

Direzione Progettazione e Realizzazione Lavori

S.G.C. E78 GROSSETO - FANO

Tratto Selci Lama (E45) - S. Stefano di Gaifa. Adeguamento a 2 corsie del tratto della Variante di Urbania

PROGETTO DEFINITIVO

ANAS - DIREZIONE PROGETTAZIONE E REALIZZAZIONE LAVORI COORDINATORE PER LA SICUREZZA

IN FASE DI PROGETTAZIONE

Ing. Giuseppe Resta

Ordine Ingegneri Provincia di Roma n. 20629

IL GEOLOGO

Dott. Geol. Salvatore Marino

Ordine dei geologi della Regione Lazio n. 1069

VISTO: IL RESP. DEL PROCEDIMENTO Ing. Vincenzo Catone

VISTO: IL RESP. DEL PROGETTO Arch.Pianif. Marco Colazza I PROGETTISTI SPECIALISTICI

Ing. Ambrogio Sig

Ordine Ing Provincia di Rom

Ing. Moreno

Ordine Ingegne Provincia di Perugia n. A265

Ing. Claudio Muller

Ordine Ingegneri Provincia di Roma n. 15754

Ing. Giuseppe Resta

Ordine Ingegneri Provincia di Roma n. 20629 PROGETTAZIONE ATI:

(Mandataria)

andante)

GESTIONE PROGETTI INGEGNERIA srl

(Mandante)

(Mandante)

IL PROGETTISTA E RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE. (DPR207/10 ART 15 COMMA

Dott. Ing. GIORGIO GUIDUCCI Ordine Ingegneri Provincia di Roma n. 14035

STUDI ED INDAGINI

Geotecnica

Relazione Geotecnica

CODICE PF	ROGETTO LIV.PROG. ANNO	NOME FILE TOOGEOOGETR	E01_B		REVISIONE	SCALA
DPAN2		В	_			
D						
С						
В	Rev. lst.U.0039705 24/0	01/22 e lst.U.0057794 01/02/22	Feb. '22	Belà	Signorelli	Guiducci
А	Emissione		Ottobre '21	Belà	Signorelli	Guiducci
RFV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

RELAZIONE GEOTECNICA

INDICE

<u>1.</u>	PRE	MES	SSA	3
<u>2.</u>	DOC	CUM	ENTAZIONE DI RIFERIMENTO	4
	2.1.	Noi	RMATIVA E RACCOMANDAZIONI TECNICHE	4
<u>3.</u>	<u>INQ</u>	UAD	RAMENTO GEOLOGICO, GEOMORFOLOGICO E IDROGEOLOGICO	<u>5</u>
	3.1.	INQ	UADRAMENTO GEOLOGICO	5
	3.1.	.1.	Caratteristiche dei litotipi affioranti nell'area	5
	3.2.	CAF	RATTERI GEOMORGOLOGICI GENERALI	6
	3.3.	CAF	RATTERIZZAZIONE IDROGEOLOGICA	6
<u>4.</u>	<u>IND</u>	AGI	NI ESEGUITE	8
	4.1.	CAN	MPAGNE DI INDAGINE	8
	4.2.	PRO	OVE IN SITO	12
	4.2.	.1.	Prove Penetrometriche Dinamiche (SPT)	12
	4.2.	.2.	Prove Penetrometriche Dinamiche Continue Supepesanti (DPSH)	15
	4.2.	.3.	Prove Penetrometriche Statiche (CPT)	15
	4.2.	.4.	Rilievo dei livelli di falda	16
	4.2.	.5.	Prove di permeabilità	17
	4.2.	.6.	Prove di carico su piastra	17
	4.2.	.7.	Monitoraggio inclinometrico	18
	4.3.	IND.	AGINI GEOFISICHE	18
	4.3.	.1.	Prove sismiche in foro (Down Hole)	18
	4.3.	.2.	MASW	19
	4.4.	PRO	OVE DI LABORATORIO	20
	4.5.	RIL	EVI GEOMECCANICI	20
<u>5.</u>	<u>INQ</u>	UAD	RAMENTO GEOTECNICO	21
<u>6.</u>	CAR	RATI	TERIZZAZIONE GEOTECNICA	22
	6.1.	CAF	RATTERIZZAZIONE DEI TERRENI	22
	6.1.	.1.	Depositi eluvio colluviali (E/C)	22
	6.1.	.2.	Corpi di frana (CdF)	25
	6.1.	.3.	Depositi alluvionali fini (ALL-LA)	28
	6.1.	.4.	Depositi alluvionali grossolani (ALL-Gh)	32
	6.1.	.5.	Subastrato alterato del flysh (Sub_alt)	34
	6.1.	.6.	Substrato marnoso arenaceo (Sub)	38
	6.1.	.7.	Parametri caratteristici	40

RELAZIONE GEOTECNICA

6.2.	СА	RATTERIZZAZIONE DEGLI AMMASSI ROCCIOSI	41
6.2	2.1.	Substrato marnoso arenaceo (Sub)	41
6.2	2.2.	Parametri caratteristici	42
<u>7. RIL</u>	EVA	TI, TRINCEE E SCAVI PROVVISIONALI – ANALISI DI STABILITÀ	44
7.1.	RıL	EVATI	44
7.	1.1.	Piano di posa dei rilevati	44
7.	1.2.	Cedimenti	46
7.	1.3.	Analisi di stabilità	50
7.2.	Tr	INCEE	57
7.2	2.1.	Analisi di stabilità globali	57
7.3.	Sc	AVI PROVVISIONALI	63
8. AT	TAC	CO CHIMICO DEL CLS	<u>67</u>
8.1.	ST	ABILITÀ NEI CONFRONTI DELLA LIQUEFAZIONE	68
<u>9. STI</u>	IMA I	DEL RISCHIO DI LIQUEFAZIONE	69
9.	1.1.	Metodo basato sui risultati di prove SPT (Boulanger e Idriss, 2014)	70
9.	1.2.	Metodo basato sui risultati di prove CPT (Boulanger e Idriss, 2014)	72
<u>10.</u> AL	LEG.	ATI	
10.1.	Ris	SULTATI ED ELABORAZIONE DELLE PROVE PENETROMETRICHE STATICE (CPT)	74
10.2.	Ris	SULTATI PROVE DI LABORATORIO - SONDAGGI	79
10.3.	Ris	SULTATI PROVE DI LABORATORIO -POZZETTI	80
10.4.	ΑLI	EGATI DI CALCOLO	81

GESTIONE PROGETTI INGEGNERIA srl

RELAZIONE GEOTECNICA

1. PREMESSA

La presente relazione illustra le problematiche geotecniche relative al Progetto Definitivo dell'intervento di adeguamento a 2 corsie del tratto della "S.G.C. E78 Grosseto - Fano, adeguamento a 2 corsie del tratto della Variante di Urbania".

Nella presente relazione vengono esaminati e sviluppati i seguenti aspetti:

- Descrizione delle campagne di indagini eseguite e delle analisi di laboratorio;
- Caratterizzazione geotecnica delle formazioni individuate lungo il tracciato in esame;
- Schematizzazione stratigrafica e geotecnica del progetto;
- Descrizione delle problematiche geotecniche e delle soluzioni tecniche adottate;
- Definizione delle metodologie per il dimensionamento delle opere geotecniche.

RELAZIONE GEOTECNICA

2. **DOCUMENTAZIONE DI RIFERIMENTO**

2.1. NORMATIVA E RACCOMANDAZIONI TECNICHE

- D.M. 17/01/2018 Aggiornamento delle "Norme tecniche per le costruzioni"; [1]
- [2] Circolare 21/01/2019 "Istruzioni per l'applicazione dell'Aggiornamento delle Nuove norme tecniche per le costruzioni di cui al DM17/01/2018;
- UNI EN 1997-1:2005 Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali. Versione in lingua italiana della norma europea EN1997-1;
- UNI EN 1997-1:2005 Eurocodice 7 Progettazione geotecnica Parte 2: Indagini e prove nel sottosuolo. Versione in lingua italiana della norma europea EN1997-2;
- UNI EN 1998:2005 Eurocodice 8 Indicazioni progettuali per la resistenza sismica delle strutture - Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici. Versione in lingua italiana della norma europea EN1998.
- AGI Associazione Geotecnica Italiana (2005) "Aspetti geotecnici della progettazione in zona sismica";

RELAZIONE GEOTECNICA

3. INQUADRAMENTO GEOLOGICO, GEOMORFOLOGICO E IDROGEOLOGICO

3.1. INQUADRAMENTO GEOLOGICO

Dal punto di vista morfologico, l'area in studio è compresa nella fascia appenninica interna, lungo la dorsale Umbro–Marchigiana. Le valli intramontane sono confinate lungo i corsi d'acqua principali.

Il modellamento geomorfologico del territorio è regolato dall'assetto strutturale nonché dalle caratteristiche della litologia coinvolta dalla tettonica; i rilievi principali corrispondono infatti a strutture anticlinaliche e che si sono sviluppate su rocce mesozoiche di natura prevalentemente calcarea, le aree collinari, invece, sono caratterizzate da terreni di natura marnosa e calcareo marnosa su cui sono impostate pieghe di importanza minore.

La tettonica appenninica è l'agente principale dell'assetto del territorio e delle singole unità litologiche. Come in tutta la regione compresa tra lo spartiacque appenninico e il mare Adriatico, la direzione delle strutture, dai fiumi alle catene montuose alla stessa linea di costa, presenta una orientazione principale NO – SE, chiamata "Appenninica" e una, grosso modo ortogonale a questa, definita "Antiappenninica".

L'assetto tettonico visibile lungo il tracciato rispecchia la conformazione regionale. Le strutture presentano una direzione appenninica, orientata quindi NW – SE. I bacini sedimentari, compreso quello di Urbania, hanno una orientazione simile, anche se, rispetto ad altre aree del tracciato stradale, la direzione sembra leggermente diversa, più tendente a WNW – ESE.

Le formazioni presenti nel territorio non si presentano particolarmente disturbate, anche se localmente con strati tendenti al rovesciamento nei pressi dei principali sistemi di faglie e sovrascorrimenti. La causa di tale assetto è da ricercarsi nella plasticità dei sedimenti marnosi che spesso compiono la funzione di lubrificante tra i complessi più competenti e la relativa giovinezza delle formazioni.

Il fiume Metauro "taglia" in parte questa struttura attraversando le parti competenti (Arenarie di Urbania) e in parte la segue al nucleo.

Le gallerie del lotto attraversano unità flyscioidi appartenenti alla famiglia della Marnoso-Arenacea. Le due litologie principali, la arenacea e la marnosa, con una lunga serie di situazioni intermedie appaiono mischiate fra loro secondo il classico schema a canali intrecciati di differente spessore, molto difficile da seguire sul terreno. Dal punto di vista strutturale la conformazione appare più semplice, in quanto non si ha un grosso disturbo tettonico o la presenza di faglie di importanza regionale che mettono a contatto formazioni di origine o età differente. Lo stesso andamento del tracciato, nel lungo tratto interessato da gallerie, appare, in genere, parallelo alle strutture tettoniche e alla direzione di deposizione del bacino sedimentario.

3.1.1. CARATTERISTICHE DEI LITOTIPI AFFIORANTI NELL'AREA

3.1.1.1. Marnoso Arenacea

La formazione della **Marnoso Arenacea** si colloca nel Serravalliano-Tortoniano basale e il suo spessore varia tra i 200 e i 400 m. Questa Formazione, a carattere torbiditico, è costituita da un'alternanza di livelli pelitico-arenacei con una netta prevalenza dei primi sui secondi, formati da marne, marne calcaree, marne argillose, marne siltose e da arenarie arenarie siltose e siltiti arenacee.

In superficie questa formazione si presenta, a causa dell'alterazione per ossidazione, di colore giallo ocra, mentre in profondità il colore, desunto dalle carote di perforazione, è grigio con varie tonalità legate alla granulometria. Infatti, i termini prettamente arenacei si presentano grigio chiaro, mentre quelli marnosi sono decisamente più scuri. In affioramento inoltre, i passaggi tra le due diverse granulometrie si evidenziano molto bene, in quanto le peliti presentano acclività più modeste e forme più dolci grazie alla loro minor resistenza all'erosione, più aspre sono invece le forme legate al materiale arenaceo.

RELAZIONE GEOTECNICA

Arenarie di Urbania 3.1.1.2.

Questa formazione è costituita da arenarie, a volte conglomeratiche, in banconi massicci, anche di 30-50 metri, con cogoli e stratificazione non sempre evidente e livelli pelitici. I banchi di arenaria presentano eteropie con i livelli più fini. Il limite con la formazione sottostante è netto ed erosionale. L'età di questa formazione è compresa tra il Serravalliano superiore e il Tortoniano superiore.

3.2. CARATTERI GEOMORGOLOGICI GENERALI

Il tracciato di progetto corre nella piana del Metauro e al di sopra delle colline in destra idrografica del Fiume Metauro, nei dintorni della città di Urbania, per poi attraversare il fiume nella sua parte conclusiva.

La larghezza della valle principale aumenta nella parte terminale del lotto in concomitanza del cambio di litologia dominante.

Il territorio presenta ambienti caratterizzati dai depositi fluviali e dalla morfologia collinare, il cui aspetto dipendente dalla litologia degli ammassi rocciosi e dall'assetto tettonico.

I settori pedemontani e collinari sono i territori nei quali, anche in virtù del degrado della copertura forestale e dell'utilizzo agricolo delle superfici, s'instaurano forme e processi di erosione idrica superficiale. Le coltri colluvio-detrtiche favoriscono l'insediamento di attività agricole il cui impianto è generalmente associato a forme di terrazzamento artificiale delle superfici. Le pendenze spesso elevate e favoriscono l'attivazione di fenomeni di erosioni idrica superficiale, tipo gully e rill erosion. I termini appartenenti alle formazioni substrato, costituito dai depositi torbiditici arenacei e marnosi, contrassegnano un paesaggio collinare caratterizzato da rilievi con pendenze talora sostenute che sono talora interessati da fenomeni di instabilità di versante.

La formazione più resistente all'azione meccanica delle acque sono le Arenarie di Urbania, si presentano con forme massicce, numerosi affioramenti, pareti verticali, valli incise. Gli affluenti del Metauro, in concomitanza dell'affioramento di tale unità si incassano tra le pareti rocciose, con la formazione di profondi canyon con scalzamento al piede del versante e consequente crollo di blocchi. La formazione, affiorante essenzialmente in una lunga fascia che attraversa tutta l'area oggetto dello studio, si presenta con una serie di colline con affioramenti di colore bruno visibili a distanza. La maggiore resistenza meccanica rispetto alle unità di tetto e letto, costituite da tipi pelitico-arenacei, rende le forme impostate sulle Arenarie di Urbania, nella sua facies arenacea, particolarmente aspre e quindi riconoscibili sul terreno.

La formazione Marnoso - Arenacea, costituita da alternanze pelitico - arenacee, presenta una morfologia collinare più dolce, con valli ampie, scarsi affioramenti rocciosi. La formazione dello Schlier ha un comportamento analogo, caratterizzata da una maggiore erodibilità.

I movimenti franosi sono numerosi e attivi sui sia nei litotipi marnosi che in corrispondenza delle Arenarie di Urbania. Alcune frane attraversano il tracciato stradale e interessano gli imbocchi delle gallerie.

3.3. CARATTERIZZAZIONE IDROGEOLOGICA

Le formazioni geologiche affioranti nell'area in esame possiedono caratteristiche idrogeologiche alquanto diverse. Alla permeabilità primaria dei depositi alluvionali si contrappone la permeabilità di tipo secondario mostrata dalle formazioni flyshioidi.

La permeabilità come sopra definita ha significato puramente qualitativo e si basa su considerazioni dettate dall'esperienza. In questi terreni valutazioni di carattere quantitativo si potranno ottenere prevalentemente con prove in situ.

Il ruscellamento è diffuso sopra alle formazioni argillose, mentre sui litotipi arenaci e carbonatici i corsi d'acqua sono meno numerosi. Bisogna anche considerare l'intervento antropico, che ha "risparmiato" i versanti più resistenti, tuttora coperti di boschi, mentre i più teneri sono coltivati. Dove i litotipi sono più resistenti si hanno inoltre profonde incisioni fluviali, a volte di decine di metri, mentre sui litotipi argillosi alla dolcezza delle forme si associano corsi d'acqua con scarse pendenze.

RELAZIONE GEOTECNICA

A dominare la rete idrografica resta comunque il fiume Metauro ed i suoi terrazzi antichi e recenti. Un'altra forma estremamente diffusa è costituita dalle conoidi alluvionali

In rapporto alla permeabilità dei litotipi sono state identificate 3 categorie, denominate terreni a permeabilità alta, terreni a permeabilità intermedia, terreni a permeabilità bassa o assente.

Alla prima categoria vanno associate le litologie permeabili per la loro stessa natura, vale a dire i depositi sabbiosi, ma anche i depositi terrazzati, i detriti di falda e alluvionali. Vanno inoltre considerate in questa categoria quelle formazioni con elevata permeabilità secondaria, derivata da un'intensa stratificazione o disturbo tettonico, con faglie, fratture, scorrimenti e pieghe.

Alla seconda categoria appartengono litologie con una bassa permeabilità primaria o al massimo media, a cui si aggiunge però una certa permeabilità secondaria derivante da fratturazione o tettonica.

Alla terza categoria appartengono la maggior parte delle unità affioranti nella regione di studio. Ad essa sono da associare le litologie praticamente impermeabili, costituite da unità in prevalenza argillose che non permettono l'assorbimento di acque meteoriche e che non costituiscono acquiferi. Tali litologie sono anche le più erodibili e morfologicamente dolci. Spesso si presentano con forme calanchive.

I livelli piezometrici sono stati misurati in alcuni piezometri installati nei fori di sondaggio. Data l'esiguità dei dati non è stato possibile realizzare una carta delle isopieze.

Si può comunque considerare una falda quasi sempre prossima al p.c. sia nelle aree di fondovalle nel tratto iniziale del lotto, che negli accumuli di frana o nei depositi di versante. Si è infatti misurata, nelle aree di pianura, una profondità di falda variabile tra i 0 e i 6 metri dal piano campagna. Anche nelle coltri detritiche si hanno valori di falda al p.c., in particolare nelle letture dei piezometri Casagrande, con celle poste a profondità maggiori rispetto ai piezometri a tubo aperto, interessanti in genere la sola coltre superficiale. Le misure effettuate sui versanti acclivi hanno invece fornito valori più variabili, legati alla presenza di accumuli detritici e all'assetto strutturale degli ammassi, comunque con falda sempre vicina alla superficie, probabilmente a causa della relativa permeabilità degli ammassi arenacei. Nel tratto finale del lotto si è invece notato un approfondimento del livello piezometrico nonostante il tracciato corra nella piana alluvionale del Metauro.

Lungo il tracciato del lotto e nelle aree immediatamente vicine sono state identificate numerose sorgenti, sia temporanee che perenni. In particolare, possono essere distinte le sorgenti poste in corrispondenza dei corpi detritici che bordano i versanti, sia stabili che franosi, le sorgenti presenti nelle piane alluvionali, le sorgenti in roccia, peraltro tutte di modesta portata.

Per maggiori dettagli si rimanda alla relazione geologica (Elaborato T00GE00GE0RE01A).

RELAZIONE GEOTECNICA

4. INDAGINI ESEGUITE

4.1. CAMPAGNE DI INDAGINE

Nel corso dell'iter progettuale e approvativo del progetto sono state eseguite le seguenti campagne di indagini:

- Indagini 1998-1999, committente ANAS;
- Indagini 2003-2004, committente ANAS;
- Indagini 2020-2021, committente ANAS.

Indagini 1998-1999

Durante la campagna di indagini 1998-1999, eseguita per le precedenti fasi di progettazione, sono state effettuate le seguenti indagini:

- n. 24 sondaggi geognostici a carotaggio continuo, talora a seguito di un tratto perforato a distruzione di nucleo (\$35-\$57)
- prove di laboratorio sui campioni prelevati dai sondaggi eseguite da A.L.P.E., Campobasso;
- n.7 prove sismiche in foro di tipo Down-Hole (in corrispondenza dei sondaggi: S44, S47, S52, S60, S63, S66, S71) eseguiti da PROGEO srl, Forlì;
- n.7 stendimenti sismici a rifrazione da sezione 17 a 23 eseguiti da PROGEO srl, Forlì.

Ai fini della caratterizzazione stratigrafica e geotecnica i sondaggi e le prove di laboratorio della campagna di indagini 1998-1999 non sono stati considerati poiché non significativi ai fini del tracciato (fuori asse). Si specifica che si è tenuto conto, in mancanza di ulteriori dati, delle sole DH effettuate in corrispondenza dei sondaggi S44, S47 e S52.

Indagini 2003-2004

Durante la campagna di indagini 2003-2004 sono state eseguite le seguenti indagini:

- n. 4 sondaggi geognostici a carotaggio continuo (S₇1÷S₇7) eseguiti da PERIGEO SONDAGGI, Gubbio;
- n.19 sondaggi geognostici a carotaggio continuo (S₇8÷S₇26) eseguiti da METHODO srl, Castelferretti:
- n.1 sondaggio geognostico orizzontale (SO₇1) eseguito da PERIGEO SONDAGGI,
- installazione di n. piezometri Norton e Casagrande (in corrispondenza dei sondaggi: S₇1, S₇5, S₇6, S₇11, S₇14, S₇21)
- n.7 prove penetrometriche statiche CPT (P₇1, P₇2, P₇9; P₇12, P₇17), prove dinamiche SPT e n. 9 dinamiche super pesanti DPSH (P₇5, P₇8, P₇10, P₇11, P₇13÷P₇16, P₇17bis) eseguite da PERIGEO SONDAGGI, Gubbio;
- n.10 stendimenti sismici a rifrazione da sezione 7-1 a sezione 7-10 eseguiti da PROGEO srl, Forlì;
- n.3 stendimenti sismici onde di taglio SH da sezione 7-11S a sezione 7-13S eseguiti da PROGEO srl, Forlì;
- n. 3 pozzetti esplorativi (Pz₇1÷ Pz₇3) e n.3 prove di carico su piastra effettuate da da PERIGEO SONDAGGI, Gubbio;

RELAZIONE GEOTECNICA

prove di laboratorio sui campioni prelevati dai sondaggi eseguite da S.G.A.I. srl, Morciano di Romagna.

Indagini 2021

Durante la campagna di indagini 2020-2021, eseguita dalla Gamma-Geoservizi s.r.l, Magliano in T.na (GR), sono state effettuate le seguenti indagini:

- n. 19 sondaggi a carotaggio continuo (S1-S18);
- n. 4 sondaggi a distruzione di nucleo (S7In, S10Pz, S13 Pz; S14Pz)
- n.8 prove di permeabilità in foro di sondaggio;
- n.2 prove sismiche in foro di tipo Down-Hole (in corrispondenza dei sondaggi S3DH e S17DH);
- installazione di n.13 piezometri a tubo aperto e Casagrande (in corrispondenza dei sondaggi S2Pz, S4Pz, S5Pz, S6Pz, S7Pz, S8Pz, S10Pz, S11Pz, S13Pz, S14pz, S15Pz, S16Pz, S18Pz);
- installazione di n.7 inclinometri (in corrispondenza dei sondaggi S4In, S7In, S9In, \$10ln, \$12ln, \$13ln, \$14ln,);
- n. 2 stendimenti sismici a riflessione ibrida e n. 6 stendimenti a rifrazione tomografica;
- n.6 prove sismiche MASW/HVSR;
- n.3 pozzetti geognostici;
- n.6 prove di carico su piastra;
- n. 46 prove dinamiche SPT;
- n.14 prelievi di campioni di terreno indisturbati effettuati nel corso dei sondaggi,
- n.42 campioni di terra prelevati per finalità di carattere ambientale e chimico e n.6 campioni di acqua per finalità di carattere ambientale e chimico;
- prove di laboratorio sui campioni prelevati dai sondaggi.

RELAZIONE GEOTECNICA

Nella Tabella 4-1 vengono riportati l'elenco dei sondaggi e delle prove, eseguite durante le diverse campagne di indagini, considerate ai fini della caratterizzazione stratigrafica e geotecnica (dove [TA] = tubo aperto; [C] = Casagrande).

Tabella 4-1 Elenco dei sondaggi e relative prove eseguite durante le diverse campagne di indagine.

