4.4 Verifica del tubo di armatura

Si riportano le verifiche del tubo di armatura dei micropali sulla base delle massime azioni ricavate dall'analisi con GROUP.

Tenendo conto di tubo di armatura 168.3 sp 14.0, le verifiche risultano soddisfatte:

NTC - DM 14 GENNAIO	2008 - 4.2	2 Costruzio	oni di ACC I	AO - Verifica di SEZIONI TU	JBOLARI	COMPAT	TE (CLASS	SE 1 0 2) 0	on il MET	ODO PLAS	STICO
Materiale				Azioni di ca	Icolo		A1-M1-R1	SISMA			
Acciaio	classe	S 355	-	Azione assiale	n _s	kN/m	628.00	832.00			
Coefficiente di sicurezza	YMo	1.05	-	Taglio	V _S	kN/m	8.30	78.61			
Tensione di snervamento	f _{yk}	355	MPa	Momento	m _s	kNm/m	5.31	89.16			
Tensione di calcolo	f _{yd}	338	MPa	Combinazioni	di carico		A1-M1-R1	SISMA			
Sezione (UNI	EN 10219	-2:2006)		Coefficiente di sicurezza	γ	-	1	1	1	1	
Diametro esterno	D	168.3	mm	Interasse	i	m	1	1	1	1	
Spessore (s <= 40 mm)	s	14	mm	Azioni di pro	getto		A1-M1-R1	SISMA			
Diametro interno	d	140.3	mm	Azione assiale	N _{sd}	kN	628.00	832.00	0	0	0
Momento d'inerzia	ı	2.04E-05	m ⁴	Taglio	V _{sd}	kN	8.30	78.61	0	0	0
Area sezione trasversale	Α	6.79E-03	m ²	Momento	M _{sd}	kNm	5.31	89.16	0	0	0
Modulo resistente a flessione	W _{pl}	3.34E-04	m ³	Effetto delle azioni cor	nbinate (N	N, V, M)	A1-M1-R1	SISMA			
Modulo resistente a taglio	A _v =2A/π	4.32E-03	m ²	[(2·V _{sd} /V _{pl,Rd})-1] ²	ρ	-	0.000	0.000	0.000	0.000	0.000
Area resistente a taglio	A* _v =A	6.79E-03	m ²	$N_{sd}/[A\cdot(1-\rho\cdot a_v)\cdot f_{yd}]$	n	-	0.274	0.363	0.000	0.000	0.000
A* _v /A	a _v	1.000	-	Momento resistente ridotto	$M_{pl,Rd,V,N}$	kN∙m	103	95	113	113	113
Azioni resist	enti elem	entari		Verifich	е		A1-M1-R1	SISMA			
Azione assiale resistente	N _{pl,Rd}	2294	kN	Azione assiale	N _{sd} <=	=N _{pl,Rd}	O.K.	O.K.	O.K.	O.K.	O.K.
Taglio resistente	$V_{pl,Rd}$	843	kN	Taglio	V _{sd} <=	=V _{pl,Rd}	O.K.	O.K.	O.K.	O.K.	O.K.
Momento resistente	M _{pl,Rd}	113	kN⋅m	Presso(Tenso)-Flessione	M _{sd} <=N	Λ _{pl,Rd,V,N}	O.K.	O.K.	O.K.	O.K.	O.K.

Semiviadotto Rampa D - Relazione di calcolo fondazioni

9.5 Risultati Pila 2

9.5.1 Premessa

Nella figura seguente è illustrato lo schema della palificata, con il sistema di riferimento globale e la numerazione dei pali utilizzata nei calcoli.

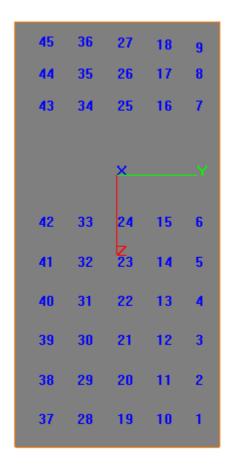


Figura 9: Schema pila

9.5.2 Risultati

Nella successiva tabella sono riportate le azioni assiali, di taglio e di momento dimensionanti.

