

Direzione Progettazione e Realizzazione Lavori

S.S. 675 "UMBRO - LAZIALE"

Sistema infrastrutturale del collegamento del porto di Civitavecchia con il nodo intermodale di Orte Tratta Monte Romano est - Civitavecchia 1° Stralcio Monte Romano est - Tarquinia

PROGETTO DEFINITIVO

COD. RM366

R.T.I. di PROGETTAZIONE:

TPROGETTISTI: Ing. Nicola Cuozzo (Integratore prestazioni specialistiche) Ordine degli Ingegneri della Provincia di Roma N. 15447				
IL RESPONSABILE DEL S.I.A.: Ing. Biagio Camaldo				
IL GEOLOGO: Dott. Geol. Giampiero Carrieri Ordine regionale dei Geologi del Piemonte. N. 274				
IL COORDINATORE PER LA SICUREZZ Dott. Geol. Giampiero Carrieri Ordine regionale dei Geologi del Pien				
VISTO: IL RESPONSABILE DEL PROCEDIMENTO : Ing. Achille Devitofranceschi				
PROTOCOLLO DATA				

GEOLOGIA E GEOTECNICA

Generale

Relazione indagini geognostiche (elaborato T00_GE00_GE0_RE05_A_01_01 del progetto defintivo SS675 Umbro-Laziale (ex raccordo Civitavecchia-Orte) tra il km 86+000 della SS1 Aurelia e il km 21+500 della SS1 bis (Tronco n.3 Lotto n.1 Stralcio B - Tronco n.2 Stralci 1 e 2)

CODICE PR	OGETTO LIV. PROG. N. PROG.	NOME FILE			REVISIONE	SCALA:
DPRM	10366 D 2201	CODICE TOOGE	OOGET	RE04	A	
Α	EMISSIONE PD		MARZO 2022	G. Ricci	W. Giulietto	G. Carrieri
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

Indice

1.	RELAZIONE SULLE INDAGINI	2	
2.	ATTIVITÀ SVOLTA	3	
3.	SONDAGGI GEOGNOSTICI	12	
4.	PROVE PENETROMETRICHE STATICHE CON PUNTA ELETTRICA	14	
E A A	REZZATURE IMPIEGATE Encoder Adattatore punta digitale/RS-485 Alimentazione Cavo Aste	14	15 15 15 15
5.	POZZETTI ISPETTIVI E PROVE DI CARICO SU PIASTRA	17	
6.	PROVE PRESSIOMETRICHE MENARD	18	

Allegati:

- certificati stratigrafie dei sondaggi e riprese fotografiche di repertorio
- certificati prove statiche con piezocono
- Certificati pozzetti ispettivi
- Certificati prove di carico su piastra
- Certificati prove di permeabilità in sito
- Certificati prove pressiometriche Menard

1. Relazione sulle indagini

GEOstudi srl

Per la redazione del progetto definitivo, nell'anno 2006, è stata condotta una campagna di indagini geognostiche finalizzate alla caratterizzazione stratigrafica e geotecnica dei terreni ricadenti lungo il tracciato della S.S. 675 tra il Km 86 della SS 1 Aurelia ed il Km 21+500 della SS 1 bis.

Le indagini, condotte secondo modalità sperimentali standardizzate, consistono in :

- Rilievo topografico dei punti di indagine
- Esecuzione di 29 perforazioni a carotaggio continuo e distruzione di nucleo spinte a profondità variabili fra 20 e 70 m dal pc
- Posa di piezometri a tubo aperto e celle di casagrande
- Condizionamento di alcuni fori con idonea tubazione in PVC per misure geofisiche ed inclinometriche in foro
- Prove pressiometriche Menare
- Prove di permeabilità Lefranc e Lugeon
- prove penetrometriche statiche con punta elettrica
- pozzetti ispettivi superficiali con prelievo di campioni da sottoporre ad analisi di laboratorio e prove di carico su piastra

Le attività sono state affrontate seguendo le procedure di normativa o raccomandazioni dedicate ed adottate su scala Nazionale (CNR-UNI e AGI).

Per ogni azione condotta esistono apposite riprese fotografiche di repertorio.

L'ubicazione strumentale effettuata utilizzando una stazione GPS a doppia frequenza è illustrata su apposita tavola allegata al seguente rapporto.

2. Attività svolta

Le attività svolte durante le indagini sono riassunte in forma sintetica ma completa sulle seguenti tabelle riepilogative.