_													
	Sondaggio	Campagna	Profondità da p.c. (m)	Campioni indisturbati	Campioni rimaneggiati	Cmapioni ambientali	Campioni litodi	SPT	DPSH	СРТ	Lugeon	Lefranc	Strumentazione Piezometro (P) Inclinometro (I) Dohn Hole (DH)
-	S44	1998/1999	70										DH
-	S47	1998/1999	55										DH
-	S52	1998/1999	30										DH
-	S ₇ 1	2003/2004	15	1	0			1					P[C][TA]
-	S ₇ 2	2003/2004	15	1	0			1					
•	S ₇ 5	2003/2004	40	1			2	1					P[C][TA]
•	S ₇ 6	2003/2004	15	1	0			1					P[C] [TA]
-	S ₇ 8	2003/2004	20										
•	S ₇ 9	2003/2004	20	2				1					
-	S ₇ 10	2003/2004	20	2				2					
•	S ₇ 11	2003/2004	11	1									P[C][TA]
-	S ₇ 12	2003/2004	20	2				1					P[C][TA]
•	S ₇ 13	2003/2004	20				1						
•	S ₇ 14	2003/2004	15	2				1					P[TA]
-	S ₇ 15	2003/2004	20										
-	S ₇ 20	2003/2004	15	2				1					
-	S ₇ 21	2003/2004	15	2				1					P[TA]
-	S ₇ 22	2003/2004	15	2				1					
-	S ₇ 23	2003/2004	17	2			1	1					
-	S ₇ 24	2003/2004	20					2					P[C][TA]
•	S ₇ 25	2003/2004	20	0			3	1					
_	S ₇ 26	2003/2004	15	2				1					P[C][TA]
_													

RELAZIONE GEOTECNICA

Sondaggio	Campagna	Profondità da p.c. (m)	Campioni indisturbati	Campioni rimaneggiati	Cmapioni ambientali	Campioni litodi	SPT	DPSH	СРТ	Lugeon	Lefranc	Strumentazione Piezometro (P) Inclinometro (I) Dohn Hole (DH)
P ₇ 5	2003/2004	2,2						Х				
P ₇ 6	2003/2004	5,80						Х				
P ₇ 7	2003/2004	9,60							Х			
P ₇ 8	2003/2004	3,80						Х				
P ₇ 10	2003/2004	13,60						Х				
P ₇ 11	2003/2004	8,60						Х				
P ₇ 12	2003/2004	7,60							Х			
P ₇ 13	2003/2004	3,60						Х				
P ₇ 14	2003/2004	4,80						Х				
P ₇ 15	2003/2004	2,80						Х				
P ₇ 16	2003/2004	4,00						Х				
P ₇ 17	2003/2004	1,40							Х			
P ₇ 17bis	2003/2004	8,20						Х				
S1	2021	30	2	3	3		2					
S2Pz	2021	20		2	4		2					P[C]
S3DH	2021	35	1		3	3	2					DH
S4In	2021	20										In
S4Pz	2021	20		2		2	4				Х	P[TA]
S5Pz	2021	30			4	3	4				Х	P[TA]
S6Pz	2021	30	1		4	3	1			Х		P[TA]
S7In	2021	20										In
S7Pz	2021	20	1		3	2	3				Х	P[C]
S8Pz	2021	35		3	1	2	3					P[TA]
S9In	2021	20	2		2	2	3				Х	In
S10In	2021	20	2			2	2				Х	In
S10Pz	2021	20										P[TA]

RELAZIONE GEOTECNICA

Sondaggio	Campagna	Profondità da p.c. (m)	Campioni indisturbati	Campioni rimaneggiati	Cmapioni ambientali	Campioni litodi	SPT	DPSH	СРТ	Lugeon	Lefranc	Strumentazione Piezometro (P) Inclinometro (I) Dohn Hole (DH)
S11Pz	2021	35		4	4	1	3			Х		P[TA]
S12In	2021	20	1	2		1	3					In
S13In	2021	20	2		3		3					In
S13Pz	2021	20										P[TA]
S14In	2021	25	2			2	3					In
S14Pz	2021	20									Х	P[TA]
S15Pz	2021	20		3		1	3					P[TA]
S16Pz	2021	30	1		1	3	3					P[TA]
S17DH	2021	35		1		2	3					DH
S18Pz	2021	55				4						P[C]

Tabella 4-2 Elenco pozzetti eseguiti durante le diverse campagne di indagine.

Pozzetto	Campagna	Profondità da p.c. (m)	Campioni indisturbati	Campioni rimaneggiati	Prova di carico su piastra
Pz ₇ 2	2003/2004	1,0	1		1
Pz ₇ 3	2003/2004	1,2		1	2
Pz01	2021	1,5		2	2
Pz02	2021	1,6		2	2
Pz03	2021	1,6		2	2

4.2. PROVE IN SITO

4.2.1. PROVE PENETROMETRICHE DINAMICHE (SPT)

Nel corso delle perforazioni di sondaggio sono state eseguite prove di resistenza dinamica tipo SPT a profondità variabile. Nella Figura 4-1 sono riportati l'insieme dei risultati di tali prove suddivisi per unità geotecniche, in termini di numero di colpi NSPT. Nel grafico il rifiuto strumentale è indicato con il numero di colpi pari a 100.

RELAZIONE GEOTECNICA

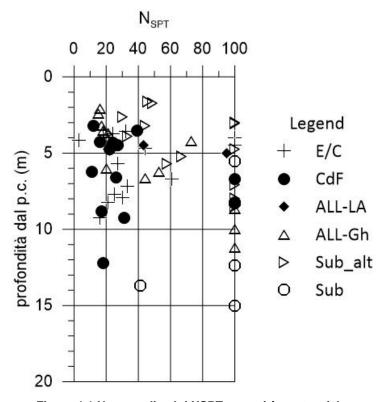


Figura 4-1 Numero di colpi NSPT per unità geotecniche.

4.2.1.1. Criteri di interpretazione

Densità relativa

Per la valutazione della densità relativa si è utilizzata la correlazione proposta da Skempton (1986):

$$D_r = \left(\frac{N_1}{60}\right)^{0.5}$$

in cui:

$$N_1 = \left(\frac{98}{\sigma'_{v0}}\right)^{0.5} N_{SPT}$$

Angolo di resistenza al taglio

Per la valutazione dell'angolo di resistenza al taglio si sono impiegati i diagrammi proposti da:

- Correlazione proposta nel Road Bridge Specification $\varphi = \sqrt{15 \cdot N_{SPT}} + 15$
- Correlazione di De Mello tra il valore di N_{SPT}, la tensione verticale efficace e l'angolo di resistenza al taglio di picco. Detta correlazione, in linea generale, sovrastima il valore dell'angolo di resistenza al taglio, soprattutto per bassi valori della tensione efficace verticale.

RELAZIONE GEOTECNICA

Figura 4-2 Correlazione di De Mello, fra il valore NSPT, la tensione verticale efficace e l'angolo di resistenza al taglio di picco.

Correlazione di Schmertmann (1977) in funzione della granulometria e della densità relativa, valutata in accordo con Skempton.

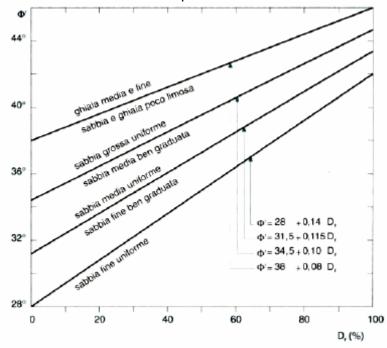
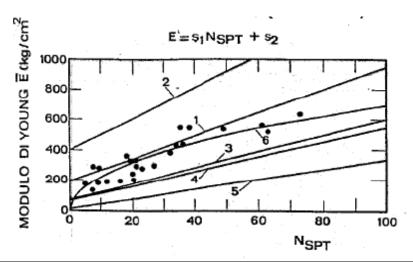


Figura 4-3 Correlazione di Schnertmann (1977) – Stima di φ' da D_R per differenti granulometrie.


RELAZIONE GEOTECNICA

Modulo di Young (E')

I risultati delle prove SPT sono stati interpretati adottando la correlazione di Denver, per la determinazione di un valore operativo del modulo di Young (E'):

$$E = s_1 \cdot N_{SPT} + s_2$$
 (in MPa)

nella quale i parametri s₁ ed s₂ sono scelti in funzione del litotipo.

Curva	Note	Riferimento	S1	S 2
1	Sabbie e ghiaie NC	D'Apollonia et al, 1970	0,756	8,75
2	Sabbie OC	D'Apollonia et al, 1970	1,043	36,79
3		Schulze & Menzenbach, 1961	0,517	7,46
4	Sabbia satura	Webb, 1970	0,478	7,17
5	Sabbia argillosa	Webb, 1970	0,316	1,58
6	Terreni coesivi	D'apollonia et al.	1,160	0,029

4.2.2. PROVE PENETROMETRICHE DINAMICHE CONTINUE SUPEPESANTI (DPSH)

Durante la campagna 2003/2004 sono state effettuate n.9 prove DPSH. I risultati delle prove DPSH sono stati utilizzati per ricostruire la litologia del sottosuolo.

Per i dettagli sui valori misurati in sito si rimanda alla relazione di riferimento (T00GE00GE0RE03A).

4.2.3. Prove Penetrometriche Statiche (CPT)

Durante la campagna di indagini 2003-2004 sono state effettuate n.7 prove del tipo CPT.

Mediante tali prove è stato possibile individuare la successione stratigrafica dei terreni, identificando la natura degli strati attraversati e fornendo una stima dei parametri geotecnici. Nello specifico, sono state considerate le sole prove effettuate in prossimità del tracciato (CPT 7-1, CPT 7-2, CPT 7-6, CPT 7-7, CPT 7-9).

Per il dettaglio sulle letture in sito della resistenza alla punta Rp e della resistenza laterale R_L e sull'elaborazione delle prove si rimanda alle tabelle allegate nel paragrafo 10.1.

4.2.3.1. Criteri di interpretazione

Valutazioni litologiche

Ai fini dell'individuazione della natura litologica dei terreni in sito sono state effettuate valutazioni in base al valore assunto da Rp e dal rapporto F=Rp/ R_L(Begemann 1965 – Raccomandazioni A.G.I. 1977).

RELAZIONE GEOTECNICA

Si riportano nella Tabella 4-3 gli intervalli dei valori assunti dal rapporto F e la corrispettiva possibile natura litologica dei terreni.

Tabella 4-3 Valori del rapporto F=Rp/R_L e possibile natura dei terreni.

F=Rp/R _L	Natura litologica	Proprietà
F<15	Torbe ed argille organiche	Coesive
15 <f<30< td=""><td>Torbe ed argille organiche</td><td>Coesive</td></f<30<>	Torbe ed argille organiche	Coesive
15 <f<60< td=""><td>Limi sabbiosi e sabbie limose</td><td>Granulari</td></f<60<>	Limi sabbiosi e sabbie limose	Granulari
F>15	Sabbie e sabbie con ghiaia	Granulari

Resistenza al taglio in condizioni non drenate Cu

Per il calcolo della resistenza al taglio in condizioni non drenate si è utilizzato un approccio empirico che correla la Cu alla resistenza alla punta unitaria e alla tensione litostatica in sito mediante un coefficiente N_{kt}. Di seguito si riporta la relazione:

$$C_u = \frac{q_c - \sigma_{v0}}{N_{kt}}$$

dove:

- q_c è la resistenza unitaria alla punta;
- σ_{v0} è la tensione verticale totale;
- N_{kt} è un coefficiente compreso tra 15 e 25 (Djoenaidi,1985). Nel caso in esame è stato assunto un valore di N_{kt} pari a 20.

4.2.4. RILIEVO DEI LIVELLI DI FALDA

Durante le diverse campagne di indagini sono stati installati rispettivamente, n°6 piezometri a tubo aperto e nº6 piezometri Casagrande nella 2003/2004 e n.10 piezometri a tubo aperto (S4Pz, S5Pz, S6Pz, S8Pz, S10Pz, S11Pz, S13Pz, S14Pz, S15Pz, S16Pz) e n.3 piezometri Casagrande nella 2021 (S2Pz, S7Pz, S18Pz).

Nelle tabelle seguenti si riportano i livelli di falda rilevati nelle campagne indagini e i dati aggiornati al mese di ottobre 2021.

Tabella 4-4 Livelli di falda in sito rilevati durante la campagna di indagini 2003/2004.

Sondaggio	Data	Tipo di piezometro	Livello falda m da p.c.
S ₇ 1	18/03/2004	Norton	0,75
S ₇ 1	18/03/2004	Casagrande	2,50
S ₇ 5	18/03/2004	Norton	1,65
S ₇ 5	18/03/2004	Casagrande	p.c.
S ₇ 6	18/03/2004	Norton	2,30
S ₇ 6	18/03/2004	Casagrande	6,00
S ₇ 11	18/03/2004	Norton	3,00
S ₇ 11	18/03/2004	Casagrande	2,25
S ₇ 14	18/03/2004	Norton	p.c.
S ₇ 14	18/03/2004	Casagrande	p.c.
S ₇ 21	02/04/2004	Norton	3,90
S ₇ 21	02/04/2004	Casagrande	4,25

RELAZIONE GEOTECNICA

Tabella 4-5 Livelli di falda in sito rilevati durante la campagna di indagini 2021

Sond.											Livel	lo di f	alda	da p.	.c.							
												20)21									
		М	arzo					Aprile						Maggi	0		Giu	gno	Luglio	Agosto	Settembre	Ottobre
	18	22	26	30	4	8	12	14	18	22	27	02	07	11	15	20	10	21	07	05	07	06
S2Pz																		6	6,22	6,48	6,53	6,44
S4Pz							6,07	6,02	6,06	6,1	6,16	6,18	6,2	6,2	6,23	6,45	6,52	6,78	6,81	6,83	6,85	6,87
S5Pz										4,2	4,22	4,2	4,39	4.64	4,59	4.8	4,86	5,73	6,04	6,62	7,28	7,76
S6Pz				1,1	1,09	1,06	1,09	1,12	1,26	1,34	1,56	1,43	1,5	1,4	1,42	1,48	1,51	2,3	2,86	3,24	3,54	3,6
S7Pz														3,3	3,32	3,29		5,46	5,66	6,22	7	7,24
S8Pz																4,22	4,26	4,03	4,12	4,28	4,53	4,6
S10Pz													7,35	11,1	11,15	11,5	11,52	12,37	12,66	13,06	13,33	13,47
S11Pz																4,35	4,52	4,35	4,79	5,47	6,27	6,93
S13Pz	6,1	5,8	5,9	6,01	6,13	6,21	6,31	6,54	6,53	6,63	6,92	7,1	7,25	7,18	7,12	7,23	7,31	8,3	8,56	8,87	9,17	9,34
S14Pz			5,3	5,35	5,37	5,4	5,46	5,55	5,51	5,62	5,72	5,86	5,9	5,95	5,98	5,9	6,05	6,92	7,4	7,63	7,83	7,92
S15Pz				11,36	11,51	11,84	11,95	12,18	12,16	12,47	12,56	12,65	12,7	12,9	12,95	13,18	13,25	13,56	13,59	13,72	13,73	13,57
S16Pz				•	,	•	,	•	•	•	,	,	4,4	4,7	4,65	4,65	4,69	5,1	5,2	5,25	5,29	5,24
S18Pz														6,2	5,92	5,95		6,72	7,01	7,39	7,89	8,38

4.2.5. PROVE DI PERMEABILITÀ

Durante la campagna di indagine 2021 sono state eseguite rispettivamente n.6 prove di permeabilità Lefranc a carico variabile e n. 2 prove di permeabilità Lugeon.

Tabella 4-6 Valori del coefficiente di permeabilità ottenuto dalle prove in sito

Ubicazione prova (foro di sondaggio)	Campagna	Tratto di prova dal p.c. (m)	Formazione	Prova	Coeff. di perm. k (m/s)
S4Pz	2021	5 ÷ 10	ALL-Gh	Lefranc	4,990 x 10 ⁻⁵
S5Pz	2021	2 ÷ 7	E/C	Lefranc	2,588 x 10 ⁻³
S7Pz	2021	5 ÷ 10	Sub_alt	Lefranc	2,771 x 10 ⁻⁵
S9In	2021	2 ÷ 4	E/C	Lefranc	9,039 x 10 ⁻⁸
S10In	2021	11 ÷ 16	E/C	Lefranc	1,615 x 10 ⁻⁷
S14Pz	2021	3 ÷ 5	CdF	Lefranc	2,648 x 10 ⁻⁷
S6Pz	2021	10 ÷ 15	Sub	Lugeon	1,800 x 10 ⁻⁸
S11Pz	2021	30 ÷ 35	Sub	Lugeon	1,000 x 10 ⁻⁶

4.2.6. PROVE DI CARICO SU PIASTRA

Nella Tabella 4-7, per ogni prova di carico su piastra, sono riportati: la profondità da p.c. di esecuzione della prova, i valori del modulo di deformazione al primo ciclo di carico su piastra M_{D1} (nell'intervallo compreso tra 0,05 ÷ 0,15 MPa) e la classificazione CNR UNI 10006 per ogni campione prelevato.

Tabella 4-7 Valori del modulo di deformazione M_{D1} al primo ciclo di carico su piastra e classificazione CNR UNI 10006 dei campioni prelevati nei pozzetti

Pozzetto	n. prova	z	Unità geotecnica	M _{D1}	CRN UNI 10006
		m da p.c.		MPa	
Pz ₇ 2	1	0,5	ALL-LA	2,49	A6
Pz ₇ 3	1	0,5	ALL-LA	7,6	No limiti di Atterberg
Pz ₇ 3	2	1,2	ALL-LA	9,3	No limiti di Atterberg

RELAZIONE GEOTECNICA

Pozzetto	n. prova	z	Unità geotecnica	M _{D1}	CRN UNI 10006
PZ01	1	0,5	ALL-LA	29,7	A7-6
PZ01	2	1	ALL-LA	25,1	A7-6
PZ02	1	0,5	ALL-LA	18,7	A7-6
PZ02	2	1	ALL-LA	30,66	A7-6
PZ03	1	0,5	ALL-LA	35,74	A6
PZ03	2	1	ALL-Gh	33,39	A2-6

4.2.7. MONITORAGGIO INCLINOMETRICO

Durante la campagna di indagini 2021 sono stati installati n.7 tubi inclinometrici nei fori di sondaggio S4In, S7In, S9In, S10In, S12In, S13In, S14In.

Sono state eseguite letture nel periodo compreso tra giugno e settembre 2021. Per il dettaglio si rimanda alla relazione geologica (Elaborato T00GE00GE0RE01A) e alla relazione T00GE00GEORE09A.

4.3. INDAGINI GEOFISICHE

4.3.1. Prove sismiche in foro (Down Hole)

Nella Tabella 4-8 vengono riportati, per ogni prova Down Hole, l'opera di riferimento e la categoria di sottosuolo, valutata a partire dai valori della velocità delle onde di taglio V_{eq} ottenuta secondo le prescrizioni normative contenute al paragrafo 3.2.2 delle NTC2018.

Della campagna di indagini del 1998 sono stati rielaborati i dati in funzione delle NTC2018 per n.3 prove sismiche Down Hole.

Per i dettagli sull'interpretazione dei dati e i risultati delle indagini si rimanda alla relazione sismica (Elaborato T00GE02GE0RE01A).

Tabella 4-8 Elenco delle Down Hole eseguite e categorie di sottosuolo.

Sondaggio	Campagna	Opera WBS	Lunghezza del tratto di prova (m da p.c.)	V _{seq} (m/s) (NTC2018)	Categoria di sottosuolo NTC2018
S44	1998/1999	Galleria Urbania 1(GN02)	70	341	E
S47	1998/1999	Galleria Urbania 2 (GN03)	55	290	E
S52	1998/1999	Trincea (CS)	30	333	В
S03Dh	2021	Viadotto S.Eracliano (VI02)	35	541	В
S17Dh	2021	Ponte Metauro 3 (VI06)	35	465	В

4.3.1.1. Criteri di interpretazione

Ai fini della caratterizzazione geotecnica, i valori di V_s sono utilizzati per la valutazione del modulo di rigidezza a taglio a piccole deformazioni, G_0 , tramite la seguente formula:

$$G_0 = \rho \cdot V_s^2$$

dove ρ è la densità di massa del terreno.

Il modulo elastico a piccole deformazioni è ottenuto utilizzando la relazione:

RELAZIONE GEOTECNICA

$$E_0 = 2 \cdot G_0(1+\nu)$$

dove ν è il coefficiente di Poisson.

Per la determinazione dei moduli elastici operativi, si utilizzano le curve di decadimento proposte da Vucetic & Dobri (1991), riportate nella figura seguente:

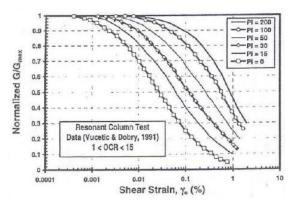


Figura 4-4 - Curva di decadimento G/G₀.

La letteratura tecnica mostra che è possibile stimare un modulo di rigidezza a taglio operativo a partire da valori di deformazioni a taglio convenzionali associati al tipo di opera (Figura 4-5).

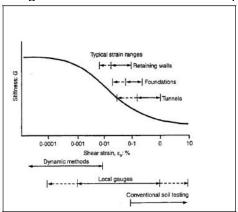


Figura 4-5 - Valori di deformazioni a taglio convenzionali per diverse opere.

Per la tipologia di opere previste in questo progetto e per la natura dei terreni interagenti, si adotta un valore del modulo elastico operativo di circa 1/10 di quello ottenuto a piccole deformazioni.

4.3.2. MASW

Nella campagna di indagini del progetto definitivo sono state eseguite n. 6 prove sismiche Masw. Per i dettagli sull'interpretazione dei dati e i risultati delle indagini si rimanda alla relazione sismica (Elaborato T00GE02GEORE01A).

Tabella 4-9 Elenco indagini geofisiche MASW e categorie di sottosuolo secondo le NTC2018

n. prova	Prova	Opera WBS	Lunghezza del tratto di prova (m da p.c.)	V _{s,eq} (m/s) (NTC2018)	Categoria di fondazione NTC2018
MW01	MASW	Galleria Urbania 1(GA04)	60	361	В
MW02	MASW	Ponte Venturello	60	430	В

RELAZIONE GEOTECNICA

n. prova	Prova	Opera WBS	Lunghezza del tratto di prova (m da p.c.)	V _{s,eq} (m/s) (NTC2018)	Categoria di fondazione NTC2018
		(VI03)			
MW03	MASW	Galleria Urbania 2 (GA06)	60	316	С
MW04	MASW	Ponte Santa Caterina (VI	60	364	В
MW05	MASW	Galleria Urbania 3 (GA07)	60	365	В
MW06	MASW	Ponte Cerreto (VI05)	60	389	В

4.4. PROVE DI LABORATORIO

Nel corso delle prove di laboratorio sono state eseguite le seguenti prove di laboratorio:

- Determinazione della composizione granulometrica;
- determinazione del contenuto d'acqua e dei limiti di Atterberg;
- classificazione delle terre secondo CNR UNI 10006;
- determinazione del peso specifico dei grani;
- vane test di laboratorio (VT)
- prova di taglio diretta consolidata drenata (TD) e taglio residuo:
- prova triassiale del tipo consolidata non drenata (TXCU) con misura della pressione interstiziale;
- prova edometrica;
- prova di compressione semplice:
- prova di compressione uniassiale su roccia;
- prova triassiale su roccia:
- prova di taglio su roccia;
- prova di resistenza alla trazione indiretta (Brasiliana),
- prova di costipamento AASHTO Modificato
- determinazione del contenuto di carbonato di calcio (CaCO₃)

Si riportano in allegato i risultati delle prove di laboratorio suddivisi per campagna d'indagine.

4.5. RILIEVI GEOMECCANICI

Durante la campagna di indagini 2021 sono stati effettuati n.5 rilievi strutturali geomeccanici, descritti nel dettaglio all'Elaborato T00GE00GEORE01A. I suddetti rilievi hanno consentito la caratterizzazione degli ammassi competenti delle gallerie naturali, così come descritto al § 6.2.1.

RELAZIONE GEOTECNICA

5. INQUADRAMENTO GEOTECNICO

Nel seguito si riporta la definizione del modello geotecnico di sottosuolo necessario alla progettazione. Il modello geotecnico è stato definito con riferimento al modello geologico illustrato negli elaborati specifici, considerando gli aspetti stratigrafici, strutturali, idrogeologici e geomorfologici individuati. Sono stati, inoltre, analizzati tutti i dati disponibili (rilievo geologico e geomeccanico, risultati delle indagini in sito ed in laboratorio, rilievo della falda) per la definizione delle unità omogenee sotto il profilo fisico-meccanico, del regime delle pressioni interstiziali e dei valori caratteristici dei parametri geotecnici.

Dal punto di vista delle caratteristiche fisico-meccaniche delle unità riscontrate si osserva una certa uniformità nei risultati delle prove. Al fine del dimensionamento delle opere si possono individuare n.6 unità geotecniche:

- E/C (Depositi eluvio colluviali) limo da sabbioso a debolmente sabbioso e limo da argilloso a debolmente argilloso, limo con argilla, talora debolmente ghiaioso. Sono compresi in questa unità geotecnica i depositi detritici;
- CdF (Corpi di frana) limo con argilla sabbioso, limo argilloso debolmente sabbioso e limo sabbioso debolmente argilloso, talora debolmente ghiaioso;
- ALL-LA (Depositi alluvionali fini) limo argilloso debolmente sabbioso e limo sabbioso debolmente argilloso, limo con argilla sabbioso;
- ALL-Gh (Depositi alluvionali grossolani) ghiaia con sabbia limosa, ghiaia con limo e argilla da sabbiosa a debolmente sabbiosa:
- Sub_alt (Substrato alterato del flysch) strato di alterazione dell'unità marnoso arenacea. Costituito da marna e marna siltosa, limo con argilla da sabbioso a debolmente sabbioso, limo argilloso e ghiaia limosa
- Sub (Substrato marnoso arenaceo) substrato costituito da marna e marna argillosa, calcarenite e arenarie. La natura di tale substrato è molto eterogenea: si passa da facies litoidi molto competenti a prevalenza arenacea/calcarenitica, ad ammassi caratterizzati dalla presenza di roccia tenera con un comportamento meccanico assimilabile a quello di una terra, passando per zone di faglia e/o molto fratturate. Nell'ambito delle opere di imbocco, l'unità geotecnica Sub è rappresentativa di marne e marne argillose il cui comportamento è assimilabile a quello di una terra. Nell'ambito delle gallerie naturali, invece, è possibile individuare 4 sotto-unità:
 - Substrato competente a prevalenza marnosa (Sub_m)
 - Substrato competente a prevalenza arenacea (Sub a)
 - o Substrato a prevalenza marnosa caratterizzato da cataclasite e/o zone ad alta fratturazione (Sub mc)
 - o Substrato a prevalenza arenacea caratterizzato da cataclasite e/o zone ad alta fratturazione (Sub_ac)

Alla luce di questa suddivisione, in prossimità degli imbocchi e per la sotto-unità Sub_mc si è proceduto caratterizzando secondo la meccanica dei terreni, mentre per le restanti sotto-unità si è utilizzata la meccanica delle rocce. Pertanto, nel seguito saranno caratterizzate entrambe le condizioni (§Errore. L'origine riferimento non è stata trovata. e §6.2.1).

RELAZIONE GEOTECNICA

6. CARATTERIZZAZIONE GEOTECNICA

Le osservazioni sperimentali ottenute dalle prove in sito e in laboratorio sono esaminate nel seguito per ciascuna unità litologica individuata. L'elaborazione e l'interpretazione delle prove geotecniche in sito ed in laboratorio è finalizzata alla definizione dei valori caratteristici dei parametri geotecnici.