Semiviadotto Rampa D - Relazione di calcolo fondazioni

PILA	SLU GEO	SLU STR	SISMA	SLE
N _{max}	441	569	671	426
N _{min}	-26.8	-30.7	-368	-7.67
M _{max}	-	3.29	87.08	1.35
T _{max}	-	5.55	77.42	2.59

Tabella 22: Massime sollecitazioni di calcolo - Pila 2

9.5.3 Verifiche geotecniche

Le resistenze di progetto R_d , per un micropalo con D_{perf} =240mm, L = 15 m (5 + 10) risultano:

Resistenza a compressione (M2): 712 kN

Resistenza a trazione (M2): 588 kN

Le verifiche pertanto risultano soddisfatte

9.5.4 Verifica del tubo di armatura

Si riportano le verifiche del tubo di armatura dei micropali sulla base delle massime azioni ricavate dall'analisi con GROUP.

Tenendo conto di tubo di armatura 168.3 sp 14.0, le verifiche risultano soddisfatte:

NTC - DM 14 GENNAIO	2008 - 4.2	2 Costruzio	oni di ACC I	AO - Verifica di SEZIONI TU	JBOLARI	COMPAT	TE (CLASS	SE 1 0 2) (con il METO	ODO PLAS	STICO
Materiale				Azioni di ca	Icolo		A1-M1-R1	SISMA			
Acciaio	classe	S 355	-	Azione assiale	n _s	kN/m	569.00	671.00			
Coefficiente di sicurezza	YMo	1.05	-	Taglio	V _S	kN/m	5.55	77.42			
Tensione di snervamento	f _{yk}	355	MPa	Momento	m _s	kNm/m	3.29	87.08			
Tensione di calcolo	f _{yd}	338	MPa	Combinazioni	di carico		A1-M1-R1	SISMA			
Sezione (UNI	EN 10219	-2:2006)		Coefficiente di sicurezza	Υ	-	1	1	1	1	
Diametro esterno	D	168.3	mm	Interasse	i	m	1	1	1	1	
Spessore (s <= 40 mm)	s	14	mm	Azioni di pro	getto		A1-M1-R1	SISMA			
Diametro interno	d	140.3	mm	Azione assiale	N _{sd}	kN	569.00	671.00	0	0	0
Momento d'inerzia	ı	2.04E-05	m ⁴	Taglio	V _{sd}	kN	5.55	77.42	0	0	0
Area sezione trasversale	Α	6.79E-03	m ²	Momento	M _{sd}	kNm	3.29	87.08	0	0	0
Modulo resistente a flessione	W _{pl}	3.34E-04	m ³	Effetto delle azioni cor	nbinate (l	N, V, M)	A1-M1-R1	SISMA	A1-M1-R1	SISMA	
Modulo resistente a taglio	A _v =2A/π	4.32E-03	m ²	[(2·V _{sd} /V _{pl,Rd})-1] ²	ρ	-	0.000	0.000	0.000	0.000	0.000
Area resistente a taglio	A* _v =A	6.79E-03	m ²	$N_{sd}/[A\cdot(1-\rho\cdot a_v)\cdot f_{yd}]$	n	-	0.248	0.292	0.000	0.000	0.000
A* _v /A	a _v	1.000	-	Momento resistente ridotto	$M_{pl,Rd,V,N}$	kN⋅m	105	101	113	113	113
Azioni resist	enti elem	entari		Verifich	е		A1-M1-R1	SISMA			
Azione assiale resistente	N _{pl,Rd}	2294	kN	Azione assiale	N _{sd} <:	=N _{pl,Rd}	O.K.	O.K.	O.K.	O.K.	O.K.
Taglio resistente	$V_{pl,Rd}$	843	kN	Taglio	V _{sd} <:	=V _{pl,Rd}	O.K.	O.K.	O.K.	O.K.	O.K.
Momento resistente	M _{pl,Rd}	113	kN∙m	Presso(Tenso)-Flessione	M _{sd} <=N	Л _{pl,Rd,V,N}	O.K.	O.K.	O.K.	O.K.	O.K.

Semiviadotto Rampa D - Relazione di calcolo fondazioni

9.6 Risultati Pila 3

9.6.1 Premessa

Nella figura seguente è illustrato lo schema della palificata, con il sistema di riferimento globale e la numerazione dei pali utilizzata nei calcoli.

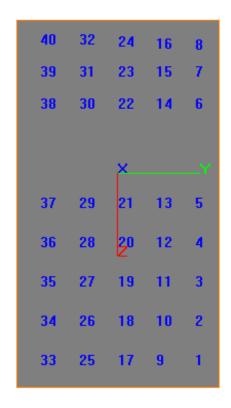


Figura 10: Schema pila

9.6.2 Risultati

Nella successiva tabella sono riportate le azioni assiali, di taglio e di momento dimensionanti.

