

Direzione Progettazione e Realizzazione Lavori

S.G.C. E78 GROSSETO - FANO

Tratto Selci Lama (E45) - S. Stefano di Gaifa. Adeguamento a 2 corsie del tratto della Variante di Urbania

PROGETTO DEFINITIVO

ANAS - DIREZIONE PROGETIAZIONE E REALIZZAZIONE LAVORI

COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE

Ing. Giuseppe Resta

Ordine Ingegneri Provincia di Roma n. 20629

IL GEOLOGO

Dott. Geol. Salvatore Marino

Ordine dei geologi della Regione Lazio n. 1069

VISTO: IL RESP. DEL PROCEDIMENTO

Ing. Vincenzo Catone

VISTO: IL RESP. DEL PROGETTO

Arch.Pianif. Marco Colazza

I PROGETTISTI SPECIALISTICI

Ing. Ambrogio Signorelli

Ordine Ingegneri Provincia di Roma n. A35111

Ing. Moreno Panfili

Ordine Ingegneri Provincia di Perugia n. A2657

Ing. Claudio Margine Ingegner

Ordine Ingespieri Roma Provincia di Roma n/15/64

Ing. Giuseppe Resta 🗡

Ordine Ingegneri Provincia di Roma n. 20629 PROGETTAZIONE ATI:

(Mandataria)

GPINGEGNERIA

GESTIONE PROGETTI INGEGNERIA srl

(Mandante)

(Mandante)

engeko

(Mandante)

IL PROGETTISTA E RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONE
SPECIALISTICHE. (DPR207/10 ART 15 COMMA 2):

Dott. Ing. GIORGIO GUIDUCCI Ordine Ingegneri Provincia di Roma n. 14035

Dott Ing. GIORGIO GUIDUCCI ORDINE INGEGNER ROMA N° 14035

OPERE D'ARTE MAGGIORI
VIADOTTI E PONTI
PONTE METAURO 3

Impalcato — Relazione tecnica e di calcolo

CODICE PF		NOME FILE TOOVIO6STRR	E01_B		REVISIONE	SCALA
PROGETTO LIV.PROG. ANNO 2 2 2		CODICE TOOVIO6STRRE01		В	_	
D						
С						
В	Rev. Ist.U.0039705 24/0	01/22 e lst.U.0057794 01/02/22	Feb.'22	Sigmud	Muller	Guiducci
А	Emissione		Ottobre '21	Sigmund	Muller	Guiducci
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

INDICE

<u>INTI</u>	ROD	UZIONE	<u> 6</u>
1.1.	DES	SCRIZIONE GENERALE	6
1.2.	VIT	A NOMINALE E CLASSE D'USO	8
RIF	ERIN	ENTI NORMATIVI	<u> 9</u>
MA	ΓERI	ALI, UNITA' DI MISURA E RESISTENZE DI PROGETTO	12
3.1.	STF	RUTTURA METALLICA	12
3.2.	BUI	LONI E SALDATURE	14
3.3.	CLA	ASSE DI ESECUZIONE DELLE STRUTTURE IN ACCIAIO	15
3.3	.1.	Classe di conseguenze	15
3.3	.2.	Categoria di servizio e di produzione	15
3.3	.3.	Determinazione della classe di esecuzione	17
3.4.	SO	LETTA MISTA ACCIAIO-CALCESTRUZZO	18
3.4	.1.	Connettori a piolo	18
3.4	.2.	Calcestruzzo	19
3.4	.3.	Acciaio per armature	22
3.4	.4.	Resistenze di calcolo	23
3.5.			
<u>ANA</u>	ALISI	DEI CARICHI	<u> 26</u>
4.1.			
4.1.	CAI	RICHI PERMANENTI ($G_1 \to G_2$)	26
4.1. <i>4.1</i>		Carichi permanenti strutturali (G ₁)	26
	.1. .2.	Carichi permanenti strutturali (G ₁)	26 28
4.1	.1. .2.	Carichi permanenti strutturali (G ₁) Carichi permanenti portati (G ₂) RICHI VERTICALI DA TRAFFICO (Q ₁)	26 28 29
4.1 4.1	.1. .2. CAI	Carichi permanenti strutturali (G ₁) Carichi permanenti portati (G ₂) RICHI VERTICALI DA TRAFFICO (Q ₁) Ripartizione longitudinale dei carichi	26 28 29 30
4.1 4.1 4.2.	.1. .2. CAI .1.	Carichi permanenti strutturali (G ₁) Carichi permanenti portati (G ₂) RICHI VERTICALI DA TRAFFICO (Q ₁)	26 28 29 30
4.1 4.1 4.2. 4.2	.1. .2. CAI .1.	Carichi permanenti strutturali (G ₁) Carichi permanenti portati (G ₂) RICHI VERTICALI DA TRAFFICO (Q ₁) Ripartizione longitudinale dei carichi	26 28 29 30 31
4.1 4.1 4.2. 4.2 4.2	.1. .2. CAI .1. .2.	Carichi permanenti strutturali (G ₁)	26 28 29 30 31 32
4.1 4.1 4.2. 4.2 4.2 4.2	.1. .2. CAI .1. .2. .3. .4.	Carichi permanenti strutturali (G ₁)	26 28 29 30 31 32 33 34
4.1 4.2. 4.2 4.2 4.2 4.2	.1. .2. CAI .1. .2. .3. .4.	Carichi permanenti strutturali (G ₁)	26 28 29 30 31 32 33 34
4.1 4.2. 4.2 4.2 4.2 4.2 4.2	.1. .2. CAI .1. .2. .3. .4. .5.	Carichi permanenti strutturali (G ₁)	26 28 29 30 31 32 33 34 41
4.1 4.2. 4.2 4.2 4.2 4.2 4.2 4.2	.1. .2. .1. .2. .3. .4. .5. AZI	Carichi permanenti strutturali (G ₁)	26 28 29 30 31 32 33 34 41 41
4.1 4.2. 4.2 4.2 4.2 4.2 4.2 4.3. 4.3	.1. .2. .1. .2. .3. .4. .5. AZI	Carichi permanenti strutturali (G_1) Carichi permanenti portati (G_2) RICHI VERTICALI DA TRAFFICO (Q_1) Ripartizione longitudinale dei carichi	26 28 29 30 31 32 33 34 41 41 42
4.1 4.2. 4.2 4.2 4.2 4.2 4.3 4.3 4.3	.1212345. AZI	Carichi permanenti strutturali (G_1) Carichi permanenti portati (G_2) RICHI VERTICALI DA TRAFFICO (Q_1) Ripartizione longitudinale dei carichi Massimo momento flettente in campata Massimo momento flettente in pila — Massima reazione Massimo taglio in campata Ripartizione trasversale dei carichi mobili ONE DEL RITIRO Ritiro e viscosità: ε_2 e ε_3 . Deformazione da ritiro e coefficiente di viscosità	26 28 29 30 31 32 33 34 41 41 42 44
	1.2. RIFI MA 3.1. 3.2. 3.3. 3.3 3.4. 3.4 3.4 3.4 3.5.	1.2. VIT. RIFERIM MATERI 3.1. STF 3.2. BUL 3.3. CLF 3.3.1. 3.3.2. 3.3.3. 3.4. SOI 3.4.1. 3.4.2. 3.4.3. 3.4.4. 3.5. UNI ANALISI	1.2. VITA NOMINALE E CLASSE D'USO RIFERIMENTI NORMATIVI MATERIALI, UNITA' DI MISURA E RESISTENZE DI PROGETTO. 3.1. STRUTTURA METALLICA. 3.2. BULLONI E SALDATURE. 3.3. CLASSE DI ESECUZIONE DELLE STRUTTURE IN ACCIAIO. 3.3.1. Classe di conseguenze. 3.3.2. Categoria di servizio e di produzione. 3.3.3. Determinazione della classe di esecuzione. 3.4. SOLETTA MISTA ACCIAIO-CALCESTRUZZO. 3.4.1. Connettori a piolo. 3.4.2. Calcestruzzo. 3.4.3. Acciaio per armature. 3.4.4. Resistenze di calcolo. 3.5. UNITA' DI MISURA. ANALISI DEI CARICHI.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

	4.7.	AZIO	ONE DEL VENTO (Q ₅)	47
	4.7.	1.	Vento sull'impalcato	48
	4.8.	AZIO	ONE TERMICA (Q ₇)	51
	4.8.	1.	Variazione termica differenziale	51
	4.8.	2.	Variazione termica uniforme	53
	4.9.	URT	TO DI VEICOLO IN SVIO (Q ₈)	54
	4.10.	AZIO	ONE SISMICA (E)	55
<u>5.</u>	<u>CRI1</u>	ΓERI	DI CALCOLO	<u>58</u>
	5.1.	CRI	TERI DI CALCOLO E DI VERIFICA PER LE AZIONI STATICHE	58
	5.2.	ANA	ALISI GLOBALE ELASTICA	59
	5.2.	1.	Fasi di calcolo	60
	5.3.	CON	MBINAZIONI DELLE AZIONI	62
	5.3.	1.	Azioni nelle verifiche agli stati limite	64
	5.3.	2.	Stati limite ultimi	64
	5.3.	3.	Stati limite di esercizio	65
<u>6.</u>	MOD	ELL	I DI CALCOLO ADOTTATI	<u>66</u>
	6.1.	DIS	CRETIZZAZIONE DELLA STRUTTURA	67
	6.1.	1.	Nodi	67
	6.1.	2.	Elementi	68
	6.2.	MOI	DELLO DI CALCOLO AGLI ELEMENTI FINITI	70
	6.2.	1.	Modello completo	70
	6.2.	2.	Nodi	71
	6.2.	3.	Elementi travi, diaframmi e elementi soletta	72
	6.2.	4.	Carichi applicati al modello	73
	6.3.	CAF	RATTERISTICHE STATICHE DELLE SEZIONI	75
	6.3.	1.	Larghezze collaboranti	75
	6.3.	2.	Assegnazione delle sezioni agli elementi di analisi	80
	6.3.	3.	Caratteristiche statiche delle travi principali	82
	6.3.	4.	Inerzie dei diaframmi	95
	6.3.	5.	Elementi soletta	95
	6.4.	ANA	ALISI GLOBALE E CALCOLO DELLE SOLLECITAZIONI	96
	6.5.	MAS	SSIME AZIONI INTERNE	96
	6.5.	1.	Sollecitazioni di verifica	96
	6.5.	2.	Diagrammi delle massime e minime sollecitazioni di verifica	98
	6.6.	ANA	ALISI SISMICA1	100

PROGETTAZIONE ATI:

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

	6.6.1.	ANALISI MODALE	102
	6.6.2.	Reazioni degli appoggi allo SLC - SLU	104
	6.6.3.	Spostamenti allo SLC - SLU	107
	6.6.4.	Corsa massima giunti di dilatazione	111
<u>7.</u>	<u>VERIFI</u>	CHE DEGLI ELEMENTI STRUTTURALI	112
	7.1. DI	STRIBUZIONE DELLE SEZIONI STRUTTURALI	112
	7.2. TF	RAVI LONGITUDINALI – VERIFICHE SLU	114
	7.2.1.	Verifica delle sezioni	116
	7.3. TF	RAVI LONGITUDINALI – VERIFICHE SLE	150
	7.3.1.	Verifica S.L.E. tensionale – riepilogo coefficienti di sfruttamento	151
	7.3.2.	Verifica S.L.E. "Web breathing" tensionale – riepilogo coefficienti di	sfruttamento152
	7.3.3.	Verifica dei pioli allo SLE – riepilogo coefficienti di sfruttamento	154
	7.4. VE	RIFICHE A FATICA	155
	7.4.1.	Modello di carico	155
	7.4.2.	Classi di dettaglio	158
	7.4.3.	Verifiche a vita illimitata	160
	7.5. SA	ALDATURA DI COMPOSIZIONE	167
	7.6. VE	RIFICA DEI PIOLI	169
	7.7. VE	ERFICHE DI DEFORMABILITÀ	172
<u>8.</u>	TRAVE	DI SPINA	175
	8.1.1.1	. FASE I (g1)	175
	8.1.1.2	2. FASE II (g2)	175
	8.1.1.3	3. Carichi mobili	176
	8.1.1.4	l. Ritiro	178
	8.1.1.5	i. Variazione termica differenziale	180
	8.2. An	IALISI STRUTTURALE	181
	8.2.1.1	. Modello di calcolo	181
	8.2.1.2	. Larghezza collaborante di analisi	181
	8.3. VE	RIFICHE DI RESISTENZA	182
	8.3.1.1	. Classificazione della sezione	182
	8.3.1.2	. Verifiche in formato esteso	182
	8.4. VE	RIFICA DEI PIOLI	185
	8.5. VE	RIFICHE A FATICA	186
	8.5.1.1	. Modelli di carico per verifiche a fatica	186
	8.5.1.2	. Categorie di dettaglio e curve S-N	189

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

	8.5.1.3.	Verifiche per vita a fatica illimitata	190
	8.5.1.4.	Saldature dei pioli alla piattabanda superiore	191
	8.5.1.5.	Saldatura di composizione delle travi di spina	191
	8.6. REA	AZIONE MASSIMA SUI DIAFRAMMI	192
<u>9.</u>	DIAFRA	ММІ	193
	9.1. DES	SCRIZIONE	193
	9.1.1.	Diaframmi intermedi	194
	9.1.2.	Diaframmi di Pila / Spalla	204
	9.1.3.	CONTROVENTI	211
	9.2. Co	NTROVENTI INFERIORI	211
	9.2.1.	Valori massimi di verifica allo SLU	212
	9.3. con	NTROVENTI DI MONTAGGIO	217
	9.3.1.	Valori massimi di verifica allo SLU	217
<u>10</u>	. SOLETT	A D'IMPALCATO	221
	10.1. DE	SCRIZIONE E MODALITÀ DI CALCOLO DELLA SOLETTA	221
	10.2. FAS	SE 1	222
	10.2.1.	ANALISI DEI CARICHI	222
	10.2.2.	MODELLO DI CALCOLO	223
	10.2.3.	VERIFICA TRALICCIO PREDALLE FASE I-A	227
	10.2.4.	VERIFICA TRALICCIO PREDALLE FASE I-B	230
	10.3. FAS	SE II	233
	10.3.1.	ANALISI DEI CARICHI	233
	10.3.2.	Modello di calcolo	234
	10.4. FAS	SE III	236
	10.4.1.	Ripartizione trasversale dei carichi mobili su soletta	236
	10.4.2.	Larghezze collaboranti	239
	10.4.3.	Effetti dei carichi da traffico	243
	10.4.4.	Momento minimo su trave esterna	244
	10.4.5.	Momento minimo su trave interna	245
	10.4.6.	Momento massimo in campata	247
	10.4.7.	Taglio massimo su trave esterna	249
	10.4.8.	Taglio massimo su trave interna	250
	10.5. RIE	PILOGO DELLE SOLLECITAZIONI	251
	10.6. CO	MBINAZIONI DI CARICO	252
	10.7. AZI	ONI DI VERIFICA	252

PROGETTAZIONE ATI:

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

10.8. VERIFICHE DELLA SOLETTA NELLE SEZIONI CORRE	NTI253
10.8.1. VERIFICHE ALLO SLU	253
10.8.2. VERIFICHE ALLO SLE	257
10.9. VERIFICHE DEGLI SBALZI LATERALI	267
10.10. VERIFICHE LOCALI IN CODIZIONI DI SVIO	271
10.10.1. ANALISI DEI CARICHI	271
10.10.2. SOLLECITAZIONI	274
10.10.3. VERIFICHE IN COMBINAZIONE ECCEZIONALE	275
11. APPARECCHI DI APPOGGIO	278
11.1. CONDIZIONI ELEMENTARI	278
11.1.1. SPALLA A	278
11.1.2. PILA P1	280
11.1.3. PILA P2	282
11.1.4. PILA P3	284
11.1.5. SPALLA B	286
11.2. INVILUPPO	288
11.2.1. SPALLA A	288
11.2.1. PILA P1	288
11.2.1. PILA P2	289
11.2.1. PILA P3	289
11.2.1. SPALLA B	290
12. VERIFICA IN FASE DI VARO	291
12.1. VERIFICHE TRAVI PRINCIPALI	292
13. GIUDIZIO MOTIVATO DI ACCETTABILITÀ DEI RISULTATI	298
13.1. CONTROLLO DELLE REAZIONI	298
13.1.1. Fase 1	298
13.1.2. Fase 2	298
14. ALLEGATI	299

GESTIONE PROGETTI INGEGNERIA srl

PROGETTAZIONE ATI:

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

1. INTRODUZIONE

1.1. DESCRIZIONE GENERALE

La presente relazione illustra il calcolo del nuovo ponte costituito da un impalcato a travata posto alla progressiva 5+785.00.

Il ponte, con sistema costruttivo misto acciaio-calcestruzzo, presenta uno schema statico di campata continua su 5 appoggi con luci rispettivamente di 60+90+60+35m. Lo schema di vincolo prevede l'adozione di isolatori ad alto smorzamento (HDRB).

La sezione trasversale dell'impalcato è costituita da una coppia di travi a doppio T in composizione saldata, disposte a interasse di 8 m la cui altezza risulta costante e pari a 3.5 m. I traversi intermedi sono di tipo reticolare disposti a interasse longitudinale variabili con un massimo pari a 7.50 m. I traversi di spalla e di pila sono a parete piena con passo d'uomo. Per l'assemblaggio delle travi si prevedono unioni saldate tra conci d'officina, mentre per il collegamento di tutti gli elementi secondari (traversi e controventi) si prevedono unioni bullonate a taglio.

La stabilizzazione della porzione compressa della struttura metallica durante le fasi antecedenti alla realizzazione e solidarizzazione della soletta in c.a. è assicurata da un sistema di controventi realizzato mediante profili angolari accoppiati di sezione 2L90x10 e 2L90x8. La soletta presenta una larghezza costante da 12.0m (sezione tipica) e spessore costante pari a 27 cm (6 cm di predalla e 21 cm di getto). Per rompitrattare la soletta in senso trasversale, si prevede una trave di spina che corre in asse all'impalcato ed è sorretta dai diaframmi. La connessione soletta-travi è realizzata mediante pioli Nelson.

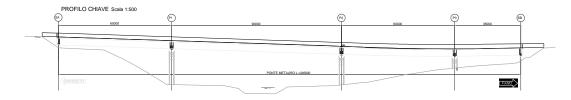


Figura 1.1 Profilo longitudinale

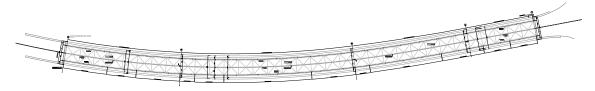


Figura 1.2. Pianta superiore di impalcato

Figura 1.3. Pianta inferiore di impalcato

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

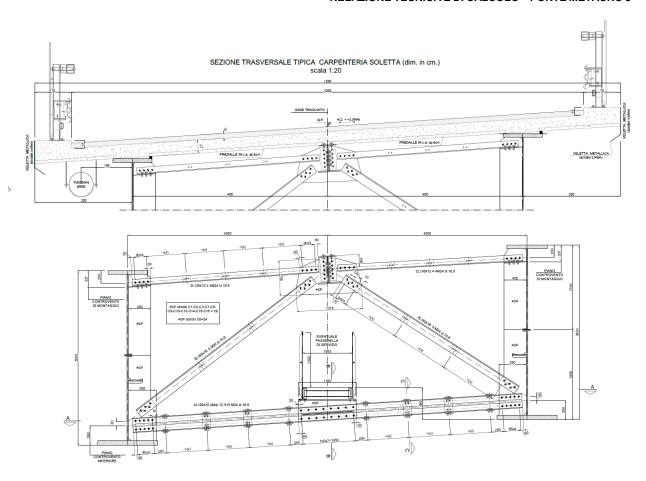


Figura 1.4 Sezione trasversale tipica

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

1.2. VITA NOMINALE E CLASSE D'USO

La vita nominale di una struttura VN è definita nel punto 2.4.1 del D.M. 17 gennaio 2018 come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve poter essere usata per lo scopo al quale è destinata.

La vita nominale dei diversi tipi di opere è riportata nella tabella 2.4.I del D.M. 17 gennaio 2018. Nel caso in esame, la costruzione è di tipo 2 ed è caratterizzata quindi dalla vita nominale $V_N = 50$ anni.

	Tipi di Costruzione	V _N [anni]
1	Opere provvisorie - Opere Provvisionali - Strutture in fase costruttiva.	≤ 10
2	Opere ordinarie, ponti, opere infrastrutturali e dighe di dimensioni contenute o di importanza normale.	≥ 50
3	Grandi opere, ponti, infrastrutturali e dighe di grandi dimensioni o di importanza strategica.	≥ 100

Tabella 1.1 Vita nominale.

In presenza di azioni sismiche, con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, il punto 2.4.2 del D.M. 17 gennaio 2018 prevede che le costruzioni siano suddivise tra 4 classi d'uso, definite nella seguente tabella.

Classe d'uso	
Classe I	Costruzioni con la presenza solo occasionale di persone, edifici agricoli
Classe II	Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.
Classe III	Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.
Classe IV	Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al D.M. 5 novembre 2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluogh di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse a funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Tabella 1.2 Classi d'uso

La struttura in esame rientra nella Classe IV, quindi il suo coefficiente d'uso Cu è pari a 2.0.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

2. RIFERIMENTI NORMATIVI

Nella redazione del progetto strutturale si fa riferimento al quadro normativo ai sensi del D.M. 17 gennaio 2018. Il riferimento principale per la determinazione dei carichi agenti sulle strutture, le verifiche di sicurezza degli elementi strutturali di impalcato sarà pertanto:

- D.M. 17 gennaio 2018 "Norme tecniche per le costruzioni" con la relativa circolare applicativa del 11 febbraio 2019 n. 617 - "Istruzione per l'applicazione delle nuove Norme tecniche per le costruzioni".
- 1 febbraio 2019 n. 617 "Istruzione per l'applicazione delle nuove Norme tecniche per le costruzioni".

Nei casi in cui le enunciate normative italiane si presentino carenti di informazioni in relazione a particolari studi specifici, si fa riferimento a normative europee e al sistema degli eurocodici, in particolare:

- UNI EN 1990:2006 EUROCODICE 0 "Criteri generali di progettazione strutturale" con il relativo NAD del 24.09.2010;
- UNI EN 1991-1-1:2004 EUROCODICE 1 Parte 1-1 "Azioni sulle strutture Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici" con il relativo NAD del 24.09.2010:
- UNI EN 1991-1-4:2005 EUROCODICE 1 Parte 1-4 "Azioni in generale Azioni del vento" con il relativo NAD del 24.09.2010;
- UNI EN 1991-1-5:2004 EUROCODICE 1 Parte 1-5 "Azioni in generale Azioni termiche" con il relativo NAD del 24.09.2010;
- UNI EN 1991-2:2005 EUROCODICE 1 Parte 2 "Carichi da traffico sui ponti" con il relativo NAD del 24.09.2010;
- UNI EN 1992-1-1:2005 EUROCODICE 2 Parte 1-1 "Progettazione delle strutture di calcestruzzo - Regole generali e regole per gli edifici" con il relativo NAD del 24.09.2010;
- UNI EN 1993-1-1:2005 EUROCODICE 3 Parte 1-1 "Progettazione delle strutture di acciaio - Regole generali e regole per gli edifici" con il relativo NAD del 24.09.2010;
- UNI EN 1993-1-5:2007 EUROCODICE 3 Parte 1-5 "Progettazione delle strutture di acciaio - Elementi strutturali a lastra" con il relativo NAD del 25.02.2011;
- UNI EN 1993-1-8:2005 EUROCODICE 3 Parte 1-8 "Progettazione delle strutture di acciaio - Progettazione dei collegamenti" con il relativo NAD del 24.09.2010;
- UNI EN 1993-1-9:2005 EUROCODICE 3 Parte 1-9 "Progettazione delle strutture di acciaio - Fatica" con il relativo NAD del 25.02.2011;
- UNI EN 1993-1-10:2005 EUROCODICE 3 Parte 1-10 "Progettazione delle strutture di acciaio - Resilienza del materiale e proprietà attraverso lo spessore" con il relativo NAD del 24.09.2010;
- UNI EN 1993-2:2007 EUROCODICE 3 Parte 2 "Progettazione delle strutture in acciaio Ponti di acciaio" con il relativo NAD del 25.02.2011;
- UNI EN 1994-1-1:2005 EUROCODICE 4 parte 1-1 "Progettazione delle strutture composte acciaio-calcestruzzo - Regole generali e regole per gli edifici" con il relativo NAD del 24.09.2010;

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

- UNI EN 1994-2:2006 EUROCODICE 4 parte 2 "Progettazione delle strutture composte acciaio-calcestruzzo - Regole generali e regole per i ponti" con il relativo NAD del 24.09.2010;
- UNI EN 1997-1:2005 EUROCODICE 7 parte 1 "Progettazione geotecnica -Regole generali" con il relativo NAD del 24.09.2010:
- UNI EN 1998-1:2005 EUROCODICE 8 parte 1 "Progettazione delle strutture per la resistenza sismica - Regole generali, azioni sismiche e regole per gli edifici" con il relativo NAD del 24.09.2010;
- UNI EN 1998-2:2011 EUROCODICE 8 parte 2 "Progettazione delle strutture per la resistenza sismica - Ponti" con il relativo NAD del 24.09.2010;
- UNI EN 1998-5:2005 EUROCODICE 8 parte 5 "Progettazione delle strutture per la resistenza sismica - Fondazioni, strutture di contenimento ed aspetti geotecnici' con il relativo NAD del 25.02.2011.

Per gli apparecchi di appoggio si è fatto riferimento alla norma:

CNR 10018/85 - "Apparecchi d'appoggio in gomma e PTFE nelle costruzioni -Istruzioni per il calcolo e l'impiego".

Per quanto concerne le caratteristiche del materiale calcestruzzo armato, si considerano:

- UNI EN 206:2016 "Calcestruzzo Specificazione, prestazione, produzione e conformità":
- UNI 11104:2016 "Calcestruzzo Specificazione, prestazione, produzione e conformità - Istruzioni complementari per l'applicazione della EN 206";
- UNI EN 10080:2005 "Acciaio saldabile per cemento armato Generalità".

Per quanto concerne le caratteristiche del materiale acciaio e dei sistemi di connessione, si considerano:

- UNI EN 10025-1:2005 "Prodotti laminati a caldo di acciai per impieghi strutturali -Parte 1: Condizioni tecniche generali di fornitura";
- UNI EN 10025-5:2005 "Prodotti laminati a caldo di acciai per impieghi strutturali -Parte 5: Condizioni tecniche di fornitura di acciai per impieghi strutturali con resistenza migliorata alla corrosione atmosferica";
- UNI EN ISO 4016:2011 "Viti a testa esagonale con gambo parzialmente filettato -Categoria C".
- UNI EN ISO 4034:2013 "Dadi esagonali normali (tipo 1) Categoria C";
- UNI EN 14399-1:2005 "Bulloneria strutturale ad alta resistenza a serraggio controllato - Parte 1: Requisiti generali";
- UNI EN 14399-3:2005 "Bulloneria strutturale ad alta resistenza a serraggio controllato Parte 3: Sistema HR - Assieme vite e dado esagonali";
- UNI EN 14399-4:2005 "Bulloneria strutturale ad alta resistenza a serraggio controllato - Parte 4: Sistema HV - Assieme vite e dado esagonali";
- UNI EN 14399-5:2005 "Bulloneria strutturale ad alta resistenza a serraggio controllato - Parte 5: Rondelle piane";
- UNI EN 14399-6:2005 "Bulloneria strutturale ad alta resistenza a serraggio controllato - Parte 6: Rondelle piane smussate";

GESTIONE PROGETTI INGEGNERIA sr.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

- UNI EN ISO 898-1:2013 "Caratteristiche meccaniche degli elementi di collegamento di acciaio - Parte 1: Viti e viti prigioniere con classi di resistenza specificate - Filettature a passo grosso e a passo fine";
- UNI EN ISO 898-2:2012 "Caratteristiche meccaniche degli elementi di collegamento di acciaio al carbonio e acciaio legato - Parte 2: Dadi con classi di resistenza specificate - Filettatura a passo grosso e filettatura a passo fine";
- UNI EN ISO 4063:2011 "Saldatura e tecniche affini Nomenclatura e codificazione numerica dei processi";
- UNI EN ISO 13918:2009 "Saldatura Prigionieri e ferrule ceramiche per la saldatura ad arco dei prigionieri";
- UNI EN ISO 14555:2014 "Saldatura Saldatura ad arco dei prigionieri di materiali metallici".

Per l'esecuzione delle strutture, si considerano le regole contenute nei seguenti documenti:

- UNI EN 13670 "Esecuzione di strutture di calcestruzzo";
- UNI EN 1090-2:2018 "Esecuzione di strutture di acciaio Requisiti tecnici per strutture di acciaio";
- UNI 11011:1962 "Codice di pratica per la preparazione dei lembi nella saldatura per fusione di strutture in acciaio".

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

3. MATERIALI, UNITA' DI MISURA E RESISTENZE DI PROGETTO

La struttura dell'impalcato è costituita da elementi di carpenteria metallica (profili saldati composti, piastre, angolari, bulloni e pioli) e dal calcestruzzo per il getto di completamento delle solette.

3.1. STRUTTURA METALLICA

Per la determinazione delle caratteristiche dei materiali da utilizzare per la struttura metallica (piatti per profili saldati composti di travi longitudinali e traversi, piatti per coprigiunti ed irrigidimenti, angolari), si fa riferimento ai paragrafi 11.3.4 del D.M. 2018, alle norme armonizzate della serie UNI EN 10025-5 (per i laminati con resistenza migliorata alla corrosione atmosferica) e alla sezione 3 dell'Eurocodice 3 EN 1993-1-1:2005.

Utili informazioni sulla determinazione dei massimi valori ammissibili dello spessore degli elementi e sulla scelta del grado di resilienza sono state ricavate dalla UNI EN 1993-1-10:2005 e dalla UNI EN 10164:2005.

L'acciaio impiegato per l'impalcato è di tipo S355W (ex Fe510 Corten), suddiviso nei gradi J0, J2 e K2 a seconda dello spessore della lamiera.

Le varie tipologie presentano caratteristiche meccaniche differenziate a seconda che lo spessore sia inferiore o superiore ai 40 mm, come indicato dal D.M. 17 gennaio 2018 al paragrafo 4.2.1.1 e riportato nella seguente tabella.

Proprietà	Simbolo e formula di calcolo	Valore numerico e unità di misura	Riferimento D. M. 2018
Tipo di acciaio	S 355 J0W, S 355 J2W, S 355 K2W		
Carico unitario di rottura a trazione	f _{tk}	510 [N/mm²] per t ≤ 40 [mm] 490 [N/mm²] per t > 40 [mm]	[Tab. 11.3.IX]
Carico unitario di snervamento	f _{yk}	355 [N/mm ²] per $t \le 40$ [mm] 335 [N/mm ²] per $t > 40$ [mm]	[Tab. 11.3.IX]
Modulo di elasticità	E	210000 [N/mm²]	[11.3.4.1]
Coefficiente di Poissoi	ν	0.3	[11.3.4.1]
Coefficiente di dilatazione termica	α_{c}	0.000012 [°C ⁻¹]	[11.3.4.1]
Massa volumica	$ ho_c$	7850 [kg/m³]	[11.3.4.1]

Tabella 3.1 proprietà caratteristiche dell'acciaio secondo D. M. 2018 (paragrafo 11.3.4.1) per profili a sezione aperta laminati a caldo (UNI EN 10025-5), al variare dello spessore.

Al fine di scongiurare il fenomeno dello strappo lamellare all'atto della saldatura, il costruttore dovrà verificare, in funzione delle tecniche e degli accorgimenti di saldatura utilizzati, se sia necessario l'impiego di lamiere qualificate secondo la UNI EN 10164:2005. Le caratteristiche meccaniche dell'acciaio non dipendono tuttavia dalla classe qualitativa, pertanto rimangono valide le caratteristiche riportate nella precedente tabella.

La resistenza di calcolo si pone nella forma (D. M. 17 gennaio 2018 punto 4.2.4.1.1):

GPIngegneria

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

 $R_d = \frac{R_k}{\gamma_M}$

in cui:

 γ_M

 R_{k} è il valore caratteristico della resistenza (a trazione, compressione, flessione, taglio e torsione) della membratura, determinata dai valori caratteristici dei materiali e dalle caratteristiche geometriche degli elementi strutturali, dipendenti della classe della sezione;

è il fattore parziale globale relativo al modello di resistenza adottato:

- γ_{M0} = 1.05 per la resistenza delle sezioni di Classe 1-2-3-4;
- γ_{MI} = 1.10 per la resistenza all'instabilità delle membrature;
- γ_{M2} = 1.25 per la resistenza, nei riguardi della frattura, delle sezioni tese (indebolite dai fori).

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

3.2. BULLONI E SALDATURE

Per i bulloni utilizzati nelle giunzioni a taglio (conformi alle UNI EN ISO 4016:2011, UNI 4034:2013 e UNI EN ISO 898-1:2001) e a attrito (conformi alle UNI EN 14399-3:2005 e 14399-4:2005) vengono sempre impiegati bulloni ad alta resistenza, con le seguenti resistenze di progetto:

Classe	f _{tb} [N/mm²]	f _{yb} [N/mm²]
10.9	1000	900

Tabella 3.2 resistenze di progetto dei bulloni utilizzati (tabella 11.3.XII.b del D. M. 2018).

Le rosette per le giunzioni ad attrito devono essere conformi alle caratteristiche dimensionali previste dalle norme UNI EN 14399-5:2005 e UNI EN 14399-6:2005 e realizzate in acciaio C50 secondo le UNI EN 10083-2:2006 temperato e rinvenuto HRC 32-40.

I bulloni disposti con asse verticale devono avere, se possibile, la testa della vite verso l'alto e il dado verso il basso. Devono essere previste una rosetta sotto la vite e una sotto il dado (UNI EN 14399-5,6:2005).

Per la verifica dei bulloni e delle saldature a parziale penetrazione e a cordone d'angolo, si utilizzano i coefficienti di sicurezza indicati nella tabella 4.2.XIV del D.M. 2018, ovvero γ_{M2} = 1.25

Per la verifica delle saldature a piena penetrazione, in conformità con quanto indicato nel paragrafo 4.2.8.2.1 del D.M. 2018 e in considerazione del fatto che generalmente vengono realizzati con materiali d'apporto aventi resistenza uguale o maggiore a quella degli elementi collegati, si assume che la resistenza di calcolo dei collegamenti sia pari alla resistenza di progetto del più debole degli elementi connessi.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

3.3. CLASSE DI ESECUZIONE DELLE STRUTTURE IN ACCIAIO

Per le strutture in acciaio e miste acciaio-calcestruzzo, le UNI EN 1090-2 introducono, al punto 4.1.2, la classe di esecuzione. Vengono fornite quattro classi di esecuzione da 1 a 4, identificate da EXC1 a EXC4, per le quali il requisito restrittivo cresce da EXC1 a EXC4.

L'Appendice B della UNI EN 1090-2 fornisce una guida per la scelta della corretta classe di esecuzione.

3.3.1. CLASSE DI CONSEGUENZE

Il primo passo per la scelta della classe di esecuzione è la determinazione della classe di conseguenze, il cui riferimento è l'Appendice B (informativa) della UNI EN 1990, che individua 3 livelli ai fini della differenziazione dell'affidabilità.

Classe d'uso	Descrizione	Esempi di edifici ed opere civili
CC3 (ALTA)	Elevate conseguenze per perdita di vite umane, o conseguenze molto gravi in termini economici, sociali o ambientali	
CC2 (STANDARD)	Conseguenze medie per perdita di vite umane, conseguenze considerevoli in termini economici sociali o ambientali	Edifici residenziali e per uffici, edifici pubblici nei quali le conseguenze del collasso sono medie (es.: edificio per uffici)
CC1 (BASSA)	Conseguenze basse per perdita di vite umane, conseguenze modeste o trascurabili in termini economici, sociali o ambientali	Costruzioni agricole, nelle quali generalmente nessuno entra (es.: magazzini), serre

Tabella 3.3 classe di conseguenza per diversi tipi di opere (prospetto B.1 dell'UNI EN 1990).

Per il caso in esame si individua la classe di conseguenze standard CC2.

3.3.2. CATEGORIA DI SERVIZIO E DI PRODUZIONE

Durante le fasi di esecuzione e di esercizio della struttura, possono insorgere rischi dovuti alla complessità dell'esecuzione dei lavori ed all'incertezza delle azioni gravanti sulla struttura, che possono evidenziare difetti nella struttura durante il suo utilizzo.

Per tenere in conto di queste tipologie di rischio, sono state introdotte le categorie di servizio e le categorie di produzione.

PROGETTAZIONE ATI:

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Categoria di servizio	Criterio
SC1	 Strutture e componenti progettate solo per azioni quasi statiche (esempio: Edifici); Strutture e componenti con connessioni progettate per bassa duttilità in zone a bassa sismicità; Strutture e componenti progettate per la fatica degli apparecchi di sollevamento (classe S0).
SC2	 Strutture e componenti progettate per le azioni fatica secondo la EN 1993 (esempi: Pont stradali e ferroviari, gru (classe da S1 a S9), strutture suscettibili alle vibrazioni indotte da vento, dalla folla o dalla rotazione di macchine); Strutture e componenti con connessioni progettate per media (CD"B") o alta (CD"A") duttilità in zona a media o alta sismicità.

Tabella 3.4 criteri suggeriti per la determinazione della categoria di servizio (prospetto B.1 dell'UNI EN 1090-2).

Categoria di produzione	Criterio
PC1	- Componenti non saldati realizzati con qualsiasi tipo di acciaio; - Componenti saldati realizzati con acciai di qualità inferiore a S355;
	 Componenti saldati realizzati con acciai di qualità uguale o superiore a S355; Componenti essenziali per l'integrità strutturale che vengono assemblati mediante saldatura in cantiere; Componenti formati a caldo o che ricevono un trattamento termico durante la fabbricazione; Strutture tralicciate realizzate con profili tubolari circolari.

Tabella 3.5 criteri suggeriti per la determinazione della categoria di produzione (prospetto B.2 dell'UNI EN 1090-

Si osserva che l'impalcato in esame appartiene alla categoria di servizio SC2 ed alla categoria di produzione PC2.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

3.3.3. DETERMINAZIONE DELLA CLASSE DI ESECUZIONE

La classe di esecuzione delle strutture viene determinata combinando la classe di conseguenze e le categorie di servizio e produzione secondo il seguente schema fornito al punto B.3 delle UNI EN 1090-2.

Classe di Conseguenze		С	CC1	С	C2	С	C3
Categoria	di servizio	SC1	SC2	SC1	SC2	SC1	SC2
Categoria di produzione	PC1	EXC1	EXC2	EXC2	EXC3	EXC3	EXC3
	PC2	EXC2	EXC2	EXC2	EXC3	EXC3	EXC4

Tabella 3.6 matrice raccomandata per la determinazione delle classi di esecuzione (prospetto B.3 dell'UNI EN 1090-2).

Come si può rilevare, la classe di esecuzione raccomandata per l'impalcato in esame è la EXC3.

L'elenco dei requisiti relativi alle classi di esecuzione è fornito nel punto A.3 della. Si UNI EN 1090-2, al quale si rimanda per i dettagli.

Si evidenzia che per la EXC3 è richiesta la completa tracciabilità e la marcatura dei prodotti.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

3.4. SOLETTA MISTA ACCIAIO-CALCESTRUZZO

I materiali costituenti la soletta mista sono il calcestruzzo utilizzato per le lastre predalles e per il getto e le barre di armatura superiore e inferiore della soletta. Vi sono inoltre i connettori a piolo tipo Nelson per il collegamento con la struttura in carpenteria metallica.

3.4.1. CONNETTORI A PIOLO

Per i connettori a piolo, il paragrafo 11.3.4.7 del D.M. 2018 prevede che l'acciaio utilizzato per essi sia idoneo al processo di formazione dello stesso piolo e compatibile per saldatura con il materiale costituente l'elemento strutturale interessato dai pioli stessi.

Nel caso in esame, si utilizzano pioli di tipo Nelson, per i quali la ditta produttrice prevede l'utilizzo di acciaio S 235J2G3+C450, secondo la UNI EN ISO 13918:2009.

Le caratteristiche meccaniche dell'acciaio non dipendono dalla classe qualitativa; pertanto, in conformità con il paragrafo 11.3.4.1 del D.M. 17 gennaio 2018, si hanno le seguenti caratteristiche meccaniche:

Proprietà	Simbolo e formula di calcolo	Valore numerico e unità di misura	Riferimento D. M. 2018
Tipo di acciaio	5	3 235 J2G3 + C450	
Carico unitario di rottura a trazione	f _{tk}	450 [N/mm²]	-
Carico unitario di snervamento	f _{yk}	350 [N/mm²]	-
Modulo di elasticità	Е	210000 [N/mm ²]	[11.3.4.1]
Coefficiente di Poissoi	ν	0.3	[11.3.4.1]
Coefficiente di dilatazione termica	$lpha_c$	0.000012 [°C ⁻¹]	[11.3.4.1]
Massa volumica	$ ho_{ m c}$	7850 [kg/m³]	[11.3.4.1]

Tabella 3.7 proprietà caratteristiche dell'acciaio secondo D. M. 2018 (paragrafo 11.3.4.1) per i pioli di tipo Nelson, secondo quanto richiesto dal produttore (riferimento UNI EN 10025).

Il paragrafo 11.3.4.7 del D.M. 2018 prevede il rispetto di alcuni requisiti addizionali, riportati nella seguente tabella.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Proprietà	Simbolo e formula di calcolo	Valore numerico e unità di misura	Riferimento D. M. 2018
Tipo di acciaio	;	S 235 J2G3 + C450	
Rapporto tra rottura e snervamento caratteristici	$(f_t/f_y)_k$	≥ 1.20	[11.3.4.7]
Allungamento a rottura	L ₀	≥ 12%	[11.3.4.7]

Tabella 3.8 requisiti addizionali per l'acciaio utilizzato per i connettori a piolo secondo D. M. 2018 (paragrafo 11.3.4.7).

Nelle verifiche relative alle connessioni, il paragrafo 4.3.3 del D.M. 2018 prevede che venga utilizzato un coefficiente parziale di sicurezza pari a $\gamma_V = 1.25$.

3.4.2. CALCESTRUZZO

Il calcestruzzo impiegato per il getto della soletta e per le dalle è caratterizzato dalla classe di resistenza C32/40, dalla classe di esposizione ambientale XC4 e dalla classe di consistenza S4.

Nella seguente tabella sono riassunte le proprietà di confezionamento del calcestruzzo previsto, con indicata la norma che prevede, per il tipo impiegato, il valore più restrittivo delle varie proprietà.

Proprietà	Valore	Norma di Riferimento	Riferimento
Tipo di calcestruzzo	C32/40	UNI 11104:2016	[Prospetto 8]
Vita nominale V _N	≥ 50 [anni]	D.M. 17.01.2018	[Tab. 2.4.I]
Classe di esposizione ambientale	XC 4	UNI 11104:2016	[Prospetto 1]
Rapporto Acqua/Cemento max	0.50	UNI 11104:2016	[Prospetto 5]
Classe minima di consistenza del getto	S4	UNI EN 206-1:2016	[Prospetto 3]
Contenuto minimo di cemento	360 [kg/m³] (di classe 42.5R per getti eseguiti con T < 10 °C)	UNI 11104:2016	[Prospetto 5]
Copriferro nominale	40 [mm]	Circolare 7/2018	[Tab. C4.1.IV]

Tabella 3.9 proprietà di confezionamento del calcestruzzo C32/40 utilizzato per la soletta dell'impalcato.

Per il calcestruzzo di classe C32/40 adottato, il D. M. 17 gennaio 2018, al paragrafo 11.2.10, prevede le proprietà meccaniche riportate nella seguente tabella.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Proprietà	Simbolo e formula di calcolo	Valore numerico e unità di misura	Riferimento D. M. 2018
Tipo di calcestruzzo		C32/40	
Resistenza cilindrica media a compressione	$f_{cm} = f_{ck} + 8$	41.2 [N/mm²]	[11.2.10.1]
Resistenza media a trazione semplice	$f_{ctm} = 0.30 \cdot f_{ck}^{2/3}$	3.10 [N/mm²]	[11.2.10.2]
Resistenza a trazione	$f_{ctk} = 0.7 \cdot f_{ctm}$	2.17 [N/mm²]	[11.2.10.2]
Modulo di elasticità istantaneo	$E_{cm} = 22000 \cdot [f_{cm}/10]^{0.3}$	33643 [N/mm²]	[11.2.10.3]
Coefficiente di Poisson	ν	0 ÷ 0.2	[11.2.10.4]
Coefficiente di dilatazione termica	$lpha_c$	0.00001 [°C ⁻¹]	[11.2.10.5]
Massa volumica	$ ho_c$	2500 [kg/m³]	-

Tabella 3.10 proprietà meccaniche caratteristiche del calcestruzzo C32/40, utilizzato per la soletta dell'impalcato, secondo D.M. 2018 (paragrafo 11.2.10)

Il calcestruzzo impiegato per il getto dei cordoli è caratterizzato dalla classe di resistenza C35/45, dalla classe di esposizione ambientale XC4+XD3 e dalla classe di consistenza S4.

Nella seguente tabella sono riassunte le proprietà di confezionamento del calcestruzzo previsto, con indicata la norma che prevede, per il tipo impiegato, il valore più restrittivo delle varie proprietà.

Proprietà	Valore	Norma di Riferimento	Riferimento
Tipo di calcestruzzo	C35/45	UNI 11104:2016	[Prospetto 8]
Vita nominale V _N	≥ 50 [anni]	D.M. 17.01.2018	[Tab. 2.4.I]
Classe di esposizione ambientale	XC4+XD3	UNI 11104:2016	[Prospetto 1]
Rapporto Acqua/Cemento max	0.45	UNI 11104:2016	[Prospetto 5]
Classe minima di consistenza del getto	\$4	UNI EN 206-1:2016	[Prospetto 3]
Contenuto minimo di cemento	360 [kg/m³] (di classe 42.5R per getti eseguiti con T < 10 °C)	UNI 11104:2016	[Prospetto 5]
Copriferro nominale	50 [mm]	Circolare 7/2018	[Tab. C4.1.IV]

Tabella 3.11 proprietà di confezionamento del calcestruzzo C35/45 utilizzato per i cordoli.

Per il calcestruzzo di classe C35/45 adottato, il D. M. 17 gennaio 2018, al paragrafo 11.2.10, prevede le proprietà meccaniche riportate nella seguente tabella.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Proprietà	Simbolo e formula di calcolo	Valore numerico e unità di misura	Riferimento D. M. 2018
Tipo di calcestruzzo		C35/45	
Resistenza cilindrica media a compressione	$f_{cm} = f_{ck} + 8$	45.4 [N/mm²]	[11.2.10.1]
Resistenza media a trazione semplice	$f_{ctm} = 0.30 \cdot f_{ck}^{2/3}$	3.82 [N/mm²]	[11.2.10.2]
Resistenza a trazione	$f_{ctk} = 0.7 \cdot f_{ctm}$	2.67 [N/mm²]	[11.2.10.2]
Modulo di elasticità istantaneo	$E_{cm} = 22000 \cdot [f_{cm}/10]^{0.3}$	34625 [N/mm²]	[11.2.10.3]
Coefficiente di Poisson	ν	0 ÷ 0.2	[11.2.10.4]
Coefficiente di dilatazione termica	α_c	0.00001 [°C ⁻¹]	[11.2.10.5]
Massa volumica	$ ho_c$	2500 [kg/m³]	-

Tabella 3.12 proprietà meccaniche caratteristiche del calcestruzzo C35/45, utilizzato per i cordoli, secondo D.M. 2018 (paragrafo 11.2.10)

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

3.4.3. ACCIAIO PER ARMATURE

L'acciaio utilizzato per le armature è del tipo B450C, per il quale il D. M. 17 gennaio 2018, al paragrafo 11.3.2.1, prevede le proprietà riportate nella seguente tabella.

Proprietà	Simbolo e formula di calcolo	Valore numerico e unità di misura	Riferimento D. M. 2018
Tipo di acciaio		B450C	
Tensione caratteristica di snervamento	f _{yk}	450 [N/mm²]	[Tab. 11.3.lb]
Tensione caratteristica di rottura a trazione	f _{tk}	540 [N/mm²]	[Tab. 11.3.lb]
Rapporto tra rottura e snervamento caratteristici	$\left(f_t/f_y\right)_k$	≥ 1.15 < 1.35	[Tab. 11.3.lb]
Rapporto tra snervamento reale e nominale	$\left(f_{y}/f_{y,nom}\right)_{k}$	≤ 1.25	[Tab. 11.3.lb]
Allungamento a rottura	$\left(A_{gt} ight)_{k}$	≥ 7.5%	[Tab. 11.3.lb]
Modulo di elasticità medio	E _s	210000 [N/mm²]	-
Coefficiente di dilatazione termica	$lpha_{ extsf{s}}$	0.00001 [°C ⁻¹]	-
Massa volumica	$ ho_{ extsf{s}}$	7850 [kg/m³]	[11.3.2.4]

Tabella 3.13 proprietà caratteristiche dell'acciaio per armature B450C secondo D.M. 2018 (paragrafo 11.3.2.1)

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

3.4.4. RESISTENZE DI CALCOLO

Le proprietà dei materiali riportate ai punti precedenti conducono, attraverso l'applicazione dei coefficienti di sicurezza parziali per i materiali previsti dal D.M. 17 gennaio 2018 al paragrafo 4.1.2, alla determinazione dei seguenti valori di progetto per calcestruzzo ed acciaio.

Proprietà	Simbolo e formula di calcolo	Valore numerico e unità di misura	Riferimento D. M. 2018	
Tipo di calcestruzzo	C32/40			
Coefficiente di sicurezza parziale	γο	1.5	[4.1.2.1]	
Resistenza di calcolo a compressione	$f_{cd} = \alpha_{cc} \cdot \frac{f_{ck}}{\gamma_c} = 0.85 \cdot \frac{f_{ck}}{\gamma_c}$	18.81 [N/mm²]	[4.1.2.1.1.1]	
Resistenza a trazione d calcolo	$f_{ctd} = rac{f_{ctk}}{\gamma_c}$	1.47 [N/mm²]	[4.1.2.1.1.2]	
Tensione di aderenza ultima; barre ad aderenza migliorata	$f_{bd} = 2.25 \cdot \eta \cdot \frac{f_{ctk}}{\gamma_c}$	3.30 [N/mm²]	[4.1.2.1.1.4]	
Deformazione convenzionale di rottura	$arepsilon_{ extsf{CU}}$	-0.35 %	[4.1.2.1.2.2]	

Tabella 3.14 valori di progetto per il calcestruzzo C32/40, utilizzato per le strutture dell'impalcato, secondo D.M. 2018 (paragrafo 4.1.2)

Proprietà	Simbolo e formula di calcolo	Valore numerico e unità di misura	Riferimento D. M. 2018
Tipo di calcestruzzo		C35/45	
Coefficiente di sicurezza parziale	γο	1.5	[4.1.2.1]
Resistenza di calcolo a compressione	$f_{cd} = \alpha_{cc} \cdot \frac{f_{ck}}{\gamma_c} = 0.85 \cdot \frac{f_{ck}}{\gamma_c}$	21.16 [N/mm²]	[4.1.2.1.1.1]
Resistenza a trazione d calcolo	$f_{ctd} = \frac{f_{ctk}}{\gamma_c}$	1.78 [N/mm²]	[4.1.2.1.1.2]
Tensione di aderenza ultima; barre ad aderenza migliorata	$f_{bd} = 2.25 \cdot \eta \cdot \frac{f_{ctk}}{\gamma_c}$	4.00 [N/mm²]	[4.1.2.1.1.4]
Deformazione convenzionale di rottura	$arepsilon_{ ext{cu}}$	-0.35 %	[4.1.2.1.2.2]

Tabella 3.15 valori di progetto per il calcestruzzo C35/45, utilizzato per i cordoli, secondo D.M. 2018 (paragrafo 4.1.2)

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Proprietà	Simbolo e formula di calcolo	Valore numerico e unità di misura	Riferimento D. M. 2018
Tipo di acciaio		B450C	
Coefficiente di sicurezza parziale	γs	1.15	[4.1.2.1.1.3]
Resistenza di calcolo	$f_{ys} = \frac{f_{yk}}{\gamma_s}$	391.3 [N/mm²]	[4.1.2.1.1.3]
Deformazione di snervamento	$arepsilon_{yd} = rac{f_{ys}}{E_s}$	0.186 %	-
Deformazione convenzionale di rottura	E _{Sd}	0.01	[4.2.1.1]

Tabella 3.16 valori di progetto per l'acciaio per armature B450C, utilizzato per la soletta dell'impalcato, secondo D.M. 2018 (paragrafo 4.1.2)

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

3.5. UNITA' DI MISURA

Nel seguito della relazione si adotteranno le seguenti unità di misura:

kN, kN/m², kN/m³ per i carichi kN, kNm, kNcm per le azioni di calcolo

MPa, kN/cm², daN/cm², N/cm² per le tensioni

Dove non diversamente specificato le unità di misura sono kN e m.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

4. ANALISI DEI CARICHI

4.1. CARICHI PERMANENTI (G₁ E G₂)

4.1.1. CARICHI PERMANENTI STRUTTURALI (G₁)

In questa fase si considerano agenti il peso proprio della struttura metallica, delle lastre prefabbricate, del getto della soletta che è ancora inerte e della veletta.

La struttura resistente in questa fase di carico è costituita unicamente dalle travi metalliche.

Il peso di analisi della carpenteria metallica è considerato pari a circa 380 kg/m² di impalcato.

Soletta tipica	25 kN/m ³ x (0.27 m x 12.00 m)	=	81.00 kN/m
Veletta metallica	1.00 kN/m x 2	=	2.00 kN/m
Passerella di ispezione metal	lica 1.00 kN/m x 2	=	2.00 kN/m

Media ponderata sullo sviluppo

La ripartizione trasversale dei carichi è stata calcolata mediante lo schema statico sotto riportato.

Figura 4.1 Modello di calcolo per carichi permanenti strutturali

FASE I

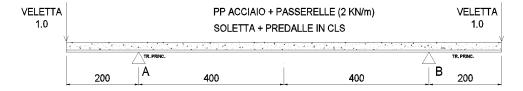


Figura 4.2 Pesi propri strutturali – Sezione tipica

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

I valori delle reazioni sono i seguenti:

	R _A * [<i>kN/m</i>]	R _B * [<i>kN/m</i>]
Soletta	40.5	40.5
Carpenteria metallica	22.8	22.8
Veletta	1.00	1.00
Passerella di ispezione	1.00	1.00
Fase 1, totale	65.3	65.3

Tabella 4.1 reazioni per carichi permanenti strutturali

PROGETTAZIONE ATI:

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

4.1.2. CARICHI PERMANENTI PORTATI (G₂)

In questa fase la soletta è interamente reagente ed i carichi agenti sono i permanenti portati di impalcato come pavimentazione, cordoli, sicurvia, impianti, etc.

Pavimentazione	3.00 kN/m2 x 10.50 m	= 31.50 kN/m
Cordolo	2 x 25 kN/m3 x 0.17 m x 0.75m	= 6.38 kN/m
Guard Rail + Rete Integrativa	a 2 x3.00 kN/m	= 6.00 kN/m
Smaltimento acque	2 x1.50 kN/m	= 3.00 kN/m
		46.88 kN/m
		TO.00 KIN/III

La ripartizione trasversale dei carichi è stata calcolata mediante lo schema statico sotto riportato.

Figura 4.3 carichi permanenti portati.

Figura 4.4 reazioni per carichi permanenti strutturali - Sezione tipica

I valori delle reazioni sono i seguenti:

	R _A * [<i>kN/m</i>]	R _B * [<i>kN/m</i>]
Pavimentazione	15.75	15.75
Cordolo	3.18	3.18
Guard Rail + Rete integrativa	3.00	3.00
Smaltimento acque	1.5	1.5
Fase 2, totale	23.44	23.44

Tabella 4.2 reazioni per carichi permanenti portati.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

4.2. CARICHI VERTICALI DA TRAFFICO (Q1)

I carichi variabili da traffico sono definiti dagli Schemi di Carico descritti nel §5.1.3.3 delle NTC2018.



Figura 4.5 Schemi di carico 1÷5, dimensioni in m [Figura 5.1.2 - NTC2018].

La tabella seguente (Tab. 5.1.II - NTC2018) riepiloga l'intensità dei carichi Q_{ik} e q_{ik} per le diverse corsie.

Posizione	Carico asse Q _{ik} [kN]	q _{ik} [kN/m ²]
Corsia Numero 1	300	9.00
Corsia Numero 2	200	2.50
Corsia Numero 3	100	2.50
Altre corsie	0	2.50

Tabella 4.3 Intensità dei carichi Qik e qik per le diverse corsie

PROGETTAZIONE ATI:

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Lo Schema di Carico 2 è costituito da un singolo asse applicato su specifiche impronte di pneumatico di forma rettangolare, di larghezza 0.60 m ed altezza 0.35 m.

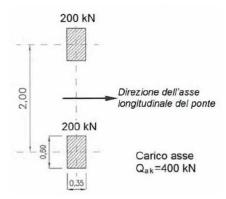


Figura 4.6 Schema di Carico 2 (Figura 5.1.2 - NTC2018).

4.2.1. RIPARTIZIONE LONGITUDINALE DEI CARICHI

La ripartizione longitudinale che massimizza il momento flettente nella i-esima campata viene ricavata spostando il carico Q1k all'interno della campata stessa.

Nel modello di analisi i due carichi concentrati, corrispondenti al singolo asse del veicolo Q1k, vengono schematizzati con un carico uniformemente distribuito equivalente della lunghezza di 2.4 m applicato sulle travi principali, ripartizione sicuramente cautelativa considerando l'impronta della ruota e l'effettiva diffusione del carico al baricentro delle travi metalliche. Oltre al carico tandem sono previsti i carichi uniformemente distribuiti (q1k, qrk, qfk) i quali oltre che nella campata in cui è presente il carico tandem vengono applicati e parzializzati nelle rimanenti campate in funzione della linea di influenza della caratteristica di sollecitazione massimizzata (momento flettente o taglio).

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

4.2.2. MASSIMO MOMENTO FLETTENTE IN CAMPATA

Per massimizzare il momento flettente positivo in ogni sezione della i-esima campata si fa avanzare di 1.5 m il carico Tandem partendo dall'appoggio iniziale della campata e facendolo arrivare all'estremo opposto della campata, così come illustrato nel grafico sottostante. Le rimanenti campate sono caricate con i carichi distribuiti frazionabili seguendo l'andamento della linea di influenza del momento flettente.

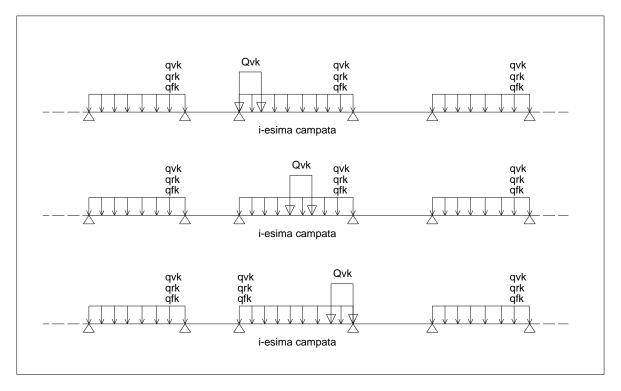


Figura 4.7 Disposizione dei carichi mobili per massimizzare il momento positivo in campata.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

4.2.3. MASSIMO MOMENTO FLETTENTE IN PILA - MASSIMA REAZIONE

Per massimizzare il momento flettente negativo sulla pila della i-esima campata si fa avanzare di 1.5 m il carico Tandem partendo dalla mezzeria della campata precedente e facendolo arrivare alla mezzeria della campata successiva, così come illustrato nel grafico sottostante. Le rimanenti campate sono caricate con i carichi distribuiti frazionabili seguendo l'andamento della linea di influenza del momento flettente.

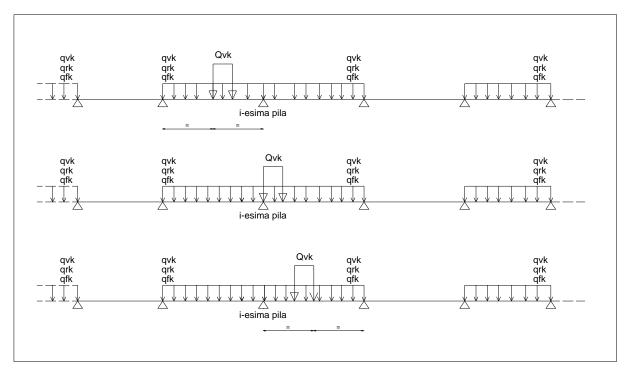


Figura 4.8 Disposizione dei carichi mobili per massimizzare il momento negativo in pila.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

4.2.4. MASSIMO TAGLIO IN CAMPATA

Per massimizzare il taglio di ogni sezione trasversale della i-esima campata si fa avanzare di 1.5 m il carico Tandem partendo dalla mezzeria della campata precedente e facendolo arrivare alla mezzeria della campata successiva, così come illustrato nel grafico sottostante. Le rimanenti campate sono caricate con i carichi distribuiti frazionabili seguendo l'andamento della linea di influenza del taglio.

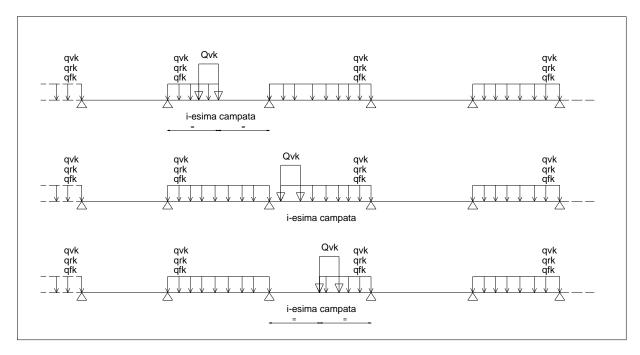


Figura 4.9 Disposizione dei carichi mobili per massimizzare il taglio.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

4.2.5. RIPARTIZIONE TRASVERSALE DEI CARICHI MOBILI

La ripartizione trasversale dei carichi è stata eseguita considerando le condizioni di carico di seguito riportate, in esse il valore del carico concentrato rappresenta la singola ruota, mentre i carichi distribuiti sono valutati a metro lineare.

La ripartizione trasversale dei carichi è stata calcolata mediante uno schema statico di trave su 2 appoggi con due sbalzi esterni.

Gli schemi e i risultati di seguito riportati sono da intendersi anche specchiati in quanto il ponte risulta in leggera curva e presenta allargamenti in posizione differente sulle campate di estremità.

4.2.5.1. Massimo carico verticale su impalcato lato esterno (files M1ext)

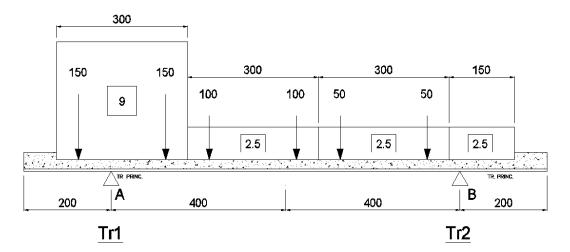
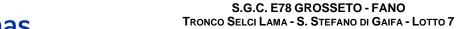


Figura 4.10 M1ext - sezione tipica.

M1ext	Q _{1k} [<i>kN</i>]	q _{ik} [kN/m]	q _f [kN/m]
R_A^*	431.25	32.02	-
R _B *	168.75	13.73	-
TOTALE	600	45.75	-

Tabella 4.4 reazioni per carichi da traffico M1ext.


* A = filo 0, B = filo 200

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

4.2.5.2. Massimo carico verticale su impalcato lato interno (files M1int)

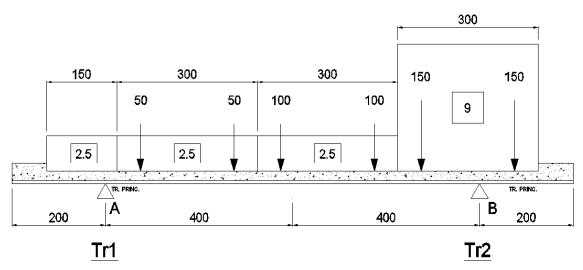


Figura 4.11 M1int – sezione tipica.

M1int	Q _{1k} [<i>kN</i>]	q _{ik} [kN/m]	q _f [kN/m]
R_A^*	168.75	13.73	-
R _B [∗]	431.25	32.02	-
TOTALE	600	45.75	-

Tabella 4.5 reazioni per carichi da traffico M1int.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

4.2.5.3. Massimo carico torcente su trave esterna 2 stese (files T1ext)

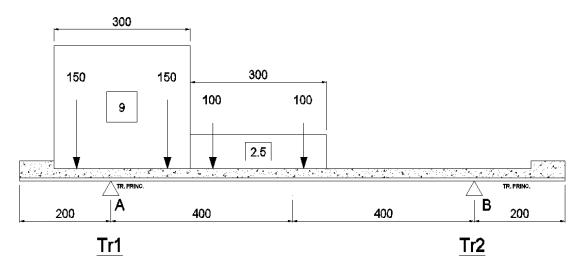


Figura 4.12 T1ext - Sezione tipica

T1ext	Q _{1k} [<i>kN</i>]	q _{ik} [kN/m]	q _f [kN/m]
R _A *	409.38	30.61	-
R _B *	90.62	3.89	-
TOTALE	500	34.5	-

Tabella 4.6 reazioni per carichi da traffico T1ext.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

4.2.5.4. Massimo carico torcente su trave interna 2 stese (files T1int)

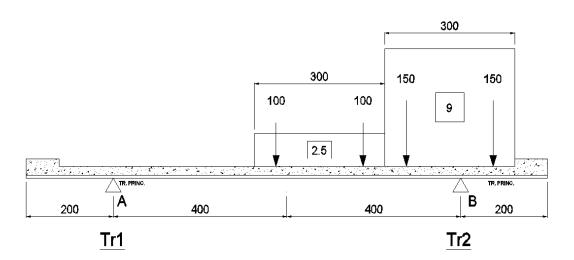


Figura 4.13 T1int - sezione tipica.

T1int	Q _{1k} [<i>kN</i>]	q _{ik} [kN/m]	q _f [kN/m]
R _A *	90.62	3.89	-
R _B *	409.38	30.61	-
TOTALE	500	34.5	-

Tabella 4.7 reazioni per carichi da traffico T1int.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

4.2.5.5. Massimo carico torcente su trave esterna 1 stesa (files T2ext)

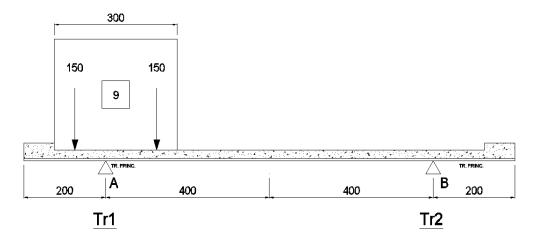


Figura 4.14 T2ext - Sezione tipica

T2ext	Q _{1k} [<i>kN</i>]	q _{ik} [kN/m]	q _f [kN/m]
R _A *	290.62	26.16	-
R _B *	9.38	0.84	-
TOTALE	300	27	-

Tabella 4.8 reazioni per carichi da traffico T2ext.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

4.2.5.6. Massimo carico torcente su trave interna (files T2int)

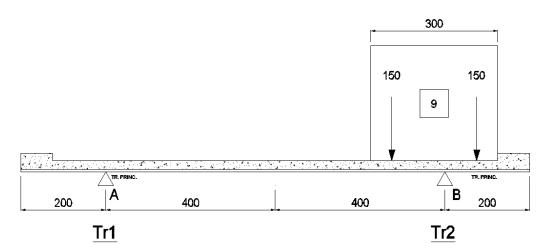
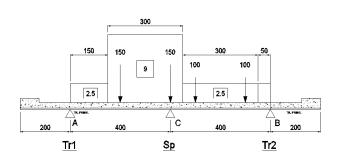


Figura 4.15 T2int – sezione tipica.

T2int	Q _{1k} [<i>kN</i>]	q _{ik} [kN/m]	q _f [kN/m]
R _A *	9.38	0.84	-
R _B *	290.62	26.16	-
TOTALE	300	27	-

Tabella 4.9 reazioni per carichi da traffico T2int.



RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

4.2.5.7. Massimo carico verticale su impalcato su trave di spina (files M2ext / M2int)

FASE III M2ext (Spina) FASE III M2int (Spina)

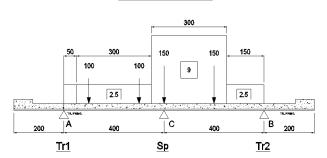


Figura 4.16 M2ext / M2int – sezione tipica.

M2ext	Q _{1k} [<i>kN</i>]	q _{ik} [kN/m]	q _f [kN/m]
R _A *	47.33	7.58	-
R _{C,SPINA} *	380.34	29.215	-
R _B *	72.33	2.705	-
TOTALE	500	39.5	-

M2int	Q _{1k} [<i>kN</i>]	q _{ik} [kN/m]	q _f [kN/m]
R _A *	72.33	2.705	-
R _{C,SPINA} *	380.34	29.215	-
R _B *	47.33	7.58	-
TOTALE	500	39.5	-

Tabella 4.10 reazioni per carichi da traffico M1ext.

* A = filo 0, C = filo 100, B = filo 200

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

4.3. AZIONE DEL RITIRO

4.3.1. RITIRO E VISCOSITÀ: $\varepsilon_2 \to \varepsilon_3$

Gli effetti del ritiro e dello scorrimento viscoso del calcestruzzo vengono valutati secondo la teoria approssimata del metodo di Mörsch (cfr. "Impalcati in sistema misto acciaio-calcestruzzo", Matildi-Mele, Edizioni Italsider), ossia sul concetto di deformazione del calcestruzzo totalmente impedita dalla trave metallica.

Per effetto della deformazione impedita nasce una azione assiale di trazione nella soletta e di compressione (eccentrica) per la sezione composta trave+soletta, come evidenziato nella seguente figura.

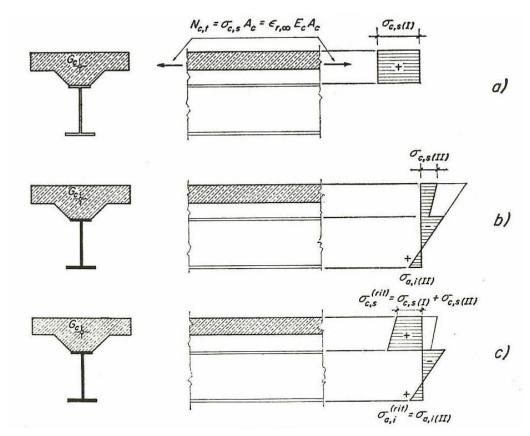


Figura 4.17 Andamento tensioni interne per l'effetto del ritiro del calcestruzzo della soletta.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

4.3.2. DEFORMAZIONE DA RITIRO E COEFFICIENTE DI VISCOSITÀ

Ritiro e viscosità del calcestruzzo

Nel presente paragrafo si riporta, secondo quanto previsto dalla normativa vigente (D.M. 17/01/18 par. 11.2.10.6), il calcolo della deformazione a tempo infinito per ritiro e il relativo coefficiente di viscosità.

Proprietà della sezione tipica dell'impalcato

Larg. impalcato= 12.00 m

 $S_{qetto} = 27.00$ Spessore getto cm S_{predalla}= 6.00 Spessore predalla cm

da cui si ottiene

 $A_c = 2.52$ area sezione getto in calcestruzzo

u = 12.00perimetro della sezione in calcestruzzo esposta all'aria

 $h_0 = 420.00$ 2Ac/u (dimensiona fittizia) mm

k_h= 0.72 (tabella 11.2.Vb)

Proprietà del calcestruzzo utilizzato			
R _{ck} =	= 40 N/mm ²		
E _{cm} =	33643 N/mm2		
E _a =	210000	N/mm2	
f _{ck} =	f _{ck} = 33 N/mm2		
f _{cm} = 41 N/mm2			

Si riportano quindi i seguenti valori di deformazione ottenuti i funzione dell'umidità di progetto assunta (75%)il coefficiente di Viscosità e quelli di omogeneizzazione derivanti

Deformazione da ritiro per essicamento -0.00030 $\varepsilon_{c0} =$ Valore medio a tempo infinito della deformazione per ritiro da essicamento -0.00022 $\varepsilon_{cd,\infty}$ = Valore medio a tempo infinito della deformazione per ritiro autogeno -0.00006

Deformazione totale da ritiro -0.00027 $\varepsilon_{cs,\infty} =$

1.660 Coefficiente di viscosità (t_o>60) $\phi_{(\infty, to)} =$

Coefficiente di omogeinizzazione per azioni di breve durata (Fase 3) $n_3 =$ 6.24 Coefficiente di omogeinizzazione per azioni di lunga durata (Fase 2) $n_2 = n_3 \cdot (1 + \varphi_{(\infty,to)}) =$ 16.60

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

L'azione del ritiro, ossia la deformazione del calcestruzzo (ritiro) durante le fasi di indurimento, porta a una coazione interna dovuta all'opposizione della trave metallica a detta deformazione. L'effetto è quello di una trazione agente sul baricentro del getto che quindi rispetto al baricentro della trave metallica è eccentrica e crea un momento flettente

L'effetto del ritiro si valuta, quindi, mediante la sovrapposizione di due effetti:

- 1) Una trazione agente nel baricentro della soletta (N_r)
- 2) Una pressoflessione applicata alla sezione composta: l'effetto flessionale è valutato applicando un momento al modello di calcolo, mentre la compressione è applicata direttamente in fase di verifica.

Nel seguito si riporta il calcolo dell'azione Normale e del conseguente effetto flettente

Ac=	2.52 m ²	
n = n2 =	16.60	Coeff. di omogeneizzazione
$\varepsilon_{\rm cs,\infty}$ =	-0.00027	Deformazione totale da ritiro
b=	1.527 m	Distanza baricentro getto cls - baricentro medio sez. mista in Fase 2

Nr,eq =
$$(A_c \cdot \epsilon_{cs,\infty} \cdot E_a)/n_2 = 8725 \text{ kN}$$

Mr,eq = Nr,eq · b2 = 13323 kNm

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

4.4. CEDIMENTI VINCOLARI: ϵ_4

Per tenere conto dei possibili cedimenti di fondazione delle sottostrutture a sostegno dell'impalcato nel corso della vita utile dello stesso, si valuta convenzionalmente l'effetto iperstatico associato a tale situazione utilizzando per ciascun appoggio del ponte la seguente formula:

Cedimento verticale sull'i-esima pila $\delta_{i,p} = (I_{i-1} + I_i) / 2 \times 1/5000$

 $:\delta_{i,sp} = I_i / 2 \times 1/5000$ Cedimento sull'i-esima spalla

Cedimento di progetto		δi [mm]
Spalla 1	60000 / (2x5000)	6
Pila 1	(60000+90000) / (2x5000)	15
Pila 2	(90000+60000) / (2x5000)	15
Pila 3	(60000+35000) / (2x5000)	9.5
Spalla 2	Spalla 2 35000 / (2x5000)	

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

4.5. FRENATURA (Q₃)

Secondo il D.M. 17/01/2018 l'azione longitudinale di frenamento è funzione del carico verticale totale agente sulla corsia convenzionale n. 1, e è uguale a:

$$180kN \le q_3 = 0.6(2 \cdot Q_{1k}) + 0.1 \cdot q_{1k} \cdot w_1 \cdot L \le 900kN$$

Considerando la lunghezza massima del viadotto risulta:

$$Q_3 = (0.6 \times 2 \times 300 + 0.1 \times 9 \times 3 \times 245) \text{ kN} = 1021.5 \text{ kN} < 900 \text{ kN} \Rightarrow Q_3 = 900 \text{ kN}$$

Poiché la definizione dei gruppi di carico di cui alla tabella 5.1.IV del D. Min. 17/01/2018 non prevede la compresenza tra carichi orizzontali e carichi verticali caratteristici (gruppo 1), prevedendo la loro combinazione solo al gruppo 2 (in concomitanza ai carichi mobili frequenti), la presenza dell'azione della frenatura non è stata presa in considerazione nel dimensionamento dell'impalcato.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

4.6. AZIONE CENTRIFUGA (Q₄)

In accordo al par. 5.1.3.6 del DM 17/01/2018 l'azione centrifuga totale, applicata a livello della pavimentazione e agente in direzione normale all'asse del ponte, risulta pari a:

$$200 < R < 1500 \text{ m} \rightarrow Q_4 = 40 \text{ x } Q_v / R = \approx 96 \text{ kN}$$

essendo

n = 3numero di corsie di carico

raggio di curvatura R = 500 m

Q_v = 1200 kN carico totale dovuto agli assi tandem dello schema di carico 1 agenti sul ponte

Poiché la definizione dei gruppi di carico di cui alla tabella 5.1.IV del D. Min. 17/01/2018 non prevede la compresenza tra carichi orizzontali e carichi verticali caratteristici (gruppo 1), prevedendo la loro combinazione solo al gruppo 2 (in concomitanza ai carichi mobili frequenti), la presenza dell'azione centrifuga non è stata presa in considerazione nel dimensionamento dell'impalcato.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

4.7. AZIONE DEL VENTO (Q₅)

Si valuta la pressione del vento in accordo con il paragrafo 3.3 del DM. 17/01/2018. La pressione del vento è data dall'espressione:

 $p_w = q_b \cdot c_e \cdot c_p \cdot c_d,$

dove:

q_b = è la pressione cinetica di riferimento;

c_e = è il coefficiente di esposizione;

 c_p = è il coefficiente di pressione (o di forma, o aerodinamico);

c_d = è il coefficiente dinamico.

AZIONE VENTO 3 [-] Zona Velocità di riferimento zona 27 [m/s] $v_{b,0} =$ Classe di Rugosità C [-] Distanza dal mare 40 [km] quota sito s.l.m. 270 [m] a_s = Categoria |||[-] parametri sito 500 [m] $a_0 =$ parametri sito 0.02 [1/s] k_a = Velocità di riferimento sito 27 [m/s] $v_b =$ Tempo di ritorno 50 [anni] $T_R =$ 1.00 [-] $\alpha_R =$ Velocità di picco $v_r = v_b^* \alpha_R =$ 27.02 [m/s] 25 [m] altezza caratteristica struttura z = parametro sito $k_r =$ 0.2 [-] altezza di riferimento sito 0.1 [m] z₀ = altezza minima 5 [m] $z_{min} =$ 1.25 [kg/m³] densità aria ρ= 456 [N/m²] pressione cinetica base $q_b =$ Coefficiente di Topografia 1 [-] Ct = Coefficiente di Esposizione 2.77 [-] $c_e =$ Coefficiente Dinamico $C^{q} =$ 1.26 [kN/m²] $q_d = c_e c_d q_b =$

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

4.7.1. VENTO SULL'IMPALCATO

La superficie dei carichi transitanti sul ponte esposta al vento è assimilata ad una parete rettangolare continua di altezza costante pari a 3 m, dalla pavimentazione stradale.

In riferimento alla distanza del baricentro della generica sezione d'impalcato dal limite superiore di soletta, si calcolano il carico orizzontale e il momento torcente dovuto al vento scarico, il carico orizzontale e il momento torcente dovuto al vento carico.

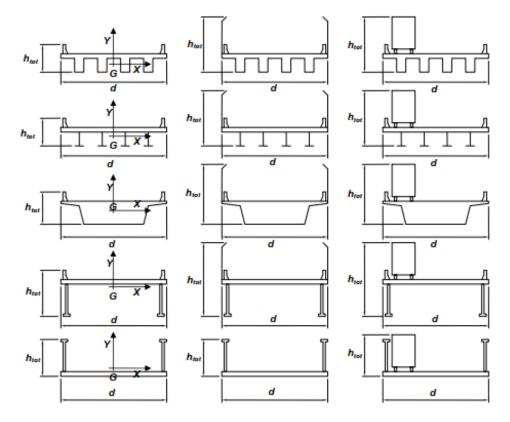


Figura 4.18 Tipi di impalcati da ponte trattati nel presente paragrafo delle CNR-DT 207/2008.

Ammettendo che il vento agisca in direzione prevalentemente orizzontale e ortogonalmente all'asse dell'impalcato, esso esercita nel piano della sezione un sistema di azioni aerodinamiche per unità di lunghezza riconducibili a una forza parallela alla direzione del vento, fX, a una forza verticale, fY, e a un momento intorno alla linea d'asse, mZ (Figura G.54, Eq. (3.14), paragrafo 3.3.4). Tali azioni sono quantificate mediante una coppia di coefficienti di forza, cfX e cfY, e mediante un coefficiente di momento, cmZ.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Azione del vento lungo x (trasversale)

È necessario, inoltre, determinare il coefficiente di forza in direzione x, che è calcolato facendo riferimento al §8.3 dell'UNI EN 1991-1-4:2005 e facendo la distinzione tra la condizione di ponte carico e quella di ponte scarico.

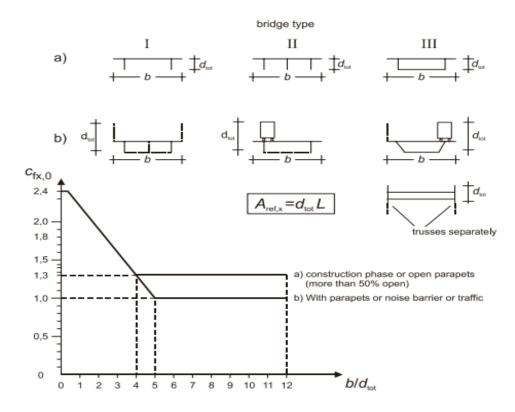


Figure 8.3 - Force coefficient for bridges, cfx,0

Nel caso di ponte scarico si ha che:		
Altezza trave	h ₁ =	3.5 [m]
Altezza soletta+cordolo	h _s =	0.69 [m]
Altezza sistema di ritenuta	d ₁ =	1.50 [m]
Altezza totale (struttura + sistema di ritenuta)	$d_{tot} = $	5.69 [m]
Larghezza impalcato	b =	12 [m]
	$b/d_{tot} =$	2.1
Coefficiente di forza	$c_{f,x} = $	1.9
Lunghezza del ponte	L =	245 [m]
Area di riferimento x	$A_{ref,x} =$	1394.1 [m²]
Azione concentrata dovuta al vento	$F_x = A_{ref,x} * q_d * c_{f,x} =$	3341 [kN]

Azione totale X vento su impalcato

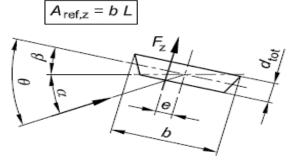
 $p_{xtot} = F_x/L =$

13.64 [kN/m]

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Nel caso di	nonto	aariaa	oi bo	aha:
ivei caso di	ponte	Carico	SHIA	CHE.