Nell'unità E/C sono stati prelevati n.17 campioni in foro di sondaggio (di cui n.15 indisturbati e n.2 rimaneggiato).

Nell'unità CdF sono stati prelevati n.18 campioni in foro di sondaggio (di cui n.17 indisturbati e n.1 rimaneggiato).

L'unità delle alluvioni ALL è stata suddivisa in due sub-unità denominate ALL-LA e ALL-Gh, individuate a partire dall'osservazione delle cassette catalogatrici e dai risultati delle prove di laboratorio. È stato possibile individuare lungo il tracciato una continuità stratigrafica illustrata nel profilo geotecnico.

Nell'unità ALL-LA sono stati prelevati n.3 campioni indisturbati in foro di sondaggio e n. 7 campioni da pozzetti esplorativi (di cui n.1 indisturbato e n.6 rimaneggiati).

Nell'unità ALL-Gh sono stati prelevati n.6 campioni in foro di sondaggio (di cui n.1 indisturbato e n.5 rimaneggiati) e n.1 campione rimaneggiato da pozzetto esplorativo.

Si specifica che per tale unità non sono state effettuate prove per la determinazione del peso specifico, pertanto, sono stati assegnati valori da letteratura per i terreni caratterizzati dalla granulometria dei terreni in sito.

Nell'unità Sub alt sono stati prelevati n.11 campioni in foro di sondaggio (di cui n. 6 indisturbati e n.5 rimaneggiati).

Nell'unità Sub sono stati prelevati n. 53 campioni in foro di sondaggio (di cui n.10 indisturbati, n.1 semi disturbato e n.43 rimaneggiati).

6.1. CARATTERIZZAZIONE DEI TERRENI

6.1.1. DEPOSITI ELUVIO COLLUVIALI (E/C)

6.1.1.1. Caratteristiche fisiche

Granulometria e peso di volume

percentuale di ghiaia di circa 3%; percentuale di sabbia di circa 6%; percentuale di limo di circa 67%; percentuale di argilla di circa 24%;

RELAZIONE GEOTECNICA

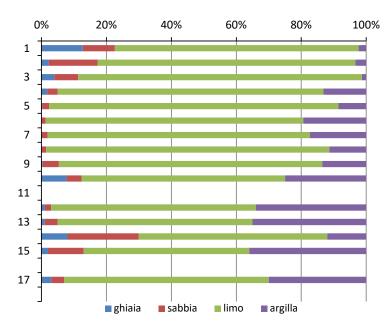


Figura 6-1 E/C - Granulometria

Il peso di volume risulta compreso nell'intervallo di 19÷21 kN/m³

Contenuto naturale di acqua e liti di consistenza

Contenuto d'acqua naturale Limite liquido Limite plastico

$$W = 17.5 \div 27.3 \%$$

 $W_L = 38 \div 56 \%$

 $W_P = 18 \div 23 \%$

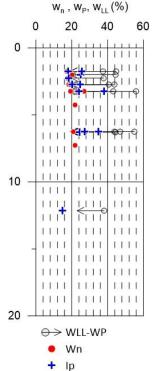


Figura 6-2 E/C - Contenuto naturale d'acqua, limiti di consistenza e indice di plasticità.

RELAZIONE GEOTECNICA

Caratteristiche di resistenza in condizioni drenate 6.1.1.1.

Prove di taglio diretto TD e triassiali TXCU

Dalle prove di taglio diretto e triassiali si ottengono i seguenti valori delle caratteristiche di resistenza a taglio:

Angolo d'attrito $\phi' = 24 \div 26 \circ (TD)$ Coesione efficace $c' = 8 \div 38 \text{ kPa (TD)}$

Angolo d'attrito $\varphi' = 23 \div 28 \circ (TXCU)$ Coesione efficace $c' = 11 \div 35 \text{ kPa (TXCU)}$

Prove penerometriche dinamiche (SPT)

Angolo d'attrito $\phi' = 30 \div 40^{\circ}$

6.1.1.1. Caratteristiche di resistenza in condizioni non drenate

Prove triassiali TXCU e compressione semplice ELL

Coesione non drenata Cu = 38 kPa (TXCU)Coesione non drenata Cu = 62 kPa (ELL)

Prove penetrometriche dinamiche (SPT)

Coesione non drenata $Cu = 100 \div 150 \text{ kPa}$

Prove penetrometriche statiche (CPT)

Coesione non drenata $Cu = 100 \div 150 \text{ kPa}$

6.1.1.1. Caratteristiche di deformabilità

Per la determinazione del valore operativo del modulo elastico dei terreni sono stati considerati i risultati delle prove SPT, interpretate secondo le correlazioni di D'apollonia (si veda paragrafo

Prove penetrometriche dinamiche (SPT)

Modulo di Young E=10-30 Mpa

Modulo Edometrico (Prova edometrica)

Si riportano di seguito i valori dei moduli edometrici ottenuti dalle prove edometriche.

Campagna	Sondaggio	Campione	Tipo di campione	da (m)	a (m)	Quota prelievo (da m a m)	Unità geotecnica	Peso specifico γn (kN/m³)	Profondità della falda da p.c. z _w (m)	Tensione litostatica efficace σ'v (kPa)	Modulo edometrico E⊲ kPa
2021	S1	CI1	ı	3	3,5	3,25	E/C	19,1	-	62,2	2972
2021	S9In	C1In	I	4	4,5	4,25	E/C	20,3	-	86,3	5607

6.1.1.2. Grafici E/C

Si riportano di seguito i grafici dei valori dei parametri caratteristici lungo la profondità dell'unità E/C.

RELAZIONE GEOTECNICA

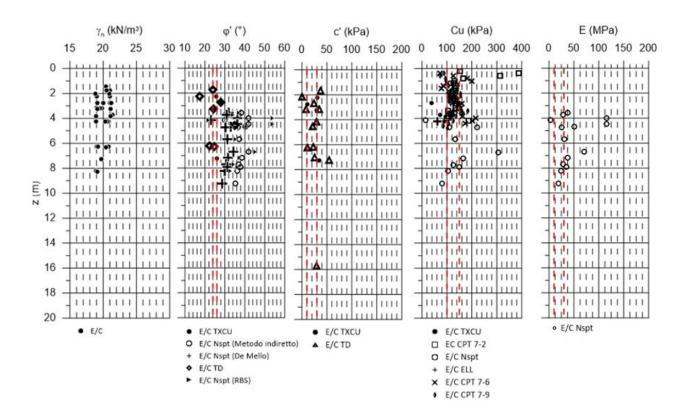


Figura 6-3 EC - Caratteristiche fisico-meccaniche da prove in sito e di laboratorio.

6.1.2. CORPI DI FRANA (CDF)

6.1.2.1. Caratteristiche fisiche

Granulometria e peso di volume

percentuale di ghiaia di circa 1%; percentuale di sabbia di circa 10%; percentuale di limo di circa 65%; percentuale di argilla di circa 24%;

RELAZIONE GEOTECNICA

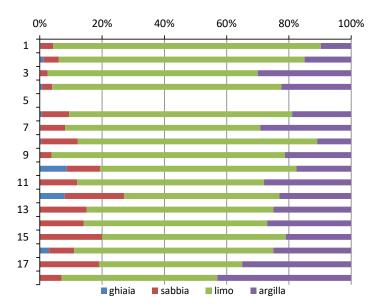


Figura 6-4 CdF - Granulometria

Il peso di volume risulta compreso nell'intervallo di 18÷19 kN/m³

Contenuto naturale di acqua e limiti di consistenza

Contenuto d'acqua naturale Limite liquido Limite plastico

 $w = 18 \div 26 \%$ $W_L = 38 \div 58\%$ $W_P = 15 \div 28 \%$

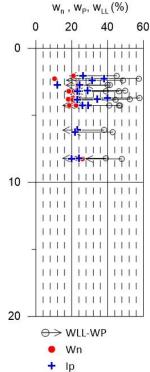


Figura 6-5 CdF - Contenuto naturale d'acqua, limiti di consistenza e indice di plasticità.

RELAZIONE GEOTECNICA

Caratteristiche di resistenza in condizioni drenate 6.1.2.2.

Prove di taglio diretto TD e triassiali TXCU

Parametri di picco

Dalle prove di taglio diretto e triassiali si ottengono i seguenti valori delle caratteristiche di resistenza a taglio di picco:

Angolo d'attrito $\phi' = 22 \div 27^{\circ} (TD)$ Coesione efficace $c' = 15 \div 22 \text{ kPa (TD)}$

Angolo d'attrito $\phi' = 22 \div 24^{\circ} \text{ (TXCU)}$ Coesione efficace $c' = 22 \div 40 \text{ kPa (TXCU)}$

Parametri residui

Dalle prove di taglio diretto in condizioni residue si ottengono i seguenti valori delle caratteristiche di resistenza a taglio residue:

Angolo d'attrito φ ' = 14 ÷ 18° (TD residuo) Coesione efficace c' = 0 kPa (TD residuo)

Prove penerometriche dinamiche (SPT)

 $\sigma' = 30 \div 40^{\circ}$ Angolo d'attrito

6.1.2.3. Caratteristiche di resistenza in condizioni non drenate

Prove triassiali TXCU

Coesione non drenata $Cu = 70 \div 90 \text{ kPa (TXCU)}$

Prove penetrometriche dinamiche (SPT)

Coesione non drenata $Cu = 60 \div 130 \text{ kPa}$

6.1.2.4. Caratteristiche di deformabilità

Per la determinazione del valore operativo del modulo elastico dei terreni sono stati considerati i risultati delle prove SPT, interpretate secondo le correlazioni di D'apollonia (si veda paragrafo 4.2.1.1).

Prove penetrometriche dinamiche (SPT)

Modulo di Young E=5 ÷ 30 Mpa

RELAZIONE GEOTECNICA

Modulo Edometrico (Prova edometrica)

Si riportano di seguito i valori del modulo edometrico ottenuto dalla prova edometrica.

Campagna	Sondaggio	Campione	Tipo di campione	da (m)	a (m)	Quota prelievo (da m a m)	Unità geotecnica	Peso specifico γn (kN/m³)	Profondità della falda da p.c. z _w (m)	Tensione litostatica efficace σ'v (kPa)	Modulo edometrico E _d kPa
2004	S ₇ 9	SH1	I	3	3,4	3,2	CdF	20	-	64	7,35

6.1.2.5. **Grafici CdF**

Si riportano di seguito i grafici dei valori dei parametri caratteristici lungo la profondità dell'unità CdF.

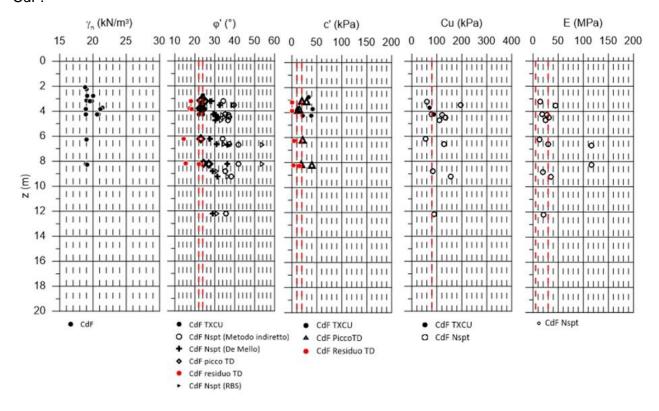


Figura 6-6 CdF - Caratteristiche fisico-meccaniche da prove in sito e di laboratorio.

6.1.3. DEPOSITI ALLUVIONALI FINI (ALL-LA)

6.1.3.1. Caratteristiche fisiche

Granulometria e peso di volume

percentuale di ghiaia di circa 2%; percentuale di sabbia di circa 10%; percentuale di limo di circa 71%; percentuale di argilla di circa 17%;

RELAZIONE GEOTECNICA

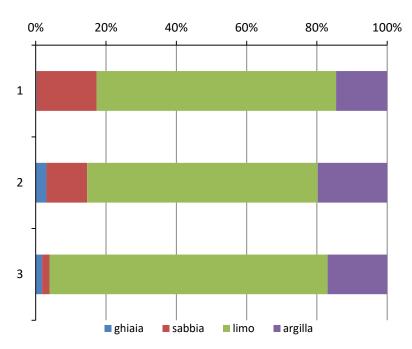


Figura 6-7 ALL-LA – Granulometria

II peso di volume risulta compreso nell'intervallo di 19÷20 kN/m³

Contenuto naturale di acqua e limiti di consistenza

Contenuto d'acqua naturale Limite liquido Limite plastico

 $w = 14 \div 29 \%$ $W_L = 32 \div 41\%$

 $W_P = 18 \div 22 \%$

Figura 6-8 ALL-LA - Contenuto naturale d'acqua, limiti di consistenza e indice di plasticità.

+ Ip

RELAZIONE GEOTECNICA

Caratteristiche di resistenza in condizioni drenate 6.1.3.2.

Prove triassiali TXCU

Sull'unità ALL-LA è stata effettuata un'unica prova triassiale TXCU dalla quale è stato possibile ottenere i seguenti valori delle caratteristiche di resistenza a taglio:

 $\varphi' = 24^{\circ} (TXCU)$ Angolo d'attrito c' = 17 kPa (TXCU) Coesione efficace

Prove penerometriche dinamiche (SPT)

Angolo d'attrito $\phi' = 35 \div 40^{\circ}$

6.1.3.3. Caratteristiche di resistenza in condizioni non drenate

Prove triassiali TXCU

Sull'unità ALL-LA è stata effettuata un'unica prova triassiale TXCU dalla quale è stato possibile ottenere il seguente valore di coesione non drenata:

Cu = 34 kPa (TXCU)Coesione non drenata

Prove penetrometriche dinamiche (SPT)

Sull'unità ALL-LA si hanno a disposizione solamente n.2 prove SPT, dalle quali si sono ottenuti i valori di seguito riportati:

Coesione non drenata Cu = 215 kPaCoesione non drenata Cu = 475 kPa

Prove penetrometriche statiche (CPT)

 $Cu = 100 \div 150 \text{ kPa}$ Coesione non drenata

6.1.3.4. Caratteristiche di deformabilità

Per la determinazione del valore operativo del modulo elastico dei terreni sono stati considerati i risultati delle prove SPT, interpretate secondo le correlazioni di D'apollonia (si veda paragrafo 4.2.1.1) e il risultato della prova a compressione monoassiale ELL.

Modulo di Young E=30 ÷ 40Mpa

6.1.3.5. **Grafici ALL-LA**

Si riportano di seguito i grafici dei valori dei parametri caratteristici lungo la profondità dell'unità ALL-LA.

RELAZIONE GEOTECNICA

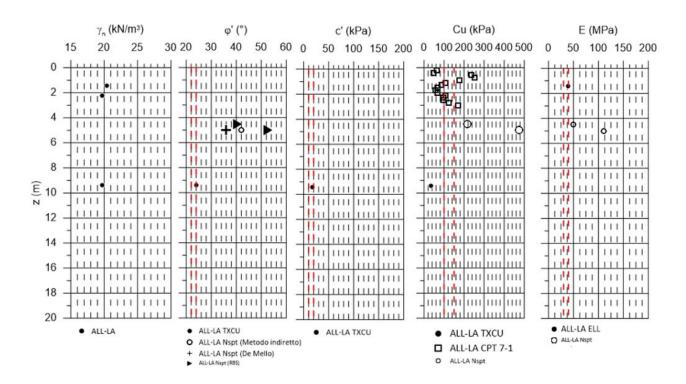


Figura 6-9 ALL-LA - Caratteristiche fisico-meccaniche da prove in sito e di laboratorio.

RELAZIONE GEOTECNICA

6.1.4. DEPOSITI ALLUVIONALI GROSSOLANI (ALL-GH)

6.1.4.1. Caratteristiche fisiche

Granulometria e peso di volume

percentuale di ghiaia di circa 48%; percentuale di sabbia di circa 23%; percentuale di limo di circa 18%; percentuale di argilla di circa 11%;

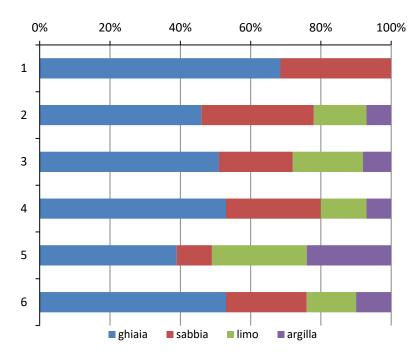


Figura 6-10 ALL-Gh - Granulometria

Il peso di volume risulta compreso nell'intervallo di 20÷21 kN/m³

Contenuto naturale di acqua e limiti di consistenza

Contenuto d'acqua naturale $w = 14 \div 26 \%$ Limite liquido $W_L = 21 \div 45 \%$ Limite plastico $W_P = 13 \div 30 \%$

RELAZIONE GEOTECNICA

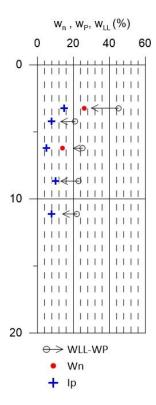


Figura 6-11 ALL-Gh - Contenuto naturale d'acqua, limiti di consistenza e indice di plasticità.

6.1.4.2. Caratteristiche di resistenza in condizioni drenate

Prove penerometriche dinamiche (SPT)

Angolo d'attrito $\sigma' = 30 \div 35^{\circ}$

6.1.4.3. Caratteristiche di deformabilità

Per la determinazione del valore operativo del modulo elastico dei terreni sono stati considerati i risultati delle prove SPT, interpretate secondo le correlazioni di D'apollonia (si veda paragrafo 4.2.1.1).

Modulo di Young E=30 ÷ 40Mpa

RELAZIONE GEOTECNICA

6.1.4.4. **Grafici ALL-Gh**

Si riportano di seguito i grafici dei valori dei parametri caratteristici lungo la profondità dell'unità

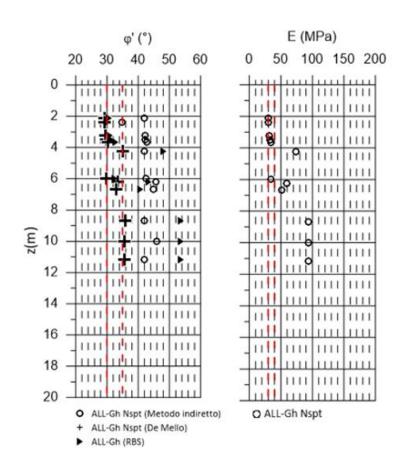


Figura 6-12 ALL- Gh -Caratteristiche fisico-meccaniche da prove in sito e di laboratorio.

6.1.5. SUBASTRATO ALTERATO DEL FLYSH (SUB_ALT)

Dall'analisi delle stratigrafie dei sondaggi e delle prove sui campioni prelevati, il substrato alterato è stato considerato come uno strato, che in virtù dell'alterazione per ossidazione, ha perso le caratteristiche di una roccia evidenziando un comportamento più in linea con quello di un terreno.

Le caratteristiche meccaniche sono state determinate facendo principalmente riferimento alle prove di laboratorio eseguite sui campioni di terreno prelevati.

6.1.5.1. Caratteristiche fisiche

Granulometria e peso di volume

percentuale di ghiaia di circa 17%; percentuale di sabbia di circa 7%; percentuale di limo di circa 52%; percentuale di argilla di circa 24%;

RELAZIONE GEOTECNICA

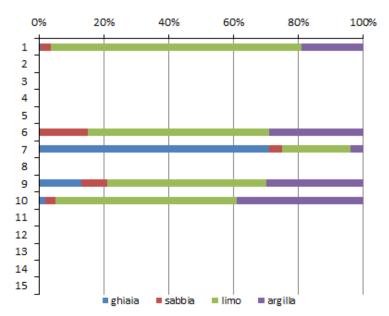


Figura 6-13 Sub_alt - Granulometria

Il peso di volume risulta compreso nell'intervallo di 20÷22 kN/m³

Contenuto naturale di acqua e liti di consistenza

Contenuto d'acqua naturale $w = 19 \div 21 \%$ Limite liquido $W_L = 32 \div 47 \%$ $W_P = 16 \div 30 \%$ Limite plastico

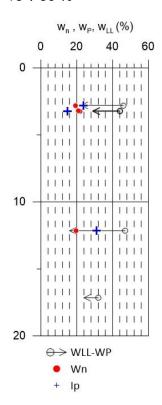


Figura 6-14 Sub-alt - Contenuto naturale d'acqua, limiti di consistenza e indice di plasticità.

RELAZIONE GEOTECNICA

Caratteristiche di resistenza in condizioni drenate 6.1.5.2.

Prove di taglio diretto TD e triassiali TXCU

Sull'unità Sub alt si hanno a disposizione solamente n.1 di taglio diretto e n.1 triassiale TXCU dalle quali si sono ottenuti i valori di seguito riportati:

Angolo d'attrito $\phi' = 28^{\circ} (TD)$ Coesione efficace c' = 28 kPa (TD)

Angolo d'attrito $\varphi' = 28^{\circ} (TXCU)$ Coesione efficace c' = 35 kPa (TXCU)

Prove penerometriche dinamiche (SPT)

Angolo d'attrito $\phi' = 30 \div 40^{\circ}$

6.1.5.3. Caratteristiche di resistenza in condizioni non drenate

Prove triassiali TXCU

Coesione non drenata Cu = 38 kPa (TXCU)

Prove penetrometriche dinamiche (SPT)

Coesione non drenata $Cu = 100 \div 250 \text{ kPa}$

Prove penetrometriche statiche (CPT)

Coesione non drenata $Cu = 100 \div 150 \text{ kPa}$

6.1.5.4. Caratteristiche di deformabilità

Per la determinazione del valore operativo del modulo elastico dei terreni sono stati considerati i risultati delle prove SPT, interpretate secondo le correlazioni di D'apollonia (si veda paragrafo 4.2.1.1) e delle prove a compressione ELL.

Modulo di Young E=40-60 Mpa z≤5m

 $E=60 \div 100Mpa > 5m$.

Modulo Edometrico (Prova edometrica)

Si riportano di seguito i valori del modulo edometrico ottenuto dalla prova edometrica.

Campagna	Sondaggio	Campione	Tipo di campione	da (m)	a (m)	Quota prelievo (da m a m)	Unità geotecnica	Peso specifico γn (kN/m³)	Profondità della falda da p.c. z _w (m)	Tensione litostatica efficace σ'v (kPa)	Modulo edometrico Ed kPa
2004	S ₇ 13bis	SH1	I	2,60	3,00	2,8	Sub alt	20	-	56	9,2

RELAZIONE GEOTECNICA

6.1.5.5. Grafici Sub alt

Si riportano di seguito i grafici dei valori dei parametri caratteristici lungo la profondità dell'unità Sub alt.

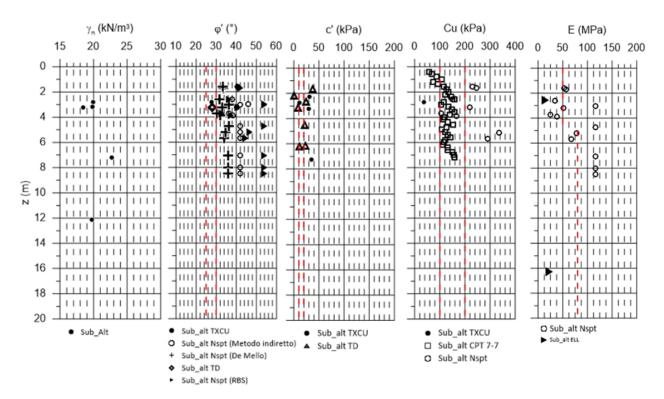


Figura 6-15 Sub_alt -Caratteristiche fisico-meccaniche da prove in sito e di laboratorio.

RELAZIONE GEOTECNICA

6.1.6. SUBSTRATO MARNOSO ARENACEO (SUB)

Nell'ambito delle opere di imbocco, l'unità geotecnica Sub è rappresentativa di marne e marne argillose il cui comportamento è assimilabile a quello di una terra. Si sottolinea come, per via della sua natura sostanzialmente terrosa - riscontrata nei sondaggi S₇5 e S11pz -, lo stesso comportamento può ascriversi alla sotto-unità Sub mc, riscontrabile nell'ambito delle gallerie naturali ed in particolare in zone di faglia e/o ad alta fratturazione. Data la somiglianza, dal punto di vista meccanico, delle due unità geotecniche, si ritiene opportuno caratterizzarle alla stessa maniera.

Nel substrato marnoso arenaceo sono stati prelevati n.18 campioni di marne (marna e marna argillosa, limo con argilla da sabbioso a ghiaioso, limo con ghiaia argilloso debolmente sabbioso, ghiaia sabbioso limosa e sabbia con limo) e n.35 litoidi.

Le caratteristiche fisico meccaniche definite per l'unità sono cautelativamente riferite alla facies marnosa, che interessa il dimensionamento delle opere di linea. Nel caso delle fondazioni su pali dei viadotti si tiene conto della presenza delle arenarie nel calcolo della resistenza alla punta.

Granulometria e peso di volume

percentuale di ghiaia di circa 14%; percentuale di sabbia di circa 6%; percentuale di limo di circa 60%; percentuale di argilla di circa 20%;

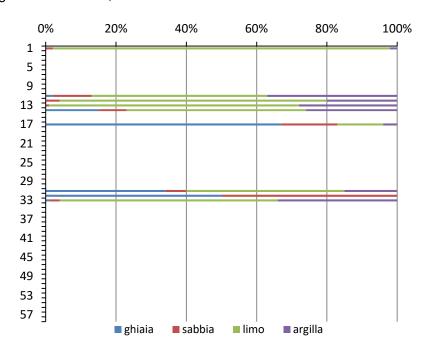


Figura 6-16 Sub - Granulometria

Il peso di volume risulta compreso nell'intervallo di 23÷24 kN/m³

Contenuto naturale di acqua e liti di consistenza

RELAZIONE GEOTECNICA

Contenuto d'acqua naturale Limite liquido Limite plastico

 $w = 14 \div 22\%$ $W_L = 23 \div 58\%$ $W_P = 15 \div 28\%$

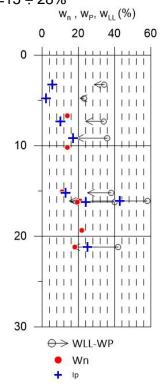


Figura 6-17 Sub - Contenuto naturale d'acqua, limiti di consistenza e indice di plasticità.