PILA	SLU GEO	SLU STR	SISMA	SLE
N _{max}	265	340	558	252
N _{min}	-22.4	-29.2	-336	-27.6
M _{max}	-	2.26	50.99	1.31
T _{max}	-	4.20	53.09	2.53

Tabella 23: Massime sollecitazioni di calcolo - Pila 3

Semiviadotto Rampa D - Relazione di calcolo fondazioni

9.6.3 Verifiche geotecniche

Le resistenze di progetto R_d , per un micropalo con D_{perf} =240mm, L = 15 m (5 + 10) risultano:

Resistenza a compressione (M2): 712 kN

Resistenza a trazione (M2): 588 kN

Le verifiche pertanto risultano soddisfatte

9.6.4 Verifica del tubo di armatura

Si riportano le verifiche del tubo di armatura dei micropali sulla base delle massime azioni ricavate dall'analisi con GROUP.

Tenendo conto di tubo di armatura 168.3 sp 12.5, le verifiche risultano soddisfatte:

NTC - DM 14 GENNAIO	2008 - 4.2	2 Costruzio	oni di ACCI	AIO - Verifica di SEZIONI TU	JBOLARI	COMPAT	TE (CLASS	SE 1 o 2) o	on il MET	ODO PLAS	TICO
Materiale				Azioni di ca	lcolo		A1-M1-R1	SISMA			
Acciaio	classe	S 355	-	Azione assiale	n _s	kN/m	340.00	558.00			
Coefficiente di sicurezza	YMo	1.05	-	Taglio	V _S	kN/m	4.20	53.09			
Tensione di snervamento	f _{yk}	355	MPa	Momento	m _s	kNm/m	2.26	50.99			
Tensione di calcolo	f _{yd}	338	MPa	Combinazioni	di carico		A1-M1-R1	SISMA			
Sezione (UNI	EN 10219	-2:2006)		Coefficiente di sicurezza	Υ	-	1	1	1	1	
Diametro esterno	D	168.3	mm	Interasse	i	m	1	1	1	1	
Spessore (s <= 40 mm)	S	12	mm	Azioni di pro	getto		A1-M1-R1	SISMA			
Diametro interno	d	144.3	mm	Azione assiale	N _{sd}	kN	340.00	558.00	0	0	0
Momento d'inerzia	I	1.81E-05	m ⁴	Taglio	V _{sd}	kN	4.20	53.09	0	0	0
Area sezione trasversale	Α	5.89E-03	m ²	Momento	M _{sd}	kNm	2.26	50.99	0	0	0
Modulo resistente a flessione	W _{pl}	2.94E-04	m ³	Effetto delle azioni cor	nbinate (l	N, V, M)	A1-M1-R1	SISMA			
Modulo resistente a taglio	A _v =2A/π	3.75E-03	m ²	[(2·V _{sd} /V _{pl,Rd})-1] ²	ρ	-	0.000	0.000	0.000	0.000	0.000
Area resistente a taglio	A* _v =A	5.89E-03	m ²	N _{sd} /[A·(1-ρ·a _v)·f _{yd}]	n	-	0.171	0.280	0.000	0.000	0.000
A* _v /A	a _v	1.000	-	Momento resistente ridotto	$M_{pl,Rd,V,N}$	kN∙m	96	90	99	99	99
Azioni resist	tenti elem	entari		Verifich	е		A1-M1-R1	SISMA			
Azione assiale resistente	$N_{pl,Rd}$	1992	kN	Azione assiale	N _{sd} <	=N _{pl,Rd}	O.K.	O.K.	O.K.	O.K.	O.K.
Taglio resistente	$V_{pl,Rd}$	732	kN	Taglio	V _{sd} <	=V _{pl,Rd}	O.K.	O.K.	O.K.	O.K.	O.K.
Momento resistente	$M_{pl,Rd}$	99	kN·m	Presso(Tenso)-Flessione	M _{sd} <=I	M _{pl,Rd,V,N}	O.K.	O.K.	О.К.	О.К.	O.K.

9.7 Risultati Pila 4

9.7.1 Premessa

Nella figura seguente è illustrato lo schema della palificata, con il sistema di riferimento globale e la numerazione dei pali utilizzata nei calcoli.

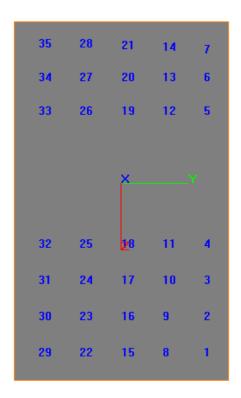


Figura 11: Schema pila

9.7.2 Risultati

Nella successiva tabella sono riportate le azioni assiali, di taglio e di momento dimensionanti.