Tab. 1 Riepilogo sondaggi geognostici

Punto	Gauss-Bo	Quota s.l.m.	
Sondaggio02	1731556,24	Nord 4679566,24	141,66
Sondaggio03	1731805,01	4679982,00	165,69
Sondaggio04	1731752,89	4679578,80	146,68
Sondaggio05PZ	1732232.90	4680524.07	125.98
Sondaggio05DH	1732232.73	4680526.41	126.10
Sondaggio05INCLI	1732230.01	4680532.70	126.14
Sondaggio06	1732630,46	4681281,37	172,46
Sondaggio07	1732795,29	4681490,11	197,27
Sondaggio08	1733536,62	4682004,57	205,57
Sondaggio09	1733747,79	4682111,58	206,54
Sondaggio10	1734122,81	4682285,31	193,87
Sondaggio11	1735360,20	4682663,75	136,74
Sondaggio12	1735560,91	4682794,97	145,32
Sondaggio13	1736676,10	4683231,61	184,37
Sondaggio14	1736925,87	4683470,88	203,82
Sondaggio15	1737438,29	4683840,90	219,47
Sondaggio16	1738084,85	4684268,83	256,59
Sondaggio16DH	1738087,00	4684267,09	256,55
Sondaggio17	1738436,89	4684344,16	298,55
Sondaggio18	1739216,59	4684622,98	251,29
Sondaggio18DH	1739216,92	4684624,64	251,31
Sondaggio19	1741345,39	4685332,31	202,88
Sondaggio20	1740777,30	4685057,38	210,47
Sondaggio21	1736400,14	4682977,31	152,25
Sondaggio22	1743214,42	4686967,93	159,46
Sondaggio23	1732520,85	4680949,71	177,61
Sondaggio24	1733008,48	4681679,70	162,18
Sondaggio25	1742842,80	4686810,10	183,53

Tab. 2 Riepilogo Piezometri e letture di falda

Perforazione	Tubo aperto	Cella Casagrande
S02		14,35
S03		7,23
S04		5,95
S06	6,19	
S07		24,9
S08	7,65	8,15
S09	11,8	12,08
S10	11,05	11,25
S16		8,7
S17		24,2
S18		1,77
S23	assente	47,42
S24		5,95

Tab. 3 Riepilogo dei pozzetti ispettivi

Punto	Gauss-Bo	Quota s.l.m.	
T dillo	Est	Nord	Quota 3.1.111.
Pozzetto01	1729798,58	4676628,00	38,66
Pozzetto02	1729682,96	4677400,77	43,83
Pozzetto03	1729724,15	4677514,49	45,52
Pozzetto04	1729910,72	4677987,62	61,47
Pozzetto05	1730567,51	4678373,37	105,28
Pozzetto06	1730762,11	4678570,96	109,71
Pozzetto07	1736338,29	4683057,76	157,26
Pozzetto08	1737372,85	4683371,55	169,09
Pozzetto09	1737812,53	4683597,24	185,45
Pozzetto10	1739690,83	4684703,44	218,65
Pozzetto11	1739853,26	4684804,49	212,76
Pozzetto12	1740237,72	4684897,36	201,48
Pozzetto13	1740816,71	4685011,84	212,11

Tab. 4 Riepilogo prove penetrometriche statiche CPTE

Punto	Gauss-Be	oaga F.O.	Quota s.l.m.
runto	Est	Nord	Quota S.I.III.
CPT01	1729709,71	4677487,05	44,28
CPT02	1729709,71	4677207,28	42,12
CPT03	1729938,39	4677999,94	63,39

Tab. 5 Riepilogo Prove Lefranc e Lugeon

SONDAGGIO	Tipo di prova	Profondità di misura dal pc (m)	Natura del terreno	Permeabilità k (m/s)
S8	Lefranc c.v.	10.9	Sabbia limosa	8.07e-6
			Sabbia limosa	
S9	Lefranc c.v.	12.06	debolmente cementata	1.31e-6
S10	Lefranc c.v.	10.75	Sabbia con ghiaia	3.06e-4
S18	Lugeon	18.15	Argilla scagliosa	5.50e-8

Tab. 6 Riepilogo prove di carico su piastra

Posizione di riferimento	Profondità dal pc (m)	Modulo di deformabilità misurato nell'intervallo 0.5-1.5 (N/mm2)
PZ1	0.40	60.0
PZ4	0.50	4.40
PZ11	0.50	10.1
PZ12	0.40	9.00