Altezza trave	h ₁ =	3.5 [m]
Altezza soletta+pavimentazione	h _s =	0.62 [m]
Altezza stesa di carico	$h_c = $	3.00 [m]
Altezza totale (struttura + stesa di carico)	$d_{tot} =$	7.12 [m]
Larghezza impalcato	b =	12 [m]
	$b/d_{tot} =$	1.7
Coefficiente di forza	$c_{f,x} = $	2.0
Lunghezza del ponte	L =[245 [m]
Area di riferimento x	$A_{ref,x} =$	1744.4 [m²]
Azione concentrata dovuta al vento	$F_x = A_{ref,x} * q_d * c_{f,x} =$	4471 [kN]


Azione totale X vento su impalcato	$p_{xtot} = F_x/L =$	18.25 [kN/m]	
------------------------------------	----------------------	---------------------	--

Azione del vento lungo y (longitudinale)

Si assume che la forza del vento agente lungo y sia pari al 25% della forza del vento agente lungo x nel caso di ponte scarico.

Azione totale Y vento su impalcato	$p_{ytot} = 0.25*p_{xtot} =$	3.41 [kN/m]	
------------------------------------	------------------------------	--------------------	--

Azione del vento lungo z (verticale)

Larghezza impalcato
Area di riferimento z
Coefficiente di forza verso alto e basso
Azione concentrata dovuta al vento
F (1.20) P (1.20)

Azione concentrata dovuta al vento	
Eccentricità applicazione carico	

b = [12	m]
$A_{ref,z} = b^*L =$	2940.0	[m²]
$c_{f,z} =$	0.9	(vedere EC1-1-4 §8.3.3)

$$F_z = A_{ref,z} * q_d * c_{f,z} =$$
 3339 [kN]
 $e = b/4 =$ 3.00 [m]

Azione totale Z vento su impalcato	$p_{ztot} = F_z/L =$	13.63 [kN/m]
------------------------------------	----------------------	---------------------

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

4.8. AZIONE TERMICA (Q₇)

4.8.1. VARIAZIONE TERMICA DIFFERENZIALE

La trattazione teorica della variazione termica differenziale sulla sezione mista acciaio-cls è del tutto analoga a quella del ritiro e viene effettuata sulla base delle ripartizioni di temperatura estiva ed invernale previste dalle norme UNI EN 1991-2-5 (di cui si riporta uno stralcio nella figura sottostante).

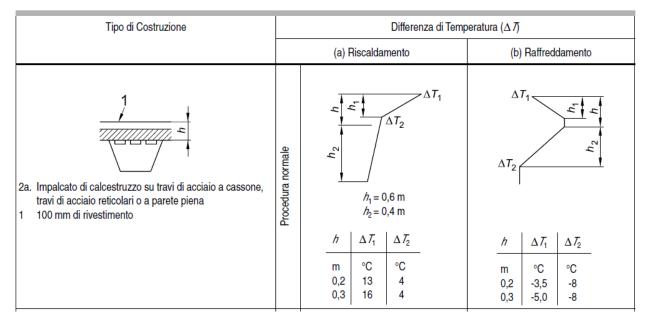


Figura 4.19 Andamento temperature interne all'impalcato.

Dalle valutazioni rigorose sul calcolo dei gradienti termici efficaci nelle usuali sezioni da ponte si evidenzia che la soletta risulta nelle due configurazioni (riscaldamento e raffreddamento), in termini di parametri efficaci, sempre "più calda" della trave metallica. Per tale ragione la condizione di variazione termica differenziale nell'impalcato si potrebbe ritenere sempre discorde con il ritiro: tuttavia a favore di sicurezza ritiro e termica, in fase di inviluppo delle sollecitazioni di progetto, potranno essere concordi o discordi allo scopo di massimizzarne gli effetti sulla sezione.

Molto a favore di sicurezza si è lo stesso considerato un $\Delta T = \pm 10$ °C fra soletta e trave in acciaio, agente in tempi brevi e quindi con coefficiente di omogeneizzazione di fase 3.

In analogia con quanto già illustrato per il ritiro sulle sezioni miste l'effetto della termica differenziale si può tradurre nella seguente considerazione: l'acciaio varia la sua temperatura più rapidamente del cls, il quale contrasta la deformazione delle travi in acciaio. La congruenza fra i due materiali limita la deformazione della trave metallica generando quindi uno stato coattivo composto da:

- Tensoflessione nella trave metallica ipotizzata isolata
- Pressoflessione per la sezione mista.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

L'azione equivalente che si genera dovrebbe essere calcolata imponendo una deformazione nulla nelle fibre che separano l'acciaio dal cls. Quindi per annullare la deformazione termica in corrispondenza dell'estradosso della trave metallica deve nascere un'azione dall'equilibrio della sola sezione di acciaio:

$$N_{eq}/A_a + (N_{eq} e_a) / [J_a/e_a] = \alpha \Delta T E_a$$
 da cui:

$$N_{eq} = \alpha \Delta T E_a A_a \cdot [J_a / (J_a + A_a e_a^2)]$$

A= area

J= momento d'inerzia

Cautel ativamente non si considera l'equilibrio alla rotazione e si pone quindi il termine riduttivo da esso derivante pari a $[J_2 / (J_2 + A_2 e_2^2)] = 1$

Conseguentemente $N_{eq} = \alpha \Delta T E_a A_a$

In funzione del valore medio della sezione metallica sullo sviluppo dell'impalcato e del gradiente termico ipotizzato si ottiene quindi il seguente valore dell'azione assiale e del relativo momento di trasporto:

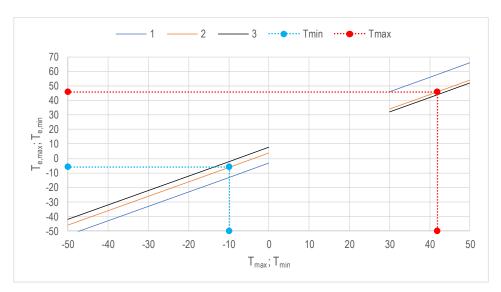
Calcolo azione termica

$$A_a =$$
 1994 cm² Area media della sezione metallica $\alpha =$ 1.20E-05 Coeff. di dilatazione termica acciaio

$$\Delta T = 10 \, ^{\circ}C$$

$$N_{t,eq} \cong \qquad (\alpha \cdot \Delta T \cdot \mathsf{E}_a \cdot \mathsf{A}_a) = \qquad \qquad \textbf{5030} \; \; \text{kN} \qquad \qquad (\text{per ciascuna trave})$$

$$M_{t,eq} = N_{t,eq} \cdot b_3 = 5990 \text{ kNm}$$
 (per ciascuna trave)


RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

4.8.2. VARIAZIONE TERMICA UNIFORME

La componente di temperatura uniforme dipende dalla minima e dalla massima temperatura che un ponte raggiunge. Questo porta a un intervallo di variazione uniforme di temperatura che, in una struttura non vincolata porterebbe a una variazione nella lunghezza dell'elemento

Azioni termiche sui ponti

Nome del sito Peglio Regione Marche Zona Ш a_s (Quota su l.m.m. del sito) 270 m Tempo di ritorno 50 anni -10 °C Temperatura minima aria esterna $T_{min} =$ Temperatura massima aria esterna $T_{max} =$ 42 °C Tipo di impalcato Impalcato a struttura composta Curva di riferimento 2

Temperatura uniforme minima $T_{e,min}$ = -6 °C Temperatura uniforme massima $T_{e,max}$ = 46 °C Temperatura iniziale all'atto della regolazione degli appoggi T_0 = 15 °C Tipo di installazione Stima temperatura accurata e preregolazione

Variazione termica in fase di raffreddamento $\Delta T_{exp,d} = T_{e,max} - T_0 + \Delta T_0 = 41$ °C Variazione termica in fase di raffreddamento $\Delta T_{con,d} = T_{e,min} - T_0 - \Delta T_0 = -31$ °C

PROGETTAZIONE ATI:

Variazione di temperatura iniziale

 $\Delta T_0 =$

10

°C

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

4.9. URTO DI VEICOLO IN SVIO (Q₈)

Le azioni eccezionali q8 previste riguardano l'urto dei veicoli in svio contro i guardrails posti ai bordi dell'impalcato stradale.

Il punto 5.1.3.10 del D.M. 2018 rimanda al punto 3.6.3.3.2 dello stesso decreto, che prevede che, in assenza di specifiche prescrizioni, nel progetto strutturale dei ponti si può tener conto delle forze causate da collisioni accidentali sugli elementi di sicurezza attraverso una forza orizzontale equivalente di collisione di 100 kN.

Essa deve essere considerata agente trasversalmente ed orizzontalmente 100 mm sotto la sommità dell'elemento o 1.0 m sopra il livello del piano di marcia, a seconda di quale valore sia più piccolo. Questa forza deve essere applicata su una linea lunga 0.5 m.

Per la verifica si considera una combinazione di carico eccezionale nella quale all'azione d'urto applicato al sicurvia si associa un carico verticale isolato pari ad una ruota del secondo schema di carico (200 kN su un'impronta 0.35 x 0.60 m).

Tale condizione non è però dimensionante per la statica globale dell'impalcato e sarà considerata unicamente nel calcolo della soletta.

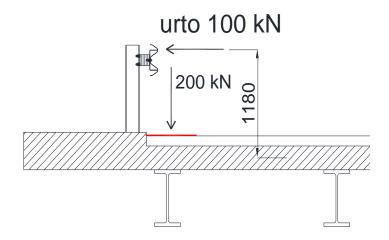


Figura 4.20 Urto del veicolo in svio.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

4.10. AZIONE SISMICA (E)

Si riporta il calcolo dell'azione sismica in accordo alle NTC2018 eseguito con il foglio di calcolo fornito dal Ministero dei Lavori Pubblici.

Figura 4.21 Localizzazione geografica del ponte.

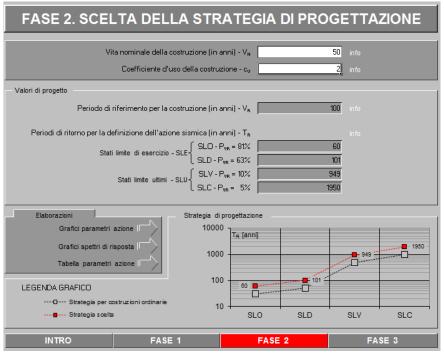


Figura 4.22 Vita nominale e classe d'uso del ponte.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

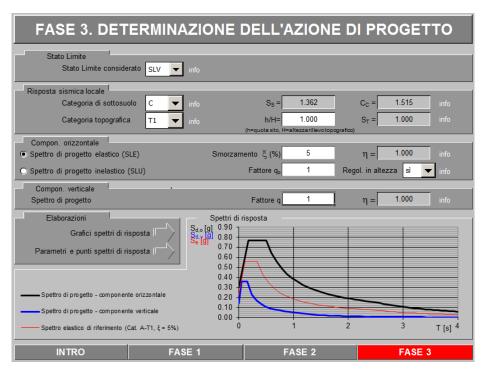
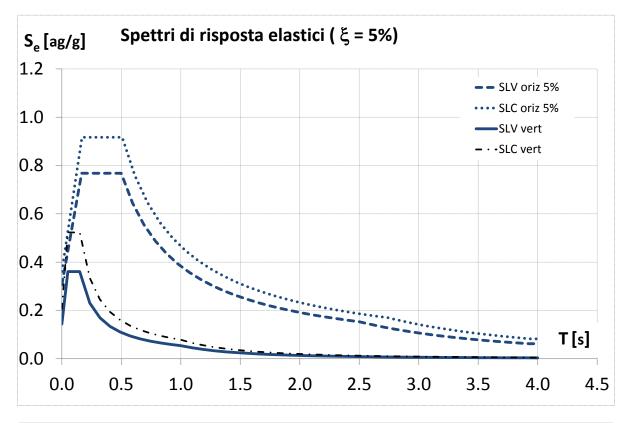
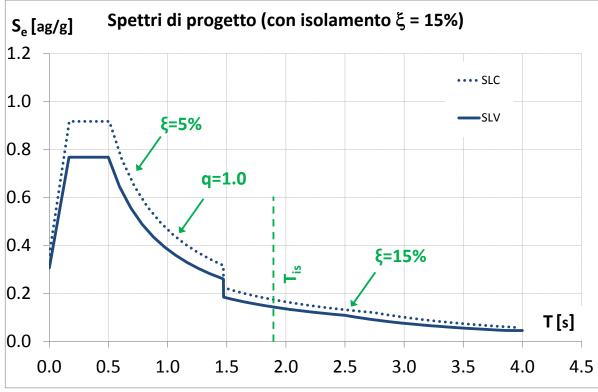


Figura 4.23 Spettri di risposta elastici con smorzamento convenzionale del 5%.





RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Di seguito si riportano gli spettri smorzati utilizzati. Lo spettro si considera smorzato in corrispondenza di periodi superiori a 0.8 x Tis.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

5. CRITERI DI CALCOLO

Nel presente capitolo si riportano i criteri generali di verifica degli elementi strutturali soggetti alle azioni statiche e sismiche, gli approcci e i criteri con cui vengono combinati i carichi.

Non si riporta l'elenco dettagliato di tutte le combinazioni in quanto in numero molto elevato, a causa delle molteplici disposizioni dei carichi mobili sull'impalcato.

5.1. CRITERI DI CALCOLO E DI VERIFICA PER LE AZIONI STATICHE

Le verifiche di sicurezza degli elementi strutturali alle azioni statiche sono effettuate tramite il D.M. 17 gennaio 2018, secondo il criterio semiprobabilistico degli stati limite.

Tale norma, al paragrafo 2.1, prevede infatti che la sicurezza e le prestazioni di un'opera, o di una parte di essa, debbano essere valutate in relazione agli stati limite che si possono verificare durante la vita nominale. Stato limite è la condizione superata la quale l'opera non soddisfa più le esigenze per le quali è stata progettata.

In particolare, le opere e le varie tipologie strutturali devono possedere i seguenti requisiti:

- sicurezza nei confronti di stati limite ultimi (SLU): capacità di evitare crolli, perdite di equilibrio e dissesti gravi, totali o parziali, che possano compromettere l'incolumità delle persone ovvero comportare la perdita di beni, ovvero provocare gravi danni ambientali e sociali, ovvero mettere fuori servizio l'opera;
- sicurezza nei confronti di stati limite di esercizio (SLE): capacità di garantire le prestazioni previste per le condizioni di esercizio:
- robustezza nei confronti di azioni eccezionali: capacità di evitare danni sproporzionati rispetto all'entità delle cause innescanti quali incendio, esplosioni, urti.

Secondo il paragrafo 2.2.3 del D.M. 2018, le opere strutturali devono essere verificate:

- per gli stati limite ultimi che possono presentarsi, in conseguenza alle diverse combinazioni delle azioni;
- per gli stati limite di esercizio definiti in relazione alle prestazioni attese.

In conformità al punto 2.3 del D.M. 2018, per la valutazione della sicurezza delle costruzioni si devono adottare criteri probabilistici scientificamente comprovati, quale il metodo di primo livello denominato metodo semiprobabilistico agli stati limite. In tale formulazione, la sicurezza strutturale deve essere verificata tramite il confronto tra la resistenza e l'effetto delle azioni. Per la sicurezza strutturale, la resistenza dei materiali e le azioni sono rappresentate dai valori caratteristici, R_{ki} e F_{ki} definiti, rispettivamente, come il frattile inferiore delle resistenze e il frattile (superiore o inferiore) delle azioni che minimizzano la sicurezza. In genere, i frattili sono assunti pari al 5%. Per le grandezze con piccoli coefficienti di variazione, ovvero per grandezze che non riguardino univocamente resistenze o azioni, si possono considerare frattili al 50% (valori mediani).

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

La verifica della sicurezza nei riguardi degli stati limite ultimi di resistenza si effettua con il metodo dei coefficienti parziali di sicurezza espresso dall'equazione formale:

 $R_d \ge E_d$

Dove:

è la resistenza di progetto, valutata in base ai valori di progetto della resistenza dei materiali e ai valori nominali delle grandezze geometriche interessate;

 E_d è il valore di progetto dell'effetto delle azioni.

I coefficienti parziali di sicurezza, associati ai materiali ed alle azioni, tengono in conto la variabilità delle rispettive grandezze e le incertezze relative alle tolleranze geometriche e alla affidabilità del modello di calcolo.

La verifica della sicurezza nei riguardi degli stati limite di esercizio si esprime controllando aspetti di funzionalità e stato tensionale.

5.2. ANALISI GLOBALE ELASTICA

L'analisi è eseguita secondo il metodo globale elastico. Il programma di calcolo utilizzato per la modellazione è il SAP2000 ® versione 22 (licenze di Sap2000 Advanced/Ultimate intestata a SETIN Servizi Tecnici Infrastrutture s.r.l.). Le sollecitazioni ottenute dai singoli modelli di calcolo di ciascuna fase resistente di seguito illustrata vengono inviluppate e combinate per ottenere le condizioni di verifica più gravose mediante una macro di post-processione dei risultati che crea il file di input per il programma di verifica delle sezioni miste realizzate con il software PONTI EC4 (licenza di PONTI EC4 intestata a Steel Project Engineering s.r.l).

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

5.2.1. FASI DI CALCOLO

Trattandosi, nel funzionamento globale dell'impalcato, di un sistema misto acciaio-cls, le azioni agenti vengono suddivise in tre fasi, corrispondenti al grado di maturazione del getto di cls, e quindi ai diversi livelli di rigidezza e caratteristiche statiche delle sezioni.

Fase 1: considera il peso proprio della struttura metallica, delle lastre prefabbricate, del getto della soletta che, in questa fase, è ancora inerte e delle velette metalliche. La sezione resistente corrisponde alla sola parte metallica.

Fase 2: considera i successivi carichi permanenti applicati alla struttura (pavimentazione, G.R. ecc.) ai quali corrisponde invece una sezione resistente mista acciaio - calcestruzzo.

Per tenere in considerazione i fenomeni " lenti " che accompagnano questa fase, imputabili alla viscosità del calcestruzzo, si adotta un valore del modulo elastico del calcestruzzo corrispondente a quello suggerito dalla normativa, che si traduce, per le verifiche condotte con il metodo degli stati limiti, a considerare un valore del coefficiente di omogeneizzazione "n" pari a 16.65.

Anche gli effetti del ritiro sono da considerarsi " lenti " in quanto concomitanti agli effetti viscosi, e

vengono pertanto anch'essi valutati con le caratteristiche di resistenza della sezione della fase 2.

Fase 3: corrisponde al transito dei carichi accidentali.

Le sollecitazioni nella sezione resistente acciaio - calcestruzzo vengono calcolate considerando il rapporto tra i moduli elastici effettivi dei due materiali, che vale 6.24, per la classe di resistenza del calcestruzzo ipotizzata C32/40.

Particolare attenzione viene rivolta alla determinazione delle lunghezze delle stese di carico per ottenere in ciascuna sezione la condizione di massimo valore di taglio, di momento flettente o di momento torcente.

In tale fase si tiene inoltre conto degli effetti dovuti alla variazione termica differenziale che si traduce in un'azione normale lungo l'asse del viadotto e relativo momento flettente di trasporto dovuto all'eccentricità baricentro soletta – baricentro sezione mista.

Per esigenze computazionali il calcolo delle sollecitazioni di progetto avverrà suddividendo le diverse condizioni di carico in più modelli di studio, suddivisi in base alla fase di carico di volta in volta presa in esame.

Per esigenze computazioni può essere necessario utilizzare un modello privo di carichi per simulare la condizione di carico nullo, direttamente all'interno dell'inviluppo si inserisce nella fase di competenza la condizione denominata NULL, che simula l'assenza di carichi nella struttura. I file di studio per le travi principali sono riportati nella seguente tabella.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

NOME FILE	TIPO FASE	CARICHI
Fase1.sdb	Montaggio – caratteristiche statiche del solo acciaio	Peso proprio strutture metalliche, veletta, predalle metalliche e soletta
Fase2.sdb	Carichi di lunga durata – caratteristiche statiche acciaio + cls	Pesi permanenti portati di impalcato (pavimentazione, marciapiedi, guardrails, barriere, eventuali impianti)
Ritiro.sdb	Carichi di lunga durata – caratteristiche statiche acciaio + cls	Effetto del ritiro
Cedimenti.sdb	Carichi di lunga durata – caratteristiche statiche acciaio + cls	Effetto dei cedimenti vincolari
GT.sdb	Carichi di breve durata – caratteristiche statiche acciaio + cls	Effetto della variazione termica differenziale (discorde dal ritiro)
VUT.sdb	Carichi di breve durata – caratteristiche statiche acciaio + cls	Effetto della variazione termica uniforme
M1ext_**.sdb (più file in funzione del numero di campate)	Carichi di breve durata – caratteristiche statiche acciaio + cls	Carico verticale massimo da traffico sulla sezione trasversale del ponte con 3 stese di carico, addossato alla trave esterna. In funzione delle diverse posizioni del carico mobile ciascun file di analisi conterrà "x" differenti condizioni di carico necessarie a massimizzare le sollecitazioni di momento e taglio secondo la linea di influenza della caratteristica di sollecitazione.
M1int_**.sdb (più file in funzione del numero di campate)	Carichi di breve durata – caratteristiche statiche acciaio + cls	Come M1ext ma con il carico addossato su trave interna.
T1ext_**.sdb (più file in funzione del numero di campate)	Carichi di breve durata – caratteristiche statiche acciaio + cls	Carico torcente massimo da traffico sulla sezione trasversale del ponte con 2 stese di carico, addossato alla trave esterna. In funzione delle diverse posizioni del carico mobile ciascun file di analisi conterrà "x" differenti condizioni di carico necessarie a massimizzare le sollecitazioni di momento e taglio secondo la linea di influenza della caratteristica di sollecitazione.
T1int_**.sdb (più file in funzione del numero di campate)	Carichi di breve durata – caratteristiche statiche acciaio + cls	Come T1ext ma con il carico addossato su trave interna.
T2ext_**.sdb (più file in funzione del numero di campate)	Carichi di breve durata – caratteristiche statiche acciaio + cls	Carico verticale da traffico sulla sezione trasversale del ponte con 1 stesa di carico (massimizzazione delle sollecitazioni sul traverso). In funzione delle diverse posizioni del carico mobile ciascun file di analisi conterrà "x" differenti condizioni di carico necessarie a massimizzare le sollecitazioni di momento e taglio secondo la linea di influenza della caratteristica di sollecitazione.
T2int_**.sdb (più file in funzione del numero di campate)	Carichi di breve durata – caratteristiche statiche acciaio + cls	Come T1ext ma con il carico addossato su trave interna.
Vento.sdb	Carichi di breve durata – caratteristiche statiche acciaio + cls	Azione da vento

Tabella 5.1 Files di studio per l'analisi delle travi principali

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

5.3. COMBINAZIONI DELLE AZIONI

Ai fini delle verifiche degli stati limite, il punto 2.5.3 del D.M. 2018 definisce le seguenti tipologie di combinazione delle azioni:

Combinazione fondamentale (SLU), generalmente impiegata per gli stati limiti ultimi:

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{K1} + \sum_{i = 1} \gamma_{Q,i} \cdot \psi_{0,i} \cdot Q_{K,i}$$

Combinazione caratteristica (SLE rara), generalmente impiegata per gli stati limiti di esercizio irreversibili:

$$G_1 + G_2 + P + Q_{K1} + \sum_{i>1} \psi_{0,i} \cdot Q_{K,i}$$

Combinazione frequente (SLE frequente), generalmente impiegata per gli stati limiti di esercizio reversibili:

$$G_1 + G_2 + P + \sum_{i \ge 1} \psi_{1,i} \cdot Q_{K,i}$$

Combinazione quasi permanente (SLE quasi permanente), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \sum_{i>1} \psi_{2,i} \cdot Q_{K,i}$$

Combinazione sismica (SLV - SLC), impiegata per gli stati limite ultimi connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \sum_{i \ge 1} \psi_{2,i} \cdot Q_{K,i}$$

Combinazione eccezionale (ECC), impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto Ad:

$$G_1 + G_2 + P + A_d + \sum_{i>1} \psi_{2,i} \cdot Q_{K,i}$$

Nelle precedenti relazioni, si è utilizzato il significato dei seguenti simboli:

- G_1 valore caratteristico delle azioni permanenti;
- G_2 valore caratteristico delle azioni permanenti non strutturali;
- P valore caratteristico dell'azione di pre-tensione o pre-compressione;
- Q_{K1} valore caratteristico dell'azione variabile di base di ogni combinazione:
- valore caratteristico dell'azione variabile i: $Q_{K,i}$
- coefficiente parziale per le azioni permanenti; YG1
- coefficiente parziale per le azioni permanenti non strutturali; γ_{G2}
- coefficiente parziale per le azioni di pre-tensione o pre-compressione; γ_P
- coefficiente parziale per l'azione variabile di base di ogni combinazione; YQ1
- coefficiente parziale per l'azione variabile i; γQ.i
- coefficienti di combinazione per i vari stati limite, descritti nella seguente tabella; $\psi_{i,i}$
- combinato con.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Con riferimento ai carichi variabili da traffico, si utilizzano i coefficienti di combinazione di cui alla tabella 5.1.VI del D.M. 2018.

Azioni	Effetto del Carico	Ψ ₀ di combinazione	Ψ 1 frequent	ψ ₂ quasi permanent
	Gruppo 1 - Schema 1 (carichi tandem)	0.75	0.75	0.0
A-ioni	Gruppo 1 - Schema 1 (carichi distribuiti)	0.4	0.4	0.0
Azioni da traffico	Gruppo 1 - Schema 2	0.0	0.75	0.0
ua tranico	Gruppo 2a	0.0	0.0	0.0
	Gruppo 4 (folla)	0.0	0.75	0.0
A=:-:-:-	q _{5,v} - Ponte scarico esecuzione	0.8	0.0	0.0
Azioni del vento	q _{5,v} - Ponte scarico SLU e SLE	0.6	0.2	0.0
q _{5,v} - F	q _{5,v} - Ponte carico	0.6	0.0	0.0
Azioni termiche	T_k	0.6	0.6	0.5

Tabella 5.2 Estratto della tabella 5.1.VI del D.M.2018 relativo ai soli carichi presenti sulle strutture in esame coefficienti di combinazione delle azioni variabili per ponti stradali e pedonali.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

5.3.1. AZIONI NELLE VERIFICHE AGLI STATI LIMITE

Le verifiche agli stati limite devono essere eseguite per tutte le più gravose condizioni di carico che possono agire sulle strutture del ponte e delle sottostrutture, valutando gli effetti delle combinazioni definite nel paragrafo precedente.

5.3.2. STATI LIMITE ULTIMI

Nelle verifiche agli stati limite ultimi si distinguono i seguenti casi:

EQU stato limite di equilibrio come corpo rigido;

STR stato limite di resistenza della struttura compresi gli elementi di fondazione;

GEO stato limite di resistenza del terreno.

Per le verifiche nei confronti dello stato limite ultimo di equilibrio come corpo rigido (EQU) si utilizzano i coefficienti parziali yF relativi alle azioni riportati nella colonna EQU delle seguenti tabelle, mentre per le verifiche strutturali si utilizzeranno i coefficienti della colonna STR.

Tipi di Carico	Effetto del Carico	Coefficiente γ _F	EQU ⁽¹⁾	A1 STR	A2 GEO
Permanenti	Favorevoli	γ _{G1}	0.9	1.0	1.0
, ormanena	Sfavorevoli	/G1	1.1	1.35	1.0
Permanenti non Strutturali (2)	Favorevoli	24	0.0	0.0	0.0
Permanenti non Strutturan	Sfavorevoli	γG2	1.5	1.5	1.3
Variabili da traffico	Favorevoli		0.0	0.0	0.0
variabili da trailico	Sfavorevoli	γo	1.35	1.35	1.15
Variabili	Favorevoli		0.0	0.0	0.0
variabili	Sfavorevoli	γQi	1.5	1.5	1.3
Ritiro e Viscosità	Favorevoli		0.0	0.0	0.0
Cedimenti vincolari	Sfavorevoli	$\gamma_{arepsilon 2}, \gamma_{arepsilon 3}$	1.2	1.2	1.2

equilibrio che non coinvolga parametri di deformabilità e resistenza del terreno; altrimenti si

Tabella 5.3 Estratto della tabella 5.1.V del D.M.2018 relativo ai soli carichi presenti sulle strutture in esame – coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

Per il ponte in struttura metallica è richiesto il rispetto dello stato limite di fatica; per la definizione delle combinazioni di verifica, si rimanda alla trattazione dettagliata del relativo paragrafo.

nel caso in cui i carichi permanenti non strutturali (es.: carichi permanenti portati) siano compiutamente definiti, si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

5.3.3. STATI LIMITE DI ESERCIZIO

5.3.3.1. Stato limite di esercizio per strutture in calcestruzzo armato

Per le strutture in calcestruzzo armato come la soletta di impalcato, il paragrafo 4.1.2.2 del D.M. 2018 prevede le seguenti verifiche generali in esercizio:

- verifiche di deformabilità;
- verifiche di fessurazione/verifiche delle tensioni di esercizio;
- verifiche a fatica per quanto riguarda eventuali danni che possano compromettere la durabilità.


5.3.3.2. Stato limite di esercizio per strutture in acciaio

Per le strutture in acciaio, il paragrafo 4.2.4.2 del D.M. 2018 prevede le seguenti verifiche generali in esercizio:

- verifiche di deformabilità (spostamenti verticali e spostamenti laterali);
- verifiche locali su membrature (deformazioni delle anime, plasticizzazioni locali);
- verifiche di scorrimento dei collegamenti ad attrito.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

6. MODELLI DI CALCOLO ADOTTATI

Per la valutazione del quadro deformativo e tensionale delle strutture si utilizzano modelli di calcolo agli elementi finiti sviluppati con il software SAP2000v22.

Il ponte è schematizzato come un graticcio di travi modellate mediante elementi "frame" a cui vengono assegnate le proprietà geometriche in funzione della sezione di acciaio, di calcestruzzo o collaborante nelle diverse fasi di calcolo. Per la modellazione dell'impalcato sono stati schematizzati gli elementi principali (travi longitudinali, diaframmi traversali e elementi soletta) tramite elementi "beam" e su di essi sono stati applicati i carichi di progetto. Dalla risoluzione del sistema, si determinano le caratteristiche di sollecitazione per i vari elementi e la deformazione degli stessi.

Il viadotto in oggetto presenta un impalcato a struttura mista a via superiore. L'impalcato ha un comportamento alla Bredt in quanto sono presenti controventi inferiori.

Lo schema statico globale è quello di trave continua su 4 appoggi con luci delle campate di 50+60+50m

È stata svolta una analisi globale elastica sviluppando il calcolo secondo quanto previsto dalle norme NTC2018, EC4, CNR-UNI 10011 e CNR 10030.

La larghezza di soletta collaborante, necessaria per la determinazione delle caratteristiche geometriche delle sezioni in fase 2 e in fase 3, è stata determinata in accordo al D.M. 17.01.2018.

L'origine del modello numerico è stata assunta in corrispondenza della spalla 1.

I nodi di schema corrispondono a punti caratteristici della struttura quali irrigidenti, giunti e diaframmi.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

6.1. DISCRETIZZAZIONE DELLA STRUTTURA

La struttura, analizzata con il metodo degli elementi finiti, è stata discretizzata.

6.1.1. NODI

I nodi dell'impalcato, rispetto all'origine degli assi cartesiani, hanno la seguente numerazione:

001 – 089	Trave esterno curva
201 – 289	Trave interno curva

I nodi vincolati sono i seguenti:

001 -	201	spalla .	Α
022 -	222	pila 1	
054 -	254	pila 2	
076 -	276	pila 3	
089 -	289	spalla	В

Per i modelli soggetti unicamente a carico verticale i nodi vincolati presentano un vincolo verticale infinitamente rigido e molle orizzontali che simulano la rigidezza in esercizio degli isolatori. Per i modelli di calcolo soggetti alle azioni orizzontali di esercizio come vento, sisma e forza centrifuga, lo schema statico degli isolatori è stato riprodotto fedelmente con molle orizzontali che simulano la rigidezza in esercizio degli isolatori.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

6.1.2. ELEMENTI

Gli elementi della struttura sono i seguenti:

Travi principali

001 - ... - 088201 - ... - 288 Trave esterno curva Trave interno curva

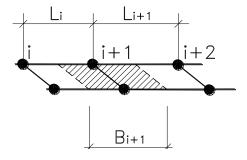
Diaframmi intermedi, di pila e di spalla

301 - 401	Diaframma di Spalla A
303 - 403	Diaframma intermedio
306 - 406	Diaframma intermedio
309 - 409	Diaframma intermedio
311 - 411	Diaframma intermedio
314 - 414	Diaframma intermedio
317 - 417	Diaframma intermedio
319 - 419	Diaframma intermedio
322 - 422	Diaframma di Pila 1
325 - 425	Diaframma intermedio
327 - 427	Diaframma intermedio
330 - 430	Diaframma intermedio
333 - 433	Diaframma intermedio
335 - 435	Diaframma intermedio
338 - 438	Diaframma intermedio
341 - 441	Diaframma intermedio
343 - 443	Diaframma intermedio
346 - 446	Diaframma intermedio
349 - 449	Diaframma intermedio
351 - 451	Diaframma intermedio
354 - 454	Diaframma di Pila 2
357 - 457	Diaframma intermedio
359 - 459	Diaframma intermedio
362 - 462	Diaframma intermedio
365 - 465	Diaframma intermedio
368 - 468	Diaframma intermedio
371 - 471	Diaframma intermedio
373 - 473	Diaframma intermedio
376 - 476	Diaframma di Pila 3
379 - 479	Diaframma intermedio
381 - 481	Diaframma intermedio
384 - 484	Diaframma intermedio
387 - 487	Diaframma intermedio
389 - 489	Diaframma di Spalla B

Elementi soletta

Completano il modello di calcolo gli elementi:

501 - 601	Elementi soletta
502 - 602	Elementi soletta



RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

503 - 603	Elementi soletta
505 - 605	Elementi soletta
506 - 606	Elementi soletta
507 - 607	Elementi soletta
509 - 609	Elementi soletta
510 - 610	Elementi soletta
511 - 611	Elementi soletta
513 - 613	Elementi soletta
514 - 614	Elementi soletta
515 - 615	Elementi soletta
517 - 617	Elementi soletta
518 - 618	Elementi soletta
519 - 619	Elementi soletta
521 - 621	Elementi soletta
522 - 622	Elementi soletta
523 - 623	Elementi soletta
525 - 625	Elementi soletta
526 - 626	Elementi soletta
527 - 627	Elementi soletta
529 - 629	Elementi soletta
530 - 630	Elementi soletta
531 - 631	Elementi soletta
533 - 633	Elementi soletta
534 - 634	Elementi soletta
535 - 635	Elementi soletta
537 - 637	Elementi soletta
538 - 638	Elementi soletta
539 - 639	Elementi soletta
541 - 641	Elementi soletta
542 - 642	Elementi soletta
543 - 643	Elementi soletta
545 - 645	Elementi soletta

Gli elementi soletta sono resi attivi solo per le fasi successive al getto della soletta, quindi in fase 2 e in fase 3. Le caratteristiche inerziali dei suddetti elementi sono state calcolate in funzione dell'interasse dei nodi, come rappresentato sinteticamente nel disegno sotto riportato:

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

6.2. MODELLO DI CALCOLO AGLI ELEMENTI FINITI

Nel seguito si riportano le immagini relative al graticcio di nodi e elementi che costituiscono il modello di analisi e calcolo delle sollecitazioni; si riportano le immagini relative al modello nella sua globalità e le immagini relative alla numerazione di nodi e aste.

6.2.1. MODELLO COMPLETO

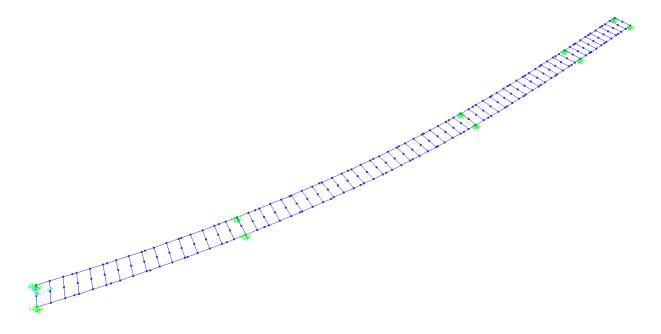


Figura 6.1 Modello 3D.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

6.2.2. Nodi

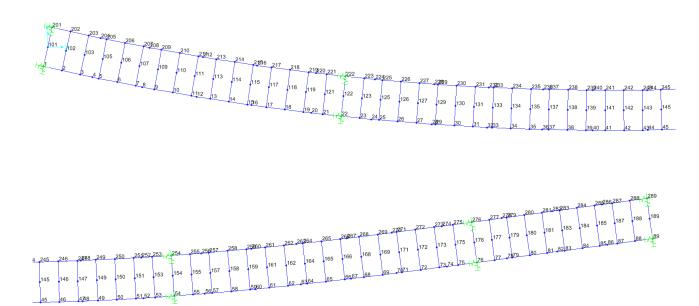


Figura 6.2 nodi

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

6.2.3. ELEMENTI TRAVI, DIAFRAMMI E ELEMENTI SOLETTA

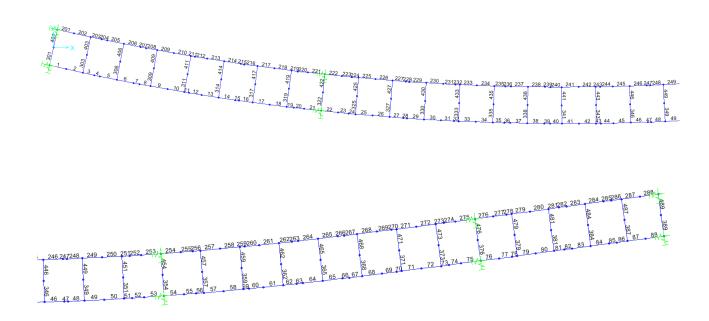


Figura 6.3 Travi principali e diaframmi metallici

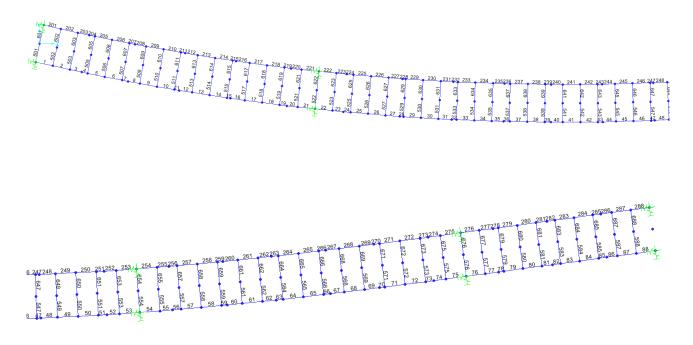


Figura 6.4 Travi principali e elementi soletta.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

6.2.4. CARICHI APPLICATI AL MODELLO

Si riportano come esempio alcuni caricamenti dei modelli globali.

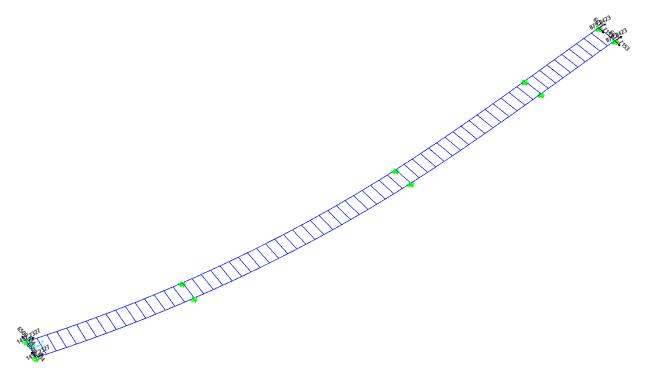


Figura 6.5 Ritiro [kN/m]

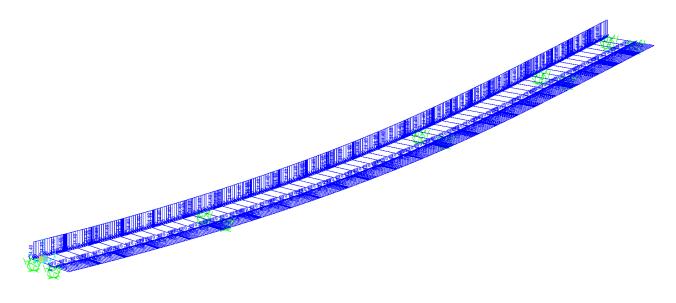


Figura 6.6 Vento [kN/m]

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Figura 6.7 TRAFFICO - Mext_1_M01-01 [kN/m]

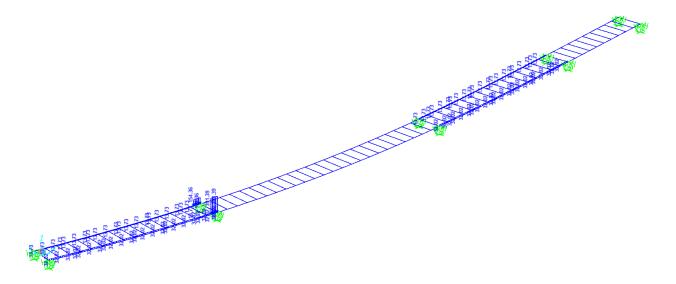


Figura 6.8 TRAFFICO - Mext_1_M01-30 [kN/m]

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

6.3. CARATTERISTICHE STATICHE DELLE SEZIONI

6.3.1. LARGHEZZE COLLABORANTI

Le due travi principali sono poste a interasse pari a 8 m e gli sbalzi laterali hanno luci variabili da un minimo di 3.25m a un massimo di 5.30m. A favore di sicurezza, tuttavia, si considera una larghezza di soletta collaborante pari a circa 14.50 m (larghezza minima e tipica di impalcato). Tale valore è pari alla distanza tra le travi esterne, aumentata del doppio del minimo sbalzo laterale della soletta. Il calcolo delle larghezze di soletta collaboranti con la trave metallica viene effettuato secondo le indicazioni del paragrafo 4.3.2.3 del D.M. 17.01.2018; più nel dettaglio la simbologia utilizzata nel presente paragrafo fa riferimento alle geometrie indicate nelle seguenti figure:

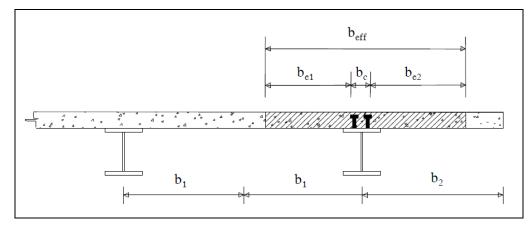


Figura 6.9 Definizione delle larghezze efficaci beff.

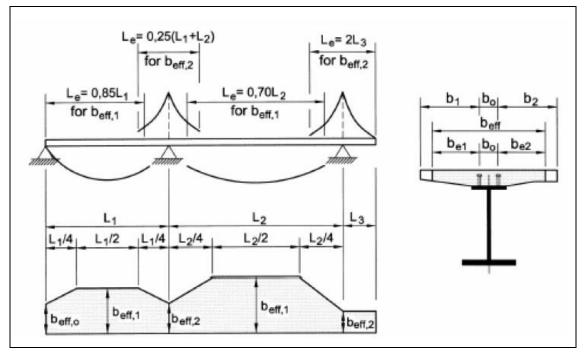


Figura 6.10 Larghezze efficaci beff e luci equivalenti Le per travi continue

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Campata di riva (SP1-P1)

L1 = 6000 cm

 $L_e = 0.85 \times L_1 =$ 5100 cm Le/8≈ 637 cm

i = 800 cm (interasse travi longitudinali)

 $L_{tot} =$ 1200 cm $b_0 =$ 30 cm

 $b_{e1} = min(L_e/8;b_1) =$ 385 cm $b_{e2} = min(L_e/8; b_2) =$ 185 cm

Conci in campata

Alla luce di ciò ai conci in campata di riva (C2,C3,C4) verrà assegnata una larghezza collaborante pari a:

 $B_{eff} = b_0 + b_{e1} + b_{e2} =$ 600 cm Travi (1 e 2)

Conci di riva

Per gli appoggi di estremità la larghezza collaborante diventa:

 $beff = \beta_1 \cdot be_1 + \beta_2 \cdot be_2$

dove:

bei = min(Le/8;b1)

 $\beta i = [0.55 + 0.025 \text{ Le / bei}]$

Per il caso in esame:

β1 = 0.88 <1 $\beta_2 =$ 1.00 <1

Alla luce di ciò al concio C1 verrà assegnata una larghezza collaborante pari a:

Travi (1 e 2) Beff = $b_0+\beta_1 \cdot b_{e1} + \beta_2 \cdot b_{e2} =$ 555 cm

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Campata di riva (P3-SP2)

L1 = 3500 cm

 $L_e = 0.85 \times L_1 =$ 2975 cm Le / 8 ≈ 371 cm

i = 800 cm (interasse travi longitudinali)

B_{tot}= 1200 cm $b_0 =$ 30 cm

be1 = min(Le/8;b1) =371 cm be1 = min(Le/8; b2) = 185 cm

Conci in campata

Alla luce di ciò ai conci in campata di riva (C14,C15) verrà assegnata una larghezza collaborante pari a:

Travi (1 e 2) $B_{eff} = b_0 + b_{e1} + b_{e2} =$ 590 cm

Conci di riva

Per gli appoggi di estremità la larghezza collaborante diventa:

 $beff = \beta_1 \cdot be_1 + \beta_2 \cdot be_2$

dove:

bei = min(Le/8;b1)

 $\beta i = [0.55 + 0.025 \text{ Le / bei}]$

Per il caso in esame:

B1 = 0.75 <1 $\beta_2 =$ 0.95 <1

Alla luce di ciò al concio C16 verrà assegnata una larghezza collaborante pari a:

Travi (1 e 2) Beff = $b_0+\beta_1 \cdot b_{e1} + \beta_2 \cdot b_{e2} =$ 485 cm

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Pila1

L1 = 6000 cm $L_2 =$ 9000 cm

Le/8≈ 468 cm $L_e = 0.25 \times (L_1 + L_2) =$ 3750 cm

j = (interasse travi longitudinali) 800 cm

B_{tot}= 1200 cm $b_0 =$ 30 cm

be1 = min(Le/8;b1) =385 cm $b_{e1} = min(L_e/8; b_2) =$ 185 cm

Alla luce di ciò ai conci di pila 1 (C5F) verrà assegnata una larghezza collaborante pari a:

Travi (1 e 2) $B_{eff} = b_0 + b_{e1} + b_{e2} =$ 600 cm

Pila2

L1 = 9000 cm $L_2 =$ 6000 cm

468 cm $L_e = 0.25 \times (L_1 + L_2) =$ 3750 cm Le / 8 ≈

1200 cm B_{tot} = b0 = 30 cm

 $b_{e1} = min(L_e/8;b_1) =$ 385 cm be1 = min(Le/8; b2) = 185 cm

Alla luce di ciò ai conci di pila 2 (C5F) verrà assegnata una larghezza collaborante pari a:

Travi (1 e 2) Beff = $b_0+b_{e1}+b_{e2}$ = 600 cm

Pila3

L1 = 6000 cm 3500 cm

Le/8≈ $L_e = 0.25 x (L_1 + L_2) =$ 2375 cm 296 cm

B_{tot}= 1200 cm b0 = 30 cm

 $b_{e1} = min(L_e/8;b_1) =$ 296 cm be1 = min(Le/8; b2) = 185 cm

Alla luce di ciò ai conci di pila 3 (C13F) verrà assegnata una larghezza collaborante pari a:

Travi (1 e 2) $B_{eff} = b_0 + b_{e1} + b_{e2} =$ 515 cm

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Campata P1-P2

 $L_2 =$ 9000 cm

Le/8≈ 787 cm $L_e = 0.70 \times L_1 =$ 6300 cm

i = 800 cm (interasse travi longitudinali)

B_{tot}= 1200 cm $b_0 =$ 30 cm

 $b_{e1} = min(L_e/8;b_1) =$ 385 cm $b_{e1} = min(L_e/8; b_2) =$ 185 cm

Alla luce di ciò ai conci in campata centrale (C6F,C7,C8,C9) verrà assegnata una larghezza collaborante pari a:

600 cm Travi (1 e 2) $B_{eff} = b_0 + b_{e1} + b_{e2} =$

Campata P2-P3

L2 = 6000 cm

 $L_e = 0.70 \times L_1 =$ Le/8≈ 525 cm 4200 cm

i = 800 cm (interasse travi longitudinali)

1200 cm B_{tot}= 30 cm $b_0 =$

 $b_{e1} = min(L_e/8;b_1) =$ 385 cm $b_{e1} = min(L_e/8; b_2) =$ 185 cm

Alla luce di ciò ai conci in campata centrale (C4,C10,C11,C12) verrà assegnata una larghezza collaborante pari a:

Travi (1 e 2) $B_{eff} = b_0 + b_{e1} + b_{e2} =$ 600 cm

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

6.3.2. ASSEGNAZIONE DELLE SEZIONI AGLI ELEMENTI DI ANALISI

Per la disposizione dei conci sullo sviluppo longitudinale delle travate si faccia riferimento agli elaborati grafici di progetto a corredo del presente documento di calcolo.

Si riporta di seguito la corrispondenza fra le sezioni di analisi e le assegnazioni delle stesse ai diversi elementi del modello di calcolo.

Sezione di	Concio di	Aste
analisi	analisi	modello
001	C1	001 – 003
001	Ci	201 – 203
002	Co	004 – 007
002	C2	207 – 207
003	C3	008 – 015
003	CS	208 – 215
		016 – 019
004	C4	219 – 219
004	C4	056 – 059
		259 – 259
		020 – 023
005	C5F	220 – 223
003	031	052 – 055
		252 – 255
		024 – 027
006	C6F	224 – 227
000	COF	048 – 051
		248 – 251
		028 – 031
007	C7	228 – 231
007	C7	044 – 047
		244 – 247
		032 – 035
008	C8	232 – 235
000	00	040 – 043
		240 – 243
009	C9	036 – 039
009	C ₃	239 – 239
		060 – 062
010	C10	260 – 262
010		067 – 069
		267 – 269
011	C11	063 – 066
011	CII	263 – 266
012	C12	070 – 073
012	CIZ	270 – 273
013	C13F	074 – 077

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

		274 – 277
014	C14	078 – 081
	014	278 – 281
015	C15	082 – 085
015	CIS	282 – 285
016	C16	086 – 088
	CIO	286 – 288

Tabella 6.1 Riferimento sezioni di analisi

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

6.3.3. CARATTERISTICHE STATICHE DELLE TRAVI PRINCIPALI

Fessurazione soletta

In sede di analisi strutturale, la soletta si considera fessurata in corrispondenza del concio di pila; per questo motivo le proprietà della sezione relativa ai conci 5 sono state calcolate trascurando il contributo del calcestruzzo.

Inerzia torsionale

Il ponte ha sezione trasversale "chiusa", con comportamento alla Bredt; quindi ciascuna trave è dotata dell'inerzia torsionale calcolata come esposto di seguito:

Considerando una "travata alla Bredt" provvista:

- in fase 1 di controventi di piano inferiori e controventi superiori
- in fase 2 e 3 di controventi di piano inferiori e soletta superiore

l'inerzia torsionale del cassone si ricava utilizzando la formula di Bredt:

Per la valutazione dell'inerzia torsionale si utilizza la formula:

J t= $4A^2/(\Sigma \text{ li/ti})$ (Sezioni a cassone)

dove:

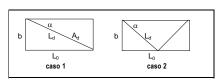
A = Area cellula torsio-rigida

li = lunghezza parete i-esima della cellula

ti = spessore parete i-esima della cellula

N.B. Nel modello di analisi agli elementi rappresentativi delle travi principali con comportamento alla Bredt viene associata un'inerzia torsionale pari a metà di quella dell'intero cassone torsiorigido.

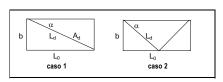
Di seguito si riportano, per tutte le sezioni utilizzate nel modello di calcolo, le caratteristiche statiche calcolate in ciascuna delle fasi di carico esaminate in precedenza.



RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

CALCOLO INERZIE TORSIONALI

Dati generali										
Modulo di Young	E=	21000	21000	21000	21000	21000	21000	21000	21000	[kN/cm ²]
Modulo di elasticità tangenziale	G =	8077	8077	8077	8077	8077	8077	8077	8077	[kN/cm ²]
Coefficiente omogeneizzazione FASE 2	n ₂ =	16.6	16.6	16.6	16.6	16.6	16.6	16.6	16.6	
Coefficiente omogeneizzazione FASE 3	n ₃ =	6.24	6.24	6.24	6.24	6.24	6.24	6.24	6.24	
Geometria	CONCIO =	C01	C02	C03	C04	C05F	C06F	C07	C08	1
Altezza travi	H _T =	350	350	350	350	350	350	350	350	[cm]
Spessore anima	t _w =	2.2	1.8	1.8	2.4	3.0	2.4	2.0	1.8	[cm]
Inclinazione anime rispetto alla verticale	θ =	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	[°]
Sviluppo efficace anima	h _w =	296.00	296.00	296.00	296.00	296.00	296.00	296.00	296.00	[cm]
Dist Ctv Sup	$\Delta_{\text{sup}} =$	20	20	20	20	20	20	20	20	[cm]
Dist Ctv Inf	$\Delta_{inf} =$	34	34	34	34	34	34	34	34	[cm]
Spessore soletta	h _{sol} =	27	27	27	27	27	27	27	27	[cm]
Passo maglia di controvento	L ₀ =	750	750	750	750	750	750	750	750	[cm]
Larghezza maglia di controvento superiore	b _s =	800	800	800	800	800	800	800	800	[cm]
Larghezza maglia di controvento inferiore	b _i =	800.00	800.00	800.00	800.00	800.00	800.00	800.00	800.00	[cm]
Controventi superiori		-	-	-	-	-	-	-	-	
Area diagonali superiori	A _{d,s} =	34.0	34.0	27.5	27.5	34.0	34.0	27.5	27.5	[cm ²]
Angolo tra travi principali e diagonali superiori	a _s =	46.8	46.8	46.8	46.8	46.8	46.8	46.8	46.8	[°]
Lunghezza diagonali superiori	L _{d,s} =	1097	1097	1097	1097	1097	1097	1097	1097	[cm]
Solo Tesi (1) o Tesi e compressi(2)?		1	1	1	1	1	1	1	1	
Spessore predalle metalliche	$t_{pred} =$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	[cm]
Controventi inferiori		2L150x15	2L150x15	2L150x15	2L180x15	2L180x15	2L180x15	2L180x15	2L150x15	
Area diagonali inferiori	$A_{d,i} =$	86.0	86.0	86.0	103.5	103.5	103.5	86.0	86.0	[cm ²]
Angolo tra travi principali e diagonali inferiori	α _i =	46.8	46.8	46.8	46.8	46.8	46.8	46.8	46.8	[°]
Lunghezza diagonali inferiori	$L_{d,i} =$	1097	1097	1097	1097	1097	1097	1097	1097	[cm]
Solo Tesi (1) o Tesi e compressi(2)?		2	2	2	2	2	2	2	2	
Altezza utile fase 1	h ₁ =	296.0	296.0	296.0	296.0	296.0	296.0	296.0	296.0	[cm]
Altezza utile fase 2	h ₂ =	329.5	329.5	329.5	329.5	329.5	329.5	329.5	329.5	[cm]
Altezza utile fase 3	h ₃ =	329.5	329.5	329.5	329.5	329.5	329.5	329.5	329.5	[cm]
Area cellula torsio-rigida FASE 1	A ₁ =	236800	236800	236800	236800	236800	236800	236800	236800	[cm ²]
Area cellula torsio-rigida FASE 2	A ₂ =	263600	263600	263600	263600	263600	263600	263600	263600	[cm ²]
Area cellula torsio-rigida FASE 3	A ₃ =	263600	263600	263600	263600	263600	263600	263600	263600	[cm ²]
Spessore equivalente ctv superiori FASE 1	t _{s,1} =	0.04022	0.04022	0.03256	0.03256	0.04022	0.04022	0.03256	0.03256	[cm]
Spessore equivalente soletta FASE 2	t _{s.2} =	1.62651	1.62651	1.62651	1.62651	1.62651	1.62651	1.62651	1.62651	[cm]
Spessore equivalente soletta FASE 3	t _{s.3} =	4.32692	4.32692	4.32692	4.32692	4.32692	4.32692	4.32692	4.32692	[cm]
Spessore equivalente controventi inferiori	t; =	0.203	0.203	0.203	0.245	0.245	0.245	0.203	0.203	[cm]
Inerzia torsionale FASE 1	J _{t.1} =	9310907	9287852	7779262	7986163	9604555	9584308	7788146	7779262	[cm ⁴]
Inerzia torsionale FASE 1		58848726	58030835	58030835	68912365	69863630	68912365	58477840	58030835	[cm ⁴]
	J _{t,2} =									F .
Inerzia torsionale FASE 3	J _{t,3} =	62939400	62004754	62004754	74589229	75704945	74589229	62515346	62004754	[cm ⁴]



RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

CALCOLO INERZIE TORSIONALI

Dati generali										
Modulo di Young	E=	21000	21000	21000	21000	21000	21000	21000	21000	[kN/cm ²]
Modulo di elasticità tangenziale	G =	8077	8077	8077	8077	8077	8077	8077	8077	[kN/cm ²]
Coefficiente omogeneizzazione FASE 2	n ₂ =	16.6	16.6	16.6	16.6	16.6	16.6	16.6	16.6	
Coefficiente omogeneizzazione FASE 3	n ₃ =	6.24	6.24	6.24	6.24	6.24	6.24	6.24	6.24	
Geometria	CONCIO =	C09	C10	C11	C12	C13F	C14	C15	C16	1
Altezza travi	H _T =	350	350	350	350	350	350	350	350	[cm]
Spessore anima	t _w =	1.8	1.8	1.8	2.0	2.8	1.8	1.8	2.0	[cm]
Inclinazione anime rispetto alla verticale	θ =	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	[°]
Sviluppo efficace anima	h _w =	296.00	296.00	296.00	296.00	296.00	296.00	296.00	296.00	[cm]
Dist Ctv Sup	$\Delta_{\text{sup}} =$	20	20	20	20	20	20	20	20	[cm]
Dist Ctv Inf	$\Delta_{inf} =$	34	34	34	34	34	34	34	34	[cm]
Spessore soletta	h _{sol} =	27	27	27	27	27	27	27	27	[cm]
Passo maglia di controvento	L ₀ =	750	750	750	750	750	750	750	750	[cm]
Larghezza maglia di controvento superiore	b _s =	800	800	800	800	800	800	800	800	[cm]
Larghezza maglia di controvento inferiore	b _i =	800.00	800.00	800.00	800.00	800.00	800.00	800.00	800.00	[cm]
Controventi superiori		-	-	-	-	-	-	-	-	
Area diagonali superiori	A _{d,s} =	27.5	27.5	27.5	34.0	34.0	27.5	27.5	34.0	[cm ²]
Angolo tra travi principali e diagonali superiori	a _s =	46.8	46.8	46.8	46.8	46.8	46.8	46.8	46.8	[°]
Lunghezza diagonali superiori	L _{d,s} =	1097	1097	1097	1097	1097	1097	1097	1097	[cm]
Solo Tesi (1) o Tesi e compressi(2)?		1	1	1	1	1	1	1	1	
Spessore predalle metalliche	$t_{pred} =$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	[cm]
Controventi inferiori		2L150x15	2L150x15	2L150x15	2L150x15	2L150x15	2L130x12	2L130x12	2L130x12	
Area diagonali inferiori	A _{d.i} =	86.0	86.0	86.0	86.0	86.0	60.0	60.0	60.0	[cm ²]
Angolo tra travi principali e diagonali inferiori	α _i =	46.8	46.8	46.8	46.8	46.8	46.8	46.8	46.8	[°]
Lunghezza diagonali inferiori	$L_{d,i} =$	1097	1097	1097	1097	1097	1097	1097	1097	[cm]
Solo Tesi (1) o Tesi e compressi(2)?		2	2	2	2	2	2	2	2	
Altezza utile fase 1	h ₁ =	296.0	296.0	296.0	296.0	296.0	296.0	296.0	296.0	[cm]
Altezza utile fase 2	h ₂ =	329.5	329.5	329.5	329.5	329.5	329.5	329.5	329.5	[cm]
Altezza utile fase 3	h ₃ =	329.5	329.5	329.5	329.5	329.5	329.5	329.5	329.5	[cm]
Area cellula torsio-rigida FASE 1	A ₁ =	236800	236800	236800	236800	236800	236800	236800	236800	[cm ²]
Area cellula torsio-rigida FASE 2	A ₂ =	263600	263600	263600	263600	263600	263600	263600	263600	[cm ²]
Area cellula torsio-rigida FASE 3	A ₃ =	263600	263600	263600	263600	263600	263600	263600	263600	[cm ²]
Spessore equivalente ctv superiori FASE 1	t _{s,1} =	0.03256	0.03256	0.03256	0.04022	0.04022	0.03256	0.03256	0.04022	[cm]
Spessore equivalente soletta FASE 2	t _{s.2} =	1.62651	1.62651	1.62651	1.62651	1.62651	1.62651	1.62651	1.62651	[cm]
Spessore equivalente soletta FASE 3	t _{s.3} =	4.32692	4.32692	4.32692	4.32692	4.32692	4.32692	4.32692	4.32692	[cm]
Spessore equivalente controventi inferiori	t; =	0.203	0.203	0.203	0.203	0.203	0.142	0.142	0.142	[cm]
Inerzia torsionale FASE 1	J _{t.1} =	7779262	7779262	7779262	9300518	9333247	7345244	7345244	8686851	[cm ⁴]
Inerzia torsionale FASE 1		58030835	58030835	58030835	58477840	59659542	42804792	42804792	43047510	[cm ⁴]
	J _{t,2} =									
Inerzia torsionale FASE 3	J _{t,3} =	62004754	62004754	62004754	62515346	63867745	44928780	44928780	45196259	[cm ⁴]

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Sezione T1N001I_T1N001I (CONCIO 1)

Caratteristiche generali

Dati principali

Altezza della sezione di acciaio	3500 mm
Piattabanda superiore	600x25 mm
Piattabanda inferiore	900x40 mm
Anima	20x3435 mm, Inclinazione: 0
Soletta	5550x240 mm
Raccordo	600x30 mm (escluso nel calcolo delle proprieta' geometriche)
Armatura superiore	diametro 20 mm, passo 200 mm, dist. estradosso-baricentro armatura 50 mm
Armatura inferiore	diametro 20 mm, passo 200 mm, dist. intradosso-baricentro armatura 50 mm
Pioli	diametro 19 mm, altezza 200 mm, numero 20/m

Irrigidenti verticali

Interasse	3749 mm
Tipo	R da un solo lato
Piatto 1	380×20 mm
Piatto 2	

Irrigidenti longitudinali dell'anima

distanza estradosso trave-irrigidente	1100 mm
distanza estradosso trave-irrigidente	0 mm
Dimensione dei piatti - sinistra	orizzontali 0x0 mm, verticali 0x0 mm
Dimensione dei piatti - destra	orizzontali 220x20 mm. verticali 0x0 mm

Caratteristiche geometriche lorde

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	1.197E+	2.174E+	2.174E+	2.174E+	3.506E+	1.371E+
z _G (mm)	1451.73	2439.51	2439.51	2439.51	2899.47	1731.22
J_y (mm 4)	2.099E+1	4.703E+1	4.703E+1	4.703E+1	5.92E+1	2.836E+1
$W_{y,0}$ (mm ³)	-1.446E+	-1.928E+	-1.928E+	-1.928E+	-2.042E+	-1.638E+
$W_{y,1}$ (mm ³)	-1.487E+	-1.96E+	-1.96E+	-1.96E+	-2.07E+	-1.677E+
$W_{y,3}$ (mm ³)	1.038E+	4.542E+	4.542E+	4.542E+	1.029E+	1.626E+
$W_{y,4} \text{ (mm}^3\text{)}$	1.025E+	4.435E+	4.435E+	4.435E+	9.858E+	1.603E+
$W_{y,5}$ (mm ³)	1E+30	4.313E+	4.313E+	4.313E+	9.389E+	1.576E+
$W_{y,6} \text{ (mm}^3)$	1E+30	4.124E+	4.124E+	4.124E+	8.699E+	1.534E+
$W_{y,7}$ (mm ³)	1E+30	3.673E+	3.673E+	3.673E+	7.215E+	1.426E+
$W_{y,8}$ (mm ³)	1E+30	3.535E+	3.535E+	3.535E+	6.8E+	1.391E+
$S_{y,1} (mm^3)$	5.154E+	8.71E+	8.71E+	8.71E+	1.037E+	6.16E+
$S_{y,2} (mm^3)$	7.147E+	1.447E+	1.447E+	1.447E+	1.854E+	9.021E+
$S_{y,3} (mm^3)$	3.054E+	1.34E+	1.34E+	1.34E+	1.821E+	5.98E+
S _{y,4} (mm ³)	-3.725E-	1.182E+	1.182E+	1.182E+	1.733E+	3.346E+
n_E	1E+30	16.	16.	16.	6.2	1E+30

Sezione T1N004I_T1N004I (CONCIO 2)

Caratteristiche generali

Dati principali

F	
Altezza della sezione di acciaio	3500 mm
Piattabanda superiore	600x50 mm
Piattabanda inferiore	900x50 mm
Anima	18x3400 mm, Inclinazione: 0
Soletta	6000x240 mm
Raccordo	600x30 mm (escluso nel calcolo delle proprieta' geometriche)
Armatura superiore	diametro 20 mm, passo 200 mm, dist. estradosso-baricentro armatura 50 mm
Armatura inferiore	diametro 20 mm, passo 200 mm, dist. intradosso-baricentro armatura 50 mm
Pioli	diametro 19 mm, altezza 200 mm, numero 15/m

Irrigidenti verticali

Interasse	3829 mm
Tipo	R da un solo lato
Piatto 1	380×20 mm
Piatto 2	

Irrigidenti longitudinali dell'anima

distanza estradosso trave-irrigidente	1100 mm
distanza estradosso trave-irrigidente	0 mm
Dimensione dei piatti - sinistra	orizzontali 0x0 mm, verticali 0x0 mm
Dimensione dei piatti - destra	orizzontali 220x20 mm, verticali 0x0 mm

Caratteristiche geometriche lorde

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	1.362E+	2.418E+	2.418E+	2.418E+	3.858E+	1.55E+
z _G (mm)	1560.02	2472.7	2472.7	2472.7	2912.20	1814.10
J_y (mm 4)	2.772E+1	5.375E+1	5.375E+1	5.375E+1	6.633E+1	3.496E+1
$W_{y,0}$ (mm ³)	-1.777E+	-2.174E+	-2.174E+	-2.174E+	-2.278E+	-1.927E+
$W_{y,1}$ (mm ³)	-1.836E+	-2.219E+	-2.219E+	-2.219E+	-2.318E+	-1.982E+
$W_{y,3}$ (mm ³)	1.467E+	5.501E+	5.501E+	5.501E+	1.233E+	2.137E+
$W_{y,4} \text{ (mm}^3)$	1.429E+	5.233E+	5.233E+	5.233E+	1.129E+	2.074E+
$W_{v,5}$ (mm ³)	1E+30	5.084E+	5.084E+	5.084E+	1.074E+	2.038E+
$W_{y,6} \text{ (mm}^3)$	1E+30	4.855E+	4.855E+	4.855E+	9.933E+	1.98E+
$W_{y,7}$ (mm ³)	1E+30	4.31E+	4.31E+	4.31E+	8.212E+	1.835E+
$W_{y,8}$ (mm 3)	1E+30	4.144E+	4.144E+	4.144E+	7.733E+	1.788E+
$S_{v,1} (mm^3)$	6.908E+	1.101E+	1.101E+	1.101E+	1.299E+	8.051E+
S _{y,2} (mm ³)	8.96E+	1.63E+	1.63E+	1.63E+	2.037E+	1.085E+
S _{y,3} (mm ³)	5.745E+	1.544E+	1.544E+	1.544E+	2.011E+	8.443E+
S _{y,4} (mm ³)	7.451E-	1.243E+	1.243E+	1.243E+	1.842E+	3.461E+
n_E	1E+30	16.	16.	16.	6.2	1E+30

Sezione T1N008I_T1N008I (CONCIO 3)

Caratteristiche generali

Dati principali

Dati pincipali	
Altezza della sezione di acciaio	3500 mm
Piattabanda superiore	600×60 mm
Piattabanda inferiore	900x50 mm
Anima	18x3390 mm, Inclinazione: 0
Soletta	6000x240 mm
Raccordo	600x30 mm (escluso nel calcolo delle proprieta' geometriche)
Armatura superiore	diametro 20 mm, passo 200 mm, dist. estradosso-baricentro armatura 50 mm
Armatura inferiore	diametro 20 mm, passo 200 mm, dist. intradosso-baricentro armatura 50 mm
Pioli	diametro 19 mm, altezza 200 mm, numero 15/m

Irrigidenti verticali

Piatto 2	
Piatto 1	380×20 mm
Tipo	R da un solo lato
Interasse	3838 mm

Irrigidenti longitudinali dell'anima

distanza estradosso trave-irrigidente	1100 mm
distanza estradosso trave-irrigidente	0 mm
Dimensione dei piatti - sinistra	orizzontali 0x0 mm, verticali 0x0 mm
Dimensione dei piatti - destra	orizzontali 220x20 mm, verticali 0x0 mm

Caratteristiche geometriche lorde

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	1.42E+	2.476E+	2.476E+	2.476E+	3.916E+	1.609E+
z _G (mm)	1637.26	2495.60	2495.60	2495.60	2920.12	1873.10
J_y (mm 4)	2.971E+1	5.429E+1	5.429E+1	5.429E+1	6.65E+1	3.646E+1
$W_{y,0}$ (mm ³)	-1.814E+	-2.176E+	-2.176E+	-2.176E+	-2.277E+	-1.946E+
$W_{y,1}$ (mm ³)	-1.872E+	-2.22E+	-2.22E+	-2.22E+	-2.317E+	-2E+
$W_{y,3}$ (mm ³)	1.648E+	5.749E+	5.749E+	5.749E+	1.279E+	2.327E+
$W_{y,4}$ (mm ³)	1.595E+	5.405E+	5.405E+	5.405E+	1.147E+	2.241E+
$W_{y,5}$ (mm ³)	1E+30	5.249E+	5.249E+	5.249E+	1.09E+	2.2E+
$W_{y,6}$ (mm ³)	1E+30	5.007E+	5.007E+	5.007E+	1.008E+	2.136E+
$W_{y,7}$ (mm ³)	1E+30	4.434E+	4.434E+	4.434E+	8.313E+	1.974E+
$W_{y,8}$ (mm 3)	1E+30	4.26E+	4.26E+	4.26E+	7.824E+	1.922E+
$S_{y,1} (mm^3)$	7.255E+	1.112E+	1.112E+	1.112E+	1.303E+	8.316E+
$S_{y,2} (mm^3)$	9.523E+	1.65E+	1.65E+	1.65E+	2.044E+	1.131E+
$S_{y,3} (mm^3)$	6.598E+	1.57E+	1.57E+	1.57E+	2.02E+	9.098E+
S _{y,4} (mm ³)	1.49E-	1.219E+	1.219E+	1.219E+	1.822E+	3.349E+
n_E	1E+30	16.	16.	16.	6.2	1E+30

Sezione T1N016I_T1N016I (CONCIO 4)

Caratteristiche generali

Dati principali

Dati piincipaii	
Altezza della sezione di acciaio	3500 mm
Piattabanda superiore	800×70 mm
Piattabanda inferiore	1200x90 mm
Anima	24x3340 mm, Inclinazione: 0

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Soletta	6000x240 mm
Raccordo	800x30 mm (escluso nel calcolo delle proprieta' geometriche)
Armatura superiore	diametro 20 mm, passo 100 mm, dist. estradosso-baricentro armatura 50 mm
Armatura inferiore	diametro 20 mm, passo 100 mm, dist. intradosso-baricentro armatura 50 mm
Pioli	diametro 19 mm, altezza 200 mm, numero 20/m

Irrigidenti verticali

Piatto 2	
Piatto 1	420x24 mm
Tipo	R da un solo lato
Interasse	3841 mm

Irrigidenti longitudinali dell'anima

distanza estradosso trave-irrigidente	2000 mm
distanza estradosso trave-irrigidente	0 mm
Dimensione dei piatti - sinistra	orizzontali 0x0 mm, verticali 0x0 mm
Dimensione dei piatti - destra	orizzontali 280x28 mm, verticali 0x0 mm

Caratteristiche geometriche lorde

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	2.442E+	3.686E+	3.686E+	3.686E+	5.126E+	2.819E+
z _G (mm)	1392.45	2154.6	2154.6	2154.6	2574.75	1694.40
J _y (mm ⁴)	5.221E+1	9.428E+1	9.428E+1	9.428E+1	1.175E+1	6.887E+1
$W_{y,0}$ (mm ³)	-3.749E+	-4.376E+	-4.376E+	-4.376E+	-4.564E+	-4.065E+
$W_{y,1}$ (mm ³)	-4.008E+	-4.566E+	-4.566E+	-4.566E+	-4.729E+	-4.293E+
$W_{y,3}$ (mm ³)	2.562E+	7.392E+	7.392E+	7.392E+	1.374E+	3.968E+
$W_{y,4}$ (mm ³)	2.477E+	7.008E+	7.008E+	7.008E+	1.27E+	3.814E+
$W_{y,5}$ (mm ³)	1E+30	6.855E+	6.855E+	6.855E+	1.23E+	3.752E+
$W_{y,6}$ (mm ³)	1E+30	6.614E+	6.614E+	6.614E+	1.169E+	3.652E+
$W_{y,7}$ (mm ³)	1E+30	6.023E+	6.023E+	6.023E+	1.026E+	3.4E+
$W_{y,8}$ (mm ³)	1E+30	5.836E+	5.836E+	5.836E+	9.831E+	3.318E+
$S_{y,1} (mm^3)$	1.455E+	2.278E+	2.278E+	2.278E+	2.732E+	1.781E+
$S_{y,2} (mm^3)$	1.659E+	2.79E+	2.79E+	2.79E+	3.473E+	2.09E+
S _{y,3} (mm ³)	1.161E+	2.595E+	2.595E+	2.595E+	3.385E+	1.729E+
S _{y,4} (mm ³)	-1.49E-	1.861E+	1.861E+	1.861E+	2.887E+	7.372E+
n_{E}	1E+30	16.	16.	16.	6.2	1E+30

Sezione T1N020I T1N020I (CONCIO 5F)

Caratteristiche generali

Dati principali

Altezza della sezione di acciaio	3500 mm
Piattabanda superiore	1000x80 mm
Piattabanda inferiore	1157x140 mm
Anima	28x3280 mm, Inclinazione: 0
Soletta	6000x240 mm
Raccordo	1000x30 mm (escluso nel calcolo delle proprieta' geometriche)
Armatura superiore	diametro 20 mm, passo 100 mm, dist. estradosso-baricentro armatura 50 mm
Armatura inferiore	diametro 20 mm, passo 100 mm, dist. intradosso-baricentro armatura 50 mm
Pioli	diametro 19 mm, altezza 200 mm, numero 20/m

Irrigidenti verticali

Interasse	3849 mm
Tipo	R da un solo lato
Piatto 1	420x24 mm
Piatto 2	

Irrigidenti longitudinali dell'anima

distanza estradosso trave-irrigidente	2000 mm
distanza estradosso trave-irrigidente	0 mm
Dimensione dei piatti - sinistra	orizzontali 0x0 mm, verticali 0x0 mm
Dimensione dei piatti - destra	orizzontali 320x28 mm, verticali 0x0 mm

Caratteristiche geometriche lorde

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	3.338E+	4.583E+	4.583E+	4.583E+	6.023E+	3.715E+
z _G (mm)	1352.81	1976.61	1976.61	1976.61	2376.75	1585.90
J _y (mm ⁴)	7.212E+1	1.2E+1	1.2E+1	1.2E+1	1.508E+1	9.001E+1
$W_{y,0}$ (mm ³)	-5.331E+	-6.072E+	-6.072E+	-6.072E+	-6.344E+	-5.676E+
$W_{y,1}$ (mm ³)	-5.947E+	-6.535E+	-6.535E+	-6.535E+	-6.741E+	-6.225E+
$W_{y,3}$ (mm ³)	3.489E+	8.315E+	8.315E+	8.315E+	1.445E+	4.908E+
$W_{y,4} \text{ (mm}^3\text{)}$	3.359E+	7.878E+	7.878E+	7.878E+	1.342E+	4.703E+
$W_{y,5}$ (mm ³)	1E+30	7.726E+	7.726E+	7.726E+	1.307E+	4.63E+
W _{y,6} (mm ³)	1E+30	7.485E+	7.485E+	7.485E+	1.253E+	4.514E+

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

$W_{y,7}$ (mm 3)	1E+30	6.884E+	6.884E+	6.884E+	1.122E+	4.218E+
$W_{y,8}$ (mm ³)	1E+30	6.692E+	6.692E+	6.692E+	1.082E+	4.121E+
$S_{y,1} (mm^3)$	2.078E+	3.089E+	3.089E+	3.089E+	3.737E+	2.456E+
$S_{y,2} (mm^3)$	2.284E+	3.561E+	3.561E+	3.561E+	4.437E+	2.748E+
S _{y,3} (mm ³)	1.686E+	3.269E+	3.269E+	3.269E+	4.285E+	2.277E+
S _{y,4} (mm ³)	2.98E-	2.082E+	2.082E+	2.082E+	3.418E+	7.781E+
n_E	1E+30	16.	16.	16.	6.2	1E+30

Sezione T1N024I_T1N024I (CONCIO 6F)

Caratteristiche generali

Dati principali

But principali	
Altezza della sezione di acciaio	3500 mm
Piattabanda superiore	800x70 mm
Piattabanda inferiore	1200x90 mm
Anima	24x3340 mm, Inclinazione: 0
Soletta	6000x240 mm
Raccordo	800x30 mm (escluso nel calcolo delle proprieta' geometriche)
Armatura superiore	diametro 20 mm, passo 100 mm, dist. estradosso-baricentro armatura 50 mm
Armatura inferiore	diametro 20 mm, passo 100 mm, dist. intradosso-baricentro armatura 50 mm
Pioli	diametro 19 mm, altezza 200 mm, numero 20/m

Irrigidenti verticali

Interasse	3845 mm
Tipo	R da un solo lato
Piatto 1	420x24 mm
Piatto 2	

Irrigidenti longitudinali dell'anima

distanza estradosso trave-irrigidente	2000 mm
distanza estradosso trave-irrigidente	0 mm
Dimensione dei piatti - sinistra	orizzontali 0x0 mm, verticali 0x0 mm
Dimensione dei piatti - destra	orizzontali 280x28 mm, verticali 0x0 mm

Caratteristiche geometriche lorde

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	2.442E+	3.686E+	3.686E+	3.686E+	5.126E+	2.819E+
z _G (mm)	1392.45	2154.6	2154.6	2154.6	2574.75	1694.40
J_y (mm 4)	5.221E+1	9.428E+1	9.428E+1	9.428E+1	1.175E+1	6.887E+1
$W_{y,0}$ (mm ³)	-3.749E+	-4.376E+	-4.376E+	-4.376E+	-4.564E+	-4.065E+
$W_{y,1}$ (mm ³)	-4.008E+	-4.566E+	-4.566E+	-4.566E+	-4.729E+	-4.293E+
$W_{y,3}$ (mm ³)	2.562E+	7.392E+	7.392E+	7.392E+	1.374E+	3.968E+
$W_{y,4}$ (mm ³)	2.477E+	7.008E+	7.008E+	7.008E+	1.27E+	3.814E+
$W_{y,5}$ (mm ³)	1E+30	6.855E+	6.855E+	6.855E+	1.23E+	3.752E+
$W_{y,6}$ (mm ³)	1E+30	6.614E+	6.614E+	6.614E+	1.169E+	3.652E+
$W_{y,7}$ (mm ³)	1E+30	6.023E+	6.023E+	6.023E+	1.026E+	3.4E+
$W_{y,8}$ (mm ³)	1E+30	5.836E+	5.836E+	5.836E+	9.831E+	3.318E+
$S_{y,1} (mm^3)$	1.455E+	2.278E+	2.278E+	2.278E+	2.732E+	1.781E+
$S_{y,2} (mm^3)$	1.659E+	2.79E+	2.79E+	2.79E+	3.473E+	2.09E+
$S_{y,3} (mm^3)$	1.161E+	2.595E+	2.595E+	2.595E+	3.385E+	1.729E+
S _{y,4} (mm ³)	-1.49E-	1.861E+	1.861E+	1.861E+	2.887E+	7.372E+
n_E	1E+30	16.	16.	16.	6.2	1E+30

Sezione T1N028I_T1N028I (CONCIO 7)

Caratteristiche generali

Dati principali

Altezza della sezione di acciaio	3500 mm
Piattabanda superiore	700x60 mm
Piattabanda inferiore	1000x80 mm
Anima	20x3360 mm, Inclinazione: 0
Soletta	6000x240 mm
Raccordo	700x30 mm (escluso nel calcolo delle proprieta' geometriche)
Armatura superiore	diametro 20 mm, passo 100 mm, dist. estradosso-baricentro armatura 50 mm
Armatura inferiore	diametro 20 mm, passo 100 mm, dist. intradosso-baricentro armatura 50 mm
Pioli	diametro 19 mm, altezza 200 mm, numero 15/m

Irrigidenti verticali

IIIIgidenei Vereidaii		
Interasse	3841 mm	
Tipo	R da un solo lato	
Piatto 1	380x20 mm	

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Piatto 2	
•	

Irrigidenti longitudinali dell'anima

distanza estradosso trave-irrigidente	1100 mm
distanza estradosso trave-irrigidente	2000 mm
Dimensione dei piatti - sinistra	orizzontali 0x0 mm, verticali 0x0 mm
Dimensione dei piatti - destra	orizzontali 220x20 mm, verticali 0x0 mm

Caratteristiche geometriche lorde

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	1.892E+	3.136E+	3.136E+	3.136E+	4.577E+	2.269E+
z _G (mm)	1412.32	2300.17	2300.17	2300.17	2724.94	1784.11
J_y (mm 4)	3.999E+1	7.764E+1	7.764E+1	7.764E+1	9.569E+1	5.575E+1
$W_{y,0}$ (mm ³)	-2.831E+	-3.375E+	-3.375E+	-3.375E+	-3.512E+	-3.125E+
$W_{y,1}$ (mm ³)	-3.001E+	-3.497E+	-3.497E+	-3.497E+	-3.618E+	-3.271E+
$W_{y,3}$ (mm ³)	1.972E+	6.811E+	6.811E+	6.811E+	1.338E+	3.367E+
$W_{y,4} \text{ (mm}^3)$	1.915E+	6.471E+	6.471E+	6.471E+	1.235E+	3.249E+
$W_{y,5}$ (mm ³)	1E+30	6.313E+	6.313E+	6.313E+	1.189E+	3.193E+
$W_{y,6} \text{ (mm}^3)$	1E+30	6.066E+	6.066E+	6.066E+	1.119E+	3.104E+
$W_{y,7}$ (mm ³)	1E+30	5.468E+	5.468E+	5.468E+	9.617E+	2.88E+
$W_{y,8}$ (mm ³)	1E+30	5.282E+	5.282E+	5.282E+	9.157E+	2.807E+
$S_{y,1} (mm^3)$	1.098E+	1.808E+	1.808E+	1.808E+	2.148E+	1.395E+
$S_{y,2} (mm^3)$	1.275E+	2.301E+	2.301E+	2.301E+	2.848E+	1.686E+
$S_{y,3} (mm^3)$	8.642E+	2.171E+	2.171E+	2.171E+	2.796E+	1.411E+
S _{y,4} (mm ³)	-1.49E-	1.68E+	1.68E+	1.68E+	2.483E+	7.034E+
n_E	1E+30	16.	16.	16.	6.2	1E+30

