

# Autorità di Sistema Portuale del Mar Tirreno Centro Settentrionale



# **NUOVO PORTO COMMERCIALE DI FIUMICINO**

# PROGETTO ESECUTIVO I LOTTO FUNZIONALE I STRALCIO "Darsena Pescherecci e viabilità di accesso al cantiere"

|      | *        |
|------|----------|
| Comm | ittente  |
|      | ILLCIILC |

Il presidente

AVV. Francesco Maria Di Majo

Il responsabile del procedimento Dott. Ing. Maurizio Marini

Il coordinatore generale Dott. Ing. Giuseppe Solinas

## Progettazione



Ing. Renato Marconi

Ing. Paolo Turbolente Ing. Barbara Doronzo Consulenza specialistica impiantistica:

ELTEC S.r.l. Elaborazioni tecniche per l'ingegneria

### Titolo elaborato

# RELAZIONE DI CALCOLO IDRAULICA-IDROLOGICA

### Elaborato

A.2202.12 | PE | REL

**IMP.02** 

Scala

| Data         |               | Preparato | Controllato | Approvato |
|--------------|---------------|-----------|-------------|-----------|
| Ottobre 2020 |               |           |             |           |
|              |               |           |             |           |
| Revisione    | Data          |           |             |           |
| 01           | Giugno 2021   |           |             |           |
| 02           | Febbraio 2022 |           |             |           |
|              |               |           |             |           |
|              |               |           |             |           |

| 1.    | INTRODUZIONE                                                                                                                           | 2  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------|----|
| 2.    | STUDIO IDROLOGICO                                                                                                                      | 2  |
| 2.1 D | DISTRIBUZIONE DI PROBABILITA'                                                                                                          | 3  |
| 2.2 R | REGIONALIZZAZIONE DELLE PIOGGE DELL'ITALIA CENTRALE                                                                                    | 4  |
| 2.3 L | EGGE DI POSSIBILITA' PLUVIOMETRICA A TRE PARAMETRI – STIMA IDF RELATIV<br>CENTRO DI SCROSCIO E INTERVALLI DI CONFIDENZA PER I QUANTILI |    |
| 2.4 A | APPLICAZIONE DELLA IDF – RAGGUAGLIO ALL'AREA                                                                                           | 16 |
| 2.5   | RISULTATI                                                                                                                              | 20 |
| 3.    | METODO INFERENZA STATISTICA                                                                                                            | 22 |
| 4.    | CONFRONTI CURVE IDF GENERATE - METODO VAPI E METODO INFERENZA STATISTICA                                                               | 27 |
| 5.    | DETERMINAZIONE DEI BACINI TRIBUTARI                                                                                                    | 28 |
| 6.    | ASSUNZIONI IDROLOGICHE DI CALCOLO                                                                                                      | 31 |
| 7.    | DIMENSIONAMENTO RETE FOGNARIA BIANCA                                                                                                   | 41 |
| 8.    | VERIFICA DEI TRATTI FINALI DI SCARICO A MARE DELLA RETE<br>FOGNARIA                                                                    | 84 |

### 1. INTRODUZIONE

La presente relazione specialistica ha come oggetto l'analisi idraulica finalizzata alle condizioni di smaltimento delle acque meteoriche a seguito della realizzazione del Nuovo Porto Commerciale di Fiumicino. In particolare, verranno descritte le scelte progettuali adottate per il sistema fognario a servizio del Primo Lotto Funzionale.

### 2. STUDIO IDROLOGICO

La progettazione e il dimensionamento della rete fognaria a servizio di un'area richiedono la conoscenza preliminare delle curve di possibilità pluviometrica caratterizzanti tale area di interesse. Di seguito quindi la definizione delle curve di possibilità pluviometrica o IDF (Intensità durata frequenza) in funzione di assegnati tempi di ritorno, per l'area comprendente il Nuovo Porto Commerciale di Fiumicino.



Figura 1 - Inquadramento dell'area

Sulla zona di retroterra rispetto all'area d'intervento insiste l'agglomerato urbano di Fiumicino.

La caratterizzazione pluviometrica del territorio in esame è stata eseguita in base ai valori di precipitazione ottenuti secondo il metodo di calcolo derivato da procedure di regionalizzazione VAPI (Valutazione delle Piene) di seguito esposto.

ACQUATECNO S.R.L. Pag. 2 di 98

Si possono distinguere due tipi di curva di possibilità climatica:

- La curva IDF PUNTUALE, relativa cioè al centro di scroscio (punto di massima intensità della
  precipitazione) dell'evento meteorico, avendo ipotizzato che tale centro di scroscio sia
  baricentrico al bacino di interesse.
- La curva <u>IDF Ragguagliata all'Area</u>: nota l'altezza di pioggia nel centro di scroscio, il volume di afflusso dell'intero bacino può essere stimato operando il *ragguaglio all'Area*, del bacino della misura puntuale.

Al diminuire dell'Area del bacino interessata dall'evento meteorico e all'aumentare del tempo di pioggia, il coefficiente di ragguaglio tende a valori unitari e la IDF ragguagliata, dunque, tende ai valori della IDF del centro di scroscio.

### 2.1 DISTRIBUZIONE DI PROBABILITA'

Secondo la procedura VAPI¹, la regionalizzazione delle piogge intense viene eseguita utilizzando come distribuzione di probabilità la legge TCEV (Two Component Extreme Value). La scelta di una distribuzione a due componenti è basata sull'ipotesi che i massimi annuali delle piogge intense di breve durata possono essere dovute a due categorie di fenomeni: quelli che generano gli eventi ordinari, cui compete la maggior parte dei massimi annuali, e quelli, molto più rari, che generano eventi di assoluta eccezionalità, cui competono gli *out-liers* (eventi assolutamente straordinari, la cui intensità supera di gran lunga le intensità inferiori di pari durata). La componente bassa della TCEV, riferita agli eventi ordinari, è spesso indicata come *componente base*, mentre la componente alta riferita agli eventi straordinari, è indicata come *componente straordinaria*.

La distribuzione TCEV si esprime come:

$$P_X(x) = e^{-\Lambda_1 e^{\frac{x}{\Theta_1}} - \Lambda_2 e^{\frac{x}{\Theta_2}}}$$

Dove X è la variabile, x è un generico valore di X ed i parametri indicano:

-  $\Lambda_1$  e  $\Lambda_2$  il valore atteso del numero degli eventi che nell'intervallo di tempo unitario, ad esempio l'anno, appartengono rispettivamente alla componente bassa e alla componente alta;

ACQUATECNO S.R.L. Pag. 3 di 98

<sup>&</sup>lt;sup>1</sup> sviluppata dal gruppo Nazionale per la Difesa dalle Catastrofi Idrogeologiche del Consiglio Nazionale delle Ricerche (CNR, 1994)

-  $\Theta_1$  e  $\Theta_2$  il valore atteso dell'intensità degli eventi che appartengono rispettivamente alla componente bassa e alla componente alta.

Volendo porre:

$$\Theta_* = \frac{\Theta_2}{\Theta_1}$$

$$\Lambda_* = \frac{\Lambda_2}{{\Lambda_1}^{1/\Theta_*}}$$

La TCEV diventa:

$$P_X(x) = e^{-\Lambda_1 e^{\frac{x}{\Theta_1}} - \Lambda_* \Lambda_1^{1/\Theta_*} e^{\frac{x}{\Theta_* \Theta_1}}}$$

#### 2.2 REGIONALIZZAZIONE DELLE PIOGGE DELL'ITALIA CENTRALE

Data la rarità degli eventi straordinari, la stima dei parametri relativi a questa componente, sulla base delle osservazioni eseguite in una singola stazione pluviometrica (o anche in più stazioni, che come spesso accade, dispongono di serie pluviografiche di limitata durata temporale), risulta poco efficiente (specialmente per ciò che concerne la stima dei parametri relativi agli eventi con tempi di ritorno superiori ai 50 anni).

Per ottenere una stima più efficiente si può ricorrere a una regionalizzazione, stimando i parametri della TCEV sulla base delle osservazioni eseguite in tutte le stazioni di una regione omogenea.

In questo paragrafo è sinteticamente riportata la regionalizzazione delle piogge intense svolta nell'ambito del progetto VAPI su un'ampia fascia dell'Italia Centrale, comprendente tra l'altro, tutti i bacini del Compartimento di Roma del Servizio Idrografico e Mareografico Nazionale, ossia il bacino del Tevere e i bacini minori con foce lungo il litorale del Lazio<sup>2</sup>. A fine relazione si riportano le Sottozone individuate nel progetto VAPI e un particolare del bacino 1785 facente parte della sottozona omogenea A4 (fonte dei dati Istituto Idrografico e Mareografico di Roma).

### 2.2.1 PRIMO LIVELLO DI REGIONALIZZAZIONE

Al primo livello di regionalizzazione sono state individuate tre macro-regioni omogenee rispetto al

ACQUATECNO S.R.L. Pag. 4 di 98

\_

<sup>&</sup>lt;sup>2</sup> (Calenda e al. 1994; Calenda e Cosentino, 1996)

coefficiente di asimmetria, definite dagli autori: regione Tirrenica (A), regione Appenninica (B) e Regione Adriatica (C).

| REGIONE | ٨٠    | Θ*    |
|---------|-------|-------|
| А       | 0.174 | 3.490 |
| В       | 0.762 | 1.241 |
| С       | 0.795 | 2.402 |

Tabella 1 - Parametri del primo livello di regionalizzazione - In verde i parametri relativi alla zona oggetto del presente studio.

#### 2.2.2 SECONDO LIVELLO DI REGIONALIZZAZIONE

Al secondo livello di regionalizzazione le stesse tre regioni individuate al primo livello sono ipotizzate omogenee anche rispetto al coefficiente di variazione.

| REGIONE | Λ1     | β     |
|---------|--------|-------|
| А       | 29.314 | 4.48  |
| В       | 22.017 | 4.359 |
| С       | 27.806 | 5.301 |

Tabella 2 - Parametri del secondo livello di regionalizzazione - In verde i parametri relativi alla zona oggetto del presente studio.

### 2.2.3 TERZO LIVELLO DI REGIONALIZZAZIONE

Al terzo livello di regionalizzazione gli autori ipotizzano che nell'ambito di una sottozona omogenea la media dell'altezza giornaliera  $\mu_{hd}$  dipenda linearmente dalla sola quota z della stazione:

$$\mu_{hd} = cz + d$$

Sono state individuate 78 sottozone, 21 per la zona A, 42 per la zona B, e 15 per la zona C. Nella sottozona interessata dal presente studio (A4) i parametri della regressione e il coefficiente di correlazione assumono i valori indicati in tabella.

| N | c [mm/m] | d [mm] | ρ |
|---|----------|--------|---|
|---|----------|--------|---|

ACQUATECNO S.R.L. Pag. 5 di 98

| A4 | 13 | 0.03390 | 67.67 | 0.833 |
|----|----|---------|-------|-------|
|    |    |         |       |       |

# 2.3 LEGGE DI POSSIBILITA' PLUVIOMETRICA A TRE PARAMETRI - STIMA IDF RELATIVA AL CENTRO DI SCROSCIO E INTERVALLI DI CONFIDENZA PER I QUANTILI

Per una corretta descrizione dei fenomeni pluviometrici, si utilizza una legge di possibilità pluviometrica a tre parametri che ha il vantaggio, rispetto a quella abitualmente utilizzata a due parametri, di descrivere con maggiore accuratezza gli eventi meteorici che presentano durate inferiori ad un ora; quest'ultima presenta infatti l'inconveniente di fornire valori di intensità di pioggia tendenti all'infinito per le basse durate.

L'espressione generica della curva di possibilità pluviometrica per il punto p (centro di scroscio dell'evento meteorico) assume dunque la seguente espressione:

$$h_p = \frac{a(Tr)\ t}{(b+t)^m}$$

Dove:

Tr è il tempo di ritorno;

è un parametro di deformazione della scala temporale, indipendente sia dalla durata t, sia dal tempo di ritorno Tr;

m è un parametro adimensionale compreso tra 0 e 1, indipendente sia dalla durata, sia dal tempo di ritorno;

a(Tr) è un parametro dipendente dal tempo di ritorno ma indipendente dalla durata.

Assumendo che la media delle intensità sia esprimibile come:

$$\mu_{it} = \mu_{i0} \left( \frac{b}{b+t} \right)^m$$

Dove  $\mu_{i0}$  è la media dell'intensità istantanea.

Assumendo che l'intensità media di 24 ore  $\mu_{i24}$  è proporzionale all'intensità media giornaliera:

 $\mu_{id}$ ,  $\mu_{i24} = \delta \mu_{id}$ ; dove il coefficiente di proporzionalità, vale  $\delta = 1.15$ 

ACQUATECNO S.R.L. Pag. 6 di 98

\_

<sup>&</sup>lt;sup>3</sup> I parametri *b'* e *'m'* sono stati assunti indipendenti dal tempo di ritorno T, in modo da imporre il parallelismo sul piano logaritmico delle leggi IDF relative a diversi tempi diritorno.

Da questo discende che anche per  $\mu_{i24}$  vale la relazione lineare con la quota:

$$\mu_{i24} = \delta \; \frac{c \; z + d}{24}$$

e dunque:

$$\mu_{i0}(z) = \frac{\overline{\mu_{i0}}}{\overline{\mu_{i24}}} \, \delta \, \frac{c \, z + d}{24}$$

I valori dei parametri  $\frac{\mu_0}{\mu_{124}}$ , b, m relativi alla sottozona A4 sono riportati nella tabella seguente:

|    | N | b [h]  | m      | $\frac{\mu_{10}}{\mu_{124}}$ |
|----|---|--------|--------|------------------------------|
| A4 | 4 | 0.1705 | 0.7881 | 49.62                        |

Tabella 3 - Regionalizzazione piogge intense - parametri delle relazioni IDF relative al centro di scroscio.

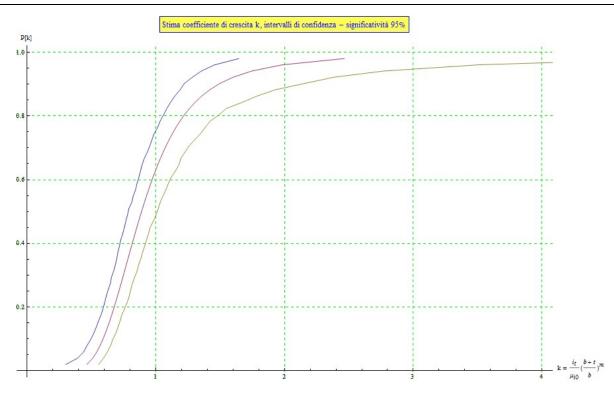
Sostituendo le formule di cui sopra nella distribuzione TCEV, si ricava (omissis) la distribuzione di probabilità dell'intensità i, relativa alla durata generica t.

$$P(i_t, Tr) = e^{-\Lambda_1 e^{-\left[\frac{i_t}{\mu_{i0}(z)}\beta\left(\frac{b+t}{b}\right)^m\right]} - \Lambda_*\Lambda_1^{1/\Theta_*} e^{-\left[\frac{i_t}{\Theta_*\mu_{i0}(z)}\beta\left(\frac{b+t}{b}\right)^m\right]}$$

La formula di cui sopra non è immediatamente invertibile, sostituendo in quest'ultima il coefficiente di crescita k, definito come:

$$k = \frac{i_t}{\mu_{i0}(z)} \beta \left(\frac{b+t}{b}\right)^m$$

Si ottiene:

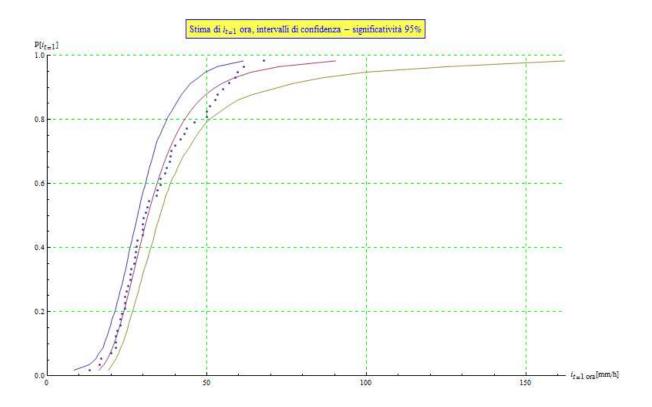

$$P(k,Tr) = e^{-\Lambda_1 e^{-[\beta k]} - \Lambda_* \Lambda_1^{1/\Theta_*} e^{-\left[\frac{\beta k}{\Theta_*}\right]}$$

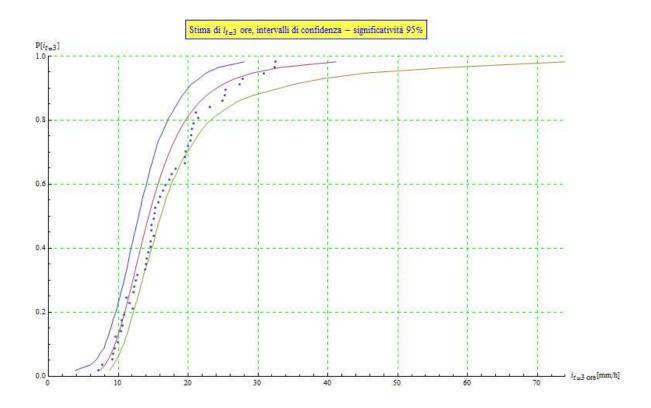
Quest'ultima, non ancora esplicitabile in forma esatta, si è risolta per via numerica (tramite il metodo di Newton) al fine di ricavare i quantili k della distribuzione. Tramite il metodo Montecarlo

ACQUATECNO S.R.L. Pag. 7 di 98

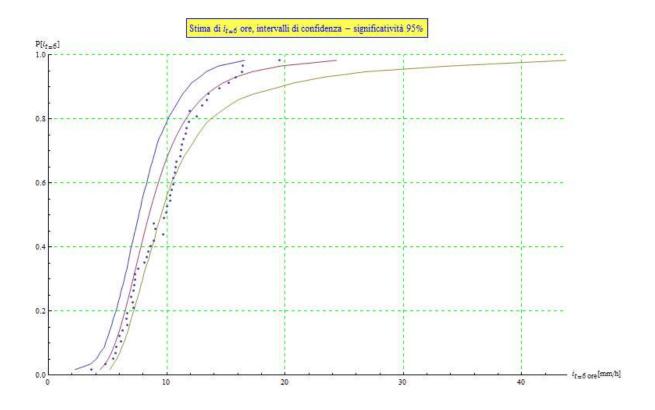
(generazione di 1000 campioni di 56 elementi), si sono altresì tracciati gli intervalli di confidenza dei quantili stimati adottando un livello di significatività del 95%.

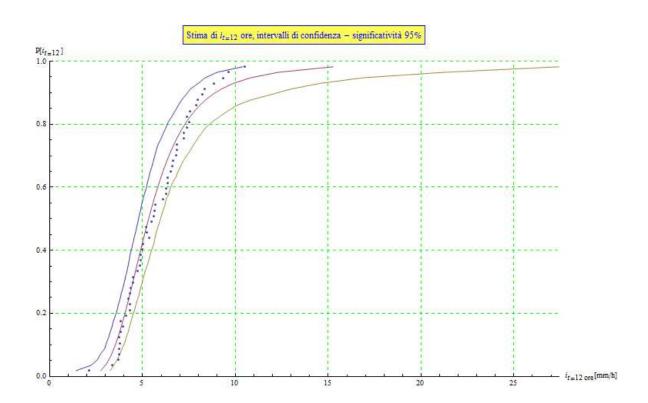
ACQUATECNO S.R.L. Pag. 8 di 98



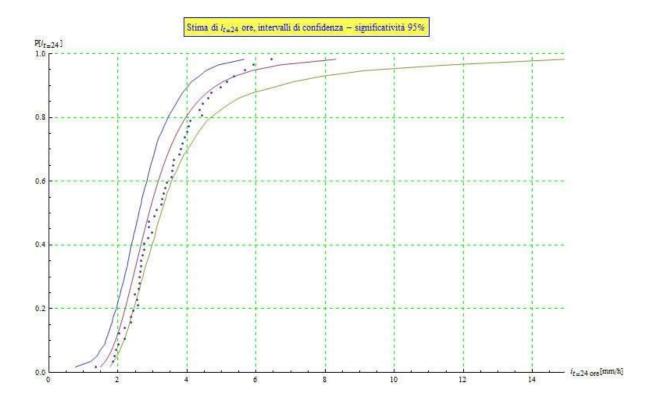


Di seguito si riportano i valori del coefficiente di crescita k per assegnati tempi di ritorno:

| Tr  | P(Tr) | K      |
|-----|-------|--------|
| 200 | 0.995 | 3.5179 |
| 100 | 0.99  | 2.979  |
| 50  | 0.98  | 2.45   |
| 20  | 0.95  | 1.83   |
| 10  | 0.9   | 1.48   |
| 5   | 0.8   | 1.22   |


Dai coefficienti di crescita si sono poi stimati i valori della IDF i[t,Tr] e relativi intervalli di confidenza con significatività 95%.


ACQUATECNO S.R.L. Pag. 9 di 98






ACQUATECNO S.R.L. Pag. 10 di 98





ACQUATECNO S.R.L. Pag. 11 di 98



Per la stima di a(Tr) risulta conveniente linearizzare l'espressione della IDF introducendo la seguente trasformazione temporale:

$$\theta_t = (b + t)$$

E passando ai logaritmi:

$$logi_{t,Tr} = loga_{Tr} - m \log \theta_t$$

Avendo imposto il parallelismo delle trasformate lineari risulta:

$$loga_{Tr} = \frac{1}{M} \sum_{j=1}^{M} logi_{t,Tr} + m \frac{1}{M} \sum_{t=1}^{M} log \theta_t$$

Essendo j = 1 – M il numero di intervalli temporali per cui si è calcolata la  $i_t$ 

ACQUATECNO S.R.L. Pag. 12 di 98

Si riportano di seguito le tabelle riassuntive delle IDF e relativi parametri relative al centro di scroscio per assegnati tempi di ritorno

| PARAMETI           | RI ZONA A4 |
|--------------------|------------|
| ۸*                 | 0.174      |
| Λ <sub>1</sub>     | 29.314     |
| Θ*                 | 3.49       |
| β                  | 4.48       |
| δ                  | 1.1        |
| С                  | 0.0339     |
| d                  | 67.67      |
| z_medio            | 1          |
| $\mu_{i24}$        | 3.1031     |
| r                  | 49.62      |
| μ <sub>i0(z)</sub> | 153.976    |
| b                  | 0.1705     |
| m                  | 0.7881     |

ACQUATECNO S.R.L. Pag. 13 di 98

|                | t                                       | 0.1                | 0.25    | 0.5              | 0.75     | 1       | 2       | 3               | 4       | 5         | 6         | 7       | 8        | 9               | 10       | 11              | 12               | 13       | 14        | 15        | 16        | 17        | 18             | 19             | 20             | 21             | 22             | 23              | 24             |
|----------------|-----------------------------------------|--------------------|---------|------------------|----------|---------|---------|-----------------|---------|-----------|-----------|---------|----------|-----------------|----------|-----------------|------------------|----------|-----------|-----------|-----------|-----------|----------------|----------------|----------------|----------------|----------------|-----------------|----------------|
|                | Θ                                       | 0.2705             | 0.4205  | 0.6705           | 0.9205   | 1.1705  | 2.1705  | 3.1705          | 4.1705  | 5.1705    | 6.1705    | 7.1705  | 8.1705   | 9.1705          | 10.1705  | 11.1705         | 12.1705          | 13.1705  | 14.1705   | 15.1705   | 16.1705   | 17.1705   | 18.1705        | 19.1705        | 20.1705        | 21.1705        | 22.1705        | 23.1705         | 24.1705        |
|                | log(Θ)                                  | -0.5678327         | -0.3762 | -0.173601        | -0.03598 | 0.06837 | 0.33656 | 0.50113         | 0.62019 | 0.71353   | 0.79032   | 0.85555 | 0.91225  | 0.96239         | 1.00734  | 1.04807         | 1.08531          | 1.1196   | 1.15139   | 1.181     | 1.20872   | 1.23478   | 1.25937        | 1.28263        | 1.30472        | 1.32573        | 1.34578        | 1.36494         | 1.38329        |
|                |                                         |                    |         |                  |          |         |         |                 |         |           |           |         |          |                 |          |                 |                  |          |           |           |           |           |                |                |                |                |                |                 |                |
|                | alfa                                    | 0.0088973          | 0.0126  | 0.018195         | 0.023357 | 0.02823 | 0.04592 | 0.0619          | 0.07683 | 0.09101   | 0.10462   | 0.11777 | 0.13053  | 0.14297         | 0.15512  | 0.16701         | 0.17869          | 0.19016  | 0.20145   | 0.21258   | 0.22354   | 0.23437   | 0.24506        | 0.25563        | 0.26608        | 0.27642        | 0.28666        | 0.29681         | 0.30686        |
| Anni           | i(t,Tr)                                 |                    | 279.271 | 193.344          | 150.615  | 124.633 | 76.608  | 56.830          | 45.787  | 38.653    | 33.625    | 29.871  | 26.951   | 24.607          | 22.679   | 21.063          | 19.687           | 18.499   | 17.463    | 16.549 1  | 15.737    | 15.010 1  | 14.355 1       | 3.762 13       | 3.221 12       | .726 12        | .272 11.       | 852             | 11.464         |
| 200 ₽          | d log(i,t)                              | 2.597              | 2.446   | 2.286            | 2.178    | 2.096   | 1.884   | 1.755           | 1.661   | 1.587     | 1.527     | 1.475   | 1.431    | 1.391           | 1.356    | 1.324           | 1.294            | 1.267    | 1.242     | 1.219     | 1.197     | 1.176     | 1.157          | 1.139          | 1.121          | 1.105          | 1.089          | 1.074           | 1.059          |
| = 2(           | log(ai)                                 | 2.1495152          |         |                  |          |         |         |                 |         |           |           |         |          |                 |          |                 |                  |          |           |           |           |           |                |                |                |                |                |                 | ,              |
| Ĕ              | ™ h(t,Tr) = at/(b+t) <sup>m</sup>       | 39.538865          | 69.8177 | 96.67192         | 112.9612 | 124.633 | 153.215 | <b>170.49</b> 1 | 183.149 | 193.264   | 201.751   | 209.1 2 | 15.607 2 | 21.46 22        | 6.793 23 | 1.698 <b>23</b> | <b>36.246</b> 24 | 40.492 2 | 14.476 24 | 18.234 2  | 51.791 2  | 55.171 2  | 258.393 2      | 61.472 2       | 64.422 2       | 67.255 2       | 269.98 27      | 72.607 <b>2</b> | 75.143         |
|                | kr=                                     | 3.5179             |         |                  |          |         |         |                 |         |           |           |         |          |                 |          |                 |                  |          |           |           |           |           |                |                |                |                |                |                 |                |
|                |                                         |                    |         |                  |          |         |         |                 |         |           |           |         |          |                 |          |                 |                  |          |           |           |           |           |                |                |                |                |                |                 |                |
|                | alfa                                    | 0.0088973          | 0.0126  | 0.018195         | 0.023357 | 0.02823 | 0.04592 | 0.0619          | 0.07683 | 0.09101   | 0.10462   | 0.11777 | 0.13053  | 0.14297         | 0.15512  | 0.16701         | 0.17869          | 0.19016  | 0.20145   | 0.21258   | 0.22354   | 0.23437   | 0.24506        | 0.25563        | 0.26608        | 0.27642        | 0.28666        | 0.29681         | 0.30686        |
| Anni           | 4. i(t,Tr)                              |                    |         | 163.726          |          |         |         | 48.124          |         |           |           |         | 22.822   | 20.837          |          |                 |                  |          |           |           |           |           | 12.156 1       |                |                |                | 10.392         |                 | 9.708          |
| 100 /          | ☐ log(i,t)                              | 2.525              | 2.374   | 2.214            | 2.106    | 2.023   | 1.812   | 1.682           | 1.589   | 1.515     | 1.454     | 1.403   | 1.358    | 1.319           | 1.283    | 1.251           | 1.222            | 1.195    | 1.170     | 1.147     | 1.125     | 1.104     | 1.085          | 1.066          | 1.049          | 1.032          | 1.017          | 1.002           | 0.987          |
| 1              | log(ai)                                 | 2.0773022          |         |                  |          |         |         |                 |         |           |           | ==      |          |                 |          |                 |                  |          |           |           |           |           |                |                |                |                |                |                 |                |
| Ĕ              | ∾ h(t,Tr) = at/(b+t) <sup>™</sup>       | 33.481986          | 59.1224 | 81.86294         | 95.65691 | 105.54  | 129.745 | 144.373         | 155.093 | 3 163.658 | 3 170.845 | 1//.069 | 182.5/8  | 187.535         | 192.051  | 196.204         | 200.056          | 203.651  | 207.025   | 210.207   | 213.22    | 216.082   | 218.81 2       | 21.418 2       | 23.916 2       | 26.315 2       | 28.623 2       | 30.84/ <b>2</b> | 32.995         |
|                | kr=                                     | 2.979              |         |                  |          |         |         |                 |         |           |           |         |          |                 |          |                 |                  |          |           |           |           |           |                |                |                |                |                |                 |                |
|                |                                         |                    |         |                  |          |         |         |                 |         |           |           |         |          |                 |          |                 |                  |          |           |           |           |           |                |                |                |                |                |                 |                |
|                | alfa                                    | 0.0088973          |         |                  |          |         |         |                 |         |           |           |         |          |                 |          |                 |                  |          |           |           |           |           |                |                |                |                |                |                 |                |
| Anni           | 9 i(t,Tr)                               | 275.364<br>2.440   | 2.289   | 134.652<br>2.129 | 2.021    |         |         | 39.578<br>1.597 | 1.504   | 1.430     | 1.370     | 1.318   | 1.273    | 17.137<br>1.234 | 15.795   | 1.166           | 1.137            | 1.110    | 12.162    | 1.062     | 10.960    | 10.454    | 9.997<br>1.000 | 9.584<br>0.982 | 9.208<br>0.964 | 8.863<br>0.948 | 8.547<br>0.932 | 8.255<br>0.917  | 7.984<br>0.902 |
| 20 /           | ⊗ log(i,t)<br>log(ai)                   | 1.9923978          |         | 2.129            | 2.021    | 1.939   | 1.727   | 1.597           | 1.504   | 1.450     | 1.570     | 1.510   | 1.275    | 1.234           | 1.199    | 1.100           | 1.137            | 1.110    | 1.065     | 1.002     | 1.040     | 1.019     | 1.000          | 0.962          | 0.904          | 0.946          | 0.932          | 0.917           | 0.902          |
| i<br>L         | $rac{b(at)}{rac{b(t,Tr)}} = at/(b+t)^m$ | 27.536377          |         | 67 32602         | 78 6705  | 86 7989 | 106 705 | 118 735         | 127 552 | 134 596   | 140 507   | 145 625 | 150 157  | 154 233         | 157 947  | 161 363         | 164 531          | 167 488  | 170 263   | 172 879 ° | 175 357   | 177 711   | 179 955 1      | 82 099 1       | 84 154 1       | 86 127 1       | 188 025 1      | 89 854 <b>1</b> | 191 62         |
| -              | kr=                                     | 2.45               | 10.0237 | 07.32002         | 70.0703  | 00.7505 | 100.703 | 110.733         | 127.332 | 154.550   | 140.507   | 1-3.023 | 150.157  | 134.233         | 137.347  | 101.505         | 104.551          | 107.400  | 170.205   | 1,2.0,3   | 173.337   | 1,,,,,    | 175.555        | .02.033        | .04.154 1      | .00.127        | 100.025 1      | 05.054          | 31.02          |
|                | KI -                                    | 2.43               |         |                  |          |         |         |                 |         |           |           |         |          |                 |          |                 |                  |          |           |           |           |           |                |                |                |                |                |                 |                |
|                | alfa                                    | 0.0088973          | 0.0126  | 0.018195         | 0.023357 | 0.02823 | 0.04592 | 0.0619          | 0.07683 | 0.09101   | 0 10462   | 0 11777 | 0.13053  | 0 14297         | 0.15512  | 0.16701         | 0 17869          | 0 19016  | 0.20145   | 0.21258   | 0.22354   | 0.23437   | 0.24506        | 0.25563        | 0.26608        | 0 27642        | 0.28666        | 0 29681         | 0.30686        |
| . <u>=</u>     | ♀ i(t,Tr)                               |                    | 145.276 |                  | 78.349   |         |         | 29.563          |         |           |           |         |          | 12.800          |          | 10.957          |                  | 9.623    | 9.084     | 8.609     | 8.186     | 7.808     | 7.468          | 7.159          | 6.878          | 6.620          | 6.384          | 6.166           | 5.964          |
| Anni           | € log(i,t)                              | 2.313              | 2.162   | 2.002            | 1.894    |         |         | 1.471           |         |           |           |         |          | 1.107           | 1.072    | 1.040           | 1.010            | 0.983    | 0.958     | 0.935     | 0.913     | 0.893     | 0.873          | 0.855          | 0.837          | 0.821          | 0.805          | 0.790           | 0.776          |
| : 20           | log(ai)                                 | 1.8656828          |         |                  |          |         |         |                 |         |           |           |         |          |                 |          |                 |                  |          |           |           |           |           |                |                |                |                |                |                 | ,              |
| <u>_</u>       | ™ h(t,Tr) = at/(b+t) <sup>m</sup>       | 20.567987          | 36.3189 | 50.28842         | 58.76205 | 64.8335 | 79.7022 | 88.6881         | 95.2736 | 5 100.535 | 104.95    | 108.773 | 112.158  | 115.203         | 117.977  | 120.528         | 122.895          | 125.103  | 127.176   | 129.13 1  | .30.981 1 | .32.739 1 | 134.415 1      | 36.017 1       | 37.552 1       | 39.025 1       | 40.443 1       | 41.809 <b>1</b> | 43.129         |
|                | kr=                                     | 1.83               |         |                  |          |         |         |                 |         |           |           |         |          |                 |          |                 |                  |          |           |           |           |           |                |                |                |                |                |                 | ļ              |
|                |                                         |                    |         |                  |          |         |         |                 |         |           |           |         |          |                 |          |                 |                  |          |           |           |           |           |                |                |                |                |                |                 |                |
|                | alfa                                    | 0.0088973          | 0.0126  | 0.018195         | 0.023357 | 0.02823 | 0.04592 | 0.0619          | 0.07683 | 0.09101   | 0.10462   | 0.11777 | 0.13053  | 0.14297         | 0.15512  | 0.16701         | 0.17869          | 0.19016  | 0.20145   | 0.21258   | 0.22354   | 0.23437   | 0.24506        | 0.25563        | 0.26608        | 0.27642        | 0.28666        | 0.29681         | 0.30686        |
| <del>.</del> = | e i(t,Tr)                               | 166.342            | 117.491 | 81.341           | 63.365   | 52.434  | 32.229  | 23.909          | 19.263  | 16.261    | 14.146    | 12.567  | 11.338   | 10.352          | 9.541    | 8.862           | 8.283            | 7.783    | 7.347     | 6.962     | 6.621     | 6.315     | 6.039          | 5.790          | 5.562          | 5.354          | 5.163          | 4.986           | 4.823          |
| =              |                                         |                    |         |                  |          |         | 4 500   | 4 270           | 1 205   | 1 211     | 1.151     | 1 000   | 1 000    | 1.015           | 0.980    | 0.948           | 0.918            | 0.891    | 0.866     | 0.843     | 0.821     | 0.800     | 0.701          | 0.702          | 0.745          | 0.700          |                |                 | 0.683          |
| ) Anni         | S log(i,t)                              | 2.221              | 2.070   | 1.910            | 1.802    | 1.720   | 1.508   | 1.379           | 1.285   | 1.211     | 1.131     | 1.099   | 1.055    | 1.015           | 0.500    | 0.540           | 0.510            | 0.031    | 0.000     | 0.043     | 0.021     | 0.800     | 0.781          | 0.763          | 0.745          | 0.729          | 0.713          | 0.698           | 0.005          |
| = 10 Anr       | •                                       | 2.221<br>1.7734934 |         | 1.910            | 1.802    | 1.720   | 1.508   | 1.379           | 1.285   | 1.211     | 1.151     | 1.099   | 1.055    | 1.015           | 0.500    | 0.540           | 0.318            | 0.031    | 0.000     | 0.045     | 0.021     | 0.000     | 0.781          | 0.763          | 0.745          | 0.729          | 0./13          | 0.698           | 0.005          |
| Tr = 10 Anı    | ⊙ log(i,t)                              |                    |         |                  |          |         |         |                 |         |           |           |         |          |                 |          |                 |                  |          |           |           |           |           |                |                |                |                |                |                 |                |

