

Porti di Palermo, Termini Imerese, Trapani, Porto Empedocle

AUTORITA' DI SISTEMA PORTUALE DEL MARE DI SICILIA OCCIDENTALE

PORTO DI PALERMO - Lavori di completamento per la messa in sicurezza del bacino di carenaggio 150.000 tpl - 1° lotto funzionale – CUP: I77G19000070007.

PROGETTO DEFINITIVO

RUP: PROGETTISTA E COORDINATORE DELLA **SICUREZZA IN PROGETTAZIONE:** Ing. Salvatore Acquista via AUSONIA, 58 - 30015 CHIOGGIA (VE) Tel. (041)4967286 Progettista incaricato e coordinatore: Cirillo Dott. Ing. FONTOLAN FINCANTIERI iscritto all' ordine degli ingegneri della provincia di venezia al n. 2376 Progettazione specialistica: viale LAZIO, 13 – 90144 PALERMO (PA) Tel. 0916251 SLIORIN N. 6546 Responsabile commessa: Guglielmo Dott. Ing. MIGLIORINO viale Vittorio Bottego, 8 - 43121 PARMA (PR) Tel. 05211551: Responsabile commessa: Luca Dott. Ing. STRATA

CODICE:

C.0_03.01

OGGETTO: Lotto C - Realizzazione delle opere marittime per la realizzazione della nuova strada esterna alle banchine per il collegamento delle aree assegnate secondo protocollo d'intesa del 28-12-2018

RELAZIONE DI CALCOLO DELLE STRUTTURE STRADALI

SCALA:	DATA: 04-01-2021	Revisione: 00	

SPAZIO PER I VISTI:

Autorità di Sistema Portuale del Mare di Sicilia Occidentale

COMUNE PALERMO PROVINCIA DI PALERMO

LAVORI DI COMPLETAMENTO PER LA MESSA IN SICUREZZA DEL BACINO DI CARENAGGIO 150.000 TPL 1° LOTTO FUNZIONALE

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna alle banchine per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO DELLE STRUTTURE STRADALI

1	PREMESSA	6
2	RIFERIMENTI NORMATIVI	
3	MATERIALI	9
3.1	CALCESTRUZZO CLASSE DI RESISTENZA C35/45 (RCK 45)	9
3.2	ACCIAIO PER CEMENTO ARMATO B450C	
3.3	CAMICIE DEI PALI	10
4	ANALISI DEI CARICHI	11
4.1	PESO DELLE SOTTOSTRUTTURE (G _{1,1})	11
4.2	AZIONI PERMANENTI RELATIVE ALL'IMPALCATO DEL PONTE (G _{1,2})	11
4.3	CARICHI PERMANENTI (G2)	11
4.4	Carichi mobili (Q1)	12
4.5	GRUPPI DI CARICO DA TRAFFICO	13
4.6	Frenatura (Q ₃)	13
4.7	AZIONE CENTRIFUGA (Q4)	14
4.8	AZIONE DEL VENTO (Q5)	14
4.9	AZIONI SIMICHE (Q ₆)	15
4.9	9.1 Spettri di progetto	16
4.10	Variazioni termiche (ϵ_3)	18
4.11	RESISTENZE PARASSITE DEI VINCOLI (Q9)	19
4.12	AZIONI ECCEZIONALI (URTO DA TRAFFICO VEICOLARE)	19
4.13	COMBINAZIONI DI CARICO	19
5	ANALISI STRUTTURALE DELL'IMPALCATO	23
5.1	METODO DI CALCOLO	23
5.2	PROGRAMMA DI CALCOLO UTILIZZATO	24
5.3	VALUTAZIONE DEI RISULTATI E GIUDIZIO SULLA LORO ACCETTABILITÀ	24
5.4	DESCRIZIONE DEL MODELLO	25
5.5	RISULTATI DELL'ANALISI MODALE	36
5.6	SOLLECITAZIONI DI PROGETTO	40
5.0	6.1 Pali e travi	40
5.0	6.2 Solette	44
5.7	VERIFICHE DI RESISTENZA	46
5.7	7.1 Casseri prefabbricati	46
5.7	7.2 Travi longitudinali	50
	5.7.2.1 Flessione	51
	5.7.2.2 Taglio	52
5.2	7.3 Solette	53

	5.7.3.1	Flessione	5£
	5.7.3.2	Taglio	58
5	.7.4 Pa	li	59
	5.7.4.1	Pressoflessione	60
	5.7.4.2	Taglio	62
6	DIM	ENSIONAMENTO DEI GIUNTI E DELLA CORSA DEGLI	
OGGI	65		
7	SPOS	STAMENTI IN DIREZIONE TRASVERSALE	66
8	VER	IFICA A CARICO LIMITE DEI PALI	67
8.1	VERI	FICA A CARICO LIMITE VERTICALE	67
8	.1.1 De	terminazione del carico limite verticale	67
8	.1.2 Cr	iteri di verifica previste ai sensi delle NTC2018	69
8		ioni di progetto	
8	.1.4 Ris	sultati	73
	8.1.4.1	Spalla A	73
	8.1.4.2	Spalla B	75
	8.1.4.3	Pila Centrale	77
	8.1.4.4	Impalcato 1	79
	8.1.4.5	Impalcato 2	81
8.2	VERI	FICA A CARICO LIMITE ORIZZONTALE	83
8	.2.1 De	terminazione del carico limite orizzontale	83
8	.2.2 Cr	iteri di verifica previste ai sensi delle NTC2018	84
8	.2.3 Azi	ioni di progetto	85
8	.2.4 Ris	sultati	86
	8.2.4.1	Spalla A	88
	8.2.4.2	Spalla B	89
	8.2.4.3	Pila Centrale	90
	8.2.4.4	Impalcato 1	90
	8.2.4.5	Impalcato 2	91
9	VER	IFICA DEGLI SPOSTAMENTI DEI PALI	93
9.1	SPOST	TAMENTI VERTICALI DEI PALI IN GRUPPO	93
9	.1.1 Sp	alla A	94
9	.1.2 Sp	alla B	94
9	.1.3 Pil	la Centrale	95
9	.1.4 Im	palcato 1/2	95

	10.1	SOFTWARE DI CALCOLO UTILIZZATO	97
	10.2	MODELLO ED IPOTESI DI CALCOLO	98
	10.3	STRATIGRAFIA DI RIFERIMENTO E PARAMETRI GEOTECNICI DI CALCOLO	102
	10.4	AZIONI DI PROGETTO	103
	10.5	RISULTATI	
		0.5.1 Verifiche strutturali dei pali	
		0.5.2 Verifiche strutturali della trave di coronamento	
A	LLEG	GATO 1- SOLLECITAZIONI PALI IN CORRISPONDENZA DE	L
FONDA	ALE	108	
<u>I</u> 1	ndice	e delle Figure	
Figura 1:	Plani	imetria dell'intervento	6
Figura 2	Sche	ema dei carichi mobili	12
Figura 3:	Conf	figurazione carreggiata	12
Figura 4:	Spett	tri di risposta allo SLV	18
Figura 5:	Sche	ema di molle elastoplastiche orizzontali: sezione verticale e sezione ori	zzontale. 27
Figura 6:	Sche	ema di molle elastoplastiche verticali	28
Figura 7:	Vista	a 3D unifilare del modello di calcolo	29
Figura 8:	Vista	a 3D estrusa del modello di calcolo	29
Figura 9:	Appl	licazione del carico trasmesso dal ponte	30
Figura 10:	Appl	licazione dell'azione di frenatura sul ponte e sulle sottostrutture	30
Figura 11:	Appl	licazione dell'azione di frenatura degli impalcati 1 e 2	31
Figura 12:	Appl	licazione dell'azione centrifuga	31
Figura 13:	Appl	licazione dell'azione del vento sull'impalcato e sulle sottostrutture	32
Figura 14:	Appl	licazione dell'azione del vento sugli impalcati 1 e 2	32
Figura 15:	Appl	licazione dell'azione del vento sui carichi mobili del ponte e delle sotto	ostrutture 33
Figura 16:	Appl	licazione dell'azione del vento sui carichi mobili degli impalcati 1 e 2 .	33
Figura 17:	Appl	licazione dell'azione termica uniforme sugli elementi frame	34
Figura 18:	Appl	licazione dell'azione termica uniforme sugli elementi shell	34
Figura 19:	Appl	licazione dell'azione del gradiente termico	34
Figura 20:		licazione dell'azione dovuta alla resistenza parassita dei vincoli	
Figura 21:		Iodo Traslazionale X delle sottostrutture – modo 1 - T = 1.01 s	
Figura 22:		Modo Traslazionale Y delle sottostrutture – modo 3 - T=0.824 s	
Figura 23:	1° M	Iodo Traslazionale X degli impalcati 1 e 2 – modo 10 - T = 0.641 s	38
Figura 24:		Modo Traslazionale Y degli impalcati 1 e 2 – modo 2 - T=0.836 s	
		5 1	

Figura 25:	Diagramma di inviluppo dello sforzo assiale N (kN) allo SLU/SLV	40
Figura 26:	Diagramma di inviluppo del momento flettente trasversale M22 (kN m) allo S	SLU/SLV
	41	
Figura 27:	Diagramma di inviluppo del momento flettente longitudinale M33 (kN m) alle	0
SLU/SLV	41	
Figura 28:	Diagramma di inviluppo del taglio longitudinale V22 (kN) allo SLU/SLV	42
Figura 29:	Diagramma di inviluppo del taglio trasversale V33 (kN) allo SLU/SLV	42
Figura 30:	Diagramma di inviluppo dello sforzo assiale N (kN) allo SLE-Rara	43
Figura 31:	Diagramma di inviluppo del momento flettente trasversale M22 (kN m) allo S	SLE-Rara
	43	
Figura 32:	Diagramma di inviluppo del momento flettente longitudinale M33 (kN m) allo	o SLE-
Rara	44	
Figura 33:	Diagramma di inviluppo del momento flettente longitudinale M11 (kN m) allo	0
SLU/SLV	44	
Figura 34:	Diagramma di inviluppo del momento flettente trasversale M22 (kN m) allo S	SLU/SLV
	45	
Figura 35:	Diagramma di inviluppo del taglio trasversale V12 (kN) allo SLU/SLV	45
Figura 36:	Diagramma di inviluppo del taglio longitudinale V23 (kN) allo SLU/SLV	45
Figura 37 –	- Abaco di Berezantzev per pali di grande diametro	68
Figura 38 -	Modello di calcolo – Sezione	99
Figura 39 -	Modello di calcolo – Prospetto	100
Figura 40 -	Legame costitutivo del terreno	101
Figura 41 -	Modello di calcolo - profilo	102
Figura 42 –	- Prospetto 4.4 – Estratto da Eurocodice 1 – Parte 2-7	103
Figura 43 -	- Azione di progetto	104
Figura 44 –	- Diagrammi delle sollecitazioni	105
Figura 45 –	- Diagramma delle pressioni [kPa]	105
Figura 46 -	- Verifiche di resistenza strutturale	106
Figura 47 -	Schema per il calcolo delle armature del cordolo di testa	107
Figura 48 -	Verifiche di resistenza del cordolo in c.a	107

1 PREMESSA

Oggetto della presente relazione sono i calcoli e le verifiche strutturali e geotecniche degli impalcati in c.a. del pontile e delle sue sottostrutture, nonché delle sottostrutture del ponte levatoio. Per quanto concerne invece i calcoli relativi al ponte levatoio si rimanda alla Relazione di calcolo del ponte.

Le verifiche sono state condotte secondo i criteri indicati dal D.M. 17/01/2018 "Norme Tecniche per le Costruzioni" e relativa Circolare Ministeriale n.7 del 21.01.2019.

Per la descrizione delle opere in progetto si rimanda all'elaborato *C.1_01.01* - *Relazione Generale*.

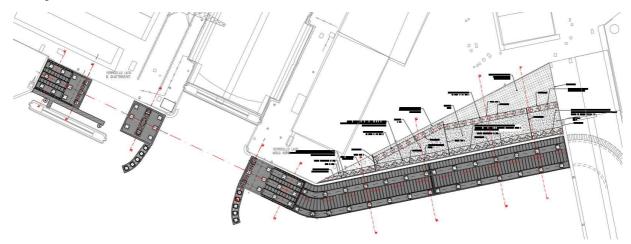


Figura 1: Planimetria dell'intervento

2 RIFERIMENTI NORMATIVI

Le analisi strutturali e le relative verifiche sono eseguite secondo il metodo semiprobabilistico agli Stati Limite secondo le disposizioni normative della vigente normativa italiana e di quella europea (Eurocodici).

- D.M. 17 gennaio 2018: Aggiornamento delle "Norme tecniche per le costruzioni"
 NTC18
- Circ.Min. n.7 del 21.01.2019: Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"»
- D.M. 31 luglio 2012: Approvazione delle Appendici Nazionali recanti i parametri tecnici per l'applicazione degli Eurocodici
- UNI EN 1990 Eurocodice 0 Criteri generali di progettazione strutturale
- UNI EN 1991 Eurocodice 1 Azioni sulle strutture
- UNI EN 1992 Eurocodice 2 Progettazione delle strutture di calcestruzzo
- UNI EN 1997 Eurocodice 7 Progettazione geotecnica
- UNI EN 1998 Eurocodice 8 Progettazione delle strutture per la resistenza sismica
- O.P. Consiglio dei Ministri n. 3274 del 20/03/2003 e succ. agg.: Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica;
- Circolare Min. LL.PP. n. 11951 14/02/1974: Istruzioni per l'applicazione delle "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica."
- Legge del 02/02/1974, n°64: Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche
- Legge del 05/11/1971, n° 1086: Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica.

- Servizio Tecnico Centrale presso la Presidenza del Consiglio Superiore dei Lavori Pubblici, settembre 2017 – "Linee guida per la messa in opera del calcestruzzo strutturale"
- CNR 10024/86 "Analisi di strutture mediante elaboratore: impostazione e redazione della relazioni di calcolo"

3 MATERIALI

Le caratteristiche meccaniche dei materiali impiegati nella realizzazione delle opere strutturali sono sinteticamente riportate di seguito.

3.1 Calcestruzzo classe di resistenza C35/45 (Rck 45)

Resistenza di calcolo a compressione del calcestruzzo:

- $R_{ck} = 45 \text{ MPa}$
- $f_{ck} = 0.83 \times Rck = 37,35 \text{ MPa}$
- $f_{cm} = f_{ck} + 8 = 45,35 \text{ MPa}$
- $f_{cd} = \alpha_{cc} f_{ck} / \gamma_c = 21,17 \text{ MPa}$

Resistenza di calcolo a trazione del calcestruzzo:

- $f_{ctm} = 0.30 \times fck^{2/3} = 3.35 \text{ MPa}$
- $f_{ctk} = 0.7 \times f_{ctm} = 2.35 \text{ MPa}$
- $f_{cfm} = 1.2 \times f_{ctm} = 4.02 \text{ MPa}$
- $f_{ctd} = f_{ctk} / \gamma_c = 1,56 \text{ MPa}$

Tensione tangenziale di aderenza acciaio-calcestruzzo:

- $f_{bk} = 2,25 \times \eta \times fctk = 5,29 \text{ MPa}$
- $f_{bd} = fbk / \gamma c = 3,53 \text{ Mpa}$

Modulo di elasticità, coeff. di Poisson, coeff. dilatazione termica:

- $E_{cm} = 22000 \times [fcm/10]0.3 = 34625 \text{ MPa}$
- vclsfess. = 0
- vcls non fess. = 0.2
- $\alpha = 10 \times 10 6^{\circ} \text{C} 1$

Tensione massima di compressione del calcestruzzo nelle condizioni di esercizio:

- $\sigma_c = 0.60 \times \text{fck} = 22.41 \text{ MPa per combinazione caratteristica}$
- $\sigma_c = 0.45 \times \text{fck} = 16.81 \text{ MPa per combinazione quasi permanente}$

Pesi di volume:

- $\gamma_{ca} = 25,00 \text{ kN/m}^3 \text{ calcestruzzo armato}$
- $\gamma_{cls} = 24,00 \text{ kN/m}^3 \text{ calcestruzzo non armato}$

Altre caratteristiche cemento armato:

- Classe di esposizione XS3
- Rapporto A/C <0,45
- Diametro massimo inerte per i pali: 32 mm;
- Diametro massimo inerte per prefabbricati e per getti in opera: 25 mm;
- Copriferro pali 6 cm;
- Copriferro prefabbricati e getti in opera 5 cm

3.2 Acciaio per cemento armato B450C

Valori nominali delle tensioni caratteristiche di snervamento e rottura:

- $f_{ynom} = 450 \text{ MPa}$
- $f_{knom} = 540 \text{ MPa}$

Resistenza di calcolo dell'acciaio

• $f_{yd} = f_{yk} / \gamma_s = 391 \text{ MPa}$

Tensione massima dell'acciaio nelle condizioni di esercizio:

• $\sigma_s = 0.80 \times f_{yk} = 360$ MPa per combinazione caratteristica

Valore massimo di apertura delle fessure:

 w₁ = 0,20 mm per condizioni ambientali molto aggressive (classe di esposizione XS3)

3.3 Camicie dei pali

Acciaio S355 JR (EN 10025)

4 ANALISI DEI CARICHI

4.1 Peso delle sottostrutture (g_{1,1})

Il peso degli elementi strutturali costituenti le sottostrutture è stato valutato tenendo conto delle dimensioni geometriche reali e di un peso specifico di 25 kN/m³.

4.2 Azioni permanenti relative all'impalcato del ponte $(g_{1,2})$

Le azioni permanenti trasmesse dall'impalcato del ponte attraverso gli apparecchi d'appoggio sono desunte dalla relativa relazione di calcolo. Si riporta di seguito la tabella di riferimento:

	Abt (A)								
support	15		16		17	18		19	
stage	vert	long	vert	long	trasv	vert	long	vert	long
	kN	kN	kN	kN	kN	kN	kN	kN	kN
mooring span erection	100	1.0	90	-1.0	0.0	90	-1.0	100	1.0
ballast application	1608	5.9	1879	-5.9	0.0	1879	-5.9	1608	5.9
moving span erection	1608	5.9	1879	-5.9	0.0	1879	-5.9	1608	5.9
top hinge install	1596	5.6	1869	-5.6	0.0	1869	-5.6	1596	5.6
SDL application	1624	6.0	1873	-5.7	-0.4	1876	-5.9	1624	5.6

	Pier(1)						
support	10	101	11	12	13	131	14
stage	vert	vert	vert	trasv	vert	vert	vert
	kN	kN	kN	kN	kN	kN	kN
mooring span erection	130	130	130	0.0	130	130	130
ballast application	1307	1307	1307	0.0	1307	1307	1307
moving span erection	1307	1307	1307	0.0	1307	1307	1307
top hinge install	1553	1553	1553	0.0	1553	1553	1553
SDL application	1690	1690	1690	0.7	1690	1679	1690

	Abt (B)				
support	1	2	3	4	5
stage	vert	vert	trasv	vert	vert
	kN	kN	kN	kN	kN
mooring span erection	0	0	0	0	0
ballast application	0	0	0	0	0
moving span erection	199	210	0	210	199
top hinge install	205	216	0	216	205
SDL application	281	270	0	272	265

4.3 Carichi permanenti (g2)

I carichi permanenti portati considerati sono i seguenti:

- Asfalto $g_2^I = 1.10 \text{ kN/m}^2$
- Barriere di sicurezza $g_2^{II} = 2 \times 3.50 \text{ kN/m} / 10 \text{ m} = 0.70 \text{ kN/m}$
- Parapetto pedonale $g_2^V = 0.70 \text{ kN/m} / 10 \text{ m}$ 0.07 kN/m

4.4 Carichi mobili (q1)

Si considerano le corsie di carico così come sono definite nel paragrafo 5.1 del DM 17/01/18.

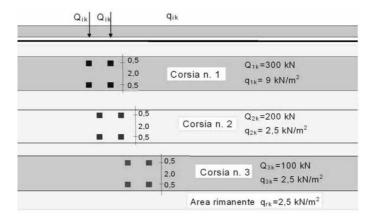
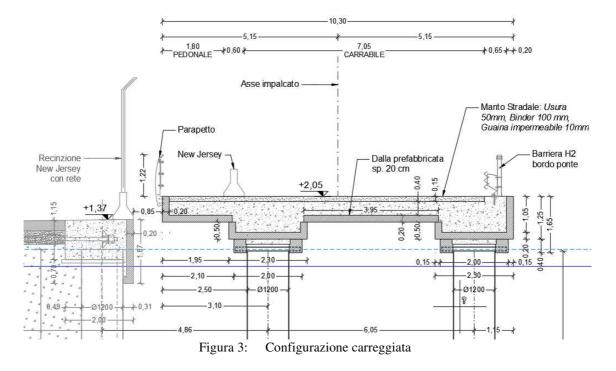



Figura 2 Schema dei carichi mobili

Nella figura seguente è mostrata la configurazione della carreggiata, che ha larghezza pari a 7.05 m. È presente un marciapiede largo 1.80 m. In tale configurazione la carreggiata è compatibile con la presenza di due corsie di carico, con una larghezza residua di 1.05 m.

Tuttavia, per analogia con l'impalcato del ponte, che è stato progettato per il transito di 3 corsie di carico, tenendo conto dell'eventualità della rimozione del New Jersey di separazione dal marciapiede, per l'intera viabilità saranno considerate 3 corsie di carico.

4.5 Gruppi di carico da traffico

Si considerano due gruppi di carico fra quelli definiti dal DM 17/01/2018 in tabella 5.1.IV:

- <u>Gruppo 1</u> carico verticale al valore caratteristico
- Gruppo 2a: carico verticale al valore frequente (ψ_1 =0.75 per carico tandem e ψ_1 =0.40 per carichi distribuiti) e frenatura al valore caratteristico
- Gruppo 2b: carico verticale al valore frequente (ψ 1=0.75 per carico tandem e ψ 1=0.40 per carichi distribuiti) e forza centrifuga al valore caratteristico

4.6 Frenatura (q₃)

Il carico orizzontale corrispondente alla frenatura dei mezzi in transito, dal punto 5.1.3.5 del DM 17/01/2018 per ponti di I categoria, si calcola come segue:

$$180 \text{ kN} \le q_3 = 0.6 \times 2Q_{1k} + 0.10 \times q_{1k} \times w_1 \times L \le 900 \text{ kN}$$

essendo w_I la larghezza della corsia e L la lunghezza della zona caricata.

Per quanto riguarda il ponte, essendo L = (22.30+37.30) = 59.6 m la lunghezza totale della soletta del ponte, si ha:

$$q_3 = 0.6 \times 2Q_{1k} + 0.10 \times q_{1k} \times w_1 \times L = 521 \text{ kN}$$

Tuttavia, a favore di sicurezza, viene considerata un'azione di frenatura relativa all'impalcato pari a 900 kN. Tale azione si scarica interamente sulla Spalla A.

Sulla Spalla B viene applicata l'azione di frenatura, calcolata assumendo L=17 m:

$$q_3 = 0.6 \times 2Q_{1k} + 0.10 \times q_{1k} \times w_1 \times L = 406 \text{ kN}$$

Per quanto riguarda il pontile, in funzione della lunghezza dei moduli di pontile, si ha:

Modulo 3:
$$q_3 = 0.6 \times 2Q_{1k} + 0.10 \times q_{1k} \times w_1 \times L = 479 \text{ kN}$$

Modulo 4:
$$q_3 = 0.6 \times 2Q_{1k} + 0.10 \times q_{1k} \times w_1 \times L = 486 \text{ kN}$$

Pagina 13 di 114

4.7 Azione centrifuga (q4)

Il tracciato è in rettilineo, a meno della parte del Modulo 3 più prossima al ponte; qui l'azione centrifuga viene assunta pari al massimo valore, pari a $0.2~\Sigma 2Q_{ik}$, essendo $Q_v=\Sigma 2Q_{ik}$ il carico totale dovuto agli assi tandem dello schema di carico 1 agenti sul ponte, e pertanto:

$$q_4 = 240 \text{ kN}$$

Il carico concentrato q₄, applicato a livello di pavimentazione, agisce in direzione normale all'asse del ponte.

4.8 Azione del vento (q5)

Il manufatto in oggetto è in zona 4, classe di rugosità D, categoria di esposizione del sito I (§ 3.3 - DM 17/01/18), e si ha quindi:

$$\begin{split} v_b &= v_{b0} = 28 \text{ m/s}; & q_b = 490 \text{ kPa} \\ c_p &= 1.4 & ; c_d = 1; & c_t = 1 \\ k_r &= 0.17; & z_0 = 0.01 \text{ m} \\ z_{min} &= 2 \text{ m} \end{split}$$

In base a tali parametri ed alla quota z sul piano campagna, è possibile calcolare il coefficiente di esposizione e quindi la pressione del vento:

$$\begin{split} c_e &= k_r^2 \cdot c_t \cdot ln(z/z_0) \cdot [7 + c_t \cdot ln(z/z_0)] \\ &\quad con \ z = z_{medio} = 4.5 \ m \ s.l.m. \\ p &= q_b \cdot c_e \cdot c_p \cdot c_d \end{split}$$

Il massimo valore così calcolato per la costruzione è pari a 1.59 kN/m².

Tale azione è assimilata a un carico orizzontale statico, diretto ortogonalmente agli elementi esposti.

La superficie dei carichi transitanti esposta al vento è assimilata ad una parete continua dell'altezza di 3 m a partire dal piano stradale.

4.9 Azioni simiche (q₆)

Le azioni sismiche sono definite sulla base dello spettro elastico Se(T) del D.M.17 gennaio 2018 assumendo i valori di scuotimento a(g) desunti dalle mappe interattive di pericolosità sismica per la zona in esame, avente coordinate geografiche:

longitudine 13.36089

latitudine 38.13720

Risulta:

 $V_N = 50$ anni (par. 2.4.1 DM18);

Classe d'uso di riferimento: Classe IV (par. 2.4.2 del DM18)

Il periodo di riferimento per l'azione sismica risulta:

 $V_R = V_N C_U = 100$ anni, con $C_U = 2.0$ per strutture di classe d'uso IV (par. 2.4.3 DM18). Si assume inoltre:

categoria di sottosuolo C;

categoria topografica T1.

La verifica viene effettuata per lo stato limite di salvaguardia della vita (SLV) come stato limite ultimo, a cui è associata la probabilità di superamento P_{VR} ed i relativi tempi di ritorno T_R :

SLV
$$P_{VR} = 10\%$$
 $T_R = 949$ anni

I parametri spettrali di seguito elencati si ricavano tramite interpolazione sulle coordinate del Comune di Palermo.

STATO LIMITE	T_{R}	a_{g}	F_0	${ m Tc}^*$	S_{S}	$C_{\rm C}$	S_{T}
	[anni]	[g]	[-]	[s]			
SLD	101	0.086	2.321	0.266	1.500	1.626	1.000
SLV	949	0.219	2.413	0.304	1.383	1.555	1.000

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

Spettro di risposta elastico – componente orizzontale

$$0 \le T < T_{B}$$

$$S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{0} \cdot \left[\frac{T}{T_{B}} + \frac{1}{\eta \cdot F_{0}} \left(1 - \frac{T}{T_{B}} \right) \right]$$

$$T_{B} \le T < T_{C}$$

$$S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{0}$$

$$S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{0} \cdot \left(\frac{T_{C}}{T} \right)$$

$$T_{D} \le T$$

$$S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{0} \cdot \left(\frac{T_{C}T_{D}}{T^{2}} \right)$$

Spettro di risposta elastico – componente verticale

$$0 \le T < T_{B}$$

$$S_{ve}(T) = a_{g} \cdot S \cdot \eta \cdot F_{V} \cdot \left[\frac{T}{T_{B}} + \frac{1}{\eta \cdot F_{V}} \left(1 - \frac{T}{T_{B}} \right) \right]$$

$$T_{B} \le T < T_{C}$$

$$S_{ve}(T) = a_{g} \cdot S \cdot \eta \cdot F_{V}$$

$$T_{C} \le T < T_{D}$$

$$S_{ve}(T) = a_{g} \cdot S \cdot \eta \cdot F_{V} \cdot \left(\frac{T_{C}}{T} \right)$$

$$T_{D} \le T$$

$$S_{ve}(T) = a_{g} \cdot S \cdot \eta \cdot F_{V} \cdot \left(\frac{T_{C}T_{D}}{T^{2}} \right)$$

$$S_{ve}(T) = a_{g} \cdot S \cdot \eta \cdot F_{V} \cdot \left(\frac{T_{C}T_{D}}{T^{2}} \right)$$

$$S_{ve}(T) = a_{g} \cdot S \cdot \eta \cdot F_{V} \cdot \left(\frac{T_{C}T_{D}}{T^{2}} \right)$$

$$S_{ve}(T) = a_{g} \cdot S \cdot \eta \cdot F_{V} \cdot \left(\frac{T_{C}T_{D}}{T^{2}} \right)$$

$$S_{ve}(T) = a_{g} \cdot S \cdot \eta \cdot F_{V} \cdot \left(\frac{T_{C}T_{D}}{T^{2}} \right)$$

$$S_{ve}(T) = a_{g} \cdot S \cdot \eta \cdot F_{V} \cdot \left(\frac{T_{C}T_{D}}{T^{2}} \right)$$

$$S_{ve}(T) = a_{g} \cdot S \cdot \eta \cdot F_{V} \cdot \left(\frac{T_{C}T_{D}}{T^{2}} \right)$$

4.9.1 Spettri di progetto

Gli spettri di risposta per le tre componenti del moto relativi agli stati limite considerati, sono calcolati come mostrato di seguito, progettando la struttura con classe di duttilità CD "A":

SPETTRO ORIZZONT	STATO I			
SPETIKO OKIZZONI	ALE	SLD	SLV	
periodo di ritorno	T_R	101	949	[anni]
accelerazione del sito	\mathbf{a}_{g}	0.086	0.219	[g]
amplificazione spettrale	$\mathbf{F_0}$	2.321	2.413	
periodo inzio vel. cost.	T_{C}^{*}	0.266	0.304	sec
effetto sottosuolo	$C_{\rm C}$	1.626	1.555	
amplif. stratigrafica	S_{S}	1.500	1.383	
amplif. Topografica	S_{T}	1.000	1.000	
coeff. geotecnico	$S = S_S \cdot S_T$	1.500	1.383	
fattore di comportamento	q	1.500	2.800	
	$T_B = T_C/3$	0.144	0.158	sec
	$T_{\rm C} = C_{\rm C} T^*_{\rm C}$	0.432	0.473	sec
	$T_D = 4.0 a_g/g + 1.6$	1.945	2.475	sec

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

SPETTRO VERTICAL	Г	STATO I		
SPETIKO VEKTICAL	SLD	SLV		
amplificazione spettrale	$\mathbf{F_v}$	0.920	1.524	
amplif. stratigrafica	S_{S}	1.000	1.000	
amplif. Topografica	S_{T}	1.000	1.000	
coeff. geotecnico	$S = S_S \cdot S_T$	1.000	1.000	
fattore di comportamento	q	1.000	1.000	
	T_{B}	0.050	0.050	sec
	$T_{\rm C}$	0.150	0.150	sec
	T_{D}	1.000	1.000	sec

Il fattore di comportamento assunto per lo SLV è stato calcolato come $q=q_0\ K_R,$ dove:

- $q_0 = 3.5 \lambda$, secondo la tabella 7.3.II delle NTC 2018, essendo nel caso specifico $\lambda=1$;
- $K_R = 0$, avendo considerato la struttura, a favore di sicurezza, non regolare in altezza.

	ORIZZONTA	LE	VERTICALE	
	T[s]	Se[g]	T[s]	Se[g]
	0.000	0.303	0.000	0.138
	0.158	0.261	0.050	0.333
	0.473	0.261	0.150	0.333
	0.568	0.217	0.235	0.213
	0.664	0.186	0.320	0.156
	0.759	0.163	0.405	0.124
	0.854	0.144	0.490	0.102
	0.950	0.130	0.575	0.087
	1.045	0.118	0.660	0.076
	1.140	0.108	0.745	0.067
	1.236	0.100	0.830	0.060
	1.331	0.093	0.915	0.055
	1.426	0.086	1.000	0.050
	1.522	0.081	1.094	0.042
	1.617	0.076	1.188	0.035
Chatter di vianante /agreenenenti aviere a vant \ nav la atata limita (CLV	1.712	0.072	1.281	0.030
Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLV	1.808	0.068	1.375	0.026
	1.903	0.065	1.469	0.023
	1.999	0.062	1.563	0.020
	2.094	0.059	1.656	0.018
	2.189	0.056	1.750	0.016
	2.285	0.054	1.844	0.015
	2.380	0.052	1.938	0.013
	2.475	0.050	2.031	0.012
	2.548	0.047	2.125	0.011
	2.621	0.044	2.219	0.010
	2.693	0.044	2.313	0.009
	2.766	0.044	2.406	0.009
	2.838	0.044	2.500	0.008
	2.911	0.044	2.594	0.007
	2.984	0.044	2.688	0.007
	3.056	0.044	2.781	0.006
	3.129	0.044	2.875	0.006
	3.201	0.044	2.969	0.006
	3.274	0.044	3.063	0.005

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

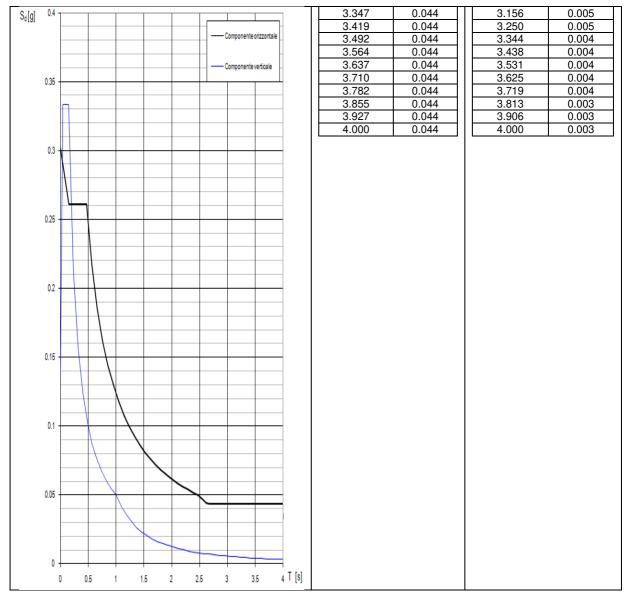


Figura 4: Spettri di risposta allo SLV

4.10 Variazioni termiche (ε₃)

Si applica una variazione di temperatura uniforme pari a ΔT = \pm 15 °C (§3.5 di NTC18); la variazione termica uniforme (globale) non genera sollecitazioni nelle strutture, quindi viene considerata solo per considerazioni sulla dimensione dei giunti.

Si considera inoltre un gradiente di temperatura di ±10°C (differenza di temperatura) tra estradosso e intradosso dell'impalcato (soletta calda o fredda a seconda che generi le massime sollecitazioni in qualunque combinazione di carico).