Sezione T1N032I_T1N032I (CONCIO 8)

Caratteristiche generali

Dati principali

Altezza della sezione di acciaio	3500 mm
Piattabanda superiore	700x60 mm
Piattabanda inferiore	1200x80 mm
Anima	18x3360 mm, Inclinazione: 0
Soletta	6000x240 mm
Raccordo	700x30 mm (escluso nel calcolo delle proprieta' geometriche)
Armatura superiore	diametro 20 mm, passo 100 mm, dist. estradosso-baricentro armatura 50 mm
Armatura inferiore	diametro 20 mm, passo 100 mm, dist. intradosso-baricentro armatura 50 mm
Pioli	diametro 19 mm, altezza 200 mm, numero 15/m

Irrigidenti verticali

Interasse	3841 mm
Tipo	R da un solo lato
Piatto 1	380×20 mm
Piatto 2	

Irrigidenti longitudinali dell'anima

IIIIgidenei Iongiedainaii deii dhima	
distanza estradosso trave-irrigidente	1100 mm
distanza estradosso trave-irrigidente	0 mm
Dimensione dei piatti - sinistra	orizzontali 0x0 mm, verticali 0x0 mm
Dimensione dei piatti - destra	orizzontali 220x20 mm, verticali 0x0 mm

Caratteristiche geometriche lorde

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	1.985E+	3.229E+	3.229E+	3.229E+	4.669E+	2.362E+
z _G (mm)	1289.92	2199.42	2199.42	2199.42	2646.83	1666.64
J _y (mm ⁴)	4.199E+1	8.466E+1	8.466E+1	8.466E+1	1.057E+1	5.966E+1
$W_{y,0}$ (mm ³)	-3.255E+	-3.849E+	-3.849E+	-3.849E+	-3.993E+	-3.579E+
$W_{y,1}$ (mm ³)	-3.471E+	-3.994E+	-3.994E+	-3.994E+	-4.117E+	-3.76E+
$W_{y,3}$ (mm ³)	1.953E+	6.824E+	6.824E+	6.824E+	1.332E+	3.364E+
$W_{y,4}$ (mm ³)	1.9E+	6.509E+	6.509E+	6.509E+	1.239E+	3.254E+
$W_{y,5}$ (mm ³)	1E+30	6.362E+	6.362E+	6.362E+	1.197E+	3.202E+
$W_{y,6}$ (mm ³)	1E+30	6.132E+	6.132E+	6.132E+	1.133E+	3.118E+
$W_{y,7}$ (mm ³)	1E+30	5.567E+	5.567E+	5.567E+	9.848E+	2.905E+
$W_{y,8}$ (mm ³)	1E+30	5.39E+	5.39E+	5.39E+	9.409E+	2.836E+
$S_{y,1} (mm^3)$	1.2E+	2.073E+	2.073E+	2.073E+	2.503E+	1.562E+
$S_{y,2} (mm^3)$	1.332E+	2.477E+	2.477E+	2.477E+	3.096E+	1.788E+
$S_{y,3} (mm^3)$	9.156E+	2.339E+	2.339E+	2.339E+	3.039E+	1.505E+
S _{y,4} (mm ³)	1.49E-	1.805E+	1.805E+	1.805E+	2.693E+	7.477E+
n_E	1E+30	16.	16.	16.	6.2	1E+30

Sezione T1N036I T1N036I (CONCIO 9)

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Caratteristiche generali

Dati principali

Duoi Pillioipull	
Altezza della sezione di acciaio	3500 mm
Piattabanda superiore	700x60 mm
Piattabanda inferiore	1200×90 mm
Anima	18x3350 mm, Inclinazione: 0
Soletta	6000×240 mm
Raccordo	700x30 mm (escluso nel calcolo delle proprieta' geometriche)
Armatura superiore	diametro 20 mm, passo 200 mm, dist. estradosso-baricentro armatura 50 mm
Armatura inferiore	diametro 20 mm, passo 200 mm, dist. intradosso-baricentro armatura 50 mm
Pioli	diametro 19 mm. altezza 200 mm. numero 15/m

Irrigidenti verticali

Interasse	3831 mm
Tipo	R da un solo lato
Piatto 1	380×20 mm
Piatto 2	

Irrigidenti longitudinali dell'anima

distanza estradosso trave-irrigidente	1100 mm
distanza estradosso trave-irrigidente	0 mm
Dimensione dei piatti - sinistra	orizzontali 0x0 mm, verticali 0x0 mm
Dimensione dei piatti - destra	orizzontali 220x20 mm, verticali 0x0 mm

Caratteristiche geometriche lorde

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	2.103E+	3.159E+	3.159E+	3.159E+	4.599E+	2.291E+
z _G (mm)	1222.20	2033.75	2033.75	2033.75	2539.87	1421.91
J_y (mm 4)	4.361E+1	8.51E+1	8.51E+1	8.51E+1	1.11E+1	5.382E+1
$W_{y,0}$ (mm ³)	-3.568E+	-4.184E+	-4.184E+	-4.184E+	-4.371E+	-3.785E+
$W_{y,1}$ (mm ³)	-3.852E+	-4.378E+	-4.378E+	-4.378E+	-4.531E+	-4.041E+
$W_{y,3}$ (mm ³)	1.966E+	6.051E+	6.051E+	6.051E+	1.233E+	2.667E+
$W_{y,4} \text{ (mm}^3)$	1.915E+	5.804E+	5.804E+	5.804E+	1.156E+	2.59E+
$W_{y,5}$ (mm ³)	1E+30	5.687E+	5.687E+	5.687E+	1.121E+	2.553E+
$W_{y,6} \text{ (mm}^3)$	1E+30	5.504E+	5.504E+	5.504E+	1.067E+	2.494E+
$W_{v,7}$ (mm ³)	1E+30	5.047E+	5.047E+	5.047E+	9.406E+	2.342E+
$W_{y,8}$ (mm ³)	1E+30	4.901E+	4.901E+	4.901E+	9.024E+	2.292E+
$S_{y,1} (mm^3)$	1.271E+	2.148E+	2.148E+	2.148E+	2.694E+	1.487E+
$S_{y,2} (mm^3)$	1.387E+	2.488E+	2.488E+	2.488E+	3.235E+	1.647E+
$S_{v,3} (mm^3)$	9.441E+	2.31E+	2.31E+	2.31E+	3.162E+	1.28E+
S _{y,4} (mm ³)	1.49E-	1.707E+	1.707E+	1.707E+	2.771E+	4.2E+
n_E	1E+30	16.	16.	16.	6.2	1E+30

Sezione T1N060I T1N060I (CONCIO 10)

Caratteristiche generali

Dati principali

Altezza della sezione di acciaio	3500 mm				
Piattabanda superiore	700×50 mm				
Piattabanda inferiore	1000x70 mm				
Anima	3x3380 mm, Inclinazione: 0				
Soletta	6000×240 mm				
Raccordo	700x30 mm (escluso nel calcolo delle proprieta' geometriche)				
Armatura superiore	diametro 20 mm, passo 100 mm, dist. estradosso-baricentro armatura 50 mm				
Armatura inferiore	diametro 20 mm, passo 100 mm, dist. intradosso-baricentro armatura 50 mm				
Pioli	diametro 19 mm, altezza 200 mm, numero 15/m				

Irrigidenti verticali

Piatto 2				
Piatto 1	380x20 mm			
Tipo	R da un solo lato			
Interasse	3801 mm			

Irrigidenti longitudinali dell'anima

distanza estradosso trave-irrigidente	1700 mm
distanza estradosso trave-irrigidente	0 mm
Dimensione dei piatti - sinistra	orizzontali 0x0 mm, verticali 0x0 mm
Dimensione dei piatti - destra	orizzontali 220x20 mm, verticali 0x0 mm

Caratteristiche	geometriche	lorde

Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

A (mm ²)	1.658E+	2.903E+	2.903E+	2.903E+	4.343E+	2.035E+
z _G (mm)	1393.83	2361.05	2361.05	2361.05	2788.48	1811.71
J _y (mm ⁴)	3.47E+1	7.095E+1	7.095E+1	7.095E+1	8.701E+1	5.035E+1
$W_{y,0}$ (mm ³)	-2.489E+	-3.005E+	-3.005E+	-3.005E+	-3.12E+	-2.779E+
$W_{y,1}$ (mm ³)	-2.621E+	-3.097E+	-3.097E+	-3.097E+	-3.201E+	-2.891E+
$W_{y,3}$ (mm ³)	1.687E+	6.515E+	6.515E+	6.515E+	1.315E+	3.073E+
$W_{y,4}$ (mm 3)	1.647E+	6.229E+	6.229E+	6.229E+	1.223E+	2.982E+
$W_{y,5}$ (mm ³)	1E+30	6.069E+	6.069E+	6.069E+	1.173E+	2.93E+
$W_{y,6}$ (mm 3)	1E+30	5.82E+	5.82E+	5.82E+	1.099E+	2.847E+
$W_{y,7}$ (mm ³)	1E+30	5.221E+	5.221E+	5.221E+	9.34E+	2.638E+
W _{y,8} (mm ³)	1E+30	5.035E+	5.035E+	5.035E+	8.865E+	2.571E+
$S_{y,1} (mm^3)$	9.512E+	1.628E+	1.628E+	1.628E+	1.927E+	1.244E+
S _{y,2} (mm ³)	1.109E+	2.101E+	2.101E+	2.101E+	2.593E+	1.517E+
S _{y,3} (mm ³)	7.284E+	1.994E+	1.994E+	1.994E+	2.553E+	1.275E+
S _{y,4} (mm ³)	0E+0	1.604E+	1.604E+	1.604E+	2.313E+	6.93E+
n_E	1E+30	16.	16.	16.	6.2	1E+30

Sezione T1N063I_T1N063I (CONCIO 11)

Caratteristiche generali

Dati principali

Dati piincipaii			
Altezza della sezione di acciaio	3500 mm		
Piattabanda superiore	700×40 mm		
Piattabanda inferiore	1000x80 mm		
Anima	18x3380 mm, Inclinazione: 0		
Soletta	6000x240 mm		
Raccordo	700x30 mm (escluso nel calcolo delle proprieta' geometriche)		
Armatura superiore	diametro 20 mm, passo 200 mm, dist. estradosso-baricentro armatura 50 mm		
Armatura inferiore	diametro 20 mm, passo 200 mm, dist. intradosso-baricentro armatura 50 mm		
Pioli	diametro 19 mm, altezza 200 mm, numero 15/m		

Irrigidenti verticali

Interasse	3794 mm
Tipo	R da un solo lato
Piatto 1	380x20 mm
Piatto 2	

Irrigidenti longitudinali dell'anima

distanza estradosso trave-irrigidente	1700 mm
distanza estradosso trave-irrigidente	0 mm
Dimensione dei piatti - sinistra	orizzontali 0x0 mm, verticali 0x0 mm
Dimensione dei piatti - destra	orizzontali 220x20 mm, verticali 0x0 mm

Caratteristiche geometriche lorde

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	1.688E+	2.744E+	2.744E+	2.744E+	4.185E+	1.877E+
z _G (mm)	1233.87	2163.53	2163.53	2163.53	2675.13	1476.52
J_y (mm 4)	3.307E+1	7.105E+1	7.105E+1	7.105E+1	9.199E+1	4.298E+1
$W_{y,0}$ (mm ³)	-2.681E+	-3.284E+	-3.284E+	-3.284E+	-3.439E+	-2.911E+
$W_{y,1}$ (mm ³)	-2.866E+	-3.41E+	-3.41E+	-3.41E+	-3.545E+	-3.078E+
W _{y,3} (mm ³)	1.486E+	5.48E+	5.48E+	5.48E+	1.172E+	2.167E+
$W_{y,4}$ (mm ³)	1.46E+	5.316E+	5.316E+	5.316E+	1.115E+	2.124E+
$W_{y,5}$ (mm ³)	1E+30	5.2E+	5.2E+	5.2E+	1.076E+	2.093E+
$W_{y,6}$ (mm ³)	1E+30	5.016E+	5.016E+	5.016E+	1.017E+	2.043E+
$W_{y,7}$ (mm ³)	1E+30	4.565E+	4.565E+	4.565E+	8.804E+	1.916E+
$W_{y,8}$ (mm ³)	1E+30	4.423E+	4.423E+	4.423E+	8.402E+	1.874E+
$S_{y,1} (mm^3)$	9.551E+	1.699E+	1.699E+	1.699E+	2.108E+	1.149E+
$S_{y,2} (mm^3)$	1.075E+	2.09E+	2.09E+	2.09E+	2.714E+	1.325E+
S _{y,3} (mm ³)	6.289E+	1.938E+	1.938E+	1.938E+	2.659E+	9.707E+
S _{y,4} (mm ³)	2.235E-	1.57E+	1.57E+	1.57E+	2.433E+	4.097E+
n _E	1E+30	16.	16.	16.	6.2	1E+30

Sezione T1N070I_T1N070I (CONCIO 12)

Caratteristiche generali

Dati principali	
Altezza della sezione di acciaio	3500 mm
Piattabanda superiore	600x35 mm
Piattabanda inferiore	1000x70 mm
Anima	18x3395 mm, Inclinazione: 0
Soletta	6000x240 mm

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Raccordo	600x30 mm (escluso nel calcolo delle proprieta' geometriche)
Armatura superiore	diametro 20 mm, passo 100 mm, dist. estradosso-baricentro armatura 50 mm
Armatura inferiore	diametro 20 mm, passo 100 mm, dist. intradosso-baricentro armatura 50 mm
Pioli	diametro 19 mm, altezza 200 mm, numero 15/m

Irrigidenti verticali

	,		
Interasse	3774 mm		
Tipo	R da un solo lato		
Piatto 1	380x20 mm		
Piatto 2			

Irrigidenti longitudinali dell'anima

distanza estradosso trave-irrigidente	1700 mm
distanza estradosso trave-irrigidente	2200 mm
Dimensione dei piatti - sinistra	orizzontali 0x0 mm, verticali 0x0 mm
Dimensione dei piatti - destra	orizzontali 220x20 mm, verticali 0x0 mm

Caratteristiche geometriche lorde

0414000110010	geometriche rorde					
	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	1.521E+	2.766E+	2.766E+	2.766E+	4.206E+	1.898E+
z _G (mm)	1206.98	2306.30	2306.30	2306.30	2766.43	1692.20
J _y (mm ⁴)	2.828E+1	6.919E+1	6.919E+1	6.919E+1	8.636E+1	4.633E+1
$W_{y,0}$ (mm ³)	-2.343E+	-3E+	-3E+	-3E+	-3.122E+	-2.738E+
$W_{y,1}$ (mm ³)	-2.487E+	-3.094E+	-3.094E+	-3.094E+	-3.203E+	-2.856E+
$W_{y,3}$ (mm ³)	1.252E+	5.972E+	5.972E+	5.972E+	1.236E+	2.613E+
$W_{y,4} \text{ (mm}^3\text{)}$	1.233E+	5.797E+	5.797E+	5.797E+	1.177E+	2.563E+
$W_{y,5}$ (mm ³)	1E+30	5.654E+	5.654E+	5.654E+	1.131E+	2.521E+
$W_{y,6} \text{ (mm}^3\text{)}$	1E+30	5.432E+	5.432E+	5.432E+	1.062E+	2.454E+
$W_{y,7}$ (mm ³)	1E+30	4.894E+	4.894E+	4.894E+	9.057E+	2.285E+
$W_{y,8}$ (mm ³)	1E+30	4.727E+	4.727E+	4.727E+	8.605E+	2.23E+
S _{y,1} (mm ³)	8.204E+	1.59E+	1.59E+	1.59E+	1.912E+	1.16E+
$S_{y,2} (mm^3)$	9.367E+	2.04E+	2.04E+	2.04E+	2.566E+	1.397E+
S _{y,3} (mm ³)	4.779E+	1.919E+	1.919E+	1.919E+	2.522E+	1.114E+
$S_{y,4} (mm^3)$	2.235E-	1.672E+	1.672E+	1.672E+	2.372E+	7.381E+
n_E	1E+30	16.	16.	16.	6.2	1E+30

Sezione T1N074I_T1N074I (CONCIO 13F)

Caratteristiche generali

Dati principali

Dati pilicipali	
Altezza della sezione di acciaio	3500 mm
Piattabanda superiore	800x40 mm
Piattabanda inferiore	1200x80 mm
Anima	26x3380 mm, Inclinazione: 0
Soletta	5150×240 mm
Raccordo	800x30 mm (escluso nel calcolo delle proprieta' geometriche)
Armatura superiore	diametro 20 mm, passo 100 mm, dist. estradosso-baricentro armatura 50 mm
Armatura inferiore	diametro 20 mm, passo 100 mm, dist. intradosso-baricentro armatura 50 mm
Pioli	diametro 19 mm, altezza 200 mm, numero 20/m

Irrigidenti verticali

Interasse	3767 mm
Tipo	R da un solo lato
Piatto 1	420×24 mm
Piatto 2	

Irrigidenti longitudinali dell'anima

distanza estradosso trave-irrigidente	2200 mm
distanza estradosso trave-irrigidente	0 mm
Dimensione dei piatti - sinistra	orizzontali 0x0 mm, verticali 0x0 mm
Dimensione dei piatti - destra	orizzontali 280x28 mm, verticali 0x0 mm

Caratteristiche geometriche lorde

aracteristiche geometriche forde						
	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm²)	2.159E+	3.227E+	3.227E+	3.227E+	4.463E+	2.482E+
z _G (mm)	1254.15	2047.2	2047.2	2047.2	2491.14	1566.46
J_y (mm 4)	4.072E+1	8.179E+1	8.179E+1	8.179E+1	1.048E+1	5.689E+1
$W_{y,0}$ (mm ³)	-3.247E+	-3.995E+	-3.995E+	-3.995E+	-4.207E+	-3.631E+
$W_{y,1}$ (mm ³)	-3.468E+	-4.157E+	-4.157E+	-4.157E+	-4.347E+	-3.827E+
$W_{y,3}$ (mm ³)	1.846E+	5.789E+	5.789E+	5.789E+	1.082E+	3.004E+
$W_{y,4}$ (mm ³)	1.813E+	5.63E+	5.63E+	5.63E+	1.039E+	2.942E+
$W_{y,5}$ (mm ³)	1E+30	5.516E+	5.516E+	5.516E+	1.009E+	2.897E+
$W_{y,6}$ (mm ³)	1E+30	5.336E+	5.336E+	5.336E+	9.625E+	2.825E+
$W_{v,7}$ (mm ³)	1E+30	4.889E+	4.889E+	4.889E+	8.529E+	2.641E+

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

$W_{y,8}$ (mm ³)	1E+30	4.747E+	4.747E+	4.747E+	8.195E+	2.582E+
$S_{y,1} (mm^3)$	1.166E+	1.927E+	1.927E+	1.927E+	2.353E+	1.465E+
S _{y,2} (mm ³)	1.345E+	2.43E+	2.43E+	2.43E+	3.109E+	1.753E+
$S_{y,3} (mm^3)$	7.123E+	2.171E+	2.171E+	2.171E+	2.987E+	1.287E+
$S_{y,4} (mm^3)$	0E+0	1.712E+	1.712E+	1.712E+	2.67E+	6.742E+
n_E	1E+30	16.	16.	16.	6.2	1E+30

Sezione T1N078I_T1N078I (CONCIO 14)

Caratteristiche generali

Dati principali

Duol Plinolpull	
Altezza della sezione di acciaio	3500 mm
Piattabanda superiore	600x30 mm
Piattabanda inferiore	900x50 mm
Anima	18x3420 mm, Inclinazione: 0
Soletta	6000x240 mm
Raccordo	600x30 mm (escluso nel calcolo delle proprieta' geometriche)
Armatura superiore	diametro 20 mm, passo 100 mm, dist. estradosso-baricentro armatura 50 mm
Armatura inferiore	diametro 20 mm, passo 100 mm, dist. intradosso-baricentro armatura 50 mm
Pioli	diametro 19 mm, altezza 200 mm, numero 15/m

Irrigidenti verticali

Piatto 2	
Piatto 1	380×20 mm
Tipo	R da un solo lato
Interasse	3505 mm

Irrigidenti longitudinali dell'anima

distanza estradosso trave-irrigidente	1100 mm
distanza estradosso trave-irrigidente	2200 mm
Dimensione dei piatti - sinistra	orizzontali 0x0 mm, verticali 0x0 mm
Dimensione dei piatti - destra	orizzontali 220x20 mm, verticali 0x0 mm

Caratteristiche geometriche lorde

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	1.246E+	2.49E+	2.49E+	2.49E+	3.93E+	1.623E+
z _G (mm)	1382.47	2515.71	2515.71	2515.71	2931.36	1909.30
J_y (mm 4)	2.313E+1	5.52E+1	5.52E+1	5.52E+1	6.7E+1	3.803E+1
$W_{y,0}$ (mm ³)	-1.673E+	-2.194E+	-2.194E+	-2.194E+	-2.286E+	-1.992E+
$W_{y,1}$ (mm ³)	-1.736E+	-2.239E+	-2.239E+	-2.239E+	-2.325E+	-2.045E+
$W_{y,3}$ (mm ³)	1.108E+	5.784E+	5.784E+	5.784E+	1.244E+	2.437E+
$W_{y,4}$ (mm ³)	1.092E+	5.608E+	5.608E+	5.608E+	1.178E+	2.391E+
$W_{y,5}$ (mm ³)	1E+30	5.442E+	5.442E+	5.442E+	1.119E+	2.346E+
$W_{y,6}$ (mm ³)	1E+30	5.186E+	5.186E+	5.186E+	1.033E+	2.276E+
$W_{y,7}$ (mm ³)	1E+30	4.583E+	4.583E+	4.583E+	8.496E+	2.1E+
W _{y,8} (mm ³)	1E+30	4.401E+	4.401E+	4.401E+	7.99E+	2.044E+
$S_{y,1} (mm^3)$	6.109E+	1.121E+	1.121E+	1.121E+	1.308E+	8.479E+
$S_{y,2} (mm^3)$	7.707E+	1.668E+	1.668E+	1.668E+	2.055E+	1.159E+
$S_{y,3} (mm^3)$	3.785E+	1.586E+	1.586E+	1.586E+	2.029E+	9.399E+
S _{y,4} (mm ³)	7.451E-	1.412E+	1.412E+	1.412E+	1.929E+	6.562E+
n_E	1E+30	16.	16.	16.	6.2	1E+30

Sezione T1N082I T1N082I (CONCIO 15)

Caratteristiche generali

Dati principali

Dati piincipaii	
Altezza della sezione di acciaio	3500 mm
Piattabanda superiore	600x20 mm
Piattabanda inferiore	900×40 mm
Anima	18x3440 mm, Inclinazione: 0
Soletta	6000x240 mm
Raccordo	600x30 mm (escluso nel calcolo delle proprieta' geometriche)
Armatura superiore	diametro 20 mm, passo 200 mm, dist. estradosso-baricentro armatura 50 mm
Armatura inferiore	diametro 20 mm, passo 200 mm, dist. intradosso-baricentro armatura 50 mm
Pioli	diametro 19 mm. altezza 200 mm. numero 15/m

Irrigidenti verticali

Interasse	3500 mm	
Tipo	R da un solo lato	
Piatto 1	380×20 mm	
Piatto 2		

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Irrigidenti longitudinali dell'anima

distanza estradosso trave-irrigidente	1100 mm
distanza estradosso trave-irrigidente	0 mm
Dimensione dei piatti - sinistra	orizzontali 0x0 mm, verticali 0x0 mm
Dimensione dei piatti - destra	orizzontali 220x20 mm, verticali 0x0 mm

Caratteristiche geometriche lorde

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	1.099E+	2.155E+	2.155E+	2.155E+	3.595E+	1.288E+
z _G (mm)	1378.99	2491.71	2491.71	2491.71	2955.69	1711.4
J _y (mm ⁴)	1.9E+1	4.683E+1	4.683E+1	4.683E+1	5.848E+1	2.731E+1
$W_{y,0}$ (mm ³)	-1.378E+	-1.879E+	-1.879E+	-1.879E+	-1.979E+	-1.596E+
$W_{y,1}$ (mm ³)	-1.419E+	-1.91E+	-1.91E+	-1.91E+	-2.006E+	-1.634E+
$W_{y,3}$ (mm ³)	9.044E+	4.738E+	4.738E+	4.738E+	1.115E+	1.544E+
$W_{y,4}$ (mm ³)	8.959E+	4.644E+	4.644E+	4.644E+	1.074E+	1.527E+
W _{y,5} (mm ³)	1E+30	4.51E+	4.51E+	4.51E+	1.018E+	1.502E+
$W_{y,6}$ (mm ³)	1E+30	4.303E+	4.303E+	4.303E+	9.367E+	1.462E+
$W_{y,7}$ (mm ³)	1E+30	3.813E+	3.813E+	3.813E+	7.652E+	1.36E+
$W_{y,8}$ (mm 3)	1E+30	3.663E+	3.663E+	3.663E+	7.182E+	1.327E+
S _{y,1} (mm ³)	4.892E+	8.898E+	8.898E+	8.898E+	1.057E+	6.089E+
$S_{y,2} (mm^3)$	6.506E+	1.431E+	1.431E+	1.431E+	1.822E+	8.603E+
S _{y,3} (mm ³)	2.533E+	1.343E+	1.343E+	1.343E+	1.797E+	5.788E+
S _{y,4} (mm ³)	-3.725E-	1.223E+	1.223E+	1.223E+	1.733E+	3.654E+
n_E	1E+30	16.	16.	16.	6.2	1E+30

Sezione T1N086I_T1N086I (CONCIO 16)

Caratteristiche generali

Dati principali

Altezza della sezione di acciaio	3500 mm
Piattabanda superiore	600x20 mm
Piattabanda inferiore	900x30 mm
Anima	20x3450 mm, Inclinazione: 0
Soletta	4850x240 mm
Raccordo	600x30 mm (escluso nel calcolo delle proprieta' geometriche)
Armatura superiore	diametro 20 mm, passo 200 mm, dist. estradosso-baricentro armatura 50 mm
Armatura inferiore	diametro 20 mm, passo 200 mm, dist. intradosso-baricentro armatura 50 mm
Pioli	diametro 19 mm, altezza 200 mm, numero 20/m

Irrigidenti verticali

Piatto 2	
Piatto 1	380×20 mm
Tipo	R da un solo lato
Interasse	3500 mm

Irrigidenti longitudinali dell'anima

distanza estradosso trave-irrigidente	1100 mm
distanza estradosso trave-irrigidente	0 mm
Dimensione dei piatti - sinistra	orizzontali 0x0 mm, verticali 0x0 mm
Dimensione dei piatti - destra	orizzontali 220x20 mm, verticali 0x0 mm

Caratteristiche geometriche lorde

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	1.08E+	1.934E+	1.934E+	1.934E+	3.098E+	1.232E+
z _G (mm)	1512.77	2456.25	2456.25	2456.25	2904.87	1777.01
J_y (mm 4)	1.8E+1	3.982E+1	3.982E+1	3.982E+1	5.023E+1	2.41E+1
$W_{y,0}$ (mm ³)	-1.19E+	-1.621E+	-1.621E+	-1.621E+	-1.729E+	-1.356E+
$W_{y,1}$ (mm ³)	-1.214E+	-1.641E+	-1.641E+	-1.641E+	-1.747E+	-1.38E+
$W_{y,3}$ (mm ³)	9.149E+	3.889E+	3.889E+	3.889E+	8.733E+	1.415E+
$W_{y,4}$ (mm ³)	9.057E+	3.815E+	3.815E+	3.815E+	8.44E+	1.399E+
$W_{y,5}$ (mm ³)	1E+30	3.708E+	3.708E+	3.708E+	8.035E+	1.375E+
$W_{y,6}$ (mm ³)	1E+30	3.543E+	3.543E+	3.543E+	7.44E+	1.337E+
$W_{y,7}$ (mm ³)	1E+30	3.151E+	3.151E+	3.151E+	6.162E+	1.241E+
$W_{y,8}$ (mm ³)	1E+30	3.031E+	3.031E+	3.031E+	5.806E+	1.209E+
$S_{y,1} (mm^3)$	4.044E+	6.591E+	6.591E+	6.591E+	7.803E+	4.757E+
$S_{y,2} (mm^3)$	6.243E+	1.248E+	1.248E+	1.248E+	1.607E+	7.81E+
$S_{y,3} (mm^3)$	2.373E+	1.143E+	1.143E+	1.143E+	1.574E+	4.909E+
S _{y,4} (mm ³)	-3.725E-	1.019E+	1.019E+	1.019E+	1.503E+	2.854E+
n_E	1E+30	16.	16.	16.	6.2	1E+30

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

6.3.4. INERZIE DEI DIAFRAMMI

Le rigidezze flessionali dei diaframmi sono brevemente riassunte nella seguente tabella:

Rigidezze flessionali							
Elemento	Tipologia	l [cm⁴]					
Diaframma di spalla	Parete piena (Doppio T – H = 3000 mm)	8611780					
Diaframma intermedio	Reticolare (Reticolari - H _{br} = 2860 mm)	2973229					
Diaframma di pila	Parete piena (Doppio T – H = 3000 mm)	8611780					

6.3.5. ELEMENTI SOLETTA

Le rigidezze flessionali degli elementi soletta schematizzano la rigidezza trasversale della soletta in calcestruzzo armato (quella longitudinale è già computata nelle caratteristiche statiche delle sezioni miste delle travi). Il calcolo delle proprietà statiche viene effettuato direttamente dal programma di calcolo ipotizzando una sezione trasversale tipica pari a circa 375 x 27 cm e un materiale con le proprietà meccaniche corrispondenti al calcestruzzo nelle diverse fasi. Secondo prassi usuale e bibliografia consolidata (vedi anche "Progettazione e costruzione di ponti" – Petrangeli – par. 6.4.4) alla sola inerzia torsionale calcolata in automatico viene applicato un fattore riduttivo pari a 0.5 per tenere conto della formula di calcolo di tale inerzia secondo bibliografia.

ELEMENTI SOLETTA								
Dimensioni s	oletta		Fase 3					
b (cm)	375	J (cm ⁴)	74108	197145				
h (cm)	27	I ₃ (cm ⁴)	7147732	19014799				
Coeff. Omogene	eizzazione							
n Fase 2	16.6	I ₂ (cm ⁴)	37054	98573				
n Fase 3	6.24	A _S (cm ²)	610	1623				
	-	-						
I ₃ inerzia orizzontale; I ₂ inerzia verticale								

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

6.4. ANALISI GLOBALE E CALCOLO DELLE SOLLECITAZIONI

L'analisi statica del viadotto in oggetto è stata eseguita impiegando il metodo elastico con i file di analisi illustrati nei precedenti capitoli. Per effettuare le verifiche di resistenza e stabilità su ciascuno degli elementi dell'impalcato, i file di output dell'analisi (file *.xlsx ottenuti attraverso l'esportazione dei risultati direttamente da SAP2000 v22) vengono rielaborati con un processo automatico di inviluppo che consente di ricavare per ciascun elemento in ciascuna fase di carico la caratteristica di sollecitazione massima/minima presa in esame e le restanti sollecitazioni congruenti. Si ottiene per ciascuna asta un report contenente tutte le informazioni relative alle sollecitazioni successivamente utilizzate per le verifiche che verranno svolte per le travi principali dell'impalcato e per gli altri elementi.

6.5. MASSIME AZIONI INTERNE

6.5.1. SOLLECITAZIONI DI VERIFICA

Data la tipologia usuale di impalcato a travata le sollecitazioni che saranno massimizzate sono quelle di taglio e momento flettente verticale; i files contenenti l'inviluppo completo delle sollecitazioni elementari combinate saranno denominati:

a) metauro_SLU_M33.xlsx Stato Limite Ultimo - max momento flettente verticale

b) **metauro_SLU_V2.xlsx** Stato Limite Ultimo - max taglio verticale

I file completi contenenti tutti gli inviluppi delle sollecitazioni per tutti gli elementi del modello sono riportati sotto formato elettronico negli allegati di calcolo alla presente relazione. Per ciascuna fase di carico vengono estrapolati i massimi e minimi della sollecitazione indicizzata fornendo per ogni singolo frame del modello e per ogni output station le sollecitazioni congruenti.

Le fasi di carico elaborate e combinate dall'inviluppatore, partendo dai singoli file di output del SAP2000, sono così suddivise:

- fase 1: solo trave metallica resistente (assenza di collaborazione con la soletta);

- fase 2: presenza della soletta, con modulo elastico a lungo termine, valutato per

carichi permanenti applicati a istante successivo al getto, e di intensità

costante nel tempo (es. permanenti di finitura, cedimenti);

- ritiro: presenza della soletta, con modulo elastico a lungo termine, valutato per

carichi permanenti applicati all'istante immediatamente dopo il getto, e aventi

sviluppo nel tempo parallelo a quello dei fenomeni differiti (ritiro);

- termica: presenza della soletta, con modulo elastico a breve termine, valutato per le

variazioni termiche differenziali sulla sezione mista acciaio-cls.

- fase 3: presenza della soletta, con modulo elastico valutato a breve termine, per tutte

le azioni accidentali legate a traffico, vento e eventualmente sisma.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

In fase di verifica con Ponti EC4, per esigenze computazionali, le fasi di carico saranno riorganizzate secondo la seguente legenda:

- fase 1: uguale alla fase 1 dell'inviluppo;

- fase 2a: presenza della soletta, con modulo elastico a lungo termine, valutato per

carichi permanenti applicati a istante successivo al getto, e di intensità

costante nel tempo (es. permanenti di finitura);

presenza della soletta, con modulo elastico a lungo termine, valutato per - fase 2b:

carichi permanenti applicati all'istante immediatamente dopo il getto, e aventi

sviluppo nel tempo parallelo a quello dei fenomeni differiti (ritiro);

presenza della soletta, con modulo elastico a lungo termine, valutato per - fase 2c:

coazioni o cedimenti vincolari imposti a un certo istante al getto, e aventi

sviluppo nel tempo costante.

- fase 3: presenza della soletta, con modulo elastico valutato a breve termine,

utilizzata per le variazioni termiche differenziali e per tutte le azioni accidentali

legate a traffico, vento e eventualmente sisma.

Gli inviluppi vengono poi ripetuti anche per le combinazioni di carico per gli stati limite di esercizio (rara e frequente) da utilizzare per le verifiche tensionali e di respiro delle anime previste dall'EC3-EC4 e per la fatica (vedere appositi paragrafi per la descrizione delle condizioni di carico inviluppate). L'elenco degli inviluppi è il seguente:

c)	metauro_SLE_rara_M33.xlsx	Stato Limite di Esercizio – comb. Rara - max momento
		flettente verticale
d)	metauro _SLE_rara_V2.xlsx	Stato Limite di Esercizio – comb. Rara - max taglio
		verticale
e)	metauro _SLE_freq_M33.xlsx	Stato Limite di Esercizio – comb. Freq max momento
•	•	flettente verticale
f)	metauro _SLE_freq_V2.xlsx	Stato Limite di Esercizio - comb. Freq max taglio
,		verticale
e)	metauro Fat M33.xlsx	Stato Limite di Fatica - max momento flettente verticale
f)	metauro _ Fat_V2.xlsx	Stato Limite di Fatica - max taglio verticale
,		3

A titolo riepilogativo si riportano nel seguente paragrafo i diagrammi con le massime sollecitazioni di inviluppo SLU per le travi principali di impalcato, sia per il diagramma del taglio che per il momento flettente.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

6.5.2. DIAGRAMMI DELLE MASSIME E MINIME SOLLECITAZIONI DI VERIFICA

Si riportano di seguito i diagrammi relativi alle massime e minime caratteristiche di sollecitazione agenti sulle travi principali riferiti alle combinazioni di carico in precedenza descritte e di seguito riportate:

Somma +/-:

1.35/1.0 Fase1.out + 1.5/1.0 Fase2.out + 1.2/0.0 Ritiro.out + 0.9/0.0 Termica.out + 0.9/0.0 Vento + 1.35/0.0 FASE3

I grafici vengono ricavati mediante fogli di calcolo elettronici sulla base dei valori di sollecitazione totale massima/minima in ciascun elemento ricavati dai file di inviluppo metauro SLU M33.xlsx (max momento flettente) e metauro_SLU_V3.xlsx (max taglio). Si riportano i grafici relativi alla trave esterno curva (filo 000) e interno curva (filo 200).

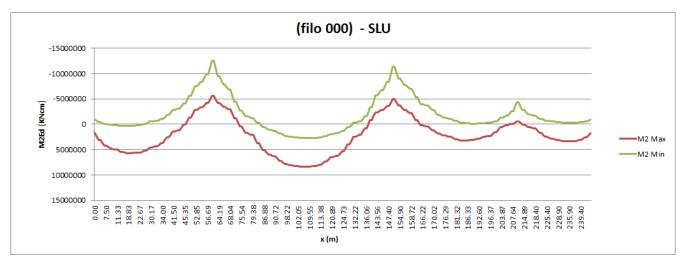


Figura 6.11 Inviluppo del momento sulla trave esterno curva (filo 000).

Figura 6.12 Inviluppo del taglio sulla trave esterno curva (filo 000).

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

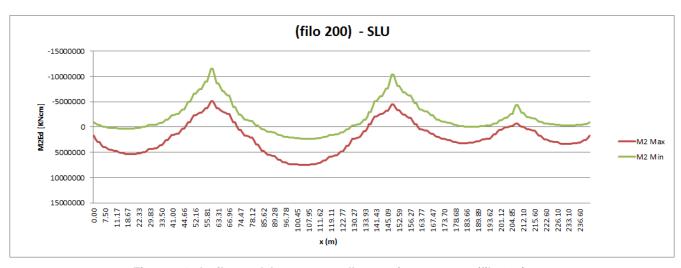


Figura 6.13 Inviluppo del momento sulla trave interno curva (filo 200).

Figura 6.14 Inviluppo del taglio sulla trave interno curva (filo 200).

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

6.6. ANALISI SISMICA

L'analisi sismica è stata condotta in modo da poter calcolare le reazioni necessarie per il dimensionamento degli appoggi e della sottostruttura (spalle e fondazioni) in condizioni sismiche.

Come già detto, sono previsti degli isolatori elastomerici che consentono di abbattere la rigidezza del sistema ponte-sottostrutture e dunque avere dei periodi propri molti alti in modo da ricadere nel ramo discendente dello spettro di progetto.

N.B.: Il produttore dovrà garantire una variabilità dei valori di rigidezza e smorzamento nominali degli isolatori tenendo conto di tutti i parametri (fornitura, invecchiamento, temperatura e frequenza di prova) non superiore a +/- 20% del valore nominale.

La massa sismica è data dalla somma dei carichi di Fase 1 e di Fase 2.

Di seguito si riportano le combinazioni di carico utilizzate. Le reazioni degli appoggi sono valutate per l'azione sismica allo SLV mentre gli spostamenti massimi sono valutati per l'azione sismica allo SLC.

TABLE: Combination Definitions								
ComboName	ComboType	AutoDesign	CaseName	ScaleFactor				
Text	Text	Yes/No	Text	Unitless				
SLC_1	Linear Add	No	FASE1	1				
SLC_1			FASE2	1				
SLC_1			SLC_X	1				
SLC_1			SLC_Y	0.3				
SLC_1			SLC_Z	0.3				
SLC_2	Linear Add	No	FASE1	1				
SLC_2			FASE2	1				
SLC_2			SLC_X	0.3				
SLC_2			SLC_Y	1				
SLC_2			SLC_Z	0.3				
SLV_1	Linear Add	No	FASE1	1				
SLV_1			FASE2	1				
SLV_1			SLV_X	1				
SLV_1			SLV_Y	0.3				
SLV_1			SLV_Z	0.3				
SLV_2	Linear Add	No	FASE1	1				
SLV_2			FASE2	1				
SLV_2			SLV_X	0.3				
SLV_2			SLV_Y	1				
SLV_2			SLV_Z	0.3				
SLC_3	Linear Add	No	FASE1	1				
SLC_3			FASE2	1				
SLC_3			SLC_X	0.3				
SLC_3			SLC_Y	0.3				
SLC_3			SLC_Z	1				
SLV_3	Linear Add	No	FASE1	1				
SLV_3			FASE2	1				
SLV_3			SLV_X	0.3				
SLV_3			SLV_Y	0.3				
SLV_3			SLV_Z	1				

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Alle suddette combinazioni è stata aggiunto il contributo della azione termica longitudinale al 50%.

Il sistema di vincolamento dell'impalcato alle sottostrutture prevede l'impiego di isolatori elastomerici; si tratta di dispositivi d'appoggio costituiti da strati alterni di acciaio e di elastomero collegati mediante vulcanizzazione; sono caratterizzati da ridotta rigidezza orizzontale, elevata rigidezza verticale ed opportuna capacità dissipativa. Queste caratteristiche consentono rispettivamente di aumentare il periodo proprio della struttura, di sostenere i carichi verticali senza apprezzabili cedimenti, e di contenere lo spostamento sulla struttura isolata. Su ogni spalla / pila sono posizionati 2 isolatori elastomerici.

Nel caso specifico vengono utilizzati degli isolatori elastomerici caratterizzati da i seguenti parametri:

- coefficiente di smorzamento viscoso equivalente (pari a $\xi_{eq} = 15\%$);
- spostamento massimo pari a 250 mm per spalla 1 e 200mm per le pile e spalla 2;
- rigidezza orizzontale equivalente (SPALLA1): Ke = 3.09 kN/mm, Kv = 2006 kN/mm;
- rigidezza orizzontale equivalente (PILE): Ke = 8.25 kN/mm, Kv = 5517 kN/mm;
- rigidezza orizzontale equivalente (SPALLA1): Ke = 2.70 kN/mm. Kv = 1840 kN/mm.

Nel modello di calcolo tali dispositivi sono modellati con elementi "link" lineari a cui sono state assegnate le caratteristiche di rigidezza orizzontale equivalente (nelle due direzioni ortogonali nel piano orizzontale) e rigidezza verticale dell'isolatore adottato.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

6.6.1. ANALISI MODALE

È stata definita l'analisi modale in modo da non trascurare modi di vibrare aventi massa partecipante superiore al 5%. Si raggiunge il 97.5% della massa partecipante avendo utilizzato per l'analisi fino a 500 modi di vibrare.

Di seguito vengono illustrati i modi di vibrare più significativi e le tabelle relative alle informazioni più rilevanti dell'analisi stessa.

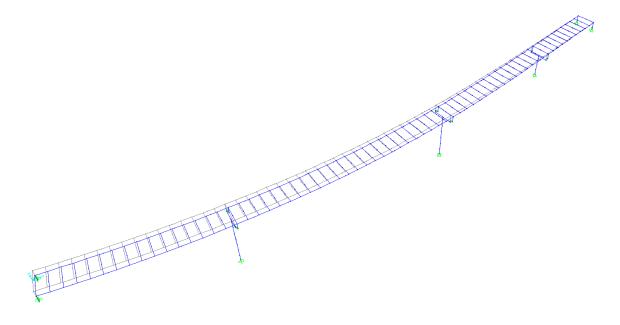


Figura 6.15 Primo modo di vibrare (T=1.87 s)

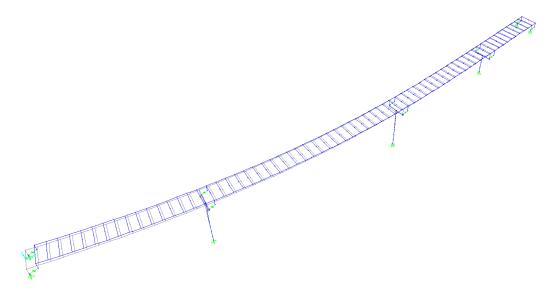


Figura 6.16 Secondo modo di vibrare (T=1.76 s)

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

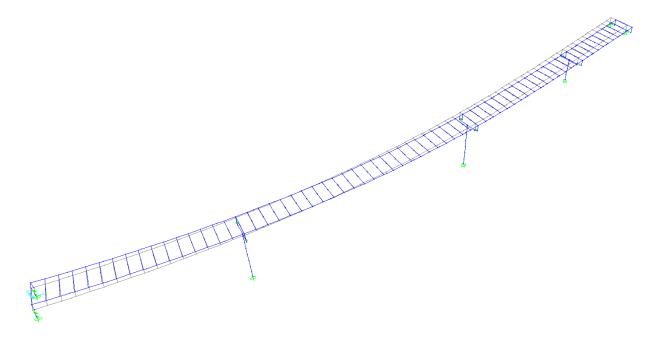


Figura 6.17 Terzo modo di vibrare (T=1.51 s)

TABLE: Modal Participating Mass Ratios									
OutputCase	StepType	StepNum	Period	UX	UY	UZ	SumUX	SumUY	SumUZ
Text	Text	Unitless	Sec	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless
MODAL	Mode	1	1.874	0.007	0.593	0.000	0.007	0.593	0.000
MODAL	Mode	2	1.759	0.750	0.008	0.000	0.757	0.602	0.000
MODAL	Mode	3	1.507	0.001	0.132	0.000	0.758	0.734	0.000
MODAL	Mode	4	0.989	0.000	0.014	0.000	0.758	0.748	0.000
MODAL	Mode	5	0.802	0.000	0.000	0.062	0.758	0.748	0.062
MODAL	Mode	6	0.508	0.000	0.000	0.000	0.758	0.748	0.062
MODAL	Mode	7	0.488	0.000	0.000	0.170	0.758	0.748	0.231
MODAL	Mode	8	0.410	0.000	0.000	0.000	0.758	0.748	0.231
MODAL	Mode	9	0.381	0.000	0.000	0.219	0.759	0.748	0.450
MODAL	Mode	10	0.312	0.000	0.000	0.001	0.759	0.748	0.451
MODAL	Mode	500	0.003	0.000	0.000	0.000	0.978	0.978	0.975

GESTIONE PROGETTI INGEGNERIA srl

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

6.6.2. REAZIONI DEGLI APPOGGI ALLO SLC - SLU

Nel paragrafo seguente vengono indicate le reazioni degli appoggi allo SLC utili al dimensionamento degli stessi. Per le reazioni relative alla combinazione SLU si rimanda alle tabelle riportate nel capitolo 11.

TABLE: El	ement For	ces - Links					
Link	Station	OutputCase	CaseType	StepType	P (Vert.)	V2 (Long.)	V3 (Trasv.)
Text	Text	Text	Text	Text	KN	KN	KN
P1-1	I-End	SLC_1	Combination	Max	-6976	1214	595
P1-1	J-End	SLC_1	Combination	Max	-6976	1214	595
P1-1	I-End	SLC_1	Combination	Min	-8231	-1138	-550
P1-1	J-End	SLC_1	Combination	Min	-8231	-1138	-550
P1-1	I-End	SLC_2	Combination	Max	-6465	646	1365
P1-1	J-End	SLC_2	Combination	Max	-6465	646	1365
P1-1	I-End	SLC_2	Combination	Min	-8742	-570	-1321
P1-1	J-End	SLC_2	Combination	Min	-8742	-570	-1321
P1-1	I-End	SLC_3	Combination	Max	-6453	517	481
P1-1	J-End	SLC_3	Combination	Max	-6453	517	481
P1-1	I-End	SLC_3	Combination	Min	-8754	-441	-436
P1-1	J-End	SLC_3	Combination	Min	-8754	-441	-436
P1-2	I-End	SLC_1	Combination	Max	-6642	1200	539
P1-2	J-End	SLC_1	Combination	Max	-6642	1200	539
P1-2	I-End	SLC_1	Combination	Min	-7937	-1130	-606
P1-2	J-End	SLC_1	Combination	Min	-7937	-1130	-606
P1-2	I-End	SLC_2	Combination	Max	-6131	615	1310
P1-2	J-End	SLC_2	Combination	Max	-6131	615	1310
P1-2	I-End	SLC_2	Combination	Min	-8447	-545	-1377
P1-2	J-End	SLC_2	Combination	Min	-8447	-545	-1377
P1-2	I-End	SLC_3	Combination	Max	-6160	503	425
P1-2	J-End	SLC_3	Combination	Max	-6160	503	425
P1-2	I-End	SLC_3	Combination	Min	-8418	-433	-492
P1-2	J-End	SLC_3	Combination	Min	-8418	-433	-492
P2-1	I-End	SLC_1	Combination	Max	-6666	1075	377
P2-1	J-End	SLC_1	Combination	Max	-6666	1075	377
P2-1	I-End	SLC_1	Combination	Min	-7913	-1153	-385
P2-1	J-End	SLC_1	Combination	Min	-7913	-1153	-385
P2-1	I-End	SLC_2	Combination	Max	-6102	402	975
P2-1	J-End	SLC_2	Combination	Max	-6102	402	975
P2-1	I-End	SLC_2	Combination	Min	-8477	-480	-983
P2-1	J-End	SLC_2	Combination	Min	-8477	-480	-983
P2-1	I-End	SLC_3	Combination	Max	-6147	337	318
P2-1	J-End	SLC_3	Combination	Max	-6147	337	318
P2-1	I-End	SLC_3	Combination	Min	-8433	-415	-326
P2-1	J-End	SLC_3	Combination	Min	-8433	-415	-326

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

TABLE: E	lement For	ces - Links					
Link	Station	OutputCase	CaseType	StepType	P (Vert.)	V2 (Long.)	V3 (Trasv.
Text	Text	Text	Text	Text	KN	KN	KN
P2-2	I-End	SLC_1	Combination	Max	-6324	1076	389
P2-2	J-End	SLC_1	Combination	Max	-6324	1076	389
P2-2	I-End	SLC_1	Combination	Min	-7624	-1144	-402
P2-2	J-End	SLC_1	Combination	Min	-7624	-1144	-402
P2-2	I-End	SLC_2	Combination	Max	-5767	407	987
P2-2	J-End	SLC_2	Combination	Max	-5767	407	987
P2-2	I-End	SLC_2	Combination	Min	-8182	-475	-999
P2-2	J-End	SLC_2	Combination	Min	-8182	-475	-999
P2-2	I-End	SLC_3	Combination	Max	-5784	340	330
P2-2	J-End	SLC_3	Combination	Max	-5784	340	330
P2-2	I-End	SLC_3	Combination	Min	-8165	-408	-343
P2-2	J-End	SLC 3	Combination	Min	-8165	-408	-343
P3-1	I-End	SLC 1	Combination	Max	-3380	1308	329
P3-1	J-End	SLC_1	Combination	Max	-3380	1308	329
P3-1	I-End	SLC_1	Combination		-4534	-1348	-333
P3-1	J-End	SLC 1	Combination	Min	-4534	-1348	-333
P3-1	I-End	SLC 2	Combination		-2974	585	784
P3-1	J-End	SLC_2	Combination		-2974	585	784
P3-1	I-End	SLC 2	Combination		-4940	-625	-789
P3-1	J-End	SLC 2	Combination		-4940	-625	-789
P3-1	I-End	SLC_3	Combination		-2696	501	257
P3-1	J-End	SLC 3	Combination		-2696	501	257
P3-1	I-End	SLC_3	Combination		-5217	-541	-262
P3-1	J-End	SLC_3	Combination		-5217	-541	-262
P3-2	I-End	SLC 1	Combination		-3341	1309	340
P3-2	J-End	SLC 1	Combination		-3341	1309	340
P3-2	I-End	SLC_1	Combination		-4571	-1347	-350
P3-2	J-End	SLC 1	Combination		-4571	-1347	-350
P3-2	I-End	SLC 2	Combination		-2944	605	796
P3-2	J-End	SLC 2	Combination		-2944	605	796
P3-2	I-End	SLC 2	Combination		-4968	-643	-805
P3-2	J-End	SLC_2	Combination		-4968	-643	-805
P3-2	I-End	SLC_3	Combination		-2693	505	269
P3-2	J-End	SLC_3	Combination		-2693	505	269
P3-2	I-End	SLC_3	Combination		-5218	-542	-278
P3-2	J-End	SLC_3	Combination		-5218	-542	-278
SP1-1	I-End	SLC_3	Combination		-1426	605	304
SP1-1	J-End	SLC_1	Combination		-1426	605	304
SP1-1	I-End	SLC_1	Combination		-1426	-538	-313
SP1-1	J-End	SLC_1	Combination		-2385	-538	-313
			Combination				
SP1-1	I-End	SLC_2	Combination		-1079 -1079	403	648
SP1-1	J-End	SLC_2	Combination		-1079	403	648
SP1-1	I-End	SLC_2			-2733	-335	-657
SP1-1	J-End	SLC_2	Combination		-2733	-335	-657
SP1-1	I-End	SLC_3	Combination		-1226	304	222
SP1-1	J-End	SLC_3	Combination		-1226	304	222
SP1-1	I-End	SLC_3	Combination		-2586	-237	-232
SP1-1	J-End	SLC_3	Combination	Min	-2586	-237	-232

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

TABLE: Element Forces - Links								
Link	Station	OutputCase	CaseType	StepType	P (Vert.)	V2 (Long.)	V3 (Trasv.)	
Text	Text	Text	Text	Text	KN	KN	KN	
SP1-2	I-End	SLC_1	Combination	Max	-1261	599	304	
SP1-2	J-End	SLC_1	Combination	Max	-1261	599	304	
SP1-2	I-End	SLC_1	Combination	Min	-2007	-535	-313	
SP1-2	J-End	SLC_1	Combination	Min	-2007	-535	-313	
SP1-2	I-End	SLC_2	Combination	Max	-822	394	648	
SP1-2	J-End	SLC_2	Combination	Max	-822	394	648	
SP1-2	I-End	SLC_2	Combination	Min	-2446	-329	-657	
SP1-2	J-End	SLC_2	Combination	Min	-2446	-329	-657	
SP1-2	I-End	SLC_3	Combination	Max	-1102	299	223	
SP1-2	J-End	SLC_3	Combination	Max	-1102	299	223	
SP1-2	I-End	SLC_3	Combination	Min	-2167	-234	-232	
SP1-2	J-End	SLC_3	Combination	Min	-2167	-234	-232	
SP2-1	I-End	SLC_1	Combination	Max	-808	451	108	
SP2-1	J-End	SLC_1	Combination	Max	-808	451	108	
SP2-1	I-End	SLC_1	Combination	Min	-1477	-479	-108	
SP2-1	J-End	SLC_1	Combination	Min	-1477	-479	-108	
SP2-1	I-End	SLC_2	Combination	Max	-732	209	268	
SP2-1	J-End	SLC_2	Combination	Max	-732	209	268	
SP2-1	I-End	SLC_2	Combination	Min	-1553	-237	-267	
SP2-1	J-End	SLC_2	Combination	Min	-1553	-237	-267	
SP2-1	I-End	SLC_3	Combination	Max	-494	181	87	
SP2-1	J-End	SLC_3	Combination	Max	-494	181	87	
SP2-1	I-End	SLC_3	Combination	Min	-1791	-209	-87	
SP2-1	J-End	SLC_3	Combination	Min	-1791	-209	-87	
SP2-2	I-End	SLC_1	Combination	Max	-840	451	108	
SP2-2	J-End	SLC_1	Combination	Max	-840	451	108	
SP2-2	I-End	SLC_1	Combination	Min	-1444	-479	-108	
SP2-2	J-End	SLC_1	Combination	Min	-1444	-479	-108	
SP2-2	I-End	SLC_2	Combination	Max	-732	216	268	
SP2-2	J-End	SLC_2	Combination	Max	-732	216	268	
SP2-2	I-End	SLC_2	Combination	Min	-1552	-243	-267	
SP2-2	J-End	SLC_2	Combination	Min	-1552	-243	-267	
SP2-2	I-End	SLC_3	Combination	Max	-505	182	87	
SP2-2	J-End	SLC_3	Combination	Max	-505	182	87	
SP2-2	I-End	SLC_3	Combination	Min	-1779	-210	-87	
SP2-2	J-End	SLC_3	Combination	Min	-1779	-210	-87	

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

6.6.3. SPOSTAMENTI ALLO SLC - SLU

Si riportano in tabella i valori degli spostamenti degli appoggi allo SLC, necessari per il dimensionamento della corsa dell'isolatore.

TABLE:	Joint Displace	ements				
Joint	OutputCase	CaseType	StepType	U1	U2	$(U1^2+U2^2)^{0.5}$
Text	Text	Text	Text	cm	cm	cm
SP1-1	SLC_1	Combination	Max	19.6	9.7	21.9
SP1-1	SLC_1	Combination	Min	-17.4	-10.0	20.1
SP1-1	SLC_2	Combination	Max	13.1	20.6	24.4
SP1-1	SLC_2	Combination	Min	-10.9	-20.8	23.5
SP1-1	SLC_3	Combination	Max	9.9	7.1	12.1
SP1-1	SLC_3	Combination	Min	-7.7	-7.4	10.6
SP1-2	SLC_1	Combination	Max	19.4	9.7	21.7
SP1-2	SLC_1	Combination	Min	-17.3	-10.0	20.0
SP1-2	SLC_2	Combination	Max	12.8	20.6	24.2
SP1-2	SLC_2	Combination	Min	-10.7	-20.8	23.4
SP1-2	SLC_3	Combination	Max	9.7	7.1	12.0
SP1-2	SLC_3	Combination	Min	-7.6	-7.4	10.6
P1-1	SLC_1	Combination	Max	14.7	7.2	16.4
P1-1	SLC_1	Combination	Min	-13.8	-6.7	15.3
P1-1	SLC_2	Combination	Max	7.9	16.5	18.3
P1-1	SLC_2	Combination	Min	-6.9	-16.0	17.5
P1-1	SLC_3	Combination	Max	6.3	5.8	8.6
P1-1	SLC_3	Combination	Min	-5.4	-5.3	7.5
P1-2	SLC_1	Combination	Max	14.5	6.5	15.9
P1-2	SLC_1	Combination	Min	-13.7	-7.3	15.5
P1-2	SLC_2	Combination	Max	7.5	15.9	17.5
P1-2	SLC_2	Combination	Min	-6.6	-16.7	18.0
P1-2	SLC_3	Combination	Max	6.1	5.1	8.0
P1-2	SLC_3	Combination	Min	-5.3	-6.0	7.9
P2-1	SLC_1	Combination	Max	13.0	4.6	13.8
P2-1	SLC_1	Combination	Min	-14.0	-4.7	14.7
P2-1	SLC_2	Combination	Max	4.9	11.9	12.9
P2-1	SLC_2	Combination	Min	-5.8	-12.0	13.4
P2-1	SLC_3	Combination	Max	4.1	3.9	5.6
P2-1	SLC_3	Combination	Min	-5.0	-4.0	6.4
P2-2	SLC_1	Combination	Max	13.0	4.7	13.9
P2-2	SLC_1	Combination	Min	-13.9	-4.9	14.7
P2-2	SLC_2	Combination	Max	4.9	12.1	13.0
P2-2	SLC_2	Combination	Min	-5.7	-12.2	13.5
P2-2	SLC_3	Combination	Max	4.1	4.0	5.8
P2-2	SLC_3	Combination	Min	-4.9	-4.2	6.5

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

TABLE:	TABLE: Joint Displacements					
Joint	OutputCase	CaseType	StepType	U1	U2	$(U1^2+U2^2)^{0.5}$
Text	Text	Text	Text	cm	cm	cm
P3-1	SLC_1	Combination	Max	15.9	3.9	16.3
P3-1	SLC_1	Combination	Min	-16.3	-4.0	16.8
P3-1	SLC_2	Combination	Max	7.1	9.3	11.7
P3-1	SLC_2	Combination	Min	-7.6	-9.3	12.0
P3-1	SLC_3	Combination	Max	6.1	3.1	6.8
P3-1	SLC_3	Combination	Min	-6.5	-3.1	7.2
P3-2	SLC_1	Combination	Max	15.9	4.0	16.4
P3-2	SLC_1	Combination	Min	-16.3	-4.2	16.8
P3-2	SLC_2	Combination	Max	7.3	9.4	11.9
P3-2	SLC_2	Combination	Min	-7.8	-9.5	12.3
P3-2	SLC_3	Combination	Max	6.1	3.2	6.9
P3-2	SLC_3	Combination	Min	-6.6	-3.3	7.4
SP2-1	SLC_1	Combination	Max	16.7	3.9	17.2
SP2-1	SLC_1	Combination	Min	-17.7	-3.9	18.1
SP2-1	SLC_2	Combination	Max	7.7	9.7	12.4
SP2-1	SLC_2	Combination	Min	-8.7	-9.7	13.1
SP2-1	SLC_3	Combination	Max	6.7	3.2	7.4
SP2-1	SLC_3	Combination	Min	-7.7	-3.1	8.3
SP2-2	SLC_1	Combination	Max	16.7	3.9	17.2
SP2-2	SLC_1	Combination	Min	-17.7	-3.9	18.1
SP2-2	SLC_2	Combination	Max	8.0	9.7	12.6
SP2-2	SLC_2	Combination	Min	-9.0	-9.7	13.2
SP2-2	SLC_3	Combination	Max	6.8	3.2	7.5
SP2-2	SLC_3	Combination	Min	-7.7	-3.1	8.4

Per la spalla 1 lo spostamento massimo richiesto in combinazione SLC è pari a 244 mm che risulta essere minore rispetto alla corsa dell'isolatore che risulta essere pari a 250 mm.

Per le pile e la spalla 2 lo spostamento massimo richiesto in combinazione SLC è pari a 183 mm che risulta essere minore rispetto alla corsa dell'isolatore che risulta essere pari a 200 mm.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Nella tabella seguente vengono riportati gli spostamenti concomitanti allo sforzo normale massimo presente su isolatore nella combinazione SLU (vento e termica uniforme come azioni secondarie).

TABLE: Jo	TABLE: Joint Displacements					
Joint	OutputCase	CaseType	StepType	U1	U2	
Text	Text	Text	Text	cm	cm	
P1-1	VENTO + VUT	Combination	Max	5.37	8.30	
P1-1	VENTO + VUT	Combination	Min	-2.90	-8.21	
P1-2	VENTO + VUT	Combination	Max	5.31	8.30	
P1-2	VENTO + VUT	Combination	Min	-2.86	-8.21	
P2-1	VENTO + VUT	Combination	Max	2.25	7.31	
P2-1	VENTO + VUT	Combination	Min	0.22	-7.36	
P2-2	VENTO + VUT	Combination	Max	2.38	7.31	
P2-2	VENTO + VUT	Combination	Min	0.07	-7.36	
P3-1	VENTO + VUT	Combination	Max	5.18	5.54	
P3-1	VENTO + VUT	Combination	Min	-2.72	-5.55	
P3-2	VENTO + VUT	Combination	Max	5.33	5.54	
P3-2	VENTO + VUT	Combination	Min	-2.89	-5.55	
SPA-1	VENTO + VUT	Combination	Max	8.84	7.97	
SPA-1	VENTO + VUT	Combination	Min	-6.38	-7.81	
SPA-2	VENTO + VUT	Combination	Max	8.78	7.97	
SPA-2	VENTO + VUT	Combination	Min	-6.36	-7.81	
SPB-1	VENTO + VUT	Combination	Max	6.72	4.37	
SPB-1	VENTO + VUT	Combination	Min	-4.26	-4.28	
SPB-2	VENTO + VUT	Combination	Max	6.88	4.37	
SPB-2	VENTO + VUT	Combination	Min	-4.44	-4.28	

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Nella tabella seguente vengono riportati gli spostamenti massimi nella combinazione SLU (inviluppo tra vento e termica come azioni principali).

TABLE: Jo	TABLE: Joint Displacements					
Joint	OutputCase	CaseType	StepType	U1	U2	
Text	Text	Text	Text	cm	cm	
P1-1	ENV_SLU	Combination	Max	7.53	13.46	
P1-1	ENV_SLU	Combination	Min	-5.06	-13.30	
P1-2	ENV_SLU	Combination	Max	7.43	13.46	
P1-2	ENV_SLU	Combination	Min	-4.99	-13.30	
P2-1	ENV_SLU	Combination	Max	3.33	11.86	
P2-1	ENV_SLU	Combination	Min	-0.20	-11.94	
P2-2	ENV_SLU	Combination	Max	3.56	11.86	
P2-2	ENV_SLU	Combination	Min	-0.33	-11.94	
P3-1	ENV_SLU	Combination	Max	7.35	9.07	
P3-1	ENV_SLU	Combination	Min	-4.88	-9.08	
P3-2	ENV_SLU	Combination	Max	7.46	9.07	
P3-2	ENV_SLU	Combination	Min	-5.02	-9.08	
SPA-1	ENV_SLU	Combination	Max	12.73	12.90	
SPA-1	ENV_SLU	Combination	Min	-10.27	-12.63	
SPA-2	ENV_SLU	Combination	Max	12.62	12.90	
SPA-2	ENV_SLU	Combination	Min	-10.19	-12.63	
SPB-1	ENV_SLU	Combination	Max	9.91	7.28	
SPB-1	ENV_SLU	Combination	Min	-7.45	-7.14	
SPB-2	ENV_SLU	Combination	Max	10.04	7.28	
SPB-2	ENV_SLU	Combination	Min	-7.60	-7.14	

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

6.6.4. CORSA MASSIMA GIUNTI DI DILATAZIONE

Si riportano in tabella i valori degli spostamenti degli appoggi di spalla allo SLV nelle due direzioni longitudinale e trasversale (parallele e ortogonale all'asse del ponte), necessari per il dimensionamento del giunto di dilatazione

TABLE: Joint Displacements					
Joint	OutputCase	CaseType	StepType	U1	U2
Text	Text	Text	Text	cm	cm
SPA-1	SLV_1	Combination	Max	14.74	8.13
SPA-1	SLV_1	Combination	Min	-16.77	-8.43
SPA-1	SLV_2	Combination	Max	9.33	17.31
SPA-1	SLV_2	Combination	Min	-11.36	-17.61
SPA-2	SLV_1	Combination	Max	14.65	8.13
SPA-2	SLV_1	Combination	Min	-16.60	-8.43
SPA-2	SLV_2	Combination	Max	9.16	17.31
SPA-2	SLV_2	Combination	Min	-11.11	-17.61
SPB-1	SLV_1	Combination	Max	15.10	3.30
SPB-1	SLV_1	Combination	Min	-14.10	-3.29
SPB-1	SLV_2	Combination	Max	7.69	8.15
SPB-1	SLV_2	Combination	Min	-6.70	-8.14
SPB-2	SLV_1	Combination	Max	15.08	3.30
SPB-2	SLV_1	Combination	Min	-14.11	-3.29
SPB-2	SLV_2	Combination	Max	7.89	8.15
SPB-2	SLV_2	Combination	Min	-6.92	-8.14

	ESCURSIONE GIUNTI (SLV)		
	LONG (mm) TRASV (mm)		
SPA	±170	±180	
SPB	±160	±100	

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

7. VERIFICHE DEGLI ELEMENTI STRUTTURALI

Nel presente capitolo si riportano le verifiche degli elementi strutturali di cui si sono descritte le caratteristiche statiche e di sollecitazione nei capitoli precedenti. I criteri per la verifica della resistenza delle sezioni (cross section checks) sono contenuti nelle NTC18 cap. 4.2, 4.3 e relative istruzioni. Si rileva una perfetta coincidenza con quanto contenuto in Eurocodice, attraverso l'applicazione del relativo N.A.D. (rif. EN 1993-1-1, EN1993-1-5, EN 1993-2, EN1994-1-1, EN 1994-2). Nel prosieguo si farà riferimento puntuale a quest'ultimo testo, caratterizzato da una trattazione più omogenea, e da un riferimento più puntuale relativamente alle varie regole applicative. Nell'ambito dei vari S.L. considerati, si effettuano, a livello sezionale, le seguenti verifiche:

S.L.U.

resistenza delle sezioni (incluse verifiche di "local buckling") flange induced buckling

S.L.E.

limitazione delle tensioni "web breathing"

Fatica

verifica dell'ampiezza dei Δσ

I medesimi S.L. verranno esaminati, con le medesime modalità generali, per la verifica della connessione trave-soletta. Il complesso delle precedenti verifiche viene effettuato in automatico dal programma "Ponti EC4" per tutte le sezioni miste acciaio-cls che costituiscono le travi principali del viadotto. Nel seguito vengono esposte in dettaglio le modalità operative attraverso il commento della reportistica delle sezioni più significative prese a campione.

7.1. DISTRIBUZIONE DELLE SEZIONI STRUTTURALI

Per la distribuzione delle sezioni strutturali si fa riferimento ai paragrafi dell'analisi strutturale, mentre nel seguente prospetto si riepilogano le denominazioni delle sezioni utilizzate dal software Ponti EC4 in correlazione con la numerazione delle aste dei modelli di calcolo.

Ponti EC4 per ciascuna asta delle travi principali di impalcato crea una sezione di verifica corrispondente all'output station del frame nel modello seguendo i seguenti parametri:

- Trave esterna o trave interna (filo 000, T1 filo 201, T2)
- Numero elemento frame considerato (numero "frame" del modello di calcolo)
- Output Station considerato ("I" = inizio elemento, "M" = mezzeria elemento, "F" = fine elemento)

Quindi per l'elemento j-esimo ("frame" appartenente alla trave Tn-esima) verranno riportate le verifiche per le sezioni resistenti TnNji, TnNjm e TnNjf. Di seguito si riporta uno specchio riepilogativo dell'associazione fra aste di modello, sezioni metalliche resistenti e la denominazione delle sezioni di verifica utilizzata dal software Ponti EC4.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Nel paragrafo 6.3.2 è riportata l'assegnazione delle sezioni agli elementi di analisi. Si riporta di seguito un esempio di associazione tra aste modello ed elementi di verifica PEC4 esplicitato per le prime due sezioni di analisi da estendere alle altre sezioni.

Sezione di analisi	Concio di analisi	Aste modello	Elemento PEC4
001	C1	001 – 003 201 – 203	T1N001 – T1N003 T2N001 – T2N003
002	C2	004 – 007 207 – 207	T1N004 – T1N007 T2N007 – T2N007

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

7.2. TRAVI LONGITUDINALI – VERIFICHE SLU

Le verifica di resistenza delle sezioni allo S.L.U. viene effettuata attraverso i seguenti passaggi:

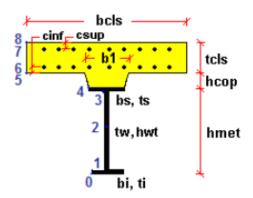
Preclassificazione della sezione

Effettuata sulla base delle caratteristiche geometriche dei singoli sottocomponenti.

Analisi plastica

Tracciamento dei domini di resistenza della sezione N/Mrd ed N/Mf,rd (dominio della sezione privata dell'anima).

Classificazione effettiva della sezione


Effettuata sulla base dell'effettivo valore di NEd, MEd per la combinazione in esame (max/min MEd, max/min VEd, con i rispettivi valori concomitanti).

Verifica plastica a pressoflessione (solo sezioni cl. 1 e 2):

Valutazione del massimo rapporto di sfruttamento plastico η₁,; effettuata con riferimento a NEd, MEd agenti isolatamente, e per effetto combinato.

Verifica elastica a pressoflessione (sezioni cl. 3 e 4)

Valutazione del massimo rapporto di sfruttamento elastico η₁, effettuata rispettivamente per le sezioni in classe 3/4 con riferimento alle caratteristiche geometriche lorde/efficaci. Le caratteristiche geometriche efficaci vengono dedotte in maniera iterativa, tenendo conto delle flessioni parassite che nascono per effetto dell'eccentricità assunta dall'azione assiale di progetto causata dallo "shift" progressivo dell'a.n.e. Le tensioni vengono valutate in corrispondenza delle 8 fibre indicate nello schema seguente.

Nell'ambito del calcolo tensionale, la soletta viene considerata "cracked" (non reagente) all'atto dell'annullamento della tensione di compressione valutata in corrispondenza della fibra media. Contestualmente all'annullamento della soletta, si annullano anche le sollecitazioni da ritiro primario.

Verifica a taglio - sezioni non soggette a "shear buckling"

Viene effettuato il calcolo del taglio resistente plastico e il calcolo del rapporto di sfruttamento a taglio.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Verifica a taglio - sezioni suscettibili di "shear buckling"

Per sezioni soggette a "shear buckling" viene valutato il coefficiente di riduzione □w, e successivamente valutato il taglio resistente Vb,Rd come somma dei contributo resistenti dell'anima Vbw,Rd e, se applicabile, delle flange Vbf,Rd.

Verifica interazione azione assiale - flessione - taglio (tutte le classi)

Si adotta univocamente, per tutte le classi di sezione, l'approccio proposto da EN 1993-1-5, cap. 7.1, che consiste nella valutazione di un rapporto di sfruttamento modificato in funzione dei singoli rapporti di sfruttamento valutati per pressoflessione e taglio agenti separatamente. L'adozione di questa formulazione risulta a rigore solo leggermente più cautelativa di quella riservata alle sezioni di classe 1 - 2, per le quali l'interazione N-M-V si risolverebbe con la deduzione di un rapporto di sfruttamento elastico per tensioni normali valutato con riferimento a una anima opportunamente ridotta per tenere conto dell'influenza del taglio (cfr. EN 1994-2 cap. 6.2.2.4.(2)).

Un'ulteriore ipotesi cautelativa, riservata alla verifica di sezioni in classe 3-4, è l'utilizzo sistematico in luogo di quello plastico del rapporto di sfruttamento elastico dall'andamento delle tensioni lungo l'anima (a rigore la EN 1993-1-5, cap. 7.1.(4) e (5) prevede tale accortezza solo qualora l'anima risulti interamente in compressione). Inoltre in EN 1993-1-5 7.1 (2) è indicato che la verifica deve essere effettuata a distanza maggiore di hw/2 dalla sezione di appoggio. In considerazione di gueste ipotesi cautelative le verifiche di interazione si intendono soddisfatte anche se dovessero eccedere l'unità di qualche punto percentuale.

Come già evidenziato relativamente al calcolo del contributo resistente a taglio delle flange, le resistenze plastiche della sezione completa e della sezione privata dell'anima sono rilevate direttamente dai rispettivi domini di interazione, per cui:

$$\begin{split} M_{pl,Rd} &= M_{pl(N),Rd} \\ M_{f,Rd} &= M_{f(N),Rd} \end{split}$$

Si rileva che la diseguaglianza associata alla formula di interazione presentata poco sopra evidenzia implicitamente che la formula non è applicabile (non vi è interazione) qualora il momento di progetto sia minore di quello sopportabile dalle sole flange.

Per sezioni in classe 3-4, il momento di progetto MEd viene valutato sulla base delle tensioni cumulate nella fibra più sollecitata ($M_{Ed,eq} = max \mid W_{xi} * \Sigma \sigma_{x,i} \mid$).

A seguire si riporta lo sviluppo delle verifiche nelle sezioni più significative, tramite le singole tabelle prodotte dalla procedura Ponti EC4. Per tutte le altre sezioni si indicheranno in forma grafica e tabellare i coefficienti di utilizzo.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

7.2.1. VERIFICA DELLE SEZIONI

Il programma effettua sistematicamente il gruppo di verifiche per le quattro condizioni fondamentali M_{max}, M_{min}, V_{max} e V_{min}, sulla base delle sollecitazioni di progetto S.L.U. esportate direttamente, nell'ambito di ciascuna "fase", dal modello agli elementi finiti. Negli allegati di calcolo su supporto elettronico si riportano per esteso le verifiche allo SLU per tutte le sezioni dei diversi conci. Nelle pagine seguenti si riportano invece in forma grafica i risultati principali e in forma tabellare l'output sintetico delle verifiche del programma Ponti EC4, contenente, per ciascuna sezione e per ciascuna condizione esaminata, i seguenti risultati, rispettivamente scaturiti dall'analisi a lungo termine (LT) e dall'analisi a breve termine (ST):

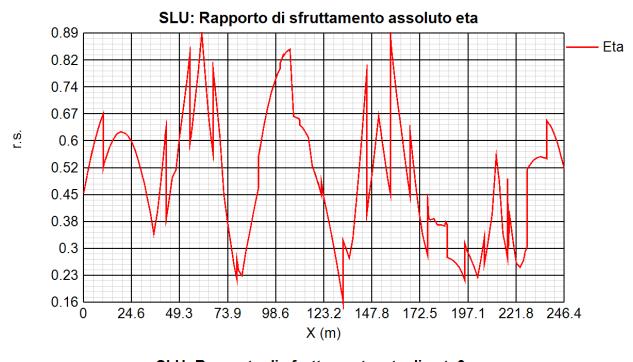
- classificazione della sezione in fase 1
- classificazione della sezione in fase finale
- $\overline{\eta}_1 = \frac{M_{Ed}}{M_{Rd}}$ rapporto di sfruttamento plastico per tensioni normali (solo classe 1 e 2)
- $\eta_{\rm I} = \frac{\sigma_{\rm Ed}}{f_{_{\rm V}}/\gamma_{_{M0}}} \ \ {\rm rapporto\ di\ sfruttamento\ elastico\ per\ tensioni\ normali}$
- $rac{V_{\it Ed}}{}$ rapporto di sfruttamento a taglio
- $\eta_{\scriptscriptstyle 3} = rac{V_{\scriptscriptstyle Ed}}{V_{\scriptscriptstyle bw.Rd}}$ rapporto di sfruttamento plastico a taglio
- V/M/N rapporto di sfruttamento per azione combinata M/N/V

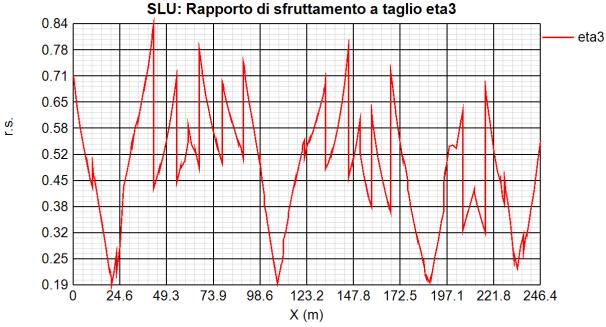
Si evidenzia che sia l'analisi plastica sia l'analisi elastica vengono effettuate sistematicamente dal programma, indipendentemente dalla classificazione della sezione. Pertanto, nell'ambito dell'esposizione dei vari rapporti di sfruttamento, verranno indicati tra parentesi:

- il rapporto di sfruttamento elastico per tensioni normali, quando riferito a sezioni di classe 1-2 (valore non significativo)
- Il rapporto di sfruttamento plastico per tensioni normali, quando riferito a sezioni di classe 3-4 (verifica plastica non applicabile)

Si riportano sinteticamente di seguito i valori di riferimento per le verifiche di resistenza (vedi par. 3 per i valori completi):

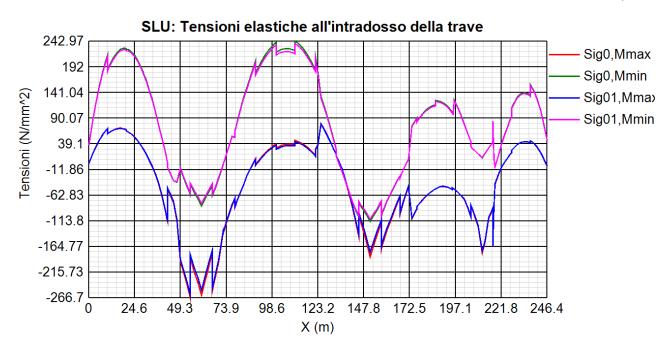
_	Travi principali (S355J0):	sp <= 4 cm	fyd = 33.8	kN/cm²
		sp > 4 cm	fyd = 31.9	kN/cm ²
_	Piastre metalliche (S355J0	O):	fyd = 33.8	kN/cm ²
_	Soletta (C32/40):		fcd = 1.88	kN/cm ²
_	Barre di armatura (B450C)):	fyd = 39.1	kN/cm ²

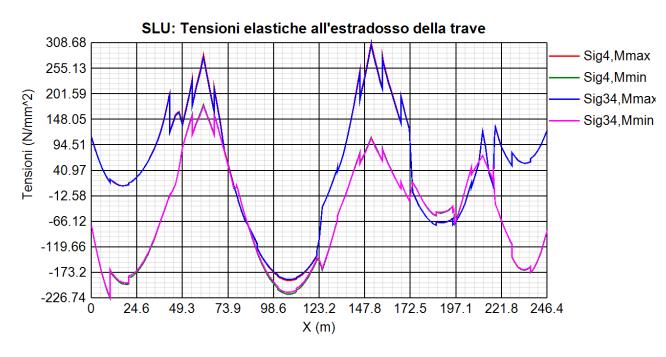




RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

FILO 000 / FILO 200


RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3


Grafici delle tensioni allo SLU

Sig0, Sig01 = tensioni intradosso elemento (punti 0 e 1 della figura)

Sig4, Sig34 = tensioni estradosso elemento (punti 4 e 3 della figura)

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Si riportano infine di seguito, a titolo puramente illustrativo, alcune delle verifiche estese per le sezioni resistenti più significative delle travi principali; per le verifiche estese di tutte le aste in tutte le condizioni di carico si rimanda, per ovvie esigenze di contenimento della dimensione del presente documento, agli allegati di calcolo alla presente relazione disponibili su supporto informatico.

Massimi sfruttamenti per momento massimo positivo (in grassetto le sezioni di cui verrranno

riportati gli estesi)

Προπαιίζ	J.: 00100./			
CONCIO	MAX M	Sezione	X (m)	Combinazione
C01	0.30	T1N003F_T1N003F	10.037	SLU fond., Vmax .
C02	0.62	T1N006M_T1N006M	16.952	SLU fond., Mmin .
C03	0.62	T1N008I_T1N008I	20.121	SLU fond., Mmin .
C04	0.08	T1N016I_T1N016I	42.295	SLU fond., Vmax .
C05F	0.66	T1N053F_T1N053F	151.15	SLU fond., Mmax .
C06F	0.11	T1N027F_T1N027F	78.58	SLU fond., Mmin .
C07	0.48	T1N044I_T1N044I	121.935	SLU fond., Mmin .
C08	0.58	T1N035F_T1N035F	100.757	SLU fond., Mmin .
C09	0.55	T1N036F_T1N036F	102.047	SLU fond., Mmin .
C10	0.28	T1N067I_T1N067I	186.331	SLU fond., Mmin .
C11	0.26	T1N065F_T1N065F	185.065	SLU fond., Mmin .
C12	0.22	T1N070I_T1N070I	195.36	SLU fond., Mmin .
C13F	0.09	T1N074I_T1N074I	205.381	SLU fond., Mmin .
C14	0.31	T1N081F_T1N081F	227.395	SLU fond., Mmin .
C15	0.21	T1N084M_T1N084M	234.145	SLU fond., Vmin .
C16	0.18	T1N086I_T1N086I	237.395	SLU fond., Vmin .

