

PROGETTO ESECUTIVO

oggetto BA - BANCHINA "O" - LLOYD ELABORATI GENERALI RELAZIONE DI CALCOLO STRUTTURE - BANCHINA "O"

file 1114-E-BAO-STR-RC-01-2		codice 1114-E-BAO-STR-RC-01-2		scala -	
Revisione 0	data 28/07/2021	causale Prima emissione	redatto M. Ciliento	verificato A. Longo	<mark>approvato</mark> M. Di Stefano
1	15/09/2021	Emissione per approvazione	M. Ciliento	A. Longo	M. Di Stefano
2	06/12/2021	Revisione per riscontro validazione	M. Ciliento	A. Longo	M. Di Stefano

responsabile delle Integrazioni Specialistiche: Ing. Lucia de Angelis

responsabile del Procedimento: Ing. Matteo Graziani _

committente

Autorità di Sistema Portuale del Mare Adriatico centro settentrionale

Autorità di Sistema Portuale del Mare Adriatico Centro Settentrionale Via Antico Squero, 31 48122 Ravenna

progettisti .

Technital S.p.A. Via Carlo Cattaneo, 20 37121 Verona

Direttore Tecnico Dott. Ing. Filippo Busola

Consorzio Stabile Grandi Lavori Scrl

Piazza del Popolo 18 00187 Roma

Consorzio Stabile /Grandi Lavori S.c.r.l.

DEME - Dredging Interbnational NV Haven 1025 - Scheldedijk 30 2070 Zwijndrecht - Belgium

F&M Ingegenria SpA Via Belvedere 8/10 30035 Mirano (VE)

Direttore Tecnico Dott. Ing. Tommaso Tassi

SISPI srl Via Filangieri 11 80121 Napoli

Direttore Tecnico Dott. Ing. Marco Di Stefano

SOMMARIO

1	PREMESSA	. 5
2	NORME DI RIFERIMENTO	. 7
2.1	NORMATIVE DI RIFERIMENTO	. 7
2.1.1	LEGGI, DECRETI E CIRCOLARI	. 7
2.1.2	NORME E ISTRUZIONI NAZIONALI	. 7
2.1.3	NORMATIVA EUROPEA ED INTERNAZIONALE	. 7
3	PARAMETRI DI RIFERIMENTO	. 9
3.1	COORDINATE DI RIFERIMENTO	. 9
3.2	VITA NOMINALE, CLASSE D'USO E PERIODO DI RIFERIMENTO	. 9
3.3	PRESTAZIONI RICHIESTE AL BANCHINAMENTO	10
4	SITUAZIONE ATTUALE DEL BANCHINAMENTO	11
4.1	ANALISI STORICO CRITICA	12
4.1.1	INQUADRAMENTO STORICO	12
4.1.2	ANALISI DELLA DOCUMENTAZIONE D'ARCHIVIO DEL PROGETTO ORIGINARIO	15
4.2	CARATTERISTICHE DEI MATERIALI	17
4.2.1	ANALISI DEL PROGETTO ORIGINARIO	17
4.3	RILIEVI ESEGUITI IN FASE DI PROGETTAZIONE ESECUTIVA	18
4.3.1	VERIFICHE GEOMETRICHE E DEI DETTAGLI COSTRUTTIVI	19
4.4	LIVELLO DI CONOSCENZA E FATTORE DI CONFIDENZA	20
4.5 ESIGENZ	ANALISI DELLE CARENZE DELLA STRUTTURA ATTUALE IN RELAZIONE ALLE NUO' E DI UTILIZZO	VE 21
5	INTERVENTO PREVISTO DA PROGETTO ESECUTIVO	22
6	CARATTERISTICHE DEI MATERIALI DI PROGETTO	27
6.1	CALCESTRUZZI PER LE OPERE IN C.A	27
6.1.1	CARATTERISTICHE MECCANICHE	27
6.1.2	CLASSE D'ESPOSIZIONE E CLASSE DI CONSISTENZA	27
6.2	ACCIAIO	28
6.2.1	ACCIAIO PER ARMATURA C.A	28
6.2.2	ACCIAIO PER I TIRANTI DI ANCORAGGIO	29
7	CARATTERIZZAZIONE GEOTECNICA DEI TERRENI	30
7.1	PROFILO STRATIGRAFICO	30
7.2	MODELLO GEOTECNICO DI RIFERIMENTO	31

7.3	CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI	32
7.3.1	PARAMETRI MECCANI DEI TERRENI IN CONDIZIONI POST SISMICHE	. 33
7.3.2	VALUTAZIONE DELLE SOVRAPPRESSIONI INDOTTE DAL SISMA	. 33
8	MODELLAZIONE SISMICA DEL SITO	35
8.1	PERICOLOSITÀ SISMICA DI BASE	35
8.2	ANALISI DI RISPOSTA SISMICA LOCALE	36
9	ANALISI DEI CARICHI	37
9.1	CARICHI PERMANENTI	37
9.2	CARICHI ACCIDENTALI	37
9.2.1	SOVRACCARICO DI BANCHINA	. 37
9.2.2	TIRO ALLA BITTA	37
9.2.3	GRU DI BANCHINA SEMOVENTE	. 37
9.2.4	GRU DI BANCHINA SU ROTAIA ESISTENTE	. 39
9.2.5	AZIONI SISMICHE	39
9.2.6	AZIONE IDRODINAMICA (SPINTA DI WESTERGAARD)	40
9.2.7	AZIONI ACCIDENTALI – URTO DA NATANTE	. 41
9.3	COMBINAZIONE DELLE AZIONI	43
10	ANALISI NUMERICHE DELLE OPERE DI PROGETTO	44
10.1	CRITERI DI ANALISI E DI VERIFICA	44
10.2	SOFTWARE DI CALCOLO	44
10.3	MODELLO COSTITUTIVO DEI TERRENI	45
10.4	MODELLO GEOTECNICO DELLA BANCHINA	47
10.5	RISULTATI DELLE ANALISI	51
10.5.1	INVILUPPO DELLE SOLLECITAZIONI PER LE VERIFICHE DI SICUREZZA AGLI SLU/SLV	51
10.5.1.1	PARATIA DI PALI IN C.A. D:800 MM INTERASSE I=0.90 M	52
10.5.1.2	Pali in c.a. d:1000 mm – I fila	54
10.5.1.3	Pali in c.a. d:1000 mm – II fila	55
10.5.1.4	SOLETTONE IN C.A. S= 1.00 M.	57
10.5.1.5	DEFORMAZIONI SLE/SLD	58
10.5.2	ANALISI PER AZIONI ECCEZIONALI: URTO	61
10.5.3	ANALISI DI STABILITÀ GLOBALE	62
11	VERIFICHE DI SICUREZZA AGLI STATI LIMITE	64
11.1	VERIFICA STRUTTURALE DELLA PARATIA DI PALI	64
11.2	VERIFICA DEI PALI DI FONDAZIONE DEL SOLETTONE	66
11.2.1	VERIFICHE GEOTECNICHE	66

RTP: 0 PECHANAL

11.2.1.1	CAPACITÀ PORTANTE	66
11.2.1.2	CEDIMENTI	71
11.2.2	VERIFICHE STRUTTURALI	72
11.3	VERIFICA DEL SOLETTONE	75
11.3.1	ANALISI DEI CARICHI	76
11.3.1.1	PESO PROPRIO STRUTTURALE	76
11.3.1.2	PESO PROPRIO NON STRUTTURALE	76
11.3.1.3	SOVRACCARICO ACCIDENTALE DI BANCHINA	77
11.3.1.4	GRU DI BANCHINA SEMOVENTE	77
11.3.2	COMBINAZIONI DELLE AZIONI	79
11.3.3	RISULTATI DELLE ANALISI	80
11.3.3.1	ANALISI ALLO STATO LIMITE ULTIMO (SLU)	81
11.3.3.2	ANALISI ALLO STATO LIMITE DI ESERCIZIO (SLE)	83
11.3.4	VERIFICA AGLI STATI LIMITE	85
11.3.4.1	VERIFICA ALLO SLU	85
11.3.4.1.1	Verifica a momento M11	85
11.3.4.1.2	2 Verifica a momento M22	85
11.3.4.2	VERIFICA A PUNZONAMENTO DELLA SOLETTA	86
11.3.4.3	VERIFICHE ALLO SLE	87
11.3.4.3.1	Verifica allo stato limite di limitazione delle tensioni	87
11.3.4.3.2	Verifica allo stato limite di fessurazione	87
11.4	VERIFICA DEI TIRANTI DI ANCORAGGIO	90
11.4.1	RISULTATI PROVE DI PROGETTO SU ANCORAGGI DI PROVA	90
11.4.2	VERIFICA A SFILAMENTO DEI TIRANTI (GEO)	92
11.4.2.1	POSIZIONE DELLA FONDAZIONE DELL'ANCORAGGIO	94
11.4.3	VERIFICA A TRAZIONE DEI TIRANTI DI ANCORAGGIO (STR)	94
12	BRICCOLE DI ORMEGGIO PROVVISORIE	95
12.1	ANALISI E VERIFICA DELLA FONDAZIONE	96
12.1.1	MODELLO DI CALCOLO	96
12.1.2	ANALISI DEI CARICHI	97
12.1.2.1	Peso proprio strutturale (G1)	97
12.1.2.2	CARICO ACCIDENTALE	97
12.1.2.3	COMBINAZIONE DELLE AZIONI	97
12.1.3	RISULTATI DELLE ANALISI	97
12.1.4	VERIFICA STRUTTURALE	98

RTP: O PECTATAL

13	CONTROLLI IN CORSO D'OPERA E MONITORAGGIO	104
12.2	VERIFICA DELLA BITTA	102
12.1.5	VERIFICA A CARICO LIMITE ORIZZONTALE	. 99
12.1.4.2	VERIFICA A FLESSIONE	. 98
12.1.4.1	VERIFICA A TAGLIO	. 98

1 PREMESSA

Oggetto della presente relazione sono le attività di analisi e le verifiche geotecniche e strutturali relative all'intervento di adeguamento previsto per la banchina **LLOYD** (Banchina "BAO"), nell'ambito del progetto esecutivo "Approfondimento Canali Candiano e Baiona, adeguamento banchine operative esistenti, Nuovo Terminal in penisola Trattaroli e riutilizzo del materiale estratto in attuazione al P.R.G. vigente 2007 – I Fase – Porto di Ravenna".

Figura 1 - Inquadramento banchina Loyd

Figura 2 - Vista 3D banchina Lloyd

La Banchina LLOYD è collocata lungo il canale Candiano sulla sponda sinistra (lato nord), in prossimità di Largo Trattaroli e presenta sviluppo lineare pari a circa 270 m.

La banchina, realizzata negli anni '70, risulta in gestione alla Lloyd Ravenna S.P.A. mediante concessione demaniale marittima n.37/1999. La destinazione d'uso principale della banchina è la movimentazione di merci alla rinfusa, tra le quali cereali/sfarinati/semi, carbone/antracite, altre rinfuse solide (feldspato, fertilizzanti), materiale ferroso.

La banchina è caratterizzata dalla presenza di binari con scartamento pari 15,20 m: il binario esterno (lato mare) è fondato sulla paratia esistente in c.a.p.; il binario interno (lato terra) è alloggiato su una trave via di corsa fondata su pali ø800 posti ad interasse pari a 2,70 m. Sul banchinamento sono operative tre torri di scarico (gru a portale).

L'intervento di consolidamento delle strutture esistenti parte dalla necessità di rendere compatibile il banchinamento alle prestazioni previste dal Piano Regolatore Portuale (PRP) vigente che prevede, in particolare, un fondale operativo a -14,50 m da livello medio mare.

La modesta lunghezza della paratia esistente di banchina (esteso solo fino a -21,35 m da l.m.m.) e l'utilizzo estensivo di acciai da precompressione in trefoli (sia per l'armatura principale del diaframma che per il sistema di ancoraggio sommitale), non consente un livello accettabile di affidabilità strutturale in relazione alle prestazioni molto impegnative definite dal Progetto definitivo.

Il progetto di intervento sul banchinamento, agendo su una struttura completamente realizzata e introducendo significative variazioni delle sollecitazioni, va inquadrato nell'ambito degli interventi di adeguamento di strutture esistenti, ai sensi delle previsioni del capitolo 8 "Costruzioni esistenti" delle Norme vigenti (DM 17 gennaio 2018).

Secondo quanto previsto è dunque necessario individuare il livello di conoscenza delle opere realizzate ed eseguire una valutazione completa della sicurezza nei riguardi delle azioni di progetto stabilite per le nuove costruzioni, con deroga nei riguardi delle sole prescrizioni sui dettagli costruttivi purché siano garantite le prestazioni in termini di resistenza, duttilità e deformabilità prescritte per i vari stati limite.

Tale attività è stata esaustivamente trattata nel Progetto Definitivo, per cui nella relazione presente si riprenderanno le valutazioni svolte in quel determinato ambito.

La presente relazione viene sviluppata con l'esame dei seguenti specifici aspetti:

- descrizione dell'opera esistente e della soluzione di adeguamento;
- valutazione dello stato di consistenza dell'opera esistente;
- definizione del quadro geotecnico di riferimento;
- descrizione dei criteri di analisi e verifica sulla base del quadro normativo vigente;
- definizione delle azioni sulle opere;
- analisi della sicurezza delle opere in condizioni di esercizio e limite;

- analisi della sicurezza delle opere in relazione a possibili fenomeni di collasso globale dell'insieme terrenostruttura.

2 NORME DI RIFERIMENTO

2.1 NORMATIVE DI RIFERIMENTO

Il progetto strutturale degli interventi è stato condotto nell'ambito del Metodo Semiprobabilistico agli Stati Limite. Si è fatto riferimento, nella progettazione, alla vigente normativa italiana ed in particolare a:

- L. 5.11.1971, n° 1086 "Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica".
- D.M. 17.01.2018 "Aggiornamento delle Norme tecniche per le costruzioni".
- Circ. Min. n. 7 del 21 gennaio 2019 C.S.LL.PP. Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018.
- Norma di prodotto (marcatura CE)

Circa le indicazioni applicative considerate per l'ottenimento dei requisiti prestazionali prescritti nel DM del 17/01/2018, ci si è riferiti, quando non direttamente alle indicazioni delle Norme Tecniche stesse, a normative di comprovata validità e ad altri documenti tecnici elencati nel seguito.

In particolare, per quel che riguarda le Verifiche Strutturali, le indicazioni fornite dagli Eurocodici, con le relative Appendici Nazionali, costituiscono indicazioni di comprovata validità e forniscono il sistematico supporto applicativo delle norme.

2.1.1 Leggi, Decreti e Circolari

- L. 5.11.1971, n° 1086 "Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica".
- L. 2.02.1974, n° 64 "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".
- D.M. 17.01.2018 "Aggiornamento delle Norme tecniche per le costruzioni".
- Circ. Min. n. 7 del 21 gennaio 2019 C.S.LL.PP. Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018.
- Associazione Geotecnica Italiana (1977) "Raccomandazioni sulla programmazione ed esecuzione delle indagini geotecniche".
- Associazione Geotecnica Italiana (1984) "Raccomandazioni sui pali di fondazione".
- Associazione Geotecnica Italiana (2012) "Jetgrouting. Raccomandazioni".
- Raccomandazioni A.I.C.A.P., A.G.I. (2012) "Ancoraggi nei terreni e nelle rocce".

2.1.2 Norme e Istruzioni Nazionali

- UNI EN 206-1 "Calcestruzzo: specificazione, prestazione produzione e conformità".
- UNI 11104 "Calcestruzzo: specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1".
- UNI EN 13369 "Regole comuni per prodotti prefabbricati di calcestruzzo".
- UNI EN 13225 "Prodotti prefabbricati di calcestruzzo Elementi strutturali lineari".
- UNI EN 14992- "Prodotti prefabbricati di calcestruzzo Elementi da parete".
- UNI EN 13747- "Prodotti prefabbricati di calcestruzzo- Lastre per solai".

2.1.3 Normativa Europea ed Internazionale

- UNI EN 1990 Eurocodice 0 "Criteri generali di progettazione strutturale".
- UNI EN 1991 Eurocodice 1 "Azioni sulle strutture".
- UNI EN 1992 Eurocodice 2 "Progettazione delle strutture di calcestruzzo".

- UNI EN 1993 Eurocodice 3 "Progettazione delle strutture di acciaio".
- UNI EN 1994 Eurocodice 4 "Progettazione delle strutture composte acciaio-calcestruzzo".
- UNI EN 1997 Eurocodice 7 "Progettazione geotecnica".
- UNI EN 1998 Eurocodice 8 "Progettazione delle strutture per la resistenza sismica".
- BS6349 "Maritime works"
- Recommendation of the Committee for Waterfront Structures EAU, Sixth English Edition (EAU 1990)
- PIANC 2002 "Guidlines for the Design of Fenders Systems"

3 PARAMETRI DI RIFERIMENTO

3.1 COORDINATE DI RIFERIMENTO

I parametri caratteristici del sito in esame, riferiti alle seguenti coordinate geografiche (WGS 84), sono individuati dai punti battuti P4 e P5, rappresentativi rispettivamente di inizio e fine intervento.

Figura 3 - Planimetria di inquadramento banchina Lloyd

3.2 VITA NOMINALE, CLASSE D'USO E PERIODO DI RIFERIMENTO

La <u>vita nominale</u> dell'opera strutturale V_N è il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata. Per il caso in oggetto, in accordo con quanto previsto dal D.M. 17/01/2018 per *"Opere ordinarie, ponti, opere infrastrutturali e dighe di dimensioni contenute o di importanza normale"*, si è fatta riferimento ad una V_N pari a 50 anni

La <u>classe d'uso</u> delle costruzioni individua il grado di prestazione atteso in presenza di azione sismica, in riferimento alle conseguenze di un'interruzione di operatività o di un eventuale collasso. Nella progettazione la classe d'uso si traduce nell'applicazione di azioni tanto più gravose, quanto più la costruzione è importante in termini di sicurezza collettiva e pubblico interesse. Analogamente a quanto previsto dal progetto definitivo posto a base d'appalto, all'area oggetto di intervento è stata assegnata la Classe d'uso III (*C.U. = 1.5*): "Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso."

Con riferimento al paragrafo §2.4.3 delle NTC18, le azioni sismiche sulle costruzioni vengono valutate in relazione ad un periodo di riferimento VR che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale di progetto VN per il coefficiente d'uso CU.

Il periodo di riferimento V_R per la valutazione delle azioni sismiche agenti sulle strutture sarà pertanto assunto pari a

V_R = V_N x C.U. = 50 x 1,5 = 75 anni

3.3 PRESTAZIONI RICHIESTE AL BANCHINAMENTO

Le prestazioni richieste per l'adeguamento della banchina Lloyd, esplicitamente indicate dalla committenza, sono:

-	Fondale operativo	-14,50 m su l.m.m.;
-	Fondale di calcolo	-15,00 m su l.m.m.;
-	Quota Trave	+2,50 m su l.m.m.;
-	Quota piazzali	+ 2,00 m su l.m.m;
-	Sovraccarico	40 kPa (Cat. D secondo NTC2018);
-	Gru	utilizzo di gru semoventi e gru su rotaia (le caratteristiche
		specifiche sono indicate al paragrafo delle azioni)
-	Bitte	da 1000 kN ad interasse 25 m;
-	Nave di progetto	da 100.000 t (molto grande ai sensi della definizione delle
		NTC 2018).
-	Azione sismica	Classe d'uso III
		Vita nominale 50 anni
		Coefficiente di compartecipazione dei carichi $\psi_{2,i}$ =0.6

4 SITUAZIONE ATTUALE DEL BANCHINAMENTO

In accordo al capitolo 8 del DM 17.01.2018, per procedere ad un intervento su una struttura esistente è necessario procedere ad una valutazione conoscitiva dell'opera e del suo stato di conservazione. La situazione allo stato di fatto della banchina Lloyd è stata ricostruita a partire sia dalle informazioni contenute all'interno del progetto definitivo sia dalla campagna di indagine e di rilievo condotte dal G.C. nelle fasi preliminari alla progettazione esecutiva degli interventi.

Allo stato attuale la banchina Lloyd presenta le seguenti caratteristiche geometriche e prestazionali:

- piano di banchina +2,50 m da l.m.m. (da rilievo +2,00 m da l.m.m.)
- fondale operativo -11,50 m da l.m.m.
- sovraccarico di banchina 40 kPa

Si riportano di seguito la sezione tipologica ed uno stralcio planimetrico della banchina Lloyd allo stato di rilievo

Figura 4 - Sezione tipologica situazione di rilievo banchina Lloyd

Figura 5 - Stralcio planimetrico situazione di rilievo banchina Lloyd

4.1 ANALISI STORICO CRITICA

4.1.1 Inquadramento storico

In Figura 6 è mostrata una foto aerea storica dell'areadi interesse nel 1954, sovrapposta alla Carta Tecnica Regionale della regione Emilia Romagna. Si osserva che nel 1954 l'area era completamente sgombra da edificazioni e che il canale Candiano era molto più stretto dell'attuale. La banchina Lloyd Ravenna (in rosso nella stessa figura) è stata quindi realizzata in corrispondenza della sponda sinistra del canale.

Figura 6 – Foto aerea storica dell'area in esame (volo IGMI-GAI 1954) sovrapposta alla recente Carta Tecnica Regionale (da cartografia GIS regione Emilia Romagna)

In Figura 7 è riportata la planimetria generale dell'intervento progettato nel 1977. Si osserva il tratto da 220 m del primo progetto del 1976, poi esteso verso sud di 50 m con una variante del 1977.

Figura 7 – Planimetria generale del progetto di realizzazione del banchinamento del 1977

RTP: C PECTURAL

In Figura 8 è mostrata una fotografia aerea dell'area nel 1988. Si osserva che la banchina Lloyd è la prima realizzata nell'area. Mancano infatti tutti i banchinamenti in sinistra (Trattaroli Nord, Trattaroli Sud, Alma Petroli) ed in destra (Docks Piomboni Sud, Docks Piomboni Nord, Terminal CTS).

Figura 8 – Fotografia aerea dell'area nel 1988 (da Geoportale Nazionale)

In Figura 9 è rappresentata una vista aerea recente dell'area in questione, in cui si riconosce il banchinamento su cui operano gru su rotaia e gru semoventi.

Figura 9 – Vista aerea recente 2D e 3D dell'area in esame (da Google maps)

4.1.2 Analisi della documentazione d'archivio del progetto originario

In fase di progettazione definitiva, lo stato di consistenza del banchinamento è stato ricostruito sulla base di un'analisi documentale degli elaborati progettuali del progetto originale del 1977.

Per come risulta dagli elaborati dal progetto originale, la paratia esistente è costituita da diaframmi prefabbricati in c.a.p. aventi lunghezza pari a 21,50 m con una sezione del tipo scatolare di m 1,00 × 1,10 m (spessori 10/12 cm) fortemente armati con trefoli in acciaio precompressi da 0.5".

Figura 10 - Sezione trasversale diaframma in c.a.p. (dal progetto originario del 1977)

I diaframmi in c.a.p. esistenti sono stati calcolati per fondali di 11,50 m e risultano collegati in testa con una trave di coronamento della sezione di 2,25 × 2,00 m. La paratia è ancorata, a tergo, con tiranti costituiti da n. 6 cavi "Dyform" da 0,6" (7 cavi in corrispondenza delle bitte) a piastre poste alla distanza di 22,75 m ad interasse 2,70 m delle dimensioni di 4,50 m di altezza, 2,50 m di larghezza e 0,90 m di spessore. In corrispondenza delle bitte le piastre sono maggiorate con altezza pari a 5,00 m e 2,40 m di larghezza.

Figura 11 – Sezione tipo del banchinamento (dal progetto del 1977)

Figura 12 – Stralcio planimetrico del banchinamento (dal progetto del 1977)

La sezione del diaframma prefabbricato di massimo momento flettente (sez B-B di Figura 11) è armata con 36 trefoli da 0,5'' (area trefolo A=0,93 cm², R_{ak} = 190 kg/mm²) per un momento resistente a rottura pari a 404 tm.

I tiranti sono armati con n.6 cavi (n.7 cavi in corrispondenza delle bitte) tipo Dyform da 0,6'' e sono posti a distanza 2,70 m. I cavi sono stati collaudati ad un tiro di 128 kg/mm² (80% di R_{ak(1)}) per assestare la piastra di contrasto, e poi bloccati a 74 kg/mm² (che corrisponde ai 2/3 del tiro di esercizio a pieno carico).

Il progetto originario prevedeva inoltre la realizzazione della sede di una delle rotaie della gru a portale; l'altra rotaia era prevista a 12,50 m dalla precedente, fondata su una struttura costituita da pali di fondazione tipo Franki di 20,0 m di lunghezza, 540 mm di diametro, interasse 2,70 m (1,80 m in corrispondenza dei giunti della trave), uniti da una trave di sezione 1,00 ×1,20 m.

4.2 CARATTERISTICHE DEI MATERIALI

4.2.1 Analisi del progetto originario

Per quanto riguarda i materiali, dagli elaborati del progetto originale risulta che è stato utilizzato per i diaframmi sono stati utilizzati i seguenti materiali:

- calcestruzzo classe di resistenza R'bk non inferiore a 460 kg/cm² a 28 giorni (non inferiore a 400 kg/cm² al taglio dei trefoli);
- acciaio Fe B 44 k per le armature lente;
- trefoli da 0,5" in acciaio stabilizzato Rak = 190 kg/mm².

RTE: C REGRAMMENT

Sia per la trave di coronamento che per le piastre di ancoraggio dei tiranti, è stato utilizzato calcestruzzo avente resistenza caratteristica a 28 gg non inferiore a 30 MPa ed acciaio Fe B 38 k per le armature. I pali Franki di fondazione della trave di via di corsa sono stati invece realizzati in calcestruzzo avente resistenza caratteristica a 28 gg non inferiore a 25 MPa armati con barre in acciaio Fe B 32 k.

Si riportano di seguito le prescrizioni dei materiali utilizzati così come descritte dalle tavole del progetto originario:

per i diaframmi prefabbricati:

- per la trave di banchina:

- per la piastra di ancoraggio:

- per i pali di fondazione:

4.3 RILIEVI ESEGUITI IN FASE DI PROGETTAZIONE ESECUTIVA

Il C.G. ha eseguito dettagliate indagini complementari relative alla banchina Lloyd, per l'analisi e ricostruzione dello stato attuale dei luoghi, ed in particolare volte ad individuare eventuali modifiche subite nel tempo dalle opere oggetto di intervento. In particolare, le attività di indagine e rilievo eseguite dal G.C. preliminarmente alla progettazione esecutiva degli interventi hanno previsto

- 1) Rilievo Georadar 3D;
- 2) Rilievo Aereofotogrammetrico della banchina;
- 3) Paramento banchina restituito dal SONAR e rilievo multibeam;
- 4) Rilievo Topografico Banchina e Laserscan;
- 5) Documentazione fotografica;
- 6) Geolocalizzazione da mare della posizione delle testate dei tiranti di ancoraggio esistenti;
- 7) Acquisizione della documentazione d'archivio relativa ad interventi successivi alla realizzazione dell'opera e non censita in fase di progettazione definitiva;

- Scavi con ispezione visiva per il rilievo delle opere di fondazione (pali e trave via di corsa dismessa interrata e pali di fondazione attuale trave di via di corsa) e dei dettagli costruttivi della trave di coronamento e dei relativi ringrossi;
- Scavi per il rilievo della posizione dei tiranti esistenti, non visibili da mare in quanto le testate di ancoraggio risultano presumibilmente inglobate all'interno del ringrosso della trave effettuato successivamente l'esecuzione dell'opera originaria.

4.3.1 Verifiche geometriche e dei dettagli costruttivi

teorico riportato nei rilievi del progetto definitivo.

Dal rilievo geometrico è emerso che l'effettiva lunghezza della banchina Lloyd (cantiere O) è pari a 269,80 m, maggiore di 6,50 m rispetto a quanto riportato negli elaborati del progetto definitivo (263.30 m). Il paramento di banchina rilevato mediante strumentazione Lidar+multibeam+sonar è caratterizzato dal disallineamento dei diaframmi in c.a.p. sia sul piano verticale che sul piano orizzontale. E' chiaramente

evidente la formazione dei profili di confine dei diaframmi in c.a.p che risultano sporgenti rispetto l'allineamento

L'ampiezza di tali disallineamenti supera anche la dimensione di 15 cm.

Figura 13 - Rilievo del paramento di banchina tramite Lidar + multibeam

In fase di esecuzione del rilievo topografico e di analisi degli elaborati del PD sono state riscontrate delle sensibili difformità geometriche dello stato di fatto riportato negli elaborati progettuali rispetto a quanto rilevato. In particolare il progetto del pd è stato elaborato senza tener conto che nel 1981 il concessionario ha modificato l'assetto e la configurazione delle gru portale a dismettendo conseguentemente la via di corsa lato terra per realizzarne una nuova ad una distanza di 15.0 m dall'esistente; pertanto l'attuale scartamento della gru risulta pari a 15.0 m e non pari a 12.50 m come rappresentato nei grafici del PD.

Tali variazioni sono state individuate grazie alla trasmissione di documentazione integrativa da parte della stazione appaltante non fornita in fase di elaborazione del progetto definitivo.

La tavola di riferimento è di seguito riportata.

Figura 14 - Progetto della via di corsa lato terra e del rialzamento della via di corsa lato mare (1981)

La geometria delle strutture poste al di sotto della pavimentazione compresa la geometria dei pali delle travi di via di corsa, compresa quella dismessa non più visibile, è stata rilevata mediante saggi e scavi in cantiere effettuati dal CG.

Come è possibile evincere dalla figura sopra riportata, la nuova trave via di corsa lato terra è posizionata a circa 16.42 m dal ciglio banchina esistente, a differenza dei 13.90 m previsti dal progetto originario, ed è fondata su pali trivellati in c.a. d:800 mm di lunghezza L = 22,00 m ed aventi portanza di calcolo pari a 90 ton. L'intervento ha inoltre previsto il rialzamento della trave di coronamento della paratia di 0,90 m.

Tale inconveniente oltre a comportare il condizionamento del progetto alle effettive geometrie rilevate ha comportato anche la valutazione delle interferenze tra i tiranti di progetto ed i pali della via di corsa dismessa. Inoltre, il progetto base appalto non ha portato in conto la presenza dei ringrossi della trave di coronamento localizzati ad un interasse di 27.0 m, peraltro rinvenuti nel progetto del 1979 e riscontrati da saggi e scavi effettuati in cantiere.

Infine, si rileva che le rotaie sono estradossate al piano del piazzale e pertanto i mezzi carrabili non hanno la possibilità di attraversare le vie di corsa per accedere ai retrostanti piazzali.

4.4 LIVELLO DI CONOSCENZA E FATTORE DI CONFIDENZA

Il paragrafo §C8.5.4 della Circolare applicativa delle Norme vigenti fornisce una guida alla stima dei fattori di confidenza da utilizzare in relazione al livello di conoscenza raggiunto. Anche se riferita principalmente agli edifici, la Circolare applicativa fornisce comunque un riferimento anche per il caso in esame. La Tabella 1

ripresa dalla Circolare stessa suggerisce, per le costruzioni in calcestruzzo armato ed acciaio, i seguenti fattori di confidenza da adottare in relazione a tre livelli di conoscenza: conoscenza limitata (LC1), conoscenza adeguata (LC2), conoscenza accurata (LC3).

Livello di	Geometrie	Dettagli strutturali	Proprietà dei materiali	Metodi di analisi	FC (*)
conoscenza	(carpenterie)				
LC1		Progetto simulato in accordo alle norme dell'epoca e <i>indagini limitate</i> in situ	Valori usuali per la pratica costruttiva dell'epoca e <i>prove limitate</i> in situ	Analisi lineare statica o dinamica	1,35
LC2	Da disegni di carpenteria originali con rilievo visivo a campione; in	Elaborati progettuali incompleti con <i>indagini</i> <i>limitate</i> in situ; in alternativa <i>indagini estese</i> in situ	Dalle specifiche originali di progetto o dai certificati di prova originali, con <i>prove limitate</i> in situ; in alternativa da <i>prove estese</i> in situ	Tutti	1,20
LC3		Elaborati progettuali completi con <i>indagini</i> <i>limitate</i> in situ; in alternativa <i>indagini</i> <i>esaustive</i> in situ	Dai certificati di prova originali o dalle specifiche originali di progetto, con <i>prove estese</i> in situ; in alternativa da <i>prove esaustive</i> in situ	Tutti	1,00

Tabella C8.5.IV – Livelli di conoscenza in funzione dell'informazione disponibile e conseguenti metodi di analisi ammessi e valori dei fattori di confidenza, per edifici in calcestruzzo armato o in acciaio

(*) A meno delle ulteriori precisazioni già fornite nel § C8.5.4.

Per il caso della banchina Lloyd, non essendo state eseguite prove dirette sui materiali, si ritiene che il livello di conoscenza raggiunto con i dati reperiti e i rilievi effettuati sia tale da poter assumere un Livello di conoscenza LC1. Tale condizione, come evidenziato nel proseguo della presente, non influenza le valutazioni sulla sicurezza dell'opera, prevedendo l'intervento di adeguamento di progetto la completa sostituzione delle strutture di banchina.

4.5 ANALISI DELLE CARENZE DELLA STRUTTURA ATTUALE IN RELAZIONE ALLE NUOVE ESIGENZE DI UTILIZZO

Analogamente a quanto previsto dal Progetto Definitivo, a seguito dell'analisi dello stato di consistenza dello stato attuale del banchinamento si è ritenuto le strutture esistenti non affidabili in relazione alle importanti prestazioni richieste dal piano regolatore al banchinamento.

Pur non rilevando particolare criticità in termini di degrado delle strutture, la modesta lunghezza del palancolato di banchina (esteso solo fino a -21,35 m da l.m.m.) e l'utilizzo estensivo di acciai da precompressione in trefoli (sia per l'armatura principale del diaframma che per il sistema di ancoraggio sommitale), non consente un livello accettabile di affidabilità strutturale in relazione alle prestazioni molto impegnative definite dal Progetto definitivo.

Alla luce di ciò ed in analogia a quanto previsto nel Progetto Definitivo posto a base d'appalto, nelle analisi condotte in fase di progettazione esecutiva dell'intervento di consolidamento della banchina Lloyd si è trascurato il contributo resistente offerto dalle strutture esistenti.

5 INTERVENTO PREVISTO DA PROGETTO ESECUTIVO

Sulla base dell'analisi dello stato di consistenza attuale, per la banchina Lloyd l'intervento di progetto prevede di realizzare delle nuove strutture in grado di fronteggiare autonomamente i carichi di banchina e la spinta delle terre.

Le soluzioni di progetto riportate nel proseguo sono state sviluppate con il duplice scopo di superare le criticità rilevate dall'analisi del progetto definitivo posto a base d'appalto e di aggiornare il progetto alle evidenze rilevate a seguito delle indagini integrative effettuate dal Contraente Generale.

L'impossibilità di creare connessioni con la struttura (diaframmi a sezione scatolare) in c.a.p. ed il mancato allineamento del paramento di banchina non consente, come previsto nel progetto definitivo, di eseguire il consolidamento in avanzamento. La soluzione prevede a tergo della struttura in c.a.p. una paratia di pali d:800 mm (fila 1) ad interasse 80/90 cm, ovvero pienamente compatibile con l'interasse dei tiranti esistenti (2,70 m). Si prevede inoltre di realizzare una piattaforma su pali tra il diaframma di banchina e l'esistente rotaia lato terra, in grado di sostenere in sicurezza i carichi delle gru semoventi trasferendo le azioni in profondità, senza gravare sul palancolato di banchina. L'intervento inoltre prevede la realizzazione di nuovi tiranti di ancoraggio a bulbo iniettato per sostenere le azioni orizzontali e la parziale demolizione e ricostruzione della trave di coronamento in c.a..

Per la banchina Lloyd il PD prevedeva la realizzazione di un palancolato continuo antistante della paratia esistente in grado di garantire la continuità del paramento in c.a. anche in caso di disallineamenti futuri delle strutture esistenti.

Il Progetto Esecutivo ha adottato delle soluzioni di consolidamento discontinue per tale banchina (al fine di mantenere in servizio gli ancoraggi esistenti) e la continuità del paramento si ottiene con interventi di sutura consistenti in perfori ø300mm tra i pali strutturali nei quali viene posato un tessuto non tessuto ("calza") idoneo a contenere una malta di iniezione

Le soluzioni adottate e di seguito descritte sono state preventivamente verificate e condivise dal Direttore per l'Esecuzione e dalla Stazione Appaltante.

In via preliminare si rappresenta che le soluzioni indicate nel PE risultano pienamente coerenti con le cogenti prescrizioni delle NTC 2018. Pertanto le armature dei pali delle paratie poste a tergo del palancolato esistente sono state dimensionate in relazione all'effettivo quadro sollecitativo e non già per raggiungere le resistente individuate nel PD.

L'adeguamento della banchina Lloyd previsto dal progetto esecutivo prevede i seguenti interventi:

- scavo a sezione aperta sul piano di banchina;
- demolizione parziale della trave di coronamento esistente fino a quota +0,60 m s.l.m.m. senza interferire con i tiranti esistenti, i quali garantiranno la stabilità dell'opera nelle fasi transitorie di realizzazione delle nuove strutture;
- demolizione della trave via di corsa in c.a. esistente (sezione dim. 1,00x1,40 m);
- realizzazione di una paratia di pali trivellati in c.a. aventi diametro d:800 mm ad interasse i = 0,90 m di lunghezza L = 36,25 m (da +1,25 m a -35,00 m da l.m.m.) a tergo dei diaframmi esistenti, armati con gabbie di armatura in acciaio B 450 C; al fine di non interferire con i tiranti esistenti aventi interasse pari a 2.70 m, si prevede di eseguire n.3 pali d:800 mm in corrispondenza di ogni interspazio tra i tiranti pari a 2.70m;
- realizzazione di n. 2 file di pali trivellati in c.a. diametro d:1000 mm ad interasse i= 2,70 m di lunghezza
 L = 36,25 m (da +1,25 m a -35,00 m da l.m.m.) distanziati dall'asse della nuova rispettivamente di 8,00 m e 16,00 m;
- ricostruzione della trave di coronamento in c.a. di sezione pari a 3,75 x h = 1,40/1,90 m, estesa lato mare da +0,60 m a +2,50 m s.l.m.m, connessa alla trave di coronamento esistente parzialmente demolita mediante n.10 barre di connessione per metro di trave in acciaio B 450 C ø24 disposti a

quinconce inghisati mediante iniezione di malta cementizia polimer-modificata espansiva a ritiro controllato;

- formazione di un solettone (h=1,0 m) di ripartizione in c.a. che collega i pali dei due allineamenti alla nuova trave di coronamento in c.a. (tra +0,75 e +1,75 m s.l.m.m.), di larghezza sulla sezione trasversale pari a 16,25 m a tergo della trave sommitale esistente;
- realizzazione di tiranti di ancoraggio a bulbo di fondazione iniettato realizzato con trattamento coassiale in jet grouting, a partire da circa 16,30 m dal ciglio di banchina, di lunghezza 41,35 m, inclinazione 14° sull'orizzontale, con 23,35 m di parte libera e 18 m di fondazione, armato con barra cava autoperforante ø90 s=10 mm in acciaio S 460 J0 ed interasse 2,00 m:
- realizzazione della pavimentazione del piazzale a tergo del banchinamento, della rete smaltimento acque meteoriche e predisposizione impianti.

Ai fini di garantire la continuità della paratia di progetto, tra i pali in c.a. saranno realizzati perfori di chiusura con tessuto non tessuto di diametro variabile d:220/300 mm di lunghezza L = 13,50 m riempiti in calcestruzzo C28/35 XS3.

Figura 15 - Particolare perforo di chiusura

Si riporta di seguito una sezione tipologica dell'intervento di progetto previsto per il consolidamento della banchina LLOYD.

Figura 16 - Sezione tipologica situazione di progetto banchina Lloyd

Le fasi realizzative salienti dell'intervento dal punto di vista della stabilità dell'opera sono sintetizzate negli schemi seguenti.

6 CARATTERISTICHE DEI MATERIALI DI PROGETTO

Per gli interventi di progetto è previsto l'utilizzo dei seguenti materiali:

- Conglomerato cementizio classe di resistenza C35/45 classe di esposizione XS3 per la realizzazione delle opere in c.a.;
- Acciaio in barre tipo B 450 C per le armature delle opere in c.a.;
- Acciaio in barre classe S 460 J0 per i tiranti di ancoraggio.

6.1 CALCESTRUZZI PER LE OPERE IN C.A.

Ai sensi della disciplina per le opere in conglomerato cementizio armato (Legge 05/10/71 n. 1086 pubblicata in G.U. n. 321 art.4 capo B), si riportano di seguito le caratteristiche, la qualità e le dosature dei materiali che verranno impiegati per le opere del progetto in questione, determinati in conformità al D.M. 17/01/2018.

6.1.1 Caratteristiche meccaniche

Per le opere in calcestruzzo armato di progetto verrà utilizzato un calcestruzzo con classe di resistenza C35/45 avente le seguenti caratteristiche meccaniche:

•	Modulo di elasticità:	E = 34625 MPa
•	Peso specifico:	$\gamma = 2500 \ kg/m^3$
•	Coefficiente di dilatazione termica	$\alpha = 1.10^{-5} \ ^{\circ}C^{-1}$
•	Resistenza caratteristica cubica a compressione a 28 giorni	$R_{ck} = 45 MPa$
•	Resistenza caratteristica cilindrica a compressione a 28 giorni	$f_{ck} = 0.83 R_{ck} = 37.35 MPa$
•	Resistenza media a trazione semplice (assiale)	$f_{ctm} = 0.30 f_{ck}^{2/3} = 3.35 MPa$
•	Valore caratteristico della resistenza a trazione	$f_{ctk} = 0.70 \ f_{ctm} = 2.35 \ MPa$
•	Resistenza di calcolo a compressione	$f_{cd} = 0.57 f_{ck} = 21.17 MPa$
•	Resistenza di calcolo a trazione	$f_{ctd} = f_{ctk} / 1.50 = 1.56 MPa$

I diagrammi costitutivi del calcestruzzo sono stati adottati in conformità alle indicazioni riportate al § 4.1.2.1.2.1 del D.M. 17 gennaio 2018.

Figura 18 - Diagrammi di calcolo tensione - deformazione del calcestruzzo

La deformazione massima $\epsilon_{c max}$ è assunta pari a 0.0035.

6.1.2 Classe d'esposizione e classe di consistenza

Le condizioni ambientali, ai fini della protezione contro la corrosione delle armature, sono suddivise in ordinarie, aggressive e molto aggressive in relazione a quanto indicato dalla Tab. 4.1.III delle NTC2018:

Tab. 4.1.III - Descrizione delle condizioni ambientali

Condizioni ambientali	Classe di esposizione	
Ordinarie	X0, XC1, XC2, XC3, XF1	
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3	
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4	

Nel caso in oggetto si hanno condizioni ambientali molto aggressive. Per le opere in oggetto saranno dunque utilizzati calcestruzzi aventi la seguente classe d'esposizione XS3 – Zone esposte agli spruzzi oppure alla marea.

Vengono di seguito riepilogate le caratteristiche dei calcestruzzi utilizzati

Classe	Ambiente di esposizione	Esempi informativi	Rapporto max acqua/cemento	Dosaggio minimo cemento [kg/m³]	Minima classe resistenza
XS1	Esposto alla salsedine marina ma non direttamente in contatto con l'acqua di mare	Calcestruzzo armato ordinario o precompresso con elementi strutturali sulle coste o in prossimità	0,45 (UNI 11104)	340 (UNI 11104)	C32/40 (UNI 11104)
			0,50 (UNI EN 206-1)	300 (UNI EN 206-1)	C30/37 (UNI EN 206-1)
XS2	Permanentemente sommerso	Calcestruzzo armato ordinario o precompresso di strutture marine completamente immerse in acqua	0,45 (UNI 11104)	360 (UNI 11104) 320 (UNI EN 206-1)	C35/45 (UNI 11104)
XS3	Zone esposte agli spruzzi oppure alla marea	Calcestruzzo armato ordinario o precompresso con elementi strutturali esposti. alla battigia o alle zone soggette agli spruzzi ed onde del mare.	0,45 (UNI 11104)	360 (UNI 11104) 340 (UNI EN 206-1)	C35/45 (UNI 11104)

Tabella 1 - Ambiente esposto a cloruri presenti nell'acqua di mare

Per le opere in oggetto verrà utilizzato un calcestruzzo di consistenza fluida, ovvero di classe di consistenza S4.

6.2 ACCIAIO

6.2.1 Acciaio per armatura c.a.

Le barre di armatura delle strutture in c.a. saranno in acciaio tipo B 450 C.

Con l'entrata in vigore del D.M. 17 gennaio 2018, la normativa ha introdotto l'utilizzo di una sola tipologia di acciaio nervato, l'acciaio del tipo B450. In particolare, le barre sono caratterizzate dal diametro ϕ della barra tonda liscia equipesante, calcolato nell'ipotesi che la densità dell'acciaio sia pari a 7.85 kg/dm³.

Gli acciai B450C (profilati a caldo) possono essere impiegati in barre di diametro ϕ compreso tra 6 e 40 mm. Si riportano di seguito le caratteristiche meccaniche di riferimento:

Modulo di elasticità:

E = 210000 MPa

G = 80769 MPa

 $\alpha = 1 \cdot 10^{-5} \ ^{\circ}C^{-1}$

 $f_{vk} = 450 MPa$

 $f_{vd} = f_{vk}/1.15 = 391.3 \text{ MPa}$

 $y = 7850 \text{ kg/m}^3$

- Modulo di elasticità tangenziale
- Peso specifico:
- Coefficiente di dilatazione termica
- Resistenza caratteristica allo snervamento
- Resistenza di calcolo allo snervamento

I diagrammi costitutivi dell'acciaio sono stati adottati in conformità alle indicazioni riportate al punto 4.1.2.1.2.3 del D.M. 17 gennaio 2018; in particolare è adottato il modello elastico perfettamente plastico rappresentato in fig. 3.b.

Figura 19 - Legami costitutivi acciaio

6.2.2 Acciaio per i tiranti di ancoraggio

Le nuove strutture di ancoraggio sono realizzate con tiranti a barra cava di diametro nominale ø 90/70 (A = 2470 mm²). Le barre sono in acciaio classe 460J0 a filettatura continua aventi le seguenti proprietà meccaniche:

Resistenza caratteristica a snervamento	$f_{0,1k} \geq ~460~MPa$
Resistenza caratteristica a rottura	$f_{pk} \ge 560 Mpa$
Carico a snervamento (barre ø90 mm)	F _{p0,1k} = 1136 kN
Carico ultimo (barre ø90 mm)	F _{pk} =1383 kN
Allungamento a rottura	\geq 10 %
Allungamento totale alla forza massima	\geq 5 %

Al fine di prevedere un adeguata e duratura resistenza nei confronti della corrosione, si prevede di aumentare lo spessore radiale della barra di acciaio di 2,5 mm. L'area di acciaio aggiuntiva non è stata tenuta in conto nelle verifiche di resistenza. della parete combinata delle banchine (cfr ad esempio banchina DOKS Piomboni – relazione calcolo - pag 81), pari 0.78 mm, il valore considerato dello spessore sacrificale (2.5 mm) risulta tre volte maggiore.

7 CARATTERIZZAZIONE GEOTECNICA DEI TERRENI

Nel presente capitolo viene riportata la caratterizzazione litostratigrafica e meccanica dei terreni di sedime presenti nell'area della banchina LLOYD.

Per l'identificazione e la caratterizzazione dei terreni dell'area portuale di Ravenna si è fatto ricorso alle indagini in sito, alle prove di laboratorio condotte sui campioni prelevati e alle prove geofisiche. Tutti i risultati sono stati analizzati allo scopo di definire i modelli geotecnici di riferimento del sottosuolo per il dimensionamento geotecnico e strutturale delle opere in progetto.

Per quanto non espressamente riportato, ed in particolare per quanto concerne l'inquadramento geomorfologico, le campagne di indagine assunte a riferimento, i criteri utilizzati per l'interpretazione delle indagini e le correlazioni adottate per interpretare i risultati delle prove in sito, si rimanda agli elaborati progettuali "1114-E-SIN-GEO-RT-01-0 Relazione geologica, geomorfologica, idrogeologica" e "1114-E-SIN-GTC-RT-01-0 Relazione geotecnica delle banchine".

7.1 PROFILO STRATIGRAFICO

Si riporta di seguito la sequenza stratigrafica rilevata e già delineata nell'ambito del PD.

Unità R (deposti antropici)

I depositi antropici di tipo "R" presentano uno spessore massimo di 2-3 metri, sono attribuibili alla realizzazione di opere superficiali quali piazzali-viabilità e per rialzare l'area portuale.

Unità P (depositi palustri superficiali)

Anche se senza continuità su tutta l'area indagata, al di sotto dei terreni di riporto è stata rilevata la presenza di terreni argillosi e torbosi costituenti i depositi palustri superficiali (unità P) di spessore variabile ad un massimo di 3m, caratterizzati da valori di resistenza alla punta q_c compresa tra 0.5MPa e 1.2MPa.

Unità S (depositi di cordone litorale)

Al di sotto dei terreni di riporto, presenti con spessore variabile sino ad una profondità di +1.0÷-3.0m s.l.m.m, e fino alla profondità di circa -8 ÷-13 m s.l.m.m., si rileva la presenza delle sabbie fini di cordone litorale (unità S). Tali terreni sono costituiti in prevalenza da sabbie intercalate a livelli limosi di spessore decimetrico e presentano valori della resistenza alla punta q_c misurata nelle prove penetrometriche statiche compresa tra 2MPa e 8MPa.

Unità M (depositi di prodelta)

A seguire e sino alla profondità di -25.0 \div -27.0m s.l.m.m. si incontrano i depositi di prodelta (unità M). La litologia è caratterizzata dalla presenza di limi argillosi, ma si riconosce anche la presenza di livelli sabbiosi più consistenti dalla quota di -16.0 \div -23.0m s.l.m. (q_c compresa tra 0.8MPa e 3.5MPa).

Unità T (depositi di barriera trasgressiva)

Da -23.0 \div -25.0m s.l.m.m. si rileva la presenza di un orizzonte granulare composto da sabbie e sabbie limose (unità T) di spessore metrico (q_c compresa tra 8MPa e 13MPa). Tale deposito è intercalato da livelli fini tanto da non venire sempre identificato nelle colonne stratigrafiche di sondaggio.

Unità A (depositi di piana alluvionale)

A seguire e sino alle massime profondità indagate si incontrano i depositi di piana alluvionale (unità A) caratterizzati dalla presenza di argille consistenti di spessore metrico al di sotto delle quali sono presenti

alternanze di sabbie, limi argillosi, argille limose e sabbie limose in strati sottili. I livelli più sabbiosi presentano valori di resistenza alla punta qc prossimi a 10 MPa.

Si riassumono di seguito le unità geotecniche definitive:

- unità R: terreni di riporto
- unità P: depositi di palude salmastra
- unità S: sabbie fini di cordone litorale
- unità M: depositi di prodelta
- unità T: strati sabbiosi trasgressivi
- unità A: depositi di piana alluvionale

Nella seguente tabella viene riportata la sequenza stratigrafica di riferimento per il modello geotecnico della banchina LLOYD

Unità z _{in}		Z _{fin}	Spessore
	m s.l.m.	m s.l.m.	m
R	2	-1.5	3.5
Р	-1.5	-3.5	2
S	-3.5	-9	5.5
M1	-9	-19	10
M2	-19	-26	7
Т	-26	-27	1
A1	-27	-30.5	3.5
A2	-30.5	-32	1.5
A1	-32	-35	3

Tabella 2 - Stratigrafia di riferimento modello geotecnico LLOYD

7.2 MODELLO GEOTECNICO DI RIFERIMENTO

Si riporta di seguito la stratigrafia di riferimento per il modello geotecnico della banchina Lloyd

Unità	da	а	Tipologia	γ/γ'	v	OCR	e ₀	C _c	C _R	c _v	D _R	ø' _k	c' _k	C _{u,k}	Vs	G ₀	E _{op}	r	М
Unita	m s.l.m.	m s.l.m.		kN/m³						m²/s	%	deg	kPa	kPa	m/s	MPa	MPa		MPa
R	2	-1.5	Incoerente	19/9	0.25	-	-	-	-	-	-	32	0	0	140	38	25	2	15
Р	-1.5	-3.5	Coesivo	18/8	0.3	1	1.00	0.25	0.04	1.00E-06	-	28	2.5	25	150	41	7	4	5
S	-3.5	-9	Incoerente	20/10	0.25	-	-	-	-	-	40	34	0	0	160	52	25	2	15
M1	-9	-19	Coesivo	18,5/8,5	0.3	1	0.95	0.16	0.04	2.00E-07	-	29	5	30	175	58	9	4	6
M2	-19	-26	Coesivo	18,5/8,5	0.3	1	0.95	0.16	0.04	4.00E-07	-	30	5	45	225	95	12	4	8
Т	-26	-27	Incoerente	20/10	0.25	-	-	-	-	-	50	35	0	0	250	127	42	2	25
A1	-27	-30.5	Coesivo	19/9	0.3	1	0.80	0.25	0.04	-	-	29	5	65	240	112	15	4	10
A2	-30.5	-32	Incoerente	20/10	0.25	-	-	-	-	-	50	35	0	0	260	131	50	2	30
A1	-32	-35	Coesivo	19/9	0.3	1	-	0.25	0.04	-	-	29	5	75	260	131	22	4	15

Tabella 3 - Stratigrafia di calcolo e parametri geotecnici caratteristici - Banchina LLOYD

dove:

- γ/γ' peso di volume del terreno / peso di volume immerso del terreno
- v coefficiente di Poisson

- OCR grado di sovraconsolidazione
- eo indice dei vuoti iniziale
- Ccindice di compressione
- C_R indice di ricompressione
- cv coefficiente di consolidazione verticale
- Dr densità relativa
- Φ'_k valore caratteristico angolo di resistenza al taglio efficace
- c'k valore caratteristico coesione in condizioni drenate efficace
- cu,k valore caratteristico coesione in condizioni non drenate
- Vs velocità di propagazione delle onde di taglio
- Go modulo di taglio alle piccole deformazioni
- E_{op} modulo elastico di Young operativo assunto per il dimensionamento delle opere di sostegno e di fondazione profonda
- r rapporto tra il modulo in condizioni di compressione vergine e in condizioni di ricompressione
- M modulo di deformabilità confinato per la stima dei cedimenti per fondazioni di tipo superficiale

7.3 CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI

Con riferimento alle indagini a disposizione, sono state identificate due aree caratterizzate da profili geotecnici sismici omogenei identificati con MGS1 (comprendente le banchine IFA e parte di Trattaroli Sud) e MGS2 (comprendente le rimanenti) e riportati nella seguente figura.