4.11 Resistenze parassite dei vincoli (q9)

L'impalcato del ponte è appoggiato su ritegni non di produzione industriale; le caratteristiche di attrito parassita dei vincoli saranno valutate sulla base delle effettive lavorazioni meccaniche previste per gli apparecchi in una fase di progettazione più avanzata con la prescrizione di limitare l'azione attritiva al 5% di quella verticale concomitante.

4.12 Azioni eccezionali (urto da traffico veicolare)

Il progetto prevede la realizzazione di n°2 opere di protezione, in corrispondenza della pila centrale e della spalla B, per la protezione da urti eccezionali dovuti all'ingresso/uscita delle navi dal bacino di carenaggio.

È prevista inoltre l'installazione di un impianto semaforico per inibire l'accesso alla nuova struttura viaria ai fruitori del porto durante le operazioni di transito e/o manovra delle navi da diporto nello specchio acqueo antistante, nonché durante le manovre della barca porta e l'ingresso/uscita delle navi dal bacino di carenaggio.

Per le ragioni di cui sopra, non sono stati considerati urti eccezionali sul ponte mobile e sulla struttura a giorno su pali della viabilità di progetto.

4.13 Combinazioni di carico

La combinazione fondamentale, utilizzata per lo SLU, così come definita al punto 2.5.3 delle NTC, prevede:

$$\gamma_{G1}G_1 + \gamma_{G2}G_2 + \gamma_P P + \gamma_{Q1}Q_{k1} + \sum_{i=2}^n \gamma_{Qi}\psi_{0i}Q_{ki}$$

dove:

- G₁ è il valore caratteristico delle azioni permanenti strutturali;
- G₂ è il valore caratteristico delle azioni permanenti non strutturali;
- Pè il valore caratteristico delle azioni di precompressione (se presenti);

- A_d è il valore delle azioni eccezionali;
- Q_{k1} è il valore caratteristico dell'azione variabile dominante;
- ullet Q_{ki} è il valore caratteristico della i-esima azione variabile che agisce contemporaneamente a quella dominante.

Secondo la Tab. 5.1.V e la Tab. 5.1.VI del DM18:

- $\gamma_{G1} = 1,35$ è il coefficiente parziale relativo alle azioni permanenti strutturali;
- $\gamma_{G2} = 1.5$ è il coefficiente parziale relativo alle azioni permanenti non strutturali;
- $\gamma_Q = 1,35$ è il coefficiente parziale relativo alle azioni variabili da traffico;
- $\gamma_{Qi} = 1,5$ è il coefficiente parziale relativo alle azioni variabili non da traffico;
- ψ_{0i} è il coefficiente di combinazione che tiene conto di azioni variabili concomitanti, pari a:
 - o 0.75 per i carichi tandem;
 - o 0.40 per i carichi distribuiti;
 - o 0.60 per il vento
 - o 0.60 per la termica.

Per le combinazioni sismiche si pongono pari a 1 i coefficienti parziali delle azioni, mentre si annullano i coefficienti di combinazione, ad eccezione di quello relativo alla termica, pari a $0.5 \ (\psi_{2i})$.

Le combinazioni statiche allo SLU sono le seguenti:

Combinazioni	Pesi propri e permanenti	Azioni da traffico: carichi tandem	Azioni da traffico: carichi distribuiti	Frenatura	Centrifuga	Vento	Termica	Resistenze parassite dei vincoli	
SLU 01	1.35	1.00x1.35	1.00x1.35	ı	-	0.60x1.50	0.60x1.50	0.60x1.50	
SLU 02a	1.35	0.75x1.35	0.40x1.35	1.35	-	0.60x1.50	0.60x1.50	0.60x1.50	
SLU 02b	1.35	0.75x1.35	0.40x1.35	- 1	1.35	0.60x1.50	0.60x1.50	0.60x1.50	
SLU 03	1.35	0.75x1.35	0.40x1.35	- 1	-	1.00x1.50	0.60x1.50	0.60x1.50	
SLU 04	1.35	0.75x1.35	0.40x1.35	-	-	0.60x1.50	1.00x1.50	1.00x1.50	

Tabella 1 – Combinazioni SLU – Coefficienti parziali e coefficienti di combinazione

Le combinazioni sismiche allo SLU sono le seguenti:

Combinazioni	Pesi propri e permanenti	Azioni da traffico: carichi tandem	Azioni da traffico: carichi distribuiti	Frenatura	Centrifuga	Vento	Termica	Resistenze parassite dei vincoli	Sisma longitudinale SLV	Sisma trasversale SLV	Sisma verticale SLV
SLV 01	1.00	-	-	-	-	-	0.50	1.00	1.00	0.30	0.30
CT TT OA	1 00						0.50	1.00	0.20	1 00	0.20
SLV 02	1.00	-	-	-	-	-	0.50	1.00	0.30	1.00	0.30

Tabella 2 – Combinazioni SLV – Coefficienti di combinazione

Le combinazioni statiche allo SLE sono le seguenti:

Combinazioni	Pesi propri e permanenti	Azioni da traffico: carichi tandem	Azioni da traffico: carichi distribuiti	Frenatura	Centrifuga	Vento	Termica	Resistenze parassite dei vincoli
SLE-RARA-01	1.00	1.00	1.00	-	-	0.60	0.60	0.60
SLE-RARA-02a	1.00	0.75	0.40	1.00	-	0.60	0.60	0.60
SLE-RARA-02b	1.00	0.75	0.40	-	1.00	0.60	0.60	0.60
SLE-RARA-03	1.00	0.75	0.40	-	-	1.00	0.60	0.60
SLE-RARA-04	1.00	0.75	0.40	-	-	0.60	1.00	1.00
SLE-FREQ-01a	1.00	0.75	0.40	1.00	-	ı	0.50	0.50
SLE-FREQ-01b	1.00	0.75	0.40	-	1.00	-	0.50	0.50
SLE-FREQ-02	1.00	-	-	-	-	0.20	0.50	0.50
SLE-FREQ-03	1.00	-	-	-	-	-	0.60	0.60
SLE-QPERM-01	1.00	-	-	-	-	-	0.50	0.50

Tabella 3 – Combinazioni SLE – Coefficienti di combinazione

Le combinazioni sismiche allo SLD sono le seguenti:

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

Combinazioni	Pesi propri e permanenti	Azioni da traffico: carichi tandem	Azioni da traffico: carichi distribuiti	Frenatura	Centrifuga	Vento	Termica	Resistenze parassite dei vincoli	Sisma longitudinale SLD	Sisma trasversale SLD	Sisma verticale SLD
SLD 01	1.00	-	-	-	-	-	0.50	1.00	1.00	0.30	0.30
~	4 0 0		1		,		0.70	1 00	0.20	1 00	0.20
SLD 02	1.00	-	-	-	-	-	0.50	1.00	0.30	1.00	0.30

Tabella 4 – Combinazioni SLD – Coefficienti di combinazione

5 ANALISI STRUTTURALE DELL'IMPALCATO

5.1 Metodo di calcolo

Le analisi strutturali sono state condotte:

- con il metodo degli spostamenti per la valutazione dello stato tensodeformativo indotto dai carichi statici;
- con il metodo dell'analisi modale e dello spettro di risposta in termini di accelerazione per la valutazione dello stato tensodeformativo indotto da carichi dinamici (tra cui quelli di tipo sismico).

L'analisi strutturale è stata effettuata con il metodo degli elementi finiti. Il metodo sopraindicato si basa sulla schematizzazione della struttura in elementi connessi solo in corrispondenza di un numero prefissato di punti denominati nodi. I nodi sono definiti dalle tre coordinate cartesiane in un sistema di riferimento globale. Le incognite del problema (nell'ambito del metodo degli spostamenti) sono le componenti di spostamento dei nodi riferite al sistema di riferimento globale (traslazioni secondo X, Y, Z, rotazioni attorno X, Y, Z). La soluzione del problema si ottiene con un sistema di equazioni algebriche lineari i cui termini noti sono costituiti dai carichi agenti sulla struttura opportunamente concentrati ai nodi:

$$K * u = F$$

dove

K = matrice di rigidezza

u = vettore spostamenti nodali

F = vettore forze nodali.

Dagli spostamenti ottenuti con la risoluzione del sistema vengono quindi dedotte le sollecitazioni e/o le tensioni di ogni elemento, riferite generalmente ad una terna locale all'elemento stesso.

Il sistema di riferimento utilizzato è costituito da una terna cartesiana destrorsa XYZ. Si assume l'asse Z verticale ed orientato verso l'alto.

FINCANTIERI 5

5.2 Programma di calcolo utilizzato

Il programma di calcolo utilizzato è il SAP2000 Advanced 64bit versione 21.0.1 RY2016(c) (versione 16.2.0) della Computer and Structures Inc. (CSI), con licenza n. 55784 intestata a DUOMI S.r.l..

Un attento esame preliminare della documentazione a corredo del software ha consentito di valutarne l'affidabilità e soprattutto l'idoneità al caso specifico. La documentazione, fornita dal produttore e distributore del software, contiene una esauriente descrizione delle basi teoriche e degli algoritmi impiegati, l'individuazione dei campi d'impiego, nonché casi prova interamente risolti e commentati, corredati dei file di input necessari a riprodurre l'elaborazione.

CSI ha verificato l'affidabilità e la robustezza del codice di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

I risultati delle elaborazioni sono stati sottoposti a controlli che ne comprovano l'attendibilità. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali e adottati, anche in fase di primo proporzionamento della struttura. Inoltre, sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

5.3 Valutazione dei risultati e giudizio sulla loro accettabilità

Il software utilizzato permette di modellare analiticamente il comportamento fisico della struttura utilizzando la libreria disponibile di elementi finiti.

Le funzioni di visualizzazione ed interrogazione sul modello permettono di controllare sia la coerenza geometrica che le azioni applicate rispetto alla realtà fisica.

Inoltre la visualizzazione ed interrogazione dei risultati ottenuti dall'analisi quali sollecitazioni, tensioni, deformazioni, spostamenti, reazioni vincolari hanno permesso un immediato controllo con i risultati ottenuti mediante schemi semplificati di cui è nota la soluzione in forma chiusa nell'ambito della Scienza delle Costruzioni.

Si è inoltre controllato che le reazioni vincolari abbiano dato valori in equilibrio con i carichi applicati, in particolare per i valori dei taglianti di base delle azioni sismiche si è provveduto a confrontarli con valori ottenuti da modelli SDOF semplificati.

Per gli elementi inflessi di tipo bidimensionale si è provveduto a confrontare i valori ottenuti dall'analisi FEM con i valori di momento flettente ottenuti con gli schemi semplificati della Tecnica delle Costruzioni.

Si è inoltre verificato che tutte le funzioni di controllo ed autodiagnostica del software abbiano dato esito positivo.

5.4 Descrizione del modello

Il modello di calcolo rappresenta le sottostrutture del ponte (spalla A, pila centrale e spalla B) e il pontile a giorno. Esso è realizzato con elementi monodimensionali (beam), che schematizzano i pali e le travi longitudinali, e bidimensionali (shell), che modellano gli impalcati e i pulvini. Per quanto riguarda il ponte, è stato inserito nel calcolo un elemento monodimensionale avente caratteristiche inerziali equivalenti a quelle dell'impalcato reale, in maniera da valutare correttamente il comportamento dell'intero sistema, specialmente in fase sismica. Gli appoggi sono modellati come elementi link, che realizzano correttamente il vincolo tra impalcato e sottostrutture. Trasversalmente all'impalcato sono stati inseriti bracci rigidi per collegare elementi fittizi che rappresentano le linee di carico. Gli elementi che schematizzano l'impalcato del ponte sono privi di peso. Il peso dell'impalcato è inserito nel modello come azione verticale sul piano degli appoggi, che viene considerata come massa sismica ai fini dell'analisi modale.

I pali sono modellati come elementi monodimensionali; l'interazione con il terreno nella parte al di sotto della quota del fondale è schematizzata mediante l'inserimento di molle orizzontali e verticali con rigidezza trasversale variabile in funzione della profondità.

Dalla quota del fondale – per una lunghezza di 22 m per i pali delle sottostrutture del ponte e per una lunghezza di 20 m per i pali degli impalcati 1 e 2 –, il terreno a contatto con i pali è stato schematizzato con molle a comportamento elasto-plastico perfetto poste ad interasse di 1 m. La reazione del terreno è assunta cautelativamente nulla fino alla profondità pari a z=1,5 D..

Per quanto riguarda gli spostamenti orizzontali, le molle hanno direzione trasversale allo sviluppo del palo (Figura 5), con rigidezza assunta crescente con la profondità secondo l'espressione di Reese e Matlock:

$$K_m = n_b i z$$

essendo:

 K_m la rigidezza della molla [kN/m];

 n_h parametro funzione del tipo di terreno (assunto pari a 9 000 kN/m³);

i interasse delle molle [m];

z profondità della molla dal fondale [m].

Ai fini dell'analisi la reazione massima del terreno (valore limite di plasticizzazione) è stata assunta crescente linearmente con la profondità:

$$R_{calc} = 3 k_p \gamma' zDi$$

$$R_k = R_{calc}/\xi_3$$

$$R_d = R_k / \gamma_{R1}$$

Dove:

 k_p coefficiente di spinta passiva (è stato assunto c'=0,00 kPa e φ '=37°)

γ' peso immerso dell'unità di volume pari 10,00 kN/m³;

D diametro del palo, pari a 1,20 m;

fattore di correlazione funzione del numero di verticali indagate (sono state considerate n°2 verticali, pertanto ξ_3 =1,65)

 γ_R coefficiente di sicurezza parziale pari a 1,00.

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

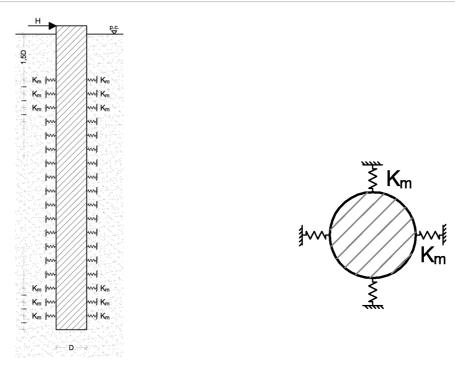


Figura 5: Schema di molle elastoplastiche orizzontali: sezione verticale e sezione orizzontale

Per quanto riguarda gli spostamenti verticali, con riferimento alla pubblicazione "Analisi non lineare del cedimento di un palo singolo", estratto da "Rivista Italiana di Geotecnica" di Castelli, Maugeri e Motta) sono state assunte molle assiali lungo la superficie del palo con rigidezza K_{w_ass} e una molla verticale alla punta del palo con rigidezza K_{w_punta} (Figura 6).

$$K_{w_ass} = k_{w_ass} \pi Di$$
 $K_{w_punta} = k_{w_punta} \frac{\pi D^2}{4}$ Dove:

$$k_{w_{-}ass} = \frac{q_{lat}}{D} \frac{1000}{2}$$
 $k_{w_{-}punta} = \frac{q_{punta}}{D} \frac{100}{3}$

e q_{lat} e q_{punta} rispettivamente sono la portanza laterale e di punta del palo per unità di superficie:

$$q_{\it punta} = \frac{Q_{\it punta}_{\it d}}{\frac{\pi D^2}{4}}$$

$$q_{\it lat} = \frac{q_{\it lat}_{\it d}}{\pi D \it L}$$

$$Q_{lat\,d} = \frac{Q_{lat\,k}}{\gamma_s} = \frac{Q_l}{\zeta_3} \frac{1}{\gamma_s} \qquad \qquad Q_{punta_d} = \frac{Q_{punta_k}}{\gamma_b} = \frac{Q_{punta}}{\zeta_3} \frac{1}{\gamma_b}$$

Dove γ_s e γ_s sono i coefficienti di sicurezza sulla resistenza laterale e sulla resistenza alla punta, pari a 1,00.

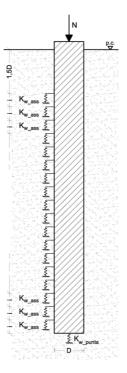


Figura 6: Schema di molle elastoplastiche verticali

Nel modello FEM non è stato considerato il contributo di rigidezza offerto dalla camicia dei pali, perché trascurabile.

Tutti gli elementi sono opportunamente suddivisi mediante mesh automatica; in particolare, i pali sono suddivisi, per la parte interrata, in elementi di lunghezza massima pari a 1 m.

Le quote assunte per il fondale sono le seguenti:

- Spalla A: -5.0 m s.l.m.m. per le due prime file trasversali di pali e -6.50 m per le restanti due file;
- Pila: -8.0 m s.l.m.m.;
- Spalla B: -7.0 m s.l.m.m.;
- Impalcato 1: -7.0 m s.l.m.m.;

• Impalcato 2: tutti i pali a -7.0 m s.l.m.m., ad eccezione della terz'ultima fila a -6.0 m s.l.m.m., della penultima fila a -5.0 m s.l.m.m., dell'ultima fila a -4.0 m s.l.m.m..

Gli effetti sulla struttura dovuti al transito dei veicoli sono stati determinati tramite un' "analisi di carico mobile", dalla quale si ottengono inviluppi dei valori massimi e minimi delle sollecitazioni, degli spostamenti e delle reazioni vincolari.

Le sollecitazioni da evento sismico sono state calcolate con uso di un'analisi modale con spettro di risposta.

L'origine del riferimento è posta in corrispondenza della spalla A, alla quota del livello medio del mare; l'asse x è longitudinale, l'asse y trasversale, l'asse z verticale.

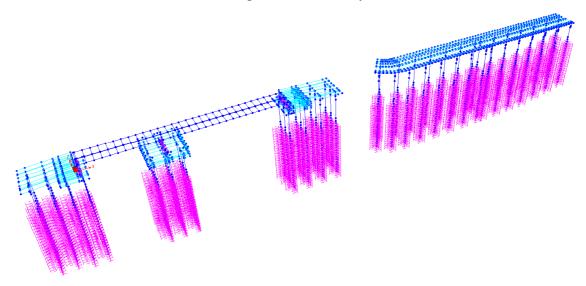


Figura 7: Vista 3D unifilare del modello di calcolo

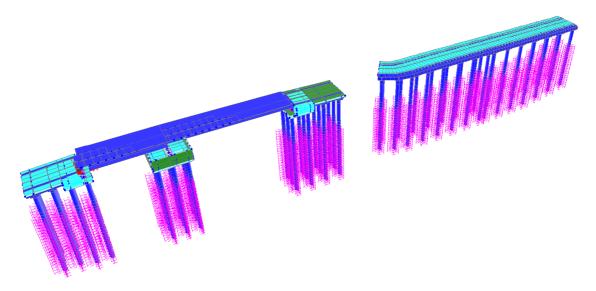


Figura 8: Vista 3D estrusa del modello di calcolo

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

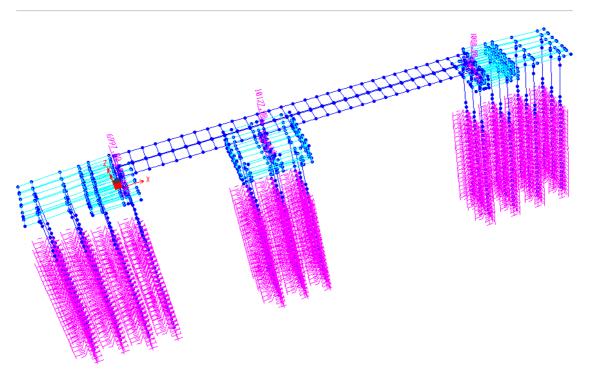


Figura 9: Applicazione del carico trasmesso dal ponte

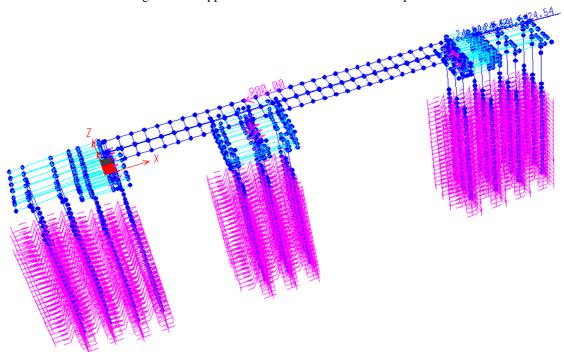


Figura 10: Applicazione dell'azione di frenatura sul ponte e sulle sottostrutture

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

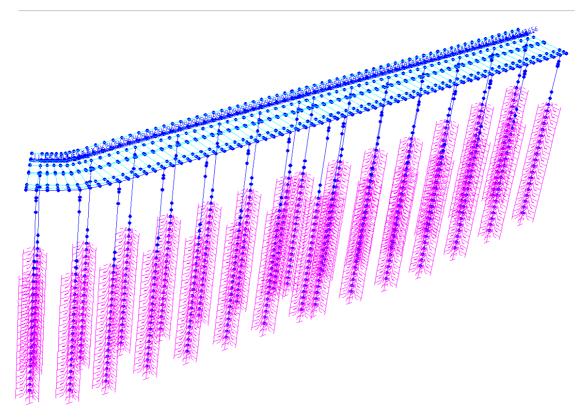


Figura 11: Applicazione dell'azione di frenatura degli impalcati 1 e 2

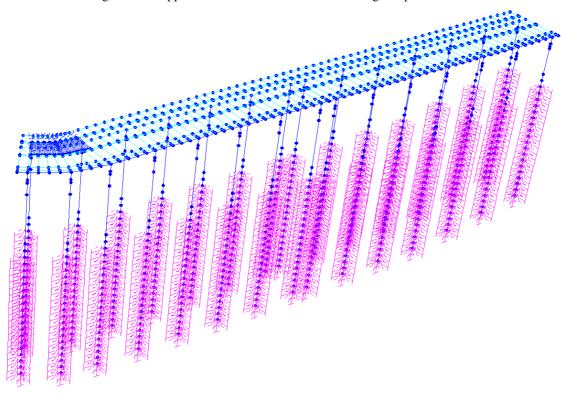


Figura 12: Applicazione dell'azione centrifuga

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

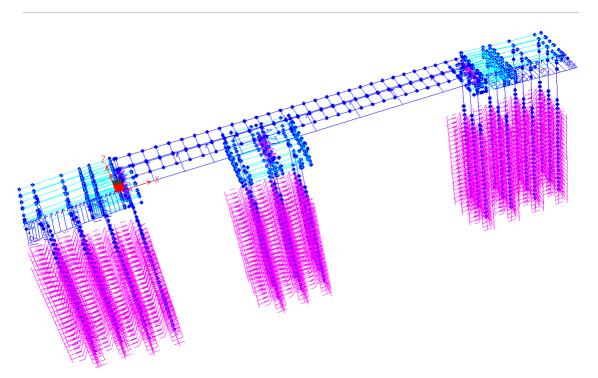


Figura 13: Applicazione dell'azione del vento sull'impalcato e sulle sottostrutture

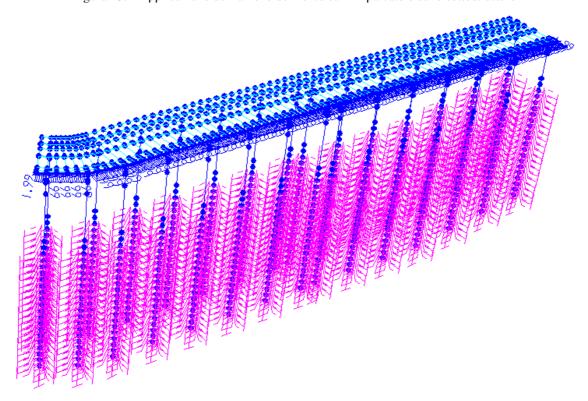


Figura 14: Applicazione dell'azione del vento sugli impalcati 1 e 2

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

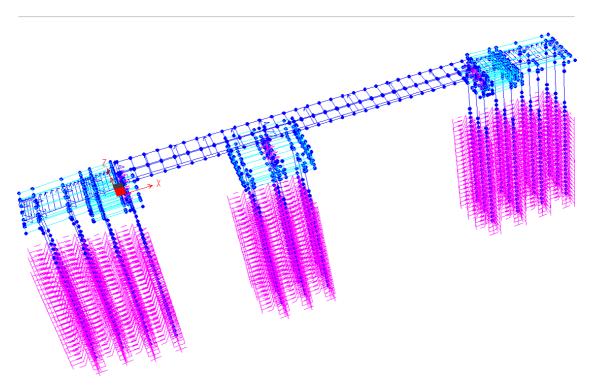


Figura 15: Applicazione dell'azione del vento sui carichi mobili del ponte e delle sottostrutture

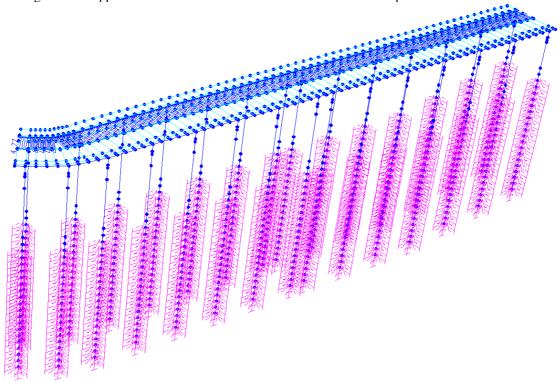


Figura 16: Applicazione dell'azione del vento sui carichi mobili degli impalcati 1 e 2

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

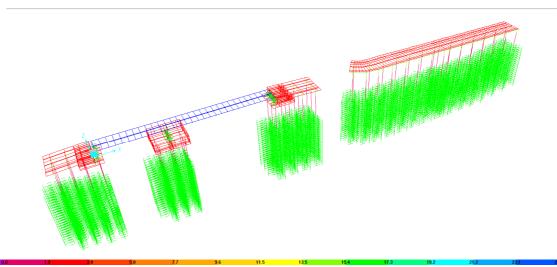


Figura 17: Applicazione dell'azione termica uniforme sugli elementi frame

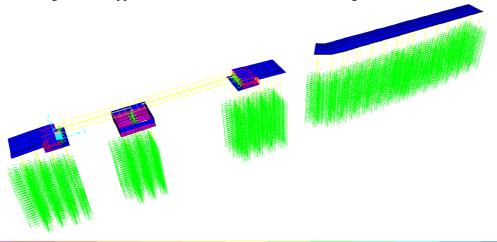


Figura 18: Applicazione dell'azione termica uniforme sugli elementi shell

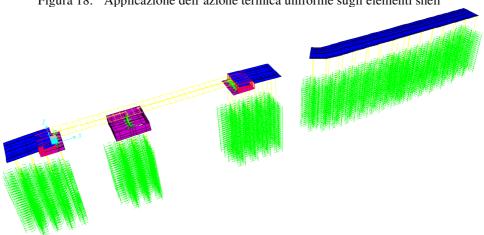


Figura 19: Applicazione dell'azione del gradiente termico

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

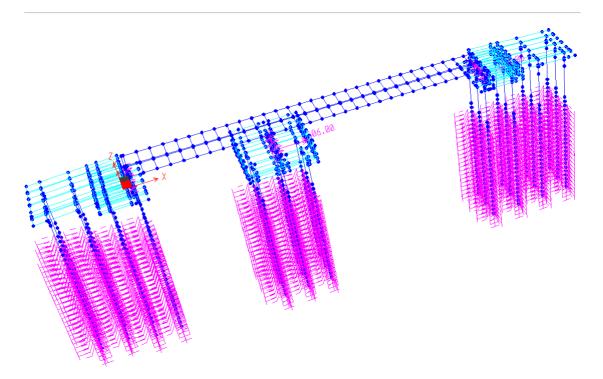


Figura 20: Applicazione dell'azione dovuta alla resistenza parassita dei vincoli

5.5 Risultati dell'analisi modale

Nella tabella seguente si riportano i risultati dell'analisi modale relativa ai primi 30 modi di vibrare.

X = direzione longitudinale

Y = direzione trasversale

Z = direzione verticale

StepType Text	StepNum Unitless	Period Sec	UX Unitless	UY Unitless	UZ Unitless	SumUX Unitless	SumUY Unitless	SumUZ Unitless
Mode	1	1.010525	0.24835	0.000001125	0.000006404	0.24835	0.000001125	0.000006404
Mode	2	0.836491	0.0003	0.14126	0.000009109	0.24865	0.14126	0.00001551
Mode	3	0.824117	0.000004252	0.32724	0.0000008381	0.24865	0.4685	0.00001635
Mode	4	0.784033	0.00063	0.09915	0.000008246	0.24929	0.56766	0.0000246
Mode	5	0.780255	0.0599	0.00004912	000000004401	0.30919	0.56771	0.0000246
Mode	6	0.767099	0.000001193	0.0625	0.0000006754	0.30919	0.6302	0.00002527
Mode	7	0.734635	0.08411	0.00082	000000003725	0.3933	0.63103	0.00002527
Mode	8	0.733256	0.11112	0.000002919	0.00000112	0.50442	0.63103	0.00002639
Mode	9	0.667212	0.000003537	0.03301	000000000184	0.50442	0.66404	0.00002639
Mode	10	0.641114	0.12569	0.00437	0.000001771	0.63011	0.66841	0.00002816
Mode	11	0.592066	0.00834	0.02884	0.000004418	0.63846	0.69725	0.00003258
Mode	12	0.532415	0.00000825	0.00251	0.0000001395	0.63846	0.69976	0.00003272
Mode	13	0.487226	0.0215	0.000000002088	0.000000003096	0.65996	0.69976	0.00003275
Mode	14	0.454508	0.04957	0.000000001029	0.000000002179	0.70953	0.69976	0.00003277
Mode	15	0.192187	0.0000002289	0.00257	0.000009158	0.70953	0.70233	0.00004193
Mode	16	0.158796	0.0000001618	0.00356	0.00028	0.70953	0.70589	0.00032
Mode	17	0.13958	0.000006303	0.000003397	0.08374	0.70954	0.70589	0.08406
Mode	18	0.122094	0.00024	0.0000007595	0.23971	0.70978	0.7059	0.32377
Mode	19	0.120195	0.000001174	0.00123	0.00368	0.70978	0.70712	0.32744
Mode	20	0.119704	0.00072	3.00000002747	0.00042	0.7105	0.70712	0.32786
Mode	21	0.117313	0.00086	0.0000001179	0.00033	0.71136	0.70712	0.32818
Mode	22	0.116412	0.00004288	0.00374	0.01786	0.71141	0.71086	0.34604
Mode	23	0.11507	0.000000427	0.00236	0.01506	0.71141	0.71322	0.3611
Mode	24	0.114925).00000003078	0.00375	0.00004585	0.71141	0.71697	0.36115
Mode	25	0.11379	0.000007803	0.00131	0.01764	0.71141	0.71829	0.37879
Mode	26	0.111991	0.00007211	0.00019	0.0007	0.71149	0.71847	0.3795
Mode	27	0.110234	0.0000001428	0.00049	0.00161	0.71149	0.71897	0.38111
Mode	28	0.109943	0.0000004982	0.00141	0.03435	0.71149	0.72038	0.41546
Mode	29	0.109298	0.00048	0.00323	0.00129	0.71196	0.72361	0.41675
Mode	30	0.10884	0.00311	0.00053	0.0092	0.71507	0.72414	0.42595

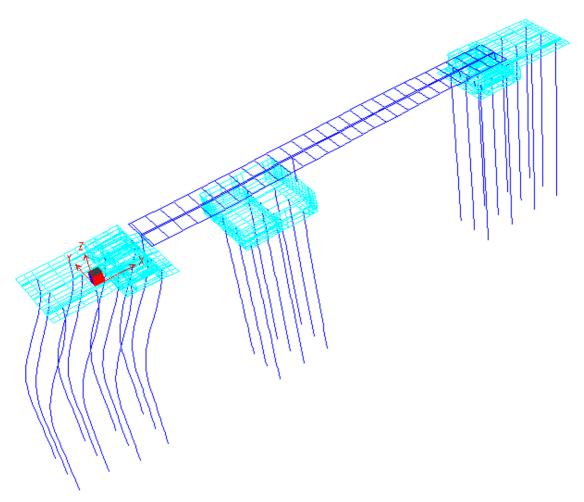


Figura 21: 1° Modo Traslazionale X delle sottostrutture – modo 1 - T = 1.01 s

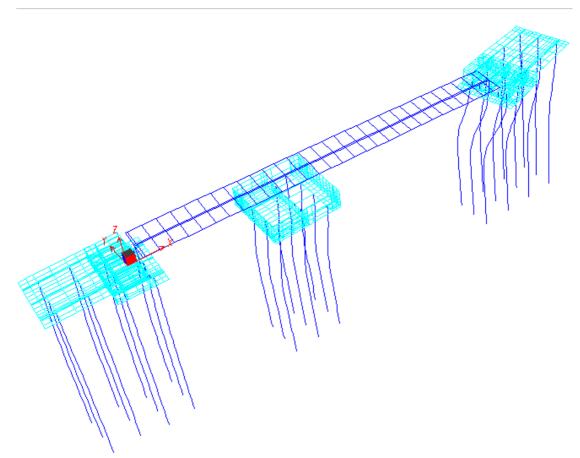


Figura 22: 1° Modo Traslazionale Y delle sottostrutture – modo 3 - T=0.824 s

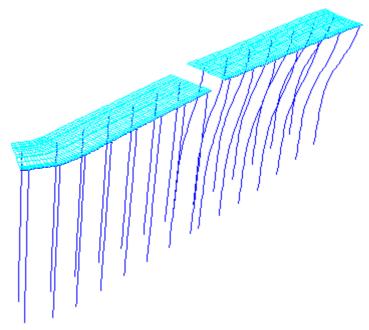


Figura 23: 1° Modo Traslazionale X degli impalcati 1 e 2 – modo 10 - T = 0.641 s

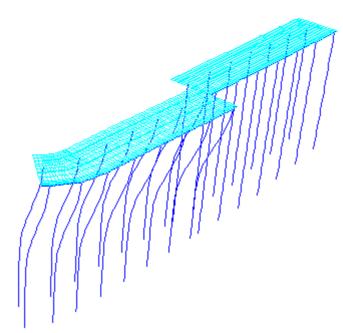


Figura 24: 1° Modo Traslazionale Y degli impalcati 1 e 2 – modo 2 - T=0.836 s

5.6 Sollecitazioni di progetto

5.6.1 Pali e travi

Nelle immagini a seguire sono riportati gli inviluppi dei diagrammi delle sollecitazioni per le combinazioni di SLU/SLV e SLE-Rara.