Massimi sfruttamenti per momento massimo negativo (in grassetto le sezioni di cui verrranno

riportati gli estesi)

	MIN M	Sezione	X (m)	Combinazione
C01	-0.671	T1N003F_T1N003F	10.037	SLU fond., Mmin .
C02	0	=	-	-
C03	-0.636	T1N015F_T1N015F	42.295	SLU fond., Mmax .
C04	-0.883	T1N056I_T1N056I	157.185	SLU fond., Mmax .
C05F	-0.891	T1N021F_T1N021F	60.439	SLU fond., Mmax .
C06F	-0.794	T1N024I_T1N024I	66.487	SLU fond., Mmax .
C07	-0.272	T1N028I_T1N028I	78.58	SLU fond., Mmax .
C08	-0.795	T1N035F_T1N035F	100.757	SLU fond., Vmax .
C09	-0.847	T1N037F_T1N037F	105.797	SLU fond., Vmax .
C10	-0.621	T1N060I_T1N060I	167.246	SLU fond., Mmax .
C11	-0.433	T1N063I_T1N063I	176.293	SLU fond., Vmin .
C12	-0.334	T1N073F_T1N073F	205.381	SLU fond., Mmax .
C13F	-0.556	T1N075F_T1N075F	211.389	SLU fond., Mmax .
C14	-0.474	T1N078I_T1N078I	217.392	SLU fond., Mmax .
C15	-0.553	T1N084M_T1N084M	234.145	SLU fond., Mmin .
C16	-0.652	T1N086I_T1N086I	237.395	SLU fond., Mmin .

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Massimi sfruttamenti per taglio massimo (in grassetto le sezioni di cui verrranno riportati gli estesi)

	MAXV	Sezione	X (m)	Combinazione
C01	0.715	T1N001I_T1N001I	0	SLU fond., Vmax .
C02	0.493	T1N004I_T1N004I	10.037	SLU fond., Vmax .
C03	0.844	T1N015F_T1N015F	42.295	SLU fond., Vmin .
C04	0.712	T1N019F_T1N019F	54.39	SLU fond., Vmin .
C05F	0.603	T1N053F_T1N053F	151.15	SLU fond., Vmin .
C06F	0.788	T1N051F_T1N051F	145.104	SLU fond., Vmin .
C07	0.704	T1N047F_T1N047F	133.014	SLU fond., Vmin .
C08	0.748	T1N032I_T1N032I	89.671	SLU fond., Vmax .
C09	0.387	T1N036I_T1N036I	100.757	SLU fond., Vmax .
C10	0.726	T1N060I_T1N060I	167.246	SLU fond., Vmax .
C11	0.428	T1N063I_T1N063I	176.293	SLU fond., Vmax .
C12	0.626	T1N073F_T1N073F	205.381	SLU fond., Vmin .
C13F	0.428	T1N075F_T1N075F	211.389	SLU fond., Vmin .
C14	0.684	T1N078I_T1N078I	217.392	SLU fond., Vmax .
C15	0.456	T1N082I_T1N082I	227.395	SLU fond., Vmax .
C16	0.552	T1N088F_T1N088F	246.395	SLU fond., Vmin .

Sezione T1N001I_T1N001I

Caratteristiche generali

Dati principali

Altezza della sezione di acciaio	3500 mm		
Piattabanda superiore	600x25 mm		
Piattabanda inferiore	900×40 mm		
Anima	20x3435 mm, Inclinazione: 0		
Soletta	5550x240 mm		
Raccordo	600x30 mm (escluso nel calcolo delle proprieta' geometriche)		
Armatura superiore	diametro 20 mm, passo 200 mm, dist. estradosso-baricentro armatura 50 mm		
Armatura inferiore	diametro 20 mm, passo 200 mm, dist. intradosso-baricentro armatura 50 mm		
Pioli	diametro 19 mm, altezza 200 mm, numero 20/m		

Irrigidenti verticali

Interasse	3749 mm
Tipo	R da un solo lato
Piatto 1	380×20 mm
Piatto 2	

Irrigidenti longitudinali dell'anima

distanza estradosso trave-irrigidente	1100 mm
distanza estradosso trave-irrigidente	0 mm
Dimensione dei piatti - sinistra	orizzontali 0x0 mm, verticali 0x0 mm
Dimensione dei piatti - destra	orizzontali 220x20 mm, verticali 0x0 mm

	geometric rorac					
	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	1.197E+	2.174E+	2.174E+	2.174E+	3.506E+	1.371E+
z _G (mm)	1451.73	2439.51	2439.51	2439.51	2899.47	1731.22
J_y (mm 4)	2.099E+1	4.703E+1	4.703E+1	4.703E+1	5.92E+1	2.836E+1
$W_{y,0}$ (mm ³)	-1.446E+	-1.928E+	-1.928E+	-1.928E+	-2.042E+	-1.638E+
$W_{y,1}$ (mm ³)	-1.487E+	-1.96E+	-1.96E+	-1.96E+	-2.07E+	-1.677E+
$W_{y,3}$ (mm ³)	1.038E+	4.542E+	4.542E+	4.542E+	1.029E+	1.626E+
$W_{y,4} \text{ (mm}^3\text{)}$	1.025E+	4.435E+	4.435E+	4.435E+	9.858E+	1.603E+
$W_{y,5}$ (mm ³)	1E+30	4.313E+	4.313E+	4.313E+	9.389E+	1.576E+
$W_{y,6} \text{ (mm}^3)$	1E+30	4.124E+	4.124E+	4.124E+	8.699E+	1.534E+
$W_{y,7}$ (mm ³)	1E+30	3.673E+	3.673E+	3.673E+	7.215E+	1.426E+
$W_{y,8}$ (mm 3)	1E+30	3.535E+	3.535E+	3.535E+	6.8E+	1.391E+
S _{y,1} (mm ³)	5.154E+	8.71E+	8.71E+	8.71E+	1.037E+	6.16E+
S _{y,2} (mm ³)	7.147E+	1.447E+	1.447E+	1.447E+	1.854E+	9.021E+

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

S _{y,3} (mm ³)	3.054E+	1.34E+	1.34E+	1.34E+	1.821E+	5.98E+
S _{y,4} (mm ³)	-3.725E-	1.182E+	1.182E+	1.182E+	1.733E+	3.346E+
n_E	1E+30	16.	16.	16.	6.2	1E+30

Verifiche S.L.U. sezione composta (Comb. Vmax)

Sollecitazio	ni (Comb	. Vmax)		
Fase	N (N)	V (N)	M (Nm)	T (Nm)
	0E+0	1.66E+	0E+0	0E+0
2	0E+0	7.52E+	3E+	0E+0
2	0E+0	0E+0	0E+0	0E+0
Rit.Is	0E+0		0E+0	
2	0E+0	0E+0	0E+0	0E+0
3	7.54E+	1.77E+	8.98E+	0E+0
Term.Is	0E+0		0E+0	
3	0E+0	2.28E+	6.6E+	0E+0
Total	7.54E+	4.87E+	8.99E+	0E+0

Pressoflessione - Analisi plastica

Classificazione della sezione (Comb. Vmax)

	c/t	z _{pl} (mm)	α	Ψ	Classe		
Anima	171.7	1179.0	0.3	78.9			
Piattabanda superiore	11.						
Piattabanda inferiore	1						
classe della sezion							
Analisi plastica: NON APPLICABILE							

Verifica plastica a Presso-Tenso flessione (Comb. Vmax)

Azione	Azione assiale		e semplice	Interazione N/M			
N _{Ed} (N)	7.545E+6	M _{Ed} (Nm)	8.991E+6	N _{Ed} (N)	7.545E+6		
N _{Rd} (N)	4.729E+7	M _{Rd} (Nm)	6.278E+7	M _{Ed} (Nm)	8.991E+6		
				M _{Rd} (Nm)	5.19E+7		
N_{Ed}/N_{Rd}	0.16	M_{Ed}/M_{Rd}	0.143	M_{Ed}/M_{Rd}	0.173		
	VERIFICA NON SIGNIFICATIVA						

Pressoflessione - Calcolo tensioni lorde

Tensioni normali sulla sezione lorda (Comb. Vmax)

	F. 1	F. 2a	F. 2a	F. 2b	F. 2b	F. 2c		F. 2 to		F. 3a	F. 3b	F. 3b	F. 3 to	$\eta_{\scriptscriptstyle 1}$
		Non	Fess.	Non	Fess.	Non	Fess.		Non	Fess.	Non	Fess.		
		Fess.		Fess.		Fess.			Fess.		Fess.			
σ_8									5.					
σ 7									3	11			118.	0.30
σ 6									31.	113.			113.	0.2
σ 5														
σ_4									30.	111.			111.	0.32
σ_3									30.	110.			110.	0.32
σ_2									21.	5			5	0.16
σ_1									-21.	1.			1.	0.00
σ_0									-22.	0.			0.	

Massimo coefficiente di utilizzo: 0.329 VERIFICA NON SIGNIFICATIVA NOTE

- 1) Tensione totale all'estradosso soletta alla fine della fase $2 = 0 \text{ N/mm}^2$
- 2) Tensione totale all'intradosso soletta alla fine della fase 2 = 0 N/mm²

 La sezione a fine fase 2 e' stata considerata: Fessurata (m.)
- 3) Tensione totale all'estradosso soletta alla fine della fase 3 = 5.57 N/mm^2 4) Tensione totale all'intradosso soletta alla fine della fase 3 = 4.98 N/mm^2 La sezione a fine fase 3 e' stata considerata: Fessurata (m.)

Pressoflessione - Calcolo tensioni efficaci

Area efficace per shear lag e/o buckling delle flange(Comb. Vmax)

Componente	b (mm)	t (mm)	λρ	ρ	$A_{c,eff}$ (mm 2	β^{-k}	$A_{c,eff} * \beta^{-k} (mm^2)$
Piattabanda superiore SX	30	2					750
Piattabanda superiore DX	30	2					750
Piattabanda inferiore SX	45	4					1800
Piattabanda inferiore DX	45	4					1800

Instabilita' locale dei pannelli d'anima (Comb. Vmax)

Instabilita ioc	are der pannerrr	a anima (comb.	villax)
	Anima	Sub pannello 1	Sub pannello 2
b (mm)	343	107	236
σ cr0E (N/mm ²)	6.4	65.7	13.6
σ _{sup} (N/mm ²)	110.3	110.3	76.2
$\sigma_{inf} (N/mm^2)$	1.	76.2	1.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Ψ	78.9	1.4	54.5
Kσ	1E+5	1E+5	1E+5
λ _p			
b _c (mm)			
b _{c sup} (mm)			
b _{c sup} (mm)			
ρ _{loc}			
b _{ceff} (mm)			
b _{ceff sup} (mm)			
b _{ceff sup} (mm)			
φ _{Foro} (mm)			

Caratteristiche dell'anima compressa, irrigidenti esclusi (Comb. Vmax)

		3 1 1	·
	A (mm²)	z_{G} (mm)	J_y (mm^4)
A _{c Edge} sup	0E+0	4	0E+0
A _{c 1}	0E+0		0E+0
A _{c 2}	0E+0		0E+0
A _{c Edge} inf	0E+0	4	0E+0
A _{c tot}	0E+0		0E+0
Ac	0E+0		

Caratteristiche dell'anima compressa, depurata per instabilita' locale (Comb. Vmax)

	A (mm²)	z_{G} (mm)	J_{y} (mm^{4})
A _{c,eff} Edge sup	0E+0	4	0E+0
Ac,eff 1	0E+0		0E+0
A _{c,eff 2}	0E+0		0E+0
Ac,eff Edge inf	0E+0	4	0E+0
A _{c,eff tot}	0E+0		0E+0
Ac,eff,loc	0E+0		

Tensioni critiche per l'anima (Comb. Vmax)

orrorone p	o a (oo
	Stiffener 1
A _{sl} (mm ²)	0E+0
e _{sl} (mm)	
I_{sl} (mm ⁴)	0E+0
$A_{\rm sl,eff}$ (mm ²)	0E+0
e _{sl,eff} (mm)	
$I_{sl,eff}$ (mm ⁴)	0E+0
σ _{cr,sl,i} (p)	
σ _{cr,p,i} (p)	
σ cr,sl (C)	
σ _{cr,c} (c)	
α _e	0.2

Coefficienti di riduzione per instabilita' globale dell'anima (Comb. Vmax)

	Piastra		Colonna
σ _{cr,p} (p)	6.441101004515 3E+5	σ _{cr,c} (c)	
β _{ac} (p)		β _{ac} (c)	8.10
λρ		λ 。	
ρ _p		χ	

Anima depurata per instabilita' locale e globale dell'anima (Comb. Vmax)

	A (mm²)	z_{G} (mm)	J_y (mm^4)
Edge sup	0E+0	4	0E+0
1	0E+0		0E+0
2	0E+0		0E+0
Edge inf	0E+0	4	0E+0
Totale	0E+0		0E+0

Depurazione complessiva da applicare alla sezione (Comb. Vmax)

	$\Delta A (mm^2)$	z_{G} (mm)	$\Delta J_y (mm^4)$
Anima	0E+0		0E+0
Piattabanda superiore	0E+0		0E+0
Piattabanda inferiore	0E+0		0E+0

Caratteristiche geometriche efficaci (Comb. Vmax)

	geometricite erric	act (comb. vman)				
	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	1.197E+	2.174E+	3.506E+	2.174E+	3.506E+	1.371E+
z _G (mm)	1451.73	2439.51	2899.47	2439.51	2899.47	1731.22
Δ _{ZGeff} (mm)						
$J_{y,eff}$ (mm ⁴)	2.099E+1	4.703E+1	5.92E+1	4.703E+1	5.92E+1	2.836E+1
W _{y,0eff} (mm ³)	-1.446E+	-1.928E+	-2.042E+	-1.928E+	-2.042E+	-1.638E+
W _{y,leff} (mm ³)	-1.487E+	-1.96E+	-2.07E+	-1.96E+	-2.07E+	-1.677E+
W _{y,3eff} (mm ³)	1.038E+	4.542E+	1.029E+	4.542E+	1.029E+	1.626E+
W _{y,4eff} (mm ³)	1.025E+	4.435E+	9.858E+	4.435E+	9.858E+	1.603E+

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

W _{y,5eff} (mm ³)	1E+30	4.313E+	9.389E+	4.313E+	9.389E+	1.576E+
W _{y,6eff} (mm ³)	1E+30	4.124E+	8.699E+	4.124E+	8.699E+	1.534E+
W _{y,7eff} (mm ³)	1E+30	3.673E+	7.215E+	3.673E+	7.215E+	1.426E+
W _{y,8eff} (mm ³)	1E+30	3.535E+	6.8E+	3.535E+	6.8E+	1.391E+
S _{y,leff} (mm ³)	5.154E+	8.71E+	1.037E+	8.71E+	1.037E+	6.16E+
S _{y,2eff} (mm ³)	7.147E+	1.447E+	1.854E+	1.447E+	1.854E+	9.021E+
S _{y,3eff} (mm ³)	3.054E+	1.34E+	1.821E+	1.34E+	1.821E+	5.98E+
S _{v,4eff} (mm ³)	2.928E-29	1.182E+	1.733E+	1.182E+	1.733E+	3.346E+

Le caratteristiche efficaci sono state calcolate iterativamente in 0 iterazioni, con la seguente variazione percentuale del coefficiente ψ

$(\psi_{1} - \psi_{0})/\psi_{0}*100$	
$(\psi_2 - \psi_1)/\psi_1 *100$	
$(\psi_3 - \psi_2)/\psi_2 * 100$	
$(\psi_4 - \psi_3)/\psi_3*100$	
$(\psi_{5} - \psi_{4})/\psi_{4}*100$	

Momento aggiuntivo per traslazione dell'asse neutro (Comb. Vmax)

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3a	Fase 3b		
Δ M _{Fessurata} (kNm)	0E+0	0E+0	0E+0	0E+0	0E+0	0E+0		
ΔM _{Non fessurata} (kNm)	0E+0	0E+0	0E+0	0E+0	0E+0	0E+0		

Tens	ioni nor	mali sul	la sezio	ne effic	ace (C	Comb. Vma	ax)							
	F. 1	F. 2a	F. 2a	F. 2b	F. 2b	F. 2c	F. 2c	F. 2 to	F. 3a	F. 3a	F. 3b	F. 3b	F. 3 to	η_1
		Non	Fess.	Non	Fess.	Non	Fess.		Non	Fess.	Non	Fess.		7-
		Fess.		Fess.		Fess.			Fess.		Fess.			
σ 8									5.					
σ 7									3	11			118.	0.30
σ6									31.	113.			113.	0.2
σ 5														
σ 4									30.	111.			111.	0.32
σ 3									30.	110.			110.	0.32
σ 2									21.	5			5	0.16
σ_1									-21.	1.			1.	0.00
σ 0									-22.	0.			0.	

Massimo coefficiente di utilizzo: 0.329 VERIFICA SODDISFATTA

- 1) Tensione totale all'estradosso soletta alla fine della fase 2 = 0 N/mm²
- 2) Tensione totale all'intradosso soletta alla fine della fase 2 = 0 N/mm²

 La sezione a fine fase 2 e' stata considerata: Fessurata (m.)
- 3) Tensione totale all'estradosso soletta alla fine della fase 3 = 5.57 N/mm²
 4) Tensione totale all'intradosso soletta alla fine della fase 3 = 4.98 N/mm² La sezione a fine fase 3 e' stata considerata: Fessurata (m.)

Resistenza a taglio

Valutazione della necessita' di calcolo della resistenza a Shear buckling h_w /t_w =171.75 > 31/ η * ϵ w *(K $_{\tau}$)0.5 =74.638 Verifica a S Verifica a Shear Buckling: NECESSARIA

Resistenza a taglio Shear buckling: $V_{b,Rd} = 6.812E+6 N$

a/h_w =1.091, η =1.2, I_{s1} =6.175E+7 (mm⁴), $K_{\tau s1}$ =13.867, K_{τ} =12.61 contributo anima: $V_{bw,Rd}$ =6.687E+6 N, contributo flange: $V_{bf,Rd}$ =1.25E+5 N γ_{w} =0.522. λ_{col} =1.280 γ_{col} =0.522.

Resistenza plastica: $V_{pl,Rd} = 1.609E + 7 N$

Resistenza a taglio: V_{Rd} =min($V_{p1,Rd}$, $V_{b,Rd}$)=6.812E+6 N

Coefficienti di utilizzo

 $\eta_{\text{3}} = \!\! V_{\text{Ed}} \; / V_{\text{Rd}} = \!\! 0.715 \text{,} \qquad \text{(=> VERIFICA SODDISFATTA)}$ $\eta_3 = V_{Ed} / V_{bw,Rd} = 0.728$, $\eta_1 = max (\eta_i) = 0.329$

Interazione pressoflessione taglio (N-M-V)

Valutazione della presenza di interazione

 $\eta_{3} > 0.5$, $$M_{Ed} / M_{f,Rd} < $100 \ NON C'E'$ INTERAZIONE$ $M_{\rm Ed} / M_{\rm f.pd} < 1$

Sezione T1N008I_T1N008I

Caratteristiche generali

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Dati principali

Altezza della sezione di acciaio	3500 mm
Piattabanda superiore	600×60 mm
Piattabanda inferiore	900x50 mm
Anima	18x3390 mm, Inclinazione: 0
Soletta	6000x240 mm
Raccordo	600x30 mm (escluso nel calcolo delle proprieta' geometriche)
Armatura superiore	diametro 20 mm, passo 200 mm, dist. estradosso-baricentro armatura 50 mm
Armatura inferiore	diametro 20 mm, passo 200 mm, dist. intradosso-baricentro armatura 50 mm
Pioli	diametro 19 mm, altezza 200 mm, numero 15/m

Irrigidenti verticali

Piatto 1	380×20 mm
Tipo	R da un solo lato
Interasse	3838 mm

Irrigidenti longitudinali dell'anima

distanza estradosso trave-irrigidente	1100 mm
distanza estradosso trave-irrigidente	0 mm
Dimensione dei piatti - sinistra	orizzontali 0x0 mm, verticali 0x0 mm
Dimensione dei piatti - destra	orizzontali 220x20 mm, verticali 0x0 mm

Caratteristiche geometriche lorde

Caracteristiche	geometriche lorde	1				
	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	1.42E+	2.476E+	2.476E+	2.476E+	3.916E+	1.609E+
z _G (mm)	1637.26	2495.60	2495.60	2495.60	2920.12	1873.10
J _y (mm ⁴)	2.971E+1	5.429E+1	5.429E+1	5.429E+1	6.65E+1	3.646E+1
$W_{y,0}$ (mm ³)	-1.814E+	-2.176E+	-2.176E+	-2.176E+	-2.277E+	-1.946E+
$W_{y,1}$ (mm ³)	-1.872E+	-2.22E+	-2.22E+	-2.22E+	-2.317E+	-2E+
$W_{y,3}$ (mm ³)	1.648E+	5.749E+	5.749E+	5.749E+	1.279E+	2.327E+
$W_{y,4}$ (mm ³)	1.595E+	5.405E+	5.405E+	5.405E+	1.147E+	2.241E+
$W_{y,5}$ (mm ³)	1E+30	5.249E+	5.249E+	5.249E+	1.09E+	2.2E+
$W_{y,6}$ (mm ³)	1E+30	5.007E+	5.007E+	5.007E+	1.008E+	2.136E+
$W_{y,7}$ (mm ³)	1E+30	4.434E+	4.434E+	4.434E+	8.313E+	1.974E+
$W_{y,8}$ (mm ³)	1E+30	4.26E+	4.26E+	4.26E+	7.824E+	1.922E+
$S_{y,1} (mm^3)$	7.255E+	1.112E+	1.112E+	1.112E+	1.303E+	8.316E+
$S_{y,2} (mm^3)$	9.523E+	1.65E+	1.65E+	1.65E+	2.044E+	1.131E+
$S_{y,3} (mm^3)$	6.598E+	1.57E+	1.57E+	1.57E+	2.02E+	9.098E+
S _{y,4} (mm ³)	1.49E-	1.219E+	1.219E+	1.219E+	1.822E+	3.349E+
n_E	1E+30	16.	16.	16.	6.2	1E+30

Verifiche S.L.U. sezione composta (Comb. Mmin)

Sollecitazioni (Comb. Mmin)

Fase	N (N)	V (N)	M (Nm)	T (Nm)
	0E+0	-1.8E+	-1.52E+	0E+0
2	0E+0	2.64E+	-7.56E+	0E+0
2	-5.24E+	-1.79E+	-4.73E+	0E+0
Rit.Is	0E+0		0E+0	
2	0E+0	0E+0	0E+0	0E+0
3	-7.54E+	-1.96E+	-5.42E+	0E+0
Term.Is	0E+0		0E+0	
3	0E+0	8.14E+	-2.37E+	0E+0
Total	-1.28E+	2.85E+	-5.66E+	0E+0

Pressoflessione - Analisi plastica

Classificazione della sezione (Comb. Mmin)

	c/t	z_{pl} (mm)	α	Ψ	Classe		
Anima	188.3	3261.0	0.0	-1.2			
Piattabanda superiore	4.8						
Piattabanda inferiore	8.8						
classe della sezion							
Analisi plastica: APPLICABILE							

Verifica plastica a Presso-Tenso flessione (Comb. Mmin)

verifica prast.	ica a riesso ien.	oo rressrone (cc	mis. Philip				
Azion	e assiale	Flession	e semplice	Interazione N/M			
N _{Ed} (N)	-1.279E+7	M _{Ed} (Nm)	-5.658E+7	N _{Ed} (N)	-1.279E+7		
N _{Rd} (N)	-8.059E+7	M _{Rd} (Nm)	-9.136E+7	M _{Ed} (Nm)	-5.658E+7		
M _{Rd} (Nm) -9.796E+7							
N _{Ed} /N _{Rd}	0.159	M_{Ed}/M_{Rd}	0.619	M_{Ed}/M_{Rd}	0.578		
		VERTETCA	SODDISFATTA				

Pressoflessione - Calcolo tensioni lorde

Tensioni normali sulla sezione lorda (Comb. Mmin)

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

	F. 1	F. 2a	F. 2a	F. 2b	F. 2b	F. 2c	F. 2c	F. 2 to	F. 3a	F. 3a	F. 3b	F. 3b	F. 3 to	η_1
		Non	Fess.	Non	Fess.	Non	Fess.		Non	Fess.	Non	Fess.		
		Fess.		Fess.		Fess.			Fess.		Fess.			
σ_8		-1.		-1.				-	-4.		-4.		-12.	0.64
σ 7		-17.	-38.	-31.	-56.			-48.	-25.	-74.	-28.	-119.	-103.	0.26
σ6		-15.	-35.	-30.	-54.			-45.	-24.	-72.	-23.	-110.	-93.	0.2
σ 5		-0.		-1.				-2.	-3.		-3.		-1	0.53
σ 4	-95.	-1	-33.	-29.	-53.			-139.	-2	-71.	-20.	-105.	-183.	0.57
σ 3	-92.	-13.	-32.	-29.	-52.			-134.	-23.	-70.	-18.	-101.	-176.	0.55
σ 2				-21.	-32.			-21.	-19.	-46.			-40.	0.1
σ_1	81.	34.	37.	0.	-8.			115.	4.	-19.	102.	118.	221.	0.69
σ_0	83.	34.	38.	0.	-8.			119.	4.	-19.	103.	121.	227.	0.71

Massimo coefficiente di utilizzo: 0.713 VERIFICA NON SIGNIFICATIVA NOTE

- 1) Tensione totale all'estradosso soletta alla fine della fase $2 = -3.01 \text{ N/mm}^2$
- 2) Tensione totale all'intradosso soletta alla fine della fase 2 = -2.69 N/mm²

 La sezione a fine fase 2 e' stata considerata: Non fessurata (m.)
- 3) Tensione totale all'estradosso soletta alla fine della fase 3 = -12.06 N/mm^2 4) Tensione totale all'intradosso soletta alla fine della fase 3 = -10.05 N/mm^2
- La sezione a fine fase 3 e' stata considerata: Non fessurata (m.)

Resistenza a taglio

```
Verifica a Shear Buckling: NECESSARIA
```

Resistenza a taglio Shear buckling: $V_{b,Rd}$ =5.534E+6 N

Essendo:

a/h_w =1.132, η =1.2, I_{sl} =5.799E+7 (mm⁴), K $_{\tau$ sl =15.738, K $_{\tau}$ =12.576 contributo anima: V_{bw,Rd} =5.409E+6 N, contributo flange: V_{bf,Rd} =1.252E+5 N χ w =0.476, λ w =1.745, τ cr =67.4, C=1022.5 $\chi_{w} = 0.476$,

Resistenza plastica: $V_{pl,Rd} = 1.429E+7$ N

Resistenza a taglio: V_{Rd} =min($V_{pl,Rd}$, $V_{b,Rd}$)=5.534E+6 N

Coefficienti di utilizzo

 $\eta_{\text{3}} = \!\! V_{\text{Ed}} \; / V_{\text{Rd}} = \!\! 0.051 \text{,}$ (=> VERIFICA SODDISFATTA) $\eta_3 = V_{Ed} / V_{bw,Rd} = 0.053$, $\eta_1 = M_{Ed} / M_{Rd} = 0.578$

Interazione pressoflessione taglio (N-M-V)

Valutazione della presenza di interazione

 $\eta_3 < 0.5$, $M_{Ed} / M_{f,Rd} < 0.5$ NON C'E' INTERAZIONE $M_{Ed} / M_{f,Rd} < 1$

Sezione T1N015F_T1N015F

Caratteristiche generali

Dati principali

Altezza della sezione di acciaio	3500 mm
Piattabanda superiore	600x60 mm
Piattabanda inferiore	900x50 mm
Anima	18x3390 mm, Inclinazione: 0
Soletta	6000x240 mm
Raccordo	600x30 mm (escluso nel calcolo delle proprieta' geometriche)
Armatura superiore	diametro 20 mm, passo 200 mm, dist. estradosso-baricentro armatura 50 mm
Armatura inferiore	diametro 20 mm, passo 200 mm, dist. intradosso-baricentro armatura 50 mm
Pioli	diametro 19 mm, altezza 200 mm, numero 15/m

Irrigidenti verticali

Interasse 3841 mm Tipo R da un solo lato Piatto 1 380x20 mm	Piatto 2	
	Piatto 1	380×20 mm
Interasse 3841 mm	Tipo	R da un solo lato
	Interasse	3841 mm

Irrigidenti longitudinali dell'anima

distanza estradosso trave-irrigidente	1100 mm
distanza estradosso trave-irrigidente	2000 mm
Dimensione dei piatti - sinistra	orizzontali 0x0 mm, verticali 0x0 mm
Dimensione dei piatti - destra	orizzontali 220x20 mm, verticali 0x0 mm

Caratteristiche geometriche lorde

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	1.42E+	2.476E+	2.476E+	2.476E+	3.916E+	1.609E+
z _G (mm)	1637.26	2495.60	2495.60	2495.60	2920.12	1873.10
J _y (mm ⁴)	2.971E+1	5.429E+1	5.429E+1	5.429E+1	6.65E+1	3.646E+1
$W_{y,0}$ (mm ³)	-1.814E+	-2.176E+	-2.176E+	-2.176E+	-2.277E+	-1.946E+
$W_{y,1}$ (mm ³)	-1.872E+	-2.22E+	-2.22E+	-2.22E+	-2.317E+	-2E+
$W_{y,3}$ (mm ³)	1.648E+	5.749E+	5.749E+	5.749E+	1.279E+	2.327E+
$W_{y,4} \text{ (mm}^3)$	1.595E+	5.405E+	5.405E+	5.405E+	1.147E+	2.241E+
$W_{y,5}$ (mm ³)	1E+30	5.249E+	5.249E+	5.249E+	1.09E+	2.2E+
$W_{y,6} \text{ (mm}^3)$	1E+30	5.007E+	5.007E+	5.007E+	1.008E+	2.136E+
$W_{y,7}$ (mm ³)	1E+30	4.434E+	4.434E+	4.434E+	8.313E+	1.974E+
$W_{y,8}$ (mm 3)	1E+30	4.26E+	4.26E+	4.26E+	7.824E+	1.922E+
$S_{y,1} (mm^3)$	7.255E+	1.112E+	1.112E+	1.112E+	1.303E+	8.316E+
$S_{y,2} (mm^3)$	9.523E+	1.65E+	1.65E+	1.65E+	2.044E+	1.131E+
S _{y,3} (mm ³)	6.598E+	1.57E+	1.57E+	1.57E+	2.02E+	9.098E+
S _{y,4} (mm ³)	1.49E-	1.219E+	1.219E+	1.219E+	1.822E+	3.349E+
n_E	1E+30	16.	16.	16.	6.2	1E+30

Verifiche S.L.U. sezione composta (Comb. Vmin)

Sollecitazioni (Comb. '	(min

Fase	N (N)	V (N)	M (Nm)	T (Nm)
	0E+0	-2.16E+	1.05E+	0E+0
2	0E+0	-8.57E+	3.78E+	0E+0
2	-5.24E+	-1.87E+	-8.41E+	0E+0
Rit.Is	0E+0		0E+0	
2	0E+0	0E+0	0E+0	0E+0
3	-7.54E+	-2.06E+	-1.14E+	0E+0
Term.Is	0E+0		0E+0	
3	0E+0	-1.81E+	-3.46E+	0E+0
Total	-1.28E+	-5.22E+	8.82E+	0E+0

Pressoflessione - Analisi plastica

Classificazione della sezione (Comb. Vmin)

	c/t	z _{pl} (mm)	α	Ψ	Classe		
Anima	188.3	3165.8	0.9	-0.2			
Piattabanda superiore	4.8						
Piattabanda inferiore	8.8						
classe della sezion							
Analisi plastica: NON APPLICABILE							

Verifica plastica a Presso-Tenso flessione (Comb. Vmin)

Azione	assiale	Flessione semplice		Interazione N/M	
N _{Ed} (N)	-1.279E+7	M _{Ed} (Nm)	8.819E+6	N _{Ed} (N)	-1.279E+7
N _{Rd} (N)	-8.059E+7	M _{Rd} (Nm)	7.521E+7	M _{Ed} (Nm)	8.819E+6
				M _{Rd} (Nm)	7.879E+7
N_{Ed} / N_{Rd}	0.159	M_{Ed}/M_{Rd}	0.117	M_{Ed}/M_{Rd}	0.112
VERIFICA NON SIGNIFICATIVA					

Pressoflessione - Calcolo tensioni lorde

Tensioni normali sulla sezione lorda (Comb. Vmin)

	F. 1	F. 2a	F. 2a	F. 2b	F. 2b	F. 2c	F. 2c	F. 2 to	F. 3a	F. 3a	F. 3b	F. 3b	F. 3 to	$\eta_{\scriptscriptstyle 1}$
		Non	Fess.	Non	Fess.	Non	Fess.		Non	Fess.	Non	Fess.		
		Fess.		Fess.		Fess.			Fess.		Fess.			
σ_8		0.		-1.				-0.	-3.		-0.		-4.	0.2
σ 7		8.	19.	-23.	-36.			-14.	-20.	-52.	-4.	-17.	-39.	0.10
σ6		7.	17.	-22.	-36.			-15.	-20.	-52.	-3.	-16.	-39.	0.
σ 5		0.		-1.				-0.	-3.		-0.		-4.	0.2
σ_4	65.		16.	-22.	-36.			49.	-20.	-5	1	-15.	26.	0.08
σ 3	63.	6.	16.	-22.	-36.			47.	-20.	-51.	-2.	-14.	24.	0.07
σ_2				-21.	-32.			-21.	-19.	-46.			-40.	0.1
σ_1	-5	-1	-18.	-17.	-28.	·		-90.	-14.	-41.	14.	17.	-89.	0.28
σ_0	-57.	-17.	-19.	-17.	-28.			-92.	-14.	-41.	15.	17.	-91.	0.28

Massimo coefficiente di utilizzo: 0.287 VERIFICA NON SIGNIFICATIVA NOTE

- Tensione totale all'estradosso soletta alla fine della fase 2 = -0.86 N/mm²
 Tensione totale all'intradosso soletta alla fine della fase 2 = -0.94 N/mm²
 La sezione a fine fase 2 e' stata considerata: Non fessurata (m.)

- 3) Tensione totale all'estradosso soletta alla fine della fase $3=-4.89~\text{N/mm}^2$ 4) Tensione totale all'intradosso soletta alla fine della fase $3=-4.7~\text{N/mm}^2$ La sezione a fine fase $3=-4.7~\text{N/mm}^2$

Pressoflessione - Calcolo tensioni efficaci

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Area efficace per shear lag e/o buckling delle flange(Comb. Vmin)

Componente	b (mm)	t (mm)	λρ	ρ	$A_{c,eff}$ (mm ²	β	$A*\beta$ (mm ²)
Piattabanda superiore SX	30	6					1800
Piattabanda superiore DX	30	6					1800
Piattabanda inferiore SX	45	5					2250
Piattabanda inferiore DX	45	5					2250

Instabilita' locale dei pannelli d'anima (Comb. Vmin)

THIS CONTITUE TOC	are acr painterrr	a a (00		
	Anima	Sub pannello 1	Sub pannello 2	Sub pannello 3
b (mm)	339	104	90	145
σ_{crOE} (N/mm ²)	5.3	56.9	7	29.2
$\sigma_{\text{sup}} (\text{N/mm}^2)$	23.4	23.4	-15.0	-48.2
$\sigma_{inf} (N/mm^2)$	-101.	-15.0	-48.2	-101.
Ψ	-0.2	-1.5	0.3	0.4
Кσ	9.7	39.2	6.0	5.3
λp	2.	0.	0.8	1.
b _c (mm)	2755.9	405.9	90	145
b _{c sup} (mm)	1653.5	243.5	516.1	809.2
b _{c sup} (mm)	1102.3	162.3	383.8	640.7
ρ _{loc}	0.3		0.	0.5
b _{ceff} (mm)	996.	405.9	810.7	843.0
b _{ceff sup} (mm)	597.	243.5	464.9	470.5
b _{ceff sup} (mm)	398.	162.3	345.8	372.5
φ _{Foro} (mm)	1759.4		89.2	606.9

Caratteristiche dell'anima compressa, irrigidenti esclusi (Comb. Vmin)

	A (mm²)	z_{G} (mm)	J_y (mm^4)
A _{c Edge} sup	4.385E+	2684.	2.168E+
A _{c 1}	1.221E+	2223.	4.686E+
A _{c 2}	2.148E+	1287.	2.548E+
A _{c Edge} inf	1.153E+	370.	3.946E+
A _{c tot}	4.961E+	142	3.14E+1
A_c	4.249E+		

Caratteristiche dell'anima compressa, depurata per instabilita' locale (Comb. Vmin)

	A (mm²)	z_G (mm)	J_y (mm^4)
A _{c,eff} Edge sup	4.385E+	2684.	2.168E+
A _{c,eff 1}	1.129E+	2248.	3.704E+
Ac,eff 2	1.469E+	1437.	8.16E+
A _{c,eff} Edge inf	6.705E+	236.	7.754E+
Ac,eff tot	3.708E+	1614.	2.404E+1
A _{c,eff,loc}	3.479E+		

Tensioni critiche per l'anima (Comb. Vmin)

	Stiffener 1	Stiffener 2	Lumped
A_{s1} (mm 2)	1.661E+	2.588E+	4.249E+
e _{sl} (mm)	31.	20.	24.
I _{sl} (mm ⁴)	6.388E+	7.004E+	1.352E+
$A_{sl,eff}$ (mm ²)	1.569E+	1.909E+	3.479E+
e _{sl,eff} (mm)	33.	27.	30.
I _{sl,eff} (mm ⁴)	6.289E+	6.609E+	1.293E+
σ cr,sl,i (p)	607.2	407.0	451.9
σ _{cr,p,i} (p)	4122.1	859.0	1077.2
σ _{cr,sl} (c)	540.	380.2	
σ _{cr,c} (c)		802.4	
α _e	0.66		

Coefficienti di riduzione per instabilita' globale dell'anima (Comb. Vmin)

	Piastra		Colonna
σ _{cr,p} (p)	859.0	σ _{cr,c} (c)	0.73
β _{ac} (p)	0.81	β _{ac} (c)	0.57
λp	0.58	λ 。	0.78
0 n		γ	

Anima depurata per instabilita' locale e globale dell'anima (Comb. Vmin)

	A (mm ²)	z_G (mm)	J_y (mm^4)
Edge sup	4.385E+	2684.	2.168E+
1	8.896E+	2248.	2.918E+
2	1.158E+	1437.	6.428E+
Edge inf	6.705E+	236.	7.754E+
Totale	3.156E+	1584.	2.27E+1

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Anima	-1.805E+	1154.	-6.583E+
Piattabanda superiore	0E+0		0E+0
Piattabanda inferiore	0E+0		0E+0

Caratteristiche geometriche efficaci (Comb. Vmin)

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	1.24E+	2.296E+	3.736E+	2.296E+	3.736E+	1.428E+
z _G (mm)	1707.49	2600.99	3005.39	2600.99	3005.39	1963.86
Δ _{ZGeff} (mm)	-70.2	-105.	-85.2	-105.	-85.2	-90.7
J _{y,eff} (mm ⁴)	2.857E+1	5.013E+1	5.994E+1	5.013E+1	5.994E+1	3.475E+1
W _{y,0eff} (mm ³)	-1.673E+	-1.928E+	-1.994E+	-1.928E+	-1.994E+	-1.769E+
W _{y,leff} (mm ³)	-1.723E+	-1.965E+	-2.028E+	-1.965E+	-2.028E+	-1.816E+
W _{y,3eff} (mm ³)	1.649E+	5.976E+	1.379E+	5.976E+	1.379E+	2.354E+
W _{y,4eff} (mm ³)	1.594E+	5.577E+	1.212E+	5.577E+	1.212E+	2.262E+
W _{y,5eff} (mm ³)	1E+30	5.397E+	1.143E+	5.397E+	1.143E+	2.219E+
W _{y,6eff} (mm ³)	1E+30	5.121E+	1.043E+	5.121E+	1.043E+	2.15E+
W _{y,7eff} (mm ³)	1E+30	4.48E+	8.388E+	4.48E+	8.388E+	1.979E+
W _{y,8eff} (mm ³)	1E+30	4.289E+	7.84E+	4.289E+	7.84E+	1.924E+
S _{y,leff} (mm ³)	7.571E+	1.159E+	1.341E+	1.159E+	1.341E+	8.725E+
S _{y,2eff} (mm ³)	9.046E+	1.484E+	1.793E+	1.484E+	1.793E+	1.056E+
S _{y,3eff} (mm ³)	6.345E+	1.421E+	1.776E+	1.421E+	1.776E+	8.6E+
S _{y,4eff} (mm ³)	2.797E-29	1.108E+	1.609E+	1.108E+	1.609E+	3.178E+

Le caratteristiche efficaci sono state calcolate iterativamente in 1 iterazioni, con la seguente variazione percentuale del coefficiente ψ

$(\psi_{1} - \psi_{0})/\psi_{0}*100$	16.1
$(\psi_{2} - \psi_{1})/\psi_{1}*100$	
$(\psi_3 - \psi_2)/\psi_2 * 100$	
$(\psi_4 - \psi_3)/\psi_3*100$	
$(\psi_{5} - \psi_{4})/\psi_{4}*100$	

Momento aggiuntivo per traslazione dell'asse neutro (Comb. Vmin)

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3a	Fase 3b
Δ M _{Fessurata} (kNm)	0E+0	0E+0	4.759E+	0E+0	6.848E+	0E+0
ΔM _{Non fessurata} (kNm)	0E+0	0E+0	5.527E+	0E+0	6.434E+	0E+0

Tensioni n	ormali :	sulla	sezione	efficace	(Comb.	Vmin)
------------	----------	-------	---------	----------	--------	-------

	F. 1	F. 2a	F. 2a	F. 2b	F. 2b	F. 2c	F. 2c	F. 2 to	F. 3a	F. 3a	F. 3b	F. 3b	F. 3 to	$\eta_{\scriptscriptstyle \perp}$
		Non	Fess.	Non	Fess.	Non	Fess.		Non	Fess.	Non	Fess.		
		Fess.		Fess.		Fess.			Fess.		Fess.			
σ 8		0.		-1.				-0.	-3.		-0.		-4.	0.26
σ 7		8.	19.	-23.	-38.			-1	-20.	-55.	-4.	-17.	-4	0.10
σ6		7.	17.	-23.	-38.			-1	-20.	-54.	-3.	-16.	-4	0.10
σ 5		0.		-1.				-	-3.		-0.		-4.	0.25
σ 4	65.	6.	16.	-23.	-38.			49.	-20.	-54.	-2.	-15.	25.	0.0
σ 3	63.	6.	16.	-23.	-38.			46.	-20.	-54.	-2.	-14.	23.	0.07
σ_2				-22.	-36.			-22.	-20.	-52.			-4	0.12
σ_1	-60.	-19.	-20.	-21.	-34.			-101.	-17.	-50.	1	1	-102.	0.3
σ_0	-62.	-19.	-21.	-21.	-34.			-103.	-17.	-50.	17.	19.	-10	0.32

Massimo coefficiente di utilizzo: 0.326 VERIFICA SODDISFATTA NOTE

- 1) Tensione totale all'estradosso soletta alla fine della fase $2 = -0.89 \text{ N/mm}^2$
- 2) Tensione totale all'intradosso soletta alla fine della fase 2 = $-0.99~\mathrm{N/mm^2}$
- La sezione a fine fase 2 e' stata considerata: Non fessurata (m.) 3) Tensione totale all'estradosso soletta alla fine della fase 3 = $-4.93~\text{N/mm}^2$ 4) Tensione totale all'intradosso soletta alla fine della fase 3 = $-4.78~\text{N/mm}^2$
- La sezione a fine fase 3 e' stata considerata: Non fessurata (m.)

Resistenza a taglio

Valutazione della necessita' di calcolo della resistenza a Shear buckling $h_{\text{W}}/t_{\text{W}}=188.333 > 31/\eta ~*\epsilon_{\text{W}} *(\text{K}_{\text{t}})^{0.5}=78.074 \qquad \text{Verifica a Shear Buckling: NECESSARIA}$

Resistenza a taglio Shear buckling: $V_{b,Rd} = 6.186E + 6 N$

Essendo:

a/h_w =1.133, η =1.2, $I_{\rm Sl}$ =1.16E+8 (mm⁴), $K_{\tau \, \rm sl}$ =26.427, K_{τ} =13.798 contributo anima: $V_{\rm bw,Rd}$ =5.666E+6 N, contributo flange: $V_{\rm bf,Rd}$ =5.201E+5 N $\chi_{\rm w}$ =0.498, $\lambda_{\rm w}$ =1.666, $\tau_{\rm cr}$ =73.9, C=1023.3 $M_{\rm Ed}$ = $M_{\rm Ed,eq}$ =2.073E+7 Nm, $M_{\rm f,Rd}$ =4.388E+7 Nm, $M_{\rm Ed}$ / $M_{\rm f,Rd}$ =0.472

Resistenza plastica: V_{pl,Rd} =1.429E+7 N

Resistenza a taglio: V_{Rd} =min($V_{pl,Rd}$, $V_{b,Rd}$)=6.186E+6 N

Coefficienti di utilizzo

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

 $\eta_3 = V_{Ed} / V_{Rd} = 0.844$, (=> VERIFICA SODDISFATTA) $\eta_3 = V_{Ed} / V_{bw,Rd} = 0.921$, $\eta_1 = max (\eta_i) = 0.326$

Interazione pressoflessione taglio (N-M-V)

Valutazione della presenza di interazione

 $\eta_3 > 0.5$, $M_{Ed} / M_{f,Rd} < 0.5$ NON C'E' INTERAZIONE $M_{Ed} / M_{f,Rd} < 1$

Sezione T1N021F_T1N021F

Caratteristiche generali

Dati principali

Dati pincipali	
Altezza della sezione di acciaio	3500 mm
Piattabanda superiore	1000x80 mm
Piattabanda inferiore	1157×140 mm
Anima	28x3280 mm, Inclinazione: 0
Soletta	6000x240 mm
Raccordo	1000x30 mm (escluso nel calcolo delle proprieta' geometriche)
Armatura superiore	diametro 20 mm, passo 100 mm, dist. estradosso-baricentro armatura 50 mm
Armatura inferiore	diametro 20 mm, passo 100 mm, dist. intradosso-baricentro armatura 50 mm
Pioli	diametro 19 mm, altezza 200 mm, numero 20/m

Irrigidenti verticali

Interasse	3750 mm
Tipo	R da un solo lato
Piatto 1	420x24 mm
Piatto 2	

Irrigidenti longitudinali dell'anima

distanza estradosso trave-irrigidente	2000 mm
distanza estradosso trave-irrigidente	0 mm
Dimensione dei piatti - sinistra	orizzontali 0x0 mm, verticali 0x0 mm
Dimensione dei piatti - destra	orizzontali 320x28 mm, verticali 0x0 mm

Caratteristiche geometriche lorde

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	3.338E+	4.583E+	4.583E+	4.583E+	6.023E+	3.715E+
z _G (mm)	1352.81	1976.61	1976.61	1976.61	2376.75	1585.90
J _y (mm ⁴)	7.212E+1	1.2E+1	1.2E+1	1.2E+1	1.508E+1	9.001E+1
$W_{y,0}$ (mm ³)	-5.331E+	-6.072E+	-6.072E+	-6.072E+	-6.344E+	-5.676E+
$W_{y,1}$ (mm ³)	-5.947E+	-6.535E+	-6.535E+	-6.535E+	-6.741E+	-6.225E+
$W_{y,3}$ (mm ³)	3.489E+	8.315E+	8.315E+	8.315E+	1.445E+	4.908E+
$W_{y,4}$ (mm 3)	3.359E+	7.878E+	7.878E+	7.878E+	1.342E+	4.703E+
$W_{y,5}$ (mm ³)	1E+30	7.726E+	7.726E+	7.726E+	1.307E+	4.63E+
$W_{y,6}$ (mm ³)	1E+30	7.485E+	7.485E+	7.485E+	1.253E+	4.514E+
$W_{y,7}$ (mm ³)	1E+30	6.884E+	6.884E+	6.884E+	1.122E+	4.218E+
$W_{y,8}$ (mm ³)	1E+30	6.692E+	6.692E+	6.692E+	1.082E+	4.121E+
$S_{y,1} (mm^3)$	2.078E+	3.089E+	3.089E+	3.089E+	3.737E+	2.456E+
$S_{y,2} (mm^3)$	2.284E+	3.561E+	3.561E+	3.561E+	4.437E+	2.748E+
$S_{y,3} (mm^3)$	1.686E+	3.269E+	3.269E+	3.269E+	4.285E+	2.277E+
S _{y,4} (mm ³)	2.98E-	2.082E+	2.082E+	2.082E+	3.418E+	7.781E+
n_E	1E+30	16.	16.	16.	6.2	1E+30

Verifiche S.L.U. sezione composta (Comb. Mmax)

Sollecitazioni (Comb. Mmax)

Fase	N (N)	V (N)	M (Nm)	T (Nm)
	0E+0	-3.63E+	6.24E+	0E+0
2	0E+0	-1.49E+	2.46E+	0E+0
2	-5.24E+	-1.84E+	2.32E+	0E+0
Rit.Is	0E+0		0E+0	
2	0E+0	0E+0	0E+0	0E+0
3	-7.54E+	-2.05E+	2.36E+	0E+0
Term.Is	0E+0		0E+0	
3	0E+0	-1.97E+	3.32E+	0E+0
Total	-1.28E+	-7.48E+	1.25E+	0E+0

Pressoflessione - Analisi plastica

Classificazione della sezione (Comb. Mmax)

	c/t	z _{pl} (mm)	α	Ψ	Classe
Anima	117.1	1852.9	0.5	-1.1	
Piattabanda superiore	6.0				
Piattabanda inferiore	4.0				

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

classe della sezion				
	Analisi pi	lastica: NON A	APPLICABILE	

Verifica plastica a Presso-Tenso flessione (Comb. Mmax)

L	Azione	assiale	Flessione	one semplice Interazione N/M						
Ī	N _{Ed} (N)	-1.279E+7	M _{Ed} (Nm)	1.249E+8	N _{Ed} (N)	-1.279E+7				
	N _{Rd} (N)	-1.494E+8	M _{Rd} (Nm)	1.809E+8	M _{Ed} (Nm)	1.249E+8				
ſ					M _{Rd} (Nm)	1.919E+8				
	N_{Ed}/N_{Rd}	0.086	M_{Ed}/M_{Rd}	0.69	M_{Ed}/M_{Rd}	0.651				
	VERIFICA NON SIGNIFICATIVA									

Pressoflessione - Calcolo tensioni lorde

Tensioni normali sulla sezione lorda (Comb. Mmax)

					,									
	F. 1	F. 2a	F. 2a	F. 2b	F. 2b	F. 2c	F. 2c	F. 2 to	F. 3a	F. 3a	F. 3b	F. 3b	F. 3 to	$\eta_{\scriptscriptstyle 1}$
		Non	Fess.	Non	Fess.	Non	Fess.		Non	Fess.	Non	Fess.		
		Fess.		Fess.		Fess.			Fess.		Fess.			
σ 8		2.		-0.					-1.		4.			
σ 7		35.	58.	-8.	-8.			49.	-10.	-14.	29.	78.	113.	0.2
σ6		32.	54.	-8.	-			45.	-10.	-15.	26.	73.	10	0.26
σ 5		1.		-0.					-1.		4.			
σ4	185.	31.	52.	-8.	-9.			228.	-10.	-15.	24.	70.	284.	0.89
σ 3	178.	29.	50.	-8.	-9.			219.	-10.	-15.	2	67.	271.	0.85
σ 2				-11.	-14.			-14.	-12.	-20.			-34.	0.10
σ_1	-104.	-37.	-39.	-1	-17.			-162.	-1	-24.	-49.	-53.	-239.	0.75
σ_0	-11	-40.	-43.	-15.	-18.			-178.	-16.	-24.	-52.	-58.	-261.	0.8

Massimo coefficiente di utilizzo: 0.891 VERIFICA NON SIGNIFICATIVA NOTE

- 1) Tensione totale all'estradosso soletta alla fine della fase 2 = 1.73 N/mm^2 2) Tensione totale all'intradosso soletta alla fine della fase 2 = 1.41 N/mm^2
- La sezione a fine fase 2 e' stata considerata: Fessurata (m.)
- 3) Tensione totale all'estradosso soletta alla fine della fase 3 = 4.99 $\rm N/mm^2$ 4) Tensione totale all'intradosso soletta alla fine della fase 3 = 3.76 $\rm N/mm^2$ La sezione a fine fase 3 e' stata considerata: Fessurata (m.)

Pressoflessione - Calcolo tensioni efficaci

Area efficace per shear lag e/o buckling delle flange(Comb. Mmax)

med crireace per bhear ray e, o	Duckting ac		, . (· miicari /			
Componente	b (mm)	t (mm)	λρ	ρ	$A_{c,eff}$ (mm ²	β^{-k}	$A_{c,eff} * \beta^{k} (mm^{2})$
Piattabanda superiore SX	50	8					4000
Piattabanda superiore DX	50	8					4000
Piattabanda inferiore SX	57	14					8099
Piattabanda inferiore DX	57	14					8099

Instabilita' locale dei pannelli d'anima (Comb. Mmax)

	Anima	Sub pannello 1	Sub pannello 2
b (mm)	328	192	136
σ_{cr0E} (N/mm^2)	13.8	40.4	80.5
σ _{sup} (N/mm ²)	271.	271.	-27.6
$\sigma_{inf} (N/mm^2)$	-239.6	-27.6	-239.6
Ψ	-1.1	-9.8	0.1
Кσ	27.2	95.6	7.0
λρ	0.9	0.	0.7
b _c (mm)	1537.3	177.3	136
b _{c sup} (mm)	922.	106.	803.1
b _{c sup} (mm)	614.9	70.9	556.8
ρ _{loc}	0.9		0.9
b _{ceff} (mm)	1416.5	177.3	1346.3
b _{ceff sup} (mm)	849.	106.	795.0
b _{ceff sup} (mm)	566.	70.9	551.2
$\phi_{ t Foro}$ (mm)	120.8		13.6

Caratteristiche dell'anima compressa, irrigidenti esclusi (Comb. Mmax)

	A (mm²)	z_{G} (mm)	J_y (mm^4)
A _{c Edge} sup	2.979E+	1624.	2.811E+
A _{c 1}	2.447E+	1133.	1.558E+
A _{c 2}	0E+0		0E+0
Ac Edge inf	1.559E+	418.	4.029E+
A _{c tot}	4.305E+	908.	8.478E+
A_c	3.343E+		

Caratteristiche dell'anima compressa, depurata per instabilita' locale (Comb. Mmax)

0414000110010 40	ani-ma compicosa, ac	parada per riidoabrire	.a (oome
	A (mm²)	z_{G} (mm)	J_{y} (mm^{4})
A _{c,eff} Edge sup	2.979E+	1624.	2.811E+
Ac eff 1	2.425E+	1137.	1.515E+

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

A _{c,eff 2}	0E+0		0E+0
A _{c,eff} Edge inf	1.543E+	415.	3.908E+
A _{c,eff tot}	4.266E+	910.	8.461E+
Ac.eff.loc	3.321E+		

Tensioni critiche per l'anima (Comb. Mmax)

	Stiffener 1
A _{sl} (mm ²)	3.343E+
e _{sl} (mm)	46.
I _{sl} (mm ⁴)	2.766E+
A _{sl,eff} (mm ²)	3.321E+
e _{sl,eff} (mm)	46.
$I_{sl,eff}$ (mm ⁴)	2.761E+
σ _{cr,sl,i} (p)	1245.4
σ _{cr,p,i} (p)	10796.4
σ _{cr,sl} (c)	1219.4
σ _{cr,c} (c)	10571.4
α _e	0.61

Coefficienti di riduzione per instabilita' globale dell'anima (Comb. Mmax)

	Piastra		Colonna
σ _{cr,p} (p)	10796.4	σ _{cr,c} (c)	0.99
β _{ac} (p)	0.99	β _{ac} (c)	0.18
λ _p	0.18	λ 。	
ρ _p		χ ς	

Anima depurata per instabilita' locale e globale dell'anima (Comb. Mmax)

	A (mm²)	z_G (mm)	J_y (mm^4)
Edge sup	2.979E+	1624.	2.811E+
1	2.425E+	1137.	1.515E+
2	0E+0		0E+0
Edge inf	1.543E+	415.	3.908E+
Totale	4.266E+	910.	8.461E+

Depurazione complessiva da applicare alla sezione (Comb. Mmax)

	$\Delta A (mm^2)$	z_G (mm)	$\Delta J_y (mm^4)$
Anima	-3.833E+	698.	-5.985E+
Piattabanda superiore	0E+0		0E+0
Piattabanda inferiore	0E+0		0E+0

Caratteristiche geometriche efficaci (Comb. Mmax)

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	3.335E+	4.579E+	6.019E+	4.579E+	6.019E+	3.711E+
z _G (mm)	1353.56	1977.68	2377.82	1977.68	2377.82	1586.82
Δ _{ZGeff} (mm)	-0.7	-1.0	-1.0	-1.0	-1.0	-0.9
$J_{y,eff}$ (mm ⁴)	7.21E+1	1.2E+1	1.507E+1	1.2E+1	1.507E+1	8.998E+1
W _{y,0eff} (mm ³)	-5.327E+	-6.065E+	-6.336E+	-6.065E+	-6.336E+	-5.671E+
W _{y,leff} (mm ³)	-5.941E+	-6.528E+	-6.733E+	-6.528E+	-6.733E+	-6.219E+
W _{y,3eff} (mm ³)	3.489E+	8.317E+	1.446E+	8.317E+	1.446E+	4.909E+
W _{y,4eff} (mm ³)	3.359E+	7.88E+	1.343E+	7.88E+	1.343E+	4.703E+
W _{y,5eff} (mm ³)	1E+30	7.728E+	1.308E+	7.728E+	1.308E+	4.631E+
W _{y,6eff} (mm ³)	1E+30	7.486E+	1.253E+	7.486E+	1.253E+	4.515E+
W _{y,7eff} (mm ³)	1E+30	6.885E+	1.123E+	6.885E+	1.123E+	4.218E+
W _{y,8eff} (mm ³)	1E+30	6.693E+	1.082E+	6.693E+	1.082E+	4.122E+
S _{y,leff} (mm ³)	2.079E+	3.09E+	3.739E+	3.09E+	3.739E+	2.457E+
S _{y,2eff} (mm ³)	2.283E+	3.558E+	4.433E+	3.558E+	4.433E+	2.747E+
S _{y,3eff} (mm ³)	1.685E+	3.267E+	4.281E+	3.267E+	4.281E+	2.276E+
S _{y,4eff} (mm ³)	3.307E-29	2.081E+	3.415E+	2.081E+	3.415E+	7.778E+

Le caratteristiche efficaci sono state calcolate iterativamente in 0 iterazioni, con la seguente variazione percentuale del coefficiente ψ

$(\psi_{1} - \psi_{0})/\psi_{0}*100$	
$(\psi_{2} - \psi_{1})/\psi_{1}*100$	
$(\psi_{3} - \psi_{2})/\psi_{2}*100$	
$(\psi_4 - \psi_3)/\psi_3*100$	
$(\psi_{5} - \psi_{4})/\psi_{4}*100$	

Momento aggiuntivo per traslazione dell'asse neutro (Comb. Mmax)

		• •				
	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3a	Fase 3b
Δ M _{Fessurata} (kNm)	0E+0	0E+0	4.808E+	0E+0	6.918E+	0E+0
ΔM _{Non fessurata} (kNm)	0E+0	0E+0	5.612E+	0E+0	8.065E+	0E+0

Tens	ioni	nor	mali	sul	.la	sezio	ne	effic	cace	((Comb.	Mma	ax)
				-									

F. 1	F. 2a	F. 2a	F. 2b	F. 2b	F. 2c	F. 2c	F. 2 to	F. 3a	F. 3a	F. 3b	F. 3b	F. 3 to	η_1
	Non	Fess.	Non	Fess.	Non	Fess.		Non	Fess.	Non	Fess.		

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

		Fess.		Fess.		Fess.		Fess.		Fess.			
σ 8		2.		-0.				-1.		4.			
σ 7		35.	58.	-8.	-8.		49.	-10.	-14.	29.	78.	113.	0.2
σ6		32.	54.	-8.	-		45.	-10.	-15.	26.	73.	103.	0.26
σ 5		1.		-0.				-1.		4.			
σ 4	185.	31.	52.	-8.	-9.		228.	-10.	-15.	24.	70.	284.	0.89
σ 3	178.	29.	50.	-8.	-9.		219.	-10.	-15.	2	67.	271.	0.85
σ_2				-11.	-14.		-14.	-12.	-20.			-34.	0.10
σ_1	-10	-37.	-39.	-1	-17.		-162.	-16.	-24.	-49.	-53.	-239.	0.75
σ 0	-117.	-40.	-43.	-15.	-18.		-178.	-16.	-24.	-52.	-58.	-261.	0.8

Massimo coefficiente di utilizzo: 0.891 VERIFICA SODDISFATTA NOTE

- 1) Tensione totale all'estradosso soletta alla fine della fase $2 = 1.73 \text{ N/mm}^2$
- 2) Tensione totale all'intradosso soletta alla fine della fase $2 = 1.41 \text{ N/mm}^2$ La sezione a fine fase 2 e' stata considerata: Fessurata (m.)
- 3) Tensione totale all'estradosso soletta alla fine della fase 3 = 4.99 N/mm²
 4) Tensione totale all'intradosso soletta alla fine della fase 3 = 3.76 N/mm²
 La sezione a fine fase 3 e' stata considerata: Fessurata (m.)

Resistenza a taglio

Valutazione della necessita' di calcolo della resistenza a Shear buckling $h_\text{w} \ /t_\text{w} = 117.143 \qquad > \quad 31/\eta \ \text{$\star\epsilon$}_\text{w} \ \text{$\star(K$}_\text{t})^{0.5} = 75.22 \qquad \text{Verifica a Shear buckling}$ Verifica a Shear Buckling: NECESSARIA

Resistenza a taglio Shear buckling: $V_{b,Rd}$ =1.492E+7 N

Essendo:

Resistenza plastica: $V_{pl,Rd}$ =2.151E+7 N

Resistenza a taglio: $V_{Rd} = min(V_{pl,Rd}, V_{b,Rd}) = 1.492E+7 N$

Coefficienti di utilizzo

 $\eta_{\text{3}} = \!\! V_{\text{Ed}} \; / V_{\text{Rd}} = \!\! 0.501 \text{,} \qquad \text{(=> VERIFICA SODDISFATTA)}$ $\eta_3 = V_{Ed} / V_{bw,Rd} = 0.566$, $\eta_1 = max(\eta_i) = 0.891$

Interazione pressoflessione taglio (N-M-V)

Valutazione della presenza di interazione

 $\eta_{\textrm{3}} > 0.5, \qquad M_{\textrm{Ed}} \; / M_{\textrm{f,Rd}} < \\ \textrm{NON C'E' INTERAZIONE}$

Sezione T1N035F_T1N035F

Caratteristiche generali

Dati principali

3500 mm
700x60 mm
1200×80 mm
18x3360 mm, Inclinazione: 0
6000x240 mm
700x30 mm (escluso nel calcolo delle proprieta' geometriche)
diametro 20 mm, passo 100 mm, dist. estradosso-baricentro armatura 50 mm
diametro 20 mm, passo 100 mm, dist. intradosso-baricentro armatura 50 mm
diametro 19 mm, altezza 200 mm, numero 15/m

Irrigidenti verticali

Interasse	3831 mm
Tipo	R da un solo lato
Piatto 1	380×20 mm
Piatto 2	

Irrigidenti longitudinali dell'anima

distanza estradosso trave-irrigidente	1100 mm
distanza estradosso trave-irrigidente	0 mm
Dimensione dei piatti - sinistra	orizzontali 0x0 mm, verticali 0x0 mm
Dimensione dei piatti - destra	orizzontali 220x20 mm, verticali 0x0 mm

Caratteristiche geometriche lorde

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm²)	1.985E+	3.229E+	3.229E+	3.229E+	4.669E+	2.362E+

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

z _G (mm)	1289.92	2199.42	2199.42	2199.42	2646.83	1666.64
J_y (mm 4)	4.199E+1	8.466E+1	8.466E+1	8.466E+1	1.057E+1	5.966E+1
$W_{y,0}$ (mm ³)	-3.255E+	-3.849E+	-3.849E+	-3.849E+	-3.993E+	-3.579E+
$W_{y,1}$ (mm 3)	-3.471E+	-3.994E+	-3.994E+	-3.994E+	-4.117E+	-3.76E+
$W_{y,3}$ (mm ³)	1.953E+	6.824E+	6.824E+	6.824E+	1.332E+	3.364E+
$W_{y,4} \text{ (mm}^3)$	1.9E+	6.509E+	6.509E+	6.509E+	1.239E+	3.254E+
$W_{y,5}$ (mm ³)	1E+30	6.362E+	6.362E+	6.362E+	1.197E+	3.202E+
$W_{y,6} \text{ (mm}^3\text{)}$	1E+30	6.132E+	6.132E+	6.132E+	1.133E+	3.118E+
$W_{y,7}$ (mm ³)	1E+30	5.567E+	5.567E+	5.567E+	9.848E+	2.905E+
$W_{y,8}$ (mm 3)	1E+30	5.39E+	5.39E+	5.39E+	9.409E+	2.836E+
$S_{y,1} (mm^3)$	1.2E+	2.073E+	2.073E+	2.073E+	2.503E+	1.562E+
$S_{y,2} (mm^3)$	1.332E+	2.477E+	2.477E+	2.477E+	3.096E+	1.788E+
$S_{y,3} (mm^3)$	9.156E+	2.339E+	2.339E+	2.339E+	3.039E+	1.505E+
S _{y,4} (mm ³)	1.49E-	1.805E+	1.805E+	1.805E+	2.693E+	7.477E+
n _E	1E+30	16.	16.	16.	6.2	1E+30

Verifiche S.L.U. sezione composta (Comb. Mmin)

Sollecitazio	ni (Comb	. Mmin)		
Fase	N (N)	V (N)	M (Nm)	T (Nm)
	0E+0	6.12E+	-3.26E+	0E+0
2	0E+0	2.31E+	-1.48E+	0E+0
2	0E+0	0E+0	0E+0	0E+0
Rit.Is	0E+0		0E+0	
2	0E+0	0E+0	0E+0	0E+0
3	7.54E+	-3.81E+	-8.82E+	0E+0
Term.Is	0E+0		0E+0	
3	0E+0	7.36E+	-3.34E+	0E+0
Total	7.54E+	1.54E+	-8.17E+	0E+0

Pressoflessione - Analisi plastica

Classificazione della sezione (Comb. Mmin)

	c/t	z _{pl} (mm)	α	Ψ	Classe
Anima	186.6	3464.6	-0.0	-1.1	
Piattabanda superiore	5.6				
Piattabanda inferiore	7.3				
classe della sezion					
	Analisi	plastica: API	PLICABILE		

Verifica plastica a Presso-Tenso flessione (Comb. Mmin)

Azione	assiale	Flessione	e semplice	Interazione N/M					
N _{Ed} (N)	7.545E+6	M _{Ed} (Nm)	-8.168E+7	N _{Ed} (N)	7.545E+6				
N _{Rd} (N)	7.923E+7	M _{Rd} (Nm)	-1.475E+8	M _{Ed} (Nm)	-8.168E+7				
				M _{Rd} (Nm)	-1.414E+8				
N_{Ed}/N_{Rd}	0.095	M_{Ed}/M_{Rd}	0.554	M_{Ed}/M_{Rd}	0.578				
VERIFICA SODDISFATTA									

Pressoflessione - Calcolo tensioni lorde

Tensioni normali sulla sezione lorda (Comb. Mmin)

	F. 1	F. 2a	F. 2a	F. 2b	F. 2b	F. 2c	F. 2c	F. 2 to	F. 3a	F. 3a	F. 3b	F. 3b	F. 3 to	$\eta_{\scriptscriptstyle 1}$
		Non	Fess.	Non	Fess.	Non	Fess.		Non	Fess.	Non	Fess.		-
		Fess.		Fess.		Fess.			Fess.		Fess.			
σ 8		-1.						-1.	2.		-5.		-4.	0.26
σ 7		-26.	-50.					-26.	15.	28.	-33.	-115.	-45.	0.11
σ6		-24.	-47.					-24.	15.	29.	-29.	-107.	-38.	0.09
σ 5		-1.						-1.	2.		-4.		-3.	0.18
σ4	-171.	-22.	-45.					-194.	15.	29.	-2	-102.	-205.	0.64
σ 3	-166.	-21.	-4					-188.	15.	29.	-25.	-99.	-19	0.62
σ_2									16.	31.			16.	0.04
σ_1	93.	3	39.					130.	18.	34.	81.	88.	230.	0.72
σ_0	10	38.	41.					138.	18.	34.	83.	93.	240.	0.75

Massimo coefficiente di utilizzo: 0.754 VERIFICA NON SIGNIFICATIVA NOTE

- 1) Tensione totale all'estradosso soletta alla fine della fase $2 = -1.65 \text{ N/mm}^2$
- 2) Tensione totale all'intradosso soletta alla fine della fase 2 = -1.4 N/mm² La sezione a fine fase 2 e' stata considerata: Non fessurata (m.)
- 3) Tensione totale all'estradosso soletta alla fine della fase 3 = -4.91 N/mm^2 4) Tensione totale all'intradosso soletta alla fine della fase 3 = -3.41 N/mm^2 La sezione a fine fase 3 e' stata considerata: Non fessurata (m.)

Resistenza a taglio

Valutazione della necessita' di calcolo della resistenza a Shear buckling

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

 $h_w / t_w = 186.667$ > $31/\eta * \epsilon_w * (K_\tau)^{0.5} = 74.355$ Verifica a Shear Buckling: NECESSARIA

Resistenza a taglio Shear buckling: $V_{b,Rd}$ =6.201E+6 N

Essendo:

a/h_w =1.14, η =1.2, I_s1 =5.799E+7 (mm⁴), K $_{\tau$ s1 =15.621, K $_{\tau}$ =12.515 contributo anima: V_{bw,Rd} =5.396E+6 N, contributo flange: V_{bf,Rd} =8.05E+5 N χ w =0.479, λ _w =1.733, τ cr =68.2, C=1176.4 $\chi_{\text{\tiny M}} = 0.479$, $\lambda_{\text{\tiny M}} = 1.733$, $\tau_{\text{\tiny CF}} = 68.2$, C=1176.4 $M_{\text{\tiny Ed}} = -8.168\text{E} + 7 \text{ Nm}$, $M_{\text{\tiny f,Rd}} = -1.059\text{E} + 8 \text{ Nm}$, $M_{\text{\tiny Ed}} \, / M_{\text{\tiny f,Rd}} = 0.771$

Resistenza plastica: $V_{pl,Rd} = 1.417E+7 N$

Resistenza a taglio: V_{Rd} =min($V_{pl,Rd}$, $V_{b,Rd}$)=6.201E+6 N

Coefficienti di utilizzo

 $\eta_3 = V_{\text{Ed}} / V_{\text{Rd}} = 0.249$, (=> VERIFICA SODDISFATTA) $\eta_3 = V_{Ed} / V_{bw,Rd} = 0.286$, $\eta_1 = M_{Ed} / M_{Rd} = 0.578$

Interazione pressoflessione taglio (N-M-V)

Valutazione della presenza di interazione

 $\eta_3 < 0.5$, $M_{Ed} / M_{f,Rd} <$ NON C'E' INTERAZIONE $M_{Ed} / M_{f,Rd} < 1$

Sezione T1N037F_T1N037F

Caratteristiche generali

Dati principali

Duci principari	
Altezza della sezione di acciaio	3500 mm
Piattabanda superiore	700×60 mm
Piattabanda inferiore	1200x90 mm
Anima	18x3350 mm, Inclinazione: 0
Soletta	6000x240 mm
Raccordo	700x30 mm (escluso nel calcolo delle proprieta' geometriche)
Armatura superiore	diametro 20 mm, passo 200 mm, dist. estradosso-baricentro armatura 50 mm
Armatura inferiore	diametro 20 mm, passo 200 mm, dist. intradosso-baricentro armatura 50 mm
Pioli	diametro 19 mm, altezza 200 mm, numero 15/m

Irrigidenti verticali

Interasse	3750 mm
Tipo	R da un solo lato
Piatto 1	380×20 mm
Piatto 2	

Irrigidenti longitudinali dell'anima

distanza estradosso trave-irrigidente	1100 mm
distanza estradosso trave-irrigidente	0 mm
Dimensione dei piatti - sinistra	orizzontali 0x0 mm, verticali 0x0 mm
Dimensione dei piatti - destra	orizzontali 220x20 mm, verticali 0x0 mm

Caratteristiche geometriche lorde

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	2.103E+	3.159E+	3.159E+	3.159E+	4.599E+	2.291E+
z _G (mm)	1222.20	2033.75	2033.75	2033.75	2539.87	1421.91
J_y (mm 4)	4.361E+1	8.51E+1	8.51E+1	8.51E+1	1.11E+1	5.382E+1
$W_{y,0}$ (mm ³)	-3.568E+	-4.184E+	-4.184E+	-4.184E+	-4.371E+	-3.785E+
$W_{y,1}$ (mm ³)	-3.852E+	-4.378E+	-4.378E+	-4.378E+	-4.531E+	-4.041E+
$W_{y,3}$ (mm ³)	1.966E+	6.051E+	6.051E+	6.051E+	1.233E+	2.667E+
$W_{y,4}$ (mm ³)	1.915E+	5.804E+	5.804E+	5.804E+	1.156E+	2.59E+
$W_{y,5}$ (mm ³)	1E+30	5.687E+	5.687E+	5.687E+	1.121E+	2.553E+
$W_{y,6}$ (mm ³)	1E+30	5.504E+	5.504E+	5.504E+	1.067E+	2.494E+
$W_{y,7}$ (mm ³)	1E+30	5.047E+	5.047E+	5.047E+	9.406E+	2.342E+
$W_{y,8}$ (mm ³)	1E+30	4.901E+	4.901E+	4.901E+	9.024E+	2.292E+
$S_{y,1} (mm^3)$	1.271E+	2.148E+	2.148E+	2.148E+	2.694E+	1.487E+
$S_{y,2} (mm^3)$	1.387E+	2.488E+	2.488E+	2.488E+	3.235E+	1.647E+
$S_{y,3} (mm^3)$	9.441E+	2.31E+	2.31E+	2.31E+	3.162E+	1.28E+
S _{y,4} (mm ³)	1.49E-	1.707E+	1.707E+	1.707E+	2.771E+	4.2E+
n_E	1E+30	16.	16.	16.	6.2	1E+30

Verifiche S.L.U. sezione composta (Comb. Vmax)

Sollecitazioni (Comb. Vmax)

DOTTECTCALL	(COMB)	. Vilian)		
Fase	N (N)	V (N)	M (Nm)	T (Nm)
	0E+0	1.17E+	-3.42E+	0E+0
2	0E+0	8.33E+	-1.54E+	0E+0
2	-5.24E+	4.09E+	6.43E+	0E+0

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Rit.Is	0E+0		0E+0	
2	0E+0	0E+0	0E+0	0E+0
3	-7.54E+	4.04E+	6.92E+	0E+0
Term.Is	0E+0		0E+0	
3	0E+0	1.04E+	-2.06E+	0E+0
Total	-1.28E+	1.32E+	-6.89E+	0E+0

Pressoflessione - Analisi plastica

Classificazione della sezione (Comb. Vmax)

	c/t	z_{pl} (mm)	α	Ψ	Classe	
Anima	186.1	1786.8	0.4	-0.5		
Piattabanda superiore	5.6					
Piattabanda inferiore	6.5					
classe della sezion						
Analisi plastica: NON APPLICABILE						

Verifica plastica a Presso-Tenso flessione (Comb. Vmax)

Azione	assiale	Flessione	e semplice	Interazione N/M			
N _{Ed} (N)	-1.279E+7	M _{Ed} (Nm)	-6.89E+7	N _{Ed} (N)	-1.279E+7		
N _{Rd} (N)	-1.024E+8	M _{Rd} (Nm)	-1.565E+8	M _{Ed} (Nm)	-6.89E+7		
				M _{Rd} (Nm)	-1.536E+8		
N_{Ed}/N_{Rd}	0.125	M_{Ed}/M_{Rd}	0.44	M_{Ed}/M_{Rd}	0.449		
	VERIFICA NON SIGNIFICATIVA						

Pressoflessione - Calcolo tensioni lorde

Tensioni normali sulla sezione lorda (Comb. Vmax)

	F. 1	F. 2a	F. 2a	F. 2b	F. 2b	F. 2c	F. 2c	F. 2 to	F. 3a	F. 3a	F. 3b	F. 3b	F. 3 to	$\eta_{\scriptscriptstyle 1}$
		Non	Fess.	Non	Fess.	Non	Fess.		Non	Fess.	Non	Fess.		-
		Fess.		Fess.		Fess.			Fess.		Fess.			
σ 8		-1.		-0.				-2.	-2.		-3.		I	0.47
σ 7		-30.	-65.	-15.	-20.			-45.	-15.	-3	-21.	-88.	-83.	0.21
σ6		-2	-61.	-15.	-20.			-43.	-15.	-30.	-19.	-82.	-78.	0.20
σ 5		-1.		-0.				-2.	-2.		-		-	0.42
σ4	-178.	-26.	-59.	-15.	-20.			-220.	-15.	-30.	-17.	-79.	-254.	0.79
σ 3	-173.	-25.	-57.	-15.	-20.			-214.	-15.	-30.	-16.	-77.	-247.	0.77
σ 2				-16.	-22.			-16.	-16.	-32.			-3	0.09
σ_1	88.	35.	38.	-18.	-24.			105.	-17.	-34.	45.	51.	133.	0.41
σ_0	95.	36.	40.	-18.	-24.			114.	-1	-34.	47.	54.	143.	0.4

Massimo coefficiente di utilizzo: 0.797 VERIFICA NON SIGNIFICATIVA

- 1) Tensione totale all'estradosso soletta alla fine della fase 2 = -2.81 N/mm^2
- 2) Tensione totale all'intradosso soletta alla fine della fase 2 = -2.56 N/mm²

 La sezione a fine fase 2 e' stata considerata: Non fessurata (m.)
- 3) Tensione totale all'estradosso soletta alla fine della fase 3 = -8.98 N/mm²
 4) Tensione totale all'intradosso soletta alla fine della fase 3 = -8.04 N/mm²
 La sezione a fine fase 3 e' stata considerata: Non fessurata (m.)

Pressoflessione - Calcolo tensioni efficaci

Area efficace per shear lag e/o buckling delle flange(Comb. Vmax)

Componente	b (mm)	t (mm)	λρ	ρ	$A_{c,eff}$ (mm 2	β^{-k}	$A_{c,eff} * \beta^{k} (mm^{2})$
Piattabanda superiore SX	35	6					2100
Piattabanda superiore DX	35	6					2100
Piattabanda inferiore SX	60	9					5400
Piattabanda inferiore DX	60	9					5400

Instabilita' locale dei pannelli d'anima (Comb. Vmax)

		• • • • • • • • • • • • • • • • • • • •	
	Anima	Sub pannello 1	Sub pannello 2
b (mm)	335	104	231
σ_{crOE} (N/mm ²)	5.4	56.9	11.5
σ _{sup} (N/mm ²)	-262.4	-262.4	-140.4
$\sigma_{inf} (N/mm^2)$	130.5	-140.4	130.5
Ψ	-0.	0.5	-0.9
Кσ	13.3	5.1	22.1
λ _p	2.	1.	1.1
b _c (mm)	2236.9	104	1196.9
b _{c sup} (mm)	894.7	465.8	478.7
b _{c sup} (mm)	1342.1	574.1	718.1
ρ _{loc}	0.4	0.7	0.7
b _{ceff} (mm)	952.8	779.4	916.7
b _{ceff sup} (mm)	381.1	349.1	366.7
b _{ceff sup} (mm)	571.	430.	550.0

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Φ _{Fore} (mm)	1284.0	260.5	280.1
Troid ()			1

Caratteristiche dell'anima compressa, irrigidenti esclusi (Comb. Vmax)

	A (mm²)	$z_{\scriptscriptstyle G}$ (mm)	J_y (mm^4)
A _{c Edge} sup	8.385E+	3207.	1.516E+
A _{c 1}	1.895E+	2447.	1.751E+
A _{c 2}	0E+0		0E+0
A _{c Edge} inf	1.293E+	1562.	5.556E+
A _{c tot}	4.026E+	2321.	1.679E+1
A_c	2.335E+		

Caratteristiche dell'anima compressa, depurata per instabilita' locale (Comb. Vmax)

	A (mm²)	z_G (mm)	J_y (mm^4)
A _{c,eff} Edge sup	6.284E+	3409.	6.384E+
A _{c,eff 1}	1.435E+	2431.	7.594E+
Ac,eff 2	0E+0		0E+0
A _{c,eff} Edge inf	9.901E+	1478.	2.497E+
A _{c,eff tot}	3.053E+	2323.	1.573E+1
A _{c,eff,loc}	1.875E+		

Tensioni critiche per l'anima (Comb. Vmax)

	Stiffener 1
A_{sl} (mm ²)	2.335E+
e _{sl} (mm)	22.
I _{sl} (mm ⁴)	6.883E+
$A_{\rm sl,eff}$ (mm 2)	1.875E+
e _{sl,eff} (mm)	27.
$I_{sl,eff}$ (mm ⁴)	6.582E+
σ _{cr,sl,i} (p)	446.3
σ _{cr,p,i} (p)	834.1
σ cr,sl (C)	434.3
σ _{cr,c} (c)	811.8
α _e	0.6

Coefficienti di riduzione per instabilita' globale dell'anima (Comb. Vmax)

	Piastra		Colonna
σ _{cr,p} (p)	834.1	σ _{cr,c} (c)	0.80
β _{ac} (p)	0.80	β _{ac} (c)	0.59
λ _p	0.58	λ 。	0.75
ρp		χ c	

Anima depurata per instabilita' locale e globale dell'anima (Comb. Vmax)

	A (mm²)	z_G (mm)	J_y (mm^4)
Edge sup	6.284E+	3409.	6.384E+
1	1.086E+	2431.	5.751E+
2	0E+0		0E+0
Edge inf	9.901E+	1478.	2.497E+
Totale	2.705E+	2309.	1.55E+1

Depurazione complessiva da applicare alla sezione (Comb. Vmax)

	$\Delta A (mm^2)$	z_G (mm)	$\Delta J_y (mm^4)$
Anima	-1.321E+	2345.	-1.282E+
Piattabanda superiore	0E+0		0E+0
Piattabanda inferiore	0E+0		0E+0

Caratteristiche geometriche efficaci (Comb. Vmax)

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	1.971E+	3.027E+	4.467E+	3.027E+	4.467E+	2.159E+
z _G (mm)	1146.88	2020.14	2545.62	2020.14	2545.62	1365.38
Δ _{ZGeff} (mm)	75.3	13.6	-5.7	13.6	-5.7	56.5
$J_{y,eff}$ (mm ⁴)	4.17E+1	8.484E+1	1.108E+1	8.484E+1	1.108E+1	5.249E+1
W _{y,0eff} (mm ³)	-3.636E+	-4.199E+	-4.354E+	-4.199E+	-4.354E+	-3.845E+
W _{y,leff} (mm ³)	-3.946E+	-4.395E+	-4.513E+	-4.395E+	-4.513E+	-4.116E+
W _{y,3eff} (mm ³)	1.819E+	5.975E+	1.239E+	5.975E+	1.239E+	2.53E+
W _{y,4eff} (mm ³)	1.772E+	5.733E+	1.161E+	5.733E+	1.161E+	2.459E+
W _{y,5eff} (mm ³)	1E+30	5.619E+	1.126E+	5.619E+	1.126E+	2.425E+
W _{y,6eff} (mm ³)	1E+30	5.439E+	1.071E+	5.439E+	1.071E+	2.37E+
W _{y,7eff} (mm ³)	1E+30	4.991E+	9.437E+	4.991E+	9.437E+	2.229E+
W _{y,8eff} (mm ³)	1E+30	4.848E+	9.052E+	4.848E+	9.052E+	2.183E+
Sy,leff (mm ³)	1.19E+	2.133E+	2.701E+	2.133E+	2.701E+	1.426E+
S _{y,2eff} (mm ³)	1.291E+	2.468E+	3.243E+	2.468E+	3.243E+	1.572E+
S _{y,3eff} (mm ³)	9.757E+	2.33E+	3.145E+	2.33E+	3.145E+	1.315E+
S _{y,4eff} (mm ³)	3.604E-29	1.721E+	2.757E+	1.721E+	2.757E+	4.306E+

Le caratteristiche efficaci sono state calcolate iterativamente in 1 iterazioni, con la seguente variazione percentuale del coefficiente ψ

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

$(\psi_{1} - \psi_{0})/\psi_{0}*100$	7.7
$(\psi_{2} - \psi_{1})/\psi_{1}*100$	
$(\psi_3 - \psi_2)/\psi_2*100$	
$(\psi_4 - \psi_3)/\psi_3 * 100$	
$(\psi_{5} - \psi_{4})/\psi_{4}*100$	

Momento aggiuntivo per traslazione dell'asse neutro (Comb. Vmax)

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3a	Fase 3b
Δ M _{Fessurata} (kNm)	0E+0	0E+0	-2.964E+	0E+0	-4.265E+	0E+0
ΔM _{Non fessurata} (kNm)	0E+0	0E+0	-7.139E+	0E+0	4.337E+	0E+0

Tensioni normali sulla sezione efficace (Comb. Vmax)

	F. 1	F. 2a	F. 2a	F. 2b	F. 2b	F. 2c	F. 2c	F. 2 to	F. 3a	F. 3a	F. 3b	F. 3b	F. 3 to	$\eta_{\scriptscriptstyle 1}$
		Non	Fess.	Non	Fess.	Non	Fess.		Non	Fess.	Non	Fess.		,-
		Fess.		Fess.		Fess.			Fess.		Fess.			
σ 8		-1.		-				-2.	-2.		-3.		-9.	0.48
σ 7		-30.	-6	-16.	-22.			-4	-16.	-33.	-21.	-92.	-8	0.21
σ6		-28.	-64.	-16.	-22.			-44.	-16.	-33.	-19.	-87.	-8	0.20
σ 5		-1.		-				-2.	-2.		-2.		-8.	0.43
σ4	-19	-26.	-62.	-16.	-22.			-236.	-16.	-33.	-17.	-83.	-270.	0.84
σ 3	-188.	-25.	-60.	-16.	-22.			-230.	-16.	-33.	-16.	-81.	-263.	0.82
σ_2				-17.	-24.			-17.	-16.	-34.			-34.	0.10
σ_1	86.	3	37.	-18.	-25.			103.	-18.	-35.	45.	50.	130.	0.40
σ_0	94.	36.	4	-18.	-25.			11	-18.	-35.	47.	53.	140.	0.44

Massimo coefficiente di utilizzo: 0.847 VERIFICA SODDISFATTA NOTE

- Tensione totale all'estradosso soletta alla fine della fase 2 = -2.88 N/mm²
 Tensione totale all'intradosso soletta alla fine della fase 2 = -2.63 N/mm²
 La sezione a fine fase 2 e' stata considerata: Non fessurata (m.)
- 3) Tensione totale all'estradosso soletta alla fine della fase $3=-9.12 \text{ N/mm}^2$ 4) Tensione totale all'intradosso soletta alla fine della fase $3=-8.17 \text{ N/mm}^2$ La sezione a fine fase 3 e' stata considerata: Non fessurata (m.)