PILA	SLU GEO	SLU STR	SISMA	SLE
N _{max}	241	307	523	235
N _{min}	-34.3	-48.2	-316	-38.3
M _{max}	-	3.57	52.26	1.93
T _{max}	-	4.96	42.92	2.85

Tabella 24: Massime sollecitazioni di calcolo - Pila 4

Semiviadotto Rampa D - Relazione di calcolo fondazioni

9.7.3 Verifiche geotecniche

Le resistenze di progetto R_d , per un micropalo con D_{perf} =240mm, L = 15 m (5 + 10) risultano:

Resistenza a compressione (M2): 712 kN

Resistenza a trazione (M2): 588 kN

Le verifiche pertanto risultano soddisfatte

9.7.4 Verifica del tubo di armatura

Si riportano le verifiche del tubo di armatura dei micropali sulla base delle massime azioni ricavate dall'analisi con GROUP.

Tenendo conto di tubo di armatura 168.3 sp 12.5, le verifiche risultano soddisfatte:

NTC - DM 14 GENNAIO	2008 - 4.2	2 Costruzio	oni di ACCI	AO - Verifica di SEZIONI TU	JBOLARI	COMPAT	TE (CLASS	SE 1 o 2) o	on il MET	ODO PLAS	STICO
Materiale				Azioni di ca	lcolo		A1-M1-R1	SISMA			
Acciaio	classe	S 355	-	Azione assiale	n _s	kN/m	307.00	523.00			
Coefficiente di sicurezza	YMo	1.05	-	Taglio	V _S	kN/m	4.96	42.92			
Tensione di snervamento	f _{yk}	355	MPa	Momento	m _s	kNm/m	3.57	52.26			
Tensione di calcolo	f _{yd}	338	MPa	Combinazioni	di carico		A1-M1-R1	SISMA			
Sezione (UNI	EN 10219	-2:2006)		Coefficiente di sicurezza	Υ	-	1	1	1	1	
Diametro esterno	D	168.3	mm	Interasse	i	m	1	1	1	1	
Spessore (s <= 40 mm)	S	12.5	mm	Azioni di pro	getto		A1-M1-R1	SISMA			
Diametro interno	d	143.3	mm	Azione assiale	N _{sd}	kN	307.00	523.00	0	0	0
Momento d'inerzia	I	1.87E-05	m ⁴	Taglio	V _{sd}	kN	4.96	42.92	0	0	0
Area sezione trasversale	Α	6.12E-03	m ²	Momento	M _{sd}	kNm	3.57	52.26	0	0	0
Modulo resistente a flessione	W _{pl}	3.04E-04	m ³	Effetto delle azioni cor	nbinate (l	N, V, M)	A1-M1-R1	SISMA			
Modulo resistente a taglio	A _v =2A/π	3.90E-03	m ²	[(2·V _{sd} /V _{pl,Rd})-1] ²	ρ	-	0.000	0.000	0.000	0.000	0.000
Area resistente a taglio	A* _v =A	6.12E-03	m ²	N _{sd} /[A·(1-ρ·a _v)·f _{yd}]	n	-	0.148	0.253	0.000	0.000	0.000
A* _v /A	a _v	1.000	-	Momento resistente ridotto	$M_{pl,Rd,V,N}$	kN⋅m	100	95	103	103	103
Azioni resist	tenti elem	entari		Verifich	е		A1-M1-R1	SISMA			
Azione assiale resistente	$N_{pl,Rd}$	2069	kN	Azione assiale	N _{sd} <	=N _{pl,Rd}	O.K.	O.K.	O.K.	O.K.	O.K.
Taglio resistente	$V_{pl,Rd}$	760	kN	Taglio	V _{sd} <	=V _{pl,Rd}	O.K.	O.K.	O.K.	O.K.	O.K.
Momento resistente	$M_{pl,Rd}$	103	kN·m	Presso(Tenso)-Flessione	M _{sd} <=I	M _{pl,Rd,V,N}	O.K.	O.K.	О.К.	О.К.	O.K.

Semiviadotto Rampa D - Relazione di calcolo fondazioni

9.8 Risultati Pila 5

9.8.1 Premessa

Nella figura seguente è illustrato lo schema della palificata, con il sistema di riferimento globale e la numerazione dei pali utilizzata nei calcoli.

