REGIONE PUGLIA

Comune di Deliceto

Committente:

RWE RENEWABLES ITALIA S.R.L. via Andrea Doria, 41/G - 00192 Roma

P.IVA/C.F. 06400370968

Titolo del Progetto:

PARCO EOLICO "SERRA PALINO"

Documento:

PROGETTO DEFINITIVO

Richiesta Autorizzazione Unica ai sensi del D. Lgs. 387 del 29/09/2003

N° Documento:

PESPA-P12

_

CODICE PRATICA

ID PROGETTO: PESPA DISCIPLINA: C TIPOLOGIA: RT FORMATO: A4

Elaborato:

PIANO DI DISMISSIONE DELL'IMPIANTO E RIPRISTINO DEI LUOGHI

Progettisti:

FOGLIO: 1 di 16 SCALA: / Nome file: PESPA-P12-1

Progettazione:

Hydro Engineering s.s. di Damiano e Mariano Galbo

via Rossotti, 39 91011 Alcamo (TP) Italy (Ing. Mariano Galbo)

Rev:	Data Revisione	Descrizione Revisione	Redatto	Controllato	Approvato
0	Novembre 2019	PRIMA EMISSIONE	MG	MG	DG
1	Novembre 2021	MODIFICA POSIZIONI WTG	MG	MG	DG

Rev. 01

1.	PF	REMESSA	3
2.	ΡI	ANO DI DISMISSIONE DELL'IMPIANTO A FINE VITA UTILE	4
	2.1	Generalità	4
	2.2	CARATTERISTICHE DEGLI AEROGENERATORI	4
	2.3	LA DISMISSIONE DEL PARCO EOLICO	5
	2.4	OPERE DI SMOBILIZZO	6
	2.5	SMONTAGGIO AEROGENERATORI ED ANEMOMETRI	7
	2.6	DEMOLIZIONE PARZIALE FONDAZIONI IN CALCESTRUZZO ARMATO	9
	2.7	OPERE DI RIPRISTINO AMBIENTALE	9
	2.8	OPERE DI COPERTURA E STABILIZZAZIONE	.10
	2.9	VALUTAZIONE ECONOMICA ED IMPIEGO DI PERSONALE	.11
	2.10	COMBUTO METRICO ESTIMATIVO	11

1. PREMESSA

Nella presente relazione vengono illustrati gli interventi previsti per la dismissione degli impianti e lo smobilizzo del parco eolico, una volta che esso sarà giunto a fine vita utile.

In ogni caso, l'azione di ripristino dei luoghi è volta a rendere i luoghi, una volta dismesso l'impianto, comunque fruibili alla comunità, conservando tutte le infrastrutture utili a tale scopo (ad esempio la rete stradale interna) ed eliminando le infrastrutture tecnologiche strettamente connesse all'impianto (ad esempio fondazioni e cavi interrati) non riutilizzabili.

Inoltre, atteso che i nuovi aerogeneratori saranno collocati lungo dei crinali, ovvero su poggi/altipiani, il regime idrologico esistente sarà mantenuto inalterato: tale fatto evita anche costose operazioni future di dismissione, allorquando il parco in progetto giungerà a fine vita utile.

2. PIANO DI DISMISSIONE DELL'IMPIANTO A FINE VITA UTILE

2.1 Generalità

I tracciati delle nuove strade si svilupperanno, ove possibile, in modo tale da interessare solo marginalmente i fondi agricoli ed avranno lunghezze e pendenze delle livellette tali da seguire, per quanto possibile, la morfologia propria del terreno evitando eccessive opere di scavo e/o riporto.

L'area necessaria per la movimentazione durante la fase di cantiere, a montaggio ultimato degli aerogeneratori, subirà un processo di rinaturalizzazione e durante il periodo di esercizio dell'impianto, sarà ridotta a semplice diramazione delle strade che servono le piazzole.

