

GRE CODE

GRE.EEC.R.25.IT.W.15438.00.141.00

PAGE

1 di/of 16

TITLE: AVAILABLE LANGUAGE: IT

IMPIANTO EOLICO MONTEMILONE

PROGETTO DEFINITIVO

A.11.4

Calcolo pre-dimensionamento strutture e fondazioni dell'edificio di sottostazione

File: GRE.EEC.R.25.IT.W.15438.00.141.00 - A.11.4 Calcolo edificio sottostazione.docx

										_											
00 01/12/2021 First issue											F. Guiggiani				M. Nardi				M. Nardi		
00	01/12/2021	1 11 31 133	su c								Ť	studio ECHN	É		TECH	INÉ		I	TEC	INÉ	
REV.	DATE		DESCRIPTIO								PREPARED				VERIFIED				APPROVED		
					G	RE V	'ALI	DATI	ON												
	A. Pro	ovasi				0.	Chir	nnici							E.	Par	nsin	i			
	COLLABOR	RATORS				VE	RIFIE	D BY							VAI	LIDA	TED	BY			
PROJECT	/PLANT							GI	RE C	OD	E										
Wi	nd farm	GROUP	FUNCION	TYPE	ISS	UER	CC	UNTRY	TEC			PLAN	Т		SYST	ЕМ	PR	OGRES	SIVE	REV	/ISION
Mon	temilone	GRE	EEC	R	2	5	ı	Т	W	1	5	4	3	8	0	0	1	4	1	0	0
CLASSII	FICATION			_		UTIL	IZAT	ION SC	OPE	lte	er a	aut	ori	ZZã	ativ	0					
	•																				

This document is property of Enel Green Power S.p.A. It is strictly forbidden to reproduce this document, in whole or in part, and to provide to others any related information without the previous written consent by Enel Green Power S.p.A.

GRE CODE

GRE.EEC.R.25.IT.W.15438.00.141.00

PAGE

2 di/of 16

INDEX

1.	INTRO	DUZIONE	. 4
2.	NORMA	TIVA DI RIFERIMENTO	. 5
3.	MATER	IALI	. 6
4.	SOFTW	ARE UTILIZZATO	. 8
5.		TAZIONE DEL CALCOLO	
		Criteri di modellazione, analisi e verifica	
	5.2.	Carichi sulla fondazione	11
	5.3.	Combinazioni di carico	11
6.	VERIFI	CHE STRUTTURALI	12
		Verifiche S.L.U.	
		1.1. Verifica a flessione	
	6.3	1.2. Verifica a taglio	15
	6.2.	Verifica dei minimi di armatura	16

GRE CODE

GRE.EEC.R.25.IT.W.15438.00.141.00

PAGE

3 di/of 16

INDICE DELLE FIGURE

Figura 1: Rappresentazione grafica del modello FEM realizzato	9
Figura 2: Armature assegnate10	0
Figura 3: Coefficienti di sfruttamento della verifica a flessione della platea in direzione X	3
Figura 4: Coefficienti di sfruttamento della verifica a flessione della platea in direzione Y14	4

GRE CODE

GRE.EEC.R.25.IT.W.15438.00.141.00

PAGE

4 di/of 16

1. INTRODUZIONE

La presente relazione è volta ad illustrare i calcoli eseguiti per il predimensionamento strutturale dell'edificio di sottostazione da installarsi all'interno dell'impianto eolico "Montemilone" sito nel comune omonimo (PZ).

La struttura in elevazione sarà prefabbricata e calcolata dal fornitore, pertanto le verifiche strutturali su di essa non saranno trattate in questa fase. Sono state eseguite solamente le verifiche sulla platea di fondazione.

GRE CODE

GRE.EEC.R.25.IT.W.15438.00.141.00

PAGE

5 di/of 16

2. NORMATIVA DI RIFERIMENTO

Ci a	lonca	la na	rmativa	٦i	rifori	monto
31 E	Henca	ia iio	IIIIauva	uı	men	mento.