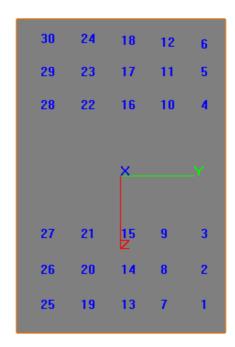


Figura 12: Schema pila

9.8.2 Risultati

Nella successiva tabella sono riportate le azioni assiali, di taglio e di momento dimensionanti.

PILA	SLU GEO	SLU STR	SISMA	SLE
N _{max}	192	220	354	188
N _{min}	39.1	37.1	-174	38.8
M _{max}	-	7.23	61.12	3.89
T _{max}	-	8.41	49.34	5.22

Tabella 25: Massime sollecitazioni di calcolo - Pila 5

Semiviadotto Rampa D - Relazione di calcolo fondazioni

9.8.3 Verifiche geotecniche

Le resistenze di progetto R_d , per un micropalo con D_{perf} =240mm, L = 12 m (5 + 7) risultano:

Resistenza a compressione (M2): 528 kN

Resistenza a trazione (M2): 422 kn

Le verifiche pertanto risultano soddisfatte

9.8.4 Verifica del tubo di armatura

Si riportano le verifiche del tubo di armatura dei micropali sulla base delle massime azioni ricavate dall'analisi con GROUP.

Tenendo conto di tubo di armatura 168.3 sp 12.5, le verifiche risultano soddisfatte:

NTC - DM 14 GENNAIO	2008 - 4.2	2 Costruzio	oni di ACCI	AO - Verifica di SEZIONI TU	JBOLARI	COMPAT	TE (CLASS	SE 1 o 2) o	on il MET	ODO PLAS	STICO
Materiale				Azioni di ca	lcolo		A1-M1-R1	SISMA			
Acciaio	classe	S 355	-	Azione assiale	n _s	kN/m	220.00	354.00			
Coefficiente di sicurezza	YMo	1.05	-	Taglio	V _s	kN/m	8.41	49.34			
Tensione di snervamento	f _{yk}	355	MPa	Momento	m _s	kNm/m	7.23	61.12			
Tensione di calcolo	f _{yd}	338	MPa	Combinazioni	di carico		A1-M1-R1	SISMA			
Sezione (UNI	EN 10219	-2:2006)		Coefficiente di sicurezza	Υ	-	1	1	1	1	
Diametro esterno	D	168.3	mm	Interasse	i	m	1	1	1	1	
Spessore (s <= 40 mm)	s	12.5	mm	Azioni di pro	getto		A1-M1-R1	SISMA			
Diametro interno	d	143.3	mm	Azione assiale	N _{sd}	kN	220.00	354.00	0	0	0
Momento d'inerzia	I	1.87E-05	m ⁴	Taglio	V _{sd}	kN	8.41	49.34	0	0	0
Area sezione trasversale	Α	6.12E-03	m ²	Momento	M _{sd}	kNm	7.23	61.12	0	0	0
Modulo resistente a flessione	W _{pl}	3.04E-04	m ³	Effetto delle azioni cor	nbinate (N, V, M)	A1-M1-R1	SISMA			
Modulo resistente a taglio	A _v =2A/π	3.90E-03	m ²	[(2·V _{sd} /V _{pl,Rd})-1] ²	ρ	-	0.000	0.000	0.000	0.000	0.000
Area resistente a taglio	A* _v =A	6.12E-03	m ²	$N_{sd}/[A\cdot(1-\rho\cdot a_v)\cdot f_{yd}]$	n	-	0.106	0.171	0.000	0.000	0.000
A* _v /A	a _v	1.000	-	Momento resistente ridotto	$M_{pl,Rd,V,N}$	kN⋅m	101	99	103	103	103
Azioni resist	tenti elem	entari		Verifich	е		A1-M1-R1	SISMA			
Azione assiale resistente	$N_{pl,Rd}$	2069	kN	Azione assiale	N _{sd} <	=N _{pl,Rd}	O.K.	O.K.	O.K.	O.K.	O.K.
Taglio resistente	$V_{pl,Rd}$	760	kN	Taglio	V _{sd} <	=V _{pl,Rd}	O.K.	O.K.	O.K.	O.K.	O.K.
Momento resistente	$M_{pl,Rd}$	103	kN⋅m	Presso(Tenso)-Flessione	M _{sd} <=	M _{pl,Rd,V,N}	0.K.	O.K.	0.K.	0.K.	О.К.

Semiviadotto Rampa D - Relazione di calcolo fondazioni

9.9 Risultati Pila 6

9.9.1 Premessa

Nella figura seguente è illustrato lo schema della palificata, con il sistema di riferimento globale e la numerazione dei pali utilizzata nei calcoli.

