COMMITTENTE:

DIREZIONE LAVORI:

APPALTATORE:

Consorzio Telese Società Consortile a Responsabilità Limitata

SYSTIA

PROGETTAZIONE:

MANDATARIA:

MANDANTI:

IL DIRETTORE DELLA PROGETTAZIONE:

Ing. L. LACOPO

Responsabile integrazione fra le varie prestazioni specialistiche

REV.

PROGETTO ESECUTIVO

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO - BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° E 3° SUBLOTTO TELESE – SAN LORENZO – VITULANO

RELAZIONE

IMPIANTI DI TRAZIONE ELETTRICA

LINEA DI CONTATTO

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio di punto fisso e relativo Tirante a terra e fondazione

IMPIANTI DI TRAZIONE ELETTRICA	APPALTATORE	SCALA:
IL REVISORE	IL DIRETTORE TECNICO	
CE NOW THE THE PARTY OF THE PAR		_
Ing. A. CARLUCCI	Ing M. FERRONI	
9 37	74	

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR.

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	EMISSIONE	M. BOIARDI	29/06/21	A. GANDOLFI	30/06/21	M. BARILLI	30/06/21	IL PROGETTISTA
^	EIVIISSIONE		29/06/21		30/06/21		30/06/21	A. FORCHINO
В	REVISIONE A SEGUITO	M. BOIARDI	29/10/21	A. GANDOLFI	30/10/21	M. BARILLI	30/10/21	CELLA PROL
	RDV		29/10/21		30/10/21		30/10/21	Visibo Employed
								FORCHIAN D
								Moro * Of
								31/10/21

File: IF2R.0.2.E.ZZ.CL.LC.00.0.0.016.B.doc n. Elab.:

APPALTATORE:

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 0.2.E.ZZ CL LC.00.0.0.016 В 2 di 127 IF2R

	RELAZIO	ONE DI VERIFICA STRUTTURALE4
	PREMESS	5A4
	MODELLO	O NUMERICO4
1	OGG	GETTO6
	1.1 N	ORMATIVA DI RIFERIMENTO7
	1.2	SISTEMA CARTESIANO DI RIFERIMENTO
2	MOD	DELLAZIONE DELLA STRUTTURA E DELLE AZIONI8
	2.1	CARATTERISTICHE GEOMETRICHE E MECCANICHE
	2.1.1	Materiali10
	2.1.2	Sezioni12
	2.2	COMBINAZIONI DEI CASI DI CARICO14
	2.3	CASI DI CARICO (§ 6.2 CEI EN 50119)18
	2.3.1	Condizione di carico eccezionale18
	2.3.2	Azioni dovute al vento19
	2.3.3	Azioni dovute al transito dei convogli ferroviari23
	2.3.4	Azioni di origine sismica24
	2.3.5	Azioni dovute ai conduttori26
	2.3.6	Diametri equivalenti dei conduttori26
	2.3.1	Tabelle di tesatura conduttori28
	2.3.2	Formulazioni per il calcolo delle azioni radiali30
	2.4 F	PICCHETTO 172PR (PALO DI ORMEGGIO PUNTO FISSO)31
	2.4.1	Tabella delle azioni agenti in condizione B31
	2.4.2	Carichi applicati alla struttura nel modello FEM in condizione B33
	2.4.3	Tabella delle azioni agenti in condizione D36
	2.4.4	Carichi applicati alla struttura nel modello FEM in condizione D

APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Con sortile a Responsabilità Limitata

PROGETTAZIONE:

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

Mandante:

SYSTRA-SOTECNI S.p.A. PROGETTO ESECUTIVO

IMPIANTI DI TRAZIONE ELETTRICA

SYSTRA S.A. SWS Engineering S.p.A.

Mandataria:

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 0.2.E.ZZ CL LC.00.0.0.016 B 3 di 127

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

	2.4.5	Tabella delle azioni agenti in condizione ECCEZIONALE	40
	2.4.1	Carichi applicati alla struttura nel modello FEM in condizione ECCEZ	IONALE 42
3		FICA STRUTTURALE (RIF. § 6 E SEGG. CEI EN 50119, §4.2	•
	3.1.1	Verifica profili UPN160(S355)	44
	3.1.2	Verifica tralicciatura Ф20 (S355)	49
	3.1.3	Verifica piastra di base (S355)	54
	3.1.4	Verifica tirafondi M52 (S355)	56
	3.1.1	Verifica piastra di base del TT (S355)	60
	3.1.1	Verifica tirafondi del TT M36 (S355)	62
	3.1.1	Verifica del tirante a terra Φ 20 (S275)	66
4	VERIF	FICA DEL PLINTO DI FONDAZIONE	69
4	1.1 CA	RATTERIZZAZIONE GEOTECNICA	71
4	1.2 INF	FLUENZA DELLE SPINTE DEL TERRENO	73
4	1.3 So	VRACCARICO DOVUTO AI CONVOGLI FERROVIARI	78
4	1.4 VE	RIFICHE GEOTECNICHE.	80
	4.4.1	Azioni agenti alla base del palo	82
	4.4.2	Verifiche geotechine. Esplicitazione delle verifiche Statiche	89
	4.4.1	Verifiche geotecniche. Esplicitazione delle verifiche Sismiche	102
4	4.5 VE	RIFICA DELLE ARMATURE	117
	4.5.1	Dado di fondazione	118
	4.5.2	Pilastrino	123
5	CONC	CLUSIONI	127

I LLESE S.c.a r.l.			ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO					
PROGETTAZIOI	NE:		2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO				ANO	
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU ⁻	ΓΙνο			
IMPIANTI DI TR	AZIONE ELETTRICA		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
verifica del bloc	Icolo Sostegno LSU16b con co di fondazione tipo B3 per a terra e fondazione		IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	4 di 127

RELAZIONE DI VERIFICA STRUTTURALE

Premessa

La presente relazione di calcolo strutturale, in conformità al §10.1 del DM 14/01/08, è comprensiva di una descrizione generale dell'opera e dei criteri generali di analisi e verifica. Segue inoltre le indicazioni fornite al §10.2 del DM stesso per quanto concerne analisi e verifiche svolte con l'ausilio di codici di calcolo.

Modello numerico

In questa parte viene descritto il modello numerico utilizzato (o i modelli numerici utilizzati) per l'analisi della struttura. La presentazione delle informazioni deve essere, coerentemente con le prescrizioni del paragrafo 10.2 e relativi sottoparagrafi delle NTC-08, tale da garantirne la leggibilità, la corretta interpretazione e la riproducibilità.

Si è utilizzata l'analisi statica lineare.

Di seguito si indicano l'origine e le caratteristiche dei codici di calcolo utilizzati riportando titolo, produttore e distributore, versione, estremi della licenza d'uso:

Informazioni sul codice di calcolo	
Titolo:	PRO_SAP PROfessional Structural Analysis Program
Versione:	PROFESSIONAL (build 2020-03-188)
Produttore-Distributore:	2S.I. Software e Servizi per l'Ingegneria s.r.l., Ferrara
Codice Licenza:	Licenza dsi4344

Un attento esame preliminare della documentazione a corredo del software ha consentito di valutarne l'affidabilità e soprattutto l'idoneità al caso specifico. La documentazione, fornita dal produttore e distributore del software, contiene una esauriente descrizione delle basi teoriche e degli algoritmi impiegati, l'individuazione dei campi d'impiego, nonché casi prova interamente risolti e commentati, corredati dei file di input necessari a riprodurre l'elaborazione:

Affidabilità dei codici utilizzati

2S.I. ha verificato l'affidabilità e la robustezza del codice di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche. E' possibile reperire la documentazione contenente alcuni dei più significativi casi trattati al seguente link: http://www.2si.it/Software/Affidabilità.htm

APPALTATORE: TELESE s.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 0.2.E.ZZ CL LC.00.0.0.016 B 5 di 127

DICHIARAZIONE DI AFFIDABILITÀ

Dichiarazione del produttore-distributore di PRO_SAP PROfessional SAP riguardante l'affidabilità del codice (NTC 2018 - Paragrafo 10.2)

Origine e caratteristiche dei codici di calcolo

Titolo: PRO_SAP PROfessional Structural Analysis Program

Autore-Produttore: 2S.I. Software e Servizi per l'Ingegneria s.r.l., Ferrara

Affidabilità dei codici

- Inquadramento teorico della metodologia

L'analisi strutturale viene effettuata con il metodo degli elementi finiti. Il metodo si basa sulla schematizzazione della struttura in elementi connessi in corrispondenza di un numero prefissato di punti denominati nodi. I nodi sono definiti dalle tre coordinate cartesiane in un sistema di riferimento globale. L'analisi strutturale è condotta con il metodo degli spostamenti per la valutazione dello stato tensiodeformativo indotto da carichi statici.

L'analisi strutturale è condotta con il metodo dell'analisi modale e dello spettro di risposta in termini di accelerazione per la valutazione dello stato tensiodeformativo indotto da carichi dinamici (tra i quali quelli di tipo sismico).

Gli elementi, lineari e non lineari, utilizzati per la modellazione dello schema statico della struttura sono i sequenti:

Elemento TRUSS (asta)
Elemento BEAM (trave)
Elemento MEMBRANE (membrana)
Elemento PLATE (piastra-guscio)

Elemento BRICK (solido)
Elemento CINGHIA
Elemento BOUNDARY (molla)
Elemento STIFFNESS
(matrice di rigidezza)

- Casi prova che consentano un riscontro dell'affidabilità

2S.I. ha verificato, in collaborazione con il DISTART dell'Università di Bologna e con il Dipartimento di Ingegneria dell'Università di Ferrara, l'affidabilità e la robustezza del codice di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

E' possibile reperire la documentazione contenente alcuni dei più significativi casi trattati al seguente link: http://www.2si.it/affidabilita.php

- Filtri di autodiagnostica

Il programma prevede una serie di controlli automatici (check) che consentono l'individuazione di errori di modellazione.

Al termine dell'analisi un controllo automatico identifica la presenza di spostamenti o rotazioni abnormi.

Garanzia di qualità

Dal 1 dicembre 1999 2S.I. ha prodotto un manuale di qualità in funzione dei requisiti della norma di riferimento UNI EN ISO 9001.

Tutte le attività dell'azienda sono regolate dalla documentazione e dalle procedure in esso contenute. In relazione alla attività di validazione dei prodotti software si dichiara inoltre quanto segue:

- la fase di progetto degli algoritmi è preceduta dalla ricerca di risultati di confronto reperibili in bibliografia o riproducibili con calcoli manuali;
- la fase di implementazione degli algoritmi è continuamente validata con strumenti automatici (tools di sviluppo) e attraverso confronti;
- il software che implementa gli algoritmi è testato, confrontato e controllato anche da tecnici qualificati che non sono intervenuti nelle precedenti fasi.

Nella produzione del solutore FEM 2S.I. implementa componenti sviluppati da CM2 - Computing Objects SARL spin-off dell'École Centrale Paris, France. E' disponibile la documentazione di affidabilità di tali componenti all'indirizzo web:

http://www.2si.it/software/download/manuali/pro_sap quaderni/Affidabilita/benchmarks_e_sap.zip

APPALTATORE: TELESE s.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata			ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO					
PROGETTAZIO	NE:		2° e 3 SUBI	LOTTO TI	ELESE – SA	AN LORENZO	– VITUL	_ANO
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU ⁻	ΓΙνο			
IMPIANTI DI TR	AZIONE ELETTRICA		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
verifica del bloc	alcolo Sostegno LSU16b con cco di fondazione tipo B3 per a terra e fondazione		IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	6 di 127

1 OGGETTO

L'oggetto della presente relazione è l'analisi e la verifica della struttura e della fondazione che dovranno essere utilizzate come ormeggio di punto fisso nella tratta Telese-Solopaca .

Il picchetto analizzato è il 172PR.

Il sostegno utilizzato è del tipo LSU16b secondo il documento RFI E66013e e il plinto tipo B3. La catenaria è 440 mm² F.R.

Il palo si trova in interno curva di raggio 1000m.

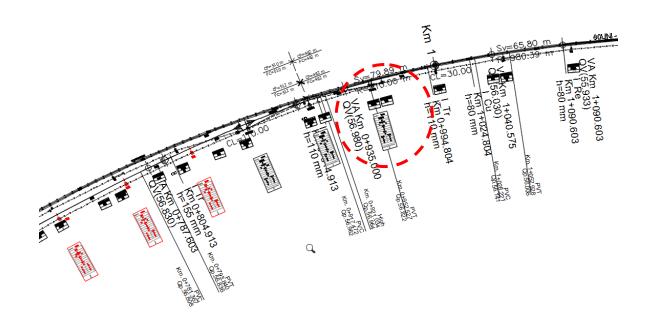


Figura 1 Stralcio planimetrico

L'analisi condotta di seguito sarà incentrata sul calcolo delle azioni agenti alla base del sostegno e sul plinto di fondazione. La relazione presente è stata redatta seguendo lo schema di seguito illustrato:

A. <u>Verifica STRUTTURALE del palo:</u>

- 1. Modellazione strutturale.
- 2. Modellazione delle azioni applicate alla struttura (carichi permanenti e variabili e di origine sismica).
- 3. Determinazione delle azioni maggiormente gravose (approccio progettuale 2 Coefficienti parziali di sicurezza per i carichi di tipo STR A1).
- 4. Verifica della sicurezza (ai sensi del DM'08 e circ. esplicativa '09 n°7).