Resistenza a taglio

Valutazione della necessita' di calcolo della resistenza a Shear buckling h_w /t_w =186.111 > $31/\eta$ * ϵ w *(K $_{\tau}$) $^{0.5}$ =74.95 Verifica a Shear buckling Verifica a Shear Buckling: NECESSARIA

Resistenza a taglio Shear buckling: $V_{b,Rd}$ =5.439E+6 N

. a/h_w =1.119, η =1.2, I_{s1} =5.799E+7 (mm⁴), $K_{\tau \, s1}$ =16.243, K_{τ} =12.716 contributo anima: $V_{bM,Rd}$ =5.439E+6 N, contributo flange: $V_{bf,Rd}$ =0E+00 N χ_w =0.484, λ_w =1.715, τ_{cr} =69.8, C=1209.9

Resistenza plastica: $V_{pl,Rd}$ =1.412E+7 N

Resistenza a taglio: V_{Rd} =min($V_{pl,Rd}$, $V_{b,Rd}$)=5.439E+6 N

Coefficienti di utilizzo

 η_{3} =V_{Ed} /V_{Rd} =0.243, (=> VERIFICA SODDISFATTA) η_{3} =V_{Ed} /V_{\text{bw,Rd}} = 0.243, η_{1} =max(η_{i})=0.847

Interazione pressoflessione taglio (N-M-V)

Valutazione della presenza di interazione

 $\eta_{\text{3}} < 0.5, \qquad M_{\text{Ed}} \ / M_{\text{f,Rd}} > 100 \text{ NON C'E' INTERAZIONE}$ $M_{Ed} / M_{f,Rd} > 1$

Sezione T1N051F T1N051F

Caratteristiche generali

Dati principali

Dati pilicipali	
Altezza della sezione di acciaio	3500 mm
Piattabanda superiore	800x70 mm
Piattabanda inferiore	1200x90 mm
Anima	24x3340 mm, Inclinazione: 0
Soletta	6000x240 mm
Raccordo	800x30 mm (escluso nel calcolo delle proprieta' geometriche)
Armatura superiore	diametro 20 mm, passo 100 mm, dist. estradosso-baricentro armatura 50 mm
Armatura inferiore	diametro 20 mm, passo 100 mm, dist. intradosso-baricentro armatura 50 mm
Pioli	diametro 19 mm, altezza 200 mm, numero 20/m
•	·

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Irrigidenti verticali

Interasse	3842 mm
Tipo	R da un solo lato
Piatto 1	420x24 mm
Piatto 2	

Irrigidenti longitudinali dell'anima

distanza estradosso trave-irrigidente	2200 mm
distanza estradosso trave-irrigidente	0 mm
Dimensione dei piatti - sinistra	orizzontali 0x0 mm, verticali 0x0 mm
Dimensione dei piatti - destra	orizzontali 280x28 mm, verticali 0x0 mm

Caratteristiche geometriche lorde

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm²)	2.442E+	3.686E+	3.686E+	3.686E+	5.126E+	2.819E+
z _G (mm)	1392.45	2154.6	2154.6	2154.6	2574.75	1694.40
J _y (mm ⁴)	5.221E+1	9.428E+1	9.428E+1	9.428E+1	1.175E+1	6.887E+1
$W_{y,0}$ (mm ³)	-3.749E+	-4.376E+	-4.376E+	-4.376E+	-4.564E+	-4.065E+
$W_{y,1}$ (mm ³)	-4.008E+	-4.566E+	-4.566E+	-4.566E+	-4.729E+	-4.293E+
$W_{y,3}$ (mm ³)	2.562E+	7.392E+	7.392E+	7.392E+	1.374E+	3.968E+
$W_{y,4}$ (mm ³)	2.477E+	7.008E+	7.008E+	7.008E+	1.27E+	3.814E+
$W_{y,5}$ (mm 3)	1E+30	6.855E+	6.855E+	6.855E+	1.23E+	3.752E+
$W_{y,6}$ (mm ³)	1E+30	6.614E+	6.614E+	6.614E+	1.169E+	3.652E+
$W_{y,7}$ (mm 3)	1E+30	6.023E+	6.023E+	6.023E+	1.026E+	3.4E+
$W_{y,8}$ (mm 3)	1E+30	5.836E+	5.836E+	5.836E+	9.831E+	3.318E+
$S_{y,1} (mm^3)$	1.455E+	2.278E+	2.278E+	2.278E+	2.732E+	1.781E+
S _{y,2} (mm ³)	1.659E+	2.79E+	2.79E+	2.79E+	3.473E+	2.09E+
$S_{y,3} (mm^3)$	1.161E+	2.595E+	2.595E+	2.595E+	3.385E+	1.729E+
S _{y,4} (mm ³)	-1.49E-	1.861E+	1.861E+	1.861E+	2.887E+	7.372E+
n_E	1E+30	16.	16.	16.	6.2	1E+30

Verifiche S.L.U. sezione composta (Comb. Vmin)

Sollecitazioni (Comb. Vmin)

Fase	N (N)	V (N)	M (Nm)	T (Nm)
	0E+0	-3.5E+	3.39E+	0E+0
2	0E+0	-1.47E+	1.4E+	0E+0
2	0E+0	0E+0	0E+0	0E+0
Rit.Is	0E+0		0E+0	
2	0E+0	0E+0	0E+0	0E+0
3	7.54E+	-4.06E+	7.88E+	0E+0
Term.Is	0E+0		0E+0	
3	0E+0	-2.88E+	1.17E+	0E+0
Total	7.54E+	-7.89E+	6.03E+	0E+0

Pressoflessione - Analisi plastica

Classificazione della sezione (Comb. Vmin)

	c/t	z _{pl} (mm)	α	Ψ	Classe				
Anima	139.1	1181.7	0.3	-1.8					
Piattabanda superiore	5.5								
Piattabanda inferiore	6.5								
classe della sezion									
	Analisi plastica: NON APPLICABILE								

Verifica plastica a Presso-Tenso flessione (Comb. Vmin)

Azione	assiale	Flession	e semplice	Interazione N/M				
N _{Ed} (N)	7.545E+6	M _{Ed} (Nm)	6.035E+7	N _{Ed} (N)	7.545E+6			
N _{Rd} (N)	9.418E+7	M _{Rd} (Nm)	1.4E+8	M _{Ed} (Nm)	6.035E+7			
				M _{Rd} (Nm)	1.312E+8			
N_{Ed} / N_{Rd}	0.08	M_{Ed}/M_{Rd}	0.431	M_{Ed}/M_{Rd}	0.46			
	VERIFICA NON SIGNIFICATIVA							

Pressoflessione - Calcolo tensioni lorde

Tens	ioni nor	ma⊥ı sul	.la sezic	ne lorda	(Comb	o. Vmin)								
	F. 1	F. 2a	F. 2a	F. 2b	F. 2b	F. 2c	F. 2c	F. 2 to	F. 3a	F. 3a	F. 3b	F. 3b	F. 3 to	$\eta_{\scriptscriptstyle 1}$
		Non	Fess.	Non	Fess.	Non	Fess.		Non	Fess.	Non	Fess.		7-
		Fess.		Fess.		Fess.			Fess.		Fess.			
σ 8		1.							2.		1.			
σ 7		23.	4					4	15.	29.	11.	34.	104.	0.26
σ6		21.	38.					38.	15.	28.	1	31.	99.	0.25
σ 5		1.							2.		1.			
σ4	13	19.	36.					173.	15.	28.	9.	30.	23	0.7
σ 3	132.	18.	35.					167.	15.	28.	8.	29.	225.	0.70
σ 2									14.	26.			26.	0.07

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

σ_1	-84.	-30.	-32.			-117.	13.	24.	-24.	-27.	-119.	0.37
σ_0	-90.	-31.	-34.			-124.	1	24.	-25.	-28.	-128.	0.40

Massimo coefficiente di utilizzo: 0.73 VERIFICA SODDISFATTA

- 1) Tensione totale all'estradosso soletta alla fine della fase 2 = 1.44 N/mm²
 2) Tensione totale all'intradosso soletta alla fine della fase 2 = 1.23 N/mm²
 La sezione a fine fase 2 e' stata considerata: Fessurata (m.)
- 3) Tensione totale all'estradosso soletta alla fine della fase 3 = 5.83 N/mm²
- 4) Tensione totale all'intradosso soletta alla fine della fase 3 = 5.21 N/mm²

 La sezione a fine fase 3 e' stata considerata: Fessurata (m.)

Resistenza a taglio

Valutazione della necessita' di calcolo della resistenza a Shear buckling $h_w/t_w = 139.167$ > $31/\eta *\epsilon_w *(K_\tau)^{0.5} = 75.026$ Verifica a Shear Buckling: NECESSARIA

Resistenza a taglio Shear buckling: $V_{b,Rd}$ =1.002E+7 N

 $a/h_w = 1.15$, $\eta = 1.2$, $I_{s1} = 1.682E + 8 \text{ (mm}^4)$, $K_{\tau s1} = 17.934$, $K_{\tau} = 12.742$ contribute anima: $V_{\rm bv,Rd}$ =9.679E+6 N, contribute flange: $V_{\rm bf,Rd}$ =3.413E+5 N χ w =0.648, $\lambda_{\rm w}$ =1.281, τ cr =125, C=1171.1 $\chi_{_{\text{M}}} = 0.648, \quad \lambda_{_{\text{M}}} = 1.281, \quad \tau_{_{\text{Cr}}} = 125, \quad \text{C=}1171.1 \\ M_{\text{Ed}} = M_{\text{Ed},\text{eq}} = 8.888E + 7 \text{ Nm}, \quad M_{\text{f,Rd}} = 9.556E + 7 \text{ Nm}, \quad M_{\text{Ed}} \ /M_{\text{f,Rd}} = 0.93$

Resistenza plastica: $V_{pl,Rd}$ =1.878E+7 N

Resistenza a taglio: V_{Rd} =min ($V_{\rm pl,Rd}$, $V_{\rm b,Rd}$)=1.002E+7 N

Coefficienti di utilizzo

 $\eta_{\text{3}} = V_{\text{Ed}} \ / V_{\text{Rd}} = 0.788$, (=> VERIFICA SODDISFATTA) $\eta_{\text{3}}=\text{V}_{\text{Ed}}$ /V_{bw,Rd} =0.816, $\eta_{\text{1}}=\text{max}\left(\ \eta_{\text{i}}\right)=0.73$

Interazione pressoflessione taglio (N-M-V)

Valutazione della presenza di interazione

 $\eta_3 > 0.5$, $M_{Ed} / M_{f Rd} < 1$ NON C'E' INTERAZIONE

Sezione T1N075F T1N075F

Caratteristiche generali

Dati principali

Dadi Pilidipali	
Altezza della sezione di acciaio	3500 mm
Piattabanda superiore	800x40 mm
Piattabanda inferiore	1200x80 mm
Anima	26x3380 mm, Inclinazione: 0
Soletta	5150x240 mm
Raccordo	800x30 mm (escluso nel calcolo delle proprieta' geometriche)
Armatura superiore	diametro 20 mm, passo 100 mm, dist. estradosso-baricentro armatura 50 mm
Armatura inferiore	diametro 20 mm, passo 100 mm, dist. intradosso-baricentro armatura 50 mm
Pioli	diametro 19 mm, altezza 200 mm, numero 20/m

Irrigidenti verticali

Interasse	3750 mm
Tipo	R da un solo lato
Piatto 1	420x24 mm
Piatto 2	

Irrigidenti longitudinali dell'anima

distanza estradosso trave-irrigidente	2200 mm
distanza estradosso trave-irrigidente	0 mm
Dimensione dei piatti - sinistra	orizzontali 0x0 mm, verticali 0x0 mm
Dimensione dei piatti - destra	orizzontali 280x28 mm, verticali 0x0 mm

Caratteristiche geometriche lorde

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	2.159E+	3.227E+	3.227E+	3.227E+	4.463E+	2.482E+
z _G (mm)	1254.15	2047.2	2047.2	2047.2	2491.14	1566.46
J_y (mm 4)	4.072E+1	8.179E+1	8.179E+1	8.179E+1	1.048E+1	5.689E+1
$W_{y,0}$ (mm ³)	-3.247E+	-3.995E+	-3.995E+	-3.995E+	-4.207E+	-3.631E+
$W_{y,1}$ (mm 3)	-3.468E+	-4.157E+	-4.157E+	-4.157E+	-4.347E+	-3.827E+
$W_{y,3}$ (mm ³)	1.846E+	5.789E+	5.789E+	5.789E+	1.082E+	3.004E+
$W_{y,4} \text{ (mm}^3)$	1.813E+	5.63E+	5.63E+	5.63E+	1.039E+	2.942E+
$W_{y,5}$ (mm ³)	1E+30	5.516E+	5.516E+	5.516E+	1.009E+	2.897E+
$W_{y,6}$ (mm ³)	1E+30	5.336E+	5.336E+	5.336E+	9.625E+	2.825E+

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

$W_{y,7}$ (mm ³)	1E+30	4.889E+	4.889E+	4.889E+	8.529E+	2.641E+
$W_{y,8}$ (mm 3)	1E+30	4.747E+	4.747E+	4.747E+	8.195E+	2.582E+
S _{y,1} (mm ³)	1.166E+	1.927E+	1.927E+	1.927E+	2.353E+	1.465E+
$S_{y,2} (mm^3)$	1.345E+	2.43E+	2.43E+	2.43E+	3.109E+	1.753E+
S _{y,3} (mm ³)	7.123E+	2.171E+	2.171E+	2.171E+	2.987E+	1.287E+
S _{y,4} (mm ³)	0E+0	1.712E+	1.712E+	1.712E+	2.67E+	6.742E+
n_E	1E+30	16.	16.	16.	6.2	1E+30

Verifiche S.L.U. sezione composta (Comb. Mmax)

Sollecitazioni (Comb. Mmax) M (Nm) Fase (N) V (N) (Nm) 0E + 0-1.93E 1.44E+ 0E + 0 $0E \pm 0$ -9 05E-8 4E+ 0E+05.24E--4.81E 1.88E-0E+0 Rit. Is 0E+0 0E+0 0E + 00E+0 0E + 00E+07 54E+ -4.68E 1 87E+ 0E+0Term.Is 0E+0 0E+0 -2.1E 0E+0 1.63E-0E+0 Total -1.28E+ -5.03E 4.28E+ 0E+0

Pressoflessione - Analisi plastica

Classificazione della sezione (Comb. Mmax)

	c/t	z _{pl} (mm)	α	Ψ	Classe	
Anima	13	2090.8	0.5	-0.7		
Piattabanda superiore	9.6					
Piattabanda inferiore	7.3					
classe della sezion						
Analisi plastica: NON APPLICABILE						

Verifica plastica a Presso-Tenso flessione (Comb. Mmax)

Azione assiale		Flession	e semplice	Interazione N/M		
N _{Ed} (N)	-1.279E+7	M _{Ed} (Nm)	4.284E+7	N _{Ed} (N)	-1.279E+7	
N _{Rd} (N)	-1.065E+8	M _{Rd} (Nm)	1.189E+8	M _{Ed} (Nm)	4.284E+7	
				M _{Rd} (Nm)	1.287E+8	
N_{Ed}/N_{Rd}	0.12	M_{Ed}/M_{Rd}	0.36	$\rm M_{Ed}/M_{Rd}$	0.333	
VERIFICA NON SIGNIFICATIVA						

Pressoflessione - Calcolo tensioni lorde

Tensioni normali sulla sezione lorda (Comb. Mmax)

	F. 1	F. 2a	F. 2a	F. 2b	F. 2b	F. 2c	F. 2c	F. 2 to	F. 3a	F. 3a	F. 3b	F. 3b	F. 3 to	$\eta_{\scriptscriptstyle 1}$
		Non	Fess.	Non	Fess.	Non	Fess.		Non	Fess.	Non	Fess.		
		Fess.		Fess.		Fess.			Fess.		Fess.			
σ 8		1.		-0.					-2.		3.			
σ 7		17.	31.	-12.	-1			17.	-14.	-23.	19.	61.	5	0.14
σ6		15.	29.	-12.	-14.			15.	-1	-23.	16.	57.	4	0.12
σ 5		0.		-0.					-2.		2.			
σ4	79.	14.	28.	-12.	-14.			93.	-15.	-2	15.	55.	124.	0.36
σ3	78.	14.	27.	-1	-14.			91.	-15.	-24.	1	54.	121.	0.35
σ_2				-16.	-21.			-21.	-16.	-30.			-51.	0.15
σ1	-41.	-20.	-21.	-20.	-2			-89.	-21.	-35.	-37.	-42.	-167.	0.52
σ_0	-44.	-2	-23.	-2	-26.			-93.	-21.	-35.	-38.	-44.	-174.	0.54

Massimo coefficiente di utilizzo: 0.546 VERIFICA NON SIGNIFICATIVA NOTE

1) Tensione totale all'estradosso soletta alla fine della fase $2 = 0.33 \text{ N/mm}^2$

2) Tensione totale all'intradosso soletta alla fine della fase 2 = 0.14 N/mm²

La sezione a fine fase 2 e' stata considerata: Fessurata (m.)

3) Tensione totale all'estradosso soletta alla fine della fase 3 = 1.16 N/mm²
4) Tensione totale all'intradosso soletta alla fine della fase 3 = 0.31 N/mm²
La sezione a fine fase 3 e' stata considerata: Fessurata (m.)

Pressoflessione - Calcolo tensioni efficaci

Area efficace per shear lag e/o buckling delle flange(Comb. Mmax)

			, - ,	,			
Componente	b (mm)	t (mm)	λρ	ρ	$A_{c,eff}$ (mm 2	β^{-k}	$A_{c,eff} * \beta^{-k} (mm^2)$
Piattabanda superiore SX	40	4					1600
Piattabanda superiore DX	40	4					1600
Piattabanda inferiore SX	60	8					4800
Piattabanda inferiore DX	60	8					4800

Instabilita' locale dei pannelli d'anima (Comb. Mmax)

Anima Sub pannello 1 Sub pannello 2

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

b (mm)	338	216	122
$\sigma_{\text{cr0E}} (\text{N/mm}^2)$	11.2	27.5	86.2
$\sigma_{\text{sup}} (\text{N/mm}^2)$	121.2	121.2	-63.
$\sigma_{inf} (N/mm^2)$	-167.3	-63.	-167.3
Ψ	-0.7	-1.9	0.3
Кσ	17.	50.9	5.7
λp	1.3	0.	0.8
b _c (mm)	1960.1	740.1	122
b _{c sup} (mm)	1176.0	444.0	692.1
b _{c sup} (mm)	784.0	296.0	527.8
ρ _{loc}	0.6		0.9
b _{ceff} (mm)	1323.	740.1	1125.1
b _{ceff sup} (mm)	793.9	444.0	638.3
b _{ceff sup} (mm)	529.2	296.0	486.8
$\phi_{ t Foro}$ (mm)	636.9		94.8

Caratteristiche dell'anima compressa, irrigidenti esclusi (Comb. Mmax)

	A (mm²)	$z_{\scriptscriptstyle G}$ (mm)	J_y (mm^4)
A _{c Edge} sup	1.155E+	1818.	1.898E+
A _{c 1}	2.569E+	110	2.091E+
A _{c 2}	0E+0		0E+0
A _{c Edge inf}	1.372E+	343.	3.187E+
A _{c tot}	5.096E+	1060.	1.632E+1
A_c	3.353E+		

Caratteristiche dell'anima compressa, depurata per instabilita' locale (Comb. Mmax)

	A (mm²)	$z_{\scriptscriptstyle G}$ (mm)	J_y (mm^4)
Ac,eff Edge sup	1.155E+	1818.	1.898E+
A _{c,eff 1}	2.429E+	1128.	1.768E+
Ac,eff 2	0E+0		0E+0
A _{c,eff} Edge inf	1.266E+	323.	2.5E+
Ac,eff tot	4.85E+	1082.	1.58E+1
A _{c.eff.loc}	3.213E+		

Tensioni critiche per l'anima (Comb. Mmax)

	Stiffener 1
A _{sl} (mm ²)	3.353E+
e _{sl} (mm)	35.
I _{sl} (mm ⁴)	1.933E+
$A_{sl,eff}$ (mm ²)	3.213E+
e _{sl,eff} (mm)	37.
$I_{sl,eff}$ (mm ⁴)	1.913E+
σ cr,sl,i (p)	870.5
σ _{cr,p,i} (p)	2305.4
σ _{cr,sl} (c)	849.5
σ _{cr,c} (c)	2249.8
α _e	0.62

Coefficienti di riduzione per instabilita' globale dell'anima (Comb. Mmax)

	Piastra		Colonna
σ _{cr,p} (p)	2305.4	σ _{cr,c} (c)	0.95
β _{ac} (p)	0.95	β _{ac} (c)	0.38
λp	0.38	λ 。	0.88
ρp		χ c	

Anima depurata per instabilita' locale e globale dell'anima (Comb. Mmax)

	A (mm²)	z_G (mm)	J_y (mm 4)	
Edge sup	1.155E+	1818.	1.898E+	
1	2.151E+	1128.	1.565E+	
2	0E+0		0E+0	
Edge inf	1.266E+	323.	2.5E+	
Totale	4.571E+	1079.	1.559E+1	

Depurazione complessiva da applicare alla sezione (Comb. Mmax)

	$\Delta A (mm^2)$	z_G (mm)	$\Delta J_y (mm^4)$
Anima	-5.251E+	887.	-5.508E+
Piattabanda superiore	0E+0		0E+0
Piattabanda inferiore	0E+0		0E+0

Caratteristiche geometriche efficaci (Comb. Mmax)

	,	(,				
	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	2.106E+	3.174E+	4.411E+	3.174E+	4.411E+	2.43E+
z _G (mm)	1263.30	2066.39	2510.24	2066.39	2510.24	1581.1
Δ _{ZGeff} (mm)	-9.1	-19.1	-19.0	-19.1	-19.0	-14.6
J _{y,eff} (mm ⁴)	4.059E+1	8.101E+1	1.034E+1	8.101E+1	1.034E+1	5.658E+1

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

W _{y,0eff} (mm ³)	-3.213E+	-3.92E+	-4.118E+	-3.92E+	-4.118E+	-3.579E+
W _{y,leff} (mm ³)	-3.43E+	-4.078E+	-4.254E+	-4.078E+	-4.254E+	-3.769E+
W _{y,3eff} (mm ³)	1.848E+	5.813E+	1.089E+	5.813E+	1.089E+	3.012E+
W _{y,4eff} (mm ³)	1.815E+	5.651E+	1.045E+	5.651E+	1.045E+	2.949E+
W _{y,5eff} (mm ³)	1E+30	5.535E+	1.014E+	5.535E+	1.014E+	2.903E+
W _{y,6eff} (mm ³)	1E+30	5.352E+	9.664E+	5.352E+	9.664E+	2.831E+
W _{y,7eff} (mm ³)	1E+30	4.899E+	8.546E+	4.899E+	8.546E+	2.645E+
W _{y,8eff} (mm ³)	1E+30	4.755E+	8.207E+	4.755E+	8.207E+	2.585E+
S _{y,leff} (mm ³)	1.174E+	1.945E+	2.371E+	1.945E+	2.371E+	1.479E+
S _{y,2eff} (mm ³)	1.337E+	2.396E+	3.054E+	2.396E+	3.054E+	1.736E+
S _{y,3eff} (mm ³)	7.093E+	2.144E+	2.937E+	2.144E+	2.937E+	1.277E+
S _{y,4eff} (mm ³)	2.95E-29	1.692E+	2.626E+	1.692E+	2.626E+	6.695E+

Le caratteristiche efficaci sono state calcolate iterativamente in O iterazioni, con la seguente variazione percentuale del coefficiente ψ

$(\psi_{1} - \psi_{0})/\psi_{0}*100$	
$(\psi_{2} - \psi_{1})/\psi_{1}*100$	
$(\psi_3 - \psi_2)/\psi_2*100$	
$(\psi_4 - \psi_3)/\psi_3*100$	
$(\psi_{5} - \psi_{4})/\psi_{4}*100$	

Momento aggiuntivo per traslazione dell'asse neutro(Comb. Mmax)

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3a	Fase 3b
Δ M _{Fessurata} (kNm)	0E+0	0E+0	7.698E+	0E+0	1.108E+	0E+0
ΔM _{Non fessurata} (kNm)	0E+0	0E+0	1.006E+	0E+0	1.441E+	0E+0

Tens	ensioni normali sulla sezione efficace (Comb. Mmax)													
	F. 1	F. 2a	F. 2a	F. 2b	F. 2b	F. 2c	F. 2c	F. 2 to	F. 3a	F. 3a	F. 3b	F. 3b	F. 3 to	$\eta_{\scriptscriptstyle 1}$
		Non	Fess.	Non	Fess.	Non	Fess.		Non	Fess.	Non	Fess.		
		Fess.		Fess.		Fess.			Fess.		Fess.			
σ 8		1.		-0.					-2.		3.			
σ 7		17.	31.	-12.	-14.			17.	-14.	-23.	1	61.	55.	0.14
σ ₆		15.	29.	-12.	-14.			1	-1	-24.	16.	57.	48.	0.12
σ 5		0.		-0.					-2.		2.			
σ 4	79.	14.	28.	-1	-14.			93.	-15.	-24.	15.	55.	123.	0.36
σ 3	78.	14.	27.	-13.	-15.			90.	-15.	-24.	14.	5	120.	0.35
σ 2				-16.	-21.			-21.	-17.	-31.			-52.	0.15
σ_1	-42.	-20.	-22.	-21.	-26.			-91.	-21.	-36.	-38.	-43.	-170.	0.53
σ_0	-44.	-21.	-23.	-21.	-27.			-95.	-2	-36.	-39.	-45.	-177.	0.55

Massimo coefficiente di utilizzo: 0.556 VERIFICA SODDISFATTA

- 1) Tensione totale all'estradosso soletta alla fine della fase $2 = 0.32 \text{ N/mm}^2$
- 2) Tensione totale all'intradosso soletta alla fine della fase 2 = 0.13 N/mm² La sezione a fine fase 2 e' stata considerata: Fessurata (m.)
- 3) Tensione totale all'estradosso soletta alla fine della fase 3 = 1.15 N/mm²
 4) Tensione totale all'intradosso soletta alla fine della fase 3 = 0.28 N/mm² La sezione a fine fase 3 e' stata considerata: Fessurata (m.)

Resistenza a taglio

Valutazione della necessita' di calcolo della resistenza a Shear buckling h_w /t_w =130 > 31/ η * ϵ w *(K $_{\tau}$) $^{0.5}$ =75.244 Verifica a Sh Verifica a Shear Buckling: NECESSARIA

Resistenza a taglio Shear buckling: $V_{b,Rd}$ =1.259E+7 N

Essendo:

a/h_w=1.109, η =1.2, I_{sl} =1.766E+8 (mm⁴), K $_{\tau$ sl} =16.55, K $_{\tau}$ =12.816 contributo anima: $V_{bw,Rd}$ =1.139E+7 N, contributo flange: $V_{bf,Rd}$ =1.193E+6 N

Resistenza plastica: $V_{pl,Rd} = 2.058E+7 \ N$

Resistenza a taglio: V_{Rd} =min($V_{pl,Rd}$, $V_{b,Rd}$)=1.259E+7 N

Coefficienti di utilizzo

 $\eta_{\text{3}} = V_{\text{Ed}} \ / V_{\text{Rd}} = 0.4$, (=> VERIFICA SODDISFATTA) $\eta_3 = V_{Ed} / V_{bw,Rd} = 0.442$, $\eta_1 = max(\eta_i) = 0.556$

Interazione pressoflessione taglio (N-M-V)

Valutazione della presenza di interazione

 $\eta_3 < 0.5$, $M_{Ed} / M_{f,Rd} < 0.0$ NON C'E' INTERAZIONE $M_{Ed} / M_{f,Rd} < 1$

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Sezione T1N078I_T1N078I

Caratteristiche generali

Dati principali

Altezza della sezione di acciaio	3500 mm
Piattabanda superiore	600x30 mm
Piattabanda inferiore	900x50 mm
Anima	18x3420 mm, Inclinazione: 0
Soletta	6000x240 mm
Raccordo	600x30 mm (escluso nel calcolo delle proprieta' geometriche)
Armatura superiore	diametro 20 mm, passo 100 mm, dist. estradosso-baricentro armatura 50 mm
Armatura inferiore	diametro 20 mm, passo 100 mm, dist. intradosso-baricentro armatura 50 mm
Pioli	diametro 19 mm, altezza 200 mm, numero 15/m

Irrigidenti verticali

Interasse	3505 mm
Tipo	R da un solo lato
Piatto 1	380×20 mm
Piatto 2	

Irrigidenti longitudinali dell'anima

distanza estradosso trave-irrigidente	1100 mm
distanza estradosso trave-irrigidente	2200 mm
Dimensione dei piatti - sinistra	orizzontali 0x0 mm, verticali 0x0 mm
Dimensione dei piatti - destra	orizzontali 220x20 mm, verticali 0x0 mm

Caratteristiche geometriche lorde

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	1.246E+	2.49E+	2.49E+	2.49E+	3.93E+	1.623E+
z _G (mm)	1382.47	2515.71	2515.71	2515.71	2931.36	1909.30
J_y (mm 4)	2.313E+1	5.52E+1	5.52E+1	5.52E+1	6.7E+1	3.803E+1
$W_{y,0}$ (mm ³)	-1.673E+	-2.194E+	-2.194E+	-2.194E+	-2.286E+	-1.992E+
$W_{y,1}$ (mm ³)	-1.736E+	-2.239E+	-2.239E+	-2.239E+	-2.325E+	-2.045E+
$W_{y,3}$ (mm ³)	1.108E+	5.784E+	5.784E+	5.784E+	1.244E+	2.437E+
$W_{y,4} \text{ (mm}^3)$	1.092E+	5.608E+	5.608E+	5.608E+	1.178E+	2.391E+
$W_{y,5}$ (mm ³)	1E+30	5.442E+	5.442E+	5.442E+	1.119E+	2.346E+
$W_{y,6} \text{ (mm}^3)$	1E+30	5.186E+	5.186E+	5.186E+	1.033E+	2.276E+
$W_{y,7}$ (mm ³)	1E+30	4.583E+	4.583E+	4.583E+	8.496E+	2.1E+
$W_{y,8}$ (mm ³)	1E+30	4.401E+	4.401E+	4.401E+	7.99E+	2.044E+
S _{y,1} (mm ³)	6.109E+	1.121E+	1.121E+	1.121E+	1.308E+	8.479E+
$S_{y,2} (mm^3)$	7.707E+	1.668E+	1.668E+	1.668E+	2.055E+	1.159E+
S _{y,3} (mm ³)	3.785E+	1.586E+	1.586E+	1.586E+	2.029E+	9.399E+
S _{y,4} (mm ³)	7.451E-	1.412E+	1.412E+	1.412E+	1.929E+	6.562E+
n_E	1E+30	16.	16.	16.	6.2	1E+30

Verifiche S.L.U. sezione composta (Comb. Vmax)

Sollecitazioni (Comb. Vmax)

Fase	N (N)	V (N)	M (Nm)	T (Nm)
	0E+0	1.4E+	4.5E+	0E+0
2	0E+0	6.44E+	3.91E+	0E+0
2	-5.24E+	2.82E+	1.92E+	0E+0
Rit.Is	0E+0		0E+0	
2	0E+0	0E+0	0E+0	0E+0
3	-7.54E+	3.09E+	1.13E+	0E+0
Term.Is	0E+0		0E+0	
3	0E+0	1.79E+	2.35E+	0E+0
Total	-1.28E+	4.43E+	1.1E+	0E+0

Pressoflessione - Analisi plastica

Classificazione della sezione (Comb. Vmax)

	c/t	z _{pl} (mm)	α	Ψ	Classe	
Anima	19	3343.1	0.9	-0.		
Piattabanda superiore	9.					
Piattabanda inferiore	8.8					
classe della sezion						
Analisi plastica: NON APPLICABILE						

Verifica plastica a Presso-Tenso flessione (Comb. Vmax)

Azione	assiale	Flession	e semplice	Interazione N/M		
N _{Ed} (N)	-1.279E+7	M _{Ed} (Nm)	1.096E+7	N _{Ed} (N)	-1.279E+7	
N _{Rd} (N)	-8.239E+7	M _{Rd} (Nm)	7.936E+7	M _{Ed} (Nm)	1.096E+7	
				M _{Rd} (Nm)	8.081E+7	
N_{Ed}/N_{Rd}	0.155	M_{Ed}/M_{Rd}	0.138	M_{Ed}/M_{Rd}	0.136	

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

VERIFICA NON SIGNIFICATIVA

Pressoflessione - Calcolo tensioni lorde

Tensioni normali sulla sezione lorda (Comb. Vmax)

	F. 1	F. 2a	F. 2a	F. 2b	F. 2b	F. 2c	F. 2c	F. 2 to	F. 3a	F. 3a	F. 3b	F. 3b	F. 3 to	η_1
		Non	Fess.	Non	Fess.	Non	Fess.		Non	Fess.	Non	Fess.		•
		Fess.		Fess.		Fess.			Fess.		Fess.			
σ_8		0.		-1.				-0.	-3.		0.		-3.	0.17
σ 7		8.	18.	-20.	-31.			-12.	-19.	-46.	2.	11.	-28.	0.07
σ6		7.	17.	-20.	-31.			-13.	-19.	-46.	2.	10.	-30.	0.07
σ 5		0.		-1.				-0.	-3.		0.		-3.	0.18
σ4	41.		16.	-20.	-31.			27.	-19.	-46.		9.	10.	0.0
σ 3	40.	6.	1	-20.	-31.			26.	-19.	-46.	1.	9.	9.	0.02
σ 2				-21.	-32.			-21.	-19.	-46.			-40.	0.11
σ_1	-25.	-17.	-19.	-21.	-33.			-65.	-19.	-46.	-10.	-11.	-94.	0.29
σ_0	-26.	-17.	-19.	-21.	-33.			-66.	-19.	-46.	-10.	-11.	-96.	0.30

Massimo coefficiente di utilizzo: 0.301 VERIFICA NON SIGNIFICATIVA

- 1) Tensione totale all'estradosso soletta alla fine della fase 2 = -0.71 N/mm²
 2) Tensione totale all'intradosso soletta alla fine della fase 2 = -0.81 N/mm²

 La sezione a fine fase 2 e' stata considerata: Non fessurata (m.)
 3) Tensione totale all'estradosso soletta alla fine della fase 3 = -3.31 N/mm²
 4) Tensione totale all'intradosso soletta alla fine della fase 3 = -3.55 N/mm²
- La sezione a fine fase 3 e' stata considerata: Non fessurata (${\tt m.}$)

Pressoflessione - Calcolo tensioni efficaci

Area efficace per shear lag e/o buckling delle flange(Comb. Vmax)

Componente	b (mm)	t (mm)	λρ	ρ	$A_{c,eff}$ (mm 2	β^{-k}	$A_{c,eff} * \beta^{-k} (mm^2)$
Piattabanda superiore SX	30	3					900
Piattabanda superiore DX	30	3					900
Piattabanda inferiore SX	45	5					2250
Piattabanda inferiore DX	45	5		-			2250

Instabilita' locale dei pannelli d'anima (Comb. Vmax)

	Anima	Sub pannello 1	Sub pannello 2	Sub pannello 3
b (mm)	342	107	110	125
σ_{crOE} (N/mm^2)	5.2	53.7	50.8	39.
σ _{sup} (N/mm ²)	8.8	8.8	-27.8	-65.
$\sigma_{inf} (N/mm^2)$	-108.	-27.8	-65.	-108.
Ψ	-0.0	-0.3	0.4	0.
К σ	8.3	10.7	5.5	4.9
λρ	2.8	0.7	1.1	1.3
b _c (mm)	3162.8	812.8	110	125
b _{c sup} (mm)	1897.	487.	619.1	681.
b _{c sup} (mm)	1265.1	325.1	480.8	568.
ρ _{loc}	0.3		0.7	0.6
b _{ceff} (mm)	1052.1	812.8	816.7	790.6
b _{ceff sup} (mm)	631.2	487.	459.7	430.8
b _{ceff sup} (mm)	420.8	325.1	357.0	359.
φ _{Foro} (mm)	2110.7		283.2	459.3

Caratteristiche dell'anima compressa, irrigidenti esclusi (Comb. Vmax)

	A (mm²)	z_{G} (mm)	J_{y} (mm^{4})
A _{c Edge} sup	8.779E+	296	1.74E+
A _{c 1}	1.7E+	225	1.263E+
A _{c 2}	2.092E+	1199.	2.354E+
A _{c Edge} inf	1.024E+	334.	2.76E+
A _{c tot}	5.693E+	1631.	4.746E+1
A _c	4.671E+		

Caratteristiche dell'anima compressa, depurata per instabilita' locale (Comb. Vmax)

	$A (mm^2)$	z_G (mm)	J_y (mm^4)
A _{c,eff} Edge sup	8.779E+	296	1.74E+
Ac,eff 1	1.413E+	2332.	7.252E+
A _{c,eff 2}	1.418E+	1263.	7.338E+
Ac,eff Edge inf	6.476E+	229.	6.986E+
A _{c,eff tot}	4.357E+	1800.	3.776E+1
Ac,eff,loc	3.711E+		

Tensioni critiche per l'anima (Comb. Vmax)

rensioni critiche pe	EL I ATITINA (COMD. VINA	A)	
	Stiffener 1	Stiffener 2	Lumped
A_{sl} (mm ²)	2.14E+	2.532E+	4.671E+
e _{sl} (mm)	24.	20.	22.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

I _{sl} (mm ⁴)	6.77E+	6.979E+	1.377E+
A _{sl,eff} (mm ²)	1.853E+	1.858E+	3.711E+
e _{sl,eff} (mm)	28.	28.	28.
$I_{sl,eff}$ (mm ⁴)	6.564E+	6.568E+	1.313E+
σ _{cr,sl,i} (p)	564.4	485.6	500.8
σ _{cr,p,i} (p)	2196.4	80	976.4
σ _{cr,sl} (c)	533.8	465.0	
σ _{cr,c} (c)		76	
α _e	0.65		

Coefficienti di riduzione per instabilita' globale dell'anima (Comb. Vmax)

	Piastra		Colonna
σ _{cr,p} (p)	80	σ _{cr,c} (c)	0.73
β _{ac} (p)	0.79	β _{ac} (c)	0.58
λρ	0.59	λ 。	0.7
ρρ		χ ့	

Anima depurata per instabilita' locale e globale dell'anima (Comb. Vmax)

	A (mm²)	z_G (mm)	J_y (mm^4)
Edge sup	8.779E+	296	1.74E+
1	1.087E+	2332.	5.582E+
2	1.092E+	1263.	5.648E+
Edge inf	6.476E+	229.	6.986E+
Totale	3.705E+	1800.	3.556E+1

Depurazione complessiva da applicare alla sezione (Comb. Vmax)

	$\Delta A (mm^2)$	$z_{\it G}$ (mm)	ΔJ_y (mm 4)
Anima	-1.989E+	1316.	-8.859E+
Piattabanda superiore	0E+0		0E+0
Piattabanda inferiore	0E+0		0E+0

Caratteristiche geometriche efficaci (Comb. Vmax)

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	1.047E+	2.291E+	3.731E+	2.291E+	3.731E+	1.424E+
z _G (mm)	1395.07	2619.8	3017.44	2619.8	3017.44	1992.15
Δ _{ZGeff} (mm)	-12.6	-104.1	-86.0	-104.1	-86.0	-82.8
$J_{y,eff}$ (mm ⁴)	2.223E+1	5.12E+1	6.065E+1	5.12E+1	6.065E+1	3.634E+1
W _{y,0eff} (mm ³)	-1.594E+	-1.954E+	-2.01E+	-1.954E+	-2.01E+	-1.824E+
W _{y,leff} (mm ³)	-1.653E+	-1.992E+	-2.044E+	-1.992E+	-2.044E+	-1.871E+
W _{y,3eff} (mm ³)	1.071E+	6.022E+	1.34E+	6.022E+	1.34E+	2.459E+
W _{y,4eff} (mm ³)	1.056E+	5.817E+	1.257E+	5.817E+	1.257E+	2.41E+
W _{y,5eff} (mm ³)	1E+30	5.625E+	1.183E+	5.625E+	1.183E+	2.363E+
W _{y,6eff} (mm ³)	1E+30	5.332E+	1.078E+	5.332E+	1.078E+	2.289E+
W _{y,7eff} (mm ³)	1E+30	4.654E+	8.633E+	4.654E+	8.633E+	2.103E+
W _{y,8eff} (mm ³)	1E+30	4.452E+	8.06E+	4.452E+	8.06E+	2.044E+
S _{y,leff} (mm ³)	6.165E+	1.168E+	1.347E+	1.168E+	1.347E+	8.852E+
S _{y,2eff} (mm ³)	7.637E+	1.503E+	1.801E+	1.503E+	1.801E+	1.09E+
S _{y,3eff} (mm ³)	3.762E+	1.438E+	1.782E+	1.438E+	1.782E+	8.937E+
S _{y,4eff} (mm ³)	3.247E-29	1.282E+	1.698E+	1.282E+	1.698E+	6.25E+

Le caratteristiche efficaci sono state calcolate iterativamente in 1 iterazioni, con la seguente variazione percentuale del coefficiente ψ

$(\psi_{1} - \psi_{0})/\psi_{0}*100$	17.5
$(\psi_{2} - \psi_{1})/\psi_{1}*100$	
$(\psi_{3} - \psi_{2})/\psi_{2}*100$	
$(\psi_4 - \psi_3)/\psi_3*100$	
$(\psi_{5} - \psi_{4})/\psi_{4}*100$	

Momento aggiuntivo per traslazione dell'asse neutro(Comb. Vmax)

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3a	Fase 3b
Δ M _{Fessurata} (kNm)	0E+0	0E+0	4.345E+	0E+0	6.251E+	0E+0
$\Delta M_{ m Non\ fessurata}$ (kNm)	0E+0	0E+0	5.46E+	0E+0	6.495E+	0E+0

Tensioni normali sulla sezione efficace (Comb. Vmax)

			TO DELLO	01110	, ,	CHIE. VIII	,							
	F. 1	F. 2a	F. 2a	F. 2b	F. 2b	F. 2c	F. 2c	F. 2 to	F. 3a	F. 3a	F. 3b	F. 3b	F. 3 to	$\eta_{\scriptscriptstyle 1}$
		Non	Fess.	Non	Fess.	Non	Fess.		Non	Fess.	Non	Fess.		·
		Fess.		Fess.		Fess.			Fess.		Fess.			
σ 8		0.		-1.				-0.	-3.		0.		-3.	0.1
σ 7		8.	18.	-21.	-33.			-12.	-19.	-5	2.	11.	-29.	0.07
σ6		7.	17.	-21.	-34.			-14.	-19.	-50.	2.	10.	-31.	0.08
σ 5		0.		-1.				-0.	-3.		0.		-3.	0.19
σ4	42.	6.	16.	-21.	-34.			27.	-19.	-50.	1.	9.	9.	0.02
σ 3	4	6.	15.	-21.	-34.			26.	-19.	-50.	1.	9.	8.	0.02
σ2				-22.	-36.			-22.	-20.	-5			-43.	0.12
σ_1	-27.	-19.	-20.	-26.	-40.			-73.	-23.	-56.	-11.	-12.	-108.	0.3

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Massimo coefficiente di utilizzo: 0.345 VERIFICA SODDISFATTA NOTE

- 1) Tensione totale all'estradosso soletta alla fine della fase $2 = -0.75 \text{ N/mm}^2$
- 2) Tensione totale all'intradosso soletta alla fine della fase 2 = -0.88 N/mm²

 La sezione a fine fase 2 e' stata considerata: Non fessurata (m.)
- 3) Tensione totale all'estradosso soletta alla fine della fase 3 = -3.39 N/mm²
 4) Tensione totale all'intradosso soletta alla fine della fase 3 = -3.71 N/mm²
 La sezione a fine fase 3 e' stata considerata: Non fessurata (m.)

Resistenza a taglio

Valutazione della necessita' di calcolo della resistenza a Shear buckling h_w /t_w =190 > $31/\eta$ * ϵ w *(K $_{\tau}$) 0.5 =81.542 Verifica a Sh

Verifica a Shear Buckling: NECESSARIA

Resistenza a taglio Shear buckling: $V_{b,Rd} = 6.47E+6 N$

Essendo:

a/h_w =1.025, η =1.2, I_{sl} =1.16E+8 (mm⁴), K _{t sl} =32.088, K _t =15.051 contributo anima: V_{bw,Rd} =5.917E+6 N, contributo flange: V_{bf,Rd} =5.529E+5 N $\chi_{\text{w}} = 0.516$, $\lambda_{\text{w}} = 1.609$, $\tau_{\text{cr}} = 79.2$, C=932.8 $M_{\text{Ed}} = M_{\text{Ed},\text{eq}} = 2.213\text{E}+7$ Nm, $M_{\text{f,Rd}} = 4.45\text{E}+7$ Nm, $M_{\text{Ed}}/M_{\text{f,Rd}} = 0.497$

Resistenza plastica: $V_{pl,Rd} = 1.442E + 7 N$

Resistenza a taglio: $V_{Rd} = min(V_{pl,Rd}, V_{b,Rd}) = 6.47E + 6 N$

Coefficienti di utilizzo

 $\eta_{\text{3}} = V_{\text{Ed}} / V_{\text{Rd}} = 0.684$, (=> VERIFICA SODDISFATTA) η_{3} =V_{Ed} /V_{bw,Rd} =0.748, $\qquad \eta_{\text{1}}$ =max(η_{i})=0.345

Interazione pressoflessione taglio (N-M-V)

Valutazione della presenza di interazione

 $\eta_3 > 0.5$, M_{Ed} $/M_{f,Rd}$ <1 NON C'E' INTERAZIONE

Sezione T1N088F_T1N088F

Caratteristiche generali

Dati principali

Duoi Pillioipull	
Altezza della sezione di acciaio	3500 mm
Piattabanda superiore	600x20 mm
Piattabanda inferiore	900x30 mm
Anima	20x3450 mm, Inclinazione: 0
Soletta	4850x240 mm
Raccordo	600x30 mm (escluso nel calcolo delle proprieta' geometriche)
Armatura superiore	diametro 20 mm, passo 200 mm, dist. estradosso-baricentro armatura 50 mm
Armatura inferiore	diametro 20 mm, passo 200 mm, dist. intradosso-baricentro armatura 50 mm
Pioli	diametro 19 mm, altezza 200 mm, numero 20/m

Irrigidenti verticali

Interasse	3500 mm
Tipo	R da un solo lato
Piatto 1	380×20 mm
Piatto 2	

Irrigidenti longitudinali dell'anima

distanza estradosso trave-irrigidente	1100 mm
distanza estradosso trave-irrigidente	0 mm
Dimensione dei piatti - sinistra	orizzontali 0x0 mm, verticali 0x0 mm
Dimensione dei piatti - destra	orizzontali 220x20 mm, verticali 0x0 mm

Caratteristiche geometriche lorde

Caraccerro	e geometriche rorae					
	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm²)	1.08E+	1.934E+	1.934E+	1.934E+	3.098E+	1.232E+
z _G (mm)	1512.77	2456.25	2456.25	2456.25	2904.87	1777.01
J _y (mm ⁴)	1.8E+1	3.982E+1	3.982E+1	3.982E+1	5.023E+1	2.41E+1
$W_{y,0}$ (mm ³)	-1.19E+	-1.621E+	-1.621E+	-1.621E+	-1.729E+	-1.356E+
$W_{y,1}$ (mm ³)	-1.214E+	-1.641E+	-1.641E+	-1.641E+	-1.747E+	-1.38E+
W _{y,3} (mm ³)	9.149E+	3.889E+	3.889E+	3.889E+	8.733E+	1.415E+
$W_{y,4}$ (mm ³)	9.057E+	3.815E+	3.815E+	3.815E+	8.44E+	1.399E+
W _{y,5} (mm ³)	1E+30	3.708E+	3.708E+	3.708E+	8.035E+	1.375E+
$W_{y,6}$ (mm ³)	1E+30	3.543E+	3.543E+	3.543E+	7.44E+	1.337E+
$W_{y,7}$ (mm ³)	1E+30	3.151E+	3.151E+	3.151E+	6.162E+	1.241E+

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

$W_{y,8}$ (mm 3)	1E+30	3.031E+	3.031E+	3.031E+	5.806E+	1.209E+
S _{y,1} (mm ³)	4.044E+	6.591E+	6.591E+	6.591E+	7.803E+	4.757E+
S _{y,2} (mm ³)	6.243E+	1.248E+	1.248E+	1.248E+	1.607E+	7.81E+
$S_{y,3} (mm^3)$	2.373E+	1.143E+	1.143E+	1.143E+	1.574E+	4.909E+
S _{y,4} (mm ³)	-3.725E-	1.019E+	1.019E+	1.019E+	1.503E+	2.854E+
n_E	1E+30	16.	16.	16.	6.2	1E+30

Verifiche S.L.U. sezione composta (Comb. Vmin)

Sollecitazioni (Comb. Vmin)

Fase	N (N)	V (N)	M (Nm)	T (Nm)
	0E+0	-1.1E+	0E+0	0E+0
2	0E+0	-5.36E+	0E+0	0E+0
2	0E+0	0E+0	0E+0	0E+0
Rit.Is	0E+0		0E+0	
2	0E+0	0E+0	0E+0	0E+0
3	7.54E+	-3.12E+	8.98E+	0E+0
Term.Is	0E+0		0E+0	
3	0E+0	-1.87E+	0E+0	0E+0
Total	7.54E+	-3.82E+	8.98E+	0E+0

Pressoflessione - Analisi plastica

Classificazione della sezione (Comb. Vmin)

	c/t	z_{pl} (mm)	α	Ψ	Classe							
Anima	172.	1262.9	0.3	-31.9								
Piattabanda superiore	14.											
Piattabanda inferiore	14.6											
classe della sezion												
Analisi plastica: NON APPLICABILE												

Verifica plastica a Presso-Tenso flessione (Comb. Vmin)

Azione	assiale	Flession	e semplice	Interazione N/M							
N _{Ed} (N)	7.545E+6	M _{Ed} (Nm)	8.985E+6	N _{Ed} (N)	7.545E+6						
N _{Rd} (N)	4.248E+7	M _{Rd} (Nm)	5.431E+7	M _{Ed} (Nm)	8.985E+6						
				M _{Rd} (Nm)	4.403E+7						
N_{Ed} / N_{Rd}	0.178	M_{Ed} / M_{Rd}	0.165	M_{Ed}/M_{Rd}	0.204						
	VERIFICA NON SIGNIFICATIVA										

Pressoflessione - Calcolo tensioni lorde

Tensioni normali sulla sezione lorda (Comb. Vmin)

10110		marr sur	Ta Serre	TOTAL	(001111). VIIII-11/								
	F. 1	F. 2a	F. 2a	F. 2b	F. 2b	F. 2c	F. 2c	F. 2 to	F. 3a	F. 3a	F. 3b	F. 3b	F. 3 to	η_1
		Non	Fess.	Non	Fess.	Non	Fess.		Non	Fess.	Non	Fess.		,-
		Fess.		Fess.		Fess.			Fess.		Fess.			
σ 8									6.					
σ 7									38.	133.			133.	0.34
σ6									36.	128.			128.	0.32
σ 5									5.					
σ 4									3	125.			125.	0.37
σ 3									34.	124.			124.	0.36
σ 2									24.	61.			61.	0.18
σ_1									-27.	-3.			-3.	0.01
σ_0									-27.	_			_	0.01

Massimo coefficiente di utilizzo: 0.371 VERIFICA NON SIGNIFICATIVA NOTE

1) Tensione totale all'estradosso soletta alla fine della fase 2 = 0 N/mm²

2) Tensione totale all'intradosso soletta alla fine della fase 2 = 0 N/mm²

La sezione a fine fase 2 e' stata considerata: Fessurata (m.)

3) Tensione totale all'estradosso soletta alla fine della fase 3 = 6.38 N/mm²
4) Tensione totale all'intradosso soletta alla fine della fase 3 = 5.7 N/mm²
La sezione a fine fase 3 e' stata considerata: Fessurata (m.)

Pressoflessione - Calcolo tensioni efficaci

Area efficace per shear lag e/o buckling delle flange(Comb. Vmin)

med efficace per bhear rag e, o	Duckering ac		je (comb.	VIII-11/			
Componente	b (mm)	t (mm)	λ_p	ρ	$A_{c,eff}$ (mm 2	β	$A*\beta$ (mm ²)
Piattabanda superiore SX	30	2					600
Piattabanda superiore DX	30	2					600
Piattabanda inferiore SX	45	3	0.9	0.81	11047.		11047.
Piattabanda inferiore DX	4.5		0.0	0.81	11047		11047

Instabilita' locale dei pannelli d'anima (Comb. Vmin)

	Anima	Sub pannello 1	Sub pannello 2
b (mm)	345	108	237

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

σ_{crOE} (N/mm ²)	6.3	65.1	13.5
σ _{sup} (N/mm ²)	124.8	124.8	84.3
σ _{inf} (N/mm ²)	-4.4	84.3	-4.4
Ψ	-28.3	1.4	-19.1
К σ	95.6	1E+5	95.6
λρ	0.7		0.5
b _c (mm)	117.6		117.6
b _{c sup} (mm)	70.		70.
b _{c sup} (mm)	47.0		47.0
ρ loc			
b _{ceff} (mm)	117.6		117.6
b _{ceff sup} (mm)	70.		70.
b _{ceff sup} (mm)	47.0		47.0
φ _{Foro} (mm)			

Caratteristiche dell'anima compressa, irrigidenti esclusi (Comb. Vmin)

	A (mm²)	z_{G} (mm)	J_y (mm^4)
A _{c Edge sup}	1.412E+	112.	5.866E+
A _{c 1}	0E+0		0E+0
A _{c 2}	0E+0		0E+0
A _{c Edge inf}	9.414E+	53.	1.738E+
A _{c tot}	2.353E+	88.	2.716E+
Ac	0E+0		

Caratteristiche dell'anima compressa, depurata per instabilita' locale (Comb. Vmin)

	anma compressa, as	Parada Por Indoaperr	
	A (mm²)	z_{G} (mm)	J_y (mm^4)
A _{c,eff} Edge sup	1.412E+	112.	5.866E+
Ac,eff 1	0E+0)	0E+0
A _{c,eff 2}	0E+0)	0E+0
Ac,eff Edge inf	9.414E+	53.	1.738E+
A _{c,eff tot}	2.353E+	88.	2.716E+
Ac,eff,loc	0E+0)	

Tensioni critiche per l'anima (Comb. Vmin)

	Stiffener 1
A_{sl} (mm 2)	0E+0
e _{sl} (mm)	
I _{sl} (mm ⁴)	0E+0
A _{sl,eff} (mm ²)	0E+0
e _{sl,eff} (mm)	
$I_{sl,eff}$ (mm ⁴)	0E+0
σ _{cr,sl,i} (p)	
σ _{cr,p,i} (p)	
σ _{cr,sl} (c)	
σ _{cr,c} (c)	
α _e	0.2

Coefficienti di riduzione per instabilita globale dell'anima (Comb. Vmin)

	FIASLIA		COTOIIIa
σ _{cr,p} (p)	610.9	σ _{cr,c} (c)	
β _{ac} (p)		β _{ac} (c)	7.56
λ _p	0.76	λς	
ρ _p		χ с	

Anima depurata per instabilita' locale e globale dell'anima (Comb. Vmin)

	A (mm²)	z_G (mm)	J_y (mm^4)
Edge sup	1.412E+	112.	5.866E+
1	0E+0		0E+0
2	0E+0		0E+0
Edge inf	9.414E+	53.	1.738E+
Totale	2.353E+	88.	2.716E+

Depurazione complessiva da applicare alla sezione (Comb. Vmin)

	$\Delta A (mm^2)$	$z_{\scriptscriptstyle G}$ (mm)	$\Delta J_y (mm^4)$
Anima	0E+0		0E+0
Piattabanda superiore	0E+0		0E+0
Piattabanda inferiore	-4.906E+	1	-3.679E+

Caratteristiche geometriche efficaci (Comb. Vmin)

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	1.031E+	1.885E+	3.049E+	1.885E+	3.049E+	1.183E+
z _G (mm)	1584.04	2519.80	2951.3	2519.80	2951.3	1850.06
Δ _{ZGeff} (mm)	-71.2	-63.5	-46.	-63.5	-46.	-73.0
$J_{y,eff}$ (mm ⁴)	1.684E+1	3.682E+1	4.606E+1	3.682E+1	4.606E+1	2.252E+1
W _{y,0eff} (mm ³)	-1.063E+	-1.461E+	-1.561E+	-1.461E+	-1.561E+	-1.217E+

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

$W_{y,leff}$ (mm ³)	-1.084E+	-1.479E+	-1.577E+	-1.479E+	-1.577E+	-1.237E+
W _{y,3eff} (mm ³)	8.884E+	3.834E+	8.714E+	3.834E+	8.714E+	1.382E+
W _{y,4eff} (mm ³)	8.792E+	3.756E+	8.396E+	3.756E+	8.396E+	1.365E+
W _{y,5eff} (mm ³)	1E+30	3.644E+	7.961E+	3.644E+	7.961E+	1.34E+
W _{y,6eff} (mm ³)	1E+30	3.473E+	7.328E+	3.473E+	7.328E+	1.302E+
W _{y,7eff} (mm ³)	1E+30	3.067E+	5.993E+	3.067E+	5.993E+	1.204E+
W _{y,8eff} (mm ³)	1E+30	2.945E+	5.627E+	2.945E+	5.627E+	1.173E+
S _{y,leff} (mm ³)	3.467E+	5.534E+	6.488E+	5.534E+	6.488E+	4.054E+
S _{y,2eff} (mm ³)	5.882E+	1.173E+	1.502E+	1.173E+	1.502E+	7.367E+
S _{y,3eff} (mm ³)	2.287E+	1.081E+	1.474E+	1.081E+	1.474E+	4.71E+
S _{y,4eff} (mm ³)	2.405E-29	9.647E+	1.41E+	9.647E+	1.41E+	2.743E+

Le caratteristiche efficaci sono state calcolate iterativamente in O iterazioni, con la sequente variazione percentuale del coefficiente ψ

$(\psi_{1} - \psi_{0})/\psi_{0}*100$	
$(\psi_{2} - \psi_{1})/\psi_{1}*100$	
$(\psi_3 - \psi_2)/\psi_2 * 100$	
$(\psi_4 - \psi_3)/\psi_3*100$	
$(\psi_{5} - \psi_{4})/\psi_{4}*100$	

Momento aggiuntivo per traslazione dell'asse neutro (Comb. Vmin)

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3a	Fase 3b
ΔM _{Fessurata} (kNm)	0E+0	0E+0	0E+0	0E+0	-5.512E+	0E+0
ΔM _{Non fessurata} (kNm)	0E+0	0E+0	0E+0	0E+0	-3.509E+	0E+0

Tensioni normali sulla sezione efficace (Comb. Vmin)

	F. 1	F. 2a	F. 2a	F. 2b	F. 2b	F. 2c	F. 2c	F. 2 to	F. 3a	F. 3a	F. 3b	F. 3b	F. 3 to	$\eta_{\scriptscriptstyle 1}$
		Non	Fess.	Non	Fess.	Non	Fess.		Non	Fess.	Non	Fess.		-
		Fess.		Fess.		Fess.			Fess.		Fess.			
σ_8									6.					
σ 7									39.	133.			133.	0.34
σ_6									36.	128.			128.	0.32
σ_5									5.					
σ_4									3	125.			125.	0.37
σ 3									34.	124.			124.	0.36
σ 2									24.	63.			63.	0.18
σ_1									-3	-4.			-4.	0.01
σ_0									-30.	-5.			-5.	0.01

Massimo coefficiente di utilizzo: 0.371 VERIFICA SODDISFATTA NOTE

1) Tensione totale all'estradosso soletta alla fine della fase 2 = 0 N/mm^2 2) Tensione totale all'intradosso soletta alla fine della fase 2 = 0 N/mm^2 La sezione a fine fase 2 e' stata considerata: Fessurata (m.)

3) Tensione totale all'estradosso soletta alla fine della fase 3 = $6.43~\mathrm{N/mm^2}$

4) Tensione totale all'intradosso soletta alla fine della fase $3 = 5.7 \text{ N/mm}^2$

La sezione a fine fase 3 e' stata considerata: Fessurata (m.)

Resistenza a taglio

Valutazione della necessita' di calcolo della resistenza a Shear buckling

 $h_w/t_w = 172.5$ > $31/\eta *\epsilon_w *(K_\tau)^{0.5} = 77.198$ Verifica a Shear Buckling: NECESSARIA

Resistenza a taglio Shear buckling: $V_{b,Rd}$ =6.916E+6 N

 $a/h_w = 1.014$, $\eta = 1.2$, $I_{s1} = 6.175E + 7 \, (mm^4)$, $K_{\tau \, s1} = 15.997$, $K_{\tau} = 13.49$ contributo anima: $V_{bw,Rd}$ =6.916E+6 N, contributo flange: $V_{bf,Rd}$ =0E+00 N

Resistenza plastica: $V_{pl,Rd}$ =1.616E+7 N

Resistenza a taglio: V_{Rd} =min($V_{pl,Rd}$, $V_{b,Rd}$)=6.916E+6 N

Coefficienti di utilizzo

 $\eta_{\text{3}}=\!\!V_{\text{Ed}}\;/V_{\text{Rd}}=\!0.552\text{,}$ (=> VERIFICA SODDISFATTA) $\eta_3 = V_{Ed} / V_{bw,Rd} = 0.552$, $\eta_1 = max (\eta_i) = 0.371$

Interazione pressoflessione taglio (N-M-V)

Valutazione della presenza di interazione

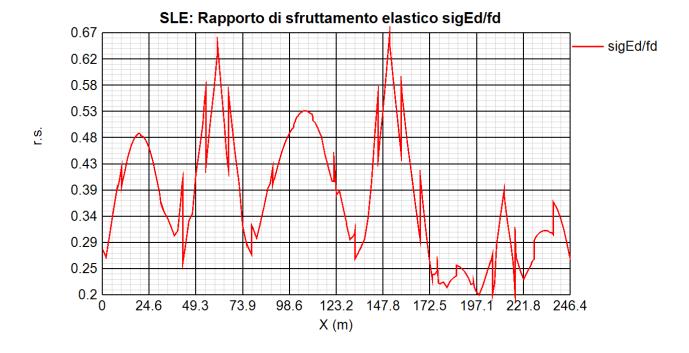
 $\eta_3 > 0.5$, $M_{Ed} / M_{f,R}$ C'E' INTERAZIONE M_{Ed} $/M_{\text{f,Rd}} > 1$ η_{1} + (1-M_{f,Rd} /M_{Rd})(2 η_{3} -1) 2 = 0.379 VERIFICA SODDISFATTA

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

7.3. TRAVI LONGITUDINALI – VERIFICHE SLE

La verifica viene condotta con riferimento alle tensioni di Von Mises valutate sotto la combinazione S.L.E., applicando il coefficiente di materiale γ m,ser = 1.0. Il programma Ponti EC4 procede al calcolo del rapporto di sfruttamento dei vari componenti (acciaio, calcestruzzo e armature) delle sezioni esaminate nelle condizioni Mmax/min e Vmax/min.

Si riportano negli allegati su supporto elettronico le verifiche estese relative alle sezioni di interesse per i diversi conci in cui l'impalcato è diviso.



RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

7.3.1. VERIFICA S.L.E. TENSIONALE - RIEPILOGO COEFFICIENTI DI SFRUTTAMENTO

Si riporta una rappresentazione grafica dei coefficienti massimi di sfruttamento per il caso più significativo:

FILO 000 / FILO 200

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

7.3.2. VERIFICA S.L.E. "WEB BREATHING" TENSIONALE - RIEPILOGO COEFFICIENTI DI **SFRUTTAMENTO**

La verifica è volta alla limitazione della snellezza dei singoli pannelli e sottopannelli. I criteri di verifica sono contenuti nelle istruzioni a NTC-18, cap. 4.2.4.1.3.4, che rimandano a EN 1993.2, cap. 7.4.

Tra i metodi proposti, si sceglie quello più rigoroso, comprendente la verifica diretta della stabilità dei sottopannelli, consistente nel confronto del quadro tensionale indotto dalla combinazione SLE frequente, rappresentato da $\sigma_{x,Ed,ser}$ e $\tau_{xy,Ed,ser}$, con le tensioni normali e tangenziali critiche del pannello, mediante la relazione (cfr. 1993-2 cap. 7.4.(3)):

$$\sqrt{\left(\frac{\sigma_{x,Ed,ser}}{k_{\sigma}\sigma_{E}}\right)^{2} + \left(\frac{1,1\tau_{x,Ed,ser}}{k_{\tau}\sigma_{E}}\right)^{2}} \leq 1,1$$

In cui:

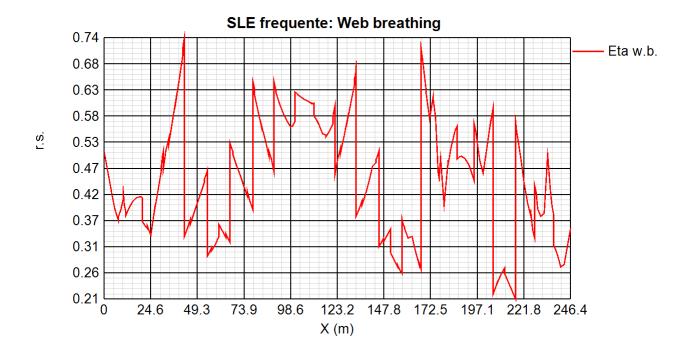
186200(t/h)2 tensione critica euleriana

 k_{σ} , k_{τ} = coefficienti di imbozzamento per tensioni normali e per taglio, funzione della geometria e stato di sforzo del pannello.

La verifica viene effettuata in automatico dal programma Ponti EC4, sulla base delle combinazioni S.L.E. frequenti elaborate per tutte le sezioni di verifica, rispettivamente per Mmax/min e Vmax/min. La tensione normale critica viene valutata a partire da quella euleriana, tenendo conto della eventuale sovrapposizione dei fenomeni di instabilità di piastra e di colonna tramite il coefficiente □, seguendo i criteri contenuti in EN 1993-1-5 - 4.5.4.(1).

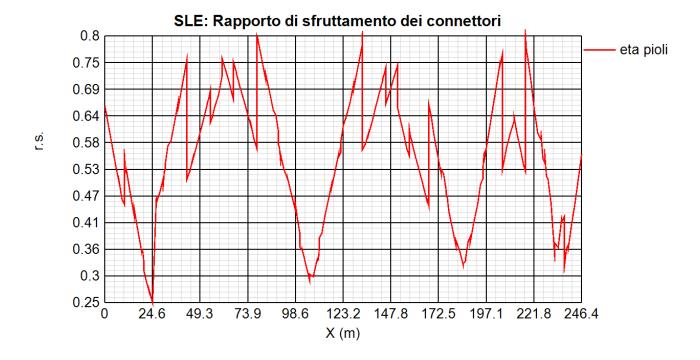
Nelle tabelle riportate in allegato su supporto informatico vengono riportati i coefficienti di sicurezza dedotti per la verifica "web breathing" di tutte le sezioni.

Come testimoniato dalla presenza di coefficienti di sicurezza inferiori a 1.1, le verifiche appaiono in tutti i casi soddisfatte. Si riportano di seguito i grafici dei coefficienti di utilizzo a "web breathing" per le travi principali indicate in precedenza.



RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

FILO 000 / FILO 200


RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

7.3.3. VERIFICA DEI PIOLI ALLO SLE – RIEPILOGO COEFFICIENTI DI SFRUTTAMENTO

La Circolare applicativa del 21/01/19 al cap. C4.3.4.3.3, riporta che per le travate da ponte, nello stato limite di esercizio, il taglio longitudinale per ciascun connettore non deve eccedere il 60% della resistenza di progetto.

Si riportano di seguito i grafici dei coefficienti di utilizzo dei connettori per le travi principali indicate in precedenza.

FILO 000 / FILO 200

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

7.4. VERIFICHE A FATICA

7.4.1. MODELLO DI CARICO

Nel presente paragrafo vengono condotte, a favore di sicurezza, le verifiche a fatica a vita illimitata per le strutture di impalcato: in considerazione della tipologia di categoria stradale (Categoria C1 strada extraurbana secondaria) non si prevedono significativi effetti di interazione fra veicoli lenti; si adotta di conseguenza il modello di carico 2 costituito dai seguenti veicoli disposti sulla corsia convenzionale n. 1 (quella che massimizza l'effetto sull'elemento).

Nell'immagine seguente, in accordo con il punto 5.1.4.3 del DM 17/01/2018, si riportano le specifiche del modello di carico 2.

Sagoma del veicolo	Distanza tra gli assi (m)	Carico frequente per asse (kN)	Tipo di ruota (Tab. 5.1.IX)
	4,50	90 190	A B
	4,20 1,30	80 140 140	A B B
	3,20 5,20 1,30 1,30	90 180 120 120 120	A B C C
	3,40 6,00 1,80	90 190 140 140	A B B
	4,80 3,60 4,40 1,30	90 180 120 110 110	A B C C

I delta di tensione si determinano in base agli effetti più severi dei diversi autocarri, considerati separatamente, che viaggiano da soli sulla corsia convenzionale numero 1.

I delta di tensione sono valutati considerando unicamente gli effetti dei carichi da traffico del LM2 viaggianti sull'impalcato nella sua interezza così come dedotto dagli inviluppi realizzati ad hoc e di seguito elencati:

Fat M22.out Stato Limite di Fatica - max momento flettente verticale

Fat V3.out Stato Limite di Fatica - max taglio verticale

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Indicando con P il peso del singolo asse, la ripartizione trasversale dei carichi è ottenuta ipotizzando il veicolo in transito al centro della corsia convenzionale, che è stata posizionata secondo gli schemi riportati di seguito.

Gli schemi e i risultati di seguito riportati sono da intendersi anche specchiati in quanto il ponte risulta in leggera curva e presenta allargamenti in posizione differente sulle campate di estremità.

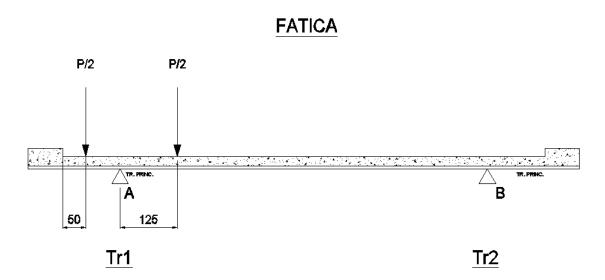


Figura 7.1 Carichi a fatica – Sezione tipica (trave esterna)

	Q _{1k} - trave A [<i>kN</i> /m]
R _A *	0.97 P
R _B *	0.03 P

Tabella 7.1 Reazioni per carichi da fatica (trave esterna)

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

FATICA

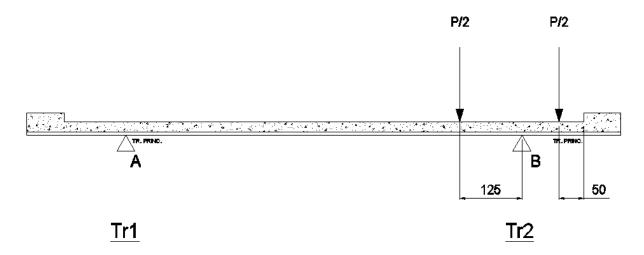


Figura 7.2 Carichi a fatica – Sezione tipica (trave interna)

	Q _{1k} - trave A [<i>kN</i> /m]
R _A *	0.03 P
R _B *	0.97 P

Tabella 7.2 Reazioni per carichi da fatica (trave interna)

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

7.4.2. CLASSI DI DETTAGLIO

I dettagli interessati dalle verifiche a fatica sono i seguenti:

- saldature degli irrigidenti trasversali alle piattabande e all'anima delle travi principali;
- saldature dei pioli alle piattabande superiori delle travi principali;
- saldature di composizione delle travi principali.

In accordo con la "Istruzioni per l'applicazione delle Norme Tecniche per le Costruzioni", par. C4.2.4.1.4.4, per i dettagli indicati si assumono i seguenti valori di resistenza a fatica per $N = 2 \times 106$ cicli.

Classe del dettaglio	Dettaglio costruttivo	Descrizione	Requisiti
90 (a) 71 (b) 50 (c)	4 r	4) Fazzoletti d'attacco saldati a un lato di un piatto o della piattabanda di una trave e dotati di raccordo di transizione di raggio r. La lunghezza L deve essere valutata come per i dettagli 1), 2) e 3). La stessa dassificazione può essere adottata anche per piattabande saldate dotate di raccordo di transizione di raggio r. (a) r ≥ L/3 o r > 150 mm (b) L/3 ≈ ≥ L/6 (c) r < L/6	Raccordo di transizione di raggio r realizzato con taglio meccanico o a gas realizzato prima della saldatura del fazzoletto. Al termine della saldatura, la parte terminale deve essere molata in direzione della freccia per eliminare completamente la punta della saldatura
40	5	5) Come saldato, senza raccordo di transizione	
80 (a) 71 (b)		Attacchi trasversali 6) Saldati a una piastra 7) Nervature verticali saldate a un profilo o a una trave composta 8) Diagrammi di travi a cassone composte, saldati all'anima o alla piattabanda (a) ✓ ≤ 50 mm (b) 50< ✓ ≤ 80 mm Le classi sono valide anche per nervature anulari	6) e 7) Le parti terminali delle saldature devono essere molate accuratamente per eliminare tutte le rientranze presenti 7) Se la nervatura termina nell'anima, Δσ deve essere calcolato usando le tensioni principali
80	9	Effetto della saldatura del piolo sul materiale base della piastra	

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Classe del dettaglio	Dettaglio costruttivo	Descrizione	Requisiti
125		Saldature longitudinali continue 1) Saldatura automatica a piena penetrazione effettuata da entrambi i lati 2) Saldatura automatica a cordoni d'angolo. Le parti terminali dei piatti di rinforzo devono essere verificate considerando i dettagli 5) e 6) della tabella C4.2.XVI.a)	1) e 2) Non sono consentite interruzioni/riprese, a meno che la riparazione sia eseguita da un tecnico qualificato e siano eseguiti controlli atti a verificare la corretta esecuzione della riparazione
112	3	Saldatura automatica a cordoni d'angolo o a piena penetrazione effettuata da entrambi i lati, ma contenente punti di interruzione/ripresa. Saldatura automatica a piena penetrazione su piatto di sostegno, non contenente punti di interruzione/ripresa	Se il dettaglio contiene punti di interruzione/ripresa, si deve far riferimento alla classe 100
100	6	Saldatura manuale a cordoni d'angolo o a piena penetra-zione Saldatura a piena penetra-zione manuale o automatica eseguita da un sol lato, in particolare per travi a cassone	5) e 6) Deve essere assicurato un corretto contatto tra anima e piattabanda. Il bordo dell'anima deve essere preparato in modo da garantire una penetrazione regolare alla radice, senza interruzioni
100	7	Saldatura a cordoni d'angolo o a piena penetrazione, manuale o automatica, appartenente ai dettagli da 1) a 6) riparata	In caso di adozione di metodi migliorativi mediante molatura eseguita da tecnici qualificati, integrati da opportuni controlli, è possibile ripristinare la classe originaria
80	g/h ≤ 2,5	Saldatura longitudinale a cordoni d'angolo a tratti	Δσ riferiti alle tensioni nella piattabanda
71	9	9) Saldatura longitudinale a piena penetrazione, a cordoni d'angolo e a tratti, con lunette di scarico di altezza non maggiore di 60 mm. Per lunette di altezza maggiore vedere dettaglio 1) della tabella C4.2.XV)	$\Delta\sigma$ riferiti alle tensioni nella piattabanda

Figura 7.3 Dettagli costruttivi per attacchi e irrigidenti saldati ($\Delta \sigma$).

Classe del dettaglio	Dettaglio costruttivo	Descrizione	Requisiti	
80	8 9 No mm	8) Cordoni d'angolo continui soggetti a sforzi di sconnessione, quali quelli di composizione tra anima e piattabanda in travi composte saldate 9) Giunzioni a sovrapposizione a cordoni d'angolo soggette a tensioni tangenziali	9) Δτ deve essere calcolato in riferimento a a sezione di gola del cordone, considerando la	

Figura 7.4 Dettagli costruttivi per sezioni saldate (Δτ).

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

7.4.3. VERIFICHE A VITA ILLIMITATA

In accordo con il par. 4.2.4.1.4 del DM 17/01/2018 e con i punti C4.2.4.1.4.3 e C4.2.4.1.4.5 delle "Istruzioni per l'applicazione delle Norme Tecniche per le Costruzioni" si verifica che:

$$\Delta \sigma_{max,d} \leq \Delta \sigma_D / \gamma_{Mf}$$

$$\Delta \tau_{max,d} \leq \Delta \tau_D/\gamma_{Mf} = \Delta \tau_L/\gamma_{Mf}$$

Essendo:

 $\Delta\sigma_{max.d}, \Delta au_{max.d}$ valori di progetto delle massime escursioni di tensione prodotte dal

modello di carico a fatica;

 $\Delta \sigma_D = 0.737 \Delta \sigma_C$ limite a fatica a ampiezza costante per N = 5 x 10⁶ cicli;

 $\Delta \tau_L = 0.457 \Delta \tau_c$ limite a fatica a ampiezza costante per N = 10⁸ cicli;

 $\Delta \sigma_c$ limite a fatica a ampiezza costante per N = 2 x 10⁶, dedotto dalla

relativa curva S-N di resistenza a fatica per il dettaglio considerato;

 $\Delta \tau_c$ limite a fatica a ampiezza costante per N = 2 x 10⁶, dedotto dalla

relativa curva S-N di resistenza a fatica per il dettaglio considerato;

 γ_{Mf} coefficiente parziale di sicurezza.

N.B. Le verifiche saranno eseguite impiegando un coefficiente parziale γ_{Mf} =1.35.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

7.4.3.1. Saldature degli irrigidenti trasversali alle piattabande

Essendo lo spessore massimo di irrigidente e saldature minore di 50 mm risulta:

 $\Delta \sigma_C^* = 8.0 \text{ kN/cm}^2$ Classe del dettaglio

Coefficiente di sicurezza $\gamma_{mf} = 1.35$

 $\Delta \sigma_D = 8.0 \text{ x } 0.737 / 1.35 \text{ kN/cm}^2 = 4.37 \text{ kN/cm}^2$ Resistenza di progetto a fatica

In questo caso si controllano le tensioni all'interfaccia piattabanda-anima.