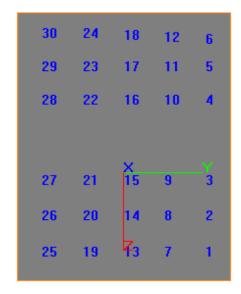


Figura 13: Schema pila

9.9.2 Risultati

Nella successiva tabella sono riportate le azioni assiali, di taglio e di momento dimensionanti.

PILA	SLU GEO	SLU STR	SISMA	SLE
N _{max}	319	391	355	314
N _{min}	-61.5	-71.3	-181	-66.7
M _{max}	-	11.24	73.78	7.03
T _{max}	-	11.89	56.73	8.21

Tabella 26: Massime sollecitazioni di calcolo - Pila 6

Semiviadotto Rampa D - Relazione di calcolo fondazioni

9.9.3 Verifiche geotecniche

Le resistenze di progetto R_d , per un micropalo con D_{perf} =240mm, L = 12 m (5 + 7) risultano:

Resistenza a compressione (M2): 528 kN

Resistenza a trazione (M2): 422 kn

Le verifiche pertanto risultano soddisfatte

9.9.4 Verifica del tubo di armatura

Si riportano le verifiche del tubo di armatura dei micropali sulla base delle massime azioni ricavate dall'analisi con GROUP.

Tenendo conto di tubo di armatura 168.3 sp 12.5, le verifiche risultano soddisfatte:

NTC - DM 14 GENNAIO	2008 - 4.2	2 Costruzi	oni di ACCI	AIO - Verifica di SEZIONI T	JBOLARI	COMPAT	TE (CLASS	SE 1 o 2) o	on il MET	ODO PLAS	STICO
Materiale				Azioni di ca	lcolo		A1-M1-R1	SISMA			
Acciaio	classe	S 355	-	Azione assiale	n _s	kN/m	391.00	355.00			
Coefficiente di sicurezza	YMo	1.05	-	Taglio	V _S	kN/m	11.89	56.73			
Tensione di snervamento	f _{yk}	355	MPa	Momento	m _s	kNm/m	11.23	73.78			
Tensione di calcolo	f _{yd}	338	MPa	Combinazioni	di carico		A1-M1-R1	SISMA			
Sezione (UNI	EN 10219	-2:2006)		Coefficiente di sicurezza	Υ	-	1	1	1	1	
Diametro esterno	D	168.3	mm	Interasse	i	m	1	1	1	1	
Spessore (s <= 40 mm)	s	12.5	mm	Azioni di pro	getto		A1-M1-R1	SISMA			
Diametro interno	d	143.3	mm	Azione assiale	N _{sd}	kN	391.00	355.00	0	0	0
Momento d'inerzia	I	1.87E-05	m ⁴	Taglio	V _{sd}	kN	11.89	56.73	0	0	0
Area sezione trasversale	Α	6.12E-03	m ²	Momento	M _{sd}	kNm	11.23	73.78	0	0	0
Modulo resistente a flessione	W _{pl}	3.04E-04	m ³	Effetto delle azioni cor	nbinate (l	N, V, M)	A1-M1-R1	SISMA			
Modulo resistente a taglio	A _v =2A/π	3.90E-03	m ²	[(2·V _{sd} /V _{pl,Rd})-1] ²	ρ	-	0.000	0.000	0.000	0.000	0.000
Area resistente a taglio	A* _v =A	6.12E-03	m ²	N _{sd} /[A·(1-ρ·a _v)·f _{yd}]	n	-	0.189	0.172	0.000	0.000	0.000
A* _v /A	a _v	1.000	-	Momento resistente ridotto	$M_{pl,Rd,V,N}$	kN∙m	98	99	103	103	103
Azioni resist	tenti elem	entari		Verifich	е		A1-M1-R1	SISMA			
Azione assiale resistente	$N_{pl,Rd}$	2069	kN	Azione assiale	N _{sd} <	=N _{pl,Rd}	O.K.	O.K.	O.K.	O.K.	O.K.
Taglio resistente	$V_{pl,Rd}$	760	kN	Taglio	V _{sd} <	=V _{pl,Rd}	O.K.	O.K.	O.K.	O.K.	O.K.
Momento resistente	$M_{pl,Rd}$	103	kN⋅m	Presso(Tenso)-Flessione	M _{sd} <=I	M _{pl,Rd,V,N}	O.K.	O.K.	О.К.	О.К.	O.K.

Semiviadotto Rampa D - Relazione di calcolo fondazioni

9.10 Risultati Pila 7

9.10.1 Premessa

Nella figura seguente è illustrato lo schema della palificata, con il sistema di riferimento globale e la numerazione dei pali utilizzata nei calcoli.