- □ **D.M. Infrastrutture 17/01/18 -** "Norme tecniche per le costruzioni".
- □ **Circolare del 21/01/2019, n° 7 -** "Istruzione per l'applicazione delle "Norme tecniche per le costruzioni" di cui al D.M. 17 gennaio 2018".

GRE CODE

GRE.EEC.R.25.IT.W.15438.00.141.00

PAGE

6 di/of 16

3. MATERIALI

I materiali strutturali previsti per la fondazione sono i seguenti.

• Calcestruzzo di classe C30/37:

 $R_{ck} = 37 (N/mm^2)$

 $E = 32837 (N/mm^2)$

v = 0.20

 $G = 13682 (N/mm^2)$

 $y = 25 (kN/m^3)$

 $f_{ck} = 30 (N/mm^2)$

 $f_{ctk} = 2,03 (N/mm^2)$

 $f_{ctm} = 2,90 (N/mm^2)$

 $f_{cd} = 17,0 (N/mm^2)$

 $f_{ctd} = 1,35 (N/mm^2)$

Normativa di riferimento UNI EN 206-1 Classe di resistenza a compressione C30/37

Classe di esposizione ambientale XC3

Dimensione massima nominale dell'aggregato 30 mm

Classe di consistenza S4

Classe di contenuto in cloruri 0,20 Rapporto A/C max 0,55

Copriferro 40 mm

Acciaio in barre ad aderenza migliorata per armature di classe B450C:

 $E = 2e + 005 (N/mm^2)$

v = 0.30

 $G = 76923 (N/mm^2)$

 $y = 78,5 (KN/m^3)$

GRE CODE

GRE.EEC.R.25.IT.W.15438.00.141.00

PAGE

7 di/of 16

 $f_{yk} = 450 \text{ (N/mm}^2\text{)}$ $f_{tk} = 540 \text{ (N/mm}^2\text{)}$

 $f_{yd} = 391 (N/mm^2)$

GRE CODE

GRE.EEC.R.25.IT.W.15438.00.141.00

PAGE

8 di/of 16

4. SOFTWARE UTILIZZATO

Il software di calcolo utilizzato per la modellazione e verifica strutturale agli elementi finiti è CMP fornito da Namirial S.p.A., versione 32.00, con solutore XFINEST 2021 della Ce.A.S. di Milano.

GRE CODE

GRE.EEC.R.25.IT.W.15438.00.141.00

PAGE

9 di/of 16

5. IMPOSTAZIONE DEL CALCOLO

5.1. Criteri di modellazione, analisi e verifica

Il modello agli elementi finiti della fondazione dell'edificio di sottostazione è stato realizzato mediante elementi di tipo *shell*.

Il terreno è stato schematizzato come un letto di molle alla Winkler. Il valore della costante di sottofondo alla Winkler è stato stimato pari a 5000 kN/m³.

Le azioni sismiche non sono state inserite nella modellazione poiché in questo caso sono risultate più gravose le azioni del vento.