APPALTATORE: TELESE s.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata			ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO					
PROGETTAZIO	NE:		2° e 3 SUBI	LOTTO TE	ELESE – SA	AN LORENZO	– VITUL	_ANO
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο			
IMPIANTI DI TR	AZIONE ELETTRICA		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
verifica del bloc	alcolo Sostegno LSU16b con acco di fondazione tipo B3 per a terra e fondazione		IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	7 di 127

B. <u>Verifica del plinto di fondazione:</u>

- 1. Modellazione strutturale.
- Modellazione delle azioni applicate alla struttura (carichi permanenti e variabili e di origine sismica).
- 3. Individuazione delle sollecitazioni maggiormente gravose trasmesse al plinto.
- 4. Verifica della sicurezza (ai sensi del DM'08 e circ. esplicativa '09 n°7 e RFI E64864).

La metodologia di calcolo è quella semiprobabilistica agli stati limite.


1.1 NORMATIVA DI RIFERIMENTO

Si è fatto riferimento alla seguente normativa:

- D.Min. Infrastrutture Min. Interni e Prot. Civile 14 Gennaio 2008 e allegate "Norme tecniche per le costruzioni".
- Circolare 2 febbraio 2009, n. 617 Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008.
- Istruzione tecnica RFI DMAIM TE SP IFS 006 A "Procedimento di calcolo di verifica dei pali della linea di contatto in stazione e di piena linea".
- Istruzione tecnica RFI DMAIM TE SP IFS 060 A "Costruzione dei blocchi di fondazione con pilastrino ed installazione pali T.E. flangiati".
- Capitolato Tecnico TE RFI EDIZIONE 2014 Allegato 4 Capitolato tecnico per la costruzione delle linee aeree di contatto e di alimentazione a 3 kv cc
- CEI EN 50119 ed. 2010-05 "Applicazioni ferroviarie, filoviarie e metropolitane Impianti fissi Linee aeree di contatto per trazione elettrica".

1.2 SISTEMA CARTESIANO DI RIFERIMENTO

Il sistema di riferimento delle coordinate globali della struttura, degli spostamenti e delle azioni determinate dai carichi è rappresentato dall'asse delle x orientato perpendicolarmente ai binari ferroviari, mentre l'asse y è longitudinale ad essi.

L'asse verticale z è positivo diretto verso l'alto. Per quanto riguarda i valori delle azioni assiali Fx, Fy ed Fz si intendono positivi quando diretti nel verso positivo dei rispettivi assi.

I LLESE S.c.a r.l.			ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO					
PROGETTAZION	NE:		2° e 3 SUBL	OTTO TE	ELESE - SA	AN LORENZO	– VITUL	.ANO
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο			
IMPIANTI DI TRA	AZIONE ELETTRICA		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
verifica del bloc	Icolo Sostegno LSU16b con co di fondazione tipo B3 per a terra e fondazione		IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	8 di 127

2 MODELLAZIONE DELLA STRUTTURA E DELLE AZIONI

2.1 CARATTERISTICHE GEOMETRICHE E MECCANICHE

Riferimento normativo:

 Capitolato Tecnico TE – Allegato 4A – Esecuzione di un insieme di lavori autonomi ed a sé stanti di rinnovo e adeguamento delle condutture di contatto, dei pali e delle mensole di sostegno della linea di alimentazione elettrica da eseguirsi su tratti di linea della rete ferroviaria Italiana.

La struttura è stata modellata mediante elementi finiti mono e bidimensionali.

Per riferimento costruttivo riportiamo i documenti RFI utilizzati per la modellazione:

Sostegni tipo LSU

E 66013e

Per i parametri geotecnici e sismici del terreno si fa riferimento alle seguenti relazioni geotecniche:

• IF2R.0.2.E.ZZ.RB.GE.00.0.5.001.A

Relazione geotecnica generale di linea delle opere all'aperto

IF2R.0.2.E.ZZ.RG.GE.00.0.1.001.A

Relazione Sismica

APPALTATORE:

TELESE S.c.a r.l.

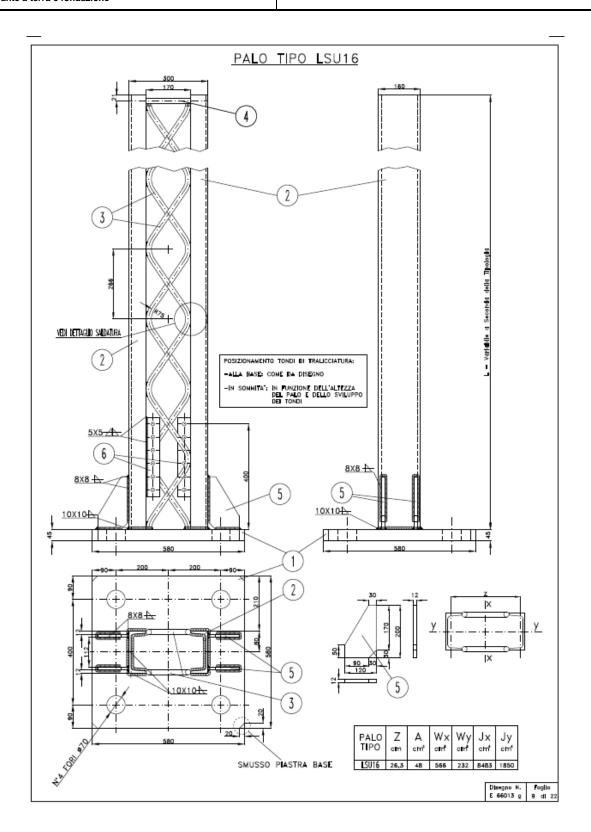
Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.


IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO CL LC.00.0.0.016 9 di 127 IF2R 0.2.E.ZZ В

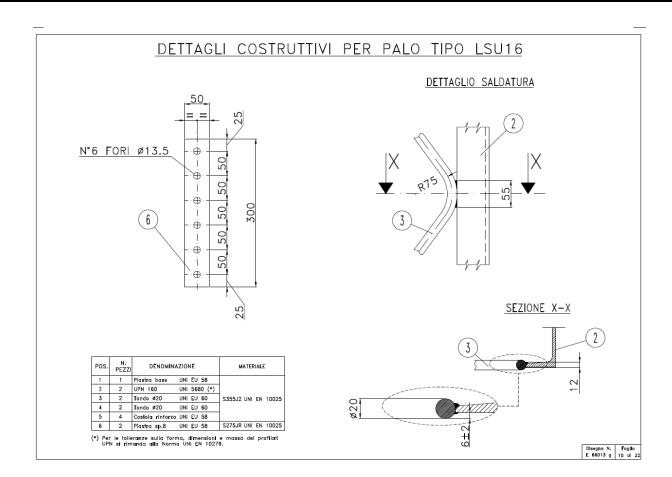
APPALTATORE: TELESE s.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.


IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 0.2.E.ZZ CL LC.00.0.0.016 B 10 di 127

2.1.1 Materiali

Di seguito le caratteristiche meccaniche dei materiali utilizzati nella modellazione agli elementi finiti:

acciaio			Young	modulo di elasticità normale
	Ft	tensione di rottura a trazione	Poisson	coefficiente di contrazione trasversale
	Fy	tensione di snervamento	G	modulo di elasticità tangenziale
	Fd	resistenza di calcolo	Gamma	peso specifico
			Alfa	coefficiente di dilatazione termica

Id	Tipo / Note	V. caratt.	V. medio	Young	Poisson	G	Gamma	Alfa	Altri
		daN/cm2	daN/cm2	daN/cm2		daN/cm2	daN/cm3		
13	Acciaio Fe510 - S355			2.100e+06	0.30	8.077e+05	7.80e-03	1.20e-05	
	Tensione ft	5100.0							
	Resistenza fd	3550.0							
157	Materiale inf. rigido no peso E = 1.000e+09			1.000e+09	0.0	5.000e+08	0.0	1.20e-05	

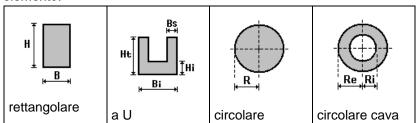
APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO Mandataria: Mandante: PROGETTO ESECUTIVO SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO REV. Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e CL IF2R 0.2.E.ZZ LC.00.0.0.016 В 11 di 127 verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

Inoltre per quanto relativo ai coefficienti parziali e ai criteri di progetto si è fatto riferimento alle seguenti tabelle:

Aste acc.	
Generalità	
Beta assegnato	0.80
Verifica come controvento	Si
Usa condizioni I e II	No
Coefficiente gamma M0	1.05
Coefficiente gamma M1	1.05
Coefficiente gamma M2	1.25

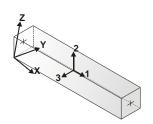
Pilastri acc.	
Lunghezze libere	
Metodo di calcolo 2-2	Assegnato
2-2 Beta assegnato	2.00
2-2 Beta * L assegnato [cm]	0.0
Metodo di calcolo 3-3	Assegnato
3-3 Beta assegnato	2.00
3-3 Beta * L assegnato [cm]	0.0
1-1 Beta assegnato	1.00
1-1 Beta * L assegnato [cm]	0.0
Generalità	
Coefficiente gamma M0	1.05
Coefficiente gamma M1	1.05
Coefficiente gamma M2	1.25
Effetti del 2 ordine	Si

Travi acc.	
Lunghezze libere	
3-3 Beta * L automatico	Si
3-3 Beta assegnato	1.00
3-3 Beta assegnato [cm]	0.0
2-2 Beta * L automatico	Si
2-2 Beta assegnato	1.00
2-2 Beta * L assegnato [cm]	0.0
1-1 Beta * L automatico	Si
1-1 Beta assegnato	1.00
1-1 Beta * L assegnato [cm]	0.0
Generalità	
Coefficiente gamma M0	1.05
Coefficiente gamma M1	1.05
Coefficiente gamma M2	1.25

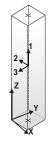

APPALTATORE: ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO Mandataria: Mandante: **PROGETTO ESECUTIVO** SWS Engineering S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO **CODIFICA DOCUMENTO** RFV **FOGLIO** Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e IF2R 0.2.E.ZZ CL LC.00.0.0.016 12 di 127 В verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

2.1.2 Sezioni

Si sono utilizzati profili semplici e di tipo generico (introdotti dall'utente). Le sezioni sono individuate da una sigla e da un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni sezione vengono riportati i seguenti dati:


Area	area della sezione
A V2	area della sezione/fattore di taglio (per il taglio in direzione 2)
A V3	area della sezione/fattore di taglio (per il taglio in direzione 3)
Jt	fattore torsionale di rigidezza
J2-2	momento d'inerzia della sezione riferito all'asse 2
J3-3	momento d'inerzia della sezione riferito all'asse 3
W2-2	modulo di resistenza della sezione riferito all'asse 2
W3-3	modulo di resistenza della sezione riferito all'asse 3
Wp2-2	modulo di resistenza plastico della sezione riferito all'asse 2
Wp3-3	modulo di resistenza plastico della sezione riferito all'asse 3

I dati soprariportati vengono utilizzati per la determinazione dei carichi inerziali e per la definizione delle rigidezze degli elementi strutturali; qualora il valore di Area V2 (e/o Area V3) sia nullo la deformabilità per taglio V2 (e/o V3) è trascurata. La valutazione delle caratteristiche inerziali delle sezioni è condotta nel riferimento 2-3 dell'elemento.



ld	Тіро	Area	A V2	A V3	Jt	J 2-2	J 3-3	W 2-2	W 3-3	Wp 2-2	Wp 3-3
		cm2	cm2	cm2	cm4	cm4	cm4	cm3	cm3	cm3	cm3
1	UNP 160	24.00	0.0	0.0	7.39	85.10	925.00	18.20	116.00	35.20	138.00
2	tralicciatura diam 20 mm-Circolare: r=1	3.14	2.65	2.65	1.57	0.79	0.79	0.79	0.79	1.33	1.33
3	link rigidi 10 mm-Circolare: r=1	3.14	2.65	2.65	1.57	0.79	0.79	0.79	0.79	1.33	1.33
4	Tirafondi M52-Circolare: r=2.6	21.24	17.92	17.92	71.78	35.89	35.89	13.80	13.80	23.43	23.43
10	M36	10.18	8.59	8.59	16.49	8.24	8.24	4.58	4.58	7.78	7.78

Riferimenti locali delle sezioni degli elementi 2D:

Orientamento elementi 2D non verticali

Orientamento elementi 2D verticali

La struttura è stata modellata agli elementi finiti utilizzando materiali e geometrie rispondenti alle specifiche tecniche ed ai disegni di progetto esecutivo (specifiche tecniche RFI).