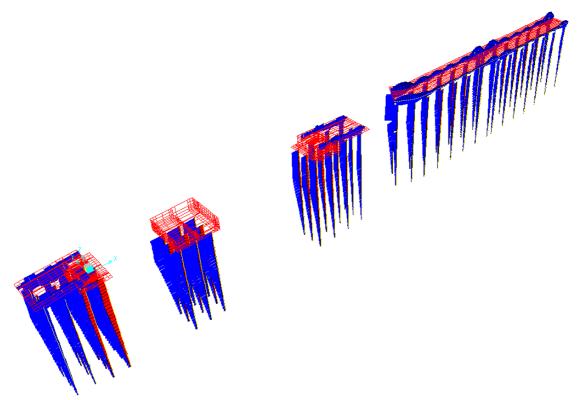


Figura 25: Diagramma di inviluppo dello sforzo assiale N (kN) allo SLU/SLV

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

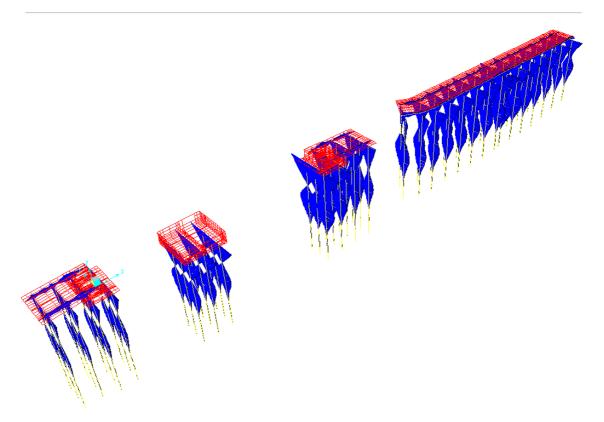


Figura 26: Diagramma di inviluppo del momento flettente trasversale M22 (kN m) allo SLU/SLV

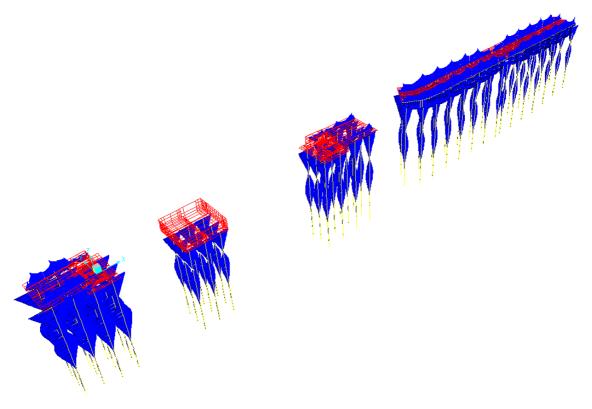


Figura 27: Diagramma di inviluppo del momento flettente longitudinale M33 (kN m) allo SLU/SLV

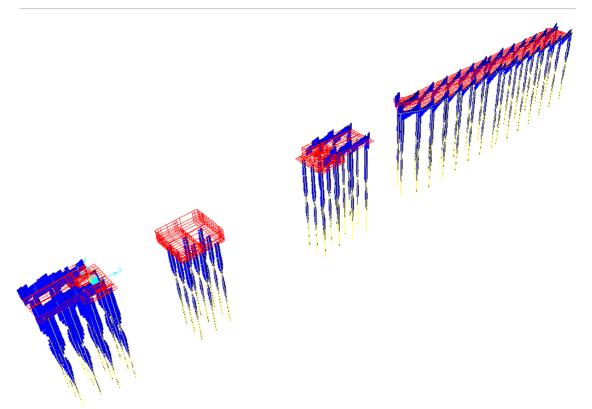


Figura 28: Diagramma di inviluppo del taglio longitudinale V22 (kN) allo SLU/SLV

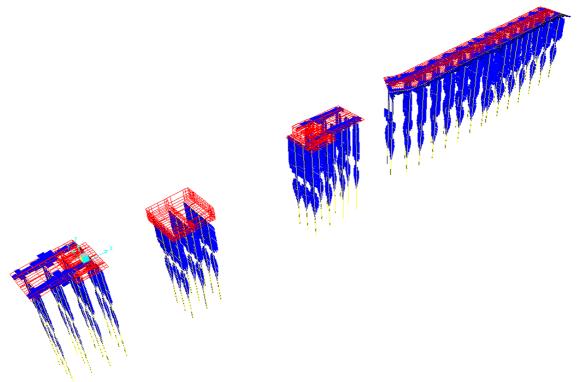


Figura 29: Diagramma di inviluppo del taglio trasversale V33 (kN) allo SLU/SLV

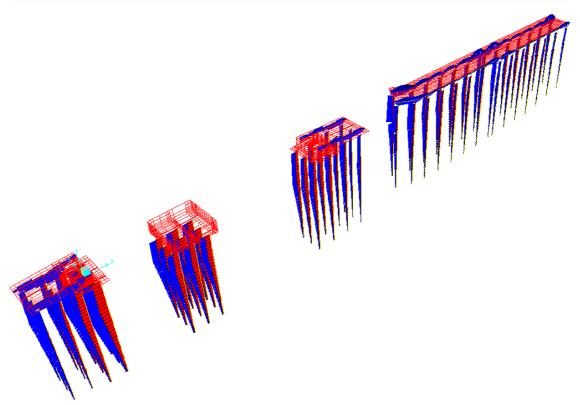


Figura 30: Diagramma di inviluppo dello sforzo assiale N (kN) allo SLE-Rara

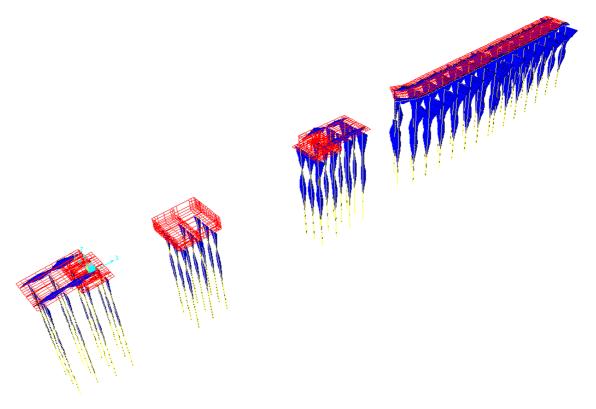


Figura 31: Diagramma di inviluppo del momento flettente trasversale M22 (kN m) allo SLE-Rara

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

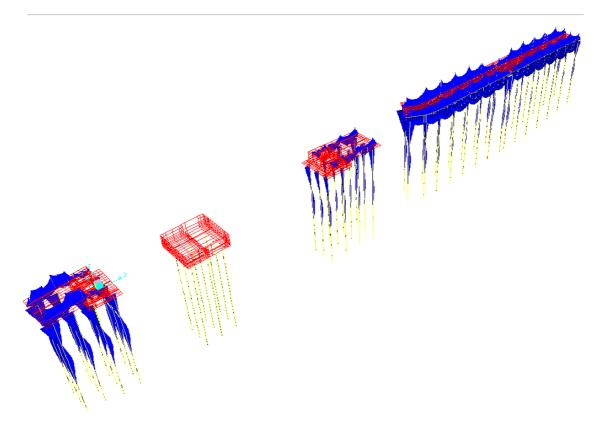


Figura 32: Diagramma di inviluppo del momento flettente longitudinale M33 (kN m) allo SLE-Rara

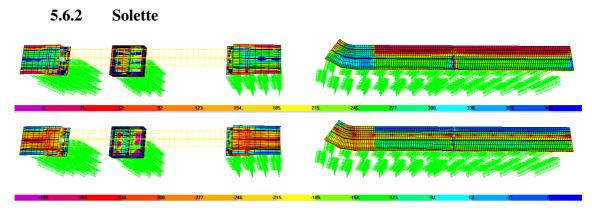


Figura 33: Diagramma di inviluppo del momento flettente longitudinale M11 (kN m) allo SLU/SLV

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

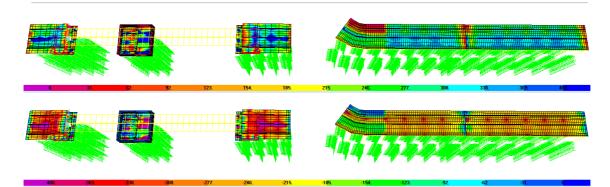


Figura 34: Diagramma di inviluppo del momento flettente trasversale M22 (kN m) allo SLU/SLV

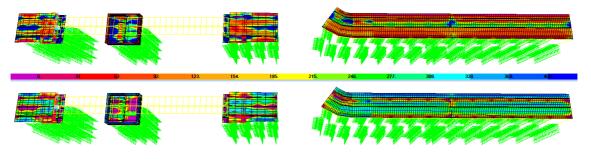


Figura 35: Diagramma di inviluppo del taglio trasversale V12 (kN) allo SLU/SLV

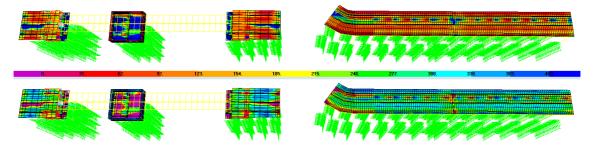


Figura 36: Diagramma di inviluppo del taglio longitudinale V23 (kN) allo SLU/SLV

5.7 Verifiche di resistenza

5.7.1 Casseri prefabbricati

Si riportano di seguito le caratteristiche degli elementi prefabbricati e le relative verifiche di resistenza.

			SPAL	LA A		
		Dalla pulv.	Dalla pulv.	Dalla travi	Dalla	
Luce netta	L	2.10	2.10	2.10	1.20	m
Spessore elemento	S	0.35	0.35	0.20	0.20	m
Larghezza elemento	b	1.00	1.00	2.30	1.00	m
Altezza ala sinistra	a_{sx}	-	-	0.30	-	m
Altezza ala destra	a _{dx}	-	-	0.30	-	m
Spessore getto 1	h1	2.45	0.45	0.30	0.40	m
Larghezza getto 1 (incluse ali dalla)	B1	1.00	1.00	2.30	1.00	m
Spessore getto 2	h2	0.00	0.00	0.60	0.00	m
Larghezza getto 2	B2	0.00	0.00	3.50	0.00	m
Peso proprio	p_p	8.75	8.75	11.50	5.00	kN/m
Peso getto	p_{g}	61.25	11.25	69.75	10.00	kN/m
Peso complessivo SLU	p_{SLU}	91.00	26.00	105.63	19.50	kN/m
Momento SLU	M _{SLU}	50.16	14.33	58.23	3.51	kN m
Taglio SLU	V _{SLU}	95.55	27.30	110.91	11.70	kN
Peso complessivo SLU	p _{SLE}	70.00	20.00	81.25	15.00	kN/m
Momento SLE	M _{SLE}	38.59	11.03	44.79	2.70	kN m
Armatura superiore		Ф12/20	Ф12/20	Ф12/20	Ф12/20	-
Armatura inferiore		Ф20/10	Ф20/10	Ф12/20	Ф16/10	-
Momento resistente	M_{res}	332.80	332.80	351.70	39.15	kN m
Coeff. Sicurezza flessione		6.63	23.22	6.04	11.15	-
Tensione cls SLE	σ_{c}	2.23	0.64	3.22	0.59	MPa
Tensione acciaio SLE	σ_{α}	47.31	13.52	59.78	10.69	MPa
Armatura a taglio dalla		-	-	-	-	-
Armatura a taglio ali		-	-	2Ф10/20	-	-
Taglio resistente	V_{res}	239.86	239.86	308.39	182.98	kN
Coeff. Sicurezza taglio		2.51	8.79	2.78	15.64	-

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

		PILA	
		Cassero	
Luce netta	L	2.10	m
Spessore elemento	S	0.35	m
Larghezza elemento	b	1.00	m
Altezza ala sinistra	a _{sx}	-	m
Altezza ala destra	a _{dx}	-	m
Spessore getto 1	h1	0.85	m
Larghezza getto 1 (incluse ali dalla)	B1	1.00	m
Spessore getto 2	h2	0.00	m
Larghezza getto 2	B2	0.00	m
Peso proprio	pp	8.75	kN/m
Peso getto	p _g	21.25	kN/m
Peso complessivo SLU	p _{SLU}	39.00	kN/m
Momento SLU	M _{SLU}	21.50	kN m
Taglio SLU	V _{SLU}	40.95	kN
Peso complessivo SLU	p _{SLE}	30.00	kN/m
Momento SLE	M _{SLE}	16.54	kN m
Armatura superiore		Ф12/20	-
Armatura inferiore		Ф20/10	-
Momento resistente	M_{res}	332.80	kN m
Coeff. Sicurezza flessione		15.48	-
Tensione cls SLE	σ_{c}	0.95	MPa
Tensione acciaio SLE	σ_{α}	20.28	MPa
Armatura a taglio dalla		-	-
Armatura a taglio ali		-	-
Taglio resistente	V_{res}	239.86	kN
Coeff. Sicurezza taglio		5.86	-

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

			SPAI	LA B		
		Dalla pulv.	Dalla pulv.	Dalla travi	Dalla	
Luce netta	L	3.38	3.38	3.38	1.20	m
Spessore elemento	S	0.35	0.35	0.20	0.20	m
Larghezza elemento	b	1.00	1.00	2.30	1.00	m
Altezza ala sinistra	a_{sx}	-	-	0.30	-	m
Altezza ala destra	a_dx	-	-	0.30	-	m
Spessore getto 1	h1	2.44	0.90	0.30	0.40	m
Larghezza getto 1 (incluse ali dalla)	B1	1.00	1.00	2.30	1.00	m
Spessore getto 2	h2	0.00	0.00	0.60	0.00	m
Larghezza getto 2	B2	0.00	0.00	3.50	0.00	m
Peso proprio	p_p	8.75	8.75	11.50	5.00	kN/m
Peso getto	p_{g}	61.00	22.50	69.75	10.00	kN/m
Peso complessivo SLU	p _{SLU}	90.68	40.63	105.63	19.50	kN/m
Momento SLU	M _{SLU}	129.49	58.01	150.84	3.51	kN m
Taglio SLU	V_{SLU}	153.24	68.66	178.51	11.70	kN
Peso complessivo SLU	p_{SLE}	69.75	31.25	81.25	15.00	kN/m
Momento SLE	M _{SLE}	99.61	44.63	116.03	2.70	kN m
Armatura superiore		Ф12/20	Ф12/20	Ф12/20	Ф12/20	-
Armatura inferiore		Ф20/10	Ф20/10	Ф12/20	Ф16/10	-
Momento resistente	M_{res}	332.80	332.80	351.70	39.15	kN m
Coeff. Sicurezza flessione		2.57	5.74	2.33	11.15	-
Tensione cls SLE	$\sigma_{\rm c}$	5.75	2.58	8.35	0.59	MPa
Tensione acciaio SLE	σ_{α}	122.10	54.72	154.90	10.69	MPa
Armatura a taglio dalla		-	-	-	-	-
Armatura a taglio ali		-	-	2Ф10/20	-	-
Taglio resistente	V_{res}	239.86	239.86	308.39	182.98	kN
Coeff. Sicurezza taglio		1.57	3.49	1.73	15.64	-

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

		IMPALC	ATI 1-2	•
		Dalla travi	Dalla	•
Luce netta	L	5.35	4.10	m
Spessore elemento	S	0.20	0.20	m
Larghezza elemento	b	2.30	1.00	m
Altezza ala sinistra	a _{sx}	0.30	-	m
Altezza ala destra	a _{dx}	0.30	-	m
Spessore getto 1	h1	0.30	0.40	m
Larghezza getto 1 (incluse ali dalla)	B1	2.30	1.00	m
Spessore getto 2	h2	0.60	0.00	m
Larghezza getto 2	B2	6.13	0.00	m
Peso proprio	p_p	11.50	5.00	kN/m
Peso getto	p_g	109.20	10.00	kN/m
Peso complessivo SLU	p _{SLU}	156.91	19.50	kN/m
Momento SLU	M _{SLU}	561.39	40.97	kN m
Taglio SLU	V _{SLU}	419.73	39.98	kN
Peso complessivo SLU	p _{SLE}	120.70	15.00	kN/m
Momento SLE	M _{SLE}	431.84	31.52	kN m
Armatura superiore		Ф12/10	Ф12/20	-
Armatura inferiore		Ф20/10	Ф20/10	-
Momento resistente	M_{res}	772.80	93.64	kN m
Coeff. Sicurezza flessione		1.38	2.29	-
Tensione cls SLE	$\sigma_{\rm c}$	17.83	6.08	MPa
Tensione acciaio SLE	$\sigma_{\!\scriptscriptstyle{lpha}}$	158.90	82.24	MPa
Armatura a taglio dalla		-	-	-
Armatura a taglio ali		2Ф10/10	-	-
Taglio resistente	V_{res}	616.77	239.86	kN
Coeff. Sicurezza taglio		1.47	6.00	-

Le verifiche allo SLU e SLV sono soddisfatte, essendo i coefficienti di sicurezza superiori a 1.00.

La verifica delle tensioni di esercizio è soddisfatta, in quanto:

- le massime tensioni nel calcestruzzo in combinazione Rara sono inferiori al valore limite, pari a 22.41 MPa;
- le massime tensioni nel calcestruzzo in combinazione Frequente sono inferiori al valore limite, pari a 16.81 MPa;
- le massime tensioni nell'acciaio in combinazione Rara sono inferiori al valore limite, pari a 360 MPa.

Inoltre, le massime tensioni nel calcestruzzo in combinazione SLD sono inferiori al valore limite prescritto per la combinazione Rara, pari a 22.41 MPa.

Le verifiche a fessurazione sono soddisfatte senza calcolo diretto, in quanto i valori delle tensioni di trazione nelle armature e degli interassi delle barre sono inferiori ai valori desunti dalla Tabella C4.1.II e dalla Tabella C4.1.III di Normativa.

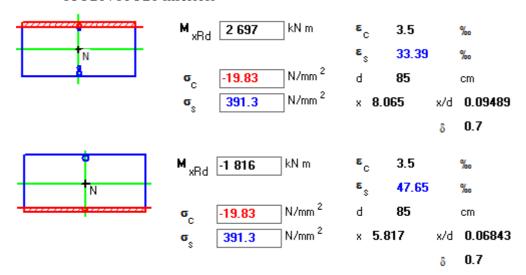
5.7.2 Travi longitudinali

Le travi longitudinali sono realizzate con un getto avente dimensioni 180x90 cm realizzato all'interno di un cassero a perdere avente spessore di 20 cm.

Le sollecitazioni derivanti dal modello sono le seguenti:

		V	N	Л
		Max	Min	Max
	SLU/SLV	1594	-1911	1755
۸A	SLD	-	-1496	1280
SPALLA A	SLE-Rara	-	-1349	452
SP/	SLE-Freq	-	-1094	342
	SLE-QPerm	-	-610	198
	SLU/SLV	1225	-1887	1077
y B	SLD	-	-906	742
SPALLA B	SLE-Rara	-	-863	818
SP/	SLE-Freq	-	-664	660
	SLE-QPerm	-	-352	312
1-2	SLU/SLV	1243	-2417	2287
Ĭ	SLD	-	-1322	1026
IMPALCATI 1-2	SLE-Rara	-	-1781	1642
IPA	SLE-Freq	-	-1121	1040
ΔI	SLE-QPerm	-	-861	712
		kN	kN m	kN m

Per semplicità e a favore di sicurezza la verifica viene effettuata considerando resistente il solo getto (sezione 180x90 cm), trascurando il contributo del cassero.


5.7.2.1 Flessione

I momenti di calcolo allo SLU, desunti dal modello agli elementi finiti sono i seguenti:

- Mmax = 2287 kN m in mezzeria
- Mmin = -2417 kN m in corrispondenza dei pali

Viene considerata la seguente armatura:

- 18Φ20+10Φ20 superiori
- 18Φ20+10Φ20 inferiori

Il momento resistente positivo è pari a 2697 kN m.

Il momento resistente negativo è pari a -2697 kN m.

La sezione è pertanto verificata, con minimo coefficiente di sicurezza pari a 1.12.

Per le combinazioni allo SLD e allo SLE, si ottengono le seguenti tensioni sui materiali:

M _{SLD}	-1496	1280	kN m
$\sigma_{\rm c}$	5.556	4.312	MPa
σ_{lpha}	214.7	4.312 MP 166.6 MP 1642 kN r 6.901 MP 266.6 MP	
M _{SLE-Rara}	-1781	1642	kN m
$\sigma_{\rm c}$	7.485	6.901	MPa
σ_{lpha}	289.2	266.6	MPa
$M_{SLE-Freq}$	-1121	1040	kN m
$\sigma_{\rm c}$	4.711	4.371	MPa
σ_{lpha}	182	168.9	MPa

La verifica delle tensioni di esercizio è soddisfatta, in quanto:

- le massime tensioni nel calcestruzzo in combinazione Rara sono inferiori al valore limite, pari a 22.41 MPa;
- le massime tensioni nel calcestruzzo in combinazione Frequente sono inferiori al valore limite, pari a 16.81 MPa;
- le massime tensioni nell'acciaio in combinazione Rara sono inferiori al valore limite, pari a 360 MPa.

Inoltre, le massime tensioni nel calcestruzzo in combinazione SLD sono inferiori al valore limite prescritto per la combinazione Rara, pari a 22.41 MPa.

Le verifiche a fessurazione sono soddisfatte senza calcolo diretto, in quanto i valori delle tensioni di trazione nelle armature e degli interassi delle barre sono inferiori ai valori desunti dalla Tabella C4.1.II e dalla Tabella C4.1.III di Normativa.

5.7.2.2 Taglio

Il taglio massimo di calcolo, desunto dal modello agli elementi finiti è:

• Vmax = 1594 kN

La richiesta di taglio V_{Sd} derivante dalla gerarchia delle resistenze è calcolata a partire dalla capacità flessionale M_{Rd} amplificata di un fattore di sovra resistenza, incrementata dell'effetto dei carichi permanenti G_k distribuiti sugli elementi considerati; il fattore di sovra resistenza è calcolato secondo l'espressione [7.9.7] all'interno del §7.9.5 delle NTC2018, ed è pari a 0.7+0.2q = 1.26; il risultato del calcolo di V_{Sd} è mostrato nella seguente tabella:

	SPALLA A	SPALLA B	IMPALC 1-2	
γ_{Rd}	1.26	1.26	1.26	-
G_k	112.17	112.17	168.37	kN/m
L	2.10	3.38	5.35	m
M_{Rd}	2697	2697	2697	kN m
V_{Sd}	3354	2200	1721	kN

Viene considerata la seguente armatura a taglio:

• staffe Φ 16/15 a 9 bracci nelle zone di estremità

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

taglio massimo agente	$ m V_{Ed}$	3354	kN
angolo puntone - asse longitudinale	θ	45	0
diminuire l'angolo θ affinchè 1 <cot th="" θ<2.5<=""><th>$\cot \theta$</th><th>1.0</th><th>00</th></cot>	$\cot \theta$	1.0	00
diametro	ϕ_{w}	16	mm
bracci	br	Ģ)
area armatura a taglio	A_{sw}	1810	mm^2
passo	S _{long}	0.15	m
inclinazione rispetto all'orizzontale	α	9	0
rapporto dell'armatura a taglio	Q_{w}	0.00	0635
resistenza di calcolo a "taglio trazione"	V_{Rsd}	3441	kN
coefficiente maggiorativo	α_{c}	1.0	00
resistenza di calcolo a "taglio compressione"	V_{Rcd}	8622	kN
taglio resistente	V_{Rd}	3441	kN
VERIFICA schiacciamento puntone cls	$ m V_{Ed}$	<	V_{rd}

Il taglio resistente è pari a 3441 kN.

La sezione è pertanto verificata con coefficiente di sicurezza pari a 1.03.

5.7.3 Solette

La soletta dell'Impalcato 1, dell'Impalcato 2 e quella dell'estremità delle spalle hanno spessore di 40 cm ed è realizzata su una predalla tralicciata spessa 20 cm e collaborante con il getto; pertanto in direzione trasversale la sezione resistente è costituita dalla predalla più il getto, per un totale di 60 cm, mentre in direzione longitudinale dal solo getto, in quanto non vi è continuità strutturale tra le predalle accostate tra loro.

La soletta della Pila Centrale e quella della parte delle spalle in corrispondenza degli appoggi sono realizzate su un cassero collaborante avente spessore di 35 cm; tale elemento è unico per ciascuna spalla o pila, e pertanto il suo contributo può essere tenuto in considerazione anche in fase definitiva in entrambe le direzioni.

5.7.3.1 Flessione

Si riportano di seguito per ciascuna tipologia di soletta le caratteristiche geometriche, le sollecitazioni flessionali desunte dal modello agli elementi finiti, avendo mediato i valori su una larghezza di 50 cm, le armature e i risultati delle verifiche.

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

										ı
					SPAI	LA A				ł
				etta				na appog		ł
		M long			Mtrasv		ong	Mtrasv		ĺ
	. .	M+	M-	M+	M-	M+	M-	M+	M-	—
Spessore getto	h	0.	40		40	-	45 25	-	45	m
Spessore dalla Larghezza elemento	s b	1	- 00		20 00		35 00		35 00	m
Armatura superiore getto	D		4/10		0/20		0/10		0/10	m -
Armatura superiore getto Armatura inferiore getto			4/10 4/10		5/20 5/20		0/10 0/20		0/10	
Armatura inferiore getto Armatura superiore dalla		Ψ2	-		2/20		2/20		2/20	
Armatura inferiore dalla			_		5/10		0/10		0/10	_
Momento SLU	M _{SLU}	377	7.00		3.00	678.00	-430.00		5.00	kN m
Momento resistente	M_{res}	555	5.00	623.40	432.20	1117.00	1077.00	1117.00	1077.00	kN m
Coeff. Sicurezza flessione		1.	47	1.82	1.26	1.65	2.50	2.09	2.01	-
Momento SLE-Rara/SLD	M _{SLE}	306	5.00	227	7.00	463.00	-408.00	479	9.00	kN m
Tensione cls SLE-Rara-SLD	σ_{c}	9.	22	5.07	5.78	5.62	4.56	5.30	5.35	MPa
Tensione acciaio SLE-Rara-SLD	σ_{α}	223	3.00	174.20	266.80	195.60	177.70	199.80	208.70	MPa
Tensione cls SLE - fase getto	σ_{c}		-	0.	0.59 0.64		64	0.64		MPa
Tensione acciaio SLE - fase getto	σ_{α}		-	10	10.69 13.52		.52	13.52		MPa
Tensione complessiva cls SLE-Rara/SLD	σ_{c}	9.	22	5.07	6.37	5.62	5.20	5.30	5.99	MPa
Tensione complessiva acciaio SLE-Rara/SLD	σ_{α}	223	3.00	184.89	266.80	209.12	177.70	213.32	208.70	MPa
Momento SLE-Frequente	M _{SLE}	230	0.00	135	5.00	375.00	-76.00	147	7.00	kN m
Tensione cls SLE-Frequente	σ_{c}	6.	93	3.01	3.44	4.55	0.85	1.63	1.64	MPa
Tensione acciaio SLE-Frequente	σ_{α}	167	7.60	103.60	158.70	158.40	33.11	61.32	64.03	MPa
Tensione cls SLE - fase getto	σ_{c}		-	0.	59	0.	64	0.	64	MPa
Tensione acciaio SLE - fase getto	σ_{α}		-	10	.69	13	.52	13	.52	MPa
Tensione complessiva cls SLE-Frequente	σ_{c}	6.	93	3.01	4.03	4.55	1.49	1.63	2.28	MPa
Tensione complessiva acciaio SLE-Frequente	σ_{α}	167	7.60	114.29	158.70	171.92	33.11	74.84	64.03	MPa

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

			PI	LA		
			Sol	etta		
		ΜI	ong	Mt	rasv	
	1	M+	M-	M+	M-	
Spessore getto	h		85		85	m
Spessore dalla	S		35	_	35	m
Larghezza elemento	b		00		00	m
Armatura superiore getto			0/20		0/20	-
Armatura inferiore getto			0/20		0/20	-
Armatura superiore dalla			2/20		2/20	-
Armatura inferiore dalla	N.4		0/10		0/10	- 1 51
Momento SLU	M _{SLU}		3.00		1.00	kN m
Momento resistente	M_{res}	2025.00		2025.00		kN m
Coeff. Sicurezza flessione		4.33	2.07	5.56	2.67	-
Momento SLE-Rara/SLD	M_{SLE}	377	7.00	279	9.00	kN m
Tensione cls SLE-Rara-SLD	σ_{c}	2.22	2.94	1.64	2.17	MPa
Tensione acciaio SLE-Rara-SLD	σ_{α}	88.08	205.80	65.19	152.30	MPa
Tensione cls SLE - fase getto	σ_{c}	0.	95	0.	95	MPa
Tensione acciaio SLE - fase getto	σ_{lpha}	20	.28	20	.28	MPa
Tensione complessiva cls SLE-Rara/SLD	σ_{c}	2.22	3.89	1.64	3.13	MPa
Tensione complessiva acciaio SLE-Rara/SLD	σ_{lpha}	108.36	205.80	85.47	152.30	MPa
Momento SLE-Frequente	M_{SLE}	125	5.00	145	5.00	kN m
Tensione cls SLE-Frequente	σ_{c}	0.74	0.97	0.85	1.13	MPa
Tensione acciaio SLE-Frequente	σ_{α}	29.21	68.24	33.88	79.16	MPa
Tensione cls SLE - fase getto	σ_{c}	0.	95	0.	95	MPa
Tensione acciaio SLE - fase getto	σ_{lpha}	20	.28	20	.28	MPa
Tensione complessiva cls SLE-Frequente	σ_{c}	0.74	1.93	0.85	2.08	MPa
Tensione complessiva acciaio SLE-Frequente	σ_{α}	49.49	68.24	54.16	79.16	MPa

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

										ı
					SPAI	LLA B				
				etta				na appog	_	
		M long			Mtrasv		ong	Mtrasv		
	1.	M+	M-	M+	M-	M+	M-	M+	M-	
Spessore getto Spessore dalla	h	0.	40		40 20		90 35		90 35	m
Larghezza elemento	s b	1	- .00		00		33 00		00	m m
Armatura superiore getto	 "		4/10		0/20		0/20		0/20	- "
Armatura inferiore getto		1	4/10		5/20 5/20		0/20		0/20	_
Armatura superiore dalla			-		2/20		2/20		2/20	-
Armatura inferiore dalla			-	Ф1	6/10	Ф2	0/10	Ф20	0/10	-
Momento SLU	M _{SLU}	312	2.00	312	2.00	698	3.00	719	9.00	kN m
Momento resistente	M_{res}	555.00		623.40	432.20	2129.00	1001.00	2129.00	1001.00	kN m
Coeff. Sicurezza flessione		1.78		2.00 1.39		3.05		2.96		-
Momento SLE-Rara/SLD	M_{SLE}	293	3.00	225.00		500.00		530.00		kN m
Tensione cls SLE-Rara-SLD	σ_{c}	8.	82	5.02	5.73	3.37	3.65	2.90	3.87	MPa
Tensione acciaio SLE-Rara-SLD	σ_{α}	213	3.60	172.70	264.50	174.80	263.20	117.30	278.90	MPa
Tensione cls SLE - fase getto	σ_{c}		-	0.59		2.58		2.58		MPa
Tensione acciaio SLE - fase getto	σ_{α}		-	10	.69	69 54.72		54.72		MPa
Tensione complessiva cls SLE-Rara/SLD	σ_{c}	8.	82	5.02	6.32	3.37	6.22	2.90	6.44	MPa
Tensione complessiva acciaio SLE-Rara/SLD	σ_{α}	213	3.60	183.39	264.50	229.52	263.20	172.02	278.90	MPa
Momento SLE-Frequente	M_{SLE}	208	3.00	133	1.00	146	5.00	89	.00	kN m
Tensione cls SLE-Frequente	σ_{c}	6.	26	2.92	3.33	0.80	1.07	0.49	0.65	MPa
Tensione acciaio SLE-Frequente	σ_{α}	153	1.60	100.60	154.00	32.30	76.84	19.69	46.84	MPa
Tensione cls SLE - fase getto	σ_{c}		-	0.	59	2.	58	2.	58	MPa
Tensione acciaio SLE - fase getto	σ_{α}		-	10	.69	54	.72	54	.72	MPa
Tensione complessiva cls SLE-Frequente	σ_{c}	6.	26	2.92	3.93	0.80	3.64	0.49	3.23	MPa
Tensione complessiva acciaio SLE-Frequente	σ_{α}	153	1.60	111.29	154.00	87.02	76.84	74.41	46.84	MPa

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

			IMPAL	CATI 1-2		
				etta		
		M long			Mtrasv	
		M+	M-	M+	M-	
Spessore getto	h	0.	40	1	40	m
Spessore dalla	S		-		20	m
Larghezza elemento	b		30		30	m
Armatura superiore getto			0/10		0/20	-
Armatura inferiore getto		Φ20	0/10		5/20	-
Armatura superiore dalla Armatura inferiore dalla			-		2/20	-
Momento SLU	M _{SLU}	329	3.00		0/10 5.00	kN m
Momento resistente	M _{res}		2.90	840.70		kN m
Coeff. Sicurezza flessione	res		20	3.17	1.63	KIN III
	N/I		3.00		7.00	kN m
Momento SLE-Rara/SLD	M _{SLE}					
Tensione cls SLE-Rara-SLD	σ_{c}	9.	69	3.64	4.44	MPa
Tensione acciaio SLE-Rara-SLD	σ_{α}	273	3.10	102.70	218.50	MPa
Tensione cls SLE - fase getto	σ_{c}		-	6.	80	MPa
Tensione acciaio SLE - fase getto	σ_{α}		-	82	.24	MPa
Tensione complessiva cls SLE-Rara/SLD	σ_{c}	9.	69	3.64	10.52	MPa
Tensione complessiva acciaio SLE-Rara/SLD	σ_{α}	273	3.10	184.94	218.50	MPa
Momento SLE-Frequente	M_{SLE}	178	3.00	136	5.00	kN m
Tensione cls SLE-Frequente	σ_{c}	6.	56	2.65	3.23	MPa
Tensione acciaio SLE-Frequente	σ_{lpha}	184	1.80	74.65	158.90	MPa
Tensione cls SLE - fase getto	σ_{c}		-	6.	08	MPa
Tensione acciaio SLE - fase getto	σ_{lpha}		-	82	.24	MPa
Tensione complessiva cls SLE-Frequente	σ_{c}	6.	56	2.65	9.31	MPa
Tensione complessiva acciaio SLE-Frequente	σ_{α}	184	1.80	156.89	158.90	MPa

Le verifiche allo SLU e SLV sono soddisfatte, essendo i coefficienti di sicurezza superiori a 1.00.

La verifica delle tensioni di esercizio è soddisfatta, in quanto:

- le massime tensioni nel calcestruzzo in combinazione Rara sono inferiori al valore limite, pari a 22.41 MPa;
- le massime tensioni nel calcestruzzo in combinazione Frequente sono inferiori al valore limite, pari a 16.81 MPa;
- le massime tensioni nell'acciaio in combinazione Rara sono inferiori al valore limite, pari a 360 MPa.

Inoltre, le massime tensioni nel calcestruzzo in combinazione SLD sono inferiori al valore limite prescritto per la combinazione Rara, pari a 22.41 MPa.

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

Le verifiche a fessurazione sono soddisfatte senza calcolo diretto, in quanto i valori delle tensioni di trazione nelle armature e degli interassi delle barre sono inferiori ai valori desunti dalla Tabella C4.1.II e dalla Tabella C4.1.III di Normativa.