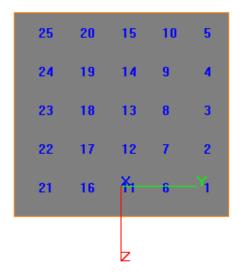


Figura 14: Schema pila

9.10.2 Risultati

Nella successiva tabella sono riportate le azioni assiali, di taglio e di momento dimensionanti.

PILA	SLU GEO	SLU STR	SISMA	SLE
N _{max}	772	951	582	760
N _{min}	-504	-613	-406	-497
M _{max}	-	18.29	103.11	12.71
T _{max}	-	23.37	91.51	17.40

Tabella 27: Massime sollecitazioni di calcolo - Pila 7

9.10.3 Verifiche geotecniche

Le resistenze di progetto R_d , per un micropalo con D_{perf} =240mm, L = 18 m (5 + 13) risultano:

Semiviadotto Rampa D - Relazione di calcolo fondazioni

Resistenza a compressione (M2): 893 kN

Resistenza a trazione (M2): 755 kn

Le verifiche pertanto risultano soddisfatte

9.10.4 Verifica del tubo di armatura

Si riportano le verifiche del tubo di armatura dei micropali sulla base delle massime azioni ricavate dall'analisi con GROUP.

Tenendo conto di tubo di armatura 168.3 sp 14.0, le verifiche risultano soddisfatte:

NTC - DM 14 GENNAIC	2008 - 4.2	2 Costruzio	oni di ACC I	AO - Verifica di SEZIONI TI	JBOLARI	COMPAT	TE (CLAS	SE 1 o 2) o	on il MET	ODO PLAS	STICO
Materiale				Azioni di ca	lcolo		A1-M1-R1	SISMA			
Acciaio	classe	S 355	-	Azione assiale		kN/m	951.00	582.00			
Coefficiente di sicurezza	V _{Mo}	1.05	-	Taglio	V _s	kN/m	23.37	91.51			
Tensione di snervamento	f _{vk}	355	MPa	Momento	m _s	kNm/m	18.29	103.11			
Tensione di calcolo	<u>-</u>	338	MPa	Combinazioni	di carico		A1-M1-R1	SISMA			
Sezione (UNI EN 10219-2:2006)			Coefficiente di sicurezza	γ	-	1	1	1	1		
Diametro esterno	D	168.3	mm	Interasse	i	m	1	1	1	1	
Spessore (s <= 40 mm)	s	14	mm	Azioni di pro	A1-M1-R1	SISMA					
Diametro interno	d	140.3	mm	Azione assiale	N _{sd}	kN	951.00	582.00	0	0	0
Momento d'inerzia	I	2.04E-05	m ⁴	Taglio	V _{sd}	kN	23.37	91.51	0	0	0
Area sezione trasversale	Α	6.79E-03	m ²	Momento	M _{sd}	kNm	18.29	103.11	0	0	0
Modulo resistente a flessione	W _{pl}	3.34E-04	m ³	Effetto delle azioni combinate (N, V, M)			A1-M1-R1	SISMA			
Modulo resistente a taglio	A _v =2A/π	4.32E-03	m ²	[(2·V _{sd} /V _{pl,Rd})-1] ²	ρ	-	0.000	0.000	0.000	0.000	0.000
Area resistente a taglio	A* _v =A	6.79E-03	m ²	$N_{sd}/[A\cdot(1-\rho\cdot a_v)\cdot f_{vd}]$	n	-	0.414	0.254	0.000	0.000	0.000
A* _v /A	a _v	1.000	-	Momento resistente ridotto	M _{pl,Rd,V,N}	kN·m	90	104	113	113	113
Azioni resistenti elementari			Verifiche			A1-M1-R1	SISMA				
Azione assiale resistente	$N_{pl,Rd}$	2294	kN	Azione assiale	N _{sd} <	=N _{pl,Rd}	O.K.	O.K.	O.K.	O.K.	O.K.
Taglio resistente	$V_{pl,Rd}$	843	kN	Taglio	V _{sd} <=V _{pl,Rd}		O.K.	O.K.	O.K.	О.К.	O.K.
Momento resistente	M _{pl,Rd}	113	kN⋅m	Presso(Tenso)-Flessione	M _{sd} <=M _{pl,Rd,V,N}		0.K.	O.K.	О.К.	О.К.	O.K.