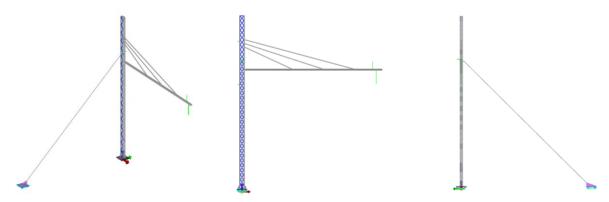
APPALTATORE: TELESE S.c.a r.l

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.


IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 0.2.E.ZZ CL LC.00.0.0.016 B 13 di 127

Modellazione del palo picc. 172PR agli elementi finiti

RAD RAD			ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO					
PROGETTAZIO	NE:		2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO			LANO		
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο			
IMPIANTI DI TRAZIONE ELETTRICA Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione		COMMESSA IF2R	LOTTO 0.2.E.ZZ	CODIFICA CL	DOCUMENTO LC.00.0.0.016	REV. B	FOGLIO 14 di 127	

2.2 COMBINAZIONI DEI CASI DI CARICO

L'analisi delle azioni agenti sulla struttura in acciaio è stata eseguita seguendo quanto previsto dalla normativa DM '08 al §2.6.1 e dal documento RFI E64864c, relativamente alle verifiche agli stati limite ultimi.

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni:

Combinazione fondamentale SLU

$$\gamma_{\mathsf{G1}} \cdot \mathsf{G}_1 + \gamma_{\mathsf{G2}} \cdot \mathsf{G}_2 + \gamma_{\mathsf{P}} \cdot \mathsf{P} + \gamma_{\mathsf{Q1}} \cdot \mathsf{Q}_{\mathsf{k1}} + \gamma_{\mathsf{Q2}} \cdot \psi_{\mathsf{02}} \cdot \mathsf{Q}_{\mathsf{k2}} + \gamma_{\mathsf{Q3}} \cdot \psi_{\mathsf{03}} \cdot \mathsf{Q}_{\mathsf{k3}} + \dots$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E

$$\mathsf{E} + \mathsf{G}_1 + \mathsf{G}_2 + \mathsf{P} + \psi_{21} \cdot \mathsf{Q}_{\mathsf{k}1} + \psi_{22} \cdot \mathsf{Q}_{\mathsf{k}2} + \dots$$

Di seguito riportiamo in forma tabellare i coefficienti parziali e di combinazione utilizzati nella determinazione delle combinazioni di carico agli SLU.

Tabella 2.6.I - Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

		$\begin{array}{c} \text{Coefficiente} \\ \gamma_F \end{array}$	EQU	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ gı	0,9 1,1	1,0 1,3	1,0 1,0
Carichi permanenti non strutturali ⁽¹⁾	favorevoli sfavorevoli	γ _{G2}	0,0 1,5	0,0 1,5	0,0 1,3
Carichi variabili	favorevoli sfavorevoli	γ _{Qi}	0,0 1,5	0,0 1,5	0,0

⁽¹⁾Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare per essi gli stessi coefficienti validi per le azioni permanenti.

Tabella 1 - Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

Tab. 2.5.I - Valori dei coefficienti di combinazione

Categoria/Azione variabile	Ψοϳ	Ψ1j	ψ_{2j}
Categoria A - Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B - Uffici	0,7	0,5	0,3
Categoria C - Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D - Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E – Aree per immagazzinamento, uso commerciale e uso industriale Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8
Categoria F - Rimesse , parcheggi ed aree per il traffico di veicoli (per autoveicoli di peso \leq 30 kN)	0,7	0,7	0,6

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. CODIFICA IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO DOCUMENTO RFV **FOGLIO** Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e 0.2.E.ZZ CL LC.00.0.0.016 15 di 127 IF2R В verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

Categoria G – Rimesse, parcheggi ed aree per il traffico di veicoli (per autoveicoli di peso > 30 kN)	0,7	0,5	0,3
Categoria H - Coperture accessibili per sola manutenzione	0,0	0,0	0,0
Categoria I – Coperture praticabili	da valutarsi caso per		so per
Categoria K – Coperture per usi speciali (impianti, eliporti,)	caso		
Vento	0,6	0,2	0,0
Neve (a quota ≤ 1000 m s.l.m.)	0,5	0,2	0,0
Neve (a quota > 1000 m s.l.m.)	0,7	0,5	0,2
Variazioni termiche	0,6	0,5	0,0

Tabella 2 - Valori dei coefficienti di combinazione

Le combinazioni utilizzate nelle verifiche prevedono la dipendenza dei tiri dei conduttori con i relativi pesi e la esclusività del vento agente nelle direzioni X e Y. Analogamente le combinazioni sismiche sono prive delle azioni del vento e le combinazioni caratteristiche hanno tutte coefficienti parziali unitari. Le combinazioni saranno riportate nelle verifiche condotte nel seguito.

Per la verifica della struttura in acciaio seguiremo l'approccio 2 definito in §2.6.1 per stati limite ultimi di tipo STR con coefficienti parziali per le azioni di tipo A1.

Riportiamo le combinazioni con i coefficienti parziali e di combinazione associati ad ogni caso di carico. I carichi generici applicati alla struttura, concentrati o distribuiti, saranno considerati nell'analisi moltiplicando gli effetti per i coefficienti tabellati.

Nota: Se si fa riferimento al DM'08 al §2.5.3 come indicato in questa relazione (al § 2.2), le azioni variabili Qk1 e Qk2 quali peso e tiro dei conduttori, nella combinazione sismica vengono moltiplicate per ψ_{2j} che nella tabella 2.5.1 del DM'08 risulta essere pari a 0,8 per la categoria E (la più gravosa).

Inoltre contrariamente alle combinazioni sismiche del dis RFI E64864c si è tenuto in conto anche della presenza del ghiaccio sui conduttori (a differenza di ciò che invece dice il Capitolato, in cui nella combinazioni sismiche il coefficiente di moltiplicazione del ghiaccio Q1 è nullo). Da un'analisi condotta infatti risulta che utilizzare il coefficiente 0,8 considerando anche il peso del ghiaccio, va a compensare l'utilizzo del coefficiente 1 sui carichi tipo G2 escludendo la presenza del ghiaccio Q1. I risultati che si ottengono sono analoghi.

Combinazioni ed approccio:

Le verifiche delle fondazioni dei pali devono essere eseguite secondo gli approcci indicati nelle norme tecniche per le costruzioni e nel documento RFI E64864c.

Verifica statica:

•	Ribaltamento	A1 + M1 + R3 _{RIB}	(rif. §6.5.3.1.1 NTC08)
•	Scorrimento:	A1 + M1 + R3 _{SCORR}	(rif. §6.4.2.1 NTC08)
•	Carico Limite:	A1 + M1 + R3	(rif. §6.4.2.1 NTC08)

Verifica Sismica:

•	Ribaltamento:	SIS + M1 _{SIS} + R3 _{RIB-SIS}	(rif. §7.11.6 NTC08)
•	Scorrimento:	SIS + M1sis + R3scorr-sis	(rif. §7.11.5 NTC08)
•	Carico Limite:	SIS + M1sis + R3sis	(rif. §7.11.5 NTC08)

APPALTATORE	TELES Consorzio Telese Società Consor		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULAN					
PROGETTAZIO	NE:		2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO			_ANO		
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο			
IMPIANTI DI TR	AZIONE ELETTRICA		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
verifica del bloc	Icolo Sostegno LSU16b con co di fondazione tipo B3 per a terra e fondazione		IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	16 di 127

Riportiamo le tabelle dei coefficienti parziali e di sicurezza da utilizzare nelle verifiche statiche e sismiche:

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_{M}	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$ an {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	γc	1,0	1,25
Resistenza non drenata	c_{uk}	γ _{cu}	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Tabella 3 - Coefficienti parziali per i parametri geotecnici del terreno

Tab. 6.4.I – Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di fondazioni superficiali

Verifica	Coefficiente
	parziale
	(R3)
Carico limite	$\gamma_R = 2.3$
Scorrimento	$\gamma_R = 1.1$

Tabella 4 – Coefficienti parziali γR per le verifiche agli stati limite ultimi di fondazioni superficiali

Relativamente alle verifiche a ribaltamento si è deciso di operare per analogia con le disposizioni previste per le opere di sostegno.

Riportiamo le combinazioni con i coefficienti parziali e di combinazione associati ad ogni caso di carico. I carichi generici applicati alla struttura, concentrati o distribuiti, saranno considerati nell'analisi moltiplicando gli effetti per i coefficienti tabellati.

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO REV. Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e CL 17 di 127 IF2R 0.2.E.ZZ LC.00.0.0.016 В verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

Tabelle delle combinazioni di carico:

Combinazioni di tipo statico

Cmh	Sigla Id	Peso Proprio	Peso Conduttori	Tiro Conduttori	Vento in X	Vento in Y	Vento Aero in X	Sisma in X	Sisma in Y	Masse
CIIID	Sigia iu									Tensorex
1	Comb. SLU A1 1	1.30	1.50	1.50	0.0	0.0	0.0	0.0	0.0	1.30
2	Comb. SLU A1 2	1.00	1.50	1.50	0.0	0.0	0.0	0.0	0.0	1.00
3	Comb. SLU A1 3	1.30	1.50	1.50	-0.90	0.0	-1.20	0.0	0.0	1.30
4	Comb. SLU A1 4	1.30	1.50	1.50	0.90	0.0	1.20	0.0	0.0	1.30
5	Comb. SLU A1 5	1.00	1.50	1.50	-0.90	0.0	-1.20	0.0	0.0	1.00
6	Comb. SLU A1 6	1.00	1.50	1.50	0.90	0.0	1.20	0.0	0.0	1.00
7	Comb. SLU A1 7	1.30	1.50	1.50	-1.50	0.0	-1.50	0.0	0.0	1.30
8	Comb. SLU A1 8	1.30	1.50	1.50	1.50	0.0	1.50	0.0	0.0	1.30
9	Comb. SLU A1 9	1.00	1.50	1.50	-1.50	0.0	-1.50	0.0	0.0	1.00
10	Comb. SLU A1 10	1.00	1.50	1.50	1.50	0.0	1.50	0.0	0.0	1.00
11	Comb. SLU A1 11	1.30	1.50	1.50	0.0	-0.90	0.0	0.0	0.0	1.30
12	Comb. SLU A1 12	1.30	1.50	1.50	0.0	0.90	0.0	0.0	0.0	1.30
13	Comb. SLU A1 13	1.00	1.50	1.50	0.0	-0.90	0.0	0.0	0.0	1.00
14	Comb. SLU A1 14	1.00	1.50	1.50	0.0	0.90	0.0	0.0	0.0	1.00
15	Comb. SLU A1 15	1.30	1.50	1.50	0.0	-1.50	0.0	0.0	0.0	1.30
16	Comb. SLU A1 16	1.30	1.50	1.50	0.0	1.50	0.0	0.0	0.0	1.30
17	Comb. SLU A1 17	1.00	1.50	1.50	0.0	-1.50	0.0	0.0	0.0	1.00
18	Comb. SLU A1 18	1.00	1.50	1.50	0.0	1.50	0.0	0.0	0.0	1.00

Combinazioni di tipo sismico

Cmh	Sigla Id	Desa Propria	Peso Conduttori	Tiro Conduttori	Vento in Y	Vento in V	Vento	Sisma in X	Sicma in V	Masse
CIIID	Sigia iu	resorroprio	reso conduction	The conduction	vento in x	vento in 1	Aero in X	Sisilia III X	Jisilia III I	Tensorex
1	Comb. SLU A1 (SLV sism.) 1	1.00	0.80	0.80	0.0	0.0	0.0	-1.00	-0.30	1.00
2	Comb. SLU A1 (SLV sism.) 2	1.00	0.80	0.80	0.0	0.0	0.0	-1.00	0.30	1.00
3	Comb. SLU A1 (SLV sism.) 3	1.00	0.80	0.80	0.0	0.0	0.0	1.00	-0.30	1.00
4	Comb. SLU A1 (SLV sism.) 4	1.00	0.80	0.80	0.0	0.0	0.0	1.00	0.30	1.00
5	Comb. SLU A1 (SLV sism.) 5	1.00	0.80	0.80	0.0	0.0	0.0	-0.30	-1.00	1.00
6	Comb. SLU A1 (SLV sism.) 6	1.00	0.80	0.80	0.0	0.0	0.0	-0.30	1.00	1.00
7	Comb. SLU A1 (SLV sism.) 7	1.00	0.80	0.80	0.0	0.0	0.0	0.30	-1.00	1.00
8	Comb. SLU A1 (SLV sism.) 8	1.00	0.80	0.80	0.0	0.0	0.0	0.30	1.00	1.00

APPALTATORE: TELESE s.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata			ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO						
PROGETTAZION	2° e 3 SUBI	OTTO TE	ELESE - SA	AN LORENZO	– VITUL	ANO			
Mandataria:	Mandante:								
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο				
IMPIANTI DI TRA	AZIONE ELETTRICA		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
	Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e			0.2.E.ZZ	CL	LC.00.0.0.016	В	18 di 127	
	verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e elativo Tirante a terra e fondazione								

2.3 CASI DI CARICO (§ 6.2 CEI EN 50119)

I casi di carico che si sono considerati e che danno origine alle azioni applicate alle strutture sono rappresentati dai:

- Pesi propri strutturali.
- Carichi variabili dovuti al peso dei conduttori
- Carichi variabili dovuti al tiro dei conduttori
- Carichi dovuti all'azione del vento in direzione X
- Carichi dovuti all'azione del vento in direzione Y
- Carichi aerodinamici in direzione X
- · Carichi di origine sismica .