Tab. 7 Riepilogo prove pressiometriche Menard

S.S. 675 Orte - Civitavecchia SONDAGGIO			S 02	S 03	S 04	S 06	S 07	S 08	S 09
PROVA			P 1	P 1	P 1	P 1	P1	P 1	P1
PROFONDITA'		m	22,10	51,70	24,30	12,70	29,90	22,40	23,90
LITOLOGIA			Argilla debolmente limosa	Argilla limosa	Argilla limosa	Argilla limosa	Argilla limosa	Argilla limosa	Argilla limosa
PRESSIONE LIMITE	PI	(kPa)	4.300	3.300	3.900	1.100	970	1.550	1.800
PRESSIONE LIMITE NETTA	PΊ	(kPa)	4.116	2.658	2.866	982	468	1.185	1.467
MODULO PRESSIOMETRICO	Ep	(kPa)	59.472	43.839	24.063	15.884	10.159	13.501	16.838
MODULO DI YOUNG	Е	(kPa)	88.764	65.431	48.125	23.707	10.159	20.151	25.132
COESIONE NON DRENATA	Cu	(kPa)	437	483	521	179	85	215	267
ANGOLO DI ATTRITO EFFICACE	φ'	(°)							
MODULO PRESS. CICLO ISTERESI	Ep	(kPa)							
					_		T		
SONDAGGIO			S10	S 17	S 18	S 23	S 24	S 25	
PROVA			P1	P 1	P 1	P 1	P 1	P 1	
PROFONDITA'		m	9,70	44,10	12,40	60,70	21,30	8,90	
LITOLOGIA			Sabbia grossa con ghiaia e livelli debolmente cementati	Argilla marnosa di aspetto scaglioso e caotico con inclusi livelli a comportamento litoide e semilitoide	Argilla marnosa di aspetto scaglioso e caotico	Argilla limosa	Argilla limosa	Alternanze di argilla marnosa e marna da argillosa a calcarea	
PRESSIONE LIMITE	PI	(kPa)	10.000	4.400	2.400	2.800	2.600	3.500	
PRESSIONE LIMITE NETTA	PΊ	(kPa)	9.683	2.775	2.007	2.034	2.235	3.284	

GEOstudi srl

MODULO PRESSIOMETRICO	Ep	(kPa)	377.574	33.241	16.735	70.027	27.978	85.523	
MODULO DI YOUNG	E	(kPa)	755.149	49.614	33.471	70.027	55.956	171.045	
COESIONE NON DRENATA	Cu	(kPa)		505	365	370	406	353	
ANGOLO DI ATTRITO EFFICACE	φ'	(°)	45						
MODULO PRESS. CICLO ISTERESI	Ep	(kPa)							

Tab. 8 Riepilogo prove SPT

Sondaggio	Prova n.	Profondità (m)	Nspt
S5	SPT 1	1.50	2-2-5
S5	SPT 2	3.70	3-4-6
S 5	SPT 3	6.00	4-6-7
S 5	SPT 4	7.50	1-2-2
S5	SPT 5	9.00	3-6-8
S 5	SPT 6	10.50	3-4-6
S 5	SPT 7	12.00	3-2-4
S 5	SPT 8	15.00	5-7-9
S 5	SPT 9	19.00	10-16-20
S 5	SPT 10	21.00	13-17-20
S 5	SPT 11	23.00	11-19-21
S8	SPT 12	6.00	R
S8	SPT 13	8.00	R
S8	SPT 14	9.50	R
S9	SPT 15	10.00	R
S10	SPT 16	17.60	R
S10	SPT 17	19.50	R
S 11	SPT 18	13.00	24-37-48
S23	SPT 19	50.00	R
S25	SPT 20	5.50	27-32-40
S25	SPT 21	17.30	R