Figura 20 - Planimetria con indicazione delle aree di competenza dei due modelli sismici adottati

Tali modelli si differenziano sostanzialmente per la potenza del banco sabbioso saturo S, in corrispondenza del quale, in condizioni post sismiche, potrebbero manifestarsi un innesco ed accumulo di sovrappressioni neutre Δu , oltre ad un degrado delle caratteristiche di resistenza c' e φ .

La banchina LLOYD ricade all'interno dell'area caratterizzata dal modello geotecnico MGS2.

Di seguito si riportano le conclusioni quantitative riguardanti le sovrappressioni neutre ed il degrado delle caratteristiche meccaniche dei terreni a seguito del sisma di progetto. Per quanto non espressamente riportato, ed in particolare per quanto concerne i criteri e le procedure adottate nell'analisi di tale fenomeno, si rimanda all'elaborato *"1114-E-SIN-GTC-RT-01-0 Relazione geotecnica delle banchine".*

7.3.1 Parametri meccani dei terreni in condizioni post sismiche

Al verificarsi di sollecitazioni di tipo ciclico quali quelle indotte da un sisma, le proprietà di resistenza al taglio dei terreni subiscono processi di degradazione più o meno consistenti. La degradazione delle caratteristiche di resistenza dei terreni incoerenti saturi può avvenire nel caso di elevati stati deformativi indotti dalle sollecitazioni sismiche, a seguito di tali eventi si può far riferimento all'angolo di attrito a volume costante φ'_{cv} in sostituzione dell'angolo di resistenza al taglio φ' rappresentativo di un angolo di picco φ'_{p} .

Nelle valutazioni e verifiche in condizioni post-sismiche si ritiene opportuno considerare per l'unità S un angolo di resistenza al taglio ϕ ' ridotto pari a 30°.

7.3.2 Valutazione delle sovrappressioni indotte dal sisma

Le sovrapressioni ∆u indotte dal sisma, nel caso di terreni granulari, possono essere valutate in base all'ampiezza delle deformazioni di taglio γ indotte dal sisma (Dobry, 1985).

Per quanto riguarda il MGS 2, in condizioni SLD le deformazioni di taglio γ risultano inferiori a 0.04 % per i terreni incoerenti e a 0.05 % per quelli coesivi, tali da non creare sovrapressioni significative.

In condizioni SLV le deformazioni di taglio γ risultano inferiori a 0.2 % per i terreni coesivi, tali quindi da non creare sovrapressioni significative.

Per quanto riguarda i terreni incoerenti, le deformazioni di taglio γ risultano significative, dell'ordine dello 0.15%, per l'unità S individuata dalle indagini fra -3.5 e -9.0 m l.m.m., per il quale implicano un incremento medio di pressioni neutre Δu valutabile nell'ordine di 12.5 kPa.

Si rilevano deformazioni significative anche nello strato T che però risulta poco influente ai fini del dimensionamento delle opere di sostegno in ragione dello spessore ridotto dello strato. L'innesco delle sovrappressioni nello strato T è stato pertanto trascurato.

MODELLO GEOTECNICO 2

Unità	Tipologia	da (m.c.l.m.)	a (m c l m l	Δu [[40~]				
[-]	[-]	[m s.i.m.]	[m s.i.m.j	[K	Paj			
R	Incoerente	2	-1,5	≈0				
Р	Coesivo	-1,5	-3,5	≈0				
s	Incoerente	-3,5	-9	medio ≈ 12,5				
М1	Coesivo	-9	-19	≈0				
М2	Coesivo	-19	-25	≈0				
Т	Incoerente	-25	-26	≈ 0				
A1	Coesivo	-26	-30	≈0				
A2	Incoerente	-30	-38	≈0				

Figura 21 - Andamento incremento Δu allo SLV per il MGS2

8 MODELLAZIONE SISMICA DEL SITO

Nel presente capitolo si riporta lo studio finalizzato alla definizione della azione sismica di progetto definita in termini di massime accelerazioni orizzontali.

In conformità a quanto riportato nella normativa vigente (art. 3.2.2 NTC 18) l'azione sismica di progetto è stata valutata conducendo una analisi di risposta sismica locale (RSL) allo scopo di valutare gli effetti di sito dovuti ad amplificazione lito-stratigrafica considerando un modello monodimensionale (1D) lineare equivalente.

8.1 PERICOLOSITÀ SISMICA DI BASE

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei margini di sicurezza per i diversi stati limite, si definiscono a partire dalla pericolosità sismica di base del sito specifico.

La pericolosità sismica viene definita in termini di accelerazione orizzontale massima a_g in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale (categoria di suolo A), con riferimento a prefissate probabilità di eccedenza P_{VR} nel periodo di riferimento V_R, determinato a partire dalla vita nominale dell'opera e della Classe d'Uso di questa. Come già riportato al paragrafo §4.2 della presente relazione, la via di riferimento dell'opera è pari a 75 anni.

Le probabilità di superamento nel periodo di riferimento P_{VR} , cui riferirsi per individuare l'azione sismica agente in ciascun degli stati limite considerati, sono riportate nella normativa italiana (Circolare 7/2019 - C3.2.1):

S.L.O. (stato limite di operatività)	P _{VR} = 81%
S.L.D. (stato limite di danno)	P _{VR} = 63%
S.L.V. (stato limite di salvaguardia della vita)	P _{VR} = 10%
S.L.C. (stato limite di collasso)	P _{VR} = 5%

La probabilità di superamento del periodo di riferimento P_{VR} , cui riferirsi per individuare l'azione sismica agente allo *Stato limite di salvaguardia della vita* è pari al 10%, quella relativa allo *Stato limite di danno* è pari al 63%. Determinati i valori di P_{VR} e di V_R è possibile ottenere il periodo di ritorno dell'azione sismica T_R con la relazione seguente:

Per $P_{VR} = 0.10$ (SLV):

$$T_R = -\frac{V_R}{\ln(1 - P_{VR})} \cong 712 \text{ anni}$$

Per $P_{VR} = 0.63$ (SLD):

$$T_R = -\frac{V_R}{\ln(1 - P_{VR})} \cong 75 \ anni$$

A tale tempo di ritorno, nell'area in esame corrisponde una accelerazione massima attesa su sito di riferimento rigido pari a

ingegneria

S.L.D. (stato limite di danno)	$a_g = 0.064 \ g$
S.L.V. (stato limite di salvaguardia della vita)	$a_a = 0.172 \ g$

La magnitudo associata all'evento sismico agli SLV vale $M_W = 5.96$

8.2 ANALISI DI RISPOSTA SISMICA LOCALE

Con analisi di risposta sismica locale RSL si intende l'insieme delle modifiche che un moto sismico relativo ad una formazione rocciosa di base posta ad una certa profondità nel sottosuolo subisce attraversando gli strati di terreno sovrastanti.

L'analisi si articola nelle seguenti fasi:

- Estrazione degli accelerogrammi naturali spettro-compatibili
- Definizione del modello geotecnico-sismico
- Analisi di risposta sismica locale

Per ulteriori dettagli riguardo gli argomenti trattati, si rimanda all'elaborato del Progetto Esecutivo *"1114-E-SIN-GEF-RT-01-0 Relazione Sismica".*

Dai risultati dell'analisi di RSL, in corrispondenza dei tempi di ritorno di riferimento dell'evento sismico nell'area in esame per l'accelerazione massima attesa sono stati assunti i seguenti valori di progetto

S.L.D. (stato limite di danno)	$a_g = 0.10 \ g$
S.L.V. (stato limite di salvaguardia della vita)	$a_a = 0.20 \ g$

9 ANALISI DEI CARICHI

Nel presente paragrafo si riporta l'analisi dei carichi permanenti ed accidentali agenti sulla struttura in esame condotta secondo la normativa di riferimento (D.M. 17 gennaio 2018).

In particolare, per le opere in progetto è necessario considerare le azioni dovute al peso proprio del terreno, ai sovraccarichi accidentali di banchina, alla gru di banchina, all'acqua, al vento (tiro alla bitta) e al sisma.

9.1 CARICHI PERMANENTI

Nel caso in oggetto i carichi permanenti sono rappresentati dal peso proprio dei terreni di monte e degli elementi strutturali. Questi sono tenuti in conto in maniera automatica dal software di calcolo in base alle caratteristiche fisico – meccaniche assegnate ai diversi litotipi (si rimanda al § 7 della presente per i valori specifici) ed al peso specifico dei materiali utilizzati.

9.2 CARICHI ACCIDENTALI

9.2.1 Sovraccarico di banchina

Trattandosi di una banchina portuale operativa, in analogia con quanto previsto in fase di progettazione definitiva, si assume un valore caratteristico $\mathbf{q}_{\mathbf{k}}$ delle azioni variabili unitarie pari a:

q_k = 40 kPa

9.2.2 Tiro alla bitta

In corrispondenza della banchina Lloyd il tiro alla bitta risulta pari a 1000 kN, da intendersi come valore caratteristico. Le bitte sono poste ad una distanza di 25m. All'interno del software di calcolo è stato dunque considerato un'azione orizzontale unitaria dovuta al tiro alla bitta pari a

b = 40 kN/m

9.2.3 Gru di banchina semovente

Il banchinamento in questione deve essere idoneo all'operatività di gru semoventi. La committenza ha indicato quale gru di riferimento nel porto di Ravenna quella attualmente operante presso la banchina Marcegaglia, le cui caratteristiche essenziali sono indicate nella scheda tecnica di Figura 22 fornita dalla committenza. Si premette che le gru semoventi sono generalmente adattabili a diverse condizioni d'uso con la modifica delle dimensioni degli stabilizzatori o con l'applicazione di contrappesi, per cui la semplice indicazione del modello non è sufficiente a definire compiutamente i carichi. Per questo nel seguito, sulla base dei dati disponibili, si farà riferimento a specifiche condizioni di carico che dovranno essere opportunamente considerate dai terminalisti per la scelta dei mezzi meccanici e dei dispositivi ausiliari utilizzabili sul banchinamento.

1.6	CARICO SUGLI ASSALI	S. Aline	
	1.6.1. Gru Con Braccio sull'Anteriore (Incl. 58°) c	on contrap	pesi 120+21
	 Assi posteriori (4,5,6,7) 	Kg.	240.000
	Assi anteriori (1,2,3)	Kg.	180.000
	4.6.2 Grucon Torre Abbassata sull'Anteriore co	n contrappe	esi 100 T.
	Assi posteriori (4 5 6 7)	Ka.	240.000
	Assi anteriori (1.2.3)	Kg.	93.000
	Ruota in punta braccio	Kg.	31.000
	1.6.3. Carico sugli Assi	Ka	59 000
	In traslazione nella peggiore contrizione	Kg.	60.000
	A TELEVISION PROVIDE SAFELY AND AND A TELEVISION AND A TE		
	Carico max, ammesso per ogni asse (statico)	Kg.	80.000
1.7.	Carico max. ammesso per ogni asse (statico) PRESSIONI AL SUOLO	Kg.	80.000
1.7.	Carico max. ammesso per ogni asse (statico) PRESSIONI AL SUOLO 1.7.1. Su ruote in traslazione	Kg.	10,00
1.7.	Carico max. ammesso per ogni asse (statico) PRESSIONI AL SUOLO 1.7.1. Su ruote in traslazione 1.7.2. Su stabilizzatori con carico max.	Kg. Kg/cm ² .	10,00
1.7.		Kg/cm ² .	10,00
1.7.		Kg/cm ² . Kg/cm ² .	80.000 10,00 3,70 2,56
1.7.	Carico max. ammesso per ogni asse (statico) Carico max. ammesso per ogni asse (statico) PRESSIONI AL SUOLO 1.7.1. Su ruote in traslazione 1.7.2. Su stabilizzatori con carico max. Con piastre standard (1.800 x 1.800 mm. x n.°2) Con piastrei opzionali (1.800 x 2.600 mm. x n.°2) 1.7.3. Pressione media sull'area occupata dalla	Kg/cm ² . Kg/cm ² . Kg/cm ² .	80.000 10,00 3,70 2,56
1.7.	Carico max. ammesso per ogni asse (statico) Carico max. ammesso per ogni asse (statico) PRESSIONI AL SUOLO 1.7.1. Su ruote in traslazione 1.7.2. Su stabilizzatori con carico max. • Con piastre standard (1.800 x 1.800 mm. x n.°2) • Con piastrei opzionali (1.800 x 2.600 mm. x n.°2) 1.7.3. Pressione media sull'area occupata dalla gru (19,8 x 13,8 m.)	Kg/cm ² . Kg/cm ² . Kg/cm ² . T/m ² .	80.000 10,00 3,70 2,56 1,87
1.7.	Carico max. ammesso per ogni asse (statico) PRESSIONI AL SUOLO 1.7.1. Su ruote in traslazione 1.7.2. Su stabilizzatori con carico max. • Con piastre standard (1.800 x 1.800 mm. x n.°2) • Con piastrei opzionali (1.800 x 2.600 mm. x n.°2) 1.7.3. Pressione media sull'area occupata dalla gru (19.8 x 13.8 m.) VENTO	Kg/cm ² . Kg/cm ² . Kg/cm ² . T/m ² .	80.000 10,00 3,70 2,56 1,87
<u>1.7.</u>	Carico max. ammesso per ogni asse (statico) Carico max. ammesso per ogni asse (statico) PRESSIONI AL SUOLO 1.7.1. Su ruote in traslazione 1.7.2. Su stabilizzatori con carico max. • Con piastre standard (1.800 x 1.800 mm. x n.*2) • Con piastrei opzionali (1.800 x 2.600 mm. x n.*2) 1.7.3. Pressione media sull'area occupata dalla gru (19,8 x 13,8 m.) VENTO In tracloginge	Kg/cm ² . Kg/cm ² . Kg/cm ² . T/m ² .	80.000 10,00 3,70 2,56 1,87 72
<u>1.7.</u>	Carico max. ammesso per ogni asse (statico) Carico max. ammesso per ogni asse (statico) PRESSIONI AL SUOLO 1.7.1. Su ruote in traslazione 1.7.2. Su stabilizzatori con carico max. • Con piastre standard (1.800 x 1.800 mm. x n.°2) • Con piastrei opzionali (1.800 x 2.600 mm. x n.°2) 1.7.3. Pressione media sull'area occupata dalla gru (19,8 x 13,8 m.) VENTO In traslazione In traslazione	Kg/cm ² . Kg/cm ² . Kg/cm ² . T/m ² .	80.000 10,00 3,70 2,56 1,87 72 72 72
<u>1.7.</u>	 Carico max. ammesso per ogni asse (statico) Carico max. ammesso per ogni asse (statico) PRESSIONI AL SUOLO 1.7.1. Su ruote in traslazione 1.7.2. Su stabilizzatori con carico max. Con piastre standard (1.800 x 1.800 mm. x n.°2) Con piastre i opzionali (1.800 x 2.600 mm. x n.°2) 1.7.3. Pressione media sull'area occupata dalla gru (19,8 x 13,8 m.) VENTO In traslazione In lavoro Gru ferma su stabilizzatori: 	Kg/cm ² . Kg/cm ² . Kg/cm ² . T/m ² . Km/h	80.000 10,00 3,70 2,56 1,87 72 72
<u>1.7.</u>	 Carico max. ammesso per ogni asse (statico) Carico max. ammesso per ogni asse (statico) PRESSIONI AL SUOLO 1.7.1. Su ruote in traslazione 1.7.2. Su stabilizzatori con carico max. Con piastre standard (1.800 x 1.800 mm. x n.°2) Con piastre i opzionali (1.800 x 2.600 mm. x n.°2) 1.7.3. Pressione media sull'area occupata dalla gru (19.8 x 13.8 m.) VENTO In traslazione In lavoro Gru ferma su stabilizzatori: torre e braccio eretti 	Kg/cm ² . Kg/cm ² . Kg/cm ² . T/m ² . Km/h Km/h	80.000 10,00 3,70 2,56 1,87 72 72 72 151

Figura 22 – Scheda tecnica di riferimento per le gru semoventi da considerare nel progetto di adeguamento delle banchine

Dalla scheda fornita dal committente si ricavano e si assumono i seguenti valori di progetto per la gru semovente di riferimento:

- azione massima sugli assali Fk = 2400 kN
- azione massima sullo stabilizzatore Fk = 1200 kN
- dimensioni dello stabilizzatore (standard): 1,80 m × 1,80 m
- pressione caratteristica di calcolo: 370 kPa

RTP: C VESSIONALL

8

Qualora condizioni operative richiedano il superamento di tale valore occorrerà prevedere opportuni accorgimenti tecnologici per permetterne l'utilizzo sulle banchine in questione (ad es. stabilizzatori di dimensioni maggiori).

9.2.4 Gru di banchina su rotaia esistente

La gru di banchina su rotaia verrà scelta dal concessionario nei prossimi anni, pertanto non è ad oggi disponibile una scheda tecnica o marca e modello.

Su esplicita richiesta del concessionario, si è considerato un carico agente sulle travi di via di corsa pari a 300 kN/m in condizioni statiche. Si è inoltre considerato un incremento del carico caratteristiche pari al 15% in condizioni dinamiche, per le quali si è dunque assunto un valore pari a 345 kN/m.

I binari della gru di banchina avranno uno scartamento pari a 16,00 m, e le travi di via di corsa saranno fondate sulla paratia di pali ø800 ad interasse i=0,90 m lato mare, sul secondo allineamento di pali ø1000 ad interasse i = 2,70 m lato terra.

Si osserva che il carico di linea della gru ipotizzata, pari dunque a 345 kN/m, è molto inferiore al carico considerato per lo stabilizzatore della gru semovente (370 kN/m²) che si sposta sul nuovo solettone.

Il carico della gru di banchina su rotaia è pertanto da considerarsi non dimensionante. Le strutture di banchina, come si vedrà nei capitoli che seguono, sono state duqnue dimensionate con riferimento ai carichi derivanti dallo stabilizzatore della gru semovente.

9.2.5 Azioni sismiche

Con riferimento alle verifiche sismiche, è stato utilizzato l'approccio pseudo-statico, con il quale le azioni sismiche vengono modellate in modo semplificato introducendo coefficienti sismici ($k_h e k_v$) che consentono la stima della modifica delle azioni in direzione orizzontale e verticale dovuta agli effetti inerziali attraverso l'introduzione di forze statiche equivalenti calcolate come:

$$F_h = K_h \cdot W \qquad F_v = K_v \cdot W$$

dove W è la risultante delle forze di massa in condizioni statiche (peso).

A tal fine, sono stati definiti tutti i parametri necessari per la corretta applicazione del metodo, così come previsto dalla NTC 18.

In particolare, l'accelerazione massima, definita a partire dall'analisi di risposta sismica locale di cui al § 8 della presente, con riferimento ad un periodo di ritorno dell'evento sismico pari a 712 anni è pari a

$$a_{max} = 0.20 \ g$$

Con riferimento alla paratia di pali prevista in progetto, l'accelerazione orizzontale a_h può essere legata al valore massimo a_{max} atteso nel volume di terreno significativo per l'opera mediante la seguente relazione:

$$a_h = k_h \cdot a_{max} = \alpha \cdot \beta \cdot a_{max}$$

In cui K_h è il coefficiente sismico in direzione orizzontale, α è un coefficiente che tiene conto della deformabilità dei terreni interagenti con l'opera, β è un coefficiente che tiene conto della capacità dell'opera di subire spostamenti plastici senza cadute di resistenze (Figura 23).

Figura 23. Diagrammi per il calcolo dei coefficienti $\alpha \in \beta$ (NTC 2018)

Il coefficiente α è definito a partire dall'altezza totale della paratia H e dalla categoria di sottosuolo del terreno. Nel caso specifico, per un'altezza della paratia H = 36.25 m e categoria di sottosuolo D, è stato assunto un valore di α = 0,3.

Il calcolo di β va effettuato in funzione del massimo spostamento permanente u_s che l'opera può tollerare. In accordo con quanto previsto dal progetto definitivo posto a base d'appalto, è stato ritenuto accettabile uno spostamento plastico permanente di 5 cm, largamente inferiore al limite normativo di 0,005 H. A tale valore di u_s, in base a quanto previsto dalle NTC 2018 corrisponde un valore di β = 0.61.

Essendo il prodotto dei due coefficienti pari a 0,183 < 0,2, si deve assumere 0,2 (§ 7.11.6.3.1 delle NTC 2018). Nel caso in esame si ha dunque

$$K_h = 0.2 \cdot a_{max} = 0.04$$

Essendo il valore così determinato inferiore a quanto previsto dal Progetto Definitivo posto a base d'appalto, le analisi allo SLV sono state condotte cautelativamente adottando lo stesso valore di kh previsto nel Progetto Definitivo, ovvero pari a

$$K_h = 0.06$$

9.2.6 Azione idrodinamica (Spinta di Westergaard)

La presenza dell'acqua libera gioca un importante ruolo nel determinare il carico in condizioni simiche sulle opere portuali. Quando il fronte della superficie di sostegno è impermeabile, la pressione totale dell'acqua che agisce sull'opera di sostegno può essere divisa in due componenti: la pressione idrostatica che cresce linearmente con la profondità e agisce sul muro prima, durante e dopo lo scuotimento sismico, e la pressione idrodinamica, che risulta dall'interazione tra la struttura e l'acqua

Tale pressione idrodinamica è usualmente stimata con la soluzione di Westergaard (1931) come indicato in figura

Figura 24 - Valutazione della pressione idrodinamica indotta da azione sismica (Westergaard)

La spinta di Westergaard è assumibile pari a

$$Ewd = \frac{7}{12} k_h \gamma_w H'^2$$

dove H' è l'altezza del battente idrico, kh il valore del coefficiente di spinta orizzontale, ed è applicata a 3/5 di H' a partire dal pelo libero. La spinta di Westergaard così definita agisce sia in una direzione che nell'altra, manifestandosi alternativamente come incremento o decremento della pressione idrostatica agente sull'opera.

9.2.7 Azioni accidentali – urto da natante

L'azione d'urto viene calcolata secondo le indicazioni delle NTC 2018 e dell'Eurocodice 1 sulle azioni eccezionali: UNI EN 1991-1-7, paragrafi 4.6.1, 4.6.3 e C.4.2.

Il natante di riferimento è, secondo tabella C.4, quello avente le seguenti caratteristiche:

- Lunghezza: L=300 m
- Massa: m=100000 ton

Le forze d'impatto sono:

- F_{d,x}= 460000 kN forza frontale, nella direzione di marcia
- Fd,y= 230000 kN forza laterale, agente perpendicolarmente alla forza d'urto frontale

Nei porti tali forze si possono considerare ridotte del 50%, pertanto si ottiene: $F_{d,x}$ = 230000 kN $F_{d,y}$ = 115000 kN

Si applicano inoltre i seguenti coefficienti:

- Amplificazione dinamica: 1.3 per impatto frontale e 1.7 per impatto laterale
- Fattore di riduzione per impatti a bassa velocità: 0.3

Le forze sono applicate su un'area di impatto che dipende dalla lunghezza della nave (L=300m) e dalla geometria della banchina. In questo caso, essendo la trave di coronamento pressoché allineata con la paratia sottostante, si ottiene:

- in orizzontale: 0.10 L= 30 m
- in verticale: 0.05 L= 15 m

Nel caso di impatto frontale, la forza applicata Fdx è:

- F_{dx} = 230000x1.3x0.3 = 89700 kN (direzione perpendicolare a banchina)

La pressione applicata è quindi:

- PFdx = 89700 / (30x15) = 199.3 kN/mq

Nel caso di impatto laterale, le forze applicate Fdy ed FR sono:

- F_{dy} = 115000x1.7x0.3 = 58650 kN (direzione perpendicolare a banchina)
- F_R = 0.4 x 58650 = 23460 kN (direzione longitudinale a banchina)

Le pressioni valgono quindi:

- PFdy = 58650 / (30x15) = 130.3 kN/mq
- P_{FR} = 23460 / (30x15) = 52.1 kN/mq

Tali forze risultano meno gravose rispetto al caso di impatto frontale, quindi non saranno considerate nei calcoli.

9.3 COMBINAZIONE DELLE AZIONI

Di seguito vengono rappresentate le combinazioni principali utilizzate nei calcoli dell'adeguamento di banchina.

	Stati limite	Pesi propri	Sovraccarico perm.	Sovraccarico accidentale	Tiro alla bitta	Urti	Westergaard	kh
SLU 1	Ultimo	1.3	1.3	1.5	0.9			
SLU 2	Ultimo	1.3	1.3	1.05	1.5			
SLE r1	Rara	1	1	1	0.6			
SLE r2	Rara	1	1	0.7	1			
SLE f3	Frequente	1	1	0.7	0			
SLE f4	Frequente	1	1	0.6	0.2			
SLE qp 5	Quasi Permanente	1	1	0.6	0			
Ecc	Eccezionale	1	1	0.6	0	1		
SLV	Salvaguardia della Vita	1	1	0.6	0		1	1
SLD	Danno	1	1	0.6	0		1	1

Tabella 4. Coefficienti di combinazione delle azioni variabili

Si sottolinea che il tiro alla bitta viene assimilato al carico del vento. Pertanto, in presenza dell'azione sismica il tiro alla bitta viene considerato nullo.

In analogia a quanto previsto dal progetto definitivo, il sovraccarico variabile di banchina, considerando la destinazione d'uso dell'opera, è stato cautelativamente equiparato alla categoria D (Ambienti ad uso commerciale).

Si sottolinea che il tiro alla bitta viene assimilato al carico del vento. Pertanto, in presenza dell'azione sismica il tiro alla bitta viene considerato nullo.

10 ANALISI NUMERICHE DELLE OPERE DI PROGETTO

10.1 CRITERI DI ANALISI E DI VERIFICA

La paratia di progetto è stata dimensionata e verificata in accordo ai contenuti delle Norme Tecniche riguardanti le paratie (Capitoli 6.5.3.1.2 e 7.11.6.3), accertando che il valore di progetto delle azioni o dell'effetto delle azioni Ed sia inferiore al valore di progetto delle resistenze Rd (con riferimento al capitolo 6.2.4.1 delle NTC 2018) per ogni stato limite considerato.

Per le paratie si devono considerare gli stati limite geotecnico e strutturale previsti dalla normativa.

La verifica della stabilità globale del complesso opera di sostegno – terreno sono state effettuate secondo la Combinazione 2 (A2+M2+R2) dell'Approccio 1, tenendo conto dei coefficienti parziali riportati nelle tabelle 6.2.I, 6.2.II e 6.8.I delle NTC 2018.

Per le paratie si considerano i seguenti stati limite ultimi (NTC18 §6.5.3.1.2 per condizioni SLU e §6.5.3.2 per SLE):

- SLU di tipo geotecnico (GEO) e di tipo idraulico (UPL e HYD): collasso per rotazione intorno a un punto dell'opera (atto di moto rigido); collasso per carico limite verticale; sfilamento di uno o più ancoraggi; instabilità del fondo scavo in terreni a grana fine in condizioni non drenate; instabilità del fondo scavo per sollevamento; sifonamento del fondo scavo; instabilità globale del complesso opera di sostegno-terreno.
- SLU di tipo strutturale (STR): raggiungimento della resistenza in uno o più ancoraggi; raggiungimento della resistenza in uno o più puntoni o di sistemi di contrasto; raggiungimento della resistenza strutturale della paratia.

Le verifiche vengono condotte accertando che la condizione

$$E_d < R_d$$

sia soddisfatta per ogni stato limite considerato.

Le restanti verifiche nei confronti degli stati limite ultimi sono state effettuate secondo l'Approccio 1 considerando le due combinazioni di coefficienti parziali di sicurezza:

- Combinazione 1: (A1+M1+R1)
- Combinazione 2: (A2+M2+R1)

tenendo conto dei valori dei coefficienti parziali riportate nelle tabelle 6.2.I e 6.2.II delle NTC 2018, con i coefficienti γ_R del gruppo R1 pari all'unità.

Le verifiche dei tiranti di ancoraggio, sia di tipo GEO che di tipo STR, sono state effettuate secondo la Combinazione (A1+M1+R3), in accordo a quanto previsto al § 6.6.3 delle NTC 2018.

10.2 SOFTWARE DI CALCOLO

Nel caso in esame, tutte le analisi in condizioni statiche (Stato Limite Ultimo e Stato Limite di Servizio) e sismiche (effettuate utilizzando il metodo pseudostatico) sono state condotte con l'impiego di software dedicati alla risoluzione di problemi di tipo geotecnico quali **Plaxis 2D.**

Il codice di calcolo **Plaxis 2D** utilizza il metodo degli elementi finiti (F.E.M.); si basa su una discretizzazione del mezzo (definizione della mesh) con l'ipotesi che gli elementi si scambiano le azioni solo attraverso i punti nodali; in tali punti nel rispetto dell'equilibrio e della congruenza, attraverso la definizione dei legami costitutivi, si ottengono delle equazioni le cui soluzioni determinano gli spostamenti nodali. Una volta noti gli spostamenti ai nodi attraverso la definizione delle cosiddette funzioni di forma si ottengono le deformazioni e quindi gli

spostamenti di tutti i punti costituenti l'elemento, dai quali, passando di nuovo per i legami costitutivi, si può risalire allo stato tensionale.

Le principali proprietà del programma sono:

<u>Automatic mesh generation</u>: per la definizione della meshPlaxis utilizza elementi triangolari che vengono generati in maniera completamente automatica, con la possibilità di raffittire gli stessi in corrispondenza di punti di interesse;

<u>Interfaces</u>: sono utilizzate per simulare l'interazione tra le strutture e il terreno; è quindi possibile definire per uno strato sottile a contatto con la struttura dei valori di attrito e adesione che non sono necessariamente gli stessi del terreno circostante;

<u>Advanced soil model</u>, è possibile utilizzare per il terreno modelli più avanzati rispetto a quello di Mohr-Coulomb, come l'Hardening Soil Model che è stato utilizzato per tutti i depositi stratigrafici;

<u>Staged construction</u>: è possibile simulare processi di costruzione e di scavo per fasi successive permettendo quindi una valutazione più realistica dello stato tensionale iniziale e della sua variazione al progredire dell'intervento.

<u>Phi-c reduction</u>: per la valutazione delle condizioni di stabilità globale sono state condotte analisi tipo phi-c reduction. Con tale analisi vengono ridotte progressivamente le caratteristiche di resistenza del terreno (tan ϕ' e c') fino al completo sviluppo del meccanismo di rottura.

Il fattore di riduzione così definito:

$$SF = \frac{resistenza\ disponibile}{resistenza\ a\ rottura} = \frac{\tan \varphi'_{input}}{\tan \varphi'_{reduced}} = \frac{c'_{input}}{c'_{reduced}}$$

può essere inteso come il margine di sicurezza rispetto ad un fenomeno di instabilità globale.

Il pedice **input** si riferisce alla caratteristica di resistenza adottata per l'analisi in esame, mentre il pedice **reduced** si riferisce alla caratteristica di resistenza per la quale si sviluppa il primo cinematismo di rottura.

Se l'analisi <u>Phi-c reduction</u>viene lanciata a valle di una fase SLE (con parametri caratteristici) il valore di SF può essere assimilato ad un coefficiente di sicurezza globale; se viene lanciata a valle di uno SLU (con parametri ridotti), SF può essere assimilato al margine di sicurezza sulle resistenze: γ_R.

Secondo quanto imposto dalle NT2018 deve essere verificata la seguente disuguaglianza:

$$E_d \leq R_d$$

e quindi anche

$$E_d \leq \frac{R(\gamma_{M2})}{\gamma_{R2}}$$

dove E_d è il valore della azione (o dell'effetto dell'azione) di progetto e R_d è il valore di progetto della resistenza del sistema geotecnico, che può essere valutato come rapporto tra la resistenza calcolata con i parametri ridotti del terreno, $R(\gamma_{M2})$ e il fattore parziale γ_{R2} = 1,1 (1,2 in condizione sismica). Il software utilizzato è stato validato.

Per i terreni presenti è stato utilizzato il modello costitutivo Hadening Soil (Shanz, 1999), le cui caratteristiche sono di seguito illustrate

10.3 MODELLO COSTITUTIVO DEI TERRENI

Al fine di modellare con accuratezza il comportamento del terreno durante le fasi di scavo e costruttive, si è stato utilizzato il modello costitutivo Hardening Soil Schanz (1999), un modello elastoplastico con criterio di rottura alla Mohr-Coulomb ma con superfici di incrudimento che variano con l'evoluzione dello stato tensionale del terreno e che permettono di differenziare il comportamento deformativo del terreno a seconda che si trovi in condizioni di carico vergine o di ricompressione.

Per la caratterizzazione del terreno il modello richiede i seguenti parametri:

- l'angolo di resistenza al taglio ϕ ';
- l'angolo di dilatanza ϕ (in genere posto cautelativamente $\phi = 0$);
- la coesione efficace c';
- il peso di volume γ del terreno;
- il modulo di deformabilità E_{50,ref}, che è la rigidezza secante al 50% dello sforzo deviatorico di rottura ed in corrispondenza della pressione efficace di confinamento p_{ref}: E_{50,ref} controlla la deformabilità per incrementi "vergini" di sforzo deviatorico e varia in funzione dello stato tensionale σ'₃ del terreno secondo la legge esponenziale:

$$E_{50(z)} = E_{50,ref} \left(\frac{c' \cos \varphi - \sigma_{3} \sin \varphi}{c' \cos \varphi - p_{ref} \sin \varphi} \right)^{m};$$

 il modulo di deformabilità E_{oed,ref} (assunto, come consigliato da letteratura, E_{oed,ref} = 0.9 ÷ 1.1 E_{50,ref}), che è il modulo confinato in corrispondenza della pressione efficace di confinamento p_{ref}; E_{oed,ref} controlla la deformabilità per incrementi "vergini" di sforzo idrostatico e varia in funzione dello stato tensionale σ'₃ del terreno secondo la legge esponenziale:

$$E_{oed(z)} = E_{oed,ref} \left(\frac{c' \cos \varphi - \sigma'_{3} \sin \varphi}{c' \cos \varphi - p_{ref} \sin \varphi} \right)^{m}$$

il modulo di deformabilità E_{ur,ref} (assunto, come consigliato da letteratura, E_{ur,ref} = 3 E_{50,ref} per gli strati incoerenti e E_{ur,ref} = 5 E_{50r,ref} per quelli coesivi), che è il modulo di scarico e ricarico in corrispondenza della pressione efficace di confinamento p_{ref}; E_{ur,ref} controlla la deformabilità in stati tensionali di ricompressione e varia in funzione dello stato tensionale σ'₃ del terreno secondo la legge esponenziale:

$$E_{ur(z)} = E_{ur,ref} \left(\frac{c' \cos \varphi - \sigma'_{3} \sin \varphi}{c' \cos \varphi - p_{ref} \sin \varphi} \right)^{m}$$

Nelle leggi esponenziali di cui sopra, p_{ref} è stata assunta, per ogni strato, pari alla tensione efficace orizzontale media $\sigma'_{3,media}$ dello strato stesso, mentre l'esponente m, sempre da letteratura, risulta indicativamente m = 0.5 per gli strati incoerenti e m = 0.8 per quelli coesivi.

Nel modello costitutivo, la relazione fra stress deviatorico q= $|\sigma_1 - \sigma_3|$ e deformazione ε_1 , in condizione di carico vergine, è descritta tramite la seguente relazione iperbolica che interpola bene il tipico comportamento del terreno evidenziato da test triassiali:

$$-\varepsilon_1 = \frac{1}{E_i} \frac{q}{1 - q/q_a} = \frac{1}{2E_{50}} \frac{q}{1 - q/q_a}$$

dove:

- E_i è il modulo tangente iniziale assunto E_i = 2·E₅₀;
- $q_a = q_f / R_f$ (tipicamente $R_f = 0.9$) è il valore di asintoto cui tende lo stress deviatorico;
- $q_f = (c \cot \varphi \sigma'_3) (2 \sin \varphi)/(1 \sin \varphi)$ il valore del deviatore in condizioni di rottura secondo il criterio di Mohr Coulomb.

Figura 25 - Relazione iperbolica tensione - deformazione in condizioni di carico vergine

10.4 MODELLO GEOTECNICO DELLA BANCHINA

La soluzione tecnica scelta per adeguare la banchina è stata descritta in precedenza. In questo paragrafo si descrivono le caratteristiche dello schema geotecnico utilizzato per impostare il modello numerico per le analisi dell'opera.

Il sistema opera-terreno viene modellato agli elementi finiti in condizioni di deformazione piana.

Il palancolato di banchina viene modellato con un elemento piastra (*plate*), di rigidezza assiale e flessionale equivalente a quella della paratia di pali in c.a. previsti da progetto.

I pali a tergo della paratia sono modellati con elementi *embedded beam row* che vengono sovrapposti alla mesh di analisi senza determinarne l'interruzione ed interagendo con la stessa solo attraverso delle molle ai nodi. La rigidezza di tali molle di connessione è funzione dell'interasse tra i pali, così da lasciare la possibilità alla mesh di "attraversare" la palificata.

Il solettone in calcestruzzo armato al di sopra dei pali viene modellato con un elemento piastra (plate).

I tiranti di ancoraggio sono modellati tramite elementi elastici (*node to node anchor*) per la parte libera e con elementi geogriglia (*geogrid*) per la parte di fondazione.

Nella modellazione numerica bidimensionale della sezione di banchina la trave non viene esplicitamente modellata in quanto è un elemento tozzo che costituisce il raccordo tra le diverse strutture.

Il diaframma esistente viene modellato come un elemento di volume elastico che viene disattivato quando sono installate le nuove strutture. Anche il tirante esistente viene disattivato dopo l'installazione delle nuove opere. In tal modo è effettivo il trasferimento delle azioni tra le vecchie strutture su cui non si può fare affidamento e le nuove.

Di seguito è presentato lo schema e la mesh utilizzati per le analisi numeriche.

Figura 26 - Schema utilizzato nelle analisi numeriche della banchina LLOYD

Figura 27 - Mesh modello di calcolo banchina LLOYD

Le caratteristiche salienti degli elementi strutturali presenti nel modello di calcolo sono:

- profondità del fondale di progetto
 profondità del fondale di calcolo
 profondità del fondale attuale
 profondità del fondale attuale
 quota estradosso trave di coronamento
 sovraccarico accidentale
 40 kPa;
- tiro alla bitta
- paratia di pali trivellati in c.a. d:800 mm L=36,25 m posti ad interasse i = 0,90 m;

RTP: C TRATING

40 kN/m;

tiranti di ancoraggio a bulbo iniettato realizzati mediante getto coassiale in het groting di lunghezza 41,35 m, inclinazione 14° sull'orizzontale ed interasse 2,0 m, con 23,35 m di parte libera e 18,00 m di fondazione, armati con barra autoperforante cava ø90 spessore 10 mm in acciaio S 460 J0.

Per i terreni presenti nel volume significativo dell'opera sono stati adottati i parametri geotecnici indicati nella seguente tabella:

Unità	da	а	Tipologia	γ/γ'	ø' _k	ψ _k	c' _k	Rf	E ₅₀	E _{oed}	Eur	m	p _{ref}	OCR	v
Onica	m s.l.m.	m s.l.m.		kN/m³	deg	deg	kPa		MPa	MPa	MPa		kPa		
R	2	-1.5	Incoerente	19/9	32	0	0	0.9	25	25	50	0.5	15	1	0.25
Р	-1.5	-3.5	Coesivo	18/8	28	0	2.5	0.9	7	7	30	0.8	32	1	0.3
S	-3.5	-9	Incoerente	20/10	34	0	0	0.9	30	30	60	0.5	42	1	0.25
M1	-9	-19	Coesivo	18,5/8,5	29	0	5	0.9	9	9	36	0.8	87	1	0.3
M2	-19	-26	Coesivo	18,5/8,5	30	0	5	0.9	12	12	48	0.8	115	1	0.3
Т	-26	-27	Incoerente	20/10	35	0	0	0.9	42	42	84	0.5	110	1	0.25
A1	-27	-30.5	Coesivo	19/9	29	0	5	0.9	15	15	59	0.8	152	1	0.3
A2	-30.5	-32	Incoerente	20/10	35	0	0	0.9	50	50	100	0.5	149	1	0.25
A1	-32	-35	Coesivo	19/9	29	0	5	0.9	15	15	60	0.8	152	1	0.3

Tabella 5 - Parametri geotecnici assunti per il modello Hardening Soil - Banchina Lloyd

Gli elementi strutturali tipo piastra (*plate*) sono stati inseriti nel modello con le seguenti caratteristiche di rigidezza assiale e flessionale:

ELEMENTI STRUTTURALI - PLATE

No.	Identification	EA	EI	ν
		[kN/m]	[kNm²/m]	[-]
1	Paratia di pali d:800 mm interasse i=0.90 m	19.030.000	761.000	0,20
2	Solettone s=1,0m	35.000.000	2.905.000	0,20

I pali ø1000 di appoggio del solettone sono stati modellati con elementi strutturali tipo *embedded beam row* con le seguenti caratteristiche meccaniche:

ELEMENTI STRUTTURALI – EMBEDDED BEAM ROW

No.	Identification	E	γ	Туре	Lspacing	Axial skin	Interface
						resistance	stiffness factor
		[kN/m ²]	[kN/m ³]		[m]		
	Palo			Massive		Layer	
1	ø1000/2,70	34.080.000	25	circular pile	2,70	dependent	Default values
	m						

La tabella seguente mostra le caratteristiche dell'elemento ANCHOR utilizzato per la parte libera dei tiranti di ancoraggio.

TIRANTE DI ANCORAGGIO (PARTE LIBERA) - ANCHOR

No.	Identification	EA	L spacing
		[kN]	[m]
1	Barra cava ø90/2.00 m	518.700	2
2	6 cavi Dyform/2,70 m	75.150	1

Per la fondazione del tirante di ancoraggio si utilizza l'elemento GEOGRID. La tabella seguente mostra le proprietà elastiche dell'elemento ottenute sommando il contributo dell'armatura e della malta di iniezione.

TIRANTE DI ANCORAGGIO (FONDAZIONE) - GEOGRID

No.	Identification	EA
		[kN/m]
1	bulbo D=45 cm + Barra cava ø90/2.00 m	1.590.000

Nell'analisi sono state considerate le seguenti fasi:

Tabella 6 - Fasi realizzative dell'opera

	FASE	FASE DI PROVENIENZA	DESCRIZIONE			
	0	N/A	Generazione dello stato tensionale metodo k0			
Stato attuale	1	0	Inserimento diaframma esistente in c.a.p. e piastra di ancoraggio come elementi di volume elastici in cls			
della banchina	2	1	Escavo 1m prospicente paratia, inserimento tiranti e pretensione a 200 kN/m			
	3	2	Escavo fino a -11.50 m da l.m.m.			
	4	3	Ribasso a monte fino a +1,00 m l.m.m.			
Lavorazioni progetto	5	Inserimento della nuova struttura: paratia di pali d800 interasse 90 cm, tiranti tipo Sirive S90/2.00m				
	6	5	Disattivazione della paratia esistente degradando parametri del cls			
attuale	7	6	Inserimento nuovi pali ø1000 a tergo, solettone			
	8	7	Rinterro a +2,50 m l.m.m. e disattivo vecchi tiranti			
	9	8	Escavo a -15,0 m l.m.m.			
Verifiche di sicurezza e	10	9	SLU 1 (parametri geotecnici caratteristici, sovraccarico q = 40*1.5/1.3=46kPa, tiro bitta b = 0.6*1.5*40/1.3 = 28kN/m) – SOLLECITAZIONI RISULTANTI DA AMPLIFICARE per 1.3			
funzionalità della nuova configurazione della banchina	11	9	SLU 2 (parametri geotecnici caratteristici, sovraccarico q = 0.7*1.5/1.3 = 32 kPa, tiro bitta b = 1.5/1.3 b = 46 kN/m) – SOLLECITAZIONI RISULTANTI DA AMPLIFICARE per 1.3			
	12	9	SLE r1 parametri geotecnici caratteristici, sovraccarico q = 40 kPa, tiro bitta b = 0.6*40 = 24 kN/m)			

RTP: T TESTIMIAN

13	9	SLE r2 parametri geotecnici caratteristici, sovraccarico q = 0.7*40 = 28 kPa, tiro bitta b = 40 kN/m)
14	9	SLE f3 parametri geotecnici caratteristici, sovraccarico q = 0.7*40 = 28 kPa, tiro bitta b = 0 kN/m)
15	9	SLE f4 parametri geotecnici caratteristici, sovraccarico q = 0.6*40 = 24 kPa, tiro bitta b = 0.2 * 40 = 8 kN/m)
16	9	SLE qp5 parametri geotecnici caratteristici, sovraccarico q = 0.6*40 = 24 kPa, tiro bitta b = 0 kN/m)
17	9	Westergaard kh=0.06, parametri geotecnici caratteristici, sovraccarico 0.6q=24kPa
18	17	SLV (sisma applicato attraverso metodo "pseudo-static" kh=0.06, Westergaard kh=0.06, parametri geotecnici caratteristici, sovraccarico 0.6q=24kPa, bitta assente)
19	9	Westergaard kh=0.034, parametri geotecnici caratteristici, sovraccarico 0.6q=24kPa
20	19	SLD (sisma applicato attraverso metodo "pseudo-static" kh=0.034, Westergaard kh=0.034, parametri geotecnici caratteristici, sovraccarico 0.6q=24kPa, bitta assente)
21	9	ECC 1 Urto di imbarcazione (parametri geotecnici caratteristici, urto =200 kPa, sovraccarico e bitta assenti)

10.5 RISULTATI DELLE ANALISI

In base alle condizioni di carico considerate, si presentano per gli elementi strutturali oggetto dell'intervento:

- le sollecitazioni allo stato limite ultimo (SLU) e di salvaguardia della vita (SLV);
- le sollecitazioni e gli spostamenti allo stato limite di esercizio (SLE) e allo stato limite di danno (SLD);
- l'analisi di stabilità globale del complesso opera-terreno.

10.5.1 Inviluppo delle sollecitazioni per le verifiche di sicurezza agli SLU/SLV

Nella tabella seguente si presentano i massimi risultati in relazione agli elementi strutturali ottenuti dalle analisi condotte con il software Plaxis 2D in condizioni SLU/SLV.

Tahalla	7 - Anal	12/11/2 10	V· massimo	sollecitazioni	sundi o	lomonti	etrutturali
I abella	7 - Anan	SI SLU/SL	v. 11/assii1/16	SUITECITAZIONI	suyıı e		Siluilulai

Elemento	Sollecitazione	Combinazione						
		SLU 1	SLU 2	SLV	POST SISMA			
	M [kNm/m]	773.5	763.1	1054.4	983.7			
PARATIA DI PALI IN C A d800	V [kN/m]	248.3	247.4	292.3	305.9			
	N [kN/m]	802.7	731.7	551.3	501.8			
	M [kNm/m]	236.8	228.9	251.6	263.11			
PALI IN C.A. d1000 I FILA	V [kN/m]	24.6	24.1	71.4	65.9			
	N [kN/m]	955.14	854.6	718.6	711.3			
PALI IN C.A. d1000 II	M [kNm/m]	347.3	369	353.1	374			
FILA	V [kN/m]	71.3	79.7	36.11	37.2			

RTP: Tressing the state

	N [kN/m]	1123.5	982.2	896.6	880.8
SOLETTONE S = 1.00	M [kNm/m]	936/-1275.5	843/-1161	801/- 1080	805/- 1095.4
m	V [kN/m]	593	501	385.4	37.2
TIRANTE	T [kN]	697.84	707.4	607.4	607.4

Si riportano di seguito i diagrammi delle sollecitazioni agenti sulle strutture previste da progetto.

10.5.1.1 Paratia di pali in c.a. d:800 mm interasse i=0.90 m

Figura 28 – Analisi SLU/SLV: diagramma momento sollecitante paratia di pali in c.a.

Figura 29 – Analisi SLU/SLV: diagramma taglio sollecitante paratia di pali in c.a.

Figura 30 – Analisi SLU/SLV: diagramma sforzo normale paratia di pali in c.a.

10.5.1.2 Pali in c.a. d:1000 mm - I fila

Figura 31 - Analisi SLU/SLV: diagramma momento sollecitante pali in c.a. I fila

Figura 32 - Analisi SLU/SLV: diagramma taglio sollecitante pali in c.a. I fila

Figura 33 - Analisi SLU/SLV: diagramma sforzo normale pali in c.a. I fila

10.5.1.3 Pali in c.a. d:1000 mm - II fila

Figura 34 – Analisi SLU/SLV: diagramma momento sollecitante pali in c.a. Il fila

Figura 35 - Analisi SLU/SLV: diagramma taglio sollecitante pali in c.a. II fila

Figura 36 – Analisi SLU/SLV: diagramma sforzo normale pali in c.a. II fila

10.5.1.4 Solettone in c.a. s= 1.00 m

Figura 37 – Analisi SLU/SLV: diagramma momento sollecitante solettone in c.a.

Figura 38 – Analisi SLU/SLV: diagramma taglio sollecitante solettone in c.a.

10.5.1.5 Deformazioni SLE/SLD

Nella tabella di seguito riportata sono riassunti i risultati delle analisi condotte agli stati limite d'esercizio in termini di sollecitazioni e deformazioni degli elementi strutturali.

Tabella 8. Risultati delle analisi SLE/SLD

Elemento	Sollecitazione	Combinazione		
		SLE r1	SLE r2	SLD
	M [kNm/m]	590	584	825
PARATIA DI PALI IN C.A. d800	V [kN/m]	190	189.6	245
	N [kN/m]	591	545	516.7
	M [kNm/m]	173	168	251.6
PALI IN C.A. d1000 I FILA	V [kN/m]	18.5	18.2	71.4
	N [kN/m]	701	635	718.6
	M [kNm/m]	262	277	301
PALI IN C.A. d1000 II FILA	V [kN/m]	54	60	277
	N [kN/m]	815	722	722
	M [kNm/m]	680/-946	619/-871	699/-979
SOLETTONE S = 1.00 m	V [kN/m]	427	366	370
TIRANTE TIPO SIRIVE S90	T [kN]	350.8	366	562.5

	z=0 [mm]	3.2	3.15	6.27
Spostamenti paratia	Z (umax) [mm]	5.18	5.08	8.77
	z = L [mm]	0.46	0.44	0.87

Si riportano per semplicità di rappresentazione le sole sollecitazioni allo stato limite di esercizio in condizione rara (la più gravosa ai fini delle verifiche di esercizio), rimandando al report di calcolo allegato alla presente per quanto attiene ai risultati per le combinazioni frequente e quasi permanente.

Lo spostamento del palancolato indicato in tabella è quello maturato dall'installazione delle nuove opere. Nella Figura 39 e Figura 41 sono mostrati gli spostamenti orizzontali del sistema nelle condizioni di esercizio SLE e SLD. Si osserva che lo spostamento massimo è concentrato in pancia alla paratia.

Figura 39 - Analisi SLE R1: campo degli spostamenti orizzontali

Figura 40 - Analisi SLE R2: campo degli spostamenti orizzontali

Figura 41 - Analisi SLD: campo degli spostamenti orizzontali

In Figura 42 sono riportati i diagrammi dello sforzo normale, del taglio e del momento flettente agenti sul palancolato agli stati limite di esercizio considerati (SLE-SLD).

Figura 42 - Analisi SLE-SLD: diagramma di sforzo normale, taglio e momento flettente agente sul palancolato

In Figura 43 sono mostrati gli spostamenti complessivi maturati dalla paratia agli stati limite di servizio analizzati.

Si osserva uno spostamento massimo di circa 9 cm in pancia della paratia in condizione SLE-rara, valore che appare compatibile con la funzionalità di un'opera portuale di grandi dimensioni.

Figura 43 - Confronto delle deformate della palancola nelle diverse analisi di stato limite di esercizio

10.5.2 Analisi per azioni eccezionali: urto

Le azioni eccezionali sono quelle che si presentano in occasione di eventi quali incendi, esplosioni ed urti. Primo obiettivo della verifica delle opere riguardo questa classe di azioni è di controllare che la struttura non risulti danneggiata in misura sproporzionata rispetto alla causa.

Per l'urto di una nave di grandi dimensioni, come definito in precedenza, si ha una pressione pseudostatica di 200 kPa che agisce su un'altezza di 15 m, tra +2,50 e -12,50 m da l.m.m.

In Figura 44 è visualizzato il campo di spostamenti orizzontali indotto dalla pressione di impatto così definita sul banchinamento.

Si rileva uno spostamento massimo di circa 10,5 cm. Tale spostamento è correlabile ad un certo livello di danneggiamento degli elementi strutturali (in particolare la trave di banchina) che si può ritenere non sproporzionato rispetto all'evento considerato.

Figura 44 – Spostamenti orizzontali causati dalla pressione di impatto di una nave di grandi dimensioni)

10.5.3 Analisi di stabilità globale

Le analisi di stabilità generale del sistema geotecnico sono state effettuate con il codice FEM Plaxis con la tecnica della riduzione dei parametri (c- ϕ reduction method). La verifica in condizioni statiche viene eseguita con i coefficienti A2 sui sovraccarichi ed M2 sui terreni. Secondo la Norma la verifica è soddisfatta quando il rapporto tra la resistenza calcolata con i parametri geotecnici di progetto (R), cioè ridotti dai previsti coefficienti parziali, e gli effetti delle azioni di progetto (E), risulta maggiore del valore prescritto per il coefficiente parziale sulle resistenze calcolate $\gamma_R = 1,1$.

La Figura 45 mostra il quadro degli spostamenti orizzontali e dei punti di plasticizzazione dell'analisi in condizione statica.

Figura 45 - Analisi di stabilità globale: condizioni statiche SLU

Come si può osservare in Tabella 9 le condizioni di sicurezza rispetto alla stabilità globale nelle condizioni di Stato Limite Ultimo SLU sono garantite con i margini prescritti dalla Norma Nazionale.

Tabella 9. Risultati delle analisi di stabilità globale della banchina in SLU

Opera analizzata	R(γ _{M2}) / E _d
	Condizioni statiche
Banchina LLOYD	1,28

La stabilità generale in condizioni di carico sismico è valutata con un'analisi agli spostamenti, individuando l'accelerazione critica del sistema geotecnico, valutando il rapporto tra accelerazione critica e accelerazione massima e quindi stimando lo spostamento permanente cumulato. Tale analisi è nei fatti un'analisi di prestazione sismica del sistema geotecnico analizzato.