6.1.6.1. Caratteristiche di resistenza in condizioni drenate

Prove di taglio diretto TD e triassiali su Roccia

Dalle prove di taglio diretto si ottengono i seguenti valori delle caratteristiche di resistenza a taglio:

Angolo d'attrito $\varphi' = 27 \div 33 \circ (TD)$ $c' = 30 \div 55 \text{ kPa (TD)}$ Coesione efficace

Dalle prove triassiali su roccia si ottengono i seguenti valori delle caratteristiche di resistenza a taglio:

Angolo d'attrito $\phi' = 42 \div 45^{\circ}$

Coesione efficace $c' = 5532 \div 6250 \text{ kPa}$

Prove penerometriche dinamiche (SPT)

Angolo d'attrito $\varphi' = 32 \div 35^{\circ}$

6.1.6.2. Caratteristiche di resistenza in condizioni non drenate

Compressione semplice ELL

Cu = 38.8 kPa (ELL)Coesione non drenata

RELAZIONE GEOTECNICA

Prove penetrometriche dinamiche (SPT)

Coesione non drenata $Cu = 300 \div 400 \text{ kPa}$

Nel definire il valore di coesione non drenata si è tenuto conto delle caratteristiche della formazione ed anche dei risultati delle prove SPT a rifiuto.

6.1.6.3. Caratteristiche di deformabilità

Per la determinazione del valore operativo del modulo elastico dei terreni dell'unità Sub sono stati considerati i risultati delle prove SPT, interpretate secondo le correlazioni di D'apollonia (si veda paragrafo 4.2.1.1) e i valori del modulo elastico ottenuto a partire dal modulo elastico dinamico ricavato dalle prove DH.

Modulo di Young $E=300 \div 350 \text{ Mpa z} \le 15 \text{ m}$

> $E=400 \div 600 \text{ Mpa } 15 < z \le 30 \text{ m}$ $E=300 \div 350 \text{ Mpa z} > 30 \text{ m}$

Grafici Sub 6.1.6.4.

Si riportano di seguito i grafici dei valori dei parametri caratteristici lungo la profondità dell'unità Sub.

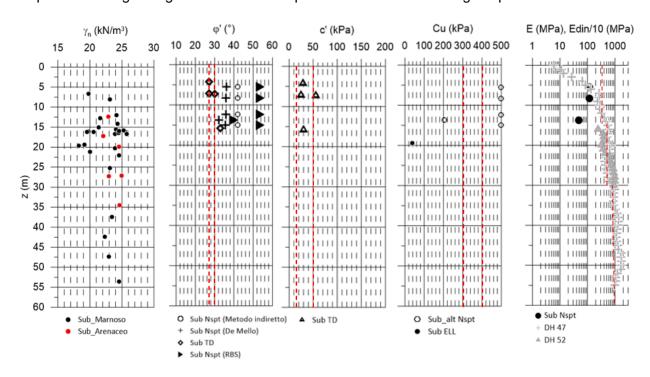


Figura 6-18 Sub -Caratteristiche fisico-meccaniche da prove in sito e di laboratorio.

6.1.7. PARAMETRI CARATTERISTICI

Con riferimento ai terreni precedentemente individuati si è proceduto a definire le caratteristiche fisico-meccaniche analizzando tutti i risultati delle prove di laboratorio e delle indagini in sito svolte nel corso delle diverse campagne di indagine, mediante correlazioni proposte in letteratura e già ampiamente verificate sul piano sperimentale.

Sono stati quindi definiti per ciascuna unità geotecnica i valori caratteristici dei parametri geotecnici. In accordo a quanto riportato in letteratura da vari autori si ritiene che, per la determinazione dei valori caratteristici dei parametri di resistenza del terreno, un approccio di tipo esclusivamente

RELAZIONE GEOTECNICA

statistico risulti poco significativo. Si è pertanto proceduto con metodologie del tutto analoghe a quelle utilizzate per la stima dei parametri geotecnici da impiegare nelle verifiche eseguite con normative basate su coefficienti globali di sicurezza.

I valori caratteristici di tutti i terreni tipo sopra indicati sono stati riassunti nella tabella di seguito riportata e nei profili geotecnici di progetto.

Tabella 6-1 Parametri fisici e meccanici delle unità geotecniche in sito.

UG	Descrizione	γ _n (kN/m³)	c' (kPa)	φ' (°)	c' _{res} * (kPa)	φ' _{res} * (°)	Cu (kPa)	E (MPa)
E/C	Depositi eluvio colluvialii	19 ÷ 21	10 ÷ 30	24 ÷ 26	-	-	100÷150	10 ÷ 30
CdF	Corpi di frana	18÷19	10 ÷ 20	22 ÷ 24	0	14 ÷ 18	80	5 ÷ 30
ALL-LA	Depositi alluvionali fini	19÷20	10 ÷ 20	22 ÷ 24	-	-	100÷150	30 ÷ 40
ALL- Gh	Depositi alluvionali grossolani	20÷21	0 ÷ 5	30 ÷ 35	-	-	-	30 ÷ 40
Sub_alt	Substrato alterato del flysh	20÷22	10 ÷ 20	25 ÷ 30	-	-	100÷200	40÷60 (z<5m) 60÷100(z>5m)
Sub	Substrato marnoso arenaceo	23÷24	30 ÷ 50	27 ÷ 30	-	-	300÷400	300÷350 (z<15m) 400÷600 (z=15÷30m) 600÷800 (z>30m)

^{*} parametri derivati da prove di taglio diretto in condizioni residue

6.2. CARATTERIZZAZIONE DEGLI AMMASSI ROCCIOSI

6.2.1. SUBSTRATO MARNOSO ARENACEO (SUB)

La caratterizzazione geomeccanica dei litotipi interessati dalle gallerie naturali si basa principalmente su rilievi di superficie, integrati con informazioni bibliografiche e localmente con prove di laboratorio e sondaggi.

In particolare, le stazioni geomeccaniche hanno permesso una stima del G.S.I. per le strutture flyschoidi (Hoek & Marinos, 2001) per quanto concerne gli ammassi competenti.

Per quanto riguarda le fasce cataclastiche e/o ad alta fratturazione della sotto-unità Sub_ac, non avendo a disposizione informazioni dirette da indagini geognostiche o stime dettagliate dai rilievi di superficie, cautelativamente si è proceduto, partendo dalla caratterizzazione degli ammassi competenti, ad una riduzione del G.S.I.

Si riporta di seguito un riepilogo delle stazioni geomeccaniche rilevate (per i relativi dettagli si veda T00GE00GEORE01):

Stazione	Unità geotecnica	GSI
SG1	Sub_m	37
SG2	Sub_a	70
SG3	Sub_m	33

RELAZIONE GEOTECNICA

SG4	Sub_m	35
SG5	Sub_a	77

Tabella 6.2 - Riepilogo delle stazioni geomeccaniche rilevate

Per la stima della resistenza a compressione della roccia intatta si è fatto riferimento alle prove di compressione monoassiale e ai Point Load Test, i cui risultati sono riportati di seguito:

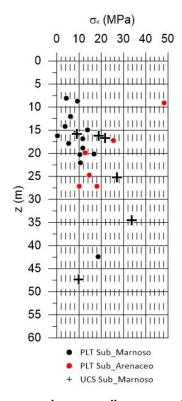


Figura 6-19 Sub - Risultati prove di compressione semplice non confinata e prove di resistenza a carico puntuale (point load test).

Si è scelto quindi di caratterizzare gli ammassi cataclasati e/o altamente fratturati con i valori di resistenza più bassi riscontrati, riservando invece i valori più alti per gli ammassi competenti.

Il parametro m_i è stato desunto da bibliografia.

6.2.2. PARAMETRI CARATTERISTICI

Si riporta di seguito un riassunto dei parametri del criterio di rottura di Hoek-Brown adottati per le sotto-unità geotecniche Sub_a, Sub_ac e Sub_m:

Unità geotec.	GSI [-]	m _i [-]	σ _c [MPa]	D [-]
Sub_m	30-40	7	10-20	0
Sub_a	60-70	17	20-25	0

RELAZIONE GEOTECNICA

Tabella 6.3

Definiti i parametri che descrivono il criterio di rottura di Hoek-Brown, si è proceduto alla sua linearizzazione sulla base delle coperture delle gallerie al fine di ricavare gli intervalli equivalenti dei parametri relativi al criterio di rottura di Mohr-Coulomb:

$$--\phi'=sin^{-1}\Big[\frac{6am_b(s+m_b\sigma'_{sn})^{a-1}}{2(1+a)(2+a)+6am_b(s+m_b\sigma'_{sn})^{a-1}}\Big]$$

$$--c' = \frac{\sigma_{ci}[(1+2a)s+(1-a)m_b\sigma'_{sn})](s+m_b\sigma'_{sn})^{a-1}}{(1+a)(2+a)} + \frac{1+\frac{6am_b(s+m_b\sigma'_{sn})^{a-1}}{(1+a)(2+a)}}$$

Dove:

•
$$a = \frac{1}{2} + \frac{1}{6} \left(e^{-GSI/15} - e^{-20/3} \right)$$

•
$$m_b = m_i exp\left(\frac{GSI-100}{28-14D}\right)$$
 (Valore ridotto del parametro m_i)

•
$$\sigma'_{3n} = \frac{\sigma'_{smax}}{\sigma_{ci}}$$

$$\sigma'_{3max} = \sigma'_{cm} 0.47 \left(\frac{\sigma'_{cm}}{\gamma_H}\right)^{-0.94}$$
 (Limite superiore tensione di confinamento)

$$\sigma'_{cm} = \sigma_{ci} \frac{(m_b + 4s - a(m_b - 8s))(\frac{m_b}{4} + s)^{a-1}}{2(1+a)(2+a)}$$
 (Resistenza globale dell'ammasso)

$$oldsymbol{\sigma_{ci}}$$
 (Resistenza a compressione della roccia intatta)

•
$$\sigma_{ci}$$
 (Resistenza a compressione della roccia intati $s = exp\left(\frac{GSI-100}{9-3D}\right)$ (Parametro legato all'assetto geostrutturale)

Geological Strength Index

 D Fattore di disturbo

Parametro di Hoek e Brown della roccia intatta m_i

Altezza della copertura

Successivamente, a completamento della caratterizzazione dell'ammasso roccioso, è stato valutato il modulo elastico del materiale, attraverso la seguente formula proposta da Hoek (anch'essa implementata nel programma RocLab v. 1.032 della Rocscience), che tiene in conto sia le proprietà qualitative dell'ammasso roccioso (GSI), sia gli effetti del danneggiamento provocato dalla tipologia di scavo (D):

$$E = \left(1 - \frac{D}{2}\right) \sqrt{\frac{\sigma_{ci}}{100}} 10^{\left(\frac{GSI - 10}{40}\right)}$$

Per i parametri relativi al criterio di rottura di Mohr-Coulomb così individuati si faccia riferimento alle relazioni di calcolo delle gallerie.

RELAZIONE GEOTECNICA

7. RILEVATI, TRINCEE E SCAVI PROVVISIONALI – ANALISI DI STABILITÀ

7.1. RILEVATI

Nei successivi paragrafi vengono riportate le analisi effettuate per la valutazione dei cedimenti e della stabilità dei rilevati presenti lungo il tracciato.

Sono riportati i risultati ottenuti per le sezioni maggiormente significative. Come si evince nei paragrafi successivi, fino a ad altezze massime pari a 5 m, il rilevato può essere realizzato con delle scarpate con pendenza 2(V)/3(H). Per altezze superiori ai 5 m, le analisi di stabilità interne del rilevato hanno evidenziato la necessità di prevedere l'esecuzione di una terra rinforzata nella banca inferiore con inclinazione della scarpata pari a 60°.

7.1.1. PIANO DI POSA DEI RILEVATI

Per il modulo di deformazione il capitolato indica un valore minimo di 20 MPa sul piano di posa del rilevato posto a 2,0 da quello della fondazione stradale.

Dall'analisi dei dati si osserva che per n.4 prove su 9, il valore misurato è inferiore al valore di capitolato.

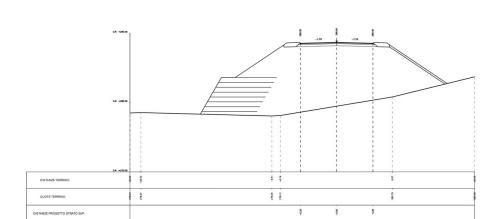
Nei tratti in rilevato, viste le caratteristiche dei terreni in sito e i risultati delle prove di carico su piastra (eseguite a 0,5 m dal piano campagna), si prevede un intervento di bonifica con sostituzione dei terreni per uno spessore riportato nella tabella seguente.

Tabella 7-1 Valori spessore di bonifica in funzione delle progressive.

Prog. iniziale	Prog. finale	Litotipo	Descrizion e litotipo	Indagi ne di riferim ento	Prova di carico su piastra M _{D1} (MPa)	Classificazion e UNI 10006	Spessore coltre vegetale (m)	Scotic o (0,2m)	Bonific a (m)
		ALL-LA	Limo sabbioso	Pz ₇ 2	2,49 (0,5m)	A6	-		
0+000	0+738	ALL-LA	Limo con argilla, sabbioso	Pz01	29,7 (0,5m)	A7-6	0,4	0,2	0,3
		ALL-LA	Limo con argilla, sabbioso	Pz01	25,1 (1,0m)	A7-6	-		
0+738	1+460		Galleria naturale II Monte						
1+460	1+510	Sub_alt	Substrato. marnoso	-	-	-	-	0,2	-
1+510	1+700				Viaodtto S	. Eracliano			
1+700	1+800	ALL-Gh CdF	Ghiaia limosa, argillosa	S ₇ 8, S ₇ 9	-	-	0,5	0,2	0,3
1+800	2+400				Galleria l	Jrbania 1			
2+400	2+600				Ponte San	ta Caterina			
2+600	2+660	E/C	Argilla limosa	S ₇ 17	-	-	0,35	0,2	0,3
2+660	3+360				Galleria N	laturale 2			
3+360	3+650				Ponte Ve	enturello			
3+650	3+984	E/C	Limo argilloso	S ₇ 17, S ₇ 18	-	-	0,5	0,2	0,3
3+984	4+540				Galleria l	Jrbania 3			
4+540	4+780			S12 S ₇ 20			0,5	0,2	0,3
4+780	5+020	CdF	Argilla	S ₇ 21,	-	-	0,2÷1	0,2	0,8

RELAZIONE GEOTECNICA

Prog. iniziale	Prog. finale	Litotipo	Descrizion e litotipo	Indagi ne di riferim ento	Prova di carico su piastra M _{D1} (MPa)	Classificazion e UNI 10006	Spessore coltre vegetale (m)	Scotic o (0,2m)	Bonific a (m)
			limosa	S ₇ 22, S13In					
		ALL-LA	Limo argilloso	Pz ₇ 3	9,3 (1,2 m)	No limiti di Atterberg	-		
		ALL-LA	Limo argilloso	Pz ₇ 3	7,6 (0,5 m)	No limiti di Atterberg	-	0,2	0,3
5+020	5+320	ALL-LA	Limo argilloso	Pz02	18,7(0,5m)	A7-6	0,4		
			ALL-LA	Limo argilloso	Pz02	30,66 (1,0m)	A7-6	0,4	
		ALL-LA	Limo sabbioso argilloso	S ₇ 23	-	-	0,5		
5+320	5+420				Ponte (Cerreto			
5+420	5+800			S ₇ 25	-	-	0,3	0,2	0,3
5+800	6+025				Ponte M	etauro 3			
6.025	6.059	ALL-LA	Limo con ghiaia, argilloso	PZ03	35,74(0,5m)	A6	0,5	0,2	0,3
0+025	6+025 6+058	ALL-LA	Limo con ghiaia, argilloso	PZ03	35,74(0,5m)	A6	0,5	0,2	0,3


RELAZIONE GEOTECNICA

7.1.2. CEDIMENTI

La valutazione dei cedimenti dei rilevati è stata effettuata utilizzando il Software Settle 3D della Rocscience. Il software utilizza lo sforzo medio tridimensionale (la media delle componenti di sollecitazione volumetrica) e il cedimento viene poi calcolato come la deformazione di ogni strato dovuta al suddetto sforzo.

7.1.2.1. Sezione progressiva 4+880.0

Si riportano nel seguito i risultati del calcolo dei cedimenti del rilevato in corrispondenza della progressiva 4+880.0. In questo tratto il rilevato presenta un'altezza massima di circa 10 m.

PROGRESSIVA 4+880.000

Figura 7-1 Sezione rilevato progressiva 4+880.0

Nel calcolo dei cedimenti si è considerata la presenza delle unità Cdf, Sub-alt e Sub secondo la seguente stratigrafia e la falda a 2 m dal piano campagna.

	Profondità	Unità geotecnica	γ kN/m3	c' kPa	φ'	E MPa
_	0-8.0 m	Cdf	18.5	15	23	20
	8.0-10.1 m	Sub-alt	21	15	27.5	50
	>10.1 m	SUB	23.5	40	28.5	325

RELAZIONE GEOTECNICA

Caratteristiche geometriche del rilevato

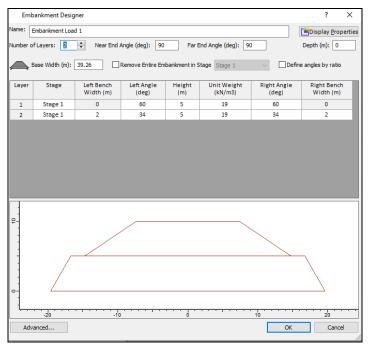


Figura 7-2 Caratteristiche geometriche rilevato progressiva 4+880.0

Cedimenti

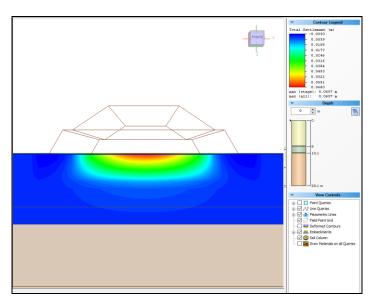


Figura 7-3 Risultati cedimenti rilevato progressiva 4+880.0

Il cedimento calcolato risulta pari a 6.57 cm.

7.1.2.2. Sezione progressiva 0+340.0

Si riportano nel seguito i risultati del calcolo dei cedimenti del rilevato in corrispondenza alla progressiva 0+340.0. In questo tratto il rilevato presenta un'altezza massima di circa 5 m.

GPIngegneria

RELAZIONE GEOTECNICA

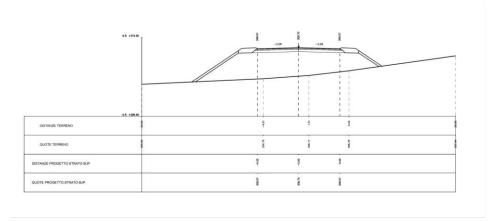


Figura 7-4 Sezione rilevato progressiva 0+340.0

Nel calcolo dei cedimenti si è considerata la presenza delle unità ALL-LA, ALL-Gh e Sub secondo la seguente stratigrafia e la falda a 1.3 m dal piano campagna.

Profondità	Unità geotecnica	$^{\gamma}$ kN/m 3	c' kPa	φ'	E MPa
0-2.50 m	ALL-AL	19.5	15	23	35
2.50-6.70 m	ALL-Gh	20.5	2.5	32.5	35
>6.70 m	SUB	23.5	40	28.5	325

Caratteristiche geometriche del rilevato

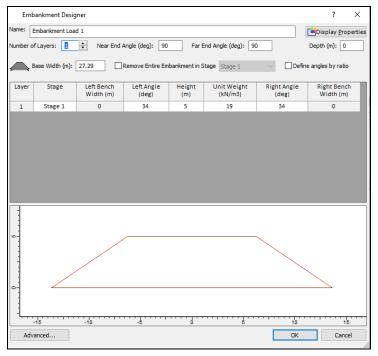


Figura 7-5 Caratteristiche geometriche rilevato progressiva 0+340.0

S.G.C. E78 GROSSETO - FANO Tratto Selci Lama (E45) - S. Stefano di Gaifa. Adeguamento a 2 corsie del tratto della Variante di Urbania

RELAZIONE GEOTECNICA

Cedimenti

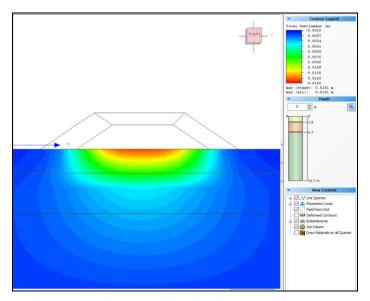


Figura 7-6 Risultati cedimenti rilevato progressiva 0+340.0

Il cedimento calcolato risulta pari a 1.51 cm.

RELAZIONE GEOTECNICA

7.1.3. ANALISI DI STABILITÀ

Le verifiche di sicurezza sono state eseguite in accordo con quanto indicato nei paragrafi 6.8, 7.11.3 e 7.11.4 del DM 17/01/2018. Le verifiche di sicurezza sono state effettuate con riferimento l'Approccio 1, combinazione 2 (A2+M2+R2)

Sono stati quindi considerati i coefficienti parziali A2 per le azioni di progetto, M2 per i parametri geotecnici e R2 con γ_r pari a 1.1 per la resistenza del sistema.

In condizioni sismiche, per fronti di scavo e rilevati, le componenti orizzontale e verticale della forza statica equivalente sono espressi come $F_h = k_h.W$ e $F_v = k_v.W$, con k_h e k_v rispettivamente pari ai coefficienti sismici orizzontale e verticale. Nelle verifiche di sicurezza sono stati posti pari all'unità i coefficienti parziali sulle azioni e sui parametri geotecnici e $\gamma_r = 1.2$ per la resistenza del sistema.

Per la valutazione dei coefficienti k_h e k_v si sono considerati i seguenti parametri:

- Vita nominale (V_N): 50 anni
- Classe d'uso: IV (cu = 2)
- Categoria di suolo: B
- Categoria topografica: T1
- Accelerazione media lungo il tracciato: a_g = 0.227g
- Coefficiente stratigrafico S_s: 1.172
- Coefficiente topografico S_t: 1.0
- Coefficiente di riduzione allo SLV: $\beta = 0.38$

I valori di k_h e k_v sono riportati nella seguente tabella:

Tabella 7-2 Coefficienti di intensità sismica

Dato	Simbolo
Coefficiente di intensità sismica orizzontale	$k_h = a_g/g^*\beta_s^*S_t^*S_s = 0.10$
Coefficiente di intensità sismica verticale	$k_v = 0.50 * K_h$

Per quanto riguarda le azioni accidentali dovute al carico stradale, si è considerato un carico uniformemente distribuito q_k=20 kPa, quindi:

- in condizioni statiche q_d=1.3xq_k = 26kPa;
- in condizione sismiche, con ψ =0.2 (Coeff.di combinazione), risulta q_d = 4kPa

Le analisi in condizione sismiche sono state effettuate adottando il metodo pseudo-statico. Tutte le analisi di stabilità sono state esequite con riferimento al metodo di Bishop.

Per il materiale costituente il rilevato si sono assunti i seguenti valori dei parametri fisico-meccanici:

Unità	γ	c'	φ'
geotecnica	kN/m³	kPa	
Rilevato	19	0	35

7.1.3.1. Stabilità del corpo del rilevato (stabilità locale)

Nel presente paragrafo vengono riportate le verifiche di stabilità locali del rilevato che considerano esclusivamente le superfici di rottura che interessano il solo corpo del rilevato.

I rilevati stradali saranno realizzati con materiali idonei, sia provenienti dagli scavi sia da cave di prestito. Le banche avranno una pendenza 2(V)/3(H) con altezza massima di 5.0 m e banche intermedie di 2.0 m. Oltre i 5 m di altezza, la banca inferiore dovrà essere realizzata con una terra rinforzata con pendenza della scarpata pari a 60°.

RELAZIONE GEOTECNICA

Altezza rilevato 5 m

Nelle due figure successive vengono riportate:

- verifica di stabilità in condizioni statiche: fattore di sicurezza = 1.323;
- verifica di stabilità in condizioni sismiche: fattore di sicurezza = 1.005.

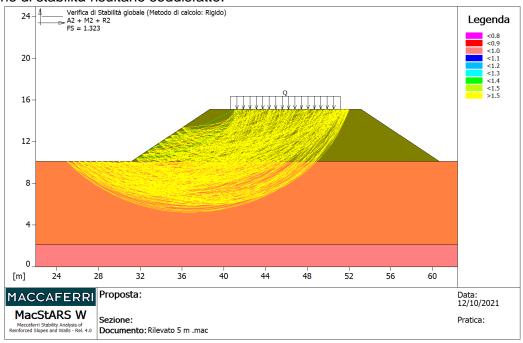


Figura 7-7 Rilevato progressiva 0+340.0-Statico

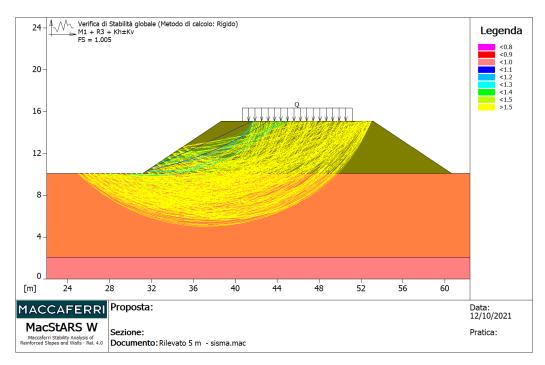


Figura 7-8 Rilevato progressiva 0+340.0-Sismico

RELAZIONE GEOTECNICA

Altezza rilevato 5+5 m

Si considera la presenza di rinforzi tipo Green Terramesh-60°-8/2.7P con interasse verticali di 0.70 per la banca inferiore(Vedasi dettaglio in allegato).

Nelle due figure successive vengono riportate:

- verifica di stabilità in condizioni statiche: fattore di sicurezza = 1.137;
- verifica di stabilità in condizioni sismiche: fattore di sicurezza = 1.145.