Tabella 4 - Valori Curve IDF regolarizzate per il centro di scroscio per Assegnati Tempi di Ritorno – a = a(Tr), b = 0.1705, m = 0.7881

ACQUATECNO S.R.L. Pag. 14 di 98

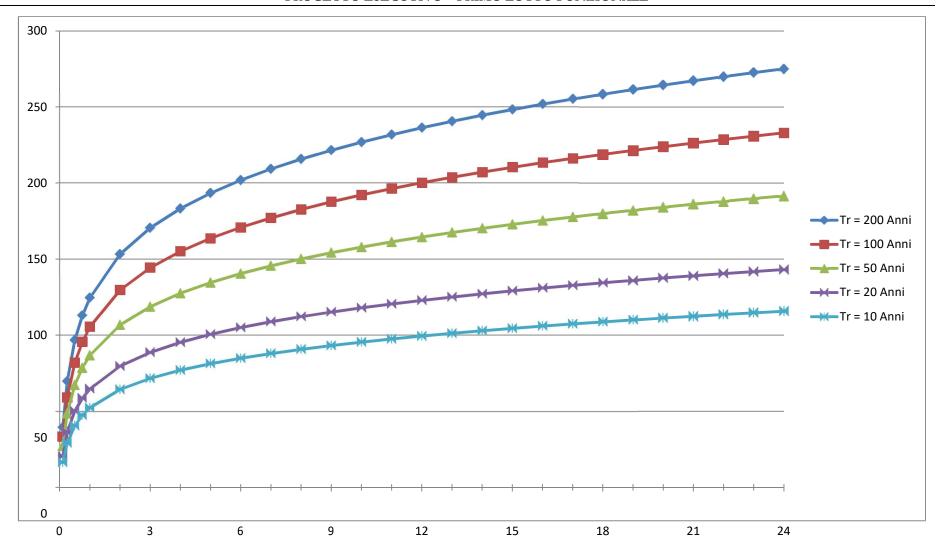



Tabella 5 – Correlazione Altezze-Durata per assegnati Tr, regolarizzazione con curva a tre parametri - Curve relative al Centro di scroscio

ACQUATECNO S.R.L.

### 2.4 APPLICAZIONE DELLA IDF - RAGGUAGLIO ALL'AREA

La metodologia descritta nei paragrafi precedenti consente di determinare la pioggia in un punto dello spazio, che, di norma, coincide con la localizzazione di una stazione pluviografica e che, secondo un'ipotesi verosimile viene fatto coincidere con il centro di scroscio (hp). A causa dell'elevata variabilità spaziale del fenomeno meteorico, il volume affluito complessivamente sopra un certo bacino di drenaggio risulta tuttavia minore di quello che si otterrebbe distribuendo uniformemente sull'area del bacino stesso l'altezza di precipitazione caduta nel centro di scroscio. Questa circostanza indica la necessità di ragguagliare all'area di interesse il valore dell'altezza di pioggia calcolato nel centro di scroscio per un assegnato periodo di ritorno.

Nella letteratura tecnico-scientifica il problema del ragguaglio spaziale è generalmente affrontato in modo empirico, come dimostrano molte delle metodologie proposte dai vari autori e, soprattutto, le tecniche di usuale impiego pratico. In generale, la soluzione del problema viene condotta introducendo un fattore di riduzione, con cui viene riscalato il quantile h<sub>p</sub>, T<sub>r</sub>. In base alla dimensione del bacino (A) e alla durata presa in considerazione (d) viene stimato il rapporto:

$$ARF = \frac{h_m(A, d)}{h_p}$$

Una soddisfacente interpolazione delle stime del coefficiente ARF si ottiene con la relazione:

$$ARF = (1 + \overline{w}A^ad^{-b})^{-c}$$

i cui parametri, stimati in base alle curve di attenuazione relative al più esteso campione di dati sperimentali tuttora disponibile e riportate dal *Flood Studies Report*<sup>4</sup> del Natural Environmental Research Council britannico, sono pari a,  $\overline{w} = 0.02$  a = 0.37, b = 0.48, e c = 2, per d espresso in ore ed A in km<sup>2</sup>.

A questa impostazione si possono far risalire anche le relazioni tradizionalmente impiegate in Italia (ad esempio Columbo, Puppini, Moisello & Papiri) così come quelle presenti nei "Rapporti di sintesi sulla valutazione delle piene in Italia" elaborate dal GNDCI nei sopracitati studi sviluppati nell'ambito del progetto VAPI.

Facendo riferimento a quanto riportato nel Rapporto di sintesi, ad oggi non sono ancora stati resi disponibili parametri specifici per l'area di Roma e Pescara mentre per la più generica area di Bologna

ACQUATECNO S.R.L.

<sup>&</sup>lt;sup>4</sup> Cfr. NERC, "Flood Studies Report", 5 vol., Natural Environmental Research Council, London, 1975

– Pisa – Roma e zona emiliana del bacino del PO, viene riportato la seguente formula empirica di interpolazione dei coefficienti ARF:

$$ARF = 1 - (1 - e^{c_1 A}) e^{c_2 d^{c_3}}$$

in cui i coefficienti  $c_1$ ,  $c_2$ , e  $c_3$  sono stati stimati con riferimento ad un'area rappresentata dal bacino del fiume Reno chiuso a Casalecchio (A = 1051 km<sup>2</sup>), utilizzando 5 anni di precipitazioni rilevate in 30 stazione pluviografiche. I valori dei 3 coefficienti sono:

$$c_1 = 0.01298$$
;  $c_2 = 0.67$ ;  $c_3 = 0.33$ ;

Si è pertanto scelto di utilizzare una risoluzione classica, largamente diffusa in letteratura.

Note le altezze di pioggia nel centro di scroscio h<sub>p</sub> (punto di massima intensità dell'evento meteorico), stimato il coefficiente ARF con una delle formule sopra proposte, si calcola dunque h<sub>m</sub> (valore di calcolo per i volumi di afflusso relativi all'area A).

$$h_m = ARF h_p$$

Seguono le tabelle delle stime del coefficiente ARF ricavate dalle formule interpolanti sopra descritte per varie durate e superfici

ACQUATECNO S.R.L. Pag. 17 di 98

|                                             | t <sub>pioggia</sub> |      |      |      |      |      |      |      | Area [km² | ]    |      |     |
|---------------------------------------------|----------------------|------|------|------|------|------|------|------|-----------|------|------|-----|
|                                             | [ore]                | 0.01 | 0.05 | 0.1  | 0.5  | 1    | 5    | 10   | 20        | 30   | 40   | 50  |
|                                             | 0.1                  | 0.98 | 0.96 | 0.95 | 0.91 | 0.89 | 0.81 | 0.77 | 0.71      | 0.68 | 0.65 | 0.6 |
|                                             | 0.25                 | 0.99 | 0.97 | 0.97 | 0.94 | 0.93 | 0.87 | 0.84 | 0.80      | 0.77 | 0.75 | 0.7 |
| ).5                                         | 0.5                  | 0.99 | 0.98 | 0.98 | 0.96 | 0.95 | 0.91 | 0.88 | 0.85      | 0.83 | 0.81 | 0.8 |
| .48                                         | 0.75                 | 0.99 | 0.99 | 0.98 | 0.97 | 0.96 | 0.92 | 0.90 | 0.87      | 0.86 | 0.84 | 0.8 |
| D -0.48                                     | 1                    | 0.99 | 0.99 | 0.98 | 0.97 | 0.96 | 0.93 | 0.91 | 0.89      | 0.87 | 0.86 | 0.8 |
| 0.37                                        | 2                    | 0.99 | 0.99 | 0.99 | 0.98 | 0.97 | 0.95 | 0.94 | 0.92      | 0.91 | 0.90 | 0.8 |
| < <                                         | 3                    | 1.00 | 0.99 | 0.99 | 0.98 | 0.98 | 0.96 | 0.95 | 0.93      | 0.92 | 0.91 | 0.9 |
| = (1+0.02                                   | 4                    | 1.00 | 0.99 | 0.99 | 0.98 | 0.98 | 0.96 | 0.95 | 0.94      | 0.93 | 0.92 | 0.9 |
| 1+0                                         | 5                    | 1.00 | 0.99 | 0.99 | 0.99 | 0.98 | 0.97 | 0.96 | 0.95      | 0.94 | 0.93 | 0.9 |
| ) =                                         | 6                    | 1.00 | 0.99 | 0.99 | 0.99 | 0.98 | 0.97 | 0.96 | 0.95      | 0.94 | 0.94 | 0.9 |
| ARF                                         | 7                    | 1.00 | 0.99 | 0.99 | 0.99 | 0.98 | 0.97 | 0.96 | 0.95      | 0.95 | 0.94 | 0.9 |
| il: /                                       | 8                    | 1.00 | 1.00 | 0.99 | 0.99 | 0.99 | 0.97 | 0.97 | 0.96      | 0.95 | 0.94 | 0.9 |
| ņ                                           | 9                    | 1.00 | 1.00 | 0.99 | 0.99 | 0.99 | 0.98 | 0.97 | 0.96      | 0.95 | 0.95 | 0.9 |
| S                                           | 10                   | 1.00 | 1.00 | 0.99 | 0.99 | 0.99 | 0.98 | 0.97 | 0.96      | 0.95 | 0.95 | 0.9 |
| Natural Environmental Research Council: ARF | 11                   | 1.00 | 1.00 | 0.99 | 0.99 | 0.99 | 0.98 | 0.97 | 0.96      | 0.96 | 0.95 | 0.9 |
| sses                                        | 12                   | 1.00 | 1.00 | 0.99 | 0.99 | 0.99 | 0.98 | 0.97 | 0.96      | 0.96 | 0.95 | 0.9 |
| I Re                                        | 13                   | 1.00 | 1.00 | 1.00 | 0.99 | 0.99 | 0.98 | 0.97 | 0.97      | 0.96 | 0.96 | 0.9 |
| enta                                        | 14                   | 1.00 | 1.00 | 1.00 | 0.99 | 0.99 | 0.98 | 0.97 | 0.97      | 0.96 | 0.96 | 0.9 |
| me                                          | 15                   | 1.00 | 1.00 | 1.00 | 0.99 | 0.99 | 0.98 | 0.97 | 0.97      | 0.96 | 0.96 | 0.9 |
| ror                                         | 16                   | 1.00 | 1.00 | 1.00 | 0.99 | 0.99 | 0.98 | 0.98 | 0.97      | 0.96 | 0.96 | 0.9 |
| N .                                         | 17                   | 1.00 | 1.00 | 1.00 | 0.99 | 0.99 | 0.98 | 0.98 | 0.97      | 0.96 | 0.96 | 0.9 |
| ralE                                        | 18                   | 1.00 | 1.00 | 1.00 | 0.99 | 0.99 | 0.98 | 0.98 | 0.97      | 0.97 | 0.96 | 0.9 |
| atu                                         | 19                   | 1.00 | 1.00 | 1.00 | 0.99 | 0.99 | 0.98 | 0.98 | 0.97      | 0.97 | 0.96 | 0.9 |
| Z                                           | 20                   | 1.00 | 1.00 | 1.00 | 0.99 | 0.99 | 0.98 | 0.98 | 0.97      | 0.97 | 0.96 | 0.9 |
|                                             | 21                   | 1.00 | 1.00 | 1.00 | 0.99 | 0.99 | 0.98 | 0.98 | 0.97      | 0.97 | 0.96 | 0.9 |
|                                             | 22                   | 1.00 | 1.00 | 1.00 | 0.99 | 0.99 | 0.98 | 0.98 | 0.97      | 0.97 | 0.97 | 0.9 |
|                                             | 23                   | 1.00 | 1.00 | 1.00 | 0.99 | 0.99 | 0.98 | 0.98 | 0.97      | 0.97 | 0.97 | 0.9 |
|                                             | 24                   | 1.00 | 1.00 | 1.00 | 0.99 | 0.99 | 0.98 | 0.98 | 0.97      | 0.97 | 0.97 | 0.9 |

ACQUATECNO S.R.L. Pag. 18 di 98

| t <sub>pioggia</sub> | 22 (4 |      |      |      |      |      |      | Area [km² | ]    |      |      |      |      |      |      |
|----------------------|-------|------|------|------|------|------|------|-----------|------|------|------|------|------|------|------|
| *g [ore]             | 0.01  | 0.05 | 0.1  | 0.5  | 1    | 5    | 10   | 20        | 30   | 40   | 50   | 100  | 250  | 500  | 1000 |
| *[ore]               | 1.00  | 1.00 | 1.00 | 1.00 | 0.99 | 0.95 | 0.91 | 0.83      | 0.76 | 0.70 | 0.65 | 0.47 | 0.30 | 0.27 | 0.27 |
| 0.25                 | 1.00  | 1.00 | 1.00 | 1.00 | 0.99 | 0.96 | 0.92 | 0.85      | 0.79 | 0.73 | 0.69 | 0.52 | 0.37 | 0.35 | 0.35 |
| 0.5                  | 1.00  | 1.00 | 1.00 | 1.00 | 0.99 | 0.96 | 0.93 | 0.87      | 0.81 | 0.76 | 0.72 | 0.57 | 0.44 | 0.41 | 0.41 |
| 0.75                 | 1.00  | 1.00 | 1.00 | 1.00 | 0.99 | 0.97 | 0.93 | 0.88      | 0.82 | 0.78 | 0.74 | 0.60 | 0.48 | 0.46 | 0.46 |
| <u>0</u> 1           | 1.00  | 1.00 | 1.00 | 1.00 | 0.99 | 0.97 | 0.94 | 0.88      | 0.83 | 0.79 | 0.76 | 0.63 | 0.51 | 0.49 | 0.49 |
| 1<br>2<br>3          | 1.00  | 1.00 | 1.00 | 1.00 | 0.99 | 0.97 | 0.95 | 0.90      | 0.86 | 0.83 | 0.79 | 0.69 | 0.59 | 0.57 | 0.57 |
| 3                    | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 0.95 | 0.91      | 0.88 | 0.85 | 0.82 | 0.72 | 0.63 | 0.62 | 0.62 |
| 11 4                 | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 0.96 | 0.92      | 0.89 | 0.86 | 0.83 | 0.75 | 0.67 | 0.65 | 0.65 |
| Sintesi VAPI: 80 o   | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 0.96 | 0.93      | 0.90 | 0.87 | 0.85 | 0.77 | 0.69 | 0.68 | 0.68 |
| <u>o</u> 6           | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 0.96 | 0.93      | 0.90 | 0.88 | 0.86 | 0.78 | 0.71 | 0.70 | 0.70 |
| 7                    | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 0.97 | 0.94      | 0.91 | 0.89 | 0.87 | 0.80 | 0.73 | 0.72 | 0.72 |
| <u>1</u> 8           | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 0.97 | 0.94      | 0.91 | 0.89 | 0.87 | 0.81 | 0.75 | 0.74 | 0.74 |
| <u>e</u> 9           | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 0.97 | 0.94      | 0.92 | 0.90 | 0.88 | 0.82 | 0.76 | 0.75 | 0.75 |
| 10                   | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 0.97 | 0.95      | 0.92 | 0.90 | 0.89 | 0.83 | 0.77 | 0.76 | 0.76 |
| 11                   | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 0.97 | 0.95      | 0.93 | 0.91 | 0.89 | 0.83 | 0.78 | 0.77 | 0.77 |
| 12                   | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 0.97 | 0.95      | 0.93 | 0.91 | 0.90 | 0.84 | 0.79 | 0.78 | 0.78 |
| 13                   | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 0.97 | 0.95      | 0.93 | 0.92 | 0.90 | 0.85 | 0.80 | 0.79 | 0.79 |
| 14                   | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 0.98 | 0.95      | 0.93 | 0.92 | 0.90 | 0.85 | 0.81 | 0.80 | 0.80 |
| 15                   | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 0.98 | 0.96      | 0.94 | 0.92 | 0.91 | 0.86 | 0.81 | 0.81 | 0.81 |
| <u>16</u>            | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 0.98 | 0.96      | 0.94 | 0.92 | 0.91 | 0.86 | 0.82 | 0.81 | 0.81 |
| 17                   | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 0.98 | 0.96      | 0.94 | 0.93 | 0.91 | 0.87 | 0.83 | 0.82 | 0.82 |
| 18                   | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 0.98 | 0.96      | 0.94 | 0.93 | 0.92 | 0.87 | 0.83 | 0.82 | 0.82 |
| 19                   | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 0.98 | 0.96      | 0.95 | 0.93 | 0.92 | 0.88 | 0.84 | 0.83 | 0.83 |
| 20                   | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 0.98 | 0.96      | 0.95 | 0.93 | 0.92 | 0.88 | 0.84 | 0.84 | 0.83 |
| 21                   | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 0.98 | 0.96      | 0.95 | 0.94 | 0.92 | 0.88 | 0.85 | 0.84 | 0.84 |
| 22 23 24             | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 0.98 | 0.96      | 0.95 | 0.94 | 0.93 | 0.89 | 0.85 | 0.84 | 0.84 |
| 23                   | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 0.98 | 0.97      | 0.95 | 0.94 | 0.93 | 0.89 | 0.85 | 0.85 | 0.85 |
| 24                   | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 0.98 | 0.97      | 0.95 | 0.94 | 0.93 | 0.89 | 0.86 | 0.85 | 0.85 |

ACQUATECNO S.R.L. Pag. 19 di 98

### 2.5 RISULTATI

Per il calcolo della IDF da utilizzare in fase di progetto si raccomanda l'utilizzo della seguente formula:

$$h_{progetto} = \frac{a(Tr) t}{(b+t)^m} * ARF \ [mm]$$

Dove:

a(Tr) in funzione del tempo di ritorno e ricavabile dalla tabella riassuntiva sottostante.

| Tr  | a(Tr)  |
|-----|--------|
| 200 | 141.10 |
| 100 | 119.48 |
| 50  | 98.26  |
| 20  | 73.40  |
| 10  | 59.36  |

t tempo di pioggia [ore]

b 0.1705 [ore]

m 0.7881

ARF Areal Reduction Factor

ACQUATECNO S.R.L. Pag. 20 di 98

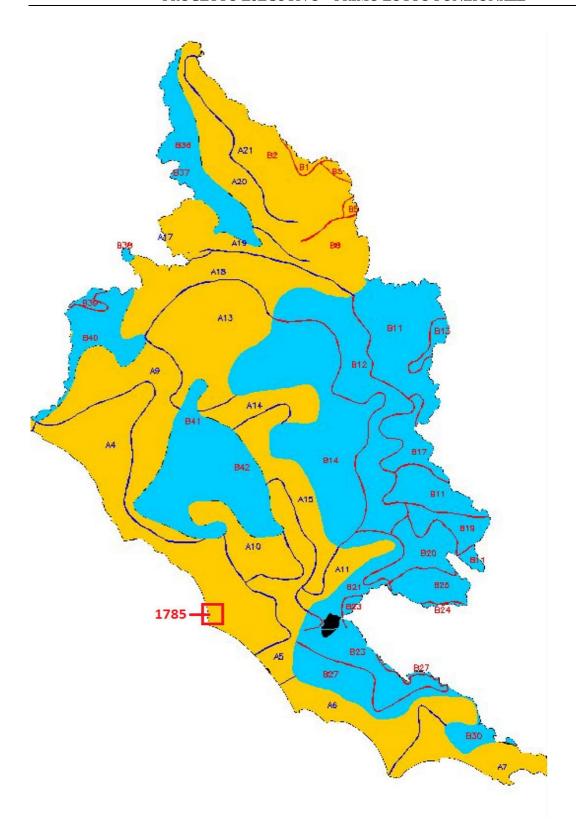



Figura 2 - Sottozone Omegenee rispetto ai parametri TCEV progetto VAPI

ACQUATECNO S.R.L. Pag. 21 di 98



Figura 3 - Particolare bacino 1785 - Sottozona A4

### 3. METODO INFERENZA STATISTICA

Si riporta di seguito una sintesi dello studio di inferenza statistica basato sull'analisi delle serie storiche dei dati disponibili delle precipitazioni intense e di durata breve (1, 3, 6, 12 e 24 ore), registrati nelle stazioni di Ostia, Maccarese, Fiumicino Aeroporto, Fregene e Isola Sacra (fonte dei dati Servizio Idrografico e Mareografico di Roma). I dati delle stazioni elencate, essendo queste ubicate nelle immediate vicinanze dell'aeroporto, nella zona pianeggiante costiera del bacino del fiume Tevere, sono stati raccolti e filtrati in un campione ordinato di 105 elementi.

I modelli probabilistici usati, si basano sulle seguenti ipotesi:

- Che gli elementi della serie statistica siano tra loro stocasticamente indipendenti, nel senso che la probabilità di verificarsi di ciascuno non sia modificata dagli eventi precedenti (caratteristiche di non persistenza).
- Che la serie si anche stazionaria, nel senso che le caratteristiche statistiche della serie non siano dipendenti dal tempo

ACQUATECNO S.R.L. Pag. 22 di 98

Per eliminare la persistenza è necessario che gli eventi selezionati siano sufficientemente distanti nel tempo, mentre la non stazionarietà dovuta alla stagionalità degli eventi meteorici può essere eliminata considerando intervalli di tempo grosso modo annuali.

A tal fine si sono selezionati i dati uniti delle stazioni pluviometriche, utilizzando il metodo dei massimi annuali. La serie empirica è selezionata considerando solo la massima altezza di pioggia registrata di ciascun anno. Si è ricavato così un campione di 56 elementi i quali possono essere pensati come determinazioni di un'unica variabile casuale h<sub>t</sub>, e la serie come un campione estratto a caso da una popolazione con distribuzione di probabilità P<sub>h,t</sub> comune<sup>5</sup>.