Il sistema complessivo di infrastrutture dell'impianto (accessi, strade, piazzole, e cavidotti), è pensato per assolvere le funzioni strettamente legate alla fase di cantiere e alla successiva manutenzione degli aerogeneratori, applicando criteri di reversibilità.

2.2 Caratteristiche degli aerogeneratori

L'impianto eolico è costituito da 8 aerogeneratori da 6,0 MW per complessivi 48,0 MW.

Nel complesso l'impianto si sviluppa su circa 10.888,94 m di strade e piazzole di cui 7.778,27 m (ovvero circa il 71%) riguarda strade del parco esistente. Gli aerogeneratori sono ubicati a quote variabili da 290 m.s.l.m. a 395 m.s.l.m.

Gli aerogeneratori che saranno installati, verranno scelti tra diversi fornitori ed in grado di sviluppare ciascuno 6,0 MW di potenza massima, con altezza del mozzo pari al massimo a 122,5 m e raggio del rotore pari a 77,5 m. L'altezza dell'aerogeneratore misurata dal piano di imposta è pari, pertanto, al massimo a 200,00 m.

La struttura di fondazione dell'aerogeneratore tipo è composta da:

- pali di fondazione di diametro non inferiore a 1,00 m, di profondità non inferiore a 20 m e in numero da definire nella successiva fase di progettazione esecutiva.
- plinto di fondazione di collegamento tra pali e sostegno dell'aerogeneratore. Il plinto, interamente interrato, avrà esemplificativamente (le dimensioni finali si potranno avere solo nella successiva fase di progettazione esecutiva) forma troncoconica di diametro massimo 21,4 m e con altezza variabile da 1,60 m a 2,40 m. All'interno del plinto è annegato un elemento in acciaio denominato anchor cage, cui collegare la prima sezione del sostegno di cui al punto successivo. Le dimensioni sopra riportate sono da interpretarsi come orientative.
- Sostegno dell'aerogeneratore costituito da una struttura in acciaio di forma troncoconica, di altezza pari a 122,5 m.

I cavi di potenza saranno interrati lungo strade sterrate del parco e lungo le strade provinciali n.119 e n. 102.

L'aerogeneratore è costituito essenzialmente da tre parti principali: la torre, la navicella e il rotore.

La <u>torre</u>, ovvero il sostegno tubolare troncoconico è interamente costituita d'acciaio, materiale riutilizzabile al 100%. I tronchi di torre sono realizzati da lastre in acciaio laminate, saldate per formare una struttura tubolare troncoconica.

Il <u>rotore</u> è costituito da tre pale più il mozzo; esso è realizzato in resina epossidica rinforzata con fibra di vetro. Il mozzo presenta una struttura molto rigida ed è generalmente in acciaio.

La <u>navicella</u> è realizzata in carpenteria metallica con carenatura in vetroresina e lamiera: in essa sono collocati il generatore elettrico e le apparecchiature idrauliche ed elettriche di comando e controllo.

2.3 La dismissione del parco eolico

A seguito della entrata in esercizio, e quindi in produzione, le macchine costituenti il nuovo parco eolico di località "Serra Palino" nel comune di Sant'Agata di Puglia (FG) e in località "Ischia dei Mulini" del Comune di Candela, avranno vita utile di circa 25-30 anni, e potranno essere soggette alla fine del loro ciclo ad un processo di dismissione o di nuovo potenziamento. <u>Con la dismissione dell'impianto verrà ripristinato lo stato "ante operam" dei terreni interessati.</u>

Tutte le operazioni sono studiate in modo tale da non arrecare danni o disturbi all'ambiente.

Si può comunque prevedere, in caso di dismissione per obsolescenza delle macchine, che tutti i componenti recuperabili o avviabili ad un effettivo riutilizzo in altri cicli di produzione saranno smontati da personale qualificato e consegnati a ditte o consorzi autorizzati al recupero.