L'accelerazione critica è stata valutata incrementando progressivamente i coefficienti sismici orizzontale e verticale fino ad ottenere il collasso del sistema, su un modello con parametri caratteristici del terreno e carichi variabili combinati con un fattore di partecipazione $\Psi_2 = 0.6$.

Si ottengono il seguente coefficienti sismici critici:

$k_{h,c} = 0,13$

Ne consegue un rapporto $k_{h,c}/k_h$ = 2,16, assumibile come coefficiente di sicurezza nei confronti della stabilità globale in condizioni sismiche.

Tabella 10. Risultati delle analisi di stabilità globale della banchina in SLV

Opera analizzata	R(γ _{M2}) / E _d			
	Condizioni sismiche			
Banchina LLOYD	1,72			

11 VERIFICHE DI SICUREZZA AGLI STATI LIMITE

Nel presente paragrafo sono riportate le verifiche condotte agli Stati Limite Ultimo (SLU) e di esercizio (SLE) secondo quanto prescritto dal D.M. 17/01/2018 degli elementi previsti nel progetto di consolidamento della banchina Lloyd.

Gli stati limite considerati, nonché i criteri di verifica adottati, sono riportati nel § 10.1 della presente, cui si rimanda per ulteriori dettagli.

Le sollecitazioni agenti sugli elementi di fondazione per le combinazioni di carico definite in condizioni statiche e sismiche sono state ricavate dai risultati dei calcoli geotecnici descritti nei precedenti paragrafi .

Ai fini della verifica del solettone in c.a. da realizzarsi a tergo della paratia di pali, le sollecitazioni sono state determinate a partire da un modello di calcolo agli elementi finiti realizzato con l'ausilio del software di calcolo SAP 2000. Per ulteriori dettagli riguardo la modellazione FEM del solettone in c.a. e i risultati dell'analsii si rimanda all'apposito paragrafo.

11.1 VERIFICA STRUTTURALE DELLA PARATIA DI PALI

Il presente progetto esecutivo prevede la realizzazione di una paratia di pali in c.a. in calcestruzzo C35/45 di diametro d:800 m posti ad interasse i=0.90 m di lunghezza complessiva L = 36.25 m.

Le sollecitazioni agenti sui pali di progetto allo Stato Limite Ultimo sono state ricavate dai risultati delle analisi geotecniche eseguite.

Si riportano di seguito i diagrammi delle sollecitazioni flettenti e di taglio agenti sui pali per le differenti condizioni di carico ultime considerate (SLU 1, SLU 2; SLV).

Figura 46 – Analisi SLU/SLV: diagramma momento sollecitante paratia di pali in c.a.

Le verifiche a momento flettente sono state condotte con riferimento ad uno stato sollecitativo di flessione semplice, trascurando cautelativamente lo sforzo normale di compressione agente nella sezione di massimo momento.

La massima sollecitazione a flessione si ha per la combinazione SLV ed è pari 1054.4 kNm/m. In considerazione dell'interasse tra i pali della paratia, pari a 0.90 m, il momento sollecitante di progetto è pari a

Med = 949 kNm

La massima sollecitazione di taglio si ha invece per la condizione di carico Post Sisma ed è pari a

Ved = 275.3 kN

La sezione di massimo momento è armata con 20ø24 in acciaio B 450 C e staffe spiralate ø12/20.

Figura 47 - Armatura in sezione di massimo momento - Pali in c.a. d:800 mm

Il momento resistente, calcolato con l'ausilio del codice di calcolo VCASIu del Prof. Piero Gelfi, risulta essere pari a

Mrd = 1027 kNm

La sezione risulta pertanto essere verificata a flessione con coefficiente di sicurezza

η = Mrd/Med = 1027 kNm / 949 kNm = 1.08

Il palo è armato a taglio mediante staffe spiralate ø12/20 in acciaio B 450 C. Il taglio resistente risulta pari a

Vrd = 788.30 kN

La sezione risulta pertanto essere verificata a flessione con coefficiente di sicurezza

11.2 VERIFICA DEI PALI DI FONDAZIONE DEL SOLETTONE

11.2.1 Verifiche geotecniche

11.2.1.1 Capacità portante

In accordo con quanto previsto dalle NTC 2018 al § 6.4.3.1.1, il valore di progetto della resistenza a carico limite dei pali Rd si ricava a partire dal valore caratteristico Rk applicando i coefficienti di sicurezza sulle resistenze γ_r

RTP: C TESSICITATIO

l valori dei coefficienti parziali γ_r sono ricavati dalla Tab. 6.4.II delle NTC18

Resistenza	Simbolo	Pali	Pali	Pali ad elica
		infissi	trivellati	continua
	$\gamma_{\mathbf{R}}$	(R3)	(R3)	(R3)
Base	γь	1,15	1,35	1,3
Laterale in compressione	$\gamma_{\rm s}$	1,15	1,15	1,15
Totale (*)	γ	1,15	1,30	1,25
Laterale in trazione	γ_{st}	1,25	1,25	1,25

Tab. 6.4.II – Coefficienti parziali γ_R da applicare alle resistenze caratteristiche a carico verticale dei pali

() da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

Nel caso specifico, nelle verifiche a carico limite verticale dei pali sottoposti a compressione è stata utilizzata la resistenza caratteristica determinata a partire dai risultati delle prove di carico statico su pali pilota eseguite nell'ambito del campo prova. Per ulteriori dettagli riguardo i criteri di interpretazione dei dati sperimentali ottenuti dal campo prova, si rimanda alla Relazione riepilogativa dei risultati del campo prove. Si riportano di seguito i valori medi e minimi della resistenza unitaria mobilitata laterale (q) ed alla punta (q).

Si riportano di seguito i valori medi e minimi della resistenza unitaria mobilitata laterale (q_l) ed alla punta (q_b) per ogni litotipo di terreno attraversato.

Unità	q _I (I	(Pa)	q _b (kPa)			
-	Medio	Minimo	Medio	Minimo			
R	65	35.31					
Р	65	35.31					
S	119	114.79		1702.02			
M1	71	43.34	2210				
M2	71	43.34	2318	1/93.92			
Т	80	45.24					
A1	60	20.36					
A2	60	20.36					

Tabella 11 - Resistenze unitarie mobilitate

I valori caratteristici della resistenza a compressione del palo R_{bk} ed R_{sk}, ottenuti dai risultati di prove di carico su pali pilota, sono desumibile secondo l'equazione 6.4.1 delle NTC18

$$R_{k} = min\left\{\left(\frac{R_{m,med}}{\xi_{1}}\right); \left(\frac{R_{m,min}}{\xi_{2}}\right)\right\}$$

Con riferimento al numero di pali trivellati sottoposti a prova (n. 4 pali trivellati), i fattori di correlazione ξ sono ricavati dalla Tab. 6.4.III delle NTC 18

Tab. 6.4.III - Fattori di correlazione ξ per la determinazione della resistenza caratteristica a partire dai risultati di prove di carico statico su pali pilota

Numero di prove di carico	1	2	3	4	≥5
ξ1	1,40	1,30	1,20	1,10	1,0
ξ ₂	1,40	1,20	1,05	1,00	1,0

Si riporta di seguito il riepilogo delle resistenze unitarie caratteristiche utilizzate nel calcolo della portanza verticale del palo compresso.

Tabella 12 - Valori caratteristici delle resistenze unitarie di calcolo – Stratigrafia a partire da p.c.

Unità	Descrizione	da	а	γ	q _{l,med}	q _{l,min}	q _{l,k}	q _{b,med}	q _{b,min}	q _{b,k}
n		m	m	KN/m³	kPa	kPa	kPa	kPa	kPa	kPa
1	R	0	3.5	19	65	35.31	35.31			
2	Р	3.5	5.5	18	65	35.31	35.31			
3	S	5.5	11	20	119	114.79	108.182			
4	M1	11	21.0	18.5	71	43.34	43.34			
5	M2	21.0	28.0	18.5	71	43.34	43.34	2318	1794	1794
6	Т	28.0	29	20	80	45.24	45.24			
7	A1	29	32.5	19	60	20.36	20.36			
8	A2	32.5	34	20	60	20.36	20.36			
9	A1b	34	37	19	60	20.36	20.36	·		

il valore di progetto della resistenza a carico limite dei pali è dunque esprimibile come

$$R_{cd} = R_{sd} + R_{bd} - W_p$$

Dove:

$R_{bd} = R_{bk}/\gamma_b$	resistenza alla punta di progetto
$R_{sd} = R_{sk}/\gamma_s$	resistenza laterale di progetto
Wp	peso proprio del palo alleggerito

In corrispondenza della banchina Lloyd è prevista la realizzazione di n. 2 file di pali trivellati in c.a. d:1000 mm posti ad interasse 2.70 m di lunghezza L=36.25 m poste rispettivamente poste ad una distanza dall'asse della paratia di pali in c.a. di progetto pari a 8,00 e 16,00 m.

La punta del palo si attesta ad una profondità di -38.00 m dal piano di campagna.

Nella verifica a carico limite si è inoltre esclusa la resistenza offerta dalla porzione iniziale di fusto di palo ricadente all'interno del cuneo di spinta generato a tergo dell'opera di sostegno. Considerando un'inclinazione della superficie di scorrimento pari a $45^{\circ}-\phi'/2$, la porzione di fusto di palo ricadente all'interno del cuneo di spinta risulta essere pari a 1,40 m e 0,00 m rispettivamente per la I e la II fila di pali. A vantaggio di sicurezza è stato trascurata nelle verifiche la resistenza offerta dai primi 4,25 m di palo, realizzati sostanzialmente nei terreni di riporto e nel litotipo P. Si riportano di seguito i calcoli effettuati in forma tabellare

RTE: C RESCRIPTION

APPROFON	DIMENTO	CANALI	CAND	IAMO	Е	BAIONA,	ADEG	JUAMENT	0
BANCHINE	OPERATI\	/E ESIST	ΓΕΝΤΙ,	NU0\	/0	TERMINA	L IN	PENISOL	_A
TRATTATOL	I E RIUTILI	ZZO DEL	MATER	RIALE	EST	RATTO IN	ATTU	AZIONE	AL
P.R.P VIGEN	NTE 2007 -	I FASE - F	PORTO	DI RA	VE	NNA			

z	Unità	Lp	q ı,k	Q	q p	Qp	R _{sd}	R _{bd}	Wp	R _{cd}
m		m	КРа	KN	КРа	KN	KN	KN	KN	KN
0	R	0.0	0	0	1794	1408.94	0.00	1043.66	0.00	1043.66
0.5	R	0.5	0	0.00	1794	1408.94	0.00	1043.66	5.89	1037.77
1	R	1.0	0	0.00	1794	1408.94	0.00	1043.66	11.78	1031.88
1.5	R	1.5	0	0.00	1794	1408.94	0.00	1043.66	17.67	1025.99
2	R	2.0	0	0.00	1794	1408.94	0.00	1043.66	23.56	1020.10
2.5	R	2.5	0	0.00	1794	1408.94	0.00	1043.66	29.45	1014.21
3	R	3.0	0	0.00	1794	1408.94	0.00	1043.66	35.34	1008.32
3.5	Р	3.5	0	0.00	1794	1408.94	0.00	1043.66	41.23	1002.43
4	Р	4.0	0	0.00	1794	1408.94	0.00	1043.66	47.12	996.54
4.5	Р	4.5	0	0.00	1794	1408.94	0.00	1043.66	53.01	990.65
5	Р	5.0	0	0.00	1794	1408.94	0.00	1043.66	58.90	984.76
5.5	S	5.5	0	0.00	1794	1408.94	0.00	1043.66	64.80	978.87
6	S	6.0	108.182	169.93	1794	1408.94	147.77	1043.66	70.69	1120.74
6.5	S	6.5	108.182	339.86	1794	1408.94	295.53	1043.66	76.58	1262.62
7	S	7.0	108.182	509.79	1794	1408.94	443.30	1043.66	82.47	1404.49
7.5	S	7.5	108.182	679.73	1794	1408.94	591.07	1043.66	88.36	1546.37
8	S	8.0	108.182	849.66	1794	1408.94	738.83	1043.66	94.25	1688.25
8.5	S	8.5	108.182	1019.59	1794	1408.94	886.60	1043.66	100.14	1830.12
9	S	9.0	108.182	1189.52	1794	1408.94	1034.37	1043.66	106.03	1972.00
9.5	S	9.5	108.182	1359.45	1794	1408.94	1182.13	1043.66	111.92	2113.87
10	S	10.0	108.182	1529.38	1794	1408.94	1329.90	1043.66	117.81	2255.75
10.5	S	10.5	108.182	1699.32	1794	1408.94	1477.67	1043.66	123.70	2397.63
11	M1	11.0	43.34	1767.39	1794	1408.94	1536.86	1043.66	129.59	2450.93
11.5	M1	11.5	43.34	1835.47	1794	1408.94	1596.06	1043.66	135.48	2504.24
12	M1	12.0	43.34	1903.55	1794	1408.94	1655.26	1043.66	141.37	2557.55
12.5	M1	12.5	43.34	1971.63	1794	1408.94	1714.46	1043.66	147.26	2610.86
13	M1	13.0	43.34	2039.71	1794	1408.94	1773.66	1043.66	153.15	2664.17
13.5	M1	13.5	43.34	2107.79	1794	1408.94	1832.86	1043.66	159.04	2717.47
14	M1	14.0	43.34	2175.86	1794	1408.94	1892.06	1043.66	164.93	2770.78
14.5	M1	14.5	43.34	2243.94	1794	1408.94	1951.25	1043.66	170.82	2824.09
15	M1	15.0	43.34	2312.02	1794	1408.94	2010.45	1043.66	176.71	2877.40
15.5	M1	15.5	43.34	2380.10	1794	1408.94	2069.65	1043.66	182.61	2930.71
16	M1	16.0	43.34	2448.18	1794	1408.94	2128.85	1043.66	188.50	2984.01
16.5	M1	16.5	43.34	2516.26	1794	1408.94	2188.05	1043.66	194.39	3037.32
17	M1	17.0	43.34	2584.33	1794	1408.94	2247.25	1043.66	200.28	3090.63
17.5	M1	17.5	43.34	2652.41	1794	1408.94	2306.45	1043.66	206.17	3143.94
18	M1	18.0	43.34	2720.49	1794	1408.94	2365.64	1043.66	212.06	3197.25
18.5	M1	18.5	43.34	2788.57	1794	1408.94	2424.84	1043.66	217.95	3250.55
19	M1	19.0	43.34	2856.65	1794	1408.94	2484.04	1043.66	223.84	3303.86
19.5	M1	19.5	43.34	2924.73	1794	1408.94	2543.24	1043.66	229.73	3357.17

20	M1	20.0	43.34	2992.80	1794	1408.94	2602.44	1043.66	235.62	3410.48
20.5	M1	20.5	43.34	3060.88	1794	1408.94	2661.64	1043.66	241.51	3463.79
21	M2	21.0	43.34	3128.96	1794	1408.94	2720.84	1043.66	247.40	3517.10
21.5	M2	21.5	43.34	3197.04	1794	1408.94	2780.03	1043.66	253.29	3570.40
22	M2	22.0	43.34	3265.12	1794	1408.94	2839.23	1043.66	259.18	3623.71
22.5	M2	22.5	43.34	3333.20	1794	1408.94	2898.43	1043.66	265.07	3677.02
23	M2	23.0	43.34	3401.27	1794	1408.94	2957.63	1043.66	270.96	3730.33
23.5	M2	23.5	43.34	3469.35	1794	1408.94	3016.83	1043.66	276.85	3783.64
24	M2	24.0	43.34	3537.43	1794	1408.94	3076.03	1043.66	282.74	3836.94
24.5	M2	24.5	43.34	3605.51	1794	1408.94	3135.23	1043.66	288.63	3890.25
25	M2	25.0	43.34	3673.59	1794	1408.94	3194.42	1043.66	294.52	3943.56
25.5	M2	25.5	43.34	3741.67	1794	1408.94	3253.62	1043.66	300.41	3996.87
26	M2	26.0	43.34	3809.74	1794	1408.94	3312.82	1043.66	306.31	4050.18
26.5	M2	26.5	43.34	3877.82	1794	1408.94	3372.02	1043.66	312.20	4103.48
27	M2	27.0	43.34	3945.90	1794	1408.94	3431.22	1043.66	318.09	4156.79
27.5	M2	27.5	43.34	4013.98	1794	1408.94	3490.42	1043.66	323.98	4210.10
28	Т	28.0	45.24	4085.04	1794	1408.94	3552.21	1043.66	329.87	4266.00
28.5	Т	28.5	45.24	4156.10	1794	1408.94	3614.00	1043.66	335.76	4321.91
29	A1	29.0	20.36	4188.09	1794	1408.94	3641.81	1043.66	341.65	4343.83
29.5	A1	29.5	20.36	4220.07	1794	1408.94	3669.62	1043.66	347.54	4365.75
30	A1	30.0	20.36	4252.05	1794	1408.94	3697.43	1043.66	353.43	4387.66
30.5	A1	30.5	20.36	4284.03	1794	1408.94	3725.24	1043.66	359.32	4409.58
31	A1	31.0	20.36	4316.01	1794	1408.94	3753.05	1043.66	365.21	4431.50
31.5	A1	31.5	20.36	4347.99	1794	1408.94	3780.86	1043.66	371.10	4453.42
32	A1	32.0	20.36	4379.97	1794	1408.94	3808.67	1043.66	376.99	4475.34
32.5	A2	32.5	20.36	4411.96	1794	1408.94	3836.48	1043.66	382.88	4497.26
33	A2	33.0	20.36	4443.94	1794	1408.94	3864.29	1043.66	388.77	4519.18
33.5	A2	33.5	20.36	4475.92	1794	1408.94	3892.10	1043.66	394.66	4541.10
34	A1-1	34.0	20.36	4507.90	1794	1408.94	3919.91	1043.66	400.55	
34.5	A1-1	34.5	20.36	4539.88	1794	1408.94	3947.72	1043.66	406.44	4584.94
35	A1-1	35.0	20.36	4571.86	1794	1408.94	3975.53	1043.66	412.33	4606.86
35.5	A1-1	35.5	20.36	4603.84	1794	1408.94	4003.34	1043.66	418.22	4628.78
36	A1-1	36.0	20.36	4635.83	1794	1408.94	4031.15	1043.66	424.12	4650.70
36.25	A1-1	36.3	20.36	4651.82	1794	1408.94	4045.06	1043.66	427.06	4661.66
37.5	A1-1	37.5	20.36	4731.77	1794	1408.94	4114.58	1043.66	441.79	4716.46
38	A1-1	38.0	20.36	4763.75	1794	1408.94	4142.39	1043.66	447.68	4738.38

RTP: 0 TREFINITAN

Ń

La resistenza a carico limite di compressione di progetto è pari a

$$R_{cd} = 4738 \, kN$$

La massima sollecitazione di compressione, derivante dalle analisi geotecniche, si ha in corrispondenza dei pali della fila II per la combinazione SLU 1 ed è pari a

$$E_d = 1123.5 \frac{kN}{m} * 2.7 m = 3033.5 kN$$

Le verifiche di portanza verticale allo SLU dei pali di fondazione del solettone sono pertanto soddisfatte con coefficiente di sicurezza

$$\eta = \frac{R_{cd}}{E_d} = 1.56$$

11.2.1.2 Cedimenti

I massimi spostamenti verticali delle teste dei pali di fondazione in condizioni di esercizio sono stati ottenuti dalle analisi condotte con il software Plaxis 2D in condizioni SLE. In particolare, tra le combinazioni allo stato limite di esercizio analizzate la più gravosa risulta essere la combinazione rara con sovraccarico accidentale di banchina considerato come carico accidentale prevalente (SLE r1).

Nelle figura seguenti sono mostrati i risultati delle analisi in termini di spostamenti verticali dei pali per la combinazione SLE r1.

Figura 48 - Cedimenti analisi SLE - Pali in c.a. fila I

RTE: O REGUNTRY T

_	14.00 -15.00 -8.00 0.00 8.00 15.00	24.00 32.00	40.00 48.00	56.00 64.00	72.00 80.00	88.00 96.00	104.00 112.00	
-								(=)
0.00				η				0.2/5
=				j				0.25
-8.00								0.225
-								0.2
-16.00								
=			-					0.175
-24.00		1 1						0.15
1			-					0.125
-32.00								0.1
-40.00	×							0.075
=	T I							0.05
-48.00						(0.025
-	×							•
E								
	F		Total displacemen Maximum value = -0.01	ts u_y (scaled up 200 times) 923 m (Element 23 at Node 24824)				

Figura 49 - Cedimenti analisi SLE - Pali in c.a. fila II

ll massimo cedimento in testa al palo si ha in corrispondenza dei pali della fila I e risulta essere pari a $w_{max} = 19,67 \ mm$

Tale cedimento, inferiore ai 2 cm, è ritenuto ammissibile per la struttura nelle sue condizioni di esercizio.

11.2.2 Verifiche strutturali

Le sollecitazioni agenti sui pali di progetto allo Stato Limite Ultimo sono state ricavate dai risultati delle analisi geotecniche eseguite.

Si riportano di seguito i diagrammi delle sollecitazioni flettenti e di taglio agenti sui pali per le differenti condizioni di carico ultime considerate (SLU 1, SLU 2; SLV).

Figura 50 - Analisi SLU/SLV: diagramma momento sollecitante pali in c.a. - I fila

Figura 51 – Analisi SLU/SLV: diagramma momento sollecitante pali in c.a. – Il fila

Le verifiche a momento flettente sono state condotte con riferimento ad uno stato sollecitativo di pressoflessione, considerando a vantaggio di sicurezza il valore di sforzo normale agente per la combinazione SLE dei carichi.

La massima sollecitazione a flessione si ha per la combinazione POST SISMA ed è pari 374 kNm/m agente in testa ai pali della fila II. In considerazione dell'interasse tra i pali in c.a., pari a 2,70 m, il momento sollecitante di progetto è pari a

Med = 1009.8 kNm

La massima sollecitazione di taglio si ha invece per la condizione di carico SLU 2 ed è pari a

Ved = 215.2 kN

Il valore di sforzo normale agente per la combinazione caratteristica dei carichi è pari a

Ned = 1809 kN

La sezione di massimo momento è armata con 20ø24 in acciaio B 450 C e staffe spiralate ø12/20.

Il momento resistente, calcolato con l'ausilio del codice di calcolo VCASlu del Prof. Piero Gelfi, risulta essere pari a

Mrd = 1505 kNm

La sezione risulta pertanto essere verificata a flessione con coefficiente di sicurezza

η = Mrd/Med = 1308 kNm / 1010 kNm = 1.49

RTP: 0 TESTIMAL

Si riporta di seguito il dominio M-N del palo allo SLU

Figura 53 - Dominio M-N di verifica del palo in c.a. d:1000 mm

Il palo è armato a taglio mediante staffe spiralate ø12/20 in acciaio B 450 C. Il taglio resistente risulta pari a Vrd = 995 kN

La sezione risulta pertanto essere verificata a flessione con coefficiente di sicurezza

η = Vrd/Ved = 995 kN / 215.2 kN = 4,62

11.3 VERIFICA DEL SOLETTONE

Allo scopo di procedere con più accurate valutazioni delle effettive sollecitazioni agenti sul solettone in c.a. a tergo della paratia si è provveduto alla modellazione della struttura tramite software strutturale agli elementi finiti SAP2000.

La modellazione della banchina agli elementi finiti è stata effettuata considerando una porzione di banchina complessivamente lunga 27 metri, corrispondente ad un concio compreso tra n.11 file di pali.

La platea in c.a. è stata modellata utilizzando elementi shell dello spessore di 1.0m.

I pali in c.a. sono stati modellati come elementi *beam* di diametro d = 1000 mm (d = 800 mm per i pali della paratia) vincolati per tutta la loro lunghezza da un letto di molle elastiche aventi rigidezza assiale pari a 28000 kN/m, al fine di modellare l'interazione palo-terreno.

Si riporta di seguito una vista tridimensionale del modello di calcolo agli elementi finiti utilizzato per l'analisi delle sollecitazioni.

Figura 54 - Modello FEM della banchina in SAP2000

11.3.1 Analisi dei carichi

Nel presente paragrafo si riporta l'analisi dei carichi permanenti ed accidentali agenti sulla struttura in esame condotta secondo la normativa di riferimento (D.M. 17/01/2018).

11.3.1.1 Peso proprio strutturale

Il peso proprio degli elementi strutturali (G1) è automaticamente valutato dal programma di calcolo utilizzato per l'analisi. Esso è calcolato considerando per il cemento armato un peso per unità di volume pari a 25 kN/m³.

11.3.1.2 Peso proprio non strutturale

Tra i carichi permanenti non strutturali (G2) si considera il peso delle finiture della soletta. Il valore complessivo dei suddetti carichi è determinato come di seguito riportato.

Sottofondo in cls non strutturale (s = 0.15 m)	24 kN/m³ x 0.15 m ≈ 3.60 kN/m²	
Pavimentazione in	18 kN/m³ x 0.1 m ≈ 1.80 kN/m²	
Totale	5.4 kN/m ²	

11.3.1.3 Sovraccarico accidentale di banchina

Trattandosi di una banchina portuale operativa, in analogia con quanto previsto in fase di progettazione definitiva, si assume un valore caratteristico \mathbf{q}_k delle azioni variabili unitarie pari a:

q_k = 40 kPa

11.3.1.4 Gru di banchina semovente

Il banchinamento in questione deve essere idoneo all'operatività di gru semoventi. Come riportano al §9.2.3 della presente, si assumono i seguenti valori di progetto per la gru semovente di riferimento:

- azione massima sugli assali F_k = 2400 kN
- azione massima sullo stabilizzatore F_k = 1200 kN
- dimensioni dello stabilizzatore (standard): 1,80 m × 1,80 m
- pressione caratteristica di calcolo per singolo stabilizzatore: 370 kPa

Le condizioni di carico tengono conto di n.4 stabilizzatori posizionati ad interasse pari a 12,00 x 12,00 m. Al fine di modellare in maniera più dettagliata il carico derivante dagli stabilizzatori della gru in condizioni di massimo carico, sono state considerate n. 3 condizioni di carico Q1, Q2, Q3, al fine di individuare le condizioni più critiche per i diversi elementi strutturali:

- gru posizionata con n.2 stabilizzatori in corrispondenza del ciglio di banchina e n.2 stabilizzatori in corrispondenza della mezzeria tra la I e la II fila di pali;
- gru posizionata con n.2 stabilizzatori in corrispondenza della mezzeria tra la pratia e la I fila di pali e n.2 stabilizzatori in asse ai pali della fila II;
- gru posizionata con n.2 stabilizzatori in asse ai pali della fila I.

Si riportano di seguito delle immagini esplicative delle condizioni di carico considerate.

Figura 55 - Schema di carico Q1

Figura 56 - Schemi di carico Q2

Figura 57 - Schemi di carico Q3

Ove presente l'area d'ingombro della gru non si è considerato il carico di banchina, che invece è stato applicato con opportuno coefficiente di correlazione nelle aree adiacenti.

11.3.2 Combinazioni delle azioni

Le sollecitazioni allo Stato Limite Ultimo (SLU) sono state valutate con riferimento alla combinazione fondamentale dei carichi

 $\gamma_{G1} \cdot G_1 + \gamma_{G2} G_2 + \gamma_{Q1} Q_{k1} + \gamma_{Q2} \psi_{02} Q_{k2}$

Agli Stati Limite di Esercizio (SLE) sono state considerate le combinazioni

$G_1 + G_2 + Q_{k1} + \psi_{02} Q_{k2}$	rara
$G_1 + G_2 + \psi_{11} Q_{k1} + \psi_{22} Q_{k2}$	frequente
$G_1 + G_2 + \psi_{21} \cdot Q_{k1} + \psi_{22} Q_{k2}$	quasi permanente

dove

G_1	pesi propri strutturali
G 2	pesi propri degli elementi non strutturali
$Q_{ m k1}$	carico accidentale della gru semovente
$Q_{ m k2}$	carico accidentale di banchina

In considerazione delle n.3 condizioni di carico analizzate per le gru di banchina, sia allo SLU che agli SLE è sono state considerate n.3 combinazioni di carico (SLU1.1, ..., SLU1.3; SLE r1, ..., SLE r3; etc). Tali combinazioni di carico sono state poi inviluppate in combinazioni delle sollecitazioni di seguito riportate

SLU ENVE	Inviluppo (SLU 1.1,, SLU 1.3)
SLE r ENVE	Inviluppo (SLE r1,, SLE r3)
SLE f ENVE	Inviluppo (SLE f1,, SLE f3)
SLE qp ENVE	Inviluppo (SLE qp1,, SLE qp3)

Si riporta di seguito un riepilogo dei coefficienti di combinazione utilizzati

Tabella 13 - Riepilogo dei coefficienti di combinazione

	CONDIZIONE DI CARICO				
Combinazione	G1 G2 Q1,,Q3 q				
SLU ENVE	1.3	1.5	1.5	1.05	
SLE r ENVE	1	1	1	0.6	
SLE f ENVE	1	1	0.6	0.6	
SLE qp ENVE	1	1	0.6	0.6	

11.3.3 Risultati delle analisi

La modellazione agli elementi finiti ha permesso di individuare le sollecitazioni dimensionanti agenti sugli elementi strutturali, di seguito riportati.

	SOLLECITAZIONI			
Combinazione	M11 max (kNm/m)	M11 min (kNm/m)	M22 max (kNm/m)	M22 min (kNm/m)
SLU ENVE	419.7	-677.6	1159.5	-1019
SLE r ENVE	280.8	-467.4	844.6	-766.5
SLE f,qp ENVE	247.7	-411.8	813.4	-681.6

Si riportano di seguito i diagrammi di inviluppo della sollecitazione flettente per i diversi stati limite considerati

11.3.3.1 Analisi allo Stato Limite Ultimo (SLU)

Figura 58 - Inviluppo SLU max M11

Figura 59 - Inviluppo SLU min M11

Figura 60 - Inviluppo SLU max M22

Figura 61 - Inviluppo SLU min M22

11.3.3.2 Analisi allo Stato Limite di Esercizio (SLE)

Figura 62 - Inviluppo SLE max M11

Figura 63 - Inviluppo SLE min M11

Figura 64 - Inviluppo SLE max M22

Figura 65 - Inviluppo SLE min M22

11.3.4 Verifica agli Stati Limite

Le sezioni di verifica considerate sono state assunte, per semplicità, avere larghezza unitaria. Si è quindi proceduto verificando separatamente le sezioni nelle due direzioni ortogonali.

Le verifiche dell'elemento strutturale sono state condotte per tutti gli stati limite prescritti dal D.M. 17/01/2018.

11.3.4.1 Verifica allo SLU

Inviluppando le sollecitazioni flettenti derivanti dal modello strutturale realizzato al SAP 2000 con le massime sollecitazioni derivanti dal modello geotecnico realizzato al Plaxis, allo Stato Limite Ultimo si ottengono le seguenti sollecitazioni di progetto

- M11 max:	419.7 kNm/m (modello strutturale)
- M11 min:	-677.6 kNm/m (modello strutturale)
- M22 max:	1159.5 kNm/m (modello strutturale)
- M22 min:	-1275.5 kNm/m (modello geotecnico)

La soletta in c.a. è stata armata con una doppia rete (superiore ed inferiore) a maglia quadra ø24/20x20 cm. In corrispondenza degli allineamenti dei pali, sia in direzione trasversale che longitudinale, le soletta è armata a trave con barre in acciaio B 450 C ø24/10 sia superiori che inferiori e staffe ø12/20 a 4 bracci.

Le sezioni di verifica considerate sono state assunte, per semplicità, avere larghezza unitaria. Si è quindi proceduto verificando separatamente le sezioni nelle due direzioni ortogonali. Si riportano di seguito le verifiche condotte per flessione semplice nelle due direzioni

11.3.4.1.1 Verifica a momento M11

b		100	cm
h		100	cm
As	ø20/10	3142	mm²
A's	ø20/10	3142	mm²
С		9.1	cm
M_{rd}^+		1106	kNm
$M_{\text{ed}}{}^{\text{+}}$		419.7	kNm
η⁺		2.64	
M _{rd} -		-1106	kNm
M _{ed} ⁻		-677.6	kNm
η		1.63	

11.3.4.1.2 Verifica a momento M22

b		100	cm
h		100	cm
As	ø24/10	4524	mm²
A's	ø24/10	4524	mm²
С		9.1	cm
M_{rd}^+		1540	kNm
M_{ed}^+		1159.5	kNm

RTP: C TESTIMITAL

η⁺	1.33	
M _{rd} -	-1540	kNm
M _{ed} -	-1275.5	kNm
η-	1.21	

11.3.4.2 Verifica a punzonamento della soletta

I pali di diametro d:1000 mm costituiscono per la soletta di nuova realizzazione degli appoggi puntuali per cui è necessario verificare a punzonamento la piastra. Le verifiche sono state condotte secondo l'Eurocodice 2 (UNI EN 1992-1-1:2015).

Si riportano di seguito le verifiche effettuate in forma tabellare

VERIFICA PUNZONAMENTO SOLETTA IN C.A EC2 - 6.4				
Resistenza cubica a compressione	R_{ck}	45	MPa	
Resistenza cilindrica a compressione	\mathbf{f}_{ck}	37.35	MPa	
Resistenza di calcolo a compressione	\mathbf{f}_{cd}	21.165	MPa	
Spessore soletta in c.a.	t_{slab}	1000	mm	
Diametro delle barre in direzione x	Øx	24	mm	
Diametro delle barre in direzione y	Øy	24	mm	
Copriferro in dir. X	Cx	55	mm	
Copriferro in dir. Y	Cy	79	mm	
Passo delle armature costituenti la maglia di base	S	100	mm	
Altezza utile dir. X	d _x	933	mm	
Altezza utile dir. Y	dy	909	mm	
Altezza utile elemento	d	921	mm	
Dimensioni elemento punzonante	C1	1000	mm	
	C2	1000	mm	
STEP 1: Verifica dell'idoneità geometrica				
Perimetro di verifica	U ₀	4000	mm	
Coefficiente di eccentricità del carico	β	1.15		
Sforzo punzonante di progetto (Ned pilastro)	V_{ed}	3033	kN	
	v	0.51		
Massima resistenza di progetto	V _{rd,max}	5.40	MPa	
Tensione di taglio agente lungo il perimetro u0	$V_{ed,0}$	0.95	MPa	
Verifica idoneità geometrica		SI		

RTP: T TESTIMULL

STEP 2: Verifica lungo il perimetro critico in assenza di specifica armatura

Posizione pilastro	Interno		
Perimetro critico di calcolo	U ₁	8486.81	mm
Sforzo punzonante di progetto	$V_{ed,1}$	0.45	MPa
	Crd,c	0.12	
	k	1.466	
Percentuale di armatura dir. X	ρlx	0.00485	
Percentuale di armatura dir. X	ρly	0.00485	
Percentuale di armatura elemento	ρΙ	0.00485	
Resistenza minima	V_{min}	0.37968	
Resistenza di progetto	V _{rd,c}	0.46198	
Verifica a punzonamento		SI	

11.3.4.3 Verifiche allo SLE

Le verifiche in condizioni di esercizio sono state condotte ai sensi del §4.1.2.2 delle NTC 2018. In particolare, sono stati presi in considerazione i seguenti stati limite:

- Stato limite di deformazione;
- Stato limite di limitazione delle tensioni;
- Stato limite di fessurazione.

Come è stato già mostrato tramite la modellazione in Plaxis 2D, le deformazioni delle opere sono più che accettabili per le strutture e le funzioni previste.

Si riportano nei paragrafi che seguono le verifiche agli stati limite di controllo delle tensioni di esercizio e di fessurazione.

11.3.4.3.1 Verifica allo stato limite di limitazione delle tensioni

Valutate le sollecitazioni interne nelle varie parti di struttura e calcolate le massime tensioni agenti sia nel calcestruzzo che nell'acciaio, si deve verificare che tali tensioni siano inferiori ai massimi valori consentiti di seguito riportati:

 $\sigma_{smax} = 0.8 * f_{yk} = 360 MPa$ $\sigma_{cmax} = 0.45 * f_{ck} = 20,25 MPa$

Le massime sollecitazioni nella sezione di verifica si ha in corrispondenza della combinazione caratteristica dei carichi (rara) nella direzione 2, ovvero

Per tale valore del momento sollecitante, tensioni materiali risultano

$$\sigma_s = 227 MPa$$

$$\sigma_c = 5,97 MPa$$

Pertanto, le verifiche sono ampiamente superate. *11.3.4.3.2 Verifica allo stato limite di fessurazione*

RTP: C TESSERT

In ottemperanza al § 4.1.2.2.4.4 delle NTC2018, per le condizioni previste (armatura poco sensibile, condizioni ambientali molto aggressive) deve essere rispettato sia in combinazione SLE frequente che quasi permanente lo stato limite di apertura delle fessure, con il valore limite di apertura delle fessure di calcolo pari a è pari a:

$$v_1 = 0.2 \ mm$$

Lo stato limite di fessurazione è stato valutato secondo la formula:

$$w_k = s_{rmax} \cdot (\varepsilon_{sm} - \varepsilon_{cm}) < w_1$$

Dove:

- ε_{sm} è la deformazione media nelle barre di armatura;
- ε_{cm} è la deformazione media del cls;
- s_{rmax} è la distanza massima tra le fessure.

La differenza tra la deformazione dell'acciaio e del cls è stata valutata attraverso la formula

$$(\varepsilon_{sm} - \varepsilon_{cm}) = (\sigma_s - K_t \cdot f_{cteff} / \rho_{eff} \cdot (1 + (E_s / E_c) \cdot \rho_{eff}) / E_s$$

Dove:

- σ_s è la tensione media nell'armatura tesa;
- Kt è un coefficiente di durata del carico (pari a 0,4 per carichi di lunga durata);
- f_{cteff} è la resistenza efficace media del calcestruzzo a trazione;
- ρ_{eff} è pari al rapporto le aree di acciaio e di calcestruzzo teso.

La distanza massima tra le fessure è stata valutata attraverso la formula

$$S_{rmax} = 0.4 \cdot c + K_1 \cdot K_2 \cdot 0.425 \cdot \phi_{eq} / \rho_{eff}$$

Dove:

- c è il ricoprimento netto delle armature;
- K1 è un coefficiente che tiene conto delle proprietà di aderenza del calcestruzzo, pari a 0,8 per barre ad aderenza migliorata;
- K₂ è un coefficiente che tiene conto delle distribuzioni delle deformazioni, pari a 0,5 per sollecitazioni di flessione;
- ϕ_{eq} è il diametro equivalente delle barre di armatura nel caso siano presenti tondi di diverso diametro.

Per la combinazione frequente/quasi permanente, il massimo valore di momento sollecitante la soletta risulta essere

M22 max = 813,4 kNm/m

Si riportano di seguito i calcoli effettuati.

<u>Geometria della sezione</u>			
Altezza della sezione	h	1000	[mm]
Larghezza della sezione	b	1000	[mm]
Distanza tra asse armatura e lembo compresso	d'	909	[mm]
Ricoprimento dell'armatura	С	7.9	[mm]
Armatura tesa ordinaria			
Numero di ferri tesi presenti nella sezione	$n_{\phi.1}$	10	[-]
Diametro dei ferri tesi presenti nella sezione	ф .1	24	[mm]

Area dei ferri tesi presenti nella sezione	A _{s.1}	4523.89	[mm ²]
Caratteristiche dei materiali			
Resistenza caratteristica cilindrica dal calcestruzzo	f _{ck}	35	[MPa]
Resistenza a trazione media del calcestruzzo	f _{ctm}	3.20996	[MPa]
Modulo di elasticità del calcestruzzo	E _{cm}	34077.1	[MPa]
Resistenza a snervamento dell'acciaio	f _{yk}	450	[MPa]
Modulo di elasticità dell'acciaio	Es	210000	[MPa]
Determinazione dell'ampiezza delle fessure			
Tensione nell'armatura tesa considerando la sezione fessurata	σs	227	[MPa]
Asse neutro della sezione	Х	259	[mm]
	~	Lunga	F 1
	α _e	6.16249	[-]
	As	4523.89	
Area ellicace lesa di calcestruzzo	Ac,eff.1	452500	[mm²]
	Ac,eff.2	247000	[mm ²]
	A _{c,eff.3}	500000	[mm²]
	A _{c,eff.min}	247000	[mm²]
Rapporto tra l'area di acciaio teso e quella di calcestruzzo teso	$\rho_{,eff}$	0.01832	[-]
Resistenza efficace media del calcestruzzo	f _{ct,eff}	3.20996	[MPa]
Fattore di durata del carico	k t	0.4	[-]
Differenza tra la deformazione nell'acciaio e nel cls	(ε _{sm} -ε _{cm})	0.00071	[-]
Spaziatura tra la barra (aglaglata tra i barigantri dai farri)		100	[mm]
Diametra aquivalente della barre	5	100	
	Ψeq	24	L J
	K1	0.0	[-]
Distanza maggima tra la faggura	K2	0.0	[-] [mm]
Distanza massima tra le fessure	S _{r,max.1}	249.624	[mm]
Verifica aperura delle fessure			
Ampiezza limite delle fessure per la combinazione di calcolo pertinente	Wk.lim	0.2	[mm]
Ampiezza delle fessure (di calcolo)	Wk	0.17709	[mm]

Ampiezza delle fessure (di calcolo)

RTP: 🚺 प्रदेशसम्बर्ग

11.4 VERIFICA DEI TIRANTI DI ANCORAGGIO

Le nuove strutture di ancoraggio sono realizzate con tiranti di ancoraggio con bulbo in jet grouting di diametro d:450 mm di lunghezza totale 41,35 m di cui 23,35 m di tratto libero e 18 m di fondazione, con inclinazione pari a 14° sull'orizzontale ed interasse 2,00 m, armati con autoperforante cava ø90 spessore s = 10 mm tipo Sirive S90.

In fase progettuale non è stato ritenuto necessario disconnettere la parte libera con soluzioni specifiche, vista la natura passiva dei tiranti (assenza di pretiro), in quanto un eventuale compenetrazione della malta con il terreno avrebbe solo effetti favorevoli. Essendo di fatto il bulbo di fondazione molto rigido, e calcolato e verificato per l'intero sforzo assiale dimensionante, il tiro viene trasferito interamente alla fondazione.

11.4.1 Risultati prove di progetto su ancoraggi di prova

Le verifiche geotecniche della fondazione degli ancoraggi sono state condotte sulla base dei risultati delle prove preliminari sui tiranti eseguite dal G.C., che hanno permesso di definire il comportamento dei bulbi sino alla condizione di sfilamento.

È stato pertanto possibile definire l'andamento del diagramma carico – cedimento fino alle condizioni ultime di sfilamento del bulbo cementizio.

Si riporta di seguito tabella di sintesi dei risultati delle prove di carico effettuate sui tiranti.

TIRANTE	DESCRIZIONE	Tipo BARRA	Iniezione	DIAMETRO ARMATURA e SPESSORE [mm]	STRATO BULBO	LUNGHEZZA TOTALE [m]	LUNGHEZZA PASSIVA [m]	LUNGHEZZA BULBO [m]	CARICO MASSIMO [KN]	Spostamento massimo [mm]
T05	Autoperforante SIRIVE - IBS	AUTOPERFORANTE SIRIVE	INIEZIONE BASSA PRESSIONE	d:90 mm s=10 mm	S	10	5	5	381.6	20.09
T06	Autoperforante SIRIVE - JET	AUTOPERFORANTE SIRIVE	JETTING	d:90 mm s=10 mm	S	10	5	5	429	41.55
Т07	Autoperforante SIRIVE - JET	AUTOPERFORANTE SIRIVE	JETTING	d:90 mm s=10 mm	S	10	5	5	571.80	47.21
T13	Barre Dywidag - IBS	BARRE DIWIDAG	INIEZIONE BASSA PRESSIONE	d: 47 mm	S	10	5	5	477	40.00
T17	Autoperforante ARCO - JET	AUTOPERFORANTE ARCO	JETTING	d:90 mm s=10 mm	S	10	5	5	635	57.62
T15	Barre Dywidag - JET	BARRE DIWIDAG	JETTING	d: 47 mm	S	10	5	5	477	47.74
T01	Autoperforante SIRIVE - IBP	AUTOPERFORANTE SIRIVE	INIEZIONE BASSA PRESSIONE	d:90 mm s=10 mm	М	16	11	5	477	83.97
T10	Barre Dywidag - JET	BARRE DIWIDAG	JETTING	d: 47 mm	М	16	11	5	643	55.03
T14	Barre Dywidag - JET	BARRE DIWIDAG	JETTING	d: 47 mm	S	10	5	5	643	75.15
т09	Barre Dywidag - IBS	BARRE DIWIDAG	INIEZIONE BASSA PRESSIONE	d: 47 mm	М	16	11	5	282.10	75.22
T02	Autoperforante SIRIVE - JET	AUTOPERFORANTE SIRIVE	JETTING	d:90 mm s=10 mm	М	16	11	5	572	57.08
T18	Autoperforante ARCO - IBP	AUTOPERFORANTE ARCO	INIEZIONE BASSA PRESSIONE	d:90 mm s=10 mm	М	16	11	5	381	27.73

Tabella 14 - Caratteristiche e risultati dei tiranti sottoposti a prova

T12	Barre Dywidag - IRS	BARRE DIWIDAG	INIEZIONI RIPETUTE SELETTIVE	d: 47 mm	м	16	11	5	381.60	25.95
T04	Trefoli - IRS	TREFOLI	INIEZIONI RIPETUTE SELETTIVE	n. 6 trefoli da 0,6"	S	10	5	5	477.00	3.78
Т08	Trefoli - IRS	TREFOLI	INIEZIONI RIPETUTE SELETTIVE	n. 6 trefoli da 0,6"	м	16	11	5	636.00	5.78
T03	Autoperforante SIRIVE - JET	AUTOPERFORANTE SIRIVE	JETTING	d:90 mm s=10 mm	М	16	11	5	857	73.24
T11	Barre Dywidag - JET	BARRE DIWIDAG	JETTING	d: 47 mm	М	16	11	5	571	78.04
T16	Barre Dywidag - IRS	BARRE DIWIDAG	INIEZIONI RIPETUTE SELETTIVE	d: 47 mm	S	10	5	5	N.D.	N.D.

Con riferimento alla tecnologia di esecuzione dei bulbi di ancoraggio da utilizzarsi in corrispondenza della banchina Lloyd (jetting) sono state condotte n. 9 prove su tiranti di prova aventi lunghezza del bulbo in jet grouting pari a 5,00 m. I risultati del campo prove forniscono un carico massimo di prova medio per tale tipologia di tiranti pari a 616 kN, corrispondenti ad una portata del bulbo di circa 123 kN/m.

Tabella	15 -	Risultati	prove	а	sfilamento	tiranti
---------	------	-----------	-------	---	------------	---------

Iniezione	TIRANTE	L _{tot} [m]	Լ _թ [m]	L _f [m]	CARICO LIMITE ALLO SNERVAMENTO [kN]	CARICO MASSIMO [kN]	R _{a,medio} [kN]	
	T05	10	5	5	238	382		
	T18	16	11	5	334	382		
IGU	T01	16	11	5	382	477	420	
	T13	10	5	5	430	477		
	T09	16	11	5	286	382		
	T12	16	11	5	non raggiunto	382		
IRS	T04	10	5	5	non raggiunto	476	498	
	T08	16	11	5	non raggiunto	636		
	T06	10	5	5	500	572		
	T07	10	5	5	476	572		
	T17	10	5	5	476	635		
	T02	16	11	5	500	572		
JETTING	T03	16	11	5	667	858	616	
	T15	10	5	5	381	476		
	T10	16	11	5	500	643		
	T14	10	5	5	572	643		
	T11	16	11	5	476	572		

Le prove di idoneità degli ancoraggi disposti seconda **la geometria di progetto** verranno eseguite nella fase preliminare all'esecuzione dei tiranti così come previsto dalla vigente normativa.

11.4.2 Verifica a sfilamento dei tiranti (GEO)

In accordo con quanto previsto dalle NTC 2018 al § 6.6.2, la resistenza di progetto dell'ancoraggio R_{ad} è determinabile applicando alla resistenza caratteristica R_{ak} i coefficienti parziali di sicurezza γ_r di cui alla Tab. 6.6.1

Tab. 6.6.I - Coefficienti parziali per la resistenza	degli	i ancoraggi
--	-------	-------------

	Simbolo	Coefficiente parziale
Temporanei	γ_R	1,1
Permanenti	γ_R	1,2

La resistenza caratteristica R_{ak}, ottenuta dai risultati di prove di carico su tiranti di prova, è desumibile secondo l'equazione 6.6.1 delle NTC18

$$R_{ak} = min\left\{\left(\frac{R_{ac,med}}{\xi_{a1}}\right); \left(\frac{R_{ac,min}}{\xi_{a2}}\right)\right\}$$

Con riferimento al numero tiranti sottoposti a prova per ciascuna tipologia (minimo 3 tiranti), i fattori di correlazione ξ_a sono ricavati dalla Tab. 6.6.II delle NTC 18

Tab. 6.6.II - Fattori di correlazione per derivare la resistenza caratteristica da prove di progetto, in funzione del numero degli ancoraggi di prova

Numero degli ancoraggi di prova	1	2	> 2	
ξ_{a1}	1,5	1,4	1,3	
ξ _{a2}	1,5	1,3	1,2	

Valutata la resistenza caratteristica dei tiranti derivante dal campo prova, è stata determinata la resistenza caratteristica unitaria laterale della fondazione q_{ak} attraverso la relazione

$$q_{ak} = R_{ak}/L_f$$

dove L_f è la lunghezza del bulbo di fondazione.

Le resistenze laterali unitarie caratteristiche, distinte per tecnologia esecutiva del tirante, sono riassunte nella tabella seguente

Iniezione	TIRANTE	L _{tot} [m]	Լ _թ [m]	L _f [m]	R _{ak} [kN]	q _{ak} [kN/m]
	T05	10	5	5		
	T18	16	11	5		
IGU	T01	16	11	5	318	64
	T13	10	5	5	5	
	T09	16	11	5		
	T12	16	11	5	318	64
IRS	T04	10	5	5		
	T08	16	11	5		
	T06	10	5	5		
	T07	10	5	5		
	T17	10	5	5		
	T02	16	11	5		
JETTING	T03	16	11	5	397	79
	T15	10	5	5		
	T10	16	11	5		
	T14	10	5	5		
	T11	16	11	5		

Tabella 16 -	Resistenza	caratteristica	determinata a	partire dal	i risultati di	i prove di	progetto su	ancoraggi	di prova

Per i tiranti realizzati con tecnologia Jet grouting si ha una resistenza unitaria caratteristica del bulbo di fondazione pari a 79 kN/m.

La resistenza a sfilamento del tirante di progetto sarà dunque valutata come

$$R_{ad} = q_{ak} * L_{fd} / \gamma_r$$

dove L_{fd} è la lunghezza di progetto della fondazione del tirante.

Il tirante previsto da progetto ha una lunghezza del tratto di fondazione pari a 18,00 m. Si ha pertanto

$$R_{ad} = \frac{79 * 18,00}{1.2} = 1422 \, kN$$

Il massimo tiro di progetto si ha per la combinazione allo stato limite ultimo SLU 1

$$E_d = 791,4 \, kN$$

Risulta pertanto ampiamente soddisfatta la condizione $E_d < R_d$ ed i tiranti di ancoraggio di progetto sono verificati allo sfilamento con coefficiente di sicurezza η pari a

$$\eta = \frac{R_{ad}}{E_d} = 1,80$$

ingegneria

RTP: C TESSINGAN

11.4.2.1 Posizione della fondazione dell'ancoraggio

Per poter contare sulla piena capacità degli ancoraggi a tergo delle opere di sostegno si deve verificare che la fondazione dell'ancoraggio sia esterna al cuneo di spinta attiva dell'opera di sostegno.

Nel caso specifico della banchina Lloyd, i tiranti di ancoraggio di progetto sono realizzati a tergo del solettone del piazzale. E' pertanto garantito che la fondazione dell'ancoraggio ricada all'esterno del cuneo di spinta attiva che si ingenera in condizioni di rottura, sia in condizioni statiche che sismiche.

11.4.3 Verifica a trazione dei tiranti di ancoraggio (STR)

Le nuove strutture di ancoraggio sono realizzate con tiranti a barra cava di diametro nominale \emptyset 90/70 (A = 2470 mm²). Le barre sono in acciaio tipo S 460J0 a filettatura continua aventi le seguenti proprietà meccaniche dichiarate dal produttore:

Resistenza caratteristica a snervamento	f₀,1k≥ 460 MPa
Resistenza caratteristica a rottura	f _{pk} ≥ 560 Mpa
Carico a snervamento (barre ø90 mm)	F _{p0,1k} = 1136 kN
Carico ultimo (barre ø90 mm)	F _{pk} =1383 kN
Allungamento a rottura	\geq 10 %
Allungamento totale alla forza massima	\geq 5 %

Per i tiranti previsti nelle banchine sopra richiamate, ove sono stati utilizzati tiranti con armatura in barre cave in acciaio S460J0, definito come "acciaio da carpenteria" al p.to 4.2.1.1 delle NTC 2018, il coefficiente di sicurezza per le membrature in acciai da carpenteria di qualunque classe (non soggette a problemi di instabilità) è definito alla tabella 4.2.VII delle NTC 2018 nel valore di 1,05.

Tab. 4.2.VII - Coefficienti di sicurezza per la resistenza delle membrature e la stabilità

Resistenza delle Sezioni di Classe 1-2-3-4	$\gamma_{M0} = 1,05$
Resistenza all'instabilità delle membrature	γ _{M1} = 1,05
Resistenza all'instabilità delle membrature di ponti stradali e ferroviari	γ _{M1} =1,10
Resistenza, nei riguardi della frattura, delle sezioni tese (indebolite dai fori)	γ _{M2} =1,25

La resistenza di calcolo a trazione dei tiranti è valutata come:

$$N_{Rd}$$
 = A * f_{0,1k} / γ_{S} = 2470 mm² * 460 MPa / 1.05 = 1.082 kN

dove:

- A = 2470 mm² è l'area della sezione trasversale;
- f_{0,1k} = 460 N/mm² è la tensione caratteristica di snervamento;
- $\gamma_s = 1,05$ è il coefficiente parziale di sicurezza relativo all'acciaio S 460.