Semiviadotto Rampa D - Relazione di calcolo fondazioni

9.11 Risultati Pila 8

9.11.1 Premessa

Nella figura seguente è illustrato lo schema della palificata, con il sistema di riferimento globale e la numerazione dei pali utilizzata nei calcoli.

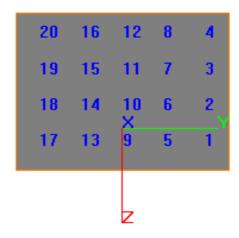


Figura 15: Schema pila

9.11.2 Risultati

Nella successiva tabella sono riportate le azioni assiali, di taglio e di momento dimensionanti.

PILA	SLU GEO	SLU STR	SISMA	SLE
N _{max}	849	1040	598	840
N _{min}	-566	-684	-424	-562
M _{max}	-	18.84	90.42	13.96
T _{max}	-	18.18	65.19	14.21

Tabella 28: Massime sollecitazioni di calcolo - Pila 8

Semiviadotto Rampa D - Relazione di calcolo fondazioni

9.11.3 Verifiche geotecniche

Le resistenze di progetto R_d , per un micropalo con D_{perf} =240mm, L = 18 m (5 + 13) risultano:

Resistenza a compressione (M2): 893 kN

Resistenza a trazione (M2): 755 kn

Le verifiche pertanto risultano soddisfatte

9.11.4 Verifica del tubo di armatura

Si riportano le verifiche del tubo di armatura dei micropali sulla base delle massime azioni ricavate dall'analisi con GROUP.

Tenendo conto di tubo di armatura 168.3 sp 14.0, le verifiche risultano soddisfatte:

NTC - DM 14 GENNAIO	2008 - 4.2	2 Costruzio	oni di ACCI	AO - Verifica di SEZIONI TU	JBOLARI	COMPAT	TE (CLAS	SE 1 o 2) o	on il MET	ODO PLAS	STICO
Materiale			Azioni di calcolo			A1-M1-R1	SISMA				
Acciaio	classe	S 355	-	Azione assiale	n _s	kN/m	1040.00	598.00			
Coefficiente di sicurezza	YMo	1.05	-	Taglio	V _s	kN/m	18.18	65.19			
Tensione di snervamento	f _{yk}	355	MPa	Momento	m _s	kNm/m	18.84	90.42			
Tensione di calcolo	f _{yd}	338	MPa	Combinazioni	di carico		A1-M1-R1	SISMA			
Sezione (UNI EN 10219-2:2006)			Coefficiente di sicurezza	Υ	-	1	1	1	1		
Diametro esterno	D	168.3	mm	Interasse	i	m	1	1	1	1	
Spessore (s <= 40 mm)	s	14	mm	Azioni di pro	A1-M1-R1	SISMA					
Diametro interno	d	140.3	mm	Azione assiale	N _{sd}	kN	1040.00	598.00	0	0	0
Momento d'inerzia	ı	2.04E-05	m ⁴	Taglio	V _{sd}	kN	18.18	65.19	0	0	0
Area sezione trasversale	Α	6.79E-03	m ²	Momento	M _{sd}	kNm	18.84	90.42	0	0	0
Modulo resistente a flessione	W _{pl}	3.34E-04	m ³	Effetto delle azioni combinate (N, V, M)			A1-M1-R1	SISMA			
Modulo resistente a taglio	A _v =2A/π	4.32E-03	m ²	[(2·V _{sd} /V _{pl,Rd})-1] ²	ρ	-	0.000	0.000	0.000	0.000	0.000
Area resistente a taglio	A* _v =A	6.79E-03	m ²	$N_{sd}/[A\cdot(1-\rho\cdot a_v)\cdot f_{yd}]$	n	-	0.453	0.261	0.000	0.000	0.000
A* _v /A	a _v	1.000	-	Momento resistente ridotto	M _{pl,Rd,V,N}	kN⋅m	86	104	113	113	113
Azioni resistenti elementari			Verifiche		A1-M1-R1	SISMA					
Azione assiale resistente	$N_{pl,Rd}$	2294	kN	Azione assiale	N _{sd} <	=N _{pl,Rd}	O.K.	O.K.	O.K.	O.K.	0.K.
Taglio resistente	$V_{pl,Rd}$	843	kN	Taglio	V _{sd} <=V _{pl,Rd}		O.K.	O.K.	O.K.	O.K.	0.K.
Momento resistente	$M_{pl,Rd}$	113	kN⋅m	Presso(Tenso)-Flessione	M _{sd} <=	M _{pl,Rd,V,N}	О.К.	O.K.	O.K.	O.K.	O.K.