Si riporta a seguire la descrizione della tipica sequenza delle attività finalizzate alla dismissione dell'impianto e al suo smantellamento:

- smontaggio del rotore da collocare a terra;
- divisione del rotore nelle sue componenti elementari (pale e mozzo di rotazione);
- smontaggio della navicella;
- smontaggio dei trami tubolari in acciaio (la torre è composta da 4 trami);
- demolizione del primo metro (in profondità) del plinto di fondazione;
- rimozione dei cavidotti e relativi cavi di potenza quali:
 - cavidotti di collegamento tra gli aerogeneratori;
 - cavidotti di collegamento alla stazione elettrica di connessione e consegna MT/AT;
 - cavidotto di collegamento tra la stazione elettrica MT/AT e lo stallo dedicato della stazione RTN esistente;
- smantellamento area della sottostazione elettrica utente MT/AT, comprensiva di:
 - fondazioni stazione elettrica MT/AT;
 - cavidotti interrati interni;

- livellamento del terreno secondo l'originario andamento;
- rimozione delle linee elettriche e conferimento agli impianti di recupero e trattamento secondo quanto previsto dalla normativa vigente;
- valutazione della riutilizzabilità dei cavidotti interrati interni all'impianto, e dismissione con ripristino dei luoghi per quelli non riutilizzabili;
- eventuali opere di contenimento e di sostegno dei terreni;
- eventuale ripristino della pavimentazione stradale;
- ripristino del regolare deflusso superficiale delle acque;
- sistemazione a verde dell'area secondo le caratteristiche autoctone.

In base alla tipologia e al numero di ogni categoria d'intervento verranno adoperati i mezzi d'opera e la mano d'opera adeguati alle fasi, secondo cui si svolgeranno i lavori come sopra indicato.

Particolare attenzione viene messa nell'indicare la necessità di smaltire i materiali di risulta secondo la normativa vigente, utilizzando appositi formulari sia per i rifiuti solidi che per gli eventuali liquidi e conferendo il materiale in discariche autorizzate.

Tutti i lavori verranno eseguiti a regola d'arte, rispettando tutti i parametri tecnici di sicurezza dei lavoratori ai sensi della normativa vigente.

2.4 Opere di smobilizzo

Le opere programmate per lo smobilizzo del campo eolico sono individuabili come segue e da effettuarsi in sequenza:

- o rimozione e smaltimento degli olii utilizzati nei circuiti idraulici, nei moltiplicatori di giri e nelle parti meccaniche degli aerogeneratori, in conformità alle prescrizioni di legge a mezzo di ditte specializzate ed autorizzate;
- o smontaggio dei componenti principali della macchina attraverso gru di opportuna portata (tipicamente gru semovente analoga a quella utilizzata per il montaggio);
- o stoccaggio temporaneo dei componenti principali a piè d'opera (sulla piazzola di movimentazione utilizzata per il montaggio): in tale fase i componenti saranno smontati nei loro componenti elementari (tipicamente pale, tralicci di sostegno, navicella e quadri elettrici);
- trasporto in area attrezzata: tali componenti hanno già dimensioni tali che, attraverso l'ausilio dei medesimi mezzi speciali di trasporto utilizzati in fase di montaggio dell'impianto, il trasporto in area logistica localizzata in opportuna zona industriale, anche non locale, sia semplice e rapido. In tali aree di stoccaggio saranno predisposte, a cura di aziende specializzate, tutte le operazioni di separazione dei componenti a base

ferrosa e rame e/o di valore commerciale nel mercato del riciclaggio. In questa fase non si prevede di effettuare in sito alcuna operazione tale da procurare un impatto ambientale superiore a quanto non già effettuato in fase di montaggio del vecchio parco esistente;