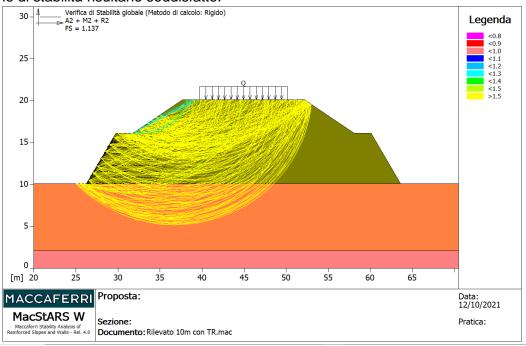


Figura 7-9 Rilevato progressiva 4+880.0-Statico

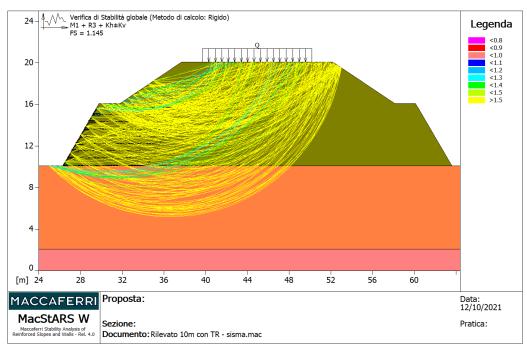


Figura 7-10 Rilevato progressiva 4+880.0-Sismico

RELAZIONE GEOTECNICA

7.1.3.2. Analisi di stabilità globali

Nel presente paragrafo vengono riportate le verifiche di stabilità globali del rilevato che considerano anche le superfici di rottura che interessano terreno di fondazione.

Sono state considerate le sezioni più rappresentative presenti lungo il tracciato.

Progressiva 0+340

Di seguito si riporta la verifica di stabilità globale per la sezione in corrispondenza della prog. 0+340.

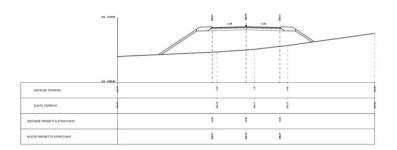


Figura 7-11 Sezione rilevato progressiva 0+340.0

Per la sezione in oggetto si sono assunti i seguenti valori dei parametri fisico-meccanici dei terreni:

Profondità	Unità geotecnica	γ kN/m³	c' kPa	φ'.
0-2.50 m	ALL-AL	19.5	15	23
2.50-6.70 m	ALL-Gh	20.5	2.5	32.5
>6.70 m	SUB	23.5	40	28.5

Si è considerata cautelativamente la falda a 2 m dal p.c..

Nelle due figure successive vengono riportate:

- verifica di stabilità in condizioni statiche: fattore di sicurezza = 2.083;
- verifica di stabilità in condizioni sismiche: fattore di sicurezza = 1.725.

RELAZIONE GEOTECNICA

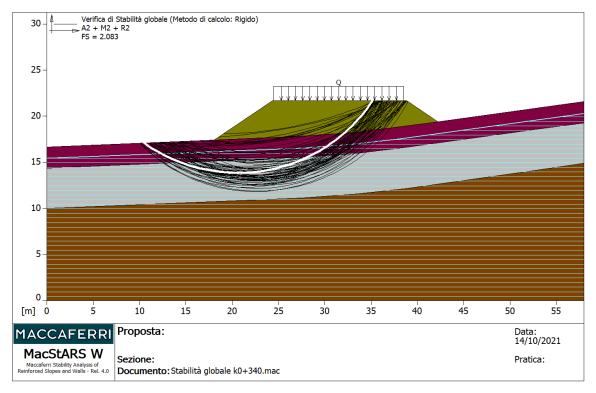


Figura 7-12 Verifica di stabilità globale progressiva 0+340.0-Condizione statiche (FS=2.083)

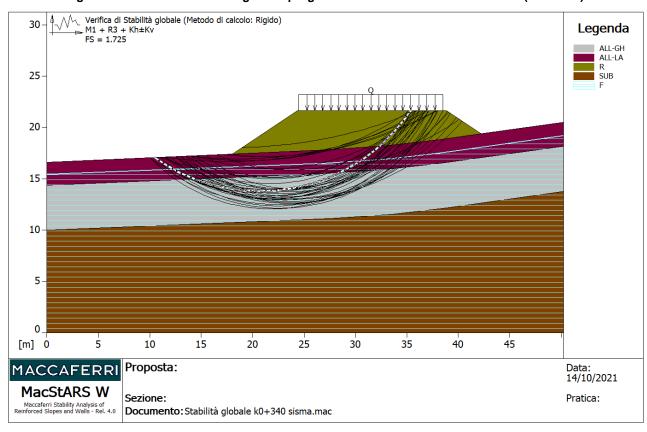


Figura 7-13 Verifica di stabilità globale progressiva 0+340.0-Condizione sismiche (FS=1.725)

RELAZIONE GEOTECNICA

Progressiva 4+880

Di seguito si riporta la verifica di stabilità globale per la sezione in corrispondenza della prog. 4+880.

PROGRESSIVA 4+880.000

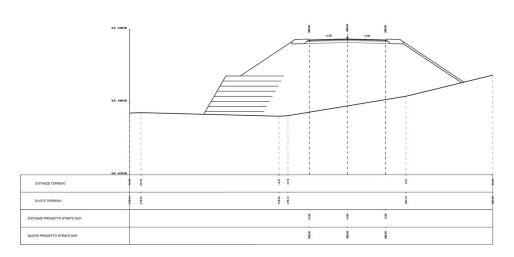


Figura 7-14 Sezione rilevato progressiva 4+880.0

Per la sezione in oggetto si sono assunti i seguenti valori dei parametri fisico-meccanici dei terreni:

Profondità	Unità geotecnica	γ kN/m3	c' kPa	φ' °
0-8.0 m	Cdf	18.5	15	23
8.0-10.1 m	Sub-alt	21	15	27.5
>10.1 m	SUB	23.5	40	28.5

Si è considerata cautelativamente la falda a 2 m dal p.c..

Nelle due figure successive vengono riportate:

- verifica di stabilità in condizioni statiche: fattore di sicurezza = 1.368;
- verifica di stabilità in condizioni sismiche: fattore di sicurezza = 1.225.

RELAZIONE GEOTECNICA

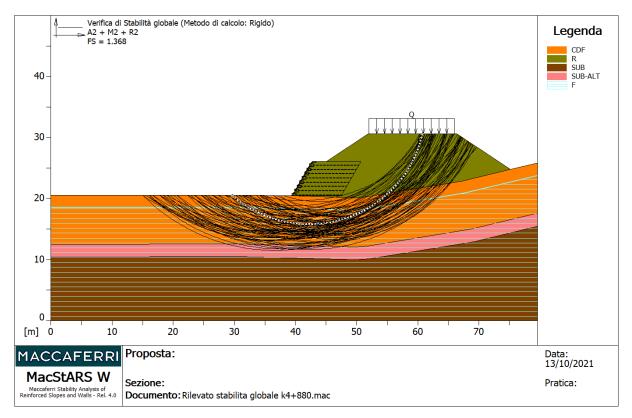


Figura 7-15 Verifica di stabilità globale progressiva 4+880.0-Condizione statiche (FS=1.368)

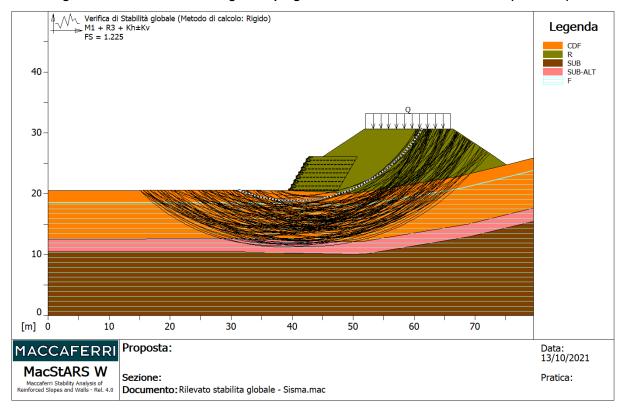


Figura 7-16 Verifica di stabilità globale progressiva 4+880.0-Condizione sismiche (FS=1.225)

RELAZIONE GEOTECNICA

7.2. TRINCEE

7.2.1. ANALISI DI STABILITÀ GLOBALI

Gli scavi in trincea saranno realizzate con scarpate con pendenza 2(V)/3(H), con banche di 2.0 m ogni 5.0 m di altezza.

Sono state considerate le sezioni più rappresentative presenti lungo il tracciato.

Per l'azione sismica si faccia riferimento a quanto già riportato nel paragrafo relativo ai rilevati.

Progressiva 1+480

Di seguito si riporta la verifica di stabilità globale per la sezione in corrispondenza della prog. 1+480.

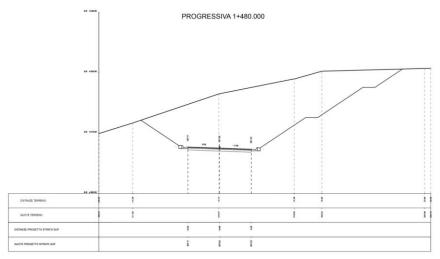


Figura 7-17 Sezione trincea progressiva 1+480.0

Per la sezione in oggetto si sono assunti i seguenti valori dei parametri fisico-meccanici dei terreni:

Profondità	Unità geotecnica	$^{\gamma}$ kN/m ³	c' kPa	φ'
0-7.5 m	Sub-alt	21	15	27.5
>7.5 m	SUB	23.5	40	28.5

Si è considerata la falda a 3.6 m dal p.c..

Nelle due figure successive vengono riportate:

- verifica di stabilità in condizioni statiche: fattore di sicurezza = 1.351;
- verifica di stabilità in condizioni sismiche: fattore di sicurezza = 1.229.

Le verifiche di stabilità risultano soddisfatte.

RELAZIONE GEOTECNICA

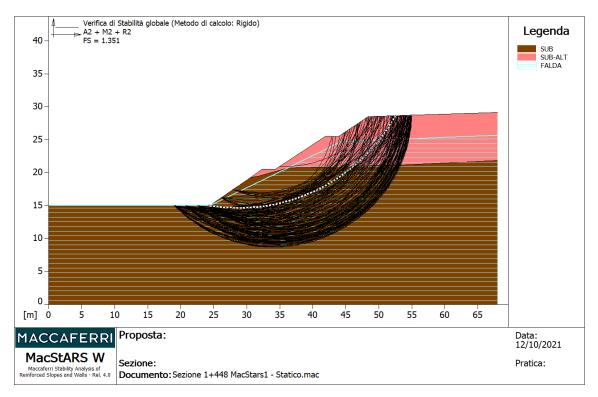


Figura 7-18 Verifica di stabilità globale progressiva 1+480.0-Condizione statiche (FS=1.351)

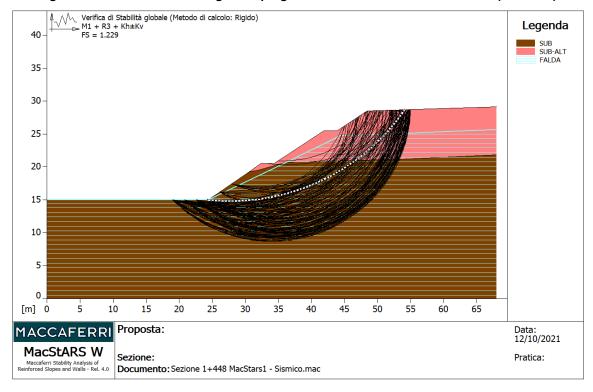


Figura 7-19 Verifica di stabilità globale progressiva 1+480.0-Condizione sismiche (FS=1.229)

RELAZIONE GEOTECNICA

Progressiva 0+460

Di seguito si riporta la verifica di stabilità globale per la sezione in corrispondenza della prog. 0+460 PROGRESSIVA 0+460.000

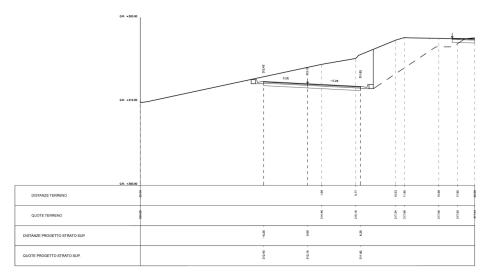


Figura 7-20 Sezione trincea progressiva 0+460.0

Per la sezione in oggetto si assumono i seguenti valori dei parametri fisico-meccanici dei terreni:

Unità geotecnica	γ kN/m³	c' kPa	φ'
Sub-alt	21	15	27.5

Si è considerata la falda a 2.0 m dal p.c..

Nelle due figure successive vengono riportate:

- verifica di stabilità in condizioni statiche: fattore di sicurezza = 1.732;
- verifica di stabilità in condizioni sismiche: fattore di sicurezza = 1.384.

Le verifiche di stabilità risultano soddisfatte.

RELAZIONE GEOTECNICA

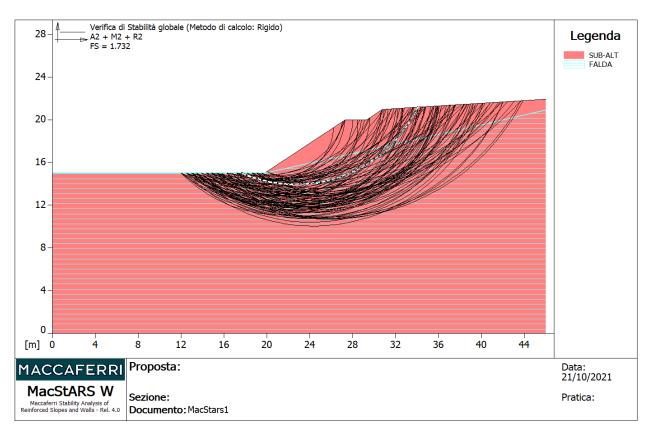


Figura 7-21 Verifica di stabilità globale progressiva 0+460.0-Condizione statiche (FS=1.732)

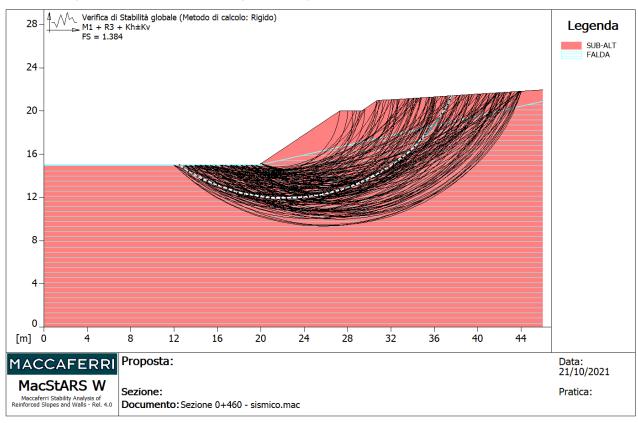


Figura 7-22 Verifica di stabilità globale progressiva 0+460.0-Condizione sismiche (FS=1.384)

RELAZIONE GEOTECNICA

Progressiva 3+900

Di seguito si riporta la verifica di stabilità globale per la sezione in corrispondenza della prog. 3+900

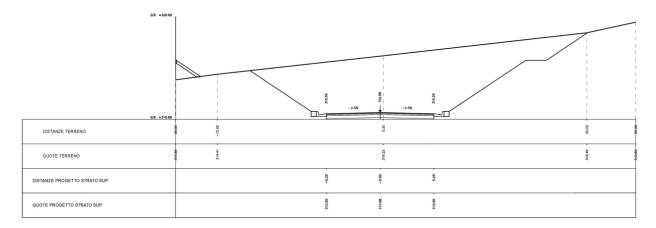


Figura 7-23 Sezione trincea progressiva 3+900.0

Per la sezione in oggetto si assumono i seguenti valori dei parametri fisico-meccanici dei terreni:

Profondità	Unità geotecnica	γ kN/m³	c' kPa	ф' °
0-18.0 m	E/C	20	20	25.0
>18.0 m	SUB	23.5	40	28.5

Si è considerata la falda a 2.0 m dal p.c..

Nelle due figure successive vengono riportate:

- verifica di stabilità in condizioni statiche: fattore di sicurezza = 1.264;
- verifica di stabilità in condizioni sismiche: fattore di sicurezza = 1.109.

Le verifiche di stabilità risultano soddisfatte.

RELAZIONE GEOTECNICA

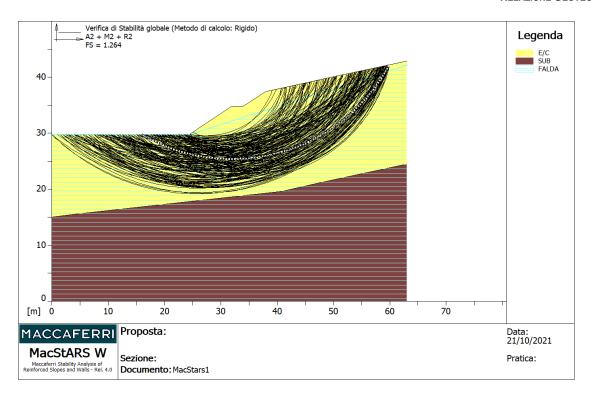


Figura 7-24 Verifica di stabilità globale progressiva 3+900.0-Condizione statiche (FS=1.264)

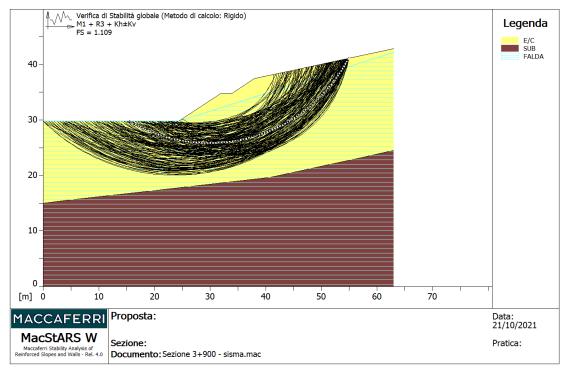


Figura 7-25 Verifica di stabilità globale progressiva 3+900.0-Condizione sismiche (FS=1.109)

RELAZIONE GEOTECNICA

7.3. SCAVI PROVVISIONALI

Gli scavi provvisionali saranno realizzati con scarpate con pendenza 2(V)/3(H). Le verifiche sono state eseguite con riferimento alle diverse litologie individuate lungo il tracciato omettendo le verifiche sismiche, in considerazione della permanenza dello scavo inferiore a 2 anni (par. 2.4.1-NTC2018).

Scavi provvisionali nelle E/C, H=8.50 m

Per la sezione in oggetto si sono assunti i seguenti valori dei parametri fisico-meccanici dei terreni:

Unità geotecnica	γ kN/m³	c' kPa	φ'
E/C	20	20	25.0

Nella figura successiva viene riportata:

verifica di stabilità in condizioni statiche: fattore di sicurezza = 1.596;

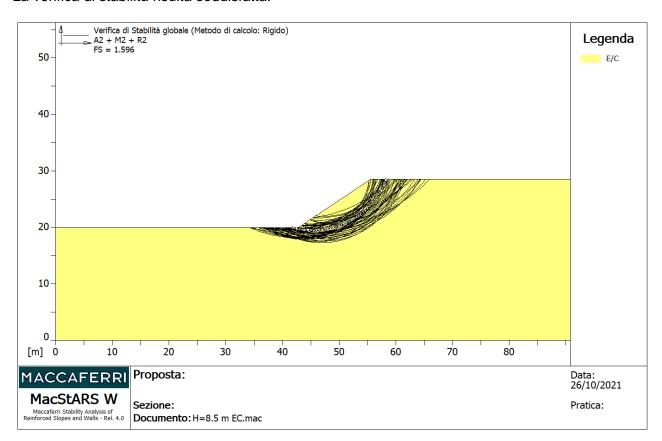


Figura 7-26 Verifica di stabilità globale in condizione statiche H=8.50 m nelle E/C

RELAZIONE GEOTECNICA

Scavi provvisionali nelle ALL-LA, H=7.50 m

Per la sezione in oggetto si sono assunti i seguenti valori dei parametri fisico-meccanici dei terreni:

Unità geotecnica	γ kN/m³	c' kPa	φ'
ALL-AL	19.5	15	23

Nella figura successiva viene riportata:

verifica di stabilità in condizioni statiche: fattore di sicurezza = 1.253;

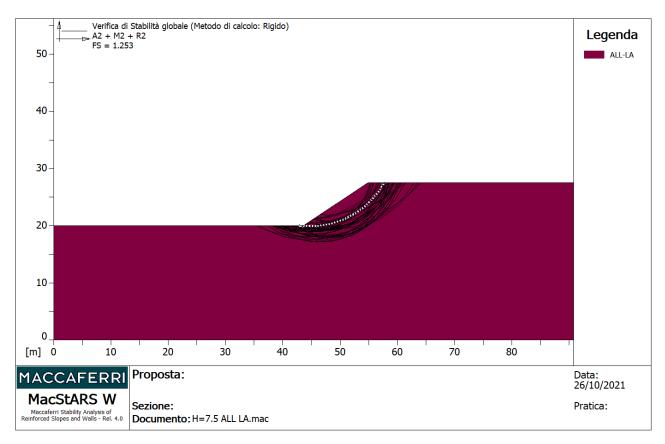


Figura 7-27 Verifica di stabilità globale in condizione statiche H=7.50 m nelle ALL-AL

RELAZIONE GEOTECNICA

Scavi provvisionali nelle ALL-Gh, H=7.30 m

Per la sezione in oggetto si sono assunti i seguenti valori dei parametri fisico-meccanici dei terreni:

Unità geotecnica	γ kN/m³	c' kPa	φ'
ALL-Gh	20.5	2.5	32.5

Nella figura successiva viene riportata:

verifica di stabilità in condizioni statiche: fattore di sicurezza = 1.008;

La verifica di stabilità risulta soddisfatta.

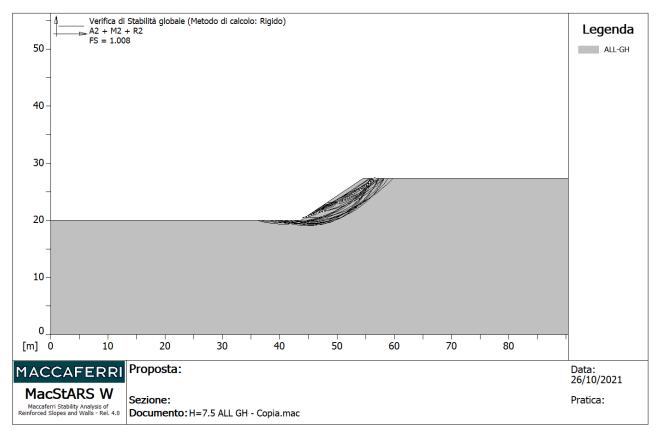


Figura 7-28 Verifica di stabilità globale in condizione statiche H=7.30 m nelle ALL-Gh

RELAZIONE GEOTECNICA

Scavi provvisionali nelle Sub-alt, H=7.50 m

Per la sezione in oggetto si sono assunti i seguenti valori dei parametri fisico-meccanici dei terreni:

Unità geotecnica	γ kN/m³	c' kPa	¢ '
Sub-alt	21	15	27.5

Nella figura successiva viene riportata:

verifica di stabilità in condizioni statiche: fattore di sicurezza = 1.344;

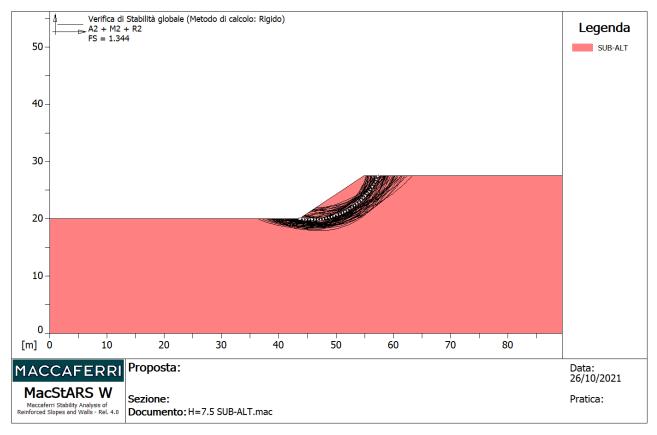


Figura 7-29 Verifica di stabilità globale in condizione statiche H=7.50 m nelle Sub-alt

RELAZIONE GEOTECNICA

8. ATTACCO CHIMICO DEL CLS

Le analisi chimiche per la determinazione dell'aggressività del terreno al cls (UNI EN 206:2016) sono state eseguite sui seguenti campioni, nel corso della campagna di indagini 2021.

Le analisi chimiche sui campioni di acqua e terreno prelevato hanno fornito i risultati esposti nelle tabelle seguenti.

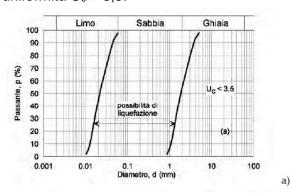
Tabella 8-1 Risultati per le indagini chimiche per l'attacco chimico del cls su campioni di acqua.

Parametro	Unità di misura	Classi di esposizione		Campioni		
		XA1	XA2	XA3	S5Pz	S16Pz
Ph	Unità Ph	5,5-6,5	4,5-5,5	4,0-4,5	7,2	8,6
Azoto ammoniacale (ione ammonio)	mg/L	15-30	36-60	60-100	1,5	1,9
Solfati (ione solfato)	mg/L	200-600	600-3000	3000- 6000	214	147
Anidrite carbonica aggressiva	mg/L	15-40	40-100	>100	<15	<15
Magnesio	mg/L	300-1000	1000- 3000	>3000	47	4,4

Tabella 8-2 Risultati per le indagini chimiche per l'attacco chimico del cls su campioni di terreno.

Parametro	Unità di	Lim	niti UNI 206:2	2016	Campioni					
misura		XA1	XA2	XA3	S5-CA3	S5-CA4	S6-CA1	S8-CA1	S16-CA1	
Solfati	mg/kg	2000-3000	3000- 12000	12000- 24000	390	120	<100	710	<100	
Acidità	ml/kg	200			16	20	15	0	48	

I risultati delle analisi chimiche eseguite non hanno evidenziato concentrazioni tali da determinare un attacco chimico del cls.