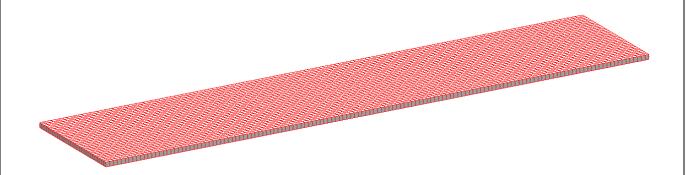


Figura 1: Rappresentazione grafica del modello FEM realizzato

GRE CODE

GRE.EEC.R.25.IT.W.15438.00.141.00

PAGE

10 di/of 16

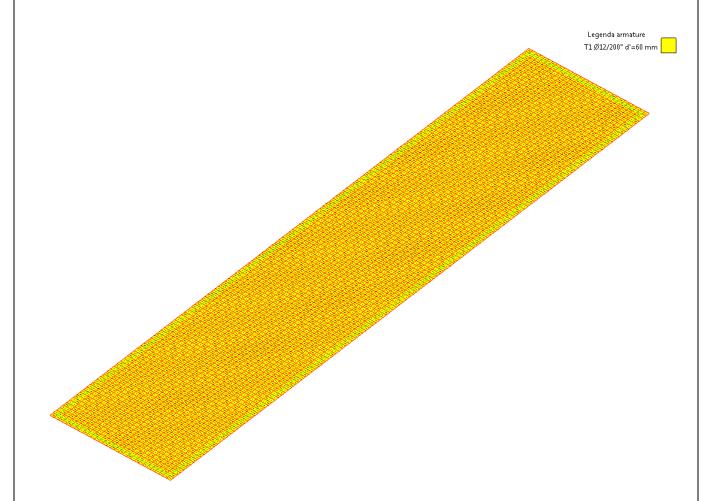


Figura 2: Armature assegnate

GRE CODE

GRE.EEC.R.25.IT.W.15438.00.141.00

PAGE

11 di/of 16

5.2. Carichi sulla fondazione

Sono state considerate le seguenti condizioni di carico elementari:

Nome	CdC	mltX	mltY	mltZ	Tipo	ψ0	ψ1	ψ2
G1	1	0	0	-1	Permanente (St)	1	1	1
G2	2	0	0	0	Permanente non strutt (St)	1	1	1
Vento X	8	0	0	0	Vento (St)	0.6	0.2	0

Il carico G₁ è dato esclusivamente dal peso proprio della platea.

Il carico distribuito pari a 20 kN/ m^2 stimato è stato considerato cautelativamente come carico G_2 , anche se è inclusivo dei carichi gravitazionali accidentali.

Come azione orizzontale, è stato considerato il vento in direzione trasversale. In questo caso si ritiene di poter trascurare l'azione sismica, dato che la maggior parte dei carichi agisce a livello della platea di fondazione.

L'azione orizzontale globale dovuta al vento è pari a 0.93 kN/m².

5.3. Combinazioni di carico

Per le verifiche della struttura sono state considerate le combinazioni di carico agli stati limite ultimi e di esercizio, di seguito riportate (§2.5.3 NTC 2018):

• SLU statica $\gamma_{G1} \; G_1 \; + \; \gamma_{G2} \; G_2 \; + \; \gamma_Q \; Q_{k1} \; + \; \gamma_Q \; Q_{k2} \; + \; \gamma_Q \; Q_{k3 \; \dots}$

• SLE statica (rara) $G_1 + G_2 + Q_{k1} + \Psi_{02} Q_{k2} + \Psi_{03} Q_{k3...}$

• SLE statica (frequente) $G_1 + G_2 + \Psi_{11} Q_{k1} + \Psi_{22} Q_{k2} + \Psi_{23} Q_{k3}$...

• SLE statica (q. perm.) $G_1 + G_2 + \Psi_{21} Q_{k1} + \Psi_{22} Q_{k2} + \Psi_{23} Q_{k3}$...

Le verifiche strutturali sono eseguite dal software di calcolo utilizzando le combinazioni di carico create automaticamente secondo i coefficienti di normativa.

GRE CODE

GRE.EEC.R.25.IT.W.15438.00.141.00

PAGE

12 di/of 16

6. VERIFICHE STRUTTURALI

6.1. Verifiche S.L.U.

6.1.1. Verifica a flessione

Di seguito si riportano i risultati delle verifiche (eseguite dal software), sotto forma di coefficienti di sfruttamento, intesi come rapporto tra azione sollecitante e azione resistente. La scala cromatica è tarata sulla base dei soli elementi visibili. Inoltre il valore massimo è indicato direttamente sullo shell interessato.

Come si può notare, tutte le verifiche risultano soddisfatte poiché i coefficienti di sfruttamento non sono maggiori di 1.