DUDATE IODEI

|    |             |      | DURATE | [ORE] |      |       |  |  |
|----|-------------|------|--------|-------|------|-------|--|--|
| 0  | sservazioni | 1    | 3      | 6     | 12   | 24    |  |  |
| N  | anno        | mm   | mm     | mm    | mm   | mm    |  |  |
| 1  | 1928        | 30   | 58.7   | 70    | 79   | 91.9  |  |  |
| 2  | 1929        | 26.4 | 42     | 53.4  | 53.6 | 57.2  |  |  |
| 3  | 1931        | 27.8 | 28.6   | 28.8  | 40.2 | 59.6  |  |  |
| 4  | 1932        | 27.2 | 38.2   | 40    | 51.6 | 52.4  |  |  |
| 5  | 1933        | 27.6 | 36.6   | 39.8  | 46   | 62.8  |  |  |
| 6  | 1937        | 55   | 97.2   | 98.4  | 98.4 | 106.2 |  |  |
| 7  | 1939        | 24.4 | 43     | 69.8  | 76.4 | 80    |  |  |
|    |             |      |        |       |      |       |  |  |
| 8  | 1941        | 31   | 49.4   | 68.6  | 73.2 | 73.2  |  |  |
| 9  | 1942        | 35.6 | 61     | 64.2  | 64.2 | 64.2  |  |  |
| 10 | 1943        | 20   | 31.4   | 42.8  | 52.4 | 52.6  |  |  |
| 11 | 1945        | 13.4 | 27.8   | 43.8  | 53.6 | 63    |  |  |
| 12 | 1946        | 59   | 63.4   | 77.8  | 88.6 | 94.4  |  |  |
| 13 | 1950        | 34.6 | 44.2   | 58    | 67.4 | 82    |  |  |
| 14 | 1953        | 22   | 61.4   | 98    | 112  | 154.6 |  |  |
| 15 | 1956        | 34.2 | 45.2   | 54.2  | 60   | 63.4  |  |  |
| 16 | 1958        | 24.4 | 31     | 42    | 47.4 | 48.6  |  |  |
| 17 | 1959        | 30.2 | 41.5   | 43.5  | 67.5 | 85.4  |  |  |
| 18 | 1960        | 32   | 36.2   | 36.8  | 44.5 | 46.6  |  |  |
| 19 | 1961        | 50   | 64.2   | 64.4  | 90.8 | 104.6 |  |  |
| 20 | 1962        | 38.4 | 46     | 60    | 82.4 | 98.4  |  |  |
| 21 | 1963        | 37.4 | 44     | 53.5  | 56.8 | 78.5  |  |  |
| 22 | 1964        | 37   | 53     | 63.5  | 100  | 112.8 |  |  |
| 23 | 1965        | 52.6 | 76     | 81    | 106  | 142.4 |  |  |
| 24 | 1966        | 43   | 50.4   | 64.8  | 65.8 | 71.8  |  |  |
| 25 | 1967        | 25.4 | 45.2   | 45.4  | 45.4 | 58.6  |  |  |
| 26 | 1968        | 26   | 54.6   | 62.6  | 62.6 | 64    |  |  |
| 27 | 1970        | 46.2 | 47.4   | 61.6  | 90   | 110.6 |  |  |
| 28 | 1971        | 26.2 | 35     | 43    | 51.8 | 62.4  |  |  |
| 29 | 1973        | 31.5 | 31.8   | 43    | 59   | 69.4  |  |  |
| 30 | 1974        | 40   | 82     | 91.4  | 94.4 | 97    |  |  |
|    |             |      |        |       |      |       |  |  |

<sup>&</sup>lt;sup>5</sup> Calenda G. – Mancini C. et al. "Modelli stocastici di Piena"

ACQUATECNO S.R.L. Pag. 23 di 98

\_

| 31 | 1975 | 23   | 42.2 | 49.8 | 58.4  | 65    |
|----|------|------|------|------|-------|-------|
| 32 | 1976 | 24.4 | 29.8 | 36   | 49.4  | 57    |
| 33 | 1977 | 57   | 69.2 | 71.8 | 88.8  | 93    |
| 34 | 1978 | 21.6 | 37.6 | 71.2 | 95.6  | 123.8 |
| 35 | 1981 | 24.8 | 44.4 | 50.6 | 50.6  | 78    |
| 36 | 1982 | 21.6 | 21.6 | 21.6 | 25.4  | 32.6  |
| 37 | 1983 | 30   | 32.4 | 34.2 | 44.6  | 44.6  |
| 38 | 1984 | 50   | 83.4 | 86.8 | 86.8  | 106.8 |
| 39 | 1985 | 17   | 23   | 34.4 | 52    | 66    |
| 40 | 1986 | 61.6 | 74.6 | 75   | 75    | 75    |
| 41 | 1987 | 38.8 | 59   | 59.8 | 78.2  | 119.4 |
| 42 | 1988 | 59.6 | 97.6 | 117  | 126.2 | 128.8 |
| 43 | 1989 | 43.6 | 75.8 | 80.2 | 86.8  | 86.8  |
| 44 | 1990 | 67.8 | 92.4 | 94.8 | 115.6 | 136   |
| 45 | 1991 | 28   | 43.8 | 43.8 | 60.2  | 61.8  |
| 46 | 1992 | 23.4 | 28.8 | 48.8 | 62.2  | 69.4  |
| 47 | 1993 | 21.4 | 60   | 67.4 | 68.2  | 68.8  |
| 48 | 1994 | 30   | 36.8 | 37.6 | 45.6  | 61.4  |
| 49 | 1995 | 28.2 | 45.6 | 61.6 | 79.6  | 86.4  |
| 50 | 1996 | 53.4 | 61.6 | 67.8 | 81.8  | 95.8  |
| 51 | 1997 | 35.4 | 47.8 | 51.8 | 76    | 80.8  |
| 52 | 1998 | 38.6 | 51.8 | 67   | 75    | 90.8  |
| 53 | 1999 | 41.8 | 58.6 | 58.6 | 58.6  | 66    |
| 54 | 2000 | 16.4 | 27.4 | 32.8 | 44.6  | 48.4  |
| 55 | 2001 | 23   | 33.4 | 39.4 | 44.8  | 45.6  |
| 56 | 2002 | 51   | 62.2 | 63.4 | 82.4  | 85.8  |

Per il calcolo delle precipitazioni è stata utilizzata la espressione della curva di probabilità pluviometrica del tipo:

 $h = a t^n$ 

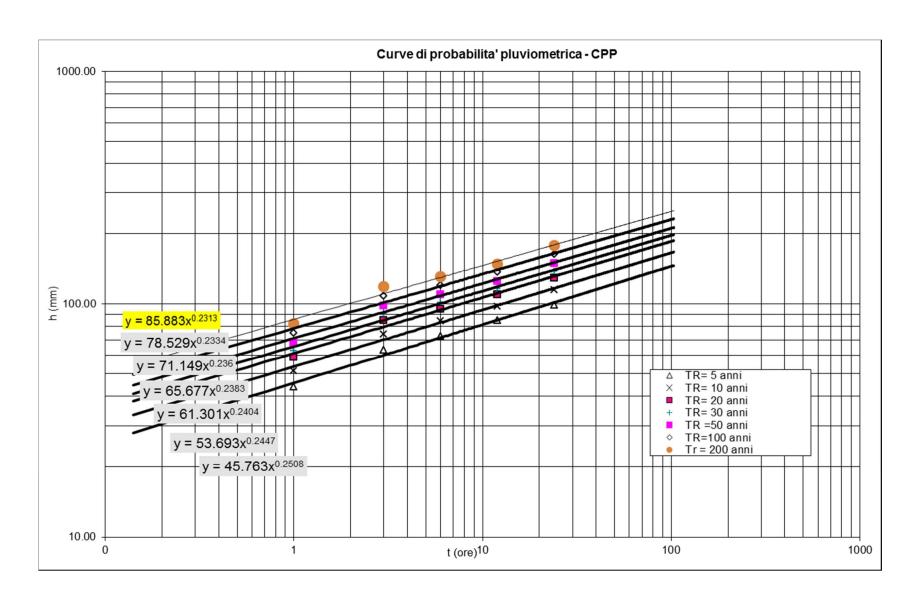
dove

h= altezza di pioggia (mm)

t = tempo di pioggia (ore)

a, n = coefficienti funzione della durata della pioggia e del tempo di ritorno stimati dalla serie empirica sopradescritta tramite distribuzione di probabilità di Gumbel.

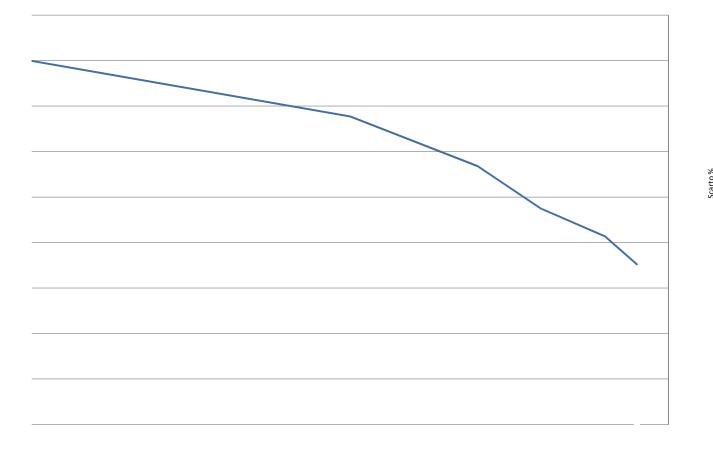
| N=                                     | 56      | 56       | 56       | 56       | 56       |
|----------------------------------------|---------|----------|----------|----------|----------|
| $M = \frac{\sum h_i}{\sum h_i}$        |         |          |          |          |          |
| N                                      | 34.64   | 50.13    | 58.70    | 69.53    | 80.04    |
| $\sum X^2$                             | 9241.16 | 19044.49 | 21250.21 | 25484.55 | 38819.28 |
| $\sigma = \sqrt{\frac{\sum X^2}{N-1}}$ |         |          |          |          |          |
| N-1                                    | 12.96   | 18.61    | 19.66    | 21.53    | 26.57    |
| $\alpha$ = 1,283 / $\sigma$            | 0.10    | 0.07     | 0.07     | 0.06     | 0.05     |
| $\beta = M - 0.5772/\alpha$            | 28.81   | 41.76    | 49.86    | 59.84    | 68.09    |


ACQUATECNO S.R.L. Pag. 24 di 98

| Tempo di ritorno | )     | 1 ora    | 3 ore     | 6 ore     | 12 ore    | 24 ore    |
|------------------|-------|----------|-----------|-----------|-----------|-----------|
| 2 anni           | hmax= | 32.51 mm | 47.07 mm  | 55.47 mm  | 65.99 mm  | 75.68 mm  |
| 5 anni           | hmax= | 43.96 mm | 63.51 mm  | 72.84 mm  | 85.01 mm  | 99.15 mm  |
| 10 anni          | hmax= | 51.55 mm | 74.40 mm  | 84.34 mm  | 97.60 mm  | 114.69 mm |
| 20 anni          | hmax= | 58.82 mm | 84.84 mm  | 95.36 mm  | 109.67 mm | 129.59 mm |
| 30 anni          | hmax= | 63.00 mm | 90.84 mm  | 101.71 mm | 116.62 mm | 138.17 mm |
| 50 anni          | hmax= | 68.23 mm | 98.35 mm  | 109.64 mm | 125.31 mm | 148.89 mm |
| 100 anni         | hmax= | 75.29 mm | 108.48 mm | 120.34 mm | 137.02 mm | 163.35 mm |
| 200 anni         | hmax= | 82.31 mm | 118.57 mm | 130.99 mm | 148.69 mm | 177.75 mm |

Dall'interpolazione lineare risultano i parametri stimati di a e n:

| Paramet | Parametri CPP |      |  |  |  |  |  |  |
|---------|---------------|------|--|--|--|--|--|--|
| а       | n             | anni |  |  |  |  |  |  |
| 45.76   | 0.251         | 5    |  |  |  |  |  |  |
| 53.69   | 0.245         | 10   |  |  |  |  |  |  |
| 61.30   | 0.240         | 20   |  |  |  |  |  |  |
| 65.67   | 0.238         | 30   |  |  |  |  |  |  |
| 71.15   | 0.236         | 50   |  |  |  |  |  |  |
| 78.53   | 0.233         | 100  |  |  |  |  |  |  |
| 85.88   | 0.231         | 200  |  |  |  |  |  |  |


ACQUATECNO S.R.L. Pag. 25 di 98



## 4. CONFRONTI CURVE IDF GENERATE - METODO VAPI E METODO INFERENZA STATISTICA

|                |          | t [ore]                                 | 0.1       | 0.25     | 0.5      | 0.75     | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12       | 13       | 14       | 15       | 16       | 17       | 18       | 19       | 20       | 21       | 22       | 23       | 24       |
|----------------|----------|-----------------------------------------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| je.            | Inf.stat | h(t,Tr) = at <sup>n</sup>               | 20.995686 | 35.49032 | 52.79223 | 66.59669 | 78.529   | 92.31887 | 101.4823 | 108.5303 | 114.3325 | 119.3028 | 123.6733 | 127.5884 | 131.1446 | 134.4095 | 137.433  | 140.2526 | 142.8974 | 145.3906 | 147.7508 | 149.9932 | 152.1307 | 154.1738 | 156.1317 | 158.0121 | 159.8218 | 161.5666 | 163.2516 | 164.8813 |
| 100 A          | VAPI     | $h(t,Tr) = at/(b+t)^m$                  | 33.481986 | 59.12243 | 81.86294 | 95.65691 | 105.5404 | 129.7447 | 144.3726 | 155.0929 | 163.658  | 170.8449 | 177.0687 | 182.5783 | 187.5352 | 192.0506 | 196.2045 | 200.0562 | 203.6512 | 207.0254 | 210.2071 | 213.2197 | 216.0821 | 218.8103 | 221.4177 | 223.9159 | 226.3147 | 228.6227 | 230.8471 | 232.9947 |
| 1              | Delta%   | h(vapi)-h(inf.st.)                      | 37.29%    | 39.97%   | 35.51%   | 30.38%   | 25.59%   | 28.85%   | 29.71%   | 30.02%   | 30.14%   | 30.17%   | 30.16%   | 30.12%   | 30.07%   | 30.01%   | 29.95%   | 29.89%   | 29.83%   | 29.77%   | 29.71%   | 29.65%   | 29.60%   | 29.54%   | 29.49%   | 29.43%   | 29.38%   | 29.33%   | 29.28%   | 29.23%   |
| -<br>-         | Inf.stat | h(t.Tr) = at <sup>n</sup>               | 19 022553 | 32 15501 | 47 83092 | 60.33807 | 71 149   | 83 64292 | 91 94517 | 98 33081 | 103 5877 | 108 0909 | 112 0507 | 115 5979 | 118 8199 | 121 778  | 124 5173 | 127 072  | 129 4682 | 131 7271 | 133 8654 | 135 8972 | 137 8338 | 139 6849 | 141 4588 | 143 1625 | 144 8021 | 146 3829 | 147.9095 | 149 3861 |
| 50 An          | VAPI     | $h(t,Tr) = at$ $h(t,Tr) = at/(b+t)^{m}$ |           |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          | 189.8541 |          |
| ==             | Delta%   | h(vapi)-h(inf.st.)                      |           |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          | 22.09%   |          |
|                | 20.0075  | (•αρ.)(σε.)                             | 30.3270   | 33.07,0  | 20.3070  | 20.0070  | 20.0070  | 22.02/5  | 22.5070  | 22.02/0  | 2010 170 | 20.07,0  | 23.0075  | 20.0270  | 22.3070  | 22.5075  | 22.0070  | 22.77,5  | 22.7070  | 22.0070  | 22.3775  | 22.30%   | 22,      | 22.0070  | 22.02/0  | 22.2075  | 22.2070  | 22.2070  | 2210370  | 22.0170  |
| i <del>c</del> | Inf.stat | h(t,Tr) = at <sup>n</sup>               | 17.557675 | 29.67883 | 44.14758 | 55.69159 | 65.67    | 77.2018  | 84.86471 | 90.75861 | 95.61073 | 99.76714 | 103.422  | 106.696  | 109.6698 | 112.4002 | 114.9286 | 117.2865 | 119.4982 | 121.5831 | 123.5568 | 125.4321 | 127.2195 | 128.9281 | 130.5654 | 132.1379 | 133.6512 | 135.1103 | 136.5194 | 137.8822 |
| 30 An          | VAPI     | $h(t,Tr) = at/(b+t)^m$                  | 23.47493  | 41.45199 | 57.39584 | 67.06709 | 73.99661 | 90.96672 | 101.2227 | 108.7389 | 114.7441 | 119.783  | 124.1466 | 128.0095 | 131.4849 | 134.6508 | 137.5631 | 140.2636 | 142.7842 | 145.1499 | 147.3807 | 149.4928 | 151.4997 | 153.4125 | 155.2407 | 156.9922 | 158.6741 | 160.2922 | 161.8518 | 163.3575 |
| Tr.            | Delta%   | h(vapi)-h(inf.st.)                      | 25.21%    | 28.40%   | 23.08%   | 16.96%   | 11.25%   | 15.13%   | 16.16%   | 16.54%   | 16.67%   | 16.71%   | 16.69%   | 16.65%   | 16.59%   | 16.52%   | 16.45%   | 16.38%   | 16.31%   | 16.24%   | 16.16%   | 16.09%   | 16.03%   | 15.96%   | 15.89%   | 15.83%   | 15.77%   | 15.71%   | 15.65%   | 15.59%   |
| -              | Inf.stat | h(t,Tr) = at <sup>n</sup>               | 16.389303 | 27.70386 | 41.20979 | 51.9856  | 61.3     | 72.06442 | 79.2174  | 84.71909 | 89.24832 | 93.12815 | 96.53979 | 99.59595 | 102.3719 | 104.9205 | 107.2807 | 109.4817 | 111.5462 | 113.4924 | 115.3347 | 117.0852 | 118.7537 | 120.3486 | 121.8769 | 123.3448 | 124.7574 | 126.1194 | 127.4347 | 128.7069 |
| 20 An          | VAPI     | $h(t,Tr) = at/(b+t)^m$                  | 20.567987 | 36.31891 | 50.28842 | 58.76205 | 64.83348 | 79.70215 | 88.68809 | 95.2736  | 100.5351 | 104.95   | 108.7733 | 112.1578 | 115.2029 | 117.9767 | 120.5284 | 122.8945 | 125.103  | 127.1757 | 129.1303 | 130.9809 | 132.7392 | 134.4152 | 136.0169 | 137.5516 | 139.0252 | 140.4429 | 141.8094 | 143.129  |
| Ë              | Delta%   | h(vapi)-h(inf.st.)                      | 20.32%    | 23.72%   | 18.05%   | 11.53%   | 5.45%    | 9.58%    | 10.68%   | 11.08%   | 11.23%   | 11.26%   | 11.25%   | 11.20%   | 11.14%   | 11.07%   | 10.99%   | 10.91%   | 10.84%   | 10.76%   | 10.68%   | 10.61%   | 10.54%   | 10.47%   | 10.40%   | 10.33%   | 10.26%   | 10.20%   | 10.14%   | 10.08%   |
|                |          |                                         |           |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| Anni           |          | h(t,Tr) = at <sup>n</sup>               |           |          |          | 43.71709 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          | 107.1657 |          |
| r = 10         | VAPI     | $h(t,Tr) = at/(b+t)^m$                  | 16.634219 | 29.37267 | 40.67041 | 47.52341 | 52.43363 | 64.45857 | 71.72589 | 77.05187 | 81.3071  | 84.87763 | 87.96967 |          |          |          |          |          |          |          |          |          | 107.3519 | 108.7074 | 110.0028 | 111.2439 | 112.4357 | 113.5823 | 114.6874 | 115.754  |
| -              | Delta%   | h(vapi)-h(inf.st.)                      | 17.14%    | 20.68%   | 14.79%   | 8.01%    | 1.69%    | 5.98%    | 7.12%    | 7.54%    | 7.69%    | 7.73%    | 7.71%    | 7.66%    | 7.60%    | 7.53%    | 7.45%    | 7.37%    | 7.29%    | 7.21%    | 7.13%    | 7.05%    | 6.97%    | 6.90%    | 6.83%    | 6.76%    | 6.69%    | 6.62%    | 6.56%    | 6.50%    |
|                | Inf.stat | h(t,Tr) = at <sup>n</sup>               | 11.753242 | 19.86724 | 29.55273 | 37.28038 | 43.96    | 51.67947 | 56.80908 | 60.7545  | 64.00255 | 66.78489 | 69.23147 | 71.42313 | 73.41383 | 75.24154 | 76.93407 | 78.51246 | 79.99301 | 81.38867 | 82.70988 | 83.96519 | 85.16173 | 86.30546 | 87.40148 | 88.45412 | 89.46716 | 90.44387 | 91.38711 | 92.29942 |
| 5 Anni         | VAPI     | $h(t,Tr) = at/(b+t)^m$                  | 13.654896 | 24.11179 | 33.38601 | 39.01158 | 44.01    | 52.91352 | 58.8792  | 63.25125 | 66.74434 | 69.67536 | 72.21359 | 74.46055 | 76.48213 | 78.32365 | 80.0177  | 81.58853 | 83.0547  | 84.43078 | 85.72839 | 86.95698 | 88.12434 | 89.23698 | 90.30039 | 91.31922 | 92.29752 | 93.23875 | 94.14595 | 95.0218  |
| Ë              | Delta%   | h(vapi)-h(inf.st.)                      | 13.93%    | 17.60%   | 11.48%   | 4.44%    | 0.11%    | 2.33%    | 3.52%    | 3.95%    | 4.11%    | 4.15%    | 4.13%    | 4.08%    | 4.01%    | 3.94%    | 3.85%    | 3.77%    | 3.69%    | 3.60%    | 3.52%    | 3.44%    | 3.36%    | 3.29%    | 3.21%    | 3.14%    | 3.07%    | 3.00%    | 2.93%    | 2.87%    |

|     | INFERENZA S | TATISTICA |        |
|-----|-------------|-----------|--------|
| Tr  | ai          | n t<1h    | n t>1h |
| 5   | 43.96       | 0.5729    | 0.251  |
| 10  | 51.55       | 0.5729    | 0.245  |
| 20  | 61.3        | 0.5729    | 0.240  |
| 30  | 65.67       | 0.5729    | 0.238  |
| 50  | 71.149      | 0.5729    | 0.236  |
| 100 | 78.529      | 0.5729    | 0.233  |



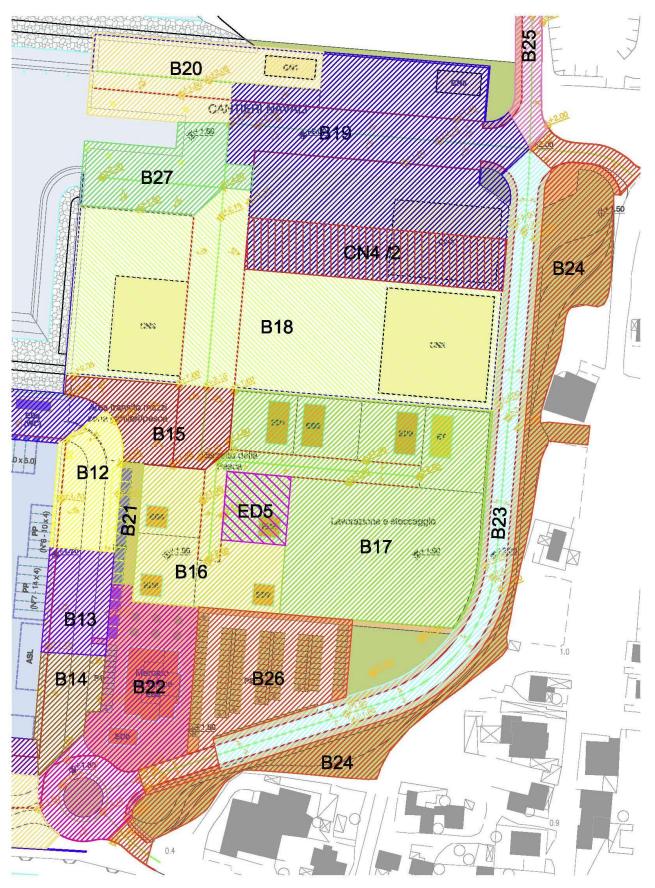
ACQUATECNO S.R.L. Pag. 27 di 98

#### 5. DETERMINAZIONE DEI BACINI TRIBUTARI

La prima fase necessaria per la progettazione e il dimensionamento della rete fognaria a servizio dell'area oggetto di studio, e conseguentemente per la determinazione delle portate di transito nelle dorsali della rete stessa, è la valutazione dei bacini tributari attraverso i quali viene quindi suddivisa l'area complessiva di studio.

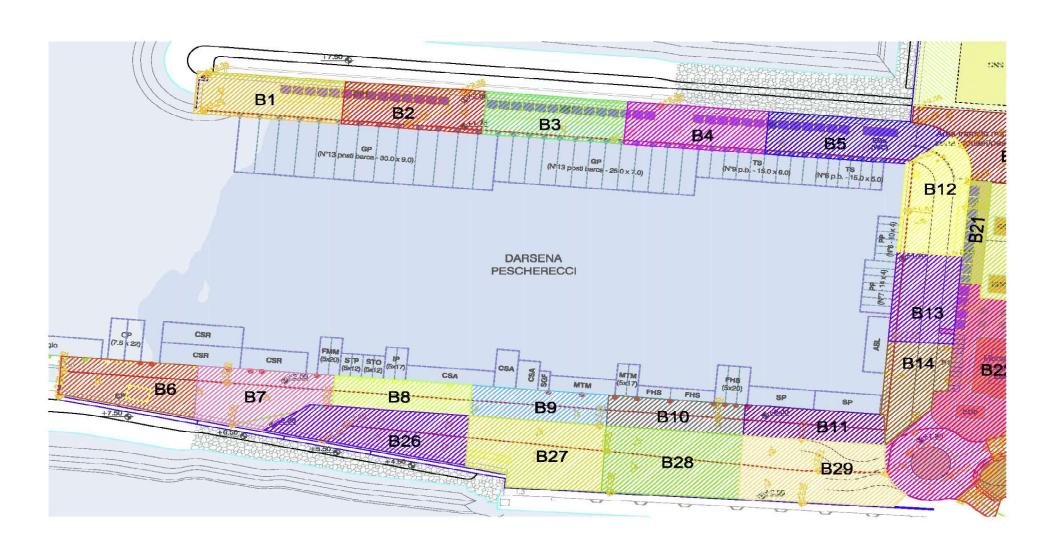
L'area oggetto di intervento la si può pensare suddivisa ipoteticamente in tre aree, in funzione della destinazione d'uso di ognuna di esse: in particolare si distingue l'area "Darsena pescherecci", nella quale si individuano le aree di "Sopraflutto", "Sottoflutto" e "Banchina di riva", l'area "Cantieri navali" e l'area "Distretto della pesca"; confinante, infine, con l'area "Cantieri navali" e l'area "Distretto della pesca" vi è localizzata una strada di collegamento e di "cerniera", con funzioni di accesso alla presente area d'intervento e di collagamento ai futuri lotti previsti più a nord. A tergo di essa, vi è una fascia a verde di connessione all'abitato esistente e relative infrastrutture viarie: tale sedime (bacino B24), adeguatamente drenato con fossetto di guardia e caditoie, avrà un proprio scarico indipendente a mare nel porto canale (tratta fognaria N2-N25).

Di seguito i bacini tributari identificati per l'area in esame.


Bacino Area Area

|                  | Dacino     | AICa    | Alca |
|------------------|------------|---------|------|
|                  | tributario | (mq)    | (ha) |
|                  | B1         | 1527.60 | 0.15 |
|                  | B2         | 1459.20 | 0.15 |
| SOTTOFLUTTO      | В3         | 1459.20 | 0.15 |
|                  | B4         | 1459.20 | 0.15 |
|                  | B5         | 1715.79 | 0.17 |
|                  | D.C.       | 450740  | 0.45 |
|                  | B6         | 1507.12 | 0.15 |
|                  | B7         | 1607.84 | 0.16 |
|                  | B8         | 1021.78 | 0.10 |
|                  | B9         | 1021.78 | 0.10 |
| SOPRAFLUTTO      | B10        | 1021.78 | 0.10 |
| JOFKALLOTTO      | B11        | 1045.96 | 0.10 |
|                  | B26        | 1800.27 | 0.18 |
|                  | B27        | 2088.99 | 0.21 |
|                  | B28        | 2164.66 | 0.22 |
|                  | B29        | 2283.24 | 0.23 |
|                  | B12        | 1647.20 | 0.16 |
| BANCHINA DI RIVA | B13        | 1399.50 | 0.14 |
|                  | B14        | 1206.93 | 0.12 |

|                        | Bacino     | Area                      | Area    |
|------------------------|------------|---------------------------|---------|
|                        | tributario | (mq)                      | (ha)    |
|                        | B15        | 2186.46                   | 0.22    |
|                        | B16        | 4231.59                   | 0.42    |
| DISTRETTO DELLA        | B17        | 10883.19                  | 1.09    |
| PESCA                  | B21        | 549.26                    | 0.05    |
|                        | B22        | 4709.00                   | 0.47    |
|                        | ED5        | 913.77                    | 0.09    |
|                        | D 00000    | 5 (A 15 5 CO A 15 CO A 15 | 13.00.0 |
|                        | B18        | 18100.55                  | 1.81    |
|                        | B19        | 11642.00                  | 1.16    |
| CANTIERI NAVALI        | B20        | 3108.15                   | 0.31    |
|                        | B27        | 2255.09                   | 0.23    |
|                        | CN4/2      | 2772.67                   | 0.28    |
|                        | B23        | 5372.93                   | 0.54    |
| OFFICE OFFICE OF A LEG | B24        | 6346.50                   | 0.63    |
| SEDE STRADALE          | B25        | 4003.37                   | 0.40    |
|                        | B26        | 3945.77                   | 0.39    |


ACQUATECNO S.R.L. Pag. 28 di 98

### Bacini tributari zona Distretto della Pesca e Cantieri navali



ACQUATECNO S.R.L. Pag. 29 di 98

## Bacini tributari zona Darsena Pescherecci (Sopraflutto, Sottoflutto e Banchina di riva)



ACQUATECNO S.R.L. Pag. 30 di 98

### 6. ASSUNZIONI IDROLOGICHE DI CALCOLO

Per la valutazione delle portate pluviali massime defluenti da un bacino si fa riferimento al metodo di calcolo cinematico, secondo il quale la portata massima è quella generata da una pioggia di intensità costante e durata pari al tempo di corrivazione tc del bacino stesso.

In questo metodo semplificativo si assume il concetto che le gocce di pioggia cadute nello stesso istante in punti differenti del bacino impieghino tempi diversi per arrivare alla sezione di chiusura, tempi che sono funzione solo della geometria dei canali e delle superfici scolanti, trascurando quindi tutti i fenomeni di moto vario. Il metodo della corrivazione fornisce una portata massima, relativa al tempo di ritorno Tr caratteristico dell'evento di precipitazione di riferimento, per il bacino i-esimo definita dalla relazione:

$$Q_{max} = \varphi i(T_r, t_c) A$$

In cui:

Qmax = portata massima defluente dal bacino i-esimo in  $m^3/s$ ;

i = Intensità di pioggia in mm/h funzione del tempo di pioggia (assunto pari al tempo di corrivazione del bacino) e del tempo di ritorno dell'evento meteorico;

A = Superficie del bacino scolante;

 $\varphi$  = Coefficiente di afflusso del bacino.

Si sottolinea che la stima della portata massima defluente dal bacino, che dovrà poi essere smaltita dalla rete fognaria, è influenzata da differenti elementi caratteristici sia del bacino scolante di riferimento sia dell'evento meteorico, oltre a fattori quali la superficie del bacino e i dati sulle precipitazioni registrati nella località in esame. In particolare alcuni elementi che influiscono sulla portata defluente sono propri del territorio costituente il bacino, come la permeabilità, la rugosità, la forma, l'estensione e la pendenza del bacino, le caratteristiche dell'eventuale vegetazione presente, lo stato di imbibizione del suolo precedentemente all'evento meteorico; altri elementi dipendono invece dalle caratteristiche della precipitazione, quali l'intensità, la durata, le variazioni d'intensità durante l'evento, le variazioni d'intensità da un punto all'altro del bacino; vi sono inoltre degli elementi funzione della sistemazione urbanistica, rappresentata dal rapporto tra la superficie impermeabile – quindi quella occupata dai manti stradali impermeabili e dalle costruzioni edilizie – e quella permeabile sistemata a verde; infine si individuano degli elementi legati alle dimensioni e alle pendenze della rete scolante.

Per la stima della portata massima sarà quindi necessario fissare, in primo luogo, un coefficiente unico di riduzione comprendente gli effetti di tutte le cause riduttrici sopra indicate: quest'ultimo è rappresentato dal coefficiente di afflusso, ovvero la quota parte di precipitazione che si trasforma in deflusso superficiale e raggiunge la rete fognaria.

ACQUATECNO S.R.L. Pag. 31 di 98

Il coefficiente di afflusso  $\varphi$  è in sostanza riconducibile a quattro fattori, ovvero l'impermeabilità, il ritardo, la ritenuta e la distribuzione della pioggia.

### Fattore di impermeabilità

Il fattore di impermeabilità  $\varphi_1$  rappresenta le caratteristiche di permeabilità della superficie scolante: varia sensibilmente con l'altezza e la durata delle pioggie.