La massima sollecitazione agente sui tiranti, ottenuta dal modello geotecnico, si verifica nella combinazione di carico SLU12 ed è pari a:

La verifica di resistenza a trazione è pertanto soddisfatta con i seguenti coefficienti di sicurezza:

RTP: O TESTIMUL

12 BRICCOLE DI ORMEGGIO PROVVISORIE

Al fine di garantire l'operatività della banchina durante l'esecuzione dei lavori, verrà realizzato una nuova linea di accosto provvisoria spostata verso mare di 3,80 m rispetto all'attuale ciglio di banchina. La linea di accosta sarà ottenuta mediante la posa in opera di n. 12 briccole provvisorie disposte lungo tutto il fronte banchina in corrispondenza delle bitte di ormeggio esistenti, ad interasse pari a 25,00 m.

Le briccole presentano un dado in calcestruzzo C35/45 di dimensioni 2,30 x 2,30 x h=1,90 m con estradosso a quota +2,00 m s.l.m.m. e sono fondate su un tubolare diametro d:1500 mm spessore s=25 mm estesi fino a -34,00 m dal l.m.m. (L = 35,00 m).

Ogni briccola è dotata di parabordo cilindrico in gomma 120/40x150 cm e bitte di ormeggio da 80 tonnellate.

Figura 66 - Stralcio planimetrico tracciamento briccole di ormeggio provvisorie

Figura 67 - Pianta briccola di ormeggio provvisoria

Figura 68 - Sezione tipologica briccola provvisoria

Nel presente paragrafo si riportano le analisi e le verifiche della fondazione della briccola provvisoria così come precedentemente descritta.

12.1 ANALISI E VERIFICA DELLA FONDAZIONE

12.1.1 Modello di calcolo

Allo scopo di procedere con più accurate valutazioni delle effettive sollecitazioni agenti sul palo di fondazione della briccola, si è provveduto alla modellazione della struttura tramite software strutturale agli elementi finiti SAP2000.

Il palo è stato modellato con un elemento di tipo "frame" aventi le seguenti caratteristiche geometriche e meccaniche

ELEMENTI STRUTTURALI - FRAME

No.	Identification	E	A	I	Wel
		MPa	mm²	cm ⁴	CM ³
1	Palo in acciaio d:1500 mm sp. 25 mm	210.000	115.846	3.151.379	42.018

Per simulare l'interazione terreno-struttura in direzione orizzontale i pali di fondazione sono stati vincolati a molle in direzione X e Y, disposte lungo il fusto e di rigidezza variabile lungo di esso.

RTP: C TESSICITE

La rigidezza delle molle orizzontali lungo il fusto è stata valutata in funzione del coefficiente di sottofondo caratteristico dei terreni attraversati, in tal modo è stato simulato un comportamento di tipo trave su suolo elastico alla Winkler. Sono state individuate 6 tipologie che differiscono per lunghezza dei pali e spessore delle unità litotecniche attraversate.

Il valore della rigidezza orizzontale kh da assegnare alle molle disposte lungo il palo è stata assunta pari a 23300 kN/m²/m. Il tratto di pali immerso in acqua è stato, ovviamente, considerato privo di alcun vincolo.

12.1.2 Analisi dei carichi

12.1.2.1 Peso proprio strutturale (G1)

Il peso proprio degli elementi strutturali (G1) è automaticamente valutato dal programma di calcolo utilizzato per l'analisi. Esso è calcolato considerando per l'acciaio un peso per unità di volume pari a 78,1 kN/m³.

Il peso proprio del dado in c.a. è stato tenuto in conto applicando una forza concentrata equivalente in testa al palo. Tale forza è stata calcolata considerando per il calcestruzzo armato un peso per unità di volume pari a 25 kN/m²

Dado in c.a.2,30 x 2,30 x h=1,90 m	25 kN/m³ x 2,3 x 2,3 x ,1,9 m ≈ 10 kN
Fg1	10 kN

12.1.2.2 Carico accidentale

In corrispondenza delle briccole provvisorie verranno installate bitte da 50 tonnellate. Il tiro alla bitta è assunto dunque pari a 500 kN, da intendersi come valore caratteristico.

Tale schematizzazione risulta essere a favore di sicurezza in quanto, in realtà, l'azione orizzontale trasmessa alla bitta risulta inferiore in quanto la cima di ormeggio è sempre inclinata.

12.1.2.3 Combinazione delle azioni

Trattandosi di opere provvisorie (per i lavori per i quali sono previsti circa 1000 giorni), le verifiche sono state effettuate con riferimento alla combinazione caratteristica delle azioni (combinazione rara), non considerando coefficienti amplificativi delle azioni e trascurando le azioni sismiche.

 $G_1 + Q_{k1}$

12.1.3 Risultati delle analisi

La modellazione agli elementi finiti ha permesso di individuare le sollecitazioni dimensionanti agenti sul palo, di seguito riportate

- Med = 7.403 kNm
- Ved = 500 kN

12.1.4 Verifica strutturale

Nel prospetto seguente sono riportate le caratteristiche di resistenza della sezione del tubolare.

	Area	Momento di inerzia	Modulo elastico
Tubo ø1500 s = 25 mm	cm² 1158,46	cm ⁴ 3.151.379	cm ³ 42.018

Le verifiche sono state condotte ai sensi del D.M. 17/01/2018 (§4.2.4.1.2.3 e §4.2.4.1.2.4)

12.1.4.1 Verifica a taglio

L'area resistente a taglio (A_v) per tubi di spessore uniforme si può assumere pari a (§4.2.4.1.2.4 del D.M. 17/01/2018):

$$A_v = 2 \times A / \pi = 73750 \text{ mm}^2$$

dove:

A = 115846 mm² è l'area della sezione;

La resistenza di calcolo a taglio (V_{Rd}), in assenza di torsione, vale pertanto:

$$V_{Rd} = A_v \times f_{yk} / (\sqrt{3} \times \gamma_{M0}) = 14.396 \text{ kN}$$

dove:

Av = 73750 mm² è l'area resistente a taglio della sezione;

f_{yk} = 355 N/mm² è la resistenza caratteristica a snervamento (acciaio S355);

 γ_{M0} = 1,05 è il coefficiente di sicurezza per la resistenza delle sezioni di classe 1-2-3-4 (cfr. Tabella 4.2.VII del D.M. 17/01/2018).

Il valore di calcolo massimo dell'azione tagliante (V_{Ed}) è pari a:

V_{Ed} = 500 kN

La verifica di resistenza delle membrature a taglio è pertanto ampiamente soddisfatta:

12.1.4.2 Verifica a flessione

Essendo il taglio massimo di calcolo (V_{Ed}) inferiore alla metà della resistenza di calcolo a taglio (V_{c,Rd}):

$$V_{Ed,max}$$
 = 500 kN \leq 0,5×V_{c,Rd}

si trascura l'influenza del taglio sulla resistenza a flessione.

La resistenza di calcolo a flessione del palo principale ø1500 s=25 mm (Mel,Rd) vale pertanto:

$$M_{el,Rd} = W_{el,min} \times f_{yk} / \gamma_{M0} = 14.207 \text{ kNm}$$

dove:

RTF: C TRATINGTY

 $W_{el,min}$ = 42 018 cm³ è il modulo elastico della sezione;

f_{yk} = 355 N/mm² è la resistenza caratteristica a snervamento (acciaio S355);

 γ_{M0} = 1,05 è il coefficiente di sicurezza per la resistenza delle sezioni di classe 1-2-3-4 (cfr. Tabella 4.2.VII del D.M. 17/01/2018).

Il momento flettente di calcolo agente sul palo principale vale:

Il punto di massimo momento è posizionato a circa 18,20 m dal l.m.m..

La verifica di resistenza delle membrature a flessione è pertanto soddisfatta con i seguenti coefficienti di sicurezza:

$$\eta = M_{el,Rd} \ / \ M_{Ed} = 1,92 \geq 1,00$$

12.1.5 Verifica a carico limite orizzontale

Il calcolo della capacità portante di un palo soggetto ad un carico orizzontale è condotto applicando la teoria di Broms (1964), considerando lo schema di palo libero di ruotare in testa in testa in terreno incoerente soggetto ad un carico

orizzontale.

Secondo la teoria di Broms, lo stato tensodeformativo del complesso palo terreno sotto azioni orizzontali, si presenta come un problema tridimensionale per la cui soluzione è necessario introdurre alcune ipotesi semplificative:

- il terreno è omogeneo;
- il comportamento dell'interfaccia palo-terreno è di tipo rigido-perfettamente plastico;
- la forma del palo è ininfluente, l'interazione palo-terreno è determinata dalla dimensione caratteristica d della sezione del palo (diametro) misurata normalmente alla direzione del movimento;
- il palo ha un comportamento rigido-perfettamente plastico, ovvero si considerano trascurabili le deformazioni elastiche del palo.

COMPORTAMENTO FLESSIONALE DEL PALO

La resistenza limite laterale di un palo è determinata dal minimo valore fra:

- il carico orizzontale necessario per produrre il collasso del terreno lungo il fusto del palo;
- il carico orizzontale necessario per produrre la plasticizzazione del palo.

RTP: C TESSICIAL

Il primo meccanismo (plasticizzazione del terreno) si verifica nel caso di pali molto rigidi in terreni poco resistenti (meccanismo di palo corto).

Mentre, il secondo meccanismo si verifica nel caso di pali aventi rigidezze non eccessive rispetto al terreno d'infissione (meccanismo di palo lungo o intermedio, con la formazione rispettivamente di due ed una cerniera plastica).

La resistenza limite del terreno rappresenta il valore limite di resistenza che esso può esplicare quando il palo è soggetto ad un carico orizzontale e dipende dalle caratteristiche del terreno e dalla geometria del palo. Nel caso oggetto di studio si ha una situazione di palo lungo libero di ruotare in testa in terreni incoerenti. La verifica viene soddisfatta se viene rispettata la seguente condizione:

$E_d < H_d$

ove Ed è il valore di progetto dell'azione esterna, mentre $H_d = R_{tr,d}$ è il valore di progetto della resistenza del terreno. Ai sensi del § 6.4.3.1.1.1 delle NTC 2018, per la determinazione del valore di progetto $R_{tr,d}$ della resistenza dei pali soggetti ai carichi trasversali valgono le indicazioni del §6.4.3.1.1 del DM 17.01/2018, applicando il coefficiente parziale γ_T della Tab.6.4VI.

Tab. 6.4.VI - Coefficiente parziale γ_T per le verifiche agli stati limite ultimi di pali soggetti a carichi trasversali

Coefficiente parziale (R3)	
$\gamma_{T} = 1,3$	

Si riportano di seguito i calcoli effettuati in forma tabellare

Caratteristiche palo

L=	21.5	[m]
e=	13.5	[m]
d=	1.5	[m]
My=	14.207	[kNm]
L/d=	14.33	
e/d=	9	

Dove:

- L è la lunghezza del fusto del palo al di sotto del fondale di calcolo
- e è la lunghezza del fusto del palo al si sopra del fondale di calcolo
- d è il diametro del palo
- My è il momento di snervamento del palo

Caratteristiche terreno

γ=	18800	[N/m³]
k _p =	3.00	
k=3k _p γ∙d=	253800	[N/m²]

Dove:

- γ è il peso medio dell'unità di volume del terreno attraversato
- $k_p = \sum_i k_{p,i} x h_i / h_{tot}$ è la media ponderata rispetto alle potenze dei diversi litotipi attraversati del coefficiente di spinta laterale in condizioni di stato limite passivo
- k è la resistenza laterale offerta dal terreno in condizioni drenate

Il carico limite H_{lim} calcolato secondo la teoria di Broms per pali lunghi liberi di ruotare in testa in condizioni drenate risulta essere

 $H_{lim} = 972 \text{ kN}$ Il carico limite orizzontale di progetto è dunque pari a $H_{d} = 748 \text{ kN}$

In considerazione del massimo tiro di progetto, pari a 500 kN, la verifica a carico limite orizzontale è soddisfatta.

12.2 VERIFICA DELLA BITTA

La sezione resistente della bitta è costituita da un profilo cavo in acciaio S355 del diametro esterno di 610 mm e spessore di 15 mm riempito di calcestruzzo ed armata con un'armatura minima costituita da 18 ϕ 20. Si considera resistente la sola sezione in acciaio, che presenta le seguenti caratteristiche geometriche: A = 280 cm²

 $W = 4070 \text{ cm}^3$ J = 124159 cm⁴

Il momento resistente della sezione risulta valere ($f_{yd} = f_{yk}/1.05 = 338 \text{ N/mm}_2$): Mrd = $f_{yd} * W = 1376 \text{ kNm}$

La verifica di resistenza fornisce: Mrd = 1376 kNm > Msd 1050 kNm (SLU)

Figura 69 – particolare bitta di ormeggio

ingegneria

Per quanto riguarda la verifica di resistenza nel piano dell'azione orizzontale trasmessa dalla bitta si rappresenta che la sezione resistente per tale azione risulta essere l'intera sovrastruttura di banchina costituita dalla trave di coronamento ed il retrostante solettone in c.a. ad essa collegato.

Considerato che la sovrastruttura di banchina presenta una capacità flessionale nel proprio piano proporzionale ad un altezza di sezione pari a circa 20.0mm, nelle ipotesi di impalcato infinitamente rigido e resistente nel proprio piano le verifiche di resistenza della sovrastruttura sollecitate da azioni orizzontali di tiro alla bitta risultano senz'altro trascurabili.

Ad ogni modo si prevede la posa in opera di apposita armatura di frettaggio in corrispondenza di ciascuna bitta come rappresentato nell'immagine seguente.

Figura 70 – Particolare pianta e sezione armatura di frettaggio in corrispondenza delle bitte

13 CONTROLLI IN CORSO D'OPERA E MONITORAGGIO

La funzionalità delle opere e il rispetto delle previsioni del modello numerico dovranno essere accertati mediante controlli sul comportamento delle strutture, da eseguire sia in corso di costruzione che in fase di collaudo e di esercizio.

Per la banchina Lloyd sono previste due sezioni di monitoraggio, ognuna costituita dagli elementi descritti nel seguito.

Ogni sezione di monitoraggio è composta da:

- n. 1 tubo inclinometrico spinto fino a 40 m di profondità per la valutazione delle rotazioni delle paratie;
- n.1 celle toroidali per il monitoraggio della forza di trazione sugli ancoraggi di progetto. Il tiro agli ancoraggi sarà acquisito in continuo tramite apposito datalogger.

La soluzione di progetto non prevede l'utilizzo dei tiranti esistenti nella configurazione definitiva delle strutture. Si ritiene pertanto non necessario monitorare il tiro degli ancoraggi esistenti durante l'esecuzione dell'opera. Si riporta di seguito un dettaglio tipologico del tubo inclinometrico

Figura 71 - Esempio di pozzetto per tubo inclinometrico

Figura 72 - Esempio di cella toroidale

È inoltre previsto un monitoraggio topografico della trave di banchina (un target ogni 20 m).

Monitoraggio Topografico	Monitoraggio inclinometrico	Monitoraggio con cella toroidale
Spostamenti trave di banchina	Deformazione paratia	Tiro ancoraggi
1 Terret /20m	2 tubo	2 Celle +
i Target /20m	(L=40m)	2 Datalogger

Taballa	47 almuna antoniana	di un queit que quein	installate ne	· la hanahina	Land
Tapella	17.strumentazione	ai monitoraggio i	installata per	la panchina i	LIOYa

La frequenza delle letture varierà in considerazione dell'impatto che le diverse lavorazioni hanno sulle strutture. Si prevede una frequenza "intensiva" per una settimana all'inizio di ogni fase lavorativa importante seguita da una frequenza "ordinaria" se durante tale prima settimana non si sono registrate misure anomale. Nella tabella seguente è anche indicata una frequenza media indicativa che tiene conto del monitoraggio nell'intero periodo di costruzione dell'opera.

Tabella 18. Frequenza delle letture

Fase lavorativa importante	uenza	Monitoraggio Topografico	Monitoraggio inclinometrico	Monitoraggio con cella toroidale
	Freq	Spost. trave di banchina	Deformazione Palancolato	Tiro ancoraggi
Realizzazione pali trivellati	Ord.	1/Mese	1/Mese	/
,	Int.	1/Giorno	1/Settimana	/
Escavo	Ord.	1/Mese	1/Mese	3/Giorno
	Int.	1/Giorno	1/Settimana	3/Giorno
Media ponderata (stima)		2/Mese	1/20 giorni	3/Giorno
	Ord. = Frequenza ordinaria Int. = Frequenza intensiva			

In conclusione, il sistema di monitoraggio previsto permetterà di valutare il comportamento dell'opera nel corso delle più importanti fasi di costruzione e di messa in esercizio.

Un vero e proprio collaudo delle strutture di banchina, in accordo alle prescrizioni che verranno date dal Collaudatore, potrà essere realizzato attraverso l'escavo di un tratto di canale fino a raggiungere i fondali di progetto, congiuntamente all'applicazione dei carichi di banchina previsti in esercizio. In questo caso, la presenza di strumenti di misura degli assestamenti e dei tiri, unitamente ai dati sperimentali acquisiti in precedenza consentirà di valutare la risposta dell'opera alle sollecitazioni imposte durante il collaudo e pertanto la funzionalità dell'opera in relazione alle prestazioni richieste dal Committente.

PLAXIS REPORT

Banchina LLOYD
1.Materials	9
1.1.1.1Soil and interfaces - Hardening soil (1/6)	9
1.1.1.2 Soil and interfaces - Hardening soil (2/6)	
1.1.1.3 Soil and interfaces - Hardening soil (3/6)	
1.1.1.4 Soil and interfaces - Hardening soil (4/6)	
1.1.1.5 Soil and interfaces - Hardening soil (5/6)	
1.1.1.6 Soil and interfaces - Hardening soil (6/6)	
1.1.2.1 Soil and interfaces - Linear elastic	
1.1.3.1 Soil and interfaces - Mohr-Coulomb	23
1.2 Plates	25
1.3 Geogrids	
1.4 Anchors	
1.5 Embedded beam row	
2. Calculation results	30
2.1.1 Initial phase [InitialPhase] (0/0), Total displacements u _x	
2.1.2 Paratia esistente [Phase_1] (1/5), Total displacements ux	30
2.1.3 Escavo +1m e tirante p=200kN/m [Phase_2] (2/9), Total displacements u _x	
2.1.4 Escavo -11.50m [Phase_3] (3/15), Total displacements u _x	
2.1.5 Ribasso monte +1m [Phase_4] (4/18), Total displacements u _x	32
2.1.6 Nuova paratia+solettone [Phase_5] (5/25), Total displacements u _x	32
2.1.7 Rinterro +2.50m e disattivo vecchio tirante [Phase_8] (8/34), Total displacements u _x	
2.1.8 Escavo -15.0m [Phase_9] (9/64), Total displacements u _x	
2.1.9 SLD q=24kPa+west [Phase_16] (16/82), Total displacements u _x	
2.1.10 SLD_SISMA [Phase_17] (17/99), Total displacements u _x	
2.1.11 SLV (West.(kh=0.06)) [Phase_20] (20/123), Total displacements ux	
2.1.12 SLV SISMA [Phase_7] (7/203), Total displacements ux	35
2.1.13 LIQUEF.3 - Post-Sisma [Phase_24] (24/231), Total displacements u _x	
2.1.14 SLU 1 (q=46, T=28) [Phase_10] (10/249), Total displacements u _x	
2.1.15 SLU 2 (q=32, T=46) [Phase_11] (11/264), Total displacements u _x	
2.1.16 SLE r1 (q=40, T=24) [Phase_12] (12/282), Total displacements u _x	
2.1.17 SLE r2 (q=28, T=40) [Phase_13] (13/295), Total displacements u _x	
2.1.18 SLE f3 (q=28, T=0) [Phase_14] (14/309), Total displacements u _x	
2.1.19 SLE f4 (q=24, T=8) [Phase_15] (15/322), Total displacements u _x	39
2.1.20 SLE qp5 (q=24, T=0) [Phase_19] (19/336), Total displacements u _x	39
2.1.21 Ecc1 (q=24, T=0) [Phase_21] (21/388), Total displacements u _x	40
2.1.22 A2+M2 [Phase_25] (18/440), Total displacements u _x	40
2.1.23 ANALISI STABILITA' [Phase_18] (22/562), Total displacements u _x	41

3. Calculation results		41
3.1.1 Plate, Nuova paratia+solettone [Phase_5] (5/25)), Total displacements u _x	41
3.1.2 Plate, Rinterro +2.50m e disattivo vecchio tirant	e [Phase_8] (8/34), Total displacements ux	42
3.1.3 Plate, Escavo -15.0m [Phase_9] (9/64), Total dis	placements u _x	42
3.1.4 Plate, SLD q=24kPa+west [Phase_16] (16/82), To	otal displacements u _x	43
3.1.5 Plate, SLD_SISMA [Phase_17] (17/99), Total disp	lacements u _x	43
3.1.6 Plate, SLV (West.(kh=0.06)) [Phase_20] (20/123)	, Total displacements ux	44
3.1.7 Plate, SLV SISMA [Phase_7] (7/203), Total displa	cements u _x	44
3.1.8 Plate, LIQUEF.3 - Post-Sisma [Phase_24] (24/231	.), Total displacements u _x	45
3.1.9 Plate, SLU 1 (q=46, T=28) [Phase_10] (10/249), T	otal displacements u _x	45
3.1.10 Plate, SLU 2 (q=32, T=46) [Phase_11] (11/264),	Total displacements u _x	46
3.1.11 Plate, SLE r1 (q=40, T=24) [Phase_12] (12/282)	, Total displacements u _x	46
3.1.12 Plate, SLE r2 (q=28, T=40) [Phase_13] (13/295)	, Total displacements u _x	47
3.1.13 Plate, SLE f3 (q=28, T=0) [Phase_14] (14/309), ⁻	۲otal displacements ux	47
3.1.14 Plate, SLE f4 (q=24, T=8) [Phase_15] (15/322), ⁻	۲otal displacements ux	48
3.1.15 Plate, SLE qp5 (q=24, T=0) [Phase_19] (19/336)	, Total displacements ux	48
3.1.16 Plate, Ecc1 (q=24, T=0) [Phase_21] (21/388), To	otal displacements u _x	49
3.1.17 Plate, A2+M2 [Phase_25] (18/440), Total displa	icements u _x	49
3.1.18 Plate, ANALISI STABILITA' [Phase_18] (22/562),	Total displacements u _x	50
3.2.1 Plate, Nuova paratia+solettone [Phase_5] (5/25)	, Shear forces Q	50
3.2.2 Plate, Rinterro +2.50m e disattivo vecchio tirant	e [Phase_8] (8/34), Shear forces Q	51
3.2.3 Plate, Escavo -15.0m [Phase_9] (9/64), Shear for	ces Q	51
3.2.4 Plate, SLD q=24kPa+west [Phase_16] (16/82), Sh	iear forces Q	52
3.2.5 Plate, SLD_SISMA [Phase_17] (17/99), Shear for	ces Q	52
3.2.6 Plate, SLV (West.(kh=0.06)) [Phase_20] (20/123)	, Shear forces Q	53
3.2.7 Plate, SLV SISMA [Phase_7] (7/203), Shear force	s Q	53
3.2.8 Plate, LIQUEF.3 - Post-Sisma [Phase_24] (24/231	.), Shear forces Q	54
3.2.9 Plate, SLU 1 (q=46, T=28) [Phase_10] (10/249), S	hear forces Q	54
3.2.10 Plate, SLU 2 (q=32, T=46) [Phase_11] (11/264),	Shear forces Q	55
3.2.11 Plate, SLE r1 (q=40, T=24) [Phase_12] (12/282)	Shear forces Q	55
3.2.12 Plate, SLE r2 (q=28, T=40) [Phase_13] (13/295)	Shear forces Q	56
3.2.13 Plate, SLE f3 (q=28, T=0) [Phase_14] (14/309), 9	Shear forces Q	56
3.2.14 Plate, SLE f4 (q=24, T=8) [Phase_15] (15/322),	Shear forces Q	57
3.2.15 Plate, SLE qp5 (q=24, T=0) [Phase_19] (19/336)	, Shear forces Q	57
3.2.16 Plate, Ecc1 (q=24, T=0) [Phase_21] (21/388), Sł	iear forces Q	58
3.2.17 Plate, A2+M2 [Phase_25] (18/440), Shear force	25 Q	58
3.2.18 Plate, ANALISI STABILITA' [Phase_18] (22/562),	Shear forces Q	59
3.3.1 Plate, Nuova paratia+solettone [Phase_5] (5/25)), Bending moments M	59
		3

3.3.2 Plate, Rinterro +2.50m e disattivo vecchio tirante [Phase_8] (8/34), Bending moments M	60
3.3.3 Plate, Escavo -15.0m [Phase_9] (9/64), Bending moments M	60
3.3.4 Plate, SLD q=24kPa+west [Phase_16] (16/82), Bending moments M	61
3.3.5 Plate, SLD_SISMA [Phase_17] (17/99), Bending moments M	61
3.3.6 Plate, SLV (West.(kh=0.06)) [Phase_20] (20/123), Bending moments M	62
3.3.7 Plate, SLV SISMA [Phase_7] (7/203), Bending moments M	62
3.3.8 Plate, LIQUEF.3 - Post-Sisma [Phase_24] (24/231), Bending moments M	63
3.3.9 Plate, SLU 1 (q=46, T=28) [Phase_10] (10/249), Bending moments M	63
3.3.10 Plate, SLU 2 (q=32, T=46) [Phase_11] (11/264), Bending moments M	64
3.3.11 Plate, SLE r1 (q=40, T=24) [Phase_12] (12/282), Bending moments M	64
3.3.12 Plate, SLE r2 (q=28, T=40) [Phase_13] (13/295), Bending moments M	65
3.3.13 Plate, SLE f3 (q=28, T=0) [Phase_14] (14/309), Bending moments M	65
3.3.14 Plate, SLE f4 (q=24, T=8) [Phase_15] (15/322), Bending moments M	66
3.3.15 Plate, SLE qp5 (q=24, T=0) [Phase_19] (19/336), Bending moments M	66
3.3.16 Plate, Ecc1 (q=24, T=0) [Phase_21] (21/388), Bending moments M	67
3.3.17 Plate, A2+M2 [Phase_25] (18/440), Bending moments M	67
3.3.18 Plate, ANALISI STABILITA' [Phase_18] (22/562), Bending moments M	68
3.4.1 Node-to-node anchor, Initial phase [InitialPhase] (0/0), Anchor force for curves F N	68
3.4.2 Node-to-node anchor, Paratia esistente [Phase_1] (1/5), Anchor force for curves F N	69
3.4.3 Node-to-node anchor, Escavo +1m e tirante p=200kN/m [Phase_2] (2/9), Anchor force for curves F N	69
3.4.4 Node-to-node anchor, Escavo -11.50m [Phase_3] (3/15), Anchor force for curves F N	70
3.4.5 Node-to-node anchor, Ribasso monte +1m [Phase_4] (4/18), Anchor force for curves F N	70
3.4.6 Node-to-node anchor, Nuova paratia+solettone [Phase_5] (5/25), Anchor force for curves F N	71
3.4.7 Node-to-node anchor, Rinterro +2.50m e disattivo vecchio tirante [Phase_8] (8/34), Anchor force for curves F N	71
3.4.8 Node-to-node anchor, Escavo -15.0m [Phase_9] (9/64), Anchor force for curves F N	72
3.4.9 Node-to-node anchor, SLD q=24kPa+west [Phase_16] (16/82), Anchor force for curves F N	72
3.4.10 Node-to-node anchor, SLD_SISMA [Phase_17] (17/99), Anchor force for curves F N	73
3.4.11 Node-to-node anchor, SLV (West.(kh=0.06)) [Phase_20] (20/123), Anchor force for curves F N	73
3.4.12 Node-to-node anchor, SLV SISMA [Phase_7] (7/203), Anchor force for curves F N	74
3.4.13 Node-to-node anchor, LIQUEF.3 - Post-Sisma [Phase_24] (24/231), Anchor force for curves F N	74
3.4.14 Node-to-node anchor, SLU 1 (q=46, T=28) [Phase_10] (10/249), Anchor force for curves F N	75
3.4.15 Node-to-node anchor, SLU 2 (q=32, T=46) [Phase_11] (11/264), Anchor force for curves F N	75
3.4.16 Node-to-node anchor, SLE r1 (q=40, T=24) [Phase_12] (12/282), Anchor force for curves F N	76
3.4.17 Node-to-node anchor, SLE r2 (q=28, T=40) [Phase_13] (13/295), Anchor force for curves F N	76
3.4.18 Node-to-node anchor, SLE f3 (q=28, T=0) [Phase_14] (14/309), Anchor force for curves F N	77
3.4.19 Node-to-node anchor, SLE f4 (q=24, T=8) [Phase_15] (15/322), Anchor force for curves F N	77
3.4.20 Node-to-node anchor, SLE qp5 (q=24, T=0) [Phase_19] (19/336), Anchor force for curves F N	78

3.4.21 Node-to-node anchor, Ecc1 (q=24, T=0) [Phase_21] (21/388), Anchor force for curves F N	78
3.5.1 Geogrid, Initial phase [InitialPhase] (0/0), Axial forces N	79
3.5.2 Geogrid, Paratia esistente [Phase_1] (1/5), Axial forces N	79
3.5.3 Geogrid, Escavo +1m e tirante p=200kN/m [Phase_2] (2/9), Axial forces N	80
3.5.4 Geogrid, Escavo -11.50m [Phase_3] (3/15), Axial forces N	80
3.5.5 Geogrid, Ribasso monte +1m [Phase_4] (4/18), Axial forces N	81
3.5.6 Geogrid, Nuova paratia+solettone [Phase_5] (5/25), Axial forces N	81
3.5.7 Geogrid, Rinterro +2.50m e disattivo vecchio tirante [Phase_8] (8/34), Axial forces N	82
3.5.8 Geogrid, Escavo -15.0m [Phase_9] (9/64), Axial forces N	82
3.5.9 Geogrid, SLD q=24kPa+west [Phase_16] (16/82), Axial forces N	83
3.5.10 Geogrid, SLD_SISMA [Phase_17] (17/99), Axial forces N	83
3.5.11 Geogrid, SLV (West.(kh=0.06)) [Phase_20] (20/123), Axial forces N	84
3.5.12 Geogrid, SLV SISMA [Phase_7] (7/203), Axial forces N	84
3.5.13 Geogrid, LIQUEF.3 - Post-Sisma [Phase_24] (24/231), Axial forces N	85
3.5.14 Geogrid, SLU 1 (q=46, T=28) [Phase_10] (10/249), Axial forces N	85
3.5.15 Geogrid, SLU 2 (q=32, T=46) [Phase_11] (11/264), Axial forces N	86
3.5.16 Geogrid, SLE r1 (q=40, T=24) [Phase_12] (12/282), Axial forces N	86
3.5.17 Geogrid, SLE r2 (q=28, T=40) [Phase_13] (13/295), Axial forces N	87
3.5.18 Geogrid, SLE f3 (q=28, T=0) [Phase_14] (14/309), Axial forces N	87
3.5.19 Geogrid, SLE f4 (q=24, T=8) [Phase_15] (15/322), Axial forces N	88
3.5.20 Geogrid, SLE qp5 (q=24, T=0) [Phase_19] (19/336), Axial forces N	88
3.5.21, Geogrid, Ecc1 (q=24, T=0) [Phase_21] (21/388), Axial forces N	89
3.5.22 Geogrid, A2+M2 [Phase_25] (18/440), Axial forces N	89
3.5.23 Geogrid, ANALISI STABILITA' [Phase_18] (22/562), Axial forces N	90
3.6.1 Geogrid, Nuova paratia+solettone [Phase_5] (5/25), Table of geogrid force envelopes	91
3.6.2 Geogrid, Rinterro +2.50m e disattivo vecchio tirante [Phase_8] (8/34), Table of geogrid force envelope	s 94
3.6.3 Geogrid, Escavo -15.0m [Phase_9] (9/64), Table of geogrid force envelopes	97
3.6.4 Geogrid, SLD q=24kPa+west [Phase_16] (16/82), Table of geogrid force envelopes	. 100
3.6.5 Geogrid, SLD_SISMA [Phase_17] (17/99), Table of geogrid force envelopes	. 103
3.6.6 Geogrid, SLV (West.(kh=0.06)) [Phase_20] (20/123), Table of geogrid force envelopes	. 106
3.6.7 Geogrid, SLV SISMA [Phase_7] (7/203), Table of geogrid force envelopes	. 109
3.6.8 Geogrid, LIQUEF.3 - Post-Sisma [Phase_24] (24/231), Table of geogrid force envelopes	. 112
3.6.9 Geogrid, SLU 1 (q=46, T=28) [Phase_10] (10/249), Table of geogrid force envelopes	. 115
3.6.10 Geogrid, SLU 2 (q=32, T=46) [Phase_11] (11/264), Table of geogrid force envelopes	. 118
3.6.11 Geogrid, SLE r1 (q=40, T=24) [Phase_12] (12/282), Table of geogrid force envelopes	. 121
3.6.12 Geogrid, SLE r2 (q=28, T=40) [Phase_13] (13/295), Table of geogrid force envelopes	. 124
3.6.13 Geogrid, SLE f3 (q=28, T=0) [Phase_14] (14/309), Table of geogrid force envelopes	. 127
3.6.14 Geogrid, SLE f4 (q=24, T=8) [Phase_15] (15/322), Table of geogrid force envelopes	. 130

3.6.15 Geogrid, SLE qp5 (q=24, T=0) [Phase_19] (19/336), Table of geogrid force envelopes	133
3.6.16 Geogrid, A2+M2 [Phase_25] (18/440), Table of geogrid force envelopes	136
3.6.17 Geogrid, ANALISI STABILITA' [Phase_18] (22/562), Table of geogrid force envelopes	139
3.7.1 Embedded beam row, Initial phase [InitialPhase] (0/0), Total displacements ux	142
3.7.2 Embedded beam row, Paratia esistente [Phase_1] (1/5), Total displacements u _x	142
3.7.3 Embedded beam row, Escavo +1m e tirante p=200kN/m [Phase_2] (2/9), Total displacements u_x	143
3.7.4 Embedded beam row, Escavo -11.50m [Phase_3] (3/15), Total displacements ux	143
3.7.5 Embedded beam row, Ribasso monte +1m [Phase_4] (4/18), Total displacements u_x	144
3.7.6 Embedded beam row, Nuova paratia+solettone [Phase_5] (5/25), Total displacements u_x	144
3.7.7 Embedded beam row, Rinterro +2.50m e disattivo vecchio tirante [Phase_8] (8/34), Total displacemer	nts u _x 145
3.7.8 Embedded beam row, Escavo -15.0m [Phase_9] (9/64), Total displacements u _x	145
3.7.9 Embedded beam row, SLD q=24kPa+west [Phase_16] (16/82), Total displacements u _x	146
3.7.10 Embedded beam row, SLD_SISMA [Phase_17] (17/99), Total displacements u_x	146
3.7.11 Embedded beam row, SLV (West.(kh=0.06)) [Phase_20] (20/123), Total displacements u _x	147
3.7.12 Embedded beam row, SLV SISMA [Phase_7] (7/203), Total displacements u _x	147
3.7.13 Embedded beam row, LIQUEF.3 - Post-Sisma [Phase_24] (24/231), Total displacements ux	148
3.7.14 Embedded beam row, SLU 1 (q=46, T=28) [Phase_10] (10/249), Total displacements u _x	148
3.7.15 Embedded beam row, SLU 2 (q=32, T=46) [Phase_11] (11/264), Total displacements u _x	149
3.7.16 Embedded beam row, SLE r1 (q=40, T=24) [Phase_12] (12/282), Total displacements u _x	149
3.7.17 Embedded beam row, SLE r2 (q=28, T=40) [Phase_13] (13/295), Total displacements u _x	150
3.7.18 Embedded beam row, SLE f3 (q=28, T=0) [Phase_14] (14/309), Total displacements u _x	150
3.7.19 Embedded beam row, SLE f4 (q=24, T=8) [Phase_15] (15/322), Total displacements u _x	151
3.7.20 Embedded beam row, SLE qp5 (q=24, T=0) [Phase_19] (19/336), Total displacements u _x	151
3.7.21 Embedded beam row, Ecc1 (q=24, T=0) [Phase_21] (21/388), Total displacements ux	152
3.7.22 Embedded beam row, A2+M2 [Phase_25] (18/440), Total displacements u _x	152
3.7.23 Embedded beam row, Disattivo vecchia paratia [Phase_6] (6/502), Total displacements ux	153
3.7.24 Embedded beam row, ANALISI STABILITA' [Phase_18] (22/562), Total displacements ux	153
3.8.1 Embedded beam row, Initial phase [InitialPhase] (0/0), Shear forces Q	154
3.8.2 Embedded beam row, Paratia esistente [Phase_1] (1/5), Shear forces Q	154
3.8.3 Embedded beam row, Escavo +1m e tirante p=200kN/m [Phase_2] (2/9), Shear forces Q	155
3.8.4 Embedded beam row, Escavo -11.50m [Phase_3] (3/15), Shear forces Q	155
3.8.5 Embedded beam row, Ribasso monte +1m [Phase_4] (4/18), Shear forces Q	156
3.8.6 Embedded beam row, Nuova paratia+solettone [Phase_5] (5/25), Shear forces Q	156
3.8.7 Embedded beam row, Rinterro +2.50m e disattivo vecchio tirante [Phase_8] (8/34), Shear forces Q	157
3.8.8 Embedded beam row, Escavo -15.0m [Phase_9] (9/64), Shear forces Q	157
3.8.9 Embedded beam row, SLD q=24kPa+west [Phase_16] (16/82), Shear forces Q	158
3.8.10 Embedded beam row, SLD_SISMA [Phase_17] (17/99), Shear forces Q	158

3.8.11 Embedded beam row, SLV (West.(kh=0.06)) [Phase_20] (20/123), Shear forces Q	159
3.8.12 Embedded beam row, SLV SISMA [Phase_7] (7/203), Shear forces Q	159
3.8.13 Embedded beam row, LIQUEF.3 - Post-Sisma [Phase_24] (24/231), Shear forces Q	160
3.8.14 Embedded beam row, SLU 1 (q=46, T=28) [Phase_10] (10/249), Shear forces Q	160
3.8.15 Embedded beam row, SLU 2 (q=32, T=46) [Phase_11] (11/264), Shear forces Q	161
3.8.16 Embedded beam row, SLE r1 (q=40, T=24) [Phase_12] (12/282), Shear forces Q	161
3.8.17 Embedded beam row, SLE r2 (q=28, T=40) [Phase_13] (13/295), Shear forces Q	162
3.8.18 Embedded beam row, SLE f3 (q=28, T=0) [Phase_14] (14/309), Shear forces Q	162
3.8.19 Embedded beam row, SLE f4 (q=24, T=8) [Phase_15] (15/322), Shear forces Q	163
3.8.20 Embedded beam row, SLE qp5 (q=24, T=0) [Phase_19] (19/336), Shear forces Q	163
3.8.21 Embedded beam row, Ecc1 (q=24, T=0) [Phase_21] (21/388), Shear forces Q	164
3.8.22 Embedded beam row, A2+M2 [Phase_25] (18/440), Shear forces Q	164
3.8.24 Embedded beam row, ANALISI STABILITA' [Phase_18] (22/562), Shear forces Q	165
3.9.1 Embedded beam row, Initial phase [InitialPhase] (0/0), Bending moments M	165
3.9.2 Embedded beam row, Paratia esistente [Phase_1] (1/5), Bending moments M	166
3.9.3 Embedded beam row, Escavo +1m e tirante p=200kN/m [Phase_2] (2/9), Bending moments M	166
3.9.4 Embedded beam row, Escavo -11.50m [Phase_3] (3/15), Bending moments M	167
3.9.5 Embedded beam row, Ribasso monte +1m [Phase_4] (4/18), Bending moments M	167
3.9.6 Embedded beam row, Nuova paratia+solettone [Phase_5] (5/25), Bending moments M	168
3.9.7 Embedded beam row, Rinterro +2.50m e disattivo vecchio tirante [Phase_8] (8/34), Bending mome	nts M
	168
3.9.8 Embedded beam row, Escavo -15.0m [Phase_9] (9/64), Bending moments M	169
3.9.9 Embedded beam row, SLD q=24kPa+west [Phase_16] (16/82), Bending moments M	169
3.9.10 Embedded beam row, SLD_SISMA [Phase_17] (17/99), Bending moments M	170
3.9.11 Embedded beam row, SLV (West.(kh=0.06)) [Phase_20] (20/123), Bending moments M	170
3.9.12 Embedded beam row, SLV SISMA [Phase_7] (7/203), Bending moments M	171
3.9.13 Embedded beam row, LIQUEF.3 - Post-Sisma [Phase_24] (24/231), Bending moments M	171
3.9.14 Embedded beam row, SLU 1 (q=46, T=28) [Phase_10] (10/249), Bending moments M	172
	172
3.9.15 Embedded beam row, SLU 2 (q=32, T=46) [Phase_11] (11/264), Bending moments M	
3.9.15 Embedded beam row, SLU 2 (q=32, T=46) [Phase_11] (11/264), Bending moments M 3.9.16 Embedded beam row, SLE r1 (q=40, T=24) [Phase_12] (12/282), Bending moments M	173
3.9.15 Embedded beam row, SLU 2 (q=32, T=46) [Phase_11] (11/264), Bending moments M 3.9.16 Embedded beam row, SLE r1 (q=40, T=24) [Phase_12] (12/282), Bending moments M 3.9.17 Embedded beam row, SLE r2 (q=28, T=40) [Phase_13] (13/295), Bending moments M	173 173
 3.9.15 Embedded beam row, SLU 2 (q=32, T=46) [Phase_11] (11/264), Bending moments M 3.9.16 Embedded beam row, SLE r1 (q=40, T=24) [Phase_12] (12/282), Bending moments M 3.9.17 Embedded beam row, SLE r2 (q=28, T=40) [Phase_13] (13/295), Bending moments M 3.9.18 Embedded beam row, SLE f3 (q=28, T=0) [Phase_14] (14/309), Bending moments M 	173 173 174
 3.9.15 Embedded beam row, SLU 2 (q=32, T=46) [Phase_11] (11/264), Bending moments M 3.9.16 Embedded beam row, SLE r1 (q=40, T=24) [Phase_12] (12/282), Bending moments M 3.9.17 Embedded beam row, SLE r2 (q=28, T=40) [Phase_13] (13/295), Bending moments M 3.9.18 Embedded beam row, SLE f3 (q=28, T=0) [Phase_14] (14/309), Bending moments M 3.9.19 Embedded beam row, SLE f4 (q=24, T=8) [Phase_15] (15/322), Bending moments M 	173 173 174 174
 3.9.15 Embedded beam row, SLU 2 (q=32, T=46) [Phase_11] (11/264), Bending moments M 3.9.16 Embedded beam row, SLE r1 (q=40, T=24) [Phase_12] (12/282), Bending moments M 3.9.17 Embedded beam row, SLE r2 (q=28, T=40) [Phase_13] (13/295), Bending moments M 3.9.18 Embedded beam row, SLE f3 (q=28, T=0) [Phase_14] (14/309), Bending moments M 3.9.19 Embedded beam row, SLE f4 (q=24, T=8) [Phase_15] (15/322), Bending moments M 3.9.20 Embedded beam row, SLE qp5 (q=24, T=0) [Phase_19] (19/336), Bending moments M 	173 173 174 174 175
 3.9.15 Embedded beam row, SLU 2 (q=32, T=46) [Phase_11] (11/264), Bending moments M 3.9.16 Embedded beam row, SLE r1 (q=40, T=24) [Phase_12] (12/282), Bending moments M 3.9.17 Embedded beam row, SLE r2 (q=28, T=40) [Phase_13] (13/295), Bending moments M 3.9.18 Embedded beam row, SLE f3 (q=28, T=0) [Phase_14] (14/309), Bending moments M 3.9.19 Embedded beam row, SLE f4 (q=24, T=8) [Phase_15] (15/322), Bending moments M 3.9.20 Embedded beam row, SLE qp5 (q=24, T=0) [Phase_19] (19/336), Bending moments M 3.9.21 Embedded beam row, Ecc1 (q=24, T=0) [Phase_21] (21/388), Bending moments M 	173 173 174 174 175 175
 3.9.15 Embedded beam row, SLU 2 (q=32, T=46) [Phase_11] (11/264), Bending moments M 3.9.16 Embedded beam row, SLE r1 (q=40, T=24) [Phase_12] (12/282), Bending moments M 3.9.17 Embedded beam row, SLE r2 (q=28, T=40) [Phase_13] (13/295), Bending moments M 3.9.18 Embedded beam row, SLE f3 (q=28, T=0) [Phase_14] (14/309), Bending moments M 3.9.19 Embedded beam row, SLE f4 (q=24, T=8) [Phase_15] (15/322), Bending moments M 3.9.20 Embedded beam row, SLE qp5 (q=24, T=0) [Phase_19] (19/336), Bending moments M	173 173 174 174 175 175 176
 3.9.15 Embedded beam row, SLU 2 (q=32, T=46) [Phase_11] (11/264), Bending moments M 3.9.16 Embedded beam row, SLE r1 (q=40, T=24) [Phase_12] (12/282), Bending moments M 3.9.17 Embedded beam row, SLE r2 (q=28, T=40) [Phase_13] (13/295), Bending moments M 3.9.18 Embedded beam row, SLE f3 (q=28, T=0) [Phase_14] (14/309), Bending moments M 3.9.19 Embedded beam row, SLE f4 (q=24, T=8) [Phase_15] (15/322), Bending moments M 3.9.20 Embedded beam row, SLE qp5 (q=24, T=0) [Phase_19] (19/336), Bending moments M 3.9.21 Embedded beam row, Ecc1 (q=24, T=0) [Phase_21] (21/388), Bending moments M 3.9.22 Embedded beam row, A2+M2 [Phase_25] (18/440), Bending moments M	173 173 174 174 175 175 176 176

3.10.1 Embedded beam row, Initial phase [InitialPhase] (0/0), Axial forces N	177
3.10.2 Embedded beam row, Paratia esistente [Phase_1] (1/5), Axial forces N	178
3.10.3 Embedded beam row, Escavo +1m e tirante p=200kN/m [Phase_2] (2/9), Axial forces N	178
3.10.4 Embedded beam row, Escavo -11.50m [Phase_3] (3/15), Axial forces N	179
3.10.5 Embedded beam row, Ribasso monte +1m [Phase_4] (4/18), Axial forces N	179
3.10.6 Embedded beam row, Nuova paratia+solettone [Phase_5] (5/25), Axial forces N	180
3.10.7 Embedded beam row, Rinterro +2.50m e disattivo vecchio tirante [Phase_8] (8/34), Axial forces N	180
3.10.8 Embedded beam row, Escavo -15.0m [Phase_9] (9/64), Axial forces N	181
3.10.9 Embedded beam row, SLD q=24kPa+west [Phase_16] (16/82), Axial forces N	181
3.10.10 Embedded beam row, SLD_SISMA [Phase_17] (17/99), Axial forces N	182
3.10.11 Embedded beam row, SLV (West.(kh=0.06)) [Phase_20] (20/123), Axial forces N	182
3.10.12 Embedded beam row, SLV SISMA [Phase_7] (7/203), Axial forces N	183
3.10.13 Embedded beam row, LIQUEF.3 - Post-Sisma [Phase_24] (24/231), Axial forces N	183
3.10.14 Embedded beam row, SLU 1 (q=46, T=28) [Phase_10] (10/249), Axial forces N	184
3.10.15 Embedded beam row, SLU 2 (q=32, T=46) [Phase_11] (11/264), Axial forces N	184
3.10.16 Embedded beam row, SLE r1 (q=40, T=24) [Phase_12] (12/282), Axial forces N	185
3.10.17 Embedded beam row, SLE r2 (q=28, T=40) [Phase_13] (13/295), Axial forces N	185
3.10.18 Embedded beam row, SLE f3 (q=28, T=0) [Phase_14] (14/309), Axial forces N	186
3.10.19 Embedded beam row, SLE f4 (q=24, T=8) [Phase_15] (15/322), Axial forces N	186
3.10.20 Embedded beam row, SLE qp5 (q=24, T=0) [Phase_19] (19/336), Axial forces N	187
3.10.21 Embedded beam row, Ecc1 (q=24, T=0) [Phase_21] (21/388), Axial forces N	187
3.10.22 Embedded beam row, A2+M2 [Phase_25] (18/440), Axial forces N	188
3.10.23 Embedded beam row, ANALISI STABILITA' [Phase_18] (22/562), Axial forces N	188

1.Materials

1.1.1.1Soil and interfaces - Hardening soil (1/6)

Identification		Р	P_ridotto	A1_E=15_ridotto	A2_ridotto	A1_E=15
Identification number		1	2	5	6	7
Drainage type		Drained	Drained	Drained	Drained	Drained
Colour						
Comments						
γunsat	kN/m³	18.00	18.00	19.00	19.00	19.00
γsat	kN/m ³	18.00	18.00	19.00	19.00	19.00
Dilatancy cut-off		No	No	No	No	No
e _{init}		0.5000	0.5000	0.5000	0.5000	0.5000
e _{min}		0.000	0.000	0.000	0.000	0.000
e _{max}		999.0	999.0	999.0	999.0	999.0
Rayleigh α		0.000	0.000	0.000	0.000	0.000
Rayleigh β		0.000	0.000	0.000	0.000	0.000
E_{50}^{ref}	kN/m²	7000	7000	15.00E3	50.00E3	15.00E3
$E_{\text{oed}}^{\text{ref}}$	kN/m²	7000	7000	15.00E3	50.00E3	15.00E3
Eur ^{ref}	kN/m²	28.00E3	28.00E3	60.00E3	100.0E3	60.00E3
power (m)		0.8000	0.8000	0.8000	0.8000	0.8000
Use alternatives		No	No	No	No	No
Cc		0.01331	0.01331	0.03496	0.01028	0.03496
Cs		2.471E-3	2.471E-3	6.493E-3	4.284E-3	6.493E-3
e _{init}		0.5000	0.5000	0.5000	0.5000	0.5000
C _{ref}	kN/m²	2.500	0.000	4.000	0.000	5.000
φ (phi)	0	28.00	23.00	24.00	29.26	29.00
ψ (psi)	0	0.000	0.000	0.000	0.000	0.000
Set to default values		No	No	No	No	No
Vur		0.3000	0.3000	0.3000	0.2500	0.3000
pref	kN/m ²	27.00	27.00	152.0	149.0	152.0
K0 ^{nc}		0.5305	0.6093	0.5933	0.5112	0.5152
c _{inc}	kN/m²/m	0.000	0.000	0.000	0.000	0.000
y _{ref}	m	0.000	0.000	0.000	0.000	0.000
R _f		0.9000	0.9000	0.9000	0.9000	0.9000
Tension cut-off		Yes	Yes	Yes	Yes	Yes
Tensile strength	kN/m ²	0.000	0.000	0.000	0.000	0.000
Undrained behaviour		Standard	Standard	Standard	Standard	Standard
Skempton-B		0.9783	0.9783	0.9783	0.9833	0.9783
ν_{u}		0.4950	0.4950	0.4950	0.4950	0.4950
$K_{w,ref} \ / \ n$	kN/m ²	1.050E6	1.050E6	2.250E6	3.920E6	2.250E6
Stiffness		Standard	Standard	Standard	Standard	Standard
Strength		Manual	Manual	Manual	Manual	Manual
R _{inter}		0.7000	0.7000	0.7000	0.7000	0.7000

Identification		Р	P_ridotto	A1_E=15_ridotto	A2_ridotto	A1_E=15
Consider gap closure		Yes	Yes	Yes	Yes	Yes
δ _{inter}		0.000	0.000	0.000	0.000	0.000
Cross permeability		Impermeable	Impermeable	Impermeable	Impermeable	Impermeable
Drainage conductivity, dk	m³/day/m	0.000	0.000	0.000	0.000	0.000
K ₀ determination		Automatic	Automatic	Automatic	Automatic	Automatic
$K_{0,x}=K_{0,z}$		Yes	Yes	Yes	Yes	Yes
K _{0,x}		0.5305	0.6093	0.5933	0.5112	0.5152
K _{0,z}		0.5305	0.6093	0.5933	0.5112	0.5152
OCR		1.000	1.000	1.000	1.000	1.000
РОР	kN/m²	0.000	0.000	0.000	0.000	0.000
Data set		Standard	Standard	Standard	Standard	Standard
Туре		Coarse	Coarse	Coarse	Coarse	Coarse
< 2 µm	%	10.00	10.00	10.00	10.00	10.00
2 μm - 50 μm	%	13.00	13.00	13.00	13.00	13.00
50 μm - 2 mm	%	77.00	77.00	77.00	77.00	77.00
Use defaults		None	None	None	None	None
k _x	m/day	0.000	0.000	0.000	0.000	0.000
ky	m/day	0.000	0.000	0.000	0.000	0.000
-Ųunsat	m	10.00E3	10.00E3	10.00E3	10.00E3	10.00E3
e _{init}		0.5000	0.5000	0.5000	0.5000	0.5000
Ss	1/m	0.000	0.000	0.000	0.000	0.000
c _k		1000E12	1000E12	1000E12	1000E12	1000E12