5.7.3.2 Taglio

Si riportano di seguito per ciascuna tipologia di soletta le caratteristiche geometriche, le sollecitazioni taglianti desunte dal modello agli elementi finiti, avendo mediato i valori su una larghezza di 50 cm, le armature e i risultati delle verifiche.

		SPALLA A					
		Sol	Soletta Soletta zona appoggi			Ì	
		V long	V trasv	V long	V trasv	Ī	
Spessore getto	h	0.40	0.40	0.45	0.45	m	
Spessore dalla	S	-	0.20	0.35	0.35	m	
Larghezza elemento	b	1.00	1.00	1.00	1.00	m	
Armatura a taglio		3Ф14/20	2Ф14/20	2Ф14/20	3Ф14/20	-	
Armatura a taglio complessiva		5Ф1	4/20	5Ф1	4/20	-	
Taglio SLU	V_{SLU}	504.00	604.00	522.00	976.00	kN	
Taglio resistente	V_{res}	732.00	732.00	975.00	1463.00	kN	
Coeff. Sicurezza taglio		1.45	1.21	1.87	1.50	-	

		PI	LA	
		Sol	etta	
		V long	V trasv	
Spessore getto	h	0.85	0.85	m
Spessore dalla	S	0.35	0.35	m
Larghezza elemento	b	1.00	1.00	m
Armatura a taglio		2Ф14/40	3Ф14/40	-
Armatura a taglio complessiva		5Ф1	4/40	-
Taglio SLU	V_{SLU}	549.00	949.00	kN
Taglio resistente	V_{res}	732.00	1097.00	kN
Coeff. Sicurezza taglio		1.33	1.16	-

			SPAI	LA B		Ī
		Soletta Soletta zona appog			na appoggi	Ī
		V long	V trasv	V long	V trasv	Ī
Spessore getto	h	0.40	0.40	0.90	0.90	m
Spessore dalla	s	-	0.20	0.35	0.35	m
Larghezza elemento	b	1.00	1.00	1.00	1.00	m
Armatura a taglio		2.5Ф14/20	2.5Φ14/20	3Ф14/40	2Ф14/40	-
Armatura a taglio complessiva		5Ф1	4/20	5Ф1	4/40	-
Taglio SLU	V_{SLU}	314.00	503.00	959.00	677.00	kN
Taglio resistente	V_{res}	406.00	610.00	1143.00	762.00	kN
Coeff. Sicurezza taglio		1.29	1.21	1.19	1.13	-

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

		IMPALO	CATI 1-2]
		Sol		
		V long	V trasv	
Spessore getto	h	0.40	0.40	m
Spessore dalla	S	-	0.20	m
Larghezza elemento	b	2.30	2.30	m
Armatura a taglio		3Ф14/40	2Ф14/40	-
Armatura a taglio complessiva		5Ф1	4/40	-
Taglio SLU	V_{SLU}	272.00	288.00	kN
Taglio resistente	V_{res}	366.00	366.00	kN
Coeff. Sicurezza taglio		1.35	1.27	-

Le verifiche allo SLU e SLV sono soddisfatte, essendo i coefficienti di sicurezza superiori a 1.00.

5.7.4 Pali

I pali hanno diametro D = 1200 mm e sono realizzati all'interno di una camicia in acciaio.

Le sollecitazioni derivanti dal modello agli elementi finiti sono riportate di seguito:

	Comb.	N_{max}	N_{min}	V_{max}	M_{max}
	SLU	89	-4371	168	1153
	SLV	508	-3430	365	2103
⋖	SLV	-382	-818	365	2265
Spalla	SLD	299	-3215	-	1604
Sp	SLD	-215	-1044	-	1750
	SLE-Rara	2	-4143	-	876
	SLE-Freq	-158	-3055	-	751
	SLU	-1141	-3474	68	379
	SLV	-165	-3573	318	1693
Pila	SLD	-601	-3131	-	1461
	SLE-Rara	-1322	-3217	-	259
	SLE-Freq	-1555	-2277	-	77
	SLU	58	-2775	127	936
ВВ	SLV	15	-2259	305	2068
Spalla	SLD	-93	-2015	-	1682
Sp	SLE-Rara	-82	-2512	-	665
	SLE-Freq	-220	-1866	-	486
1-2	SLU	73	-2915	231	1724
	SLV	119	-1890	374	2124
Ica	SLD	-24	-1736	-	1765
Impalcati	SLE-Rara	-94	-2455	-	1230
느	SLE-Freq	-232	-1864	-	820
		kN	kN	kN	kN m

N < 0 se di compressione.

Per semplicità e a favore di sicurezza per i pali dei diversi elementi strutturali sono stati assunti i valori massimi delle sollecitazioni.

A favore di sicurezza, ai fini delle verifiche viene trascurato il contributo resistente della camicia in acciaio.

5.7.4.1 Pressoflessione

Concordemente a quanto riportato nel §7.2.5 delle NTC2018, le sollecitazioni trasmesse in fondazione derivano dall'analisi del comportamento dell'intera opera, assumendo come azione in fondazione quella trasferita dagli elementi soprastanti, amplificata di un coefficiente pari a 1.30 in CD "A".

A favore di sicurezza, essendo state considerate le sollecitazioni massime, vengono effettuate le verifiche nelle due condizioni:

- N massimo (massima trazione o minima compressione) con M massimo
- N minimo (massima compressione) con M massimo

Per semplicità, i coefficienti di sicurezza allo SLU sono determinati dividendo il momento resistente M_{Rd} per il momento di calcolo derivante dal modello agli elementi finiti M_{max} non amplificati, verificando a posteriori che tale rapporto sia sempre superiore a 1.30. I risultati delle verifiche sono mostrati di seguito:

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

			Co	mbinazione	Nmax-Mm	ıax	Co	Combinazione Nmin-Mmax			
	Armatura	Comb.	M_{Rd}	Coeff.sic.	σ_{c}	σ_{α}	M_{Rd}	Coeff.sic.	σ_{c}	σ_{α}	
		SLU	3003	2.60	-	-	4211	3.65	-	-	
		SLV	2859	1.36	-	-	4011	1.91	-	-	
⋖		SLV	3162	1.40	-	-	3306	1.46	-	-	
Spalla	32Ф26	SLD	-	-	10.67	321.60	-	-	11.14	122.20	
Sp		SLD	-	-	11.84	315.80	-	-	12.03	263.90	
		SLE-Rara	-	-	5.89	165.10	-	-	6.88	7.05	
		SLE-Freq	-	-	5.10	131.30	-	-	5.61	13.57	
		SLU	3496	9.22	-	-	4020	10.61	-	-	
_		SLV	3089	1.82	-	-	4042	2.39	-	-	
Pila	32Ф26	SLD	-	-	10.00	237.00	-	-	10.16	1028.00	
		SLE-Rara	-	-	2.10	0.83	-	-	3.46	0.00	
		SLE-Freq	-	-	1.46	0.00	-	-	1.98	0.00	
		SLU	3013	3.22	-	-	3862	4.13	-	-	
8		SLV	3028	1.46	-	-	3726	1.80	-	-	
Spalla	32Ф26	SLD	-	-	11.34	310.80	-	-	11.66	194.90	
S		SLE-Rara	-	-	4.50	120.00	-	-	4.88	15.50	
		SLE-Freq	-	-	3.33	77.58	-	-	3.58	10.76	
1-2		SLU	3008	1.74	-	-	3895	2.26	-	-	
		SLV	2992	1.41	-	-	3624	1.71	-	-	
lca	32Ф26	SLD	-	-	11.88	330.90	-	-	12.22	225.80	
Impalcati		SLE-Rara	-	-	8.30	225.60	-	-	8.55	94.15	
ے		SLE-Freq	-	-	5.59	139.60	-	-	5.71	53.44	
		kN m	-	MPa	MPa	kN m	-	MPa	MPa		

Le verifiche allo SLU e SLV sono soddisfatte, essendo i coefficienti di sicurezza superiori a 1.30.

La verifica delle tensioni di esercizio è soddisfatta, in quanto:

- le massime tensioni nel calcestruzzo in combinazione Rara sono inferiori al valore limite, pari a 22.41 MPa;
- le massime tensioni nel calcestruzzo in combinazione Frequente sono inferiori al valore limite, pari a 16.81 MPa;
- le massime tensioni nell'acciaio in combinazione Rara sono inferiori al valore limite, pari a 360 MPa.

Inoltre, le massime tensioni nel calcestruzzo in combinazione SLD sono inferiori al valore limite prescritto per la combinazione Rara, pari a 22.41 MPa.

Le verifiche a fessurazione sono soddisfatte senza calcolo diretto, in quanto i valori delle tensioni di trazione nelle armature e degli interassi delle barre sono inferiori ai valori desunti dalla Tabella C4.1.II e dalla Tabella C4.1.III di Normativa.

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

La presenza della camicia metallica, non tenuta in conto ai fini delle verifiche, conferisce una maggiore capacità resistente e consente il rispetto delle prescrizioni di normativa (§7.2.5 NTC2018) riguardo la duttilità.

5.7.4.2 Taglio

Il taglio massimo derivante dal modello agli elementi finiti è il seguente:

•
$$V_{max} = 374 \text{ kN}$$

Concordemente a quanto riportato nel §7.2.5 delle NTC2018, le sollecitazioni trasmesse in fondazione derivano dall'analisi del comportamento dell'intera opera, assumendo come azione in fondazione quella trasferita dagli elementi soprastanti, amplificata di un coefficiente pari a 1.30 in CD "A". La domanda di taglio pertanto è:

•
$$V_{Ed} = 374x1.30 = 486 \text{ kN}$$

Il §7.2.5 delle NTC2018 prescrive che la capacità di taglio debba essere almeno pari a 1.3 volte la corrispondente domanda. Pertanto, occorre verificare che il coefficiente di sicurezza a taglio, tenendo conto della domanda già amplificata, sia superiore a 1.3.

Viene considerata la seguente armatura trasversale:

• spirale Φ14/10.

Tale armatura viene considerata per il 75% per la verifica a taglio e per il 25% per il soddisfacimento dei requisiti sul confinamento di cui al §7.9.6 delle NTC2018.

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

VERIFICA ELEMENTI CON ARMATURE TRASVERSALI A TAGLIO						
taglio massimo agente	$ m V_{Ed}$	486	kN			
angolo puntone - asse longitudinale	θ	45	0			
cotangente dell'angolo θ (1 <cot <math="">\theta<2.5)</cot>	cot θ	1.	00			
diametro	ϕ_{w}	14	mm			
bracci	br		2			
area armatura trasversale	A_{sw}	308	mm^2			
passo	S _{long}	0.10	m			
percentuale armatura considerata per il taglio		75	%			
inclinazione rispetto all'orizzontale	α	9	00			
rapporto dell'armatura a taglio	$Q_{ m w}$	0.00)192			
resistenza di calcolo a "taglio trazione"	V_{Rsd}	732	kN			
coefficiente maggiorativo	α_{c}	1.	00			
resistenza di calcolo a "taglio compressione"	V_{Rcd}	6051	kN			
taglio resistente	V_{Rd}	732	kN			
VERIFICA schiacciamento puntone cls	$ m V_{Ed}$	<	$ m V_{rd}$			

Il taglio resistente è pari a 732 kN/m.

Il coefficiente di sicurezza a taglio è pari a 1.51. La sezione è pertanto verificata.

Il §7.2.5 delle NTC2018 prescrive che per i pali venga inserita un'armatura longitudinale non inferiore allo 0.3% dell'area della sezione trasversale del palo e un'armatura trasversale costituita da staffe o spirali di diametro non inferiore a 8 mm e oassi non superiore a 8 volte il diametro delle barre longitudinali.

Il §7.9.6 delle NTC2018 indica i requisiti relativi al confinamento che devono essere rispettati; in particolare:

$$\begin{split} \omega_{wd,r} & \geq max \big(\omega_{w,req} \, ; \, \, 0,67 \cdot \omega_{w,min} \, \big) \\ \omega_{w,req} & = \frac{A_c}{A_{cc}} \cdot \lambda \cdot \upsilon_k + 0,13 \cdot \frac{f_{yd}}{f_{cd}} \big(\rho_L - 0,01 \big) \\ \mathrm{con} \end{split} \quad \omega_{wd,c} = \frac{4A_{sp}}{D_{sp} \cdot s} \cdot \frac{f_{yd}}{f_{cd}} \end{split}$$

Di seguito vengono mostrati il soddisfacimento dei requisiti sopra riportati ed il significato dei simboli delle formule.

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

				-
Diametro	D	1.2	m	
Copriferro	С	60	mm	
Area sezione	A_c	1.130973	m ²	
Area minima armatura	$A_{a,min}$	11309.73	mm²	
Diametro armatura long.	Φ_{long}	26	mm	
Numero barre	n	32		
Area armatura long.	A _a	16989.73	mm ²	ОК
rapporto geometrico armatura longitudinale	ρ_{l}	0.015022		
Passo massimo armatura trasv.	S _{max}	156	mm	
Diametro armatura trasversale	ϕ_{st}	12	mm	
Passo massimo armatura confinamento	S	100	mm	ОК
Fattore di comportamento	q	2.8		
Fattore di sovraresistenza	₽Rd	1.26		
Compressione massima sism. palo	N	4371	kN	
	f _{ck}	35	MPa	
Sollecitazione compr. Normalizzata	v_k	0.110423		
Area nucleo confinato	A _{cc}	0.895844	m²	
	λ	0.37		
	$\omega_{w,min}$	0.18		
	$\omega_{w,req}$	0.062529		
Percentuale mecc. Min. armatura confinamento	$\omega_{\text{w,c min}}$	0.18		
Diametro armatura per confinamento	φ_{conf}	12	mm	
Diametro circonferenza confinata	D_{sp}	1068	mm	
Percentuale armatura trasv. Per taglio		75	%	
Area armatura per confinamento	A_{sp}	30000	mm ²	
Percentuale mecc. armatura confinamento	$\omega_{\text{wd,c}}$	0.188427		ОК
Passo max armatura trasversale per confinamento	S _l	156	mm	ОК
				-

6 DIMENSIONAMENTO DEI GIUNTI E DELLA CORSA DEGLI APPOGGI

Gli appoggi mobili devono essere dimensionati per consentire lo spostamento relativo tra le due parti della struttura da essi collegate, sotto l'azione sismica corrispondente allo SLC.

Concordemente al §7.3.3.3 delle NTC2018:

- gli spostamenti d_E sotto l'azione sismica di progetto relativa allo SLV si ottengono moltiplicando per il fattore di duttilità in spostamento μ_d i valori d_{Ee} ottenuti dall'analisi lineare; nel caso in esame, $\mu_d = q$
- gli spostamenti allo SLC si possono ottenere, in assenza di più accurate valutazioni che considerino l'effettivo rapporto delle coordinate spettrali in spostamento, moltiplicando per 1.25 gli spostamenti allo SLV.

Si ottiene, dunque:

		Analisi line	SLV	SLC		
	Spostamento impalcato	Spostamento sottostruttura	Spostamento relativo	$\mu_{\sf d}$	Spostamento relativo (§7.3.3.3 NTC2018)	Spostamento relativo (§7.3.3.3 NTC2018)
Appoggi pila centrale	32.3	15.3	47.6	2.8	133.28	166.60
Appoggi spalla B e giunto	32.3	24.2	56.5	2.8	158.20	197.75
	mm	mm	mm		mm	mm

Gli spostamenti allo SLD sono:

		Analisi lineare					
	Spostamento impalcato	Spostamento sottostruttura	Spostamento relativo	$\mu_{\sf d}$	Spostamento relativo (§7.3.3.3 NTC2018)		
Appoggi pila centrale	21.6	10.4	32	1.5	48.00		
Appoggi spalla B e giunto	21.6	16.7	38.3	1.5	57.45		
	mm	mm	mm		mm		

7 SPOSTAMENTI IN DIREZIONE TRASVERSALE

Per quanto riguarda i riferimenti normativi, si fa riferimento a quanto già riportato nel capitolo precedente.

Gli spostamenti in direzione trasversale per i differenti stati limite sono i seguenti:

	Spostamento trasversale dall'analisi lineare SLV	$\mu_{\sf d}$	Spostamento trasversale SLV	Spostamento trasversale SLC
Spalla A	22.2	2.8	62.16	77.70
Pila centrale	28.4	2.8	79.52	99.40
Spalla B	36.5	2.8	102.20	127.75
	mm		mm	mm

	Spostamento trasversale dall'analisi lineare SLD	μ_{d}	Spostamento trasversale SLD
Spalla A	15.5	1.5	23.25
Pila centrale	19.9	1.5	29.85
Spalla B	25.6	1.5	38.40
	mm		mm

8 VERIFICA A CARICO LIMITE DEI PALI

Nei seguenti paragrafi si riporta una breve trattazione teorica relativa alla determinazione del carico limite e i risultati ottenuti in fase di verifica.

8.1 VERIFICA A CARICO LIMITE VERTICALE

8.1.1 Determinazione del carico limite verticale

Il carico limite per forze verticali di compressione del singolo palo è dato dalla somma della resistenza laterale Q_l e della resistenza alla punta Q_n :

$$R_{c,cal} = Q_{vlim} = Q_p + Q_l$$

In generale per un mezzo dotato di coesione e attrito si pone:

$$Q_{p} = A_{p}q_{p} = A_{p}(N_{c}c + N_{a}\sigma_{vL})$$

dove q_p è la portata specifica di base, A_p è l'area di base del palo, σ_{vL} è la tensione verticale agente alla profondità della base del palo, N_q e N_c sono i fattori di capacità portante.

La resistenza laterale Q_l si determina con la seguente espressione:

$$Q_l = \pi D \int_0^L \tau_{\rm lim}(z) dz$$

dove:

- D è il diametro del palo;
- *L* è la lunghezza del palo;
- $\tau(z)$ è la resistenza tangenziale all'interfaccia del palo.

TERRENI INCOERENTI

Nel caso di terreni incoerenti il carico limite si valuta in condizioni drenate. Si ha pertanto c'=0 e $\sigma_{vL}=\sigma'_{vL}$

L'espressione della resistenza alla punta Q_p diventa allora:

$$Q_p = A_p q_p = A_p \left(N_q \sigma'_{vL} \right)$$

il coefficiente di carico limite N_q per pali di grande diametro può essere determinato dall'abaco di Berenzantzev (funzione dell'angolo di resistenza a taglio φ' del terreno ubicato al di sotto della punta della colonna e del rapporto lunghezza/diametro della colonna L/D) e \mathcal{O}_{vL} la tensione verticale efficace agente alla quota della punta della colonna (al di fuori dell'area di impronta della colonna).

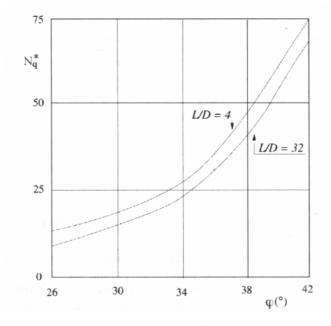


Figura 37 – Abaco di Berezantzev per pali di grande diametro

La resistenza all'interfaccia palo terreno $\tau_{lim}(z)$, può essere determinata come segue:

$$\tau_{\text{lim}}(z) = k\mu\sigma_{vz}$$

dove:

- k è un coefficiente che esprime il rapporto tra la tensione verticale litostatica e la tensione orizzontale al contatto palo-terreno, ed è legato alle modalità esecutive e alle proprietà del terreno: per i pali battuti il valore di k cresce ed al massimo può
- essere posto pari alla resistenza passiva del terreno;
- μ è il coefficiente di attrito che dipende dalla scabrezza all'interfaccia paloterreno;
- σ'_{vz} è la tensione litostatica alla profondità z.

Il coefficiente k e μ possono essere dedotti a partire dalla tabella seguente:

Tipo di palo		Valori di k per stato di addensamento sciolto denso		
Battuto: Profilato d'acciaio Tubo d'acciaio chiuso	0,7 1,0	1,0 2,0	tg20° = 0,36	
Calcestruzzo prefabbricato	1,0	2,0	tg (3φ/4)	
Calcestruzzo gettato in opera	1,0	3,0	tg φ	
Trivellato	0,5	0,4	tgφ	
Trivellato-pressato con elica continua	0,7	0,9	tg φ	

Tabella 5–Valori di k e μ

Trattandosi di terreni incoerenti, e considerati i valori di interasse longitudinale e trasversale, non è stato considerato alcun effetto di gruppo.

8.1.2 Criteri di verifica previste ai sensi delle NTC2018

Le verifiche dei pali vengono eseguite considerando l'Approccio 2 (A1+M1+R3).

Il valore caratteristico della resistenza a compressione R_{ck} (o a trazione R_{tk}) è dato dal minore dei valori ottenuti applicando i coefficienti di riduzione ξ_3 , ξ_4 riportati nella tabella 6.4.IV delle NTC alle resistenze limite R_{cal} ($\equiv Q_{tot}^{lim}$) calcolate con la metodologia illustrata prima:

$$R_{ck} = Min \left\{ \frac{\left(R_{c,cal}\right)_{medio}}{\xi_{3}}; \frac{\left(R_{c,cal}\right)_{min}}{\xi_{4}} \right\}$$

$$R_{tk} = Min \left\{ \frac{\left(R_{t,cal}\right)_{medio}}{\xi_{3}}; \frac{\left(R_{t,cal}\right)_{min}}{\xi_{4}} \right\}$$

 $\textbf{Tab. 6.4.IV} - \textit{Fattori di correlazione } \xi \ \textit{per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate } \\$

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ3	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ ₄	1,70	1,55	1,48	1,42	1,34	1,28	1,21

I calcoli sono condotti considerando un numero di verticali indagate pari a due, per cui si ha:

$$\xi_3 = 1,65$$

$$\xi_4 = 1,55$$

La resistenza di progetto (R_d) si otterrà applicando alla resistenza caratteristica il coefficiente parziale per pali trivellati, γ_R , desumibile dalla Tab. 6.4.II del D.M. 17/01/2018.

 $\textbf{Tab. 6.4.II} - \textit{Coefficienti parziali } \gamma_{R} \ \textit{da applicare alle resistenze caratteristiche a carico verticale dei pali}$

Resistenza	Simbolo	Pali	Pali	Pali ad elica
		infissi	trivellati	continua
	γ_R	(R3)	(R3)	(R3)
Base	γь	1,15	1,35	1,3
Laterale in compressione	Υs	1,15	1,15	1,15
Totale (*)	γ	1,15	1,30	1,25
Laterale in trazione	Υst	1,25	1,25	1,25

⁽º) da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

Le verifiche a carico limite verticale vengono condotte sia nei confronti delle sollecitazioni di compressione che nei confronti delle sollecitazioni di trazione.

Nel dettaglio, per la <u>verifica a carico limite di compressione</u> $Q_{lim,v,d\ gr}$, la resistenza alla punta di progetto $Q_{p,d}$ e la resistenza laterale di progetto $Q_{l,d}$ sono state ottenute abbattendo i valori caratteristici mediante i seguenti coefficienti, validi per pali trivellati:

$$\gamma_b=1,35$$
 Base

$$\gamma_s=1,15$$
 Laterale in compressione

Per la <u>verifica a carico limite verticale di trazione</u> $Q_{lim,v,d\ gr}$ il contributo relativo alla resistenza alla punta è nullo e si considera solo il contributo dato dalla resistenza laterale. Il carico limite verticale di progetto $Q_{l,d}$ è stato ottenuto abbattendo il valore caratteristico mediante il seguente coefficiente, valido per pali trivellati:

$$\gamma_{st}=1,25$$
 Laterale in trazione

8.1.3 Azioni di progetto

Nel presente paragrafo vengono riassunte le azioni di progetto per le verifiche a carico limite verticale dei pali.

In Tabella 6 e Tabella 7 sono riportate le sollecitazioni ottenute attraverso il modello FEM (vedi paragrafo §5) in riferimento alle combinazioni di carico allo SLU ed allo SLV.

SPALLA A					
		COMBINAZIO	OMBINAZIONE		
SOLLECITAZIONE	STATICA	SISMA X	SISMA Y	U.M.	
P _{min}	-4371	-3430	-3383	[kN]	
P _{max}	-70	350	152	[kN]	

SPALLA B					
		COMBINAZIONE			
		SISMA	SISMA	U.M.	
SOLLECITAZIONE	STATICA	X	Υ		
P _{min}	-2775	-1952	-2259	[kN]	
P _{max}	-178	-248	-219	[kN]	

PILA CENTRALE					
		COMBINAZIONE			
		SISMA	SISMA	U.M.	
SOLLECITAZIONE	STATICA	X	Υ		
P _{min}	-3474	-2818	-3573	[kN]	
P _{max}	-1260	-1024	-282	[kN]	

Tabella 6 – Sintesi delle sollecitazioni da calcolo FEM

IMPALCATO 1					
COMBINAZIONE					
SOLLECITAZIONE		SISMA	SISMA	U.M.	
	STATICA	Χ	Υ		
P _{min}	-2915	-1618	-1863	[kN]	
P _{max}	-179	-239	-226	[kN]	

IMPALCATO 2					
	COMBINAZIONE				
SOLLECITAZIONE		SISMA	SISMA	U.M.	
	STATICA	X	Υ		
P _{min}	-2821	-1575	-1890	[kN]	
P _{max}	-50	-3	-142	[kN]	

Tabella 7 - Sintesi delle sollecitazioni da calcolo FEM

L'azione verticale di calcolo sul singolo palo viene dunque valutata a partire dalle sollecitazioni sopra riportate e tenendo conto del peso della camicia dei pali (non considerato nel modello FEM) e della spinta di Archimede agente sulla parte sommersa dei pali.

Nelle combinazioni di carico sismiche, in accordo con quanto prescritto dalle NTC al paragrafo $\S7.2.5$, l'azione trasmessa in fondazione ottenuta dal modello numerico N_{FEM} viene amplificata di un coefficiente pari a 1,30.

Tenendo conto dei coefficienti parziali sulle azioni per ciascuna combinazione di carico, l'azione verticale di calcolo N_{ed} per le verifiche a carico limite di compressione e di trazione viene valutata come segue:

CARICO LIMITE DI COMPRESSIONE – SLU	$N_{ed} = N_{FEM} + \gamma_G \cdot N_{cam} - S_{Arch}$
CARICO LIMITE DI COMPRESSIONE – SLV	$N_{ed} = 1.3 \cdot N_{FEM} + N_{cam} - S_{Arch}$
CARICO LIMITE DI TRAZIONE – SLU	$N_{ed} = N_{FEM} + \gamma_G \cdot S_{Arch} - N_{cam}$
CARICO LIMITE DI TRAZIONE – SLV	$N_{ed} = 1.3 \cdot N_{FEM} + S_{Arch} - N_{cam}$

In Tabella 8 vengono riportati le quote fondale di progetto considerate ai fini della valutazione della spinta di Archimede agente sui pali.

PALIFICATA	QUOTA FONDALE
11121111111	m s.l.m.
SPALLA A	- 5.75
SPALLA B	- 7
PILA CENTRALE	- 8
IMPALCATO 1	- 7
IMPALCATO 2	- 7

Tabella 8 – Quote fondale per la valutazione della spinta di Archimede

8.1.4 Risultati

Nei paragrafi che seguono si riportano i calcoli relativi alle verifiche a carico limite verticale dei pali, mentre in Tabella 9 si sintetizzano i risultati ottenuti. Come è possibile osservare, per tutti i casi considerati il coefficiente di sicurezza è maggiore di quello richiesto dalla normativa, dunque le verifiche risultano soddisfatte.

VERIFICHE CARICO LI	MITE VERTICALE	FS [-]		
ELEMENTO	VERIFICA	STATICA	SISMA X	SISMA Y
SPALLA A	COMPRESSIONE	1,34	1,32	1,34
SPALLA A	TRAZIONE	-	2,52	4,23
SPALLA B	COMPRESSIONE	2,16	2,41	2,06
SPALLA D	TRAZIONE	-	-	-
PILA CENTRALE	COMPRESSIONE	1,70	1,63	1,27
PILA CENTRALE	TRAZIONE	-	-	-
IMPALCATO 1	COMPRESSIONE	1,81	2,35	2,02
IIVIPALGATOT	TRAZIONE	-	-	-
IMPALCATO 2	COMPRESSIONE	1,69	2,42	1,98
IIVIFALGATO 2	TRAZIONE	-	-	-

Tabella 9 – Verifiche carico limite verticale – Sintesi coefficienti di sicurezza

8.1.4.1 Spalla A

Carico limite verticale di compressione di calcolo

Terreno					
Peso dell'unità di volume sommerso	$\gamma'_1 =$	10,00	[kN/m ³]		
Angolo di resistenza a taglio	φ' ₁ =	37,00	[°]		
Lunghezza palo	L ₁ =	22,00	[m]		

Tensione efficace verticale del Terreno	σ' _{v L1} =	220,00	$[kN/m^2]$
Resistenza laterale Terreno	Q ₁₁ =	3.320,57	[kN]
	L/D =	18,33	[-]
	$N_q =$	35,00	
Tensione efficace verticale alla punta	σ' _{vL} =	220,00	[kN/m ²]
	p _{lim} =	7.700,00	[kN/m ²]
Resistenza alla punta	Q _p =	8.708,49	[kN]
Resistenza laterale	Q _I =	3.320,57	[kN]
Carico limite verticale di calcolo	Q _{lim,v,cal} =	12.029,06	[kN]

Carico limite verticale di compressione caratteristico

Resistenza alla punta Verticale 1	Q _{p,1} =	8.708,49	[kN]
Resistenza laterale Verticale 1	Q _{1,1} =	3.320,57	[kN]
Resistenza alla punta Verticale 2	Q _{p,2} =	8.708,49	[kN]
Resistenza laterale Verticale 2	Q _{1,2} =	3.320,57	[kN]
Coefficienti di riduzione	ξ ₃ =	1,65	[-]
funzione del numero di verticali indagate	ξ_4 =	1,55	[-]
Resistenza alla punta caratteristica	$Q_{p,k} =$	5.277,88	[kN]
Resistenza laterale caratteristica	Q _{I,k} =	2.012,47	[kN]
Carico limite verticale caratteristico	Q _{lim,v,k} =	7.290,34	[kN]

Carico limite verticale di compressione di progetto

Coeff. Resistenza alla punta	$\gamma_b =$	1,35	[-]
Coeff. Resistenza laterale in compressione	γ _s =	1,15	[-]
Resistenza alla punta di progetto	$Q_{p,d} =$	3.909,54	[kN]
Resistenza laterale di progetto	Q _{I,d} =	1.749,97	[kN]
Carico limite verticale di progetto del singolo palo	$Q_{lim,v,d} =$	5.659,51	[kN]
Efficienza di gruppo	E=	1,00	[-]
Carico limite verticale di progetto del singolo palo in gruppo	Q _{lim,v,d gr} =	5.659,51	[kN]

Carico limite verticale di trazione di progetto

Resistenza laterale caratteristica	$Q_{l,k} =$	2.012,47	[kN]
Coeff. Resistenza laterale in trazione	γ _{s3} =	1,25	[-]
Carico limite verticale di progetto a trazione del singolo palo	$Q_{l,d} =$	1.609,97	[kN]
Efficienza di gruppo	E=	1,00	[-]
Carico limite verticale di progetto a trazione del singolo palo in gruppo	Q _{lim,v,d gr} =	1.609,97	[kN]

Verifica carico limite verticale di compressione

VERIFICA CARICO LIMITE VERTICALE DI COMPRESSIONE		COMBINAZIONE			U.M.
VERIFICA CARICO LIMITE VERTICALE DI COMPRESSIO	JNE	STATICA	SISMA X	SISMA Y	U.IVI.
Azione verticale agente sul singolo palo da FEM	N _{FEM} =	-4371,2	-3430,4	-3382,9	[kN]
Coefficiente amplificativo per duttilità (NTC2018 - §7.2.5)	γ=	1,00	1,30	1,30	[-]
Azione verticale agente sul singolo palo	N =	4.371,17	4.459,57	4.397,78	[kN]
Peso proprio camicia del palo	N _{cam} =	174,16	133,97	133,97	[kN]
Spinta Archimede su palo immerso	S _{Arch} =	316,82	316,82	316,82	[kN]
Azione verticale di calcolo agente sul singolo palo	N _{ed} =	4.228,51	4.276,72	4.214,93	[kN]
Carico limite verticale di progetto del singolo palo in gruppo	Q _{lim,v,d gr} =	5.659,51	5.659,51	5.659,51	[kN]
Coefficiente di Sicurezza a carico limite verticale	Fs=	1,34	1,32	1,34	[-]

Verifica carico limite verticale di trazione

VERIFICA CARICO LIMITE VERTICALE DI TRAZIONE		COMBINAZIONE			U.M.
VERIFICA CARICO LIIVITE VERTICALE DI TRAZIONE	•	STATICA	SISMA X	SISMA Y	U.IVI.
Azione verticale agente sul singolo palo da FEM	N _{FEM} =	-	350,5	152,2	[kN]
Coefficiente amplificativo per duttilità (NTC2018 - §7.2.5)	γ=	-	1,30	1,30	[-]
Azione verticale agente sul singolo palo	N =	-	455,6	197,8	[kN]
Peso proprio camicia del palo	N _{cam} =	-	134,0	134,0	[kN]
Spinta Archimede su palo immerso	S _{Arch} =	-	316,8	316,8	[kN]
Azione verticale di calcolo agente sul singolo palo	N _{ed} =	-	638,5	380,7	[kN]
Carico limite verticale di progetto del singolo palo in gruppo	Q _{lim,v,d gr} =	-	1610,0	1610,0	[kN]
Coefficiente di Sicurezza a carico limite verticale	Fs=	-	2,52	4,23	[-]

8.1.4.2 Spalla B

Carico limite verticale di compressione di calcolo

Terreno			
Peso dell'unità di volume sommerso	γ' ₁ =	10,00	[kN/m ³]
Angolo di resistenza a taglio	φ' ₁ =	37,00	[°]
Lunghezza palo	L ₁ =	22,00	[m]

Tensione efficace verticale del Terreno	σ' _{v L1} =	220,00	[kN/m ²]
Resistenza laterale Terreno	Q ₁₁ =	3.320,57	[kN]
	L/D =	18,33	[-]
	$N_q =$	35,00	
Tensione efficace verticale alla punta	σ' _{vL} =	220,00	[kN/m ²]
	p _{lim} =	7.700,00	[kN/m ²]
Resistenza alla punta	Q _p =	8.708,49	[kN]
Resistenza laterale	Q _I =	3.320,57	[kN]
Carico limite verticale di calcolo	Q _{lim,v,cal} =	12.029,06	[kN]

Carico limite verticale di compressione caratteristico

Resistenza alla punta Verticale 1	Q _{p,1} =	8.708,49	[kN]
Resistenza laterale Verticale 1	Q _{1,1} =	3.320,57	[kN]
Resistenza alla punta Verticale 2	Q _{p,2} =	8.708,49	[kN]
Resistenza laterale Verticale 2	Q _{1,2} =	3.320,57	[kN]
Coefficienti di riduzione	ξ ₃ =	1,65	[-]
funzione del numero di verticali indagate	ξ_4 =	1,55	[-]
Resistenza alla punta caratteristica	$Q_{p,k} =$	5.277,88	[kN]
Resistenza laterale caratteristica	$Q_{l,k} =$	2.012,47	[kN]
Carico limite verticale caratteristico	$Q_{lim,v,k} =$	7.290,34	[kN]

Carico limite verticale di compressione di progetto

Coeff. Resistenza alla punta	$\gamma_{b} =$	1,35	[-]
Coeff. Resistenza laterale in compressione	γ_{s} =	1,15	[-]
Resistenza alla punta di progetto	$Q_{p,d} =$	3.909,54	[kN]
Resistenza laterale di progetto	Q _{I,d} =	1.749,97	[kN]
Carico limite verticale di progetto del singolo palo	$Q_{lim,v,d} =$	5.659,51	[kN]
Efficienza di gruppo	E=	1,00	[-]
Carico limite verticale di progetto del singolo palo in gruppo	Q _{lim,v,d gr} =	5.659,51	[kN]

Carico limite verticale di trazione di progetto

Resistenza laterale caratteristica	Q _{1,k} =	2.012,47	[kN]
Coeff. Resistenza laterale in trazione	γ _{s3} =	1,25	[-]
Carico limite verticale di progetto a trazione del singolo palo	Q _{I,d} =	1.609,97	[kN]
Efficienza di gruppo	E=	1,00	[-]
Carico limite verticale di progetto a trazione del singolo palo in gruppo	Q _{lim,v,d gr} =	1.609,97	[kN]

Verifica carico limite verticale di compressione

VERIFICA CARICO LIMITE VERTICALE DI COMPRESSIONE		COMBINAZIONE			U.M.
VERIFICA CARICO LIMITE VERTICALE DI COMPRESSIO	JNE	STATICA	SISMA X	SISMA Y	U.IVI.
Azione verticale agente sul singolo palo da FEM	N _{FEM} =	-2774,6	-1951,9	-2258,5	[kN]
Coefficiente amplificativo per duttilità (NTC2018 - §7.2.5)	γ=	1,00	1,30	1,30	[-]
Azione verticale agente sul singolo palo	N =	2774,6	2537,4	2936,1	[kN]
Peso proprio camicia del palo	N _{cam} =	181,7	139,8	139,8	[kN]
Spinta Archimede su palo immerso	S _{Arch} =	331,1	331,1	331,1	[kN]
Azione verticale di calcolo agente sul singolo palo	N _{ed} =	2625,3	2346,1	2744,8	[kN]
Carico limite verticale di progetto del singolo palo in gruppo	Q _{lim,v,d gr} =	5659,5	5659,5	5659,5	[kN]
Coefficiente di Sicurezza a carico limite verticale	Fs=	2,16	2,41	2,06	[-]

Verifica carico limite verticale di trazione

Non sono presenti carichi di trazione sulla palificata per le combinazioni di carico analizzate, dunque la verifica viene omessa.