Per la stima di  $\varphi_1$  ci si attiene a dati sperimentali adottati nelle comuni progettazioni, come la scala di Frühling riportata nelle tabelle allegate di seguito; si sottolinea che i valori caratteristici sotto riportati si riferiscono a piogge della durata di un'ora, quindi conformi alle durate caratteristiche per il caso di studio (vedasi assunzioni indicate nelle pagine seguenti).

#### Elementi analitici:

| Tetti, terrazze, pavimentazioni in asfalto                       | $0.9 \div 0.8$  |
|------------------------------------------------------------------|-----------------|
| Lastricati ben connessi                                          | $0.8 \div 0.7$  |
| Lastricati ordinari                                              | $0,7 \div 0,5$  |
| Macadam e selciati                                               | $0,6 \div 0,4$  |
| Superfici battute                                                | $0,3 \div 0,15$ |
| Superfici non battute, parchi, boschi, giardini, terre coltivate | 0,1 ÷ 0         |

### Elementi globali:

| Costruzioni dense (centri cittadini)                | $0.8 \div 0.7$   |
|-----------------------------------------------------|------------------|
| Costruzioni spaziate (semintensive)                 | $0,6 \div 0,5$   |
| Zone a villini (città giardino)                     | $0,35 \div 0,25$ |
| Aree non edificate (piazzali, campi da gioco, ecc.) | $0,20 \div 0,15$ |
| Giardini, parchi, boschi                            | $0,10 \div 0$    |

Il progetto in esame prevede la realizzazione di un nuovo porto commerciale, costituito quindi per la sua quasi totalità da superfici impermeabili: si ritiene quindi opportuno, viste anche le tabelle sopra riportate, di considerare un coefficiente di impermeabilità pari a 0.90, caratteristico quindi di superfici scolanti impermabili.

 $\varphi_1$  = permeabilità della superficie scolante pari a 0.90 per zone servizi portuali

#### Fattore di ritardo

Il fattore di ritardo  $\varphi_2$  tiene conto del tempo che intercorre tra l'inizio della pioggia e la formazione dell'onda di piena nella sezione di chiusura considerata e quindi dei fenomeni di invaso che si verificano all'interno della rete di raccolta: comprende quindi gli effetti della ritenuta superficiale e della distribuzione; si considera unitamente al fattore d'impermeabilità in quanto quest'ultimo, se impiegato da solo, restituirebbe eccessivi valori di portata, soprattutto nel caso di bacini con scarsa pendenza ed elevata estensione.

ACQUATECNO S.R.L. Pag. 32 di 98

Per la stima di  $\varphi_2$  ci si attiene alla formula empirica di Bürkli:

$$\psi = i/\sqrt[n]{A}$$

con i la pendenza media del bacino scolante di riferimento e A la sua area.

Fissata l'area e la pendenza media del bacino, tenendo conto anche della forma e della capacità di ritenuta superficiale dello stesso, l'applicazione della formula succitata richiede di definire l'indice n: tale valutazione verrà fatta adottando il criterio di far corrispondere i valori minori di n ai bacini caratterizzati da basse pendenze, da forme estese tali da generare un minore contributo d'afflusso e da terreni con una maggiore capacità di ritenuta; viceversa i valori maggiori di n verranno associati ai bacini caratterizzati da forti pendenze e da una forma raccolta.

Nella tabella di seguito sono riportati i valori del fattore di ritardo  $\varphi_2$  in funzione dell'area A e della pendenza media i del bacino, e quindi conseguentemente dell'indice n: in particolare, per bacini con pendenze non superiori a 0.01, i valori di  $\varphi_2$  sono compresi tra 0.37 e 0.82; per bacini con area minore di 5 ha si possono considerare valori anche superiori a 0.82, fino a raggiugere prudenzialmente l'unità.

|       | i     |       |       |
|-------|-------|-------|-------|
| A     | 0,001 | 0,005 | 0,010 |
|       | n = 4 | n = 6 | n = 8 |
| 5 ha  | 0,67  | 0,76  | 0,82  |
| 10 ha | 0,56  | 0,68  | 0,75  |
| 20 ha | 0,47  | 0,60  | 0,69  |
| 30 ha | 0,43  | 0,57  | 0,66  |
| 50 ha | 0,37  | 0,52  | 0,61  |

Con riferimento al caso in esame, il bacino complessivo è caratterizzato da una pendenza media bassa e da un'area di poco inferiore a 10 ha: dalla tabella sopra riportata il fattore di ritardo assume quindi un valore compreso tra 0.56 e 0.67 rispettivamente per un'area di 10 ha e 5 ha, fissando una pendenza media i del bacino pari a 0.001 (il valore dell'indice n risulta quindi pari a 4). Cautelativamente tra i due valori del fattore di ritardo succitati si considera il caso "peggiore" in termini di formazione di deflusso (che genera quindi una portata maggiore), ovvero quello relativo ad un bacino di estensione pari a 5 ha caratterizzato da un valore di  $\varphi_2 = 0.67$ . A favore di sicurezza si è scelto quindi di fissare il fattore di ritardo a partire dalla formula di Bürkli, arrotondando a 0.70 il valore tabellato di 0.67 rappresentativo di bacini con estensione pari a 5 ha e pendenza 0.001 (n = 4).

 $\varphi_2$  = fattore di ritardo pari a 0.70

ACQUATECNO S.R.L. Pag. 33 di 98

### Fattore di ritenuta

Il fattore di ritenuta  $\varphi_3$  rappresenta la quantità di acqua che durante un evento meteorico non genera un deflusso superficiale in quanto rimane aderente al suolo, riempie le cavità della superficie di impatto, aderisce alle piante, ecc. La capacità di ritenuta delle superfici risulta massima all'inizio dell'evento meteorico, fino a raggiungere un valore pari ad 1 quando tutte le superfici sono bagnate e le cavità riempite, per cui la pioggia che impatta sulla superficie si trasforma per la sua totalità in deflusso superficiale. Si ritiene comunque cautelativo non considerare l'effetto indotto dalla capacità di ritenuta delle superfici, così da tenere in considerazione anche l'eventualità per cui la pioggia critica si verifichi poco dopo un'altro evento meteorico: si fissa quindi il valore del fattore di ritenuta  $\varphi_3$  pari ad 1, ipotizzando nullo il beneficio di ritenuta indotto dalle superfici, cioè considerando il caso di superfici già completamente bagnate.

 $\varphi_3$  = fattore di ritenuta pari a 1.00

### Fattore di distribuzione

Il fattore di distribuzione areale della pioggia  $\varphi_4$  tiene in considerazione del fatto che l'intensità di un evento meteorico non risulta costante su di una stessa zona, ma è caratterizzata invece da una variabilità areale. Differenti studi dimostrano tale variabilità, tra i quali quello di Frühling indica che ad una distanza di circa 3.00 km dal punto di massima intensità dell'evento, questa si riduca di circa la metà, con una curva di decrescenza a forma di parabola ad asse orizzontale; lo studio di Metcalf indica inoltre che il fattore di distribuzione è in generale prossimo all'unità e che si reduce a 0.95 per aree di 400 ha, mentre per aree alquanto minori non conviene tenerne conto.

Con riferimento al caso in esame si considera quindi un fattore di distribuzione pari ad 1.00, così da trascurare l'effetto della distribuzione areale della pioggia, ipotizzando quindi cautelativamente un evento meteorico costante su tutto il bacino, vista anche l'estensione contenuta del bacino di riferimento.

 $\varphi_4$  = fattore di distribuzione areale (o di riduzione areale) pari a 1.00

Riassumendo, il coefficiente di afflusso  $\varphi$  è ricondicibile al prodotto di quattro fattori, ovvero il fattore di impermeabilità  $\varphi_1$ , il fattore di ritardo  $\varphi_2$ , il fattore di ritenuta  $\varphi_3$  e il fattore di distribuzione areale della pioggia  $\varphi_4$ : assumendo i valori di  $\varphi_1 = 0.90$ ,  $\varphi_2 = 0.70$ ,  $\varphi_3 = 1.00$  e  $\varphi_4 = 1.00$ , il coefficiente di afflusso  $\varphi$  del bacino di riferimento risulta pari a 0.63.

Ne risulta quindi un valore finale  $\varphi = 0.63$ .

Riferendosi all'area oggetto di intervento, per i bacini maggiormente estesi per i quali vi è quindi un fattore di asincronia e di ritardo (quindi per i bacini costituenti le aree dedicate al distretto della pesca, ai cantieri navali e alla sede stradale) - essendo caratterizzati da dorsali di lunghezza medio-lunga - si ritiene opportuno considerare il coefficiente di aflusso sopra stimato pari a 0.63.

ACQUATECNO S.R.L. Pag. 34 di 98

Si sottolinea invece il fatto che per i bacini che costituiscono le aree destinate alla banchina di riva, al sopraflutto e al sottoflutto, ovvero bacini caratterizzati da un'estensione contenuta e quindi nettamente minori di quelli succitati, dove i fenomeni sopra indicati (asincronia e ritardo) sono ridotti per l'assenza di una rete fognaria significativa e l'estensione modesta in gioco, si considera invece un coefficiente di afflusso cautelativo maggiore. Tale scelta è legata al fatto di avere, nelle aree di sopraflutto, sottoflutto e banchini di riva, dei bacini contenuti di estensione areale inferiore all'ettaro, serviti da dorsali caratterizzate da distanze e volumi fognari limitati, unitamente alla presenza di tratti grigliati. Per tenere in considerazione di tali elementi si è ipotizzato, per le aree succitate, un coefficiente  $\varphi$  maggiore rispetto a quello precedentemente stimato – sicuramente più rappresentativo per bacini estesi e dotati di reti fognarie mediolunghe con maggiori volumi fognari a disposizione – così da ottenere una portata massima defluente dal bacino i-esimo più cautelativa, con la quale poter poi verificare la rete fognaria di progetto e i tratti grigliati.

In particolare, considerando come punto di partenza sempre il coefficiente di afflusso  $\varphi$  precedentemente stimato pari a 0.63 – il quale rappresenta il parametro tecnico di riferimento – è stato ritenuto più cautelativo - e quindi come "mero margine di sicurezza" - considerare per i bacini costituenti la banchina di riva, il sopraflutto e il sottoflutto un coefficiente di afflusso  $\varphi$  maggiore pari a 0.75. Ovviamente fissare un valore maggiore per  $\varphi$  comporta conseguentemente una maggiore portata massima defluente dal bacino i-esimo, a parità di evento meteorico considerato: in particolare, l'aumento del coefficiente  $\varphi$  da 0.63 a 0.75 può essere tradotto anche come una maggiorazione del deflusso superficiale per il bacino i-esimo di circa il 20%.

Riassumendo, per i bacini maggiormente estesi e quindi serviti da dorsali di lunghezza medio-lunga, ovvero quelli costituenti le aree dedicate al distretto della pesca, ai cantieri navali e alla sede stradale, si ritiene opportuno considerare – dalle assunzioni conservative fatte, a seguito delle valutazioni sopra illustrate - il coefficiente di aflusso pari a 0.63.

Per quanto riguarda invece i bacini costituenti la banchina di riva, il sopraflutto e il sottoflutto, caratterizzati cioè da un'estensione areale nettamente minore, in cui vi sono distanze brevi e dorsali con volumi fognari limitati (unitamente alla presenza di tratti grigliati), si è scelto di utilizzare sempre il coefficiente di afflusso 0.63 ma maggiorato del 20% a margine di cautela (cioè 0.63 \* 1.20 = 0.75), così da raggiungere un valore di 0.75 (ne deriva conseguentemente una maggiorazione dei deflussi sempre del 20%).

ACQUATECNO S.R.L. Pag. 35 di 98

Sempre partendo dalla formulazione di  $\phi$  adottata e confrontando il coefficiente precedentemente stimato  $\phi=0.63$  con quello maggiorato  $\phi=0.75$ , dall'analisi dei quattro fattori dai quali deriva il coefficiente di afflusso complessivo si sottolinea che il fattore di impermabilità  $\phi_1$  rimane invariato pari a 0.90 in quanto tutta l'area di intervento risulta per la quasi totalità impermeabile, così come rimangono invariati il fattore di ritenuta  $\phi_3$  e il fattore di distribuzione  $\phi_4$  entrambi pari ad 1.00, in quanto vengono trascurati gli effetti indotti dai due fenomeni; assumendo  $\phi$  pari a 0.75 invece di 0.63 significa implicitamente assumere un fattore di ritardo  $\phi_2$  ben maggiore di 0.70 (valore fissato per la stima di  $\phi=0.63$ ), esattamente pari a  $\phi_2=0.833$ , perciò addirittura superiore ai più alti valori tabellati prima esaminati e dunque assai cautelativo in termini di verifiche idrauliche della rete fognaria e dei tratti grigliati di tali specifiche zone.

Un secondo parametro da definire è il tempo di corrivazione, ovvero il tempo impiegato dalla goccia d'acqua caduta nel punto più lontano per raggiungere la sezione di chiusura.

Il tempo di corrivazione è dato dalla somma di due contributi, di cui il primo è il tempo di accesso ta e il secondo è rappresentato dal tempo di rete tr.

La determinazione di tale tempo è di fondamentale importanza nell'applicazione di un modello di trasformazione afflussi-deflussi in quanto la portata massima defluente da un bacino, secondo la teoria del metodo cinematico, è quella generata da una pioggia di intensità costante e durata proprio pari al tempo di corrivazione, in quanto corrispondente a quella più critica.

Il tempo di accesso ta rappresenta il tempo impiegato dalla goccia d'acqua a raggiungere il collettore fognario, ovvero il punto di immissione nella rete fognaria. Per la stima di ta si fa riferimento a quanto indicato in letteratura; in particolare Fair fornisce i seguenti valori tabellati:

| centri urbani intensivi con frequenti caditoie         | $t_a < 5'$           |
|--------------------------------------------------------|----------------------|
| centri commerciali con basse pendenze                  | $t_a = 10' \div 15'$ |
| aree residenziali estensive con caditoie non frequenti | $t_a > 20'$          |

Sempre per quanto riguarda il tempo di accesso ta, è stata recentemente ricavata (1996/1997) con il metodo del condotto equivalente la formula di Mambretti-Paoletti, valida per bacini con estenzione areale fino a 10 ha, definita dalla seguente espressione:

$$t_{ai} = \left[ \frac{3600^{\frac{n-1}{4}} \, 120 \, S_i^{0.30}}{s_i^{0.375} \, (a\varphi)^{0.25}} \right]^{\frac{4}{n+3}}$$

con  $t_{ai}$  il tempo di accesso dell'i-esimo bacino, a ed n i coefficienti della curva di possibilità pluviometrica,  $S_i$  la superficie del bacino i-esimo,  $s_i$  la pendenza media del bacino i-esimo e  $\phi_i$  il coefficiente di afflusso medio del bacino i-esimo.

Di seguito si allega la <u>tabella riassuntiva di riferimento dei tempi di accesso, espressi in minuti, valutati</u> con l'applicazione della formula succitata per valori di *n* compresi tra 0.4 e 0.6.

ACQUATECNO S.R.L. Pag. 36 di 98

| C (La) |         | $a \cdot \varphi \text{ [mm/h}^n]$ |      |      |      |  |  |  |
|--------|---------|------------------------------------|------|------|------|--|--|--|
| S [ha] | s [m/m] | 10                                 | 30   | 50   | 70   |  |  |  |
| 1      | 0,003   | 7,5                                | 5,5  | 5,0  | 4,5  |  |  |  |
|        | 0,010   | 4,5                                | 3,5  | 3,0  | 3,0  |  |  |  |
|        | 0,050   | 2,5                                | 2,0  | 1,5  | 1,5  |  |  |  |
| 2      | 0,003   | 9,5                                | 7,0  | 6,0  | 5,5  |  |  |  |
|        | 0,010   | 6,0                                | 4,5  | 4,0  | 3,5  |  |  |  |
|        | 0,050   | 3,0                                | 2,5  | 2,0  | 2,0  |  |  |  |
| 5      | 0,003   | 13,0                               | 9,5  | 8,5  | 7,5  |  |  |  |
|        | 0,010   | 8,0                                | 6,0  | 5,0  | 4,5  |  |  |  |
|        | 0,050   | 4,0                                | 3,0  | 2,5  | 2,5  |  |  |  |
| 10     | 0,003   | 17,0                               | 12,0 | 10,5 | 9,5  |  |  |  |
|        | 0,010   | 10,0                               | 7,5  | 6,5  | 6,0  |  |  |  |
|        | 0,050   | 5,0                                | 4,0  | 3,5  | 3,0  |  |  |  |
| 20     | 0,003   | 21,5                               | 15,5 | 13,5 | 12,0 |  |  |  |
|        | 0,010   | 12,5                               | 9,0  | 8,0  | 7,5  |  |  |  |
|        | 0,050   | 6,5                                | 5,0  | 4,0  | 4,0  |  |  |  |

Per valori intermedi è valida l'interpolazione lineare.

Considerando il caso di studio, i coefficienti della curva di possibilità pluviometrica *a* ed *n* sono pari rispettivamente a 51.55 e 0.5729 per eventi meteorici caratterizzati da un tempo di ritorno di 10 anni e durata inferiore ad 1 ora (vedasi assunzioni indicate nelle pagine seguenti), i bacini di riferimento presentano un'estensione areale compresa tra 0.05 e 1.81 ha e pendenza media molto bassa, mentre il coefficiente di afflusso assume valore pari a 0.63 per i bacini maggiormente estesi – cioè quelli che compongono il distretto della pesca, i cantieri navali e la sede stradale – e 0.75 per quelli con estensione contenuta – cioè quelli che compongono la banchina di riva, il sopraflutto e il sottoflutto –.

Con riferimento ai valori tabellati sopra riportati relativi alla formula di Mambretti-Paoletti, per una superficie del bacino i-esimo di 1 ha e pendenza media di 0.003, essendo il prodotto a $\phi$  compreso tra 30 e 50 mm/h<sup>n</sup> (infatti si ha 32 mm/h<sup>n</sup> con  $\phi$  = 0.63 e 39 mm/h<sup>n</sup> con  $\phi$  = 0.75), il tempo di accesso ta sarà compreso tra 5.5 e 5.0 minuti.

A seguito delle caratteristiche dei vari bacini individuati nell'area oggetto di intervento e del fatto che la pendenza media dei singoli bacini è sempre inferiore a quella minima tabellare (0.003 m/m), si assume in conclusione un tempo di accesso costante pari a 6 minuti, pari all'arrotondamento per eccesso dei vari valori tabellari appena descritti.

ACQUATECNO S.R.L. Pag. 37 di 98

Il tempo di rete tr rappresenta invece il tempo di percorrenza della goccia d'acqua all'interno della rete fognaria in esame, fino ad arrivare alla sezione di chiusura della tratta stessa, ed è pari a:

$$t_r = \sum_i \frac{L_i}{v_i}$$

con  $L_i$  la lunghezza della tratta i-esima del percorso idraulicamente più lungo e  $v_i$  la velocità di percorrenza all'interno del tratto i-esimo della rete.

Con riferimento al caso di studio, per tratti della rete con lunghezza compresa tra 60 e 250 m circa, considerando la velocità all'interno della rete pari mediamente ad 1 m/s, il tempo di rete tr assume valori compresi tra 1 e 4 minuti circa: tale intervallo limitato deriva dalla scelta metaprogettuale di "frazionare" la rete fognaria in più sottoreti indipendenti o al più "magliate" in corrispondenza di pochi nodi, in quanto diversamente sarebbe necessario realizzare una rete con dorsali significativamente lunghe, essendo l'area complessiva di intervento ampia, con diametri grandi e ricoprimenti risicati, condizione non ottimale per il caso specifico.

Considerando quindi i due contributi di tempo, ovvero 6 minuti per il tempo di accesso e 1-4 minuti per il tempo di rete, il tempo di corrivazione assume valori compresi tra 7 e 10 minuti; cautelativamente, si è assunto un tempo di corrivazione costante pari a 7 minuti.

La scelta di utilizzare il tempo di corrivazione più piccolo tra i valori compresi nell'intervallo individuato, permette di far riferimento ad un grado di sicurezza crescente all'aumentare del grado di importanza della dorsale fognaria, a seguito dell'aumento della differenza tra tempo di corrivazione reale e tempo di corrivazione costante ipotizzato.

Questo garantisce conseguentemente un margine di sicurezza differente tra le dorsali principali, di maggiore ampiezza del bacino drenato, e le dorsali secondarie, più contenute: maggiore per le prime e minore per le seconde, in modo da garantire prestazionalità idraulica crescente all'aumentare dell'importanza della singola dorsale fognaria.

Risulta inoltre necessario definire i parametri a ed n caratteristici della curva IDF, per poter poi stimare l'intensità di precipitazione.

La stima dei fattori a ed n è stata svolta nei capitoli precedenti attraverso l'aplicazione di due metodi: in primo luogo si è applicato il metodo VAPI, basato sulla regionalizzazione delle piogge intense, e successivamente il metodo di Inferenza Statistica. Prendendo a riferimento la Tabella e il Grafico rappresentati il confronto delle curve IDF generate con il metodo VAPI e con il metodo di Inferenza Statistica (Capitolo 4), si nota come lo scarto assuma valori contenuti.

ACQUATECNO S.R.L. Pag. 38 di 98

Un aspetto da tenere in considerazione è legato al fatto che il metodo VAPI è maggiormente rappresentativo nel caso in cui si faccia riferimento ad aree ampie, mentre il metodo di Inferenza Statistica lo si può considerare sito-specifico, ovvero localizzato e quindi maggiormente adatto al caso di aree contenute e comunque per le quali siano disponibili campioni di dati misurati sulle stazioni contermini abbastanza corposi.

Per le considerazioni di cui sopra si è ritenuto adeguato associare ai parametri a ed n i valori stimati con il metodo di Inferenza Statistica. Come è possibile notare nel capitolo di applicazione del metodo di Inferenza Statistica, le curve IDF sono state ricavate a partire da osservazioni di precipitazioni con durate pari a 1, 3, 6, 12 e 24 ore.

Per durate inferiori a 1 ora si è fatto riferimento a indagini svolte sulla stessa area oggetto di studio, ma considerando le osservazioni caratterizzanti eventi brevi ed intensi, di durata inferiore ai 60 minuti.

Per la stima dell'intensità di precipitazione, necessaria per il successivo dimensionamento della rete fognaria a servizio dell'area oggetto di intervento, si assume la curva IDF caratterizzata dai parametri a = 51.55 e n = 0.5729 rappresentante eventi di precipitazione con tempo di ritorno pari a 10 anni e durata inferiore ad 1 ora.

Una volta fissati i parametri sopra illustrati è possibile calcolare l'intensità di pioggia ic, ovvero l'intensità di pioggia critica caratterizzata da un tempo di pioggia pari al tempo di corrivazione, ed infine la portata di picco Qmax con l'applicazione del metodo cinematico.

L'intensità di pioggia si desume dalla seguente formula:

$$i = a \cdot t_c^{n-1}$$

dove:

(a, n) = parametri caratteristici della curva di possibilità climatica;

tc = tempo di corrivazione del bacino afferente espresso in ore.

L'intensità di pioggia nell'area oggetto di intervento risulta quindi pari a:

$$i = 51.55 (7 minuti)^{0.5729-1} = 129.04 mm/ora$$

Determinati così tutti i parametri idrologici che concorrono a fornire il valore della massima portata idrologica (sollecitazione idrologica), occorre comparare quest'ultima con la massima portata smaltibile da ogni condotta (risposta prestazionale idraulica).

ACQUATECNO S.R.L. Pag. 39 di 98

Per verificare la capacità di smaltimento delle portate meteoriche da parte della rete fognaria progettata si può far riferimento all'officiosità della rete stessa, attraverso la stima della massima portata smaltibile a bocca piena dai collettori fognari costituenti la rete (**vedasi paragrafo 7**).

La valutazione dell'officiosità si basa sull'applicazione della formula di moto uniforme per le correnti a pelo libero, ovvero la formula di Chezy:

$$Q_{max} = k_{s} \cdot A \cdot \sqrt{R \cdot i}$$

dove:

k<sub>s</sub> = coefficiente di scabrezza di Gauckler-Strickler;

R = raggio idraulico (pari a D/4, a bocca piena, per le sezioni circolari);

i = pendenza di posa del collettore;

A = area bagnata della condotta.

Rispetto a tale valore massimo, poi, una volta accertato il fatto che la tubazione sia in grado con riempimento ottimale (94%) o a bocca piena di smaltire la massima portata idrologica in ingresso, occorre verificare anche con quale reale grado di riempimento si realizzi il passaggio del picco: la condizione progettuale qui imposta è che esso risulti sempre e comunque nell'ordine massimo dell'80%, ove possibile anche < 70%.

Per verificare le reali condizioni di funzionamento dei tratti finali (totalmente e/o parzialmente sotto battente medio marino) delle fogne bianche di progetto, si procederà anche a più specifiche valutazioni di calcolo, mediante l'utilizzo dell'espressione più generale in uso per rappresentare la perdita di carico delle condotte in pressione:

$$J_{TOT} = 1.5 \; \frac{v^2}{2g} + \beta_r \; L \frac{Q^2}{D^5}$$

dove il primo e il secondo termine rappresentano rispettivamente le perdite concentrate e distribuite, con v la velocità nella condotta,  $\beta_r$  il coefficiente di resistenza dimensionale, L e D la lunghezza e il diametro interno della condotta e Q la portata massima convogliata dalla rete e tributaria dello scarico considerato. La stima delle perdite concentrate (primo addendo) richiede la valutazione della velocità del flusso all'interno della tubazione, data dal rapporto tra la portata defluente nella condotta e l'area interna della condotta stessa (v = Q/A), mentre per valutare le perdite di carico distribuite (secondo addendo) in letteratura sono presenti diverse formule empiriche, tra le quali si evidenziano la formula di Colebrook-White e la fomula di Hazen-Williams (vedasi paragrafo 8).

ACQUATECNO S.R.L. Pag. 40 di 98

#### 7. DIMENSIONAMENTO RETE FOGNARIA BIANCA

Per una chiara comprensione di quanto verrà di seguito esposto, si rimanda allo specifico elaborato grafico di progetto relativo alle reti fognarie.

Come già introdotto precedentemente, l'area oggetto di intervento la si può pensare suddivisa ipoteticamente in tre aree, ovvero l'area "Darsena pescherecci", l'area "Cantieri navali" e l'area "Distretto della pesca"; confinante con l'area "Cantieri navali" e l'area "Distretto della pesca" vi è localizzata una strada di collegamento ed accesso, che si sviluppa a tergo del nuovo porto rispetto alla linea di costa.

Ad eccezione dei soli tratti terminali di scarico a mare, previsti in cls, tutti i condotti fognari per acque meteoriche sono stati previsti in polipropilene corrugato SN16, per coniugare in maniera ottimale le esigenze (in parte discordanti) di resistenza strutturale e di flessibilità, di resistenza chimica alle acque saline e di prestazionalità idraulica (ridotta scabrezza).

Il tratto meridionale della sede stradale di collegamento risulta servita, per la raccolta e smaltimento delle acque meteoriche, da una dorsale DNi600 PP (diametro interno di 600 mm), caratterizzata nella sua prevalenza da una pendenza 0.1% (tratto N3-N11). Solamente i tratti finali di tale dorsale presentano una pendenza maggiore, che aumenta da monte verso valle, in quanto su tali tratti andranno a gravare anche la zona dedicata a parcheggio (bacino B26) e la zona che verrà successivamente dedicata a Mercato del pesce (bacino B22): in particolare, la pendenza della dorsale prevede una prima variazione a pendenza 0.2% (tratto N11-N12), e una seconda veriazione a pendenza 0.3% (tratto N12-N13). Infine, la portata convogliata dalla dorsale viene scaricata nel recettore finale attraverso un tratto di condotta DN800 CLS pendenza 1.5% passante nell'area di sopraflutto (tratto N13-N14).

Parallelamente alla succitata dorsale vi è, lato monte, un'ulteriore dorsale fognaria (tratto N2-N25) che inizia con una condotta DNi400 PP pendenza 0.5% (tratto N2-N22) a servizio di una strada di collegamento tra la nuova sede stradale e la viabilità/edificazione esistente; essa poi prosegue (N22-N23) con una lunga tratta DNi600 PP (diametro interno di 600 mm), caratterizzata da una pendenza costante 0.1%, che drena tutta la fascia di verde prevista da progetto a connessione con l'edificato esistente e una porzione marginale (con caditoie) della stessa, ricevendo anche gli apporti superficiali di un modesto fossetto di guardia contiguo alla citata sede stradale di collegamento. Infine, per sottopassare la viabilità esistente e scaricare a mare, tale dorsale termina con una tratta terminale (N23-N25) caratterizzata da una prima porzione in polietilene DN630 PE100 PN10 (diametro interno di 555,2 mm) con pendenza 0.2% (tratto N23-N24) e da una seconda porzione DN600 CLS pendenza 1.0% (tratto N24-N25).

ACQUATECNO S.R.L. Pag. 41 di 98

Il tratto settentrionale della sede stradale di collegamento risulta anch'essa servita, per la raccolta e smaltimento delle acque meteoriche, da una dorsale DNi600 PP (diametro interno di 600 mm), caratterizzata nella sua prevalenza da una pendenza 0.1% (tratto N1-N3).

In corrispondenza di tale nodo N3 parte una seconda dorsale fognaria DN800 PP pendenza 0.1% (tratto N3-N4), che gira verso mare attraverso la zona dei cantieri navali.

Tale dorsale presenta scopi fondamentali plurimi: smaltire verso mare sia le acque convogliate dal tratto iniziale di condotta DNi600 PP pendenza 0.1% (tratto N1-N3), così da sgravarne il tratto più a valle da tali acque (tratto N3-N13, che funge solamente da troppo pieno per la dorsale N3-N4), sia quelle direttamente tributarie della zona d'ingresso della cantieristica navale.

Il collegamento tra le due dorsali N1-N4 e N3-N14 ha fondamentalmente la funzione di magliare il sistema fognario, avendo così a disposizione un volume di franco tale da garantire comunque l'adeguato smaltimento delle acque anche in caso di eventi meteorici critici. Il tratto di dorsale DNi600 a valle del nodo N3 prevede quindi lo smaltimento, per eventi di pioggia ordinari, esclusivamente delle acque meteoriche ricadenti sul corrispondente tratto di sede stradale (tratto N3-N13), e funge da troppo pieno per la dorsale DNi800 ad essa collegata nel caso di eventi critici tali da mettere in crisi quest'ultima dorsale e rigurgitare l'intero sistema fognario (ad es., in caso di mareggiate e alte maree).