1.1.1.2 Soil and interfaces - Hardening soil (2/6)

Identification		A2	M1	M2	M1_ridotto	M2_ridotto
Identification number		8	9	10	11	12
Drainage type		Drained	Drained	Drained	Drained	Drained
Colour						
Comments						
γunsat	kN/m ³	19.00	18.50	18.50	18.50	18.50
γsat	kN/m ³	19.00	18.50	18.50	18.50	18.50
Dilatancy cut-off		No	No	No	No	No
e _{init}		0.5000	0.5000	0.5000	0.5000	0.5000
e _{min}		0.000	0.000	0.000	0.000	0.000
e _{max}		999.0	999.0	999.0	999.0	999.0
Rayleigh α		0.000	0.000	0.000	0.000	0.000
Rayleigh β		0.000	0.000	0.000	0.000	0.000
E_{50}^{ref}	kN/m ²	50.00E3	9000	12.00E3	9000	12.00E3
E _{oed} ^{ref}	kN/m ²	50.00E3	9000	12.00E3	9000	12.00E3
E _{ur} ref	kN/m ²	100.0E3	36.00E3	48.00E3	36.00E3	48.00E3
power (m)		0.8000	0.8000	0.8000	0.8000	0.8000
Use alternatives		No	No	No	No	No
Cc		0.01028	0.03335	0.03306	0.03335	0.03306
Cs		4.284E-3	6.194E-3	6.140E-3	6.194E-3	6.140E-3
e _{init}		0.5000	0.5000	0.5000	0.5000	0.5000
C _{ref}	kN/m ²	0.000	5.000	5.000	4.000	4.000
φ (phi)	0	35.00	29.00	30.00	24.00	24.80
ψ (psi)	0	0.000	0.000	0.000	0.000	0.000
Set to default values		No	No	No	No	No
Vur		0.2500	0.3000	0.3000	0.3000	0.3000
Pref	kN/m²	149.0	87.00	115.0	87.00	115.0
K0 ^{nc}		0.4264	0.5152	0.5000	0.5933	0.5805
c _{inc}	kN/m²/m	0.000	0.000	0.000	0.000	0.000
y _{ref}	m	0.000	0.000	0.000	0.000	0.000
R _f		0.9000	0.9000	0.9000	0.9000	0.9000
Tension cut-off		Yes	Yes	Yes	Yes	Yes
Tensile strength	kN/m²	0.000	0.000	0.000	0.000	0.000
Undrained behaviour		Standard	Standard	Standard	Standard	Standard
Skempton-B		0.9833	0.9783	0.9783	0.9783	0.9783
ν_u		0.4950	0.4950	0.4950	0.4950	0.4950
K _{w,ref} / n	kN/m²	3.920E6	1.350E6	1.800E6	1.350E6	1.800E6
Stiffness		Standard	Standard	Standard	Standard	Standard
Strength		Manual	Manual	Manual	Manual	Manual
R _{inter}		0.7000	0.7000	0.7000	0.7000	0.7000

Identification		A2	M1	M2	M1_ridotto	M2_ridotto
Consider gap closure		Yes	Yes	Yes	Yes	Yes
δ _{inter}		0.000	0.000	0.000	0.000	0.000
Cross permeability		Impermeable	Impermeable	Impermeable	Impermeable	Impermeable
Drainage conductivity, dk	m³/day/m	0.000	0.000	0.000	0.000	0.000
K ₀ determination		Automatic	Automatic	Automatic	Automatic	Automatic
$K_{0,x} = K_{0,z}$		Yes	Yes	Yes	Yes	Yes
K _{0,x}		0.4264	0.5152	0.5000	0.5933	0.5805
K _{0,z}		0.4264	0.5152	0.5000	0.5933	0.5805
OCR		1.000	1.000	1.000	1.000	1.000
РОР	kN/m²	0.000	0.000	0.000	0.000	0.000
Data set		Standard	Standard	Standard	Standard	Standard
Туре		Coarse	Coarse	Coarse	Coarse	Coarse
< 2 µm	%	10.00	10.00	10.00	10.00	10.00
2 μm - 50 μm	%	13.00	13.00	13.00	13.00	13.00
50 μm - 2 mm	%	77.00	77.00	77.00	77.00	77.00
Use defaults		None	None	None	None	None
k _x	m/day	0.000	0.000	0.000	0.000	0.000
ky	m/day	0.000	0.000	0.000	0.000	0.000
-Yunsat	m	10.00E3	10.00E3	10.00E3	10.00E3	10.00E3
e _{init}		0.5000	0.5000	0.5000	0.5000	0.5000
Ss	1/m	0.000	0.000	0.000	0.000	0.000
c _k		1000E12	1000E12	1000E12	1000E12	1000E12

1.1.1.3 Soil and interfaces - Hardening soil (3/6)

Identification		R	R_ridotto	s	Т	S_ridotto
Identification number		13	14	15	16	17
Drainage type		Drained	Drained	Drained	Drained	Drained
Colour						
Comments						
γunsat	kN/m³	19.00	19.00	20.00	20.00	20.00
γ _{sat}	kN/m ³	19.00	19.00	20.00	20.00	20.00
Dilatancy cut-off		No	No	No	No	No
e _{init}		0.5000	0.5000	0.5000	0.5000	0.5000
e _{min}		0.000	0.000	0.000	0.000	0.000
e _{max}		999.0	999.0	999.0	999.0	999.0
Rayleigh α		0.000	0.000	0.000	0.000	0.000
Rayleigh β		0.000	0.000	0.000	0.000	0.000
E ₅₀ ^{ref}	kN/m ²	25.00E3	25.00E3	25.00E3	42.00E3	25.00E3
E _{oed} ^{ref}	kN/m ²	25.00E3	25.00E3	25.00E3	42.00E3	25.00E3
E _{ur} ref	kN/m ²	50.00E3	50.00E3	50.00E3	84.00E3	50.00E3
power (m)		0.5000	0.5000	0.5000	0.5000	0.5000
Use alternatives		No	No	No	No	No
Cc		2.070E-3	2.070E-3	5.934E-3	9.036E-3	5.934E-3
Cs		0.8625E-3	0.8625E-3	2.472E-3	3.765E-3	2.472E-3
e _{init}		0.5000	0.5000	0.5000	0.5000	0.5000
c _{ref}	kN/m²	0.000	0.000	0.000	0.000	0.000
φ (phi)	0	32.00	26.50	34.00	35.00	28.30
ψ (psi)	0	0.000	0.000	0.000	0.000	0.000
Set to default values		No	No	No	No	No
vur		0.2500	0.2500	0.2500	0.2500	0.2500
Pref	kN/m²	15.00	15.00	43.00	110.0	43.00
K0 ^{nc}		0.4701	0.5538	0.4408	0.4264	0.5259
c _{inc}	kN/m²/m	0.000	0.000	0.000	0.000	0.000
y _{ref}	m	0.000	0.000	0.000	0.000	0.000
Rf		0.9000	0.9000	0.9000	0.9000	0.9000
Tension cut-off		Yes	Yes	Yes	Yes	Yes
Tensile strength	kN/m²	0.000	0.000	0.000	0.000	0.000
Undrained behaviour		Standard	Standard	Standard	Standard	Standard
Skempton-B		0.9833	0.9833	0.9833	0.9833	0.9833
vu		0.4950	0.4950	0.4950	0.4950	0.4950
K _{w,ref} / n	kN/m²	1.960E6	1.960E6	1.960E6	3.293E6	1.960E6
Stiffness		Standard	Standard	Standard	Standard	Standard
Strength		Manual	Manual	Manual	Manual	Manual
R _{inter}		0.7000	0.7000	0.7000	0.7000	0.7000

Identification		R	R_ridotto	S	Т	S_ridotto
Consider gap closure		Yes	Yes	Yes	Yes	Yes
δ _{inter}		0.000	0.000	0.000	0.000	0.000
Cross permeability		Impermeable	Impermeable	Impermeable	Impermeable	Impermeable
Drainage conductivity, dk	m³/day/m	0.000	0.000	0.000	0.000	0.000
K ₀ determination		Automatic	Automatic	Automatic	Automatic	Automatic
$K_{0,x} = K_{0,z}$		Yes	Yes	Yes	Yes	Yes
K _{0,x}		0.4701	0.5538	0.4408	0.4264	0.5259
K _{0,z}		0.4701	0.5538	0.4408	0.4264	0.5259
OCR		1.000	1.000	1.000	1.000	1.000
РОР	kN/m ²	0.000	0.000	0.000	0.000	0.000
Data set		Standard	Standard	Standard	Standard	Standard
Туре		Coarse	Coarse	Coarse	Coarse	Coarse
< 2 µm	%	10.00	10.00	10.00	10.00	10.00
2 μm - 50 μm	%	13.00	13.00	13.00	13.00	13.00
50 μm - 2 mm	%	77.00	77.00	77.00	77.00	77.00
Use defaults		None	None	None	None	None
k _x	m/day	0.000	0.000	0.000	0.000	0.000
ky	m/day	0.000	0.000	0.000	0.000	0.000
-Ψunsat	m	10.00E3	10.00E3	10.00E3	10.00E3	10.00E3
e _{init}		0.5000	0.5000	0.5000	0.5000	0.5000
Ss	1/m	0.000	0.000	0.000	0.000	0.000
c _k		1000E12	1000E12	1000E12	1000E12	1000E12

1.1.1.4 Soil and interfaces - Hardening soil (4/6)

Identification		T ridotto	A1_E=22	A1_E=22_ridotto	A1_E=15_undrained	A1_E=22_undrained
Identification number		18	19	20	21	22
Drainage type		Drained	Drained	Drained	Undrained (A)	Undrained (A)
Colour						
Comments						
γunsat	kN/m ³	20.00	19.00	19.00	19.00	19.00
γsat	kN/m ³	20.00	19.00	19.00	19.00	19.00
Dilatancy cut-off		No	No	No	No	No
e _{init}		0.5000	0.5000	0.5000	0.5000	0.5000
e _{min}		0.000	0.000	0.000	0.000	0.000
e _{max}		999.0	999.0	999.0	999.0	999.0
Rayleigh α		0.000	0.000	0.000	0.000	0.000
Rayleigh β		0.000	0.000	0.000	0.000	0.000
E ₅₀ ^{ref}	kN/m ²	42.00E3	22.00E3	22.00E3	15.00E3	22.00E3
E _{oed} ^{ref}	kN/m ²	42.00E3	15.00E3	15.00E3	15.00E3	15.00E3
E _{ur} ref	kN/m ²	84.00E3	88.00E3	88.00E3	60.00E3	88.00E3
power (m)		0.5000	0.8000	0.8000	0.8000	0.8000
Use alternatives		No	No	No	No	No
Cc		9.036E-3	0.03496	0.03496	0.03496	0.03496
Cs		3.765E-3	4.427E-3	4.427E-3	6.493E-3	4.427E-3
e _{init}		0.5000	0.5000	0.5000	0.5000	0.5000
c _{ref}	kN/m ²	0.000	5.000	4.000	5.000	5.000
φ (phi)	o	29.20	29.00	24.00	29.00	29.00
ψ (psi)	o	0.000	0.000	0.000	0.000	0.000
Set to default values		No	No	No	No	No
ν_{ur}		0.2500	0.3000	0.3000	0.3000	0.3000
Pref	kN/m ²	110.0	152.0	152.0	152.0	152.0
K0 ^{nc}		0.5121	0.5152	0.5933	0.5152	0.5152
c _{inc}	kN/m²/m	0.000	0.000	0.000	0.000	0.000
Yref	m	0.000	0.000	0.000	0.000	0.000
R _f		0.9000	0.9000	0.9000	0.9000	0.9000
Tension cut-off		Yes	Yes	Yes	Yes	Yes
Tensile strength	kN/m ²	0.000	0.000	0.000	0.000	0.000
Undrained behaviour		Standard	Standard	Standard	Standard	Standard
Skempton-B		0.9833	0.9783	0.9783	0.9783	0.9783
ν_{u}		0.4950	0.4950	0.4950	0.4950	0.4950
K _{w,ref} / n	kN/m ²	3.293E6	3.300E6	3.300E6	2.250E6	3.300E6
Stiffness		Standard	Standard	Standard	Standard	Standard
Strength		Manual	Manual	Manual	Manual	Manual
R _{inter}		0.7000	0.7000	0.7000	0.7000	0.7000

Identification		T ridotto	A1_E=22	A1_E=22_ridotto	A1_E=15_undrained	A1_E=22_undrained
Consider gap closure		Yes	Yes	Yes	Yes	Yes
δ _{inter}		0.000	0.000	0.000	0.000	0.000
Cross permeability		Impermeable	Impermeable	Impermeable	Impermeable	Impermeable
Drainage conductivity, dk	m³/day/m	0.000	0.000	0.000	0.000	0.000
K ₀ determination		Automatic	Automatic	Automatic	Automatic	Automatic
$K_{0,x} = K_{0,z}$		Yes	Yes	Yes	Yes	Yes
K _{0,x}		0.5121	0.5152	0.5933	0.5152	0.5152
K _{0,z}		0.5121	0.5152	0.5933	0.5152	0.5152
OCR		1.000	1.000	1.000	1.000	1.000
РОР	kN/m ²	0.000	0.000	0.000	0.000	0.000
Data set		Standard	Standard	Standard	Standard	Standard
Туре		Coarse	Coarse	Coarse	Coarse	Coarse
< 2 µm	%	10.00	10.00	10.00	10.00	10.00
2 μm - 50 μm	%	13.00	13.00	13.00	13.00	13.00
50 μm - 2 mm	%	77.00	77.00	77.00	77.00	77.00
Use defaults		None	None	None	None	None
k _x	m/day	0.000	0.000	0.000	0.000	0.000
ky	m/day	0.000	0.000	0.000	0.000	0.000
-Ųunsat	m	10.00E3	10.00E3	10.00E3	10.00E3	10.00E3
e _{init}		0.5000	0.5000	0.5000	0.5000	0.5000
S _s	1/m	0.000	0.000	0.000	0.000	0.000
c _k		1000E12	1000E12	1000E12	1000E12	1000E12

1.1.1.5 Soil and interfaces - Hardening soil (5/6)

Identification		A2_undrained	M1_undrained	M2_undrained	P_undrained	R_undrained
Identification number		23	24	25	26	27
Drainage type		Undrained (A)				
Colour						
Comments						
γunsat	kN/m ³	19.00	18.50	18.50	18.00	19.00
γsat	kN/m ³	19.00	18.50	18.50	18.00	19.00
Dilatancy cut-off		No	No	No	No	No
e _{init}		0.5000	0.5000	0.5000	0.5000	0.5000
e _{min}		0.000	0.000	0.000	0.000	0.000
e _{max}		999.0	999.0	999.0	999.0	999.0
Rayleigh α		0.000	0.000	0.000	0.000	0.000
Rayleigh β		0.000	0.000	0.000	0.000	0.000
E ₅₀ ^{ref}	kN/m ²	50.00E3	9000	12.00E3	7000	25.00E3
E _{oed} ^{ref}	kN/m ²	50.00E3	9000	12.00E3	7000	25.00E3
E _{ur} ref	kN/m ²	100.0E3	36.00E3	48.00E3	28.00E3	50.00E3
power (m)		0.8000	0.8000	0.8000	0.8000	0.5000
Use alternatives		No	No	No	No	No
Cc		0.01028	0.03335	0.03306	0.01331	2.070E-3
Cs		4.284E-3	6.194E-3	6.140E-3	2.471E-3	0.8625E-3
e _{init}		0.5000	0.5000	0.5000	0.5000	0.5000
Cref	kN/m ²	0.000	5.000	5.000	2.500	0.000
φ (phi)	0	35.00	29.00	30.00	28.00	32.00
ψ (psi)	0	0.000	0.000	0.000	0.000	0.000
Set to default values		No	No	No	No	No
v _{ur}		0.2500	0.3000	0.3000	0.3000	0.2500
Pref	kN/m ²	149.0	87.00	115.0	27.00	15.00
K ₀ ^{nc}		0.4264	0.5152	0.5000	0.5305	0.4701
Cinc	kN/m²/m	0.000	0.000	0.000	0.000	0.000
Yref	m	0.000	0.000	0.000	0.000	0.000
R _f		0.9000	0.9000	0.9000	0.9000	0.9000
Tension cut-off		Yes	Yes	Yes	Yes	Yes
Tensile strength	kN/m ²	0.000	0.000	0.000	0.000	0.000
Undrained behaviour		Standard	Standard	Standard	Standard	Standard
Skempton-B		0.9833	0.9783	0.9783	0.9783	0.9833
ν_{u}		0.4950	0.4950	0.4950	0.4950	0.4950
K _{w,ref} / n	kN/m ²	3.920E6	1.350E6	1.800E6	1.050E6	1.960E6
Stiffness		Standard	Standard	Standard	Standard	Standard
Strength		Manual	Manual	Manual	Manual	Manual
R _{inter}		0.7000	0.7000	0.7000	0.7000	0.7000

Identification		A2_undrained	M1_undrained	M2_undrained	P_undrained	R_undrained
Consider gap closure		Yes	Yes	Yes	Yes	Yes
δ _{inter}		0.000	0.000	0.000	0.000	0.000
Cross permeability		Impermeable	Impermeable	Impermeable	Impermeable	Impermeable
Drainage conductivity, dk	m³/day/m	0.000	0.000	0.000	0.000	0.000
K ₀ determination		Automatic	Automatic	Automatic	Automatic	Automatic
$K_{0,x}=K_{0,z}$		Yes	Yes	Yes	Yes	Yes
K _{0,x}		0.4264	0.5152	0.5000	0.5305	0.4701
K _{0,z}		0.4264	0.5152	0.5000	0.5305	0.4701
OCR		1.000	1.000	1.000	1.000	1.000
РОР	kN/m²	0.000	0.000	0.000	0.000	0.000
Data set		Standard	Standard	Standard	Standard	Standard
Туре		Coarse	Coarse	Coarse	Coarse	Coarse
< 2 µm	%	10.00	10.00	10.00	10.00	10.00
2 μm - 50 μm	%	13.00	13.00	13.00	13.00	13.00
50 μm - 2 mm	%	77.00	77.00	77.00	77.00	77.00
Use defaults		None	None	None	None	None
k _x	m/day	0.000	0.000	0.000	0.000	0.000
ky	m/day	0.000	0.000	0.000	0.000	0.000
-Yunsat	m	10.00E3	10.00E3	10.00E3	10.00E3	10.00E3
e _{init}		0.5000	0.5000	0.5000	0.5000	0.5000
Ss	1/m	0.000	0.000	0.000	0.000	0.000
c _k		1000E12	1000E12	1000E12	1000E12	1000E12

1.1.1.6 Soil and interfaces - Hardening soil (6/6)

Identification		S_undrained	T_undrained	S_liquefazione
Identification number		28	29	30
Drainage type		Undrained (A)	Undrained (A)	Drained
Colour				
Comments				
γunsat	kN/m³	20.00	20.00	20.00
γsat	kN/m³	20.00	20.00	20.00
Dilatancy cut-off		No	No	No
e _{init}		0.5000	0.5000	0.5000
e _{min}		0.000	0.000	0.000
e _{max}		999.0	999.0	999.0
Rayleigh α		0.000	0.000	0.000
Rayleigh β		0.000	0.000	0.000
E ₅₀ ^{ref}	kN/m ²	25.00E3	42.00E3	25.00E3
E_{oed}^{ref}	kN/m ²	25.00E3	42.00E3	25.00E3
E _{ur} ref	kN/m ²	50.00E3	84.00E3	50.00E3
power (m)		0.5000	0.5000	0.5000
Use alternatives		No	No	No
C _c		5.934E-3	9.036E-3	5.934E-3
Cs		2.472E-3	3.765E-3	2.472E-3
e _{init}		0.5000	0.5000	0.5000
C _{ref}	kN/m ²	0.000	0.000	0.000
φ (phi)	0	34.00	35.00	30.00
ψ (psi)	0	0.000	0.000	0.000
Set to default values		No	No	No
ν_{ur}		0.2500	0.2500	0.2500
p _{ref}	kN/m ²	43.00	110.0	43.00
K0 ^{nc}		0.4408	0.4264	0.5000
c _{inc}	kN/m²/m	0.000	0.000	0.000
y _{ref}	m	0.000	0.000	0.000
R _f		0.9000	0.9000	0.9000
Tension cut-off		Yes	Yes	Yes
Tensile strength	kN/m ²	0.000	0.000	0.000
Undrained behaviour		Standard	Standard	Standard
Skempton-B		0.9833	0.9833	0.9833
Vu		0.4950	0.4950	0.4950
K _{w,ref} / n	kN/m ²	1.960E6	3.293E6	1.960E6
Stiffness		Standard	Standard	Standard

Identification		S_undrained	T_undrained	S_liquefazione
Strength		Manual	Manual	Manual
R _{inter}		0.7000	0.7000	0.7000
Consider gap closure		Yes	Yes	Yes
δ_{inter}		0.000	0.000	0.000
Cross permeability		Impermeable	Impermeable	Impermeable
Drainage conductivity, dk	m³/day/m	0.000	0.000	0.000
K ₀ determination		Automatic	Automatic	Automatic
$K_{0,x} = K_{0,z}$		Yes	Yes	Yes
K _{0,x}		0.4408	0.4264	0.5000
K _{0,z}		0.4408	0.4264	0.5000
OCR		1.000	1.000	1.000
РОР	kN/m ²	0.000	0.000	0.000
Data set		Standard	Standard	Standard
Туре		Coarse	Coarse	Coarse
< 2 µm	%	10.00	10.00	10.00
2 μm - 50 μm	%	13.00	13.00	13.00
50 μm - 2 mm	%	77.00	77.00	77.00
Use defaults		None	None	None
k _x	m/day	0.000	0.000	0.000
k _y	m/day	0.000	0.000	0.000
-W _{unsat}	m	10.00E3	10.00E3	10.00E3
e _{init}		0.5000	0.5000	0.5000
Ss	1/m	0.000	0.000	0.000
c _k		1000E12	1000E12	1000E12

1.1.2.1 Soil and interfaces - Linear elastic

Identification		CLS
Identification number		3
Drainage type		Drained
Colour		
Comments		
Yunsat	kN/m ³	25.00
Ysat	kN/m ³	25.00
Dilatancy cut-off		No
e _{init}		0.5000
e _{min}		0.000
e _{max}		999.0
Rayleigh α		0.000
Rayleigh β		0.000
Е	kN/m ²	20.00E6
v (nu)		0.2000
G	kN/m ²	8.333E6
E _{oed}	kN/m ²	22.22E6
Vs	m/s	1808
V _p	m/s	2953
Set to default values		Yes
E _{ine}	kN/m²/m	0.000
y _{ref}	m	0.000
Undrained behaviour		Standard
Skempton-B		0.9866
Vu		0.4950
K _{w,ref} / n	kN/m ²	819.4E6
Stiffness		Standard
Strength		Rigid
R _{inter}		1.000
Consider gap closure		Yes
ð _{inter}		0.000
Cross permeability		Impermeable
Drainage conductivity, dk	m³/day/m	0.000
K ₀ determination		Automatic
$K_{0,x} = \overline{K_{0,z}}$		Yes
K _{0,x}		0.5000
K _{0,z}		0.5000
Data set		Standard

Identification		CLS
Туре		Coarse
< 2 µm	%	10.00
2 μm - 50 μm	%	13.00
50 μm - 2 mm	%	77.00
Use defaults		None
k _x	m/day	0.000
k _y	m/day	0.000
-¥unsat	m	10.00E3
Cinit		0.5000
Ss	1/m	0.000
Ck		1000E12

1.1.3.1 Soil and interfaces - Mohr-Coulomb

Identification		CLS_Degradato
Identification number		4
Drainage type		Drained
Colour		
Comments		
Yunsat	kN/m ³	25.00
γsat	kN/m ³	25.00
Dilatancy cut-off		No
e _{init}		0.5000
e _{min}		0.000
e _{max}		999.0
Rayleigh α		0.000
Rayleigh β		0.000
Е	kN/m ²	20.00E6
v (nu)		0.2000
G	kN/m ²	8.333E6
E _{oed}	kN/m ²	22.22E6
C _{ref}	kN/m ²	100.0
φ (phi)	o	30.00
ψ (psi)	٥	0.000
V _s	m/s	1808
V _p	m/s	2953
Set to default values		Yes
E _{ine}	kN/m²/m	0.000
y _{ref}	m	0.000
C _{inc}	kN/m²/m	0.000
y _{ref}	m	0.000
Tension cut-off		Yes
Tensile strength	kN/m ²	0.000
Undrained behaviour		Standard
Skempton-B		0.9866
Vu		0.4950
K _{w,ref} / n	kN/m ²	819.4E6
Stiffness		Standard
Strength		Rigid
R _{inter}		1.000
Consider gap closure		Yes
δ _{inter}		0.000

Identification		CLS_Degradato
Cross permeability		Impermeable
Drainage conductivity, dk	m³/day/m	0.000
K ₀ determination		Automatic
$K_{0,x} = K_{0,z}$		Yes
K _{0,x}		0.5000
K _{0,z}		0.5000
Data set		Standard
Туре		Coarse
< 2 µm	%	10.00
2 μm - 50 μm	%	13.00
50 μm - 2 mm	%	77.00
Use defaults		None
kx	m/day	0.000
ky	m/day	0.000
-¥unsat	m	10.00E3
Cinit		0.5000
Ss	1/m	0.000
c _k		1000E12

1.2 Plates -

Identification		solettone s=1m	PARATIA DI PALI D800/0.9
Identification number		1	2
Comments			
Colour			
Material type		Elastic	Elastic
Isotropic		Yes	Yes
EA1	kN/m	35.00E6	19.03E6
EA ₂	kN/m	35.00E6	19.03E6
EI	kN m²/m	2.905E6	761.3E3
d	m	0.9980	0.6929
w	kN/m/m	25.00	6.670
ν (nu)		0.2000	0.000
Rayleigh α		0.000	0.000
Rayleigh β		0.000	0.000
Prevent punching		No	No
Identification number		1	2

1.3 Geogrids -

Identification		autoperforante s90+bulbo/2.00m	Barra cava ø90 + bulbo d450/2m
Identification number		1	2
Comments			
Colour			
Material type		Elastic	Elastic
Isotropic		Yes	Yes
EA ₁	kN/m	352.0E3	1.590E6
EA ₂	kN/m	352.0E3	1.590E6
Identification number		1	2
Identification number		1	2

1.4 Anchors -

Identification		6cavi Dyform/2,70m	Barra cava ø90/2m
Identification number		1	2
Comments			
Colour			
Material type		Elastic	Elastic
EA	kN	75.15E3	518.7E3
L _{spacing}	m	1.000	2.000
Identification number		1	2
Identification number		1	2
Identification number		1	2

1.5 Embedded beam row -

Identification		paloø800/2.70 m	palo 1000/2.70m
Identification number		1	2
Comments			
Colour			
Material type		Elastic	Elastic
Е	kN/m ²	34.08E6	34.08E6
γ	kN/m ³	25.00	25.00
Beam type		Predefined	Predefined
Predefined beam type		Massive circular beam	Massive circular beam
Diameter	m	0.8000	1.000
А	m ²	0.5027	0.7854
I ₂	m ⁴	0.02011	0.04909
I ₃	m ⁴	0.02011	0.04909
Rayleigh α		0.000	0.000
Rayleigh β		0.000	0.000
Axial skin resistance		Layer dependent	Layer dependent
T _{max}	kN/m	1.000E12	1.000E12
F _{max}	kN	500.0	500.0
Identification number		1	2
Comments			
Colour			
Material type		Elastic	Elastic
Е	kN/m ²	34.08E6	34.08E6
γ	kN/m ³	25.00	25.00
Beam type		Predefined	Predefined
Predefined beam type		Massive circular beam	Massive circular beam
Diameter	m	0.8000	1.000
А	m ²	0.5027	0.7854
Ι	m ⁴	0.02011	0.04909
L _{spacing}	m	2.700	2.700
Rayleigh α		0.000	0.000
Rayleigh β		0.000	0.000
Axial skin resistance		Layer dependent	Layer dependent
T _{max}	kN/m	1.000E12	1.000E12
Lateral resistance		Unlimited	Unlimited
F _{max}	kN	500.0	500.0
Default values		Yes	Yes
Axial stiffness factor		1.004	1.187

Identification	paloø800/2.70 m	palo 1000/2.70m
Lateral stiffness factor	1.004	1.187
Base stiffness factor	10.04	11.87
Identification number	1	2

2. Calculation results

2.1.1 Initial phase [InitialPhase] (0/0), Total displacements u_x

2.1.2 Paratia esistente [Phase_1] (1/5), Total displacements u_x

2.1.3 Escavo +1m e tirante p=200kN/m [Phase_2] (2/9), Total displacements u_x

2.1.4 Escavo -11.50m [Phase_3] (3/15), Total displacements u_x

2.1.6 Nuova paratia+solettone [Phase_5] (5/25), Total displacements ux

2.1.7 Rinterro +2.50m e disattivo vecchio tirante [Phase_8] (8/34), Total displacements u_x

2.1.8 Escavo -15.0m [Phase_9] (9/64), Total displacements u_x

2.1.9 SLD q=24kPa+west [Phase_16] (16/82), Total displacements u_x

2.1.10 SLD_SISMA [Phase_17] (17/99), Total displacements u_x

2.1.12 SLV SISMA [Phase_7] (7/203), Total displacements u_x

2.1.13 LIQUEF.3 - Post-Sisma [Phase_24] (24/231), Total displacements ux

2.1.14 SLU 1 (q=46, T=28) [Phase_10] (10/249), Total displacements u_x

2.1.16 SLE r1 (q=40, T=24) [Phase_12] (12/282), Total displacements u_x

2.1.17 SLE r2 (q=28, T=40) [Phase_13] (13/295), Total displacements u_x

2.1.18 SLE f3 (q=28, T=0) [Phase_14] (14/309), Total displacements u_x

2.1.20 SLE qp5 (q=24, T=0) [Phase_19] (19/336), Total displacements u_x

2.1.22 A2+M2 [Phase_25] (18/440), Total displacements u_x

2.1.23 ANALISI STABILITA' [Phase_18] (22/562), Total displacements u_x

3. Calculation results

3.1.1 Plate, Nuova paratia+solettone [Phase_5] (5/25), Total displacements u_x

3.1.2 Plate, Rinterro +2.50m e disattivo vecchio tirante [Phase_8] (8/34), Total displacements u_x

3.1.3 Plate, Escavo -15.0m [Phase_9] (9/64), Total displacements u_x

3.1.4 Plate, SLD q=24kPa+west [Phase_16] (16/82), Total displacements u_x

3.1.5 Plate, SLD_SISMA [Phase_17] (17/99), Total displacements u_x

3.1.6 Plate, SLV (West.(kh=0.06)) [Phase_20] (20/123), Total displacements u_x

3.1.7 Plate, SLV SISMA [Phase_7] (7/203), Total displacements u_x

3.1.8 Plate, LIQUEF.3 - Post-Sisma [Phase_24] (24/231), Total displacements ux

3.1.9 Plate, SLU 1 (q=46, T=28) [Phase_10] (10/249), Total displacements u_x

3.1.10 Plate, SLU 2 (q=32, T=46) [Phase_11] (11/264), Total displacements u_x

3.1.11 Plate, SLE r1 (q=40, T=24) [Phase_12] (12/282), Total displacements u_x

3.1.12 Plate, SLE r2 (q=28, T=40) [Phase_13] (13/295), Total displacements u_x

3.1.13 Plate, SLE f3 (q=28, T=0) [Phase_14] (14/309), Total displacements u_x

3.1.14 Plate, SLE f4 (q=24, T=8) [Phase_15] (15/322), Total displacements u_x

3.1.15 Plate, SLE qp5 (q=24, T=0) [Phase_19] (19/336), Total displacements u_x

3.1.17 Plate, A2+M2 [Phase_25] (18/440), Total displacements u_x

3.1.18 Plate, ANALISI STABILITA' [Phase_18] (22/562), Total displacements u_x

3.2.1 Plate, Nuova paratia+solettone [Phase_5] (5/25), Shear forces Q

3.2.2 Plate, Rinterro +2.50m e disattivo vecchio tirante [Phase_8] (8/34), Shear forces Q

3.2.3 Plate, Escavo -15.0m [Phase_9] (9/64), Shear forces Q

3.2.5 Plate, SLD_SISMA [Phase_17] (17/99), Shear forces Q

3.2.7 Plate, SLV SISMA [Phase_7] (7/203), Shear forces Q

3.2.9 Plate, SLU 1 (q=46, T=28) [Phase_10] (10/249), Shear forces Q

3.2.11 Plate, SLE r1 (q=40, T=24) [Phase_12] (12/282), Shear forces Q

3.2.13 Plate, SLE f3 (q=28, T=0) [Phase_14] (14/309), Shear forces Q

3.2.15 Plate, SLE qp5 (q=24, T=0) [Phase_19] (19/336), Shear forces Q

3.2.17 Plate, A2+M2 [Phase_25] (18/440), Shear forces Q

3.3.1 Plate, Nuova paratia+solettone [Phase_5] (5/25), Bending moments M

3.3.3 Plate, Escavo -15.0m [Phase_9] (9/64), Bending moments M

3.3.5 Plate, SLD_SISMA [Phase_17] (17/99), Bending moments M

3.3.6 Plate, SLV (West.(kh=0.06)) [Phase_20] (20/123), Bending moments M

3.3.7 Plate, SLV SISMA [Phase_7] (7/203), Bending moments M

3.3.8 Plate, LIQUEF.3 - Post-Sisma [Phase_24] (24/231), Bending moments M

3.3.9 Plate, SLU 1 (q=46, T=28) [Phase_10] (10/249), Bending moments M

3.3.10 Plate, SLU 2 (q=32, T=46) [Phase_11] (11/264), Bending moments M

3.3.11 Plate, SLE r1 (q=40, T=24) [Phase_12] (12/282), Bending moments M

3.3.12 Plate, SLE r2 (q=28, T=40) [Phase_13] (13/295), Bending moments M

3.3.13 Plate, SLE f3 (q=28, T=0) [Phase_14] (14/309), Bending moments M

3.3.15 Plate, SLE qp5 (q=24, T=0) [Phase_19] (19/336), Bending moments M

3.3.16 Plate, Ecc1 (q=24, T=0) [Phase_21] (21/388), Bending moments M

3.3.17 Plate, A2+M2 [Phase_25] (18/440), Bending moments M

3.3.18 Plate, ANALISI STABILITA' [Phase_18] (22/562), Bending moments M

3.4.1 Node-to-node anchor, Initial phase [InitialPhase] (0/0), Anchor force for curves F N

3.4.3 Node-to-node anchor, Escavo +1m e tirante p=200kN/m [Phase_2] (2/9), Anchor force for curves F N

3.4.4 Node-to-node anchor, Escavo -11.50m [Phase_3] (3/15), Anchor force for curves F N

3.4.5 Node-to-node anchor, Ribasso monte +1m [Phase_4] (4/18), Anchor force for curves F N

3.4.6 Node-to-node anchor, Nuova paratia+solettone [Phase_5] (5/25), Anchor force for curves F N

3.4.7 Node-to-node anchor, Rinterro +2.50m e disattivo vecchio tirante [Phase_8] (8/34), Anchor force for curves F N

3.4.8 Node-to-node anchor, Escavo -15.0m [Phase_9] (9/64), Anchor force for curves F N

3.4.9 Node-to-node anchor, SLD q=24kPa+west [Phase_16] (16/82), Anchor force for curves F N

3.4.10 Node-to-node anchor, SLD_SISMA [Phase_17] (17/99), Anchor force for curves F N

3.4.11 Node-to-node anchor, SLV (West.(kh=0.06)) [Phase_20] (20/123), Anchor force for curves F N

3.4.12 Node-to-node anchor, SLV SISMA [Phase_7] (7/203), Anchor force for curves F N

3.4.13 Node-to-node anchor, LIQUEF.3 - Post-Sisma [Phase_24] (24/231), Anchor force for curves F N

3.4.14 Node-to-node anchor, SLU 1 (q=46, T=28) [Phase_10] (10/249), Anchor force for curves F N

3.4.15 Node-to-node anchor, SLU 2 (q=32, T=46) [Phase_11] (11/264), Anchor force for curves F N

3.4.16 Node-to-node anchor, SLE r1 (q=40, T=24) [Phase_12] (12/282), Anchor force for curves F N

3.4.17 Node-to-node anchor, SLE r2 (q=28, T=40) [Phase_13] (13/295), Anchor force for curves F N

3.4.18 Node-to-node anchor, SLE f3 (q=28, T=0) [Phase_14] (14/309), Anchor force for curves F N

3.4.19 Node-to-node anchor, SLE f4 (q=24, T=8) [Phase_15] (15/322), Anchor force for curves F N

3.4.20 Node-to-node anchor, SLE qp5 (q=24, T=0) [Phase_19] (19/336), Anchor force for curves F N

3.4.21 Node-to-node anchor, Ecc1 (q=24, T=0) [Phase_21] (21/388), Anchor force for curves F N

3.5.1 Geogrid, Initial phase [InitialPhase] (0/0), Axial forces N

3.5.2 Geogrid, Paratia esistente [Phase_1] (1/5), Axial forces N

Axial forces N (scaled up 1.00 times)	
No results	

3.5.3 Geogrid, Escavo +1m e tirante p=200kN/m [Phase_2] (2/9), Axial forces N

3.5.4 Geogrid, Escavo -11.50m [Phase_3] (3/15), Axial forces N

Axial forces N (scaled up 1.00 times)	
No results	

3.5.5 Geogrid, Ribasso monte +1m [Phase_4] (4/18), Axial forces N

3.5.6 Geogrid, Nuova paratia+solettone [Phase_5] (5/25), Axial forces N

3.5.7 Geogrid, Rinterro +2.50m e disattivo vecchio tirante [Phase_8] (8/34), Axial forces N

3.5.8 Geogrid, Escavo -15.0m [Phase_9] (9/64), Axial forces N

3.5.10 Geogrid, SLD_SISMA [Phase_17] (17/99), Axial forces N

3.5.11 Geogrid, SLV (West.(kh=0.06)) [Phase_20] (20/123), Axial forces N

3.5.12 Geogrid, SLV SISMA [Phase_7] (7/203), Axial forces N

3.5.14 Geogrid, SLU 1 (q=46, T=28) [Phase_10] (10/249), Axial forces N

3.5.16 Geogrid, SLE r1 (q=40, T=24) [Phase_12] (12/282), Axial forces N

3.5.17 Geogrid, SLE r2 (q=28, T=40) [Phase_13] (13/295), Axial forces N

3.5.18 Geogrid, SLE f3 (q=28, T=0) [Phase_14] (14/309), Axial forces N

3.5.20 Geogrid, SLE qp5 (q=24, T=0) [Phase_19] (19/336), Axial forces N

3.5.22 Geogrid, A2+M2 [Phase_25] (18/440), Axial forces N

3.5.23 Geogrid, ANALISI STABILITA' [Phase_18] (22/562), Axial forces N

3.6.1 Geogrid, Nuova paratia+solettone [Phase_5] (5/25), Table of geogrid force envelopes

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
Geogrid_1_1	17748	1	66.656	-4.349	7.850	0.000	7.850
Element 1-1 (Geogrid)	17754	2	66.962	-4.425	8.709	0.000	8.709
(Barra cava ø90 + bulbo d450/2m)	17753	3	67.268	-4.501	9.688	0.000	9.688
	17752	4	67.573	-4.577	10.110	0.000	10.110
	18302	5	67.879	-4.654	10.664	0.000	10.664
Geogrid_1_1	18302	1	67.879	-4.654	10.625	0.000	10.625
Element 1-2 (Geogrid)	18305	2	68.170	-4.726	10.996	0.000	10.996
(Barra cava ø90 + bulbo d450/2m)	18304	3	68.462	-4.799	11.343	0.000	11.343
	18303	4	68.753	-4.872	11.611	0.000	11.611
	18488	5	69.044	-4.944	11.856	0.000	11.856
Geogrid_1_1	18488	1	69.044	-4.944	11.855	0.000	11.855
Element 1-3 (Geogrid)	18484	2	69.322	-5.014	12.052	0.000	12.052
(Barra cava ø90 + bulbo d450/2m)	18483	3	69.600	-5.083	12.223	0.000	12.223
	18482	4	69.878	-5.152	12.369	0.000	12.369
	18498	5	70.155	-5.221	12.492	0.000	12.492
Geogrid_1_1	18498	1	70.155	-5.221	12.493	0.000	12.493
Element 1-4 (Geogrid)	18501	2	70.420	-5.287	12.592	0.000	12.592
(Barra cava ø90 + bulbo d450/2m)	18500	3	70.685	-5.353	12.674	0.000	12.674
	18499	4	70.950	-5.419	12.740	0.000	12.740
	18882	5	71.214	-5.485	12.791	0.000	12.791
Geogrid_1_1	18882	1	71.214	-5.485	12.791	0.000	12.791
Element 1-5 (Geogrid)	18885	2	71.467	-5.548	12.827	0.000	12.827
(Barra cava ø90 + bulbo d450/2m)	18884	3	71.719	-5.611	12.850	0.000	12.850
	18883	4	71.972	-5.674	12.862	0.000	12.862
	19434	5	72.224	-5.737	12.863	0.000	12.863
Geogrid_1_1	19434	1	72.224	-5.737	12.863	0.000	12.863
Element 1-6 (Geogrid)	19437	2	72.465	-5.797	12.854	0.000	12.854
(Barra cava ø90 + bulbo d450/2m)	19436	3	72.705	-5.857	12.836	0.000	12.836
	19435	4	72.946	-5.917	12.810	0.000	12.810
	19576	5	73.187	-5.977	12.776	0.000	12.776
Geogrid_1_1	19576	1	73.187	-5.977	12.776	0.000	12.776
Element 1-7 (Geogrid)	19572	2	73.416	-6.034	12.738	0.000	12.738
(Barra cava ø90 + bulbo d450/2m)	19571	3	73.645	-6.091	12.695	0.000	12.695
	19570	4	73.875	-6.149	12.646	0.000	12.646
	19602	5	74.104	-6.206	12.591	0.000	12.591
Geogrid_1_1	19602	1	74.104	-6.206	12.590	0.000	12.590
Element 1-8 (Geogrid)	19605	2	74.323	-6.260	12.534	0.000	12.534

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	19604	3	74.542	-6.315	12.471	0.000	12.471
	19603	4	74.760	-6.369	12.402	0.000	12.402
	20014	5	74.979	-6.424	12.326	0.000	12.326
Geogrid_1_1	20014	1	74.979	-6.424	12.326	0.000	12.326
Element 1-9 (Geogrid)	20017	2	75.187	-6.476	12.247	0.000	12.247
(Barra cava ø90 + bulbo d450/2m)	20016	3	75.396	-6.528	12.163	0.000	12.163
	20015	4	75.604	-6.580	12.072	0.000	12.072
	20168	5	75.813	-6.632	11.974	0.000	11.974
Geogrid_1_1	20168	1	75.813	-6.632	11.974	0.000	11.974
Element 1-10 (Geogrid)	20164	2	76.012	-6.681	11.876	0.000	11.876
(Barra cava ø90 + bulbo d450/2m)	20163	3	76.210	-6.731	11.771	0.000	11.771
	20162	4	76.409	-6.781	11.661	0.000	11.661
	20558	5	76.608	-6.830	11.545	0.000	11.545
Geogrid_1_1	20558	1	76.608	-6.830	11.545	0.000	11.545
Element 1-11 (Geogrid)	20561	2	76.797	-6.877	11.429	0.000	11.429
(Barra cava ø90 + bulbo d450/2m)	20560	3	76.987	-6.925	11.308	0.000	11.308
	20559	4	77.176	-6.972	11.182	0.000	11.182
	20626	5	77.366	-7.019	11.051	0.000	11.051
Geogrid_1_1	20626	1	77.366	-7.019	11.051	0.000	11.051
Element 1-12 (Geogrid)	20622	2	77.546	-7.064	10.922	0.000	10.922
(Barra cava ø90 + bulbo d450/2m)	20621	3	77.727	-7.109	10.788	0.000	10.788
	20620	4	77.907	-7.154	10.649	0.000	10.649
	20636	5	78.088	-7.199	10.506	0.000	10.506
Geogrid_1_1	20636	1	78.088	-7.199	10.506	0.000	10.506
Element 1-13 (Geogrid)	20642	2	78.260	-7.242	10.366	0.000	10.366
(Barra cava ø90 + bulbo d450/2m)	20641	3	78.432	-7.285	10.222	0.000	10.222
	20640	4	78.605	-7.328	10.074	0.000	10.074
	20770	5	78.777	-7.371	9.922	0.000	9.922
Geogrid_1_1	20770	1	78.777	-7.371	9.922	0.000	9.922
Element 1-14 (Geogrid)	20766	2	78.941	-7.412	9.773	0.000	9.773
(Barra cava ø90 + bulbo d450/2m)	20765	3	79.105	-7.453	9.621	0.000	9.621
	20764	4	79.269	-7.494	9.465	0.000	9.465
	21200	5	79.433	-7.535	9.306	0.000	9.306
Geogrid_1_1	21200	1	79.433	-7.535	9.306	0.000	9.306
Element 1-15 (Geogrid)	21203	2	79.590	-7.574	9.151	0.000	9.151
(Barra cava ø90 + bulbo d450/2m)	21202	3	79.746	-7.613	8.992	0.000	8.992
	21201	4	79.903	-7.652	8.830	0.000	8.830
	21316	5	80.059	-7.691	8.664	0.000	8.664
Geogrid_1_1	21316	1	80.059	-7.691	8.664	0.000	8.664
Element 1-16 (Geogrid)	21320	2	80.209	-7.728	8.503	0.000	8.503

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	21321	3	80.358	-7.765	8.338	0.000	8.338
	21322	4	80.507	-7.802	8.170	0.000	8.170
	21332	5	80.656	-7.839	7.998	0.000	7.998
Geogrid_1_1	21332	1	80.656	-7.839	7.998	0.000	7.998
Element 1-17 (Geogrid)	21335	2	80.798	-7.875	7.830	0.000	7.830
(Barra cava ø90 + bulbo d450/2m)	21334	3	80.940	-7.910	7.659	0.000	7.659
	21333	4	81.083	-7.946	7.484	0.000	7.484
	21348	5	81.225	-7.981	7.305	0.000	7.305
Geogrid_1_1	21348	1	81.225	-7.981	7.305	0.000	7.305
Element 1-18 (Geogrid)	21352	2	81.360	-8.015	7.130	0.000	7.130
(Barra cava ø90 + bulbo d450/2m)	21353	3	81.496	-8.049	6.951	0.000	6.951
	21354	4	81.632	-8.083	6.768	0.000	6.768
	21734	5	81.767	-8.116	6.579	0.000	6.579
Geogrid_1_1	21734	1	81.767	-8.116	6.579	0.000	6.579
Element 1-19 (Geogrid)	21737	2	81.896	-8.149	6.395	0.000	6.395
(Barra cava ø90 + bulbo d450/2m)	21736	3	82.026	-8.181	6.205	0.000	6.205
	21735	4	82.155	-8.213	6.010	0.000	6.010
	21842	5	82.284	-8.245	5.808	0.000	5.808
Geogrid_1_1	21842	1	82.284	-8.245	5.808	0.000	5.808
Element 1-20 (Geogrid)	21838	2	82.407	-8.276	5.610	0.000	5.610
(Barra cava ø90 + bulbo d450/2m)	21837	3	82.531	-8.307	5.404	0.000	5.404
	21836	4	82.654	-8.338	5.190	0.000	5.190
	21852	5	82.777	-8.368	4.968	0.000	4.968
Geogrid_1_1	21852	1	82.777	-8.368	4.967	0.000	4.967
Element 1-21 (Geogrid)	21856	2	82.894	-8.398	4.747	0.000	4.747
(Barra cava ø90 + bulbo d450/2m)	21857	3	83.012	-8.427	4.515	0.000	4.515
	21858	4	83.129	-8.456	4.270	0.000	4.270
	22190	5	83.247	-8.485	4.012	0.000	4.012
Geogrid_1_1	22190	1	83.247	-8.485	4.019	0.000	4.019
Element 1-22 (Geogrid)	22193	2	83.359	-8.513	3.751	0.000	3.751
(Barra cava ø90 + bulbo d450/2m)	22192	3	83.471	-8.541	3.465	0.000	3.465
	22191	4	83.583	-8.569	3.159	0.000	3.159
	22302	5	83.695	-8.597	2.832	0.000	2.832
Geogrid_1_1	22302	1	83.695	-8.597	2.858	0.000	2.858
Element 1-23 (Geogrid)	22308	2	83.801	-8.624	2.479	0.000	2.479
(Barra cava ø90 + bulbo d450/2m)	22307	3	83.908	-8.650	2.041	0.000	2.041
	22306	4	84.015	-8.677	1.552	0.000	1.552
	22602	5	84.122	-8.704	1.015	0.000	1.015

3.6.2 Geogrid, Rinterro +2.50m e disattivo vecchio tirante [Phase_8] (8/34), Table of geogrid force envelopes

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
Geogrid_1_1	17748	1	66.656	-4.349	60.994	0.000	62.277
Element 1-1 (Geogrid)	17754	2	66.962	-4.425	56.388	0.000	57.152
(Barra cava ø90 + bulbo d450/2m)	17753	3	67.268	-4.501	53.135	0.000	53.505
	17752	4	67.573	-4.577	50.340	0.000	50.439
	18302	5	67.879	-4.654	48.477	0.000	48.477
Geogrid_1_1	18302	1	67.879	-4.654	48.343	0.000	48.343
Element 1-2 (Geogrid)	18305	2	68.170	-4.726	46.649	0.000	46.649
(Barra cava ø90 + bulbo d450/2m)	18304	3	68.462	-4.799	45.140	0.000	45.140
	18303	4	68.753	-4.872	43.743	0.000	43.743
	18488	5	69.044	-4.944	42.494	0.000	42.494
Geogrid_1_1	18488	1	69.044	-4.944	42.479	0.000	42.479
Element 1-3 (Geogrid)	18484	2	69.322	-5.014	41.363	0.000	41.363
(Barra cava ø90 + bulbo d450/2m)	18483	3	69.600	-5.083	40.311	0.000	40.311
	18482	4	69.878	-5.152	39.318	0.000	39.318
	18498	5	70.155	-5.221	38.381	0.000	38.381
Geogrid_1_1	18498	1	70.155	-5.221	38.378	0.000	38.378
Element 1-4 (Geogrid)	18501	2	70.420	-5.287	37.524	0.000	37.524
(Barra cava ø90 + bulbo d450/2m)	18500	3	70.685	-5.353	36.703	0.000	36.703
	18499	4	70.950	-5.419	35.913	0.000	35.913
	18882	5	71.214	-5.485	35.152	0.000	35.152
Geogrid_1_1	18882	1	71.214	-5.485	35.151	0.000	35.151
Element 1-5 (Geogrid)	18885	2	71.467	-5.548	34.448	0.000	34.448
(Barra cava ø90 + bulbo d450/2m)	18884	3	71.719	-5.611	33.765	0.000	33.765
	18883	4	71.972	-5.674	33.100	0.000	33.100
	19434	5	72.224	-5.737	32.453	0.000	32.453
Geogrid_1_1	19434	1	72.224	-5.737	32.452	0.000	32.452
Element 1-6 (Geogrid)	19437	2	72.465	-5.797	31.849	0.000	31.849
(Barra cava ø90 + bulbo d450/2m)	19436	3	72.705	-5.857	31.258	0.000	31.258
	19435	4	72.946	-5.917	30.679	0.000	30.679
	19576	5	73.187	-5.977	30.113	0.000	30.113
Geogrid_1_1	19576	1	73.187	-5.977	30.112	0.000	30.112
Element 1-7 (Geogrid)	19572	2	73.416	-6.034	29.583	0.000	29.583
(Barra cava ø90 + bulbo d450/2m)	19571	3	73.645	-6.091	29.063	0.000	29.063
	19570	4	73.875	-6.149	28.552	0.000	28.552
	19602	5	74.104	-6.206	28.048	0.000	28.048
Geogrid_1_1	19602	1	74.104	-6.206	28.047	0.000	28.047
Element 1-8 (Geogrid)	19605	2	74.323	-6.260	27.575	0.000	27.575

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	19604	3	74.542	-6.315	27.106	0.000	27.106
	19603	4	74.760	-6.369	26.641	0.000	26.641
	20014	5	74.979	-6.424	26.180	0.000	26.180
Geogrid_1_1	20014	1	74.979	-6.424	26.180	0.000	26.180
Element 1-9 (Geogrid)	20017	2	75.187	-6.476	25.742	0.000	25.742
(Barra cava ø90 + bulbo d450/2m)	20016	3	75.396	-6.528	25.306	0.000	25.306
	20015	4	75.604	-6.580	24.872	0.000	24.872
	20168	5	75.813	-6.632	24.439	0.000	24.439
Geogrid_1_1	20168	1	75.813	-6.632	24.438	0.000	24.438
Element 1-10 (Geogrid)	20164	2	76.012	-6.681	24.026	0.000	24.026
(Barra cava ø90 + bulbo d450/2m)	20163	3	76.210	-6.731	23.614	0.000	23.614
	20162	4	76.409	-6.781	23.201	0.000	23.201
	20558	5	76.608	-6.830	22.789	0.000	22.789
Geogrid_1_1	20558	1	76.608	-6.830	22.789	0.000	22.789
Element 1-11 (Geogrid)	20561	2	76.797	-6.877	22.395	0.000	22.395
(Barra cava ø90 + bulbo d450/2m)	20560	3	76.987	-6.925	22.001	0.000	22.001
	20559	4	77.176	-6.972	21.606	0.000	21.606
	20626	5	77.366	-7.019	21.211	0.000	21.211
Geogrid_1_1	20626	1	77.366	-7.019	21.211	0.000	21.211
Element 1-12 (Geogrid)	20622	2	77.546	-7.064	20.833	0.000	20.833
(Barra cava ø90 + bulbo d450/2m)	20621	3	77.727	-7.109	20.454	0.000	20.454
	20620	4	77.907	-7.154	20.074	0.000	20.074
	20636	5	78.088	-7.199	19.693	0.000	19.693
Geogrid_1_1	20636	1	78.088	-7.199	19.692	0.000	19.692
Element 1-13 (Geogrid)	20642	2	78.260	-7.242	19.328	0.000	19.328
(Barra cava ø90 + bulbo d450/2m)	20641	3	78.432	-7.285	18.962	0.000	18.962
	20640	4	78.605	-7.328	18.594	0.000	18.594
	20770	5	78.777	-7.371	18.226	0.000	18.226
Geogrid_1_1	20770	1	78.777	-7.371	18.225	0.000	18.225
Element 1-14 (Geogrid)	20766	2	78.941	-7.412	17.872	0.000	17.872
(Barra cava ø90 + bulbo d450/2m)	20765	3	79.105	-7.453	17.517	0.000	17.517
	20764	4	79.269	-7.494	17.160	0.000	17.160
	21200	5	79.433	-7.535	16.802	0.000	16.802
Geogrid_1_1	21200	1	79.433	-7.535	16.802	0.000	16.802
Element 1-15 (Geogrid)	21203	2	79.590	-7.574	16.458	0.000	16.458
(Barra cava ø90 + bulbo d450/2m)	21202	3	79.746	-7.613	16.111	0.000	16.111
	21201	4	79.903	-7.652	15.763	0.000	15.763
	21316	5	80.059	-7.691	15.412	0.000	15.412
Geogrid_1_1	21316	1	80.059	-7.691	15.412	0.000	15.412
Element 1-16 (Geogrid)	21320	2	80.209	-7.728	15.074	0.000	15.074