- o rimozione delle fondazioni: tale operazione si compone di più fasi come sotto elencato:
- o rimozione completa, sull'area della piazzola, dello strato superficiale di materiale inerte e del cassonetto di stabilizzato utilizzato per adeguare le caratteristiche di portanza del terreno;
- demolizione del primo metro di fondazione al di sotto del p.c., attraverso l'ausilio di un escavatore meccanico, di un martello demolitore e, se la tecnologia verrà ritenuta applicabile, mediante un getto d'acqua ad alta pressione. Nell'ottica del recupero del cemento armato demolito, saranno messe in atto tutte le procedure necessarie al conferimento di tale rifiuto al centro di riciclaggio, come meglio indicato in precedenza. In tale fase verranno demolite anche le parti terminali di eventuali cavidotti. Anche il materiale di risulta verrà smaltito attraverso il conferimento a discariche autorizzate ed idonee per il conferimento del tipo di rifiuto prodotto. La demolizione delle fondazioni, pertanto, seguirà procedure tali (taglio ferri sporgenti, riduzione dei rifiuti a piccoli blocchi di massimo 50 cm x 50 cm x 50 cm) da rendere il rifiuto trattabile dal centro di recupero.
- o rimozione dei cavi: si valuterà, di concerto con la Comunità locale, se la presenza di linee elettriche interrate potrà costituire elemento di facilitazione di programmi di elettrificazione rurale. Nel caso tale opportunità fosse giudicata non di interesse, i cavi saranno rimossi attraverso apertura degli scavi, rimozione dei cavi e della treccia di rame e chiusura degli scavi a "regola d'arte". I cavi, laddove possibile, saranno trattati in modo da separare la parte metallica dalla guaina esterna, seppur entrambe destinate ad appositi smaltimenti.

2.5 Smontaggio aerogeneratori ed anemometri

Per quanto attiene all'attività di smantellamento degli aerogeneratori si procederà dapprima con la rimozione delle pale, che verranno sganciate dal mozzo attraverso l'attività manuale di personale appositamente addestrato per questa specifica operazione (da effettuarsi inevitabilmente in elevazione), e poi calate con le gru a terra ove verranno immediatamente caricate su automezzi per trasporto eccezionale. Lo smaltimento definitivo avverrà in discarica autorizzata previa frantumazione delle stesse in area sicura (secondo la regolamentazione attuale, D.Lgs 152/2006, presso discariche per rifiuti speciali non pericolosi: i materiali di composizione delle pale sono

principalmente resine epossidiche, ovvero materiali compositi non tossici o nocivi per la salute). Lo smontaggio della navicella avverrà in un secondo momento attraverso la rimozione della ghiera che fissa il grande cuscinetto di rotazione della navicella stessa attorno all'asse verticale dell'aerogeneratore (e che ha permesso alle turbine stesse, per tutto il periodo di vita dell'impianto, di ruotare alla ricerca costante di ortogonalità con la direzione principale del vento). Tale operazione verrà effettuata in elevazione e da personale qualificato che provvederà dapprima a "tagliare", servendosi di fiamma ossidrica, tutti i bulloni (ormai sicuramente ossidati) che tenevano vincolata la struttura alla torre e quindi ad agganciare la navicella alla gru principale per il successivo carico su automezzo. Il box verrà trasportato in luogo sicuro (o presso il fornitore originario, oppure in capannone coperto appositamente individuato per ospitare le 19 strutture di cui sopra), ove effettuare le previste operazioni di disassemblaggio delle differenti parti: alcune di esse saranno destinate al recupero, altre verranno inviate a smaltimento secondo le prescrizioni legislative, così come sommariamente descritto qui di seguito:

- rotore, alberi di trasmissione, parti meccaniche in genere (in acciaio e leghe metalliche),
 carcassa ed ingranaggi del moltiplicatore di giri, materiali metallici di sostegno strutturale
 ecc.: a recupero;
- cavi elettrici in rame o alluminio, trasformatore MT/BT: a recupero; c. apparecchiature elettriche/elettroniche (generatore, inverter, stabilizzatore, dispositivi ausiliari ecc.): <u>a</u>
 smaltimento;
- oli di lubrificazione esausti, eventuale olio trasformatore: a smaltimento;
- involucro navicella in materiale composito: a smaltimento previa frantumazione;
- involucro navicella in lamiera: <u>a recupero</u>;
- quadri elettrici di media e bassa tensione, di sezionamento e protezione, di comando e controllo aerogeneratori: <u>a smaltimento</u>.