Prendendo a riferimento la parte relativa alle verifiche strutturali della CEI EN 50119 si è scelto di considerare due condizioni di calcolo in base a differenti valori di temperatura esterna (T), velocità del vento (W) e peso dell'eventuale manicotto di ghiaccio (Pg):

Condizione B	Condizione D
T=+5°C	T=-5°C
W=27 m/s	W=27 m/s
Pg=0 daN/m	Pg=7 N/m

La normativa EN50119 prevede che, in presenza del manicotto di ghiaccio, si possano tenere in conto al 50% le azioni del vento agente sui conduttori e sui sostegni.

N.B: In generale in presenza di tiri regolati le condizioni di carico più gravose sono rappresentate dalla B oppure dalla D nelle quali è tenuto in conto il contributo del vento. Per questo motivo si omette il calcolo in condizione A (T=-20°C senza vento e senza ghiaccio) delle azioni agenti sulla struttura ritenendo maggiormente gravose le rimanenti due condizioni.

2.3.1 Condizione di carico eccezionale

Come riportato in E64864c relativamente alle verifiche dei pali in condizione di carico eccezionale si dovrà eseguire la verifica "...viene considerato il carico eccezionale dovuto alla rottura dei fili di contatto."

Questa condizione di carico deve tenere in conto l'assenza delle azioni provocate dal vento ed inoltre la presenza di fattori parziali associati ai carichi tutti unitari (per sicurezza si assocerà la temperatura di -20°C prevista per la condizione di carico A).

In presenza di una catenaria 440 mmq si avrà: $2 \times T = 2 \times 1000 \text{ daN} = 2000 \text{ daN}$ di ulteriore tiro dovuto all'ormeggio di punto fisso.

Combinazione con CARICO ECCEZIONALE

Cmb	Sigla Id	Peso Proprio	Peso Conduttori	Tiro Conduttori	Vento in X	Vento in Y	Vento Aero in X	Sisma in X	Sisma in Y
1	Comb. ECCEZ 1	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0

APPALTATORE	TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO						
PROGETTAZIO	2° e 3 SUBI	OTTO TE	ELESE - SA	N LORENZO	– VITUL	_ANO		
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο				
IMPIANTI DI TR	AZIONE ELETTRICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di Ca	IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	19 di 127		

2.3.2 Azioni dovute al vento

Ipotesi (EN 50119:2010-05, vento di riferimento ottenuto dalla EN 50125-2):

- Tempo di ritorno Tr = 50 anni
- Vento di riferimento Vr= 27 m/sec

Valore della pressione dinamica del vento (cnfr. §6.2.4.2 EN 50119):

$$qk = \frac{1}{2} Gq \times Gt \times \rho \times V_r^2$$

con:

- Gq = fattore di risposta alle raffiche di vento (=2,05)
- Gt = fattore caratteristico del suolo (=1)
- Vr = velocità di riferimento del vento
- ρ = densità dell'aria

Condizione B: assenza di ghiaccio ed azioni del vento al 100%:

- T = temperature espressa in gradi Kelvin (=278°K) [corrispondente a +5° C]
- A = altitudine (=0 m)
- h = altezza dei conduttori dal piano campagna (stimata = 10 m per mediare il valore del vento da applicare al palo)
- H = A + h = 10 m
- Manicotto di ghiaccio (peso 7 N /m)

Calcoliamo il valore della densità dell'aria p:

$$\rho = 1,225 \ x \left(\frac{288}{r}\right) x \ e^{-1,2 \ 10^{-4} \ H}$$

Che fornisce un valore della densità dell'aria ρ = 1,268 Kg/m³. Inserendo questo valore nella formula per il calcolo della pressione dinamica del vento otteniamo:

$$q_k = 94,71 \text{ daN/m}^2$$

Il valore della pressione agente sui conduttori si ottiene applicando i coefficienti:

- Gq = fattore di risposta strutturale (reazione dei conduttori al carico del vento = 0,75)
- Cc = coefficiente di resistenza del conduttore (=1)

Prendendo l'angolo di incidenza del vento sui conduttori pari a 90°, cioè perpendicolare ad essi, otteniamo le pressioni agenti per m².

• Pressione diretta sui conduttori (q = 94,71 x 0,75) pd = 71,06 daN/m²

Pressione schermata sui conduttori = 80% q ps = 56,85 daN/m²

APPALTATORE	RADDOPPI	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO						
PROGETTAZIO	NE:	2° e 3 SUBI	LOTTO TI	ELESE - SA	AN LORENZO	– VITUI	_ANO	
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.	A. PROGETTO) ESECU	ΓΙνο				
IMPIANTI DI TR	AZIONE ELETTRICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
verifica del bloc	Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione			CL	LC.00.0.0.016	В	20 di 127	

Il valore della pressione agente sul palo è dipendente da due coefficienti:

- Gstr = fattore di risonanza strutturale (= 1)
- Cstr = coefficiente di resistenza strutturale che dipende dal tipo di sezione del palo utilizzata

$$q = 94,71 \times 1 (= G_{str}) = 94,71 \text{ daN/m}^2$$

Condizione D: presenza di ghiaccio e azioni del vento al 50%:

- T = temperature espressa in gradi Kelvin (=268°K) [corrispondente a -5° C]
- A = altitudine (=0 m)
- h = altezza dei conduttori dal piano campagna (stimata = 10 m per mediare il valore del vento da applicare al palo)
- H = A + h = 10 m
- Senza manicotto di ghiaccio

$$\rho = 1,225 \ x \ \left(\frac{288}{\tau}\right) x \ e^{-1,2 \ 10^{-4} \ H}$$

Che fornisce un valore della densità dell'aria ρ = 1,315 Kg/m³. Inserendo questo valore nella formula per il calcolo della pressione dinamica otteniamo:

$$q_k = 98,25 \text{ daN/m}^2$$

I valore della pressione agente sui conduttori si ottiene applicando i coefficienti:

- Gq = fattore di risposta strutturale (reazione dei conduttori al carico del vento = 0,75)
- Cc = coefficiente di resistenza del conduttore (=1)

Prendendo l'angolo di incidenza del vento sui conduttori pari a 90°, cioè perpendicolare ad essi, otteniamo le pressioni agenti per m²:

Nota:

Da notare che in presenza di ghiaccio il carico da vento agente sui conduttori e sulla struttura si considera al 50% (vedi EN 50119).

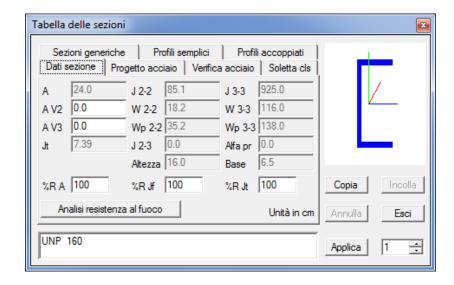
• Pressione diretta sui conduttori (q=98,25 x 0,75 x 0,5)

 $pd = 36,85 daN/m^2$

Pressione schermata sui conduttori = 80% q

 $ps = 29,48 \text{ daN/m}^2$

Il valore della pressione agente sul palo è dipendente da due coefficienti:


- Gstr = fattore di risonanza strutturale (= 1)
- Cstr = coefficiente di resistenza strutturale che dipende dal tipo di sezione del palo utilizzata

$$q = 98,25 \times 1(=Gstr) \times 0,5 = 49,13 \text{ daN/m}^2$$

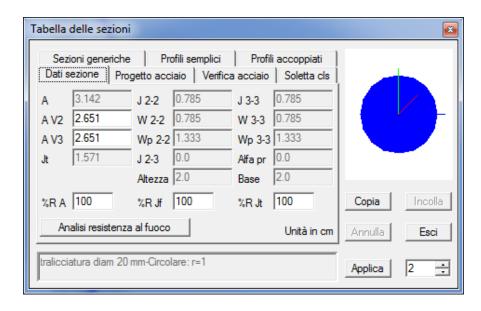
APPALTATORE: ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO RFV Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e CL 21 di 127 IF2R 0.2.E.ZZ LC.00.0.0.016 В verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

Sezione ad U (palo LSU16b - UPN160)

Correnti verticali dei pali LSU16 investiti dal vento perpendicolare e longitudinale.

Condizione B

=1,4 (direzione Y parallela ai binari) C_{str longitudinale} Pressione sul palo $=94,71 \times 1,4 = 132,59 \text{ daN/m}^2$ Carico inserito nel modello FEM: Qyw_palo $=132,59 \times 6,5 / 10000 = 0,0861835 daN/cm$ =2 (direzione X perpendicolare ai binari) C_{str trasversale} $=94,71 \times 2 = 189,42 \text{ daN/m}^2$ Pressione sul palo Carico inserito nel modello FEM: Qxw_palo $=189,42 \times 16 / 10000 = 0,303072 \text{ daN/cm}$ Condizione D =1,4 (direzione Y parallela ai binari) C_{str longitudinale} Pressione sul palo $=49,13 \times 1,4 = 68,78 \text{ daN/m}^2$ Carico inserito nel modello FEM: Qyw_palo $=68,78 \times 6,5 / 10000 = 0,044707 \text{ daN/cm}$ =2 (direzione X perpendicolare ai binari) C_{str trasversale}


Pressione sul palo =49,13 x 2 = 98,26 daN/m²

Carico inserito nel modello FEM: Qxw_palo =98,26 x 16 / 10000 = 0,157216 daN/cm

APPALTATORE: ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA-SOTECNI S.p.A. SYSTRA S.A. SWS Engineering S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO REV. Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e CL 22 di 127 IF2R 0.2.E.ZZ LC.00.0.0.016 В verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

Sezione tonda \$\Phi\$20 mm tralicciatura palo

Profili investiti dal solo vento longitudinale.

Condizione B

C_{str longitudinale} =0,7 (direzione Y parallela ai binari)

Pressione sul palo =94,71 x $0.7 = 66,297 \text{ daN/m}^2$

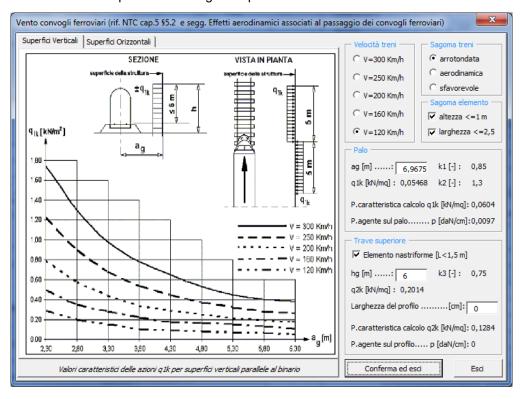
Carico inserito nel modello FEM: Qxw_palo =66,297 x 2,0 / 10000 = 0,0132594 daN/cm

Condizione D

C_{str longitudinale} =0,7 (direzione Y parallela ai binari)

Pressione sul palo = $49,13 \times 0,7 = 34,391 \text{ daN/m}^2$

Carico inserito nel modello FEM: Qxw_palo =34,391 x 2,0 / 10000 = 0,0068782 daN/cm


APPALTATORE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO							
PROGETTAZIO	2° e 3 SUBI	OTTO TE	ELESE - SA	AN LORENZO	– VITUI	_ANO		
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο			
IMPIANTI DI TR	AZIONE ELETTRICA		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione			IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	23 di 127

2.3.3 Azioni dovute al transito dei convogli ferroviari

Come da normativa (vedi E64864c e D.M.'08 par. 5.2.2.7.1) devono essere considerati gli effetti aerodinamici dovuti al passaggio dei convogli ferroviari agenti in direzione perpendicolare e verticale alla struttura. Gli effetti si cumulano con quelli del vento meteorologico e sono da considerare esclusivamente in direzione perpendicolare al moto dei treni, ovvero in direzione X.