RELAZIONE GEOTECNICA

8.1. STABILITÀ NEI CONFRONTI DELLA LIQUEFAZIONE

Si riporta di seguito la verifica di stabilità nei confronti della liquefazione.

Le NTC18, al §7.11.3.4.2 contengono una lista delle condizioni di esclusione di tale verifica:

- 1. Accelerazioni massime attese al piano campagna in assenza di manufatti (condizioni di campo libero) minori di 0,1a:
- 2. Profondità media stagionale della falda superiore a 15 m dal piano campagna, per piano campagna sub-orizzontale e strutture con fondazioni superficiali;
- 3. Depositi costituiti da sabbie pulite con resistenza penetrometrica normalizzata (N₁)₆₀ > 30 oppure $q_{c1N} > 180$ dove $(N_1)_{60}$ è il valore della resistenza determinata in prove penetrometriche dinamiche (Standard Penetration Test) normalizzata ad una tensione efficace verticale di 100 kPa e q_{c1N} è il valore della resistenza determinata in prove penetrometriche statiche (Cone Penetration Test) normalizzata ad una tensione efficace verticale di 100 kPa;
- 4. Distribuzione granulometrica esterna alle zone indicate nella Fig. 7.11.1(a) nel caso di terreni con coefficiente di uniformità Uc < 3,5 e in Fig. 7.11.1(b) nel caso di terreni con coefficiente di uniformità $U_c > 3,5$.

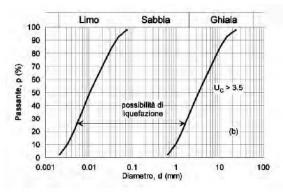


Figura 8-1 Fusi granulometrici di terreni suscettibili di liquefazione

L'unità E/C può essere esclusa dalla verifica in quanto caratterizzata principalmente da limi, limi deb. argillosi e deb. sabbiosi aventi fusi granulometrici esterni alle zone indicate da normatia per i depositi potenzialmente liquefacibili.

L'unità CdF può essere esclusa dalla verifica in quanto caratterizzata principalmente da limi argillosi deb. sabbiosi, limi con argilla sabbiosi aventi fusi granulometrici esterni alle zone indicate da normativa per i depositi potenzialmente liquefacibili.

L'unità ALL-LA può essere esclusa dalla verifica in quanto caratterizzata principalmnete da limi sabbiosi debolmente argillosi e limi argillosi debolmente sabbiosi, limi con argilla sabbiosi aventi fusi granulometrici esterni alle zone indicate da normativa per i depositi potenzialmente liquefacibili.

Le unità Sub_alt e Sub possono essere escluse dalla verifica in quanto caratterizzata principalmente da terreni a grana fine aventi fusi granulometrici esterni alle zone indicate da normativa per i depositi potenzialmente liquefacibili.

L'unità ALL-Gh, caratterizzata principalmente terreni a grana grossa (ghiaia con sabbia limosa, ghiaia con limo e argilla da sabbiosa a debolmente sabbiosa), presenta fusi granulometrici ricadenti all'interno delle zone indicate da normativa per i terreni potenzialmente liquefacibili (Figura 8-2). Inoltre, poiché sono stati riscontrati in sito valori di resistenza penetrometrica normalizzata (N₁)₆₀ inferiori a 30 e valori di resistenza alla punta normalizzata q_{c1N} < 180 e data la presenza della falda,

b)

RELAZIONE GEOTECNICA

vengono di seguito riportate le verifiche eseguite con i metodi di Boulanger e Idriss, 2004 basati sui risultati di prove SPT e CPT.

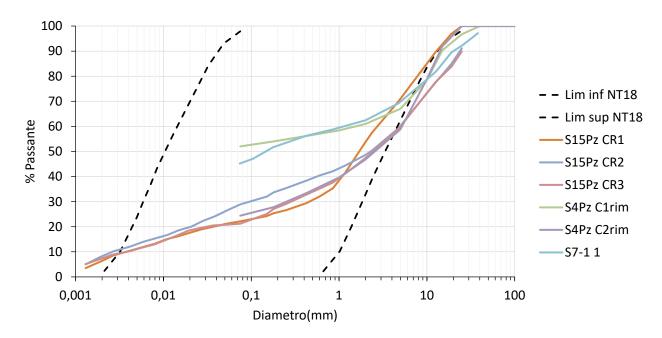


Figura 8-2 Curve granulometriche campioni dell'unità ALL-Gh

9. STIMA DEL RISCHIO DI LIQUEFAZIONE

Il coefficiente di sicurezza alla liquefazione è stimato secondo la seguente formula:

$$\begin{split} F_L(z) = & \frac{CRR_{M\text{--}7.5;\sigma'_v\text{--latm}}}{CSR} \cdot M \, SF \cdot K_\sigma \\ & \text{ove} \\ & CRR_{M\text{--}7.5;\sigma'_v\text{--latm}} = & \frac{\tau_{ult}}{\sigma'_{v0}} \end{split}$$

è il rapporto di resistenza ciclica, ovvero la resistenza normalizzata rispetto alla tensione verticale efficace iniziale σ'_{v0} , per terremoto di magnitudo M = 7.5 e pressione efficace di riferimento σ'_{v} =

MSF è il fattore di scala della Magnitudo che è funzione, oltre che del valore della magnitudo dell'azione sismica di riferimento, anche del metodo di stima di CRR,

K_σ è il fattore di correzione che tiene conto della pressione efficace alla profondità a cui la resistenza viene valutata

$$CSR = \frac{\tau_{\text{media}}}{\sigma'_{v0}} = 0.65 \cdot \frac{a_{\text{maxs}}}{g} \cdot \frac{\sigma_{v0}}{\sigma'_{v0}} \cdot r_{d}$$

è il rapporto di tensione ciclica, ovvero la tensione di taglio ciclica media indotta dall'azione sismica di riferimento, normalizzata rispetto alla tensione verticale efficace iniziale σ'νο, ove a_{maxs} è il picco di accelerazione al piano campagna, g è l'accelerazione di gravità, σ_{v0} e σ'_{v0} sono le tensioni verticali rispettivamente totale e efficace alla profondità considerata, ed rd è un coefficiente riduttivo dell'azione sismica per effetto della deformabilità del terreno. Il valore della tensione tangenziale media $\sigma_{\text{media}} = 0.65 t_{\text{max}}$ al variare della profondità può essere più precisamente determinato con analisi di risposta sismica locale.

RELAZIONE GEOTECNICA

9.1.1. METODO BASATO SUI RISULTATI DI PROVE SPT (BOULANGER E IDRISS, 2014)

$$\begin{split} &(N_1)_{60} = C_N \cdot C_E \cdot C_B \cdot C_R \cdot C_S \cdot N_{SPT} \le 46 \\ &C_N = \left(\frac{P_a}{\sigma_{v0}'}\right)^m \le 1.7 \\ &m = 0.784 - 0.0768 \cdot \sqrt{(N_1)_{60cs}} \quad con (N_1)_{60cs} \le 46 \\ &(N_1)_{60cs} = (N_1)_{60} + \Delta(N_1)_{60} \\ &\Delta(N_1)_{60} = exp \left[1.63 + \frac{9.7}{FC + 0.01} - \left(\frac{15.7}{FC + 0.01}\right)^2\right] \end{split}$$

(N1)60cs e m sono determinati per via iterativa; per prove eseguite secondo le raccomandazioni AGI (1977): CE = CB = CR = CS = 1; pa è la pressione atmosferica.

FC è il contenuto di fine espresso in %, determinato con analisi granulometrica sul materiale prelevato.

$$\begin{split} & CRR_{M\text{--}7.5;\sigma'_{\text{v}}\text{--latm}} = exp \left\{ \frac{\left(N_{1}\right)_{60cs}}{14.1} + \left[\frac{\left(N_{1}\right)_{60cs}}{126}\right]^{2} - \left[\frac{\left(N_{1}\right)_{60cs}}{23.6}\right]^{3} + \left[\frac{\left(N_{1}\right)_{60cs}}{25.4}\right]^{4} - 2.8 \right\} \\ & MSF = 1 + \left(MSF_{max} - 1\right) \cdot \left[8.64 \, exp \left(\frac{-M}{4}\right) - 1.325\right] \\ & MSF_{max} = 1.09 + \left(\frac{\left(N_{1}\right)_{60cs}}{31.5}\right)^{2} \leq 2.2 \\ & K_{s} = 1 - C_{\sigma} \cdot ln \left(\frac{\sigma'_{v}}{P_{a}}\right) \leq 1.1 \\ & C_{\sigma} = \frac{1}{18.9 - 2.55 \sqrt{\left(N_{1}\right)_{60cs}}} \leq 0.3 \\ & CSR_{M;\sigma'_{v}} = 0.65 \cdot \frac{a_{max.s}}{g} \cdot \frac{\sigma_{v0}}{\sigma_{v0}} \cdot r_{d} \\ & r_{d} = exp \left[\alpha(z) + \beta(z) \cdot M\right] \\ & \alpha(z) = -1.012 - 1.126 \cdot sen \left(\frac{z}{11.73} + 5.133\right) \\ & \beta(z) = 0.106 + 0.118 \cdot sen \left(\frac{z}{11.28} + 5.142\right) \\ & F_{L} = \frac{CRR_{M\text{--}75;\sigma'v\text{--latm}}}{CSR_{M\text{-}res}} \cdot MSF \cdot K_{\sigma} \end{split}$$

RELAZIONE GEOTECNICA

La magnitudo di riferimento è pari a $M_w = 6.5$.

Di seguito si riportano i risultati ottenuti per la verifiche a liquefazione effettuate facendo riverimento ai valori di Nspt ottenuti in corrispondenza dei sondaggi S₇1, S₇16, S₇23 della campagna del 2004 e S4Pz e S15Pz della campagna 2021.

Campagna	Sondaggio	z(m)	zw (m da p.c.	NSPT	Unità geotenica	Er(%)	$\lambda = CR*CB*CS$	σ' _{vo} (kPa)	σ _v (kPa)	(N ₁) ₆₀
2004	S ₇ 1	2,4	0	15	ALL-Gh	65	1	26,6	50,6	26
2004	S ₇ 16	2,1	6	16	ALL-Gh	65	1	42	42	21
2004	S ₇ 16	6	6	20	ALL-Gh	65	1	120	120	20
2004	S ₇ 23	3,5	9	18	ALL-Gh	65	1	66,5	66,5	22
2021	S04Pz	3,22	7	17	ALL-Gh	65	1	64,5	64,5	21
2021	S04Pz	3.67	7	21	ALL-Gh	65	1	64.5	64.5	25

Campagna	Sondaggio	z(m)	FC(%)	$(N_1)_{60}$	$\Delta(N_1)_{60}$	(N ₁) _{60CS}	CRR	a _{max} /g	r_{d}	CSR	FSL
2004	S ₇ 1	2,4	45,16	25,92	5,60	31,53	0,84	0,265	0,98	0,32	2,91
2004	S ₇ 16	2,1	0	24,59	0	24,59	0,28	0,265	0,98	0,17	2,31
2004	S ₇ 16	6	0	19,99	0	19,99	0,24	0,265	0,81	0,16	1,51
2004	S ₇ 23	3,5	0	23,09	0	23,09	0,31	0,265	0,96	0,16	2,00
2021	S04Pz	3,22	52	21,77	5,61	27,39	0,47	0,265	0,96	0.16	3,08
2021	S04Pz	3,67	52	25,38	5,61	31,00	0,77	0,265	0,96	0,16	5,026

Per le prove SPT in corrispondenza del sondaggio S4PZ (z>6m) e S15Pz non è stata effettuata la verifica a liquefazione poiché $(N_1)_{60} > 30$.

Le verifiche a liquefazione risultano soddisfatte.

RELAZIONE GEOTECNICA

9.1.2. METODO BASATO SUI RISULTATI DI PROVE CPT (BOULANGER E IDRISS, 2014)

$$\begin{aligned} \mathbf{q}_{c1N} &= \mathbf{C}_{N} \cdot \frac{\mathbf{q}_{c}}{\mathbf{p}_{a}} \\ \mathbf{C}_{N} &= \left(\frac{\mathbf{p}_{a}}{\sigma_{v0}'}\right)^{m} \leq 1.7 \\ \mathbf{m} &= 1.338 - 0.249 \cdot (\mathbf{q}_{c1Ncs})^{0.264} \quad \text{con } 21 \leq \mathbf{q}_{c1Ncs} \leq 254 \\ \mathbf{q}_{c1Ncs} &= \mathbf{q}_{c1N} + \Delta \mathbf{q}_{c1N} \\ \Delta \mathbf{q}_{c1N} &= \left(11.9 + \frac{\mathbf{q}_{c1N}}{14.6}\right) \cdot \exp\left[1.63 - \frac{9.7}{FC + 2} - \left(\frac{15.7}{FC + 2}\right)^{2}\right] \end{aligned}$$

q_{c1Ncs} e m sono determinati per via iterativa, pa è la pressione atmosferica. FC è il contenuto di fine espresso in %, determinato con analisi granulometrica sul materiale;

$$\begin{split} & CRR = exp \Bigg[\frac{q_{c1Ncs}}{113} + \bigg(\frac{q_{c1Ncs}}{1000} \bigg)^2 - \bigg(\frac{q_{c1Ncs}}{140} \bigg)^3 + \bigg(\frac{q_{c1Ncs}}{137} \bigg)^4 - 2.80 \bigg] \\ & MSF = 1 + (MSF_{max} - 1) \bigg[8.64 \, exp \bigg(\frac{-M}{4} \bigg) - 1.325 \bigg] \\ & MSF_{max} = 1.09 + \bigg(\frac{q_{c1Ncs}}{180} \bigg)^3 \leq 2.2 \\ & K_{\sigma} = 1 - C_{\sigma} \cdot ln \bigg(\frac{\sigma'_{v}}{P_{a}} \bigg) \leq 1.1 \\ & C_{\sigma} = \frac{1}{37.3 - 8.27 (q_{c1Ncs})^{0.264}} \leq 0.3 \\ & CSR_{M;\sigma'v} = 0.65 \cdot \frac{a_{max\,s}}{g} \cdot \frac{\sigma_{v0}}{\sigma'_{v0}} \cdot r_{d} \\ & r_{d} = exp \bigg[\alpha(z) + \beta(z) \cdot M \bigg] \\ & \alpha(z) = -1.012 - 1.126 \cdot sen \bigg(\frac{z}{11.73} + 5.133 \bigg) \\ & \beta(z) = 0.106 + 0.118 \cdot sen \bigg(\frac{z}{11.28} + 5.142 \bigg) \\ & F_{L} = \frac{CRR_{M=7.5;\sigma'v=1atm}}{CSR_{M;\sigma'v}} \cdot MSF \cdot K_{\sigma} \end{split}$$

La magnitudo di riferimento è pari a $M_w = 6.5$.

RELAZIONE GEOTECNICA

Di seguito si riporta la verifica a liquefazione effettuata facendo riverimento ai risultati della prova CPT 7-1 (Tabella 9-1).

Tabella 9-1 Valori di q_{c1N} ottenuti dalla prova CPT 7-1

z	LP	ш	Rp	RL	F=Rp/RL	qc	Natura litologica	σν	σ'ν	qc1N	Valore medio qc1N
m	kg/cm2	kg/cm2	kg/cm2	kg/cm2	-	kPa	F	kPa	kPa	-	-
3,2	74	101	74	2,07	35,7	7259	Limi Sabbiosi e Sabbie Limose(Granulare)	60,8	28,8	135	
3,4	74	105	74	0,73	101,4	7259	Sabbie e Sabbie con Ghiaia (Granulare)	64,6	30,6	131	
3,6	111	122	111	0,53	209,4	10889	Sabbie e Sabbie con Ghiaia (Granulare)	68,4	32,4	191	
3,8	103	111	103	2,47	41,7	10104	Limi Sabbiosi e Sabbie Limose(Granulare)	72,2	34,2	173	142
4	87	124	87	3,07	28,3	8535	Limi e Argille(Coesive)	76	36	142	142
4,2	93	139	93	2,07	44,9	9123	Limi Sabbiosi e Sabbie Limose(Granulare)	79,8	37,8	148	
4,4	68	99	68	3,6	18,9	6671	Limi e Argille(Coesive)	83,6	39,6	106	
4,6	72	126	72	5,27	13,7	7063	Torbe(Coesive)	87,4	41,4	110	
4,8	193	272	193	2,47	78,1	18933	Sabbie e Sabbie con Ghiaia (Granulare)	91,2	43,2	288	
5	178	215	178	3,73	47,7	17462	Limi Sabbiosi e Sabbie Limose(Granulare)	95	45	260	
5,2	156	212	15	4	3,8	15304	Torbe(Coesive)	98,8	46,8	224	294
5,4	249	309	249	4,8	51,9	24427	Limi Sabbiosi e Sabbie Limose(Granulare)	102,6	48,6	350	
5,6	251	323	251			24623	Torbe(Coesive)	106,4	50,4	347	

Dai valori medi di q_{c1N} ottenuti è possibile suddividere lo strato in due sottostrati, il primo caratterizzato da q_{c1N} pari a 142 e il secondo da un q_{c1N} pari a 294. La verifica a liquefazione viene effettuata solo nel primo strato (q_{c1N} < 180).

Campagna	CPT	z(m)	zw (m da p.c.	q₀ kPa	Unità geotenica	σ' _{vo} (kPa)	σ _v (kPa)	q _{c1n} kPa
2004	7-1	4	0	8363	ALL-Gh	36	76	142

Campagna	CPT	z(m)	FC(%)	q _{c1N}	Δq_{c1N}	q _{c1Ncs}	CRR	a _{max} /g	r_{d}	CSR	FSL
2004	7-1	4	20	123,49	40,17	163	0,60	0,265	0,95	0,346	1,91

Le verifiche a liquefazione risultano soddisfatte.

RELAZIONE GEOTECNICA

10. ALLEGATI

10.1. RISULTATI ED ELABORAZIONE DELLE PROVE PENETROMETRICHE STATICE (CPT)

CPT 7-1

Tabella 10-1 Risultati ed elaborazione della prova penetrometrica statica CPT 7-1.

					CPT 7-1			
z	Rp	RL	F=Rp/RL	qc	Natura litologica	σν	σ'v	Cu (Nk=20)
m	kg/cm2	kg/cm2	•	kPa	F	kPa	kPa	kPa
0,2	13	0,67	19,4	1275	Limi e Argille(Coesive)	3,6	1,6	64
0,4	10	0,93	10,8	981	Torbe(Coesive)	7,2	3,2	49
0,6	48	1,33	36,1	4709	Limi Sabbiosi e Sabbie Limose(Granulare)	10,8	4,8	235
0,8	52	2,93	17,7	5101	Limi e Argille(Coesive)	14,4	6,4	254
1	36	3,53	10,2	3532	Torbe(Coesive)	18	8	176
1,2	22	2,73	8,1	2158	Torbe(Coesive)	21,6	9,6	107
1,4	18	2,13	8,5	1766	Torbe(Coesive)	25,2	11,2	87
1,6	14	1,8	7,8	1373	Torbe(Coesive)	28,8	12,8	67
1,8	12	1,47	8,2	1177	Torbe(Coesive)	32,4	14,4	57
2	14	1,47	9,5	1373	Torbe(Coesive)	36	16	67
2,2	22	1,87	11,8	2158	Torbe(Coesive)	39,6	17,6	106
2,4	20	1,33	15,0	1962	Limi e Argille(Coesive)	43,2	19,2	96
2,6	20	1,2	16,7	1962	Limi e Argille(Coesive)	46,8	20,8	96
2,8	26	1,73	15,0	2551	Limi e Argille(Coesive)	50,4	22,4	125
3	35	1,8	19,4	3434	Limi e Argille(Coesive)	54	24	169
3,2	74	2,07	35,7	7259	Limi Sabbiosi e Sabbie Limose(Granulare)	60,8	28,8	-
3,4	74	0,73	101,4	7259	Sabbie e Sabbie con Ghiaia (Granulare)	64,6	30,6	-
3,6	111	0,53	209,4	10889	Sabbie e Sabbie con Ghiaia (Granulare)	68,4	32,4	-
3,8	103	2,47	41,7	10104	Limi Sabbiosi e Sabbie Limose(Granulare)	72,2	34,2	-
4	87	3,07	28,3	8535	Limi e Argille(Coesive)	76	36	-
4,2	93	2,07	44,9	9123	Limi Sabbiosi e Sabbie Limose(Granulare)	79,8	37,8	-
4,4	68	3,6	18,9	6671	Limi e Argille(Coesive)	83,6	39,6	-
4,6	72	5,27	13,7	7063	Torbe(Coesive)	87,4	41,4	-
4,8	193	2,47	78,1	18933	Sabbie e Sabbie con Ghiaia (Granulare)	91,2	43,2	-
5	178	3,73	47,7	17462	Limi Sabbiosi e Sabbie Limose(Granulare)	95	45	-
5,2	15	4	3,8	15304	Torbe(Coesive)	98,8	46,8	-
5,4	249	4,8	51,9	24427	Limi Sabbiosi e Sabbie Limose(Granulare)	102,6	48,6	-
5,6	251			24623	Torbe(Coesive)	106,4	50,4	-

RELAZIONE GEOTECNICA

CPT 7-2

Tabella 10-2 Risultati ed elaborazione della prova penetrometrica statica CPT 7-2

					CPT 7-2			
z	Rp	RL	F=Rp/RL	qc	Natura lit.	σν	σ'ν	Cu (Nk=20)
m	kg/cm2	kg/cm2	-	kPa	F	kPa	kPa	kPa
0.2	31	1.8	17	3041	Limi e Argille(Coesive)	3.8	1.8	152
0.4	79	2.93	27	7750	Limi e Argille(Coesive)	7.6	3.6	387
0.6	64	4.73	14	6278	Torbe(Coesive)	11.4	5.4	313
0.8	34	2.4	14	3335	Torbe(Coesive)	15.2	7.2	166
1	27	1.47	18	2649	Limi e Argille(Coesive)	19	9	131
1.2	26	1.4	19	2551	Limi e Argille(Coesive)	22.8	10.8	126
1.4	28	1.47	19	2747	Limi e Argille(Coesive)	26.6	12.6	136
1.6	28	1.47	19	2747	Limi e Argille(Coesive)	30.4	14.4	136
1.8	26	1.67	16	2551	Limi e Argille(Coesive)	34.2	16.2	126
2	25	1.6	16	2453	Limi e Argille(Coesive)	38	18	121
2.2	24	1.47	16	2354	Limi e Argille(Coesive)	41.8	19.8	116
2.4	26	1.27	20	2551	Limi e Argille(Coesive)	45.6	21.6	125
2.6	28	1.27	22	2747	Limi e Argille(Coesive)	49.4	23.4	135
2.8	29	1.33	22	2845	Limi e Argille(Coesive)	53.2	25.2	140
3	28	1.2	23	2747	Limi e Argille(Coesive)	57	27	134
3.2	28	1.27	22	2747	Limi e Argille(Coesive)	60.8	28.8	134
3.4	22	0.53	42	2158	Limi Sabbiosi e Sabbie Limose(Granulare)	64.6	30.6	105
3.6	24	1.13	21	2354	Limi e Argille(Coesive)	68.4	32.4	114
3.8	22	1.4	16	2158	Limi e Argille(Coesive)	72.2	34.2	104
4	21	1.4	15	2060	Torbe(Coesive)	76	36	99
4.2	39	1.47	27	3826	Limi e Argille(Coesive)	79.8	37.8	187
4.4	90	1.8	50	8829	Limi Sabbiosi e Sabbie Limose(Granulare)	83.6	39.6	-
4.6	95	1.47	65	9320	Sabbie e Sabbie con Ghiaia (Granulare)	87.4	41.4	-
4.8	118	2.47	48	11576	Limi Sabbiosi e Sabbie Limose(Granulare)	91.2	43.2	-
5	59	1.93	31	5788	Limi Sabbiosi e Sabbie Limose(Granulare)	95	45	-
5.2	62	1.53	41	6082	Limi Sabbiosi e Sabbie Limose(Granulare)	98.8	46.8	-
5.4	99	2.2	45	9712	Limi Sabbiosi e Sabbie Limose(Granulare)	102.6	48.6	-
5.6	79	2.87	28	7750	Limi e Argille(Coesive)	106.4	50.4	-
5.8	60	1.33	45	5886	Limi Sabbiosi e Sabbie Limose(Granulare)	110.2	52.2	-
6	120	1.47	82	11772	Sabbie e Sabbie con Ghiaia (Granulare)	114	54	-
6.2	56	2.47	23	5494	Limi e Argille(Coesive)	117.8	55.8	-
6.4	14	1.07	13	1373	Torbe(Coesive)	121.6	57.6	1
6.6	15	0.47	32	1472	Limi Sabbiosi e Sabbie Limose(Granulare)	125.4	59.4	-
6.8	16	0.47	34	1570	Limi Sabbiosi e Sabbie Limose(Granulare)	129.2	61.2	-
7	13	0.47	28	1275	Limi e Argille(Coesive)	133	63	-
7.2	17	0.87	20	1668	Limi e Argille(Coesive)	136.8	64.8	-
7.4	37	3.8	10	3630	Torbe(Coesive)	140.6	66.6	-
7.6	71	1.33	53	6965	Limi Sabbiosi e Sabbie Limose(Granulare)	144.4	68.4	-
7.8	104	2.33	45	10202	Limi Sabbiosi e Sabbie Limose(Granulare)	148.2	70.2	-
8	57	1.07	53	5592	Limi Sabbiosi e Sabbie Limose(Granulare)	152	72	-
8.2	15	3.4	4	1472	Torbe(Coesive)	155.8	73.8	-
8.4	72	3.67	20	7063	Limi e Argille(Coesive)	159.6	75.6	-
8.6	89	2.27	39	8731	Limi Sabbiosi e Sabbie Limose(Granulare)	163.4	77.4	-
8.8	111	3.4	33	10889	Limi Sabbiosi e Sabbie Limose(Granulare)	167.2	79.2	-
9	250	2.2	114	24525	Sabbie e Sabbie con Ghiaia (Granulare)	171	81	-
9.2	273	2.07	132	26781	Sabbie e Sabbie con Ghiaia (Granulare)	174.8	82.8	-
9.4	281	2.67	105	27566	Sabbie e Sabbie con Ghiaia (Granulare)	178.6	84.6	-
9.6	285	5.53	52	27959	Limi Sabbiosi e Sabbie Limose(Granulare)	182.4	86.4	-
9.8	301	5.07	59	29528	Limi Sabbiosi e Sabbie Limose(Granulare)	186.2	88.2	-
10	317	7.6	42	31098	Limi Sabbiosi e Sabbie Limose(Granulare)	190	90	-
10.2	381			37376		193.8	91.8	-