Infine, verranno disassemblate le differenti componenti delle torri di sostegno sempre con lavoro in elevazione attraverso il taglio dei bulloni, l'ancoraggio alla gru ed il carico immediato sugli automezzi per il trasporto dei suddetti componenti direttamente al recupero. Gli elementi principali costituenti tali parti sono: carcasse cilindriche in acciaio, scale interne e piattaforme/ringhiere di protezione in acciaio, cavi in rame o alluminio.

Le torri di sostegno, in uno con le parti metalliche recuperate, verranno smaltite come rottami. Per ciò che riguarda gli altri elementi, in alternativa allo smaltimento, si può ipotizzare che una quota venga venduta su libero mercato, un'altra quota venga disassemblata (moltiplicatori di giri, generatori, carcassa in acciaio, etc..) e o venduta su libero mercato per singoli pezzi o smaltita in discarica autorizzata.

Per quanto attiene allo smontaggio dell'anemometro di monitoraggio del vento si procederà esattamente come per le torri.

2.6 Demolizione parziale fondazioni in calcestruzzo armato

Ultimata la rimozione degli impianti tecnologici si procederà alla demolizione delle strutture di fondazione in calcestruzzo armato come di seguito descritto:

- scavo perimetrale effettuato con escavatore cingolato per liberare la struttura sotterranea in c.a. dal ricoprimento in terra;
- rimozione plinto in c.a. a mezzo escavatore cingolato dotato di martellone demolitore idraulico. Tale operazione verrà eseguita fino ad una profondità di circa 1,00 mt sotto il piano campagna; (ovvero fino a 3,50 m dal piano campagna nel caso di sovrapposizione tra le fondazioni degli aerogeneratori esistenti con quelle dei nuovi previsti da eventuale potenziamento);
- carico del materiale di risulta (calcestruzzo + ferro) per invio a recupero presso centri autorizzati;
- riempimento dei volumi con inerte vegetale e ripristino della pendenza allo stato originario (operazione non necessaria nel caso di potenziamento per la sovrapposizione tra le fondazioni del vecchio e del nuovo parco eolico).

2.7 Opere di ripristino ambientale

Terminate le operazioni di smontaggio degli aerogeneratori esistenti, si dovrà procedere come descritto, al ripristino delle aree non interessate dal nuovo impianto:

- 1. le superfici delle piazzole interessate alle operazioni di smobilizzo verranno ricoperte con terreno vegetale di nuovo apporto e si provvederà alla piantumazione di essenze autoctone con idro-semina o, nel caso di terreno precedentemente coltivato, a restituirlo alla fruizione originale;
- 2. la rete stradale in terra battuta, utilizzata per la sola manutenzione delle torri, verrà in gran parte mantenuta e utilizzata per la realizzazione del nuovo parco. Laddove non più necessaria, verrà comunque mantenuta e ripristinata, attraverso la ricarica di materiale arido opportunamente rullato e costipato per sopportare traffico leggero e/o mezzi agricoli, consentendo così l'agevole accesso ai fondi agricoli;
- 3. il sistema di regimazione idraulica realizzato per l'impianto esistente, se adeguato, potrà essere mantenuto anche per il nuovo impianto. Qualora si rendesse necessario, si provvederà al suo ripristino o alla sua implementazione per un efficace smaltimento delle acque superficiali.