Pressione orizzontale aerodinamica agente sul palo

Il valore di calcolo si ottiene a partire dalle seguenti ipotesi:

- Distanza palo/asse binari a_g = 6,25 + 1,435 / 2 = 6,9675 m
- Velocità di passaggio convogli ferroviari = 120 km/h (carrozze con sagoma arrotondata k1 =0,85)
- Larghezza < 2,50 m (coeff. di amplificazione K2 = 1,3)
- Altezza elemento >1 (coeff. di amplificazione K2 = 1,3)
- ±q1k valore dedotto dal grafico =0,05468 kN/m²

Sotto queste ipotesi si ottiene un valore caratteristico dell'azione del vento

$$\pm q1k = 0.05468 \times 1.3 \times 0.85 = 0.0604 \text{ kN/m}^2$$

 $\pm q1k = 6,04 \text{ daN/m}^2$

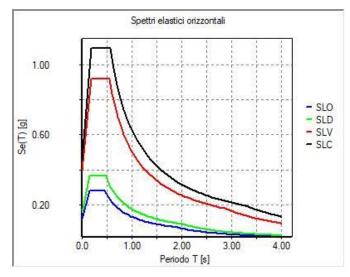
Carichi applicati al modello agli elementi finiti:

APPALTATORE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO						
PROGETTAZIO	NE:	2° e 3 SUBI	OTTO TE	ELESE – SA	AN LORENZO	– VITUI	_ANO
Mandataria:	Mandante:						
SYSTRA S.A.	SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	ΓΙνο			
IMPIANTI DI TR	AZIONE ELETTRICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di Ca verifica del bloc relativo Tirante	IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	24 di 127	

UPN160: Qxw_palo_aero = 6,04 x 16 / 10000 = 0,009664 daN/cm

La normativa prevede che l'azione del vento sia considerata per i primi 5 metri di palo.

Per quanto relativo alle combinazioni di calcolo considereremo l'azione variabile con coefficienti di combinazione come da normativa NTC08:


Tabella 5.2.VI - Coefficienti di combinazione y delle azioni.

Azioni		Ψ ₀	Ψ1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0

2.3.4 Azioni di origine sismica

Le azioni di origine sismica sono state messe in conto prendendo a riferimento le disposizioni contenute nel doc. E64864c RFI e considerando quanto definito nella relazione sismica IF2R.0.2.E.ZZ.RG.GE.00.0.1.001.A.

In particolare, nell'ottica di considerare le peggiori condizioni di verifica dovute ai carichi agenti sul plinto di fondazione, si opererà il calcolo delle azioni sismiche tenendo come riferimento i valori della sismicità locale (parametri di pericolosità sismica relativa al comune di <u>Ponte (BN)</u>) verificando però che l'accelerazione massima di progetto corrisponda a quella massima dello spettro elastico in accelerazione orizzontale.

A titolo riepilogativo riportiamo le ipotesi di base (NTC08 §2.4 e segg.):

- Vita nominale dell'opera
- Classe d'uso
- Periodo di riferimento per l'azione sismica

≥ 50 anni

Classe III

V_R = 75 anni

APPALTATORE: TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata			ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO						
PROGETTAZIO	2° e 3 SUBI	OTTO TE	ELESE - SA	AN LORENZO	– VITUI	ANO			
Mandataria:	Mandante:								
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο				
IMPIANTI DI TR	AZIONE ELETTRICA		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
	Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e			0.2.E.ZZ	CL	LC.00.0.0.016	В	25 di 127	
	verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e elativo Tirante a terra e fondazione								

Accelerazione orizzontale massima attesa (SLV)

 Valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale
 Categoria di sottosuolo
 Categoria topografica

 Categoria topografica

Questi valori, definiti in modo automatico dal programma di calcolo utilizzato per la modellazione della struttura, sono coerenti con quanto riportato nella relazione sismica di riferimento.

Nota: L'analisi sismica è del tipo statica equivalente.

Per massimizzare il valore dell'accelerazione a cui è sottoposta la struttura si è verificato che il periodo di vibrazione T1=C₁ H^{3/4} =0,419sec (H=8,4 m, C₁=0,085) fosse in corrispondenza dell'accelerazione di plateau dello spettro. In considerazione del fatto che i periodi di vibrazione superiori non influenzano significativamente la massa eccitata si considera l'analisi sismica di tipo lineare statica con fattore di partecipazione λ =1.

APPALTATORE PROGETTAZIO	Consorzio Telese Società Consor		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO PROGETTO ESECUTIVO					
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU	IIVO			
IMPIANTI DI TRAZIONE ELETTRICA Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione		COMMESSA IF2R	LOTTO 0.2.E.ZZ	CODIFICA CL	DOCUMENTO LC.00.0.0.016	REV.	FOGLIO 26 di 127	

2.3.5 Azioni dovute ai conduttori

La linea ferroviaria prevede in quel tratto la presenza dei seguenti conduttori:

- Catenaria 440 mm² fune portante regolata per binario di corsa
- Corde di terra tipo TACSR
- Cavo per strallo di punto fisso in kevlar

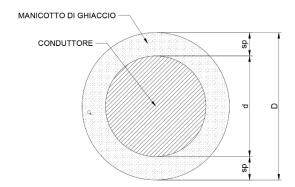
Riportiamo in relazione in forma tabellare i valori delle azioni applicate in condizione B e D e inseriamo uno schema esemplificativo con indicate le azioni principali agenti sulla struttura. Le indicazioni relative ai pesi propri delle mensole e tiranti pali mensola sono state omesse nello schema mentre compaiono sempre in automatico nel calcolo delle strutture modellata agli elementi finiti.

Nota sul vento meteorologico ed aerodinamico:

La direzione del vento indicata in figura deve essere intesa nelle due direzioni sia per quanto riguarda il vento meteorologico sia per quello aerodinamico. In direzione X e Y il vento meteorologico deve essere inteso in senso esclusivo, mentre quello aerodinamico agisce in concomitanza con quello meteorologico in direzione X (a favore di sicurezza).

2.3.6 Diametri equivalenti dei conduttori

In riferimento al calcolo delle azioni dovute ai conduttori nella condizione di carico D, nella quale è concomitante la presenza del ghiaccio e del vento, è necessario tenere in conto lo spessore del manicotto di ghiaccio che determina un aumento di peso (0,7 daN/m) ed un aumento della superficie investita dal vento. Normativamente il doc. E64864 riprende il §6.2.6 della EN 50119:2010-05 relativo ai "Carichi combinati del vento e del ghiaccio" dove il valore del diametro equivalente, indicato di seguito con D_I, si valuta mediante la formula:


$$D_1=(d^2+4 g_{1K}/(\pi \rho_1))^{0.5}$$

Nella quale si è indicato con:

d = diametro del conduttore

gik = peso del manicotto di ghiaccio (nel nostro caso 0,7 daN/m)

ρ₁= peso dell'unità di volume del ghiaccio (peso specifico pari a 900 daN/m³)

D=d+2 sp
$$A_{m} = A_{T} - A_{c} = \pi D^{2} / 4 - \pi d^{2} / 4$$

$$P_{g} = A_{m} \gamma L = (\pi / 4) (D^{2} - d^{2}) \gamma \qquad (L=1 m)$$

$$4 P_{g} / (\pi \gamma) = D^{2} - d^{2}$$

$$D = (d^{2} + 4 P_{g} / (\pi \gamma))^{0,5}$$

Esplicitiamo adesso i valori delle azioni al metro lineare previo calcolo dei diametri equivalenti.

APPALTATORE: ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO Mandataria: Mandante: **PROGETTO ESECUTIVO** SWS Engineering S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. LOTTO IMPIANTI DI TRAZIONE ELETTRICA COMMESSA CODIFICA DOCUMENTO RFV

FOGLIO

27 di 127

В

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

Conduttura 440 mm².

Fili

- Diametro fili d=12 mm
- Peso lineare p=0,869 daN/m

Calcolo del diametro equivalente:

$$D_1=(d^2+4g_{1K}/(\pi\rho_1))^{0.5}=(0.012^2+4\times0.7/(3.14\times900))^{0.5}=0.03369$$
 m

IF2R

0.2.E.ZZ

CL

LC.00.0.0.016

Spessore del manicotto sp=(Di-d) / 2 = (0.03369 - 0.012) / 2 = 0.0108 m

Calcolo del peso fili al metro lineare:

$$P_{fili} = (0.869 + 0.7) \times 1 \times 2 = 2.269 \text{ daN}$$

Calcolo dell'azione del vento sui fili aventi diametri equivalenti al metro lineare:

Fw fili =
$$(pd D_1 + ps D_1) \times Cc = (36,85 \times 0,03369 + 29,48 \times 0,03369) \times 1 = 2,235 daN$$

Funi

- Diametro funi d=14 mm
- Peso lineare p=1,07 daN/m

Calcolo del diametro equivalente:

$$D_1 = (d^2 + 4 g_{1K} / (\pi \rho_1))^{0.5} = (0.014^2 + 4 \times 0.7 / (3.14 \times 900))^{0.5} = 0.03445 \text{ m}$$

Spessore del manicotto sp=(Di-d) / 2 = (0.03445 - 0.014) /2 =0.0102 m

Calcolo del peso funi al metro lineare:

$$P_{\text{funi}} = (1,07 + 0,7) \times 1 \times 2 = 3,54 \text{ daN}$$

Calcolo dell'azione del vento sui fili aventi diametri equivalenti:

$$Fw_{fili} = (pd DI + ps DI) \times Cc = (36,85 \times 0,03445 + 29,48 \times 0,03445) \times 1 = 2,285 daN$$

Corda di terra tipo TACSR

- Diametro d=15,82 mm
- Peso lineare p=0,4682 daN/m

Calcolo del diametro equivalente:

$$D_{I}=(d^2+4g_{IK}/(\pi\rho_I))^{0.5}=(0.01582^2+4\times0.7/(3.14\times900))^{0.5}=0.03523$$
 m

Spessore del manicotto sp=(Di-d) / 2 = (0.03523 - 0.01582) /2 =0.0097 m

APPALTATORE	TELES Consorzio Telese Società Consor		_	O TRATT	A CANCEL	LO-BENEVEN O TELESINO -	_	ANO
PROGETTAZIONE:		2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO					LANO	
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο			
IMPIANTI DI TRAZIONE ELETTRICA Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione		COMMESSA IF2R	LOTTO 0.2.E.ZZ	CODIFICA CL	DOCUMENTO LC.00.0.0.016	REV. B	FOGLIO 28 di 127	

Calcolo del peso al metro lineare:

$$P_{cdt} = (0.4682 + 0.7) \times 1 = 1.1682 \text{ daN}$$

Calcolo dell'azione del vento sulla corda di terra avente diametro equivalente:

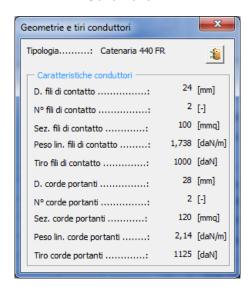
$$Fw_cdt = pd D_1 \times Cc = 36,85 \times 0,03523 \times 1 = 1,298 daN$$

2.3.1 Tabelle di tesatura conduttori.

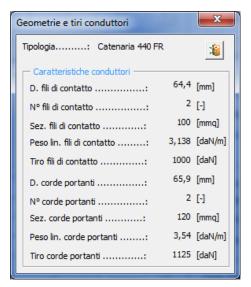
Di seguito i risultati per i conduttori nelle condizioni di carico B e D:

Per la determinazione del tiro dei conduttori fissi (funi) e della corda di terra in funzione della temperatura esterna e dei carichi applicati (ghiaccio e vento) applichiamo l'equazione del cambiamento di stato nelle condizioni considerate:

$$T_2^3 + T_2^2 [-T_1 + p_1^2 b^2 E S / (T_1^2 24) + \alpha E S (O_2 - O_1)] - (p_2^2 b^2 E S / 24) = 0$$

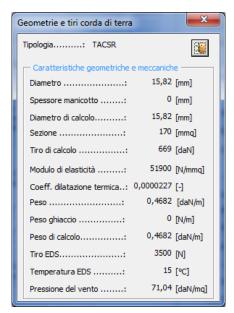

Nella quale il significato dei termini è il seguente:

⊕1= temperatura in condizioni di EDS (Every Day Stress)	[°C]
⊕2= temperatuta di calcolo	[°C]
p1= peso del conduttore iniziale	[N/m]
p2= peso del conduttore finale comprensivo del carico di ghiaccio e vento	[N/m]
E= modulo di elasticità del conduttore	[N/mm ²]
α = coefficiente di diolatazione termica del conduttore	[1/°C]
b=campata di calcolo	[m]
T1= tiro in condizioni di EDS (Every Day Stress)	[N]
T2= tiro di calcolo	[N]
S= sezione del conduttore	[mm ²]

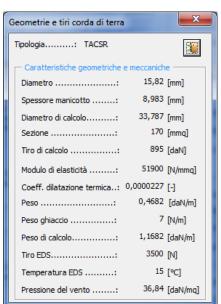

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE - SAN LORENZO - VITULANO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA DOCUMENTO FOGLIO LOTTO CODIFICA RFV Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e CL IF2R 0.2.F.77 LC.00.0.0.016 В 29 di 127 verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

Catenaria 440cpr

Condizione B:



Condizione D:



Cavo TACSR:

Condizione B:

Condizione D:

R. R. R. R.		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO						
PROGETTAZIONE:		2° e 3 SUBI	2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO					
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο				
IMPIANTI DI TR	AZIONE ELETTRICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione		IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	30 di 127	

2.3.2 Formulazioni per il calcolo delle azioni radiali

Azione trasversale conduttori deviati

$$H_{t\alpha} = Td \times sen(\alpha)$$

$$H_{t\beta} = Td \times sen(\beta)$$

Azione trasversale dovuta alle corde di terra:

$$H_{Ew} = T_{Ew} \cdot \left(\frac{C_1}{2 \cdot R} + \frac{C_2}{2 \cdot R} \right)$$

Dove:

T_i = tiro corda di terra

 C_1 = lunghezza campata precedente

 C_2 = lunghezza campata successiva

R = raggio curva (caso di rettifilo)

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO PROGETTAZIONE: Mandataria: Mandante: PROGETTO ESECUTIVO SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO REV. Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e CL IF2R 0.2.E.ZZ LC.00.0.0.016 В 31 di 127 verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

2.4 PICCHETTO 172PR (PALO DI ORMEGGIO PUNTO FISSO).

2.4.1 Tabella delle azioni agenti in condizione B

(Temperatura +5°C; Vento vr =27 m/sec; ghiaccio assente).