L'ulteriore scopo della dorsale DNi800 PP N3-N4 è, come detto, quello di permettere la raccolta e lo smaltimento delle acque meteoriche defluenti dal bacino ad essa tributario appartenente all'area ad uso cantieri navali (bacino B19). Infatti, l'area destinata a cantieri navali è servita, per il convogliamento delle acque meteoriche verso il recettore, da due differenti dorsali, di cui la prima è quella sopra citata (tratto N3-N4).

In corrispondenza del nodo N4 la portata convogliata da tale dorsale viene suddivisa uniformemente su due tratti analoghi, caratterizzati però da verso di scorrimento opposto. In particolare si individua il ramo N4-N5 (destra idraulica) con DNi800 PP pendenza 0.5% e tratto finale N5-N6 con DN1000 CLS pendenza 1%, e il ramo N4-N9 (sinistra idraulica) con DNi800 PP pendenza 0.5% e tratto finale N9-N10 con DN1000 CLS pendenza 1.5%.

Quest'ultimo ramo, oltre a smaltire la frazione di portata in arrivo dalla dorsale principale DNi800 tratto N3-N4, si farà carico anche delle acque raccolte dalla seconda dorsale a servizio dell'area cantieri navali, posto più a sud, caratterizzata da condotta DNi600 PP pendenza 0.3% (tratto N7-N8).

ACQUATECNO S.R.L. Pag. 42 di 98

All'interno dell'area cantieri navali sono inoltre previsti cinque "lotti" destinati a cantieri navali (edifici con rispettivi piazzali), di cui alcuni verranno realizzati in tempi successivi come finiture definitive dei piazzali ed altri invece saranno realizzati contestualmente al presente progetto. Nella configurazione definitiva di calcolo, comunque sia, tutti sono stati considerati finiti ed integralmente realizzati ed impermeabilizzati.

Per i vari "lotti" attualmente non è noto il punto esatto dell'allacciamento delle rispettive acque meteoriche alla rete fognaria, avendo predisposto qui vari allacci (tutti DNi400 PP) su ognuno di essi per lasciare aperte diverse possibilità realizzative delle reti interne; per tale motivo, il dimensionamento dei tratti costituenti il sistema fognario sopra descritto è stato svolto seguendo differenti ipotesi di allacciamento, così da poter stimare i bacini tributari ai vari tratti di rete, mantenendo per ognuno di essi la versione più cautelativa (i.e. bacino maggiore). Ad esempio, a seguito della posizione sua planimetrica, per il lotto CN4 (con rispettivo piazzale) si può ipotizzare il suo collegamento sia sulla dorsale DNi800 (tratto N3-N4), sia sul ramo DNi600 (tratto N7-N8): per tale motivo entrambe le dorsali sono state dimensionate considerando l'edificio CN4 (con piazzale) tributario in entrambi i casi di ognuna di esse, a fini cautelativi, fatto salvo ovviamente che poi a mare, nella tratta N8-N10, tale superficie comparirà conteggiata una sola volta.

Per il lotto CN3, l'allaccio delle sue acque meteoriche alla rete fognaria risulta collocato in corrispondenza del tratto N8-N9 DNi800 PP.

L'area destinata a distretto della pesca è servita invece da una rete fognaria caratterizzata da una dorsale principale, di cui un primo tratto DNi500 PP pendenza 0.3% (tratto N15-N17), un secondo tratto DNi600 PP pendenza 0.5% (tratto N17-N20), e un tratto finale passante per la banchina di riva DN800 CLS pendenza 1.5% per lo scarico delle acque nel recettore (tratto N20-N21). Su tale dorsale si collegano inoltre due rami secondari, caratterizzati entrambi da condotta DNi400 PP pendenza 0.5%: in corripodnenza del nodo N17 si allaccia, in sinistra idraulica, il tratto N16-N17, mentre più a valle sul nodo N19 vi è l'allaccio, in destra idraulica, del tratto N18-N19.

Analogamente all'area cantieri navali, anche nel comparto dedicato a distretto della pesca verranno realizzati in tempi successivi degli edifici (EDb, EDc, ED1, ED2, ED3, ED4, ED5, ED6, ED7 e ET) con rispettivo piazzale, per i quali non si conosce attualmente l'allaccio alla rete fognaria. Per tale motivo, anche in questo caso sono state fatte delle assunzioni in fase di dimensionamento della rete, sempre in un'ottica conservativa dei dimensionamenti. In particolare, per la sua posizione planimetrica, ED5 (con rispettivo piazzale) può collegarsi alla rete fognaria sia sul primo tratto della dorsale princiaple DN500 (tratto N15-N17), oppure sul ramo secondario N16-N17 DN400.

ACQUATECNO S.R.L. Pag. 43 di 98

Per tale motivo, entrambe le dorsali sono state dimensionate considerando l'edificio ED5 (con piazzale) potenzialmente tributario in entrambi i casi.

Una seconda ipotesi è stata introdotta per l'edificio ED4 (con rispettivo piazzale): analogamente a quanto esposto precedentemente per l'edificio CN3 appartenente al comparto cantieri navali, si considera a scopo cautelativo l'allaccio dell'edificio ED4 (con piazzale) al tratto N16-N17, oltre all'eventualità che tale edificio venga invece collegato più a valle sul tratto N17-N20, sgravando quindi il ramo a monte.

Da sottolineare che la progettazione del sistema fognario a servizio del Primo Lotto Funzionale garantisce sempre il ricoprimento necessario delle condotte, prevedendo in alcuni punti un ricoprimento minimo comunque di entità pari a 85 cm.

Da precisare inoltre il fatto che sia per l'area cantieri navali sia per il distretto della pesca, le aree destinate agli edifici e ai rispettivi piazzali di futura realizzazione verranno, in molti casi, lasciate depresse con pavimentazione in tout venant stradale (quindi con superficie semipermeabile); tenendo comunque in considerazione che tali aree saranno destinate ad essere impermeabili, per il dimensionamento della rete fognaria si introduce fin da ora, come già anticipato, l'ipotesi di bacini tributari caratterizzati da superficie esclusivamente ed integralmente impermeabile.

Di seguito, si riportano i risultati ottenuti per il dimensionamento della rete fognaria: per ogni tratto sono state stimate, a partire dall'intensità di pioggia critica precedentemnete calcolata (ic = 129.04 mm/ora) considerando un evento meteorico con durata pari al tempo di corrivazione 7 minuti e tempo di ritorno pari a 10 anni, le portate massime idrologiche Q defluenti dai rispettivi bacini tributari attraverso l'applicazione del metodo cinematico.

Inoltre, per ogni tratto fognario sono state calcolate anche le portate massime smaltibili in condizione di bocca piena o quasi e quindi franco nullo Qoff (officiosità idraulica), con l'applicazione della formula di moto uniforme di Chezy, evidenziando altresì il reale grado di riempimento corrispondente alla specifica portata idrologica di riferimento del tratto.

Dalla tabella seguente si dimostra che tutti i rami costituenti la rete fognaria sono in grado di smaltire la portata decennale con un grado di riempimento della condotta contenuto, inferiore ovunque all'80%.

ACQUATECNO S.R.L. Pag. 44 di 98

|                | Bacino      | Area    | Area | coeff        | Q       | Q     | U        | DNi         | р   | Grado           | Qoff   |
|----------------|-------------|---------|------|--------------|---------|-------|----------|-------------|-----|-----------------|--------|
|                | tributario  | (mq)    | (ha) | afflusso (-) | (I/ora) | (I/s) | (I/s*ha) | (mm)        | (%) | rimpiemento (%) | (I/s)  |
| TRATTO N1-N3   | B25         | 4003    | 0.40 | 0.63         | 325463  | 90.4  | 226      | 600 PP      | 0.1 | 43              | 258.6  |
| TRATTO N3-N4   | BT1         | 15645   | 1.56 | 0.63         | 1271932 | 353.3 | 226      | 800 PP      | 0.1 | 61              | 556.9  |
| TRATTO N4-N5   | BT1/2 + B20 | 10931   | 1.09 | 0.63         | 888650  | 246.8 | 226      | 800 PP      | 0.5 | 32              | 1245.3 |
| TRATTO N5-N6   | BT1/2 + B20 | 10931   | 1.09 | 0.63         | 888650  | 246.8 | 226      | 1000 CLS    | 1.0 | 23              | 2235.2 |
| TRATTO N4-N8   | BT1/2       | 7823    | 0.78 | 0.63         | 635966  | 176.7 | 226      | 800 PP      | 0.5 | 27              | 1245.3 |
| TRATTO N7-N8   | B18         | 18101   | 1.81 | 0.63         | 1471526 | 408.8 | 226      | 600 PP      | 0.3 | 80              | 447.9  |
| TRATTO N8-N9   | BT2         | 25406   | 2.54 | 0.63         | 2065414 | 573.7 | 226      | 800 PP      | 0.5 | 50              | 1245.3 |
| TRATTO N9-N10  | BT2         | 25406   | 2.54 | 0.63         | 2065414 | 573.7 | 226      | 1000 CLS    | 1.5 | 32              | 2737.5 |
| TRATTO N3-N11  | B23         | 5373    | 0.54 | 0.63         | 436805  | 121.3 | 226      | 600 PP      | 0.1 | 50              | 258.6  |
| TRATTO N11-N12 | B23 + B26   | 9319    | 0.93 | 0.63         | 757585  | 210.4 | 226      | 600 PP      | 0.2 | 57              | 365.7  |
| TRATTO N12-N13 | B23+B26+B22 | 14028   | 1.40 | 0.63         | 1140414 | 316.8 | 226      | 600 PP      | 0.3 | 65              | 447.9  |
| TRATTO N13-N14 | B23+B26+B22 | 14028   | 1.40 | 0.63         | 1140414 | 316.8 | 226      | 800 CLS     | 1.5 | 32              | 1509.8 |
| TRATTO N15-N17 | B17         | 10883   | 1.09 | 0.63         | 884774  | 245.8 | 226      | 500 PP      | 0.3 | 78              | 275.4  |
| TRATTO N16-N17 | B16         | 4232    | 0.42 | 0.63         | 344017  | 95.6  | 226      | 400 PP      | 0.5 | 52              | 196.1  |
| TRATTO N18-N19 | B15         | 2186    | 0.22 | 0.63         | 177753  | 49.4  | 226      | 400 PP      | 0.5 | 36              | 196.1  |
| TRATTO N19-N20 | BT3         | 16937   | 1.69 | 0.63         | 1376910 | 382.5 | 226      | 600 PP      | 0.5 | 62              | 578.2  |
| TRATTO N20-N21 | ВТ3         | 16937   | 1.69 | 0.63         | 1376910 | 382.5 | 226      | 800 CLS     | 1.5 | 36              | 1509.8 |
| TRATTO N2-N22  | B24         | 6346.50 | 0.63 | 0.63         | 515953  | 143.3 | 226      | 400 PP      | 0.5 | 67              | 196.1  |
| TRATTO N22-N23 | B24         | 6346.50 | 0.63 | 0.63         | 515953  | 143.3 | 226      | 600 PP      | 0.1 | 56              | 258.6  |
| TRATTO N23-N24 | B24         | 6346.50 | 0.63 | 0.63         | 515953  | 143.3 | 226      | 630 PE PN10 | 0.2 | 51              | 297.3  |
| TRATTO N24-N25 | B24         | 6346.50 | 0.63 | 0.63         | 515953  | 143.3 | 226      | 600 CLS     | 1.0 | 35              | 572.4  |

BT1 = B25 + B19

BT2 = BT1/2 + B27 + B18 - CN4/2

BT3 = B17 + B16 + B15 + B21 - ED5

Come si può notare dalla tabella sopra, il grado di riempimento delle condotte è nella maggior parte dei casi limitato: la scelta di sovradimensionare la rete fognaria progettata è legata al fatto che l'area attualmente oggetto di intervento rappresenta il Primo Lotto Funzionale del Nuovo Porto Commerciale di Fiumicino. Infatti, il progetto complessivo del nuovo porto prevede la realizzazione di un secondo lotto localizzato a monte (a nord) del primo.

Il sovradimensionamento della rete è quindi legato, oltre che alla volontà generale di mantenere un margine adeguato di sicurezza idraulica rispetto agli eventi pluviometrici più severi del Tr > 10 anni, all'eventualità di possibili allacci futuri a monte sul tratto fognario N1-N3, caratterizzato da condotta DNi600 PP pendenza 0.1%, che andranno quindi a gravare sulla dorsale fognaria progettatata.

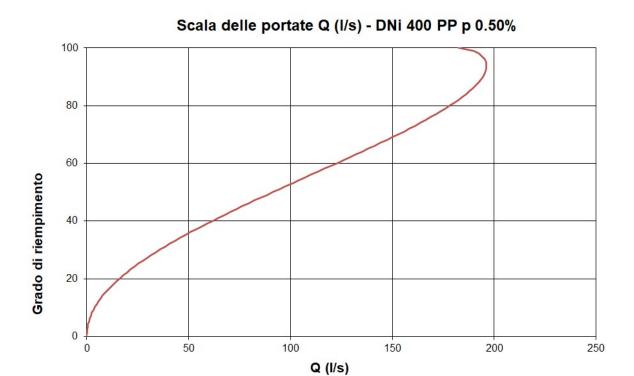
Con riferimento al progetto del Primo Lotto Funzionale, infatti, dalla tabella risulta che il tratto N1-N3 sul quale si ipotizza un eventuale allaccio futuro in testata è in grado di convogliare verso valle una portata pari a 90.4 l/s, con un grado di riempimento di 42.6%. L'officiosità della condotta DNi600 PP pendenza 0.1%, per cui con franco nullo, è pari a 258.6 l/s: questo porta a concludere che, anche nell'eventualità di un futuro allaccio del socondo lotto, la condotta è in grado di smaltire comunque una portata aggiuntiva di 168 l/s circa, corrispondente ad un'area di circa 7400 mq.

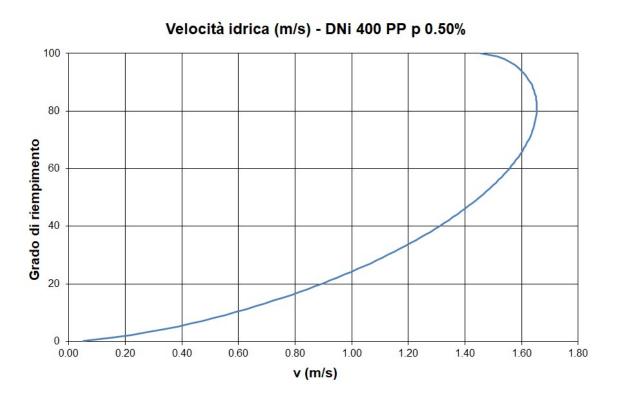
ACQUATECNO S.R.L. Pag. 45 di 98

Prevedendo però un grado di riempimento tale da non superare un valore dell'80% circa, così da garantire un franco sufficiente di sicurezza in caso di eventi meteorici critici, la portata massima aggiuntiva che la condotta è in grado di smaltire è invece pari a 140 l/s circa, alla quale corrisponde un'area di 6200 mq circa.

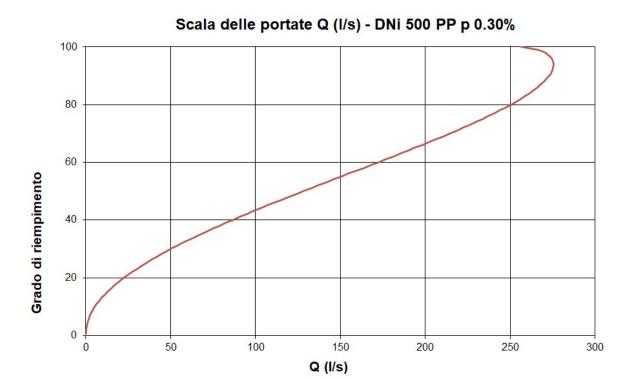
Nella tabella seguente si dimostra che, anche nel caso di una portata aggiuntiva pari a 140 1/s massimo a seguito dell'eventale allaccio futuro, le condotte aggravate (evidenziate in arancione in tabella) delle dorsali fognarie interessate sono comunque in grado di smaltire la portata meteorica garantendo comunque un grado di riempimento inferiore o uguale all'80% circa.

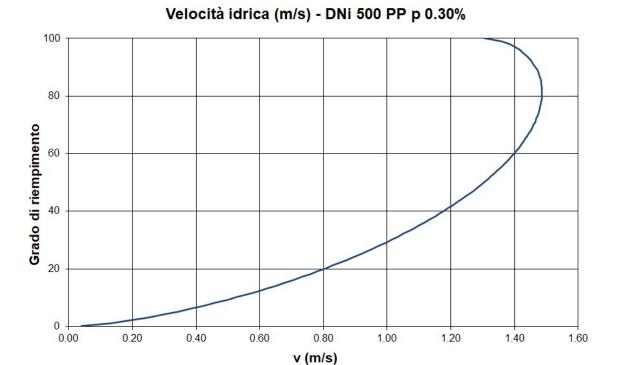
|                | Bacino      | Area    | Area | coeff        | Q       | Q          | U        | DNi         | р   | Grado           | Qoff     |
|----------------|-------------|---------|------|--------------|---------|------------|----------|-------------|-----|-----------------|----------|
| _              | tributario  | (mq)    | (ha) | afflusso (-) | (I/ora) | (I/s)      | (I/s*ha) | (mm)        | (%) | rimpiemento (%) | (I/s)    |
| TRATTO N1-N3   | B25         | 10203   | 1.02 | 0.63         | 829440  | 230.4      | 226      | 600 PP      | 0.1 | 79              | 258.6    |
| TRATTO N3-N4   | BT1         | 21845   | 2.18 | 0.63         | 1775908 | 493.3      | 226      | 800 PP      | 0.1 | 78              | 556.9    |
| TRATTO N4-N5   | BT1/2 + B20 | 14030   | 1.40 | 0.63         | 1140638 | 316.8      | 226      | 800 PP      | 0.5 | 36              | 1245.3   |
| TRATTO N5-N6   | BT1/2 + B20 | 14030   | 1.40 | 0.63         | 1140638 | 316.8      | 226      | 1000 CLS    | 1.0 | 27              | 2235.2   |
| TRATTO N4-N8   | BT1/2       | 10922   | 1.09 | 0.63         | 887954  | 246.7      | 226      | 800 PP      | 0.5 | 32              | 1245.3   |
| TRATTO N7-N8   | B18         | 18101   | 1.81 | 0.63         | 1471526 | 408.8      | 226      | 600 PP      | 0.3 | 80              | 447.9    |
| TRATTO N8-N9   | BT2         | 28505   | 2.85 | 0.63         | 2317402 | 643.7      | 226      | 800 PP      | 0.5 | 53              | 1245.3   |
| TRATTO N9-N10  | BT2         | 28505   | 2.85 | 0.63         | 2317402 | 643.7      | 226      | 1000 CLS    | 1.5 | 34              | 2737.5   |
|                |             | 12222   | 2.20 | 2002         | 1272200 | 1272 20101 | 1243     | 5245550     | 200 | 7 22            | 25000000 |
| TRATTO N3-N11  | B23         | 5373    | 0.54 | 0.63         | 436805  | 121.3      | 226      | 600 PP      | 0.1 | 50              | 258.6    |
| TRATTO N11-N12 | B23 + B26   | 9319    | 0.93 | 0.63         | 757585  | 210.4      | 226      | 600 PP      | 0.2 | 57              | 365.7    |
| TRATTO N12-N13 | B23+B26+B22 | 14028   | 1.40 | 0.63         | 1140414 | 316.8      | 226      | 600 PP      | 0.3 | 65              | 447.9    |
| TRATTO N13-N14 | B23+B26+B22 | 14028   | 1.40 | 0.63         | 1140414 | 316.8      | 226      | 800 CLS     | 1.5 | 32              | 1509.8   |
|                | 247         | 40000   | 4 00 | 0.50         |         | 245.0      | 225      | 500.00      |     |                 |          |
| TRATTO N15-N17 | B17         | 10883   | 1.09 | 0.63         | 884774  | 245.8      | 226      | 500 PP      | 0.3 | 78              | 275.4    |
| TRATTO N16-N17 | B16         | 4232    | 0.42 | 0.63         | 344017  | 95.6       | 226      | 400 PP      | 0.5 | 52              | 196.1    |
| TRATTO N18-N19 | B15         | 2186    | 0.22 | 0.63         | 177753  | 49.4       | 226      | 400 PP      | 0.5 | 36              | 196.1    |
| TRATTO N19-N20 | BT3         | 16937   | 1.69 | 0.63         | 1376910 | 382.5      | 226      | 600 PP      | 0.5 | 62              | 578.2    |
| TRATTO N20-N21 | ВТ3         | 16937   | 1.69 | 0.63         | 1376910 | 382.5      | 226      | 800 CLS     | 1.5 | 36              | 1509.8   |
|                |             |         |      |              |         |            |          |             |     |                 |          |
| TRATTO N2-N22  | B24         | 6346.50 | 0.63 | 0.63         | 515953  | 143.3      | 226      | 400 PP      | 0.5 | 67              | 196.1    |
| TRATTO N22-N23 | B24         | 6346.50 | 0.63 | 0.63         | 515953  | 143.3      | 226      | 600 PP      | 0.1 | 56              | 258.6    |
| TRATTO N23-N24 | B24         | 6346.50 | 0.63 | 0.63         | 515953  | 143.3      | 226      | 630 PE PN10 | 0.2 | 51              | 297.3    |
| TRATTO N24-N25 | B24         | 6346.50 | 0.63 | 0.63         | 515953  | 143.3      | 226      | 600 CLS     | 1.0 | 35              | 572.4    |


BT1 = B25 + B19

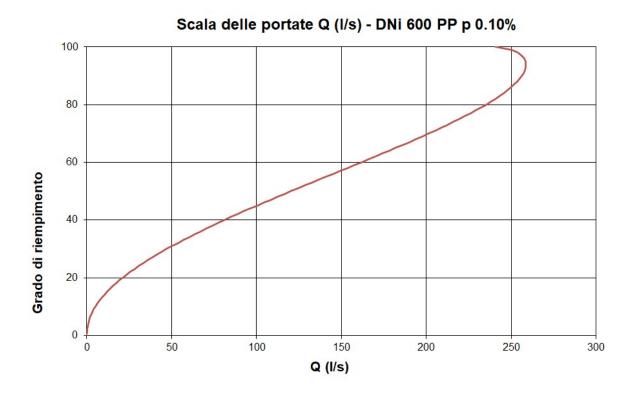

BT2 = BT1/2 + B27 + B18 - CN4/2

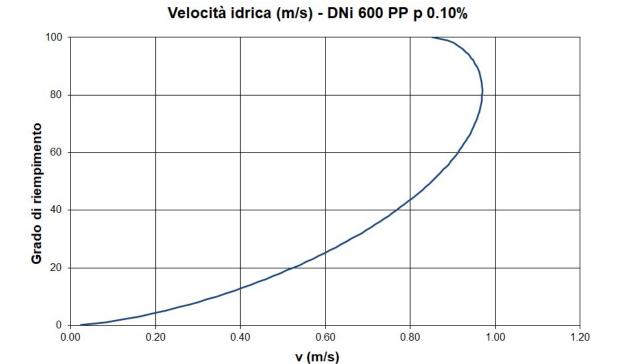
BT3 = B17 + B16 + B15 + B21 - ED5


Le figure di seguito rappresentano gli andamenti della "Scala delle portate" e della "Scala delle velocità" per le differenti tipologie e tratte di condotte costituenti il sistema fognario c.d. "bianco" sopra descritto.

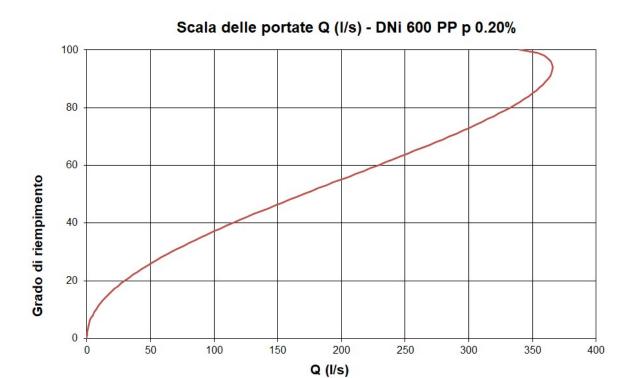

ACQUATECNO S.R.L. Pag. 46 di 98

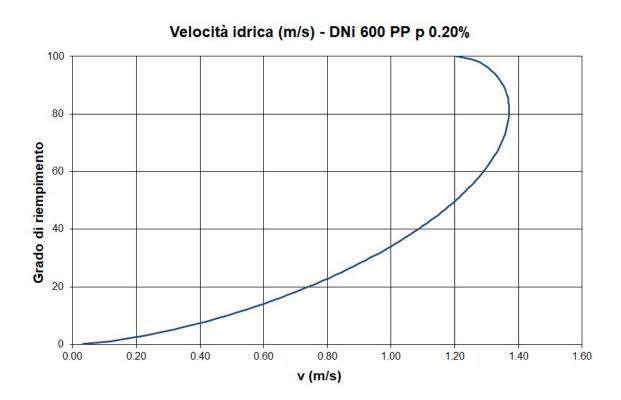




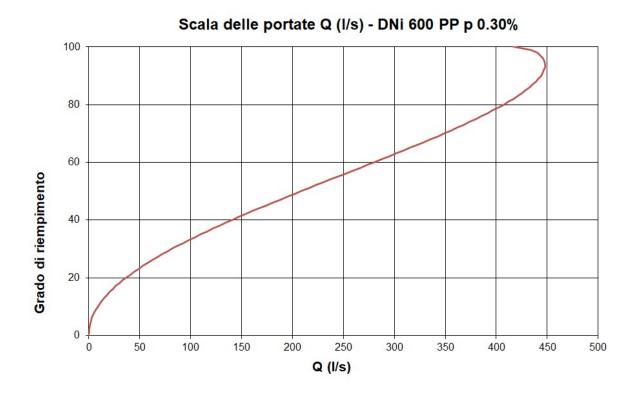


ACQUATECNO S.R.L. Pag. 47 di 98

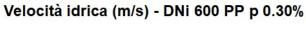


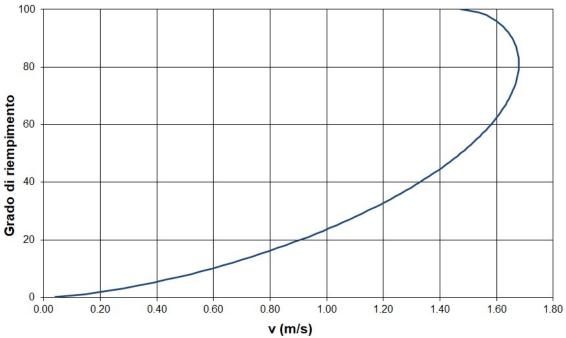




ACQUATECNO S.R.L. Pag. 48 di 98

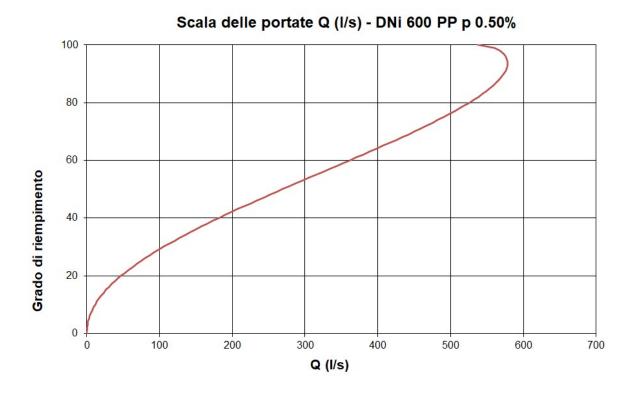


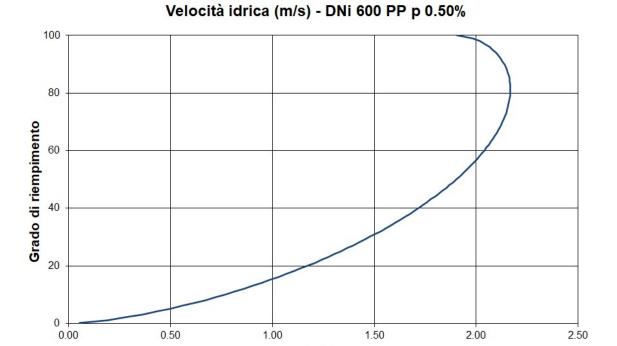




ACQUATECNO S.R.L. Pag. 49 di 98



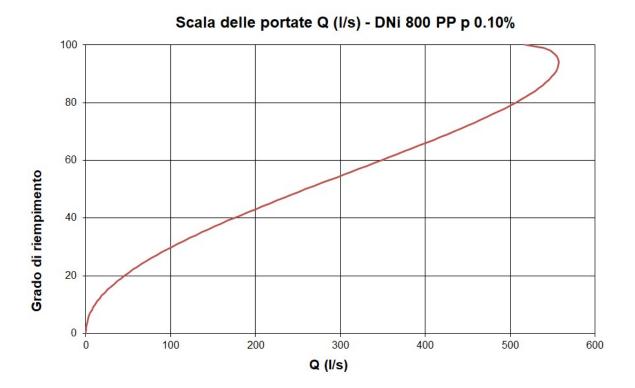




ACQUATECNO S.R.L. Pag. 50 di 98

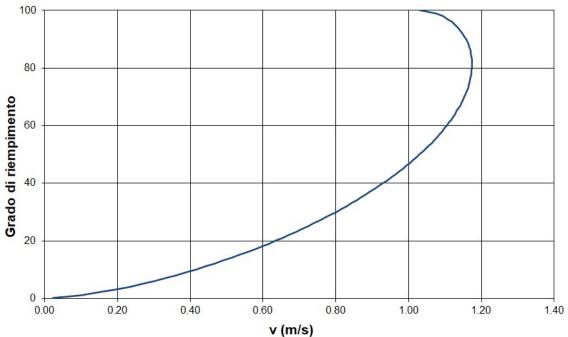




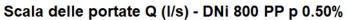


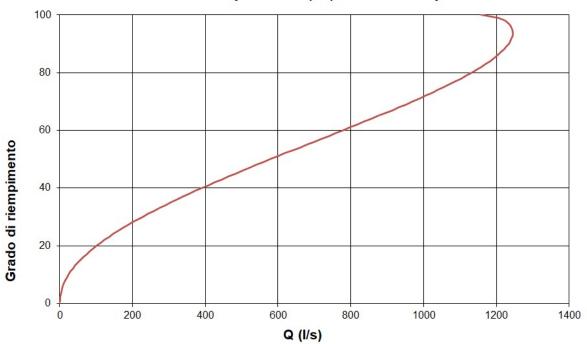


ACQUATECNO S.R.L. Pag. 51 di 98



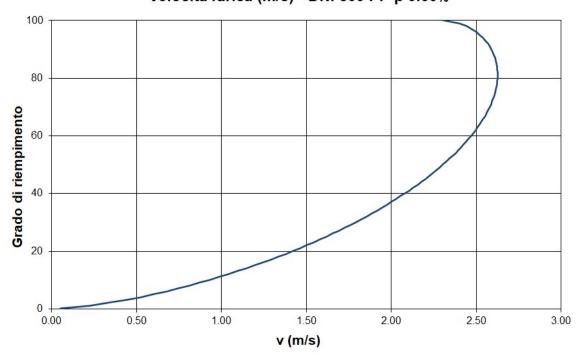



ACQUATECNO S.R.L. Pag. 52 di 98

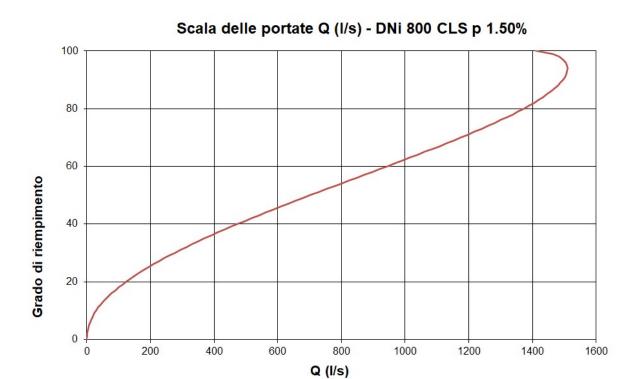

v (m/s)