8.1.4.3 Pila Centrale

Carico limite verticale di compressione di calcolo

Terreno			
Peso dell'unità di volume sommerso	$\gamma'_1 =$	10,00	[kN/m ³]
Angolo di resistenza a taglio	φ' ₁ =	37,00	[°]
Lunghezza palo	L ₁ =	22,00	[m]

Tensione efficace verticale del Terreno	σ' _{v L1} =	220,00	[kN/m ²]
Resistenza laterale Terreno	Q ₁₁ =	3.320,57	[kN]
	L/D =	18,33	[-]
	$N_q =$	35,00	
Tensione efficace verticale alla punta	σ' _{vL} =	220,00	[kN/m ²]
	p _{lim} =	7.700,00	[kN/m ²]
Resistenza alla punta	Q _p =	8.708,49	[kN]
Resistenza laterale	Q _I =	3.320,57	[kN]
Carico limite verticale di calcolo	Q _{lim,v,cal} =	12.029,06	[kN]

Carico limite verticale di compressione caratteristico

Resistenza alla punta Verticale 1	Q _{p,1} =	8.708,49	[kN]
Resistenza laterale Verticale 1	Q _{1,1} =	3.320,57	[kN]
Resistenza alla punta Verticale 2	Q _{p,2} =	8.708,49	[kN]
Resistenza laterale Verticale 2	Q _{1,2} =	3.320,57	[kN]
Coefficienti di riduzione	ξ ₃ =	1,65	[-]
funzione del numero di verticali indagate	ξ_4 =	1,55	[-]
Resistenza alla punta caratteristica	$Q_{p,k} =$	5.277,88	[kN]
Resistenza laterale caratteristica	Q _{I,k} =	2.012,47	[kN]
Carico limite verticale caratteristico	Q _{lim,v,k} =	7.290,34	[kN]

Carico limite verticale di compressione di progetto

Coeff. Resistenza alla punta	$\gamma_{b} =$	1,35	[-]
Coeff. Resistenza laterale in compressione	γ_s =	1,15	[-]
Resistenza alla punta di progetto	$Q_{p,d} =$	3.909,54	[kN]
Resistenza laterale di progetto	Q _{I,d} =	1.749,97	[kN]
Carico limite verticale di progetto del singolo palo	$Q_{lim,v,d} =$	5.659,51	[kN]
Efficienza di gruppo	E=	1,00	[-]
Carico limite verticale di progetto del singolo palo in gruppo	Q _{lim,v,d gr} =	5.659,51	[kN]

Carico limite verticale di trazione di progetto

Resistenza laterale caratteristica	$Q_{l,k} =$	2.012,47	[kN]
Coeff. Resistenza laterale in trazione	γ _{s3} =	1,25	[-]
Carico limite verticale di progetto a trazione del singolo palo	Q _{I,d} =	1.609,97	[kN]
Efficienza di gruppo	E=	1,00	[-]
Carico limite verticale di progetto a trazione del singolo palo in gruppo	Q _{lim,v,d gr} =	1.609,97	[kN]

Verifica carico limite verticale di compressione

VERIFICA CARICO LIMITE VERTICALE DI COMPRESSIONE		COMBINAZIONE		U.M.	
VERIFICA CARICO LIMITE VERTICALE DI COMPRESSIO	JNE	STATICA	SISMA X	SISMA Y	U.IVI.
Azione verticale agente sul singolo palo da FEM	N _{FEM} =	-3474,5	-2817,7	-3572,9	[kN]
Coefficiente amplificativo per duttilità (NTC2018 - §7.2.5)	γ=	1,00	1,30	1,30	[-]
Azione verticale agente sul singolo palo	N =	3474,5	3663,0	4644,8	[kN]
Peso proprio camicia del palo	N _{cam} =	187,8	144,5	144,5	[kN]
Spinta Archimede su palo immerso	S _{Arch} =	342,5	342,5	342,5	[kN]
Azione verticale di calcolo agente sul singolo palo	N _{ed} =	3319,8	3465,0	4446,7	[kN]
Carico limite verticale di progetto del singolo palo in gruppo	Q _{lim,v,d gr} =	5659,5	5659,5	5659,5	[kN]
Coefficiente di Sicurezza a carico limite verticale	Fs=	1,70	1,63	1,27	[-]

Verifica carico limite verticale di trazione

Non sono presenti carichi di trazione sulla palificata per le combinazioni di carico analizzate, dunque la verifica viene omessa.

8.1.4.4 Impalcato 1

Carico limite verticale di compressione di calcolo

	Verticale di indagine 1			
Terreno 1				
Peso dell'unità di volume sommerso	$\gamma_1' =$	10,00	[kN/m ³]	
Angolo di resistenza a taglio	φ' ₁ =	37,00	[°]	
Lunghezza palo	L ₁ =	20,00	[m]	
Tensione efficace verticale del Terreno 1	σ' _{v L1} =	200,00	[kN/m ²]	
Resistenza laterale Terreno 1	Q ₁₁ =	2.744,27	[kN]	
	L/D =	16,67	[-]	
	$N_q =$	35,00		
Tensione efficace verticale del Terreno 2 (alla punta)	σ' _{vL} =	200,00	[kN/m ²]	
	p _{lim} =	7.000,00	[kN/m ²]	
Resistenza alla punta	Q _p =	7.916,81	[kN]	
Resistenza laterale Terreno 2	Q ₁₂ =	-	[kN]	
Resistenza laterale	Q _I =	2.744,27	[kN]	
Carico limite verticale di calcolo	Q _{lim,v,cal} =	10.661,08	[kN]	

Carico limite verticale di compressione caratteristico

Resistenza alla punta Verticale 1	Q _{p,1} =	7.916,81	[kN]
Resistenza laterale Verticale 1	Q _{1,1} =	2.744,27	[kN]
Resistenza alla punta Verticale 2	Q _{p,2} =	7.916,81	[kN]
Resistenza laterale Verticale 2	Q _{1,2} =	2.744,27	[kN]
Coefficienti di riduzione	ξ ₃ =	1,65	[-]
funzione del numero di verticali indagate	ξ_4 =	1,55	[-]
Resistenza alla punta caratteristica	$Q_{p,k} =$	4.798,07	[kN]
Resistenza laterale caratteristica	$Q_{I,k} =$	1.663,19	[kN]
Carico limite verticale caratteristico	Q _{lim,v,k} =	6.461,26	[kN]

Carico limite verticale di compressione di progetto

Coeff. Resistenza alla punta	$\gamma_b =$	1,35	[-]
Coeff. Resistenza laterale in compressione	γ_s =	1,15	[-]
Resistenza alla punta di progetto	$Q_{p,d} =$	3.554,13	[kN]
Resistenza laterale di progetto	Q _{I,d} =	1.446,26	[kN]
Carico limite verticale di progetto del singolo palo	$Q_{lim,v,d} =$	5.000,38	[kN]
Efficienza di gruppo	E=	1,00	[-]
Carico limite verticale di progetto del singolo palo in gruppo	Q _{lim,v,d gr} =	5.000,38	[kN]

Carico limite verticale di trazione di progetto

Resistenza laterale caratteristica	$Q_{l,k} =$	2.012,47	[kN]
Coeff. Resistenza laterale in trazione	$\gamma_{s3} =$	1,25	[-]
Carico limite verticale di progetto a trazione del singolo palo	$Q_{l,d} =$	1.609,97	[kN]
Efficienza di gruppo	E=	1,00	[-]
Carico limite verticale di progetto a trazione del singolo palo in gruppo	Q _{lim,v,d gr} =	1.609,97	[kN]

Verifica carico limite verticale di compressione

VERIFICA CARICO LIMITE VERTICALE DI COMPRESSIO	ME	COMBINAZIONE		NE	U.M.	
VERIFICA CARICO LIMITE VERTICALE DI COMPRESSIO	JINE .	STATICA	SISMA X	SISMA Y	U.IVI.	
Azione verticale agente sul singolo palo da FEM	-2914,8	-1617,7	-1862,7	[kN]		
Coefficiente amplificativo per duttilità (NTC2018 - §7.2.5)	γ=	-1,0	-1,3	-1,3	[-]	
Azione verticale agente sul singolo palo	N =	-2914,8	-2102,9	-2421,5	[kN]	
Peso proprio camicia del palo	N _{cam} =	-150,7	-115,9	-115,9	[kN]	
Spinta Archimede su palo immerso	S _{Arch} =	-308,3	-308,3	-308,3	[kN]	
Azione verticale di calcolo agente sul singolo palo	N _{ed} =	-2757,2	-1910,6	-2229,2	[kN]	
Carico limite verticale di progetto del singolo palo in gruppo	Q _{lim,v,d gr} =	5.000,38	4.492,65	4.492,65	[kN]	
Coefficiente di Sicurezza a carico limite verticale	Fs=	1,81	2,35	2,02	[-]	

Verifica carico limite verticale di trazione

Non sono presenti carichi di trazione sulla palificata per le combinazioni di carico analizzate, dunque la verifica viene omessa.

8.1.4.5 Impalcato 2Carico limite verticale di compressione di calcolo

	Verticale di indagine 1			
Terreno 1				
Peso dell'unità di volume sommerso	$\gamma_1' =$	10,00	[kN/m ³]	
Angolo di resistenza a taglio	φ' ₁ =	37,00	[°]	
Lunghezza palo	L ₁ =	20,00	[m]	
Tensione efficace verticale del Terreno 1	σ' _{v L1} =	200,00	[kN/m ²]	
Resistenza laterale Terreno 1	Q ₁₁ =	2.744,27	[kN]	
	L/D =	16,67	[-]	
	N _q =	35,00		
Tensione efficace verticale del Terreno 2 (alla punta)	σ' _{vL} =	200,00	[kN/m ²]	
	p _{lim} =	7.000,00	[kN/m ²]	
Resistenza alla punta	Q _p =	7.916,81	[kN]	
Resistenza laterale Terreno 2	Q ₁₂ =	-	[kN]	
Resistenza laterale	Q _I =	2.744,27	[kN]	
Carico limite verticale di calcolo	Q _{lim,v,cal} =	10.661,08	[kN]	

Carico limite verticale di compressione caratteristico

Resistenza alla punta Verticale 1	Q _{p,1} =	7.916,81	[kN]
Resistenza laterale Verticale 1	Q _{1,1} =	2.744,27	[kN]
Resistenza alla punta Verticale 2	Q _{p,2} =	7.916,81	[kN]
Resistenza laterale Verticale 2	Q _{1,2} =	2.744,27	[kN]
Coefficienti di riduzione	$\xi_3 =$	1,65	[-]
funzione del numero di verticali indagate	ξ_4 =	1,55	[-]
Resistenza alla punta caratteristica	$Q_{p,k} =$	4.798,07	[kN]
Resistenza laterale caratteristica	$Q_{I,k} =$	1.663,19	[kN]
Carico limite verticale caratteristico	Q _{lim,v,k} =	6.461,26	[kN]

Carico limite verticale di compressione di progetto

Coeff. Resistenza alla punta	$\gamma_{b} =$	1,35	[-]
Coeff. Resistenza laterale in compressione	γ_s =	1,15	[-]
Resistenza alla punta di progetto	$Q_{p,d} =$	3.554,13	[kN]
Resistenza laterale di progetto	Q _{I,d} =	1.446,26	[kN]
Carico limite verticale di progetto del singolo palo	$Q_{lim,v,d} =$	5.000,38	[kN]
Efficienza di gruppo	E=	1,00	[-]
Carico limite verticale di progetto del singolo palo in gruppo	Q _{lim,v,d gr} =	5.000,38	[kN]

Carico limite verticale di trazione di progetto

Resistenza laterale caratteristica	Q _{I,k} =	2.012,47	[kN]
Coeff. Resistenza laterale in trazione	$\gamma_{s3} =$	1,25	[-]
Carico limite verticale di progetto a trazione del singolo palo	$Q_{l,d} =$	1.609,97	[kN]
Efficienza di gruppo	E=	1,00	[-]
Carico limite verticale di progetto a trazione del singolo palo in gruppo	Q _{lim,v,d gr} =	1.609,97	[kN]

Verifica carico limite verticale di compressione

VERIFICA CARICO LIMITE VERTICALE DI COMPRESSIONE			COMBINAZIONE			
VEHILIOA GANIGO EIIVITE VEHITIGALE DI GOIVII NESSIC	JINL	STATICA	SISMA X	SISMA Y	U.M.	
Azione verticale agente sul singolo palo da FEM	N _{FEM} =	-2820,6	-1575,2	-1890,1	[kN]	
Coefficiente amplificativo per duttilità (NTC2018 - §7.2.5)	γ=	-1,0	-1,3	-1,3	[-]	
Azione verticale agente sul singolo palo	N =	-2820,6	-2047,8	-2457,2	[kN]	
Peso proprio camicia del palo	N _{cam} =	-150,7	-115,9	-115,9	[kN]	
Spinta Archimede su palo immerso	S _{Arch} =	-308,3	-308,3	-308,3	[kN]	
Azione verticale di calcolo agente sul singolo palo	N _{ed} =	-2663,0	-1855,5	-2264,8	[kN]	
Carico limite verticale di progetto del singolo palo in gruppo	Q _{lim,v,d gr} =	4492,6	4492,6	4492,6	[kN]	
Coefficiente di Sicurezza a carico limite verticale	Fs=	1,69	2,42	1,98	[-]	

Verifica carico limite verticale di trazione

Non sono presenti carichi di trazione sulla palificata per le combinazioni di carico analizzate, dunque la verifica viene omessa.

8.2 VERIFICA A CARICO LIMITE ORIZZONTALE

8.2.1 Determinazione del carico limite orizzontale

Il carico limite orizzontale $H_{\rm lims}$ del singolo palo è stato valutato con la teoria di Broms nell'ipotesi che il palo sia installato in un mezzo omogeneo. Il palo è stato considerato libero di ruotare in testa.

PALO CORTO

Lo sforzo orizzontale agisce sul palo con eccentricità e.

La rotazione avviene attorno ad un punto molto prossimo all'estremità inferiore del palo. Per semplificare l'analisi, e senza che ciò comporti un errore significativo si è assunto che il centro di rotazione coincida con l'estremità inferiore del palo e si è schematizzato il risultante delle azioni del terreno al di sotto di tale punto con una forza concentrata F.

Imponendo l'equilibrio alla rotazione attorno all'estremità inferiore del palo si ha, a rottura:

$$H_{\lim}(e+L) = \frac{L^2}{2} 3K_p \gamma' D \frac{L}{3}$$

Lo sforzo di taglio lungo il palo vale, alla generica profondità z:

$$T = H - \frac{3}{2} K_p \gamma' D z^2$$

Tale sforzo si annulla ad una profondità f che può calcolarsi ponendo T=0 e vale:

$$f = 0.816 \sqrt{\frac{H}{K_p \gamma' D}}$$

Alla stessa profondità f si verifica il momento massimo che vale:

$$M_{\text{max}} = H \left(e + \frac{2}{3} f \right)$$

Affinché il meccanismo di rottura sia di palo corto occorre verificare che il momento di plasticizzazione della sezione del palo M_k sia maggiore di $M_{\rm max}$.

Se M_k è minore di $M_{\rm max}$ allora il carico limite per forze orizzontali viene determinato ipotizzando un meccanismo di "palo lungo".

PALO LUNGO

Dalle relazioni di sopra, ponendo $M_{\text{max}} = M_{\text{y}}$, si ottiene:

$$\frac{H_{\text{lim}}}{k_p \gamma D^3} \left(\frac{e}{D} + 0.544 \sqrt{\frac{H_{\text{lim}}}{k_p \gamma D^3}} \right) - \frac{M_y}{k_p \gamma D^4} = 0$$

da cui è possibile ricavare il valore di H_{lim} .

Il carico limite del singolo palo in gruppo è:

$$H_{\text{lim}g} = EH_{\text{lim}s}$$

dove E è l'efficienza del gruppo che per il rapporto tra l'interasse e il diametro dei pali della struttura in oggetto è posto conservativamente pari a 0,6.

8.2.2 Criteri di verifica previste ai sensi delle NTC2018

Le verifiche dei pali vengono eseguite considerando l'Approccio 2 (A1+M1+R3).

Il valore caratteristico della resistenza a carichi trasversali R_{trk} , è dato dal minore dei valori ottenuti applicando i coefficienti di riduzione ξ_3 , ξ_4 riportati nella tabella 6.4.IV delle NTC alle resistenze limite R_{ccal} ($\equiv H_{lim}$) calcolate con la metodologia illustrata al precedente paragrafo §8.2.1:

$$R_{ck} = Min\left\{ \frac{\left(R_{c,cal}\right)_{medio}}{\xi_3}; \frac{\left(R_{c,cal}\right)_{min}}{\xi_4} \right\}$$

Tabella 6.4.IV – Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate.

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ ₃	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ _A	1,70	1,55	1,48	1,42	1,34	1,28	1,21

I calcoli sono condotti considerando un numero di verticali indagate pari a due, per cui si ha:

$$\xi_3 = 1,65$$

$$\xi_4 = 1,55$$

Per le due verticali indagate si è proceduto quindi a individuare il corrispondente valore di carico limite H_{lim} . Combinando tali valori come previsto dalle NTC2008 si è ricavato il carico limite orizzontale caratteristico $Q_{lim,h,k}$.

Il Carico limite orizzontale di progetto $Q_{lim,h,d}$ è stato ottenuto abbattendo il valore caratteristico del coefficiente di resistenza laterale γ_{t4} posto pari a 1,30 (Tab. 6.4.VI). Infine è stato ottenuto il carico limite del singolo palo in gruppo tenendo conto dell'efficienza della palificata secondo quanto già specificato al precedente §8.2.3.

Tabella 6.4.VI - Coefficienti parziali γ_T per le verifiche agli stati limite ultimi di pali soggetti a carichi trasversali.

COEFFICIENTE	COEFFICIENTE	COEFFICIENTE
PARZIALE	PARZIALE	PARZIALE
(R1)	(R2)	(R3)
$\gamma_T = 1.0$	$\gamma_{\rm T} = 1.6$	$\gamma_{\rm T} = 1.3$

8.2.3 Azioni di progetto

Nel presente paragrafo vengono riassunte nelle tabelle di seguito riportate le azioni di progetto ai fini delle verifiche a carico limite orizzontale dei pali. Le verifiche sono condotte considerando per ciascuna combinazione di carico la coppia di sollecitazioni corrispondenti ai valori di taglio massimo (V_{max} - M_{Vmax}) e momento massimo (V_{Mmax} - M_{max}). Le sollecitazioni di progetto sono state ottenute a partire dal model FEM precedentemente riportato (vedi §5).

SPALLA A							
SOLLECITAZIONE		С	U.M.				
SOLLEGITAZIONE	STATICA SISMA X SISMA Y				U.IVI.		
(V _{max} , M _{Vmax})	V	168,2	365,2	216,4	kN		
(v max, ivivmax)	М	161,3	234,2	59,7	kNm		
(V _{Mmax} , M _{max})	V	93,2	343,2	198,4	kN		
	М	225,3	284,5	142,9	kNm		

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

SPALLA B											
SOLLECITAZIONE COMBINAZIONE						COLLECTAZIONE		COMBINAZIONE			
SOLLEGITAZION		STATICA	U.M.								
(V _{max} , M _{Vmax})	V	127,4	220,3	305,1	kN						
(v max, IVIVmax)	M	54,0	48,1	87,0	kNm						
/\/ \M \	V	72,3	119,5	160,3	kN						
(V_{Mmax}, M_{max})	М	156,7	249,4	180,9	kNm						

DU A OCNITRALE										
PILA CENTRALE										
SOLLECITAZIONE		C	OMBINAZIONE		U.M.					
SOLLEGITAZION	N C	STATICA	SISMA X	SISMA Y	U.IVI.					
(V _{max} , M _{Vmax})	V	67,8	241,5	318,4	kN					
(v max, Ivivmax)	М	65,5	338,3	363,2	kNm					
(V_{Mmax}, M_{max})	V	60,9	236,8	316,0	kN					
(V Mmax, IVImax)	М	95,6	353,2	383,9	kNm					

IMPALCATO 1								
SOLLECITAZIONE		C	OMBINAZIONE		11.14			
SOLLECTIAZION		STATICA	SISMA X	SISMA Y	U.M.			
(V _{max} , M _{Vmax})	V	194,2	227,8	206,7	kN			
(v max, IVIVmax)	М	249,6	190,5	263,3	kNm			
(V _{Mmax} , M _{max})	٧	151,8	189,1	159,2	kN			
(V Mmax, IVImax)	М	277,6	257,3	283,7	kNm			

IMPALCATO 2									
SOLLECITAZIONE		CO	OMBINAZIONE		U.M.				
		STATICA	SISMA X	SISMA Y	U.IVI.				
(V _{max} , M _{Vmax})	V	230,9	374,0	289,5	kN				
(v max, IVIVmax)	М	535,6	450,3	329,6	kNm				
(\/ M \	V	225,0	340,5	263,8	kN				
(V _{Mmax} , M _{max})	М	563,2	540,7	372,6	kNm				

Nelle combinazioni di carico sismiche, in accordo con quanto prescritto dalle NTC al paragrafo §7.2.5, l'azione trasmessa in fondazione ottenuta dal modello numerico viene amplificata di un coefficiente pari a 1,30.

8.2.4 Risultati

Le verifiche sono condotte valutando il momento plastico resistente dei pali $M_{Rd,pl}$ come somma del momento plastico delle sezioni in c.a. $M_{Rd,pl}$ c.a. e del momento plastico della camicia in acciaio $M_{Rd,pl}$ s.

Il momento plastico resistente delle sezioni in c.a. $M_{Rd,pl\ c.a.}$ è ottenuto considerando un'armatura costituita da $32\Phi26$ e risulta pari a 3.000 kNm.

Il momento plastico resistente della camicia in acciaio $M_{Rd,pls}$ viene invece determinato considerando lo spessore di progetto della camicia ridotto per tener conto dell'effetto della corrosione indotto dall'esposizione all'acqua di mare. In particolare, in accordo con quanto previsto dall'Eurocodice 3-Parte 5, si considera una perdita di spessore durante la vita nominale dell'opera ($V_N = 50$ anni) pari a 1,75 mm.

In Tabella 10 e Tabella 11 vengono sintetizzati i valori del momento plastico resistente considerato nelle verifiche.

	Spessore camicia nominale	S =	16,0	[mm]
	Perdita di spessore per corrosione (VN = 50 anni)	t =	1,75	[mm]
	Spessore camicia di calcolo	S _{calc} =	0,014	[m]
<u>o</u>	Modulo di resistenza plastico	$W_{pl} =$	0,0200365	[m³]
Sez. Palo	Tensione di snervamento caratteristica	f _{yk} =	355.000	[kPa]
တိ	Coeff. di sicurezza acciaio	γ _m =	1,05	[-]
	Momento plastico resistente camicia	M _{Rd, pls} =	6.774,25	[kNm]
	Momento plastico resistente sezione c.a.	M _{Rd, pl c.a.} =	3.000	[kNm]
	Momento plastico resistente sezione c.a.+ camicia	M _{Rd, pl} =	9.774,25	[kNm]

Tabella 10 – Momento plastico resistente - Pontile

	Spessore camicia nominale	S =	14,2	[mm]
	Perdita di spessore per corrosione (VN = 50 anni)	t =	1,75	[mm]
	Spessore camicia di calcolo	S _{calc} =	0,012	[m]
<u>o</u>	Modulo di resistenza plastico	$W_{pl} =$	0,0175586	[m ³]
Sez. Palo	Tensione di snervamento caratteristica	f _{yk} =	355.000	[kPa]
Š	Coeff. di sicurezza acciaio	γ _m =	1,05	[-]
	Momento plastico resistente camicia	$M_{Rd, pls} =$	5.936,47	[kNm]
	Momento plastico resistente sezione c.a.	M _{Rd, pl c.a.} =	3.000	[kNm]
	Momento plastico resistente sezione c.a.+camicia	$M_{Rd, pl} =$	8.936,47	[kNm]

Tabella 11 – Momento plastico resistente – Impalcato

Nei paragrafi che seguono si riportano i calcoli relativi alle verifiche a carico limite orizzontale dei pali, mentre in Tabella 12 si sintetizzano i risultati ottenuti. Come è possibile osservare, per tutti i casi considerati il coefficiente di sicurezza è maggiore di quello richiesto dalla normativa, dunque le verifiche risultano soddisfatte.

VERIFICHE CARICO	LIMITE ORIZZONTALE		FS [-]	
ELEMENTO	COMBINAZIONE	STATICA	SISMA X	SISMA Y
SPALLA A	(V _{max} , M _{Vmax})	2,73	1,32	2,37
SPALLA A	(V _{Mmax} , M _{max})	5,18	1,37	2,41
SPALLA B	(V _{max} , M _{Vmax})	5,11	2,35	1,68
SPALLA B	(V _{Mmax} , M _{max})	6,90	3,25	2,79
PILA CENTRALE	(V _{max} , M _{Vmax})	8,80	1,78	1,40
PILA CENTRALE	(V _{Mmax} , M _{max})	8,94	1,79	1,40
IMPALCATO 1	(V _{max} , M _{Vmax})	2,74	1,93	1,98
IMPALGATOT	(V _{Mmax} , M _{max})	3,23	2,14	2,38
IMPALCATO 2	(V _{max} , M _{Vmax})	1,98	1,11	1,45
IIVIFALOATO 2	(V _{Mmax} , M _{max})	1,98	1,15	1,52

Tabella 12 - Verifiche carico limite orizzontale – Sintesi coefficienti di sicurezza

8.2.4.1 Spalla A

In Tabella 13 e Tabella 14 si sintetizzano i calcoli di verifica a carico limite orizzontale per la palificata relativa alla Spalla A.

Verticale di indagine 1								
Terreno omogeneo								
Peso dell'unità di volume sommerso	$\gamma'_{v1} =$	10,00	[kN/m ³]					
Angolo di resistenza al taglio	φ' _{v1} =	37,00	[°]					
Coeffciente	K _{a,v1} =	0,25	[-]					
Coefficiente	K _{p,v1} =	4,02	[-]					

DATI DI CALCOLO		STATICA		SISM	MA X	SISM	U.M.	
		Comb.V _{max}	Comb. M _{max}	Comb. M _{max} Comb. V _{max} Comb. M _{max} Comb. V _{max} Comb. M _{max}		Comb. M _{max}		
Momento massimo	M _{max} =	103470,9	109995,0	101972,3	102860,0	100213,0	102346,9	[kNm]
Momento plastico resistente	$M_{Rd, pl} =$	9774,2	9774,2	9774,2	9774,2	9774,2	9774,2	[kNm]
Tipo riposta palo		PALO LUNGO	PALO LUNGO	PALO LUNGO	PALO LUNGO	PALO LUNGO	PALO LUNGO	[-]
Carico limite	H _{lim} =	2135,3	1724,3	2245,9	2179,5	2384,6	2217,6	[kN]
Profondità	f =	5,43	4,88	5,57	5,48	5,74	5,53	[m]

Tabella 13 – Spalla A – Calcolo carico limite orizzontale singola verticale di indagine

DATI DI CALCOLO		STA	TICA	SISMA X		SISMA Y		U.M.
DATI DI GALGGEO		Comb.V _{max}	Comb. M _{max}	Comb.V _{max}	Comb. M _{max}	$Comb.V_{max} \\$	Comb. M _{max}	
Taglio di progetto da calcolo FEM	V_{FEM}	168,2	93,2	365,2	343,2	216,4	198,4	[kN]
Momento di progetto da calcolo FEM	M_{FEM}	161,3	225,3	234,2	284,5	59,7	142,9	[kNm]
Coefficiente amplificativo per duttilità (NTC2018 - §7.2.5)	γ	11,00	1,00	1,30	1,30	1,30	1,30	[-]
Taglio di progetto	V _d	218,6	93,2	474,7	446,1	281,4	257,9	[kN]
Momento di progetto	M _d	209,7	225,3	304,5	369,9	77,5	185,8	[kNm]
	ξ_3	1,65	1,65	1,65	1,65	1,65	1,65	[-]
Coefficienti di riduzionefunzione del numero di verticali indagate	ξ ₄	1,55	1,55	1,55	1,55	1,55	1,55	[-]
Carico limite orizzontale caratteristico palo	$Q_{lim,h,K}$	1294,1	1045,0	1361,2	1320,9	1445,2	1344,0	[kN]
Coeff. Resistenza totale	γ _{t4}	1,30	1,30	1,30	1,30	1,30	1,30	[-]
Carico limite orizzontale di progetto del singolo palo	$Q_{lim,h,d}$	995,5	803,9	1047,0	1016,1	1111,7	1033,9	[kN]
Efficienza di gruppo	Е	0,6	0,6	0,6	0,6	0,6	0,6	[-]
Carico limite orizzontale di progetto del singolo palo in gruppo	$Q_{lim,h,d}$	597,3	482,3	628,2	609,7	667,0	620,3	[kN]
Azione orizzontale di calcolo agente sul singolo palo	H _{ed}	218,6	93,2	474,7	446,1	281,4	257,9	[kN]
Coefficiente di Sicurezza a carico limite orizzontale	FS	2,73	5,18	1,32	1,37	2,37	2,41	[-]

Tabella 14 – Spalla A – Verifica carico limite orizzontale

8.2.4.2 Spalla B

In Tabella 15e Tabella 16 si sintetizzano i calcoli di verifica a carico limite orizzontale per la palificata relativa alla Spalla B.

Verticale di indagine 1								
Terreno omogeneo								
Peso dell'unità di volume sommerso	$\gamma'_{v1} =$	10,00	[kN/m ³]					
Angolo di resistenza al taglio	φ' _{v1} =	37,00	[°]					
Coeffciente	K _{a,v1} =	0,25	[-]					
Coefficiente	K _{p,v1} =	4,02	[-]					

DATI DI CALCOLO		STA	TICA	SISI	ла х	SISN	U.M.	
		Comb.V _{max}	Comb. M _{max}	Comb.V _{max}	Comb. M _{max}	Comb.V _{max}	Comb. M _{max}	U.M.
Momento massimo	M _{max} =	100931,4	108909,8	99935,1	108561,2	100258,7	104254,6	[kNm]
Momento plastico resistente	M _{Rd, pl} =	9774,2	9774,2	9774,2	9774,2	9774,2	9774,2	[kNm]
Tipo riposta palo		PALO LUNGO	PALO LUNGO	PALO LUNGO	PALO LUNGO	PALO LUNGO	PALO LUNGO	[-]
Carico limite	H _{lim} =	2326,7	1785,4	2407,4	1805,6	2380,8	2080,0	[kN]
Profondità	f =	5,67	4,96	5,76	4,99	5,73	5,36	[m]

Tabella 15 – Spalla B - Calcolo carico limite orizzontale singola verticale di indagine

DATI DI CALCOLO		STA	TICA	SIS	MA X	SISI	MA Y	U.M.
		Comb.V _{max}	Comb. M _{max}	Comb.V _{max}	Comb. M _{max}	Comb.V _{max}	Comb. M _{max}	•
Taglio di progetto da calcolo FEM	V_{FEM}	127,4	72,3	220,3	119,5	305,1	160,3	[kN]
Momento di progetto da calcolo FEM	M_{FEM}	54,0	156,7	48,1	249,4	87,0	180,9	[kNm]
Coefficiente amplificativo per duttilità (NTC2018 - §7.2.5)	γ	1,00	1,00	1,30	1,30	1,30	1,30	[-]
Taglio di progetto	V _d [kN]	127,4	72,3	286,4	155,4	396,7	208,5	[kN]
Momento di progetto	M _d	54,0	156,7	62,6	324,2	113,0	235,2	[kNm]
	ξ_3	1,65	1,65	1,65	1,65	1,65	1,65	[-]
Coefficienti di riduzionefunzione del numero di verticali indagate	ξ_4	1,55	1,55	1,55	1,55	1,55	1,55	[-]
Carico limite orizzontale caratteristico palo	$Q_{lim,h,K}$	1410,1	1082,1	1459,0	1094,3	1442,9	1260,6	
Coeff. Resistenza totale	γ_{t_4}	1,30	1,30	1,30	1,30	1,30	1,30	[-]
Carico limite orizzontale di progetto del singolo palo	$Q_{lim,h,d}$	1084,7	832,3	1122,3	841,8	1109,9	969,7	[kN]
Efficienza di gruppo	Е	0,6	0,6	0,6	0,6	0,6	0,6	[-]
Carico limite orizzontale di progetto del singolo palo in gruppo	$Q_{lim,h,d}$	650,8	499,4	673,4	505,1	666,0	581,8	[kN]
Azione orizzontale di calcolo agente sul singolo palo	H _{ed}	127,4	72,3	286,4	155,4	396,7	208,5	[kN]
Coefficiente di Sicurezza a carico limite orizzontale	FS	5,11	6,90	2,35	3,25	1,68	2,79	[-]

Tabella 16 – Spalla B – Verifica carico limite orizzontale

8.2.4.3 Pila Centrale

In Tabella 17 e Tabella 18 si sintetizzano i calcoli di verifica a carico limite orizzontale per la palificata relativa alla Pila Centrale.