Tracciato geometrico

-	Condizione di tracciato: Curva Interna	-	-
R	Raggio di curva	1000	[m]
S	Sopraelevazione binari	0	[mm]
C1	Campata precedente	46	[m]
C2	Campata successiva	46	[m]
Cg	Campata di calcolo	46	[m]
-	Sostegno tipo	LSU 16	[-]
Нр	Altezza sostegno di calcolo	9600	[mm]
Т	Temperatura di calcolo	5	[°C]
p_dc	Pressione diretta vento sui conduttori	71,04	[daN/mq]
p_sc	Pressione schermata vento sui conduttori	56,83	[daN/mq]
p_P	Pressione trasversale sul palo	94,715	[daN/mq]
pg	Peso del manicotto di ghiaccio	0	[daN/m]
p_pen	Peso lineare della pendinatura	0,2	[daN/m]

Proprietà dei conduttori

Proprieta dei	Conduction		
1	Tipologia conduttore (1): 440	-	[-]
d_fdc1	Diametro fili di contatto conduttore (1)	12	[mm]
d_fp1	Diametro funi portanti conduttore (1)	14	[mm]
h_fdc1	Altezza fili di contatto conduttore (1)	5200	[mm]
h_fp1	Altezza funi portanti conduttore (1)	6600	[mm]
DR1	Distanza palo-rotaia conduttore (1)	6250	[mm]
Dp1_fdc1	Poligonazione precedente fili conduttore (1)	200	[mm]
Dp1_fp1	Poligonazione precedente funi conduttore (1)	0	[mm]
Dp_fdc1	Poligonazione di calcolo fili conduttore (1)	-200	[mm]
Dp_fp1	Poligonazione di calcolo funi conduttore (1)	0	[mm]
Dp2_fdc1	Poligonazione successiva fili conduttore (1)	200	[mm]
Dp2_fp1	Poligonazione successiva funi conduttore (1)	0	[mm]
p_fdc1	Peso lineare fili di contatto conduttore (1)	0,869	[daN/m]
p_fp1	Peso lineare funi portanti conduttore (1)	1,07	[daN/m]
T_fdc1	Tiro fili di contatto conduttore (1)	1000	[daN]
T_fp1	Tiro funi portanti conduttore (1)	1125	[daN]
-	Tipologia cdt (1): TACSR sez.170 De 15,82	-	[-]
Cg1	Campata di calcolo (1)	46	[m]
d_cdt1	Diametro corde di terra (1)	15,82	[mm]
h_cdt1	Altezza corde di terra (1)	5000	[mm]
p_cdt1	Peso lineare corde di terra (1)	0,4682	[daN/m]
T_cdt1	Tiro corde di terra (1)	668,9	[daN]
-	Tipologia cdt (2): TACSR sez.170 De 15,82	-	[-]
Cg2	Campata di calcolo (2)	46	[m]

APPALTATORE:

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e

verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

CL

PROGETTO ESECUTIVO

COMMESSA IF2R

LOTTO 0.2.E.ZZ CODIFICA DOCUMENTO LC.00.0.0.016

FOGLIO REV. В

32 di 127

d_cdt2	Diametro corde di terra (2)	15,82	[mm]
h_cdt2	Altezza corde di terra (2)	7400	[mm]
p_cdt2	Peso lineare corde di terra (2)	0,4682	[daN/m]
T_cdt2	Tiro corde di terra (2)	668,9	[daN]
-	Tipologia strallo Ormeggio di punto fisso : Kevlar		[-]
C_orm_str	Campata di ormeggio strallo	46	[m]
H_str	Altezza strallo dal pdf	6,6	[m]
X_str	Distanza strallo dall'asse del palo	7	[mm]
pl_str	Peso lineare strallo	0,091	[daN/m]
d_str	Diametro strallo	11	[mm]
Tc_str	Tiro di calcolo strallo	783,28	[daN]
Area_str	Sezione strallo	94,985	[mmq]
Temp_EDS	Temperatura EDS strallo	15	[°C]
Tiro_EDS	Tiro EDS strallo	7000	[N]

Azioni verticali

P_fdc1	Azione verticale dovuta ai fili conduttore (1)	-79,95	[daN]
P_fp1	Azione verticali dovuta alle funi conduttore (1)	-98,44	[daN]
P_cdt1	Azione verticale dovuta alla corda di terra (1)	-21,54	[daN]
P_cdt2	Azione verticale dovuta alla corda di terra (2)	-21,54	[daN]
P_str	Azione verticale dovuta allo strallo di punto fisso	-780,38	[daN]

Azioni trasversali

Hx_fdc1	Azione trasversale dovuta ai fili conduttore (1)	-126,78 [daN]
Hx_fp1	Azione trasversale dovuta alle funi conduttore (1)	-103,5 [daN]
Hx_cdt1	Azione trasversale dovuta alla corda di terra (1)	-30,77 [daN]
Hx_cdt2	Azione trasversale dovuta alla corda di terra (2)	-30,77 [daN]
Hx str	Azione trasversale dovuta agli stralli di punto fisso	101,18 [daN]

Azioni trasversali dovute al vento

HxW_fdc1	Azione trasversale del vento agente sui fili conduttore (1)	70,58	[daN]
HxW_fp1	Azione trasversale del vento agente sulle funi conduttore (1)	82,35	[daN]
HxW_cdt1	Azione trasversale del vento agente sulla corda di terra (1)	51,7	[daN]
HxW_cdt2	Azione trasversale del vento agente sulla corda di terra (2)	51,7	[daN]
HxW_str	Azione trasversale del vento agente sugli stralli di punto fisso	17,97	[daN]
HxW palo	Azione trasversale del vento agente sul sostegno (LSU 16 b):	296,44	[daN]

Azioni longitudinali dovute al vento

•			
HyW_palo	Azione longitudinale del vento agente sul sostegno (LSU 16 b):	80,59	[daN]

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO REV. Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e CL IF2R 0.2.E.ZZ LC.00.0.0.016 В 33 di 127 verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

2.4.2 Carichi applicati alla struttura nel modello FEM in condizione B

Tipo carico concentrato nodale

ld	Tipo	Fx	Fy	Fz	Mx	My	Mz
		daN	daN	daN	daN cm	daN cm	daN cm
1	B.Conduttore di linea 1 Funi Pesi=-98.44	0.0	0.0	-98.44	0.0	0.0	0.0
2	B.Conduttore di linea 1 Funi Pesi-Ice=1	0.0	0.0	0.0	0.0	0.0	0.0
3	B.Conduttore di linea 1 Funi Tiri=-103.5	-103.50	0.0	0.0	0.0	0.0	0.0
4	B.Conduttore di linea 1 Funi Wx=82.35	82.35	0.0	0.0	0.0	0.0	0.0
5	B.Conduttore di linea 1 Fili Pesi=-79.948	0.0	0.0	-79.95	0.0	0.0	0.0
6	B.Conduttore di linea 1 Fili Pesi-Ice=1	0.0	0.0	0.0	0.0	0.0	0.0
7	B.Conduttore di linea 1 Fili Tiri=-126.78	-126.78	0.0	0.0	0.0	0.0	0.0
8	B.Conduttore di linea 1 Fili Wx=70.58	70.58	0.0	0.0	0.0	0.0	0.0
10	B.Corda di terra 1 Peso=-21.54	0.0	0.0	-21.54	0.0	0.0	0.0
11	B.Corda di terra 1 Peso-Ice=1	0.0	0.0	0.0	0.0	0.0	0.0
12	B.Corda di terra 1 Tiro=-30.77	-30.77	0.0	0.0	0.0	0.0	0.0
13	B.Corda di terra 1 Wx=51.7	51.70	0.0	0.0	0.0	0.0	0.0
14	B.Corda di terra 2 Peso=-21.54	0.0	0.0	-21.54	0.0	0.0	0.0
15	B.Corda di terra 2 Peso-Ice=1	0.0	0.0	0.0	0.0	0.0	0.0
16	B.Corda di terra 2 Tiro=-30.77	-30.77	0.0	0.0	0.0	0.0	0.0
17	B.Corda di terra 2 Wx=51.7	51.70	0.0	0.0	0.0	0.0	0.0
18	B.Strallo punto fisso Peso=-2.09	0.0	0.0	-2.09	0.0	0.0	0.0
19	B.Strallo punto fisso Peso-Ice=1	0.0	0.0	0.0	0.0	0.0	0.0
20	B.Strallo punto fisso Tiro=776.73	101.18	776.73	0.0	0.0	0.0	0.0
21	B.Strallo punto fisso Wx=17.97	17.97	0.0	0.0	0.0	0.0	0.0

Tipo carico distribuito globale su trave

ld	Tipo	Pos.	fx	fy	fz	mx	my	mz
		cm	daN/cm	daN/cm	daN/cm	daN	daN	daN
22	B.Carico da vento in direzione X=0.3031	0.0	0.30	0.0	0.0	0.0	0.0	0.0
		0.0	0.30	0.0	0.0	0.0	0.0	0.0
23	B.Carico da vento in direzione Y=0.0862	0.0	0.0	0.09	0.0	0.0	0.0	0.0
		0.0	0.0	0.09	0.0	0.0	0.0	0.0
24	B.Carico da vento in direzione Y tralicciatura LS=0.0133	0.0	0.0	0.01	0.0	0.0	0.0	0.0
		0.0	0.0	0.01	0.0	0.0	0.0	0.0
25	B.Carico da vento Aerodinamico in direzione X=0.0097	0.0	9.70e-03	0.0	0.0	0.0	0.0	0.0
		0.0	9.70e-03	0.0	0.0	0.0	0.0	0.0

APPALTATORE:

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

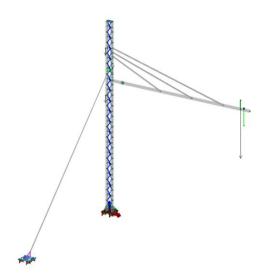
PROGETTAZIONE:

Mandataria:

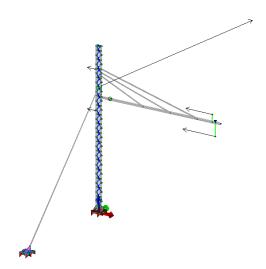
Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

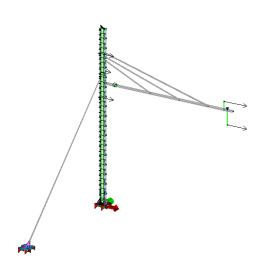
SYSTRA-SOTECNI S.p.A.

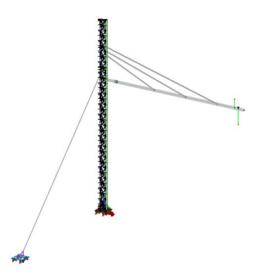

IMPIANTI DI TRAZIONE ELETTRICA Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e

relativo Tirante a terra e fondazione

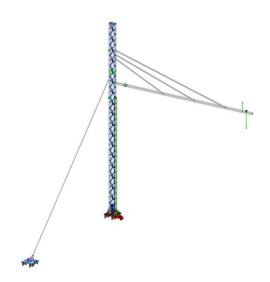

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO


COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 0.2.E.ZZ CL LC.00.0.0.016 B 34 di 127


Carichi dovuti al peso dei conduttori

Carichi dovuti al tiro dei conduttori)



Carichi dovuti al vento trasversale (X)

Carichi dovuti al vento longitudinale (Y)

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e CL LC.00.0.0.016 35 di 127 IF2R 0.2.E.ZZ В verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

Carichi dovuti al vento aerodinamico (X)

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO PROGETTAZIONE: Mandataria: Mandante: PROGETTO ESECUTIVO SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO REV. Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e CL 36 di 127 IF2R 0.2.E.ZZ LC.00.0.0.016 В verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

2.4.3 Tabella delle azioni agenti in condizione D

(Temperatura -5°C; Vento vr=27 m/sec; peso ghiaccio=7 N/m).