Piattabanda superiore

				Asta	Ascissa
SEZIONE	$\Delta\sigma_{InfMax}$	$\Delta\sigma_{\text{LIMITE}}$	Verifica	(n°)	(cm)
	KNcm ²	KNcm ²			
	1.14	4.71	OK		
:001	0.62	4.71	OK	3	253.9
:002	0.80	4.71	OK	7	129.4
:003	1.14	4.71	OK	15	79.5
:004	0.90	4.71	OK	56	0.0
:005F	0.85	4.71	OK	53	374.8
:006F	0.63	4.71	OK	24	0.0
:007	0.71	4.71	OK	28	79.5
:008	0.71	4.71	OK	32	0.0
:009	0.76	4.71	OK	36	0.0
:010	0.96	4.71	OK	60	0.0
:011	1.04	4.71	OK	63	0.0
:012	0.53	4.71	OK	272	0.0
:013F	0.91	4.71	OK	75	375.0
:014	0.87	4.71	OK	78	0.0
:015	0.97	4.71	OK	82	0.0
:016	0.63	4.71	OK	86	0.0

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Piattabanda inferiore

SEZIONE	۸ ــ	۸ –	Verifica	Asta	Ascissa
SEZIONE	$\Delta\sigma_{\sf SupMax}$	$\Delta\sigma_{LIMITE}$	verilica	(n°)	(cm)
	KNcm ²	KNcm ²			
	2.65	4.71	OK		
:001	1.93	4.71	OK	3	253.9
:002	2.47	4.71	OK	7	129.4
:003	2.65	4.71	OK	11	104.3
:004	1.20	4.71	OK	59	102.6
:005F	0.73	4.71	OK	53	374.8
:006F	1.05	4.71	OK	27	304.6
:007	1.70	4.71	OK	31	279.6
:008	1.60	4.71	OK	35	254.2
:009	1.46	4.71	OK	36	64.5
:010	1.82	4.71	OK	60	277.5
:011	1.64	4.71	OK	63	0.0
:012	1.18	4.71	OK	70	0.0
:013F	0.83	4.71	OK	75	375.0
:014	1.77	4.71	OK	81	200.0
:015	2.11	4.71	OK	82	75.1
:016	1.76	4.71	OK	86	0.0

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

7.4.3.2. Saldature dei pioli alle piattabande superiori

Classe del dettaglio $\Delta \sigma_C^* = 8.0 \text{ kN/cm}2$

 $\gamma_{mf} = 1.35$ Coefficiente di sicurezza

 $\Delta \sigma_D = 8.0 \times 0.737 / 1.35 \text{ kN/cm}^2 = 4.37 \text{ kN/cm}^2$ Resistenza di progetto a fatica

					Ascissa
SEZIONE	$\Delta\sigma_{\sf SupMax}$	$\Delta\sigma_{ extsf{LIMITE}}$	Verifica	Asta (n°)	(cm)
	KNcm ²	KNcm ²			
	1.20	4.71	OK		
:001	0.64	4.71	OK	3	254
:002	0.84	4.71	OK	7	129
:003	1.20	4.71	OK	15	80
:004	0.94	4.71	OK	56	0
:005F	0.89	4.71	OK	53	375
:006F	0.66	4.71	OK	24	0
:007	0.75	4.71	OK	28	80
:008	0.75	4.71	OK	32	0
:009	0.80	4.71	OK	36	0
:010	1.00	4.71	OK	60	0
:011	1.07	4.71	OK	63	0
:012	0.55	4.71	OK	272	0
:013F	0.93	4.71	OK	75	375
:014	0.89	4.71	OK	78	0
:015	0.99	4.71	OK	82	0
:016	0.65	4.71	OK	86	0

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

7.4.3.3. Saldature di composizione delle travi

 $\Delta \tau_C^* = 8.0 \text{ kN/cm}^2$ Classe del dettaglio

 $\gamma_{mf} = 1.35$ Coefficiente di sicurezza

Resistenza di progetto a fatica $\Delta \tau_D = 8.0 \text{ x } 0.457 / 1.35 \text{ kN/cm2} = 2.71 \text{ kN/cm}^2$

Per il calcolo di $\Delta \tau$ in corrispondenza della sezione di gola del cordone ($\Delta \tau w$) si assume, per ogni spessore di anima, il valore di $\Delta \tau_{med}$ corrispondente.

SEZIONE	$\Delta au_{\sf Med,max}$	Sp _{anima} (mm)	$\Delta au_{\sf LIMITE}$	Cordone	Max Δτ _W	Verifica
			KNcm ²		KNcm ²	
			2.71		1.19	OK
:001	0.84	20	2.71	10x10	1.19	OK
:002	0.72	18	2.71	10x10	0.92	OK
:003	0.79	18	2.71	10x10	1.01	OK
:004	0.63	24	2.71	10x10	1.07	OK
:005F	0.66	28	2.71	12x12	1.09	OK
:006F	0.69	24	2.71	10x10	1.17	OK
:007	0.79	20	2.71	10x10	1.12	OK
:008	0.86	18	2.71	10x10	1.09	OK
:009	0.80	18	2.71	10x10	1.02	OK
:010	0.75	18	2.71	10x10	0.95	OK
:011	0.73	18	2.71	10x10	0.93	OK
:012	0.82	18	2.71	10x10	1.04	OK
:013F	0.67	26	2.71	12x12	1.03	OK
:014	0.73	18	2.71	10x10	0.93	OK
:015	0.61	18	2.71	10x10	0.78	OK
:016	0.73	20	2.71	10x10	1.03	OK

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

7.4.3.1. Pioli

Classe del dettaglio $\Delta \tau_C^* = 9.0 \text{ kN/cm}^2$

 $\gamma_{mf} = 1.15$ Coefficiente di sicurezza

 $\Delta \tau_D = 9.0 \text{ x } 0.457 / 1.15 \text{ kN/cm2} = 3.57 \text{ kN/cm}^2$ Resistenza di progetto a fatica

I pioli vengono verificati in via cautelativa a vita illimitata.

SEZIONE	ASTA	PIOLI		SCORRIME	NTO	SCORRIMENTO PIOLO		Δτ (kN/cm²)	ΔτD (kN/cm2)	Δτ/ΔτD
		Diamentro (mm)	19	Fmax (kN/m)	14.65	Fmax (kN)	0.73			
1	1	numero	4			(,		1.34	3.57	0.37
-	_	passo (cm)	20	Fmin (kN/m)	-61.14	Fmin (kN)	-3.06	1.51	3.37	0.57
		Area (cm²)	2.84		01.11	· ······ (KiV)	3.00			
		Diamentro (mm)	19	Fmax (kN/m)	50.06	Fmax (kN)	3.34			
2	6	numero	3	Tillax (Kiv/iii)	30.00	Tillux (KIV)	3.34	2.86	3.57	0.80
		passo (cm)	20	Fmin (kN/m)	-71.46	Fmin (kN)	-4.76	2.00	3.37	0.00
		Area (cm²)	2.84	1 111111 (KI V /111)	71.40	Tillii (KiV)	4.70			
		Diamentro (mm)	19	Fmax (kN/m)	82.86	Fmax (kN)	5.52			
3	14	numero	3	Tillax (KIV/III)	02.00	Tillax (KIV)	3.32	2.11	2 57	0.07
3	14	passo (cm)	20	Francis (Isb) (rea)	40.52	Finaling (IANI)	2.20	3.11	3.57	0.87
		Area (cm²)	2.84	Fmin (kN/m)	-49.53	Fmin (kN)	-3.30			
		Diamentro (mm)	19	Fmax (kN/m)	111 02	Emay (kNI)	F F F			
	10	numero	4	FIIIax (KIN/III)	111.02	Fmax (kN)	5.55	2.05	2.57	0.57
4	19	passo (cm)	20	Emin /I/NI/m)	F 20	Emin (kN)	0.27	2.05	3.57	0.57
		Area (cm²)	2.84	Fmin (kN/m)	-5.30	Fmin (kN)	-0.27			
		Diamentro (mm)	19	Fmax (kN/m)	47.55	Fmax (kN)	2.38			
_	F2	numero	4	rillax (KIN/III)	47.55	Fillax (KIV)	2.30	0.00	2 57	0.27
5	53	passo (cm)	20	Fmin (kN/m)	-7.10	Fmin (kN)	-0.36	0.96	3.57	0.27
		Area (cm²)	2.84	FIIIII (KIN/III)	-7.10	FIIIII (KN)	-0.30			
		Diamentro (mm)	19	Fmax (kN/m)	6.12	Fmax (kN)	0.31			
6	24	numero	4	rillax (KIN/III)	0.12	Fillax (KIV)	0.31	2.26	2 57	0.63
О	24	passo (cm)	20	Fmin (kN/m)	-122.05	Fmin (kN)	-6.10	2.26	3.57	
		Area (cm²)	2.84	Tilliii (KIN/III)	-122.03	Tillii (KN)	-0.10			
		Diamentro (mm)	19	Fmax (kN/m)	85.60	Fmax (kN)	5.71			
7	44	numero	3	Tillax (KIV/III)	83.00	Tillax (KIV)	5.71	3.23	3.57	0.90
,	44	passo (cm)	20	Fmin (kN/m)	-51.76	Fmin (kN)	-3.45	3.23	3.37	0.90
		Area (cm²)	2.84	Tilliii (KIN/III)	-31.70	Tillii (KN)	-3.43			
		Diamentro (mm)	19	Fmax (kN/m)	82.87	Fmax (kN)	5.52			
8	43	numero	3	Tillax (KIV/III)	02.07	Tillax (KIV)	3.32	3.12	3.57	0.87
٥	43	passo (cm)	20	Fmin (kN/m)	-49.62	Fmin (kN)	-3.31	5.12	3.37	0.67
		Area (cm²)	2.84	Tilliii (KIN/III)	-43.02	Tillii (KN)	-3.31			
		Diamentro (mm)	19	Fmax (kN/m)	65.17	Fmax (kN)	4.34			
9	39	numero	3	Tillax (KIV/III)	05.17	Tillax (KIV)	4.54	2.82	3.57	0.79
9	39	passo (cm)	20	Fmin (kN/m)	-54.72	Fmin (kN)	-3.65	2.02	3.37	0.79
		Area (cm²)	2.84	Tillili (KIN/III)	-34.72	Tillii (KN)	-3.03			
		Diamentro (mm)	19	Fmax (kN/m)	69.08	Fmax (kN)	4.61			
10	68	numero	3	THUX (KIN/III)	03.00	THIUX (NIV)			2 57	0.80
10	1 68 -	passo (cm)	20	Fmin (kN/m)	-53.01	Fmin (kN)	-3.53	2.87	3.57	0.00
		Area (cm²)	2.84	(KIV/111)	55.01	Tillii (KIV)	5.55			

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

SEZIONE	ASTA	PIOLI		SCORRIME	NTO	SCORRIMEN	TO PIOLO	Δτ (kN/cm²)	ΔτD (kN/cm2)	Δτ/ΔτD
		Diamentro (mm)	19	Fmax (kN/m)	50.49	Fmax (kN)	3.37			
44	C.F.	numero	3	FIIIdX (KIN/III)	50.49	FILIAX (KIV)	5.57	2.77	2.57	0.70
11	11 65	passo (cm)	20	Fmin (kN/m)	-67.43	Fmin (kN)	-4.50	2.77	3.57	0.78
		Area (cm²)	2.84	FIIIII (KN/III)	-07.45	FIIIII (KIN)	-4.50			
		Diamentro (mm)	19	Fmax (kN/m)	119.58	Fmax (kN)	7.97			
12	72	numero	3	3 THIAX (KIV/III) 113.38 THIAX (KIV)		7.97	2 22	2.57	0.00	
12	72	passo (cm)	20	Emin (kN/m)	-17.80	Fmin (kN)	-1.19	3.23	3.57	0.90
	Area (cm²)	2.84	FIIIII (KN/III)	-17.80	FIIIII (KIN)	-1.19				
	Diamentro (mm)	19	Emay (kN/m)	61.93	Fmax (kN)	3.10				
12	13 75	numero	4	FIIIdX (KIN/III)	01.95	Filiax (KIV)	5.10	1 20	3.57	0.39
13		passo (cm)	20	Emin (IdNI /m)	-16.79	Fmin (kNI)	-0.84	1.39	3.5/	0.39
		Area (cm²)	2.84	riiiii (KN/m)	10.75	Fmin (kN)	0.04			
		Diamentro (mm)	19	Emay (kN/m)	7.37	Fmax (kN)	0.49			
14	78	numero	3	Tillax (KIV/III)	7.57	Fmax (kiv) 0.49		3.04	3.57	0.05
14	76	passo (cm)	20	Emin (IdNI /m)	-121.85	Fmin (kN)	-8.12	3.04	3.37	0.85
		Area (cm²)	2.84	Fmin (kN/m) Fmax (kN/m) Fmin (kN/m) Fmin (kN/m) Fmin (kN/m) Fmax (kN/m) Fmin (kN/m)	-121.65	FIIIII (KN)	-0.12			
		Diamentro (mm)	19	Emay (kN/m)	33.15	Fmax (kN)	2.21			
15	282	numero	3	FIIIdX (KIN/III)	55.15	FILIAX (KIV)	2.21	2.62	3.57	0.70
15	282	passo (cm)	20	Freein (Ish) (ree)	70.10	Fmin (kN)	F 24	2.62	3.5/	0.73
		Area (cm²)	2.84	FMIN (KN/M)	-78.16	FMIN (KN)	-5.21			
		Diamentro (mm)	19	Fmax (kN/m)	67.83	Emay (kNI)	2 20			
1.0		numero	4	rillax (KIN/III)	07.83	Fmax (kN)	3.39	1.32	3.57	0.37
16	86	passo (cm)	20	Emin /I/N/m)	6 77	Emin (kN)	-0.34			
		Area (cm²)	2.84	Fmin (kN/m)	-6.77	Fmin (kN)				

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

7.5. SALDATURA DI COMPOSIZIONE

Si riportano nella seguente tabella i valori di massimo scorrimento tra anima e piattabanda inferiore e superiore rispettivamente, calcolati considerando le azioni derivanti dall' inviluppo dei massimi tagli sezione per sezione; date le dimensioni del cordone di saldatura utilizzato nel progetto viene inoltre calcolata la т//.

Trave interno curva / Trave esterno curva

σamm

24.85 kN/cm^2

	Viadotto - saldature cordone superiore									
Sezione	t Anima	Scorrimento	Ag minima	cordone		ne	h gola	τΙΙ		
	(mm)	[kN/cm]	[cm ²]]	mm]	[mm]	[kN/cm ²]		
C01	0	9.77	0.39	10	Х	10	7.07	6.9		
C02	0	6.16	0.25	10	Х	10	7.07	4.4		
C03	0	12.65	0.51	10	Х	10	7.07	8.9		
C04	0	18.96	0.76	10	Х	10	7.07	13.4		
C05F	0	24.08	0.97	12	Х	12	8.49	14.2		
C06F	0	21.12	0.85	10	Х	10	7.07	14.9		
C07	0	14.86	0.60	10	Х	10	7.07	10.5		
C08	0	10.33	0.42	10	Х	10	7.07	7.3		
C09	0	5.33	0.21	10	Х	10	7.07	3.8		
C10	0	11.29	0.45	10	Х	10	7.07	8.0		
C11	0	7.74	0.31	10	Х	10	7.07	5.5		
C12	0	11.17	0.45	10	Х	10	7.07	7.9		
C13F	0	14.11	0.57	12	Х	12	8.49	8.3		
C14	0	10.66	0.43	10	Х	10	7.07	7.5		
C15	0	5.23	0.21	10	Х	10	7.07	3.7		
C16	0	6.14	0.25	10	Х	10	7.07	4.3		

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

	Viadotto - saldature cordone inferiore									
Sezione	t Anima	Scorrimento	Ag minima	cordone		ne	h gola	τΙΙ		
	(mm)	[kN/cm]	[cm ²]	[mm]	[mm]	[kN/cm ²]		
C01	0	12.12	0.49	10	Х	10	7.07	8.6		
C02	0	8.05	0.32	10	Х	10	7.07	5.7		
C03	0	13.72	0.55	10	Х	10	7.07	9.7		
C04	0	18.70	0.75	10	Х	10	7.07	13.2		
C05F	0	23.30	0.94	12	Х	12	8.49	13.7		
C06F	0	20.64	0.83	10	Х	10	7.07	14.6		
C07	0	15.35	0.62	10	Х	10	7.07	10.9		
C08	0	10.66	0.43	10	Х	10	7.07	7.5		
C09	0	5.61	0.23	10	Х	10	7.07	4.0		
C10	0	11.79	0.47	10	Х	10	7.07	8.3		
C11	0	7.62	0.31	10	Х	10	7.07	5.4		
C12	0	10.80	0.43	10	Х	10	7.07	7.6		
C13F	0	13.53	0.54	12	Х	12	8.49	8.0		
C14	0	11.14	0.45	10	Х	10	7.07	7.9		
C15	0	6.85	0.28	10	Х	10	7.07	4.8		
C16	0	10.05	0.40	10	Х	10	7.07	7.1		

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

7.6. VERIFICA DEI PIOLI

La verifica si esegue secondo quanto specificato al par. 6.3.2.1 di EC4-2.

Le caratteristiche dei materiali sono le seguenti:

Pioli di tipo Nelson ϕ 19, h = 175 mm (h_{min} = 0.6 h_{sol})

Soletta CLS C32/40

La resistenza a taglio di progetto di un piolo dotato di testa è la minore fra:

$$P_{Rd} = 0.8 \text{ fu } (\pi \phi^2 / 4) / \gamma_v$$

 $P_{Rd} = 0.29 \alpha \phi^2 (f_{ck} E_{cm})_{1/2} / \gamma_v$

dove:

 ϕ è il diametro del gambo del piolo;

 f_{μ} è la resistenza specifica ultima a trazione del materiale del piolo, da assumersi non maggiore di 500 N/mm²;

 f_{ck} è la resistenza cilindrica caratteristica del calcestruzzo all'età considerata;

 E_{cm} è il valore nominale del modulo secante del calcestruzzo;

 $\alpha = 0.2 [(h/\phi) + 1]$ per $3 \le h/\phi \le 4$;

per $h/\phi > 4$;

h è l'altezza globale del piolo;

 y_{V} è il fattore parziale di sicurezza da assumersi pari a 1.25 per gli stati limite ultimi diversi dalla fatica.

Nel caso in esame si ottiene

$$P_{Rd} = 0.8 f_u (\pi \phi^2 / 4) / \gamma_v =$$
 81.66 kN
 $P_{Rd} = 0.29 \alpha \phi^2 (f_{ck} E_{cm})^{1/2} / \gamma_v =$ 88.51 kN

da cui:

$$P_{Rd} = 81.66 \text{ kN}$$
 allo SLU

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Nelle tabelle seguenti si riporta la verifica dei connettori delle travi principali.

Trave interno curva / Trave esterno curva

CONCIO	ASTA	ascissa	Scorrimento[kN/m]	PRd	n pioli	passo[cm]	Portata[kN/m]	Verifica	
C01	1	187.5	909.579	81.7	4	20	1633.1	0.56	ok
C01	2	0.0	797.183	81.7	4	20	1633.1	0.49	ok
C01	3	0.0	696.447	81.7	4	20	1633.1	0.43	ok
C02	4	0.0	579.957	81.7	3	20	1224.8	0.47	ok
C02	5	0.0	542.629	81.7	3	20	1224.8	0.44	ok
C02	6	0.0	468.032	81.7	3	20	1224.8	0.38	ok
C02	7	200.0	381.08	81.7	3	20	1224.8	0.31	ok
C03	8	175.0	335.902	81.7	3	20	1224.8	0.27	ok
C03	9	375.0	476.656	81.7	3	20	1224.8	0.39	ok
C03	10	375.0	530.588	81.7	3	20	1224.8	0.43	ok
C03	11	50.0	550.369	81.7	3	20	1224.8	0.45	ok
C03	12	275.0	612.53	81.7	3	20	1224.8	0.50	ok
C03	13	187.5	695.787	81.7	3	20	1224.8	0.57	ok
C03	14	250.0	752.337	81.7	3	20	1224.8	0.61	ok
C03	15	125.0	771.049	81.7	3	20	1224.8	0.63	ok
C04	16	375.0	760.054	81.7	4	20	1633.1	0.47	ok
C04	17	0.0	833.773	81.7	4	20	1633.1	0.51	ok
C04	18	0.0	913.631	81.7	4	20	1633.1	0.56	ok
C04	19	200.0	953.5	81.7	4	20	1633.1	0.58	ok
C05F	20	0.0	904.883	81.7	4	20	1633.1	0.55	ok
C05F	21	0.0	996.462	81.7	4	20	1633.1	0.61	ok
C05F	22	0.0	1033.053	81.7	4	20	1633.1	0.63	ok
C05F	23	0.0	963.332	81.7	4	20	1633.1	0.59	ok
C06F	24	0.0	1019.642	81.7	4	20	1633.1	0.62	ok
C06F	25	0.0	987.727	81.7	4	20	1633.1	0.60	ok
C06F	26	100.0	908.033	81.7	4	20	1633.1	0.56	ok
C06F	27	300.6	833.666	81.7	4	20	1633.1	0.51	ok
C07	28	400.5	820.607	81.7	3	20	1224.8	0.67	ok
C07	29	300.4	808.874	81.7	3	20	1224.8	0.66	ok
C07	30	100.8	740.917	81.7	3	20	1224.8	0.60	ok
C07	31	400.0	662.842	81.7	3	20	1224.8	0.54	ok
C08	32	200.0	585.324	81.7	3	20	1224.8	0.48	ok
C08	33	201.4	566.982	81.7	3	20	1224.8	0.46	ok
C08	34	201.3	513.589	81.7	3	20	1224.8	0.42	ok
C08	35	400.0	459.073	81.7	3	20	1224.8	0.37	ok
C09	36	0.0	366.296	81.7	3	20	1224.8	0.30	ok
C09	37	0.0	358.396	81.7	3	20	1224.8	0.29	ok
C09	38	0.0	336.021	81.7	3	20	1224.8	0.27	ok
C09	39	200.0	363.044	81.7	3	20	1224.8	0.30	ok
C08	40	0.0	428.919	81.7	3	20	1224.8	0.35	ok
C08	41	0.0	502.227	81.7	3	20	1224.8	0.41	ok
C08	42	0.0	569.738	81.7	3	20	1224.8	0.47	ok
C08	43	0.0	571.878	81.7	3	20	1224.8	0.47	ok

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

CONCIO	ASTA	ascissa	Scorrimento[kN/m]	PRd	n pioli	passo[cm]	Portata[kN/m]	Verifica	
C07	44	0.0	651.666	81.7	3	20	1224.8	0.53	ok
C07	45	102.7	720.03	81.7	3	20	1224.8	0.59	ok
C07	46	302.8	788.255	81.7	3	20	1224.8	0.64	ok
C07	47	400.0	819.808	81.7	3	20	1224.8	0.67	ok
C06F	48	303.2	820.433	81.7	4	20	1633.1	0.50	ok
C06F	49	103.2	895.073	81.7	4	20	1633.1	0.55	ok
C06F	50	400.1	973.194	81.7	4	20	1633.1	0.60	ok
C06F	51	200.0	1009.442	81.7	4	20	1633.1	0.62	ok
C05F	52	203.4	945.472	81.7	4	20	1633.1	0.58	ok
C05F	53	203.6	1014.544	81.7	4	20	1633.1	0.62	ok
C05F	54	400.2	892.342	81.7	4	20	1633.1	0.55	ok
C05F	55	0.0	804.228	81.7	4	20	1633.1	0.49	ok
C04	56	0.0	831.765	81.7	4	20	1633.1	0.51	ok
C04	57	0.0	793.614	81.7	4	20	1633.1	0.49	ok
C04	58	200.0	710.688	81.7	4	20	1633.1	0.44	ok
C04	59	0.0	634.305	81.7	4	20	1633.1	0.39	ok
C10	60	0.0	675.697	81.7	3	20	1224.8	0.55	ok
C10	61	0.0	611.041	81.7	3	20	1224.8	0.50	ok
C10	62	0.0	536.588	81.7	3	20	1224.8	0.44	ok
C11	63	0.0	482.579	81.7	3	20	1224.8	0.39	ok
C11	64	0.0	448.212	81.7	3	20	1224.8	0.37	ok
C11	65	400.0	383.082	81.7	3	20	1224.8	0.31	ok
C11	66	400.0	331.558	81.7	3	20	1224.8	0.27	ok
C10	67	253.1	384.427	81.7	3	20	1224.8	0.31	ok
C10	68	153.8	457.822	81.7	3	20	1224.8	0.37	ok
C10	69	400.0	510.877	81.7	3	20	1224.8	0.42	ok
C12	70	400.1	562.81	81.7	3	20	1224.8	0.46	ok
C12	71	0.0	645.233	81.7	3	20	1224.8	0.53	ok
C12	72	203.8	736.254	81.7	3	20	1224.8	0.60	ok
C12	73	399.7	764.376	81.7	3	20	1224.8	0.62	ok
C13F	74	0.0	763.399	81.7	4	20	1633.1	0.47	ok
C13F	75	0.0	847.062	81.7	4	20	1633.1	0.52	ok
C13F	76	0.0	877.808	81.7	4	20	1633.1	0.54	ok
C13F	77	187.5	779.108	81.7	4	20	1633.1	0.48	ok
C14	78	0.0	820.038	81.7	3	20	1224.8	0.67	ok
C14	79	51.5	777.378	81.7	3	20	1224.8	0.63	ok
C14	80	0.0	687.441	81.7	3	20	1224.8	0.56	ok
C14	81	0.0	624.549	81.7	3	20	1224.8	0.51	ok
C15	82	0.0	568.599	81.7	3	20	1224.8	0.46	ok
C15	83	0.0	523.884	81.7	3	20	1224.8	0.43	ok
C15	84	0.0	454.095	81.7	3	20	1224.8	0.37	ok
C15	85	375.0	467.356	81.7	3	20	1224.8	0.38	ok
C16	86	78.1	532.559	81.7	4	20	1633.1	0.33	ok
C16	87	303.3	652.303	81.7	4	20	1633.1	0.40	ok
C16	88	375.0	807.961	81.7	4	20	1633.1	0.49	ok

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

7.7. VERFICHE DI DEFORMABILITÀ

Si riportano di seguito le verifiche di deformabilità dell'impalcato.

Nel presente paragrafo si riportano le verifiche di deformabilità nelle varie fasi di vita della struttura e la relativa contromonta da assegnare ai vari conci.

Le strutture in acciaio, in C.A.P. e miste acciaio - calcestruzzo (ad eccezione delle strutture con travi in ferro incorporate nel cls) dovranno presentare una contromonta da determinare considerando per la totalità dei carichi permanenti e degli effetti lenti del cls, nonché per il 25% dei carichi accidentali dinamizzati.

Si dovranno valutare le deformazioni elastiche dovute ai seguenti carichi:

- Peso proprio della struttura metallica e della soletta d'impalcato (fp);
- Peso delle opere di finitura (ff);
- Carichi verticali da traffico (fs);
- Effetti del ritiro della soletta ed effetto viscoso (fr).

Dovrà essere assorbita da opportuna controfreccia di costruzione (cf) la somma dei seguenti contributi:

$$cf = fp + ff + fr + 0.25 fs$$

Tale controfreccia dovrà essere ottenuta di norma mediante sagomatura dell'anima all'atto del taglio delle lamiere o tramite spezzata realizzata in corrispondenza dei giunti tra conci. L'asse del giunto sarà disposto lungo il raggio dell'arco e l'apertura del varco trai conci dovrà risultare costante lungo tutta l'altezza della trave.

Dovrà inoltre risultare: fp ≤ L/300

In tutte le strutture, limitatamente agli elementi principali, si dovrà rispettare il sequente limite di deformazione sotto l'azione dei carichi accidentali di progetto nella combinazione caratteristica (rara) agli S.L.E:

 $f \le L/700$

Dove:

L = luce di calcolo:

f = massima freccia verticale;

La verifica di deformabilità dell'impalcato è stata effettuata valutando la freccia indotta dal carico accidentale veicolare su ogni campata. Si riportano di seguito i risultati ottenuti.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

SPA - P1 Campata Lunghezza 6000 cm

Frecce (cm)	Trav	Trave 1		Trave 2		
Fase 1	-3.90	L/1537 < L/300	-3.84	L/1564 < L/300		
Fase 2	-1.00		-0.94			
Ritiro	-1.09		-1.00			
Fase 3	-4.08	L/1471 < L/700	-3.63	L/1655 < L/700		

cm

Campata P1 - P2 Lunghezza 9000

Frecce (cm)	Trave 1		Trave 2		
Fase 1	-18.24	L/493 < L/300	-14.70	L/612 < L/300	
Fase 2	-3.79		-3.44		
Ritiro	0.00		0.00		
Fase 3	-8.12	L/1108 < L/700	-7.04	L/1279 < L/700	

SLE (rara)	-8.20	L/1098 < L/700	-7.10	L/1268 < L/700
------------	-------	----------------	-------	----------------

Campata P2 - P3 Lunghezza 6000 cm

Frecce (cm)	Trave 1		Trave 2		
Fase 1	-0.49	L/12320 < L/300	-0.81	L/7417 < L/300	
Fase 2	-0.27		-0.32		
Ritiro	0.00		0.00		
Fase 3	-1.92	L/3127 < L/700	-2.51	L/2387 < L/700	

SLE (rara)	-2.00	L/3000 < L/700	-2.60	L/2308 < L/700
------------	-------	----------------	-------	----------------

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Campata	P3 - SPB		
Lunghezza	3500	cm	

Frecce (cm)	Tra	Trave 1		Trave 2	
Fase 1	-1.15	L/3038 < L/300	-1.07	L/3280 < L/300	
Fase 2	-0.20		-0.20		
Ritiro	-0.35		-0.35		
Fase 3	-0.99	L/3543 < L/700	-0.97	L/3597 < L/700	

SLE (rara)	-1.00	L/3500 < L/700	-1.00	L/3500 < L/700
- ()				

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

8. TRAVE DI SPINA

FASE I (G1) 8.1.1.1.

In questa fase si considerano agenti il peso proprio della struttura metallica, delle predalle e del getto della soletta, ancora inerte.

La struttura resistente è costituita dalle sole travi metalliche. Lo schema statico di riferimento per la ripartizione trasversale dei carichi è quello già considerato per le travi principali, con l'aggiunta di un vincolo in corrispondenza della trave di spina.

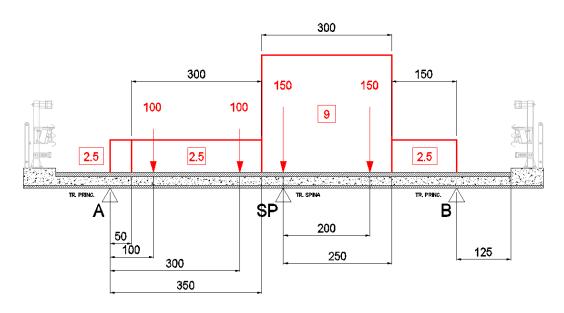
Per la trave di spina si assume un peso di analisi di 3 kN/m

Di seguito si riporta unicamente la reazione sulla trave di spina dovuta a fase 1.

	R spina [kN/m]
Totale fase I	20.70

8.1.1.2. FASE II (G2)

In questa fase la soletta è interamente reagente ed i carichi agenti sono i permanenti portati, la pavimentazione, il G.R., il parapetto e l'impianto per lo scolo delle acque meteoriche. A favore di sicurezza la reazione negativa non è stata considerata nell'analisi della trave di spina.



RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

8.1.1.3. **CARICHI MOBILI**

Di seguito si riporta la condizione di carico mobile che massima la reazione vincolare sulla trave di spina.

	Q _{1K} [<i>kN</i>]	q _{ik} ; q _{rk} [<i>kN/m</i>]
R SPINA	380.58	29.24

Di questa condizione di carico si studia la diffusione longitudinale di ciascuna ruota fino a metà spessore della soletta, ovvero su 10 cm di pavimentazione + (27 / 2 ≈ 13) cm di semispessore soletta + predalle.

Carico 1 (150 kN):	$R_{sp} = 102.79 \text{ kN}$	$L_{diff,1}$ = 486 cm	q ₁ = 0.212 kN/cm
Carico 2 (150 kN):	$R_{sp} = 150.00 \text{ kN}$	L _{diff} = 86 cm	$q_2 = 1.744 \text{ kN/cm}$
Carico 3 (100 kN):	$R_{sp} = 91.21 \text{ kN}$	$L_{diff,3}$ = 286 cm	$q_3 = 0.319 \text{ kN/cm}$
Carico 4 (100 kN):	$R_{sp} = 36.58 \text{ kN}$	L _{diff,4} = 686 cm	$q_4 = 0.054 \text{ kN/cm}$

Per semplicità ed a favore di sicurezza, alla luce delle suddette impronte si considera un carico pari alla reazione totale degli assi distribuito su una lunghezza di impronta di 4 m.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

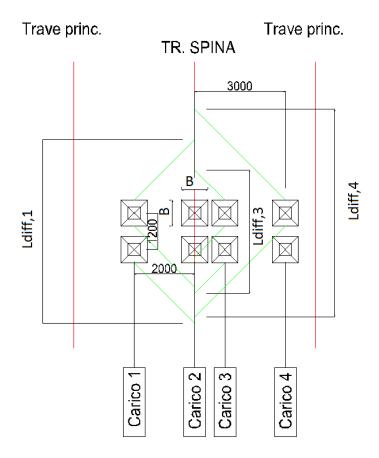


Figura 8-1: Diffusione dei carichi tandem per il calcolo della trave di spina

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

8.1.1.4. **RITIRO**

Nel presente paragrafo si riporta, secondo quanto previsto dalla normativa vigente (D.M. 14/01/08 par. 11.2.10.6), il calcolo della deformazione a tempo infinito per ritiro e il relativo coefficiente di viscosità.

Proprietà della sezione tipica dell'impalcato

$$\begin{array}{cccc} \text{Larg. impalcato=} & 2,00 & \text{m} \\ & & & \\ & & S_{\text{getto}} \text{=} & 22,00 & \text{cm} & \text{Spessore getto} \\ & & & \\ & & & S_{\text{predalla}} \text{=} & 0,00 & \text{cm} & \text{Spessore predalla} \end{array}$$

da cui si ottiene

$A_c = 0.44$	m^2	area sezione getto in calc	estruzzo
u = 2,00	m	perimetro della sezione in	calcestruzzo esposta all'aria
$h_0 = 440,00$	mm	2Ac/u	(dimensiona fittizia)
$k_{h} = 0.7$	'15	(tabella 11.2.Vb)	

Proprietà del calcestruzzo utilizzato			
R _{ck} =	40	N/mm ²	
E _{cm} =	33643	N/mm2	
E _a =	210000	N/mm2	
f _{ck} =	33	N/mm2	
f _{cm} =	41	N/mm2	

Si riportano quindi i seguenti valori di deformazione ottenuti i funzione dell'umidità di progetto assunta il coefficiente di Viscosità e quelli di omogeneizzazione derivanti

Deformazione da ritiro per essicamento -0,00030 $\varepsilon_{c0} =$ Valore medio a tempo infinito della deformazione per ritiro da essicamento $\varepsilon_{\text{cd.}\infty}$ = -0,00021 Valore medio a tempo infinito della deformazione per ritiro autogeno -0.00006 $\varepsilon_{ca,\infty}$ = Deformazione totale da ritiro -0,00027 $\varepsilon_{cs,\infty}$ =

Coefficiente di viscosità (t_o>60) 1,653 $\phi_{(\infty, \text{to})} =$

Coefficiente di omogeinizzazione per azioni di breve durata (Fase 3) 6,24 Coefficiente di omogeinizzazione per azioni di lunga durata (Fase 2) $n_2 = n_3 \cdot (1 + \varphi_{(\infty,to)}) =$ 16,56

(75%)

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

L'azione del ritiro, ossia la deformazione del calcestruzzo (ritiro) durante le fasi di indurimento, porta a una coazione interna dovuta all'opposizione della trave metallica a detta deformazione. L'effetto è quello di una trazione agente sul baricentro del getto che quindi rispetto al baricentro della trave metallica è eccentrica e crea un momento flettente

L'effetto del ritiro si valuta, quindi, mediante la sovrapposizione di due effetti:

- 1) Una trazione agente nel baricentro della soletta (N_r)
- 2) Una pressoflessione applicata alla sezione composta: l'effetto flessionale è valutato applicando un momento al modello di calcolo, mentre la compressione è applicata direttamente in fase di verifica.

Nel seguito si riporta il calcolo dell'azione Normale e del conseguente effetto flettente

$$\begin{array}{lll} \text{Ac} = & 0.44 \text{ m}^2 \\ \text{n} = \text{n2} = & 16.56 & \text{Coeff. di omogeneizzazione} \\ \epsilon_{\text{cs},\infty} = & -0.00027 & \text{Deformazione totale da ritiro} \\ \text{b} = & 0.174 \text{ m} & \text{Distanza baricentro getto cls - baricentro medio sez. mista in Fase 2} \end{array}$$

Nr,eq =
$$(A_c \cdot \epsilon_{cs,\infty} \cdot E_a)/n_2 = 1519 \text{ kN}$$

Mr,eq = Nr,eq · b2 = 264 kNm

$$N_{r,eq} \cong 1520$$
 kN (per ciascuna trave) $M_{r,eq} \cong 270$ kNm (per ciascuna trave)

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

8.1.1.5. VARIAZIONE TERMICA DIFFERENZIALE

222 cm² Area media della sezione metallica $A_a =$

 $\alpha =$ 1.20E-05 Coeff. di dilatazione termica acciaio

 $\Delta T =$ 10 °C

 $N_{t,\text{eq}} \cong$ $(\alpha \cdot \Delta T \cdot E_a \cdot A_a) =$ **560** kN (per ciascuna trave)

Distanza baricentro soletta - baricentro sez. mista in Fase 3 $b_3 =$ 0.104 m

 $N_{t,eq} \cdot b_3$ $M_{t,eq} =$ **60** kNm (per ciascuna trave)

TRONCO SELCI LAMA - S. STEFANO DI GAIFA - LOTTO 7

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

8.2. ANALISI STRUTTURALE

8.2.1.1. **MODELLO DI CALCOLO**

La trave di spina è stata modellata come una trave in semplice appoggio sui diaframmi. Sono state modellate i vari tipi di campata (con luci diverse) per poter compensare differenze di luce e usare lo stesso profilo per i vari casi.

Figura 8-2: Numerazione Nodi

Figura 8-3: Numerazione Frame

Figura 8-4: Assegnazione sezioni

8.2.1.2. LARGHEZZA COLLABORANTE DI ANALISI

 $L_e = 750 \text{ cm}$ $L_e/8 = 750/8 \cong 93.75 \text{ cm}$

 $B_{eff} = 93.75 + 20 + 93.75 \cong 200 \text{ cm}$

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

8.3. VERIFICHE DI RESISTENZA

8.3.1.1. **CLASSIFICAZIONE DELLA SEZIONE**

La sezione viene classificata secondo i rapporti riportati nella tabella 4.2.I delle NTC2008.

Anima

Tipo di classificazione: Parti interne compresse

b/t = (55 - 1.4 - 2.0) / 1.6 = 51.60 / 1.6 = 32.25

Classificazione in compressione: $b/t \le 42 \epsilon = 42 * 0.81 = 34.02$ classe 3 Classificazione in flessione: $b/t \le 72 \epsilon = 72 * 0.81 = 100.44$ classe 1

Sezione composta

L'anima risulta in classe 3 anche per compressione, quindi non sono necessarie verifiche a imbozzamento.

La sezione, pur essendo compatta per la flessione, viene calcolata a favore di sicurezza con il metodo elastico.

8.3.1.2. **VERIFICHE IN FORMATO ESTESO**

Di seguito vengono riportate le verifiche per esteso della trave di spina nelle condizioni che massimizzano le tensioni normali in piattabanda ed il taglio in anima.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Asta 10 Ascissa x = 207.50			Condizione di carico Fase1 [1.35]*FASE1 Fase2 [1.35]*FASE2 Ritiro [1.2]*ritiro Fase3 [1.35]*{mobili_M01}		CC:1 CC:1 CC:3 CC:18			
TABELLA RIA	ASSLINTIVA		Fase1	Fase2	Ritiro	Fase3	TOTALI	
	1000141177							
n omogeneizz	zazione		∞	16.7	16.7	6.2		
N (kN)			0	0	-1824	0	-1824.0	
M (kN/cm)			24064.1	4382.70	32400	193778.6	254625.4	
V (kN)			0	0	0	53.2	53.2	
	2		000	[[[0	
Area Sez. Mis			222	597	597	1032	0	
J _x Sez. mista	` '		111812	366202	366202	466501	0	
	lembo inf. (cm) da lembo inf. (cm)		22.77 22.77	48.63 55	48.63 14.12	56.44 56.44	0	
S _{s, anima} (cm ³)	ia lembo im. (Gm)		1545	6006	6006	7354	0	
S _{i, anima} (cm ³)			1960	4287	4287	4990		
							0	
W _{sup, cls} (cm ³)	3.		2062	12907	12907	22689	0	
W _{sup, acciaio} (cm	•		3470	57476	57476	324082	0	
W _{inf, acciaio} (cm	3)		4910	7531	7531	8266	0	
n							0	
Tensioni Nor	rmali	y (cm)	□ Fase1	□ Fase2	□ Ritiro	□ Fase3	II TOTALI	
TOTISIONI NO	mun	y (<i>0111)</i>	1 430 1	1 0002	Titilo	7 4300	TOTALII	
Tensioni Sol	etta (N/cm²)							
Dist. da lembo	•	0	0	-20.39	0	-1368.68	-1368.68	
		22	0	-4.58	0	0	0	
Tensioni Pro	rfilo Acciaio (kN/cm²)							
Dist. da lembo	o sup. (cm)	22	-6.94	-0.08	-3.62	0.6	-10.03	
		23.4	-6.63	-0.06	-3.49	1.18	-9.01	
		23.4 75	-6.63 4.47	-0.06 0.56	-3.49 1.07	1.18 22.61	-9.01 28.71	
		73 77	4.47	0.58	1.07	23.44	30.18	
Tensioni Arn	natura (N/cm²)	• •	1.0	0.00	20	20.11	00.10	
Dist. da lembo	•	5	5 0	-279.71	-5120.9	-6463.65	-11864.25	
	, ,	21.5	5 0				-3353.04	
0			0		0	0	0	
Tensioni tan	genziali	y (cm)	Fase1	Fase2	Ritiro	Fase3	TOTALI	σ_{id}
	•							
	ofilo Acciaio (kN/cm²)	20.4				0	0	
Dist. da lembo	o sup. (cm)	23.4					0.52	9.05
0		75) U	0	0.36	0.36	28.72
T _{MED,anima} (kN	/cm²)		0	0	0	0.64	0.64	
'MED, anima (MIN)	, , , , , , , , , , , , , , , , , , , 		U	J	3	0.07	0.0∓□	
Scorrimento A	Acc-Cls (kN/m)		0	0	0	85.12	85.12	

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Asta 9 Ascissa x = 0.00			Condizio Fase1 Fase2 Ritiro Fase3	ione di carico [1.35]*FASE1 [1.35]*FASE2 [-] [1.35]*{mobili_M01}			CC:1 CC:1 CC:1 CC:16		
TABELLA RIASSU	JNTIVA		Fase1	Fase2	Ritiro	Fase3	TOTAL		
				[0		0		
n omogeneizzazion	ne		inf	16.7	16.7	6.2	0		
N (kN)			0	0	0	0	0.0		
M (kN/cm)			0	0	0	0	0.0		
V (kN)			-116	-21.1	0	-909.5	-1046.6		
[]	2\		000	[[1000			
Area Sez. Mista (cr	·		222	597	597	1082	0		
J _x Sez. mista (cm ⁴)			111812	366202	366202	466535	0		
Baricentro da lemb Asse Neutro da lem	` '		22.77 77	48.63 55	48.63 55	56.41 55	0		
S _{s, anima} (cm ³)	iibo iiii. (Giii)		1545	6006	6006	7349	0		
			1960	4287	4287	4987			
S _{i, anima} (cm ³)									
$W_{\text{sup, cls}}$ (cm ³)			2062	12907	12907	22660	0		
W _{sup, acciaio} (cm ³)			3470	57476	57476	330473	0		
W _{inf, acciaio} (cm ³)			4910	7531	7531	8270	0		
n			n	п	п	П	0		
Tensioni Normali		y (cm)	□ Fase1	□ Fase2	□ Ritiro	□ Fase3	[] TOTALI		
Tensioni Norman		y (OIII)	1 430 1	7 0002	rtitiro	7 0000	TOTALI		
Tensioni Soletta ((N/cm²)			0	0	0	0		
Dist. da lembo sup.		0	0	0	0	0	0		
		22	0	0	0	0	0		
Tensioni Profilo A	Acciaio (kN/cm²)								
Dist. da lembo sup.	. (cm)	22	0	0	0	0	0		
		23.4	0	0	0	0	0		
		23.4	0	0	0	0	0		
		75 77	0 0	0 0	0 0	0 0	0 0		
Tensioni Armatur	a (N/cm²)	11							
Dist. da lembo sup.	•	5	0	0	0	0	0		
Diot. da formos cap.	. (611)	21.5	0	0	0	0	0		
0				0					
Tensioni tangenzi	iali	y (cm)	Fase1	Fase2	Ritiro	Fase3	TOTALI	σ_{id}	
								_	
Tensioni Profilo A	` '			0	0				
Dist. da lembo sup.	. (cm)	23.4	0.66	0	0	8.95	10.17	17.62	
п		75	0.84	0	0	6.08	7.5	12.99	
[]			0.02	0	0	11.02	12.69		
τ _{MED,anima} (kN/cm²)			-0.92	0	0	-11.02	-12.68		
Scorrimento Acc-C	is (kN/m)		0	0	0	-1452.95	-1458.99		

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

8.4. VERIFICA DEI PIOLI

Lo scorrimento massimo si verifica in corrispondenza dell'asta 9.

Mediando il valore dello scorrimento su una lunghezza pari a circa 2 m (lunghezza dell'asta) e ricordando la compatteza della sezione, si ottiene il seguente valore di scorrimento massimo allo SLU:

$$F_{scorr} = (1453 + 910)/2 \times 2m = 1181.5 \text{ kN/m} \times 2 = 2363 \text{ kN}$$

Avendo previsto 3 pioli Φ19 H150 a passo 200 mm ed avendo posto il primo piolo a 100 mm di distanza da asse appoggio, sul tratto terminale di 2 m si hanno:

$$n = 1 + 3x10 = 31 pioli$$

che sviluppano una resistenza allo scorrimento pari a

$$F_{Rd} = 81.66 \times 31 = 2532 \text{ kN}$$

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

8.5. VERIFICHE A FATICA

8.5.1.1. MODELLI DI CARICO PER VERIFICHE A FATICA

In accordo con il punto 5.1.4.3 del DM 14/01/2018 le verifiche a fatica si eseguono facendo riferimento al modello di carico 2 applicato sulla corsia lenta.

Tabella 5.1.VII – Modello di carico a fatica n. 2 – veicoli frequenti

SAGOMA del VEICOLO	Distanza tra gli assi (m)	Carico frequente per asse (kN)	Tipo di ruota (Tab. 5.1.IX)
	4,5	90 190	A B
	4,20 1,30	80 140 140	A B B
000	3,20 5,20 1,30 1,30	90 180 120 120 120	A B C C C
	3,40 6,00 1,80	90 190 140 140	A B B B
	4,80 3,60 4,40 1,30	90 180 120 110 110	A B C C C

I delta di tensione si determinano in base agli effetti più severi dei diversi autocarri, considerati separatamente, che viaggiano da soli sulla corsia lenta.

I delta di tensione sono valutati considerando unicamente gli effetti dei carichi da traffico del LM2 viaggianti sull'impalcato nella sua interezza così come dedotto dagli inviluppi realizzati ad hoc e di seguito elencati:

1) SPINA_Fat_M22.out Stato Limite di Fatica - max momento flettente. verticale 2) SPINA_Fat_V3.out Stato Limite di Fatica. - max taglio verticale

_ _ _

GPIngegneria

S.G.C. E78 GROSSETO - FANO Tronco Selci Lama - S. Stefano di Gaifa - Lotto 7

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

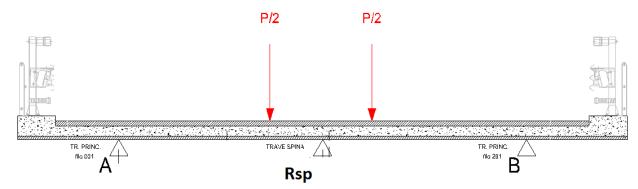


Figura 8-5: Ripartizione trasversale del carico di fatica

	Q _{1K} [<i>kN</i>]
R _{spina 1} *	0.36 x P
R _{spina 2} *	0.50 x P

R_{spina} rappresenta il carico direttamente applicato agli elementi rappresentativi della trave di spina. I numeri 1 e 2 indicano la ruota 1 o 2.

Di questa condizione di carico si studia la diffusione longitudinale di ciascuna ruota. A favore di sicurezza si considerano le stesse impronte di carico del modello di carico per la resistenza non tenendo in conto la diffusione verticale nella pavimentazione e nella soletta.

Sotto queste ipotesi la lunghezza di diffusione delle due "ruote" di ciascun asse è pari a:

- "ruota 1" : L_{diff} = 286 cm - "ruota 2" : L_{diff} = 286 cm

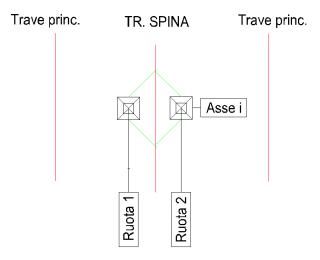


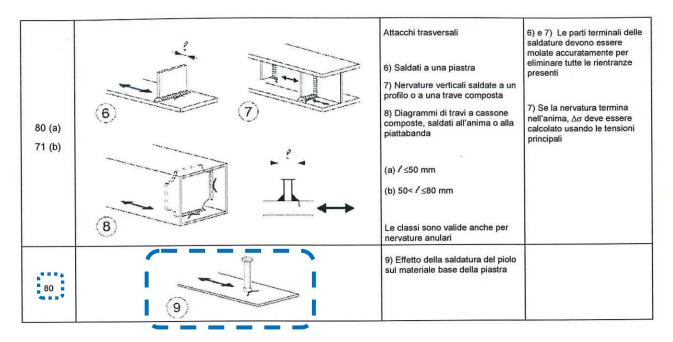
Figura 8-6: Impronte di diffusione del modello di carico di fatica

S.G.C. E78 GROSSETO - FANO Tronco Selci Lama - S. Stefano di Gaifa - Lotto 7

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Reazione si		ave di spina				
Ruota 1	0.46	xР				
Ruota 2	0.46	xР				
Lunghezza	diffusione	singola ruota su tra	ive di spina			
Ruota 1	286	cm				
Ruota 2	286	cm				
Veicolo	Asse	Carico Asse (KN)	Ruota	L _{diff} (cm)	R _{sp} (KN)	q (KN/cm)
	1	190	1	286	87.4	0.306
1	'	100	2	286	87.4	0.306
•	1	90	1	286	41.4	0.145
		00	2	286	41.4	0.145
	1	140	1	286	64.4	0.225
		1.0	2	286	64.4	0.225
2	1	140	1	286	64.4	0.225
_		1.0	2	286	64.4	0.225
	1	80	1	286	36.8	0.129
	·	•	2	286	36.8	0.129
	1	120	1	286	55.2	0.193
	'	120	2	286	55.2	0.193
	1	120	1	286	55.2	0.193
	'	120	2	286	55.2	0.193
3	1	120	1	286	55.2	0.193
Ŭ	· .	120	2	286	55.2	0.193
	1	180	1	286	82.8	0.290
	•		2	286	82.8	0.290
	1	90	1	286	41.4	0.145
	·		2	286	41.4	0.145
	1	140	1	286	64.4	0.225
	•		2	286	64.4	0.225
	1	140	1	286	64.4	0.225
4	•		2	286	64.4	0.225
	1	190	1	286	87.4	0.306
			2	286	87.4	0.306
	1	90	1	286	41.4	0.145
			2	286	41.4	0.145
	1	110	1	286	50.6	0.177
		-	2	286	50.6	0.177
	1	110	1	286	50.6	0.177
		-	2	286	50.6	0.177
5	1	120	1	286	55.2	0.193
			2	286	55.2	0.193
	1	180	1	286	82.8	0.290
			2	286	82.8	0.290
	1	90	1	286	41.4	0.145
			2	286	41.4	0.145

Figura 8-7: Carichi distribuiti sulle impronte di ciascuna ruota dei vari veicoli di fatica


RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

8.5.1.2. CATEGORIE DI DETTAGLIO E CURVE S-N.

I dettagli interessati dalle verifiche a fatica sono i seguenti:

- saldature dei pioli alle piattabande superiori;
- saldature di composizione delle travi;

In accordo con la "istruzioni per l'applicazione delle Norme Tecniche per le Costruzioni", par. C4.2.4.1.4.4, per i dettagli indicati si assumono i seguenti valori di resistenza a fatica per N = 2 x 10⁶ cicli.

Figura 8-8: Dettagli costruttivi per attacchi ed irrigidenti saldati ($\Delta \sigma$).

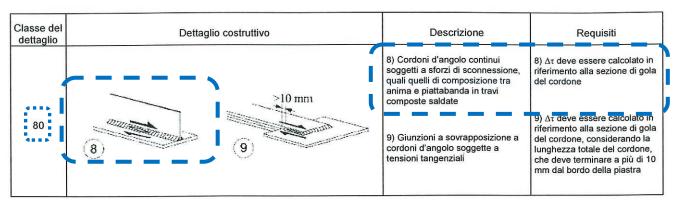


Figura 8-9: Dettagli costruttivi per sezioni saldate (Δτ).

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

8.5.1.3. VERIFICHE PER VITA A FATICA ILLIMITATA.

In accordo con il par. 4.2.4.1.4 del DM 17/01/2018 e con i punti C4.2.4.1.4.3 e C4.2.4.1.4.5 delle "istruzioni per l'applicazione delle Norme Tecniche per le Costruzioni"si verifica che:

 $\Delta \sigma_{\text{max.d}} \leq \Delta \sigma_{\text{D}} / \gamma_{\text{Mf}}$

 $\Delta \tau_{\text{max.d}} \leq \Delta \tau_D / \gamma_{\text{Mf}} = \Delta \tau_L / \gamma_{\text{Mf}}$

essendo:

valori di progetto delle massime escursioni di tensione prodotte dal $\Delta\sigma_{\text{max,d}} \Delta\tau_{\text{max,d}}$:

modello di carico a fatica:

limite a fatica ad ampiezza costante per N= 5 x 10⁶ cicli. $\Delta \sigma_D = 0.737 \Delta \sigma_c$

 $\Delta \tau_D = \Delta \tau_L = 0.457 \Delta \tau_c$ limite a fatica ad ampiezza costante per N= 10⁸ cicli

limite a fatica ad ampiezza costante per N= 2 x 10⁶, dedotto $\Delta\sigma_{c}$

dalla relativa curva S-N di resistenza a fatica per il dettaglio

considerato.

limite a fatica ad ampiezza costante per N= 2 x 10⁶, dedotto $\Delta \tau_c$

dalla relativa curva S-N di resistenza a fatica per il dettaglio

considerato.

coefficiente parziale di sicurezza. γ_{Mf}:

N.B. Le verifiche saranno eseguite impiegando un coefficiente parziale $\gamma_{Mf} = 1.35$.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

8.5.1.4. SALDATURE DEI PIOLI ALLA PIATTABANDA SUPERIORE

Classe del dettaglio $\Delta \sigma_C^* = 8.0 \text{ kN/cm}^2$ Coefficiente di sicurezza $\gamma_{mf} = 1.35$

Resistenza di progetto a fatica $\Delta \sigma_D = 8.0 \times 0.737/1.35 = 4.37 \text{ kN/cm}^2$

 $\Delta \sigma_{\text{max,sup}} = 0.27 \text{ kN/cm}^2 < 4.37 \text{ kN/cm}^2$ Asta 10 ascissa x = 207.50 (sez. 2)

SALDATURA DI COMPOSIZIONE DELLE TRAVI DI SPINA

Classe del dettaglio $\Delta \tau_C^* = 8.0 \text{ kN/cm}^2$ Coefficiente di sicurezza $\gamma_{mf} = 1.35$

Resistenza di progetto a fatica $\Delta \tau_D = 8.0 \times 0.457/1.35 = 2.71 \text{ kN/cm}^2$

Per il calcolo del $\Delta \tau$ in corrispondenza della sezione di gola del cordone ($\Delta \tau w$) si assume il valore della max $\Delta \tau$ riferita all'anima. Pertanto risulta:

 $\Delta \tau_{\text{sup,max}} = 2.20$ Asta 9 ascissa x = 0.00 (sez. 2) Asta 9 ascissa x = 0.00 (sez. 2) $\Delta \tau_{\text{inf max}} = 1.49$

 $max \Delta \tau_w = 2.20 \text{ kN/cm}^2 < 2.71 \text{ kN/cm}^2$

Con riferimento alla sezione di gola del cordone della saldatura di composizione si ottiene:

Anima 16 mm - Cordone 10x10 $\max \Delta \tau_w = 2.20 * 1.6 / (2*1.0*0.707) = 2.49 \text{ kN/cm}^2 < 2.71 \text{ kN/cm}^2$

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

8.6. REAZIONE MASSIMA SUI DIAFRAMMI

Le reazioni vincolari massime trasmesse ai diaframmi dalla trave di spina risultano, fase per fase e non ponderate, pari a:

R₁ (reazione di fase 1) 160 kN R₂ (reazione di fase 2) 30 kN R₃ (reazione di fase 3) 900 kN

Le reazioni vincolari massime totali trasmesse ai diaframmi risultano:

$$R_{TOT,SLE} = 160 + 30 + 900$$
 = 1090 kN

$$R_{TOT.SLU} = 1.35 \times 160 + 1.5 \times 30 + 1.35 \times (900)$$
 $\approx 1476 \text{ kN}$

TRONCO SELCI LAMA - S. STEFANO DI GAIFA - LOTTO 7

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

DIAFRAMMI

9.1. DESCRIZIONE

I diaframmi intermedi sono di tipo reticolare. I diaframmi di pila e spalla sono a parete piena composto saldato.

I diaframmi intermedi sono composti da profili 2L 130x12 a cartella per la briglia superiore, profili 2L180x18 a cartella per i diagonali e per la briglia inferiore sono stati usati 4L 120x10 posizionati in modo da formare un doppio T equivalente.

I diaframmi di pila e spalla hanno sezione a T composta saldata di altezza 3000mm con piattabande superiori da 500x18mme inferiori da 500x25mm e anima spessore 18mm.

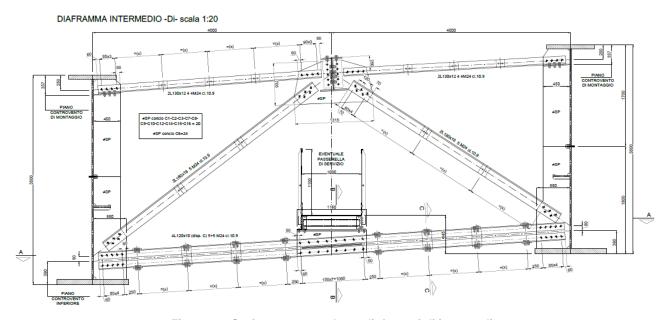
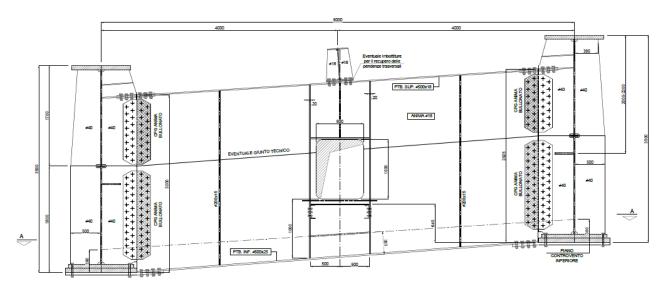
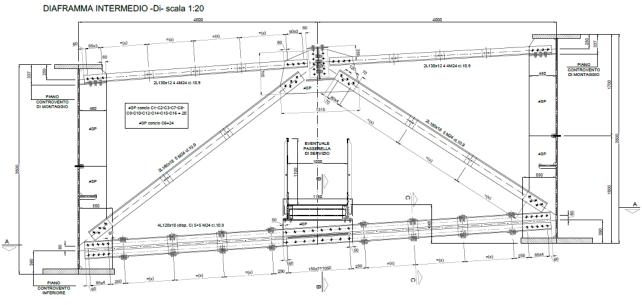


Figura 9.1 Sezione trasversale su diaframmi di intermedi



RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3


9.1.1. DIAFRAMMI INTERMEDI

Le sollecitazioni sulle briglie dovute agli effetti globali possono essere calcolate una volta noti i momenti flettenti agenti sugli elementi che nel modello globale schematizzano i diaframmi intermedi. Nota la distanza fra le briglie si ricavano i carichi equivalenti da applicare alle briglie superiori e inferiori.

Noti, invece, i tagli agenti sugli elementi del modello globale e noto l'angolo di inclinazione delle diagonali, sono stati ricavati i carichi assiali equivalenti da applicare alle diagonali stesse.

Si rimanda alle tabelle successive dove vengono calcolate le sollecitazioni nelle varie parti costituenti i diaframmi intermedi; in esse sono stati massimizzati il taglio e il momento sui frame che schematizzano i diaframmi nel modello, e sono stati calcolati gli sforzi nei profili effettivi come già specificato.

Gli effetti locali, dovuti al carico trasmesso dalla trave di spina, sono stati calcolati caricando ciascun diaframma, nel modello globale, con la reazione della trave di spina in una condizione di carico separata. In questo modo si coglie anche l'effetto d'incastro offerto dalle travi longitudinali.

S.G.C. E78 GROSSETO - FANO Tronco Selci Lama - S. Stefano di Gaifa - Lotto 7

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Effetti globali + locali 9.1.1.1.

INVILUPPO DEI MOMENTI

	GLOBALE	+ LOCALE															
Elemente	FA	SE1	FA	SE2	Cedi	menti	Rit	iro	Terr	nica	FA	SE3	TOTAI	E (slu)	DIAEDAMMA		
Elemento	M22 (max)	M22 (min)	M22 (max)	M22 (min)	M22 (max)	M22 (min)	M22 (max)	M22 (min)	M22 (max)	M22 (min)	M22 (max)	M22 (min)	M22 (max)	M22 (min)	DIAFRAMMA	max	min
303	30114	-9445	3608	-4401	370	-383	-139	-4588	4016	212	109964	-77271	199781	-129633	INT	296582	-207897
306	29786	-11268	3539	-3385	132	-158	-158	-2097	1930	185	142673	-107752	240603	-168461	INT		
309	30098	-13943	3543	-3199	105	-166	-148	-1007	986	159	154995	-119079	256499	-185786	INT		
311	30522	-12172	3578	-2958	279	-434	-125	-352	400	126	155056	-119956	256712	-183753	INT		
314	31505	-2551	3667	-2198	482	-755	174	-75	72	-74	149794	-111392	251128	-158205	INT		
317	35203	-534	4213	-2045	969	-1478	292	-19	21	-140	131253	-95521	232574	-134706	INT		
319	74092	2160	5986	-1985	1642	-2480	473	-8	7	-209	135788	-96900	294863	-134869	INT		
325	74517	687	5663	-2097	1650	-2499	417	68	-56	-118	137044	-98692	296582	-138833	INT		
327	31545	-3149	4365	-2142	1035	-1552	174	58	-10	-47	128877	-91928	224568	-133486	INT		
330	29931	-6511	3702	-2335	587	-871	147	64	-54	-77	142524	-105695	239248	-156118	INT		
333	27225	-20950	3260	-3896	319	-512	257	64	-57	-208	145306	-115137	238498	-190425	INT		
338	27330	-16310	3169	-4141	93	-75	70	39	-35	-77	150021	-118352	244373	-188188	INT		
341	26729	-28208	3171	-4982	218	-293	59	24	-24	-64	147768	-119937	240660	-207897	INT		
343	26953	-22602	3217	-4227	515	-606	15	-30	10	-15	144826	-115788	237375	-193948	INT		
346	29789	-7617	3542	-2380	725	-833	-1	-99	64	0	142132	-105962	238353	-158020	INT		
349	31387	-5690	3979	-2208	1260	-1468	-15	-133	69	11	127968	-92963	222693	-138415	INT		
351	66963	142	4701	-2182	2051	-2407	-15	-167	61	11	132953	-95404	279473	-135015	INT		
357	56231	962	4135	-2054	1897	-2252	-16	-104	26	12	132352	-98137	263097	-137431	INT		
359	34156	-606	3706	-2472	1135	-1368	-11	-16	8	-14	132785	-95768	232301	-135491	INT		
362	31352	-5191	3684	-2798	508	-646	54	-6	3	-54	145165	-107231	244502	-156814	INT		
365	30838	-5893	3654	-2731	146	-207	95	-2	0	-79	148319	-109816	247632	-160649	INT		
368	30625	-5360	3630	-2596	112	-122	147	0	-3	-116	144780	-106791	242553	-155583	INT		
371	30453	-2973	3612	-2328	227	-282	204	3	-5	-157	131367	-94030	224392	-134973	INT		
373	32964	-1599	3819	-2193	325	-382	243	3	-6	-185	113683	-75152	204384	-107584	INT		
379	32869	-1651	3883	-2157	247	-316	150	0	-3	-110	124017	-85899	218097	-121939	INT		
381	32234	-1416	3827	-2093	113	-157	90	2	-3	-67	134225	-87501	230704	-123446	INT		
384	31626 30971	-1546	3780	-2067	52 20	-76	92	-3 5	-9	-76 -186	137466	-89612	234117	-126350	INT INT		
387 403		-1475 -1490	3779 5835	-2015 -2045	357	-26 -350	215 4425	-25	-9 -50	-3855	124486	-73993	215817 232463	-105159	INT		
	37277										124184	-64729		-97539			
406 409	38431	-1809	4673	-2161 -2169	110	-92	1831	-108 -126	65	-1679	153020	-104238	267876	-148660	INT INT		
409	41530 40355	-1296 -621	4500 4322	-2169	111 383	-55 -231	733 107		102 107	-726 -167	163764	-118980 -119416	285032 282643	-166715	INT		
411	33341	-021	3756	-2136		-231 -450	-82	-119 -331	228	82	163677			-165877	INT		
417	31884	-3015	3735	-2485	733 1511	-972	-02	-338	194	32	153669 134694	-114367 -95018	259251 232529	-158854 -137644	INT		
419	34416	-36997	3755	-4173	2542	-1663	-20	-500	239	22	136381	-101314	239546	-195575	INT		
425	32844	-40677	3641	-4173	2542	-1698	59	-290	10	-52	137693	-101314	238866	-202257	INT		
427	33713	73	3630	-4091	1598	-1062	55	-62	-49	-87	130686	-92025	229367	-129880	INT		
430	33883	-1576	3451	-2550	887	-608	62	-02	-30	-53	147470	-107153	251142	-151426	INT		
430	42350	-3723	4616	-2550	515	-345	59	-133	104	-55 -47	158200	-1107153	278480	-151426	INT		
433	38504	-3723 -4205	4704	-2415	39	-345	38	-133	9	-47	162376	-116368	278347	-166644	INT		
441	48581	-4205 -4186	5541	-2323	229	-179	23	-12	19	-32	163273	-113304	294640	-162571	INT		
443	43443	-3984	4864	-2445	539	-469	63	17	-17	-42	158793	-110372	281037	-158661	INT		
446	34760	-1769	3411	-2443	797	-696	99	1	-5	-69	147860	-106580	252729	-150896	INT		
449	35968	-118	3578	-2563	1477	-1260	106	-12	7	-51	131820	-90983	233789	-128418	INT		
451	32275	-34280	3583	-3260	2448	-2076	141	-11	8	-42	133242	-97908	231939	-185899	INT		
457	33155	-21721	3720	-2449	2328	-1951	74	-14	12	-2	137568	-97621	238953	-167146	INT		
459	31762	-2262	4106	-2449	1419	-1171	-6	-11	32	10	134896	-95669	232889	-136685	INT		
462	35613	-371	4397	-2058	673	-528	-8	-68	65	7	148609	-107259	256181	-149103	INT		
465	35409	-1004	4270	-2092	222	-141	-4	-101	84	5	151982	-109758	259750	-152957	INT		
468	34371	-1136	4077	-2114	110	-107	-3	-148	117	5	148727	-105646	253570	-147633	INT		
471	31676	-1343	3762	-2138	277	-222	-3	-204	157	5	135042	-91818	231233	-129486	INT		
473	30455	-4001	3584	-2408	379	-322	-3	-243	184	6	113910	-74481	200944	-110241	INT		
479	30351	-4164	3606	-2440	318	-248	-3	-152	112	4	127158	-82722	218562	-121436	INT		
481	30558	-3144	3672	-2254	158	-113	0	-87	65	0	132627	-89191	226075	-128273	INT		
484	30442	-2761	3703	-2148	74	-52	-5	-100	83	6	136679	-90425	231356	-129206	INT		
487	30526	-1918	3757	-2036	26	-20	0	-210	182	4	124290	-74157	214887	-106031	INT		
							<u> </u>			· · · · ·							

S.G.C. E78 GROSSETO - FANO Tronco Selci Lama - S. Stefano di Gaifa - Lotto 7

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

					N Brialie, al	obale + locale			
Elemento	H travi	H briglie	Int. Travi	L diagonali	max	min	diaframma	max	min
303	350	286	800	492	699	-453	di	1037	-727
306	350	286	800	492	841	-589	di		
309	350	286	800	492	897	-650	di		
311	350	286	800	492	898	-642	di		
314	350	286	800	492	878	-553	di		
317	350	286	800	492	813	-471	di		
319	350	286	800	492	1031	-472	di		
325	350	286	800	492	1037	-485	di		
327	350	286	800	492	785	-467	di		
330	350	286	800	492	837	-546	di		
333	350	286	800	492	834	-666	di		
338	350	286	800	492	854	-658	di		
341	350	286	800	492	841	-727	di		
343	350	286	800	492	830	-678	di		
346	350	286	800	492	833	-553	di		
349	350	286	800	492	779	-484	di		
351	350	286	800	492	977	-472	di		
357	350	286	800	492	920	-481	di		
359	350	286	800	492	812	-474	di		
362	350	286	800	492	855	-548	di		
365	350	286	800	492	866	-562	di		
368	350	286	800	492	848	-544	di		
371	350	286	800	492	785	-472	di		
373	350	286	800	492	715	-376	di		
379	350	286	800	492	763	-426	di		
381	350	286	800	492	807	-432	di		
384	350	286	800	492	819	-442	di		
387	350	286	800	492	755	-368	di		
403	350	286	800	492	813	-341	di		
406	350	286	800	492	937	-520	di		
409	350	286	800	492	997	-583	di		
411	350	286	800	492	988	-580	di		
414	350	286	800	492	906	-555	di		
417	350	286	800	492	813	-481	di		
417	350	286	800	492	838	-401	di		
425	350	286	800	492	835	-707	di		
427	350	286	800	492	802	-454 500	di		
430	350	286	800	492	878	-529	di		
433	350	286	800	492	974	-556	di		
438	350	286	800	492	973	-583	di		
441	350	286	800	492	1030	-568	di		
443	350	286	800	492	983	-555 500	di		
446	350	286	800	492	884	-528	di		
449	350	286	800	492	817	-449	di		
451	350	286	800	492	811	-650	di		
457	350	286	800	492	835	-584	di		
459	350	286	800	492	814	-478	di		
462	350	286	800	492	896	-521	di		
465	350	286	800	492	908	-535	di		
468	350	286	800	492	887	-516	di		
471	350	286	800	492	809	-453	di 		
473	350	286	800	492	703	-385	di 		
479	350	286	800	492	764	-425	di		
481	350	286	800	492	790	-449	di		
484	350	286	800	492	809	-452	di		
487	350	286	800	492	751	-371	di		

Lo sforzo normale massimo nelle briglie risulta:

N = -727compressione

N = + 1037trazione

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

INVILUPPO DEI TAGLI

FASE	INT INT INT INT INT INT INT INT INT	Max 824	min -967
	INT INT INT INT INT INT INT INT INT	max	
303 -18 -99 -5 -20 0 0 -11 -11 10 10 19 -456 20 -775	INT INT INT INT INT INT INT INT INT	824	-967
306	INT INT INT INT INT INT		
309 .29	INT INT INT INT		
311	INT INT INT INT		
314	INT INT INT		
317 8 -73 1 -13 2 -4 0 0 0 0 78 -489 120 -785 319 101 18 5 -9 4 -6 1 1 0 0 92 -493 274 -668 325 106 24 5 -9 4 -6 0 0 0 0 0 0 95 -496 284 -668 327 -5 -866 2 -12 3 -4 0 0 0 0 0 0 71 -479 97 -786 330 -10 -91 0 -14 1 -2 0 0 0 0 0 0 106 -517 134 -848 333 -38 -121 -3 -18 0 -1 0 0 0 0 0 0 116 -543 119 -823 338 -28 -109 -4 -19 0 0 0 0 0 0 0 0 0	INT INT		
319	INT		
325			
327 -5 -86 2 -12 3 -4 0 0 0 0 0 71 -479 97 -786 330 -10 -91 0 -114 1 -2 0 0 0 0 0 0 106 -517 134 -844 333 -38 -121 -3 -18 0 -1 0 0 0 0 0 0 0 116 -543 119 -922 338 -228 -109 -4 -19 0 0 0 0 0 0 0 0 0		_	
330	INT		
333 -38	INT		
338 -28 -109 -4 -19 0 0 0 0 0 0 0 0 127 -550 143 -918	INT		
341 -55 -138 -6 -21 0 0 0 0 0 122 -555 110 -966 343 -41 -124 -4 -19 1 -1 0 0 0 0 115 -544 115 -93 346 -12 -93 0 -14 2 -2 0 0 0 0 105 -518 132 -844 349 -11 -92 0 -14 3 -4 0 0 0 0 70 -483 87 -800 351 89 7 3 -11 5 -6 0 0 0 0 2 -486 127 -673 357 59 -22 1 -13 5 -6 0 0 0 0 1 -495 83 -721 359 6 -75 0 -14 3	INT		
343 -41 -124 -4 -19 1 -1 0 0 0 0 115 -544 115 -93 346 -12 -93 0 -14 2 -2 0 0 0 0 105 -518 132 -846 349 -11 -92 0 -14 3 -4 0 0 0 0 70 -483 87 -800 3511 89 7 3 -11 5 -6 0 0 0 0 2 -486 127 -673 357 59 -22 1 -13 5 -6 0 0 0 0 1 -495 83 -725 357 357 59 -22 1 -13 5 -6 0 0 0 0 0 0 1 -495 83 -728 359 6 -75 0 -14 3 -3	INT		
346	INT		
349	INT		
349	INT		
351 89 7 3 -11 5 -6 0 0 0 0 2 -486 127 -673 357 59 -22 1 -13 5 -6 0 0 0 0 0 0 1 -495 83 -725 359 6 -75 0 -14 3 -3 0 0 0 0 0 0 0 0 -490 8 -781 362 -11 -92 -2 -16 1 -2 0 0 0 0 0 0 0 -519 -11 -853 -653 -11 -91 -2 -16 0 0 0 0 0 0 0 0 0	INT	1	
357 59 -22 1 -13 5 -6 0 0 0 0 1 -495 83 -725 359 6 -75 0 -14 3 -3 0 0 0 0 0 0 0 0 -490 8 -785 362 -11 -92 -2 -16 1 -2 0 0 0 0 0 0 0 -519 -11 -855 365 -11 -91 -2 -16 0 0 0 0 0 0 0 0 0	INT		
359 6 -75 0 -14 3 -3 0 0 0 0 0 490 8 776	INT	1	
362 -11 -92 -2 -16 1 -2 0 0 0 0 -519 -11 -85 365 -11 -91 -2 -16 0 0 0 0 0 0 -527 -11 -85 368 -9 -90 -1 -15 0 0 0 0 0 0 -520 -9 -846 371 -3 -84 0 -14 0 0 0 0 0 0 0 0 0 -9 -846 373 6 -74 0 -14 0 0 0 0 0 0 -488 -3 -793 373 6 -74 0 -14 0 0 0 0 0 0 -483 8 -711 379 6 -74 0 -14 0 0 0 0 0	INT	-	
365 -11 -91 -2 -16 0 0 0 0 0 0 -527 -11 -856 368 -9 -90 -1 -15 0 0 0 0 0 0 0 -520 -9 -844 371 -3 -84 0 -14 0		-	
368 -9 -90 -1 -15 0 0 0 0 0 0 -520 -9 -844 371 -3 -84 0 -14 0 0 0 0 0 0 0 -488 -3 -793 373 6 -74 0 -14 0 0 0 0 0 0 0 -439 8 -714 379 6 -74 0 -14 0 0 0 0 0 1 -467 9 -75 381 4 -76 0 -14 0 0 0 0 0 0 -476 5 -766 384 3 -77 0 -14 0 0 0 0 0 0 -476 5 -766 384 3 -77 0 -14 0 0 0 0 0 0 </td <td>INT</td> <td></td> <td></td>	INT		
371 -3 -84 0 -14 0 0 0 0 0 0 488 -3 -793 373 6 -74 0 -14 0 0 0 0 0 0 -439 8 -714 379 6 -74 0 -14 0 0 0 0 0 1 -467 9 -75 381 4 -76 0 -14 0 0 0 0 0 0 -476 5 -76 384 3 -77 0 -14 0 0 0 0 0 -483 4 -773 387 1 -79 0 -14 0 0 0 0 0 -483 4 -777 387 1 -79 0 -14 0 0 0 0 0 0 -449 1 -733	INT	_	
373 6 -74 0 -14 0 0 0 0 0 -439 8 -714 379 6 -74 0 -14 0 0 0 0 0 1 -467 9 -75 381 4 -76 0 -14 0 0 0 0 0 0 -766 5 -766 384 3 -77 0 -14 0 0 0 0 0 0 -483 4 -777 387 1 -79 0 -14 0 0 0 0 0 0 -483 4 -777 403 61 -19 9 -5 0 0 -111 -11 10 10 402 -52 651 -11 406 57 -23 11 -3 0 0 -5 -5 4 4 403	INT		
379 6 -74 0 -14 0 0 0 0 0 1 -467 9 -75 381 4 -76 0 -14 0 0 0 0 0 0 -476 5 -766 384 3 -77 0 -14 0 0 0 0 0 0 -483 4 -773 387 1 -79 0 -14 0 0 0 0 0 0 -449 1 -734 403 61 -19 9 -5 0 0 -111 110 10 402 -52 651 -111 406 57 -23 11 -3 0 0 -5 -5 4 4 403 -121 642 -200 409 49 -30 12 -2 0 0 -2 -2 2 2	INT		
381 4 -76 0 -14 0 0 0 0 0 -476 5 -766 384 3 -77 0 -14 0 0 0 0 0 0 -483 4 -777 387 1 -79 0 -14 0 0 0 0 0 0 -449 1 -734 403 61 -19 9 -5 0 0 -11 -11 10 10 402 -52 651 -117 406 57 -23 11 -3 0 0 -5 -5 4 4 403 -121 642 -200 409 49 -30 12 -2 0 0 -2 -2 2 2 403 -147 631 -244 411 53 -27 12 -2 0 -1 0 0 0	INT		
384 3 -77 0 -14 0 0 0 0 0 0 -483 4 -777 387 1 -79 0 -14 0 0 0 0 0 0 -449 1 -734 403 61 -19 9 -5 0 0 -11 -11 10 10 402 -52 651 -117 406 57 -23 11 -3 0 0 -5 -5 4 4 403 -121 642 -200 409 49 -30 12 -2 0 0 -2 -2 2 2 403 -147 631 -244 411 53 -27 12 -2 0 -1 0 0 0 403 -147 634 -238 414 74 -5 14 0 1 -2 0 <	INT		
387 1 -79 0 -14 0 0 0 0 0 -449 1 -734 403 61 -19 9 -5 0 0 -11 -11 10 10 402 -52 651 -117 406 57 -23 11 -3 0 0 -5 -5 4 4 403 -121 642 -204 409 49 -30 12 -2 0 0 -2 -2 2 2 403 -147 631 -244 411 53 -27 12 -2 0 -1 0 0 0 0 403 -147 631 -244 414 74 -5 14 0 1 -2 0 0 0 0 403 -147 634 -238 417 87 8 15 1 2 -4	INT		
403 61 -19 9 -5 0 0 -11 -11 10 10 402 -52 651 -117 406 57 -23 11 -3 0 0 -5 -5 4 4 403 -121 642 -205 409 49 -30 12 -2 0 0 -2 -2 2 2 403 -147 631 -244 411 53 -27 12 -2 0 -1 0 0 0 0 403 -147 634 -238 414 74 -5 14 0 1 -2 0 0 0 0 405 -125 668 -178 417 87 8 15 1 2 -4 0 0 0 0 404 -83 685 -100 419 178 99 19 5	INT		
406 57 -23 11 -3 0 0 -5 -5 4 4 403 -121 642 -200 409 49 -30 12 -2 0 0 -2 -2 2 2 403 -147 631 -244 411 53 -27 12 -2 0 -1 0 0 0 0 403 -147 634 -238 414 74 -5 14 0 1 -2 0 0 0 0 405 -125 668 -178 417 87 8 15 1 2 -4 0 0 0 0 404 -83 685 -100 419 178 99 19 5 4 -6 1 1 0 0 404 -85 815 -23	INT		
406 57 -23 11 -3 0 0 -5 -5 4 4 403 -121 642 -200 409 49 -30 12 -2 0 0 -2 -2 2 2 403 -147 631 -244 411 53 -27 12 -2 0 -1 0 0 0 0 403 -147 634 -238 414 74 -5 14 0 1 -2 0 0 0 0 405 -125 668 -178 417 87 8 15 1 2 -4 0 0 0 0 404 -83 685 -100 419 178 99 19 5 4 -6 1 1 0 0 404 -85 815 -23	INT		
409 49 -30 12 -2 0 0 -2 -2 2 2 403 -147 631 -244 411 53 -27 12 -2 0 -1 0 0 0 0 403 -147 634 -238 414 74 -5 14 0 1 -2 0 0 0 0 405 -125 668 -178 417 87 8 15 1 2 -4 0 0 0 0 404 -83 685 -108 419 178 99 19 5 4 -6 1 1 0 0 404 -85 815 -23	INT		
411 53 -27 12 -2 0 -1 0 0 0 0 403 -147 634 -238 414 74 -5 14 0 1 -2 0 0 0 0 405 -125 668 -178 417 87 8 15 1 2 -4 0 0 0 0 404 -83 685 -108 419 178 99 19 5 4 -6 1 1 0 0 404 -85 815 -23	INT	-	
414 74 -5 14 0 1 -2 0 0 0 0 405 -125 668 -176 417 87 8 15 1 2 -4 0 0 0 0 404 -83 685 -106 419 178 99 19 5 4 -6 1 1 0 0 404 -85 815 -23	INT		
417 87 8 15 1 2 -4 0 0 0 0 404 -83 685 -105 419 178 99 19 5 4 -6 1 1 0 0 404 -85 815 -23	INT	_	
419 178 99 19 5 4 -6 1 1 0 0 404 -85 815 -23	INT		
	INT	_	
425 184 104 19 5 4 -6 0 0 0 0 405 -89 824 -23			
	INT	-	
427 74 -6 16 2 3 -4 0 0 0 0 405 -73 671 -11	INT	-	
430 69 -11 14 0 1 -2 0 0 0 0 405 -111 661 -16	INT	_	
433 39 -40 11 -3 0 -1 0 0 0 0 401 -136 611 -243	INT		
438 51 -29 10 -4 0 0 0 0 0 0 403 -144 628 -240	INT		
441 22 -57 8 -6 0 0 0 0 0 0 401 -148 583 -286	INT		
443 36 -43 10 -4 1 -1 0 0 0 0 401 -137 605 -250	INT		
446 67 -13 14 0 2 -2 0 0 0 0 405 -112 658 -17	INT		
449 68 -12 14 0 3 -4 0 0 0 0 405 -77 660 -125	INT		
451 167 87 17 3 5 -6 0 0 0 0 405 -79 798 -27	INT	1	
457 138 58 15 1 5 -6 0 0 0 0 405 -88 756 -68	INT	1	
459 85 6 14 0 3 -3 0 0 0 0 405 -82 683 -100	INT	1	
462 68 -11 12 -2 1 -2 0 0 0 0 405 -113 657 -173	INT	-	
		-	
	INT	-	
468 70 -9 13 -1 0 0 0 0 0 0 405 -113 661 -166	INT	-	
471 76 -3 14 0 0 0 0 0 0 0 405 -81 670 -113	INT	4	
473 86 6 14 0 0 0 0 0 0 0 405 -33 684 -39	INT	_	
479 86 6 14 0 0 0 0 0 0 0 406 -62 685 -78	INT		
481 84 4 14 0 0 0 0 0 0 0 0 406 -70 683 -91	INT		
484 83 3 14 0 0 0 0 0 0 0 0 406 -77 681 -10	INT		
487 81 1 14 0 0 0 0 0 0 0 0 406 -43 678 -57	INT		

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

П					N Diagonali, g	lobale + locale			
Elemento	H travi	H briglie	Int. Travi	L diagonali	max	min	diaframma	max	min
303	350	286	800	492	34	-1362	di	1416	-1663
306	350	286	800	492	212	-1519	di		
309	350	286	800	492	270	-1589	di		
311	350	286	800	492	275	-1580	di		
314	350	286	800	492	279	-1472	di		
317	350	286	800	492	206	-1346	di		
319	350	286	800	492	471	-1149	di		
325	350	286	800	492	488	-1146	di		
327	350	286	800	492	168	-1351	di		
330	350	286	800	492	231	-1451	di		
333	350	286	800	492	204	-1590	di		
338	350	286	800	492	247	-1579	di		
341	350	286	800	492	189	-1663	di		
343	350	286	800	492	198	-1602	di		
346	350	286	800	492	227	-1458	di		
349	350	286	800	492	150	-1379	di		
351	350	286	800	492	219	-1157	di		
357	350	286	800	492	142	-1246	di		
359	350	286	800	492	14	-1354	di		
362	350	286	800	492	-19	-1464	di		
365	350	286	800	492	-19	-1476	di		
368	350	286	800	492	-15	-1455	di		
371	350	286	800	492	-5	-1364	di		
373	350	286	800	492	14	-1227	di		
379	350	286	800	492	16	-1292	di		
381	350	286	800	492	9	-1317	di		
384	350	286	800	492	7	-1336	di		
387	350	286	800	492	2	-1262	di		
403	350	286	800	492	1119	-200	di		
406	350	286	800	492	1104	-352	di		
409	350	286	800	492	1084	-420	di		
411	350	286	800	492	1089	-411	di		
414	350	286	800	492	1148	-306	di		
417	350	286	800	492	1178	-187	di		
419	350	286	800	492	1402	-39	di		
425	350	286	800	492	1416	-40	di		
427		286	800	492	1153	-192	di		
430	350 350	286	800	492	1136	-192	+		
							di		
433 438	350 350	286 286	800 800	492 492	1050 1080	-418 -412	di di		
438	350 350	286	800	492	1002	-412 -491	+		
441	350	286	800	492	1002	-491	di di		
443	350	286	800	492	1132	-430	di di		
							•		
449	350	286	800	492	1134	-215	di		
451	350	286	800	492	1372	-46 117	di		
457	350	286	800	492	1299	-117	di		
459	350	286	800	492	1173	-186	di		
462	350	286	800	492	1129	-297	di		
465	350	286	800	492	1131	-312	di		
468	350	286	800	492	1136	-286	di		
471	350	286	800	492	1153	-195	di		
473	350	286	800	492	1176	-66	di		
479	350	286	800	492	1178	-134	di 		
481	350	286	800	492	1173	-156	di		
484	350	286	800	492	1171	-174	di		
487	350	286	800	492	1166	-98	di		

Lo sforzo normale massimo nelle diagonali risulta:

N = -1663compressione

N = + 1416trazione

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

9.1.1.1. Verifica della briglia superiore

2 angolari a cartella Calcolo secondo CNR 10011/97 (7.2.3.4)							
Trazione	N _T =	1037	[kN]				
Compressione	N _C =	727	[kN]				
Lunghezza libera di inflessione lungo asse x	L _x =	3360	[mm]				
Lunghezza libera di inflessione lungo asse y	L _y =	3360	[mm]				
Lato lungo asse x	b _x =	130	[mm]				
Lato lungo asse y	b _y =	130	[mm]				
Spessore	t=	12	[mm]				
Piatto verticale, spessore lungo asse x	t _x =[15	[mm]				
Acciaio		S 355					
Curva di stabilità	L	0					
Tensione di snervamento caratteristica	f _{yk} =	355	[N/mm²]				
Coefficiente di sicurezza per resistenza	γ _{M0} =	1.05	[-]				
Coefficiente di sicurezza per stabilità	γ _{M1} = [1.10	[-] [N/mm ² 1				
Tensione di calcolo per resistenza	$f_{yk} / \gamma_{M0} =$	338	[N/mm ²]				
Tensione di calcolo per stabilità Curva CNR	$f_{yk} / \gamma_{M1} =$	323 510_c	[N/mm ²]				
		070_0					
Proprietà inerziali 1 angolare singolo Area lorda	A =	2976	[mm ²]				
Momento statico rispetto a asse x	S _x =	109896	[mm ³]				
Momento statico rispetto a asse y	S _γ =	109896	[mm ³]				
Ascissa baricentro da bordo irrigidito	$x_a =$	37	[mm]				
Ordinata baricentro da bordo irrigidito	$y_g =$	37	[mm]				
Momento di inerzia rispetto a asse x baricentrico	J _x =	4797792	[mm ⁴]				
Momento di inerzia rispetto a asse y baricentrico	J _γ =	4797792	[mm ⁴]				
Momento di inerzia centrifugo rispetto a assi x e y baricentrici	J _{xy} =	-2846560	[mm ⁴]				
Angolo tra asse principale 1 e asse x baricentrico	$\alpha = \alpha$	45	[°]				
Momento di inerzia rispetto a asse principale 1	J ₁ =	7644352	[mm ⁴]				
Momento di inerzia rispetto a asse principale 2	$J_2 =$	1951233	[mm ⁴]				
Raggio di inerzia rispetto a asse principale 1	ρ ₁ =	51	[mm]				
Raggio di inerzia rispetto a asse principale 2	$\rho_2 =$	26	[mm]				
Proprietà inerziali 2 angolari a cartella							
Area lorda	A =	5952	[mm ²]				
Momento di inerzia rispetto a asse x	J _x =	9595585	[mm ⁴]				
Momento di inerzia rispetto a asse y	$J_v =$	21343616	[mm ⁴]				
Raggio di inerzia rispetto a asse x	ρ _x =	40	[mm]				
Raggio di inerzia rispetto a asse y	ρ _y =	60	[mm]				
Verifica profilo composto							
Snellezza lungo asse x	$\lambda_x = L_x / \rho_y =$	56	[-]				
Snellezza lungo asse y	$\lambda_y = L_y / \rho_x =$	84	[-]				
Snellezza aggiuntiva lungo asse x	$\lambda_0 =$	40	[-]				
Snellezza equivalente lungo asse x	$\lambda_{eq,x} = (\lambda_x^2 + \lambda_0^2)^{0.5} =$	69	[-]				
Snellezza massima	λ_{max} =	84	[-]				
Coefficiente omega	ω=	2.05	[-]				
Interasse calastrelli	$L_0 = \lambda_0 \rho_{min} =$	1024	[mm]				
Verifica a trazione	$\sigma_T =$	174	[N/mm ²]	< 338, ok!			
Verifica a compressione	$\sigma_{\mathbb{C}}$ =	250	[N/mm ²]	< 323, ok!			
PROGETTAZIONE ATI:							

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

9.1.1.1. Verifica delle diagonali

Angolari accoppiati Calcolo secondo CNR 1011/97 (7.2.3.4)						
Calcolo secondo C	NK 1011/9/ (7.2	.3.4)				
Compressione Max	N _C =	1663	kN			
Trazione Max	N _T =	1416	kN			
Lunghezza libera di inflessione lungo asse x	L _x =	4920	[mm]			
Lunghezza libera di inflessione lungo asse y	L _y =	4920	[mm]			
Tipologia Altezza	h =	angolari accor 180	opiati [mm]			
Larghezza	b=	180	[mm]			
Spessore	t=	18	[mm]			
Spessore piastra	t _p =	20	 [mm]			
Diametro foro	$d_0 =$	29.0	[mm]			
	Г		7			
Acciaio	-	S 355				
Curva di stabilità	r _	C 35	 5 [N/mm²]			
Tensione di snervamento caratteristica	f _{yk} =		5 [N/mm²]			
Tensione ultima caratteristica	f _{uk} =		ן ווווויאון ט			
Fattore di sicurezza (rottura "duttile")	γ _{M0} =	1.05				
Fattore di sicurezza (rottura "fragile")	γ _{M2} = [1.25	_ [kN/cm²]			
Tensione di calcolo Curva CNR	$f_{yd} =$	338.10 <i>510_c</i>	[KIN/CITI]			
Cuiva Cink		310_0				
Proprietà inerziali singolo angolare						
Area lorda	A =	6156	[mm²]			
Area netta	A _{net} =	5634	[mm ²]			
Ordinata baricentro da bordo irrigidito	$y_g =$	51.6	[mm]			
Ascissa baricentro da bordo irrigidito	$x_g =$	51.6	[mm]			
Momento di inerzia attorno a asse y	$J_y =$	18896140	[mm⁴]			
Momento di inerzia attorno a asse x	J _x =	18896140	[mm ⁴]			
Raggio di inerzia attorno a asse y	ρ_y =	55.4	[mm]			
Raggio di inerzia attorno a asse x	ρ _x =	55.4	[mm]			
Proprietà inerziali angolari accoppiati						
Area lorda	A =	12312	[mm ²]			
Area netta	A _{net} =	11268	[mm ²]			
Momento di inerzia attorno a asse y	J _v =	84558816	[mm ⁴]			
Momento di inerzia attorno a asse x	J _x =	37792281	[mm ⁴]			
Raggio di inerzia attorno a asse y	ρ _y =	82.9	[mm]			
Raggio di inerzia attorno a asse x	$\rho_{x} =$	55.4	[mm]			
	1.0		· ·			
Verifica Profili	\ 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	FO 4				
Snellezza lungo asse x	$\lambda_x = L_x / \rho_y =$	59.4				
Snellezza lungo asse y	$\lambda_y = L_y / \rho_x =$	88.8				
Snellezza equivalente lungo x (i _{min} =50)	$\lambda_{\text{eq,x}} =$	77.6 2.19				
Fattore omega	ω=		[N/mm ²]	< 338 1 AM		
Verifica a compressione	$\sigma_{\mathbb{C}} =$	295.81	[N/mm ²]	< 338.1, ok!		
Verifica a trazione	$\sigma_T =$	125.67	[14/11]]	< 338.1, ok!		