Come descritto nei precedenti capitoli, si ribadisce che tutti i rifiuti solidi e liquidi prodotti nel corso delle operazioni di rimozione delle strutture tecnologiche e civili verranno o recuperati presso centri di riciclaggio regolarmente autorizzati o smaltiti secondo la normativa in vigore al momento della dismissione del parco eolico; verranno, infine, presi tutti i provvedimenti necessari atti ad evitare

ogni possibile inquinamento anche accidentale del suolo. Infatti, le attività di smontaggio producono le stesse problematiche della fase di costruzione: emissioni di polveri prodotte dagli scavi, dalla movimentazione di materiali sfusi, dalla circolazione dei veicoli di trasporto su strade sterrate in uno con i disturbi provocati dal rumore del cantiere e dal traffico dei mezzi pesanti.

Saranno quindi riproposte tutte le soluzioni e gli accorgimenti tecnici già adottati nella fase di costruzione e riportati nella relazione di progetto contenente lo studio di fattibilità ambientale.

Si procederà, quindi, alla realizzazione degli interventi di stabilizzazione e di consolidamento con tecniche di ingegneria naturalistica dove richiesto dalla morfologia e dallo stato dei luoghi; all'inerbimento mediante semina a spaglio o idro-semina di specie erbacee delle fitocenosi locali, a trapianti delle zolle e del cotico erboso nel caso in cui queste siano state in precedenza prelevate o ad impianto di specie vegetali ed arboree scelte in accordo con le associazioni vegetali rilevate.

Le opere di ripristino del cotico erboso possono attenuare notevolmente gli impatti sull'ambiente naturale, annullandoli quasi del tutto nelle condizioni maggiormente favorevoli. Questo tipo di azione può essere estesa a tutti gli interventi che consentano una maggiore conservazione degli ecosistemi ed una maggiore integrazione con l'ambiente naturale. Nel caso della realizzazione di un impianto eolico, tali interventi giocano un ruolo di assoluta importanza.

Le operazioni di ripristino possono infatti consentire, attraverso una efficace minimizzazione degli impatti, la conservazione degli habitat naturali presenti. <u>Il concetto di ripristino, applicato agli impianti eolici, è riferito essenzialmente al rinverdimento e al consolidamento delle superfici sottratte per la realizzazione dei percorsi e delle aree necessarie alla realizzazione dell'impianto.</u>

Deve comunque essere adottata la tecnologia meno complessa e a minor livello di energia (complessità, tecnicismo, artificialità, rigidità, costo) a pari risultato funzionale e biologico.

2.8 Opere di copertura e stabilizzazione

Le opere di copertura consistono nella semina di specie erbacee per proteggere il suolo dall'erosione superficiale, dalle acque di dilavamento e dall'azione dei vari agenti meteorologici, ripristinando la copertura vegetale. Sono interventi spesso integrati da interventi stabilizzanti. Le principali opere di copertura sono: le semine a spaglio, le idro-semine, le semine a spessore, le semine su reti o stuoie, le semine con coltre protettiva (paglia, fieno ecc.).

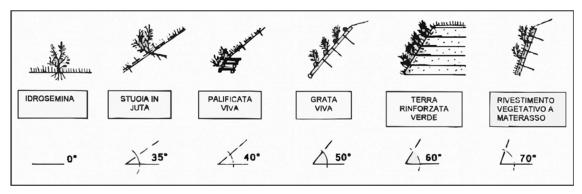


Fig.6 - Opere di ingegneria naturalistica distinte per pendenza

2.9 Valutazione economica ed impiego di personale

La valutazione economica delle opere di ripristino e dismissione è riportata nell'allegato computo metrico estimativo. I criteri generali che sono stati seguiti per pervenire alla stima degli oneri sono di seguito riportati:

- 1. i costi sono riferiti all'anno corrente e, ove possibile, ricavati attraverso l'ultimo prezziario OO.PP. Regione Sicilia (2019);
- i costi di smontaggio e trasporto degli aerogeneratori all'area industriale attrezzata sono ricavati dal costo del montaggio degli stessi in quanto eseguiti con le medesime tipologie ed attrezzature; tale costo è stato valutato sulla base di opportune indagini di mercato attualizzate ed applicando un opportuno fattore di riduzione per tener conto della minore criticità dell'operazione di smontaggio;
- 3. oltre ai costi di smontaggio e ripristino si è effettuata una stima dei ricavi dalla vendita a rottame dei materiali ferrosi recuperati.