Tab. 9 Riepilogo campioni prelevati

S04	CI1	13.60 - 14.00	
S04	CR1	16.60 - 17.00	
S04	CR2	21.00 - 21.40	
S04	CR3	25.60 - 26.00	
S04	CR4	31.00 - 31.40	
S06	CI1	13.00 - 13.60	
S07	CR1	25.50 - 26.00	
S07	CR2	29.20 - 29.60	
S08	SPT1	6.00 - 6.10	
S08	SPT2	8.00 - 8.23	
S08	SPT3	9.50 - 9.70	
S08	CI1	24.00 - 24.60	
S09	SPT1	10.00 - 10.23	
S09	CI1	21.00 - 21.60	
S10	CI1	14.90 - 15.50	
S10	SPT1	17.60 - 17.80	
S10	SPT2	19.50 - 19.87	
S11	CR1	2.40 - 2.70	
S11	CI1	8.40 - 9.00	
S11	SPT1	13.00 - 13.45	
S12	CI1	13.50 - 14.10	
S13	CL1	4.00 - 4.20	
S14	CI1	6.50 - 7.00	
S16	CI1	3.40 - 3.90	
S16	CR1	15.60 - 16.00	
S17	CI1	3.10 - 3.60	
S17	CL1	9.10 - 9.30	
S17	CR1	27.50 - 27.90	
S18	CI1	3.50 - 4.00	
S18	CR1	9.40 - 9.70	
S19	CI1	5.00 - 5.50	
S19	CR1	13.20 - 13.50	
S20	CI1	2.40 - 3.00	

S20	CL1	6.70 - 7.00	
S20	CR1	16.50 - 16.70	
S21	CI1	4.00 - 4.60	
S21	CI2	6.00 - 6.60	
S22	CL1	9.20 - 9.35	
S22	CI1	10.40 - 10.80	
S02	CI1	14,60 - 15,20	
S02	CI2	24,00 - 24,50	
S03	CI1	45,00- 45,60	
S03	CR1	53,00 - 53,50	
S23	CI1	55,00 - 55,50	
S24	CI1	18,00 - 18,60	
S24	CI2	31,60 - 32,20	
S25	CR1	3.00-3.30	
S25	CR2	13.10-13.50	
PZ1	CR1	0.50	
PZ1	CR2	3.00	
PZ2	CR1	2.00	
PZ3	CR1	0.70	
PZ3	CR2	2.00	
PZ3	CR3	3.00	
PZ5	CR1	1.00	
PZ5	CR2	2.00	
PZ6	CR1	1.20	
PZ7	CR1	1.50	
PZ8	CR1	2.00	
PZ9	CR1	2.50	
PZ10	CR1	2.00	
PZ13	CR1	2.00	
PZ4	CR1	0.60	
PZ4	CR2	1.80	
PZ4	CR3	3.00	
PZ11	CR1	3.00	
PZ12	CR1	1.50	
S5PZ	CI1	2,0 - 2,5	
S5PZ	CI2	5,0 - 5,5	

GEOstudi srl

S5PZ	CI3	13,5 - 13,8
S5PZ	CI4	16,5 - 16,8

3. Sondaggi geognostici

Per i sondaggi sono state utilizzate due unità di perforazione, la prima cingolata (CMV 420 MK) la seconda gommata (CMV 600 MK), munitE di pompa per fluidi di perforazione a coclea e pompa scarotatrice a pistoni.

Le perforazioni sono state eseguite con sistema ad aste e carotiere da 101 mm di diametro, seguito dalla posa di tubazione di rivestimento metallico di diametro nominale pari a 127mm. Nei terreni lapidei sono è stato utilizzato carotiere doppio T2 e T3 localmente con l'ausilio di corona diamantata.

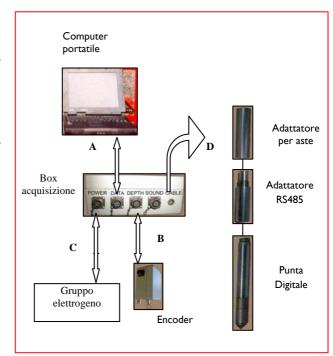
Il materiale estratto è stato immediatamente riposto in apposite cassette catalogatrici a scomparti e sottoposto a riprese fotografiche di repertorio.

Il terreni sono stati esaminati e descritti e sottoposti a misure speditive con Pocket penetrometer qualora giudicati rappresentativi.

I campioni indisturbati sono stati prelevati con un campionatore a pistone tipo Osterberg, Shelby e Denison con fustelle in acciaio inox a pareti sottili e scarpa tagliente.

Le stratigrafie dei sondaggi e le foto delle cassette sono allegati al presente rapporto.