Verticale di indagine 1									
Terreno omogeneo									
Peso dell'unità di volume sommerso	$\gamma'_{v1} =$	10,00	[kN/m ³]						
Angolo di resistenza al taglio	φ' _{v1} =	37,00	[°]						
Coeffciente	K _{a,v1} =	0,25	[-]						
Coefficiente	K _{p,v1} =	4,02	[-]						

DATI DI CALCOLO		STA	TICA	SISI	MA X	SISM	ИА Ү	U.M.
		Comb.V _{max}	Comb. M _{max}	Comb.V _{max}	Comb. M _{max}	Comb.V _{max}	Comb. M _{max}	U.IVI.
Momento massimo	M _{max} =	103505,0	106276,9	105505,0	105915,4	104311,5	104653,7	[kNm]
Momento plastico resistente	$M_{Rd, pl} =$	9774,2	9774,2	9774,2	9774,2	9774,2	9774,2	[kNm]
Tipo riposta palo		PALO LUNGO	PALO LUNGO	PALO LUNGO	PALO LUNGO	PALO LUNGO	PALO LUNGO	[-]
Carico limite	H _{lim} =	2132,8	1945,2	1995,4	1968,5	2076,1	2052,5	[kN]
Profondità	f =	5,42	5,18	5,25	5,21	5,35	5,32	[m]

Tabella 17 - Pila Centrale – Calcolo carico limite orizzontale singola verticale di indagine

DATI DI CALCOLO		STA	TICA	SISI	MA X	SISI	MA Y	U.M.
		Comb.V _{max}	Comb. M _{max}	Comb.V _{max}	Comb. M _{max}	Comb.V _{max}	Comb. M _{max}	
Taglio di progetto da calcolo FEM	V_{FEM}	67,8	60,9	241,5	236,8	318,4	316,0	[kN]
Momento di progetto da calcolo FEM	M_{FEM}	65,5	95,6	338,3	353,2	363,2	383,9	[kNm]
Coefficiente amplificativo per duttilità (NTC2018 - §7.2.5)	γ	1,00	1,00	1,30	1,30	1,30	1,30	[-]
Taglio di progetto	V _d [kN]	67,8	60,9	313,9	307,8	413,9	410,8	[kN]
Momento di progetto	M_d	65,5	95,6	439,8	459,1	472,1	499,0	[kNm]
0 - 44 - 1 4 - 1 1 4	ξ_3	1,65	1,65	1,65	1,65	1,65	1,65	[-]
Coefficienti di riduzionefunzione del numero di verticali indagate	ξ_4	1,55	1,55	1,55	1,55	1,55	1,55	[-]
Carico limite orizzontale caratteristico palo	$Q_{lim,h,K}$	1292,6	1178,9	1209,3	1193,0	1258,2	1244,0	
Coeff. Resistenza totale	γ_{t_4}	1,3	1,3	1,3	1,3	1,3	1,3	[-]
Carico limite orizzontale di progetto del singolo palo	$Q_{lim,h,d}$	994,3	906,9	930,2	917,7	967,9	956,9	[kN]
Efficienza di gruppo	E	0,6	0,6	0,6	0,6	0,6	0,6	[-]
Carico limite orizzontale di progetto del singolo palo in gruppo	$Q_{lim,h,d}$	596,6	544,1	558,1	550,6	580,7	574,1	[kN]
Azione orizzontale di calcolo agente sul singolo palo	H _{ed}	67,8	60,9	313,9	307,8	413,9	410,8	[kN]
Coefficiente di Sicurezza a carico limite orizzontale	FS	8,80	8,94	1,78	1,79	1,40	1,40	[-]

Tabella 18 – Pila Centrale – Verifica carico limite orizzontale

8.2.4.4 Impalcato 1

In Tabella 19 e Tabella 20 si sintetizzano i calcoli di verifica a carico limite orizzontale per la palificata relativa all'Impalcato 1.

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

Verticale di indagine 1	Verticale di indagine 1									
Terreno omogeneo										
Peso dell'unità di volume sommerso	γ' _{v1} =	0,00	[kN/m ³]							
Angolo di resistenza al taglio	φ' _{v1} =	1,65	[°]							
Coeffciente	K _{a,v1} =	1,55	[-]							
Coefficiente	K _{p,v1} =	988,14	[-]							

DATI DI CALCOLO		STA	TICA	SISI	ИА X	SISN	MA Y	HM	
		Comb.V _{max}	Comb. M _{max}	Comb.V _{max}	Comb. M _{max}	Comb.V _{max}	Comb. M _{max}	U.M.	
Momento massimo	M _{max} =	83071,4	83711,8	79005,2	80437,2	78756,4	79787,2	[kNm]	
Momento plastico resistente	M _{Rd, pl} =	8936,5	8936,5	8936,5	8936,5	8936,5	8936,5	[kNm]	
Tipo riposta palo		PALO LUNGO	PALO LUNGO	PALO LUNGO	PALO LUNGO	PALO LUNGO	PALO LUNGO	[-]	
Carico limite	H _{lim} =	1630,4	1589,1	1925,9	1815,0	1946,0	1864,4	[kN]	
Profondità	f =	4,74	4,68	5,15	5,00	5,18	5,07	[m]	

Tabella 19 – Impalcato 1 - Calcolo carico limite orizzontale singola verticale di indagine

DATI DI CALCOLO		STA			MA X		ла ү	U.M.
BATTETOALOOLO		Comb.V _{max}	Comb. M _{max}	$Comb.V_{max}$	Comb. M _{max}	Comb.V _{max}	Comb. M _{max}	O.IVI.
Taglio di progetto da calcolo FEM	V_{FEM}	194,2	151,8	227,8	189,1	206,7	159,2	[kN]
Momento di progetto da calcolo FEM	M _{FEM}	249,6	277,6	190,5	257,3	263,3	283,7	[kNm]
Coefficiente amplificativo per duttilità (NTC2018 - §7.2.5)	γ	1,00	1,00	1,30	1,30	1,30	1,30	[-]
Taglio di progetto	V _d [kN]	194,2	151,8	296,1	245,9	268,7	206,9	[kN]
Momento di progetto	M _d	249,6	277,6	247,6	334,5	342,3	368,8	[kNm]
		1,65	1,65	1,65	1,65	1,65	1,65	[-]
Coefficienti di riduzionefunzione del numero di verticali indagate	ξ ₄	1,55	1,55	1,55	1,55	1,55	1,55	[-]
Carico limite orizzontale caratteristico palo	$Q_{lim,h,K}$	1152,5	1061,1	1238,0	1139,1	1154,5	1068,4	[kN]
Coeff. Resistenza totale	γ _{t4}	1,30	1,30	1,30	1,30	1,30	1,30	[-]
Carico limite orizzontale di progetto del singolo palo	$Q_{lim,h,d}$	886,5	816,2	952,3	876,2	888,0	821,8	[kN]
Efficienza di gruppo	E	0,6	0,6	0,6	0,6	0,6	0,6	[-]
Carico limite orizzontale di progetto del singolo palo in gruppo	$Q_{lim,h,d}$	531,9	489,7	571,4	525,7	532,8	493,1	[kN]
Azione orizzontale di calcolo agente sul singolo palo	H _{ed}	194,2	151,8	296,1	245,9	268,7	206,9	[kN]
Coefficiente di Sicurezza a carico limite orizzontale	FS	2,74	3,23	1,93	2,14	1,98	2,38	[-]

Tabella 20 – Impalcato 1 – Verifica carico limite orizzontale

8.2.4.5 Impalcato 2

In Tabella 21 e Tabella 22 si sintetizzano i calcoli di verifica a carico limite orizzontale per la palificata relativa all' Impalcato 2.

Verticale di indagine 1									
Terreno omogeneo									
Peso dell'unità di volume sommerso	$\gamma_{v1} =$	10,00	[kN/m ³]						
Angolo di resistenza al taglio	φ' _{v1} =	37,00	[°]						
Coeffciente	K _{a,v1} =	0,25	[-]						
Coefficiente	K _{p,v1} =	4,02	[-]						

DATI DI CALCOLO	STA	TICA	SISI	MA X	SISM	U.M.		
DATI DI CALCOLO		Comb.V _{max}	Comb. M _{max}	Comb.V _{max}	Comb. M _{max}	Comb.V _{max}	Comb. M _{max}	U.IVI.
Momento massimo	M _{max} =	79310,9	81315,1	77599,7	79592,8	79269,4	81148,3	[kNm]
Momento plastico resistente	M _{Rd, pl} =	8936,5	8936,5	8936,5	8936,5	8936,5	8936,5	[kNm]
Tipo riposta palo	•	PALO LUNGO	PALO LUNGO	PALO LUNGO	PALO LUNGO	PALO LUNGO	PALO LUNGO	[-]
Carico limite	H _{lim} =	1901,6	1750,8	2042,7	1879,5	1904,9	1762,8	[kN]
Profondità	f =	5,12	4,91	5,31	5,09	5,13	4,93	[m]

Tabella 21 – Impalcato 2 - Calcolo carico limite orizzontale singola verticale di indagine

Tabella 21 Illipaleato 2 Calcolo	curred	illilite of	izzoiita	e singo	ia vertic	uic di iii	augine	
DATI DI CALCOLO		STA	TICA	SISI	MA X	SISI	иа ү	U.M.
BATT BY GALLOGEO		Comb.V _{max}	Comb. M _{max}	Comb.V _{max}	Comb. M _{max}	Comb.V _{max}	Comb. M _{max}	O.W.
Taglio di progetto da calcolo FEM	V _{FEM}	230,9	225,0	374,0	340,5	289,5	263,8	[kN]
Momento di progetto da calcolo FEM	M _{FEM}	535,6	563,2	450,3	540,7	329,6	372,6	[kNm]
Coefficiente amplificativo per duttilità (NTC2018 - §7.2.5)	γ	1,00	1,00	1,30	1,30	1,30	1,30	[-]
Taglio di progetto	V _d [kN]	230,9	225,0	486,2	442,6	376,4	342,9	[kN]
Momento di progetto	M _d	535,6	563,2	585,3	702,9	428,4	484,3	[kNm]
Coefficienti di viduzionefunzione del numero di verticali indeceta	ξ_3	1,65	1,65	1,65	1,65	1,65	1,65	[-]
Coefficienti di riduzionefunzione del numero di verticali indagate	ξ_4	1,55	1,55	1,55	1,55	1,55	1,55	[-]
Carico limite orizzontale caratteristico palo	$Q_{lim,h,K}$	988,1	963,1	1167,2	1100,0	1179,4	1129,9	[kN]
Coeff. Resistenza totale	γ_{t_4}	1,3	1,30	1,30	1,30	1,30	1,30	[-]
Carico limite orizzontale di progetto del singolo palo	$Q_{lim,h,d}$	760,1	740,8	897,9	846,2	907,2	869,2	[kN]
Efficienza di gruppo	Е	0,6	0,6	0,6	0,6	0,6	0,6	[-]
Carico limite orizzontale di progetto del singolo palo in gruppo	$Q_{lim,h,d}$	456,1	444,5	538,7	507,7	544,3	521,5	[kN]
Azione orizzontale di calcolo agente sul singolo palo	H _{ed}	230,9	225,0	486,2	442,6	376,4	342,9	[kN]
Coefficiente di Sicurezza a carico limite orizzontale	FS	1,98	1,98	1,11	1,15	1,45	1,52	[-]

Tabella 22 – Impalcato 2 – Verifica carico limite orizzontale

9 VERIFICA DEGLI SPOSTAMENTI DEI PALI

L'analisi di interazione terreno-struttura ha consentito di determinare i valori degli spostamenti dei pali, considerati come elementi di vincolo non interagenti tra loro.

Di seguito si riportano i valori degli spostamenti delle palificate tenendo conto degli effetti di gruppo, valutati secondo i metodi classici della Geotecnica. Si evidenzia che le azioni considerate includono anche i carichi permanenti.

Tenuto conto della natura del terreno di fondazione, gli spostamenti dovuti ai carichi permanenti si verificano al momento della realizzazione, per cui la stima degli spostamenti massimi risulta cautelativa.

9.1 Spostamenti verticali dei pali in gruppo

L'analisi dei pali in gruppo può essere considerata come l'estensione di quella del singolo palo. Il cedimento medio w di un gruppo di pali può essere espresso come prodotto del cedimento w_s di un palo isolato a parità di carico medio, per un coefficiente di amplificazione R_s che dipende da fattori essenzialmente geometrici come il numero di pali n, il rapporto fra interasse e diametro dei pali s/d e il coefficiente di rigidezza del palo k:

$$w = w_s R_s$$

In *Tabella 23* sono riportati i valori teorici del coefficiente di amplificazione R_s suggeriti da Poulos e Davis (2002).

Una parte di tale cedimento è già scontato per i carichi permanenti.

Date le caratteristiche dei terreni, gli spostamenti si verificheranno in gran parte al momento del verificarsi della combinazione di carico in esame, quindi si ritengono compatibili con i requisiti di funzionalità dell'opera.

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

	di pali gruppo		4	ţ				9				16			2	25	
L/d	s/d K	10	100	1000	96	10	100	1000	00	10	100	1000	00	10	100	1000	∞
	2	1.83	2.25	2.54	2.62	2.78	3.80	4.42	4.48	3.76	5.49	6.40	6.53	4.75	7.20	8.48	8.68
10	5	1.40	1.73	1.88	1.90	1.83	2.49	2.82	2.85	2.26	3.25	3.74	3.82	2.68	3.98	4.70	4.75
	10	1.21	1.39	1.48	1.50	1.42	1.76	1.97	1.99	1.63	2.14	2.46	2.46	1.85	2.53	2.95	2.95
	2	1.99	2.14	2.65	2.87	3.01	3.64	4.84	5.29	4.22	5.38	7.44	8.10	5.40	7.25	9.28	11.25
25	5	1.47	1.74	2.09	2.19	1.98	2.61	3,48	3.74	2.46	3.54	4.96	5.34	2.95	4.48	6.50	7.03
	10	1.25	1.46	1.74	1.78	1.49	1.95	2.57	2.73	1.74	2.46	3.42	3.63	1.98	2.98	4.28	4.50
	2	2,43	2.31	2.56	3.01	3.91	3.79	4.52	5.66	5.58	5.65	7.05	8.94	7.26	7.65	9.91	12.66
50	5	1.73	1.81	2.10	2.44	2.46	2.75	3.51	4.29	3.16	3.72	5.11	6.37	3.88	4.74	6.64	8.67
	10	1.38	1.50	1.78	2.04	1.74	2.04	2.72	3.29	2.08	2.59	3.73	4.65	2.49	3.16	4.76	6.04
	2	2.56	2.31	2.26	3.16	4.43	4.05	4.11	6.15	6.42	6.14	6.50	9.92	8.48	8.40	10.25	14.35
100	5	1.88	1.88	2.01	2.64	2.80	2.94	3.38	4.87	3.74	4.05	4.98	7.54	4.68	5.18	6.75	10.55
	10	1.47	1.56	1.76	2.28	1.95	2.17	2.73	3.93	2.45	2.80	3.81	5.82	2.95	3.48	5.00	7.88

Tabella 23 - Valori teorici del coefficiente di amplificazione R_s (Poulos e Davis, 2002, Tabella 6.2)

9.1.1 Spalla A

Il cedimento massimo stimato per il gruppo di pali della Spalla A risulta pari a 26,1 mm allo SLE e 20,5 mm allo SLD.

SLD - Cedimento del palo in gruppo	w=	20,53	[mm]
SLE - Cedimento del palo in gruppo	w=	26,10	[mm]
Coefficiente di amplificazione	R _s =	3,48	[-]
Coefficiente di rigidezza del palo	k=	1.000,00	[-]
Modulo di Young dello scheletro solido	E's=	30.000,00	[kN/m ²]
Rapporto lunghezza/diametro	L/d=	18,33	[-]
Rapporto interasse/diametro	s/d=	3,17	[-]
Interasse pali	S=	3,80	[m]
Numero pali	n=	9,00	[-]
Modulo di Young del palo	E _p =	30.000.000	[kN/m ²]
Sezione trasversale del palo	A _p =	1,13	[m ²]
Diametro pali	d=	1,20	[m]
Lunghezza del palo	L=	22,00	[m]
SLD - Cedimento del palo singolo sospeso	W _S =	5,90	[mm]
SLE - Cedimento del palo singolo sospeso	w _s =	7,50	[mm]

Tabella 24 – Spalla A – Cedimenti dei pali in gruppo

9.1.2 Spalla B

Il cedimento massimo stimato per il gruppo di pali della Spalla B risulta pari a 17,75 mm allo SLE e 14,27 mm allo SLD.

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

SLE - Cedimento del palo singolo sospeso	w _s =	5,10	[mm]
SLD - Cedimento del palo singolo sospeso	w _s =	4,10	[mm]
Lunghezza del palo	L=	22,00	[m]
Diametro pali	d=	1,20	[m]
Sezione trasversale del palo	A _p =	1,13	[m ²]
Modulo di Young del palo	E _p =	30.000.000	[kN/m ²]
Numero pali	n=	9,00	[-]
Interasse pali	S=	4,44	[m]
Rapporto interasse/diametro	s/d=	3,70	[-]
Rapporto lunghezza/diametro	L/d=	18,33	[-]
Modulo di Young dello scheletro solido	E's=	30.000,00	[kN/m²]
Coefficiente di rigidezza del palo	k=	1.000,00	[-]
Coefficiente di amplificazione	R _s =	3,48	[-]
SLE - Cedimento del palo in gruppo	w=	17,75	[mm]
SLD - Cedimento del palo in gruppo	w=	14,27	[mm]

Tabella 25 – Spalla B – Cedimenti dei pali in gruppo

9.1.3 Pila Centrale

Il cedimento massimo stimato per il gruppo di pali della Pila Centrale risulta pari a 19,84 mm allo SLE e 18,79 mm allo SLD.

SLD - Cedimento del palo in gruppo	w=	18,79	[mm]
SLE - Cedimento del palo in gruppo	W=	19,84	[mm]
Coefficiente di amplificazione	R _s =	3,48	[-]
Coefficiente di rigidezza del palo	k=	1.000,00	[-]
Modulo di Young dello scheletro solido	E's=	30.000,00	[kN/m ²]
Rapporto lunghezza/diametro	L/d=	18,33	[-]
Rapporto interasse/diametro	s/d=	3,19	[-]
Interasse pali	S=	3,83	[m]
Numero pali	n=	9,00	[-]
Modulo di Young del palo	E _p =	30.000.000	[kN/m ²]
Sezione trasversale del palo	A _p =	1,13	[m ²]
Diametro pali	d=	1,20	[m]
Lunghezza del palo	L=	22,00	[m]
SLD - Cedimento del palo singolo sospeso	w _s =	5,40	[mm]
SLE - Cedimento del palo singolo sospeso	W _s =	5,70	[mm]

Tabella 26 – Pila centrale – Cedimenti dei pali in gruppo

9.1.4 Impalcato 1/2

Il cedimento massimo stimato per il gruppo di pali dell'Impalcato 1 e dell'Impalcato 2 risulta pari a 8,57 mm allo SLE e 5,85 mm allo SLD.

SLD - Cedimento del palo in gruppo	w=	5,85	[mm]
SLE - Cedimento del palo in gruppo	w=	8,57	[mm]
Coefficiente di amplificazione	R _s =	2,09	[-]
Coefficiente di rigidezza del palo	k=	1.000,00	[-]
Modulo di Young dello scheletro solido	E's=	30.000,00	[kN/m ²]
Rapporto lunghezza/diametro	L/d=	16,67	[-]
Rapporto interasse/diametro	s/d=	5,27	[-]
Interasse pali	S=	6,32	[m]
Numero pali	n=	4,00	[-]
Modulo di Young del palo	E _p =	30.000.000	[kN/m ²]
Sezione trasversale del palo	A _p =	1,13	[m ²]
Diametro pali	d=	1,20	[m]
Lunghezza del palo	L=	20,00	[m]
SLD - Cedimento del palo singolo sospeso	w _s =	2,80	[mm]
SLE - Cedimento del palo singolo sospeso	w _s =	4,10	[mm]

Tabella 27 – Impalcato 1/2 – Cedimenti dei pali in gruppo

10 VERIFICA DELLE OPERE DI PROTEZIONE SOTTOSTRUTTURE DEL PONTE

Nel seguente paragrafo si riportano le verifiche strutturali delle opere di protezione delle sottostrutture del ponte.

10.1 Software di calcolo utilizzato

Il programma di calcolo utilizzato è:

PAC – Versione 14.0

Produttore Aztec Informatica srl, Casali del Manco - Loc. Casole Bruzio (CS) Licenza AIU2302G8

Un attento esame preliminare della documentazione a corredo del software ha consentito di valutarne l'affidabilità e soprattutto l'idoneità al caso specifico. La documentazione, fornita dal produttore e dai distributori del software, contiene una esauriente descrizione delle basi teoriche e degli algoritmi impiegati, l'individuazione dei campi d'impiego, nonché casi prova interamente risolti e commentati, corredati dei file di input necessari a riprodurre l'elaborazione.

Gli sviluppatori hanno verificato l'affidabilità e la robustezza del codice di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

Il programma prevede una serie di controlli automatici (check) che consentono l'individuazione di errori di modellazione. Al termine delle analisi, controlli automatici identificano la presenza di spostamenti o rotazioni abnormi. Si può pertanto asserire che l'elaborazione sia corretta e completa.

I risultati delle elaborazioni sono stati sottoposti a controlli che ne comprovano l'attendibilità. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali e adottati, anche in fase di primo proporzionamento della struttura. Inoltre, sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni sono stati sottoposti a controlli dall'utente del software. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con

metodi tradizionali. Inoltre sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

In base a quanto sopra, si attesta che l'elaborazione è corretta ed idonea al caso specifico, pertanto i risultati di calcolo sono da ritenersi validi ed accettabili.

10.2 Modello ed ipotesi di calcolo

Le verifiche strutturali delle opere di protezione delle sottostrutture del ponte, sono state eseguite mediante analisi agli elementi finiti (FEM) in condizioni monodimensionali, mediante l'uso del software di calcolo PAC.

Le verifiche sono state condotte prendendo in considerazione la profondità massima del fondale in corrispondenza delle opere in progetto (pari a 9 m). Inoltre, in accordo a quanto previsto dalla NTC 2018- §6.5.2., tale quota profondità è stata incrementata di 0,5 m per tener conto di possibili variazioni del modello geometrico di riferimento.

Le opere di protezione sono costituite da paratie di pali in c.a. trivellati con camicie in acciaio, ammorsati nel terreno e collegate in testa da una trave di coronamento in cemento armato gettata in opera mediante elementi prefabbricati. Le opere in oggetto hanno uno sviluppo in pianta pari a 11,30 m.

Nel modello di calcolo vengono a favore di sicurezza trascurati i contributi resistenti offerti dalle camicie e dagli elementi prefabbricati.

OPERE DI PROTEZIONE DELI	LE SOTTOSTRUTTURE DEL PONTE
Tipologia di paratia	Paratia in pali trivellati
Diametro dei pali	D = 120 cm
Interasse dei pali	$i_{pali} = 2.25 \text{ m}$
Altezza totale	22 m
Lunghezza infissione	$H_{\text{infissione}} = 10,00 \text{ m}$
Profondità fondale	9,50 m
Trave di coronamento	Sezione 155 cm x 180 cm
Trave di coronamento	Lunghezza 11,30 m

Tabella 28 - Geometria del modello di calcolo della paratia

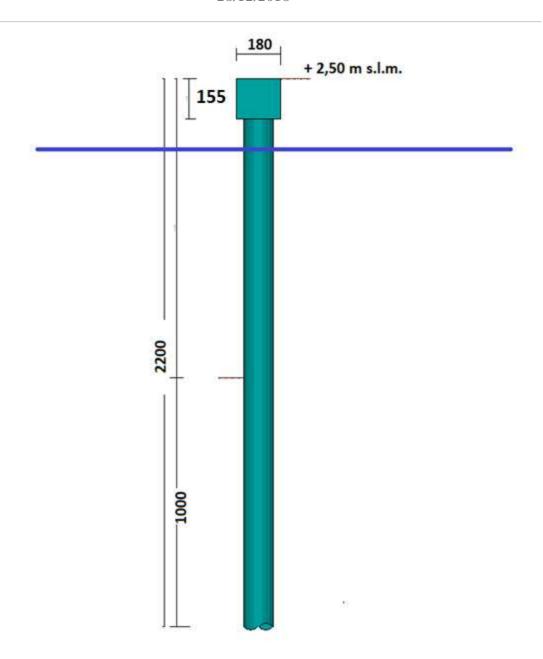
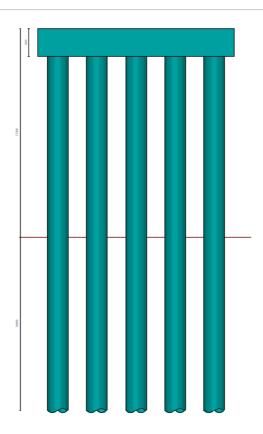



Figura 38 - Modello di calcolo – Sezione

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

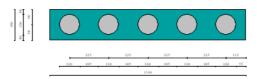


Figura 39 - Modello di calcolo – Prospetto

Il terreno viene modellato come un letto di molle indipendenti a comportamento elasto-plastico perfetto. Si assume cioè che la curva sforzi deformazioni abbia andamento bilatero. La singola "molla" ha una resistenza crescente secondo la relazione $p=k_s\delta p=k_s\delta$ fino al raggiungimento di una pressione p_{max} (*Figura 40*), pari al minimo dei seguenti:

- valore della pressione passiva in corrispondenza della quota della molla;
- valore della pressione corrispondente ad uno spostamento orizzontale pari a 1,50 cm.

Le molle al di sotto della linea di fondo scavo hanno un comportamento asimmetrico. Se lo spostamento della paratia in corrispondenza della molla è diretto verso valle la pressione limite della molla stessa sarà data dalla differenza fra la pressione

passiva di valle e la pressione attiva di monte $(K_{pv} - K_{am})$. Se lo spostamento è diretto verso monte la pressione limite sarà data dalla differenza tra la pressione passiva da monte e la pressione attiva da valle $(K_{pm} - K_{av})$.

Per le molle al di sopra della linea di fondo scavo si assume sempre il criterio di rottura per pressione passiva (a compressione). Naturalmente esse vengono rimosse dall'analisi quando vanno in trazione. In particolare saranno immediatamente eliminate durante l'analisi nel caso di una paratia libera (non soggetta a carichi verso monte) mentre avranno una grossa influenza in presenza di tiranti (soprattutto nel caso di tiranti attivi) e di vincoli.

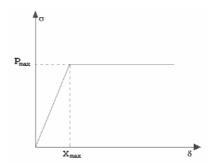


Figura 40 - Legame costitutivo del terreno

Per ciascun strato viene assegnata una costante di winkler corrispondente al rapporto tra la differenza fra pressione passiva di valle ($p_{pass\ valle}$) e pressione attiva di monte ($p_{attiva\ monte}$) e uno spostamento convenzionale u_{xconv} pari a 1.5 cm:

$$k_s = (p_{pass \, valle} - p_{attiva \, monte}) / u_{xconv}$$

10.3 Stratigrafia di riferimento e parametri geotecnici di calcolo

Nella tabella seguente vengono sintetizzati i parametri geotecnici di calcolo adottati nelle analisi. Per quanto riguarda l'attrito terreno-paratia, il calcolo delle spinte è stato condotto considerando angolo di attrito terreno-paratia $\delta_{terr.-paratia} = \phi'/2$ per la valutazione della spinta attiva mentre l'attrito a favore di sicurezza è stato trascurato ($\delta_{terr.-paratia} = 0$) nella valutazione della spinta passiva.

CTD A TO	γsat	γa	c'	φ'	δ _{terrparatia}		
STRATO	[kN/m³]	[kN/m³]	[kPa]	[°]	Spinta attiva	Spinta passiva	
CALCARENITE	20,0	18,0	0	37	18,5	0	

Tabella 29 - Sintesi dei parametri geotecnici

Al fine di modellare l'assenza di terreno a monte dell'elemento strutturale, è stato inserito uno strato fittizio (vedi strato in grigio in Figura 41), di caratteristiche fisiche e meccaniche nulle. In tal modo, a meno dei carichi esterni applicati e della spinta idrostatica dell'acqua autoequilibrata, la spinta sugli elementi strutturali sarà nulla per tutta la parte non ammorsata dell'opera di protezione.

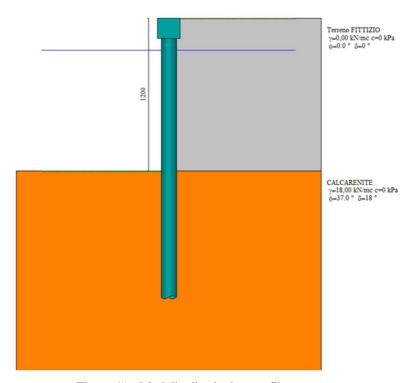


Figura 41 - Modello di calcolo - profilo

10.4 Azioni di progetto

L' azione di progetto deriva dalla forza generata dal possibile urto di imbarcazioni e viene determinata sulla base delle indicazioni fornite dall' Eurocodice 1- Parte 2-7.

In dettaglio, in accordo con il prospetto 4.4 del paragrafo §4.5 dell'Eurocodice (vedi Figura 42), si considera una classe di imbarcazione piccola, corrispondente ad una massa di 3000 t ed un carico orizzontale nominale equivalente pari a F_d = 15000 kN.

prospetto 4.4 Caratteristiche delle imbarcazioni e corrispondenti carichi di progetto orizzontali nominali equivalenti per navigazione marina

Classe di imbarcazione	Lunghezza / (m)	Massa <i>m</i> (t)	Forza F _d (kN)							
piccola	50	3 000	[15 000]							
media	100	10 000	[25 000]							
grande	200	40 000	[40 000]							
molto grande	300	100 000	[80 000]							
	Nota - I carichi forniti corrispondono ad una velocità pari a 2.0 m/s circa.									

Figura 42 – Prospetto 4.4 – Estratto da Eurocodice 1 – Parte 2-7

In accordo con la normativa di riferimento, l'azione nominale può essere ridotta del 50% in corrispondenza dei porti. Inoltre, l'Eurocodice stabilisce che la forza di impatto massima agente sulla struttura sarà pari al 10 % della forza di impatto della prua dell'imbarcazione.

La forza orizzontale di progetto (H_d) risulta dunque pari a:

$$H_d = F_d \cdot 0.5 \cdot 0.1 = 750 \ kN$$

Essendo il modello di calcolo monodimensionale, occorre valutare l'azione di progetto a metro lineare, dividendo la forza H_d per la lunghezza della trave di coronamento della paratia, ottenendo un carico pari a:

$$h_d = \frac{H_d}{11.3} \approx 70 \ kN/m$$

Si precisa che essendo l'unico carico di progetto un'**azione eccezionale**, non sono previsti coefficienti amplificativi delle azioni.

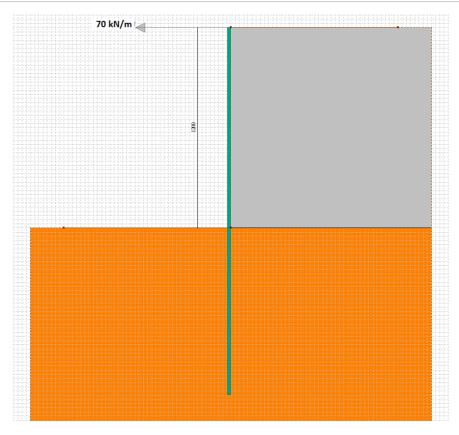


Figura 43 – Azione di progetto

10.5 Risultati

10.5.1 Verifiche strutturali dei pali

Tutte le verifiche resistenza strutturale risultano soddisfatte.

Nelle figure di seguito riportate vengono illustrati i risultati delle analisi eseguite. Nel dettaglio si riportano:

- Diagrammi delle sollecitazioni sulla paratia di pali (Momento [kNm/m], Taglio, [kN/m] Sforzo Normale[kN/m]);
- Diagrammi delle Pressioni sulla paratia di pali [kPa];
- Verifiche di resistenza strutturali del singolo palo (riporta Mu [kNm], M [kNm] T[kN] N [kN]);

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

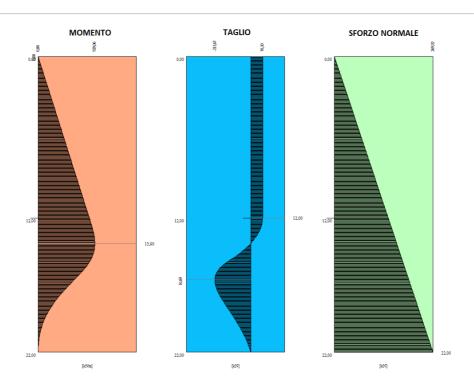


Figura 44 – Diagrammi delle sollecitazioni

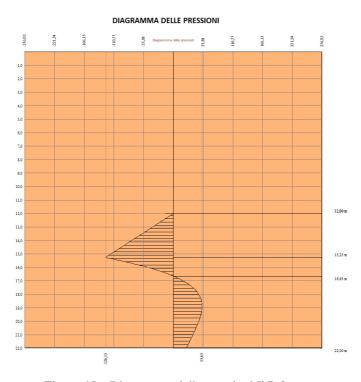


Figura 45 – Diagramma delle pressioni [kPa]

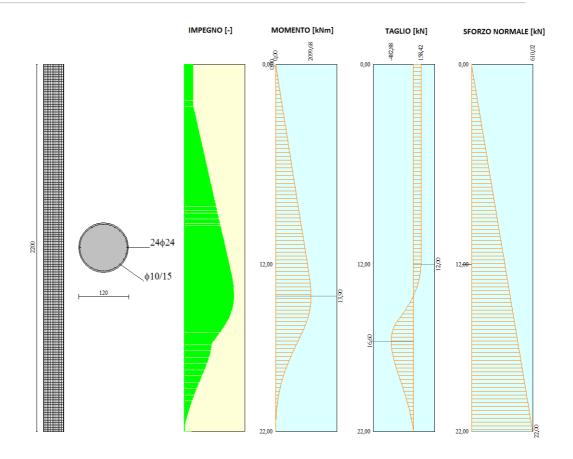
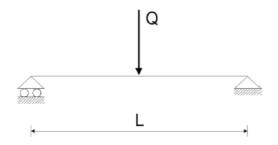



Figura 46 – Verifiche di resistenza strutturale

10.5.2 Verifiche strutturali della trave di coronamento

Per il calcolo del cordolo senza tiranti si fa riferimento allo schema di trave su 2 appoggi con carico concentrato in mezzeria:

dove:

$$Q = \frac{S_p \cdot L}{n_c}$$

$$L = \begin{cases} 2 \cdot i_p & \text{per paratie di pali o micropali} \\ 1 \text{ metro} & \text{per paratie a setti in c.a. o sezioni a T} \end{cases}$$

S_P: Spinta sulla paratia;

n_c: numero di cordoli;

 \dot{l}_{p} : interasse dei pali/micropali;

Il momento massimo e il taglio massimo per il calcolo delle armature sono rispettivamente:

$$M_{\text{max}} = \frac{Q \cdot L}{4} \quad T_{\text{max}} = \frac{Q}{2}$$

Figura 47 - Schema per il calcolo delle armature del cordolo di testa

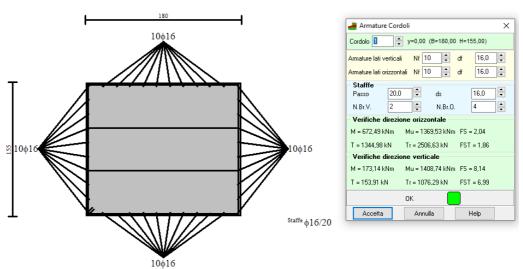


Figura 48 - Verifiche di resistenza del cordolo in c.a.