Per il completamento dell'intero intervento di smantellamento si prevede l'impiego delle squadre di lavoro per un periodo di tempo pari a circa 1,5 mesi (in caso di inizio attività nel periodo primaverile/estivo) e 3 mesi in caso di inizio attività nel periodo autunnale/invernale: la pianificazione crono-temporale di tutte le attività oggetto del presente piano saranno opportunamente discusse e condivise con gli enti di controllo del territorio: amministrazioni comunali e provinciali, ARPA, ASL, Corpo Forestale dello Stato.

2.10 Computo metrico estimativo

Il computo metrico estimativo relativo allo smantellamento del futuro parco eolico a fine vita utile è riportato nella tabella che segue. A vantaggio di sicurezza, comunque, nella valutazione dei ricavi che vengono fuori durante le operazioni di smantellamento del parco, non si è considerata alcuna aliquota proveniente da una possibile vendita di componenti riciclabili. Dal punto di vista del preventivo di spesa si prevede, quindi, lo smaltimento degli aerogeneratori come rottami presso centri autorizzati.

Rev. 01

EP	Descrizione	U.M.	WTG	Quantità	Prezzo Unitario [€]	Prezzo Total [€]
1	Mob Demob cantiere, comprensivo di allestimento area di cantiere attrezzata con baracche, mob demob mezzi speciali	Corpo		2	€ 20.000,00	€ 40.000,00
2 Smontaggio aerogeneratori, comprensivo di noleggio gru da 300 t min e gru ausiliaria da 120 t, carico su mezzi speciali di trasporto e trasporto da cantiere ad opportuna area attrezzata in zona industriale		cad	8	24	€ 20.000,00	€ 480.000,00
3	Smaltimento olii esausti (250 lt per WTGs)	cad	8	4000	€ 1,00	€ 4.000,00
4	Formazione di piazzola 12m x 12m per lo smontaggio aerogeneratori comprensivo di rilevato con materiale da cava e successiva compattazione	cad	8	576	€ 7,95	€ 4.579,20
5	Scavi di sbancamento per rimozione piazzole (24mx12mx0,5mxWTGs), comprensivo di trasporto all'interno al parco e ricarica stradale costipato e rullato	m ³	8	384	€ 7,95	€ 3.052,80
6	Demolizione calcestruzzi armati sino ad 3,5 m di quota da piano campagna finito, con mezzo meccanico, comprensivo di trasporto a discarica entro 15 km	m³	8	400,00	€ 337,94	€ 92.720,84
7	Spargimento terra di coltivo su aree piazzole	m ³	8	1152	€ 7,95	€ 9.158,40
8	Dismissione di SSE (app. elettromeccaniche, quadri MT, Trasformatore e demolizione basamenti)	corpo	1	1	€ 150.000,00	€ 150.000,00
9	Smaltimento guaine cavi e cavidotti (vedi tabella di dettaglio allegata)	kg		197.041	€ 0,11	€ 21.674,51
10	Recupero metallo da cavi e treccia di rame - per cavidotto (vedi tabella di dettaglio allegata)	kg		95.910	€ 0,03	€ 2.877,30
11	Smaltimento di navicella presso impianti di recupero autorizzati (25000kgxWTGs)	kg	8	200000	€ 0,11	€ 22.100,00
	TOTALE OPERE		€ 631.118,77			
	IMPORTO DEI LAVORI DI RIPRISTINO					
	Ricavi da recupero materiali ferrosi torri (60000 kgxWTGs)	kg	8	480.000,00	€ 0,10	€ 48.000,00
			1			€ 583.118,7