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	21321	3	80.358	-7.765	14.734	0.000	14.734
	21322	4	80.507	-7.802	14.390	0.000	14.390
	21332	5	80.656	-7.839	14.044	0.000	14.044
Geogrid_1_1	21332	1	80.656	-7.839	14.044	0.000	14.044
Element 1-17 (Geogrid)	21335	2	80.798	-7.875	13.710	0.000	13.710
(Barra cava ø90 + bulbo d450/2m)	21334	3	80.940	-7.910	13.372	0.000	13.372
	21333	4	81.083	-7.946	13.029	0.000	13.029
	21348	5	81.225	-7.981	12.683	0.000	12.683
Geogrid_1_1	21348	1	81.225	-7.981	12.683	0.000	12.683
Element 1-18 (Geogrid)	21352	2	81.360	-8.015	12.348	0.000	12.348
(Barra cava ø90 + bulbo d450/2m)	21353	3	81.496	-8.049	12.007	0.000	12.007
	21354	4	81.632	-8.083	11.661	0.000	11.661
	21734	5	81.767	-8.116	11.309	0.000	11.309
Geogrid_1_1	21734	1	81.767	-8.116	11.308	0.000	11.308
Element 1-19 (Geogrid)	21737	2	81.896	-8.149	10.966	0.000	10.966
(Barra cava ø90 + bulbo d450/2m)	21736	3	82.026	-8.181	10.616	0.000	10.616
	21735	4	82.155	-8.213	10.258	0.000	10.258
	21842	5	82.284	-8.245	9.892	0.000	9.892
Geogrid_1_1	21842	1	82.284	-8.245	9.891	0.000	9.891
Element 1-20 (Geogrid)	21838	2	82.407	-8.276	9.533	0.000	9.533
(Barra cava ø90 + bulbo d450/2m)	21837	3	82.531	-8.307	9.163	0.000	9.163
	21836	4	82.654	-8.338	8.781	0.000	8.781
	21852	5	82.777	-8.368	8.386	0.000	8.386
Geogrid_1_1	21852	1	82.777	-8.368	8.385	0.000	8.385
Element 1-21 (Geogrid)	21856	2	82.894	-8.398	7.995	0.000	7.995
(Barra cava ø90 + bulbo d450/2m)	21857	3	83.012	-8.427	7.586	0.000	7.586
	21858	4	83.129	-8.456	7.158	0.000	7.158
	22190	5	83.247	-8.485	6.707	0.000	6.707
Geogrid_1_1	22190	1	83.247	-8.485	6.721	0.000	6.721
Element 1-22 (Geogrid)	22193	2	83.359	-8.513	6.255	0.000	6.255
(Barra cava ø90 + bulbo d450/2m)	22192	3	83.471	-8.541	5.760	0.000	5.760
	22191	4	83.583	-8.569	5.233	0.000	5.233
	22302	5	83.695	-8.597	4.674	0.000	4.674
Geogrid_1_1	22302	1	83.695	-8.597	4.734	0.000	4.734
Element 1-23 (Geogrid)	22308	2	83.801	-8.624	4.076	0.000	4.076
(Barra cava ø90 + bulbo d450/2m)	22307	3	83.908	-8.650	3.338	0.000	3.338
	22306	4	84.015	-8.677	2.532	0.000	2.532
	22602	5	84.122	-8.704	1.668	0.000	1.668

3.6.3 Geogrid, Escavo -15.0m [Phase_9] (9/64), Table of geogrid force envelopes

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
Geogrid_1_1	17748	1	66.656	-4.349	153.792	0.000	153.792
Element 1-1 (Geogrid)	17754	2	66.962	-4.425	146.997	0.000	146.997
(Barra cava ø90 + bulbo d450/2m)	17753	3	67.268	-4.501	142.020	0.000	142.020
	17752	4	67.573	-4.577	137.898	0.000	137.898
	18302	5	67.879	-4.654	135.033	0.000	135.033
Geogrid_1_1	18302	1	67.879	-4.654	134.847	0.000	134.847
Element 1-2 (Geogrid)	18305	2	68.170	-4.726	132.259	0.000	132.259
(Barra cava ø90 + bulbo d450/2m)	18304	3	68.462	-4.799	129.912	0.000	129.912
	18303	4	68.753	-4.872	127.723	0.000	127.723
	18488	5	69.044	-4.944	125.722	0.000	125.722
Geogrid_1_1	18488	1	69.044	-4.944	125.705	0.000	125.705
Element 1-3 (Geogrid)	18484	2	69.322	-5.014	123.890	0.000	123.890
(Barra cava ø90 + bulbo d450/2m)	18483	3	69.600	-5.083	122.145	0.000	122.145
	18482	4	69.878	-5.152	120.465	0.000	120.465
	18498	5	70.155	-5.221	118.843	0.000	118.843
Geogrid_1_1	18498	1	70.155	-5.221	118.838	0.000	118.838
Element 1-4 (Geogrid)	18501	2	70.420	-5.287	117.326	0.000	117.326
(Barra cava ø90 + bulbo d450/2m)	18500	3	70.685	-5.353	115.845	0.000	115.845
	18499	4	70.950	-5.419	114.390	0.000	114.390
	18882	5	71.214	-5.485	112.957	0.000	112.957
Geogrid_1_1	18882	1	71.214	-5.485	112.955	0.000	112.955
Element 1-5 (Geogrid)	18885	2	71.467	-5.548	111.601	0.000	111.601
(Barra cava ø90 + bulbo d450/2m)	18884	3	71.719	-5.611	110.258	0.000	110.258
	18883	4	71.972	-5.674	108.924	0.000	108.924
	19434	5	72.224	-5.737	107.600	0.000	107.600
Geogrid_1_1	19434	1	72.224	-5.737	107.596	0.000	107.596
Element 1-6 (Geogrid)	19437	2	72.465	-5.797	106.336	0.000	106.336
(Barra cava ø90 + bulbo d450/2m)	19436	3	72.705	-5.857	105.075	0.000	105.075
	19435	4	72.946	-5.917	103.815	0.000	103.815
	19576	5	73.187	-5.977	102.553	0.000	102.553
Geogrid_1_1	19576	1	73.187	-5.977	102.552	0.000	102.552
Element 1-7 (Geogrid)	19572	2	73.416	-6.034	101.348	0.000	101.348
(Barra cava ø90 + bulbo d450/2m)	19571	3	73.645	-6.091	100.140	0.000	100.140
	19570	4	73.875	-6.149	98.927	0.000	98.927
	19602	5	74.104	-6.206	97.709	0.000	97.709
Geogrid_1_1	19602	1	74.104	-6.206	97.709	0.000	97.709
Element 1-8 (Geogrid)	19605	2	74.323	-6.260	96.540	0.000	96.540

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	19604	3	74.542	-6.315	95.361	0.000	95.361
	19603	4	74.760	-6.369	94.173	0.000	94.173
	20014	5	74.979	-6.424	92.973	0.000	92.973
Geogrid_1_1	20014	1	74.979	-6.424	92.975	0.000	92.975
Element 1-9 (Geogrid)	20017	2	75.187	-6.476	91.825	0.000	91.825
(Barra cava ø90 + bulbo d450/2m)	20016	3	75.396	-6.528	90.664	0.000	90.664
	20015	4	75.604	-6.580	89.489	0.000	89.489
	20168	5	75.813	-6.632	88.302	0.000	88.302
Geogrid_1_1	20168	1	75.813	-6.632	88.302	0.000	88.302
Element 1-10 (Geogrid)	20164	2	76.012	-6.681	87.156	0.000	87.156
(Barra cava ø90 + bulbo d450/2m)	20163	3	76.210	-6.731	85.998	0.000	85.998
	20162	4	76.409	-6.781	84.825	0.000	84.825
	20558	5	76.608	-6.830	83.639	0.000	83.639
Geogrid_1_1	20558	1	76.608	-6.830	83.638	0.000	83.638
Element 1-11 (Geogrid)	20561	2	76.797	-6.877	82.493	0.000	82.493
(Barra cava ø90 + bulbo d450/2m)	20560	3	76.987	-6.925	81.335	0.000	81.335
	20559	4	77.176	-6.972	80.161	0.000	80.161
	20626	5	77.366	-7.019	78.974	0.000	78.974
Geogrid_1_1	20626	1	77.366	-7.019	78.974	0.000	78.974
Element 1-12 (Geogrid)	20622	2	77.546	-7.064	77.827	0.000	77.827
(Barra cava ø90 + bulbo d450/2m)	20621	3	77.727	-7.109	76.667	0.000	76.667
	20620	4	77.907	-7.154	75.492	0.000	75.492
	20636	5	78.088	-7.199	74.303	0.000	74.303
Geogrid_1_1	20636	1	78.088	-7.199	74.302	0.000	74.302
Element 1-13 (Geogrid)	20642	2	78.260	-7.242	73.154	0.000	73.154
(Barra cava ø90 + bulbo d450/2m)	20641	3	78.432	-7.285	71.990	0.000	71.990
	20640	4	78.605	-7.328	70.811	0.000	70.811
	20770	5	78.777	-7.371	69.615	0.000	69.615
Geogrid_1_1	20770	1	78.777	-7.371	69.615	0.000	69.615
Element 1-14 (Geogrid)	20766	2	78.941	-7.412	68.459	0.000	68.459
(Barra cava ø90 + bulbo d450/2m)	20765	3	79.105	-7.453	67.286	0.000	67.286
	20764	4	79.269	-7.494	66.094	0.000	66.094
	21200	5	79.433	-7.535	64.884	0.000	64.884
Geogrid_1_1	21200	1	79.433	-7.535	64.884	0.000	64.884
Element 1-15 (Geogrid)	21203	2	79.590	-7.574	63.712	0.000	63.712
(Barra cava ø90 + bulbo d450/2m)	21202	3	79.746	-7.613	62.520	0.000	62.520
	21201	4	79.903	-7.652	61.307	0.000	61.307
	21316	5	80.059	-7.691	60.073	0.000	60.073
Geogrid_1_1	21316	1	80.059	-7.691	60.072	0.000	60.072
Element 1-16 (Geogrid)	21320	2	80.209	-7.728	58.874	0.000	58.874

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	21321	3	80.358	-7.765	57.652	0.000	57.652
	21322	4	80.507	-7.802	56.405	0.000	56.405
	21332	5	80.656	-7.839	55.134	0.000	55.134
Geogrid_1_1	21332	1	80.656	-7.839	55.133	0.000	55.133
Element 1-17 (Geogrid)	21335	2	80.798	-7.875	53.894	0.000	53.894
(Barra cava ø90 + bulbo d450/2m)	21334	3	80.940	-7.910	52.628	0.000	52.628
	21333	4	81.083	-7.946	51.332	0.000	51.332
	21348	5	81.225	-7.981	50.005	0.000	50.005
Geogrid_1_1	21348	1	81.225	-7.981	50.005	0.000	50.005
Element 1-18 (Geogrid)	21352	2	81.360	-8.015	48.708	0.000	48.708
(Barra cava ø90 + bulbo d450/2m)	21353	3	81.496	-8.049	47.377	0.000	47.377
	21354	4	81.632	-8.083	46.011	0.000	46.011
	21734	5	81.767	-8.116	44.607	0.000	44.607
Geogrid_1_1	21734	1	81.767	-8.116	44.605	0.000	44.605
Element 1-19 (Geogrid)	21737	2	81.896	-8.149	43.229	0.000	43.229
(Barra cava ø90 + bulbo d450/2m)	21736	3	82.026	-8.181	41.810	0.000	41.810
	21735	4	82.155	-8.213	40.345	0.000	40.345
	21842	5	82.284	-8.245	38.835	0.000	38.835
Geogrid_1_1	21842	1	82.284	-8.245	38.831	0.000	38.831
Element 1-20 (Geogrid)	21838	2	82.407	-8.276	37.344	0.000	37.344
(Barra cava ø90 + bulbo d450/2m)	21837	3	82.531	-8.307	35.801	0.000	35.801
	21836	4	82.654	-8.338	34.198	0.000	34.198
	21852	5	82.777	-8.368	32.531	0.000	32.531
Geogrid_1_1	21852	1	82.777	-8.368	32.516	0.000	32.516
Element 1-21 (Geogrid)	21856	2	82.894	-8.398	30.883	0.000	30.883
(Barra cava ø90 + bulbo d450/2m)	21857	3	83.012	-8.427	29.161	0.000	29.161
	21858	4	83.129	-8.456	27.343	0.000	27.343
	22190	5	83.247	-8.485	25.420	0.000	25.420
Geogrid_1_1	22190	1	83.247	-8.485	25.478	0.000	25.478
Element 1-22 (Geogrid)	22193	2	83.359	-8.513	23.499	0.000	23.499
(Barra cava ø90 + bulbo d450/2m)	22192	3	83.471	-8.541	21.407	0.000	21.407
	22191	4	83.583	-8.569	19.192	0.000	19.192
	22302	5	83.695	-8.597	16.844	0.000	16.844
Geogrid_1_1	22302	1	83.695	-8.597	17.393	0.000	17.393
Element 1-23 (Geogrid)	22308	2	83.801	-8.624	14.505	0.000	14.505
(Barra cava ø90 + bulbo d450/2m)	22307	3	83.908	-8.650	11.437	0.000	11.437
	22306	4	84.015	-8.677	8.533	0.000	8.533
	22602	5	84.122	-8.704	6.136	0.000	6.136

3.6.4 Geogrid, SLD q=24kPa+west [Phase_16] (16/82), Table of geogrid force envelopes

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
Geogrid_1_1	17748	1	66.656	-4.349	174.083	0.000	174.083
Element 1-1 (Geogrid)	17754	2	66.962	-4.425	168.260	0.000	168.260
(Barra cava ø90 + bulbo d450/2m)	17753	3	67.268	-4.501	164.042	0.000	164.042
	17752	4	67.573	-4.577	160.505	0.000	160.505
	18302	5	67.879	-4.654	158.096	0.000	158.096
Geogrid_1_1	18302	1	67.879	-4.654	157.933	0.000	157.933
Element 1-2 (Geogrid)	18305	2	68.170	-4.726	155.757	0.000	155.757
(Barra cava ø90 + bulbo d450/2m)	18304	3	68.462	-4.799	153.773	0.000	153.773
	18303	4	68.753	-4.872	151.907	0.000	151.907
	18488	5	69.044	-4.944	150.198	0.000	150.198
Geogrid_1_1	18488	1	69.044	-4.944	150.179	0.000	150.179
Element 1-3 (Geogrid)	18484	2	69.322	-5.014	148.597	0.000	148.597
(Barra cava ø90 + bulbo d450/2m)	18483	3	69.600	-5.083	147.062	0.000	147.062
	18482	4	69.878	-5.152	145.564	0.000	145.564
	18498	5	70.155	-5.221	144.095	0.000	144.095
Geogrid_1_1	18498	1	70.155	-5.221	144.091	0.000	144.091
Element 1-4 (Geogrid)	18501	2	70.420	-5.287	142.701	0.000	142.701
(Barra cava ø90 + bulbo d450/2m)	18500	3	70.685	-5.353	141.310	0.000	141.310
	18499	4	70.950	-5.419	139.915	0.000	139.915
	18882	5	71.214	-5.485	138.514	0.000	138.514
Geogrid_1_1	18882	1	71.214	-5.485	138.514	0.000	138.514
Element 1-5 (Geogrid)	18885	2	71.467	-5.548	137.165	0.000	137.165
(Barra cava ø90 + bulbo d450/2m)	18884	3	71.719	-5.611	135.801	0.000	135.801
	18883	4	71.972	-5.674	134.421	0.000	134.421
	19434	5	72.224	-5.737	133.025	0.000	133.025
Geogrid_1_1	19434	1	72.224	-5.737	133.024	0.000	133.024
Element 1-6 (Geogrid)	19437	2	72.465	-5.797	131.674	0.000	131.674
(Barra cava ø90 + bulbo d450/2m)	19436	3	72.705	-5.857	130.305	0.000	130.305
	19435	4	72.946	-5.917	128.917	0.000	128.917
	19576	5	73.187	-5.977	127.510	0.000	127.510
Geogrid_1_1	19576	1	73.187	-5.977	127.510	0.000	127.510
Element 1-7 (Geogrid)	19572	2	73.416	-6.034	126.152	0.000	126.152
(Barra cava ø90 + bulbo d450/2m)	19571	3	73.645	-6.091	124.776	0.000	124.776
	19570	4	73.875	-6.149	123.383	0.000	123.383
	19602	5	74.104	-6.206	121.970	0.000	121.970
Geogrid_1_1	19602	1	74.104	-6.206	121.970	0.000	121.970
Element 1-8 (Geogrid)	19605	2	74.323	-6.260	120.606	0.000	120.606

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	19604	3	74.542	-6.315	119.224	0.000	119.224
	19603	4	74.760	-6.369	117.823	0.000	117.823
	20014	5	74.979	-6.424	116.403	0.000	116.403
Geogrid_1_1	20014	1	74.979	-6.424	116.403	0.000	116.403
Element 1-9 (Geogrid)	20017	2	75.187	-6.476	115.029	0.000	115.029
(Barra cava ø90 + bulbo d450/2m)	20016	3	75.396	-6.528	113.638	0.000	113.638
	20015	4	75.604	-6.580	112.228	0.000	112.228
	20168	5	75.813	-6.632	110.798	0.000	110.798
Geogrid_1_1	20168	1	75.813	-6.632	110.798	0.000	110.798
Element 1-10 (Geogrid)	20164	2	76.012	-6.681	109.416	0.000	109.416
(Barra cava ø90 + bulbo d450/2m)	20163	3	76.210	-6.731	108.016	0.000	108.016
	20162	4	76.409	-6.781	106.598	0.000	106.598
	20558	5	76.608	-6.830	105.159	0.000	105.159
Geogrid_1_1	20558	1	76.608	-6.830	105.158	0.000	105.158
Element 1-11 (Geogrid)	20561	2	76.797	-6.877	103.765	0.000	103.765
(Barra cava ø90 + bulbo d450/2m)	20560	3	76.987	-6.925	102.351	0.000	102.351
	20559	4	77.176	-6.972	100.915	0.000	100.915
	20626	5	77.366	-7.019	99.458	0.000	99.458
Geogrid_1_1	20626	1	77.366	-7.019	99.458	0.000	99.458
Element 1-12 (Geogrid)	20622	2	77.546	-7.064	98.048	0.000	98.048
(Barra cava ø90 + bulbo d450/2m)	20621	3	77.727	-7.109	96.618	0.000	96.618
	20620	4	77.907	-7.154	95.166	0.000	95.166
	20636	5	78.088	-7.199	93.693	0.000	93.693
Geogrid_1_1	20636	1	78.088	-7.199	93.692	0.000	93.692
Element 1-13 (Geogrid)	20642	2	78.260	-7.242	92.266	0.000	92.266
(Barra cava ø90 + bulbo d450/2m)	20641	3	78.432	-7.285	90.817	0.000	90.817
	20640	4	78.605	-7.328	89.345	0.000	89.345
	20770	5	78.777	-7.371	87.849	0.000	87.849
Geogrid_1_1	20770	1	78.777	-7.371	87.849	0.000	87.849
Element 1-14 (Geogrid)	20766	2	78.941	-7.412	86.399	0.000	86.399
(Barra cava ø90 + bulbo d450/2m)	20765	3	79.105	-7.453	84.924	0.000	84.924
	20764	4	79.269	-7.494	83.422	0.000	83.422
	21200	5	79.433	-7.535	81.895	0.000	81.895
Geogrid_1_1	21200	1	79.433	-7.535	81.894	0.000	81.894
Element 1-15 (Geogrid)	21203	2	79.590	-7.574	80.410	0.000	80.410
(Barra cava ø90 + bulbo d450/2m)	21202	3	79.746	-7.613	78.898	0.000	78.898
	21201	4	79.903	-7.652	77.357	0.000	77.357
	21316	5	80.059	-7.691	75.785	0.000	75.785
Geogrid_1_1	21316	1	80.059	-7.691	75.784	0.000	75.784
Element 1-16 (Geogrid)	21320	2	80.209	-7.728	74.254	0.000	74.254

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	21321	3	80.358	-7.765	72.692	0.000	72.692
	21322	4	80.507	-7.802	71.095	0.000	71.095
	21332	5	80.656	-7.839	69.463	0.000	69.463
Geogrid_1_1	21332	1	80.656	-7.839	69.462	0.000	69.462
Element 1-17 (Geogrid)	21335	2	80.798	-7.875	67.870	0.000	67.870
(Barra cava ø90 + bulbo d450/2m)	21334	3	80.940	-7.910	66.240	0.000	66.240
	21333	4	81.083	-7.946	64.569	0.000	64.569
	21348	5	81.225	-7.981	62.858	0.000	62.858
Geogrid_1_1	21348	1	81.225	-7.981	62.857	0.000	62.857
Element 1-18 (Geogrid)	21352	2	81.360	-8.015	61.184	0.000	61.184
(Barra cava ø90 + bulbo d450/2m)	21353	3	81.496	-8.049	59.465	0.000	59.465
	21354	4	81.632	-8.083	57.702	0.000	57.702
	21734	5	81.767	-8.116	55.891	0.000	55.891
Geogrid_1_1	21734	1	81.767	-8.116	55.888	0.000	55.888
Element 1-19 (Geogrid)	21737	2	81.896	-8.149	54.116	0.000	54.116
(Barra cava ø90 + bulbo d450/2m)	21736	3	82.026	-8.181	52.290	0.000	52.290
	21735	4	82.155	-8.213	50.409	0.000	50.409
	21842	5	82.284	-8.245	48.470	0.000	48.470
Geogrid_1_1	21842	1	82.284	-8.245	48.466	0.000	48.466
Element 1-20 (Geogrid)	21838	2	82.407	-8.276	46.559	0.000	46.559
(Barra cava ø90 + bulbo d450/2m)	21837	3	82.531	-8.307	44.586	0.000	44.586
	21836	4	82.654	-8.338	42.538	0.000	42.538
	21852	5	82.777	-8.368	40.408	0.000	40.408
Geogrid_1_1	21852	1	82.777	-8.368	40.383	0.000	40.383
Element 1-21 (Geogrid)	21856	2	82.894	-8.398	38.293	0.000	38.293
(Barra cava ø90 + bulbo d450/2m)	21857	3	83.012	-8.427	36.091	0.000	36.091
	21858	4	83.129	-8.456	33.767	0.000	33.767
	22190	5	83.247	-8.485	31.314	0.000	31.314
Geogrid_1_1	22190	1	83.247	-8.485	31.342	0.000	31.342
Element 1-22 (Geogrid)	22193	2	83.359	-8.513	28.877	0.000	28.877
(Barra cava ø90 + bulbo d450/2m)	22192	3	83.471	-8.541	26.238	0.000	26.238
	22191	4	83.583	-8.569	23.419	0.000	23.419
	22302	5	83.695	-8.597	20.415	0.000	20.415
Geogrid_1_1	22302	1	83.695	-8.597	21.215	0.000	21.215
Element 1-23 (Geogrid)	22308	2	83.801	-8.624	17.488	0.000	17.488
(Barra cava ø90 + bulbo d450/2m)	22307	3	83.908	-8.650	13.583	0.000	13.583
	22306	4	84.015	-8.677	9.992	0.000	9.992
	22602	5	84.122	-8.704	7.208	0.000	7.208

3.6.5 Geogrid, SLD_SISMA [Phase_17] (17/99), Table of geogrid force envelopes

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
Geogrid_1_1	17748	1	66.656	-4.349	279.198	0.000	279.198
Element 1-1 (Geogrid)	17754	2	66.962	-4.425	274.416	0.000	274.416
(Barra cava ø90 + bulbo d450/2m)	17753	3	67.268	-4.501	271.630	0.000	271.630
	17752	4	67.573	-4.577	269.491	0.000	269.491
	18302	5	67.879	-4.654	268.019	0.000	268.019
Geogrid_1_1	18302	1	67.879	-4.654	267.823	0.000	267.823
Element 1-2 (Geogrid)	18305	2	68.170	-4.726	266.327	0.000	266.327
(Barra cava ø90 + bulbo d450/2m)	18304	3	68.462	-4.799	264.881	0.000	264.881
	18303	4	68.753	-4.872	263.391	0.000	263.391
	18488	5	69.044	-4.944	261.879	0.000	261.879
Geogrid_1_1	18488	1	69.044	-4.944	261.851	0.000	261.851
Element 1-3 (Geogrid)	18484	2	69.322	-5.014	260.371	0.000	260.371
(Barra cava ø90 + bulbo d450/2m)	18483	3	69.600	-5.083	258.825	0.000	258.825
	18482	4	69.878	-5.152	257.217	0.000	257.217
	18498	5	70.155	-5.221	255.551	0.000	255.551
Geogrid_1_1	18498	1	70.155	-5.221	255.555	0.000	255.555
Element 1-4 (Geogrid)	18501	2	70.420	-5.287	253.901	0.000	253.901
(Barra cava ø90 + bulbo d450/2m)	18500	3	70.685	-5.353	252.187	0.000	252.187
	18499	4	70.950	-5.419	250.413	0.000	250.413
	18882	5	71.214	-5.485	248.578	0.000	248.578
Geogrid_1_1	18882	1	71.214	-5.485	248.575	0.000	248.575
Element 1-5 (Geogrid)	18885	2	71.467	-5.548	246.758	0.000	246.758
(Barra cava ø90 + bulbo d450/2m)	18884	3	71.719	-5.611	244.883	0.000	244.883
	18883	4	71.972	-5.674	242.949	0.000	242.949
	19434	5	72.224	-5.737	240.954	0.000	240.954
Geogrid_1_1	19434	1	72.224	-5.737	240.956	0.000	240.956
Element 1-6 (Geogrid)	19437	2	72.465	-5.797	238.995	0.000	238.995
(Barra cava ø90 + bulbo d450/2m)	19436	3	72.705	-5.857	236.983	0.000	236.983
	19435	4	72.946	-5.917	234.917	0.000	234.917
	19576	5	73.187	-5.977	232.798	0.000	232.798
Geogrid_1_1	19576	1	73.187	-5.977	232.798	0.000	232.798
Element 1-7 (Geogrid)	19572	2	73.416	-6.034	230.729	0.000	230.729
(Barra cava ø90 + bulbo d450/2m)	19571	3	73.645	-6.091	228.612	0.000	228.612
	19570	4	73.875	-6.149	226.448	0.000	226.448
	19602	5	74.104	-6.206	224.236	0.000	224.236
Geogrid_1_1	19602	1	74.104	-6.206	224.231	0.000	224.231
Element 1-8 (Geogrid)	19605	2	74.323	-6.260	222.088	0.000	222.088

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	19604	3	74.542	-6.315	219.895	0.000	219.895
	19603	4	74.760	-6.369	217.658	0.000	217.658
	20014	5	74.979	-6.424	215.384	0.000	215.384
Geogrid_1_1	20014	1	74.979	-6.424	215.383	0.000	215.383
Element 1-9 (Geogrid)	20017	2	75.187	-6.476	213.175	0.000	213.175
(Barra cava ø90 + bulbo d450/2m)	20016	3	75.396	-6.528	210.927	0.000	210.927
	20015	4	75.604	-6.580	208.639	0.000	208.639
	20168	5	75.813	-6.632	206.309	0.000	206.309
Geogrid_1_1	20168	1	75.813	-6.632	206.312	0.000	206.312
Element 1-10 (Geogrid)	20164	2	76.012	-6.681	204.051	0.000	204.051
(Barra cava ø90 + bulbo d450/2m)	20163	3	76.210	-6.731	201.753	0.000	201.753
	20162	4	76.409	-6.781	199.414	0.000	199.414
	20558	5	76.608	-6.830	197.034	0.000	197.034
Geogrid_1_1	20558	1	76.608	-6.830	197.036	0.000	197.036
Element 1-11 (Geogrid)	20561	2	76.797	-6.877	194.725	0.000	194.725
(Barra cava ø90 + bulbo d450/2m)	20560	3	76.987	-6.925	192.377	0.000	192.377
	20559	4	77.176	-6.972	189.990	0.000	189.990
	20626	5	77.366	-7.019	187.560	0.000	187.560
Geogrid_1_1	20626	1	77.366	-7.019	187.559	0.000	187.559
Element 1-12 (Geogrid)	20622	2	77.546	-7.064	185.202	0.000	185.202
(Barra cava ø90 + bulbo d450/2m)	20621	3	77.727	-7.109	182.800	0.000	182.800
	20620	4	77.907	-7.154	180.353	0.000	180.353
	20636	5	78.088	-7.199	177.859	0.000	177.859
Geogrid_1_1	20636	1	78.088	-7.199	177.859	0.000	177.859
Element 1-13 (Geogrid)	20642	2	78.260	-7.242	175.438	0.000	175.438
(Barra cava ø90 + bulbo d450/2m)	20641	3	78.432	-7.285	172.971	0.000	172.971
	20640	4	78.605	-7.328	170.456	0.000	170.456
	20770	5	78.777	-7.371	167.891	0.000	167.891
Geogrid_1_1	20770	1	78.777	-7.371	167.890	0.000	167.890
Element 1-14 (Geogrid)	20766	2	78.941	-7.412	165.399	0.000	165.399
(Barra cava ø90 + bulbo d450/2m)	20765	3	79.105	-7.453	162.855	0.000	162.855
	20764	4	79.269	-7.494	160.257	0.000	160.257
	21200	5	79.433	-7.535	157.604	0.000	157.604
Geogrid_1_1	21200	1	79.433	-7.535	157.615	0.000	157.615
Element 1-15 (Geogrid)	21203	2	79.590	-7.574	155.023	0.000	155.023
(Barra cava ø90 + bulbo d450/2m)	21202	3	79.746	-7.613	152.381	0.000	152.381
	21201	4	79.903	-7.652	149.688	0.000	149.688
	21316	5	80.059	-7.691	146.943	0.000	146.943
Geogrid_1_1	21316	1	80.059	-7.691	146.948	0.000	146.948
Element 1-16 (Geogrid)	21320	2	80.209	-7.728	144.266	0.000	144.266

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	21321	3	80.358	-7.765	141.521	0.000	141.521
	21322	4	80.507	-7.802	138.708	0.000	138.708
	21332	5	80.656	-7.839	135.821	0.000	135.821
Geogrid_1_1	21332	1	80.656	-7.839	135.822	0.000	135.822
Element 1-17 (Geogrid)	21335	2	80.798	-7.875	132.989	0.000	132.989
(Barra cava ø90 + bulbo d450/2m)	21334	3	80.940	-7.910	130.087	0.000	130.087
	21333	4	81.083	-7.946	127.108	0.000	127.108
	21348	5	81.225	-7.981	124.044	0.000	124.044
Geogrid_1_1	21348	1	81.225	-7.981	124.004	0.000	124.004
Element 1-18 (Geogrid)	21352	2	81.360	-8.015	121.051	0.000	121.051
(Barra cava ø90 + bulbo d450/2m)	21353	3	81.496	-8.049	118.000	0.000	118.000
	21354	4	81.632	-8.083	114.837	0.000	114.837
	21734	5	81.767	-8.116	111.545	0.000	111.545
Geogrid_1_1	21734	1	81.767	-8.116	111.443	0.000	111.443
Element 1-19 (Geogrid)	21737	2	81.896	-8.149	108.237	0.000	108.237
(Barra cava ø90 + bulbo d450/2m)	21736	3	82.026	-8.181	104.882	0.000	104.882
	21735	4	82.155	-8.213	101.304	0.000	101.304
	21842	5	82.284	-8.245	97.427	0.000	97.427
Geogrid_1_1	21842	1	82.284	-8.245	97.679	0.000	97.679
Element 1-20 (Geogrid)	21838	2	82.407	-8.276	94.033	0.000	94.033
(Barra cava ø90 + bulbo d450/2m)	21837	3	82.531	-8.307	90.338	0.000	90.338
	21836	4	82.654	-8.338	86.461	0.000	86.461
	21852	5	82.777	-8.368	82.268	0.000	82.268
Geogrid_1_1	21852	1	82.777	-8.368	81.692	0.000	81.692
Element 1-21 (Geogrid)	21856	2	82.894	-8.398	78.296	0.000	78.296
(Barra cava ø90 + bulbo d450/2m)	21857	3	83.012	-8.427	74.073	0.000	74.073
	21858	4	83.129	-8.456	69.323	0.000	69.323
	22190	5	83.247	-8.485	64.346	0.000	64.346
Geogrid_1_1	22190	1	83.247	-8.485	62.623	0.000	62.623
Element 1-22 (Geogrid)	22193	2	83.359	-8.513	59.479	0.000	59.479
(Barra cava ø90 + bulbo d450/2m)	22192	3	83.471	-8.541	55.655	0.000	55.655
	22191	4	83.583	-8.569	48.768	0.000	48.768
	22302	5	83.695	-8.597	36.438	0.000	36.438
Geogrid_1_1	22302	1	83.695	-8.597	48.172	0.000	48.172
Element 1-23 (Geogrid)	22308	2	83.801	-8.624	35.742	0.000	35.742
(Barra cava ø90 + bulbo d450/2m)	22307	3	83.908	-8.650	25.994	0.000	25.994
	22306	4	84.015	-8.677	23.149	0.000	23.149
	22602	5	84.122	-8.704	31.430	0.000	31.430

3.6.6 Geogrid, SLV (West.(kh=0.06)) [Phase_20] (20/123), Table of geogrid force envelopes

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
Geogrid_1_1	17748	1	66.656	-4.349	188.582	0.000	188.582
Element 1-1 (Geogrid)	17754	2	66.962	-4.425	182.206	0.000	182.206
(Barra cava ø90 + bulbo d450/2m)	17753	3	67.268	-4.501	177.587	0.000	177.587
	17752	4	67.573	-4.577	173.762	0.000	173.762
	18302	5	67.879	-4.654	171.134	0.000	171.134
Geogrid_1_1	18302	1	67.879	-4.654	170.952	0.000	170.952
Element 1-2 (Geogrid)	18305	2	68.170	-4.726	168.552	0.000	168.552
(Barra cava ø90 + bulbo d450/2m)	18304	3	68.462	-4.799	166.362	0.000	166.362
	18303	4	68.753	-4.872	164.303	0.000	164.303
	18488	5	69.044	-4.944	162.414	0.000	162.414
Geogrid_1_1	18488	1	69.044	-4.944	162.394	0.000	162.394
Element 1-3 (Geogrid)	18484	2	69.322	-5.014	160.646	0.000	160.646
(Barra cava ø90 + bulbo d450/2m)	18483	3	69.600	-5.083	158.950	0.000	158.950
	18482	4	69.878	-5.152	157.294	0.000	157.294
	18498	5	70.155	-5.221	155.670	0.000	155.670
Geogrid_1_1	18498	1	70.155	-5.221	155.665	0.000	155.665
Element 1-4 (Geogrid)	18501	2	70.420	-5.287	154.128	0.000	154.128
(Barra cava ø90 + bulbo d450/2m)	18500	3	70.685	-5.353	152.589	0.000	152.589
	18499	4	70.950	-5.419	151.045	0.000	151.045
	18882	5	71.214	-5.485	149.494	0.000	149.494
Geogrid_1_1	18882	1	71.214	-5.485	149.494	0.000	149.494
Element 1-5 (Geogrid)	18885	2	71.467	-5.548	148.003	0.000	148.003
(Barra cava ø90 + bulbo d450/2m)	18884	3	71.719	-5.611	146.495	0.000	146.495
	18883	4	71.972	-5.674	144.971	0.000	144.971
	19434	5	72.224	-5.737	143.429	0.000	143.429
Geogrid_1_1	19434	1	72.224	-5.737	143.429	0.000	143.429
Element 1-6 (Geogrid)	19437	2	72.465	-5.797	141.940	0.000	141.940
(Barra cava ø90 + bulbo d450/2m)	19436	3	72.705	-5.857	140.431	0.000	140.431
	19435	4	72.946	-5.917	138.902	0.000	138.902
	19576	5	73.187	-5.977	137.355	0.000	137.355
Geogrid_1_1	19576	1	73.187	-5.977	137.355	0.000	137.355
Element 1-7 (Geogrid)	19572	2	73.416	-6.034	135.861	0.000	135.861
(Barra cava ø90 + bulbo d450/2m)	19571	3	73.645	-6.091	134.350	0.000	134.350
	19570	4	73.875	-6.149	132.819	0.000	132.819
	19602	5	74.104	-6.206	131.268	0.000	131.268
Geogrid_1_1	19602	1	74.104	-6.206	131.268	0.000	131.268
Element 1-8 (Geogrid)	19605	2	74.323	-6.260	129.772	0.000	129.772

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	19604	3	74.542	-6.315	128.258	0.000	128.258
	19603	4	74.760	-6.369	126.723	0.000	126.723
	20014	5	74.979	-6.424	125.168	0.000	125.168
Geogrid_1_1	20014	1	74.979	-6.424	125.169	0.000	125.169
Element 1-9 (Geogrid)	20017	2	75.187	-6.476	123.665	0.000	123.665
(Barra cava ø90 + bulbo d450/2m)	20016	3	75.396	-6.528	122.144	0.000	122.144
	20015	4	75.604	-6.580	120.604	0.000	120.604
	20168	5	75.813	-6.632	119.044	0.000	119.044
Geogrid_1_1	20168	1	75.813	-6.632	119.043	0.000	119.043
Element 1-10 (Geogrid)	20164	2	76.012	-6.681	117.535	0.000	117.535
(Barra cava ø90 + bulbo d450/2m)	20163	3	76.210	-6.731	116.008	0.000	116.008
	20162	4	76.409	-6.781	114.461	0.000	114.461
	20558	5	76.608	-6.830	112.895	0.000	112.895
Geogrid_1_1	20558	1	76.608	-6.830	112.894	0.000	112.894
Element 1-11 (Geogrid)	20561	2	76.797	-6.877	111.379	0.000	111.379
(Barra cava ø90 + bulbo d450/2m)	20560	3	76.987	-6.925	109.841	0.000	109.841
	20559	4	77.176	-6.972	108.282	0.000	108.282
	20626	5	77.366	-7.019	106.699	0.000	106.699
Geogrid_1_1	20626	1	77.366	-7.019	106.699	0.000	106.699
Element 1-12 (Geogrid)	20622	2	77.546	-7.064	105.169	0.000	105.169
(Barra cava ø90 + bulbo d450/2m)	20621	3	77.727	-7.109	103.617	0.000	103.617
	20620	4	77.907	-7.154	102.043	0.000	102.043
	20636	5	78.088	-7.199	100.446	0.000	100.446
Geogrid_1_1	20636	1	78.088	-7.199	100.445	0.000	100.445
Element 1-13 (Geogrid)	20642	2	78.260	-7.242	98.899	0.000	98.899
(Barra cava ø90 + bulbo d450/2m)	20641	3	78.432	-7.285	97.329	0.000	97.329
	20640	4	78.605	-7.328	95.734	0.000	95.734
	20770	5	78.777	-7.371	94.114	0.000	94.114
Geogrid_1_1	20770	1	78.777	-7.371	94.113	0.000	94.113
Element 1-14 (Geogrid)	20766	2	78.941	-7.412	92.543	0.000	92.543
(Barra cava ø90 + bulbo d450/2m)	20765	3	79.105	-7.453	90.946	0.000	90.946
	20764	4	79.269	-7.494	89.320	0.000	89.320
	21200	5	79.433	-7.535	87.666	0.000	87.666
Geogrid_1_1	21200	1	79.433	-7.535	87.665	0.000	87.665
Element 1-15 (Geogrid)	21203	2	79.590	-7.574	86.059	0.000	86.059
(Barra cava ø90 + bulbo d450/2m)	21202	3	79.746	-7.613	84.422	0.000	84.422
	21201	4	79.903	-7.652	82.753	0.000	82.753
	21316	5	80.059	-7.691	81.051	0.000	81.051
Geogrid_1_1	21316	1	80.059	-7.691	81.050	0.000	81.050
Element 1-16 (Geogrid)	21320	2	80.209	-7.728	79.394	0.000	79.394

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	21321	3	80.358	-7.765	77.703	0.000	77.703
	21322	4	80.507	-7.802	75.974	0.000	75.974
	21332	5	80.656	-7.839	74.207	0.000	74.207
Geogrid_1_1	21332	1	80.656	-7.839	74.205	0.000	74.205
Element 1-17 (Geogrid)	21335	2	80.798	-7.875	72.482	0.000	72.482
(Barra cava ø90 + bulbo d450/2m)	21334	3	80.940	-7.910	70.718	0.000	70.718
	21333	4	81.083	-7.946	68.910	0.000	68.910
	21348	5	81.225	-7.981	67.059	0.000	67.059
Geogrid_1_1	21348	1	81.225	-7.981	67.058	0.000	67.058
Element 1-18 (Geogrid)	21352	2	81.360	-8.015	65.250	0.000	65.250
(Barra cava ø90 + bulbo d450/2m)	21353	3	81.496	-8.049	63.395	0.000	63.395
	21354	4	81.632	-8.083	61.493	0.000	61.493
	21734	5	81.767	-8.116	59.542	0.000	59.542
Geogrid_1_1	21734	1	81.767	-8.116	59.539	0.000	59.539
Element 1-19 (Geogrid)	21737	2	81.896	-8.149	57.631	0.000	57.631
(Barra cava ø90 + bulbo d450/2m)	21736	3	82.026	-8.181	55.668	0.000	55.668
	21735	4	82.155	-8.213	53.646	0.000	53.646
	21842	5	82.284	-8.245	51.562	0.000	51.562
Geogrid_1_1	21842	1	82.284	-8.245	51.557	0.000	51.557
Element 1-20 (Geogrid)	21838	2	82.407	-8.276	49.509	0.000	49.509
(Barra cava ø90 + bulbo d450/2m)	21837	3	82.531	-8.307	47.389	0.000	47.389
	21836	4	82.654	-8.338	45.189	0.000	45.189
	21852	5	82.777	-8.368	42.900	0.000	42.900
Geogrid_1_1	21852	1	82.777	-8.368	42.884	0.000	42.884
Element 1-21 (Geogrid)	21856	2	82.894	-8.398	40.630	0.000	40.630
(Barra cava ø90 + bulbo d450/2m)	21857	3	83.012	-8.427	38.264	0.000	38.264
	21858	4	83.129	-8.456	35.778	0.000	35.778
	22190	5	83.247	-8.485	33.168	0.000	33.168
Geogrid_1_1	22190	1	83.247	-8.485	33.170	0.000	33.170
Element 1-22 (Geogrid)	22193	2	83.359	-8.513	30.556	0.000	30.556
(Barra cava ø90 + bulbo d450/2m)	22192	3	83.471	-8.541	27.747	0.000	27.747
	22191	4	83.583	-8.569	24.732	0.000	24.732
	22302	5	83.695	-8.597	21.502	0.000	21.502
Geogrid_1_1	22302	1	83.695	-8.597	22.387	0.000	22.387
Element 1-23 (Geogrid)	22308	2	83.801	-8.624	18.376	0.000	18.376
(Barra cava ø90 + bulbo d450/2m)	22307	3	83.908	-8.650	14.207	0.000	14.207
	22306	4	84.015	-8.677	10.397	0.000	10.397
	22602	5	84.122	-8.704	7.465	0.000	7.465

3.6.7 Geogrid, SLV SISMA [Phase_7] (7/203), Table of geogrid force envelopes

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
Geogrid_1_1	17748	1	66.656	-4.349	390.297	0.000	390.297
Element 1-1 (Geogrid)	17754	2	66.962	-4.425	385.768	0.000	385.768
(Barra cava ø90 + bulbo d450/2m)	17753	3	67.268	-4.501	383.151	0.000	383.151
	17752	4	67.573	-4.577	381.061	0.000	381.061
	18302	5	67.879	-4.654	379.479	0.000	379.479
Geogrid_1_1	18302	1	67.879	-4.654	379.314	0.000	379.314
Element 1-2 (Geogrid)	18305	2	68.170	-4.726	377.604	0.000	377.604
(Barra cava ø90 + bulbo d450/2m)	18304	3	68.462	-4.799	375.823	0.000	375.823
	18303	4	68.753	-4.872	373.915	0.000	373.915
	18488	5	69.044	-4.944	371.940	0.000	371.940
Geogrid_1_1	18488	1	69.044	-4.944	371.902	0.000	371.902
Element 1-3 (Geogrid)	18484	2	69.322	-5.014	369.889	0.000	369.889
(Barra cava ø90 + bulbo d450/2m)	18483	3	69.600	-5.083	367.750	0.000	367.750
	18482	4	69.878	-5.152	365.489	0.000	365.489
	18498	5	70.155	-5.221	363.112	0.000	363.112
Geogrid_1_1	18498	1	70.155	-5.221	363.116	0.000	363.116
Element 1-4 (Geogrid)	18501	2	70.420	-5.287	360.728	0.000	360.728
(Barra cava ø90 + bulbo d450/2m)	18500	3	70.685	-5.353	358.231	0.000	358.231
	18499	4	70.950	-5.419	355.629	0.000	355.629
	18882	5	71.214	-5.485	352.924	0.000	352.924
Geogrid_1_1	18882	1	71.214	-5.485	352.922	0.000	352.922
Element 1-5 (Geogrid)	18885	2	71.467	-5.548	350.242	0.000	350.242
(Barra cava ø90 + bulbo d450/2m)	18884	3	71.719	-5.611	347.474	0.000	347.474
	18883	4	71.972	-5.674	344.617	0.000	344.617
	19434	5	72.224	-5.737	341.672	0.000	341.672
Geogrid_1_1	19434	1	72.224	-5.737	341.675	0.000	341.675
Element 1-6 (Geogrid)	19437	2	72.465	-5.797	338.786	0.000	338.786
(Barra cava ø90 + bulbo d450/2m)	19436	3	72.705	-5.857	335.822	0.000	335.822
	19435	4	72.946	-5.917	332.782	0.000	332.782
	19576	5	73.187	-5.977	329.666	0.000	329.666
Geogrid_1_1	19576	1	73.187	-5.977	329.667	0.000	329.667
Element 1-7 (Geogrid)	19572	2	73.416	-6.034	326.627	0.000	326.627
(Barra cava ø90 + bulbo d450/2m)	19571	3	73.645	-6.091	323.520	0.000	323.520
	19570	4	73.875	-6.149	320.347	0.000	320.347
	19602	5	74.104	-6.206	317.106	0.000	317.106
Geogrid_1_1	19602	1	74.104	-6.206	317.101	0.000	317.101
Element 1-8 (Geogrid)	19605	2	74.323	-6.260	313.957	0.000	313.957
Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
----------------------------------	-------------------------	--------------	--------	--------	----------	-------------------------	-------------------------
(Barra cava ø90 + bulbo d450/2m)	19604	3	74.542	-6.315	310.747	0.000	310.747
	19603	4	74.760	-6.369	307.473	0.000	307.473
	20014	5	74.979	-6.424	304.139	0.000	304.139
Geogrid_1_1	20014	1	74.979	-6.424	304.143	0.000	304.143
Element 1-9 (Geogrid)	20017	2	75.187	-6.476	300.909	0.000	300.909
(Barra cava ø90 + bulbo d450/2m)	20016	3	75.396	-6.528	297.621	0.000	297.621
	20015	4	75.604	-6.580	294.275	0.000	294.275
	20168	5	75.813	-6.632	290.870	0.000	290.870
Geogrid_1_1	20168	1	75.813	-6.632	290.872	0.000	290.872
Element 1-10 (Geogrid)	20164	2	76.012	-6.681	287.569	0.000	287.569
(Barra cava ø90 + bulbo d450/2m)	20163	3	76.210	-6.731	284.211	0.000	284.211
	20162	4	76.409	-6.781	280.795	0.000	280.795
	20558	5	76.608	-6.830	277.317	0.000	277.317
Geogrid_1_1	20558	1	76.608	-6.830	277.314	0.000	277.314
Element 1-11 (Geogrid)	20561	2	76.797	-6.877	273.943	0.000	273.943
(Barra cava ø90 + bulbo d450/2m)	20560	3	76.987	-6.925	270.510	0.000	270.510
	20559	4	77.176	-6.972	267.009	0.000	267.009
	20626	5	77.366	-7.019	263.439	0.000	263.439
Geogrid_1_1	20626	1	77.366	-7.019	263.442	0.000	263.442
Element 1-12 (Geogrid)	20622	2	77.546	-7.064	259.978	0.000	259.978
(Barra cava ø90 + bulbo d450/2m)	20621	3	77.727	-7.109	256.450	0.000	256.450
	20620	4	77.907	-7.154	252.854	0.000	252.854
	20636	5	78.088	-7.199	249.186	0.000	249.186
Geogrid_1_1	20636	1	78.088	-7.199	249.192	0.000	249.192
Element 1-13 (Geogrid)	20642	2	78.260	-7.242	245.624	0.000	245.624
(Barra cava ø90 + bulbo d450/2m)	20641	3	78.432	-7.285	241.987	0.000	241.987
	20640	4	78.605	-7.328	238.278	0.000	238.278
	20770	5	78.777	-7.371	234.492	0.000	234.492
Geogrid_1_1	20770	1	78.777	-7.371	234.491	0.000	234.491
Element 1-14 (Geogrid)	20766	2	78.941	-7.412	230.810	0.000	230.810
(Barra cava ø90 + bulbo d450/2m)	20765	3	79.105	-7.453	227.055	0.000	227.055
	20764	4	79.269	-7.494	223.224	0.000	223.224
	21200	5	79.433	-7.535	219.313	0.000	219.313
Geogrid_1_1	21200	1	79.433	-7.535	219.280	0.000	219.280
Element 1-15 (Geogrid)	21203	2	79.590	-7.574	215.494	0.000	215.494
(Barra cava ø90 + bulbo d450/2m)	21202	3	79.746	-7.613	211.629	0.000	211.629
	21201	4	79.903	-7.652	207.662	0.000	207.662
	21316	5	80.059	-7.691	203.570	0.000	203.570
Geogrid_1_1	21316	1	80.059	-7.691	203.617	0.000	203.617
Element 1-16 (Geogrid)	21320	2	80.209	-7.728	199.623	0.000	199.623

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	21321	3	80.358	-7.765	195.542	0.000	195.542
	21322	4	80.507	-7.802	191.372	0.000	191.372
	21332	5	80.656	-7.839	187.107	0.000	187.107
Geogrid_1_1	21332	1	80.656	-7.839	187.097	0.000	187.097
Element 1-17 (Geogrid)	21335	2	80.798	-7.875	182.935	0.000	182.935
(Barra cava ø90 + bulbo d450/2m)	21334	3	80.940	-7.910	178.661	0.000	178.661
	21333	4	81.083	-7.946	174.260	0.000	174.260
	21348	5	81.225	-7.981	169.715	0.000	169.715
Geogrid_1_1	21348	1	81.225	-7.981	169.738	0.000	169.738
Element 1-18 (Geogrid)	21352	2	81.360	-8.015	165.251	0.000	165.251
(Barra cava ø90 + bulbo d450/2m)	21353	3	81.496	-8.049	160.646	0.000	160.646
	21354	4	81.632	-8.083	155.945	0.000	155.945
	21734	5	81.767	-8.116	151.168	0.000	151.168
Geogrid_1_1	21734	1	81.767	-8.116	150.978	0.000	150.978
Element 1-19 (Geogrid)	21737	2	81.896	-8.149	146.343	0.000	146.343
(Barra cava ø90 + bulbo d450/2m)	21736	3	82.026	-8.181	141.397	0.000	141.397
	21735	4	82.155	-8.213	136.121	0.000	136.121
	21842	5	82.284	-8.245	130.494	0.000	130.494
Geogrid_1_1	21842	1	82.284	-8.245	130.934	0.000	130.934
Element 1-20 (Geogrid)	21838	2	82.407	-8.276	125.352	0.000	125.352
(Barra cava ø90 + bulbo d450/2m)	21837	3	82.531	-8.307	119.885	0.000	119.885
	21836	4	82.654	-8.338	114.149	0.000	114.149
	21852	5	82.777	-8.368	107.759	0.000	107.759
Geogrid_1_1	21852	1	82.777	-8.368	107.259	0.000	107.259
Element 1-21 (Geogrid)	21856	2	82.894	-8.398	102.334	0.000	102.334
(Barra cava ø90 + bulbo d450/2m)	21857	3	83.012	-8.427	96.285	0.000	96.285
	21858	4	83.129	-8.456	90.005	0.000	90.005
	22190	5	83.247	-8.485	84.387	0.000	84.387
Geogrid_1_1	22190	1	83.247	-8.485	74.991	0.000	75.114
Element 1-22 (Geogrid)	22193	2	83.359	-8.513	75.047	0.000	75.047
(Barra cava ø90 + bulbo d450/2m)	22192	3	83.471	-8.541	71.204	0.000	71.204
	22191	4	83.583	-8.569	61.061	0.000	61.061
	22302	5	83.695	-8.597	42.216	0.000	42.216
Geogrid_1_1	22302	1	83.695	-8.597	58.221	0.000	58.315
Element 1-23 (Geogrid)	22308	2	83.801	-8.624	43.340	0.000	43.340
(Barra cava ø90 + bulbo d450/2m)	22307	3	83.908	-8.650	31.434	0.000	31.434
	22306	4	84.015	-8.677	26.986	0.000	26.986
	22602	5	84.122	-8.704	34.478	0.000	34.586