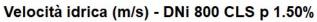


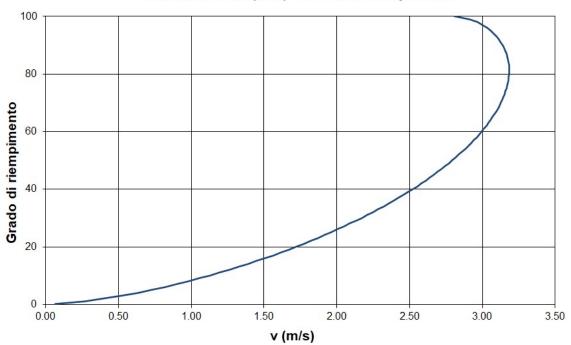


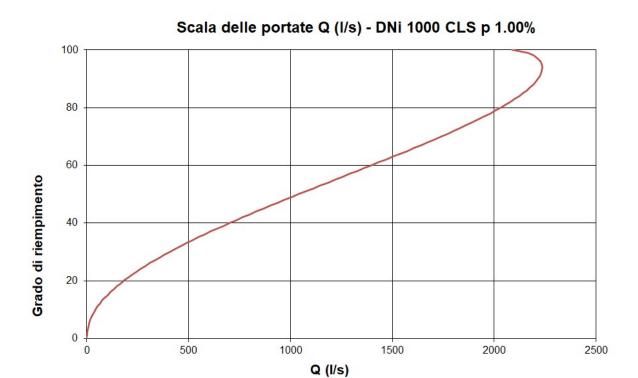

ACQUATECNO S.R.L. Pag. 53 di 98

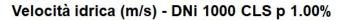


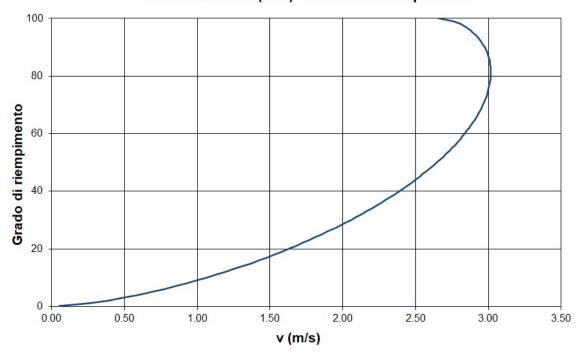





# Velocità idrica (m/s) - DNi 800 PP p 0.50%

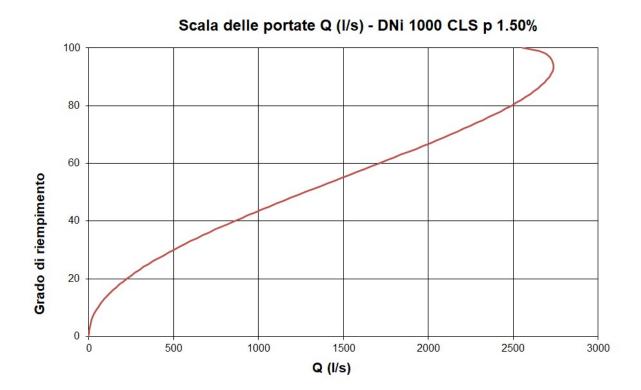


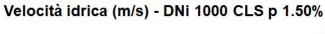

ACQUATECNO S.R.L. Pag. 54 di 98

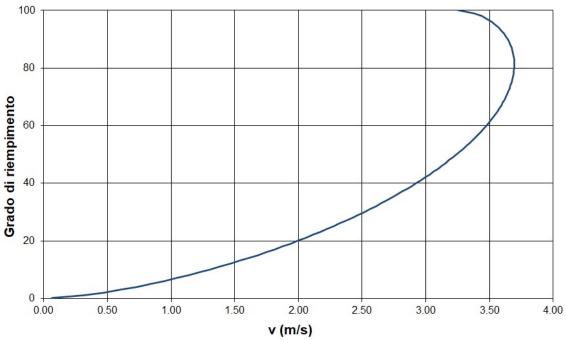


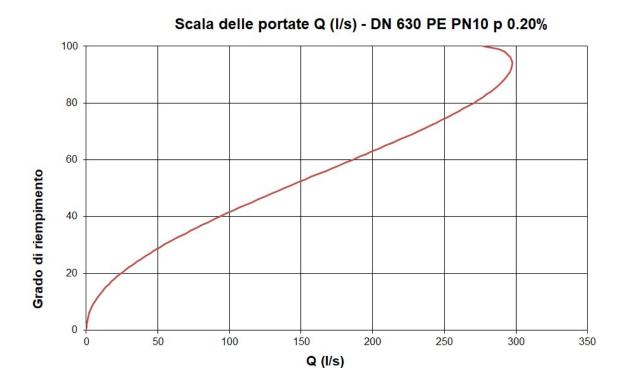


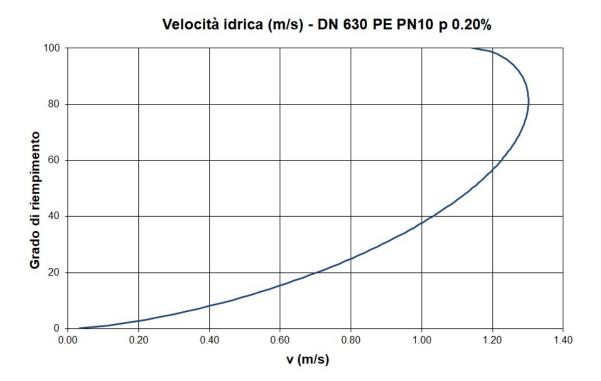


ACQUATECNO S.R.L. Pag. 55 di 98



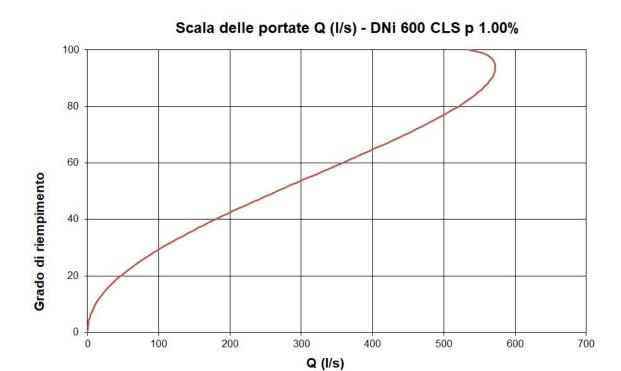







ACQUATECNO S.R.L. Pag. 56 di 98






ACQUATECNO S.R.L. Pag. 57 di 98





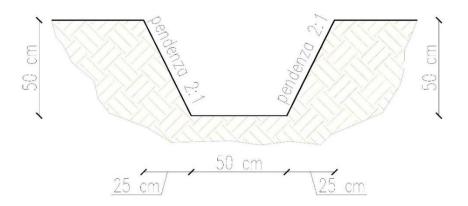
ACQUATECNO S.R.L. Pag. 58 di 98





ACQUATECNO S.R.L. Pag. 59 di 98

Si verifica ora l'officiosità del fossetto di guardia contiguo alla strada di collegamento di progetto, tributario delle acque derivanti dalla scarpatina ad ovest del fossetto e di quelle defluenti da una porzione, seppur contenuta, dell'area verde di progetto ad est del fossetto (area verde di connessione tra la nuova area di progetto e l'edificato esistente).

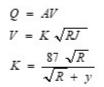

Il fosso sarà caratterizzato da una sagoma costante per tutta la sua lunghezza, con larghezza al fondo e altezza pari a 50 cm, pendenza delle sponde 2:1, larghezza in sommità pari a 100 cm e pendenza al fondo 0.10%; ne risulta quindi un'area bagnata di 0.38 mq.

Dall'applicazione della formula di Chezy in condizioni di moto permanente e uniforme, considerando un coefficiente di scabrezza di  $\gamma$  di Bazin 1.30 m<sup>1/2</sup> (ovvero rappresentativo di canali in terra con vegetazione soggetti a diserbo regolare), l'officiosità del fosso risulta pari a 0.13 mc/s (130 l/s) ipotizzando franco nullo.

Come indicato sopra, <u>la portata meteorica afferente al fosso è costituita per la quasi totalità da quella defluente dalla scarpatina ad ovest dello stesso, di estensione areale ridotta, ed in mimima parte da un'eventuale portata residuale derivante dall'area verde adiacente al fosso, che per la sua aliquota maggioritaria è – come descritto in precedenza – drenata dalla nuova tratta fognaria di progetto N2-N23: la verifica viene comunque condotta cautelativamente ipotizzando un bacino tributario del fosso pari alla metà del bacino B24, considerando quindi un'area nettamente maggiore rispetto a quella effettivamente incidente sul fosso in esame: la portata massima derivante dal bacino tributario di riferimento è quindi pari a 72 l/s circa (metà della portata derivante da B24, ovvero 143.3 l/s/2).</u>

Si dimostra quindi che il fosso, caratterizzato da un'officiosità con franco nullo pari a 130 l/s, è in grado di convogliare una portata massima nettamente maggiore dei 72 l/s ad esso tributari; in particolare quest'ultima portata verrà smaltita con un franco pari a 15 cm circa, assolutamente adeguato alle finalità del fossetto, e con velocità ideali nell'ordine di 0.3 m/s circa

# SEZIONE FOSSO DI GUARDIA




ACQUATECNO S.R.L. Pag. 60 di 98

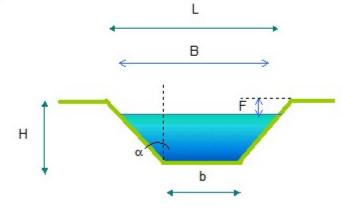
# FOSSO DI GUARDIA CONTIGUO A NUOVA SEDE STRADALE PENDENZA 0.1% - FRANCO NULLO

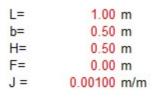
# Condizioni approssimate di moto uniforme

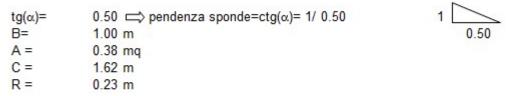
# Formula di Bazin II



A = Area sezione utile


R = raggio idraulico = A/C


C = Contorno bagnato


J = Pendenza

y = coefficiente di scabrezza

F = franco di sicurezza o di bonifica





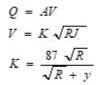


Canali in terra con vegetazione soggetti a diserbo regolare

 $\gamma = 1.30 \text{ m}^{1/2}$ 

K = 23.51

V = 0.36 m/sec


 $Q_s = 0.13 \text{ mc/sec}$ 

ACQUATECNO S.R.L. Pag. 61 di 98

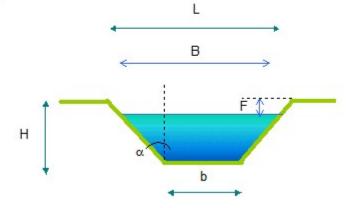
# FOSSO DI GUARDIA CONTIGUO A NUOVA SEDE STRADALE PENDENZA 0.1% - CON FRANCO

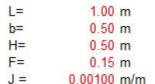
# Condizioni approssimate di moto uniforme

# Formula di Bazin II



A = Area sezione utile


R = raggio idraulico = A/C


C = Contorno bagnato

J = Pendenza

y = coefficiente di scabrezza

F = franco di sicurezza o di bonifica





tg(
$$\alpha$$
)= 0.50  $\Longrightarrow$  pendenza sponde=ctg( $\alpha$ )= 1/0.50 1   
B= 0.85 m

A = 0.24 mq C = 1.28 m R = 0.18 m

Canali in terra con vegetazione soggetti a diserbo regolare

 $\gamma = 1.30 \text{ m}^{1/2}$ 

K = 21.59

V = 0.29 m/sec

 $Q_s = 0.07 \text{ mc/sec}$ 

ACQUATECNO S.R.L. Pag. 62 di 98

# Si faccia ora riferimento alle aree di banchina di sopraflutto e sottoflutto e di banchina di riva.

Per lo smaltimento delle acque meteoriche **l'area di sopraflutto** sarà dotata di una linea di canalette grigliate per tutta la sua lunghezza (vicino alla sponda), e di una linea di caditoie parallela alle griglie ma a copertura di una sola parte, quella più larga, della pavimentazione di banchina.

La linea di canalette grigliate è stata definita ipotizzando di suddividere la lunghezza complessiva del sopraflutto in tratti di uguale lunghezza, così da servire ogni tratto con moduli di canalette grigliate indipendenti ed autonome, dove ogni modulo sarà caratterizzato da un proprio scarico verso il mare. Ogni modulo presenta una lunghezza pari a circa 62 metri, ed è caratterizzato da uno schema simmetrico rispetto ad un pozzetto centrale in cui si ha lo scarico finale delle acque meteoriche raccolte dalle griglie verso il recettore. Ogni modulo è costituito da due elementi simmetrici rispetto ad un pozzetto centrale, ognuno di lunghezza pari a 30 m. L'elemento prevede una sagoma crescente avanzando verso il pozzetto, tale da garantire la sezione bagnata utile necessaria per il convogliamento delle acque meteroiche defluenti dai bacini tributari anch'essi progressivamente crescenti. In particolare, l'elemento è costituito da un primo tratto di griglia di lunghezza 10 m e sezione bagnata utile pari a 30 x 36 cm, un secondo tratto di lunghezza 10 m e sezione utile 30 x 42 cm, ed infine un ultimo tratto di lunghezza 10 m e sezione utile 30 x 47 cm.

Nei tratti in cui vi sono sia le griglie sia le caditoie in parallelo, un ragionamento analogo di simmetria viene applicato anche per queste ultime: in particolare si prevede per ogni tratto il posizionamento di 5 caditoie con equidistanza pari a 12.5 m circa, le quali sono collegate tra di loro attraverso due rami simmetrici rispetto alla caditoia centrale, caratterizzati da diametro crescente avanzando verso la caditoia centrale, in quanto analogamente a quanto accade per le canalette grigliate si verifica contestualmente all'avanzamento verso la caditoia centrale la crescita dei bacini tributari: in particolare, si individua un primo tratto DNe200 PP (diametro interno 172 mm) e un secondo tratto DNe250 PP(diametro interno 218 mm). Le acque meteoriche convogliate dalle caditoie verranno poi inviate al pozzetto centrale della rispettiva linea di canalette grigliate parallela attraverso una condotta DNe315 PP (diametro interno 272 mm) pendenza 3%, per scaricare infine da qui a mare.

Il dimensionamento delle canalette grigliate è stato svolto usufruendo di un programma di calcolo online messo a disposizione da una ditta produttrice (ACO), il quale si basa su un modello a moto permanente per il dimensionamento idraulico delle griglie. Di seguito sono illustrati i dimensionamenti delle griglie per le tipologie prese a riferimento nello studio.

ACQUATECNO S.R.L. Pag. 63 di 98

Si ricorda che come coefficiente di afflusso si è considerato, cautelativamente, un valore  $\varphi = 0.75$ .

La verifica è stata svolta sia per i tratti di sopraflutto serviti esclusivamente dalle canalette grigliate (bacini B6 e B7), sia per i tratti serviti da canalette grigliate e caditoie retrostanti.

Nei tratti in cui si hanno esclusivamente canalette grigliate il bacino tributario è l'area caratterizzante il tratto complessivo (bacino B6 e B7); differentemente, per i tratti serviti sia da griglie sia caditoie, una porzione di area convoglierà le acque alle griglie (bacini B8, B9, B10 e B11), mentre l'area rimanente tributerà le acque alle caditoie (bacini B26, B27, B28 e B29): conseguentemente, in quest'ultimo caso l'area tributaria alle griglie sarà minore rispetto all'area tributaria ai tratti serviti esclusivamente da canalette grigliate.

Le canalette grigliate da predisporre dovranno quindi presentare caratteristiche pari a quelle minime ottenute dal dimensionamento allegato di seguito, oppure caratteristiche equipollenti in termini di sezione utile minima.

Prendendo a riferimento il dimensionamento svolto su un tratto di sopraflutto servito esclusivamente con canalette grigliate (*scheda "Verifica griglia sopraflutto"*), rappresentativo dei bacini B6 e B7, la portata in uscita dall'elemento di griglie di lunghezza totale 30 m è pari a 34.195 l/s, per cui essendo il tratto complessivo (di lunghezza 62 m) realizzato simmetricamente, la portata totale in ingresso al pozzetto centrale sarà pari al doppio di tale valore, perciò pari a 68.4 l/s.

Tale portata verrà smaltita nel recettore attraverso un tratto di condotta DN400 CLS pendenza 1.5%. Prendendo a riferimento l'officiosità della condotta, attraverso l'applicazione della formula di Chezy la portata massima smaltibile dalla condotta in condizione di bocca piena è pari a 237.78 l/s, per cui la portata raccolta dalla linea di canalette grigliate verrà smaltita con un grado di riempimento del 38.5% circa (ampiamente verificato).

Facendo riferimento invece al dimensionamento svolto su un tratto di sopraflutto servito da canalette griglie e caditoie (*scheda "Verifica sopraflutto bis"*), rappresentativo dei bacini B8, B9, B10 e B11, la portata smaltita dall'elemento di griglie di lunghezza totale 30 m è pari a 13.287 l/s, quindi nettamente minore rispetto al caso precedente in quanto a parità di lunghezza dell'elemento l'area tributaria è inferiore. Analogamente al caso precedente, essendo il tratto complessivo (di lunghezza 62 m) realizzato simmetricamente, la portata totale convogliata dalle griglie al pozzetto centrale è il doppio del valore precedentemente indicato, ovvero pari a 26.6 l/s.

ACQUATECNO S.R.L. Pag. 64 di 98

A tale portata sarà da aggiungere, però, quella raccolta dalla linea di caditoie per lo stesso tratto di lunghezza, così da stimare la portata complessiva in ingresso al pozzetto centrale.

Tale stima viene eseguita considerando il tratto di sopraflutto sul quale grava la situazione peggiore, ovvero il bacino indicato con dicitura B29. Considerando anche per tali aree cautelativamente un coefficiente di efflusso pari a 0.75 (dorsali fognarie di modesta entità), la portata convogliata delle caditoie ricadenti su tale tratto verso il pozzetto centrale è di 61.4 l/s.

Conseguentemnete, la portata complessiva convogliata al pozzetto centrale da griglie e caditoie è di 88 l/s (26.6 l/s griglie + 61.4 l/s caditoie): tale portata verrà smaltita come per il caso precedente, con una condotta DN400 CLS pendenza 1.5%, la quale presenta un'officiosità di 237.78 l/s (smaltimento con grado di riempimento 44% circa).

|             | Bacino     | Area    | Area | coeff def | Q       | Q     | DNi     | р   | Grado           | Qoff   |
|-------------|------------|---------|------|-----------|---------|-------|---------|-----|-----------------|--------|
|             | tributario | (mq)    | (ha) | (-)       | (I/ora) | (I/s) | (mm)    | (%) | rimpiemento (%) | (I/s)  |
|             | B6         | 1507.12 | 0.15 |           | 246204  | 68.4  | 400 CLS | 1.5 | 39              | 237.78 |
|             | B7         | 1607.84 | 0.16 |           | 246204  | 68.4  | 400 CLS | 1.5 | 39              | 237.78 |
|             | B8         | 1021.78 | 0.10 |           | 95666   | 26.6  |         |     |                 |        |
|             | B9         | 1021.78 | 0.10 |           | 95666   | 26.6  |         |     |                 |        |
|             | B10        | 1021.78 | 0.10 |           | 95666   | 26.6  |         |     |                 |        |
| SOPRAFLUTTO | B11        | 1045.96 | 0.10 |           | 95666   | 26.6  |         |     |                 |        |
|             | B26        | 1800.27 | 0.18 | 0.75      | 174234  | 48.4  | 272 PP  | 3   | 38              | 171.77 |
| B2          | B27        | 2088.99 | 0.21 | 0.75      | 202178  | 56.2  | 272 PP  | 3   | 41              | 171.77 |
|             | B28<br>B29 | 2164.66 | 0.22 | 0.75      | 209501  | 58.2  | 272 PP  | 3   | 42              | 171.77 |
|             |            | 2283.24 | 0.23 | 0.75      | 220978  | 61.4  | 272 PP  | 3   | 43              | 171.77 |
|             | B29+B11    |         |      |           | 316644  | 88.0  | 400 CLS | 1.5 | 44              | 237.78 |

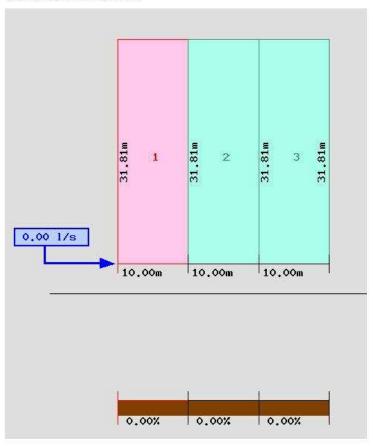
Dalle schede di seguito allegate rappresentanti le verifiche delle canalette grigliate griglie si nota un grado di riempimento contenuto: tale sovradimensionamento viene giustificato dal fatto di garantire un franco di sicurezza così da permettere lo smaltimento delle acque meteoriche anche nel caso in cui si verifichino eventi di pioggia con tempo di ritorno maggiore di quello ipotizzato in fase di dimensionamento (10 anni), e in secondo luogo – ma non meno importante - per garantire con eventi di precipitazione ordinari il corretto smaltimento delle acque anche nel caso un cui le canalette grigliate siano parzialmente intasate (a seguito, ad esempio, di evento in concomitanza di ultima manutenzione "datata" delle canalette grigliate).

ACQUATECNO S.R.L. Pag. 65 di 98

# CALCOLO IDRAULICO ACO

Software di calcolo Idraulico per il dimensionamento dei sistemi di drenaggio lineare ACO Drain




# + SPECIFICHE PROGETTO

Nome Progetto:Progettista:Massimo Plazziverifica griglia soprafluttoData:11-11-2020

#### + PIOVOSITÀ SPECIFICATA

Tolleranza per le Variazioni Climatiche (%) 0.0 Intensità delle Precipitazioni di Progetto (mm/h) 129.00

#### DIAGRAMMA DI DRENAGGIO



#### ACO Passavant S.p.A.

Via Beviera 41 42011 Bagnolo in Piano Italia Tel. +39 0522 958111 Fax +39 0522 958254 info@aco.it www.aco.it

ACQUATECNO S.R.L. Pag. 66 di 98

# CALCOLO IDRAULICO ACO

Software di calcolo Idraulico per il dimensionamento dei sistemi di drenaggio lineare ACO Drain



#### + SPECIFICHE PROGETTO

Nome Progetto:Progettista:Massimo Plazziverifica griglia soprafluttoData:11-11-2020

+ INPUT

Sistema canale: Serie S
N. Simulazione: 1



|                          | 1        | 2        | 3        | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|--------------------------|----------|----------|----------|---|---|---|---|---|---|----|
| Sistema                  | S<br>300 | S<br>300 | S<br>300 |   |   |   |   |   |   |    |
| L -<br>Larghezza<br>(mm) | 300      | 300      | 300      |   |   |   |   |   |   |    |
| H-<br>Altezza<br>(mm)    | 360      | 420      | 470      |   |   |   |   |   |   |    |
| Lunghezza<br>(m)         | 10.00    | 10.00    | 10.00    |   |   |   |   |   |   |    |

Viscosità cinematica (m²/s)

1.14x10^-6

Area di drenaggio (m²)

954.30

Scabrezza (Chezy/Manning) (m)

0.0001

Coefficiente di deflusso

1.00

Intensità delle precipitazioni (l/s x m)

0.0358 (129.00mm/h)Lunghezza Canale (m)

30.00

# + RISULTATO

 Portata (I/s):
 34.195

 Velocità Max. (m/s):
 1.00

 Altezza libera min (m):
 0.204

 Percentuale di riempimento (%):
 42.72%

Lunghezza (m): 30.00 (Lunghezza Completa)

Note:

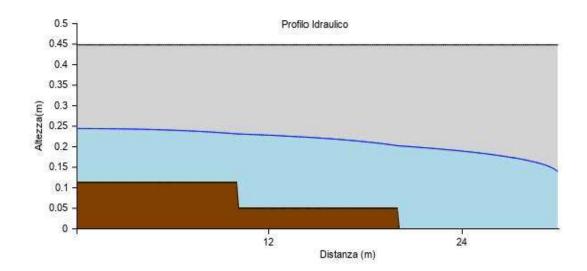
ACO Passavant S.p.A.

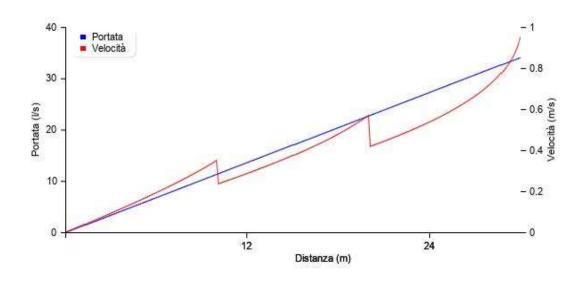
 Via Beviera 41
 Tel. +39 0522 958111
 info@aco.it

 42011 Bagnolo in Piano
 Fax +39 0522 958254
 www.aco.it

Italia

ACQUATECNO S.R.L. Pag. 67 di 98


# CALCOLO IDRAULICO ACO


Software di calcolo Idraulico per il dimensionamento dei sistemi di drenaggio lineare ACO Drain



#### + SPECIFICHE PROGETTO

Nome Progetto:Progettista:Massimo Plazziverifica griglia soprafluttoData:11-11-2020





ACO Passavant S.p.A.

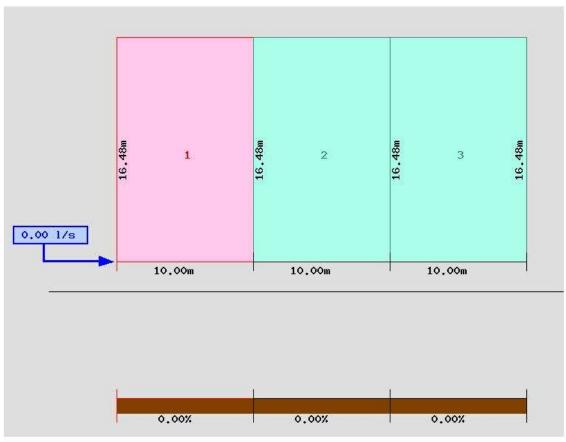
Via Beviera 41 42011 Bagnolo in Piano Italia Tel. +39 0522 958111 Fax +39 0522 958254 info@aco.it www.aco.it

ACQUATECNO S.R.L. Pag. 68 di 98

# CALCOLO IDRAULICO ACO

Software di calcolo Idraulico per il dimensionamento dei sistemi di drenaggio lineare ACO Drain




# + SPECIFICHE PROGETTO

Nome Progetto:Progettista:Massimo Plazziverifica sopraflutto bisData:11-11-2020

#### + PIOVOSITÀ SPECIFICATA

Tolleranza per le Variazioni Climatiche (%) 0.0 Intensità delle Precipitazioni di Progetto (mm/h) 129.00

#### DIAGRAMMA DI DRENAGGIO



#### ACO Passavant S.p.A.

Via Beviera 41 42011 Bagnolo in Piano Italia Tel. +39 0522 958111 Fax +39 0522 958254 info@aco.it www.aco.it

ACQUATECNO S.R.L. Pag. 69 di 98

# CALCOLO IDRAULICO ACO

Software di calcolo Idraulico per il dimensionamento dei sistemi di drenaggio lineare ACO Drain



#### + SPECIFICHE PROGETTO

Nome Progetto:Progettista:Massimo Plazziverifica sopraflutto bisData:11-11-2020

+ INPUT

Sistema canale: Serie S
N. Simulazione: 2



|                          | 1        | 2        | 3        | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|--------------------------|----------|----------|----------|---|---|---|---|---|---|----|
| Sistema                  | S<br>300 | S<br>300 | S<br>300 |   |   |   |   |   |   |    |
| L -<br>Larghezza<br>(mm) | 300      | 300      | 300      |   |   |   |   |   |   |    |
| H-<br>Altezza<br>(mm)    | 360      | 420      | 470      |   |   |   |   |   |   |    |
| Lunghezza<br>(m)         | 10.00    | 10.00    | 10.00    |   |   |   |   |   |   |    |

Viscosità cinematica (m²/s) 1.14x10^-6 Area di drenaggio (m²) 494.40

Scabrezza (Chezy/Manning) (m) 0.0001 Coefficiente di deflusso 0.75

Intensità delle precipitazioni (l/s x m) 0.0358 (129.00mm/h)Lunghezza Canale (m) 30.00

# + RISULTATO

 Portata (I/s):
 13.287

 Velocità Max. (m/s):
 0.71

 Altezza libera min (m):
 0.274

 Percentuale di riempimento (%):
 23.25%

Lunghezza (m): 30.00 (Lunghezza Completa)

Note:

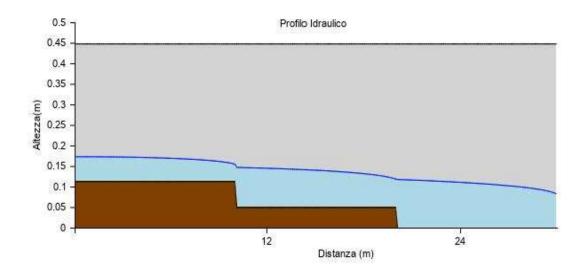
ACO Passavant S.p.A.