Tracciato geometrico

-	Condizione di tracciato: Curva Interna	-	-
R	Raggio di curva	1000	[m]
S	Sopraelevazione binari	0	[mm]
C1	Campata precedente	46	[m]
C2	Campata successiva	46	[m]
Cg	Campata di calcolo	46	[m]
-	Sostegno tipo	LSU 16	[-]
Нр	Altezza sostegno di calcolo	9600	[mm]
Т	Temperatura di calcolo	-5	[°C]
p_dc	Pressione diretta vento sui conduttori	36,84	[daN/mq]
p_sc	Pressione schermata vento sui conduttori	29,47	[daN/mq]
p_P	Pressione trasversale sul palo	49,125	[daN/mq]
pg	Peso del manicotto di ghiaccio	0,7	[daN/m]
p pen	Peso lineare della pendinatura	0,2	[daN/m]

Proprietà dei conduttori

-	Tipologia conduttore (1): 440	-	[-]
d fdc1	Diametro fili di contatto conduttore (1)	12	[mm]
d_fp1	Diametro funi portanti conduttore (1)	14	[mm]
h_fdc1	Altezza fili di contatto conduttore (1)	5200	[mm]
h_fp1	Altezza funi portanti conduttore (1)	6600	[mm]
DR1	Distanza palo-rotaia conduttore (1)	6250	[mm]
Dp1_fdc1	Poligonazione precedente fili conduttore (1)	200	[mm]
Dp1_fp1	Poligonazione precedente funi conduttore (1)	0	[mm]
Dp_fdc1	Poligonazione di calcolo fili conduttore (1)	-200	[mm]
Dp_fp1	Poligonazione di calcolo funi conduttore (1)	0	[mm]
Dp2_fdc1	Poligonazione successiva fili conduttore (1)	200	[mm]
Dp2_fp1	Poligonazione successiva funi conduttore (1)	0	[mm]
p_fdc1	Peso lineare fili di contatto conduttore (1)	0,869	[daN/m]
p_fp1	Peso lineare funi portanti conduttore (1)	1,07	[daN/m]
T_fdc1	Tiro fili di contatto conduttore (1)	1000	[daN]
T_fp1	Tiro funi portanti conduttore (1)	1125	[daN]
-	Tipologia cdt (1): TACSR sez.170 De 15,82	-	[-]
Cg1	Campata di calcolo (1)	46	[m]
d_cdt1	Diametro corde di terra (1)	15,82	[mm]
h_cdt1	Altezza corde di terra (1)	5000	[mm]
p_cdt1	Peso lineare corde di terra (1)	0,4682	[daN/m]
T_cdt1	Tiro corde di terra (1)	894,6	[daN]
-	Tipologia cdt (2): TACSR sez.170 De 15,82	-	[-]
Cg2	Campata di calcolo (2)	46	[m]
d_cdt2	Diametro corde di terra (2)	15,82	[mm]
h_cdt2	Altezza corde di terra (2)	7400	[mm]

APPALTATORE:

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

CL

PROGETTO ESECUTIVO

COMMESSA IF2R

LOTTO 0.2.E.ZZ CODIFICA DOCUMENTO LC.00.0.0.016

REV. В

FOGLIO 37 di 127

p_cdt2	Peso lineare corde di terra (2)	0,4682	[daN/m]
T_cdt2	Tiro corde di terra (2)	894,6	[daN]
-	Tipologia strallo Ormeggio di punto fisso : Kevlar		[-]
C_orm_str	Campata di ormeggio strallo	46	[m]
H_str	Altezza strallo dal pdf	6,6	[m]
X_str	Distanza strallo dall'asse del palo	7	[mm]
pl_str	Peso lineare strallo	0,091	[daN/m]
d_str	Diametro strallo	11	[mm]
Tc_str	Tiro di calcolo strallo	911,04	[daN]
Area_str	Sezione strallo	94,985	[mmq]
Temp_EDS	Temperatura EDS strallo	15	[°C]
Tiro EDS	Tiro EDS strallo	7000	[N]

Azioni verticali

P_fdc1	Azione verticale dovuta ai fili conduttore (1)	-144,35 [daN]
P_fp1	Azione verticali dovuta alle funi conduttore (1)	-162,84 [daN]
P_cdt1	Azione verticale dovuta alla corda di terra (1)	-53,74 [daN]
P_cdt2	Azione verticale dovuta alla corda di terra (2)	-53,74 [daN]
P str	Azione verticale dovuta allo strallo di punto fisso	-923,42 [daN]

Azioni trasversali

Hx_fdc1	Azione trasversale dovuta ai fili conduttore (1)	-126,78	[daN]
Hx_fp1	Azione trasversale dovuta alle funi conduttore (1)	-103,5	[daN]
Hx_cdt1	Azione trasversale dovuta alla corda di terra (1)	-41,15	[daN]
Hx_cdt2	Azione trasversale dovuta alla corda di terra (2)	-41,15	[daN]
Hx_str	Azione trasversale dovuta agli stralli di punto fisso	117,68	[daN]

Azioni trasversali dovute al vento

HxW_fdc1	Azione trasversale del vento agente sui fili conduttore (1)	98,14	[daN]
HxW_fp1	Azione trasversale del vento agente sulle funi conduttore (1)	100,58	[daN]
HxW_cdt1	Azione trasversale del vento agente sulla corda di terra (1)	57,26	[daN]
HxW_cdt2	Azione trasversale del vento agente sulla corda di terra (2)	57,26	[daN]
HxW_str	Azione trasversale del vento agente sugli stralli di punto fisso	26,96	[daN]
HxW_palo	Azione trasversale del vento agente sul sostegno (LSU 16 b):	156,38	[daN]

Azioni longitudinali dovute al vento

HyW_palo	Azione longitudinale del vento agente sul sostegno (LSU 16 b):	41,8	[daN]
----------	--	------	-------

APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO REV.

CL IF2R 0.2.E.ZZ LC.00.0.0.016 В 38 di 127

2.4.4 Carichi applicati alla struttura nel modello FEM in condizione D

Tipo carico concentrato nodale

ld	Tipo	Fx	Fy	Fz	Mx	Му	Mz
		daN	daN	daN	daN cm	daN cm	daN cm
1	D.Conduttore di linea 1 Funi Pesi=-98.44	0.0	0.0	-98.44	0.0	0.0	0.0
2	D.Conduttore di linea 1 Funi Pesi-Ice=-64.4	0.0	0.0	-64.40	0.0	0.0	0.0
3	D.Conduttore di linea 1 Funi Tiri=-103.5	-103.50	0.0	0.0	0.0	0.0	0.0
4	D.Conduttore di linea 1 Funi Wx=100.58	100.58	0.0	0.0	0.0	0.0	0.0
5	D.Conduttore di linea 1 Fili Pesi=-79.948	0.0	0.0	-79.95	0.0	0.0	0.0
6	D.Conduttore di linea 1 Fili Pesi-Ice=-64.4	0.0	0.0	-64.40	0.0	0.0	0.0
7	D.Conduttore di linea 1 Fili Tiri=-126.78	-126.78	0.0	0.0	0.0	0.0	0.0
8	D.Conduttore di linea 1 Fili Wx=98.14	98.14	0.0	0.0	0.0	0.0	0.0
10	D.Corda di terra 1 Peso=-21.54	0.0	0.0	-21.54	0.0	0.0	0.0
11	D.Corda di terra 1 Peso-Ice=-32.2	0.0	0.0	-32.20	0.0	0.0	0.0
12	D.Corda di terra 1 Tiro=-41.15	-41.15	0.0	0.0	0.0	0.0	0.0
13	D.Corda di terra 1 Wx=57.26	57.26	0.0	0.0	0.0	0.0	0.0
14	D.Corda di terra 2 Peso=-21.54	0.0	0.0	-21.54	0.0	0.0	0.0
15	D.Corda di terra 2 Peso-Ice=-32.2	0.0	0.0	-32.20	0.0	0.0	0.0
16	D.Corda di terra 2 Tiro=-41.15	-41.15	0.0	0.0	0.0	0.0	0.0
17	D.Corda di terra 2 Wx=57.26	57.26	0.0	0.0	0.0	0.0	0.0
18	D.Strallo punto fisso Peso=-2.09	0.0	0.0	-2.09	0.0	0.0	0.0
19	D.Strallo punto fisso Peso-Ice=-16.1	0.0	0.0	-16.10	0.0	0.0	0.0
20	D.Strallo punto fisso Tiro=903.41	117.68	903.41	0.0	0.0	0.0	0.0
21	D.Strallo punto fisso Wx=26.96	26.96	0.0	0.0	0.0	0.0	0.0

Tipo carico distribuito globale su trave

ld	Tipo	Pos.	fx	fy	fz	mx	my	mz
		cm	daN/cm	daN/cm	daN/cm	daN	daN	daN
22	D.Carico da vento in direzione X=0.1572	0.0	0.16	0.0	0.0	0.0	0.0	0.0
		0.0	0.16	0.0	0.0	0.0	0.0	0.0
23	D.Carico da vento in direzione Y=0.0447	0.0	0.0	0.04	0.0	0.0	0.0	0.0
		0.0	0.0	0.04	0.0	0.0	0.0	0.0
24	D.Carico da vento in direzione Y tralicciatura LS=0.0069	0.0	0.0	6.90e-03	0.0	0.0	0.0	0.0
		0.0	0.0	6.90e-03	0.0	0.0	0.0	0.0
25	D.Carico da vento Aerodinamico in direzione X=0.0097	0.0	9.70e-03	0.0	0.0	0.0	0.0	0.0
		0.0	9.70e-03	0.0	0.0	0.0	0.0	0.0

APPALTATORE:

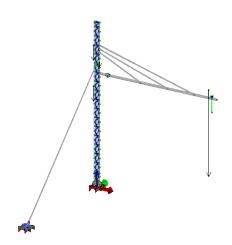
Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

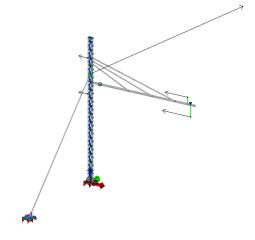
Mandataria:

Mandante:

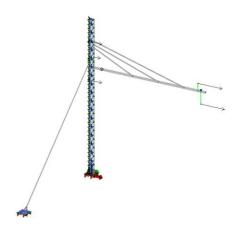
SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

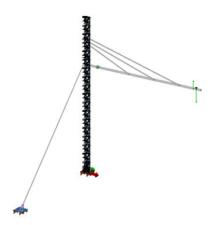

IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

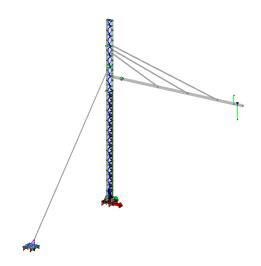

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO


COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO REV. CL LC.00.0.0.016 39 di 127 IF2R 0.2.E.ZZ В


Carichi dovuti al peso dei conduttori

Carichi dovuti al tiro dei conduttori



Carichi dovuti al vento trasversale (X)

Carichi dovuti al vento longitudinale (Y)

APPALTATORE	TELESE s.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO		ANO			
PROGETTAZIO	NE:	2° e 3 SUBI	LOTTO TE	ELESE - SA	AN LORENZO	– VITUI	_ANO
Mandataria:	Mandante:						
SYSTRA S.A.	SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο			
IMPIANTI DI TR	AZIONE ELETTRICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di Ca	Icolo Sostegno LSU16b con D.R. fuori standard e	IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	40 di 127

Carichi dovuti al vento trasversale aerodinamico (X)

2.4.5 Tabella delle azioni agenti in condizione ECCEZIONALE (Temperatura -20°C; Vento assente; ghiaccio assente).

Tracciato geometrico

-	Condizione di tracciato: Curva Interna	-	-
R	Raggio di curva	1000	[m]
S	Sopraelevazione binari	0	[mm]
C1	Campata precedente	46	[m]
C2	Campata successiva	46	[m]
Cg	Campata di calcolo	46	[m]
-	Sostegno tipo	LSU 16	[-]
Нр	Altezza sostegno di calcolo	9600	[mm]
T	Temperatura di calcolo	-20	[°C]
p_dc	Pressione diretta vento sui conduttori	0	[daN/mq]
p_sc	Pressione schermata vento sui conduttori	0	[daN/mq]
p_P	Pressione trasversale sul palo	0	[daN/mq]
pg	Peso del manicotto di ghiaccio	0	[daN/m]
p_pen	Peso lineare della pendinatura	0,2	[daN/m]

Proprietà dei conduttori

-	Tipologia conduttore (1): 440	-	[-]
d_fdc1	Diametro fili di contatto conduttore (1)	12	[mm]
d_fp1	Diametro funi portanti conduttore (1)	14	[mm]
h_fdc1	Altezza fili di contatto conduttore (1)	5200	[mm]
h_fp1	Altezza funi portanti conduttore (1)	6600	[mm]
DR1	Distanza palo-rotaia conduttore (1)	6250	[mm]
Dp1_fdc1	Poligonazione precedente fili conduttore (1)	200	[mm]
Dp1_fp1	Poligonazione precedente funi conduttore (1)	0	[mm]

APPALTATORE:

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Dp_fdc1

Dp_fp1

Dp2_fdc1

Dp2_fp1

P_str

Hx_fdc1

Hx_fp1

Hx_cdt1

Hx_cdt2

Hx_str

Azioni trasversali

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Poligonazione di calcolo fili conduttore (1)

Poligonazione di calcolo funi conduttore (1)

Poligonazione successiva fili conduttore (1)

Poligonazione successiva funi conduttore (1)

Azione verticale dovuta allo strallo di punto fisso

Azione trasversale dovuta ai fili conduttore (1)

Azione trasversale dovuta alle funi conduttore (1)

Azione trasversale dovuta alla corda di terra (1)

Azione trasversale dovuta alla corda di terra (2)

Azione trasversale dovuta agli stralli di punto fisso

IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA

DOCUMENTO REV.