3.6.8 Geogrid, LIQUEF.3 - Post-Sisma [Phase_24] (24/231), Table of geogrid force envelopes

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
Geogrid_1_1	17748	1	66.656	-4.349	395.698	0.000	395.698
Element 1-1 (Geogrid)	17754	2	66.962	-4.425	388.832	0.000	388.832
(Barra cava ø90 + bulbo d450/2m)	17753	3	67.268	-4.501	384.337	0.000	384.522
	17752	4	67.573	-4.577	380.767	0.000	382.116
	18302	5	67.879	-4.654	378.046	0.000	380.311
Geogrid_1_1	18302	1	67.879	-4.654	377.835	0.000	380.135
Element 1-2 (Geogrid)	18305	2	68.170	-4.726	375.137	0.000	378.229
(Barra cava ø90 + bulbo d450/2m)	18304	3	68.462	-4.799	372.445	0.000	376.265
	18303	4	68.753	-4.872	369.699	0.000	374.190
	18488	5	69.044	-4.944	366.952	0.000	372.060
Geogrid_1_1	18488	1	69.044	-4.944	366.909	0.000	372.022
Element 1-3 (Geogrid)	18484	2	69.322	-5.014	364.200	0.000	369.889
(Barra cava ø90 + bulbo d450/2m)	18483	3	69.600	-5.083	361.402	0.000	367.750
	18482	4	69.878	-5.152	358.517	0.000	365.489
	18498	5	70.155	-5.221	355.548	0.000	363.112
Geogrid_1_1	18498	1	70.155	-5.221	355.550	0.000	363.116
Element 1-4 (Geogrid)	18501	2	70.420	-5.287	352.625	0.000	360.728
(Barra cava ø90 + bulbo d450/2m)	18500	3	70.685	-5.353	349.616	0.000	358.231
	18499	4	70.950	-5.419	346.525	0.000	355.629
	18882	5	71.214	-5.485	343.354	0.000	352.924
Geogrid_1_1	18882	1	71.214	-5.485	343.352	0.000	352.922
Element 1-5 (Geogrid)	18885	2	71.467	-5.548	340.250	0.000	350.242
(Barra cava ø90 + bulbo d450/2m)	18884	3	71.719	-5.611	337.080	0.000	347.474
	18883	4	71.972	-5.674	333.844	0.000	344.617
	19434	5	72.224	-5.737	330.540	0.000	341.672
Geogrid_1_1	19434	1	72.224	-5.737	330.542	0.000	341.675
Element 1-6 (Geogrid)	19437	2	72.465	-5.797	327.330	0.000	338.786
(Barra cava ø90 + bulbo d450/2m)	19436	3	72.705	-5.857	324.062	0.000	335.822
	19435	4	72.946	-5.917	320.734	0.000	332.782
	19576	5	73.187	-5.977	317.346	0.000	329.666
Geogrid_1_1	19576	1	73.187	-5.977	317.346	0.000	329.667
Element 1-7 (Geogrid)	19572	2	73.416	-6.034	314.058	0.000	326.627
(Barra cava ø90 + bulbo d450/2m)	19571	3	73.645	-6.091	310.714	0.000	323.520
	19570	4	73.875	-6.149	307.314	0.000	320.347
	19602	5	74.104	-6.206	303.856	0.000	317.106
Geogrid_1_1	19602	1	74.104	-6.206	303.850	0.000	317.101
Element 1-8 (Geogrid)	19605	2	74.323	-6.260	300.508	0.000	313.957

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	19604	3	74.542	-6.315	297.108	0.000	310.747
	19603	4	74.760	-6.369	293.651	0.000	307.473
	20014	5	74.979	-6.424	290.142	0.000	304.139
Geogrid_1_1	20014	1	74.979	-6.424	290.145	0.000	304.143
Element 1-9 (Geogrid)	20017	2	75.187	-6.476	286.751	0.000	300.909
(Barra cava ø90 + bulbo d450/2m)	20016	3	75.396	-6.528	283.308	0.000	297.621
	20015	4	75.604	-6.580	279.812	0.000	294.275
	20168	5	75.813	-6.632	276.262	0.000	290.870
Geogrid_1_1	20168	1	75.813	-6.632	276.264	0.000	290.872
Element 1-10 (Geogrid)	20164	2	76.012	-6.681	272.827	0.000	287.569
(Barra cava ø90 + bulbo d450/2m)	20163	3	76.210	-6.731	269.338	0.000	284.211
	20162	4	76.409	-6.781	265.793	0.000	280.795
	20558	5	76.608	-6.830	262.188	0.000	277.317
Geogrid_1_1	20558	1	76.608	-6.830	262.185	0.000	277.314
Element 1-11 (Geogrid)	20561	2	76.797	-6.877	258.695	0.000	273.943
(Barra cava ø90 + bulbo d450/2m)	20560	3	76.987	-6.925	255.141	0.000	270.510
	20559	4	77.176	-6.972	251.520	0.000	267.009
	20626	5	77.366	-7.019	247.827	0.000	263.439
Geogrid_1_1	20626	1	77.366	-7.019	247.828	0.000	263.442
Element 1-12 (Geogrid)	20622	2	77.546	-7.064	244.240	0.000	259.978
(Barra cava ø90 + bulbo d450/2m)	20621	3	77.727	-7.109	240.583	0.000	256.450
	20620	4	77.907	-7.154	236.852	0.000	252.854
	20636	5	78.088	-7.199	233.042	0.000	249.186
Geogrid_1_1	20636	1	78.088	-7.199	233.048	0.000	249.192
Element 1-13 (Geogrid)	20642	2	78.260	-7.242	229.336	0.000	245.624
(Barra cava ø90 + bulbo d450/2m)	20641	3	78.432	-7.285	225.547	0.000	241.987
	20640	4	78.605	-7.328	221.677	0.000	238.278
	20770	5	78.777	-7.371	217.724	0.000	234.492
Geogrid_1_1	20770	1	78.777	-7.371	217.723	0.000	234.491
Element 1-14 (Geogrid)	20766	2	78.941	-7.412	213.875	0.000	230.810
(Barra cava ø90 + bulbo d450/2m)	20765	3	79.105	-7.453	209.950	0.000	227.055
	20764	4	79.269	-7.494	205.941	0.000	223.224
	21200	5	79.433	-7.535	201.846	0.000	219.313
Geogrid_1_1	21200	1	79.433	-7.535	201.781	0.000	219.280
Element 1-15 (Geogrid)	21203	2	79.590	-7.574	197.838	0.000	215.494
(Barra cava ø90 + bulbo d450/2m)	21202	3	79.746	-7.613	193.803	0.000	211.629
	21201	4	79.903	-7.652	189.659	0.000	207.662
	21316	5	80.059	-7.691	185.385	0.000	203.570
Geogrid_1_1	21316	1	80.059	-7.691	185.438	0.000	203.617
Element 1-16 (Geogrid)	21320	2	80.209	-7.728	181.279	0.000	199.623

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	21321	3	80.358	-7.765	177.037	0.000	195.542
	21322	4	80.507	-7.802	172.710	0.000	191.372
	21332	5	80.656	-7.839	168.296	0.000	187.107
Geogrid_1_1	21332	1	80.656	-7.839	168.289	0.000	187.097
Element 1-17 (Geogrid)	21335	2	80.798	-7.875	163.994	0.000	182.935
(Barra cava ø90 + bulbo d450/2m)	21334	3	80.940	-7.910	159.609	0.000	178.661
	21333	4	81.083	-7.946	155.122	0.000	174.260
	21348	5	81.225	-7.981	150.524	0.000	169.715
Geogrid_1_1	21348	1	81.225	-7.981	150.273	0.000	169.738
Element 1-18 (Geogrid)	21352	2	81.360	-8.015	145.992	0.000	165.251
(Barra cava ø90 + bulbo d450/2m)	21353	3	81.496	-8.049	141.526	0.000	160.646
	21354	4	81.632	-8.083	136.887	0.000	155.945
	21734	5	81.767	-8.116	132.085	0.000	151.168
Geogrid_1_1	21734	1	81.767	-8.116	131.915	0.000	150.978
Element 1-19 (Geogrid)	21737	2	81.896	-8.149	127.281	0.000	146.343
(Barra cava ø90 + bulbo d450/2m)	21736	3	82.026	-8.181	122.418	0.000	141.397
	21735	4	82.155	-8.213	117.282	0.000	136.121
	21842	5	82.284	-8.245	111.830	0.000	130.494
Geogrid_1_1	21842	1	82.284	-8.245	112.240	0.000	130.934
Element 1-20 (Geogrid)	21838	2	82.407	-8.276	106.961	0.000	125.352
(Barra cava ø90 + bulbo d450/2m)	21837	3	82.531	-8.307	101.861	0.000	119.885
	21836	4	82.654	-8.338	96.531	0.000	114.149
	21852	5	82.777	-8.368	90.566	0.000	107.759
Geogrid_1_1	21852	1	82.777	-8.368	91.310	0.000	107.259
Element 1-21 (Geogrid)	21856	2	82.894	-8.398	85.714	0.000	102.334
(Barra cava ø90 + bulbo d450/2m)	21857	3	83.012	-8.427	80.005	0.000	96.285
	21858	4	83.129	-8.456	75.025	0.000	90.005
	22190	5	83.247	-8.485	71.616	0.000	84.387
Geogrid_1_1	22190	1	83.247	-8.485	60.873	0.000	75.114
Element 1-22 (Geogrid)	22193	2	83.359	-8.513	62.398	0.000	75.047
(Barra cava ø90 + bulbo d450/2m)	22192	3	83.471	-8.541	60.472	0.000	71.204
	22191	4	83.583	-8.569	52.362	0.000	61.061
	22302	5	83.695	-8.597	35.337	0.000	42.216
Geogrid_1_1	22302	1	83.695	-8.597	50.151	0.000	58.315
Element 1-23 (Geogrid)	22308	2	83.801	-8.624	39.770	0.000	43.340
(Barra cava ø90 + bulbo d450/2m)	22307	3	83.908	-8.650	29.511	0.000	31.519
	22306	4	84.015	-8.677	25.178	0.000	27.076
	22602	5	84.122	-8.704	32.572	0.000	34.586

3.6.9 Geogrid, SLU 1 (q=46, T=28) [Phase_10] (10/249), Table of geogrid force envelopes

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
Geogrid_1_1	17748	1	66.656	-4.349	173.501	0.000	173.501
Element 1-1 (Geogrid)	17754	2	66.962	-4.425	169.250	0.000	169.250
(Barra cava ø90 + bulbo d450/2m)	17753	3	67.268	-4.501	166.267	0.000	166.267
	17752	4	67.573	-4.577	163.678	0.000	163.678
	18302	5	67.879	-4.654	161.979	0.000	161.979
Geogrid_1_1	18302	1	67.879	-4.654	161.835	0.000	161.835
Element 1-2 (Geogrid)	18305	2	68.170	-4.726	160.279	0.000	160.279
(Barra cava ø90 + bulbo d450/2m)	18304	3	68.462	-4.799	158.868	0.000	158.868
	18303	4	68.753	-4.872	157.524	0.000	157.524
	18488	5	69.044	-4.944	156.279	0.000	156.279
Geogrid_1_1	18488	1	69.044	-4.944	156.243	0.000	156.243
Element 1-3 (Geogrid)	18484	2	69.322	-5.014	155.060	0.000	155.060
(Barra cava ø90 + bulbo d450/2m)	18483	3	69.600	-5.083	153.874	0.000	153.874
	18482	4	69.878	-5.152	152.677	0.000	152.677
	18498	5	70.155	-5.221	151.467	0.000	151.467
Geogrid_1_1	18498	1	70.155	-5.221	151.464	0.000	151.464
Element 1-4 (Geogrid)	18501	2	70.420	-5.287	150.284	0.000	150.284
(Barra cava ø90 + bulbo d450/2m)	18500	3	70.685	-5.353	149.075	0.000	149.075
	18499	4	70.950	-5.419	147.838	0.000	147.838
	18882	5	71.214	-5.485	146.572	0.000	146.572
Geogrid_1_1	18882	1	71.214	-5.485	146.572	0.000	146.572
Element 1-5 (Geogrid)	18885	2	71.467	-5.548	145.335	0.000	145.335
(Barra cava ø90 + bulbo d450/2m)	18884	3	71.719	-5.611	144.070	0.000	144.070
	18883	4	71.972	-5.674	142.774	0.000	142.774
	19434	5	72.224	-5.737	141.449	0.000	141.449
Geogrid_1_1	19434	1	72.224	-5.737	141.448	0.000	141.448
Element 1-6 (Geogrid)	19437	2	72.465	-5.797	140.156	0.000	140.156
(Barra cava ø90 + bulbo d450/2m)	19436	3	72.705	-5.857	138.835	0.000	138.835
	19435	4	72.946	-5.917	137.486	0.000	137.486
	19576	5	73.187	-5.977	136.109	0.000	136.109
Geogrid_1_1	19576	1	73.187	-5.977	136.109	0.000	136.109
Element 1-7 (Geogrid)	19572	2	73.416	-6.034	134.772	0.000	134.772
(Barra cava ø90 + bulbo d450/2m)	19571	3	73.645	-6.091	133.409	0.000	133.409
	19570	4	73.875	-6.149	132.020	0.000	132.020
	19602	5	74.104	-6.206	130.606	0.000	130.606
Geogrid_1_1	19602	1	74.104	-6.206	130.604	0.000	130.604
Element 1-8 (Geogrid)	19605	2	74.323	-6.260	129.235	0.000	129.235

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	19604	3	74.542	-6.315	127.838	0.000	127.838
	19603	4	74.760	-6.369	126.415	0.000	126.415
	20014	5	74.979	-6.424	124.969	0.000	124.969
Geogrid_1_1	20014	1	74.979	-6.424	124.971	0.000	124.971
Element 1-9 (Geogrid)	20017	2	75.187	-6.476	123.567	0.000	123.567
(Barra cava ø90 + bulbo d450/2m)	20016	3	75.396	-6.528	122.140	0.000	122.140
	20015	4	75.604	-6.580	120.689	0.000	120.689
	20168	5	75.813	-6.632	119.216	0.000	119.216
Geogrid_1_1	20168	1	75.813	-6.632	119.216	0.000	119.216
Element 1-10 (Geogrid)	20164	2	76.012	-6.681	117.786	0.000	117.786
(Barra cava ø90 + bulbo d450/2m)	20163	3	76.210	-6.731	116.334	0.000	116.334
	20162	4	76.409	-6.781	114.859	0.000	114.859
	20558	5	76.608	-6.830	113.358	0.000	113.358
Geogrid_1_1	20558	1	76.608	-6.830	113.357	0.000	113.357
Element 1-11 (Geogrid)	20561	2	76.797	-6.877	111.908	0.000	111.908
(Barra cava ø90 + bulbo d450/2m)	20560	3	76.987	-6.925	110.433	0.000	110.433
	20559	4	77.176	-6.972	108.932	0.000	108.932
	20626	5	77.366	-7.019	107.406	0.000	107.406
Geogrid_1_1	20626	1	77.366	-7.019	107.405	0.000	107.405
Element 1-12 (Geogrid)	20622	2	77.546	-7.064	105.925	0.000	105.925
(Barra cava ø90 + bulbo d450/2m)	20621	3	77.727	-7.109	104.420	0.000	104.420
	20620	4	77.907	-7.154	102.889	0.000	102.889
	20636	5	78.088	-7.199	101.332	0.000	101.332
Geogrid_1_1	20636	1	78.088	-7.199	101.331	0.000	101.331
Element 1-13 (Geogrid)	20642	2	78.260	-7.242	99.821	0.000	99.821
(Barra cava ø90 + bulbo d450/2m)	20641	3	78.432	-7.285	98.284	0.000	98.284
	20640	4	78.605	-7.328	96.718	0.000	96.718
	20770	5	78.777	-7.371	95.124	0.000	95.124
Geogrid_1_1	20770	1	78.777	-7.371	95.124	0.000	95.124
Element 1-14 (Geogrid)	20766	2	78.941	-7.412	93.576	0.000	93.576
(Barra cava ø90 + bulbo d450/2m)	20765	3	79.105	-7.453	91.998	0.000	91.998
	20764	4	79.269	-7.494	90.390	0.000	90.390
	21200	5	79.433	-7.535	88.751	0.000	88.751
Geogrid_1_1	21200	1	79.433	-7.535	88.750	0.000	88.750
Element 1-15 (Geogrid)	21203	2	79.590	-7.574	87.155	0.000	87.155
(Barra cava ø90 + bulbo d450/2m)	21202	3	79.746	-7.613	85.527	0.000	85.527
	21201	4	79.903	-7.652	83.865	0.000	83.865
	21316	5	80.059	-7.691	82.167	0.000	82.167
Geogrid_1_1	21316	1	80.059	-7.691	82.166	0.000	82.166
Element 1-16 (Geogrid)	21320	2	80.209	-7.728	80.512	0.000	80.512

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	21321	3	80.358	-7.765	78.819	0.000	78.819
	21322	4	80.507	-7.802	77.088	0.000	77.088
	21332	5	80.656	-7.839	75.316	0.000	75.316
Geogrid_1_1	21332	1	80.656	-7.839	75.315	0.000	75.315
Element 1-17 (Geogrid)	21335	2	80.798	-7.875	73.585	0.000	73.585
(Barra cava ø90 + bulbo d450/2m)	21334	3	80.940	-7.910	71.812	0.000	71.812
	21333	4	81.083	-7.946	69.995	0.000	69.995
	21348	5	81.225	-7.981	68.132	0.000	68.132
Geogrid_1_1	21348	1	81.225	-7.981	68.131	0.000	68.131
Element 1-18 (Geogrid)	21352	2	81.360	-8.015	66.311	0.000	66.311
(Barra cava ø90 + bulbo d450/2m)	21353	3	81.496	-8.049	64.442	0.000	64.442
	21354	4	81.632	-8.083	62.525	0.000	62.525
	21734	5	81.767	-8.116	60.557	0.000	60.557
Geogrid_1_1	21734	1	81.767	-8.116	60.554	0.000	60.554
Element 1-19 (Geogrid)	21737	2	81.896	-8.149	58.628	0.000	58.628
(Barra cava ø90 + bulbo d450/2m)	21736	3	82.026	-8.181	56.645	0.000	56.645
	21735	4	82.155	-8.213	54.602	0.000	54.602
	21842	5	82.284	-8.245	52.494	0.000	52.494
Geogrid_1_1	21842	1	82.284	-8.245	52.489	0.000	52.489
Element 1-20 (Geogrid)	21838	2	82.407	-8.276	50.414	0.000	50.414
(Barra cava ø90 + bulbo d450/2m)	21837	3	82.531	-8.307	48.266	0.000	48.266
	21836	4	82.654	-8.338	46.033	0.000	46.033
	21852	5	82.777	-8.368	43.708	0.000	43.708
Geogrid_1_1	21852	1	82.777	-8.368	43.700	0.000	43.700
Element 1-21 (Geogrid)	21856	2	82.894	-8.398	41.402	0.000	41.402
(Barra cava ø90 + bulbo d450/2m)	21857	3	83.012	-8.427	38.992	0.000	38.992
	21858	4	83.129	-8.456	36.465	0.000	36.465
	22190	5	83.247	-8.485	33.820	0.000	33.820
Geogrid_1_1	22190	1	83.247	-8.485	33.800	0.000	33.800
Element 1-22 (Geogrid)	22193	2	83.359	-8.513	31.153	0.000	31.153
(Barra cava ø90 + bulbo d450/2m)	22192	3	83.471	-8.541	28.296	0.000	28.296
	22191	4	83.583	-8.569	25.216	0.000	25.216
	22302	5	83.695	-8.597	21.901	0.000	21.901
Geogrid_1_1	22302	1	83.695	-8.597	22.824	0.000	22.824
Element 1-23 (Geogrid)	22308	2	83.801	-8.624	18.700	0.000	18.700
(Barra cava ø90 + bulbo d450/2m)	22307	3	83.908	-8.650	14.425	0.000	14.425
	22306	4	84.015	-8.677	10.531	0.000	10.531
	22602	5	84.122	-8.704	7.547	0.000	7.547

3.6.10 Geogrid, SLU 2 (q=32, T=46) [Phase_11] (11/264), Table of geogrid force envelopes

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
Geogrid_1_1	17748	1	66.656	-4.349	180.379	0.000	180.379
Element 1-1 (Geogrid)	17754	2	66.962	-4.425	174.706	0.000	174.706
(Barra cava ø90 + bulbo d450/2m)	17753	3	67.268	-4.501	170.612	0.000	170.612
	17752	4	67.573	-4.577	167.179	0.000	167.179
	18302	5	67.879	-4.654	164.854	0.000	164.854
Geogrid_1_1	18302	1	67.879	-4.654	164.695	0.000	164.695
Element 1-2 (Geogrid)	18305	2	68.170	-4.726	162.580	0.000	162.580
(Barra cava ø90 + bulbo d450/2m)	18304	3	68.462	-4.799	160.660	0.000	160.660
	18303	4	68.753	-4.872	158.853	0.000	158.853
	18488	5	69.044	-4.944	157.190	0.000	157.190
Geogrid_1_1	18488	1	69.044	-4.944	157.167	0.000	157.167
Element 1-3 (Geogrid)	18484	2	69.322	-5.014	155.625	0.000	155.625
(Barra cava ø90 + bulbo d450/2m)	18483	3	69.600	-5.083	154.118	0.000	154.118
	18482	4	69.878	-5.152	152.639	0.000	152.639
	18498	5	70.155	-5.221	151.182	0.000	151.182
Geogrid_1_1	18498	1	70.155	-5.221	151.176	0.000	151.176
Element 1-4 (Geogrid)	18501	2	70.420	-5.287	149.787	0.000	149.787
(Barra cava ø90 + bulbo d450/2m)	18500	3	70.685	-5.353	148.389	0.000	148.389
	18499	4	70.950	-5.419	146.980	0.000	146.980
	18882	5	71.214	-5.485	145.555	0.000	145.555
Geogrid_1_1	18882	1	71.214	-5.485	145.555	0.000	145.555
Element 1-5 (Geogrid)	18885	2	71.467	-5.548	144.180	0.000	144.180
(Barra cava ø90 + bulbo d450/2m)	18884	3	71.719	-5.611	142.786	0.000	142.786
	18883	4	71.972	-5.674	141.370	0.000	141.370
	19434	5	72.224	-5.737	139.932	0.000	139.932
Geogrid_1_1	19434	1	72.224	-5.737	139.932	0.000	139.932
Element 1-6 (Geogrid)	19437	2	72.465	-5.797	138.539	0.000	138.539
(Barra cava ø90 + bulbo d450/2m)	19436	3	72.705	-5.857	137.125	0.000	137.125
	19435	4	72.946	-5.917	135.690	0.000	135.690
	19576	5	73.187	-5.977	134.234	0.000	134.234
Geogrid_1_1	19576	1	73.187	-5.977	134.233	0.000	134.233
Element 1-7 (Geogrid)	19572	2	73.416	-6.034	132.826	0.000	132.826
(Barra cava ø90 + bulbo d450/2m)	19571	3	73.645	-6.091	131.398	0.000	131.398
	19570	4	73.875	-6.149	129.948	0.000	129.948
	19602	5	74.104	-6.206	128.476	0.000	128.476
Geogrid_1_1	19602	1	74.104	-6.206	128.476	0.000	128.476
Element 1-8 (Geogrid)	19605	2	74.323	-6.260	127.056	0.000	127.056

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	19604	3	74.542	-6.315	125.614	0.000	125.614
	19603	4	74.760	-6.369	124.151	0.000	124.151
	20014	5	74.979	-6.424	122.665	0.000	122.665
Geogrid_1_1	20014	1	74.979	-6.424	122.665	0.000	122.665
Element 1-9 (Geogrid)	20017	2	75.187	-6.476	121.229	0.000	121.229
(Barra cava ø90 + bulbo d450/2m)	20016	3	75.396	-6.528	119.772	0.000	119.772
	20015	4	75.604	-6.580	118.296	0.000	118.296
	20168	5	75.813	-6.632	116.802	0.000	116.802
Geogrid_1_1	20168	1	75.813	-6.632	116.800	0.000	116.800
Element 1-10 (Geogrid)	20164	2	76.012	-6.681	115.352	0.000	115.352
(Barra cava ø90 + bulbo d450/2m)	20163	3	76.210	-6.731	113.883	0.000	113.883
	20162	4	76.409	-6.781	112.393	0.000	112.393
	20558	5	76.608	-6.830	110.885	0.000	110.885
Geogrid_1_1	20558	1	76.608	-6.830	110.884	0.000	110.884
Element 1-11 (Geogrid)	20561	2	76.797	-6.877	109.423	0.000	109.423
(Barra cava ø90 + bulbo d450/2m)	20560	3	76.987	-6.925	107.939	0.000	107.939
	20559	4	77.176	-6.972	106.432	0.000	106.432
	20626	5	77.366	-7.019	104.902	0.000	104.902
Geogrid_1_1	20626	1	77.366	-7.019	104.901	0.000	104.901
Element 1-12 (Geogrid)	20622	2	77.546	-7.064	103.420	0.000	103.420
(Barra cava ø90 + bulbo d450/2m)	20621	3	77.727	-7.109	101.917	0.000	101.917
	20620	4	77.907	-7.154	100.390	0.000	100.390
	20636	5	78.088	-7.199	98.840	0.000	98.840
Geogrid_1_1	20636	1	78.088	-7.199	98.839	0.000	98.839
Element 1-13 (Geogrid)	20642	2	78.260	-7.242	97.337	0.000	97.337
(Barra cava ø90 + bulbo d450/2m)	20641	3	78.432	-7.285	95.811	0.000	95.811
	20640	4	78.605	-7.328	94.260	0.000	94.260
	20770	5	78.777	-7.371	92.682	0.000	92.682
Geogrid_1_1	20770	1	78.777	-7.371	92.682	0.000	92.682
Element 1-14 (Geogrid)	20766	2	78.941	-7.412	91.152	0.000	91.152
(Barra cava ø90 + bulbo d450/2m)	20765	3	79.105	-7.453	89.595	0.000	89.595
	20764	4	79.269	-7.494	88.010	0.000	88.010
	21200	5	79.433	-7.535	86.396	0.000	86.396
Geogrid_1_1	21200	1	79.433	-7.535	86.395	0.000	86.395
Element 1-15 (Geogrid)	21203	2	79.590	-7.574	84.827	0.000	84.827
(Barra cava ø90 + bulbo d450/2m)	21202	3	79.746	-7.613	83.228	0.000	83.228
	21201	4	79.903	-7.652	81.597	0.000	81.597
	21316	5	80.059	-7.691	79.933	0.000	79.933
Geogrid_1_1	21316	1	80.059	-7.691	79.932	0.000	79.932
Element 1-16 (Geogrid)	21320	2	80.209	-7.728	78.312	0.000	78.312

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	21321	3	80.358	-7.765	76.657	0.000	76.657
	21322	4	80.507	-7.802	74.965	0.000	74.965
	21332	5	80.656	-7.839	73.235	0.000	73.235
Geogrid_1_1	21332	1	80.656	-7.839	73.233	0.000	73.233
Element 1-17 (Geogrid)	21335	2	80.798	-7.875	71.545	0.000	71.545
(Barra cava ø90 + bulbo d450/2m)	21334	3	80.940	-7.910	69.816	0.000	69.816
	21333	4	81.083	-7.946	68.044	0.000	68.044
	21348	5	81.225	-7.981	66.229	0.000	66.229
Geogrid_1_1	21348	1	81.225	-7.981	66.228	0.000	66.228
Element 1-18 (Geogrid)	21352	2	81.360	-8.015	64.454	0.000	64.454
(Barra cava ø90 + bulbo d450/2m)	21353	3	81.496	-8.049	62.634	0.000	62.634
	21354	4	81.632	-8.083	60.766	0.000	60.766
	21734	5	81.767	-8.116	58.850	0.000	58.850
Geogrid_1_1	21734	1	81.767	-8.116	58.847	0.000	58.847
Element 1-19 (Geogrid)	21737	2	81.896	-8.149	56.972	0.000	56.972
(Barra cava ø90 + bulbo d450/2m)	21736	3	82.026	-8.181	55.042	0.000	55.042
	21735	4	82.155	-8.213	53.053	0.000	53.053
	21842	5	82.284	-8.245	51.004	0.000	51.004
Geogrid_1_1	21842	1	82.284	-8.245	50.999	0.000	50.999
Element 1-20 (Geogrid)	21838	2	82.407	-8.276	48.983	0.000	48.983
(Barra cava ø90 + bulbo d450/2m)	21837	3	82.531	-8.307	46.896	0.000	46.896
	21836	4	82.654	-8.338	44.729	0.000	44.729
	21852	5	82.777	-8.368	42.474	0.000	42.474
Geogrid_1_1	21852	1	82.777	-8.368	42.457	0.000	42.457
Element 1-21 (Geogrid)	21856	2	82.894	-8.398	40.237	0.000	40.237
(Barra cava ø90 + bulbo d450/2m)	21857	3	83.012	-8.427	37.903	0.000	37.903
	21858	4	83.129	-8.456	35.450	0.000	35.450
	22190	5	83.247	-8.485	32.871	0.000	32.871
Geogrid_1_1	22190	1	83.247	-8.485	32.881	0.000	32.881
Element 1-22 (Geogrid)	22193	2	83.359	-8.513	30.293	0.000	30.293
(Barra cava ø90 + bulbo d450/2m)	22192	3	83.471	-8.541	27.514	0.000	27.514
	22191	4	83.583	-8.569	24.535	0.000	24.535
	22302	5	83.695	-8.597	21.342	0.000	21.342
Geogrid_1_1	22302	1	83.695	-8.597	22.218	0.000	22.218
Element 1-23 (Geogrid)	22308	2	83.801	-8.624	18.251	0.000	18.251
(Barra cava ø90 + bulbo d450/2m)	22307	3	83.908	-8.650	14.122	0.000	14.122
	22306	4	84.015	-8.677	10.347	0.000	10.347
	22602	5	84.122	-8.704	7.444	0.000	7.444

3.6.11 Geogrid, SLE r1 (q=40, T=24) [Phase_12] (12/282), Table of geogrid force envelopes

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
Geogrid_1_1	17748	1	66.656	-4.349	170.674	0.000	170.674
Element 1-1 (Geogrid)	17754	2	66.962	-4.425	166.050	0.000	166.050
(Barra cava ø90 + bulbo d450/2m)	17753	3	67.268	-4.501	162.769	0.000	162.769
	17752	4	67.573	-4.577	159.950	0.000	159.950
	18302	5	67.879	-4.654	158.078	0.000	158.078
Geogrid_1_1	18302	1	67.879	-4.654	157.932	0.000	157.932
Element 1-2 (Geogrid)	18305	2	68.170	-4.726	156.222	0.000	156.222
(Barra cava ø90 + bulbo d450/2m)	18304	3	68.462	-4.799	154.679	0.000	154.679
	18303	4	68.753	-4.872	153.219	0.000	153.219
	18488	5	69.044	-4.944	151.872	0.000	151.872
Geogrid_1_1	18488	1	69.044	-4.944	151.842	0.000	151.842
Element 1-3 (Geogrid)	18484	2	69.322	-5.014	150.583	0.000	150.583
(Barra cava ø90 + bulbo d450/2m)	18483	3	69.600	-5.083	149.334	0.000	149.334
	18482	4	69.878	-5.152	148.088	0.000	148.088
	18498	5	70.155	-5.221	146.842	0.000	146.842
Geogrid_1_1	18498	1	70.155	-5.221	146.838	0.000	146.838
Element 1-4 (Geogrid)	18501	2	70.420	-5.287	145.635	0.000	145.635
(Barra cava ø90 + bulbo d450/2m)	18500	3	70.685	-5.353	144.412	0.000	144.412
	18499	4	70.950	-5.419	143.166	0.000	143.166
	18882	5	71.214	-5.485	141.896	0.000	141.896
Geogrid_1_1	18882	1	71.214	-5.485	141.895	0.000	141.895
Element 1-5 (Geogrid)	18885	2	71.467	-5.548	140.660	0.000	140.660
(Barra cava ø90 + bulbo d450/2m)	18884	3	71.719	-5.611	139.400	0.000	139.400
	18883	4	71.972	-5.674	138.112	0.000	138.112
	19434	5	72.224	-5.737	136.799	0.000	136.799
Geogrid_1_1	19434	1	72.224	-5.737	136.799	0.000	136.799
Element 1-6 (Geogrid)	19437	2	72.465	-5.797	135.520	0.000	135.520
(Barra cava ø90 + bulbo d450/2m)	19436	3	72.705	-5.857	134.216	0.000	134.216
	19435	4	72.946	-5.917	132.887	0.000	132.887
	19576	5	73.187	-5.977	131.533	0.000	131.533
Geogrid_1_1	19576	1	73.187	-5.977	131.533	0.000	131.533
Element 1-7 (Geogrid)	19572	2	73.416	-6.034	130.220	0.000	130.220
(Barra cava ø90 + bulbo d450/2m)	19571	3	73.645	-6.091	128.883	0.000	128.883
	19570	4	73.875	-6.149	127.523	0.000	127.523
	19602	5	74.104	-6.206	126.138	0.000	126.138
Geogrid_1_1	19602	1	74.104	-6.206	126.137	0.000	126.137
Element 1-8 (Geogrid)	19605	2	74.323	-6.260	124.798	0.000	124.798

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	19604	3	74.542	-6.315	123.434	0.000	123.434
	19603	4	74.760	-6.369	122.046	0.000	122.046
	20014	5	74.979	-6.424	120.636	0.000	120.636
Geogrid_1_1	20014	1	74.979	-6.424	120.637	0.000	120.637
Element 1-9 (Geogrid)	20017	2	75.187	-6.476	119.271	0.000	119.271
(Barra cava ø90 + bulbo d450/2m)	20016	3	75.396	-6.528	117.881	0.000	117.881
	20015	4	75.604	-6.580	116.471	0.000	116.471
	20168	5	75.813	-6.632	115.041	0.000	115.041
Geogrid_1_1	20168	1	75.813	-6.632	115.040	0.000	115.040
Element 1-10 (Geogrid)	20164	2	76.012	-6.681	113.651	0.000	113.651
(Barra cava ø90 + bulbo d450/2m)	20163	3	76.210	-6.731	112.242	0.000	112.242
	20162	4	76.409	-6.781	110.810	0.000	110.810
	20558	5	76.608	-6.830	109.355	0.000	109.355
Geogrid_1_1	20558	1	76.608	-6.830	109.355	0.000	109.355
Element 1-11 (Geogrid)	20561	2	76.797	-6.877	107.949	0.000	107.949
(Barra cava ø90 + bulbo d450/2m)	20560	3	76.987	-6.925	106.518	0.000	106.518
	20559	4	77.176	-6.972	105.063	0.000	105.063
	20626	5	77.366	-7.019	103.584	0.000	103.584
Geogrid_1_1	20626	1	77.366	-7.019	103.583	0.000	103.583
Element 1-12 (Geogrid)	20622	2	77.546	-7.064	102.149	0.000	102.149
(Barra cava ø90 + bulbo d450/2m)	20621	3	77.727	-7.109	100.692	0.000	100.692
	20620	4	77.907	-7.154	99.210	0.000	99.210
	20636	5	78.088	-7.199	97.704	0.000	97.704
Geogrid_1_1	20636	1	78.088	-7.199	97.703	0.000	97.703
Element 1-13 (Geogrid)	20642	2	78.260	-7.242	96.243	0.000	96.243
(Barra cava ø90 + bulbo d450/2m)	20641	3	78.432	-7.285	94.757	0.000	94.757
	20640	4	78.605	-7.328	93.244	0.000	93.244
	20770	5	78.777	-7.371	91.706	0.000	91.706
Geogrid_1_1	20770	1	78.777	-7.371	91.705	0.000	91.705
Element 1-14 (Geogrid)	20766	2	78.941	-7.412	90.211	0.000	90.211
(Barra cava ø90 + bulbo d450/2m)	20765	3	79.105	-7.453	88.689	0.000	88.689
	20764	4	79.269	-7.494	87.139	0.000	87.139
	21200	5	79.433	-7.535	85.559	0.000	85.559
Geogrid_1_1	21200	1	79.433	-7.535	85.558	0.000	85.558
Element 1-15 (Geogrid)	21203	2	79.590	-7.574	84.022	0.000	84.022
(Barra cava ø90 + bulbo d450/2m)	21202	3	79.746	-7.613	82.454	0.000	82.454
	21201	4	79.903	-7.652	80.854	0.000	80.854
	21316	5	80.059	-7.691	79.220	0.000	79.220
Geogrid_1_1	21316	1	80.059	-7.691	79.219	0.000	79.219
Element 1-16 (Geogrid)	21320	2	80.209	-7.728	77.628	0.000	77.628

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	21321	3	80.358	-7.765	76.001	0.000	76.001
	21322	4	80.507	-7.802	74.337	0.000	74.337
	21332	5	80.656	-7.839	72.635	0.000	72.635
Geogrid_1_1	21332	1	80.656	-7.839	72.633	0.000	72.633
Element 1-17 (Geogrid)	21335	2	80.798	-7.875	70.972	0.000	70.972
(Barra cava ø90 + bulbo d450/2m)	21334	3	80.940	-7.910	69.268	0.000	69.268
	21333	4	81.083	-7.946	67.522	0.000	67.522
	21348	5	81.225	-7.981	65.733	0.000	65.733
Geogrid_1_1	21348	1	81.225	-7.981	65.732	0.000	65.732
Element 1-18 (Geogrid)	21352	2	81.360	-8.015	63.982	0.000	63.982
(Barra cava ø90 + bulbo d450/2m)	21353	3	81.496	-8.049	62.186	0.000	62.186
	21354	4	81.632	-8.083	60.342	0.000	60.342
	21734	5	81.767	-8.116	58.449	0.000	58.449
Geogrid_1_1	21734	1	81.767	-8.116	58.446	0.000	58.446
Element 1-19 (Geogrid)	21737	2	81.896	-8.149	56.593	0.000	56.593
(Barra cava ø90 + bulbo d450/2m)	21736	3	82.026	-8.181	54.685	0.000	54.685
	21735	4	82.155	-8.213	52.719	0.000	52.719
	21842	5	82.284	-8.245	50.691	0.000	50.691
Geogrid_1_1	21842	1	82.284	-8.245	50.686	0.000	50.686
Element 1-20 (Geogrid)	21838	2	82.407	-8.276	48.691	0.000	48.691
(Barra cava ø90 + bulbo d450/2m)	21837	3	82.531	-8.307	46.624	0.000	46.624
	21836	4	82.654	-8.338	44.477	0.000	44.477
	21852	5	82.777	-8.368	42.240	0.000	42.240
Geogrid_1_1	21852	1	82.777	-8.368	42.225	0.000	42.225
Element 1-21 (Geogrid)	21856	2	82.894	-8.398	40.022	0.000	40.022
(Barra cava ø90 + bulbo d450/2m)	21857	3	83.012	-8.427	37.707	0.000	37.707
	21858	4	83.129	-8.456	35.273	0.000	35.273
	22190	5	83.247	-8.485	32.714	0.000	32.714
Geogrid_1_1	22190	1	83.247	-8.485	32.719	0.000	32.719
Element 1-22 (Geogrid)	22193	2	83.359	-8.513	30.151	0.000	30.151
(Barra cava ø90 + bulbo d450/2m)	22192	3	83.471	-8.541	27.391	0.000	27.391
	22191	4	83.583	-8.569	24.429	0.000	24.429
	22302	5	83.695	-8.597	21.252	0.000	21.252
Geogrid_1_1	22302	1	83.695	-8.597	22.123	0.000	22.123
Element 1-23 (Geogrid)	22308	2	83.801	-8.624	18.175	0.000	18.175
(Barra cava ø90 + bulbo d450/2m)	22307	3	83.908	-8.650	14.063	0.000	14.063
	22306	4	84.015	-8.677	10.303	0.000	10.303
	22602	5	84.122	-8.704	7.412	0.000	7.412

3.6.12 Geogrid, SLE r2 (q=28, T=40) [Phase_13] (13/295), Table of geogrid force envelopes

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
Geogrid_1_1	17748	1	66.656	-4.349	176.844	0.000	176.844
Element 1-1 (Geogrid)	17754	2	66.962	-4.425	171.024	0.000	171.024
(Barra cava ø90 + bulbo d450/2m)	17753	3	67.268	-4.501	166.811	0.000	166.811
	17752	4	67.573	-4.577	163.286	0.000	163.286
	18302	5	67.879	-4.654	160.895	0.000	160.895
Geogrid_1_1	18302	1	67.879	-4.654	160.730	0.000	160.730
Element 1-2 (Geogrid)	18305	2	68.170	-4.726	158.559	0.000	158.559
(Barra cava ø90 + bulbo d450/2m)	18304	3	68.462	-4.799	156.583	0.000	156.583
	18303	4	68.753	-4.872	154.724	0.000	154.724
	18488	5	69.044	-4.944	153.019	0.000	153.019
Geogrid_1_1	18488	1	69.044	-4.944	152.999	0.000	152.999
Element 1-3 (Geogrid)	18484	2	69.322	-5.014	151.420	0.000	151.420
(Barra cava ø90 + bulbo d450/2m)	18483	3	69.600	-5.083	149.885	0.000	149.885
	18482	4	69.878	-5.152	148.386	0.000	148.386
	18498	5	70.155	-5.221	146.914	0.000	146.914
Geogrid_1_1	18498	1	70.155	-5.221	146.909	0.000	146.909
Element 1-4 (Geogrid)	18501	2	70.420	-5.287	145.515	0.000	145.515
(Barra cava ø90 + bulbo d450/2m)	18500	3	70.685	-5.353	144.118	0.000	144.118
	18499	4	70.950	-5.419	142.715	0.000	142.715
	18882	5	71.214	-5.485	141.302	0.000	141.302
Geogrid_1_1	18882	1	71.214	-5.485	141.303	0.000	141.303
Element 1-5 (Geogrid)	18885	2	71.467	-5.548	139.943	0.000	139.943
(Barra cava ø90 + bulbo d450/2m)	18884	3	71.719	-5.611	138.567	0.000	138.567
	18883	4	71.972	-5.674	137.172	0.000	137.172
	19434	5	72.224	-5.737	135.758	0.000	135.758
Geogrid_1_1	19434	1	72.224	-5.737	135.758	0.000	135.758
Element 1-6 (Geogrid)	19437	2	72.465	-5.797	134.390	0.000	134.390
(Barra cava ø90 + bulbo d450/2m)	19436	3	72.705	-5.857	133.002	0.000	133.002
	19435	4	72.946	-5.917	131.595	0.000	131.595
	19576	5	73.187	-5.977	130.168	0.000	130.168
Geogrid_1_1	19576	1	73.187	-5.977	130.167	0.000	130.167
Element 1-7 (Geogrid)	19572	2	73.416	-6.034	128.789	0.000	128.789
(Barra cava ø90 + bulbo d450/2m)	19571	3	73.645	-6.091	127.392	0.000	127.392
	19570	4	73.875	-6.149	125.976	0.000	125.976
	19602	5	74.104	-6.206	124.540	0.000	124.540
Geogrid_1_1	19602	1	74.104	-6.206	124.539	0.000	124.539
Element 1-8 (Geogrid)	19605	2	74.323	-6.260	123.153	0.000	123.153

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	19604	3	74.542	-6.315	121.748	0.000	121.748
	19603	4	74.760	-6.369	120.322	0.000	120.322
	20014	5	74.979	-6.424	118.876	0.000	118.876
Geogrid_1_1	20014	1	74.979	-6.424	118.877	0.000	118.877
Element 1-9 (Geogrid)	20017	2	75.187	-6.476	117.478	0.000	117.478
(Barra cava ø90 + bulbo d450/2m)	20016	3	75.396	-6.528	116.061	0.000	116.061
	20015	4	75.604	-6.580	114.626	0.000	114.626
	20168	5	75.813	-6.632	113.170	0.000	113.170
Geogrid_1_1	20168	1	75.813	-6.632	113.170	0.000	113.170
Element 1-10 (Geogrid)	20164	2	76.012	-6.681	111.762	0.000	111.762
(Barra cava ø90 + bulbo d450/2m)	20163	3	76.210	-6.731	110.335	0.000	110.335
	20162	4	76.409	-6.781	108.889	0.000	108.889
	20558	5	76.608	-6.830	107.424	0.000	107.424
Geogrid_1_1	20558	1	76.608	-6.830	107.423	0.000	107.423
Element 1-11 (Geogrid)	20561	2	76.797	-6.877	106.003	0.000	106.003
(Barra cava ø90 + bulbo d450/2m)	20560	3	76.987	-6.925	104.562	0.000	104.562
	20559	4	77.176	-6.972	103.099	0.000	103.099
	20626	5	77.366	-7.019	101.614	0.000	101.614
Geogrid_1_1	20626	1	77.366	-7.019	101.613	0.000	101.613
Element 1-12 (Geogrid)	20622	2	77.546	-7.064	100.176	0.000	100.176
(Barra cava ø90 + bulbo d450/2m)	20621	3	77.727	-7.109	98.717	0.000	98.717
	20620	4	77.907	-7.154	97.237	0.000	97.237
	20636	5	78.088	-7.199	95.733	0.000	95.733
Geogrid_1_1	20636	1	78.088	-7.199	95.733	0.000	95.733
Element 1-13 (Geogrid)	20642	2	78.260	-7.242	94.278	0.000	94.278
(Barra cava ø90 + bulbo d450/2m)	20641	3	78.432	-7.285	92.799	0.000	92.799
	20640	4	78.605	-7.328	91.296	0.000	91.296
	20770	5	78.777	-7.371	89.769	0.000	89.769
Geogrid_1_1	20770	1	78.777	-7.371	89.768	0.000	89.768
Element 1-14 (Geogrid)	20766	2	78.941	-7.412	88.287	0.000	88.287
(Barra cava ø90 + bulbo d450/2m)	20765	3	79.105	-7.453	86.780	0.000	86.780
	20764	4	79.269	-7.494	85.247	0.000	85.247
	21200	5	79.433	-7.535	83.686	0.000	83.686
Geogrid_1_1	21200	1	79.433	-7.535	83.685	0.000	83.685
Element 1-15 (Geogrid)	21203	2	79.590	-7.574	82.169	0.000	82.169
(Barra cava ø90 + bulbo d450/2m)	21202	3	79.746	-7.613	80.623	0.000	80.623
	21201	4	79.903	-7.652	79.047	0.000	79.047
	21316	5	80.059	-7.691	77.439	0.000	77.439
Geogrid_1_1	21316	1	80.059	-7.691	77.438	0.000	77.438
Element 1-16 (Geogrid)	21320	2	80.209	-7.728	75.874	0.000	75.874

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	21321	3	80.358	-7.765	74.276	0.000	74.276
	21322	4	80.507	-7.802	72.642	0.000	72.642
	21332	5	80.656	-7.839	70.972	0.000	70.972
Geogrid_1_1	21332	1	80.656	-7.839	70.971	0.000	70.971
Element 1-17 (Geogrid)	21335	2	80.798	-7.875	69.342	0.000	69.342
(Barra cava ø90 + bulbo d450/2m)	21334	3	80.940	-7.910	67.673	0.000	67.673
	21333	4	81.083	-7.946	65.963	0.000	65.963
	21348	5	81.225	-7.981	64.211	0.000	64.211
Geogrid_1_1	21348	1	81.225	-7.981	64.211	0.000	64.211
Element 1-18 (Geogrid)	21352	2	81.360	-8.015	62.498	0.000	62.498
(Barra cava ø90 + bulbo d450/2m)	21353	3	81.496	-8.049	60.740	0.000	60.740
	21354	4	81.632	-8.083	58.936	0.000	58.936
	21734	5	81.767	-8.116	57.083	0.000	57.083
Geogrid_1_1	21734	1	81.767	-8.116	57.081	0.000	57.081
Element 1-19 (Geogrid)	21737	2	81.896	-8.149	55.268	0.000	55.268
(Barra cava ø90 + bulbo d450/2m)	21736	3	82.026	-8.181	53.402	0.000	53.402
	21735	4	82.155	-8.213	51.478	0.000	51.478
	21842	5	82.284	-8.245	49.496	0.000	49.496
Geogrid_1_1	21842	1	82.284	-8.245	49.491	0.000	49.491
Element 1-20 (Geogrid)	21838	2	82.407	-8.276	47.542	0.000	47.542
(Barra cava ø90 + bulbo d450/2m)	21837	3	82.531	-8.307	45.524	0.000	45.524
	21836	4	82.654	-8.338	43.429	0.000	43.429
	21852	5	82.777	-8.368	41.250	0.000	41.250
Geogrid_1_1	21852	1	82.777	-8.368	41.227	0.000	41.227
Element 1-21 (Geogrid)	21856	2	82.894	-8.398	39.086	0.000	39.086
(Barra cava ø90 + bulbo d450/2m)	21857	3	83.012	-8.427	36.832	0.000	36.832
	21858	4	83.129	-8.456	34.456	0.000	34.456
	22190	5	83.247	-8.485	31.951	0.000	31.951
Geogrid_1_1	22190	1	83.247	-8.485	31.977	0.000	31.977
Element 1-22 (Geogrid)	22193	2	83.359	-8.513	29.458	0.000	29.458
(Barra cava ø90 + bulbo d450/2m)	22192	3	83.471	-8.541	26.762	0.000	26.762
	22191	4	83.583	-8.569	23.879	0.000	23.879
	22302	5	83.695	-8.597	20.802	0.000	20.802
Geogrid_1_1	22302	1	83.695	-8.597	21.632	0.000	21.632
Element 1-23 (Geogrid)	22308	2	83.801	-8.624	17.812	0.000	17.812
(Barra cava ø90 + bulbo d450/2m)	22307	3	83.908	-8.650	13.817	0.000	13.817
	22306	4	84.015	-8.677	10.154	0.000	10.154
	22602	5	84.122	-8.704	7.329	0.000	7.329

3.6.13 Geogrid, SLE f3 (q=28, T=0) [Phase_14] (14/309), Table of geogrid force envelopes

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
Geogrid_1_1	17748	1	66.656	-4.349	157.867	0.000	157.867
Element 1-1 (Geogrid)	17754	2	66.962	-4.425	152.789	0.000	152.789
(Barra cava ø90 + bulbo d450/2m)	17753	3	67.268	-4.501	149.151	0.000	149.151
	17752	4	67.573	-4.577	146.055	0.000	146.055
	18302	5	67.879	-4.654	143.971	0.000	143.971
Geogrid_1_1	18302	1	67.879	-4.654	143.821	0.000	143.821
Element 1-2 (Geogrid)	18305	2	68.170	-4.726	141.939	0.000	141.939
(Barra cava ø90 + bulbo d450/2m)	18304	3	68.462	-4.799	140.232	0.000	140.232
	18303	4	68.753	-4.872	138.624	0.000	138.624
	18488	5	69.044	-4.944	137.156	0.000	137.156
Geogrid_1_1	18488	1	69.044	-4.944	137.135	0.000	137.135
Element 1-3 (Geogrid)	18484	2	69.322	-5.014	135.768	0.000	135.768
(Barra cava ø90 + bulbo d450/2m)	18483	3	69.600	-5.083	134.442	0.000	134.442
	18482	4	69.878	-5.152	133.150	0.000	133.150
	18498	5	70.155	-5.221	131.884	0.000	131.884
Geogrid_1_1	18498	1	70.155	-5.221	131.879	0.000	131.879
Element 1-4 (Geogrid)	18501	2	70.420	-5.287	130.681	0.000	130.681
(Barra cava ø90 + bulbo d450/2m)	18500	3	70.685	-5.353	129.483	0.000	129.483
	18499	4	70.950	-5.419	128.279	0.000	128.279
	18882	5	71.214	-5.485	127.066	0.000	127.066
Geogrid_1_1	18882	1	71.214	-5.485	127.067	0.000	127.067
Element 1-5 (Geogrid)	18885	2	71.467	-5.548	125.899	0.000	125.899
(Barra cava ø90 + bulbo d450/2m)	18884	3	71.719	-5.611	124.714	0.000	124.714
	18883	4	71.972	-5.674	123.512	0.000	123.512
	19434	5	72.224	-5.737	122.292	0.000	122.292
Geogrid_1_1	19434	1	72.224	-5.737	122.291	0.000	122.291
Element 1-6 (Geogrid)	19437	2	72.465	-5.797	121.107	0.000	121.107
(Barra cava ø90 + bulbo d450/2m)	19436	3	72.705	-5.857	119.903	0.000	119.903
	19435	4	72.946	-5.917	118.680	0.000	118.680
	19576	5	73.187	-5.977	117.438	0.000	117.438
Geogrid_1_1	19576	1	73.187	-5.977	117.437	0.000	117.437
Element 1-7 (Geogrid)	19572	2	73.416	-6.034	116.236	0.000	116.236
(Barra cava ø90 + bulbo d450/2m)	19571	3	73.645	-6.091	115.016	0.000	115.016
	19570	4	73.875	-6.149	113.777	0.000	113.777
	19602	5	74.104	-6.206	112.519	0.000	112.519
Geogrid_1_1	19602	1	74.104	-6.206	112.519	0.000	112.519
Element 1-8 (Geogrid)	19605	2	74.323	-6.260	111.304	0.000	111.304

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	19604	3	74.542	-6.315	110.070	0.000	110.070
	19603	4	74.760	-6.369	108.817	0.000	108.817
	20014	5	74.979	-6.424	107.544	0.000	107.544
Geogrid_1_1	20014	1	74.979	-6.424	107.545	0.000	107.545
Element 1-9 (Geogrid)	20017	2	75.187	-6.476	106.312	0.000	106.312
(Barra cava ø90 + bulbo d450/2m)	20016	3	75.396	-6.528	105.063	0.000	105.063
	20015	4	75.604	-6.580	103.795	0.000	103.795
	20168	5	75.813	-6.632	102.507	0.000	102.507
Geogrid_1_1	20168	1	75.813	-6.632	102.507	0.000	102.507
Element 1-10 (Geogrid)	20164	2	76.012	-6.681	101.262	0.000	101.262
(Barra cava ø90 + bulbo d450/2m)	20163	3	76.210	-6.731	99.999	0.000	99.999
	20162	4	76.409	-6.781	98.718	0.000	98.718
	20558	5	76.608	-6.830	97.416	0.000	97.416
Geogrid_1_1	20558	1	76.608	-6.830	97.415	0.000	97.415
Element 1-11 (Geogrid)	20561	2	76.797	-6.877	96.154	0.000	96.154
(Barra cava ø90 + bulbo d450/2m)	20560	3	76.987	-6.925	94.872	0.000	94.872
	20559	4	77.176	-6.972	93.569	0.000	93.569
	20626	5	77.366	-7.019	92.245	0.000	92.245
Geogrid_1_1	20626	1	77.366	-7.019	92.245	0.000	92.245
Element 1-12 (Geogrid)	20622	2	77.546	-7.064	90.962	0.000	90.962
(Barra cava ø90 + bulbo d450/2m)	20621	3	77.727	-7.109	89.660	0.000	89.660
	20620	4	77.907	-7.154	88.337	0.000	88.337
	20636	5	78.088	-7.199	86.993	0.000	86.993
Geogrid_1_1	20636	1	78.088	-7.199	86.993	0.000	86.993
Element 1-13 (Geogrid)	20642	2	78.260	-7.242	85.691	0.000	85.691
(Barra cava ø90 + bulbo d450/2m)	20641	3	78.432	-7.285	84.368	0.000	84.368
	20640	4	78.605	-7.328	83.022	0.000	83.022
	20770	5	78.777	-7.371	81.655	0.000	81.655
Geogrid_1_1	20770	1	78.777	-7.371	81.654	0.000	81.654
Element 1-14 (Geogrid)	20766	2	78.941	-7.412	80.327	0.000	80.327
(Barra cava ø90 + bulbo d450/2m)	20765	3	79.105	-7.453	78.977	0.000	78.977
	20764	4	79.269	-7.494	77.603	0.000	77.603
	21200	5	79.433	-7.535	76.203	0.000	76.203
Geogrid_1_1	21200	1	79.433	-7.535	76.202	0.000	76.202
Element 1-15 (Geogrid)	21203	2	79.590	-7.574	74.843	0.000	74.843
(Barra cava ø90 + bulbo d450/2m)	21202	3	79.746	-7.613	73.457	0.000	73.457
	21201	4	79.903	-7.652	72.043	0.000	72.043
	21316	5	80.059	-7.691	70.601	0.000	70.601
Geogrid_1_1	21316	1	80.059	-7.691	70.600	0.000	70.600
Element 1-16 (Geogrid)	21320	2	80.209	-7.728	69.197	0.000	69.197