4. Prove penetrometriche statiche con punta elettrica



ATTREZZATURE IMPIEGATE

E' stato utilizzato un penetrometro statico 200 KN di spinta autoancorante su autocarro Mercedes Unimog 4x4 (7 Tons di peso) , fornito di **sistema di acquisizione** punta elettrica digitale (CPTE/U) denominato TGAS03.

Il sistema di acquisizione TGAS03 è composto da un elemento di acquisizione, da un encoder, dalla punta digitale e dal sistema di collegamento via cavo che permettono il trasferimento dei dati dalla punta ai componenti del sistema :posti all'interno del mezzo di spinta :

- A. al Personal Computer portatile, con schermo per la visione in tempo reale dei valori, tramite seriale RS-232
- B. al box encoder
- C. alla sorgente di alimentazione elettrica del sistema
- D. alla punta digitale

Encoder

GEOstudi srl

L'encoder è l'elemento che misura la profondità d'avanzamento e trasferisce il consenso al sistema di acquisizione ogni centimetro di approfondimento.

Adattatore punta digitale/RS-485

E' costituito da una scheda elettronica che ha la funzione di trasmettere al box d'acquisizione i dati codificati ricevuti dalla punta, dopo averli convertiti secondo lo standard RS-485. L'adattatore è collegato alle aste di spinta mediante un manicotto .

Alimentazione

Entrambe i sistemi sono alimentati direttamente da gruppo elettrogeno 220 V.

Cavo

L'adattatore RS-485 è collegato al box acquisizione mediante cavo per segnale digitale di lunghezza 70 m., interno alle aste cave, per la visualizzazione in tempo reale dei valori e grafici sul video del computer.

Aste

Le aste per la trasmissione della spinta alla punta sono in acciaio Φ 36 mm esterno, cave internamente , della lunghezza di m. 1, collegate mediante filetto conico.

SPECIFICHE TECNICHE

Punta Digitale							
Sensori di misura		Dimensioni					
Resistenza di punta (qc) 50 MPa		Apertura cono	60°				
		Area punta	10 cm^2				
Attrito laterale (fs) 0,5 MPa		Rapporto delle aree di punta (
		Area manicotto di attrito	150 cm ²				
Pressione nei pori (u) 2,5 MPa		Rapporto delle aree del manic					
Tressione her porr (2,5 WH a	Diametro	36 mm				
Inclinazione	$0 - 40^{\circ}$	Peso	3,5 kg				
memuzione	0 10	Lunghezza totale	855 mm				
	Sensori di Misura						
	Resistenza di Punta (qc) Attrito Laterale (fs) Pressione nei Pori (u)						
Risoluzione	0,04% F.S.	0,05% F.S. 0,0	4% F.S.				
Stabilità termica	<0,05% F.S./10°C	,	,05% F.S./10°C				
Non linearità <0,1% F.S.		· · · · · · · · · · · · · · · · · · ·	<0,5% F.S.				
Sovraccarico	25 %	50 % 259	%				
Acquisitore TGAS03							
Alimentazione	12 VDC ± 10%; 0,4 A	Peso 3 kg	g				
Canali di input Seriale RS485		Dimensioni 300	300 x 200 x 125 mm				
Output	Seriale RS 232	Protezione IP6	6				
Trasduttore di profondità (Encoder)							
Risoluzione	10 mm						
Dimensioni	190 x 120 x 80 mm						
Peso	1,7 kg						
Protezione	IP66						

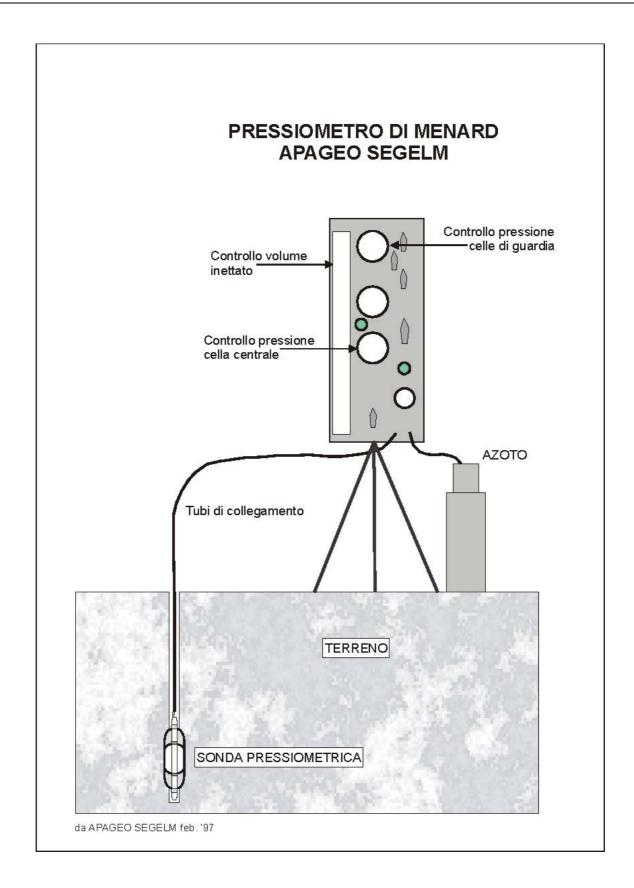
5. Pozzetti ispettivi e prove di carico su piastra