ALLEGATO 1- SOLLECITAZIONI PALI IN CORRISPONDENZA DEL FONDALE

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

				TARIF: Flor	nent Forces	. Erames				
Frame	Station	OutputCase	CaseType	StepType	P	V2	V3	M2	мз	FrameElem
Text	m	Text	Text	Text	KN	KN	KN	KN-m	KN-m	Text
Pila cen_01	0	#SLV_SISMAX	Combination	Max	-1065,9	208,7	120,4	177,9	291,5	Pila cen_01-1
Pila cen_01	0	#SLV_SISMAX	Combination	Min	-2638,3	-206,0	-122,1	-158,6	-302,6	Pila cen_01-1
Pila cen_01	0	#SLV_SISMAY	Combination	Max	-316,0	63,7	305,9	351,2	84,0	Pila cen_01-1
Pila cen_01	0	#SLV_SISMAY	Combination	Min	-3388,2	-61,0	-307,7	-332,0	-95,1	Pila cen_01-1
Pila cen_01	0	@SLU_Stat	Combination	Max	-1300,3	2,3	63,3	87,4	-4,2	Pila cen_01-1
Pila cen_01	0	@SLU_Stat	Combination	Min	-3208,2	0,9	-65,8	-62,8	-9,2	Pila cen_01-1
Pila cen_02	0	#SLV_SISMAX	Combination	Max	-1325,6	197,4	119,5	177,5	268,9	Pila cen_02-1
Pila cen_02	0	#SLV_SISMAX	Combination	Min	-2551,9	-193,4	-122,1	-155,3	-285,1	Pila cen_02-1
Pila cen_02 Pila cen_02	0	#SLV_SISMAY	Combination	Max Min	-1601,1	60,7	305,1	351,2	75,3	Pila cen_02-1 Pila cen_02-1
Pila cen_02	0	#SLV_SISMAY @SLU Stat	Combination	Max	-2276,4 -1678,5	-56,7	-307,7	-329,0 88,3	-91,5	Pila cen_02-1
Pila cen 02	0	@SLU_Stat	Combination	Min	-3001.7	3,3 1,6	62,5 -66,1	-60,1	-6,8 -12,8	Pila cen_02-1
Pila cen 03	0	#SLV SISMAX	Combination	Max	-1247,3	201,3	119,5	180,1	272,1	Pila cen 03-1
Pila cen 03	0	#SLV SISMAX	Combination	Min	-2817,7	-198,2	-122,8	-155,6	-285,8	Pila cen 03-1
Pila cen 03	0	#SLV SISMAY	Combination	Max	-496,3	61,7	305,2	354,0	77,5	Pila cen 03-1
Pila cen 03	0	#SLV SISMAY	Combination	Min	-3568,7	-58,6	-308,5	-329,5	-91,2	Pila cen 03-1
Pila cen 03	0	@SLU_Stat	Combination	Max	-1487,4	2,8	62,3	90,5	-5,1	Pila cen 03-1
Pila cen_03	0	@SLU_Stat	Combination	Min	-3471,8	1,0	-66,7	-59,4	-11,6	Pila cen_03-1
Pila cen_04	0	#SLV_SISMAX	Combination	Max	-1263,5	218,2	92,1	121,3	331,7	Pila cen_04-1
Pila cen_04	0	#SLV_SISMAX	Combination	Min	-2423,2	-217,5	-94,7	-98,5	-336,2	Pila cen_04-1
Pila cen_04	0	#SLV_SISMAY	Combination	Max	-303,8	65,8	309,1	371,1	98,0	Pila cen_04-1
Pila cen_04	0	#SLV_SISMAY	Combination	Min	-3382,9	-65,1	-311,7	-348,4	-102,5	Pila cen_04-1
Pila cen_04	0	@SLU_Stat	Combination	Max	-1287,2	0,6	64,2	94,4	-2,1	Pila cen_04-1
Pila cen_04	0	@SLU_Stat	Combination	Min	-3202,2	0,2	-67,8	-65,5	-3,2	Pila cen_04-1
Pila cen_05	0	#SLV_SISMAX	Combination	Max	-1641,0	203,9	92,1	121,3	304,0	Pila cen_05-1
Pila cen_05	0	#SLV_SISMAX	Combination	Min	-2231,0	-203,4	-94,7	-98,5	-308,1	Pila cen_05-1
Pila cen_05	0	#SLV_SISMAY	Combination	Max	-1644,7	61,3	309,1	371,1	89,8	Pila cen_05-1
Pila cen_05	0	#SLV_SISMAY	Combination	Min	-2227,3	-60,9	-311,7	-348,4	-93,9	Pila cen_05-1
Pila cen_05	0	@SLU_Stat	Combination	Max	-1672,0	0,4	64,2	94,4	-2,0	Pila cen_05-1
Pila cen_05 Pila cen_06	0	@SLU_Stat #SLV_SISMAX	Combination	Min Max	-3003,4 -1448,0	0,2 211,5	-67,8 92,1	-65,5 121,3	-2,8 317,9	Pila cen_05-1 Pila cen_06-1
Pila cen 06	0	#SLV_SISMAX	Combination	Min	-2609,2	-211,3	-94,7	-98,5	-321,6	Pila cen 06-1
Pila cen 06	0	#SLV_SISMAY	Combination	Max	-484,3	63,6	309,1	371,1	94,2	Pila cen 06-1
Pila cen 06	0	#SLV SISMAY	Combination	Min	-3572,9	-63,4	-311,7	-348,4	-97,9	Pila cen 06-1
Pila cen 06	0	@SLU Stat	Combination	Max	-1477,6	0,2	64,2	94,4	-1,8	Pila cen 06-1
Pila cen 06	0	@SLU Stat	Combination	Min	-3474,5	0,0	-67,8	-65,5	-2,6	Pila cen 06-1
Pila cen_07	0	#SLV_SISMAX	Combination	Max	-1024,2	207,1	121,1	177,3	300,5	Pila cen_07-1
Pila cen_07	0	#SLV_SISMAX	Combination	Min	-2596,8	-208,6	-121,5	-161,5	-297,3	Pila cen_07-1
Pila cen_07	0	#SLV_SISMAY	Combination	Max	-281,5	61,6	302,1	344,3	91,5	Pila cen_07-1
Pila cen_07	0	#SLV_SISMAY	Combination	Min	-3339,5	-63,2	-302,5	-328,5	-88,3	Pila cen_07-1
Pila cen_07	0	@SLU_Stat	Combination	Max	-1259,8	-0,2	64,3	86,1	4,7	Pila cen_07-1
Pila cen_07	0	@SLU_Stat	Combination	Min	-3151,4	-1,7	-65,3	-65,7	-0,5	Pila cen_07-1
Pila cen_08	0	#SLV_SISMAX	Combination	Max	-1283,9	189,5	116,7	177,8	278,6	Pila cen_08-1
Pila cen_08	0	#SLV_SISMAX	Combination	Min	-2491,3	-196,3	-121,8	-146,1	-257,8	Pila cen_08-1
Pila cen_08	0	#SLV_SISMAY	Combination	Max	-1557,6	54,7	295,4	337,5	91,9	Pila cen_08-1
Pila cen_08	0	#SLV_SISMAY	Combination	Min	-2217,5	-61,5	-300,5	-305,8	-71,1	Pila cen_08-1
Pila cen_08	0	@SLU_Stat	Combination	Max	-1626,9 -2932,7	-2,4	60,8	93,8	18,7	Pila cen_08-1
Pila cen_08 Pila cen_09	0	@SLU_Stat #SLV_SISMAX	Combination	Min Max	-2932,7	-5,9 199.2	-67,4	-53,9 181.5	6,8 284.8	Pila cen_08-1 Pila cen_09-1
Pila cen_09	0	#SLV_SISMAX	Combination	Min	-2774,6	199,2 -201,9	-122,8	181,5 -157,1	284,8 -278,8	Pila cen 09-1
Pila cen 09	0	#SLV_SISMAY	Combination	Max	-452,5	59,0	301,2	350,0	87,9	Pila cen_09-1
Pila cen 09	0	#SLV SISMAY	Combination	Min	-3527,8	-61,6	-304,2	-325,5	-81,9	Pila cen 09-1
Pila cen_09	0	@SLU_Stat	Combination	Max	-1444,3	-0,8	62,8	91,6	6,8	Pila cen_09-1
Pila cen_09	0	@SLU_Stat	Combination	Min	-3415,5	-2,5	-66,8	-60,5	0,8	Pila cen_09-1
Impalcato1_01	0	#SLV_SISMAX	Combination	Max	-238,7	146,2	120,0	218,3	136,2	Impalcato1_01-1
Impalcato1_01	0	#SLV_SISMAX	Combination	Min	-1141,1	-158,9	-132,2	-158,0	-137,8	Impalcato1_01-1
Impalcato1_01	0	#SLV_SISMAY	Combination	Max	-476,7	102,2	122,1	252,3	129,7	Impalcato1_01-1
Impalcato1_01	0	#SLV_SISMAY	Combination	Min	-903,1	-114,9	-134,3	-192,0	-131,3	Impalcato1_01-1
Impalcato1_01	0	@SLU_Stat	Combination	Max	-341,1	97,3	72,7	232,6	121,5	Impaicato1_01-1
Impalcato1_01	0	@SLU_Stat	Combination	Min	-1934,0	-97,9	-140,7	-196,7	-140,0	Impalcato1_01-1
Impalcato1_02	0	#SLV_SISMAX	Combination	Max	-614,5	142,7	139,7	165,9	143,4	Impalcato1_02-1
Impalcato1_02	0	#SLV_SISMAX	Combination	Min	-1428,8	-167,0	-136,1	-133,1	-127,1	Impaicato1_02-1
impalcato1_02	0	#SLV_SISMAY	Combination	Max	-397,6	111,1	141,1	199,1	144,2	Impaicato1_02-1
Impalcato1_02	0	#SLV_SISMAY	Combination	Min	-1645,7	-135,5	-137,4	-166,2	-128,0	Impaicato1_02-1
Impalcato1_02	0	@SLU_Stat	Combination	Max	-460,6	111,6	95,2	163,6	167,4	Impaicato1_02-1

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

				TABLE: Elec	mant Fassas	Framer				
Frame	Station	OutputCase	CaseType	StepType	nent Forces	- Frames V2	V3	M2	мз	FrameElem
Text	m	Text	Text	Text	KN	KN	KN	KN-m	KN-m	Text
Impalcato1_02	0	@SLU_Stat	Combination	Min	-2914,8	-139,3	-135,3	-167,5	-185,0	Impalcato1_02-1
Impalcato1_03	0	#SLV_SISMAX	Combination	Max	-494,9	157,5	99,6	195,6	113,5	Impalcato1_03-1
Impalcato1_03	0	#SLV_SISMAX	Combination	Min	-1035,3	-165,7	-110,4	-130,0	-109,8	Impalcato1_03-1
Impalcato1_03	0	#SLV_SISMAY	Combination	Max	-300,4	70,2	148,6	271,5	67,0	Impaicato1_03-1
Impalcato1_03 Impalcato1_03	0	#SLV_SISMAY @SLU_Stat	Combination	Min Max	-1229,8 -586,9	-78,4 46,8	-159,4 81,4	-205,8 234,9	-63,3 53,9	Impalcato1_03-1 Impalcato1_03-1
Impalcato1_03	0	@SLU Stat	Combination	Min	-1628,9	-74,1	-141,6	-199,7	-68,4	Impalcato1_03-1
Impalcato1_03	0	#SLV SISMAX	Combination	Max	-668,0	163,3	83,6	170,5	118,0	Impalcato1 04-1
Impalcato1 04	0	#SLV_SISMAX	Combination	Min	-1097,8	-168,7	-93,3	-103,9	-104,1	Impaicato1_04-1
Impalcato1_04	0	#SLV_SISMAY	Combination	Max	-450,7	53,5	159,2	272,7	65,2	Impalcato1_04-1
Impalcato1_04	0	#SLV_SISMAY	Combination	Min	-1315,1	-59,0	-168,9	-206,1	-51,3	Impalcato1_04-1
Impalcato1_04	0	@SLU_Stat	Combination	Max	-673,8	26,1	82,7	224,1	43,5	Impalcato1_04-1
Impalcato1_04	0	@SLU_Stat	Combination	Min	-1773,9	-71,6	-134,9	-184,7	-54,6	Impalcato1_04-1
Impalcato1_05	0	#SLV_SISMAX	Combination	Max	-969,5	166,4	95,3	130,5	113,1	Impalcato1_05-1
Impalcato1_05	0	#SLV_SISMAX	Combination	Min	-1605,1	-172,1	-86,4	-96,2	-100,6	Impalcato1_05-1
Impalcato1_05	0	#SLV_SISMAY	Combination	Max	-830,4	55,1	174,3	224,7	53,1	Impaicato1_05-1
Impalcato1_05	0	#SLV_SISMAY	Combination	Min	-1744,2	-60,9	-165,5	-190,3	-40,7	Impaicato1_05-1
Impalcato1_05	0	@SLU_Stat	Combination	Max Min	-705,3 -2754.3	34,6	92,5	162,4	54,5	Impalcato1_05-1 Impalcato1_05-1
Impalcato1_05 Impalcato1_06	0	@SLU_Stat #SLV_SISMAX	Combination	Max	-2754,3 -802.2	-85,7 164,0	-119,7 69,2	-164,6 152,7	-71,5 98,6	Impalcato1_05-1
Impaicato1 06	0	#SLV SISMAX	Combination	Min	-1116,5	-162,7	-77,9	-85,9	-97,1	Impalcato1 06-1
Impalcato1 06	0	#SLV_SISMAY	Combination	Max	-579.8	53,8	164,0	271,0	35,3	Impalcato1_06-1
Impalcato1 06	0	#SLV_SISMAY	Combination	Min	-1338,9	-52,5	-172,7	-204,2	-33,8	Impalcato1 06-1
Impalcato1_06	0	@SLU_Stat	Combination	Max	-812,1	19,0	84,7	216,6	22,0	Impalcato1_06-1
Impalcato1_06	0	@SLU_Stat	Combination	Min	-1840,3	-56,2	-125,5	-162,4	-50,1	Impalcato1_06-1
Impalcato1_07	0	#SLV_SISMAX	Combination	Max	-1142,7	166,5	78,1	124,4	98,5	Impalcato1_07-1
impalcato1_07	0	#SLV_SISMAX	Combination	Min	-1582,6	-166,1	-73,2	-81,3	-97,1	Impalcato1_07-1
Impalcato1_07	0	#SLV_SISMAY	Combination	Max	-905,3	54,0	174,2	243,5	39,4	Impalcato1_07-1
Impalcato1_07	0	#SLV_SISMAY	Combination	Min	-1820,0	-53,6	-169,3	-200,4	-38,0	Impalcato1_07-1
impalcato1_07	0	@SLU_Stat	Combination	Max	-1091,9	24,2	97,0	189,6	27,1	Impaicato1_07-1
Impalcato1_07 Impalcato1_08	0	@SLU_Stat #SLV_SISMAX	Combination	Min	-2698,1 -796,4	-68,0 164,8	-120,9 64,3	-166,8 144,8	-57,5 88,8	Impalcato1_07-1 Impalcato1_08-1
Impaicato1_08	0	#SLV_SISMAX	Combination	Min	-1106.8	-162,9	-72,4	-76,9	-88.4	Impaicato1_08-1
Impalcato1 08	0	#SLV SISMAY	Combination	Max	-539,9	52,6	170,4	269,5	29,3	Impalcato1 08-1
Impalcato1 08	0	#SLV_SISMAY	Combination	Min	-1363,3	-50,7	-178,5	-201,6	-29,0	Impalcato1 08-1
Impalcato1_08	0	@SLU_Stat	Combination	Max	-804,7	13,3	89,2	222,4	17,0	Impalcato1_08-1
Impalcato1_08	0	@SLU_Stat	Combination	Min	-1842,0	-49,8	-118,7	-146,6	-42,4	Impalcato1_08-1
Impalcato1_09	0	#SLV_SISMAX	Combination	Max	-1184,3	166,0	71,7	129,2	86,5	Impalcato1_09-1
Impalcato1_09	0	#SLV_SISMAX	Combination	Min	-1540,3	-164,9	-67,7	-82,9	-86,2	Impalcato1_09-1
impalcato1_09	0	#SLV_SISMAY	Combination	Max	-920,8	51,6	178,4	252,4	27,5	Impalcato1_09-1
impalcato1_09	0	#SLV_SISMAY	Combination	Min	-1803,8	-50,5	-174,4	-206,1	-27,2	Impalcato1_09-1
impalcato1_09	0	@SLU_Stat	Combination	Max	-1182,4	14,7	103,0	208,5	21,1	Impalcato1_09-1
Impalcato1_09 Impalcato1_10	0	@SLU_Stat #SLV_SISMAX	Combination	Min Max	-2641,5 -762,9	-58,2 172.6	-114,7	-164,2 152,4	-48,1	Impalcato1_09-1 Impalcato1_10-1
Impalcato1_10	0	#SLV_SISMAX	Combination	Min	-1141,4	172,6 -171,1	72,2 -79,5	-83,7	84,6 -83,6	impaicato1_10-1
Impaicato1_10	0	#SLV_SISMAY	Combination	Max	-499,5	57,8	177,2	269,4	31,6	Impaicato1_10-1
Impalcato1_10	0	#SLV_SISMAY	Combination	Min	-1404,9	-56,2	-184,4	-200,7	-30,6	Impalcato1_10-1
Impalcato1_10	0	@SLU_Stat	Combination	Max	-748,2	24,5	97,6	231,5	25,3	Impalcato1_10-1
Impalcato1_10	0	@SLU_Stat	Combination	Min	-1871,8	-63,6	-111,0	-132,0	-50,8	Impalcato1_10-1
impalcato1_11	0	#SLV_SISMAX	Combination	Max	-1142,8	172,9	78,2	130,9	84,2	Impalcato1_11-1
Impalcato1_11	0	#SLV_SISMAX	Combination	Min	-1588,7	-171,7	-74,0	-83,1	-84,0	Impalcato1_11-1
Impalcato1_11	0	#SLV_SISMAY	Combination	Max	-886,6	55,9	183,4	252,3	34,8	Impalcato1_11-1
impalcato1_11	0	#SLV_SISMAY	Combination	Min	-1845,0	-54,8	-179,2	-204,5	-34,5	Impalcato1_11-1
impalcato1_11	0	@SLU_Stat	Combination	Max	-1152,8	22,5	108,0	224,2	29,2	Impalcato1_11-1
Impalcato1_11	0	@SLU_Stat	Combination	Min Max	-2705,1	-70,0 179.6	-103,8	-156,8 150.7	-57,7 70.1	impalcato1_11-1
Impalcato1_12 Impalcato1_12	0	#SLV_SISMAX #SLV_SISMAX	Combination	Min	-645,2 -1206,7	179,6 -174,4	90,2 -95,6	159,7 -92,1	79,1 -85,2	Impalcato1_12-1 Impalcato1_12-1
Impalcato1_12	0	#SLV_SISMAY	Combination	Max	-393,5	63,5	183,5	265,8	31,4	Impaicato1_12-1
Impalcato1_12	0	#SLV_SISMAY	Combination	Min	-1458,4	-58,3	-188,9	-198,2	-37,5	Impaicato1_12-1
Impalcato1_12	0	@SLU_Stat	Combination	Max	-544,1	36,7	104,2	236,9	29,3	Impalcato1_12-1
Impalcato1_12	0	@SLU_Stat	Combination	Min	-1958,8	-72,1	-103,3	-120,0	-61,0	Impalcato1_12-1
Impalcato1_13	0	#SLV_SISMAX	Combination	Max	-1019,5	180,3	95,1	144,2	75,6	Impalcato1_13-1
Impalcato1_13	0	#SLV_SISMAX	Combination	Min	-1617,7	-173,8	-90,0	-96,4	-85,7	Impalcato1_13-1
Impalcato1_13	0	#SLV_SISMAY	Combination	Max	-774,4	62,5	188,3	252,5	28,2	Impalcato1_13-1
Impalcato1_13	0	#SLV_SISMAY	Combination	Min	-1862,7	-56,0	-183,1	-204,6	-38,4	Impalcato1_13-1

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

				TABLE: Flor	ment Forces	Framor				
Frame	Station	OutputCase	CaseType	StepType	P P	V2	V3	M2	мз	FrameElem
Text	m	Text	Text	Text	KN	KN	KN	KN-m	KN-m	Text
Impalcato1_13	0	@SLU_Stat	Combination	Max	-980,4	36,1	112,2	237,3	29,6	Impalcato1_13-1
Impalcato1_13	0	@SLU_Stat	Combination	Min	-2769,5	-77,9	-92,9	-151,0	-68,1	Impalcato1_13-1
Impalcato1_14	0	#SLV_SISMAX	Combination	Max	-267,5	189,3	111,2	171,0	118,6	Impalcato1_14-1
Impalcato1_14	0	#SLV_SISMAX	Combination	Min	-1128,6	-172,8	-114,0	-106,4	-147,6	Impaicato1_14-1
Impalcato1_14 Impalcato1_14	0	#SLV_SISMAY #SLV_SISMAY	Combination	Max Min	-226,2 -1169,9	78,7	184,0 -186,7	267,9 -203,4	73,6	impalcato1_14-1 impalcato1_14-1
Impalcato1_14	0	@SLU Stat	Combination	Max	-1169,9	-62,2 83,6	104,8	242,6	-102,6 108,7	Impaicato1_14-1
Impalcato1_14	0	@SLU_Stat	Combination	Min	-1948,9	-108,1	-103,4	-110,7	-156,9	Impaicato1_14-1
Impalcato1 15	ō	#SLV SISMAX	Combination	Max	-549,3	195,7	116,6	161,1	101,6	Impaicato1_15-1
Impalcato1_15	0	#SLV_SISMAX	Combination	Min	-1440,9	-174,0	-109,6	-115,2	-141,9	Impalcato1_15-1
Impalcato1_15	0	#SLV_SISMAY	Combination	Max	-473,6	83,2	189,2	258,1	52,1	Impalcato1_15-1
Impalcato1_15	0	#SLV_SISMAY	Combination	Min	-1516,6	-61,5	-182,2	-212,2	-92,4	Impalcato1_15-1
Impalcato1_15	0	@SLU_Stat	Combination	Max	-495,5	92,8	120,2	256,5	106,1	Impalcato1_15-1
Impalcato1_15	0	@SLU_Stat	Combination	Min	-2823,8	-120,0	-92,8	-164,6	-168,8	Impalcato1_15-1
Impalcato2_16	0	#SLV_SISMAX	Combination	Max	-320,7	155,0	87,6	150,6	127,3	Impalcato2_16-1
Impalcato2_16	0	#SLV_SISMAX	Combination	Min	-1075,4	-172,0	-90,0	-85,8	-99,3	Impalcato2_16-1
Impalcato2_16	0	#SLV_SISMAY	Combination	Max	-167,0	64,6	230,3	302,7	102,3	Impalcato2_16-1
impalcato2_16	0	#SLV_SISMAY	Combination Combination	Min Max	-1229,2	-81,5	-232,7 85.5	-237,8	-74,3 128,5	Impaicato2_16-1
Impalcato2_16 Impalcato2_16	0	@SLU_Stat @SLU_Stat	Combination	Min	-282,0 -1983,9	74,2 -120,0	85,5 -119,1	224,3 -133,5	-132,1	Impalcato2_16-1 Impalcato2_16-1
Impalcato2_10	0	#SLV SISMAX	Combination	Max	-584,0	160,0	94,0	142,2	121,6	Impalcato2_10-1
Impalcato2_17	0	#SLV_SISMAX	Combination	Min	-1406,3	-182,0	-86,7	-96,0	-82,2	Impaicato2_17-1
Impalcato2 17	0	#SLV SISMAY	Combination	Max	-448,9	66,2	238,0	289,8	93,3	Impalcato2 17-1
Impalcato2 17	0	#SLV_SISMAY	Combination	Min	-1541,4	-88,1	-230,7	-243,6	-53,9	Impalcato2 17-1
Impalcato2_17	0	@SLU_Stat	Combination	Max	-543,9	77,9	105,5	233,6	140,9	Impalcato2_17-1
Impalcato2_17	0	@SLU_Stat	Combination	Min	-2820,6	-132,9	-112,6	-184,6	-136,8	Impalcato2_17-1
Impalcato2_18	0	#SLV_SISMAX	Combination	Max	-670,9	160,0	78,6	147,3	53,5	Impalcato2_18-1
Impalcato2_18	0	#SLV_SISMAX	Combination	Min	-1165,8	-166,0	-84,0	-78,0	-48,0	Impalcato2_18-1
Impalcato2_18	0	#SLV_SISMAY	Combination	Max	-354,3	62,3	204,3	263,6	33,8	Impalcato2_18-1
Impalcato2_18	0	#SLV_SISMAY	Combination	Min	-1482,4	-68,3	-209,6	-194,3	-28,3	Impalcato2_18-1
Impalcato2_18	0	@SLU_Stat	Combination	Max Min	-568,0	32,7	92,7	229,6	35,7	Impalcato2_18-1
Impalcato2_18 Impalcato2_19	0	@SLU_Stat #SLV_SISMAX	Combination	Max	-1945,2 -1046,9	-72,7 165,2	-117,5 83,9	-140,0 132,1	-45,8 52,0	Impalcato2_18-1 Impalcato2_19-1
Impalcato2_19	Ö	#SLV SISMAX	Combination	Min	-1575,2	-172,5	-78,5	-83,8	-42,3	Impaicato2_19-1
Impalcato2 19	0	#SLV SISMAY	Combination	Max	-732,0	65,3	209,9	249,6	32,4	Impalcato2 19-1
Impalcato2 19	0	#SLV SISMAY	Combination	Min	-1890,1	-72,6	-204,5	-201,4	-22,7	Impalcato2 19-1
Impalcato2_19	0	@SLU_Stat	Combination	Max	-933,0	35,4	102,2	229,4	40,2	Impalcato2_19-1
Impalcato2_19	0	@SLU_Stat	Combination	Min	-2757,9	-82,7	-108,0	-173,5	-47,6	Impalcato2_19-1
Impalcato2_20	0	#SLV_SISMAX	Combination	Max	-753,1	163,7	69,3	145,1	30,5	Impalcato2_20-1
Impalcato2_20	0	#SLV_SISMAX	Combination	Min	-1121,6	-166,0	-76,7	-73,0	-32,9	Impalcato2_20-1
Impalcato2_20	0	#SLV_SISMAY	Combination	Max	-502,7	62,9	174,9	231,5	13,5	Impalcato2_20-1
Impalcato2_20	0	#SLV_SISMAY	Combination	Min	-1371,9	-65,2	-182,3	-159,4	-15,9	Impalcato2_20-1
Impalcato2_20	0	@SLU_Stat	Combination	Max	-752,6	25,2	93,5	237,1	24,4	Impalcato2_20-1
Impalcato2_20 Impalcato2_21	0	@SLU_Stat #SLV_SISMAX	Combination Combination	Min Max	-1851,4 -1139,8	-62,1 170,4	-115,3 74,7	-138,7 137,0	-40,9 29,5	Impalcato2_20-1 Impalcato2_21-1
Impalcato2_21	0	#SLV_SISMAX	Combination	Min	-1159,8	-172,0	-70,6	-88,3	-31,5	Impalcato2_21-1
Impalcato2_21	0	#SLV_SISMAY	Combination	Max	-888,3	67,2	180,3	221,2	15,0	Impaicato2_21-1
Impalcato2_21	0	#SLV_SISMAY	Combination	Min	-1813,6	-68,7	-176,1	-172,5	-16,9	Impalcato2_21-1
Impalcato2_21	0	@SLU_Stat	Combination	Max	-1135,3	28,0	102,9	233,0	29,7	Impalcato2_21-1
Impalcato2_21	0	@SLU_Stat	Combination	Min	-2681,4	-70,6	-106,1	-172,7	-45,4	Impalcato2_21-1
Impalcato2_22	0	#SLV_SISMAX	Combination	Max	-773,3	164,2	63,4	136,0	21,9	Impaicato2_22-1
Impalcato2_22	0	#SLV_SISMAX	Combination	Min	-1062,6	-166,1	-71,8	-63,4	-25,0	Impaicato2_22-1
Impalcato2_22	0	#SLV_SISMAY	Combination	Max	-568,4	61,2	147,7	200,7	15,9	Impalcato2_22-1
Impalcato2_22	0	#SLV_SISMAY	Combination	Min	-1267,5	-63,1	-156,1	-128,1	-19,1	Impaicato2_22-1
Impalcato2_22	0	@SLU_Stat @SLU_Stat	Combination Combination	Max Min	-788,3 -1790,7	15,6	90,8 -109,9	239,4 -134,2	18,4 -30,3	Impaicato2_22-1
Impalcato2_22 Impalcato2_23	0	#SLV SISMAX	Combination	Max	-1/90,/	-53,2 171,3	68,9	127,0	15,2	Impalcato2_22-1 Impalcato2_23-1
Impalcato2_23	0	#SLV_SISMAX	Combination	Min	-1518,4	-172,2	-65,4	-78,7	-18,6	Impaicato2_23-1
Impalcato2_23	0	#SLV_SISMAY	Combination	Max	-956,8	65,6	153,1	191,1	9,3	Impaicato2_23-1
Impalcato2_23	0	#SLV_SISMAY	Combination	Min	-1700,6	-66,5	-149,6	-142,8	-12,7	Impalcato2_23-1
Impalcato2_23	0	@SLU_Stat	Combination	Max	-1211,2	17,6	101,9	234,9	23,6	Impalcato2_23-1
Impalcato2_23	0	@SLU_Stat	Combination	Min	-2590,1	-61,8	-101,4	-169,8	-34,0	Impalcato2_23-1
Impalcato2_24	0	#SLV_SISMAX	Combination	Max	-744,0	202,0	75,6	133,7	81,8	Impalcato2_24-1
Impalcato2_24	0	#SLV_SISMAX	Combination	Min	-1059,4	-204,1	-84,0	-52,1	-85,0	Impaicato2_24-1
Impalcato2_24	0	#SLV_SISMAY	Combination	Max	-560,2	76,1	153,0	151,5	35,6	Impalcato2_24-1