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	21321	3	80.358	-7.765	67.763	0.000	67.763
	21322	4	80.507	-7.802	66.298	0.000	66.298
	21332	5	80.656	-7.839	64.800	0.000	64.800
Geogrid_1_1	21332	1	80.656	-7.839	64.798	0.000	64.798
Element 1-17 (Geogrid)	21335	2	80.798	-7.875	63.337	0.000	63.337
(Barra cava ø90 + bulbo d450/2m)	21334	3	80.940	-7.910	61.840	0.000	61.840
	21333	4	81.083	-7.946	60.305	0.000	60.305
	21348	5	81.225	-7.981	58.732	0.000	58.732
Geogrid_1_1	21348	1	81.225	-7.981	58.731	0.000	58.731
Element 1-18 (Geogrid)	21352	2	81.360	-8.015	57.192	0.000	57.192
(Barra cava ø90 + bulbo d450/2m)	21353	3	81.496	-8.049	55.611	0.000	55.611
	21354	4	81.632	-8.083	53.986	0.000	53.986
	21734	5	81.767	-8.116	52.316	0.000	52.316
Geogrid_1_1	21734	1	81.767	-8.116	52.314	0.000	52.314
Element 1-19 (Geogrid)	21737	2	81.896	-8.149	50.678	0.000	50.678
(Barra cava ø90 + bulbo d450/2m)	21736	3	82.026	-8.181	48.991	0.000	48.991
	21735	4	82.155	-8.213	47.250	0.000	47.250
	21842	5	82.284	-8.245	45.455	0.000	45.455
Geogrid_1_1	21842	1	82.284	-8.245	45.451	0.000	45.451
Element 1-20 (Geogrid)	21838	2	82.407	-8.276	43.685	0.000	43.685
(Barra cava ø90 + bulbo d450/2m)	21837	3	82.531	-8.307	41.856	0.000	41.856
	21836	4	82.654	-8.338	39.958	0.000	39.958
	21852	5	82.777	-8.368	37.983	0.000	37.983
Geogrid_1_1	21852	1	82.777	-8.368	37.953	0.000	37.953
Element 1-21 (Geogrid)	21856	2	82.894	-8.398	36.021	0.000	36.021
(Barra cava ø90 + bulbo d450/2m)	21857	3	83.012	-8.427	33.980	0.000	33.980
	21858	4	83.129	-8.456	31.820	0.000	31.820
	22190	5	83.247	-8.485	29.532	0.000	29.532
Geogrid_1_1	22190	1	83.247	-8.485	29.572	0.000	29.572
Element 1-22 (Geogrid)	22193	2	83.359	-8.513	27.263	0.000	27.263
(Barra cava ø90 + bulbo d450/2m)	22192	3	83.471	-8.541	24.792	0.000	24.792
	22191	4	83.583	-8.569	22.162	0.000	22.162
	22302	5	83.695	-8.597	19.379	0.000	19.379
Geogrid_1_1	22302	1	83.695	-8.597	20.094	0.000	20.094
Element 1-23 (Geogrid)	22308	2	83.801	-8.624	16.636	0.000	16.636
(Barra cava ø90 + bulbo d450/2m)	22307	3	83.908	-8.650	12.987	0.000	12.987
	22306	4	84.015	-8.677	9.609	0.000	9.609
	22602	5	84.122	-8.704	6.959	0.000	6.959

3.6.14 Geogrid, SLE f4 (q=24, T=8) [Phase_15] (15/322), Table of geogrid force envelopes

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
Geogrid_1_1	17748	1	66.656	-4.349	160.823	0.000	160.823
Element 1-1 (Geogrid)	17754	2	66.962	-4.425	155.368	0.000	155.368
(Barra cava ø90 + bulbo d450/2m)	17753	3	67.268	-4.501	151.435	0.000	151.435
	17752	4	67.573	-4.577	148.110	0.000	148.110
	18302	5	67.879	-4.654	145.847	0.000	145.847
Geogrid_1_1	18302	1	67.879	-4.654	145.690	0.000	145.690
Element 1-2 (Geogrid)	18305	2	68.170	-4.726	143.659	0.000	143.659
(Barra cava ø90 + bulbo d450/2m)	18304	3	68.462	-4.799	141.810	0.000	141.810
	18303	4	68.753	-4.872	140.071	0.000	140.071
	18488	5	69.044	-4.944	138.480	0.000	138.480
Geogrid_1_1	18488	1	69.044	-4.944	138.459	0.000	138.459
Element 1-3 (Geogrid)	18484	2	69.322	-5.014	136.993	0.000	136.993
(Barra cava ø90 + bulbo d450/2m)	18483	3	69.600	-5.083	135.572	0.000	135.572
	18482	4	69.878	-5.152	134.190	0.000	134.190
	18498	5	70.155	-5.221	132.839	0.000	132.839
Geogrid_1_1	18498	1	70.155	-5.221	132.835	0.000	132.835
Element 1-4 (Geogrid)	18501	2	70.420	-5.287	131.562	0.000	131.562
(Barra cava ø90 + bulbo d450/2m)	18500	3	70.685	-5.353	130.290	0.000	130.290
	18499	4	70.950	-5.419	129.018	0.000	129.018
	18882	5	71.214	-5.485	127.743	0.000	127.743
Geogrid_1_1	18882	1	71.214	-5.485	127.743	0.000	127.743
Element 1-5 (Geogrid)	18885	2	71.467	-5.548	126.519	0.000	126.519
(Barra cava ø90 + bulbo d450/2m)	18884	3	71.719	-5.611	125.281	0.000	125.281
	18883	4	71.972	-5.674	124.029	0.000	124.029
	19434	5	72.224	-5.737	122.762	0.000	122.762
Geogrid_1_1	19434	1	72.224	-5.737	122.761	0.000	122.761
Element 1-6 (Geogrid)	19437	2	72.465	-5.797	121.537	0.000	121.537
(Barra cava ø90 + bulbo d450/2m)	19436	3	72.705	-5.857	120.294	0.000	120.294
	19435	4	72.946	-5.917	119.035	0.000	119.035
	19576	5	73.187	-5.977	117.758	0.000	117.758
Geogrid_1_1	19576	1	73.187	-5.977	117.757	0.000	117.757
Element 1-7 (Geogrid)	19572	2	73.416	-6.034	116.524	0.000	116.524
(Barra cava ø90 + bulbo d450/2m)	19571	3	73.645	-6.091	115.274	0.000	115.274
	19570	4	73.875	-6.149	114.007	0.000	114.007
	19602	5	74.104	-6.206	112.723	0.000	112.723
Geogrid_1_1	19602	1	74.104	-6.206	112.723	0.000	112.723
Element 1-8 (Geogrid)	19605	2	74.323	-6.260	111.482	0.000	111.482

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	19604	3	74.542	-6.315	110.224	0.000	110.224
	19603	4	74.760	-6.369	108.949	0.000	108.949
	20014	5	74.979	-6.424	107.657	0.000	107.657
Geogrid_1_1	20014	1	74.979	-6.424	107.656	0.000	107.656
Element 1-9 (Geogrid)	20017	2	75.187	-6.476	106.404	0.000	106.404
(Barra cava ø90 + bulbo d450/2m)	20016	3	75.396	-6.528	105.135	0.000	105.135
	20015	4	75.604	-6.580	103.848	0.000	103.848
	20168	5	75.813	-6.632	102.542	0.000	102.542
Geogrid_1_1	20168	1	75.813	-6.632	102.541	0.000	102.541
Element 1-10 (Geogrid)	20164	2	76.012	-6.681	101.281	0.000	101.281
(Barra cava ø90 + bulbo d450/2m)	20163	3	76.210	-6.731	100.003	0.000	100.003
	20162	4	76.409	-6.781	98.706	0.000	98.706
	20558	5	76.608	-6.830	97.388	0.000	97.388
Geogrid_1_1	20558	1	76.608	-6.830	97.388	0.000	97.388
Element 1-11 (Geogrid)	20561	2	76.797	-6.877	96.112	0.000	96.112
(Barra cava ø90 + bulbo d450/2m)	20560	3	76.987	-6.925	94.817	0.000	94.817
	20559	4	77.176	-6.972	93.501	0.000	93.501
	20626	5	77.366	-7.019	92.165	0.000	92.165
Geogrid_1_1	20626	1	77.366	-7.019	92.165	0.000	92.165
Element 1-12 (Geogrid)	20622	2	77.546	-7.064	90.872	0.000	90.872
(Barra cava ø90 + bulbo d450/2m)	20621	3	77.727	-7.109	89.559	0.000	89.559
	20620	4	77.907	-7.154	88.227	0.000	88.227
	20636	5	78.088	-7.199	86.874	0.000	86.874
Geogrid_1_1	20636	1	78.088	-7.199	86.874	0.000	86.874
Element 1-13 (Geogrid)	20642	2	78.260	-7.242	85.564	0.000	85.564
(Barra cava ø90 + bulbo d450/2m)	20641	3	78.432	-7.285	84.233	0.000	84.233
	20640	4	78.605	-7.328	82.881	0.000	82.881
	20770	5	78.777	-7.371	81.507	0.000	81.507
Geogrid_1_1	20770	1	78.777	-7.371	81.506	0.000	81.506
Element 1-14 (Geogrid)	20766	2	78.941	-7.412	80.174	0.000	80.174
(Barra cava ø90 + bulbo d450/2m)	20765	3	79.105	-7.453	78.819	0.000	78.819
	20764	4	79.269	-7.494	77.440	0.000	77.440
	21200	5	79.433	-7.535	76.036	0.000	76.036
Geogrid_1_1	21200	1	79.433	-7.535	76.035	0.000	76.035
Element 1-15 (Geogrid)	21203	2	79.590	-7.574	74.672	0.000	74.672
(Barra cava ø90 + bulbo d450/2m)	21202	3	79.746	-7.613	73.283	0.000	73.283
	21201	4	79.903	-7.652	71.867	0.000	71.867
	21316	5	80.059	-7.691	70.423	0.000	70.423
Geogrid_1_1	21316	1	80.059	-7.691	70.422	0.000	70.422
Element 1-16 (Geogrid)	21320	2	80.209	-7.728	69.017	0.000	69.017

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	21321	3	80.358	-7.765	67.582	0.000	67.582
	21322	4	80.507	-7.802	66.116	0.000	66.116
	21332	5	80.656	-7.839	64.617	0.000	64.617
Geogrid_1_1	21332	1	80.656	-7.839	64.616	0.000	64.616
Element 1-17 (Geogrid)	21335	2	80.798	-7.875	63.155	0.000	63.155
(Barra cava ø90 + bulbo d450/2m)	21334	3	80.940	-7.910	61.658	0.000	61.658
	21333	4	81.083	-7.946	60.123	0.000	60.123
	21348	5	81.225	-7.981	58.551	0.000	58.551
Geogrid_1_1	21348	1	81.225	-7.981	58.551	0.000	58.551
Element 1-18 (Geogrid)	21352	2	81.360	-8.015	57.013	0.000	57.013
(Barra cava ø90 + bulbo d450/2m)	21353	3	81.496	-8.049	55.433	0.000	55.433
	21354	4	81.632	-8.083	53.810	0.000	53.810
	21734	5	81.767	-8.116	52.143	0.000	52.143
Geogrid_1_1	21734	1	81.767	-8.116	52.140	0.000	52.140
Element 1-19 (Geogrid)	21737	2	81.896	-8.149	50.506	0.000	50.506
(Barra cava ø90 + bulbo d450/2m)	21736	3	82.026	-8.181	48.822	0.000	48.822
	21735	4	82.155	-8.213	47.085	0.000	47.085
	21842	5	82.284	-8.245	45.293	0.000	45.293
Geogrid_1_1	21842	1	82.284	-8.245	45.289	0.000	45.289
Element 1-20 (Geogrid)	21838	2	82.407	-8.276	43.527	0.000	43.527
(Barra cava ø90 + bulbo d450/2m)	21837	3	82.531	-8.307	41.702	0.000	41.702
	21836	4	82.654	-8.338	39.807	0.000	39.807
	21852	5	82.777	-8.368	37.838	0.000	37.838
Geogrid_1_1	21852	1	82.777	-8.368	37.808	0.000	37.808
Element 1-21 (Geogrid)	21856	2	82.894	-8.398	35.881	0.000	35.881
(Barra cava ø90 + bulbo d450/2m)	21857	3	83.012	-8.427	33.846	0.000	33.846
	21858	4	83.129	-8.456	31.693	0.000	31.693
	22190	5	83.247	-8.485	29.412	0.000	29.412
Geogrid_1_1	22190	1	83.247	-8.485	29.452	0.000	29.452
Element 1-22 (Geogrid)	22193	2	83.359	-8.513	27.151	0.000	27.151
(Barra cava ø90 + bulbo d450/2m)	22192	3	83.471	-8.541	24.688	0.000	24.688
	22191	4	83.583	-8.569	22.069	0.000	22.069
	22302	5	83.695	-8.597	19.296	0.000	19.296
Geogrid_1_1	22302	1	83.695	-8.597	20.005	0.000	20.005
Element 1-23 (Geogrid)	22308	2	83.801	-8.624	16.563	0.000	16.563
(Barra cava ø90 + bulbo d450/2m)	22307	3	83.908	-8.650	12.932	0.000	12.932
	22306	4	84.015	-8.677	9.567	0.000	9.567
	22602	5	84.122	-8.704	6.924	0.000	6.924

3.6.15 Geogrid, SLE qp5 (q=24, T=0) [Phase_19] (19/336), Table of geogrid force envelopes

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
Geogrid_1_1	17748	1	66.656	-4.349	157.265	0.000	157.265
Element 1-1 (Geogrid)	17754	2	66.962	-4.425	151.928	0.000	151.928
(Barra cava ø90 + bulbo d450/2m)	17753	3	67.268	-4.501	148.089	0.000	148.089
	17752	4	67.573	-4.577	144.835	0.000	144.835
	18302	5	67.879	-4.654	142.624	0.000	142.624
Geogrid_1_1	18302	1	67.879	-4.654	142.473	0.000	142.473
Element 1-2 (Geogrid)	18305	2	68.170	-4.726	140.488	0.000	140.488
(Barra cava ø90 + bulbo d450/2m)	18304	3	68.462	-4.799	138.684	0.000	138.684
	18303	4	68.753	-4.872	136.986	0.000	136.986
	18488	5	69.044	-4.944	135.433	0.000	135.433
Geogrid_1_1	18488	1	69.044	-4.944	135.414	0.000	135.414
Element 1-3 (Geogrid)	18484	2	69.322	-5.014	133.980	0.000	133.980
(Barra cava ø90 + bulbo d450/2m)	18483	3	69.600	-5.083	132.593	0.000	132.593
	18482	4	69.878	-5.152	131.244	0.000	131.244
	18498	5	70.155	-5.221	129.925	0.000	129.925
Geogrid_1_1	18498	1	70.155	-5.221	129.920	0.000	129.920
Element 1-4 (Geogrid)	18501	2	70.420	-5.287	128.679	0.000	128.679
(Barra cava ø90 + bulbo d450/2m)	18500	3	70.685	-5.353	127.441	0.000	127.441
	18499	4	70.950	-5.419	126.203	0.000	126.203
	18882	5	71.214	-5.485	124.962	0.000	124.962
Geogrid_1_1	18882	1	71.214	-5.485	124.962	0.000	124.962
Element 1-5 (Geogrid)	18885	2	71.467	-5.548	123.771	0.000	123.771
(Barra cava ø90 + bulbo d450/2m)	18884	3	71.719	-5.611	122.568	0.000	122.568
	18883	4	71.972	-5.674	121.351	0.000	121.351
	19434	5	72.224	-5.737	120.119	0.000	120.119
Geogrid_1_1	19434	1	72.224	-5.737	120.118	0.000	120.118
Element 1-6 (Geogrid)	19437	2	72.465	-5.797	118.927	0.000	118.927
(Barra cava ø90 + bulbo d450/2m)	19436	3	72.705	-5.857	117.719	0.000	117.719
	19435	4	72.946	-5.917	116.494	0.000	116.494
	19576	5	73.187	-5.977	115.251	0.000	115.251
Geogrid_1_1	19576	1	73.187	-5.977	115.251	0.000	115.251
Element 1-7 (Geogrid)	19572	2	73.416	-6.034	114.050	0.000	114.050
(Barra cava ø90 + bulbo d450/2m)	19571	3	73.645	-6.091	112.834	0.000	112.834
	19570	4	73.875	-6.149	111.601	0.000	111.601
	19602	5	74.104	-6.206	110.351	0.000	110.351
Geogrid_1_1	19602	1	74.104	-6.206	110.351	0.000	110.351
Element 1-8 (Geogrid)	19605	2	74.323	-6.260	109.142	0.000	109.142

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	19604	3	74.542	-6.315	107.917	0.000	107.917
	19603	4	74.760	-6.369	106.675	0.000	106.675
	20014	5	74.979	-6.424	105.416	0.000	105.416
Geogrid_1_1	20014	1	74.979	-6.424	105.415	0.000	105.415
Element 1-9 (Geogrid)	20017	2	75.187	-6.476	104.195	0.000	104.195
(Barra cava ø90 + bulbo d450/2m)	20016	3	75.396	-6.528	102.959	0.000	102.959
	20015	4	75.604	-6.580	101.704	0.000	101.704
	20168	5	75.813	-6.632	100.430	0.000	100.430
Geogrid_1_1	20168	1	75.813	-6.632	100.430	0.000	100.430
Element 1-10 (Geogrid)	20164	2	76.012	-6.681	99.201	0.000	99.201
(Barra cava ø90 + bulbo d450/2m)	20163	3	76.210	-6.731	97.954	0.000	97.954
	20162	4	76.409	-6.781	96.689	0.000	96.689
	20558	5	76.608	-6.830	95.403	0.000	95.403
Geogrid_1_1	20558	1	76.608	-6.830	95.403	0.000	95.403
Element 1-11 (Geogrid)	20561	2	76.797	-6.877	94.158	0.000	94.158
(Barra cava ø90 + bulbo d450/2m)	20560	3	76.987	-6.925	92.893	0.000	92.893
	20559	4	77.176	-6.972	91.608	0.000	91.608
	20626	5	77.366	-7.019	90.303	0.000	90.303
Geogrid_1_1	20626	1	77.366	-7.019	90.303	0.000	90.303
Element 1-12 (Geogrid)	20622	2	77.546	-7.064	89.040	0.000	89.040
(Barra cava ø90 + bulbo d450/2m)	20621	3	77.727	-7.109	87.758	0.000	87.758
	20620	4	77.907	-7.154	86.456	0.000	86.456
	20636	5	78.088	-7.199	85.134	0.000	85.134
Geogrid_1_1	20636	1	78.088	-7.199	85.133	0.000	85.133
Element 1-13 (Geogrid)	20642	2	78.260	-7.242	83.853	0.000	83.853
(Barra cava ø90 + bulbo d450/2m)	20641	3	78.432	-7.285	82.553	0.000	82.553
	20640	4	78.605	-7.328	81.231	0.000	81.231
	20770	5	78.777	-7.371	79.888	0.000	79.888
Geogrid_1_1	20770	1	78.777	-7.371	79.887	0.000	79.887
Element 1-14 (Geogrid)	20766	2	78.941	-7.412	78.585	0.000	78.585
(Barra cava ø90 + bulbo d450/2m)	20765	3	79.105	-7.453	77.260	0.000	77.260
	20764	4	79.269	-7.494	75.912	0.000	75.912
	21200	5	79.433	-7.535	74.540	0.000	74.540
Geogrid_1_1	21200	1	79.433	-7.535	74.539	0.000	74.539
Element 1-15 (Geogrid)	21203	2	79.590	-7.574	73.206	0.000	73.206
(Barra cava ø90 + bulbo d450/2m)	21202	3	79.746	-7.613	71.848	0.000	71.848
	21201	4	79.903	-7.652	70.464	0.000	70.464
	21316	5	80.059	-7.691	69.052	0.000	69.052
Geogrid_1_1	21316	1	80.059	-7.691	69.051	0.000	69.051
Element 1-16 (Geogrid)	21320	2	80.209	-7.728	67.677	0.000	67.677

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	21321	3	80.358	-7.765	66.274	0.000	66.274
	21322	4	80.507	-7.802	64.841	0.000	64.841
	21332	5	80.656	-7.839	63.375	0.000	63.375
Geogrid_1_1	21332	1	80.656	-7.839	63.374	0.000	63.374
Element 1-17 (Geogrid)	21335	2	80.798	-7.875	61.945	0.000	61.945
(Barra cava ø90 + bulbo d450/2m)	21334	3	80.940	-7.910	60.482	0.000	60.482
	21333	4	81.083	-7.946	58.982	0.000	58.982
	21348	5	81.225	-7.981	57.445	0.000	57.445
Geogrid_1_1	21348	1	81.225	-7.981	57.445	0.000	57.445
Element 1-18 (Geogrid)	21352	2	81.360	-8.015	55.941	0.000	55.941
(Barra cava ø90 + bulbo d450/2m)	21353	3	81.496	-8.049	54.397	0.000	54.397
	21354	4	81.632	-8.083	52.810	0.000	52.810
	21734	5	81.767	-8.116	51.179	0.000	51.179
Geogrid_1_1	21734	1	81.767	-8.116	51.176	0.000	51.176
Element 1-19 (Geogrid)	21737	2	81.896	-8.149	49.578	0.000	49.578
(Barra cava ø90 + bulbo d450/2m)	21736	3	82.026	-8.181	47.930	0.000	47.930
	21735	4	82.155	-8.213	46.229	0.000	46.229
	21842	5	82.284	-8.245	44.475	0.000	44.475
Geogrid_1_1	21842	1	82.284	-8.245	44.471	0.000	44.471
Element 1-20 (Geogrid)	21838	2	82.407	-8.276	42.746	0.000	42.746
(Barra cava ø90 + bulbo d450/2m)	21837	3	82.531	-8.307	40.958	0.000	40.958
	21836	4	82.654	-8.338	39.102	0.000	39.102
	21852	5	82.777	-8.368	37.172	0.000	37.172
Geogrid_1_1	21852	1	82.777	-8.368	37.144	0.000	37.144
Element 1-21 (Geogrid)	21856	2	82.894	-8.398	35.257	0.000	35.257
(Barra cava ø90 + bulbo d450/2m)	21857	3	83.012	-8.427	33.264	0.000	33.264
	21858	4	83.129	-8.456	31.154	0.000	31.154
	22190	5	83.247	-8.485	28.919	0.000	28.919
Geogrid_1_1	22190	1	83.247	-8.485	28.961	0.000	28.961
Element 1-22 (Geogrid)	22193	2	83.359	-8.513	26.702	0.000	26.702
(Barra cava ø90 + bulbo d450/2m)	22192	3	83.471	-8.541	24.285	0.000	24.285
	22191	4	83.583	-8.569	21.716	0.000	21.716
	22302	5	83.695	-8.597	19.002	0.000	19.002
Geogrid_1_1	22302	1	83.695	-8.597	19.689	0.000	19.689
Element 1-23 (Geogrid)	22308	2	83.801	-8.624	16.318	0.000	16.318
(Barra cava ø90 + bulbo d450/2m)	22307	3	83.908	-8.650	12.756	0.000	12.756
	22306	4	84.015	-8.677	9.449	0.000	9.449
	22602	5	84.122	-8.704	6.840	0.000	6.840

3.6.16 Geogrid, A2+M2 [Phase_25] (18/440), Table of geogrid force envelopes

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
Geogrid_1_1	17748	1	66.656	-4.349	170.079	0.000	170.079
Element 1-1 (Geogrid)	17754	2	66.962	-4.425	163.915	0.000	163.915
(Barra cava ø90 + bulbo d450/2m)	17753	3	67.268	-4.501	159.467	0.000	159.467
	17752	4	67.573	-4.577	155.772	0.000	155.772
	18302	5	67.879	-4.654	153.235	0.000	153.235
Geogrid_1_1	18302	1	67.879	-4.654	153.056	0.000	153.056
Element 1-2 (Geogrid)	18305	2	68.170	-4.726	150.641	0.000	150.641
(Barra cava ø90 + bulbo d450/2m)	18304	3	68.462	-4.799	148.438	0.000	148.438
	18303	4	68.753	-4.872	146.378	0.000	146.378
	18488	5	69.044	-4.944	144.507	0.000	144.507
Geogrid_1_1	18488	1	69.044	-4.944	144.487	0.000	144.487
Element 1-3 (Geogrid)	18484	2	69.322	-5.014	142.775	0.000	142.775
(Barra cava ø90 + bulbo d450/2m)	18483	3	69.600	-5.083	141.110	0.000	141.110
	18482	4	69.878	-5.152	139.487	0.000	139.487
	18498	5	70.155	-5.221	137.904	0.000	137.904
Geogrid_1_1	18498	1	70.155	-5.221	137.899	0.000	137.899
Element 1-4 (Geogrid)	18501	2	70.420	-5.287	136.408	0.000	136.408
(Barra cava ø90 + bulbo d450/2m)	18500	3	70.685	-5.353	134.933	0.000	134.933
	18499	4	70.950	-5.419	133.467	0.000	133.467
	18882	5	71.214	-5.485	132.006	0.000	132.006
Geogrid_1_1	18882	1	71.214	-5.485	132.006	0.000	132.006
Element 1-5 (Geogrid)	18885	2	71.467	-5.548	130.616	0.000	130.616
(Barra cava ø90 + bulbo d450/2m)	18884	3	71.719	-5.611	129.232	0.000	129.232
	18883	4	71.972	-5.674	127.852	0.000	127.852
	19434	5	72.224	-5.737	126.474	0.000	126.474
Geogrid_1_1	19434	1	72.224	-5.737	126.471	0.000	126.471
Element 1-6 (Geogrid)	19437	2	72.465	-5.797	125.155	0.000	125.155
(Barra cava ø90 + bulbo d450/2m)	19436	3	72.705	-5.857	123.839	0.000	123.839
	19435	4	72.946	-5.917	122.521	0.000	122.521
	19576	5	73.187	-5.977	121.200	0.000	121.200
Geogrid_1_1	19576	1	73.187	-5.977	121.197	0.000	121.197
Element 1-7 (Geogrid)	19572	2	73.416	-6.034	119.935	0.000	119.935
(Barra cava ø90 + bulbo d450/2m)	19571	3	73.645	-6.091	118.660	0.000	118.660
	19570	4	73.875	-6.149	117.364	0.000	117.364
	19602	5	74.104	-6.206	116.039	0.000	116.039
Geogrid_1_1	19602	1	74.104	-6.206	116.038	0.000	116.038
Element 1-8 (Geogrid)	19605	2	74.323	-6.260	114.729	0.000	114.729

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	19604	3	74.542	-6.315	113.385	0.000	113.385
	19603	4	74.760	-6.369	112.008	0.000	112.008
	20014	5	74.979	-6.424	110.598	0.000	110.598
Geogrid_1_1	20014	1	74.979	-6.424	110.602	0.000	110.602
Element 1-9 (Geogrid)	20017	2	75.187	-6.476	109.241	0.000	109.241
(Barra cava ø90 + bulbo d450/2m)	20016	3	75.396	-6.528	107.857	0.000	107.857
	20015	4	75.604	-6.580	106.452	0.000	106.452
	20168	5	75.813	-6.632	105.026	0.000	105.026
Geogrid_1_1	20168	1	75.813	-6.632	105.026	0.000	105.026
Element 1-10 (Geogrid)	20164	2	76.012	-6.681	103.647	0.000	103.647
(Barra cava ø90 + bulbo d450/2m)	20163	3	76.210	-6.731	102.248	0.000	102.248
	20162	4	76.409	-6.781	100.827	0.000	100.827
	20558	5	76.608	-6.830	99.387	0.000	99.387
Geogrid_1_1	20558	1	76.608	-6.830	99.388	0.000	99.388
Element 1-11 (Geogrid)	20561	2	76.797	-6.877	97.990	0.000	97.990
(Barra cava ø90 + bulbo d450/2m)	20560	3	76.987	-6.925	96.577	0.000	96.577
	20559	4	77.176	-6.972	95.149	0.000	95.149
	20626	5	77.366	-7.019	93.708	0.000	93.708
Geogrid_1_1	20626	1	77.366	-7.019	93.707	0.000	93.707
Element 1-12 (Geogrid)	20622	2	77.546	-7.064	92.321	0.000	92.321
(Barra cava ø90 + bulbo d450/2m)	20621	3	77.727	-7.109	90.918	0.000	90.918
	20620	4	77.907	-7.154	89.493	0.000	89.493
	20636	5	78.088	-7.199	88.044	0.000	88.044
Geogrid_1_1	20636	1	78.088	-7.199	88.044	0.000	88.044
Element 1-13 (Geogrid)	20642	2	78.260	-7.242	86.635	0.000	86.635
(Barra cava ø90 + bulbo d450/2m)	20641	3	78.432	-7.285	85.205	0.000	85.205
	20640	4	78.605	-7.328	83.756	0.000	83.756
	20770	5	78.777	-7.371	82.288	0.000	82.288
Geogrid_1_1	20770	1	78.777	-7.371	82.289	0.000	82.289
Element 1-14 (Geogrid)	20766	2	78.941	-7.412	80.871	0.000	80.871
(Barra cava ø90 + bulbo d450/2m)	20765	3	79.105	-7.453	79.439	0.000	79.439
	20764	4	79.269	-7.494	77.991	0.000	77.991
	21200	5	79.433	-7.535	76.528	0.000	76.528
Geogrid_1_1	21200	1	79.433	-7.535	76.527	0.000	76.527
Element 1-15 (Geogrid)	21203	2	79.590	-7.574	75.114	0.000	75.114
(Barra cava ø90 + bulbo d450/2m)	21202	3	79.746	-7.613	73.679	0.000	73.679
	21201	4	79.903	-7.652	72.221	0.000	72.221
	21316	5	80.059	-7.691	70.740	0.000	70.740
Geogrid_1_1	21316	1	80.059	-7.691	70.740	0.000	70.740
Element 1-16 (Geogrid)	21320	2	80.209	-7.728	69.305	0.000	69.305

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	21321	3	80.358	-7.765	67.846	0.000	67.846
	21322	4	80.507	-7.802	66.363	0.000	66.363
	21332	5	80.656	-7.839	64.857	0.000	64.857
Geogrid_1_1	21332	1	80.656	-7.839	64.856	0.000	64.856
Element 1-17 (Geogrid)	21335	2	80.798	-7.875	63.398	0.000	63.398
(Barra cava ø90 + bulbo d450/2m)	21334	3	80.940	-7.910	61.916	0.000	61.916
	21333	4	81.083	-7.946	60.408	0.000	60.408
	21348	5	81.225	-7.981	58.873	0.000	58.873
Geogrid_1_1	21348	1	81.225	-7.981	58.867	0.000	58.867
Element 1-18 (Geogrid)	21352	2	81.360	-8.015	57.379	0.000	57.379
(Barra cava ø90 + bulbo d450/2m)	21353	3	81.496	-8.049	55.853	0.000	55.853
	21354	4	81.632	-8.083	54.288	0.000	54.288
	21734	5	81.767	-8.116	52.682	0.000	52.682
Geogrid_1_1	21734	1	81.767	-8.116	52.679	0.000	52.679
Element 1-19 (Geogrid)	21737	2	81.896	-8.149	51.104	0.000	51.104
(Barra cava ø90 + bulbo d450/2m)	21736	3	82.026	-8.181	49.474	0.000	49.474
	21735	4	82.155	-8.213	47.791	0.000	47.791
	21842	5	82.284	-8.245	46.054	0.000	46.054
Geogrid_1_1	21842	1	82.284	-8.245	46.044	0.000	46.044
Element 1-20 (Geogrid)	21838	2	82.407	-8.276	44.318	0.000	44.318
(Barra cava ø90 + bulbo d450/2m)	21837	3	82.531	-8.307	42.502	0.000	42.502
	21836	4	82.654	-8.338	40.592	0.000	40.592
	21852	5	82.777	-8.368	38.582	0.000	38.582
Geogrid_1_1	21852	1	82.777	-8.368	38.559	0.000	38.559
Element 1-21 (Geogrid)	21856	2	82.894	-8.398	36.583	0.000	36.583
(Barra cava ø90 + bulbo d450/2m)	21857	3	83.012	-8.427	34.468	0.000	34.468
	21858	4	83.129	-8.456	32.208	0.000	32.208
	22190	5	83.247	-8.485	29.794	0.000	29.794
Geogrid_1_1	22190	1	83.247	-8.485	29.801	0.000	29.801
Element 1-22 (Geogrid)	22193	2	83.359	-8.513	27.349	0.000	27.349
(Barra cava ø90 + bulbo d450/2m)	22192	3	83.471	-8.541	24.730	0.000	24.730
	22191	4	83.583	-8.569	21.932	0.000	21.932
	22302	5	83.695	-8.597	18.943	0.000	18.943
Geogrid_1_1	22302	1	83.695	-8.597	19.852	0.000	19.852
Element 1-23 (Geogrid)	22308	2	83.801	-8.624	16.167	0.000	16.167
(Barra cava ø90 + bulbo d450/2m)	22307	3	83.908	-8.650	12.363	0.000	12.363
	22306	4	84.015	-8.677	8.913	0.000	8.913
	22602	5	84.122	-8.704	6.290	0.000	6.290

3.6.17 Geogrid, ANALISI STABILITA' [Phase_18] (22/562), Table of geogrid force envelopes

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
Geogrid_1_1	17748	1	66.656	-4.349	220.768	0.000	220.768
Element 1-1 (Geogrid)	17754	2	66.962	-4.425	211.384	0.000	211.384
(Barra cava ø90 + bulbo d450/2m)	17753	3	67.268	-4.501	204.293	0.000	204.293
	17752	4	67.573	-4.577	198.511	0.000	198.511
	18302	5	67.879	-4.654	194.418	0.000	194.418
Geogrid_1_1	18302	1	67.879	-4.654	194.204	0.000	194.204
Element 1-2 (Geogrid)	18305	2	68.170	-4.726	190.538	0.000	190.538
(Barra cava ø90 + bulbo d450/2m)	18304	3	68.462	-4.799	187.206	0.000	187.206
	18303	4	68.753	-4.872	184.113	0.000	184.113
	18488	5	69.044	-4.944	181.277	0.000	181.277
Geogrid_1_1	18488	1	69.044	-4.944	181.223	0.000	181.223
Element 1-3 (Geogrid)	18484	2	69.322	-5.014	178.637	0.000	178.637
(Barra cava ø90 + bulbo d450/2m)	18483	3	69.600	-5.083	176.125	0.000	176.125
	18482	4	69.878	-5.152	173.683	0.000	173.683
	18498	5	70.155	-5.221	171.306	0.000	171.306
Geogrid_1_1	18498	1	70.155	-5.221	171.300	0.000	171.300
Element 1-4 (Geogrid)	18501	2	70.420	-5.287	169.081	0.000	169.081
(Barra cava ø90 + bulbo d450/2m)	18500	3	70.685	-5.353	166.890	0.000	166.890
	18499	4	70.950	-5.419	164.724	0.000	164.724
	18882	5	71.214	-5.485	162.578	0.000	162.578
Geogrid_1_1	18882	1	71.214	-5.485	162.565	0.000	162.565
Element 1-5 (Geogrid)	18885	2	71.467	-5.548	160.502	0.000	160.502
(Barra cava ø90 + bulbo d450/2m)	18884	3	71.719	-5.611	158.442	0.000	158.442
	18883	4	71.972	-5.674	156.394	0.000	156.394
	19434	5	72.224	-5.737	154.368	0.000	154.368
Geogrid_1_1	19434	1	72.224	-5.737	154.390	0.000	154.390
Element 1-6 (Geogrid)	19437	2	72.465	-5.797	152.432	0.000	152.432
(Barra cava ø90 + bulbo d450/2m)	19436	3	72.705	-5.857	150.448	0.000	150.448
	19435	4	72.946	-5.917	148.442	0.000	148.442
	19576	5	73.187	-5.977	146.417	0.000	146.417
Geogrid_1_1	19576	1	73.187	-5.977	146.419	0.000	146.419
Element 1-7 (Geogrid)	19572	2	73.416	-6.034	144.485	0.000	144.485
(Barra cava ø90 + bulbo d450/2m)	19571	3	73.645	-6.091	142.550	0.000	142.550
	19570	4	73.875	-6.149	140.606	0.000	140.606
	19602	5	74.104	-6.206	138.642	0.000	138.642
Geogrid_1_1	19602	1	74.104	-6.206	138.634	0.000	138.634
Element 1-8 (Geogrid)	19605	2	74.323	-6.260	136.722	0.000	136.722

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	19604	3	74.542	-6.315	134.763	0.000	134.763
	19603	4	74.760	-6.369	132.756	0.000	132.756
	20014	5	74.979	-6.424	130.699	0.000	130.699
Geogrid_1_1	20014	1	74.979	-6.424	130.704	0.000	130.704
Element 1-9 (Geogrid)	20017	2	75.187	-6.476	128.712	0.000	128.712
(Barra cava ø90 + bulbo d450/2m)	20016	3	75.396	-6.528	126.694	0.000	126.694
	20015	4	75.604	-6.580	124.645	0.000	124.645
	20168	5	75.813	-6.632	122.562	0.000	122.562
Geogrid_1_1	20168	1	75.813	-6.632	122.567	0.000	122.567
Element 1-10 (Geogrid)	20164	2	76.012	-6.681	120.541	0.000	120.541
(Barra cava ø90 + bulbo d450/2m)	20163	3	76.210	-6.731	118.501	0.000	118.501
	20162	4	76.409	-6.781	116.444	0.000	116.444
	20558	5	76.608	-6.830	114.372	0.000	114.372
Geogrid_1_1	20558	1	76.608	-6.830	114.361	0.000	114.361
Element 1-11 (Geogrid)	20561	2	76.797	-6.877	112.374	0.000	112.374
(Barra cava ø90 + bulbo d450/2m)	20560	3	76.987	-6.925	110.361	0.000	110.361
	20559	4	77.176	-6.972	108.324	0.000	108.324
	20626	5	77.366	-7.019	106.269	0.000	106.269
Geogrid_1_1	20626	1	77.366	-7.019	106.269	0.000	106.269
Element 1-12 (Geogrid)	20622	2	77.546	-7.064	104.304	0.000	104.304
(Barra cava ø90 + bulbo d450/2m)	20621	3	77.727	-7.109	102.320	0.000	102.320
	20620	4	77.907	-7.154	100.310	0.000	100.310
	20636	5	78.088	-7.199	98.265	0.000	98.265
Geogrid_1_1	20636	1	78.088	-7.199	98.263	0.000	98.263
Element 1-13 (Geogrid)	20642	2	78.260	-7.242	96.276	0.000	96.276
(Barra cava ø90 + bulbo d450/2m)	20641	3	78.432	-7.285	94.268	0.000	94.268
	20640	4	78.605	-7.328	92.236	0.000	92.236
	20770	5	78.777	-7.371	90.183	0.000	90.183
Geogrid_1_1	20770	1	78.777	-7.371	90.182	0.000	90.182
Element 1-14 (Geogrid)	20766	2	78.941	-7.412	88.203	0.000	88.203
(Barra cava ø90 + bulbo d450/2m)	20765	3	79.105	-7.453	86.208	0.000	86.208
	20764	4	79.269	-7.494	84.195	0.000	84.195
	21200	5	79.433	-7.535	82.164	0.000	82.164
Geogrid_1_1	21200	1	79.433	-7.535	82.160	0.000	82.160
Element 1-15 (Geogrid)	21203	2	79.590	-7.574	80.213	0.000	80.213
(Barra cava ø90 + bulbo d450/2m)	21202	3	79.746	-7.613	78.250	0.000	78.250
	21201	4	79.903	-7.652	76.269	0.000	76.269
	21316	5	80.059	-7.691	74.274	0.000	74.274
Geogrid_1_1	21316	1	80.059	-7.691	74.287	0.000	74.287
Element 1-16 (Geogrid)	21320	2	80.209	-7.728	72.368	0.000	72.368

Structural element	Node [10 ³]	Local number	X [m]	Y [m]	N [kN/m]	N _{min} [kN/m]	N _{max} [kN/m]
(Barra cava ø90 + bulbo d450/2m)	21321	3	80.358	-7.765	70.458	0.000	70.458
	21322	4	80.507	-7.802	68.558	0.000	68.558
	21332	5	80.656	-7.839	66.669	0.000	66.669
Geogrid_1_1	21332	1	80.656	-7.839	66.663	0.000	66.663
Element 1-17 (Geogrid)	21335	2	80.798	-7.875	64.875	0.000	64.875
(Barra cava ø90 + bulbo d450/2m)	21334	3	80.940	-7.910	63.100	0.000	63.100
	21333	4	81.083	-7.946	61.333	0.000	61.333
	21348	5	81.225	-7.981	59.572	0.000	59.755
Geogrid_1_1	21348	1	81.225	-7.981	59.566	0.000	59.747
Element 1-18 (Geogrid)	21352	2	81.360	-8.015	57.885	0.000	58.269
(Barra cava ø90 + bulbo d450/2m)	21353	3	81.496	-8.049	56.189	0.000	56.754
	21354	4	81.632	-8.083	54.477	0.000	55.198
	21734	5	81.767	-8.116	52.745	0.000	53.599
Geogrid_1_1	21734	1	81.767	-8.116	52.740	0.000	53.596
Element 1-19 (Geogrid)	21737	2	81.896	-8.149	51.056	0.000	52.022
(Barra cava ø90 + bulbo d450/2m)	21736	3	82.026	-8.181	49.324	0.000	50.387
	21735	4	82.155	-8.213	47.536	0.000	48.694
	21842	5	82.284	-8.245	45.688	0.000	46.945
Geogrid_1_1	21842	1	82.284	-8.245	45.680	0.000	46.933
Element 1-20 (Geogrid)	21838	2	82.407	-8.276	43.854	0.000	45.182
(Barra cava ø90 + bulbo d450/2m)	21837	3	82.531	-8.307	41.953	0.000	43.336
	21836	4	82.654	-8.338	39.964	0.000	41.384
	21852	5	82.777	-8.368	37.872	0.000	39.318
Geogrid_1_1	21852	1	82.777	-8.368	37.814	0.000	39.295
Element 1-21 (Geogrid)	21856	2	82.894	-8.398	35.877	0.000	37.250
(Barra cava ø90 + bulbo d450/2m)	21857	3	83.012	-8.427	33.765	0.000	35.064
	21858	4	83.129	-8.456	31.508	0.000	32.738
	22190	5	83.247	-8.485	29.134	0.000	30.274
Geogrid_1_1	22190	1	83.247	-8.485	28.041	0.000	30.134
Element 1-22 (Geogrid)	22193	2	83.359	-8.513	26.599	0.000	27.748
(Barra cava ø90 + bulbo d450/2m)	22192	3	83.471	-8.541	24.386	0.000	25.127
	22191	4	83.583	-8.569	21.394	0.000	22.275
	22302	5	83.695	-8.597	17.616	0.000	19.198
Geogrid_1_1	22302	1	83.695	-8.597	19.027	0.000	20.442
Element 1-23 (Geogrid)	22308	2	83.801	-8.624	16.264	0.000	16.599
(Barra cava ø90 + bulbo d450/2m)	22307	3	83.908	-8.650	12.795	0.000	12.973
	22306	4	84.015	-8.677	9.821	0.000	9.845
	22602	5	84.122	-8.704	8.541	0.000	8.541

3.7.1 Embedded beam row, Initial phase [InitialPhase] (0/0), Total displacements u_x

3.7.2 Embedded beam row, Paratia esistente [Phase_1] (1/5), Total displacements u_x

Total displacements u _x (at true scale)	
No results	

3.7.3 Embedded beam row, Escavo +1m e tirante p=200kN/m [Phase_2] (2/9), Total displacements u_x

3.7.4 Embedded beam row, Escavo -11.50m [Phase_3] (3/15), Total displacements u_x

No results

3.7.5 Embedded beam row, Ribasso monte +1m [Phase_4] (4/18), Total displacements u_x

3.7.6 Embedded beam row, Nuova paratia+solettone [Phase_5] (5/25), Total displacements u_x

3.7.7 Embedded beam row, Rinterro +2.50m e disattivo vecchio tirante [Phase_8] (8/34), Total displacements u_x

3.7.8 Embedded beam row, Escavo -15.0m [Phase_9] (9/64), Total displacements ux

3.7.9 Embedded beam row, SLD q=24kPa+west [Phase_16] (16/82), Total displacements u_x

3.7.10 Embedded beam row, SLD_SISMA [Phase_17] (17/99), Total displacements u_x

3.7.11 Embedded beam row, SLV (West.(kh=0.06)) [Phase_20] (20/123), Total displacements u_x

3.7.12 Embedded beam row, SLV SISMA [Phase_7] (7/203), Total displacements u_x

3.7.13 Embedded beam row, LIQUEF.3 - Post-Sisma [Phase_24] (24/231), Total displacements u_x

3.7.14 Embedded beam row, SLU 1 (q=46, T=28) [Phase_10] (10/249), Total displacements u_x

3.7.15 Embedded beam row, SLU 2 (q=32, T=46) [Phase_11] (11/264), Total displacements u_x

3.7.16 Embedded beam row, SLE r1 (q=40, T=24) [Phase_12] (12/282), Total displacements u_x

3.7.17 Embedded beam row, SLE r2 (q=28, T=40) [Phase_13] (13/295), Total displacements u_x

3.7.18 Embedded beam row, SLE f3 (q=28, T=0) [Phase_14] (14/309), Total displacements u_x

3.7.19 Embedded beam row, SLE f4 (q=24, T=8) [Phase_15] (15/322), Total displacements u_x

3.7.20 Embedded beam row, SLE qp5 (q=24, T=0) [Phase_19] (19/336), Total displacements u_x

3.7.21 Embedded beam row, Ecc1 (q=24, T=0) [Phase_21] (21/388), Total displacements u_x

3.7.22 Embedded beam row, A2+M2 [Phase_25] (18/440), Total displacements u_x

3.7.23 Embedded beam row, Disattivo vecchia paratia [Phase_6] (6/502), Total displacements u_x

3.7.24 Embedded beam row, ANALISI STABILITA' [Phase_18] (22/562), Total displacements u_x

3.8.1 Embedded beam row, Initial phase [InitialPhase] (0/0), Shear forces Q

3.8.2 Embedded beam row, Paratia esistente [Phase_1] (1/5), Shear forces Q

Shear forces Q (scaled up 1.00 times)	
No results	

3.8.3 Embedded beam row, Escavo +1m e tirante p=200kN/m [Phase_2] (2/9), Shear forces Q

3.8.4 Embedded beam row, Escavo -11.50m [Phase_3] (3/15), Shear forces Q

3.8.5 Embedded beam row, Ribasso monte +1m [Phase_4] (4/18), Shear forces Q

3.8.6 Embedded beam row, Nuova paratia+solettone [Phase_5] (5/25), Shear forces Q

3.8.7 Embedded beam row, Rinterro +2.50m e disattivo vecchio tirante [Phase_8] (8/34), Shear forces Q

3.8.8 Embedded beam row, Escavo -15.0m [Phase_9] (9/64), Shear forces Q

3.8.9 Embedded beam row, SLD q=24kPa+west [Phase_16] (16/82), Shear forces Q

3.8.10 Embedded beam row, SLD_SISMA [Phase_17] (17/99), Shear forces Q

3.8.11 Embedded beam row, SLV (West.(kh=0.06)) [Phase_20] (20/123), Shear forces Q

3.8.12 Embedded beam row, SLV SISMA [Phase_7] (7/203), Shear forces Q

3.8.13 Embedded beam row, LIQUEF.3 - Post-Sisma [Phase_24] (24/231), Shear forces Q

3.8.14 Embedded beam row, SLU 1 (q=46, T=28) [Phase_10] (10/249), Shear forces Q

3.8.15 Embedded beam row, SLU 2 (q=32, T=46) [Phase_11] (11/264), Shear forces Q

3.8.16 Embedded beam row, SLE r1 (q=40, T=24) [Phase_12] (12/282), Shear forces Q

3.8.17 Embedded beam row, SLE r2 (q=28, T=40) [Phase_13] (13/295), Shear forces Q

3.8.18 Embedded beam row, SLE f3 (q=28, T=0) [Phase_14] (14/309), Shear forces Q

3.8.19 Embedded beam row, SLE f4 (q=24, T=8) [Phase_15] (15/322), Shear forces Q

3.8.20 Embedded beam row, SLE qp5 (q=24, T=0) [Phase_19] (19/336), Shear forces Q

3.8.21 Embedded beam row, Ecc1 (q=24, T=0) [Phase_21] (21/388), Shear forces Q

3.8.22 Embedded beam row, A2+M2 [Phase_25] (18/440), Shear forces Q

3.8.24 Embedded beam row, ANALISI STABILITA' [Phase_18] (22/562), Shear forces Q

3.9.1 Embedded beam row, Initial phase [InitialPhase] (0/0), Bending moments M

3.9.3 Embedded beam row, Escavo +1m e tirante p=200kN/m [Phase_2] (2/9), Bending moments M

Bending moments M (scaled up 1.00 times)	1
No results	

3.9.5 Embedded beam row, Ribasso monte +1m [Phase_4] (4/18), Bending moments M

No results

3.9.6 Embedded beam row, Nuova paratia+solettone [Phase_5] (5/25), Bending moments M

3.9.7 Embedded beam row, Rinterro +2.50m e disattivo vecchio tirante [Phase_8] (8/34), Bending moments M

3.9.8 Embedded beam row, Escavo -15.0m [Phase_9] (9/64), Bending moments M

3.9.9 Embedded beam row, SLD q=24kPa+west [Phase_16] (16/82), Bending moments M

3.9.10 Embedded beam row, SLD_SISMA [Phase_17] (17/99), Bending moments M

3.9.11 Embedded beam row, SLV (West.(kh=0.06)) [Phase_20] (20/123), Bending moments M

3.9.12 Embedded beam row, SLV SISMA [Phase_7] (7/203), Bending moments M

3.9.13 Embedded beam row, LIQUEF.3 - Post-Sisma [Phase_24] (24/231), Bending moments M

3.9.14 Embedded beam row, SLU 1 (q=46, T=28) [Phase_10] (10/249), Bending moments M

3.9.15 Embedded beam row, SLU 2 (q=32, T=46) [Phase_11] (11/264), Bending moments M

3.9.16 Embedded beam row, SLE r1 (q=40, T=24) [Phase_12] (12/282), Bending moments M

3.9.17 Embedded beam row, SLE r2 (q=28, T=40) [Phase_13] (13/295), Bending moments M

3.9.18 Embedded beam row, SLE f3 (q=28, T=0) [Phase_14] (14/309), Bending moments M

3.9.19 Embedded beam row, SLE f4 (q=24, T=8) [Phase_15] (15/322), Bending moments M

3.9.20 Embedded beam row, SLE qp5 (q=24, T=0) [Phase_19] (19/336), Bending moments M

3.9.21 Embedded beam row, Ecc1 (q=24, T=0) [Phase_21] (21/388), Bending moments M

3.9.22 Embedded beam row, A2+M2 [Phase_25] (18/440), Bending moments M

3.9.23 Embedded beam row, Disattivo vecchia paratia [Phase_6] (6/502), Bending moments M

3.9.24 Embedded beam row, ANALISI STABILITA' [Phase_18] (22/562), Bending moments M

3.10.1 Embedded beam row, Initial phase [InitialPhase] (0/0), Axial forces N

Axial forces N (scaled up 1.00 times)	
No results	

3.10.2 Embedded beam row, Paratia esistente [Phase_1] (1/5), Axial forces N

3.10.3 Embedded beam row, Escavo +1m e tirante p=200kN/m [Phase_2] (2/9), Axial forces N

Axial forces N (scaled up 1.00 times)	
No results	

3.10.4 Embedded beam row, Escavo -11.50m [Phase_3] (3/15), Axial forces N

3.10.5 Embedded beam row, Ribasso monte +1m [Phase_4] (4/18), Axial forces N

Axial forces N (scaled up 1.00 times)	
No results	

3.10.6 Embedded beam row, Nuova paratia+solettone [Phase_5] (5/25), Axial forces N

3.10.7 Embedded beam row, Rinterro +2.50m e disattivo vecchio tirante [Phase_8] (8/34), Axial forces N

3.10.8 Embedded beam row, Escavo -15.0m [Phase_9] (9/64), Axial forces N

3.10.9 Embedded beam row, SLD q=24kPa+west [Phase_16] (16/82), Axial forces N

3.10.10 Embedded beam row, SLD_SISMA [Phase_17] (17/99), Axial forces N

3.10.11 Embedded beam row, SLV (West.(kh=0.06)) [Phase_20] (20/123), Axial forces N

3.10.12 Embedded beam row, SLV SISMA [Phase_7] (7/203), Axial forces N

3.10.13 Embedded beam row, LIQUEF.3 - Post-Sisma [Phase_24] (24/231), Axial forces N

3.10.14 Embedded beam row, SLU 1 (q=46, T=28) [Phase_10] (10/249), Axial forces N

3.10.15 Embedded beam row, SLU 2 (q=32, T=46) [Phase_11] (11/264), Axial forces N

3.10.16 Embedded beam row, SLE r1 (q=40, T=24) [Phase_12] (12/282), Axial forces N

3.10.17 Embedded beam row, SLE r2 (q=28, T=40) [Phase_13] (13/295), Axial forces N

3.10.18 Embedded beam row, SLE f3 (q=28, T=0) [Phase_14] (14/309), Axial forces N

3.10.19 Embedded beam row, SLE f4 (q=24, T=8) [Phase_15] (15/322), Axial forces N

3.10.20 Embedded beam row, SLE qp5 (q=24, T=0) [Phase_19] (19/336), Axial forces N

3.10.21 Embedded beam row, Ecc1 (q=24, T=0) [Phase_21] (21/388), Axial forces N

3.10.22 Embedded beam row, A2+M2 [Phase_25] (18/440), Axial forces N

3.10.23 Embedded beam row, ANALISI STABILITA' [Phase_18] (22/562), Axial forces N