Per i pozzetti è stata utilizzata una terna gommata in grado di raggiungere la profondità di circa 4 metri dal pc.

I terreni sono stati oggetto di esame visivo e descrizione oltre che a campionamento dedicato.

In alcuni pozzetti, come indicato nelle precedenti tabelle sinottiche, sono state eseguite prove di carico su piastra secondo la norma Svizzera SNV 670317°.

6. Prove pressiometriche Menard


2. STRUMENTAZIONE E NORMATIVE UTILIZZATE

Per il cantiere in oggetto è stata utilizzata un sonda pressiometrica del tipo Ménard-Apageo (fig. 1 e fig. 2) dotata delle seguenti caratteristiche:

		SONDA	CELLA DI GUARDIA	CELLA CENTRALE
LUNGHEZZA [mm]		600	120 (+/- 20)	210 (+/- 10)
DIAMETRO [mm]	ESTERNO	60	58 (+/- 2)	58 (+/- 2)

Le prove sono state eseguite secondo le specifiche di Ménard del 1965 e, per quanto non compreso, secondo le seguenti normative e raccomandazioni:

- -Norme ASTM D.4719-87 Standard Test Methods for Pressuremeter Testing in Soils (1994).
- -Le Pressiométre Ménard. Notice general D.60 (edition 07/77) -Céntre d'Etudes Géotechniques Louis Ménard.
- Méthode d'essai LPC n.15-10 (1988). Essai pressiométrique normal.
- Norme Française NF 94-110 "Essai pressiométrique Ménard".

GEOstudi srl

acqua Tratto di perforazione con Tubo di rivestimento rivestimento ϕ = 127 mm Tratto di perforazione $\phi = 101 \, \text{mm}$ Camera di prova $\phi = 60 \text{ mm}$ Cella di guardia Porzione di terreno interessata dalla prova Cella centrale Cella di guardia

Figura 1 – Pressiometro di Menard Figura 2 – Installazione della sonda pressiometrica

Tubi di collegamento acqua

3. MODALITÀ ESECUTIVE

La prova pressiometrica MPM consiste nella misurazione delle dilatazioni indotte in una cella facente parte di una sonda tricellulare, calata in foro di sondaggio appositamente realizzato con un carotiere da 62 mm attrezzato con corone al widia.

La sonda pressiometrica si compone di una sonda cilindrica ad espansione idraulica costituita da una cella centrale o cella di misurazione e da due celle di guardia laterali; le misurazioni vengono effettuate sulla cella centrale che, messa sotto pressione dalla massa d'acqua iniettata all'interno, si espande radialmente.

Le celle di guardia, dilatate dal gas, mantengono costante la geometria del sistema impedendo che la cella centrale abbia deformazioni diverse da quelle radiali (fig. 2).

La prova viene eseguita imponendo incrementi di carico mantenuti costanti per 60" e con misure intermedie a 30" e misurando le dilatazioni della cella centrale e, quindi, le corrispondenti deformazioni volumetriche del terreno.

Le pressioni vengono lette in superficie da manometri di precisione dotati di scale differenziate, mentre le deformazioni vengono rilevate da un sistema volumetrico che offre possibilità di inserire un sistema di misurazione ad alta sensibilità qualora i materiali in esame lo richiedano.

Le pressioni lette al manometro vengono depurate della pressione d'inerzia della sonda.

La taratura di pressione della sonda è effettuata quotidianamente facendo espandere liberamente la cella pressiometrica e registrando i volumi di equilibrio a 60" per ogni incremento di pressione fino alla capacità massima tollerata della guaina.