RELAZIONE GEOTECNICA

CPT 7-6

Tabella 10-3 Risultati ed elaborazione della prova penetrometrica statica CPT 7-6

					CPT 7-6			
Z	Rp	RL	F=Rp/RL	qc	Natura lit.	σν	σ'v	Cu (Nk=20)
m	kg/cm2	kg/cm2	-	kPa	F	kPa	kPa	kPa
0.2								
0.4	15	0.87	17.2	1472	Limi e Argille(Coesive)	7.6	3.6	73
0.6	26	0.6	43.3	2551	Limi Sabbiosi e Sabbie Limose(Granulare)	11.4	5.4	127
0.8	37	0.73	50.7	3630	Limi Sabbiosi e Sabbie Limose(Granulare)	15.2	7.2	181
1	41	1.87	21.9	4022	Limi e Argille(Coesive)	19	9	200
1.2	21	1.33	15.8	2060	Limi e Argille(Coesive)	22.8	10.8	102
1.4	18	1.4	12.9	1766	Torbe(Coesive)	26.6	12.6	87
1.6	16	1.47	10.9	1570	Torbe(Coesive)	30.4	14.4	77
1.8	22	1.2	18.3	2158	Limi e Argille(Coesive)	34.2	16.2	106
2	25	1.27	19.7	2453	Limi e Argille(Coesive)	38	18	121
2.2	28	1.33	21.1	2747	Limi e Argille(Coesive)	41.8	19.8	135
2.4	24	1.4	17.1	2354	Limi e Argille(Coesive)	45.6	21.6	115
2.6	29	1.73	16.8	2845	Limi e Argille(Coesive)	49.4	23.4	140
2.8	33	1.27	26.0	3237	Limi e Argille(Coesive)	53.2	25.2	159
3	30	1.2	25.0	2943	Limi e Argille(Coesive)	57	27	144
3.2	32	0.93	34.4	3139	Limi Sabbiosi e Sabbie Limose(Granulare)	60.8	28.8	154
3.4	28	1.07	26.2	2747	Limi e Argille(Coesive)	64.6	30.6	134
3.6	24	1.6	15.0	2354	Torbe(Coesive)	68.4	32.4	114
3.8	34	1.13	30.1	3335	Limi Sabbiosi e Sabbie Limose(Granulare)	72.2	34.2	163
4	45	1.13	39.8	4415	Limi Sabbiosi e Sabbie Limose(Granulare)	76	36	217
4.2	42	1.67	25.1	4120	Limi e Argille(Coesive)	79.8	37.8	202
4.4	36	1.4	25.7	3532	Limi e Argille(Coesive)	83.6	39.6	-
4.6	48	0.93	51.6	4709	Limi Sabbiosi e Sabbie Limose(Granulare)	87.4	41.4	-
4.8	50	1.2	41.7	4905	Limi Sabbiosi e Sabbie Limose(Granulare)	91.2	43.2	-
5	54	1.33	40.6	5297	Limi Sabbiosi e Sabbie Limose(Granulare)	95	45	-
5.2	68	0.87	78.2	6671	Sabbie e Sabbie con Ghiaia (Granulare)	98.8	46.8	-
5.4	79	1.07	73.8	7750	Sabbie e Sabbie con Ghiaia (Granulare)	102.6	48.6	-
5.6	124	0.73	169.9	12164	Sabbie e Sabbie con Ghiaia (Granulare)	106.4	50.4	-
5.8	348	0.8	435.0	34139	Sabbie e Sabbie con Ghiaia (Granulare)	110.2	52.2	-

RELAZIONE GEOTECNICA

CPT 7-7

Tabella 10-4 Risultati ed elaborazione della prova penetrometrica statica CPT 7-7

					CPT 7-7			
z	Rp	RL	F=Rp/RL	qc	Natura lit.	σν	σ'v	Cu (Nk=20)
m	kg/cm2	kg/cm2	-	kPa	F	kPa	kPa	kPa
0.2								
0.4	12	1.07	11	1177	Torbe(Coesive)	8	4	58.46
0.6	14	1.4	10	1373	Torbe(Coesive)	12	6	68.07
0.8	18	1.33	14	1766	Torbe(Coesive)	16	8	87.49
1	22	1.53	14	2158	Torbe(Coesive)	20	10	106.91
1.2	15	1.33	11	1472	Torbe(Coesive)	24	12	72.375
1.4	19	1.47	13	1864	Torbe(Coesive)	28	14	91.795
1.6	24	1.53	16	2354	Limi e Argille(Coesive)	32	16	116.12
1.8	26	1.4	19	2551	Limi e Argille(Coesive)	36	18	125.73
2	28	1.53	18	2747	Limi e Argille(Coesive)	40	20	135.34
2.2	25	1.93	13	2453	Torbe(Coesive)	44	22	120.425
2.4	30	2.07	14	2943	Torbe(Coesive)	48	24	144.75
2.6	33	2.2	15	3237	Torbe(Coesive)	52	26	159.265
2.8	24	2	12	2354	Torbe(Coesive)	56	28	114.92
3	22	1.93	11	2158	Torbe(Coesive)	60	30	104.91
3.2	28	2.07	14	2747	Torbe(Coesive)	64	32	134.14
3.4	31	1.8	17	3041	Limi e Argille(Coesive)	68	34	148.655
3.6	33	1.47	22	3237	Limi e Argille(Coesive)	72	36	158.265
3.8	29	1.53	19	2845	Limi e Argille(Coesive)	76	38	138.445
4	25	1.07	23	2453	Limi e Argille(Coesive)	80	40	118.625
4.2	24	0.93	26	2354	Limi e Argille(Coesive)	84	42	113.52
4.4	28	0.67	42	2747	Limi Sabbiosi e Sabbie Limose(Granulare)	88	44	132.94
4.6	32	1	32	3139	Limi Sabbiosi e Sabbie Limose(Granulare)	92	46	152.36
4.8	27	1.13	24	2649	Limi e Argille(Coesive)	96	48	127.635
5	23	1.2	19	2256	Limi e Argille(Coesive)	100	50	107.815
5.2	26	0.8	33	2551	Limi Sabbiosi e Sabbie Limose(Granulare)	104	52	122.33
5.4	28	0.73	38	2747	Limi Sabbiosi e Sabbie Limose(Granulare)	108	54	131.94
5.6	30	0.8	38	2943	Limi Sabbiosi e Sabbie Limose(Granulare)	112	56	141.55
5.8	26	0.93	28	2551	Limi e Argille(Coesive)	116	58	121.73
6	25	0.87	29	2453	Limi e Argille(Coesive)	120	60	116.625
6.2	24	0.8	30	2354	Limi e Argille(Coesive)	124	62	111.52
6.4	28	0.93	30	2747	Limi Sabbiosi e Sabbie Limose(Granulare)	128	64	130.94
6.6	28	1.07	26	2747	Limi e Argille(Coesive)	132	66	130.74
6.8	32	1.13	28	3139	Limi e Argille(Coesive)	136	68	150.16
7	33	1.27	26	3237	Limi e Argille(Coesive)	140	70	154.865
7.2	34	1.4	24	3335	Limi e Argille(Coesive)	144	72	159.57
7.4	36	1	36	3532	Limi Sabbiosi e Sabbie Limose(Granulare)	148	74	-
7.6	41	1.13	36	4022	Limi Sabbiosi e Sabbie Limose(Granulare)	152	76	-
7.8	38	0.8	48	3728	Limi Sabbiosi e Sabbie Limose(Granulare)	156	78	-
8	38	1.2	32	3728	Limi Sabbiosi e Sabbie Limose(Granulare)	160	80	-
8.2	48	1.33	36	4709	Limi Sabbiosi e Sabbie Limose(Granulare)	164	82	-
8.4	56	1.27	44	5494	Limi Sabbiosi e Sabbie Limose(Granulare)	168	84	-
8.6	79	0.6	132	7750	Sabbie e Sabbie con Ghiaia (Granulare)	172	86	-
8.8	124	0.73	170	12164	Sabbie e Sabbie con Ghiaia (Granulare)	176	88	-
9	87	0.73	119	8535	Sabbie e Sabbie con Ghiaia (Granulare)	180	90	-
9.2	112	0.6	187	10987	Sabbie e Sabbie con Ghiaia (Granulare)	184	92	-
9.4	298	0.87	343	29234	Sabbie e Sabbie con Ghiaia (Granulare)	188	94	-
9.6	350	0.67	522	34335	Sabbie e Sabbie con Ghiaia (Granulare)	192	96	-

RELAZIONE GEOTECNICA

CPT 7-9

Tabella 10-5 Risultati ed elaborazione della prova penetrometrica statica CPT 7-9

					CPT 7-9			
Z	Rp	RL	F=Rp/RL	qc	Natura lit.	σν	σ'ν	Cu (Nk=20)
m	kg/cm2	kg/cm2	-	kPa	F	kPa	kPa	kPa
0.2	18	0.67	27	1765.8				
0.4	15	0.93	16	1471.5	Limi e Argille(Coesive)	7.6	3.6	88.11
0.6	19	0.87	22	1863.9	Limi e Argille(Coesive)	11.4	5.4	73.305
0.8	20	1.27	16	1962	Limi e Argille(Coesive)	15.2	7.2	92.835
1	26	1.47	18	2550.6	Limi e Argille(Coesive)	19	9	97.65
1.2	22	1.53	14	2158.2	Limi e Argille(Coesive)	22.8	10.8	126.99
1.4	25	1.6	16	2452.5	Torbe(Coesive)	26.6	12.6	107.28
1.6	29	1.73	17	2844.9	Limi e Argille(Coesive)	30.4	14.4	121.905
1.8	32	1.47	22	3139.2	Limi e Argille(Coesive)	34.2	16.2	141.435
2	32	1.6	20	3139.2	Limi e Argille(Coesive)	38	18	156.06
2.2	24	1.87	13	2354.4	Limi e Argille(Coesive)	41.8	19.8	155.97
2.4	22	1.73	13	2158.2	Torbe(Coesive)	45.6	21.6	116.64
2.6	24	1.33	18	2354.4	Torbe(Coesive)	49.4	23.4	106.74
2.8	29	2	15	2844.9	Limi e Argille(Coesive)	53.2	25.2	116.46
3	32	1.87	17	3139.2	Torbe(Coesive)	57	27	140.895
3.2	38	1.33	29	3727.8	Limi e Argille(Coesive)	60.8	28.8	155.52
3.4	33	1.53	22	3237.3	Limi e Argille(Coesive)	64.6	30.6	184.86
3.6	28	1.33	21	2746.8	Limi e Argille(Coesive)	68.4	32.4	160.245
3.8	24	1.2	20	2354.4	Limi e Argille(Coesive)	72.2	34.2	135.63
4	26	1.07	24	2550.6	Limi e Argille(Coesive)	76	36	115.92
4.2	22	1.07	21	2158.2	Limi e Argille(Coesive)	79.8	37.8	125.64
4.4	18	1	18	1765.8	Limi e Argille(Coesive)	83.6	39.6	105.93
4.6	21	0.93	23	2060.1	Limi e Argille(Coesive)	87.4	41.4	86.22
4.8	29	0.8	36	2844.9	Limi e Argille(Coesive)	91.2	43.2	100.845
5	33	0.73	45	3237.3	Limi Sabbiosi e Sabbie Limose(Granulare)	95	45	-
5.2	34	0.93	37	3335.4	Limi Sabbiosi e Sabbie Limose(Granulare)	98.8	46.8	-
5.4	44	1	44	4316.4	Limi Sabbiosi e Sabbie Limose(Granulare)	102.6	48.6	-
5.6	89	1.53	58	8730.9	Limi Sabbiosi e Sabbie Limose(Granulare)	106.4	50.4	-
5.8	112	1.33	84	10987.2	Limi Sabbiosi e Sabbie Limose(Granulare)	110.2	52.2	-
6	124	1.53	81	12164.4	Sabbie e Sabbie con Ghiaia (Granulare)	114	54	-
6.2	136	1.2	113	13341.6	Sabbie e Sabbie con Ghiaia (Granulare)	117.8	55.8	-
6.4	185	0.87	213	18148.5	Sabbie e Sabbie con Ghiaia (Granulare)	121.6	57.6	-
6.6	132	1	132	12949.2	Sabbie e Sabbie con Ghiaia (Granulare)	125.4	59.4	-
6.8	225	0.67	336	22072.5	Sabbie e Sabbie con Ghiaia (Granulare)	129.2	61.2	-
7	365	1.53	239	35806.5	Sabbie e Sabbie con Ghiaia (Granulare)	133	63	-
7.2					Sabbie e Sabbie con Ghiaia (Granulare)	136.8	64.8	-