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Verifica della briglia inferiore 9.1.1.1.

CALCOLO DEL MOMENTO CRITICO

35.5 kN/cm²

21000 kN/cm²

8100 kN/cm²

Profilo

Sezione trasversale

Doppio T - H simmetrico

Lunghezza libera di inflessione

400 cm 800 cm 400 cm (distanza di libera inflessione nel piano debole) (distanza di libera inflessione nel piano forte)

(distanza tra due vincoli torsionali)

CARATTERISTICHE PROFILO

8127 cm⁴ 2951 cm4 64 cm⁴ I_t = 304704 cm⁶

677 cm³ $W_{v,el} =$ 794 cm³ $W_{y,pl} =$ cm³

276 cm³ W_{z.el} = W_{z,pl} = 395 cm³ 92 cm² cm²

SOLLECITAZIONI

727 kN $N_{Ed} =$

5000 kN·cm

0 kN·cm $M_{z,Ed} =$

TIPO DI CARICO

2 Carichi Concentrati - Appoggio

(1 = vincoli di estremità a cerniera - 0.5 = vincoli di estremità a incastro)

(1 = vincoli torsionali di estremità a cerniera - 0.5 = vincoli torsionali di estremità a incastro)

C₁ = 1.046

(N.B. Se C₂=0 M_{cr} è indipendente da z_o)

 $C_3 =$ 1.120

0.430

61754 kN·cm

 $C_2 =$

M_{cr} =

cm 0 cm $z_g = (z_a - z_s) =$ 0.00 cm $z_j =$

(se il profilo è doppiamente simmetrico =0)

Punto di applicazione del carico (>0 se in zona compressa)

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

VERIFICA DI STABILITA' FLESSO TORSIONALE

classe profilo

0.676 $\lambda_{IT} =$ $\lambda_{LT.0} =$ 0.4 Verifica a svergolamento non necessaria

5000 kNcm $M_{ED} =$

 $\lambda_{LT.0}^2 =$ $M_{ED}/M_{cr} =$ 0.081 0.16 Verifica a svergolamento non necessaria

Tipologia profilo (1 = laminato - 2 = saldato)

Altezza 40 cm Larghezza 15

curva di stabilità $\alpha_{LT} =$ 0.49

$$\begin{split} \chi_{LT} &= \frac{1}{\Phi_{LT} + \sqrt{\Phi_{LT}^2 - \beta \overline{\lambda}_{LT}^2}} \text{ but } \begin{cases} \chi_{LT} \leq 1{,}0 \\ \chi_{LT} \leq \frac{1}{\overline{\lambda}_{LT}^2} \end{cases} \\ \Phi_{LT} &= 0{,}5 \bigg| 1 + \alpha_{LT} \bigg(\overline{\lambda}_{LT} - \overline{\lambda}_{LT,0} \bigg) + \beta \overline{\lambda}_{LT}^2 \bigg| \end{split}$$

Table 6.6: Correction factors kc

Moment distribution	k_c
$\psi = 1$	1,0
-1 ≤ ψ ≤ 1	$\frac{1}{1,33-0,33\psi}$
	0,94
	0,90
	0,91
	0,86
	0,77
	0,82

Fattore di correzione per il diagramma del momento

$$k_c = 0.86$$

 $f = 0.932$

$$\Phi_{LT} = 0.796$$
 $\chi_{LT} = 0.882$

$$\mathbf{M}_{_{b,Rd}} = \chi_{_{LT}} W_{_y} \frac{f_{_y}}{\gamma_{_{M1}}}$$

 $M_{b,Rd} =$ 22603 kNcm $M_{Ed} / M_{b,Rd} =$ 0.221 ≤ 1 VERIFICA SODDISFATTA

CALCOLO DEL CARICO CRITICO

$$L_z$$
 = 400 cm (distanza di libera inflessione nel piano debole)
 L_v = 800 cm (distanza di libera inflessione nel piano forte)

3819 kN $N_{cr.v} =$ 2629 kN $N_{cr.z} =$

S.G.C. E78 GROSSETO - FANO Tronco Selci Lama - S. Stefano di Gaifa - Lotto 7

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

VERIFICA DI STABILITA' A COMPRESSIONE

classe profilo

$$\lambda_z = 0.925$$

$$\lambda_{v} = 1.11$$

$$\lambda_{,0} = 0.2$$

Verifica a compressione necessaria

$$N_{ED} = 727 \text{ kN}$$

$$N_{ED}/N_{cr} = 0.277$$

$$\lambda_{.0}^{2} = 0.04$$

Verifica a compressione necessaria

$$a_z = 0.49$$

$$a_{v} = 0.49$$

$$\Phi_{y} = 1.345$$

$$\chi_z = 0.585$$

$$\chi_y = 0.477$$

$$N_{b,z,Rd} = 1736 \text{ kN}$$

$$N_{b,y,Rd} =$$

$$N_{Ed} / N_{b,Rd} = 0.514 \le 1$$

VERIFICA SODDISFATTA

VERIFICA A PRESSOFLESSIONE UNIASSIALE E SVERGOLAMENTO

$$M_{Ed,y} = 5000 \text{ kNcm}$$

$$N_{ED} = 727 \text{ kN}$$

1415 kN

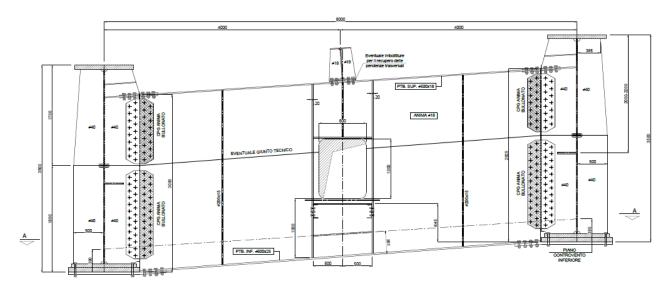
$$M_{Ed,z} =$$

$$\chi_{LT} = 0.882$$

 $\gamma_{M1} N_{Ed} / (\chi N_{Rd}) + \gamma_{M1} M_{Ed,y} / (\chi_{LT} M_{Rd,y}) =$

$$\chi_{min} = 0.477$$

VERIFICA SODDISFATTA


RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

9.1.2. DIAFRAMMI DI PILA / SPALLA

Gli effetti globali sono dovuti al momento torcente generato dallo squilibrio delle reazioni delle travi principali nelle varie fasi.

A questi devono essere sommati gli effetti di vento e sisma che, non agendo sul piano degli appoggi, producono degli effetti aggiuntivi dovuti al trasporto tra punto di applicazione della forza e posizione degli appoggi.

Gli effetti locali, dovuti al carico trasmesso dalla trave di spina, sono stati calcolati caricando ciascun diaframma, nel modello globale, con la reazione della trave di spina in una condizione di carico separata. In questo modo si coglie anche l'effetto d'incastro offerto dalle travi longitudinali.

La sezione trasversale del diaframma è la seguente:

3000mm - altezza

- piattabanda superiore 500mm x 18mm

sp.18 mm

- piattabanda inferiore 500mm x 25mm

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

9.1.2.1. Effetti globali + locali (PILA)

INVILUPPO DEI MOMENTI FLETTENTI

GLOBALE + LOCALE

	Elemento	FASE1		FASE2		Cedimenti		Ritiro		Termica		FASE3		TOTALE (slu)		DIAEDAMMA		
	Elettietilo	M22 (max)	M22 (min)	M22 (max)	M22 (min)	DIAFRAMMA	max	min										
	322	61984	2117	5327	-1575	2884	-4427	481	55	-16	-41	197428	-145251	362235	-201696	PILA	362235	-242660
Ī	354	52569	1569	4141	-2524	3461	-4139	-27	-116	19	-28	190777	-143833	338905	-201531	PILA		
	376	33974	-957	4399	-1881	486	-614	344	5	-8	-264	158242	-105889	267086	-148117	PILA		
	422	34110	-25774	4242	-2658	4561	-2949	46	-380	-42	-67	205138	-148002	334876	-242660	PILA		
	454	33562	-17448	4985	-1682	4247	-3533	64	-25	69	22	202562	-140245	331501	-219678	PILA		
	476	31043	-3890	3948	-2334	611	-481	-2	-341	262	5	164144	-99442	270472	-143986	PILA		

Il momento flettente massimo risulta dato dalla combinazione SLU ed è pari a:

M = 362235 kNcm

INVILUPPO DEI TAGLI

GLOBALE + LOCALE

	FASE1		FASE2		Cedimenti		Ritiro		Termica		FASE3		TOTALE (slu)		DIAFRAMMA		
Elemento	V3 (max)	V3 (min)	V3 (max)	V3 (min)	V3 (max)	V3 (min)	V3 (max)	V3 (min)	V3 (max)	V3 (min)	V3 (max)	V3 (min)	V3 (max)	V3 (min)	DIAFRAMINA	max	min
322	71	-10	3	-12	7	-11	1	1	0	0	218	-641	404	-910	PILA	1096	-939
354	48	-32	-2	-17	9	-10	0	0	0	0	202	-636	348	-939	PILA		
376	7	-73	1	-14	1	-2	0	0	0	0	112	-543	163	-855	PILA		
422	150	70	18	3	7	-11	1	1	0	0	635	-225	1096	-247	PILA		
454	128	48	13	-2	9	-10	0	0	0	0	617	-221	1036	-265	PILA		
476	87	7	16	1	1	-2	0	0	0	0	528	-128	855	-168	PILA		

Il taglio massimo risulta dato dalla combinazione SLU ed è pari a:

V = 1096 kN

S.G.C. E78 GROSSETO - FANO Tronco Selci Lama - S. Stefano di Gaifa - Lotto 7

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

9.1.2.1. Effetti globali + locali (SPALLA)

INVILUPPO DEI MOMENTI FLETTENTI

GLOBALE + LOCALE

Eleme	F/	FASE1		FASE2		Cedimenti		Ritiro		Termica		FASE3		TOTALE (slu)			
Elettie	M22 (max	M22 (min)	M22 (max)	M22 (min)	DIAFRAMMA	max	min										
301	15705	-6042	2088	-7367	1420	-1423	-219	-14424	12246	393	178364	-156524	281524	-249531	SPALLA	356814	-249531
389	15748	-2296	2311	-733	22	-33	861	3	-3	-754	145460	-72205	222157	-102620	SPALLA		
401	20309	-1062	8757	-711	1393	-1398	14260	55	-227	-12080	220354	-108620	356814	-165311	SPALLA		
489	17793	-252	2356	-689	33	-22	3	-854	748	-3	146060	-71652	225676	-99159	SPALLA		

Il momento flettente massimo risulta dato dalla combinazione SLU ed è pari a:

M = 356814 kNcm

INVILUPPO DEI TAGLI

GLOBALE + LOCALE

Flamouto	FASE1		FASE2		Cedimenti		Ritiro Termica		FASE3		TOTALE (slu)		DIAFRAMMA				
Elemento	V3 (max)	V3 (min)	V3 (max)	V3 (min)	V3 (max)	V3 (min)	V3 (max)	V3 (min)	V3 (max)	V3 (min)	V3 (max)	V3 (min)	V3 (max)	V3 (min)	DIAFRAMINA	max	min
301	-9	-52	-16	-23	3	-3	-36	-36	30	30	201	-625	302	-995	SPALLA	775	-995
389	-5	-45	0	-8	0	0	2	2	-2	-2	96	-448	127	-680	SPALLA		
401	28	-15	-9	-16	3	-3	-36	-36	30	30	517	-321	775	-524	SPALLA		
489	35	-5	7	0	0	0	2	2	-2	-2	446	-98	662	-141	SPALLA		

Il taglio massimo risulta dato dalla combinazione SLU ed è pari a:

V = 995 kN

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Condizioni di carico elementari (322-422 – Pila 1)

M22 = 61984 kN·cm Fase 1

V3 = 70 kN

Fase 2 M22 = 5327 kN·cm

V3 = 3 kN

Fase 3 M22 = 197428 kN·cm

V3 = 223 kN

 $M22 = 740 \text{ kN x } (350 + 27/2) \text{ cm} = 268990 \text{ kN} \cdot \text{cm}$ Vento

V3 = 1690 kN

Sisma trasv. M22 = $1050 \text{ kN x} (350 + 27/2) \text{ cm} = 381675 \text{ kN} \cdot \text{cm}$

V3 = 700 kN

Combinazione delle azioni

In favore di sicurezza le azioni flettenti derivanti dalle reazioni sismiche e da vento vengono sommate alle azioni derivanti dalle analisi globali e locali, come se le massime azioni si verificassero nella stessa sezione di calcolo.

Combinazione 1: Mobili Principali (1.35 Fase1 + 1.5 fase 2 + 1.35 Fase 3 + 0.9 Vento)

 $M22_{TOT} \approx 600288kN\cdot cm$

V3_{TOT} ≈ 1921kN

Combinazione 2: Vento Principale (1.35 Fase1 + 1.5 fase 2 + 1.35x0.75 Fase 3 + 1.5 Vento)

 $M22_{TOT} \approx 695050 \text{kN} \cdot \text{cm}$

 $V3_{TOT} \approx 2860kN$

Combinazione 3: Sismica (Fase1 + Fase 2 + 1.00 Sisma)

 $M22_{TOT} \approx 448986 \text{kN} \cdot \text{cm}$

V3_{TOT} ≈ 773KN

La combinazione che dà le sollecitazioni maggiori è la Combinazione 2.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

9.1.2.1. Verifica del profilo

VERIFICA DI INSTABILITA' FLESSO TORSIONALE

Calcolo del momento critico

Acciaio

35.5 kN/cm² 21000 kN/cm² 8100 kN/cm²

Profilo

Sezione Trasversale Doppio T - H simmetrico

Lunghezza libera di inflessione

400 cm (distanza di libera inflessione nel piano debole) L_y = cm (distanza di libera inflessione nel piano forte) 800 (distanza tra due vincoli torsionali)

CARATTERISTICHE PROFILO

54966 cm³ 1803 cm³ 747 cm² 8611781 cm⁴ W_{v.el} = $I_v =$ A = ${\rm cm}^2$ 45079 cm4 71215 cm³ 2924 cm³ $I_z =$ $W_{y,pl} =$ 925 cm4 cm³ $I_t =$ 831699586 cm⁴

SOLLECITAZIONI

0 kN 695049.75 kN·cm 0 kN·cm $N_{Ed} =$ $M_{z,Ed} =$

TIPO DI CARICO Carico Concentrato -Appoggio

695049.75

0.00 cm

2741378 kN·cm

 $z_j =$

(1 = vincoli di estremità a cerniera - 0.5 = vincoli di estremità a incastro) (1 = vincoli torsionali di estremità a cerniera - 0.5 = vincoli torsionali di estremità a incastro)

C₁ = 1.365 C₂ = 0.553 (N.B. Se C₂=0 M_{cr} è indipendente da z_o) 1.73

(se il profilo è doppiamente simmetrico =0) cm Z_s = cm Punto di applicazione del carico (>0 se in zona compressa) z_a = $z_g = (z_a - z_s) =$

0 cm

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

VERIFICA DI STABILITA' FLESSO TORSIONALE

classe profilo

 $\lambda_{LT} =$ 0.844 $\lambda_{LT.0} =$ 0.4 Verifica a svergolamento necessaria

695050 kNcm $M_{FD} =$

 $\lambda_{LT.0}^{2} =$ Verifica a svergolamento necessaria $M_{ED}/M_{cr} =$ 0.254 0.16

Tipologia profilo (1 = laminato - 2 = saldato)

300 cm Altezza 50 cm Larghezza

curva di stabilità $\alpha_{LT} =$ 0.76

β= 0.75

$$\chi_{LT} = \frac{1}{\Phi_{LT} + \sqrt{\Phi_{LT}^2 - \beta \overline{\lambda}_{LT}^2}} \text{ but } \begin{cases} \chi_{LT} \leq 1,0 \\ \chi_{LT} \leq \frac{1}{\overline{\lambda}_{LT}^2} \end{cases}$$

$$\Phi_{\text{LT}} = 0.5 \left[1 + \alpha_{\text{LT}} \left(\overline{\lambda}_{\text{LT}} - \overline{\lambda}_{\text{LT},0} \right) + \beta \overline{\lambda}_{\text{LT}}^{2} \right]$$

Fattore di correzione per il diagramma del momento

$$k_c = 0.60$$

f = 0.802

$$M_{b,Rd} = \chi_{LT} W_y \frac{f_y}{\gamma_{M1}}$$

 $M_{b,Rd} =$ 1600986 kNcm 1,0 $\overline{1,33-0,33}\psi$ $-1 \le \psi \le 1$ 0,94 0,90 0,91 0,86 0,77 0,82

Table 6.6: Correction factors kc

Moment distribution

 $M_{Ed} / M_{b,Rd} =$ 0.434 ≤ 1 VERIFICA SODDISFATTA

S.G.C. E78 GROSSETO - FANO Tronco Selci Lama - S. Stefano di Gaifa - Lotto 7

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

VERIFICA AD IMBOZZAMENTO DEL PANNELO D'ANIMA

VERIFICA DI IMBOZZAMENTO DEI PANNELLI D'ANIMA SECONDO LA CNR 1011/97									
			Acciaio	S355					
tensione snervamento	acciaio		f _y =	35	5 [MPa]				
fattore di sicurezza			γ _m =	1.	1[-]				
tensione di verifica			$f_d = $	322.7	3 [MPa]				
tensione al lembo sup	eriore		$\sigma_1 =$	126.5	0 [MPa]				
tensione al lembo infe	riore		$\sigma_2 =$	-115.7	0 [MPa]				
tensione tangenzale m	redia		т =	53.7	0 [MPa]				
altezza pannello d'anii	ma		h =	295	7 [mm]				
spessore pannello d'a	nima		t =		8 [mm]				
interasse irrigidenti tra	sversali		a =		0 [mm]				
allungamento pannello	0		α =	0.6	8 [-]				
tensione da sforzo nor	male		σ_{N} =	5.4	0 [MPa]				
tensione da momento			σ_{M} =	-121.1	0 [MPa]				
rapporto tensionale			ψ = 💆	-1.0	9 [-]				
coefficiente imbozzam	ento tensio	ni normali	$k_{\sigma} =$	23.9	0 [-]				
coefficiente imbozzam	ento tensio	ni tangenziali	k _τ =	15.6	7 [-]				
tensione normale critic	ca		σ_{cr} =	164.9	0 [MPa]				
tensione tangenziale o	rtica		T _{Cr} =	108.1	4 [MPa]				
			β =	0.7	9 [-]				
verifica allo SLU			v =		1 [-]				
tensione critica ideale			$\sigma_{\rm cr,id}$ =	172.3	5 [MPa]				
tensione critica ideale	ridotta		$\sigma_{\rm cr,id,rid} =$	172.3	5 [MPa]				
tensione ideale			$\sigma_{id} =$	157.0	1 [MPa]				
Verifica									
$\sigma_{cr,id} / \sigma_{id} =$	1.10	>	β v =	0.79	OK				
		Impegno	η =	0.72					

GPIngegneria GESTIONE PROGETTI INGEGNERIA srl

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

9.1.3. CONTROVENTI

9.2. CONTROVENTI INFERIORI

I controventi inferiori devono essere in grado di equilibrare gli sforzi dovuti alle azioni torcenti nelle fasi di carico 2 e 3 e quelli dovuti alle azioni taglianti orizzontali indotte dal vento a ponte carico. La maglia tipica presenta un'organizzazione a rombo (aste tese e compresse) ed è realizzata con degli angolari accoppiati a lati uguali (2L 130x12, 2L 150x15 o 2L 180x15 a seconda della maglia).

L'azione del vento si ripartisce tra la soletta ed il controvento inferiore in base alla rigidezza orizzontale. Il tagliante orizzontale totale è dato dalla somma del taglio sui due fili di travi longitudinali.

Il momento torcente complessivo agente sul singolo cassone (travi principali-soletta-controventi inferiori) si ottiene dalla somma dei momenti torcenti dei due fili che lo compongono. Il taglio dato dal momento torcente è dato dalla seguente formula:

H = Mt / (2 * h)

dove h rappresenta la distanza tra i controventi.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

9.2.1. VALORI MASSIMI DI VERIFICA ALLO SLU

\sim	T\ /	IAI	_
	ıv	IIN	_

		CTV INF				
Asta	Taglio	Sforzo Normale	Profilo	2L180x15	2L150x15	2L130x12
	kN	kN		1193	743	323
1	1046	717	2L150x15	0	717	0
2	1025	702	2L150x15	0	702	0
3	1084	743	2L150x15	0	743	0
4	915	627	2L150x15	0	627	0
5	901	618	2L150x15	0	618	0
6 7	745 707	510 485	2L150x15 2L150x15	0 0	510 485	0
8	695	465 477	2L150x15 2L150x15	0	465 477	0
9	458	314	2L150x15 2L150x15	0	314	0
10	420	288	2L150x15 2L150x15	0	288	0
11	479	328	2L150x15 2L150x15	0	328	0
12	638	437	2L150x15	0	437	0
13	627	430	2L150x15 2L150x15	0	430	0
14	754	517	2L150x15 2L150x15	0	517	0
	-	_		-	_	· ·
15	731	501	2L150x15	0	501	0
16	755	518	2L180x15	518	0	0
17	814	558	2L180x15	558	0	0
18	786	538	2L180x15	538	0	0
19	938	643	2L180x15	643	0	0
20	909	623	2L180x15	623	0	0
21	932	639	2L180x15	639	0	0
22	1353	927	2L180x15	927	0	0
23	1329	911	2L180x15	911	0	0
24	1740	1193	2L180x15	1193	0	0
25	1597	1094	2L180x15	1094	0	0
26	1566	1073	2L180x15	1073	0	0
27	1480	1014	2L180x15	1014	0	0
28	1413	968	2L180x15	968	0	0
29	1402	961	2L180x15	961	0	0
30	1263	866	2L180x15	866	0	0
31	1225	840	2L180x15	840	0	0
32	881	604	2L150x15	0	604	0
33	822	563	2L150x15	0	563	0
34	781	536	2L150x15	0	536	0
35	672	461	2L150x15	0	461	0
36	371	254	2L150x15	0	254	0
37	354	243	2L150x15	0	243	0
38	327	224	2L150x15	0	224	0
39	324	222	2L150x15	0	222	0
40	488	334	2L150x15	0	334	0
41	763	523	2L150x15 2L150x15	0	523	0
42	692	474	2L150x15 2L150x15	0	474	0
43	863	591	2L150x15 2L150x15	0	591	0
44	1140	781	2L130x15 2L180x15	781	0	0
77	1140	101	ZL 100X 13	701	V	ı •

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

CTV INF

Storzo						
Asta	Taglio	Sforzo Normale	Profilo	2L180x15	2L150x15	2L130x12
	kN	kN		1193	743	323
45	1179	808	2L180x15	808	0	0
46	1313	900	2L180x15	900	0	0
47	1321	905	2L180x15	905	0	0
48	1407	964	2L180x15	964	0	0
49	1474	1010	2L180x15	1010	0	0
50	1504	1031	2L180x15	1031	0	0
51	1614	1106	2L180x15	1106	0	0
52	1236	847	2L180x15	847	0	0
53	1258	862	2L180x15	862	0	0
54	822	563	2L180x15	563	0	0
55	783	536	2L180x15	536	0	0
56	593	406	2L180x15	406	0	0
57	550	377	2L180x15	377	0	0
58	550	377	2L180x15	377	0	0
59	458	314	2L180x15	314	0	0
60	411	282	2L150x15	0	282	0
61	433	297	2L150x15	0	297	0
62	328	225	2L150x15	0	225	0
63	309	212	2L150x15	0	212	0
64	330	226	2L150x15	0	226	0
65	364	250	2L150x15	0	250	0
66	380	261	2L150x15	0	261	0
67	394	270	2L150x15	0	270	0
68	587	402	2L150x15	0	402	0
69	615	422	2L150x15	0	422	0
70	620	425	2L150x15	0	425	0
71	742	509	2L150x15	0	509	0
72	775	531	2L150x15	0	531	0
73	763	523	2L150x15	0	523	0
74	789	541	2L150x15	0	541	0
75	816	559	2L150x15	0	559	0
76	307	204	2L150x15	0	204	0
77	326	217	2L150x15	0	217	0
78	335	222	2L130x12	0	0	222
79	296	197	2L130x12	0	0	197
80	319	212	2L130x12	0	0	212
81	223	148	2L130x12	0	0	148
82	235	156	2L130x12	0	0	156
83	257	171	2L130x12	0	0	171
84	342	227	2L130x12	0	0	227
85	360	239	2L130x12	0	0	239
86	373	248	2L130x12	0	0	248
87	461	307	2L130x12	0	0	307
88	487	323	2L130x12	0	0	323

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

9.2.1.1. Verifica dei 2L 130x12

I =	ri a cartella NR 10011/97 (7.2.3.4)			
Trazione	N _T =	323	[kN]	
Compressione	N _C =	323	[kN]	
Lunghezza libera di inflessione lungo asse x	L _x =	5320	[mm]	
Lunghezza libera di inflessione lungo asse y	L _v =	5320	[mm]	
Eurigitozza noora di ilinocciono larigo dece y	<u>-</u> у <u>L</u>	0020	_l1	
Lato lungo asse x	b _x =	130	[mm]	
Lato lungo asse y	b _y =	130	[mm]	
Spessore	t=	12	[mm]	
Piatto verticale, spessore lungo asse x	t _x =	15	[mm]	
Acciaio		S 355]	
Curva di stabilità		С]	
Tensione di snervamento caratteristica	$f_{yk} = $	355	[N/mm ²]	
Coefficiente di sicurezza per resistenza	γ _{м0} =	1.05	[-]	
Coefficiente di sicurezza per stabilità	γ _{M1} =	1.10	[-]	
Tensione di calcolo per resistenza	f_{yk} / γ_{M0} =	338	[N/mm ²]	
Tensione di calcolo per stabilità	$f_{yk} / \gamma_{M1} =$	323	[N/mm ²]	
Curva CNR		510_c		
Proprietà inerziali 1 angolare singolo				
Area lorda	A =	2976	[mm ²]	
Momento statico rispetto a asse x	S _x =	109896	[mm ³]	
Momento statico rispetto a asse y	S _y =	109896	[mm ³]	
Ascissa baricentro da bordo irrigidito	$x_g =$	37	[mm]	
Ordinata baricentro da bordo irrigidito	$y_g =$	37	[mm]	
Momento di inerzia rispetto a asse x baricentrico	J _x =	4797792	[mm ⁴]	
Momento di inerzia rispetto a asse y baricentrico	J _v =	4797792	[mm ⁴]	
Momento di inerzia centrifugo rispetto a assi x e y baricentrici	$J_{xy} =$	-2846560	[mm ⁴]	
Angolo tra asse principale 1 e asse x baricentrico	α =	45	[°]	
Momento di inerzia rispetto a asse principale 1	J ₁ =	7644352	[mm ⁴]	
Momento di inerzia rispetto a asse principale 2	J ₂ =	1951233	[mm ⁴]	
Raggio di inerzia rispetto a asse principale 1	ρ ₁ =	51	[mm]	
Raggio di inerzia rispetto a asse principale 2	$\rho_2 =$	26	[mm]	
Taggio di Inolata rispotto di acces printerpato 2	PZ		[]	
Proprietà inerziali 2 angolari a cartella	Λ -	E0E2	[ma ma ²]	
Area lorda Momento di inerzia rispetto a asse y	A =	5952 9595585	[mm²] [mm⁴]	
Momento di inerzia rispetto a asse x	J _x =		4	
Momento di inerzia rispetto a asse y	J _y =	21343616	[mm ⁴]	
Raggio di inerzia rispetto a asse x	ρ _x =	40	[mm]	
Raggio di inerzia rispetto a asse y	ρ _y =	60	[mm]	
Verifica profilo composto			.,	
Snellezza lungo asse x	$\lambda_x = L_x / \rho_y =$	89	[-]	
Snellezza lungo asse y	$\lambda_y = L_y / \rho_x =$	132	[-]	
Snellezza aggiuntiva lungo asse x	λ ₀ =	40	[-]	
Snellezza equivalente lungo asse x	$\lambda_{eq,x} = (\lambda_x^2 + \lambda_0^2)^{0.5} =$	97	[-]	
Snellezza massima	$\lambda_{\text{max}} =$	132	[-]	
Coefficiente omega	ω =	3.92	[-]	
Interasse calastrelli	$L_0 = \lambda_0 \rho_{min} =$	1024	[mm]	000
Verifica a trazione	σ_T =	54	[N/mm ²]	< 338, ok!
Verifica a compressione	σ_{C} =	213	[N/mm ²]	< 323, ok!

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

9.2.1.2. Verifica dei 2L 150x15

•	2 angolari a cartella										
Calcolo secondo C	SNR 10011/97 (7.2.3.4)										
Trazione	$N_T =$	743	[kN]								
Compressione	N _C =	743	[kN]								
Lunghezza libera di inflessione lungo asse x	L _x =	5480	[mm]								
Lunghezza libera di inflessione lungo asse y	L _y =[5480	[mm]								
Lato lungo asse x	b _x =	150	[mm]								
Lato lungo asse y	b _y =	150	[mm]								
Spessore	t=	15	[mm]								
Piatto verticale, spessore lungo asse x	t _x =[20	[mm]								
Acciaio		S 355]								
Curva di stabilità	_ ا	C									
Tensione di snervamento caratteristica	f _{yk} =	355	[N/mm ²]								
Coefficiente di sicurezza per resistenza	γ _{M0} =	1.05	[-]								
Coefficiente di sicurezza per stabilità	γ _{M1} = [1.10	[-]								
Tensione di calcolo per resistenza	$f_{yk} / \gamma_{M0} =$	338	[N/mm ²]								
Tensione di calcolo per stabilità	$f_{yk} / \gamma_{M1} =$	323	[N/mm ²]								
Curva CNR		510_c									
Proprietà inerziali 1 angolare singolo		4075	r 2								
Area lorda	A =	4275	[mm ²]								
Momento statico rispetto a asse x	S _x =	183938	[mm ³]								
Momento statico rispetto a asse y	S _y =	183938	[mm ³]								
Ascissa baricentro da bordo irrigidito	$x_g =$	43	[mm]								
Ordinata baricentro da bordo irrigidito	y _g =	43	[mm]								
Momento di inerzia rispetto a asse x baricentrico	J _x =	9112722	[mm ⁴]								
Momento di inerzia rispetto a asse y baricentrico	J _y =	9112722	[mm ⁴]								
Momento di inerzia centrifugo rispetto a assi x e y baricentrici	J _{xy} =	-5395559	[mm ⁴]								
Angolo tra asse principale 1 e asse x baricentrico	α =	45	[°]								
Momento di inerzia rispetto a asse principale 1	J ₁ =	14508281	[mm ⁴]								
Momento di inerzia rispetto a asse principale 2	J ₂ =	3717163	[mm⁴]								
Raggio di inerzia rispetto a asse principale 1	ρ ₁ =	58	[mm]								
Raggio di inerzia rispetto a asse principale 2	ρ ₂ =	29	[mm]								
Proprietà inerziali 2 angolari a cartella		0550	r 2•								
Area lorda	A =	8550	[mm²] [mm⁴]								
Momento di inerzia rispetto a asse x	J _x =	18225444									
Momento di inerzia rispetto a asse y	J _y =	42266250	[mm⁴]								
Raggio di inerzia rispetto a asse x	ρ _x =	46	[mm]								
Raggio di inerzia rispetto a asse y	ρ _y =	70	[mm]								
Verifica profilo composto	\ _1 _1 _1 =	70									
Snellezza lungo asse x	$\lambda_x = L_x / \rho_y =$	78 110	[-]								
Snellezza lungo asse y	$\lambda_y = L_y / \rho_x =$	119	[-]								
Snellezza aggiuntiva lungo asse x	$\lambda_0 = \lambda_{eq,x} = (\lambda_x^2 + \lambda_0^2)^{0.5} =$	40	[-]								
Snellezza equivalente lungo asse x		88	[-]								
Snellezza massima	$\lambda_{\text{max}} =$	119 3.27	[-]								
Coefficiente omega Interasse calastrelli	$\omega = L_0 = \lambda_0 \rho_{min} =$	3.27 1179	[-] [mm]								
Verifica a trazione		87	[N/mm ²]	< 338, ok!							
	$\sigma_T = \sigma_T $		[N/mm ²]								
Verifica a compressione	σ_{C} =	284	[[וא/ווווו	< 323, ok!							

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

9.2.1.1. Verifica dei 2L 180x15

9.2.1.1. Verifica del 21				
	i a cartella			
Calcolo secondo CN	NR 10011/97 (7.2.3.4)			
Trazione	$N_T =$	1193	[kN]	
Compressione	N _C =	1193	[kN]	
Lunghezza libera di inflessione lungo asse x	L _x =	5480	[mm]	
Lunghezza libera di inflessione lungo asse y	. 1	5480	[mm]	
Lunghezza libera di liniessione lungo asse y	L _y =[3400	_I[,,,,,,]	
Lato lungo asse x	b _x =	180	[mm]	
Lato lungo asse y	b _v =	180	[mm]	
Spessore	´t=	15	[mm]	
Piatto verticale, spessore lungo asse x	t _x =	20	[mm]	
	Г		7	
Acciaio	-	S 355		
Curva di stabilità	Ĺ	C	_l [N/mm²]	
Tensione di snervamento caratteristica	f _{yk} =	355	-i -	
Coefficiente di sicurezza per resistenza	γ _{M0} =	1.05	[-]	
Coefficiente di sicurezza per stabilità	γ _{M1} =[1.10	[-]	
Tensione di calcolo per resistenza	$f_{yk} / \gamma_{M0} =$	338	[N/mm ²]	
Tensione di calcolo per stabilità	$f_{yk} / \gamma_{M1} =$	323	[N/mm ²]	
Curva CNR		510_c		
Proprietà inerziali 1 angolare singolo				
Area lorda	A =	5175	[mm ²]	
Momento statico rispetto a asse x	S _x =	261563	[mm ³]	
Momento statico rispetto a asse y	S _v =	261563	[mm ³]	
Ascissa baricentro da bordo irrigidito	$x_g =$	51	[mm]	
Ordinata baricentro da bordo irrigidito	$y_g =$	51	[mm]	
Momento di inerzia rispetto a asse x baricentrico	J _x =	16125346	[mm ⁴]	
Momento di inerzia rispetto a asse y baricentrico	J _γ =	16125346	[mm ⁴]	
Momento di inerzia centrifugo rispetto a assi x e y baricentrici	$J_{xy} =$	-9587935	[mm ⁴]	
Angolo tra asse principale 1 e asse x baricentrico	α =	45	[°]	
Momento di inerzia rispetto a asse principale 1	J ₁ =	25713281	[mm ⁴]	
Momento di inerzia rispetto a asse principale 2	J ₂ =	6537412	[mm ⁴]	
Raggio di inerzia rispetto a asse principale 1	$\rho_1 =$	70	[mm]	
Raggio di inerzia rispetto a asse principale 2	$\rho_2 =$	36	[mm]	
Tragge at more at repeate a cool prints pare 2	P 2	-	[]	
Proprietà inerziali 2 angolari a cartella				
Area lorda	A =	10350	[mm ²]	
Momento di inerzia rispetto a asse x	J _x =	32250693	[mm ⁴]	
Momento di inerzia rispetto a asse y	J _y =	70188750	[mm ⁴]	
Raggio di inerzia rispetto a asse x	ρ _x =	56	[mm]	
Raggio di inerzia rispetto a asse y	ρ _y =	82	[mm]	
Verifica profilo composto	, , ,			
Snellezza lungo asse x	$\lambda_x = L_x / \rho_y =$	67	[-]	
Snellezza lungo asse y	$\lambda_y = L_y / \rho_x =$	98	[-]	
Snellezza aggiuntiva lungo asse x	$\lambda_0 =$	40	[-]	
Snellezza equivalente lungo asse x	$\lambda_{eq,x} = (\lambda_x^2 + \lambda_0^2)^{0.5} =$	78	[-]	
Snellezza massima	$\lambda_{\text{max}} =$	98	[-]	
Coefficiente omega	ω =	2.51	[-]	
Interasse calastrelli	$L_0 = \lambda_0 \rho_{min} =$	1422	[mm]	. 000
Verifica a trazione	σ_T =	115	[N/mm ²]	< 338, ok!
Verifica a compressione	$\sigma_{\rm C}$ =	289	[N/mm ²]	< 323, ok!

PROGETTAZIONE ATI:

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

9.3. CONTROVENTI DI MONTAGGIO

È anche presente un controventamento superiore che assorbe le azioni taglianti orizzontali indotte dal vento in fase di montaggio. La maglia tipica presenta un'organizzazione a croce di S. Andrea (aste solo tese) ed è realizzata con angolari accoppiati a lati uguali 2L 90x8. Nei cambi adiacenti alla pila e alle spalle sono invece presenti controventi aventi sezione 2L 90x10.

9.3.1. VALORI MASSIMI DI VERIFICA ALLO SLU

CT	١,	C.I.	ю
CT	v	่งเ	,,

CIVOUF		7			
Asta	Taglio	Sforzo Normale	Profilo	2L90x8	2L90x10
	kN	kN		254	401
1	292	401	2L90x10	0	401
2	272	373	2L90x10	0	373
3	252	346	2L90x10	0	346
4	239	328	2L90x10	0	328
5	232	318	2L90x10	0	318
6	212	290	2L90x10	0	290
7	192	263	2L90x10	0	263
8	185	254	2L90x8	254	0
9 10	171 151	235	2L90x8 2L90x8	235	0
11	131	208 180	2L90x8	208 180	0
12	126	173	2L90x8	173	0
13	111	153	2L90x8	153	0
14	91	125	2L90x8	125	0
15	71	97	2L90x8	97	0
16	68	93	2L90x8	93	0
17	51	70	2L90x8	70	0
18	31	43	2L90x8	43	0
19	29	40	2L90x8	40	0
20	14	20	2L90x10	0	20
21	31	42	2L90x10	0	42
22	265	363	2L90x10	0	363
23	245	335	2L90x10	0	335
24	232	319	2L90x10	0	319
25	225	308	2L90x10	0	308
26	205	281	2L90x10	0	281
27	184	252	2L90x10	0	252
28	170	233	2L90x8	233	0
29	165	226	2L90x8	226	0
30	145	198	2L90x8	198	0
31	125	171	2L90x8	171	0
32	112	153	2L90x8	153	0
33	106	145	2L90x8	145	0
34	85	117	2L90x8	117	0
35	65	89	2L90x8	89	0
36	53	73	2L90x8	73	0
37	46	63	2L90x8	63	0
38	26	36	2L90x8	36	0
39	21	29	2L90x8	29	0
40	18	25	2L90x8	25	0
41	31	42	2L90x8	42	0
42	52	71	2L90x8	71	0
43	57	78	2L90x8	78	0
44	70	96	2L90x8	96	0
<u> </u>		·			

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

CTV SUP

		IV SUP		7	
Asta	Taglio	Sforzo Normale	Profilo	2L90x8	2L90x10
	kN	kN	-	254	401
45	90	124	2L90x8	124	0
46	110	151	2L90x8	151	0
47	113	156	2L90x8	156	0
48	129	177	2L90x10	0	177
49	149	205	2L90x10	0	205
50	170	233	2L90x10	0	233
51	177	243	2L90x10	0	243
52	189	259	2L90x10	0	259
53	209	286	2L90x10	0	286
54	58	79	2L90x10	0	79
55	37	50	2L90x10	0	50
56	27	37	2L90x8	37	0
57	20	27	2L90x8	27	0
58	20	27	2L90x8	27	0
59	25	35	2L90x8	35	0
60	39	54	2L90x8	54	0
61	59	81	2L90x8	81	0
62	72	99	2L90x8	99	0
63	79	108	2L90x8	108	0
64	99	136	2L90x8	136	0
65	119	163	2L90x8	163	0
66	126	172	2L90x8	172	0
67	139	190	2L90x8	190	0
68	159	218	2L90x8	218	0
69	174	238	2L90x8	238	0
70	179	246	2L90x10	0	246
71	199	273	2L90x10	0	273
72	220	301	2L90x10	0	301
73	227	311	2L90x10	0	311
74	239	328	2L90x10	0	328
75	260	356	2L90x10	0	356
76	43	59	2L90x10	0	59
77	57	78	2L90x10	0	78
78	62	84	2L90x8	84	0
79	81	111	2L90x8	111	0
80	100	137	2L90x8	137	0
81	110	151	2L90x8	151	0
82	118	162	2L90x8	162	0
83	137	188	2L90x8	188	0
84	156	214	2L90x8	214	0
85	164	225	2L90x8	225	0
86	175	240	2L90x10	0	240
87	194	266	2L90x10	0	266
88	212	291	2L90x10	0	291

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

9.3.1.1. Verifica dei 2L 90x8

	ri a cartella NR 10011/97 (7.2.3.4)			
Trazione	N _T =	254	[kN]	
Compressione	N _T = N _C =	0	[kN]	
Lunghezza libera di inflessione lungo asse x	L _x =	10960	[mm]	
Lunghezza libera di inflessione lungo asse y	$L_{y} =$	10960	[mm]	
Lato lungo asse x	b _x =	90	[mm]	
Lato lungo asse y	b _y =	90	[mm]	
Spessore	t=	8	[mm]	
Piatto verticale, spessore lungo asse x	t _x =	12	[mm]	
Acciaio	F	S 355		
Curva di stabilità	L	<u>C</u>		
Tensione di snervamento caratteristica	f _{yk} = Γ	355	[N/mm²]	
Coefficiente di sicurezza per resistenza	γ _{м0} =	1.05	[-]	
Coefficiente di sicurezza per stabilità	γ _{M1} = [1.10	[-]	
Tensione di calcolo per resistenza	$f_{yk} / \gamma_{M0} =$	338	[N/mm ²]	
Tensione di calcolo per stabilità	$f_{yk} / \gamma_{M1} =$	323	[N/mm ²]	
Curva CNR		510_c		
Proprietà inerziali 1 angolare singolo Area lorda	A =	1376	[mm²]	
	$S_x =$	35024	[mm ³]	
Momento statico rispetto a asse x			[mm ³]	
Momento statico rispetto a asse y	S _y =	35024 25		
Ascissa baricentro da bordo irrigidito Ordinata baricentro da bordo irrigidito	x _g =	25 25	[mm] [mm]	
· · · · · · · · · · · · · · · · · · ·	y _g =		[mm ⁴]	
Momento di inerzia rispetto a asse x baricentrico	J _x =	1066512	[mm ⁴]	
Momento di inerzia rispetto a asse y baricentrico	J _y =	1066512		
Momento di inerzia centrifugo rispetto a assi x e y baricentrici	J _{xy} =	-633307 45	[mm ⁴]	
Angolo tra asse principale 1 e asse x baricentrico	α=	1699819	[°] [mm⁴]	
Momento di inerzia rispetto a asse principale 1	J ₁ =			
Momento di inerzia rispetto a asse principale 2	J ₂ =	433205	[mm ⁴]	
Raggio di inerzia rispetto a asse principale 1	ρ ₁ =	35	[mm]	
Raggio di inerzia rispetto a asse principale 2	ρ ₂ =	18	[mm]	
Proprietà inerziali 2 angolari a cartella	Λ -	2752	[mm ²]	
Area lorda	A = J _x =	2133023	[mm ⁴]	
Momento di inerzia rispetto a asse x			[mm ⁴]	
Momento di inerzia rispetto a asse y Raggio di inerzia rispetto a asse x	$J_y =$	4855637 28		
Raggio di inerzia rispetto a asse y	ρ _x =	42	[mm] [mm]	
Naggio di Illetzia lispello a asse y	ρ _y =	42	נווווון	
Verifica profilo composto Snellezza lungo asse x	$\lambda_x = L_x / \rho_y =$	261	[-]	
Snellezza lungo asse y	$\lambda_{x} = L_{x} / \rho_{y} = $ $\lambda_{y} = L_{y} / \rho_{x} = $	394	[-]	
Snellezza aggiuntiva lungo asse x	$\lambda_y - L_y / \rho_x - \lambda_0 =$	40	[-]	
Snellezza aggiuniva iurigo asse x Snellezza equivalente lungo asse x	$\lambda_{\text{eq,x}} = (\lambda_x^2 + \lambda_0^2)^{0.5} =$	264	[-]	
Snellezza massima	$\lambda_{\text{eq},x} - (\lambda_x + \lambda_0) = \lambda_{\text{max}} = 0$	394	[-]	
Coefficiente omega	$\lambda_{\text{max}} = \omega$	12.40	[-]	
Interasse calastrelli	$L_0 = \lambda_0 \rho_{min} =$	710	[mm]	
Verifica a trazione	$\sigma_{T} =$	92	[N/mm ²]	< 338, ok!
Verifica a compressione		0	[N/mm ²]	< 323, ok!
vernica a cumpressione	σ_{C} =	U	[14/1/11]	~ J∠J, UK!

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

9.3.1.1. Verifica dei 2L 90x10

2 angola	ri a cartella			
•	ONR 10011/97 (7.2.3.4)			
Trazione	N _T =	401	Пил	
	N _C =	0	[kN] [kN]	
Compressione Lunghezza libera di inflessione lungo asse x	L _x =	10960	[mm]	
Lunghezza libera di Inflessione lungo asse y	."	10960	[mm]	
Lungriezza libera di irillessione lungo asse y	L _y =[10900	[[[]]]	
Lato lungo asse x	b _x =	90	[mm]	
Lato lungo asse y	b _v =	90	[mm]	
Spessore	t=	10	[mm]	
Piatto verticale, spessore lungo asse x	t _x =	12	[mm]	
Acciaio	Г	S 355	7	
Curva di stabilità	<u> </u>	C		
Tensione di snervamento caratteristica	f _{yk} =	355	[N/mm ²]	
Coefficiente di sicurezza per resistenza	γ _{м0} = [1.05	_i ∏[-]	
Coefficiente di sicurezza per stabilità	γ _{M1} =	1.10	[-]	
Tensione di calcolo per resistenza	$f_{vk} / \gamma_{M0} =$	338	[N/mm ²]	
Tensione di calcolo per stabilità	$f_{vk} / \gamma_{M1} =$	323	[N/mm ²]	
Curva CNR	yk' fwi	510_c		
Description of the second second		_		
Proprietà inerziali 1 angolare singolo Area lorda	A =	1700	[mm²]	
Momento statico rispetto a asse x	S _x =	44500	[mm ³]	
'	==	44500	[mm ³]	
Momento statico rispetto a asse y	S _y =			
Ascissa baricentro da bordo irrigidito	x _g =	26 26	[mm]	
Ordinata baricentro da bordo irrigidito	y _g =		[mm] [mm⁴]	
Momento di inerzia rispetto a asse x baricentrico	J _x =	1291814	[mm ⁴]	
Momento di inerzia rispetto a asse y baricentrico	J _y =	1291814	[mm ⁴]	
Momento di inerzia centrifugo rispetto a assi x e y baricentrici	J _{xy} =	-762353 45		
Angolo tra asse principale 1 e asse x baricentrico	α =	2054167	[°] [mm⁴]	
Momento di inerzia rispetto a asse principale 1	J ₁ =		[mm ⁴]	
Momento di inerzia rispetto a asse principale 2	J ₂ =	529461		
Raggio di inerzia rispetto a asse principale 1	ρ ₁ =	35 19	[mm]	
Raggio di inerzia rispetto a asse principale 2	ρ ₂ =	18	[mm]	
Proprietà inerziali 2 angolari a cartella				
Area lorda	A =	3400	[mm ²]	
Momento di inerzia rispetto a asse x	J _x =	2583627	[mm ⁴]	
Momento di inerzia rispetto a asse y	$J_y =$	6103733	[mm ⁴]	
Raggio di inerzia rispetto a asse x	ρ _x =	28	[mm]	
Raggio di inerzia rispetto a asse y	ρ _y =	42	[mm]	
Verifica profilo composto				
Snellezza lungo asse x	$\lambda_x = L_x / \rho_y =$	259	[-]	
Snellezza lungo asse y	$\lambda_y = L_y / \rho_x =$	398	[-]	
Snellezza aggiuntiva lungo asse x	$\lambda_0 =$	40	[-]	
Snellezza equivalente lungo asse x	$\lambda_{eq,x} = (\lambda_x^2 + \lambda_0^2)^{0.5} =$	262	[-]	
Snellezza massima	$\lambda_{\text{max}} =$	398	[-]	
Coefficiente omega	ω =	12.40	[-]	
Interasse calastrelli	$L_0 = \lambda_0 \rho_{min} =$	706	[mm]	
Verifica a trazione	σ _T =	118	[N/mm ²]	< 338, ok!
Verifica a compressione	σ _C =	0	[N/mm ²]	< 323, ok!
•	· ·		•	,

PROGETTAZIONE ATI:

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

10. SOLETTA D'IMPALCATO

Nel presente capitolo si riportano i calcoli effettuati per le verifiche della soletta. La dimensione trasversale della soletta è costante ed è pari a 12.0 m.

DESCRIZIONE E MODALITÀ DI CALCOLO DELLA SOLETTA 10.1.

La soletta d'impalcato viene realizzata mediante getto in opera su predalles in c.a. aventi spessore 6.0 cm per uno spessore totale finito di getto e predalles pari a 27 cm. L'intero impalcato viene coperto trasversalmente appoggiando le predalles isostaticamente sulle tre travi principali, con funzione di cassero a perdere per il getto integrativo della soletta. A getto maturato la soletta avrà uno schema statico di trave continua su tre appoggi.

Durante la realizzazione della soletta si considerano le seguenti tre fasi di carico:

Fase 1

Le predalles sono posate sulle travi con schema statico di trave semplicemente appoggiata.

Gli sbalzi presentano luce costante pari a 2.00 m; la campata ha luce pari a 4.00 m (interasse travi). Ciascuna predalle sostiene sé stessa, l'armatura integrativa ed il getto di completamento a spessore definitivo (21 cm).

In questa fase allo scopo di alleggerire le armature del traliccio la fase di getto della soletta è divisa in due fasi:

Inserendo un cassero in pernervo-metal il getto di soletta sugli sbalzi è limitato a 0.75 m dalla veletta esterna, allo scopo di contenere le tensioni nei tralicci di armatura e poter sfruttare in seconda fase di getto una sezione di cemento armato.

Fase 1-b

Il getto di completamento dello sbalzo è eseguito una volta che il calcestruzzo gettato in prima fase abbia raggiunto una resistenza di almeno 20 MPa. In tale fase si montano anche le velette alle estremità degli sbalzi.

Fase 2

Lo schema statico è di trave continua, costituita dall'intero spessore di soletta (27 cm predalles compresa); i carichi in gioco sono i permanenti portati.

Lo schema statico è trave continua appoggiata sulle travi; i carichi sono i sovraccarichi accidentali. Le coppelle sono inoltre provviste di aree libere in corrispondenza delle piattabande superiori delle travi sottostanti al fine di consentire la disposizione dei connettori di tipo Nelson. Una volta disposte le lastre prefabbricate si procede alla posa delle barre di orditura longitudinali e delle barre di orditura integrativa trasversale.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

10.2. FASE 1

Si riporta la verifica delle predalles per la fase I di getto della soletta considerando come elemento resistente la sola predalla in calcestruzzo armata di tralicci, per una lunghezza longitudinale di soletta di 1.00 m.

10.2.1. ANALISI DEI CARICHI

La fase 1 di getto è suddivisa in due fasi; una prima fase il getto di soletta sugli sbalzi è limitato a 0.75 m dalla veletta esterna, e una fase successiva di completamento di getto di soletta dello spessore di getto pari a 21 cm.

In questa fase si considerano agenti il peso proprio delle lastre prefabbricate, delle velette e del getto della soletta che è ancora inerte.

La struttura resistente in questa fase di carico è costituita unicamente dalla predalle armata dai tralicci di altezza 15 cm ad interasse 40 cm con ferro Ø18 superiore e 2 Ø16 inferiori correnti trasversalmente e con traliccio in ferri Ø10.

I carichi considerati in questa fase sono:

Predalla (6.0 cm)	25 kN/m ³ x 0.06 m	=	1.50 kN/m ²
Soletta	25 kN/m ³ x 0.21 m	=	5.25 kN/m ²
Velette	1.0 kN/m x 2	=	2.0 kN/m

La ripartizione trasversale dei carichi è stata calcolata mediante lo schema statico sotto riportato.

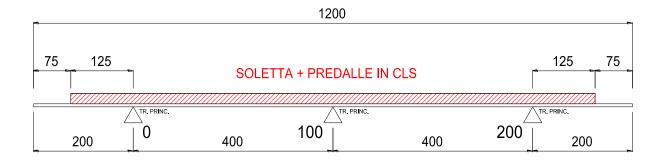


Figura 10.1 Fase 1-a

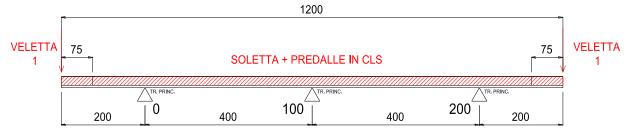


Figura 10.2 Fase 1-b

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

10.2.2. MODELLO DI CALCOLO

La soletta è schematizzata come trave in semplice appoggio sulle travi principali.

Figura 10.3 Modello di calcolo soletta fase I

10.2.2.1. Carichi

Carichi di fase I-a

La prima fase di getto considera il peso proprio del calcestruzzo, in cui il getto di soletta sugli sbalzi è limitato a 0.75 m dalla veletta.

Figura 10.5 Carico getto calcestruzzo

Carichi di fase I-b

La fase successiva di getto prevede il montaggio delle velette ed il completamento della soletta che viene schematizzata considerando il peso proprio del calcestruzzo gettato per la lunghezza necessaria a portare a finito lo sbalzo e pari a 0.75 m dalla veletta esterna.

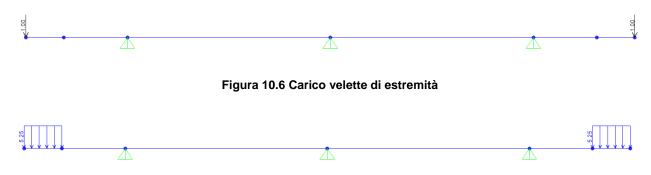


Figura 10.7 Carico getto calcestruzzo integrativo

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

10.2.2.2. Sollecitazioni

Sollecitazioni di fase I-a

Si riportano le sollecitazioni di verifica nella condizione di carico elementare.

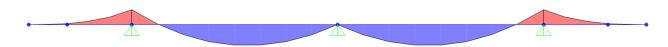


Figura 10.8. Momento flettente

Momento flettente minimo: Momento flettente massimo: $M_{SLE}^{-} = -7.10 \text{ kNm/m}$ $M_{SLE}^{+} = 9.99 \text{ kNm/m}$

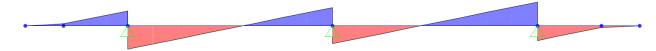


Figura 10.9. Taglio verticale

Taglio verticale lato sbalzo: Taglio verticale lato campata:
$$\begin{split} T_{\text{SX,SLE}} &= 9.56 \text{ kN/m} \\ T_{\text{DX,SLE}} &= 15.28 \text{ kN/m} \end{split}$$

GESTIONE PROGETTI INGEGNERIA srl

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Sollecitazioni di fase I-b

Si riportano le sollecitazioni di verifica nella condizione di carico elementare.

Figura 10.10. Momento flettente

Momento flettente minimo: Momento flettente massimo: $M_{SLE}^- = -8.40 \text{ kNm/m}$ $M_{SLE}^+ = 0.00 \text{ kNm/m}$

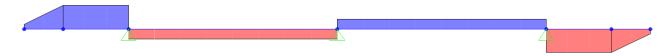


Figura 10.11. Taglio verticale

Taglio verticale lato sbalzo: Taglio verticale lato campata: $T_{SX,SLE} = 4.94 \text{ kN/m}$ $T_{DX,SLE} = 2.10 \text{ kN/m}$

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Verifica a traliccio predalles Fase 1

Fase 1-a

Momento flettente minimo: $M^-SLU = -7.10 * 1.35 = -9.59 \text{ kNm/m}$ Momento flettente massimo: $M^+SLU = 9.99 * 1.35 = 13.49 \text{ kNm/m}$

Taglio verticale lato sbalzo: $T_{SX,SLU} = 9.56*1.35 = 12.91 \text{ kN/m}$ Taglio verticale lato campata: $T_{DX,SLU} = 15.28*1.35 = 20.63 \text{ kN/m}$

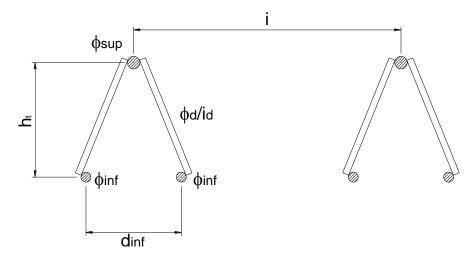
Fase 1-b

Momento flettente minimo: $M^{-}SLU = -8.40 * 1.35 = -11.34 \text{ kNm/m}$ Momento flettente massimo: $M^{+}SLU = 0.00 * 1.35 = 0.00 \text{ kNm/m}$

Taglio verticale lato sbalzo: $T_{SX,SLU} = 4.94*1.35 = 6.67 \text{ kN/m}$ Taglio verticale lato campata: $T_{DX,SLU} = 2.10*1.35 = 2.84 \text{ kN/m}$

GESTIONE PROGETTI INGEGNERIA srl

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3


10.2.3. VERIFICA TRALICCIO PREDALLE FASE I-A

Caratteristiche di sollecitazione

Momento negativo massimo sull'appoggio	MB=	-9.59	kNm
Momento positivo massimo in campata	MC=	13.49	kNm
Taglio sx sull'appoggio	Vb sx=	12.91	kN
Taglio dx sull'appoggio	Vb dx =	20.63	kN

Caratteristiche tralicci

Altezza totale traliccio: ht	15 cm		
Altezza utile traliccio: ht	13.3 cm	=	0.133 m
Distanza ferri inf: dinf	10 cm	=	0.1 m
Diametro ferro sup: \$\psi\$sup	1.8 cm	=	0.018 m
Diametro ferro sup: \$\psi\$sup	0.0 cm	=	0 m
Diametro ferri inf: \phi inf	1.6 cm	=	0.016 m
Diametro ferri inf: \phi inf	1.6 cm	=	0.016 m
Diametro diagonali: ød	1.0 cm	=	0.01 m
Interasse tralicci: i	40 cm	=	0.4 m
Interasse diagonali: id	20 cm	=	0.2 m
Peso totale sola armatura:		=	26.13 kg/m^2

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Verifica a momento negativo

M=-9.59 kNm

N=-72.11 kN per ogni metro di soletta

nº di tralicci per ogni metro di soletta 2.50

Sforzo normale nei correnti N=28.8 kN

Corrente superiore (teso)

 3913 daN/cm^2 Verifica di resistenza 1133 daN/cm² σ=

Corrente inferiore (compresso)

Verifica di resistenza 717 daN/cm^2 $\sigma =$

Verifica di stabilità 0.4 cm <u>i</u>=

20.00 cm Lo= 50.00 $\lambda =$

1.35 $\omega =$

3913 daN/cm² 967 daN/cm^2 $\sigma =$

Azioni nei diagonali dei tralicci

Nd=539 daN

Verifica di stabilità 686 daN/cm^2 $\sigma =$

> i= 0.25 cm

Ld= 17.37 cm β = 0.7

 $\lambda = (\Lambda \delta - 3) * \beta / \iota$ 40.25 1.22 $\omega =$

> 837 daN/cm^2 $3913 \quad daN/cm^2$ < $\sigma =$

3076 daN/cm² Portata residua dei diagonali s=

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Verifica a momento positivo

M=13.49 kNm

N=105.39 kN per ogni metro di soletta

n° di tralicci per ogni metro di soletta 2.50 Sforzo normale nei correnti 42.2 kN N=

Corrente superiore (compresso)

1657 daN/cm² Verifica di resistenza $\sigma =$ Verifica di stabilità 0.45 cm i= 20.00 cm Lo= 44.44 $\lambda =$ 1.27 $\omega =$

> 2105 daN/cm² 3913 daN/cm² $\sigma =$ <

Corrente inferiore (teso)

 $1048 \, da \, N/cm^2$ $3913 \quad daN/cm^2$ Verifica di resistenza $\sigma =$

1.21

Azioni nei diagonali dei tralicci

343 daN Nd=Verifica di stabilità 437 daN/cm^2 $\sigma =$ i= 0.25 cm Ld= 17.00 cm β = 0.7 $\lambda = (\Lambda \delta - 3) * \beta / \iota$ 39.19

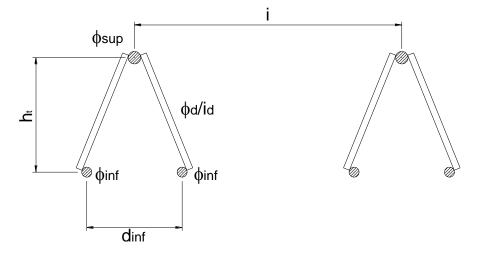
 $\omega =$

 $\sigma =$

 527 daN/cm^2 3913 daN/cm² <

3386 daN/cm² Portata residua dei diagonali s=

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3


10.2.4. VERIFICA TRALICCIO PREDALLE FASE I-B

Caratteristiche di sollecitazione

Momento negativo massimo sull'appoggio	MB=	-11.34	kNm
Momento positivo massimo in campata	MC=	0.00	kNm
Taglio sx sull'appoggio	Vb sx=	6.67	kN
Taglio dx sull'appoggio	Vb dx =	2.84	kN

Caratteristiche tralicci

Altezza totale traliccio: ht	15 cm		
Altezza utile traliccio: ht	13.3 cm	=	0.133 m
Distanza ferri inf: dinf	10 cm	=	0.1 m
Diametro ferro sup: \$\phi\$sup	1.8 cm	=	0.018 m
Diametro ferro sup: \$\phi\$sup	0.0 cm	=	0 m
Diametro ferri inf: \phi inf	1.6 cm	=	0.016 m
Diametro ferri inf: \phi inf	1.6 cm	=	0.016 m
Diametro diagonali: ød	1.0 cm	=	0.01 m
Interasse tralicci: i	40 cm	=	0.4 m
Interasse diagonali: id	20 cm	=	0.2 m
Peso totale sola armatura:		=	26.13 kg/m^2

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Verifica a momento negativo

M=-11.34 kNm

N=-85.26 kN per ogni metro di soletta

n° di tralicci per ogni metro di soletta 2.50

Sforzo normale nei correnti N=34.1 kN

Corrente superiore (teso)

3913 daN/cm² Verifica di resistenza 1340 daN/cm² σ=

Corrente inferiore (compresso)

Verifica di resistenza 848 daN/cm^2 $\sigma =$

Verifica di stabilità 0.4 cm <u>i</u>=

20.00 cm Lo= 50.00 $\lambda =$ 1.35 $\omega =$

3913 daN/cm² 1143 daN/cm² $\sigma =$

Azioni nei diagonali dei tralicci

74 daN Nd=Verifica di stabilità 94 daN/cm^2 $\sigma =$

i= 0.25 cm

Ld= 17.37 cm $\beta = 0.7$

 $\lambda = (\Lambda \delta - 3) * \beta / \iota$ 40.25 1.22 $\omega =$

> 115 daN/cm² $3913 \quad daN/cm^2$ < $\sigma =$

3798 daN/cm² Portata residua dei diagonali s=

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Verifica a momento positivo

0.00 kNm M=

0.00 kN per ogni metro di soletta N=

n° di tralicci per ogni metro di soletta 2.50 Sforzo normale nei correnti 0.0 kNN=

Corrente superiore (compresso)

0 daN/cm² Verifica di resistenza $\sigma =$ Verifica di stabilità i= 0.45 cm 20.00 cm Lo= $\lambda =$ 44.44 1.27 $\omega =$

> 0 daN/cm² 3913 daN/cm² $\sigma =$

Corrente inferiore (teso)

0 daN/cm² Verifica di resistenza 3913 daN/cm² $\sigma =$

Azioni nei diagonali dei tralicci

Nd=177 daN Verifica di stabilità 226 daN/cm^2 σ= i= 0.25 cm $\beta = 0.7$ Ld= 17.00 cm

 $\lambda = (\Lambda \delta - 3) * \beta / \iota$ 39.19 1.21 ω=

> 272 daN/cm² 3913 daN/cm² < $\sigma =$

Portata residua dei diagonali s= 3641 daN/cm²

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

10.3. **FASE II**

Si riportano le caratteristiche di sollecitazione della soletta per la fase II in cui sono messi in opera tutti i carichi permanenti previsti, considerando la soletta come una sezione in cemento armato di spessore 27 cm.

I valori delle sollecitazioni, ricavati direttamente dai modelli globali saranno combinati con le sollecitazioni dovute ai carichi di traffico di fase III, con le sollecitazioni dovute a ritiro e termica e con quelle dovute al carico vento, secondo le combinazioni di carico agli SLU ed utilizzate per le verifiche di resistenza.

10.3.1. ANALISI DEI CARICHI

In questa fase la soletta è interamente reagente ed i carichi agenti sono i permanenti portati di impalcato come pavimentazione, cordoli, sicurvia impianti, etc.

Getto di completamento in cls	5.25 kN/m ² x 0.75 m x 2	=	7.88	kN/m
Impianto smaltimento acque	1.5 x 2 kN/m	=	3.0	kN/m
Guard Rail con rete integrata	3.0 x 2 kN/m	=	6.00	kN/m
Cordoli	4.25 kN/m ² x 0.75 x 2	=	6.38	kN/m
Pavimentazione	3.00 kN/m ² x 10.50 m	=	31.50	kN/m

54.76 kN/m

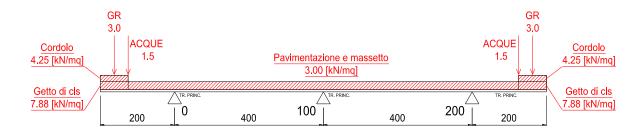


Figura 10.12 Schema di carico fase 2

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

10.3.2. MODELLO DI CALCOLO

Nel calcolo di Fase 2 la soletta è modellata come trave continua su tre appoggi

Figura 10.13 Modello di calcolo della soletta Fase 2

10.3.2.1. Carichi

Si riportano le illustrazioni dei carichi applicati nel modello di calcolo

Figura 10.14 Carico pavimentazione

Figura 10.15 Carico cordolo

Figura 10.16 Carico getto di soletta integrativa

Figura 10.17 Carico Guard Rail

Figura 10.18 Carico smaltimento acque

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

10.3.2.2. Sollecitazioni di fase 2

Figura 10.19 Momento flettente Fase 2

Momento flettente minimo: Momento flettente massimo: $M_{SLE}^{-} = -20.67 \text{ kNm/m}$ $M_{SLE}^{+} = 3.93 \text{ kNm/m}$

Figura 10.20 Taglio verticale fase 2

Taglio verticale lato sbalzo: Taglio verticale lato campata: $T_{SX,SLE} = 15.38 \text{ kN/m}$ $T_{DX,SLE} = 12.15 \text{ kN/m}$

Tali valori di sollecitazione saranno sommati ai valori delle sollecitazioni dovuti ai carichi di fase III.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

10.4. FASE III

10.4.1. RIPARTIZIONE TRASVERSALE DEI CARICHI MOBILI SU SOLETTA

La ripartizione trasversale dei carichi è stata eseguita considerando le condizioni di carico di seguito riportate, in esse il valore del carico concentrato rappresenta la coppia in direzione longitudinale di ruote, mentre i carichi distribuiti sono valutati a metro lineare. Essendo la coppia di carichi concentrati ad interasse superiore al metro lineare (1.20 m) ed essendo carichi che hanno una diffusione longitudinale degli effetti, il calcolo delle sollecitazioni da essi prodotta è poi diviso per le effettive larghezze collaboranti calcolate caso per caso.

La ripartizione trasversale dei carichi è stata calcolata mediante uno schema statico di trave su 3 appoggi con due sbalzi esterni aventi le misure sopra indicate, disponendo i carichi secondo le linee di influenza allo scopo di massimizzarne gli effetti sugli sbalzi e sugli appoggi della soletta sulle travi.

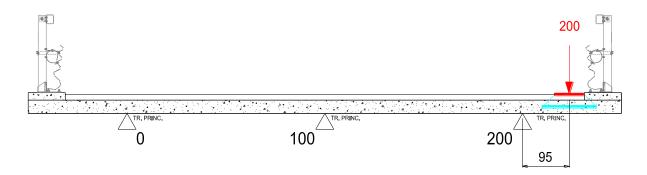


Figura 10.21. Minimo momento negativo su trave esterna - Schema di carico 2

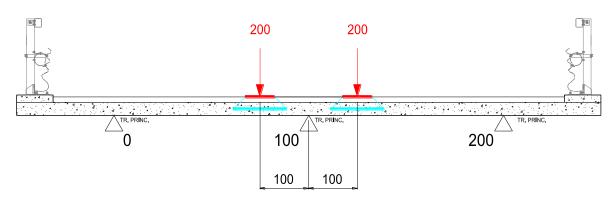


Figura 10.22. Minimo momento negativo su trave centrale - Schema di carico 2

S.G.C. E78 GROSSETO - FANO Tronco Selci Lama - S. Stefano di Gaifa - Lotto 7

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

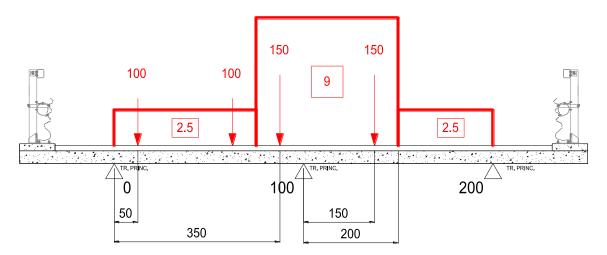


Figura 10.23. Minimo momento negativo su trave centrale - Schema di carico 1

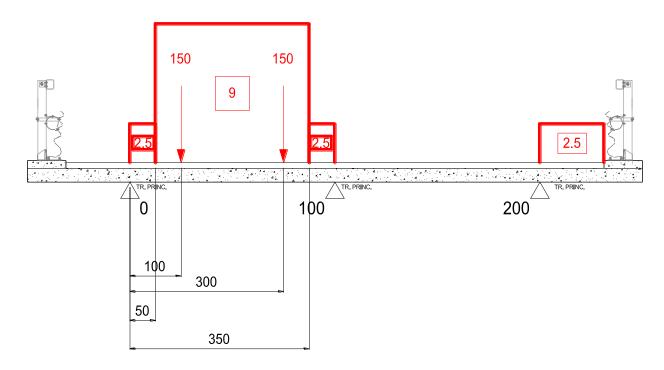


Figura 10.24. Massimo momento positivo in campata - Schema di carico 1

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

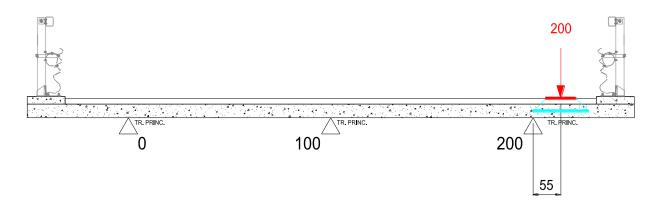


Figura 10.25. Massimo taglio su trave esterna - Schema di carico 2

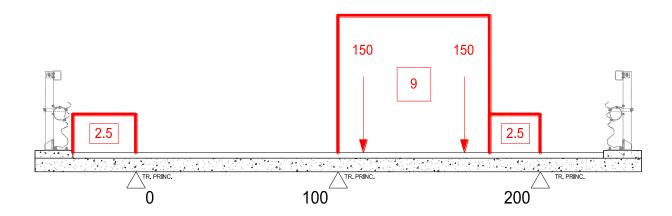


Figura 10.26. Massimo taglio su trave interna - Schema di carico 1

S.G.C. E78 GROSSETO - FANO Tronco Selci Lama - S. Stefano di Gaifa - Lotto 7

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

10.4.2. LARGHEZZE COLLABORANTI

Il calcolo delle larghezze collaboranti è di fondamentale importanza per conoscere quanta sezione resistente di soletta è interessata dalla diffusione del carico applicato (esclusivamente per il carico tandem), per poter eseguire successivamente le verifiche di resistenza. La diffusione del carico avviene inizialmente in direzione verticale, l'impronta di carico sulla superficie della pavimentazione infatti si trasmette con una diffusione dell'impronta a 45° fino all'asse di mezzeria della soletta. Successivamente in direzione orizzontale fino alle travi principali. La larghezza collaborante dipende pertanto dalla posizione del carico rispetto agli assi delle travi principali.