Viene eseguita anche una taratura dell'insieme sonda - cavi - centralina sulle variazioni di volume (taratura di volume). Le dilatazioni misurate, anche se di entità trascurabile, sono dovute all'elasticità dei tubi ed alla compressibilità del fluido. La membrana viene dilatata all'interno di un tubo metallico indeformabile aumentando la pressione fino al valore massimo di prova.

Essendo le pressioni di circuito lette in superficie in corrispondenza del manometro, ad un'altezza di circa 1 metro dal p.c., le pressioni al livello della cella differiscono da quelle misurate di una quantità pari all'altezza della colonna d'acqua nei tubi, cioè di:

(Hp+1) · 10 (kPa) dove Hp = profondità di prova in metri

Alla pressione letta è stata così sommata la pressione dovuta alla colonna d'acqua (correzione idrostatica).

Si specifica che nel corso delle prove sono state registrate temperature comprese fra +250C e +35°C. Da rilevare che le condizioni metereologiche sono state costanti con giornate di sole tipicamente estive.

Per ogni singola prova viene compilata in cantiere una scheda con i dati fondamentali per individuare il sito, il sondaggio e la profondità di prova, oltre ad altri dati raccolti in maniera sistematica (data, tecnico operatore, misure ai manometri ed al volumometro, ecc.). Il litotipo di riferimento è stato rilevato sulla carota estratta dalla sonda impiegata per realizzare il foro da 62 mm.

I dati registrati durante la prova sono:

- pressione letta al manometro;
- volume iniettato a 30";
- volume injettato a 60".

Da questi volumi si mettono in evidenza la variazione del volume fra la lettura a 30" e la lettura a 60" (V60 - V30) a pressione costante (volume di fluage) e la variazione di volume fra le letture a 60" di due gradini di pressione successivi. Queste due variazioni di volume permettono già in campagna di controllare lo sviluppo della prova e stimare la pressione di fine prove.

Oltre ai dati raccolti in campagna (dati sperimentali), è chiaramente indicata la correzione idrostatica da applicare, le tabelle dei valori di correzione delle tarature, ed i valori delle pressioni corrette.

4. MODALITÀ DI ELABORAZIONE

Negli elaborati forniti in allegato oltre ai dati raccolti nella scheda di cantiere vengono presentati le elaborazioni ed i grafici qui di seguito illustrati.

Il grafico pressione - volume è messo in parallelo con il grafico del volume di fluage. La forma della curva di fluage, infatti, è indicativa per l'individuazione sia della pressione di ricompressione P_o (e quindi del volume V_o) di inizio del tratto pseudo-elastico della curva (lineare) sia della pressione finale del tratto rettilineo P_f (e quindi del volume V_f).

Individuato il tratto rettilineo della curva, si può stimare il modulo pressiometrico normalizzato di Ménard E_P attraverso la relazione:

$$E_p = 2 \cdot (1 + v) \cdot V_m \cdot \Delta P/\Delta V$$

nella quale:

 V_m = volume medio della cella nel tratto pseudo-elastico; ΔP =

variazione di pressione nel tratto pseudo-elastico; ΔV = variazione di volume nel tratto pseudo-elastico.

Il volume medio della cella può essere stimato dalla relazione:

$$V_m = V_i + (V_f + V_o) / 2$$

dove V_i = volume iniziale teorico della cella (535 cm³ nel caso del pressiometro utilizzato).

Il valore del modulo di Poisson (v) varia in funzione del tipo di terreno e del modo con cui viene portato a rottura in relazione alla sua caratteristica di smaltire le sovrappressioni indotte in fase di deformazione plastica.

La pressione limite che corrisponde convenzionalmente alla pressione a cui si raggiunge il volume $V_1 = V_1 + 2V_0$, non è praticamente raggiungibile in fase di prova poiché comporterebbe una rottura totale del terreno con conseguente espansione infinita della sonda. Essa può essere però stimata a partire dal grafico bilogaritmico pressione-variazione relativa di volume ($\Delta V/V$), sul quale in prossimità della pressione limite la curva assume un andamento rettilineo e tende al valore $\Delta V/V = 1$ in corrispondenza della pressione limite PI. Tale procedura per stimare PI sembra essere la più conservativa.

Per le prove che presentano uno o più cicli di isteresi si fornisce anche il valore dei moduli E_p nei tratti di ricompressione di ciascun ciclo.