RELAZIONE GEOTECNICA

10.2. **RISULTATI PROVE DI LABORATORIO - SONDAGGI**

_					JONATO																												PROV	A TD	Pocket	Penetromer Vane Test	1				_
		8	and and a	or of or or				Classificazi		Grade di Bassa di	Peso Indice	- dal	Peso 1	Neo d													rova di compress	sione					Prova di taglio	Prova di taglio I	Prova di					Prova di Prova	na di
	g g	Carrie	8 8 e	Quotadi prefe (dam am)	Descrizione speditiva	Tipo	Classificazione AGI	one CNR UNI 10006 geolec	enica in acqua	Grado di saturazion e Peso di volume	Peso Indio volume vuo saturo e	e del Porosità	specifico v parte solida	Peso di volume Lim secco	ti di Atterberg	Ind	e e			ndos di gruppo		'	Composizion	e grandometrica	Composi granulon	metrica	monossalale ELL	1	Prova triassiale su roco	n TX	Prov	a triassiale TXC	Prova di taglio U diretto TD	diretto Cos residuo A Tdres M	Prova d stipamento AASHTO Rodficato	Cu Cu	Velocità ultrasonica	ca Carbonati sen	ripressione monoassiale t riplice su roccia is (B)	Prova di trazione indiretta frasiliana) Prova pLT compres e monos su roc	zesiale occis
H	+	++		+			500		Wn	s 1.	3		,	3. W	Wp Ws	b E	E A	A		c	D	IG Ghi	in Sattrin L	ino Argita Limo	10 (2) 40 (0.4	200 (0.075)		C, 01-02 EV	a B B	* -		< \$ cu	ccu 6 c	* < *	d W(opt)		Vu		4 V E., E.,	kPa la(50) e.	_
									*	% MH-	Mary.	*		mm, s	*	s s	s s					5	*	s s	s s		Pa MPa MPa		% MPa MPa	· kPa	-	10a ·	ισ ₃ · _{1σ₃}		m' % KPs	10°a 10°a	m/s	% MPa %		iPa MPa MPa	_
2	004 S ₇	\$71-1	1 2 24	4 22 c	Clasti eterometrici subarrotondati da milimetrici a entimetrici a libbigia arenacea e calcarea in matrice limo-sabbicas debolmente antilicas	Terreno	Ghisis con Limo e Anglita Sabbiosa	(S) ALL-	Gh						Ш		Ш					37.	E 173		G2.4 55.2	45.2	\top	Ш				\sqcap							$\Pi\Pi$		T
2 2	21 S15- 21 S15- 21 S15-	PZ CR1 PZ CR2	R 4 4.40 R 8.5 8.80	5 4.25 5 8.675	Chiais con sabbia, limosa marrone chiaro Chiais sabbioso limosa di colore marrone chiaro Chiais con sabbia, limosa di colore marrone chiaro	Terreno Terreno	Chiais con sabbia, limosa G.S Chiais sabbioso limosa G.S Chiais con sabbia limosa G.S	(L) ALL- (L) ALL- (L) ALL-	Gh Gh		=		25.4 25.7 26.7	21.0 23.0 22.0	13.0 13.0 14.0	8.0 10	1.1 1.2					46. 51.	0 320 1 0 210 2	15.0 7.0 22.00 20.0 8.0 28.00 13.0 7.0 20.00	0 25.3 29.4 0 48.6 38.4 0 47.4 12.8	22.2 28.9 21.7						\blacksquare		#							⇉
2	321 546	Z Cfrim	R 3 340	5 3.225	Arigila limosa e limo argilloso di colore marrone contenente numerosi elementi litoidi anche di dimensioni ni oficentimatriche	Terreno	Ghiala con limo e anglila deb. sabblicao	ALC:	-Gh 25					45.0	30.0	15.0						39.	0 100 2	27.0 24.0 51.00	0 61.0 56.2	52.0												1 111			
2	321 S46 304 S ₁ 3		R 6 6.4	5 6.225	Chisia sabbiosa e limosa, di colore marrone chiaro no deb. argito-sabbioso di colore marroncino chiaro presenza di calcineli millimetrici.	Terreno	Ghiala con Sabbia deb. Limosa G.5 Limo Sabbioso deb. Angilloso L(S	[A] A7-6 ALL-	-LA 15.052	19.73			26.25	15.72 40.2	20.0 18.6	5.0 21.7 1.0	0.0 1.5		400	0.2	11.7	13 0.3	0 23.0 1	14.0 10.0 24.00 58.1 14.6 82.63	0 45.800 33.4 0 99.7 94.8	24.4 82.6						\pm			600						=
		571-2	1 13 14	5 9.4	Limo sabbioso deb. anglioso privo di consistenza di colore nocciola. Presenza di calcinelli milimetrici. Limo anglioso-sabbioso duro di colore varieggio marrore chiaro-grigio allerato e casidato. Sono researe il balletti milimetrici sabbivai.	Terreno	Limo Anglitoso deb. Sabbiceo L(A Limo Anglitoso L((S) A6 ALL- 4) A7-6 ALL-		19.67				15.23 32.7 18.00 40.8		19.0 1.4		40.0	400	0.0	9.0	12 1.1	11.7	96.3 20.0 86.24 79.1 17.0 96.10	9 98.2 97.5	95.1 48	7.5 38.7 58.2	HH		H	23.97	17 17.65	э.	+	20 >600			1 111	+++		\dashv
2	204 S ₂		1 3.00 3.40	0 3.2	Limo ardifoso debolmente sabbioso duro di colore	Terreno	Limo deb. Anglicaco LJ	N A7-6 Cd						15.4 45.4	22.3 n.d	24.14 1.05	-0.05 2.5		400	5.4	14.1	15 0.2	3 405 0	5.97 9.74 95.79	99.77 99.03	95.71						\perp	25.17 29	10 1 10.0	85 721 >600	300 250			廿廿		コ
		90	1 4.00 4.5		marrone chiaro con presenza di calcinelli. Limo argitoso duro di colore grigio verdastro con presenza di resti carbonicali e inclusi litici a composizione carbonalica imo argitoso debolmente sabbisso molto consistente	Terreno	Limo deb. Angliloso Lj	N A7-6 Cd	_	20.63	_		-	_	20.5 n.d	25.96 1.06	-		40.0	6.4	16.0			14.96 93.90			1	$\sqcup \sqcup$		Ш	23.9	21.26		\perp	>600	300 250		\perp	+++		_
2	004 S ₇ 1	4 590	1 250 30		di cobre grigio scuro. Presenza di classi titici milimetrici Limo anglitoso molto consistente di cobre grigio. Presenz di calcineli e sostenze carbonices.	Terreno Terreno	Limo con Argilla L, Limo argilloso Li,	A A7-6 Cd	_	20.05	-			95.17 41.2 95.81 47.1	15.0	24.4 0.7	03 08	40.0	400	1.2 7.1	18.1		-	7.49 30.01 97.50 3.65 22.38 96.03			+	HH	+	\vdash	22.0	19.16 13.32		+	250	130 112.5	+	+	+++		\dashv
2	304 S ₁ 2	0 5911	1 2.20 2.50	5 2.4	Insieme è marrone-grigio	Terreno	Clasti L(A) Clasti	L(A) Cd	-					48.6	17.1	31.5 nd	nd nd															\Box			500				##		4
2	004 S ₁ 2		1 3.50 3.90 1 2.00 2.50			Terreno Terreno	Limo Angliceo deb. Sabbiceo L(A Limo Angliceo L)	(S) A7-6 Cd N) A7-6 Cd		21.40 19.05			_	17.76 57.9 17.28 57.6	17.9	40.1 09 38.2 1.2	-0.2 1.3	40.0	400	17.6	20.0	20 0.2	5 7.87 6	1.63 18.97 90.60 2.68 29.21 91.88	6 99.75 99.37	91.89					24.09	41 17.72	72		_	300 250 300 250					
_	_	1 500	1 3.60 4.0	0 3.8	Iveleti sabbiosi milimetrici, di inclusi litici anche centimetrici e calcinelli milimetrici	Terreno	Limo deb. Sabbioso deb. Argilloso	[A] A7-6 Cd		18.94				_	18.2 34.4	34.4 1.0	-	40.0	400	12.5	20.0			5.57 10.54 57.51			11	Ш		Ш	Ш	\perp	22.62 14.99	17.44 0.04	420	-			$\perp \perp \perp \perp$		_
_	_	2 5941		0 2.1	chiaro con acreziature grigie. Presenza di calcinelli milimetrici	Terreno	Limo Anglitoso Li,	A) A7-6 Cd	_	18.85	_		-	_	18.6 34.4	26.3 09	0.1 1.2		40.0	5.1	16.3	_	-	4.90 21.28 96.17		_	+	HH		\vdash		+	+	+	420	210 187.5 170 125	_		+		4
		2 5H2 N CI1	1 36 41 1 3 33 R 6 62 1 4 45	1 3.85 d		Terreno Terreno	Limo Anglitaso deb. Ghistoso- Sabbioso Limo con anglita, sabbioso Limo con anglita, sabbioso Limo anglitas sabbios	(5) A7-6 Cd (5) A7-6 Cd (5) A6 Cd		21.10 90 19.04	19.43 0.6	55 29.9	25.81 25.81	17.49 44.5 15.5 50.0	21.5 21.0	23.0 1.0 23.0 0.94	1.0	40.0	400	45	13.0	14 8.6 0.0	120 6	13.1 17.6 80.68 50.0 28.0 88.00	9 91.4 89.1 0 99.9 99.0 0 90.1 85.0	80.7 ## 86.9 73.7	13.55 7.64	\coprod				+	23.93 11 23.17 20.68	18.44 0.25	340	170 125			+		=
2	21 S13	N CII	1 4 4.5 1 5 5.4 1 29 35	5 4.25 E	Jimo con anglia, sabbioso consistente marrone ollus chiaro Limo con anglia, sabbioso consistente olius	Terreno Terreno	Limo con argilla, sabbicaco L.A.	(5) A7-6 Cd (5) Cd	F 22.4	89 18.95 91 18.94	19.27 0.6	54 39	25.31	15.5 41.0 15.4 39.0	15.0	26.0 0.7 24.0 0.7	1.1					0.0	150 0	\$2.0 28.0 \$8.00 \$2.0 23.0 73.00 \$2.0 85.00 \$2.0 85.00 \$2.0 85.00 \$2.0 85.00	0 99.9 98.9	85.4 85.9						\perp	24.3 19.65	15.29 1.37					$\overline{}$		_
2	21 S14 21 S14	IN CI2	1 29 35 1 6 65 1 25 3	5 32 5 625 L	Limo argilloso, sabbioso molto consistente marrone oliva imo con argilla, deb sabbioso molto consistente oliva	Terreno Terreno	Limo con argilla, deb sabbioso L.A.	[S] Cd	F 21.9	81 19.5 88 19.01	19.72 0.5 19.47 0.6	5 29.5	25.78	15.6 43.0	21.0	23.0 0.9 22.0 1.0	1.1					3.0	80 0	25.0 89.00	0 95.7 94.7	89.5	+	\coprod		Н	\blacksquare	+	22.89 21.28	1433 4.15	++						_
		IN CIIn	1 2.5 3		rgilla limosa e limo argilloso di marrone chiaro molto considente	Terreno	Limo con argilla, sabbicaso L,A Limo con argilla, deb. sabbicaso L,A	(5) Cd		19.12				15.52 40.0 15.22 48.0		12.0	Н							45.0 35.0 81.00 50.0 43.0 93.00			+	HH			24	33	27 40	22 15	+			+			\dashv
_	_	0 5941	1 1.50 2.00	0 1.8 1	centimetrici	Terreno	Limo deb. Chisicso deb L(G Sebbioso	(S) A-6 E/6	_	20.97			-	_	19.3	18.08 1.12	-0.12 7.8		40.0	0.0	8.1			5.06 2.31 77.39			$\perp \Gamma$	ШΠ				\Box	24.11 38	15.44 0				\coprod	\prod	$\perp \perp \perp$	\Box
		0 942 2 941	1 250 3.0		Limo angliloso debolmente sabbicaso duro di colone	Terreno Terreno	Limo Sabbioso L(Limo deb. Sabbioso L(S) A7-6 EM		20.98 20.98	\perp	\perp		17.8 40.6 17.84 37.9	20.2	20.36 1.10	-0.10 6.2 -0.11 14.0		400	0.5	10.4			9.43 331 82.74			+	HH	+	\vdash	1		27.92 24 17.35	18.26 0	1	155 90-		+++	+++	+	\dashv
2	004 S ₇ 1		1 2.00 2.50		naccials Limo argilloso debolmente sabbioso duro di colone naccials	Terreno	Limo deb. Sabbloso Lj Limo deb. Angilloso Lj	N A7-6 EX	C 1924	21.14				17.73 43.2	193	23.9 1.0	0.0 1.8	40.0	400	3.2	13.9			7.42 1.31 88.72 11.85 13.15 95.00			\pm	Ш		Ħ	24.00	29.13		\pm	1 20	20 20					\exists
_		7 541	1 2.50 3.00	0 2.5 r	argumer anotheres sacrosco daro di colore occiola con secrezialare grigis. Presenza di frustali carbonicali	Terreno	Limo deb. Angilloso Lj	A7-6 EX	_	21.20	+	+	-	_	18.9	24.9 1.0	-	40.0	400	3.6	14.9	-	7 2.09 8	\rightarrow	99.73 99.36	-	+	HH	+	\vdash	28.26	11.26 22.97 3	8.19	+	600	300 225	_	++++	+++	+	\dashv
	_	7 590	1 6.00 6.50	0 63 2	mo argasso moso consistente di cobre nocciosi col creadature grigie. Presenza di rari inclusi milimetric Limo argilioso debolmente sabbicao duro di colore occiola con secrezataure grigie. Presenza di inclusi	Terreno	Limo Angilloso Li,	A7-6 E/G		20.77	_		-	-	19.1	24.8 0.9	-	40.0	400	3.9	14.8		-	9.35 19.37 96.72 0.73 17.37 96.09		_	+-	HH	+	\vdash		+	+	+	320.00		+	+	+++	-	4
2	004 S ₁ 1	5 SH 5 SQ	1 1.70 2.30	0 20 n	occiole con secrescistare grige. Preserva di Inclusi Bici milimetrici e centimetrici gilla timosa di colore grigio-azzumo molto consistente preservas di alteracioni e rari inclusi Bici milimetrici Limo seglitono duno di sapelto accegioso di colore cociola. El presente calcite secondaria (simile talco)	Terreno	Limo Argilloso Li, Limo deb. Argilloso Li,	A) A7-6 EX		20.91	-		25.03		19.2	25.1 1.0	0.0 1.5	40.0	400	43	15.1		\perp				+	HH	+	\vdash		++	24.82 10.8	19.35 0.46	345.00	275 210	+		+++		4
2	004 S ₇ 1	9 5941	1 1.50 2.00	0 1.8	presenza di assissioni e ran incusi soci miamenici. Limo argilloso duno di aspeto scaglioso di cobre occiola. È presente calcite secondaria (simile talco) actioforma di patine milimetriche. Tettonizzato. Imo analicso debolmente sabbicoo molto consistente	Terreno	Limo deb. Sabbiceo deb. Argilloso	[A] A7-6 E90		20.46			25.13	17.43 44.7	19.0	25.7 1.1	-0.1 1.9		400	47	15.7			1.07 13.55 94.62			\top	Ш		\sqcap		\top			600	300 250			\Box		ヿ
2	304 S ₇ 1	9 596	1 6.00 6.50		Il coloe nocciola con screziature grigie. Presenza di Inclusi lifici millimetrici e centimetrici. Aspetto talora	Terreno	Limo deb. Ghistoso Lij	A7-6 EX	c					46.0	19.5	27.2 nd	nd 1.1	40.0	400	6.8	17.2	16 7.7	3 459 6	2.68 24.99 87.67	5 92.27 90.97	87.68	П					П			320.00	160.00 160					
		\$71-5	1 2.6 3	2.8	scaglioso e tettonizzato imo anglioso debolmente sabbioso molto consistente di colone marrone chiano	Terreno	LIA	(5) 8/6		94 19.14				15.6 56.0		38.0 0.87	1.1		400	16.0			П	53.0 34.0 97.00			#					\dashv			290	145 150			##		コ
2	21 51	C12	1 6 6.5	5 6.25 Li	mo con argilla molto consistente marrone oliva chiari mo con argilla molto consistente marrone oliva chiari	Terreno Terreno	Limo con argilla L.	A A7-6 EX	C 24.2	99 19.24	19.29 0.6	38.7	25.29	15.6 55.0		38.0 0.87 35.0 0.88		40.0	400	15.0	20.0	19 1.0	20 0	13.0 34.0 97.00 10.0 35.0 95.00	0 99.2 98.8 0 98.9 98.2	97.5	$^{+}$					\pm	22.52 22.68								\exists
2	-	z cn	3 3.5	A	Limo sabbioso argilloso moderatamente consistente marrone gialastro chiano nglita limosa e limo argilloso di colone grigio vendastro contenente su mannei alamenti libridi anche di	Terreno	Limo sabbioso argilloso L(S)	(A) E/C		99 19.1	19.13 0.7	12 41.7	10.01	+	\vdash	+	Н	-	-+	\rightarrow				58.0 12.0 70.00 51.0 36.0 87.00			╫	HH	+	\vdash	\vdash	++	24.35 8.4	++	++	\vdash	+	+	+++	-	\dashv
2	_	+	R 12 12.	3 12.15	contenente numerosi elementi itoidi anche di dimensioni pluricentimetriche e da plaghe di alterazione, molto consistente Anglita limosa e limo anglicaso contenente sporadici	Terreno	Limo con argilla, deb. Sabbiceo L.A		_		+		\vdash	30	23.0	15.0	ш	40.0	400	0.0	50	10 2.0	11.0	51.0 360 87.00	0 26.0 26.9	90.1	+	+++		\vdash		+	+	+	++		_	+	$+\!+\!+$		_
		N C1in N C2in	1 4 4.5	5 4.25	alterazione, mello consisterie Anglia limosa e limo argilizano contenente sporadidi elementi litodi di dimensioni subcontinetiche e pratierizzato dalla preserva di plaghe di alterazione Anglia limosa e limo argilizano di colore grigio mello consisteriosi.	Terreno	Limo con argilla L.	A EX		19.69	+			15.92	\vdash	-	Н		-	-+		34	40 0	13.0 30.0 93.00	0 97500 96.1	93.6	12	62.1		\vdash	26	25	+	+	+		+		+++		\dashv
2	21 511-	Pz CD1	R 45 47	7 4.5	consistente Limo subbloso di colone marrores chiaro contenente alcuni elementi litolid di dimensioni centimetriche, moderatamente consistente	Terreno		810	с																								35 22	32 15							
2	004 S713 004 S73	5 5H1	1 2.6 3 1 7 7.30		moderatamente consistente Limo anglitoso debolmente sabbiceo duro di colone nocciola con acreziature grigle Marra altosa tenera forbi este	Terreno Liloide	Limo argilloso L(Marra Silosa Ma	(i) A7-6 Sub. (ii) Sub.		95.894 19.96335 22.73958	_		25.95 1	6.73586 46.1	22.4	23.6 1.1	-0.1 1.3	40.0	400	6.1	13.6	15 0.5	32 7	77.3 19.0 96.27	99.5 97.8	96.3	+	HH		\vdash	27.59	28.07 22.51 3	7.37	+	600	300 142.5	2274	18.203	+++		-
2	304 57	5 571-6	1 14 17	7 1.55 pr	fraturats Argilla marnosa elo manna argillosa grigita. Sono esenti patine di ossidazione rossaste e livelletti limo asbibical millimetri di	Terreno	AD	hi) Sub.																														62.135	Π	1301.54	
2	304 S07 304 S07		1 24 27		Anglia mamosa grigia frantumata a clasti anche centimetrici. Sono presenti patine di alterazione Anglia mamosa e/o manna anglicas grigia.	Terreno Terreno		Sub. Sub.		22.94 22.7				20.93			\vdash						H	+	\vdash	0,	190 14.7 11.5 219 21.9 19.9	HH		\vdash		+	+		+		127	+	+++		7
2			R 12 12:		Limo con argilla, sabbioso grigio olhos Ghisia limosa di colore grigio	Terreno Terreno	Limo con argilla, sabbioso L,A Ghisia limosa Gi	(S) A7-6 Sub.		93 19.74	19.99 0.5	5 35.4	25.57	15.5 47.0	15.0	31.0 09	1.1	40.0	400	7.0	20.0	17 00	150 5		0 20.9 26.9 0 28.8 26.6	85.4		\Box				\dashv									4
2	21 57-1		R 85 9	8.75	Mama di colore grigio scuro	Litoide	Marris 10	5.0	,sk				200	\perp	ш		ш															\perp							##	0.46	_
	321 S7-1 321 S10	Z C1in	1 3 35	5 3.25 CI	raterizzato dalla presenza di elementi Itoidi e plaghi di alterazione molto consistente	Terreno Terreno	Limo con anglia ghiaiosa deb. Sabbiosa Limo con anglia L,	A A7-6 Sub.		13.46	\perp		26.00	_	29.0	15.0	Ш	40.0	400	40	50	11 13	0 80 4	49.0 30.0 79.00	0 86.7 83.4 0 98.0 97.3	_	+-	$\sqcup \sqcup$		Н-		+	28 25	25 25	++		-	+ + +	+		_
		PZ Ctrim	R 3 34	4 32	nglis limosa e limo arglicao di colore grigio verdestro molto consistente Astrice limosa arglicas di colore marrone, numerosi lementi litoidi di dimensioni anche pluicentimetriche.	Terreno	Lincol agai	Sec.	_	19.79	\top		26.22	_	29.0	15.0	ш						121		1 23	-	+			\vdash		\top	+	\top			1		###		-
2	004 S ₇ 1	1 SH1 3 CR1	1 16.00 16.3	0 33	imo argilioso sabbioso di colore rocciola di sapello marroso	Terreno Litoide	Limo I Marra elo Marra Argillosa Ma	. A4 Sul		25.56				34.3	26.7	56 nd	n.d 2.7	40.0	400	0.0	0.0	8 00	4 1.27 2	5.88 2.11 97.99	0 20.96 20.00	97.39						\Box					3358	15.04 18.9 0.37 2	218 D.3 6552 5520		7
2	304 S ₁ 2	5 592 5 CR1	I 15.00 16.6 I 16.50 17.0	15.8	Marra elo marra argiliosa di colore grigio chiazo. Marra siliosa di colore grigio chiazo. Presenti giunti naturali suborizzontali. pezzoni di roccia a libilogia marrossa di colore grigio curo. È presente un giunto naturale inclinato di circa	Litoide	Marra Sitosa Ma	S) Sul	۵.	25.23													Н				\blacksquare					\blacksquare	33.02 30	30.96 20			2861		284.23 386.72 0.3 0.3 2862 2363		4
2	_	S CRI	1 16.50 17.0	16.8 m	curo. E presente un giunto naturale inclinato di cinca 15º rispetto alforizzontale anna silizza di colore grigio acuro. Sono presenti un frattura a linee di debolazza inclinate di cinca 50º	Libide	Roccis Marross N Marra Silosa Ma	5 Sal	_	25.77	+		\vdash	+	\vdash	+	Н		-+	\rightarrow			+	++	\vdash	\vdash	╫	33.17 0.226	LOSP 19608 19512	42.22 5532	0.17	++	+	++	++		1196	21.35	303 262 2363		\dashv
2				M	rispeto all'orizzontale anna silizza di colore grigio scuro. Sono presenti una	Libide	Marra Sibos Ma	5) Sul	_	25.77				\dashv	Н		Ш						H				+	57.75 0.305	1132 21537 25871	Н	0.18	+	+	+			1	+	+++		\exists
2	004 S ₂	CD1	SD 7.15 7.6	5 7.4	rispeto di rizzoniale Marra silosa di colore grigio scuro lettorizzata, alterata, cusidata e fratturata. Limo con anglia, subbioso oliva Limo anglioso grigio scuro	Libide	Marra Sitosa Ma Limo con anglia, sabbioso L,A	S) Sul (S) A7-6 Sul		96 19.6	19.94 0.5	7 16.7	25.69	954 950	95.0	410 0F7	12	400	400	98.0	20.0	20 20		90 70 70	0 08.2 071	88.0	#					\dashv									=
2 2	21 51 21 51 21 51	CR1 CR2 CR3	R 9 9.3 R 16 16.4 R 21 21.4	9.15 4 16.2 4 21.2	Limo argilizao grigio scuro Limo con argilia grigio Limo con argilia, ghiaicao grigio	Terreno Terreno Terreno	Limo argilloso Li Limo con argillo L, Limo con argillo, ghialoso L,A	A) A7-6 Sul A A7-6 Sul	b 19.3	91 19.55 93 20	19.87 0.5 20.22 0:	25 25.5 5 23.4	2.57 2.42 2.45	35.0 15.4 40.0 15.9 42.0	19.0 16.0 17.0	17.0 24.0 0.86 25.0 1.0	0.9 0.9 1.0	40.0 40.0 40.0	400 400 400	0.0 0.0 2.0	7.0 14.0 15.0	11 0.0 14 0.0 14 15.	0 40 7 0 10 7 0 80 5	76.0 20.0 96.00 71.0 28.0 99.00 91.0 26.0 77.00	0 100.0 97.2 0 100.0 99.8 0 85.5 79.3	95.1 92.3 77.5															∄
2 2	21 514 21 514 21 53-0 21 53-0	N CRI N CR2 H CII	R 16.8 17 R 18.7 19 I 3 3.5	16.9 18.85 5 3.25	Calcarente di colore grigio Sitte marrosa grigio Chiais subbioso limosa grigio rossatro Marra di colore grigio	Terreno Terreno Litoide	Sittle marrosa Ghiala sabbicao limosa G(S		b b	246	=		25.91	#	15.0							e	0 160 1	13.0 4.0 17.00	0 25.0 17.5	89.6						\blacksquare		#					≢≢	0.55 0.55	≡ .
2 2	21 515- 21 517- 21 517-	PZ CR4 OH CR2 OH CR3	R 14 14. R 15.5 15. R 20.2 20.4	4 14.2 7 15.6 4 20.3	Uses on with, subtime sides Limited to the control of the control	Litoide Litoide Litoide	Marca 5 Marca 5 Marca 5	100 200	b b	24.33 24.05 23.92			25.76 25.82										П																	0.19 0.42 0.52 0.69 0.21	∄
2 2 2	21 516- 21 516- 21 516- 21 516-	PZ CR1 PZ CR2 PZ CR3	R 5 5.2 R 12 12: R 20 20:	2 8.1 3 12.15 3 20.15	Marna di colore grigio verdastro acuro Marna di colore grigio verdastro Marna di colore grigio verdastro Marna di colore grigio verdastro acuro	Litoida Litoida Litoida	Marris N Marris N Marris N	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	b b	23.13			25.80	=									Ħ	#	Ħ	H	#			Ħ		\blacksquare		#					##	0.21 0.32 0.84	╡
2 2	21 55-1 21 55-1 21 55-1	Z CRI Z CR2 Z CR3	R 12 12 R 16 16 R 22 22	12 16 1 22	Marra di colore grigio Marra di colore grigio verdastro scuro Marra di colore grigio	Litoide Litoide Litoide	Marria N			24.18 24.54 24.58			25.76 25.96 25.94	_																										0.32 0.84 0.3 0.46 0.53	∄
1 -	a. Jo-	2 (111111	. 45 5	4.72	Comment Indiana Service India and a City of	Terreno Terreno	Limo con ghiaia, anglitoso deb. sabbioso L.G.(Anglita limosa e limo anglitoso A(L).	L(A) A7-6 Sut	b .	\Box				34.0	21.0	10.0		27.9	400	0.0	0.0	8 34	0 60 4	45.0 15.0 60.00 88.00	0 65.4 64.5	E23	$\perp \! \! \perp$	Ш	\perp	Ш	-	\perp	20 25	$\perp \! \! \perp$			_	\perp	+	$\bot \bot$	\perp
2	21 S8-1 21 S9-	Z C3rim	R 15 15-	4 15.2	dimensioni pluricentimetriche Argilla limosa e limo anglibas od colone grigio scuro irgilla limosa e limo anglibaso paralatmente l'atticato di colone grigio Roccia di colone grigio acuro.	Terreno	Sabbia con limo S	L A7-6 Sul							25.0				400	0.0	3.0	9 1.0	30 0	20 340 9500	0 28.5 26.4	97.6														0.27	_
2	21 54F	Z Chin	R 12.5 13	12.75	colore grigio Roccia di colore grigio scurro Roccia di colore grigio scurro Roccia di colore grigio scurro Roccia di colore grigio senteletro Anglia limcas a limo argilicao continente aponadici elementi liliodi talcola dimensioni centimetiche e aratterizzatio dalla presenza di palpe di alterazione, molto consistente	Litoide Litoide Litoide		Sul Sul		18.27 21.54	+		26.40 26.33				H	\vdash	+				Ħ		H	Ħ	+			H	H	\dashv		+	+	H		 		+	7
2	321 546	Z Cérim	R 19.2 19.1	5 19.35	aratierizzato dalla presenza di plaghe di alterazione, molto consistente. Aratia limasa e limp antifere di prime all'aratico.	Terreno	Argilit Marrose	Sal		12.14	\perp	\perp		15.66	Ш	\perp	Ш					$\sqcup \bot$	$\perp \perp$	$\perp \perp$	$\perp \perp$	_ z	7.5	38.0		\sqcup	Ш	$\perp \! \! \perp$	$\perp \! \perp \! \perp$	$\perp \perp$	$\perp \perp$	$\sqcup \bot$		$\perp \perp \downarrow \downarrow \downarrow$	$\perp \perp \perp$	27.5	
2	21 518- 21 518-	Pz Cîrim Pz Cîrim	R 37.3 37.1 R 42.3 42.1	5 37.45 5 42.45	Roccia di colore grigio Roccia di colore grigio Roccia di colore grigio scuro	Terreno Litoide Litoide Litoide	Argilis Argilis Argilis	Sul Sul Sul Sul	b b	21.15 21.40 22.35 22.37	_		26.57 26.56 26.36 26.11 26.39	=					_				Ħ									\blacksquare		#			Ŀ			0.93	
2	21 S18- 21 S11-	Pz CID2	R 53.5 53.7 R 7 7.2	7 53.6	Reccia di colore grigio scuro Reccia di colore grigio scuro Designatione e argilla limosa di colore grigio scuro, parzialmente lifficato, molto consistente glist lamosa e la maglitato di colore ramone chiaro molto consistente Argilla limosa e lamo anglitoso di colore grigio scuro consistente	Terreno	Marne	Sui		24.53																口	ፗ						27 25	24 15					##		\exists
2	21 S11- 21 S11-	Pz CD3	R 15 15.2	2 15.1 A	gilla limasa e limo anglicas di colore mamone chiaro molto consistente Argilla limasa e limo anglicas di colore grigio scuro consistente	Terreno		Sul Sul		21.39			26.32	925		\pm																					\pm				\exists
2	321 52-4	Pz Crim1	R 4 4.40	5 4225 _{se}	Limo argilloso e argilla limosa di colore marrone rdastiro a tratti debolmente litticato, molto consistent	Terreno		Sui	b					\Box	Ш		Ш									1 1							27 29		Ш						
2	21 524	Pz Crim2	R 6.5 6.9	6.7 A	gas amosa e limo anglicao di colore mamone chiaro molto constatante logilla limosa e limo anglicao di colore grigillo, a tratti nterente cossione di campione numinalmosi. *****	Terreno Terreno		Sui Sui		19.81	-	+	25.99	17.59		+	++	+		-			П			П	\neg		+	1 1		- 1 1	1 1 1		+	H^{-}	+	$\overline{}$		++	\dashv
2	21 52- 21 511-	Pz Crimi Pz CR1	R 16 16.	4 16.2 2 27.1	moderatemente consistente Roccia di colore grigio Roccia di colore grigio verdestro	Litoide	Marne Acenarie	Sul Sul	b b	20.55 24.57	\pm		26.71 26.80				Ш	\perp	\rightarrow				\blacksquare	\pm	\perp		\pm	Ш				\blacksquare	$\pm \pm$	\pm	\pm		┢		##	0.02 0.51	\equiv
2	21 S8 21 S8 21 S8	CR1 CR2 H Cfrim	R 19.8 20 R 27 27.4 R 12.1 12.1	19.9 4 27.2 5 12.35	gilla Imosa a irro seglitico di coltere mammes chiari reggilla Imosa di comisiente gilla Imosa di moi seglitico di coltro eggilla, si mili protente di coltro gilla di coltro di coltro di coltro di coltro gilla. Roccia di coltro gilgio estato di coltro gilgio. Roccia di coltro gilgio estato di coltro gilgio. Roccia di coltro gilgio coltro gilgio. Roccia di coltro gilgio. Roccia di coltro gilgio. Roccia di coltro gilgio.	Litaide Litaide Litaide Litaide	Arenarie debolmente mamose Arenarie debolmente mamose Arenarie debolmente mamose Arenarie debolmente mamose	Set Set Set Set Set	b b	24.58 22.93 22.91	\equiv		26.71 26.60 26.63 26.63 26.62 26.62 26.62	\equiv				H	===	=		H	Ħ	$+$ \blacksquare	H	Ħ	H	\blacksquare	1.009 24521 41106 1.157 37963 57928 1.157 40992 46290	H		\blacksquare	$+\square$	+	H	H	Ħ	$+\Pi$	0.5 0.2 4706.0 3644.0	0.006	\exists
2	204 S.	te te	R 17 17. 1 34 35	34.5	Roccia di colore grigio Arenaria fine e/o stitte teminata di colore grigio con presenza di inizioni di calcite Arenaria fine e/o stitte teminata di colore grigio con	Litoide Litoide Litoide	Arenarie debolherie mamose Arenarie Arenarie	Sal Sal	6	22.08 24.05 24.05	\dashv	\blacksquare		\dashv			H		_	-			Ħ	+	\vdash	\Box	#	35.3 0.125	1029 24521 41106	45.04 6250	0.23	\dashv	\mp	\dashv	+		3216.0	17.0 23.7 1.1	.5 0.2 4706.0 3644.0	.2/	\exists
2	304 5,0	i fr	1 34 35	34.5	Presenta di Pizzoni di calciei Prenaria fine e/o sibile laminata di colore grigio con ressanta di inizioni di calcilei	Litoide	Arenarie	Sul	a d	24.65	\perp	\perp	\vdash				ш		\rightarrow	\rightarrow		\vdash	\Box	\bot	\vdash	\Box	#	68.54 0.209	1157 40992 46290	\vdash	0.21	\bot	$\pm \pm$	\bot							\exists
2	21 55-1	Z CRI	R 9 92	2 9.1	Calcarente di colore grigio Calcarente marroso	Litoide Litoide	Calcare marriceo	Sui Sui	a I				_		ш		ш													ш										0.73 2.41	ゴ

RELAZIONE GEOTECNICA

10.3. **RISULTATI PROVE DI LABORATORIO -POZZETTI**

mpagna	ozzetto	ımpione	ipo di mpione	relievo r m a m)	Descrizione speditiva	Classificazione AGI		Unità geologica	Unità geotecnica	Classificazione CNR UNI 10006	Contenuto in acqua	Peso di volume	Peso di volume secco	Limi	ti di Atter	berg		Indici							Compo	osizione granulometrica	ı	Con	nposizione granulo	ometrica
్ర	ď	ပိ	- 8	g g B			Sigla	-			Wn	Ϋ́n	γd	W _{LL}	Wp	Ws	lp	Α	Α	В	С	D IG	Ghiai	Sabbi	a Limo	Argilla	Limo + Argilla	10	40	200
											%	kN/m ³	kN/m ³	%	%		%	%					%	%	%	%	%	%	%	%
2003	PZ ₇ 2	1	1	0,6	Limo argilloso-sabbioso duro di colore variegato marrone chiaro-grigio alterato e ossidato. Sono presenti livelletti millimetrici sabbiosi	Limo Sabbioso	L(S)	MTlbn	ALL-LA	A6		20,4	18,0	32,1	18,3		13,8	3,1	40,0	40,0	0,0	3,8 10	2,00	20,34	73,14	4,52	77,66	98,00	93,63	77,66
2003	Z ₇ 3	1	R	0,5	Limo argilloso debolmente sabbioso di colore marrone	Limo deb. sabbioso deb. argilloso	L[S][A]	MTlbn	ALL-LA	-									40,0	40,0	0,0	0,0 8	3,29	11,51	77,27	7,93	85,20	96,71	94,48	85,20
2021	PZ01	CR1	R	0,8	Limo con argilla, sabbioso di colore marrone oliva	Limo con argilla, sabbioso	L,A(S)	MTlbn	ALL-LA	A7-6				46,0	18,0		28	0,9	40,0	40,0	6,0 1	18,0	0,0	18,0	53,0	29,0	82,000	99,700	95,0	82,7
2021	PZ01	CR2	R	1,6	Limo con argilla, sabbioso di colore marrone giallastro scuro	Limo con argilla, sabbioso	L,A(S)	MTlbn	ALL-LA	A7-6				47,0	18,0		29	0,9	40,0	40,0	7,0 1	19,0 17	0,0	14,0	55,0	31,0	86,000	99,6	98,0	87,5
2021	PZ02	CR1	R	1	Limo con argilla, sabbioso di colore marrone oliva chiaro	Limo con argilla, sabbioso	L,A(S)	MTlbn	ALL-LA	A7-6				48,0	20,0		28	0,8	40,0	40,0	8,0 1	18,0 17	1,0	16,0	49,0	34,0	83,000	99,5	91,5	83,8
2021	PZ02	CR2	R	1,6	Limo con argilla, sabbioso di colore marrone oliva chiaro	Limo con argilla, sabbioso	L,A(S)	MTlbn	ALL-LA	A7-6				45,0	19,0		26	0,8	40,0	40,0	5,0 1	16,0 15	1,0	10,0	56,0	33,0	89,000	99,3	96,7	89,5
2021	PZ03	CR1	R	1	Limo con ghiaia, argilloso di colore marrone giallastro	Limo con ghiaia, argilloso	L,G (A)	MTlbn	ALL-LA	A6				38,0	18,0		20,0	1,1	20,5	40,0	0,0 1	0,0	35,0	10,0	37,0	18,0	55,000	64,5	61,7	55,5
2021	PZ03	CR2	R	1,6	Ghiaia limosa, argillosa di colore marone giallastro	Ghiaia limosa, argillosa	G (L)(A)	MTlbn	ALL-Gh	A2-6				34,0	18,0		16,0	1,6	0,0	14,5	0,0	6,0 1	62,0	9,0	19,0	10,0	29,000	38,3	34,2	29,5

RELAZIONE GEOTECNICA

ALLEGATI DI CALCOLO 10.4.