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

Frame Station OutputCase Case/pye F V2 V3 M2 M5 FrameElem Text Text Text Text N1 N1 N1 N1 N1 N1 N1 N					TABLE: Elec	nant Farces	Framer				
Impalcand2_24	Frame	Station	OutputCase	CaseTyne			_	V3	M2	MB	FrameFlem
Impalcratol_24											
Impalence 0											
Impalcando_234	Impalcato2_24	0	#SLV_SISMAY	Combination	Min	-1243,2	-78,2	-161,5	-69,9	-38,8	Impalcato2_24-1
Impaicance_25	Impalcato2_24	0	@SLU_Stat	Combination	Max	-724,0	22,3	106,9	293,6	39,5	Impalcato2_24-1
Impalando 25		_				,	_	_		_	
Impairance_25			_								
Impaicance 25									-		
Impaicance_25		_					_			_	
Impaicance 0 65U SISMAX Combination Max 650,9 30,9 312,9 43,4 Impaicance 251 Impaicance 36 0 65U SISMAX Combination Max 660,1 255,7 100,2 150,9 221,8 Impaicance 251 Impaicance 36 0 65U SISMAX Combination Max 41,6 101,4 417,3 156,2 56,2 56,2 Impaicance 36 0 65U SISMAX Combination Max 41,6 101,4 417,3 156,2 56,2 56,2 Impaicance 36 0 65U SISMAY Combination Max 41,6 101,4 41,7 3 156,2 56,2 56,2 Impaicance 36 0 65U SISMAY Combination Max 41,6 101,4 41,7 41			_								
Impalcato 2, 56											
Impalactor 2								_			
Impalcato 2		0	_								
Impalcator 2	Impalcato2_26	0	#SLV_SISMAY	Combination	Max	-418,6	101,4	175,3	166,2	86,2	Impalcato2_26-1
Impalcator 2, 26	Impalcato2_26	0	#SLV_SISMAY	Combination	Min	-1279,9	-99,1	-182,3	-78,7	-102,8	Impalcato2_26-1
Impalcato2_27	Impalcato2_26	0	@SLU_Stat	Combination	Max	-489,4	46,0	128,8	353,8	94,6	Impalcato2_26-1
Impalcatod 27	Impalcato2_26	0	@SLU_Stat	Combination	Min	-1851,8	-98,2	-131,3	-212,6	-70,6	Impalcato2_26-1
Impalcatod 27	Impalcato2_27	0			Max	-915,2	266,7	106,3	129,8	228,5	Impalcato2_27-1
Impalcatod 27		_	_								_
Impalcato2 27 0						_					_
Impalcatod 27											
Impalcatool_28							_				
Impalcato2_28						_					
Impalcato2_28			_								-
Impalcato2_28											_
Impalcato2_28					-	_					_
Impalcato2_29	Impalcato2_28	0	@SLU_Stat	Combination	Max	-49,7				332,4	
Impalcato2_29	Impalcato2_28	0	@SLU_Stat	Combination	Min	-1805,8	-172,3	-142,8	-271,4	-327,3	Impalcato2_28-1
Impalcato2_29	Impalcato2_29	0	#SLV_SISMAX	Combination	Max	-396,9	343,5	147,8	207,7	399,5	Impalcato2_29-1
Impalcato2_29	Impalcato2_29	0	#SLV_SISMAX	Combination	Min	-1379,0	-311,7	-137,0	-168,2	-513,8	Impalcato2_29-1
Impalcato2_29			_								
Impalcato2 29			_			-		_		_	
SpallaA_01			_								
SpallaA 01											
SpallaA 01						-		_		_	
SpallaA O			_								
SpallaA O											
SpallaA_02		0	@SLU_Stat	Combination	Max					_	
Spallad_02 0 #SIV_SISMAX Combination Min -977,6 -204,3 -44,2 -2,3 -194,8 Spallad_02-1 Spallad_02 0 #SIV_SISMAY Combination Max -199,9 79,7 152,0 14,5 99,5 Spallad_02-1 Spallad_02 0 #SIV_SISMAY Combination Min -605,1 -59,9 -149,7 -9,7 -56,1 Spallad_02-1 Spallad_02 0 @SIU_Stat Combination Min -605,1 -59,9 -149,7 -9,7 -56,1 Spallad_02-1 Spallad_02 0 @SIU_Stat Combination Min -1433,9 -95,7 -35,3 -35,4 -199,6 Spallad_02-1 Spallad_03 0 #SIV_SISMAX Combination Min -1163,7 -330,0 -59,9 -31,1 -217,1 Spallad_03-1 Spallad_03 0 #SIV_SISMAY Combination Max 129,2 122,3 155,3 76,6 109,0 Spallad_03-1	SpallaA_01	0	@SLU_Stat	Combination	Min	-1618,4	-156,2	-62,2	-112,4	-115,8	SpallaA_01-1
SpallaA_O2 0 #SLV_SISMAY Combination Max -199,9 79,7 152,0 14,5 99,5 SpallaA_O2-1 SpallaA_O2 0 #SLV_SISMAY Combination Min -605,1 -59,9 -149,7 -9,7 -56,1 SpallaA_O2-1 SpallaA_O2 0 @SLU_Stat Combination Min -205,8 54,3 32,4 49,2 98,2 SpallaA_O2-1 SpallaA_O2 0 @SLU_Stat Combination Min -1433,9 -95,7 -35,3 -35,4 -169,6 SpallaA_O2-1 SpallaA_O3 0 #SLV_SISMAX Combination Min -1163,7 -330,0 -59,9 -31,1 -217,1 SpallaA_O3-1 SpallaA_O3 0 #SLV_SISMAY Combination Min -163,7 -330,0 -59,9 -31,1 -217,1 SpallaA_O3-1 SpallaA_O3 0 #SLV_SISMAY Combination Min -979,6 -102,9 -161,0 -50,1 -73,5 SpallaA_O3-1	SpallaA_02	0	#SLV_SISMAX	Combination	Max	172,6	224,1	46,5	7,1	238,2	SpallaA_02-1
SpallaA 02	SpallaA_02	0	#SLV_SISMAX	Combination	Min	-977,6	-204,3	-44,2	-2,3	-194,8	SpallaA_02-1
Spallad_02	SpallaA_02	0	#SLV_SISMAY	Combination	Max	-199,9	79,7	152,0	14,5	99,5	SpallaA_02-1
SpallaA 02						_					_
SpallaA_03 0 #SLV_SISMAX Combination Max 313,3 349,3 54,1 57,6 252,6 SpallaA_03-1 SpallaA_03 0 #SLV_SISMAX Combination Min -1163,7 -330,0 -59,9 -31,1 -217,1 SpallaA_03-1 SpallaA_03 0 #SLV_SISMAY Combination Min -979,6 -102,9 -161,0 -50,1 -73,5 SpallaA_03-1 SpallaA_03 0 #SLV_SISMAY Combination Max -88,4 72,8 58,2 135,2 180,2 SpallaA_03-1 SpallaA_03 0 @SLU_Stat Combination Max -88,4 72,8 58,2 135,2 180,2 SpallaA_03-1 SpallaA_03 0 @SLU_Stat Combination Min -1657,1 -154,4 -65,2 -114,9 -122,7 SpallaA_03-1 SpallaA_04 0 #SLV_SISMAX Combination Max -546,6 349,2 62,2 24,3 259,4 SpallaA_04-1			_								
SpallaA_03 0 #SLV_SISMAX Combination Min -1163,7 -330,0 -59,9 -31,1 -217,1 SpallaA_03-1 SpallaA_03 0 #SLV_SISMAY Combination Max 129,2 122,3 155,3 76,6 109,0 SpallaA_03-1 SpallaA_03 0 #SLV_SISMAY Combination Min -979,6 -102,9 -161,0 -50,1 -73,5 SpallaA_03-1 SpallaA_03 0 @SLU_Stat Combination Max -88,4 72,8 58,2 135,2 180,2 SpallaA_03-1 SpallaA_03 0 @SLU_Stat Combination Min -1657,1 -154,4 -65,2 -114,9 -122,7 SpallaA_03-1 SpallaA_04 0 #SLV_SISMAX Combination Max -546,6 349,2 62,2 24,3 259,4 SpallaA_04-1 SpallaA_04 0 #SLV_SISMAX Combination Max -175,0 110,9 177,6 44,2 115,7 SpallaA_04-1			_					_			_
SpallaA_03 0 #SLV_SISMAY Combination Max 129,2 122,3 155,3 76,6 109,0 SpallaA_03-1 SpallaA_03 0 #SLV_SISMAY Combination Min -979,6 -102,9 -161,0 -50,1 -73,5 SpallaA_03-1 SpallaA_03 0 @SLU_Stat Combination Max -88,4 72,8 58,2 135,2 180,2 SpallaA_03-1 SpallaA_03 0 @SLU_Stat Combination Min -1657,1 -154,4 -65,2 -114,9 -122,7 SpallaA_03-1 SpallaA_04 0 #SLV_SISMAX Combination Max -546,6 349,2 62,2 24,3 259,4 SpallaA_04-1 SpallaA_04 0 #SLV_SISMAX Combination Max -175,0 110,9 177,6 44,2 115,7 SpallaA_04-1 SpallaA_04 0 #SLV_SISMAY Combination Max -175,0 110,9 177,6 44,2 115,7 SpallaA_04-1						_					
SpallaA_03 0 #SLV_SISMAY Combination Min -979,6 -102,9 -161,0 -50,1 -73,5 SpallaA_03-1 SpallaA_03 0 @SLU_Stat Combination Max -88,4 72,8 58,2 135,2 180,2 SpallaA_03-1 SpallaA_03 0 @SLU_Stat Combination Min -1657,1 -154,4 -65,2 -114,9 -122,7 SpallaA_03-1 SpallaA_04 0 #SLV_SISMAX Combination Max -546,6 349,2 62,2 24,3 259,4 SpallaA_04-1 SpallaA_04 0 #SLV_SISMAX Combination Min -984,1 -345,3 -54,9 -31,8 -174,6 SpallaA_04-1 SpallaA_04 0 #SLV_SISMAY Combination Max -175,0 110,9 177,6 44,2 115,7 SpallaA_04-1 SpallaA_04 0 #SLV_SISMAY Combination Max -175,0 107,0 -170,3 -51,7 -30,9 SpallaA_04-1											·
SpallaA_03 0 @SLU_Stat Combination Max -88,4 72,8 58,2 135,2 180,2 SpallaA_03-1 SpallaA_03 0 @SLU_Stat Combination Min -1657,1 -154,4 -65,2 -114,9 -122,7 SpallaA_03-1 SpallaA_04 0 #SLV_SISMAX Combination Max -546,6 349,2 62,2 24,3 259,4 SpallaA_04-1 SpallaA_04 0 #SLV_SISMAX Combination Min -984,1 -345,3 -54,9 -31,8 -174,6 SpallaA_04-1 SpallaA_04 0 #SLV_SISMAY Combination Max -175,0 110,9 177,6 44,2 115,7 SpallaA_04-1 SpallaA_04 0 #SLV_SISMAY Combination Min -1355,7 -107,0 -170,3 -51,7 -30,9 SpallaA_04-1 SpallaA_04 0 @SLU_Stat Combination Max -538,6 19,8 48,1 65,2 153,9 SpallaA_04-1			_					_			
SpallaA_03 0 @SLU_Stat Combination Min -1657,1 -154,4 -65,2 -114,9 -122,7 SpallaA_03-1 SpallaA_04 0 #SLV_SISMAX Combination Max -546,6 349,2 62,2 24,3 259,4 SpallaA_04-1 SpallaA_04 0 #SLV_SISMAX Combination Min -984,1 -345,3 -54,9 -31,8 -174,6 SpallaA_04-1 SpallaA_04 0 #SLV_SISMAY Combination Max -175,0 110,9 177,6 44,2 115,7 SpallaA_04-1 SpallaA_04 0 #SLV_SISMAY Combination Min -1355,7 -107,0 -170,3 -51,7 -30,9 SpallaA_04-1 SpallaA_04 0 @SLU_Stat Combination Max -538,6 19,8 48,1 65,2 153,9 SpallaA_04-1 SpallaA_04 0 @SLU_Stat Combination Min -1475,3 -141,6 -47,4 -68,3 8,4 SpallaA_04-1								_			
SpallaA_04 0 #SLV_SISMAX Combination Max -546,6 349,2 62,2 24,3 259,4 SpallaA_04-1 SpallaA_04 0 #SLV_SISMAX Combination Min -984,1 -345,3 -54,9 -31,8 -174,6 SpallaA_04-1 SpallaA_04 0 #SLV_SISMAY Combination Max -175,0 110,9 177,6 44,2 115,7 SpallaA_04-1 SpallaA_04 0 #SLV_SISMAY Combination Min -1355,7 -107,0 -170,3 -51,7 -30,9 SpallaA_04-1 SpallaA_04 0 @SLU_Stat Combination Max -538,6 19,8 48,1 65,2 153,9 SpallaA_04-1 SpallaA_04 0 @SLU_Stat Combination Min -1475,3 -141,6 -47,4 -68,3 8,4 SpallaA_04-1 SpallaA_05 0 #SLV_SISMAX Combination Max -604,1 217,7 46,4 14,9 222,2 SpallaA_05-1		0		Combination	Min						
SpallaA_04 0 #SLV_SISMAY Combination Max -175,0 110,9 177,6 44,2 115,7 SpallaA_04-1 SpallaA_04 0 #SLV_SISMAY Combination Min -1355,7 -107,0 -170,3 -51,7 -30,9 SpallaA_04-1 SpallaA_04 0 @SLU_Stat Combination Max -538,6 19,8 48,1 65,2 153,9 SpallaA_04-1 SpallaA_04 0 @SLU_Stat Combination Min -1475,3 -141,6 -47,4 -68,3 8,4 SpallaA_04-1 SpallaA_05 0 #SLV_SISMAX Combination Max -604,1 217,7 46,4 14,9 222,2 SpallaA_05-1 SpallaA_05 0 #SLV_SISMAX Combination Min -831,0 -214,4 -45,3 -5,5 -134,8 SpallaA_05-1 SpallaA_05 0 #SLV_SISMAY Combination Max -625,1 68,1 152,7 37,9 101,5 SpallaA_05-1		0		Combination	Max			_			
SpallaA_04 0 #SLV_SISMAY Combination Min -1355,7 -107,0 -170,3 -51,7 -30,9 SpallaA_04-1 SpallaA_04 0 @SLU_Stat Combination Max -538,6 19,8 48,1 65,2 153,9 SpallaA_04-1 SpallaA_04 0 @SLU_Stat Combination Min -147,5,3 -141,6 -47,4 -68,3 8,4 SpallaA_04-1 SpallaA_05 0 #SLV_SISMAX Combination Max -604,1 217,7 46,4 14,9 222,2 SpallaA_05-1 SpallaA_05 0 #SLV_SISMAX Combination Max -604,1 217,7 46,4 14,9 222,2 SpallaA_05-1 SpallaA_05 0 #SLV_SISMAY Combination Max -625,1 68,1 152,7 37,9 101,5 SpallaA_05-1 SpallaA_05 0 #SLV_SISMAY Combination Min -810,0 -64,8 -151,6 -28,6 -14,1 SpallaA_05-1	SpallaA_04	0	#SLV_SISMAX	Combination	Min	-984,1	-345,3	-54,9	-31,8	-174,6	SpallaA_04-1
SpallaA_04 0 @SLU_Stat Combination Max -538,6 19,8 48,1 65,2 153,9 SpallaA_04-1 SpallaA_04 0 @SLU_Stat Combination Min -1475,3 -141,6 -47,4 -68,3 8,4 SpallaA_04-1 SpallaA_05 0 #SLV_SISMAX Combination Max -604,1 217,7 46,4 14,9 222,2 SpallaA_05-1 SpallaA_05 0 #SLV_SISMAX Combination Min -831,0 -214,4 -45,3 -5,5 -134,8 SpallaA_05-1 SpallaA_05 0 #SLV_SISMAY Combination Max -625,1 68,1 152,7 37,9 101,5 SpallaA_05-1 SpallaA_05 0 #SLV_SISMAY Combination Min -810,0 -64,8 -151,6 -28,6 -14,1 SpallaA_05-1 SpallaA_05 0 @SLU_Stat Combination Max -489,8 18,3 26,2 31,5 84,9 SpallaA_05-1 S			_							115,7	SpallaA_04-1
SpallaA_04 0 @SLU_Stat Combination Min -1475,3 -141,6 -47,4 -68,3 8,4 SpallaA_04-1 SpallaA_05 0 #SLV_SISMAX Combination Max -604,1 217,7 46,4 14,9 222,2 SpallaA_05-1 SpallaA_05 0 #SLV_SISMAX Combination Min -831,0 -214,4 -45,3 -5,5 -134,8 SpallaA_05-1 SpallaA_05 0 #SLV_SISMAY Combination Max -625,1 68,1 152,7 37,9 101,5 SpallaA_05-1 SpallaA_05 0 #SLV_SISMAY Combination Min -810,0 -64,8 -151,6 -28,6 -14,1 SpallaA_05-1 SpallaA_05 0 @SLU_Stat Combination Max -489,8 18,3 26,2 31,5 84,9 SpallaA_05-1 SpallaA_05 0 @SLU_Stat Combination Min -1513,9 -88,7 -30,5 -16,4 -62,6 SpallaA_05-1 <			_								
SpallaA_05 0 #SLV_SISMAX Combination Max -604,1 217,7 46,4 14,9 222,2 SpallaA_05-1 SpallaA_05 0 #SLV_SISMAX Combination Min -831,0 -214,4 -45,3 -5,5 -134,8 SpallaA_05-1 SpallaA_05 0 #SLV_SISMAY Combination Max -625,1 68,1 152,7 37,9 101,5 SpallaA_05-1 SpallaA_05 0 #SLV_SISMAY Combination Min -810,0 -64,8 -151,6 -28,6 -14,1 SpallaA_05-1 SpallaA_05 0 @SLU_Stat Combination Max -489,8 18,3 26,2 31,5 84,9 SpallaA_05-1 SpallaA_05 0 @SLU_Stat Combination Min -1513,9 -88,7 -30,5 -16,4 -62,6 SpallaA_05-1 SpallaA_06 0 #SLV_SISMAX Combination Max -582,9 338,7 55,2 41,9 281,4 SpallaA_06-1						_					
SpallaA_05 0 #SLV_SISMAX Combination Min -831,0 -214,4 -45,3 -5,5 -134,8 SpallaA_05-1 SpallaA_05 0 #SLV_SISMAY Combination Max -625,1 68,1 152,7 37,9 101,5 SpallaA_05-1 SpallaA_05 0 #SLV_SISMAY Combination Min -810,0 -64,8 -151,6 -28,6 -14,1 SpallaA_05-1 SpallaA_05 0 @SLU_Stat Combination Max -489,8 18,3 26,2 31,5 84,9 SpallaA_05-1 SpallaA_05 0 @SLU_Stat Combination Min -1513,9 -88,7 -30,5 -16,4 -62,6 SpallaA_05-1 SpallaA_06 0 #SLV_SISMAX Combination Max -582,9 338,7 55,2 41,9 281,4 SpallaA_06-1											
SpallaA_05 0 #SLV_SISMAY Combination Max -625,1 68,1 152,7 37,9 101,5 SpallaA_05-1 SpallaA_05 0 #SLV_SISMAY Combination Min -810,0 -64,8 -151,6 -28,6 -14,1 SpallaA_05-1 SpallaA_05 0 @SLU_Stat Combination Max -489,8 18,3 26,2 31,5 84,9 SpallaA_05-1 SpallaA_05 0 @SLU_Stat Combination Min -1513,9 -88,7 -30,5 -16,4 -62,6 SpallaA_05-1 SpallaA_06 0 #SLV_SISMAX Combination Max -582,9 338,7 55,2 41,9 281,4 SpallaA_06-1			_				_				
SpallaA_05 0 #SLV_SISMAY Combination Min -810,0 -64,8 -151,6 -28,6 -14,1 SpallaA_05-1 SpallaA_05 0 @SLU_Stat Combination Max -489,8 18,3 26,2 31,5 84,9 SpallaA_05-1 SpallaA_05 0 @SLU_Stat Combination Min -1513,9 -88,7 -30,5 -16,4 -62,6 SpallaA_05-1 SpallaA_06 0 #SLV_SISMAX Combination Max -582,9 338,7 55,2 41,9 281,4 SpallaA_06-1											
SpallaA_05 0 @SLU_Stat Combination Max -489,8 18,3 26,2 31,5 84,9 SpallaA_05-1 SpallaA_05 0 @SLU_Stat Combination Min -1513,9 -88,7 -30,5 -16,4 -62,6 SpallaA_05-1 SpallaA_06 0 #SLV_SISMAX Combination Max -582,9 338,7 55,2 41,9 281,4 SpallaA_06-1			_								
SpallaA_05 0 @SLU_Stat Combination Min -1513,9 -88,7 -30,5 -16,4 -62,6 SpallaA_05-1 SpallaA_06 0 #SLV_SISMAX Combination Max -582,9 338,7 55,2 41,9 281,4 SpallaA_06-1			_								
SpallaA_06 0 #SLV_SISMAX Combination Max -582,9 338,7 55,2 41,9 281,4 SpallaA_06-1						_					
							_				
			_	Combination	Min						

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

				TABLE: Elec	nant Farras	France				
Frame	Station	OutputCase	CaseType	StepType	nent Forces P	- Frames V2	V3	M2	мз	FrameElem
Text	m	Text	Text	Text	KN	KN	KN	KN-m	KN-m	Text
SpallaA_06	0	#SLV_SISMAY	Combination	Max	-215,2	105,8	167,9	69,3	125,0	SpallaA_06-1
SpallaA_06	0	#SLV_SISMAY	Combination	Min	-1374,9	-106,4	-171,7	-47,0	-32,3	SpallaA_06-1
SpallaA_06	0	@SLU_Stat	Combination	Max	-591,1	17,2	41,8	79,4	166,0	SpallaA_06-1
SpallaA_06	0	@SLU_Stat	Combination	Min	-1539,9	-140,4	-49,0	-55,1	7,8	SpallaA_06-1
SpallaA_07	0	#SLV_SISMAX	Combination Combination	Max Min	-1330,9 -1884,7	268,5	58,1	20,3	126,7	SpallaA_07-1
SpallaA_07 SpallaA_07	0	#SLV_SISMAX #SLV_SISMAY	Combination	Max	-907,9	-305,0 73,3	-57,1 185,3	-11,5 53,5	35,1 114,3	SpallaA_07-1 SpallaA_07-1
SpallaA_07	0	#SLV_SISMAY	Combination	Min	-2307,7	-109,9	-184,2	-44,7	47,6	SpallaA 07-1
SpallaA_07	0	@SLU_Stat	Combination	Max	-1372,3	4,0	37,7	23,5	157,3	SpallaA_07-1
SpallaA_07	0	@SLU Stat	Combination	Min	-2607,8	-151,1	-41,2	-10,6	43,5	SpallaA 07-1
SpallaA_08	0	#SLV_SISMAX	Combination	Max	-1570,7	276,7	56,6	16,1	117,7	SpallaA_08-1
SpallaA_08	0	#SLV_SISMAX	Combination	Min	-1948,7	-314,3	-55,5	-7,2	44,2	SpallaA_08-1
SpallaA_08	0	#SLV_SISMAY	Combination	Max	-1589,1	73,7	186,7	42,4	112,5	SpallaA_08-1
SpallaA_08	0	#SLV_SISMAY	Combination	Min	-1930,2	-111,3	-185,6	-33,5	49,4	SpallaA_08-1
SpallaA_08	0	@SLU_Stat	Combination	Max	-1577,4	1,6	33,4	20,1	152,7	SpallaA_08-1
SpallaA_08	0	@SLU_Stat	Combination	Min	-2693,3	-153,3	-37,0	-6,9	43,8	SpallaA_08-1
SpallaA_09	0	#SLV_SISMAX	Combination	Max	-1349,1	262,1	56,1	24,6	144,0	SpallaA_09-1
SpallaA_09	0	#SLV_SISMAX	Combination	Min Max	-1904,3	-299,4	-56,1	-13,1	18,7	SpallaA_09-1
SpallaA_09 SpallaA_09	0	#SLV_SISMAY #SLV_SISMAY	Combination	Min	-934,3 -2319,1	70,9 -108,2	179,8 -179,8	64,3 -52,9	117,9 44,9	SpallaA_09-1 SpallaA_09-1
SpallaA_09	0	@SLU Stat	Combination	Max	-1363,9	3,5	36,2	27,1	165,6	SpallaA_09-1
SpallaA_09	0	@SLU_Stat	Combination	Min	-2656,9	-149,1	-41,4	-10,7	43,5	SpallaA_09-1
SpallaA 10	0	#SLV SISMAX	Combination	Max	-1734,6	261,6	52,8	28,2	85,7	SpallaA_10-1
SpallaA 10	0	#SLV SISMAX	Combination	Min	-3233,0	-247,5	-60,3	6,1	-65,2	SpallaA 10-1
SpallaA_10	0	#SLV_SISMAY	Combination	Max	-1584,7	90,9	177,6	48,5	51,8	SpallaA_10-1
SpallaA_10	0	#SLV_SISMAY	Combination	Min	-3382,9	-76,8	-185,1	-14,2	-31,4	SpallaA_10-1
SpallaA_10	0	@SLU_Stat	Combination	Max	-1738,6	34,4	34,4	41,2	43,1	SpallaA_10-1
SpallaA_10	0	@SLU_Stat	Combination	Min	-4179,7	-107,6	-47,6	0,2	-56,6	SpallaA_10-1
SpallaA_11	0	#SLV_SISMAX	Combination	Max	-1930,0	270,8	53,0	24,3	93,6	SpallaA_11-1
SpallaA_11	0	#SLV_SISMAX	Combination	Min	-3430,4	-254,9	-54,2	-7,3	-77,5	SpallaA_11-1
SpallaA_11	0	#SLV_SISMAY	Combination	Max	-2230,1	91,0	176,8	58,3	41,8	SpallaA_11-1
SpallaA_11 SpallaA_11	0	#SLV_SISMAY @SLU Stat	Combination	Min	-3130,4 -1968,6	-75,1 33,7	-178,0 33,4	-41,3 30,5	-25,8 39,8	SpallaA_11-1 SpallaA_11-1
SpallaA_11	0	@SLU_Stat	Combination	Min	-4371,2	-107,7	-39,8	-9,0	-63,1	SpallaA_11-1
SpallaA 12	0	#SLV SISMAX	Combination	Max	-1740,2	255,0	60,2	2,3	71,6	SpallaA 12-1
SpallaA 12	0	#SLV SISMAX	Combination	Min	-3195,0	-243,1	-49,9	-18,7	-49,9	SpallaA_12-1
SpallaA_12	0	#SLV_SISMAY	Combination	Max	-1581,6	88,0	181,7	22,1	52,6	SpallaA_12-1
SpallaA_12	0	#SLV_SISMAY	Combination	Min	-3353,7	-76,0	-171,4	-38,6	-30,9	SpallaA_12-1
SpallaA_12	0	@SLU_Stat	Combination	Max	-1705,1	33,4	43,7	8,9	44,9	SpallaA_12-1
SpallaA_12	0	@SLU_Stat	Combination	Min	-4167,1	-105,3	-36,5	-26,1	-54,2	SpallaA_12-1
SpallaB_01	0	#SLV_SISMAX	Combination	Max	-895,4	188,0	89,0	28,5	54,3	SpallaB_01-1
SpallaB_01	0	#SLV_SISMAX	Combination	Min	-1925,7	-202,2	-87,4	-25,4	-40,9	SpallaB_01-1
SpallaB_01	0	#SLV_SISMAY	Combination	Max	-584,9	88,3	289,0	89,1	26,7	SpallaB_01-1
SpallaB_01	0	#SLV_SISMAY	Combination	Min	-2236,3 -089.0	-102,5	-287,4	-85,9 42.7	-13,3	SpallaB_01-1
SpallaB_01 SpallaB_01	0	@SLU_Stat @SLU_Stat	Combination	Max Min	-989,0 -2710,0	20,8 -76,5	69,8 -83,1	42,7 -40,2	30,3 -31,0	SpallaB_01-1 SpallaB_01-1
SpallaB_02	0	#SLV_SISMAX	Combination	Max	-962,4	187,6	87,0	27,5	53,7	SpallaB_02-1
SpallaB_02	0	#SLV_SISMAX	Combination	Min	-1878,4	-201,7	-85,3	-24,8	-39,2	SpallaB_02-1
SpallaB_02	0	#SLV_SISMAY	Combination	Max	-1173,1	55,3	287,5	87,1	24,7	SpallaB_02-1
SpallaB_02	0	#SLV_SISMAY	Combination	Min	-1667,7	-69,4	-285,7	-84,3	-10,2	SpallaB_02-1
SpallaB_02	0	@SLU_Stat	Combination	Max	-1242,9	15,4	65,6	42,4	29,1	SpallaB_02-1
SpallaB_02	0	@SLU_Stat	Combination	Min	-2507,8	-81,8	-79,0	-39,7	-31,2	SpallaB_02-1
SpallaB_03	0	#SLV_SISMAX	Combination	Max	-906,9	189,1	89,5	27,4	54,6	SpallaB_03-1
SpallaB_03	0	#SLV_SISMAX	Combination	Min	-1951,9	-202,4	-86,9	-26,5	-40,6	SpallaB_03-1
SpallaB_03	0	#SLV_SISMAY	Combination	Max	-600,3	89,4	289,3	88,2	26,9	SpallaB_03-1
SpallaB_03	0	#SLV_SISMAY	Combination	Min	-2258,5	-102,6	-286,7	-87,4	-12,9	SpallaB_03-1
SpallaB_03	0	@SLU_Stat @SLU_Stat	Combination	Max Min	-1019,4	20,9	70,4	41,0 -40,9	31,1	SpallaB_03-1
SpallaB_03 SpallaB_04	0	#SLV SISMAX	Combination	Max	-2774,6 -1029,0	-96,9 197,1	-82,6 65,5	20,6	-35,3 26,6	SpallaB_03-1 SpallaB_04-1
SpallaB_04	0	#SLV_SISMAX	Combination	Min	-1646,1	-198,5	-64,1	-19,1	-43,4	SpallaB_04-1
SpallaB_04	0	#SLV_SISMAY	Combination	Max	-512,9	93,1	211,1	65,5	10,7	SpallaB_04-1
SpallaB_04	0	#SLV_SISMAY	Combination	Min	-2162,2	-94,4	-209,7	-64,1	-27,5	SpallaB_04-1
SpallaB_04	0	@SLU_Stat	Combination	Max	-943,5	19,1	59,4	34,7	7,8	SpallaB_04-1
SpallaB_04	0	@SLU_Stat	Combination	Min	-2391,9	-61,3	-56,5	-31,2	-42,0	SpallaB_04-1
SpallaB_05	0	#SLV_SISMAX	Combination	Max	-1182,6	196,9	63,2	20,5	25,7	SpallaB_05-1

LOTTO C – Realizzazione delle opere marittime per la realizzazione della nuova strada esterna per il collegamento delle aree assegnate secondo protocollo di intesa del 28/12/2018

				TABLE: Elen	nent Forces	- Frames				
Frame	Station	OutputCase	CaseType	StepType	Р	V2	V3	M2	мз	FrameElem
Text	m	Text	Text	Text	KN	KN	KN	KN-m	KN-m	Text
TENE		Text	Text	TERE		1014	104	1314111	NA III	TON
SpallaB_05	0	#SLV_SISMAX	Combination	Min	-1511,9	-197,6	-61,9	-19,0	-42,5	SpallaB_05-1
SpallaB_05	0	#SLV_SISMAY	Combination	Max	-1185,1	60,7	208,7	65,5	9,2	SpallaB_05-1
SpallaB_05	0	#SLV_SISMAY	Combination	Min	-1509,5	-61,3	-207,4	-64,0	-26,1	SpallaB_05-1
SpallaB_05	0	@SLU_Stat	Combination	Max	-1167,8	13,3	55,2	34,5	6,7	SpallaB_05-1
SpallaB_05	0	@SLU_Stat	Combination	Min	-2190,4	-65,7	-52,4	-30,9	-42,7	SpallaB_05-1
SpallaB_06	0	#SLV_SISMAX	Combination	Max	-1047,7	198,3	65,4	20,9	26,7	SpallaB_06-1
SpallaB_06	0	#SLV_SISMAX	Combination	Min	-1666,3	-198,5	-64,2	-18,9	-43,3	SpallaB_06-1
SpallaB_06	0	#SLV_SISMAY	Combination	Max	-533,4	94,3	210,9	66,0	10,7	SpallaB_06-1
SpallaB_06	0	#SLV_SISMAY	Combination	Min	-2180,6	-94,5	-209,7	-63,9	-27,3	SpallaB_06-1
SpallaB_06	0	@SLU_Stat	Combination	Max	-976,6	19,3	59,2	35,1	7,9	SpallaB_06-1
SpallaB_06	0	@SLU_Stat	Combination	Min	-2453,3	-81,6	-56,6	-31,0	-46,1	SpallaB_06-1
SpallaB_07	0	#SLV_SISMAX	Combination	Max	-777,6	176,0	48,2	52,3	86,2	SpallaB_07-1
SpallaB_07	0	#SLV_SISMAX	Combination	Min	-1205,2	-168,0	-41,5	-61,7	-118,2	SpallaB_07-1
SpallaB_07	0	#SLV_SISMAY	Combination	Max	-443,7	89,1	132,2	146,9	34,7	SpallaB_07-1
SpallaB_07	0	#SLV_SISMAY	Combination	Min	-1539,1	-81,2	-125,5	-156,3	-66,6	SpallaB_07-1
SpallaB_07	0	@SLU_Stat	Combination	Max	-654,6	24,6	62,4	86,8	8,8	SpallaB_07-1
SpallaB_07	0	@SLU_Stat	Combination	Min	-1864,2	-51,7	-46,3	-78,9	-70,7	SpallaB_07-1
SpallaB 08	0	#SLV SISMAX	Combination	Max	-674,9	114,5	34,8	45,5	200,0	SpallaB 08-1
SpallaB_08	0	#SLV_SISMAX	Combination	Min	-998,9	-108,5	-34,7	-43,3	-227,0	SpallaB_08-1
SpallaB 08	0	#SLV_SISMAY	Combination	Max	-701,1	38,5	115,5	148,4	54,0	SpallaB 08-1
SpallaB 08	0	#SLV SISMAY	Combination	Min	-972,7	-32,4	-115,4	-146,2	-81,0	SpallaB 08-1
SpallaB_08	0	@SLU_Stat	Combination	Max	-512,5	18,7	42,8	70,7	12,7	SpallaB_08-1
SpallaB 08	0	@SLU Stat	Combination	Min	-1770,2	-41,0	-31,4	-50,9	-100,0	SpallaB 08-1
SpallaB 09	0	#SLV SISMAX	Combination	Max	-793,1	177,2	41,9	63,0	86,2	SpallaB 09-1
SpallaB_09	0	#SLV_SISMAX	Combination	Min	-1217,7	-167,8	-47,8	-50,3	-118,4	SpallaB_09-1
SpallaB_09	0	#SLV_SISMAY	Combination	Max	-457,9	90,2	125,8	157,7	34,6	SpallaB_09-1
SpallaB_09	0	#SLV_SISMAY	Combination	Min	-1552,9	-80,8	-131,8	-145,0	-66,8	SpallaB_09-1
SpallaB_09	0	@SLU_Stat	Combination	Max	-725,9	25,6	56,5	97,3	9,7	SpallaB_09-1
SpallaB_09	0	@SLU_Stat	Combination	Min	-1927,7	-70,3	-48,4	-70,9	-81,5	SpallaB_09-1
SpallaB 10	0	#SLV SISMAX	Combination	Max	-248,2	176,1	54,8	56,0	104,9	SpallaB 10-1
SpallaB_10	0	#SLV_SISMAX	Combination	Min	-1096,7	-168,4	-46,7	-70,2	-136,6	SpallaB_10-1
SpallaB_10	0	#SLV_SISMAY	Combination	Max	-218,9	91,6	144,8	147,7	48,8	SpallaB 10-1
SpallaB_10	0	#SLV_SISMAY	Combination	Min	-1126,0	-84,0	-136,6	-162,0	-80,5	SpallaB_10-1
SpallaB_10	0	@SLU_Stat	Combination	Max	-177,8	40,2	78,2	117,3	62,3	SpallaB_10-1
SpallaB_10	0	@SLU_Stat	Combination	Min	-1812,8	-75,3	-51,7	-95,2	-103,9	SpallaB_10-1
SpallaB_11	0	#SLV_SISMAX	Combination	Max	-286,7	116,7	38,4	40,5	223,4	SpallaB_11-1
SpallaB_11	0	#SLV_SISMAX	Combination	Min	-831,3	-113,1	-38,6	-39,7	-246,2	SpallaB_11-1
SpallaB_11	0	#SLV_SISMAY	Combination	Max	-446,3	41,5	128,0	133,7	73,2	SpallaB_11-1
SpallaB_11	0	#SLV_SISMAY	Combination	Min	-671,6	-38,0	-128,2	-132,9	-96,0	SpallaB_11-1
SpallaB_11	0	@SLU_Stat	Combination	Max	-342,0	33,2	51,9	76,5	86,8	SpallaB_11-1
SpallaB_11	0	@SLU_Stat	Combination	Min	-1546,7	-66,3	-29,0	-43,7	-150,5	SpallaB_11-1
SpallaB_12	0	#SLV_SISMAX	Combination	Max	-252,9	177,3	46,6	70,9	104,7	SpallaB_12-1
SpallaB 12	0	#SLV_SISMAX	Combination	Min	-1098,9	-168,2	-55,1	-55,0	-136,5	SpallaB 12-1
SpallaB_12	0	#SLV_SISMAY	Combination	Max	-218,5	92,7	136,6	162,5	48,8	SpallaB_12-1
SpallaB_12	0	#SLV_SISMAY	Combination	Min	-1133,3	-83,7	-145,1	-146,6	-80,6	SpallaB_12-1
SpallaB 12	0	@SLU_Stat	Combination	Max	-263,4	41,0	74,5	130,0	65,9	SpallaB 12-1
SpallaB 12	0	@SLU Stat	Combination	Min	-1925.9	-94.8	-54.8	-91.8	-115,8	SpallaB 12-1