10.4.2.1. Calcolo diffusione verticale impronta

Per le verifiche locali della soletta, secondo le indicazioni di cui al paragrafo § 5.1.3.3.6 delle NTC 2018 le azioni concentrate dovute ai carichi mobili si diffondono con un angolo di 45° dal manto di usura fino al piano medio della struttura della soletta stessa, così come riportato nella figura seguente.

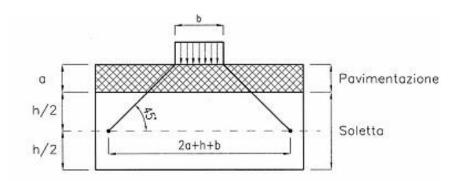


Figura 10.27: Diffusione dei carichi concentrati

In aggiunta, [Rif. Costruzioni di Ponti, Petrangeli], la larghezza collaborante della soletta L_c su cui va ad incidere la diffusione del carico concentrato andrebbe estesa nelle zone di campata secondo la formula:

$$L_{C} = 2 \cdot a + b + h + \frac{L}{2}$$

dove L rappresenta la luce della soletta in campata (tra due travi adiacenti), mentre nelle zone di sbalzo:

$$L_C = 2 \cdot a + b + h + 2 \cdot x$$

dove x è la distanza tra il carico e l'asse della trave.

Di conseguenza, risultando L_c funzione dell'impronta del carico mobile, per il caso in esame si avranno due larghezze collaboranti di riferimento, uno per lo schema di carico 1 e uno per lo schema di carico mobile 2.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Schema di carico 1

= larghezza ruota = 40 cm

= spessore del manto di usura = 11 cm S_1

= spessore del getto di cls (campata)= 27 cm S_2

Sezione corrente:

$$D_{SOL,C} = L_T + 2 \cdot s_1 + 2 \cdot \frac{s_2}{2} = 40 + 2 \cdot 11 + 2 \cdot \frac{27}{2} = 89 \text{ cm}$$

Schema di carico 2

= larghezza ruota = 35 cm

= spessore del manto di usura = 11 cm S_1

= spessore medio del getto di cls = 27 cm

Sezione corrente:

$$D_{SOL,C} = L_r + 2 \cdot s_1 + 2 \cdot \frac{s_1}{2} = 35 + 2 \cdot 11 + 2 \cdot \frac{27}{2} = 84 \text{ cm}$$

Nelle verifiche locali relative allo sbalzo, le azioni concentrate da urto e da carico tandem ad esso associato (Schema di Carico 2) saranno distribuiti verticalmente sino alla mezzeria della soletta ed orizzontalmente sino all'asse della trave esterna dell'impalcato (vincolo d'incastro dello sbalzo soletta) secondo quanto appena descritto nel paragrafo in esame.

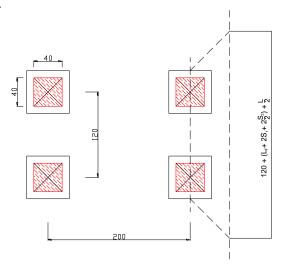
RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

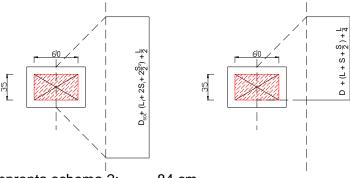
10.4.2.2. Calcolo larghezza collaborante

La larghezza collaborante per le sezioni di mezzeria, di pila e di giunto su spalla del ponte è calcolata come segue:

CAMPATA L = 400 cm

Schema di carico 1




Figura 10.28. Diffusone su sezioni tipiche mezzeria

Interasse assi di carico: 120 cm

Diffusione impronta schema 1: 89 cm Interasse travi: 400 cm

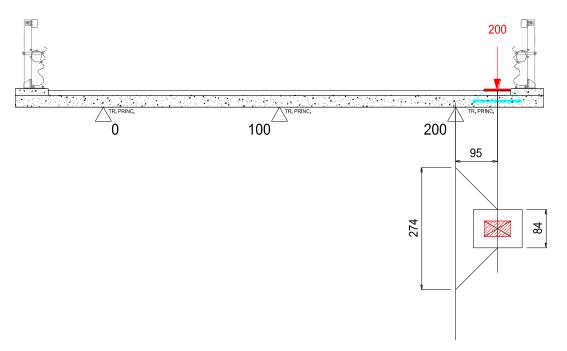
Larg. coll. sez. corrente: 120 + 89 + 400 / 2 = 409 cm

Schema di carico 2

Diffusione impronta schema 2: 84 cm Interasse travi: 400 cm

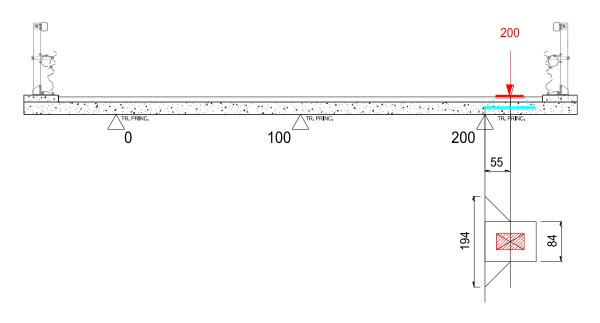
Larg. coll. sez. corrente: 84 + 400 / 2 = 284 cm

PROGETTAZIONE ATI:



S.G.C. E78 GROSSETO - FANO Tronco Selci Lama - S. Stefano di Gaifa - Lotto 7

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3


SBALZO

Minimo momento negativo

Larg. coll. sez. corrente: 84 + 95*2 = 274 cm

Massimo taglio

Larg. coll. sez. corrente: 84 + 55*2 = 194 cm

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

10.4.3. Effetti dei carichi da traffico

Le sollecitazioni seguenti sono riferite alla condizione di carico elementare dei carichi da traffico.

Le sollecitazioni saranno calcolate sia per la sezione corrente che per la sezione in corrispondenza del giunto di spalla, nel qual caso sarà applicato alle sollecitazioni da traffico un coefficiente di amplificazione dinamica.

10.4.3.1. Coefficiente di amplificazione dinamica sezione di giunto spalla

Secondo quanto previsto dalla attuale circolare applicativa alle NTC al paragrafo C.5.1.4.3 l'azione dinamica dei carichi verticali da traffico deve essere amplificata di un fattore Ø in prossimità dei giunti di espansione in funzione della distanza da esso con la seguente formulazione:

$$\Delta \varphi_{\text{fat}} = 1,30 \cdot \left(1 - \frac{d}{26}\right) \ge 1,0$$
 (C5.1.1)

dove d è la distanza in m della sezione considerata dalla sezione di giunto, espressa in m.

dove per d=0 il coefficiente assume il suo valore massimo di 1.3, tutti i carichi da traffico saranno amplificati del fattore

Ø = 1.30.

PROGETTAZIONE ATI:

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

10.4.4. MOMENTO MINIMO SU TRAVE ESTERNA

Il momento minimo su trave è valutato mediante lo schema di carico 2 nella seguente configurazione.

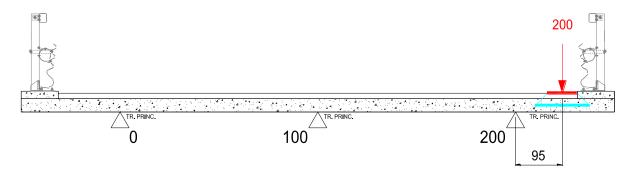


Figura 10.29. Minimo momento negativo su trave esterna - Schema di carico 2

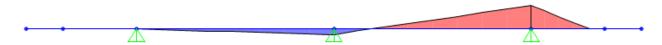


Figura 10.30. Andamento del momento flettente da carichi concentrati

SEZIONE CORRENTE

Momento da carichi concentrati $M_c = -190 \text{ kNm}$ Larghezza collaborante $L_{coll} = 2.74 \text{ m}$ Momento su striscia di 1m $M_c = -69.34 \text{ kNm/m}$

Momento risultante su striscia di 1m $M^{-} = -69.34 \text{ kNm/m}$

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

10.4.5. MOMENTO MINIMO SU TRAVE INTERNA

Il momento minimo nella sezione di appoggio è valutato sia mediante lo schema di carico 2 nella seguente configurazione che mediante lo schema di carico 1 riportato a seguire.

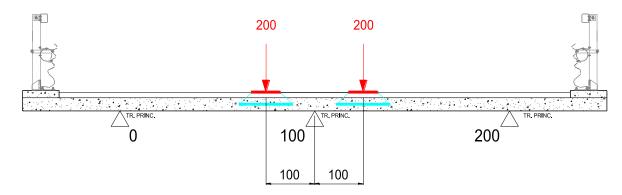


Figura 10.31. Minimo momento negativo su trave centrale - Schema di carico 2

Figura 10.32. Andamento del momento flettente da carichi concentrati

SEZIONE CORRENTE

Momento da carichi concentrati $M_c = -129.11 \text{ kNm}$ Larghezza collaborante $L_{coll} = 2.84 \text{ m}$ Momento su striscia di 1m $M_c = -45.46 \text{ kNm/m}$

Momento risultante su striscia di 1m $M^{-} = -45.46 \text{ kNm/m}$

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

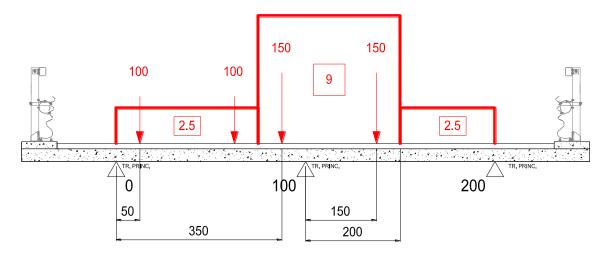


Figura 10.33. Minimo momento negativo su trave centrale - Schema di carico 1

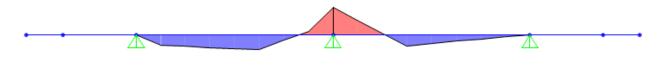


Figura 10.34. Andamento del momento flettente da carichi concentrati

Figura 10.35. Andamento del momento flettente da carichi distribuitii

SEZIONE CORRENTE

Momento da carichi concentrati Larghezza collaborante Momento su striscia di 1m Momento da carichi distribuiti

Momento risultante su striscia di 1m

 $M_{\rm c} = \text{-}\ 272.06\ kNm$

 $L_{\text{coll}}\!=4.09\;m$

 $M_c = -66.52 \text{ kNm/m}$

 $M_c = -9.74 \text{ kNm}$

 $M^{-} = -76.26 \text{ kNm/m}$

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

10.4.6. MOMENTO MASSIMO IN CAMPATA

Il momento massimo nella sezione di campata è valutato mediante lo schema di carico 1 nella seguente configurazione:

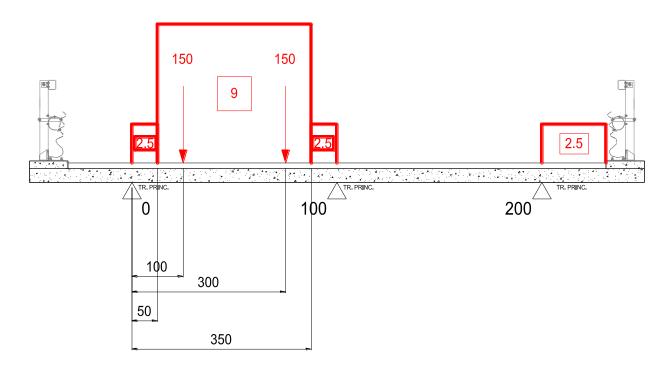


Figura 10.36. Massimo momento positivo in campata - Schema di carico 1

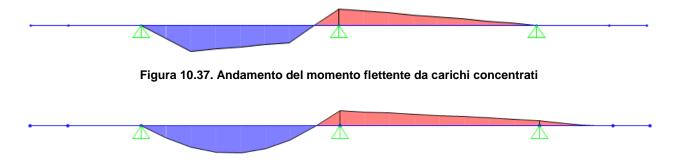


Figura 10.38. Andamento del momento flettente da carichi distribuitii

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

SEZIONE CORRENTE

Momento da carichi concentrati Larghezza collaborante Momento su striscia di 1m Momento da carichi distribuiti

Momento risultante su striscia di 1m

 $\begin{aligned} &M_c = 258.50 \text{ kNm} \\ &L_{coll} = 4.09 \text{ m} \end{aligned}$

 $M_c = 63.20 \text{ kNm/m}$ $M_d = 13.27 \text{ kNm}$

 $M^{-} = 76.47 \text{ kNm/m}$

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

10.4.7. TAGLIO MASSIMO SU TRAVE ESTERNA

Il taglio massimo sulla trave esterna è dato dallo schema di carico 2 nella seguente configurazione:

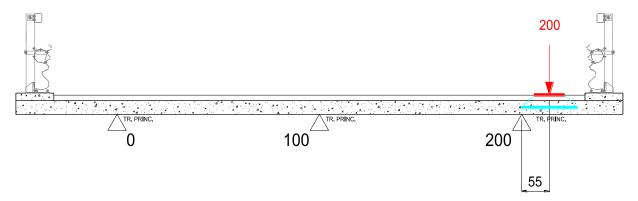


Figura 10.39. Massimo taglio su trave esterna - Schema di carico 2

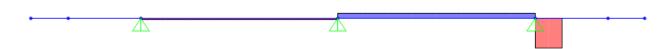


Figura 10.40. Andamento del momento da carichi concentrati

SEZIONE CORRENTE

Taglio da carichi concentrati $V_c = 200 \text{ kN}$ Larghezza collaborante $L_{coll} = 1.94 \text{ m}$ Taglio su striscia di 1m V = 103.09 kN/m

Taglio risultante su striscia di 1m V = 103.09 kN/m

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

10.4.8. TAGLIO MASSIMO SU TRAVE INTERNA

Il taglio massimo sulla trave interna è dato dallo schema di carico 1 nella seguente configurazione.

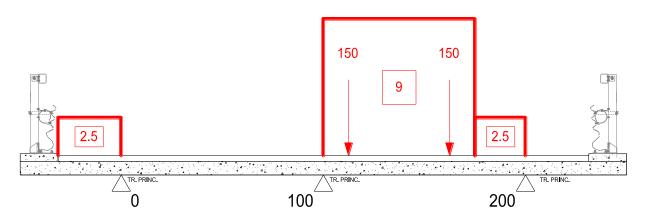


Figura 10.41. Massimo taglio su trave interna - Schema di carico 1

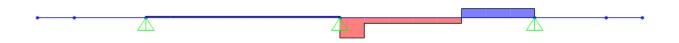


Figura 10.42. Andamento del taglio da carichi concentrati

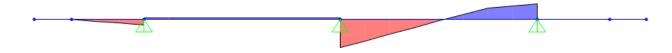


Figura 10.43. Andamento del taglio da carichi distribuiti

SEZIONE CORRENTE

Taglio da carichi concentrati Larghezza collaborante Taglio su striscia di 1m Taglio da carichi distribuiti

Taglio risultante su striscia di 1m

 $V_c = 413.90 \text{ kN}$

 $L_{coll} = 4.09 \text{ m}$

V = 101.20 kN/m

 $V_d = 19.09 \text{ kN}$

 $M^{-} = 120.29 \text{ kN/m}$

PROGETTAZIONE ATI:

S.G.C. E78 GROSSETO - FANO Tronco Selci Lama - S. Stefano di Gaifa - Lotto 7

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

10.5. RIEPILOGO DELLE SOLLECITAZIONI

Di seguito si riportano le sollecitazioni nelle condizioni di carico elementari.

Fase II

Momento flettente minimo su trave esterna	-20.7 kNm/m
Momento flettente massimo in campata	3.9 kNm/m

Taglio verticale lato sbalzo	15.4 kN/m
Taglio verticale lato campata	12.2 kN/m

Fase III

Mobili

Momento massimo in campata

76.5 kNm/m Sezione corrente

Momento minimo su trave

-76.3 kNm/m Sezione corrente

Taglio massimo su appoggio

Sezione corrente 120.3 kN/m

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

10.6. **COMBINAZIONI DI CARICO**

Per le verifiche delle sezioni si adottano le sollecitazioni previste dalle combinazioni di normativa qui di seguito riportate.

SLU FaseII * 1.5 + Acc. Traff. *1.35

10.7. **AZIONI DI VERIFICA**

Momento flettente minimo su trave		
Sezione corrente		
SLU	-134.0	kNm/m

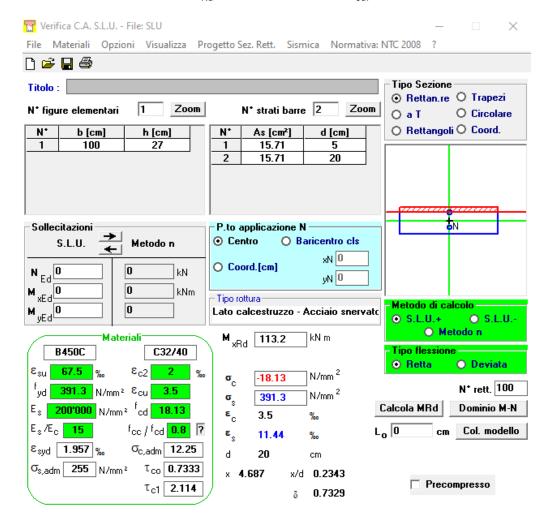
Momento flettente massimo in campata			
	Sezione corrente		
SLU	109.1	kNm/m	

Taglio massimo su trave esterna		
Sezione corrente		
SLU	185.5	kNm/m

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

10.8. VERIFICHE DELLA SOLETTA NELLE SEZIONI CORRENTI

10.8.1. VERIFICHE ALLO SLU


10.8.1.1. Sezioni di campata – verifica a momento flettente positivo

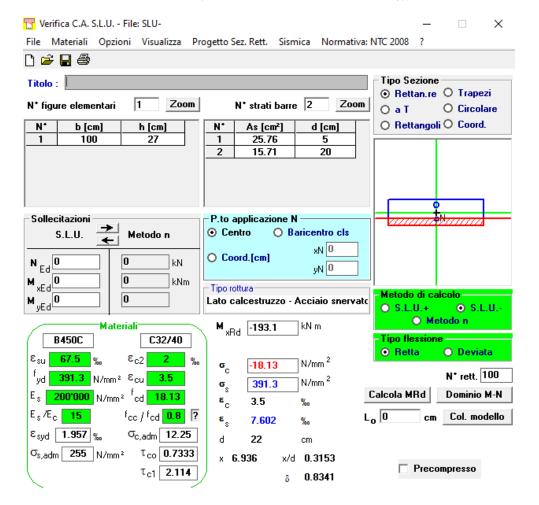
Momento flettente di verifica: $M_{ed} = 109.1 \text{ kNm/m}$

Armatura di verifica: superiore: Ø20/20

inferiore: Ø20/20

 $M_{Rd} = 113.2 \text{ kNm/m} > M_{ed}$, verifica soddisfatta Momento resistente

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3


10.8.1.2. Sezione di appoggio – verifica a momento flettente negativo

Momento flettente di verifica: $M_{ed} = -134.0 \text{ kNm/m}$

Armatura di verifica: superiore: \emptyset 20/20 + \emptyset 16/20

> inferiore: Ø20/20

 $M_{Rd} = -193.1 \text{ kNm/m}$ Momento resistente < M_{ed}, verifica soddisfatta

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

10.8.1.3. Sezione di appoggio – verifica a taglio

La verifica al taglio nelle sezioni tipiche è svolta considerando come armatura resistente quella del traliccio saldato alla predalles metallica e considerando la resistenza del materiale quella residua calcolata in fase I.

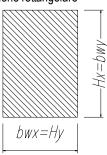
VERIFICA A TAGLIO

Sollecitazioni di progetto

 V_{ed} = 185.5 kN N_{ed} = 0 kN

Sezione rettangolare (o a T)

H = 27 cm d = 22 cm Altezza utile $b_w = 100 \text{ cm}$


Proprietà cls

R _{ck} =	40	N/mm ²	$\gamma_c = 1.5$
f _{ctk} =	2.21	N/mm ²	Resistenza caratteristica a trazione
f _{ctd} =	1.47	N/mm ²	Resistenza di calcolo a trazione
f _{ad} =	18.81	N/mm ²	Resistenza di calcolo a compressione

Armatura Tesa Longitudinale

f _{yk} =	450	N/mm ²	γ _a =	1.15
f _{yd} =	391	N/mm ²		

Sezione rettangolare

 cm^2

25.8

Strato Compresso

Diam (mm)	20	Passo (cm)	20	Strati	1	$A_{sl,sup} =$	25.8	cm^2
Diam (mm)	16	Passo (cm)	20	Strati	1			
Diam (mm)	0	Passo (cm)	20	Strati	1			

Strato Teso

Diam (mm)	20	Passo (cm)	20	Strati	1
Diam (mm)	16	Passo (cm)	20	Strati	1
Diam (mm)	0	Passo (cm)	20	Strati	1

 $c_x = 5$ copriferro (distanza baricentro-bordo cls) $r_1 = 0.00954$ < 0.02

Armatura Staffe (angolo 90°)

f _{ywk} =	450	N/mm ²		g _a =	1.15			
f _{ywd} =	300	N/mm ²		a =	53	(angol	o inclinazione s	taffe)
$A_{\rm slx} =$	3.93	cm ²	Diam (mm)	10	Passo (cm)	20	Braccia	5

PROGETTAZIONE ATI:

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

2) IN PRESENZA DI ARMATURA A TAGLIO

Resistenza a taglio in presenza di specifica armatura a taglio

(cautelativamente si trascura la presenza di compressione)

N/mmq

° (inclinazione bielle cls)

° (inclinazione armature trasv. rispetto all'asse trave)

Verifica conglomerato

$$V_{\text{Rcd}} = 0,9 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{\text{cd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta)/(1 + \text{ctg}^2\theta)$$

899 kN 3 $V_{sdu.x}$ = 185.5 kN V_{Red} = Verificato

Verifica armatura trasversale

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin\alpha$$

V_{Rsd} = 289 kN ³ V_{sdux} = 185.5 kN Verificato

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

10.8.2. VERIFICHE ALLO SLE

Mediante il foglio excel di combinazione si ricavano anche le sollecitazioni allo SLE_frequente e allo SLE_quasi permanente.

Momento flettente minimo su trave		
Sezione corrente		
SLE_frequente	-77.9	kNm/m

Momento flettente minimo su trave			
Sezione corrente			
SLE_quasi perm20.7 kNm/m			

Momento flettente massimo in campata			
	Sezione corrente		
SLE_frequente	61.3	kNm/m	

Momento flettente massimo in campata					
Sezione corrente					
SLE_quasi perm.	SLE_quasi perm. 3.9 kNm/m				

Taglio massimo su trave esterna				
Sezione corrente				
SLE_frequente 105.6 kNm/m				

Taglio massimo su trave esterna					
Sezione corrente					
SLE_quasi perm. 15.4 kNm/m					

Si procede pertanto alla verifica a fessurazione e a quella delle tensioni di esercizio.

10.8.2.1. Verifiche a fessurazione

In accordo con il par. 4.1.2.2.4.5 del DM 17/01/18 nel caso di struttura in cls ordinario si rispettano le limitazioni di tab. 4.1.IV. Si verificano unicamente le combinazioni di carico delle sezioni correnti.

La soletta di impalcato si trova nelle seguenti condizioni:

Classe di esposizione XC4

Condizioni ambientali Aggressive. Armatura Poco sensibile

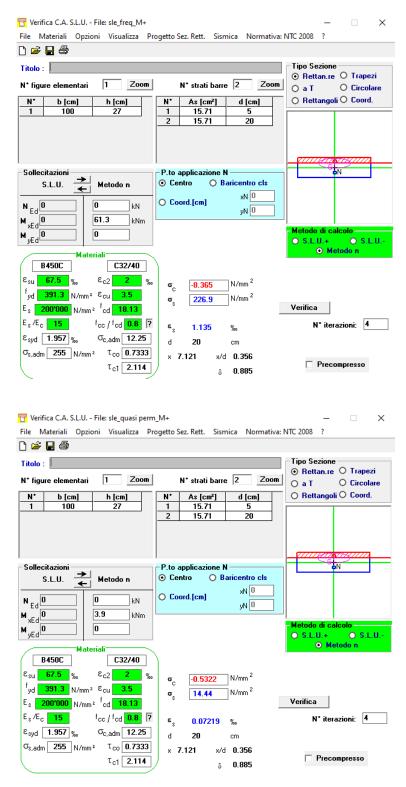
CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

	C: d:	Condinioni	Combinaciona	Armatura		a	
			Combinazione di azioni	Sensibile		Poco sensibile	
	esigenze	ambientan	ui azioili	Stato limite w _d Stato lim		Stato limite	$\mathbf{w_d}$
	a Ordinarie		frequente	ap. fessure	$\leq w_2$	ap. fessure	$\leq w_3$
			quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$
П	b	Aggregaine	frequente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$
	ь	Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$
	Malta agreesia		frequente	formazione fessure	-	ap. fessure	$\leq w_1$
	с	Molto aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$

Essendo, in accordo con il par. 4.1.2.2.4:

Combinazione frequente: w2 = 0.3 mmCombinazione quasi permanente: w1 = 0.2 mm

PROGETTAZIONE ATI:

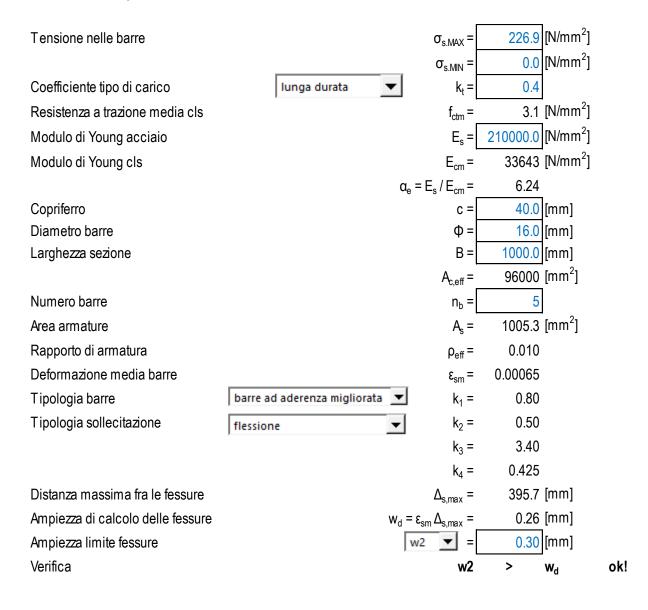


RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Sezione in campata

 $\sigma_{S, frequente} = 226.9 \text{ MPa}$

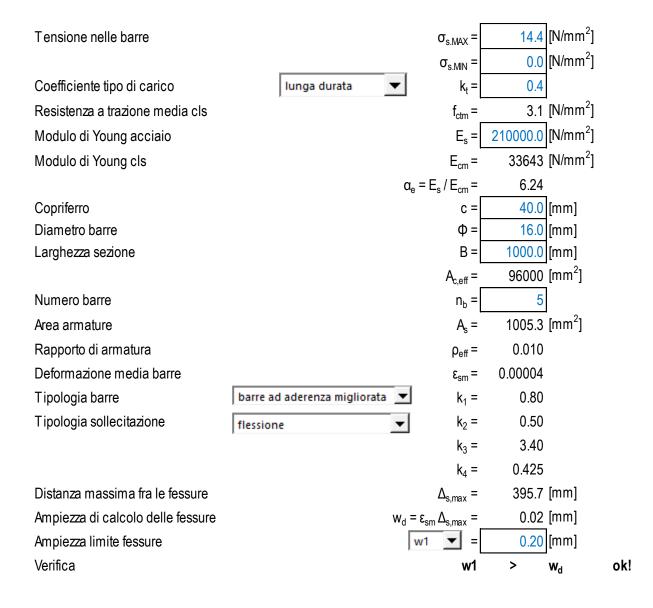
 $\sigma_{\text{S, quasi permanente}} = 14.44 \text{ MPa}$



RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

SLE_frequente

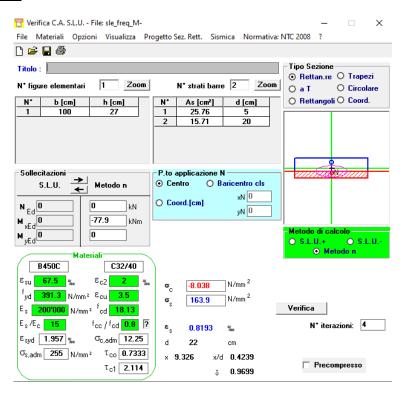
Calcolo dell'ampiezza delle fessure

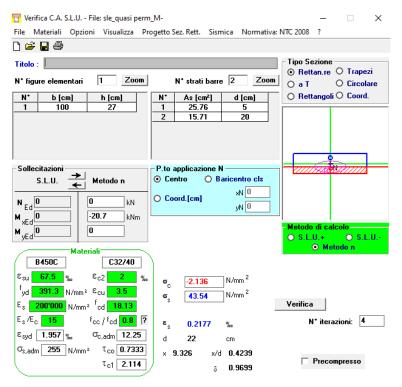


RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

SLE_quasi permanente

Calcolo dell'ampiezza delle fessure



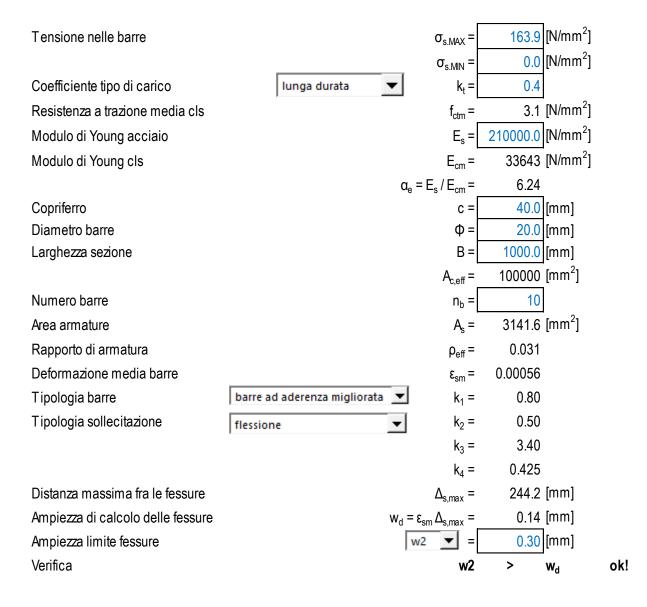


RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Sezione di appoggio

 $\sigma_{S, frequente} = 163.90 \text{ MPa}$

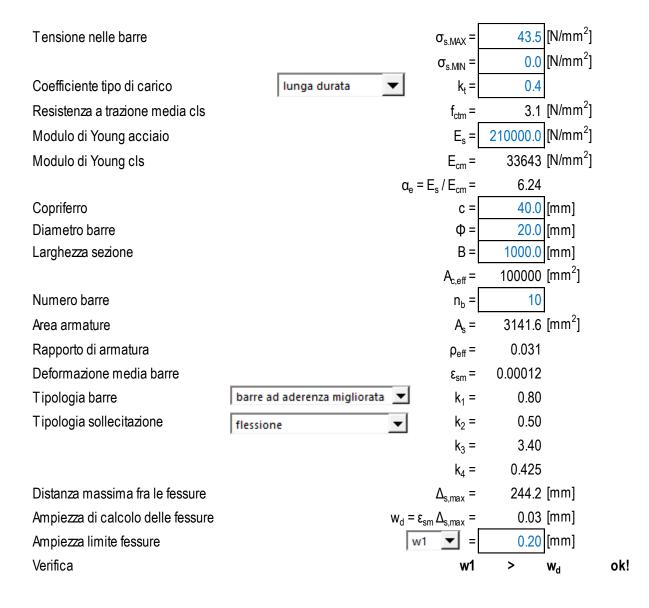
 $\sigma_{\text{S, quasi permanente}} = 43.54 \; MPa$



RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3


SLE_frequente

Calcolo dell'ampiezza delle fessure



RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

SLE_quasi permanente

Calcolo dell'ampiezza delle fessure

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

10.8.2.2. Verifiche tensionali allo SLE

Calcestruzzo

Secondo le NTC08 par.4.1.2.2.5.1 "Tensione massima di compressione del calcestruzzo nelle condizioni di esercizio", la massima tensione di compressione del calcestruzzo oc , deve rispettare la limitazione seguente:

 $\sigma c < 0.60$ fck per combinazione caratteristica (rara) (4.1.40) $\sigma c < 0.45$ fck per combinazione quasi permanente. (4.1.41)

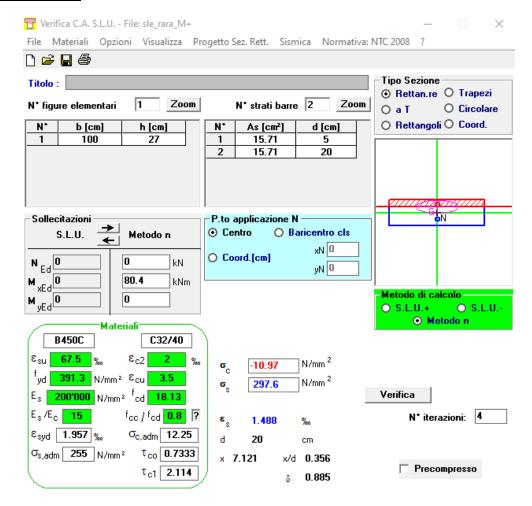
Nel caso di elementi piani (solette, pareti, ...) gettati in opera con calcestruzzi ordinari e con spessori di calcestruzzo minori di 50 mm i valori limite sopra scritti vanno ridotti del 20%.

Acciaio

Secondo le NTC08 par.4.1.2.2.5.2 "Tensione massima dell'acciaio in condizioni di esercizio", la tensione massima nell'acciaio (σs), per effetto delle azioni dovute alla combinazione caratteristica, deve rispettare la limitazione seguente:

σs < 0,8 fyk. per combinazione carateristica (rara) (4.1.42)

N.B.: Si verifica unicamente la combinazione di carico rara a favore di sicurezza.



RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Sezione in campata

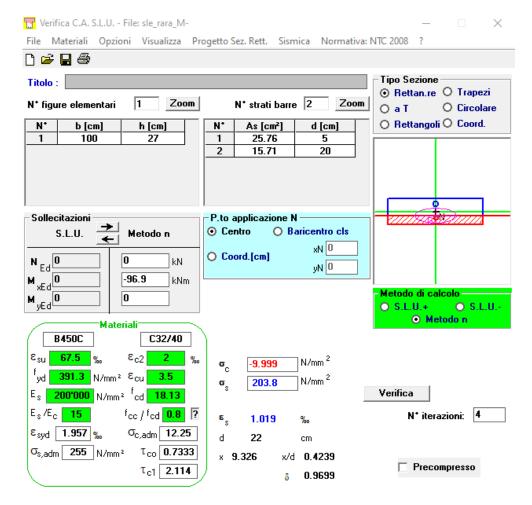
Calcestruzzo:

Limitazioni Combinazione Quasi Permanente oc = 10.97 MPa < 0.45 fck = 0.45 * 33.2 = 14.94 MPa

Acciaio

Limitazioni Combinazione RARA

 $\sigma s = 297.6 \text{ MPa} < 0.8 \text{ fyk} = 0.8 * 450 = 360 \text{ MPa}$



RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Sezione di appoggio

Calcestruzzo

Limitazioni Combinazione Quasi Permanente σc = 10.0 MPa < 0.45 fck = 0.45 * 33.2 = 14.94 MPa

Acciaio

Limitazioni Combinazione RARA

 $\sigma s = 203.8 \text{ MPa} < 0.8 \text{ fyk} = 0.8 * 450 = 360 \text{ Mpa}$

PROGETTAZIONE ATI:

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

10.9. VERIFICHE DEGLI SBALZI LATERALI

Si procede con la verifica locale degli elementi strutturali del cordolo interessati dall'eventuale svio e conseguente urto di veicoli stradali. Si procede alle verifiche locali sulla zona del cordolo per garantire il trasferimento delle forze di urto dalle barriere alla sezione resistente del cordolo. Ai fini delle verifiche in esame si considerano i seguenti carichi di progetto:

- azione da urto veicolare come da par.3.6.3.3.2 delle NTC2018

In accordo alle normative di riferimento, lo scenario di progetto si configura come condizione (e quindi combinazione) eccezionale, ossia coefficienti di ponderazione delle azioni e coefficienti di riduzione delle resistenze del calcestruzzo armato unitari.

Tenuto in conto della tipologia di elemento, della sua funzione strutturale e della natura dei carichi applicati, si procede con le seguenti verifiche "locali":

- Meccanismo "A": ripartizione orizzontale del carico localizzato di svio
- Meccanismo "B": resistenza a "pull-out" in corrispondenza dell'ancoraggio teso

Nelle figure seguenti si mostrano i meccanismi di calcolo considerati.

SEZIONE TRASVERSALE

STRALCIO PLANIMETRICO 28 T1

Figura 10.44 Schema del Meccanismo "A"

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

SEZIONE LONGITUDINALE

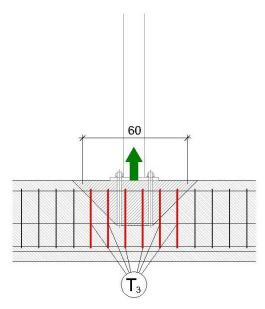



Figura 10.45 Schema del Meccanismo "B"

Per quanto riguarda il secondo (meccanismo "B"), l'azione sollecitante sulla coppia di ancoraggi tesi è stimata, partendo dal momento flettente ad estradosso cordolo, assumendo un braccio della coppia interna della connessione della barriera pari a 200 mm.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Meccanismo "A"

In virtù degli schemi di introduzione del carico sopra illustrati si ipotizza che per il tirante T1 intervengano almeno 3\psi12 (armatura longitudinale cordolo \psi12 passo 20 cm) mentre per lo schema T2 si utilizzano le staffe tipiche del cordolo costituite da ferri φ12 passo 20 cm.

Tirante T1

Azione applicata 100 kN Η =

Azione sollecitante nell'elemento Nsd = $0.65 \times 100 = 75 \text{ kN}$

Sezione resistente 3∮12 As

Tensione di snervamento 450 N/mm2 fy =

Azione resistente 3x113x450/1000 = 153 kNNrd =

Nrd / Nsd = 153 / 75 = 2.04 > 1.00Coefficiente di sicurezza Fs

La verifica è pertanto soddisfatta.

Tirante T2

Н Azione applicata 100 kN

Azione sollecitante nell'elemento Nsd $0.50 \times 100 = 50 \text{ kN}$ =

Sezione resistente $1\phi 12/200$ mm su 750mm = As =

 $3.75 \times 113 = 423 \text{ mm}$

Tensione di snervamento 450 N/mm2 fy =

Azione resistente 423x450/1000 = 190 kNNrd =

Coefficiente di sicurezza Nrd / Nsd = 190 / 50 = 3.81 > 1.00Fs =

La verifica è pertanto soddisfatta.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Meccanismo "B"

In virtù degli schemi di introduzione del carico sopra illustrati si ipotizza che per il tirante T3 intervengano le sole staffe previste ad hoc in corrispondenza dell'ancoraggio della barriera, costituite da ferri ϕ 12 a passo di 20 cm.

Tirante T3

Azione applicata	Н	=	100 kN
Luce di inflessione	L	=	0.93 m
Momento flettente sollecitante alla	M_{sd}	=	100 x 0.93 = 93 kNm
base del paletto			
Braccio coppia interna connessione	Z	=	0.200 m
paletto-cordolo			
Azione sollecitante sulla coppia di	$N_{\sf sd}$	=	93 / 0.200 = 465 kN
ancoraggi tesi			
Sezione resistente	A_s	=	$2x 5\phi 12 = 10 x 113 = 1130 \text{ mm}^2$
Tensione di snervamento	f_{y}	=	450 N/mm ²
Azione resistente	N_{rd}	=	1130x450/1000 = 508 kN
Coefficiente di sicurezza	F_s	=	$N_{rd} / N_{sd} = 508 / 465 = 1.09 > 1.00$

La verifica è pertanto soddisfatta.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

VERIFICHE LOCALI IN CODIZIONI DI SVIO 10.10.

Ai fini delle verifiche in esame si considerano i seguenti carichi di progetto:

- pesi strutturali
- pesi non strutturali/finiture
- azione da traffico veicolare Schema di carico 2
- azione da urto veicolare come da par.3.6.3.3.2 delle NTC08

10.10.1. **ANALISI DEI CARICHI**

Peso proprio soletta

Si considera uno spessore totale del getto in opera e della lastra predalles pari a 0.21+0.06=0.27m

Spessore 0.21+0.06 = 0.27 ms

Peso specifico 25 kN/m³ γ

Peso per unità di superficie $0.27 \times 25 = 6.75 \text{ kN/m}^2$ g_{1k}

Peso proprio veletta

Peso per unità di lunghezza G_{2k} 1.0 kN/m

Peso proprio cordolo

Sezione BxH $0.75 \times 0.17 = 0.123 \text{ m}^2$

Peso specifico 25 kN/m³

Peso per unità di lunghezza $0.123 \times 25 = 3.188 \text{ kN/m}$ G_{3k}

Peso proprio Guard Rail con rete integrativa

Peso per unità di lunghezza G_{5k} 3.00 kN/m

Peso proprio pavimentazione

3.00 kN/m² Peso per unità di superficie g_{6k}

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

<u>Traffico veicolare – Schema di carico 2</u>

Tenuto in conto delle geometrie dello schema considerato, nonché della luce degli sbalzi laterali, si considera un carico di 200 kN applicato su un'impronta di 0.35x0.60m.

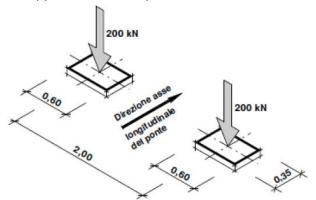


Figura 10.46: Schema di carico 2 (dimensioni espresse in metri)

Gli effetti del carico sono valutati considerando la diffusione fino all'asse della soletta e longitudinalmente, assumendo una diffusione a 45°, come mostrato nello stralcio planimetrico in figura.

Di seguito si riporta la valutazione dei carichi unitari considerati per la verifica della sezione di massimo sbalzo ovvero quella in asse trave.

Fascia tipica

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Urto

Si considera una forza puntuale di 100 kN agente trasversalemente all'asse del cavalcavia e ad una quota di +1.00m rispetto al piano viabile. Considerato che la barriera è di tipo flessibile l'azione dell'urto è assorbita da almeno 3 montanti nel caso in oggetto conservativamente si considera quindi che la larghezza collaborante per l'azione d'urto sia pari a 1.5 metri

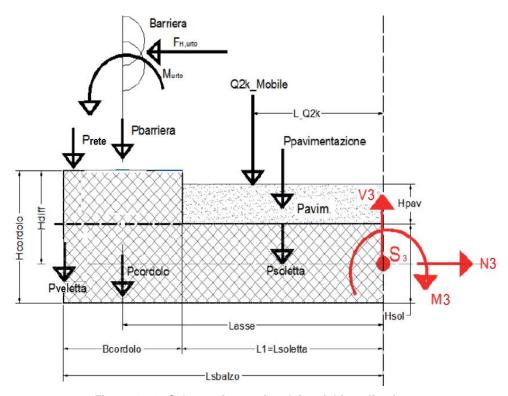


Figura 10.47 Schema riassuntivo dei carichi applicati

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

10.10.2. **SOLLECITAZIONI**

Le sollecitazioni nella sezione di appoggio si ricavano nella combinazione di carico Eccezionale. Le sollecitazioni relative alle Fase 1 e 2 si ricavano rispettivamente dai paragrafi 9.2 e 9.3. A favore di sicurezza non si considera le fasi di getto della Fase 1, quindi il momento e il taglio della Fase 1 sotto riportato è uguale alla somma della rispettiva sollecitazione della Fase 1a e della Fase 1b.

FASE 1

M = -15.50 kNmT = 14.50 kN

FASE 2

M = -20.67 kNmT = 15.38 kN/m

FASE 3

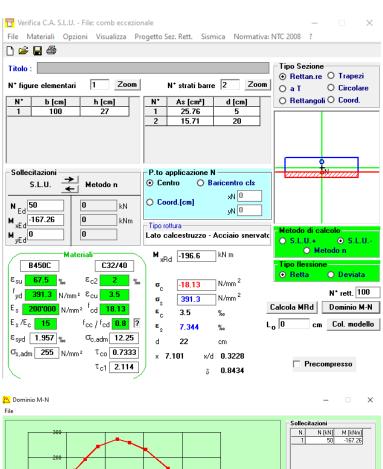
M = -69.34 kNmT = 73 kN

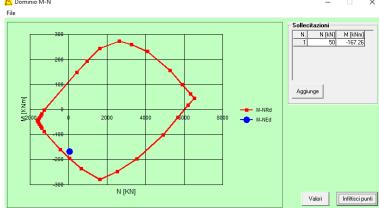
SVIO

 $M = -100 \times (1+0.1+0.27/2)/2.0 = -61.75 \text{ kNm}$ N = 100 / 2.0 = 50 kN

COMBINAZIONE ECCEZIONALE

M = -167.26 kNmT = 102.88 kNN = 50 kN


RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3


10.10.3. **VERIFICHE IN COMBINAZIONE ECCEZIONALE**

10.10.3.1. VERIFICA A TENSOFLESSIONE

Armatura di verifica: superiore: \emptyset 20/20 + \emptyset 16/20

> inferiore: Ø20/20

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

10.10.3.2. Sezione di appoggio – verifica a taglio

La verifica al taglio nelle sezioni tipiche è svolta considerando come armatura resistente quella del traliccio saldato alla predalles metallica e considerando la resistenza del materiale quella residua calcolata in fase I.

VERIFICA A TAGLIO

Sollecitazioni di progetto

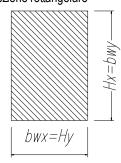
 $V_{ed} = 102.88 \text{ kN}$ $N_{ed} = 0 \text{ kN}$

Sezione rettangolare (o a T)

H = 27 cm d = 22 cm Altezza utile

 $b_{w} = 100 \text{ cm}$

Proprietà cls


N/mm² 1.5 $R_{ck} =$ 40 $\gamma_c =$ 2.21 N/mm² Resistenza caratteristica a trazione $f_{ctk} =$ N/mm² 1.47 Resistenza di calcolo a trazione $f_{ctd} =$ N/mm² $f_{cd} =$ 18.81 Resistenza di calcolo a compressione

Armatura Tesa Longitudinale

 $f_{yk} = \qquad \qquad 450 \qquad N/mm^2 \qquad \qquad \gamma_a = \qquad \qquad 1.15$

 $f_{vd} = 391 \text{ N/mm}^2$

Sezione rettangolare

cm²

cm²

25.8

25.8

 $A_{sl,inf} =$

Strato Compresso

Diam (mm) 20 Passo (cm) 20 Strati 1 A_{sl,sup} = Diam (mm) 16 Passo (cm) 20 Strati Diam (mm) 0 Passo (cm) 20 Strati 1

Strato Teso

Diam (mm) 20 Passo (cm) 20 Strati 1 Diam (mm) 16 Passo (cm) 20 Strati 1 Diam (mm) 0 Passo (cm) 20 Strati 1

 $c_x = 5$ copriferro (distanza baricentro-bordo cls)

 $r_1 = 0.00954 < 0.02$

Armatura Staffe (angolo 90°)

N/mm² 450 $g_a =$ 1.15 $f_{vwk} =$ N/mm² 300 a = 53 (angolo inclinazione staffe) $f_{vwd} =$ cm²3.93 Diam (mm) 10 Passo (cm) 20 Braccia $A_{sl,x} =$

PROGETTAZIONE ATI:

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

1) IN ASSENZA DI ARMATURA A TAGLIO

Resistenza a taglio in assenza di specifica armatura a taglio:

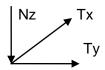
$$V_{Rd} = \left\{ 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} \, / \, \gamma_c + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \geq \, \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \, \cdot b_w d$$

1.953

0.551 $v_{min} =$ N/mmq

0 N/mmq σ_{cp} =

 $V_{rdu,x} =$ 3 $V_{\text{sdu},x}$ = 163 kN 102.88 kN Verificato


RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

11. APPARECCHI DI APPOGGIO

Si riportano di seguito le reazioni sugli appoggi verticali ed orizzontali sui dispositivi di appoggio nelle condizioni di carico elementari (non ponderate).

11.1. **CONDIZIONI ELEMENTARI**

11.1.1. SPALLA A

N(z) negativo se verso l'alto

		Carichi	Verticali
Spalla A		A (nodo 001)	B (nodo 201)
		[kN]	[kN]
Pesi propri (Fase1)	(g1)	1250	1150
Pesi propi portati (Fase2)	(g2)	500	450
Ritiro	(e2)	-100	-200
Max Permanenti		1750	1600
Min Permanenti		1650	1400
Cedimenti Max		50	50
Cedimenti Min		-50	-50
Carico da Traffico Massimo (Tr. esterna)*	(q1+q2+q3)	1800	650
Carico da Traffico Massimo (Tr. interna)*	(q1+q2+q3)	800	1650
Carico da Traffico Massimo torcente 2 stese *	(q1+q2)	1700	250
Carico da Traffico Massimo torcente 2 stese *	(q1+q2)	400	1600
Carico da Traffico Massimo torcente 1 stesa *	(q1)	1350	50
Carico da Traffico Massimo torcente 1 stesa *	(q1)	150	1000

		Carichi Verticali	
Spalla A		A (nodo 001)	B (nodo 201)
-		[kN]	[kN]
Sisma orizzontale	(q6)	± 550	Ŧ500
Sisma Verticale Max	(q6)	+300	+250
Sisma Verticale Min	(q6)	-300	-250
Vento Ponte Carico	(q5)	± 480	Ŧ480
Vento Ponte Scarico	(q5)	± 480	Ŧ480
Centrifuga	(q4)	+70	-70
Frenatura	(q3)	0	0
Variazione Termica Uniforme	(q7)	0	0

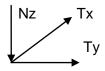
RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

	Carichi Trasversali		
Spalla A		A (nodo 001)	B (nodo 201)
•		[kN]	[kN]
Sisma orizzontale	(q6)	500	500
Sisma Verticale Max	(q6)	0	0
Sisma Verticale Min	(q6)	0	0
Vento Ponte Carico	(q5)	230	230
Vento Ponte Scarico	(q5)	230	230
Centrifuga	(q4)	50	50
Frenatura	(q3)	0	0
Variazione Termica Uniforme	(q7)	0	0

		Carichi Lo	ngitudinali
Spalla A		A (nodo 001)	B (nodo 201)
•		[kN]	[kN]
Sisma orizzontale	(q6)	350	350
Sisma Verticale Max	(q6)	0	0
Sisma Verticale Min	(q6)	0	0
Vento Ponte Carico	(q5)	0	0
Vento Ponte Scarico	(q5)	0	0
Centrifuga	(q4)	0	0
Frenatura	(q3)	50	50
Variazione Termica Uniforme	(q7)	190	190

Nota Bene 1 : tutti i carichi sono non ponderati

Nota Bene 2 : Carichi sismici allo SLV. L'analisi sismica è stata condotta ai sensi del D.M. 17/01/18 con l'analisi spettrale del solo impalcato isolato con le seguenti caratteristiche del sistema di isolamento (rigidezza e smorzamento equivalente) : kr=2.70kN/mm (spalla), kr=8.25kN/mm (pila) ; ξeq = 10% VN 50 anni, Classe d'uso IV, Coordinate geografiche: 12.5467; 43.6534, Categoria di sottosuolo C. Le reazioni vengono fornite spurie per le tre direzioni, ossia senza combinazioni direzionali Nota Bene 3: * Carichi in alternativa



RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

11.1.2. PILA P1

N(z) negativo se verso l'alto

		Carichi	Verticali
Pila 1		A (nodo 022)	B (nodo 222)
		[kN]	[kN]
Pesi propri (Fase1)	(g1)	5550	5650
Pesi propi portati (Fase2)	(g2)	2050	2050
Ritiro	(e2)	200	200
Max Permanenti		7800	7900
Min Permanenti		7600	7700
Cedimenti Max		50	100
Cedimenti Min		-50	-150
Carico da Traffico Massimo (Tr. esterna)*	(q1+q2+q3)	3700	1650
Carico da Traffico Massimo (Tr. interna)*	(q1+q2+q3)	1700	3600
Carico da Traffico Massimo torcente 2 stese *	(q1+q2)	3500	650
Carico da Traffico Massimo torcente 2 stese *	(q1+q2)	700	3300
Carico da Traffico Massimo torcente 1 stesa *	(q1)	2850	200
Carico da Traffico Massimo torcente 1 stesa *	(q1)	250	2650

Pila 1		Carichi Verticali	
		A (nodo 022)	B (nodo 222)
		[kN]	[kN]
Sisma orizzontale	(q6)	± 700	Ŧ700
Sisma Verticale Max	(q6)	+600	+600
Sisma Verticale Min	(q6)	-600	-600
Vento Ponte Carico	(q5)	± 1690	Ŧ1690
Vento Ponte Scarico	(q5)	± 1410	Ŧ1410
Centrifuga	(q4)	+70	-70
Frenatura	(q3)	0	0
Variazione Termica Uniforme	(q7)	0	0

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

	Carichi Trasversali		
Pila 1		A (nodo 022)	B (nodo 222)
		[kN]	[kN]
Sisma orizzontale	(q6)	1050	1050
Sisma Verticale Max	(q6)	0	0
Sisma Verticale Min	(q6)	0	0
Vento Ponte Carico	(q5)	740	740
Vento Ponte Scarico	(q5)	550	550
Centrifuga	(q4)	50	50
Frenatura	(q3)	0	0
Variazione Termica Uniforme	(q7)	0	0

		Carichi Lo	ngitudinali
Pila 1		A (nodo 022)	B (nodo 222)
		[kN]	[kN]
Sisma orizzontale	(q6)	850	850
Sisma Verticale Max	(q6)	0	0
Sisma Verticale Min	(q6)	0	0
Vento Ponte Carico	(q5)	0	0
Vento Ponte Scarico	(q5)	0	0
Centrifuga	(q4)	0	0
Frenatura	(q3)	110	110
Variazione Termica Uniforme	(q7)	270	270

Nota Bene 1 : tutti i carichi sono non ponderati

Nota Bene 2 : Carichi sismici allo SLV. L'analisi sismica è

stata condotta ai sensi del D.M. 17/01/18

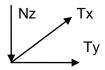
con l'analisi spettrale di impalcato isolato modellato con le sottosrutture con seguenti caratteristiche del sistema di isolamento (rigidezza e smorzamento equivalente) : kr,tot=61,08kN/mm; ξeq = 15%

VN 50 anni, Classe d'uso IV, Coordinate geografiche: 12.5467; 43.6534, Categoria di sottosuolo C topografico T1.

Gli spettri utilizzati sono l'inviluppo tra i risultati della sismica locale e gli spettri di normativa

Le reazioni vengono fornite spurie per le tre direzioni, ossia senza combinazioni direzionali

Nota Bene 3: * Carichi in alternativa



RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

11.1.3. PILA P2

N(z) negativo se verso l'alto

PILA 2		Carichi	Verticali
		A (nodo 054)	B (nodo 254)
		[kN]	[kN]
Pesi propri (Fase1)	(g1)	5250	5250
Pesi propi portati (Fase2)	(g2)	1950	1900
Ritiro	(e2)	-100	-100
Max Permanenti		7200	7150
Min Permanenti		7100	7050
Cedimenti Max		100	200
Cedimenti Min		-100	-200
Carico da Traffico Massimo (Tr. esterna)*	(q1+q2+q3)	3650	1600
Carico da Traffico Massimo (Tr. interna)*	(q1+q2+q3)	1750	3450
Carico da Traffico Massimo torcente 2 stese *	(q1+q2)	3450	650
Carico da Traffico Massimo torcente 2 stese *	(q1+q2)	750	3200
Carico da Traffico Massimo torcente 1 stesa *	(q1)	2800	250
Carico da Traffico Massimo torcente 1 stesa *	(q1)	300	2600

PILA 2		Carichi Verticali	
		A (nodo 054)	B (nodo 254)
		[kN]	[kN]
Sisma orizzontale	(q6)	± 750	Ŧ750
Sisma Verticale Max	(q6)	+600	+600
Sisma Verticale Min	(q6)	-600	-600
Vento Ponte Carico	(q5)	± 1560	Ŧ1560
Vento Ponte Scarico	(q5)	± 1310	Ŧ1310
Centrifuga	(q4)	+70	-70
Frenatura	(q3)	0	0
Variazione Termica Uniforme	(q7)	0	0

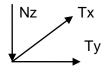
RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

		Carichi Trasversali	
Pila 2		A (nodo 054)	B (nodo 254)
		[kN]	[kN]
Sisma orizzontale	(q6)	800	800
Sisma Verticale Max	(q6)	0	0
Sisma Verticale Min	(q6)	0	0
Vento Ponte Carico	(q5)	650	650
Vento Ponte Scarico	(q5)	650	650
Centrifuga	(q4)	50	50
Frenatura	(q3)	0	0
Variazione Termica Uniforme	(q7)	0	0

		Carichi Lo	ngitudinali
Pila 2		A (nodo 054)	B (nodo 254)
		[kN]	[kN]
Sisma orizzontale	(q6)	900	900
Sisma Verticale Max	(q6)	0	0
Sisma Verticale Min	(q6)	0	0
Vento Ponte Carico	(q5)	0	0
Vento Ponte Scarico	(q5)	0	0
Centrifuga	(q4)	0	0
Frenatura	(q3)	120	120
Variazione Termica Uniforme	(q7)	40	40

Nota Bene 1 : tutti i carichi sono non ponderati

Nota Bene 2 : Carichi sismici allo SLV. L'analisi sismica è stata condotta ai sensi del D.M. 17/01/18 con l'analisi spettrale del solo impalcato isolato con le seguenti caratteristiche del sistema di isolamento (rigidezza e smorzamento equivalente) : kr=2.70kN/mm (spalla), kr=8.25kN/mm (pila) ; ξ eq = 10% VN 50 anni, Classe d'uso IV, Coordinate geografiche: 12.5467 ; 43.6534, Categoria di sottosuolo C. Le reazioni vengono fornite spurie per le tre direzioni, ossia senza combinazioni direzionali Nota Bene 3: * Carichi in alternativa



RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

11.1.4. PILA P3

N(z) negativo se verso l'alto

		Carichi	Verticali
Pila 3		A (nodo 076)	B (nodo 276)
		[kN]	[kN]
Pesi propri (Fase1)	(g1)	2850	2950
Pesi propi portati (Fase2)	(g2)	1100	1100
Ritiro	(e2)	300	300
Max Permanenti		4250	4350
Min Permanenti		3950	4050
Cedimenti Max		150	150
Cedimenti Min		-150	-200
Carico da Traffico Massimo (Tr. esterna)*	(q1+q2+q3)	2750	1200
Carico da Traffico Massimo (Tr. interna)*	(q1+q2+q3)	1300	2650
Carico da Traffico Massimo torcente 2 stese *	(q1+q2)	2600	550
Carico da Traffico Massimo torcente 2 stese *	(q1+q2)	600	2400
Carico da Traffico Massimo torcente 1 stesa *	(q1)	2100	200
Carico da Traffico Massimo torcente 1 stesa *	(q1)	250	1850

Dilo 2		Carichi Verticali	
Pila 3	Pila 3		B (nodo 276)
		[kN]	[kN]
Sisma orizzontale	(q6)	± 550	Ŧ550
Sisma Verticale Max	(q6)	+750	+750
Sisma Verticale Min	(q6)	-750	-750
Vento Ponte Carico	(q5)	± 1030	Ŧ1030
Vento Ponte Scarico	(q5)	± 850	Ŧ850
Centrifuga	(q4)	+70	-70
Frenatura	(q3)	0	0
Variazione Termica Uniforme	(q7)	0	0

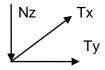
RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Pila 3		Carichi T	rasversali
		A (nodo 076)	B (nodo 276)
		[kN]	[kN]
Sisma orizzontale	(q6)	650	650
Sisma Verticale Max	(q6)	0	0
Sisma Verticale Min	(q6)	0	0
Vento Ponte Carico	(q5)	480	480
Vento Ponte Scarico	(q5)	480	480
Centrifuga	(q4)	50	50
Frenatura	(q3)	0	0
Variazione Termica Uniforme	(q7)	0	0

		Carichi Lo	ngitudinali
Pila 3		A (nodo 076)	B (nodo 276)
		[kN]	[kN]
Sisma orizzontale	(q6)	1000	1000
Sisma Verticale Max	(q6)	0	0
Sisma Verticale Min	(q6)	0	0
Vento Ponte Carico	(q5)	0	0
Vento Ponte Scarico	(q5)	0	0
Centrifuga	(q4)	0	0
Frenatura	(q3)	130	130
Variazione Termica Uniforme	(q7)	280	280

Nota Bene 1 : tutti i carichi sono non ponderati

Nota Bene 2 : Carichi sismici allo SLV. L'analisi sismica è stata condotta ai sensi del D.M. 17/01/18 con l'analisi spettrale del solo impalcato isolato con le seguenti caratteristiche del sistema di isolamento (rigidezza e smorzamento equivalente): kr=2.70kN/mm (spalla), kr=8.25kN/mm (pila); ξeq = 10% VN 50 anni, Classe d'uso IV, Coordinate geografiche: 12.5467 ; 43.6534, Categoria di sottosuolo C. Le reazioni vengono fornite spurie per le tre direzioni, ossia senza combinazioni direzionali Nota Bene 3: * Carichi in alternativa



RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

11.1.5. SPALLA B

N(z) negativo se verso l'alto

		Carichi	Verticali
Spalla B		A (nodo 089)	B (nodo 289)
•		[kN]	[kN]
Pesi propri (Fase1)	(g1)	850	800
Pesi propi portati (Fase2)	(g2)	300	300
Ritiro	(e2)	-250	-250
Max Permanenti		1150	1100
Min Permanenti		900	850
Cedimenti Max		100	100
Cedimenti Min		-100	-100
Carico da Traffico Massimo (Tr. esterna)*	(q1+q2+q3)	1450	650
Carico da Traffico Massimo (Tr. interna)*	(q1+q2+q3)	650	1400
Carico da Traffico Massimo torcente 2 stese *	(q1+q2)	1350	300
Carico da Traffico Massimo torcente 2 stese *	(q1+q2)	300	1350
Carico da Traffico Massimo torcente 1 stesa *	(q1)	1050	100
Carico da Traffico Massimo torcente 1 stesa *	(q1)	100	950

		Carichi	Verticali
Spalla B		A (nodo 089)	B (nodo 289)
•		[kN]	[kN]
Sisma orizzontale	(q6)	± 200	Ŧ200
Sisma Verticale Max	(q6)	+400	+400
Sisma Verticale Min	(q6)	-400	-400
Vento Ponte Carico	(q5)	± 280	Ŧ280
Vento Ponte Scarico	(q5)	± 280	Ŧ280
Centrifuga	(q4)	+70	-70
Frenatura	(q3)	0	0
Variazione Termica Uniforme	(q7)	0	0

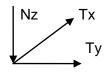
RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Spalla B		Carichi Trasversali	
		A (nodo 089)	B (nodo 289)
•		[kN]	[kN]
Sisma orizzontale	(q6)	250	250
Sisma Verticale Max	(q6)	0	0
Sisma Verticale Min	(q6)	0	0
Vento Ponte Carico	(q5)	130	130
Vento Ponte Scarico	(q5)	130	130
Centrifuga	(q4)	50	50
Frenatura	(q3)	0	0
Variazione Termica Uniforme	(q7)	0	0

Spalla B		Carichi Longitudinali	
		A (nodo 089)	B (nodo 289)
		[kN]	[kN]
Sisma orizzontale	(q6)	350	350
Sisma Verticale Max	(q6)	0	0
Sisma Verticale Min	(q6)	0	0
Vento Ponte Carico	(q5)	0	0
Vento Ponte Scarico	(q5)	0	0
Centrifuga	(q4)	0	0
Frenatura	(q3)	60	60
Variazione Termica Uniforme	(q7)	140	140

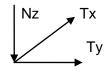
Nota Bene 1 : tutti i carichi sono non ponderati

Nota Bene 2 : Carichi sismici allo SLV. L'analisi sismica è stata condotta ai sensi del D.M. 17/01/18 con l'analisi spettrale del solo impalcato isolato con le seguenti caratteristiche del sistema di isolamento (rigidezza e smorzamento equivalente) : kr=2.70kN/mm (spalla), kr=8.25kN/mm (pila) ; ξeq = 10% VN 50 anni, Classe d'uso IV, Coordinate geografiche: 12.5467; 43.6534, Categoria di sottosuolo C. Le reazioni vengono fornite spurie per le tre direzioni, ossia senza combinazioni direzionali Nota Bene 3: * Carichi in alternativa



RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

11.2. **INVILUPPO**


11.2.1. SPALLA A

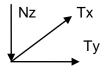
N(z) negativo se verso l'alto

Spalla A							
	Nmax [kN] TI [kN] Tt [kN] Nmin [kN] TI [kN] Tt [kN]						
	5470	230	230	550	230	380	
SLU	4820	380	230	-	-	ı	
	5160	230	380	-	-	1	
	2600	410	660	590	410	660	
SLV	2290	590	350	-	-	ı	
	2600	400	660	-	-	1	
	2810	470	790	410	470	790	
SLC	2430	680	400	-	-	-	
	2810	450	790	-	-	-	

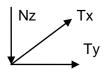
11.2.1. PILA P1

N(z) negativo se verso l'alto

			P1			
	Nmax [kN]	TI [kN]	Tt [kN]	Nmin [kN]	TI [kN]	Tt [kN]
	17460	270	680	5350	270	1130
SLU	16050	480	680	-	-	1
	17080	270	1130	-	-	-
	9040	650	1280	6390	650	1280
SLV	8490	1180	580	-	-	1
	8940	640	1280	-	-	-
	9270	660	1500	6170	660	1500
SLC	8610	1290	660	-	-	-
	9170	650	1500	-	-	-



RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3


11.2.1. PILA P2

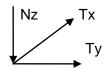
N(z) negativo se verso l'alto

P2						
	Nmax [kN]	TI [kN]	Tt [kN]	Nmin [kN]	TI [kN]	Tt [kN]
	16590	50	590	4390	50	980
SLU	15300	250	590	-	-	-
	16320	50	980	-	-	-
	8490	440	950	5760	440	950
SLV	7970	1070	390	-	-	-
	8490	430	950	-	-	-
	8750	580	1120	5500	580	1120
SLC	8150	1310	460	-	-	-
	8750	560	1120	-	-	-

11.2.1. PILA P3

N(z) negativo se verso l'alto

P3						
	Nmax [kN]	TI [kN]	Tt [kN]	Nmin [kN]	TI [kN]	Tt [kN]
	10700	270	450	2670	270	750
SLU	9520	480	450	-	-	ı
	10170	270	750	-	-	-
	5530	650	750	2640	650	750
SLV	4890	1310	330	-	-	1
	5270	630	750	-	-	-
	5920	660	940	2240	660	940
SLC	5070	1430	450	-	-	-
	5490	640	940	-	-	-

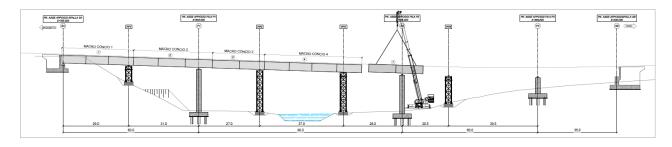


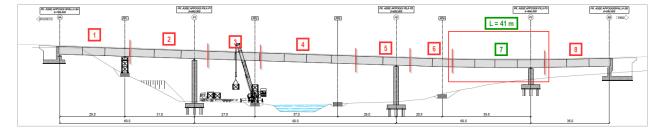
RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

11.2.1. SPALLA B

N(z) negativo se verso l'alto

Spalla B							
	Nmax [kN] TI [kN] Tt [kN] Nmin [kN] TI [kN] Tt [kN]						
	4170	140	140	230	140	230	
SLU	3590	270	140	-	-	-	
	3870	140	230	-	-	-	
	1920	260	280	210	260	280	
SLV	1670	510	140	-	-	-	
	1740	250	280	-	-	-	
	2150	350	360	10	350	360	
SLC	1800	600	180	-	-	-	
	1870	340	360	-	-	-	


RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3


12. <u>VERIFICA IN FASE DI VARO</u>

Si riportano di seguito le verifiche svolte in fase di sollevamento durante il varo.

A titolo esemplificativo si riportano i risultati relativi al sollevamento del macroconcio 7, della campata P3-P4, per il quale si presenta la massima lunghezza e minor sezione trasversale.

Gli schemi di seguito riportati mostrano la suddivisione in macroconci operata per la posa in opera:

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

12.1. **VERIFICHE TRAVI PRINCIPALI**

I carichi agenti sono:

	R ₀ (kN/m)	R ₂₀₀ (kN/m)
Carpenteria metallica	23.80	23.80
Passerella di ispezione	1.00	1.00

Si riportano di seguito alcune immagini del modello di calcolo utilizzato per il dimensionamento.

Nome dei frames relativi alle varie aste di travi e diaframmi:

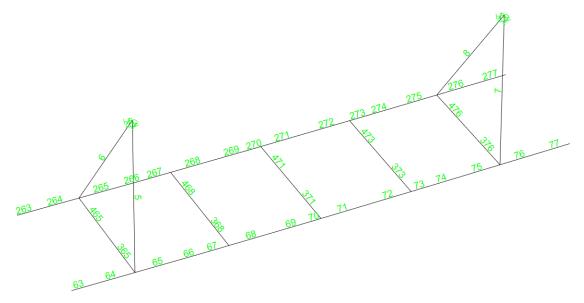


Figura 12.1 Modello di calcolo

Si procede alla verifica delle travi principali dell'impalcato, durante la posa in opera, ipotizzando il sollevamento del macroconcio nella peggiore configurazione possibile, ovvero nel caso in cui questo venga movimentato agganciando le funi sui diaframmi più esterni.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Nome dei nodi relativi alle varie aste di travi e diaframmi:

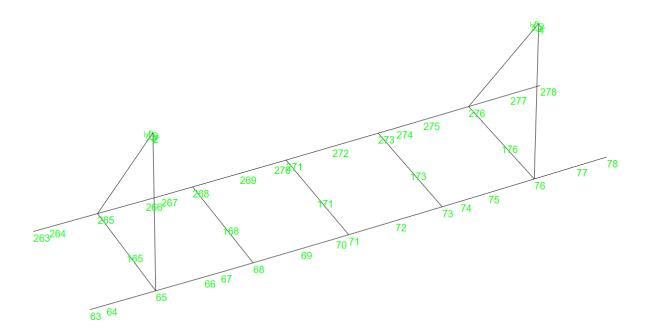


Figura 12.2 Modello di calcolo – Nomenclatura Frame

Valori delle reazioni nei vincoli che schematizzano le gru da cui partono le funi:

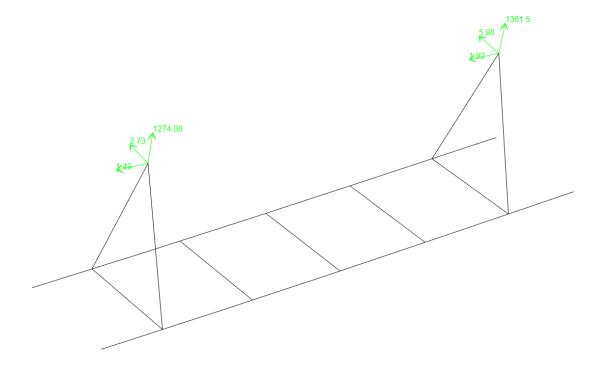
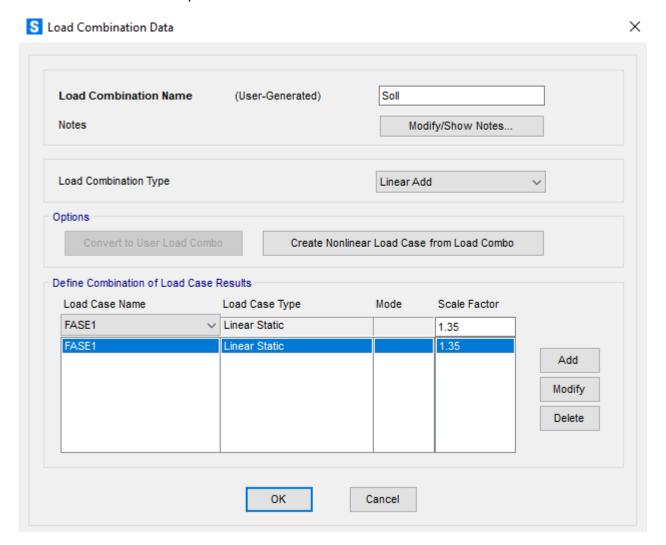


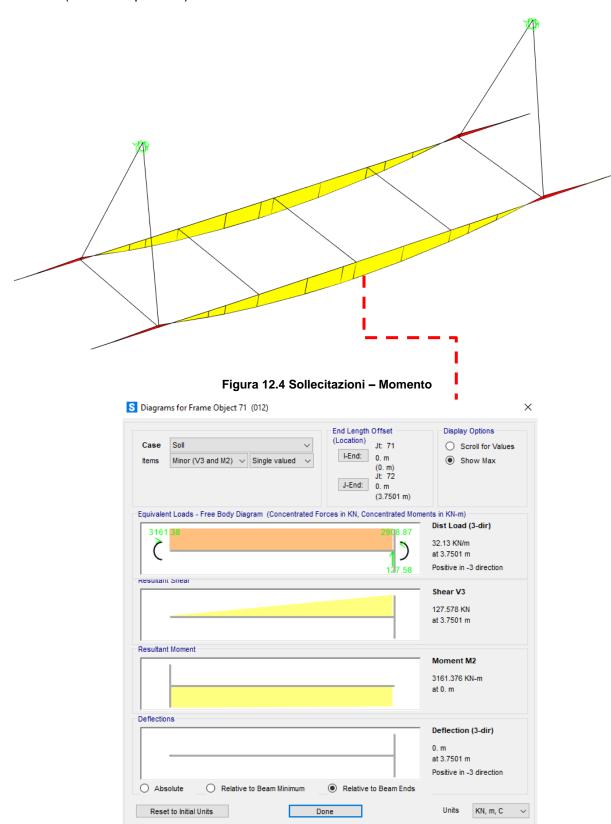
Figura 12.3 Modello di calcolo - Reazioni di tiro

GPIngegneria



RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Le sollecitazioni sono riportate in combinazione "Soll" che rappresenta lo SLU della sola fase 1 (1.35 * FASE 1). Dato lo schema di vincolo del macroconcio non si può sviluppare una reazione verticale a causa del vento di motaggio; dunque questo non è stato considerato per la verifica di resistenza delle travi dell'impalcato.



RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

La sezione presa in considerazione è quella in corrispondenza del momento massimo in valore assoluto (momento positivo).

PROGETTAZIONE ATI:

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

La sezione più sollecitata è quella in mezzeria.

 $M_{SLU} = 3162 \text{ kNm}$

 $V_{SLU} = 130 \text{ kN}$

La sezione di verifica corrisponde al frame 012. Si riportano di seguito le caratteristiche inerziali della sezione (per l'assegnazione delle sezioni e la corrispondenza tra sezioni di calcolo e verifica si rimanda ai relativi paragrafi della presente relazione).

Caratteristiche generali concio C12

Caratteristiche generali

Altezza della sezione di acciaio	3500 mm
Piattabanda superiore	600x35 mm
Piattabanda inferiore	1000×70 mm
Anima	18x3395 mm, Inclinazione: 0
Soletta	6000x240 mm
Raccordo	600x30 mm (escluso nel calcolo delle proprieta' geometriche)
Armatura superiore	diametro 20 mm, passo 100 mm, dist. estradosso-baricentro armatura 50 mm
Armatura inferiore	diametro 20 mm, passo 100 mm, dist. intradosso-baricentro armatura 50 mm
Pioli	diametro 19 mm, altezza 200 mm, numero 15/m

Irrigidenti verticali

	3774 mm
Tipo	R da un solo lato
Piatto 1	380×20 mm
Piatto 2	

Irrigidenti longitudinali dell'anima

distanza estradosso trave-irrigidente	1700 mm
distanza estradosso trave-irrigidente	2200 mm
Dimensione dei piatti - sinistra	orizzontali 0x0 mm, verticali 0x0 mm
Dimensione dei piatti - destra	orizzontali 220x20 mm, verticali 0x0 mm

Caratteristiche geometriche lorde

	Fase 1	Fase 2a	Fase 2b	Fase 2c	Fase 3	Fessurata
A (mm ²)	1.521E+	2.766E+	2.766E+	2.766E+	4.206E+	1.898E+
z _G (mm)	1206.98	2306.30	2306.30	2306.30	2766.43	1692.20
J _y (mm ⁴)	2.828E+1	6.919E+1	6.919E+1	6.919E+1	8.636E+1	4.633E+1
$W_{y,0}$ (mm ³)	-2.343E+	-3E+	-3E+	-3E+	-3.122E+	-2.738E+
$W_{y,1}$ (mm ³)	-2.487E+	-3.094E+	-3.094E+	-3.094E+	-3.203E+	-2.856E+
$W_{y,3}$ (mm ³)	1.252E+	5.972E+	5.972E+	5.972E+	1.236E+	2.613E+
$W_{y,4} \text{ (mm}^3)$	1.233E+	5.797E+	5.797E+	5.797E+	1.177E+	2.563E+
$W_{y,5}$ (mm ³)	1E+30	5.654E+	5.654E+	5.654E+	1.131E+	2.521E+
$W_{y,6} \text{ (mm}^3)$	1E+30	5.432E+	5.432E+	5.432E+	1.062E+	2.454E+
$W_{y,7}$ (mm ³)	1E+30	4.894E+	4.894E+	4.894E+	9.057E+	2.285E+
$W_{y,8}$ (mm ³)	1E+30	4.727E+	4.727E+	4.727E+	8.605E+	2.23E+
$S_{y,1} (mm^3)$	8.204E+	1.59E+	1.59E+	1.59E+	1.912E+	1.16E+
$S_{y,2} (mm^3)$	9.367E+	2.04E+	2.04E+	2.04E+	2.566E+	1.397E+
$S_{y,3} (mm^3)$	4.779E+	1.919E+	1.919E+	1.919E+	2.522E+	1.114E+
S _{y,4} (mm ³)	2.235E-	1.672E+	1.672E+	1.672E+	2.372E+	7.381E+
n_E	1E+30	16.	16.	16.	6.2	1E+30

Verifica

 $T_{ed} = V_{Ed} / A_v = 130 / (339.5x1.8) = 0.21 \text{ kN/cm}^2 << T_{lim} = 19.5 \text{ kN/cm}^2$ Verifica a taglio anima

La massima tensione sollecitante si trova sulla piattabanda superiore:

 $Verifica~a~momento~~\sigma_{Ed} = M_{Ed}~/~W_{el,min} = 316'200~/~1.23E5 = 2.57~kN/cm^2 <<\sigma_{lim} = 33.8~kN/cm^2$

Le verifiche di resistenza non risultano quindi dimensionanti e significative in questa fase.

PROGETTAZIONE ATI:

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

Verifica di stabilità

Risulta necessario operare anche una verifica per valutare che la piattabanda superiore compressa non si instabilizzi. Si conduce quindi la verifica secondo il § 7.3.2.2.2 delle CNR 10011, secondo il quale per le travi a doppio T laminate o composte, inflesse nel piano dell'anima, una verifica sommaria può essere condotta controllando, nel piano normale a quello di flessione, la stabilità dell'ala compressa, supposta isolata dall'anima.

In questo caso l'ala compressa è la piattabanda superiore.

La sua snellezza si calcola considerando come luce di libera inflessione la distanza fra i diaframmi.

$$\lambda = 750 / (60^2/12)^{0.5} = 44$$
 $\omega = 1.26$

La massima tensione di compressione in essa presente secondo il metodo dell'ala isolata è:

$$\sigma_{cr,ed} = 1.26 \text{ x } 316'200 \text{ (60 x } 3.5 \text{ x (350-120.6))} \text{ / (2.82E7 x (60 x 3.5)} = 2.57 \text{ kN/cm}^2 << \sigma_{lim} = 33.8 \text{ kN/cm}^2$$

Anche la verifica di instabilità risulta dunque soddisfatta.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

13. GIUDIZIO MOTIVATO DI ACCETTABILITÀ DEI RISULTATI

Ai sensi del paragrafo 10.2 delle Norme Tecniche per le Costruzioni si riporta nei successivi paragrafi il giudizio motivato di accettabilità dei risultati relativamente alle analisi svolte con elaboratore elettronico.

13.1. **CONTROLLO DELLE REAZIONI**

13.1.1. FASE 1

Si riportano nella tabella seguente i valori di reazione derivanti dal calcolo manuale e dal modello di calcolo per la Fase 1.

FASE 1	L =	245	m
IMPALCATO			kN/m
Peso lineare acciaio			45.6
Peso lineare soletta			81.0
Veletta metallica			2.0
Passerella di ispezione			2.0
Totale [kN]			31997
Carico da modello			31996
Differenza			0.00%

13.1.2. FASE 2

FASE 2	L =	245	m
IMPALCATO			kN/m
Pavimentazione			31.5
Cordoli			6.4
Guard Rail + Barriere			5.0
Smaltimento acque			4.0
Totale			11486
Carico da modello			11485
	·		
Differenza			0.00%

La differenza massima risulta inferiore al 1%, si può quindi concludere che i modelli risultano attendibili.

RELAZIONE TECNICA E DI CALCOLO – PONTE METAURO 3

14. ALLEGATI

Si allegano alla presente relazione:

- 1) Output dei modelli di calcolo (SAP 2000)
- 2) Verifiche estese (PEC 4)