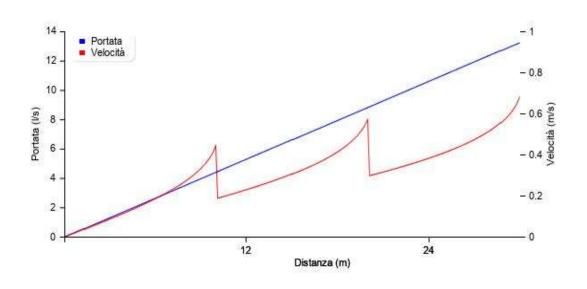
 Via Beviera 41
 Tel. +39 0522 958111
 info@aco.it

 42011 Bagnolo in Piano
 Fax +39 0522 958254
 www.aco.it

Italia

ACQUATECNO S.R.L. Pag. 70 di 98


# CALCOLO IDRAULICO ACO


Software di calcolo Idraulico per il dimensionamento dei sistemi di drenaggio lineare ACO Drain



#### + SPECIFICHE PROGETTO

Nome Progetto:Progettista:Massimo Plazziverifica sopraflutto bisData:11-11-2020





ACO Passavant S.p.A.

Via Beviera 41 42011 Bagnolo in Piano Italia Tel. +39 0522 958111 Fax +39 0522 958254 info@aco.it www.aco.it

ACQUATECNO S.R.L. Pag. 71 di 98

L'area di sottoflutto sarà dotata, per la sua larghezza contenuta, esclusivamente di una linea di canalette grigliate per tutta la sua lunghezza.

Analogamente a quanto precedentemente illustrato per il sopraflutto, la linea di griglie è stata definita ipotizzando di suddividere la lunghezza complessiva del sottoflutto in tratti di uguale lunghezza per poter servire ogni tratto con moduli di canalertta grigliata indipendenti, dove ogni modulo sarà caratterizzato da un proprio scarico a mare.

Ogni modulo, di lunghezza pari a 64 m, è caratterizzato da uno schema simmetrico rispetto ad un pozzetto centrale in cui si ha lo scarico finale delle acque meteoriche raccolte dalle griglie verso il recettore. Ogni modulo è costituito da due elementi simmetrici rispetto al pozzetto centrale, ognuno di lunghezza pari a 31 m. L'elemento prevede una sagoma crescente avanzando verso il pozzetto, tale da garantire la sezione bagnata utile necessaria per il convogliamento delle acque meteoriche defluenti dai bacini tributari progressivamente crescenti. L'elemento è costituito da un primo tratto di griglia di lunghezza 11 m e sezione bagnata utile pari a 30 x 36 cm, un secondo tratto di lunghezza 10 m e sezione utile 30 x 47 cm.

Il dimensionamento delle canalette grigliate è stato realizzato analogamente a quanto descritto per la soluzione dell'area di sopraflutto; di seguito viene illustrato il dimensionamento delle canalette grigliate per le tipologie prese a riferimento nello studio, con riferimento ai bacini B1, B2, B3, B4 e B5. Le canalette grigliate da predisporre dovranno quindi presentare caratteristiche pari a quelle minime ottenute dal dimensionamento allegato di seguito, oppure caratteristiche equipollenti in termini di sagoma interna.

Dal dimensionamento (*scheda "Verifica griglia sottoflutto"*) risulta che la portata in uscita dall'elemento di griglia è pari a 18.995 l/s, per cui essendo il tratto complessivo (di lunghezza 64 m) realizzato simmetricamente, la portata totale in ingresso al pozzetto centrale sarà pari al doppio di tale valore, perciò pari a 37.9 l/s. Tale portata verrà smaltita attraverso un tratto di condotta DN400 CLS pendenza 1.5%. Prendendo a riferimento l'officiosità della condotta, attraverso l'applicazione della formula di Chezy la portata massima smaltibile dalla condotta in condizione di bocca piena è pari a 237.78 l/s, per cui la portata raccolta dalla linea di griglie verrà smaltita con un grado di riempimento del 28% circa (ampiamente verificato).

Analogamente a quanto esposto sopra, il grado di riempimento delle griglie risulta contenuto con lo scopo di garantire un franco di sicurezza così da permettere lo smaltimento delle acque meteoriche sia nel caso di eventi di pioggia eccezionali, sia con eventi di precipitazione ordinari nell'eventualità di canalette grigliate parzialmente intasate (a seguito, ad esempio, di evento in concomitanza di ultima manutenzione "datata" delle canalette grigliate).

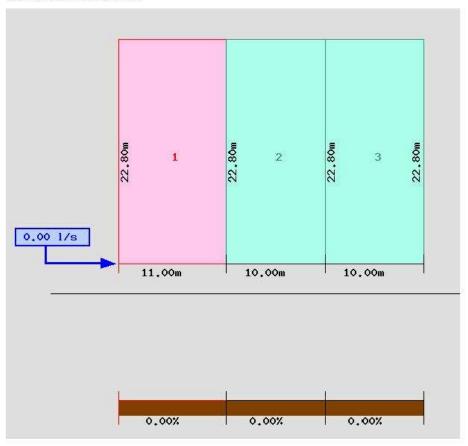
ACQUATECNO S.R.L. Pag. 72 di 98

## CALCOLO IDRAULICO ACO

Software di calcolo Idraulico per il dimensionamento dei sistemi di drenaggio lineare ACO Drain



### + SPECIFICHE PROGETTO


Nome Progetto:Progettista:Massimo Plazziverifica griglia sottofluttoData:11-11-2020

#### + PIOVOSITÀ SPECIFICATA

Tolleranza per le Variazioni Climatiche (%) 0.0 Intensità delle Precipitazioni

di Progetto (mm/h) 129.00

#### DIAGRAMMA DI DRENAGGIO



#### ACO Passavant S.p.A.

Via Beviera 41 42011 Bagnolo in Piano Italia Tel. +39 0522 958111 Fax +39 0522 958254 info@aco.it www.aco.it

ACQUATECNO S.R.L. Pag. 73 di 98

### CALCOLO IDRAULICO ACO

Software di calcolo Idraulico per il dimensionamento dei sistemi di drenaggio lineare ACO Drain



#### + SPECIFICHE PROGETTO

Nome Progetto:Progettista:Massimo Plazziverifica griglia sottofluttoData:11-11-2020

+ INPUT

Sistema canale: Serie S
N. Simulazione: 1



|                          | 1        | 2        | 3        | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|--------------------------|----------|----------|----------|---|---|---|---|---|---|----|
| Sistema                  | S<br>300 | S<br>300 | S<br>300 |   |   |   |   |   |   |    |
| L -<br>Larghezza<br>(mm) | 300      | 300      | 300      |   |   |   |   |   |   |    |
| H-<br>Altezza<br>(mm)    | 360      | 420      | 470      |   |   |   |   |   |   |    |
| Lunghezza<br>(m)         | 11.00    | 10.00    | 10.00    |   |   |   |   |   |   |    |

Viscosità cinematica (m²/s)

1.14x10^-6

Area di drenaggio (m²)

706.80

Scabrezza (Chezy/Manning) (m)

0.0001

Coefficiente di deflusso

0.75

Intensità delle precipitazioni (l/s x m)

0.0358 (129.00mm/h)Lunghezza Canale (m)

31.00

## + RISULTATO

 Portata (I/s):
 18.995

 Velocità Max. (m/s):
 0.81

 Altezza libera min (m):
 0.256

 Percentuale di riempimento (%):
 29.10%

Lunghezza (m): 31.00 (Lunghezza Completa)

Note:

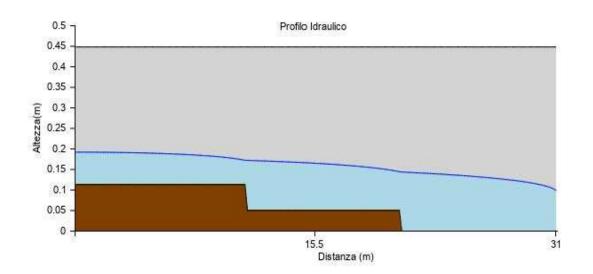
ACO Passavant S.p.A.

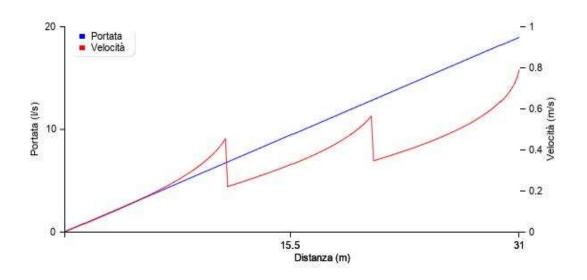
 Via Beviera 41
 Tel. +39 0522 958111
 info@aco.it

 42011 Bagnolo in Piano
 Fax +39 0522 958254
 www.aco.it

Italia

ACQUATECNO S.R.L. Pag. 74 di 98


## CALCOLO IDRAULICO ACO


Software di calcolo Idraulico per il dimensionamento dei sistemi di drenaggio lineare ACO Drain



#### + SPECIFICHE PROGETTO

Nome Progetto:Progettista:Massimo Plazziverifica griglia sottofluttoData:11-11-2020





ACO Passavant S.p.A.

Via Beviera 41 42011 Bagnolo in Piano Italia Tel. +39 0522 958111 Fax +39 0522 958254 info@aco.it www.aco.it

ACQUATECNO S.R.L. Pag. 75 di 98

In ultimo, la banchina di riva risulta servita, come per il sottoflutto, esclusivamente da una linea di griglie per tutta la sua lunghezza, ipotizzando di suddividere la lunghezza complessiva della banchina in tratti di uguale lunghezza per poter servire ogni tratto con moduli di canaletta grigliata indipendenti, dove ogni modulo sarà caratterizzato da un proprio scarico a mare.

Ogni modulo presenta una lunghezza pari a 48 m, ed è caratterizzato da uno schema simmetrico rispetto ad un pozzetto centrale in cui si ha lo scarico finale delle acque meteoriche raccolte dalle griglie verso il recettore. Ogni modulo è costituito da due elementi simmetrici rispetto al pozzetto centrale, ognuno di lunghezza pari a 23 m. L'elemento prevede una sagoma crescente avanzando verso il pozzetto, tale da garantire la sezione bagnata utile necessaria per il convogliamento delle acque meteoriche defluenti dai bacini tributari progressivamente crescenti. L'elemento è costituito da un primo tratto di griglia di lunghezza 10 m e sezione bagnata utile pari a 30 x 36 cm ed un secondo tratto di lunghezza 13 m e sezione utile 30 x 42 cm.

Il dimensionamento delle canalette grilgiate si è svolto analogamente a quanto previsto per la soluzione dell'area di sopraflutto e di sottoflutto; di seguito, è illustrato il dimensionamento delle canalette grigliate per le tipologie prese a riferimento nello studio, per i bacini B12, B13 e B14. Le canalette grigliate da predisporre dovranno quindi presentare caratteristiche pari a quelle minime ottenute dal dimensionamento allegato di seguito, oppure caratteristiche equipollenti.

Dal dimensionamento (*scheda "Verifica griglia banchina riva"*) è stata stimata una portata in uscita dall'elemento di griglia pari a 18.136 l/s, per cui essendo il tratto complessivo (di lunghezza 48 m) realizzato simmetricamente, la portata totale in ingresso al pozzetto centrale sarà pari al doppio di tale valore, ovvero 36.3 l/s. Tale portata verrà smaltita attraverso un tratto di condotta DN400 CLS pendenza 1.5%. Prendendo a riferimento l'officiosità della condotta, attraverso l'applicazione della formula di Chezy la portata massima smaltibile dalla condotta in condizione di bocca piena è pari a 237.78 l/s, per cui la portata raccolta dalla linea di griglie verrà smaltita con un grado di riempimento del 27.5% circa (ampiamente verificato).

Come già introdotto per il caso di sopraflutto e sottoflutto, il grado di riempimento delle griglie risulta contenuto per garantire un franco di sicurezza e permettere quindi lo smaltimento delle acque meteoriche sia nel caso di eventi di pioggia eccezionali, sia con eventi di precipitazione ordinari nell'eventualità che le canalette grigliate siano parzialmente intasate (a seguito, ad esempio, di evento in concomitanza di ultima manutenzione "datata" delle canalette grigliate).

ACQUATECNO S.R.L. Pag. 76 di 98

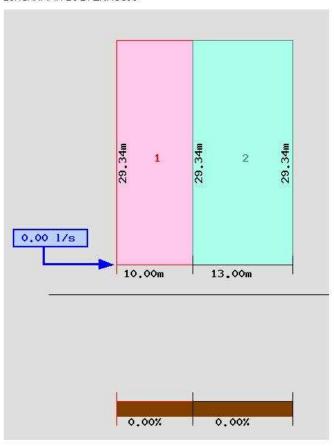
### CALCOLO IDRAULICO ACO

Software di calcolo Idraulico per il dimensionamento dei sistemi di drenaggio lineare ACO Drain



#### + SPECIFICHE PROGETTO

Nome Progetto: Progettista: Massimo Plazzi
verifica griglia banchina riva Data: 11-11-2020


#### + PIOVOSITÀ SPECIFICATA

Tolleranza per le Variazioni Climatiche (%) 0.0

Intensità delle Precipitazioni

di Progetto (mm/h) 129.00

#### DIAGRAMMA DI DRENAGGIO



#### ACO Passavant S.p.A.

Via Beviera 41 42011 Bagnolo in Piano Italia Tel. +39 0522 958111 Fax +39 0522 958254 info@aco.it www.aco.it

ACQUATECNO S.R.L. Pag. 77 di 98

### **CALCOLO IDRAULICO ACO**

Software di calcolo Idraulico per il dimensionamento dei sistemi di drenaggio lineare ACO Drain



#### + SPECIFICHE PROGETTO

Nome Progetto:Progettista:Massimo Plazziverifica griglia banchina rivaData:11-11-2020

+ INPUT

Sistema canale: Serie S

N. Simulazione: 1



|                          | 1        | 2        | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|--------------------------|----------|----------|---|---|---|---|---|---|---|----|
| Sistema                  | S<br>300 | S<br>300 |   |   |   |   |   |   |   |    |
| L -<br>Larghezza<br>(mm) | 300      | 300      |   |   |   |   |   |   |   |    |
| H-<br>Altezza<br>(mm)    | 360      | 420      |   |   |   |   |   |   |   |    |
| Lunghezza<br>(m)         | 10.00    | 13.00    |   |   |   |   |   |   |   |    |

| Viscosità cinematica (m²/s)              | 1.14x10^-6      | Area di drenaggio (m²)   | 674.82 |  |
|------------------------------------------|-----------------|--------------------------|--------|--|
| Scabrezza (Chezy/Manning) (m)            | 0.0001          | Coefficiente di deflusso | 0.75   |  |
| Intensità delle precipitazioni (I/s x m) | 0.0358 (129.00m | m/h)Lunghezza Canale (m) | 23.00  |  |

#### + RISULTATO

Portata (I/s): 18.136
Velocità Max. (m/s): 0.79
Altezza libera min (m): 0.238
Percentuale di riempimento (%): 33.73%

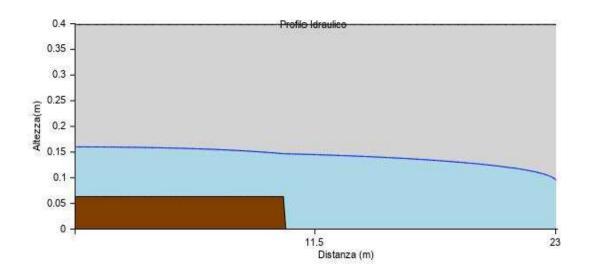
Lunghezza (m): 23.00 (Lunghezza Completa)

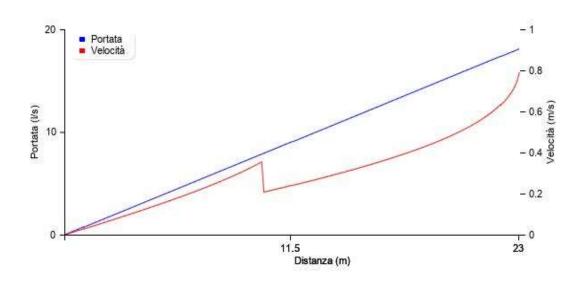
Note:

ACO Passavant S.p.A.

Via Beviera 41 42011 Bagnolo in Piano Italia Tel. +39 0522 958111 Fax +39 0522 958254 info@aco.it www.aco.it

ACQUATECNO S.R.L. Pag. 78 di 98


### CALCOLO IDRAULICO ACO


Software di calcolo Idraulico per il dimensionamento dei sistemi di drenaggio lineare ACO Drain

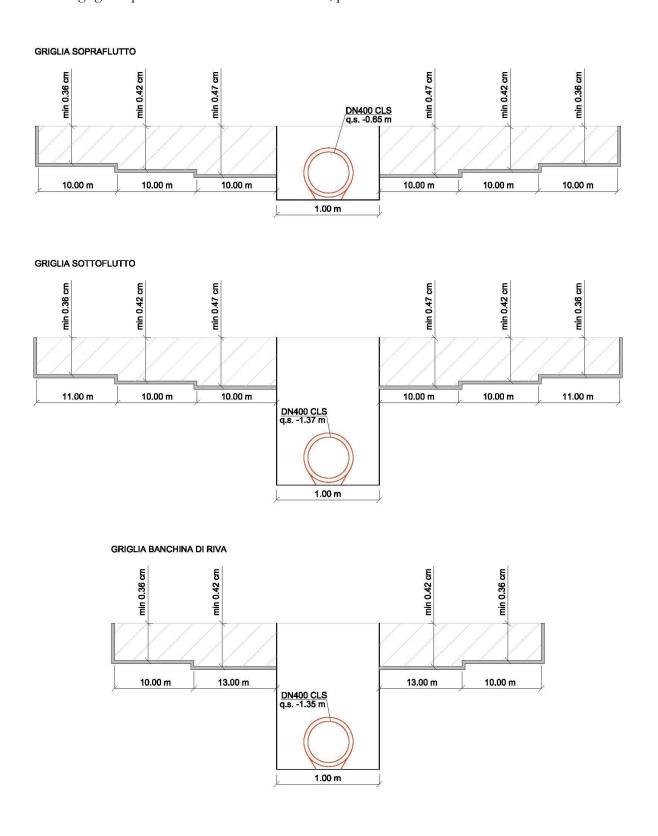


#### + SPECIFICHE PROGETTO

Nome Progetto:Progettista:Massimo Plazziverifica griglia banchina rivaData:11-11-2020






ACO Passavant S.p.A. Via Beviera 41 42011 Bagnolo in Piano

Italia

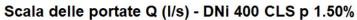
Tel. +39 0522 958111 Fax +39 0522 958254 info@aco.it

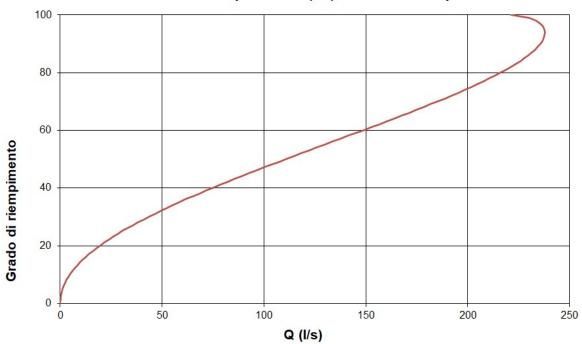
ACQUATECNO S.R.L. Pag. 79 di 98

Nell'immagine seguente, vengono riportati gli schemi grafici (profili) dei "blocchi indipendenti" di canalette grigliate previsti in tutte le 3 zone servite, prima elencate e descritte.

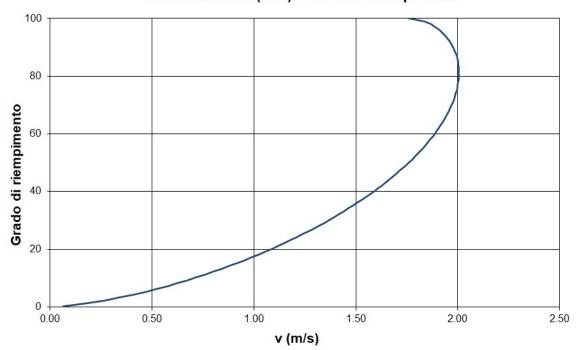


ACQUATECNO S.R.L. Pag. 80 di 98

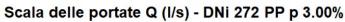

Infine, si riporta di seguito il quadro sinottico tabellare delle risultanze numeriche ottenute nelle ultime due casistiche, cio per l'area di sottoflutto e per la banchina di riva.

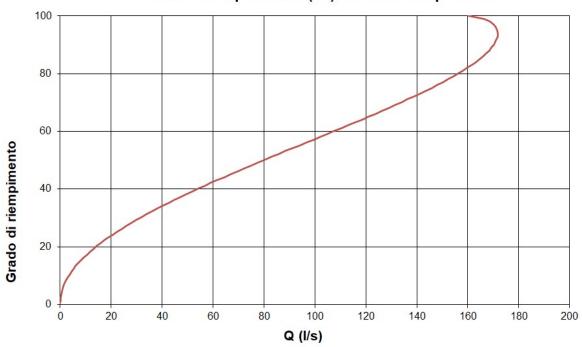

|             | Bacino     | Area    | Area | Q       | Q     | DNi     | р   | Grado           | Qoff   |
|-------------|------------|---------|------|---------|-------|---------|-----|-----------------|--------|
|             | tributario | (mq)    | (ha) | (I/ora) | (I/s) | (mm)    | (%) | rimpiemento (%) | (I/s)  |
|             | B1         | 1527.60 | 0.15 | 136764  | 38.0  | 400 CLS | 1.5 | 28              | 237.78 |
|             | B2         | 1459.20 | 0.15 | 136764  | 38.0  | 400 CLS | 1.5 | 28              | 237.78 |
| SOTTOFLUTTO | B3         | 1459.20 | 0.15 | 136764  | 38.0  | 400 CLS | 1.5 | 28              | 237.78 |
|             | B4         | 1459.20 | 0.15 | 136764  | 38.0  | 400 CLS | 1.5 | 28              | 237.78 |
|             | B5         | 1715.79 | 0.17 | 136764  | 38.0  | 400 CLS | 1.5 | 28              | 237.78 |

|                  | Bacino     | Area    | Area | Q        | Q     | DNi     | p   | Grado           | Qoff   |
|------------------|------------|---------|------|----------|-------|---------|-----|-----------------|--------|
|                  | tributario | (mq)    | (ha) | (I/ora)  | (I/s) | (mm)    | (%) | rimpiemento (%) | (I/s)  |
|                  | B12        | 1647.20 | 0.16 | 130579.2 | 36.3  | 400 CLS | 1.5 | 27.5            | 237.78 |
| BANCHINA DI RIVA | B13        | 1399.50 | 0.14 | 130579.2 | 36.3  | 400 CLS | 1.5 | 27.5            | 237.78 |
|                  | B14        | 1206.93 | 0.12 | 130579.2 | 36.3  | 400 CLS | 1.5 | 27.5            | 237.78 |

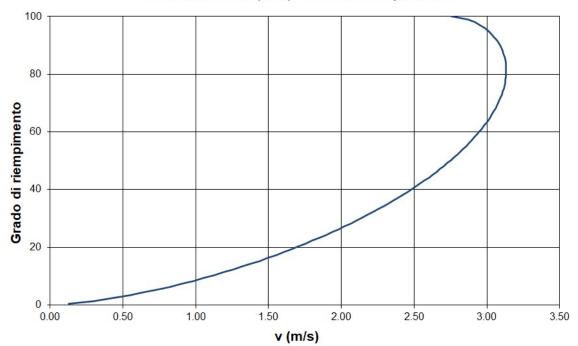

Le figure di seguito rappresentano gli andamenti della "Scala delle portate" e della "Scala delle velocità" per le differenti tipologie di condotte costituenti il sistema fognario sopra descritto, nei rami delle singole dorsali di scarico a mare (DNe315 PP + DN400 CLS).

ACQUATECNO S.R.L. Pag. 81 di 98




## Velocità idrica (m/s) - DNi 400 CLS p 1.50%




ACQUATECNO S.R.L. Pag. 82 di 98





## Velocità idrica (m/s) - DNi 272 PP p 3.00%



ACQUATECNO S.R.L. Pag. 83 di 98

### 8. VERIFICA DEI TRATTI FINALI DI SCARICO A MARE DELLA RETE FOGNARIA

Si verificano ora i tratti finali della rete fognaria bianca di progetto, ovvero le condotte che consentono lo scarico a mare delle acque meteoriche raccolte e convogliate dalla rete stessa. Questa ulteriore verifica risulta necessaria in quanto i tratti finali della rete, per garantire sia un buon funzionamento del sistema fognario sia un adeguato ricoprimento della stessa, sono caratterizzati da una quota di scorrimento al di sotto del livello di medio mare (0.00 m s.l.m.), prevedendo quindi la sommergenza di tutta/parte della tubazione. Diversamente, invece, per i rami iniziali ed intermedi, caratterizzati da quote di scorrimento e di tirante idrico superiore o comunque nell'ordine del livello di medio mare.

Fino ad ora la totalità del sistema fognario di progetto è stato dimensionato e verificato stimando la massima portata smaltibile a bocca piena dai collettori fognari con l'applicazione della formula di moto uniforme per le correnti a pelo libero, ovvero la formula di Chezy.

Solamente per i tratti finali che risultano in parte sommersi in quanto caratterizzati da una quota di scorrimento inferiore al medio mare, verrà di seguito implementata un'ulteriore verifica di funzionamento in pressione. In particolare, per ogni condotta finale di scarico verrà stimato, in funzione della rispettiva portata decennale tributaria precedentemente stimata (portata idrologica), il battente differenziale di spinta a monte, generato dal riempimento della condotta a seguito dell'inevitabile condizione di sommergenza della tubazione. Come ulteriore passaggio di verifica, si accerterà che il conseguente livello idrico presente nel pozzetto di monte del tratto sommerso non induca condizioni sfavorevoli di deflusso (rigurgito e/o sommergenza) alle dorsali in esso in arrivo, restando così valide per esse le calcolazioni di Chezy del paragrafo precedente.

La stima della perdita di carico di una condotta si ottiene ipotizzando il deflusso dell'acqua tra due serbatoi, rappresentanti nel caso in esame il pozzetto immediatamente a monte del tratto finale della rete e il mare, collegati da una condotta, ovvero il tratto finale di scarico a mare della rete fognaria di progetto. L'espressione più generale per rappresentare la perdita di carico della condotta è:

$$J_{TOT} = 1.5 \; \frac{v^2}{2 \, q} + \beta_r \, L \frac{Q^2}{D^5}$$

dove il primo e il secondo termine rappresentano rispettivamente le perdite concentrate e distribuite, con v la velocità nella condotta,  $\beta_r$  il coefficiente di resistenza dimensionale, L e D la lunghezza e il diametro interno della condotta e Q la portata massima convogliata dalla rete e tributaria dello scarico considerato. La stima delle perdite concentrate richiede la valutazione della velocità del flusso all'interno della tubazione, data dal rapporto tra la portata defluente nella condotta e l'area interna della condotta stessa (v = Q/A). Per valutare le perdite di carico distribuite in letterature sono presenti diverse formule empiriche, tra le quali si evidenziano la formula di Colebrook-White e la fomula di Hazen-Williams.

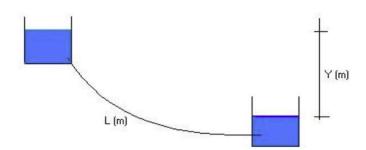
ACQUATECNO S.R.L. Pag. 84 di 98

### Formula di Colebrook-White:

$$\frac{1}{\sqrt{\lambda}} = -2\log\left[\frac{2.51}{R_{e}\sqrt{\lambda}} + \frac{\varepsilon/D}{3.71}\right]$$

con λ il coefficiente adimensionale di resistenza, funzione della scabrezza del tubo e del numero di Reynolds, ε la scabrezza del tubo e D il suo diametro interno. Di seguito si allega la tabella riassuntiva dei valori di scabrezza in mm per condotte in cemento armato: nel caso in esame si farà riferimento cautelativamente ad un valore di scabrezza pari a 3 mm, rappresentativo di condotte in CLS in servizio da più anni.

| Tubazione in cemento                                                                             | ε<br>mm     |
|--------------------------------------------------------------------------------------------------|-------------|
| Cemento amianto (nuovi)                                                                          | 0,03        |
| In servizio                                                                                      | 0,10 - 0,4  |
| Cemento armato con intonaco perfettamente liscio (nuovi)                                         | 0,10 - 0,15 |
| Come sopra, in servizio da più anni                                                              | 1 - 3       |
| Gallerie con intonaco di cemento, a seconda del grado di finitura e delle condizioni di servizio | 1 - 10      |


## Formula di Hazen-Williams:

$$J = \frac{10.675 \, Q^{1.852}}{C^{1.852} \, D^{48704}}$$

con Q la portata della condotta, C la scabrezza del tubo e D il suo diametro interno; si sottolinea che il coefficiente di scabrezza per condotte in CLS è pari a 100.

Per ogni tratto finale di scarico a mare verrà valutata la perdita di carico distribuita applicando entrambe le formule sopra riportate, sommando poi al valore "peggiore" tra i due stimati le perdite concentrate.

La perdita totale, sommata alla quota di 0.00 m s.l.m. di medio mare, verrà confrontata con la quota di scorrimento e con la quota di intradosso della condotta ("cervello" della condotta) in arrivo al pozzetto immediatamente a monte del tratto di scarico, così da verificare l'effetto indotto dallo scarico in pressione sulla rete fognaria di monte.



ACQUATECNO S.R.L. Pag. 85 di 98

### TRATTO N5-N6

Il tratto di scarico N5-N6 è caratterizzato da un tubo in CLS DN1000 e pendenza di 1%, al quale convogliano le acque smaltite dal tratto fognario principale immediatamente a monte, ovvero il tratto N4-N5 costituito da una condotta DNi 800 PP pendenza 0.5% con quota di scorrimento, in corrispondenza dell'ultimo pozzetto N5 lungo la dorsale, pari a -0.73 m s.l.m.; inoltre sempre nel pozzetto N5 vi è l'arrivo anche di un ramo secondario DNi 400 PP pendenza 0.1% con sedime parallelo al fronte mare, con quota di scorrimento +0.35 m s.l.m.