GRE CODE

GRE.EEC.R.25.IT.W.15438.00.141.00

PAGE

13 di/of 16

Verifica SLU Coeff.Sfruttamento NM direzione 2

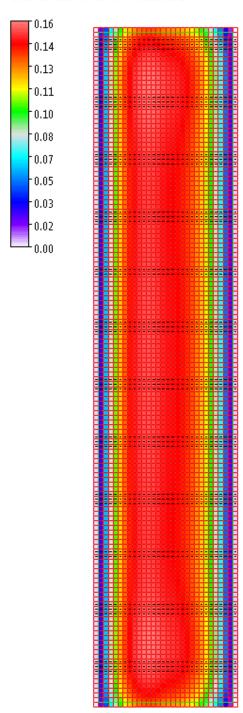


Figura 3: Coefficienti di sfruttamento della verifica a flessione della platea in direzione X

GRE CODE

GRE.EEC.R.25.IT.W.15438.00.141.00

PAGE

14 di/of 16

Verifica SLU Coeff.Sfruttamento NM direzione 3

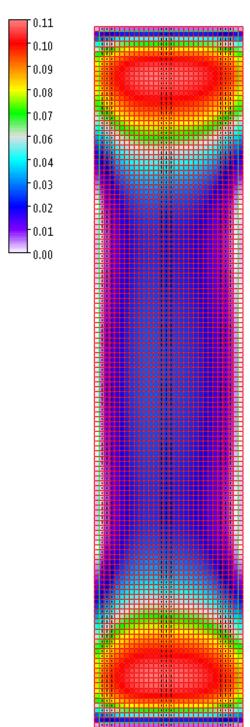


Figura 4: Coefficienti di sfruttamento della verifica a flessione della platea in direzione Y

GRE CODE

GRE.EEC.R.25.IT.W.15438.00.141.00

PAGE

15 di/of 16

6.1.2. Verifica a taglio

La verifica a taglio della platea è stata eseguita manualmente su foglio di calcolo, schematizzando la sezione di platea maggiormente sollecitata come una trave di larghezza pari a 1 metro:

$$V_{Rd} = \max \left\{ \left[0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \cdot \sigma_{cp} \right] b_w \cdot d; \ (v_{\min} + 0.15 \cdot \sigma_{cp}) \cdot b_w d \right\}$$
 [4.1.23]

Verifica a	taglio senz	a armatu	ure trasversali (§4.1.2.3.5.1 NTC18)
Platea h=3	30cm:		
V _{Ed}	22.2	ĿΝ	
Ed	22.2	KIV .	
b	1	m	
	1000	mm	
h	0.30	m	spessore
С	0.05	m	copriferro dall'asse
d	0.25	m	
	250	mm	
k	1.89		
f_{ck}	30.0	MPa	C30/37
v_{min}	0.500	MPa	
ф	12	mm	armatura
passo	0.20		base
A_s	565	mm ²	
ρ_{l}	0.0023		
$\sigma_{\sf cp}$	0		
$V_{Rd,1}$	108	kN =	$\left[0.18 \cdot k \cdot (100 \cdot \rho_{1} \cdot f_{ck})^{1/3} / \gamma_{c} + 0.15 \cdot \sigma_{qp}\right] b_{w} \cdot a$
$V_{Rd,2}$	125	kN =	$(v_{\min} + 0.15 \cdot \sigma_{cp}) \cdot b_w d$
V_{Rd}	125	kN	
V _{Ed} /V _{Rd}	0.18	OK	

GRE CODE

GRE.EEC.R.25.IT.W.15438.00.141.00

PAGE

16 di/of 16

6.2. Verifica dei minimi di armatura

La quantità di armatura minima necessaria deve rispettare le seguenti prescrizioni sui dettagli costruttivi secondo le NTC 2018:

• §7.2.5 per le **platee di fondazione** in zona sismica:

Le platee di fondazione in calcestruzzo armato devono avere armature longitudinali, secondo due direzioni ortogonali e per l'intera estensione, in percentuale non inferiore allo 0,1% dell'area della sezione trasversale della platea, sia inferiormente sia superiormente.

La platea progettata ha un'armatura $\emptyset12/20$ per lembo e per ciascuna direzione, corrispondente allo 0,19% dell'area della sezione trasversale (H = 30 cm).