Per ricavare il modulo E dal modulo E_p sono state proposte in letteratura numerose relazioni semiempiriche che si sono dimostrate attendibili. In pratica si divide il valore di E_p per un coefficiente reologico compreso tra 0,25 ed 1 in relazione al tipo di terreno testato e ad eventuali sovraconsolidazioni o addensamenti.

Per interpretare con maggiore chiarezza il comportamento del terreno nei segmenti di ricompressione, pseudo-elastico e plastico finale, già individuati nelle curve pressiometrica e di fluage, si costruisce il grafico ΔV - P (pag. 3 del modulo di elaborazione), ossia un diagramma in cui la differenza di letture volumetriche registrate tra uno step di pressione ed il successivo è riferita all'aumento di pressione imposta e corretta.

Esso amplifica, rendendoli più evidenti con una linea spezzata, i passaggi da un comportamento fisico del terreno ad un altro, mostrando con immediatezza, per mezzo di una linea approssimabile ad una retta, l'omogeneità dei valori di differenza di volume nel tratto pseudo-elastico.

Lo stesso diagramma, utilizzato in una prova che preveda cicli di isteresi, darà anche indicazioni sullo stato del terreno dopo avere eseguito il ciclo di decompressione e di ricompressione.

Nel diagramma di pag. 4 i moduli pressiometrici e di Young, calcolati per l'intero range di valori di volume e pressione utilizzati per tracciare la curva pressiometrica, si graficano in funzione della pressione imposta e corretta, mostrando, per ogni parametro osservato, una linea spezzata che segue, anch'essa, le variazioni di risposta fisica del terreno; sia il tratto di ricompressione, sia il tratto plastico finale si presentano come linee oblique in salita ed in discesa, raccordate da una linea a "denti di sega" ad andamento pseudo-orizzontale.

Quest'ultimo tratto raccorda i parametri pressiometrici caratteristici di tutta la fase pseudoelastica ed evidenzia, con più dettaglio rispetto alle curve pressiometriche, l'uniformità, o meno, della risposta del terreno nel tratto pseudo-elastico e la conseguente affidabilità dei calcoli dei parametri.

Nella prova provvista di cicli di isteresi, la presenza di più tratti di compressione si mostrerà con varie linee spezzate aperte a differenti altezze di ordinata, ognuna caratteristica di una particolare risposta del terreno alle sollecitazioni imposte.

Determinati i parametri pressiometrici E_p , PI ed E si passa alla stima dei parametri di resistenza del terreno in condizioni drenate ϕ ' e non drenate C_u .

La resistenza del materiale a rottura può essere ricavata dal valore di P'I inteso come pressione limite netta, cioè depurata dalla pressione iniziale Po. A tale valore è infatti collegabile la resistenza del terreno intesa come contributo totale della coesione e dell'attrito del terreno.

Da come viene condotta la prova e da come viene installata la sonda, i dati più attendibili che possono essere ricavati sono legati alla resistenza non drenata del terreno, quindi la prova risulta sicuramente più attendibile in terreni coesivi saturi.

Per ricavare il valore della "C_u", in accordo con gli studi più accreditati, si sono utilizzate le seguenti relazioni (Amar e Jezequel 1972):

$$C_u = P'I / 5.5 \text{ per PI} < 0.3 \text{ MPa}$$

$$C_u = P'I / 10 + 0,025 \text{ per PI} > 0,3 \text{ MPa}$$

Per la stima della resistenza del materiale in termini di φ', le interpretazioni della prova pressiometrica non hanno ancora fornito espressioni sicuramente affidabili

D'altronde la caratteristica della prova di essere essenzialmente "rapida" non assicura che terreni con un minimo di matrice fina smaltiscano completamente le sovrappressioni.

In questa ipotesi si è preferito adottare una interpretazione semplice della curva pressiometrica data del Centro Studi Ménard (1963) che a fronte di una relativa

imprecisione teorica (sull'uso di pressioni totali anziché efficaci) permette di stimare ϕ ' con una buona approssimazione.

Per cui i valori di φ' sono ricavati dalla relazione:

P'I = 0,25 • 2
$$^{(\varphi^{7/4-6})}$$
 con P'I in MPa.

A completamento dell'elaborato pressiometrico vengono fornite le sopra illustrate tarature di pressione e di volume relative ad ogni singola prova.