Dall'applicazione della formula di moto uniforme di Chezy, la portata idrologica stimata defluente dal rispettivo bacino tributario è pari a 246.8 l/s, incrementata poi a 316.8 l/s con l'ipotesi di un eventale allaccio futuro aggiuntivo (si vedano le valutazioni fatte nei capitoli precedenti).

Si riportano di seguito le immagini del procedimento di calcolo delle perdite distribuite per il tratto finale DN1000 e portata idrologica pari a 316.8 l/s (0.3168 mc/s):

#### Formula di Colebrook-White:

| D | 1 m                      | = Diametro della condotta |
|---|--------------------------|---------------------------|
| Q | 0.3168 m <sup>3</sup> /s | = Portata della condotta  |
| E | 3 mm                     | = Scabrezza               |

#### Risultati del calcolo:

| Perdita di Carico (cadente) con la formula di Darcy [m/m]                    | 0.000219758       |
|------------------------------------------------------------------------------|-------------------|
| Coefficiente di resistenza con formula di Colebrook                          | 0.026489716757954 |
| Numero di Reynolds                                                           | 400956.54771372   |
| Viscosità cinematica [m²/s] (Nota: come fluido si è assunta l'acqua a 20 °C) | 1.006E-6          |
| Velocità [m/s]                                                               | 0.403362287       |
| Area sezione [m²]                                                            | 0.785398163       |
| Scabrezza Relativa                                                           | 0.003             |

### Formula di Hazen-Williams:

| D | 1000 mm   | = Diametro interno         |
|---|-----------|----------------------------|
| Q | 316.8 I/s | = Portata della condotta   |
| J | 0.25 m/km | = Perdita di carico        |
| C | 100       | = Coefficente di scabrezza |

Il valore peggiore di perdita distribuita è restituito dalla formula di Hazen-Williams essendo pari a 0.025 cm/m; la lunghezza del tratto N5-N6 è di 5.52 m, perciò la perdita distribuita sarà 0.138 cm.

ACQUATECNO S.R.L. Pag. 86 di 98

Con diametro interno pari ad 1.00 m e portata 316.8 l/s la velocità del flusso nella condotta è pari a 0.40 m/s, perciò le perdite concentrate sono 1.24 cm: risulta quindi una perdita di carico totale di 1.38 cm, arrotondata per eccesso a 0.02 m.

Rispetto al livello di medio mare (0.00 m s.l.m.), il carico indotto dalla sommergenza del tratto di scarico N5-N6 in corrispondenza del pozzetto immediatamente a monte N5 raggiunge la quota di +0.02 m s.l.m., compresa quindi tra la quota di scorrimento (-0.73 m s.l.m.) e di intradosso (+0.07 m s.l.m.) nel pozzetto succitato del tratto N4-N5 della rete fognaria principale DNi 800 PP.

Considerando un grado di riempimento della condotta N4-N5 dell'80%, il livello raggiunto al suo interno ipotizzando assenza di sommergenza sarebbe pari a -0.09 m s.l.m., mentre con la portata idrologica precedentemente stimata (316.8 l/s) la quota di massimo riempimento risulta -0.44 m s.l.m. essendo il grado di riempimento del 36% circa: in entrambi i casi il livello raggiunto è inferiore al carico stimato nel pozzetto N5 (+0.02 m s.l.m.).

Si deduce quindi che <u>la sommergenza del tratto di scarico N5-N6 genera, nel tratto di rete fognaria immediatamente a monte N4-N5, un rigurgito verso monte senza indurre però la condizione di funzionamento in pressione. Tale modalità di funzionamento idraulico è accettabile, alla luce delle condizioni al contorno del sistema.</u>

Per quanto riguarda invece il ramo secondario, esso non è interessato da alcun rigurgito in quanto la sua quota di scorrimento nel pozzetto N5 è di +0.35 m s.l.m., quindi nettamente superiore alla quota di carico +0.02 m s.l.m. indotta dalla sommergenza del tratto di scarico.

## TRATTO N9-N10

Il tratto di scarico N9-N10 è caratterizzato da un tubo in CLS DN1000 e pendenza di 1.5%, al quale convogliano le acque smaltite dal tratto fognario principale immediatamente a monte, ovvero il tratto N8-N9 costituito da una condotta DNi 800 PP pendenza 0.5% con quota di scorrimento, in corrispondenza dell'ultimo pozzetto N9 lungo la dorsale, pari a -0.73 m s.l.m.; sempre nel pozzetto N9 vi è l'arrivo di un ramo secondario DNi 600 PP pendenza 0.1% con sedime parallelo al fronte mare, con quota di scorrimento +0.31 m s.l.m.

Dall'applicazione della formula di moto uniforme di Chezy, la portata idrologica stimata defluente dal rispettivo bacino tributario è pari a 573.7 l/s, incrementata poi a 643.7 l/s con l'ipotesi di un eventale allaccio futuro aggiuntivo (si vedano le valutazioni fatte nei capitoli precedenti).

Si riportano di seguito le immagini del procedimento di calcolo delle perdite distribuite per il tratto finale DN1000 e portata idrologica pari a 643.7 l/s (0.6437 mc/s):

ACQUATECNO S.R.L. Pag. 87 di 98

## Formula di Colebrook-White:

| D | 1 m                      | = Diametro della condotta |
|---|--------------------------|---------------------------|
| Q | 0.6437 m <sup>3</sup> /s | = Portata della condotta  |
| E | 3 mm                     | = Scabrezza               |

#### Risultati del calcolo:

| Perdita di Carico (cadente) con la formula di Darcy [m/m]                    | 0.000901347       |
|------------------------------------------------------------------------------|-------------------|
| Coefficiente di resistenza con formula di Colebrook                          | 0.026316411468779 |
| Numero di Reynolds                                                           | 814696.11829026   |
| Viscosità cinematica [m²/s] (Nota: come fluido si è assunta l'acqua a 20 °C) | 1.006E-6          |
| Velocità [m/s]                                                               | 0.819584295       |
| Area sezione [m²]                                                            | 0.785398163       |
| Scabrezza Relativa                                                           | 0.003             |

## Formula di Hazen-Williams:

| D | 1000 r  | nm   | = | Diametro interno         |
|---|---------|------|---|--------------------------|
| Q | 643.7 l | /s   | ≘ | Portata della condotta   |
| J | 0.91 r  | n/km | = | Perdita di carico        |
| C | 100     |      | Ξ | Coefficente di scabrezza |

Il valore peggiore di perdita distribuita è restituito, anche se con differenza praticamente nulla, dalla formula di Hazen-Williams essendo pari a 0.091 cm/m; la lunghezza del tratto N9-N10 è di 5.18 m, perciò la perdita distribuita sarà 0.471 cm.

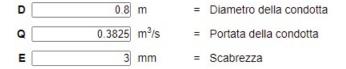
Con diametro interno pari ad 1.00 m e portata 643.7 l/s la velocità del flusso nella condotta è pari a 0.82 m/s, perciò le perdite concentrate sono 5.14 cm: risulta quindi una perdita di carico totale di 5.61 cm, arrotondata per eccesso a 0.06 m.

Rispetto al livello di medio mare (0.00 m s.l.m.), il carico indotto dalla sommergenza del tratto di scarico N9-N10 in corrispondenza del pozzetto immediatamente a monte N9 raggiunge la quota di +0.06 m s.l.m., inferiore quindi - anche se di poco - alla quota di intradosso (+0.07 m s.l.m.) nel pozzetto succitato del tratto N8-N9 della rete fognaria principale.

Considerando un grado di riempimento della condotta N8-N9 dell'80%, il livello raggiunto al suo interno ipotizzando assenza di sommergenza sarebbe pari a -0.09 m s.l.m., mentre con la portata idrologica precedentemente stimata (643.7 l/s) la quota di massimo riempimento risulta -0.31 m s.l.m. essendo il grado di riempimento del 53% circa: in entrambi i casi il livello raggiunto è inferiore al carico stimato nel pozzetto N9 (+0.06 m s.l.m.).

ACQUATECNO S.R.L. Pag. 88 di 98

Si deduce quindi che <u>la sommergenza del tratto di scarico N9-N10 genera, nel tratto di rete fognaria immediatamente a monte N8-N9, un rigurgito verso monte senza indurre però - anche se con franco minimo - la condizione di funzionamento in pressione. Tale modalità di funzionamento idraulico è accettabile, alla luce delle condizioni al contorno del sistema.</u>


Per quanto riguarda invece il ramo secondario, esso non è interessato da alcun rigurgito in quanto la sua quota di scorrimento nel pozzetto N9 è di +0.31 m s.l.m., quindi nettamente superiore alla quota di carico +0.06 m s.l.m. indotta dalla sommergenza del tratto di scarico.

#### TRATTO N20-N21

Il tratto di scarico N20-N21 è caratterizzato da un tubo in CLS DN800 e pendenza di 1.5%, al quale convogliano le acque smaltite dal tratto fognario immediatamente a monte N19-N20, costituito da una condotta DNi 600 PP pendenza 0.5% con quota di scorrimento, in corrispondenza dell'ultimo pozzetto N20 lungo la dorsale, pari a -0.45 m s.l.m.

Dall'applicazione della formula di moto uniforme di Chezy, la portata idrologica stimata defluente dal rispettivo bacino tributario è pari a 382.5 l/s (0.3825 mc/s) (si vedano le valutazioni fatte nei capitoli precedenti); si riportano di seguito le immagini del procedimento di calcolo delle perdite distribuite per il tratto finale DN800:

#### Formula di Colebrook-White:



#### Risultati del calcolo:

| Scabrezza Relativa                                                           | 0.00375           |
|------------------------------------------------------------------------------|-------------------|
| Area sezione [m²]                                                            | 0.502654824       |
| Velocità [m/s]                                                               | 0.760959572       |
| Viscosità cinematica [m²/s] (Nota: come fluido si è assunta l'acqua a 20 °C) | 1.006E-6          |
| Numero di Reynolds                                                           | 605136.83658052   |
| Coefficiente di resistenza con formula di Colebrook                          | 0.028060811807602 |
| Perdita di Carico (cadente) con la formula di Darcy [m/m]                    | 0.001035646       |

ACQUATECNO S.R.L. Pag. 89 di 98

### Formula di Hazen-Williams:

| D | 800 mm    | = Diametro interno         |
|---|-----------|----------------------------|
| Q | 382.5 l/s | = Portata della condotta   |
| J | 1.03 m/km | = Perdita di carico        |
| С | 100       | = Coefficente di scabrezza |

Il valore peggiore di perdita distribuita è restituito, anche se con differenza praticamente nulla, dalla formula di Colebrook-White essendo pari a 0.104 cm/m; la lunghezza del tratto N20-N21 è di 3.08 m, perciò la perdita distribuita sarà 0.32 cm. Con diametro interno pari ad 0.80 m e portata 382.5 l/s la velocità del flusso nella condotta è pari a 0.76 m/s, perciò le perdite concentrate sono 4.43 cm: risulta quindi una perdita di carico totale di 4.75 cm, arrotondata per eccesso a 0.05 m.

Rispetto al livello di medio mare (0.00 m s.l.m.), il carico indotto dalla sommergenza del tratto di scarico N20-N21 in corrispondenza del pozzetto immediatamente a monte N20 raggiunge la quota di +0.05 m s.l.m., compresa quindi tra la quota di scorrimento (-0.45 m s.l.m.) e di intradosso (+0.15 m s.l.m.) nel pozzetto succitato del tratto N19-N20 della rete fognaria principale.

Considerando un grado di riempimento della condotta N19-N20 dell'80%, il livello raggiunto al suo interno ipotizzando assenza di sommergenza sarebbe pari a +0.03 m s.l.m., mentre con la portata idrologica precedentemente stimata (382.5 l/s) la quota di massimo riempimento risulta -0.08 m s.l.m. essendo il grado di riempimento del 62% circa: in entrambi i casi il livello raggiunto è inferiore al carico stimato nel pozzetto N20 (+0.05 m s.l.m.).

Si deduce quindi che <u>la sommergenza del tratto di scarico N20-N21 genera, nel tratto di rete fognaria immediatamente a monte N19-N20, un rigurgito verso monte senza indurre però la condizione di funzionamento in pressione. Tale modalità di funzionamento idraulico è accettabile, alla luce delle condizioni al contorno del sistema.</u>

#### TRATTO N13-N14

Il tratto di scarico N13-N14 è caratterizzato da un tubo in CLS DN800 e pendenza di 1.5%, al quale convogliano le acque smaltite dal tratto fognario immediatamente a monte N12-N13, costituito da una condotta DNi 600 PP pendenza 0.3% con quota di scorrimento, in corrispondenza dell'ultimo pozzetto N13 lungo la dorsale, pari a 0.00 m s.l.m.

ACQUATECNO S.R.L. Pag. 90 di 98

Dall'applicazione della formula di moto uniforme di Chezy, la portata idrologica stimata defluente dal rispettivo bacino tributario è pari a 316.8 l/s (0.3168 mc/s) (si vedano le valutazioni fatte nei capitoli precedenti); si riportano di seguito le immagini del procedimento di calcolo delle perdite distribuite per il tratto finale DN800:

## Formula di Colebrook-White:

| D | 0.8 m                    | = Diametro della condotta |
|---|--------------------------|---------------------------|
| Q | 0.3168 m <sup>3</sup> /s | = Portata della condotta  |
| E | 3 mm                     | = Scabrezza               |

#### Risultati del calcolo:

| Scabrezza Relativa                                                           | 0.00375          |
|------------------------------------------------------------------------------|------------------|
| Area sezione [m²]                                                            | 0.502654824      |
| Velocità [m/s]                                                               | 0.630253575      |
| Viscosità cinematica [m²/s] (Nota: come fluido si è assunta l'acqua a 20 °C) | 1.006E-6         |
| Numero di Reynolds                                                           | 501195.68588469  |
| Coefficiente di resistenza con formula di Colebrook                          | 0.02810107931786 |
| Perdita di Carico (cadente) con la formula di Darcy [m/m]                    | 0.000711445      |

#### Formula di Hazen-Williams:

| D | 800   | mm   | = Diametro interno         |
|---|-------|------|----------------------------|
| Q | 316.8 | I/s  | = Portata della condotta   |
| J | 0.73  | m/km | = Perdita di carico        |
| С | 100   |      | = Coefficente di scabrezza |

Il valore peggiore di perdita distribuita è restituito dalla formula di Hazen-Williams essendo pari a 0.073 cm/m; la lunghezza del tratto N13-N14 è di 6.68 m, perciò la perdita distribuita sarà 0.49 cm. Con diametro interno pari ad 0.80 m e portata 316.8 l/s la velocità del flusso nella condotta è pari a 0.63 m/s, perciò le perdite concentrate sono 3.04 cm: risulta quindi una perdita di carico totale di 3.52 cm, arrotondata per eccesso a 0.04 m.

Rispetto al livello di medio mare (0.00 m s.l.m.), il carico indotto dalla sommergenza del tratto di scarico N13-N14 in corrispondenza del pozzetto immediatamente a monte N13 raggiunge la quota di +0.04 m s.l.m., compresa quindi tra la quota di scorrimento (0.00 m s.l.m.) e di intradosso (+0.60 m s.l.m.) nel pozzetto succitato del tratto N12-N13 della rete fognaria principale.

ACQUATECNO S.R.L. Pag. 91 di 98

Considerando un grado di riempimento della condotta N12-N13 dell'80%, il livello raggiunto al suo interno ipotizzando assenza di sommergenza sarebbe pari a +0.48 m s.l.m., mentre con la portata idrologica precedentemente stimata (316.8 l/s) la quota di massimo riempimento risulta +0.39 m s.l.m. essendo il grado di riempimento del 65% circa: in entrambi i casi il livello raggiunto è superiore al carico stimato nel pozzetto N13 (+0.04 m s.l.m.).

Si deduce quindi che <u>la sommergenza del tratto di scarico N13-N14 non induce rigurgito verso monte,</u> ma viceversa si genera un effetto di richiamo per lo smaltimento verso mare delle portate meteoriche convogliate dalla rete fognaria bianca tributaria dello scarico in esame.

#### TRATTO N24-N25

Il tratto di scarico N24-N25 è caratterizzato da un tubo in CLS DN600 e pendenza di 1%, al quale convogliano le acque smaltite dal tratto fognario immediatamente a monte N23-N24, costituito da una condotta DN630 PE PN10 pendenza 0.2% con quota di scorrimento, in corrispondenza dell'ultimo pozzetto N24 lungo la dorsale, pari a -0.48 m s.l.m.

Dall'applicazione della formula di moto uniforme di Chezy, la portata idrologica stimata defluente dal rispettivo bacino tributario è pari a 143.3 l/s (0.1433 mc/s) (si vedano le valutazioni fatte nei capitoli precedenti); si riportano di seguito le immagini del procedimento di calcolo delle perdite distribuite per il tratto finale DN600:

### Formula di Colebrook-White:

| D | 0.6 m                    | = Diametro della condotta |
|---|--------------------------|---------------------------|
| Q | 0.1433 m <sup>3</sup> /s | = Portata della condotta  |
| E | 3 mm                     | = Scabrezza               |

#### Risultati del calcolo:

| Perdita di Carico (cadente) con la formula di Darcy [m/m]                    | 0.000669337       |
|------------------------------------------------------------------------------|-------------------|
| Coefficiente di resistenza con formula di Colebrook                          | 0.030662703400771 |
| Numero di Reynolds                                                           | 302278.37475149   |
| Viscosità cinematica [m²/s] (Nota: come fluido si è assunta l'acqua a 20 °C) | 1.006E-6          |
| Velocità [m/s]                                                               | 0.506820075       |
| Area sezione [m²]                                                            | 0.282743338       |
| Scabrezza Relativa                                                           | 0.005             |

ACQUATECNO S.R.L. Pag. 92 di 98

### Formula di Hazen-Williams:

| D | 600 mm    | = Diametro interno       |    |
|---|-----------|--------------------------|----|
| Q | 143.3 l/s | = Portata della condotta |    |
| J | 0.68 m/km | = Perdita di carico      |    |
| С | 100       | = Coefficente di scabrez | za |

Il valore peggiore di perdita distribuita è restituito, anche se con differenza praticamente nulla, dalla formula di Hazen-Williams essendo pari a 0.068 cm/m; la lunghezza del tratto N24-N25 è di 8.42 m, perciò la perdita distribuita sarà 0.57 cm. Con diametro interno pari ad 0.60 m e portata 143.3 l/s la velocità del flusso nella condotta è pari a 0.51 m/s, perciò le perdite concentrate sono 1.96 cm: risulta quindi una perdita di carico totale di 2.54 cm, arrotondata per eccesso a 0.03 m.

Rispetto al livello di medio mare (0.00 m s.l.m.), il carico indotto dalla sommergenza del tratto di scarico N24-N25 in corrispondenza del pozzetto immediatamente a monte N24 raggiunge la quota di +0.03 m s.l.m., compresa quindi tra la quota di scorrimento (-0.48 m s.l.m.) e di intradosso (+0.07 m s.l.m.) nel pozzetto succitato del tratto N23-N24 della rete fognaria principale.

Considerando un grado di riempimento della condotta N23-N24 dell'80%, il livello raggiunto al suo interno ipotizzando assenza di sommergenza sarebbe pari a -0.04 m s.l.m., mentre con la portata idrologica precedentemente stimata (143.3 l/s) la quota di massimo riempimento risulta -0.20 m s.l.m. essendo il grado di riempimento del 51% circa: in entrambi i casi il livello raggiunto è inferiore al carico stimato nel pozzetto N24 (+0.03 m s.l.m.).

Si deduce quindi che <u>la sommergenza del tratto di scarico N25-N24 genera, nel tratto di rete fognaria immediatamente a monte N23-N24, un rigurgito verso monte senza indurre però la condizione di funzionamento in pressione. Tale modalità di funzionamento idraulico è accettabile, alla luce delle condizioni al contorno del sistema.</u>

Di seguito si allega la tabella riassuntiva del funzionamento dei differenti scarichi a mare sopra analizzati: in particolare per funzionamento "ottimo" si intende la condizione per cui la sommergenza del tratto di scarico non induce alcun rigurgito nella rete fognaria a monte, ma induce piuttosto un effetto di richiamo sullo smaltimento della portata meteorica verso mare; con funzionamento "buono" si descrive invece il caso in cui la sommergenza può indurre sì un leggero rigurgito nei tratti fognari di monte, senza innescare comunque alcun funzionamento in pressione in essi.

ACQUATECNO S.R.L. Pag. 93 di 98

| SCARICO A MARE | FUNZIONAMENTO |
|----------------|---------------|
| TRATTO N5-N6   | BUONO         |
| TRATTO N9-N10  | BUONO         |
| TRATTO N20-N21 | BUONO         |
| TRATTO N13-N14 | ОТТІМО        |
| TRATTO N24-N25 | BUONO         |

Analogamente a quanto sopra, di seguito verranno verificati gli scarichi a mare in corrispondenza delle banchine di sopraflutto, sottoflutto e di riva.

## SCARICHI SOPRAFLUTTO

Come spiegato nei capitoli precedenti, lo smaltimento delle acque meteoriche ricadenti sulla banchina di sopraflutto vengono raccolte e smaltite attraverso delle linee di canalette grigliate e caditoie disposte lungo tutta la lunghezza della banchina stessa. In particolare, si è ipotizzato di suddividere la banchina in tratti di uguale lunghezza, così da servire ogni tratto con moduli di canalette grigliate e caditoie indipendenti ed autonome; ogni modulo sarà inoltre caratterizzato da un proprio scarico a mare.

Per la banchina di sopraflutto gli scarichi a mare sono costituiti da un tratto di condotta in CLS DN400 con pendenza 1.5%, ai quali convogliano le acque meteoriche raccolte dal tratto fognario ad essi tributario. In particolare, la rete fognaria, costituita da moduli di canalette grigliate e caditoie, smaltisce le acque meteoriche verso mare attraverso un primo tratto di condotta DNi 272 PP pendenza 3%, e successivamente attraverso il tratto di scarico succitato; si sottolinea che in corrispondenza del pozzetto immediatamente a monte dello scarico, la condotta DNi 272 PP presenta una quota di scorrimento pari a -0.05 m s.l.m.

Con riferimento al tratto di banchina di sopraflutto e alla rispettiva rete fognaria che, dall'applicazione della formula di moto uniforme di Chezy, risulta il caso "peggiore" in termini di portata idrologica defluente dal rispettivo bacino tributario, si riportano di seguito le immagini del procedimento di calcolo delle perdite distribuite per il tratto finale DN400.

Si considera come portata idrologica quella massima tra i valori stimati per i vari scarichi a servizio del sopraflutto, pari a 88.0 l/s (0.088 mc/s) (si vedano le valutazioni fatte nei capitoli precedenti).

ACQUATECNO S.R.L. Pag. 94 di 98

## Formula di Colebrook-White:

| D | 0.4 m                   | = Diametro della condott | a |
|---|-------------------------|--------------------------|---|
| Q | 0.088 m <sup>3</sup> /s | = Portata della condotta |   |
| E | 3 mm                    | = Scabrezza              |   |

#### Risultati del calcolo:

| Perdita di Carico (cadente) con la formula di Darcy [m/m]                    | 0.002169331       |
|------------------------------------------------------------------------------|-------------------|
| Coefficiente di resistenza con formula di Colebrook                          | 0.034702617570371 |
| Numero di Reynolds                                                           | 278442.04771372   |
| Viscosità cinematica [m²/s] (Nota: come fluido si è assunta l'acqua a 20 °C) | 1.006E-6          |
| Velocità [m/s]                                                               | 0.70028175        |
| Area sezione [m²]                                                            | 0.125663706       |
| Scabrezza Relativa                                                           | 0.0075            |

### Formula di Hazen-Williams:

| D | 400 mm    | = Diametro interno         |   |
|---|-----------|----------------------------|---|
| Q | 88 I/s    | = Portata della condotta   |   |
| J | 1.98 m/km | = Perdita di carico        |   |
| C | 100       | = Coefficente di scabrezza | a |

Il valore peggiore di perdita distribuita è restituito dalla formula di Colebrook-White essendo pari a 0.217 cm/m; la lunghezza del tratto di scarico è di 6.20 m, perciò la perdita distribuita sarà 1.34 cm. Con diametro interno pari ad 0.40 m e portata 88.0 l/s la velocità del flusso nella condotta è pari a 0.70 m/s, perciò le perdite concentrate sono 3.75 cm: risulta quindi una perdita di carico totale di 5.09 cm, arrotondata per eccesso a 0.06 m.

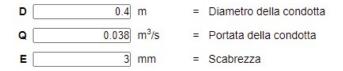
Rispetto al livello di medio mare (0.00 m s.l.m.), il carico indotto dalla sommergenza del tratto di scarico in corrispondenza del pozzetto immediatamente a monte raggiunge la quota di +0.06 m s.l.m., compresa quindi tra la quota di scorrimento (-0.05 m s.l.m.) e di intradosso (+0.22 m s.l.m.) nel pozzetto succitato del tratto DNi 272.

Si deduce quindi che <u>la sommergenza del tratto di scarico non induce rigurgito verso monte, ma viceversa si genera un effetto di richiamo per lo smaltimento verso mare delle portate meteoriche convogliate dalla rete fognaria bianca tributaria dello scarico in esame, essendo il carico indotto dalla sommergenza nettamente minore dal livello raggiungibile all'interno dalla condotta.</u>

ACQUATECNO S.R.L. Pag. 95 di 98

#### SCARICHI SOTTOFLUTTO

L'area di sottoflutto sarà dotata, per la raccolta e smaltimento delle acque meteoriche, di una linea di canalette grigliate e caditoie per tutta la sua lunghezza.


Analogamente alla banchina sopraflutto, la linea di griglie è stata definita ipotizzano di suddividere la banchina di sottoflutto in tratti di uguale lunghezza così da servire ogni tratto con moduli di canaletta grigliata e caditoie indipendenti, dove ogni modulo sarà caratterizzato da un proprio scarico a mare.

Per la banchina di sottoflutto gli scarichi a mare sono costituiti da un tratto di condotta in CLS DN400 con pendenza 1.5%, ai quali convogliano le acque meteoriche raccolte dal tratto fognario ad essi tributario.

In particolare la rete fognaria smaltisce le acque meteoriche verso mare attraverso un primo tratto di condotta DNi 272 PP pendenza 3%, e successivamente attraverso il tratto di scarico succitato; si sottolinea che in corrispondenza del pozzetto immediatamente a monte dello scarico, la condotta DNi 272 PP presenta una quota di scorrimento pari a +0.84 m s.l.m.

Con riferimento al tratto di banchina di sottoflutto e alla rispettiva rete fognaria, dall'applicazione della formula di moto uniforme di Chezy la portata idrologica defluente dal rispettivo bacino tributario risulta pari a 38.0 l/s (0.038 mc/s) (si vedano le valutazioni fatte nei capitoli precedenti); si riportano di seguito le immagini del procedimento di calcolo delle perdite distribuite per il tratto finale DN400.

#### Formula di Colebrook-White:



#### Risultati del calcolo:

| Perdita di Carico (cadente) con la formula di Darcy [m/m]                    | 0.000408469       |
|------------------------------------------------------------------------------|-------------------|
| Coefficiente di resistenza con formula di Colebrook                          | 0.035042456073828 |
| Numero di Reynolds                                                           | 120236.3387674    |
| Viscosità cinematica [m²/s] (Nota: come fluido si è assunta l'acqua a 20 °C) | 1.006E-6          |
| Velocità [m/s]                                                               | 0.302394392       |
| Area sezione [m²]                                                            | 0.125663706       |
| Scabrezza Relativa                                                           | 0.0075            |

ACQUATECNO S.R.L. Pag. 96 di 98

### Formula di Hazen-Williams:

| D | 400 mm    | = Diametro interno         |
|---|-----------|----------------------------|
| Q | 38 l/s    | = Portata della condotta   |
| J | 0.42 m/km | = Perdita di carico        |
| С | 100       | = Coefficente di scabrezza |

Il valore peggiore di perdita distribuita è restituito, anche se con differenza praticamente nulla, dalla formula di Hazen-Williams essendo pari a 0.042 cm/m; la lunghezza del tratto di scarico è di 3.08 m, perciò la perdita distribuita sarà 0.13 cm. Con diametro interno pari ad 0.40 m e portata 38.0 l/s la velocità del flusso nella condotta è pari a 0.30 m/s, perciò le perdite concentrate sono 0.70 cm: risulta quindi una perdita di carico totale di 0.83 cm, arrotondata per eccesso a 0.01 m.

Rispetto al livello di medio mare (0.00 m s.l.m.), il carico indotto dalla sommergenza del tratto di scarico in corrispondenza del pozzetto immediatamente a monte raggiunge la quota di +0.01 m s.l.m., quindi nettamente inferiore alla quota di scorrimento (+0.84 m s.l.m.) nel pozzetto succitato del tratto DNi 272.

Si deduce quindi che <u>la sommergenza del tratto di scarico non induce rigurgito verso monte, ma viceversa si genera un effetto di richiamo per lo smaltimento verso mare delle portate meteoriche convogliate dalla rete fognaria bianca tributaria dello scarico in esame, essendo il carico indotto dalla sommergenza addirittura minore della quota di scorrimento della condotta.</u>

### BANCHINA DI RIVA

La banchina di riva risulta servita, come per il sottoflutto, esclusivamente da una linea di griglia per tutta la sua lunghezza, definite ipotizzando di suddividere la banchina in tratti di uguale lunghezza così da servire ogni tratto con moduli di canaletta grigliata indipendenti; ogni modulo è poi servito da un proprio scarico a mare.

Per la banchina di riva gli scarichi a mare sono costituiti da un tratto di condotta in CLS DN400 con pendenza 1.5%, ai quali convogliano le acque meteoriche raccolte dalle canalette grigliate ad essi tributarie: in particolare le portate raccolte dalle canalette vengono scaricate in primo luogo direttamente in un pozzetto di raccolta, e successivamente vengono smaltite a mare attraverso lo scarico finale. Dato che le canalette grigliate risultano molto superficiali e non essendoci ulteriori reti fognarie collegate immediatamente a monte del pozzetto di raccolta, è possibile concludere che <u>la sommergenza del tratto di condotta di scarico non induce alcun problema sul buon funzionamento delle canalette, essendo posizionate a quote nettamente superficiali rispetto allo scarico stesso.</u>

ACQUATECNO S.R.L. Pag. 97 di 98

In ragione di tutte le definizioni e calcolazioni prodotte ed illustrate nel presente elaborato, si ritiene il sistema fognario di smaltimento delle acque meteoriche del Primo Lotto Funzionale del Nuovo Porto Commerciale di Fiumicino adeguatamente dimensionato e progettato sotto l'aspetto idraulico.

ACQUATECNO S.R.L. Pag. 98 di 98