-200

200

-1989,32

-126,78

-103,5

-42,85

-42,85

258,35

[daN]

[daN]

[daN]

[daN] [daN]

[daN]

0

0

FOGLIO

[mm]

[mm]

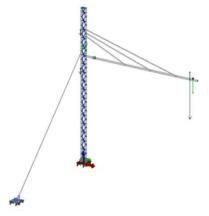
[mm]

[mm]

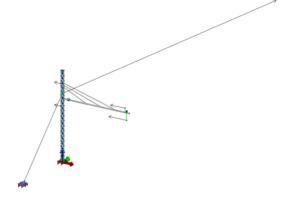
IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	41 di 127

DP2_ip i	1 digonazione saccessiva fami conduttore (1)	J	[]
p_fdc1	Peso lineare fili di contatto conduttore (1)	0,869	[daN/m]
p_fp1	Peso lineare funi portanti conduttore (1)	1,07	[daN/m]
T_fdc1	Tiro fili di contatto conduttore (1)	1000	[daN]
T_fp1	Tiro funi portanti conduttore (1)	1125	[daN]
-	Tipologia cdt (1): TACSR sez.170 De 15,82	-	[-]
Cg1	Campata di calcolo (1)	46	[m]
d_cdt1	Diametro corde di terra (1)	15,82	[mm]
h_cdt1	Altezza corde di terra (1)	5000	[mm]
p_cdt1	Peso lineare corde di terra (1)	0,4682	[daN/m]
T_cdt1	Tiro corde di terra (1)	931,5	[daN]
-	Tipologia cdt (2): TACSR sez.170 De 15,82	-	[-]
Cg2	Campata di calcolo (2)	46	[m]
d_cdt2	Diametro corde di terra (2)	15,82	[mm]
h_cdt2	Altezza corde di terra (2)	7400	[mm]
p_cdt2	Peso lineare corde di terra (2)	0,4682	[daN/m]
T_cdt2	Tiro corde di terra (2)	931,5	[daN]
_	Tipologia strallo Ormeggio di punto fisso : Utente		[-]
C_orm_str	Campata di ormeggio strallo	46	[m]
H str	Altezza strallo dal pdf	6,6	[m]
X str	Distanza strallo dall'asse del palo	7	[mm]
pl str	Peso lineare strallo	0,091	[daN/m]
d str	Diametro strallo	11	[mm]
Tc_str	Tiro di calcolo strallo	0	[daN]
Area_str	Sezione strallo		[mmq]
Temp_EDS	Temperatura EDS strallo	15	[°C]
Tiro_EDS	Tiro EDS strallo	7000	[N]
Azioni verticali		•	<u>-</u>
P fdc1	Azione verticale dovuta ai fili conduttore (1)	-79,95	[daN]
P fp1	Azione verticali dovuta alle funi conduttore (1)	-98,44	[daN]
P_cdt1	Azione verticale dovuta alla corda di terra (1)	-21,54	[daN]
P cdt2	Azione verticale dovuta alla corda di terra (2)	-21,54	[daN]
		= :, 0 :	[

APPALTATORE: ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO FOGLIO CODIFICA DOCUMENTO REV. Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e 42 di 127 IF2R 0.2.E.ZZ CL LC.00.0.0.016 В verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione


2.4.1 Carichi applicati alla struttura nel modello FEM in condizione ECCEZIONALE

Tipo carico concentrato nodale


ld	Тіро	Fx	Fy	Fz	Mx	Му	Mz
		daN	daN	daN	daN cm	daN cm	daN cm
1	A.Conduttore di linea 1 Funi Pesi=-98.44	0.0	0.0	-98.44	0.0	0.0	0.0
2	A.Conduttore di linea 1 Funi Pesi-Ice=1	0.0	0.0	0.0	0.0	0.0	0.0
3	A.Conduttore di linea 1 Funi Tiri=-103.5	-103.50	0.0	0.0	0.0	0.0	0.0
4	A.Conduttore di linea 1 Funi Wx=1	0.0	0.0	0.0	0.0	0.0	0.0
5	A.Conduttore di linea 1 Fili Pesi=-79.948	0.0	0.0	-79.95	0.0	0.0	0.0
6	A.Conduttore di linea 1 Fili Pesi-Ice=1	0.0	0.0	0.0	0.0	0.0	0.0
7	A.Conduttore di linea 1 Fili Tiri=-126.78	-126.78	0.0	0.0	0.0	0.0	0.0
8	A.Conduttore di linea 1 Fili Wx=1	0.0	0.0	0.0	0.0	0.0	0.0
10	A.Corda di terra 1 Peso=-21.54	0.0	0.0	-21.54	0.0	0.0	0.0
11	A.Corda di terra 1 Peso-Ice=1	0.0	0.0	0.0	0.0	0.0	0.0
12	A.Corda di terra 1 Tiro=-42.85	-42.85	0.0	0.0	0.0	0.0	0.0
13	A.Corda di terra 1 Wx=1	0.0	0.0	0.0	0.0	0.0	0.0
14	A.Corda di terra 2 Peso=-21.54	0.0	0.0	-21.54	0.0	0.0	0.0
15	A.Corda di terra 2 Peso-Ice=1	0.0	0.0	0.0	0.0	0.0	0.0
16	A.Corda di terra 2 Tiro=-42.85	-42.85	0.0	0.0	0.0	0.0	0.0
17	A.Corda di terra 2 Wx=1	0.0	0.0	0.0	0.0	0.0	0.0
18	A.Strallo punto fisso Peso=-2.09	0.0	0.0	-2.09	0.0	0.0	0.0
19	A.Strallo punto fisso Peso-Ice=1	0.0	0.0	0.0	0.0	0.0	0.0
20	A.Strallo punto fisso Tiro=1983.24	258.35	1983.24	0.0	0.0	0.0	0.0
21	A.Strallo punto fisso Wx=1	0.0	0.0	0.0	0.0	0.0	0.0

Tipo carico distribuito globale su trave

ld	Tipo	Pos.	fx	fy	fz	mx	my	mz
		cm	daN/cm	daN/cm	daN/cm	daN	daN	daN
22	A.Carico da vento in direzione X=0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		0.0	0.0	0.0	0.0	0.0	0.0	0.0
23	A.Carico da vento in direzione Y=0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		0.0	0.0	0.0	0.0	0.0	0.0	0.0
24	A.Carico da vento Aerodinamico in direzione X=0.0097	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		0.0	0.0	0.0	0.0	0.0	0.0	0.0
25	A.Carico da vento in direzione Y tralicciatura LS_ridotto=0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		0.0	0.0	0.0	0.0	0.0	0.0	0.0

Carichi dovuti al peso dei conduttori

Carichi dovuti al tiro dei conduttori

APPALTATORE: ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO Mandataria: Mandante: **PROGETTO ESECUTIVO** SWS Engineering S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA LOTTO COMMESSA CODIFICA DOCUMENTO REV. **FOGLIO** Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e 0.2.E.ZZ CL LC.00.0.0.016 43 di 127 IF2R В verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

3 VERIFICA STRUTTURALE (RIF. § 6 E SEGG. CEI EN 50119, §4.2 D.M.'08)

Ai fini delle verifiche (come da D.M. 14 Gennaio 2008 e circolare 02 Febbraio 2009 n.7) i tipi elementi differiscono per i seguenti aspetti:

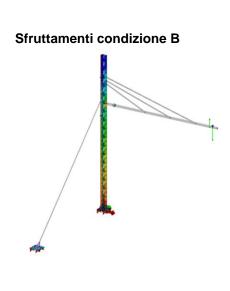
Verifica		Aste	Travi	Pilastri
4.2.3.1	Classificazione	Х	Х	X
4.2.4.1.2	Trazione, Compressione	Х	Х	Х
	Taglio, Torsione		Х	Х
	Flessione, taglio e forza assiale		Х	X
4.2.4.1.3.1	Aste compresse	Х	Х	X
4.2.4.1.3.2	Instabilità flesso-torsionale		Х	Х
4.2.4.1.3.3	Membrature inflesse e compresse		Х	Х

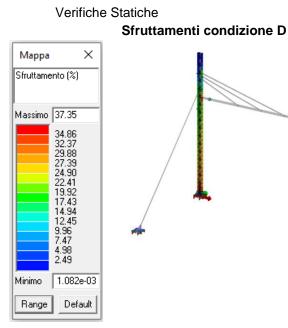
L' insieme delle verifiche sopra riportate è condotto sugli elementi purché dotati di sezione idonea come da tabella seguente:

	Azione	SEZIONI GENERICHE	PROFILI SEMPLICI	PROFILI ACCOPPIATI
4.2.3.1	Classificazione automatica	L, doppio T, C, rettangolare	Tutti	Da profilo semplice
		cava, circolare cava		
4.2.3.1	Classificazione di default 2	Circolare		
4.2.3.1	Classificazione di default 3	restanti		
4.2.4.1.2	Trazione	si	si	si
4.2.4.1.2	Compressione	Si	si	si
4.2.4.1.2	Taglio, Torsione	Si	si	si
4.2.4.1.2	Flessione, taglio e forza assiale	Si	si	si
4.2.4.1.3.1	Aste compresse	Si	si	per elementi ravvicinati e a croce o
				coppie calastrellate
4.2.4.1.3.2	Travi inflesse	doppio T simmetrica	doppio T	no

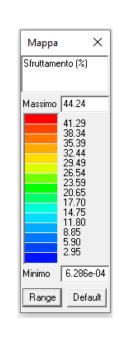
Le verifiche sono riportate in tabelle con il significato sotto indicato; le verifiche sono espresse dal rapporto tra l'azione di progetto e la capacità ultima, pertanto la verifica ha esito positivo per rapporti non superiori all' unità.

Asta	Tr	ave	Pi	ilastro		numero dell'elemento
Stato)					codice di verifica per resistenza, stabilità, svergolamento
Note						sezione e materiali adottati per l'elemento
VN						(ASTE) verifica come da par. 4.2.4.1.2 per punto (4.2.6) e (4.2.10)
V V/1						(TRAVI E PILASTRI) verifica come da par. 4.2.4.1.2 per azioni taglio-torsione
V N/I	\ <i>1</i>					(TRAVI E PILASTRI) verifica come da par. 4.2.4.1.2 per azioni composte con riduzione per taglio (4.2.41) ove
V 11/1	VI					richiesto
N	М3	M2	V2	V3	Т	sollecitazioni di interesse per la verifica
V sta	b					(ASTE) verifica come da par. 4.2.4.1.3 per punto (4.2.42)
V sta	h					(TRAVI E PILASTRI) verifica come da par. 4.2.4.1.3 per punti (C4.2.32) o (C4.2.36) (membrature inflesse e
v Sta	U					compresse senza/con presenza di instabilità flesso-torsionale
Betax	K L	B22	2xL	B33x	:L	lunghezze libere di inflessione (se indicato riferiti al piano di normale 22 o 33 rispettivamente)
Snell	ezza					snellezza massima
Class	е					classe del profilo
Chi n	nn					coefficiente di riduzione (della capacità) per la modalità di instabilità pertinente
Rif. c	mb					combinazioni in cui si sono rispettivamente attinti i valori di verifica più elevati

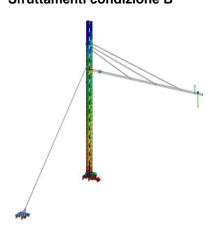

Nel caso in cui lambdaS sia minore di 0.2, oppure nel caso in cui la sollecitazione di calcolo NEd sia inferiore a 0.04 Ncr, gli effetti legati ai fenomeni di instabilità sono trascurati, come da paragrafo 4.2.4.1.3.1

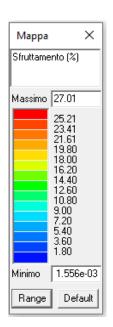

APPALTATORE	TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità L		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO									
PROGETTAZIO	NE:		2° e 3 SUBL	-011011	:LESE - SA	AN LORENZO	– VII UI	LANO				
Mandataria:	Mandante:											
SYSTRA S.A.	SWS Engineering S.p.A. SYSTRA-SOTEO	NI S.p.A.	PROGETTO	ESECUT	ΓΙνο							
IMPIANTI DI TR	AZIONE ELETTRICA		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO				
verifica del bloc	ilcolo Sostegno LSU16b con D.R. fuori standaro cco di fondazione tipo B3 per ormeggio punto fi a terra e fondazione		IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	44 di 127				

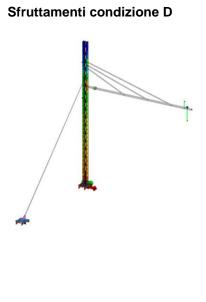
3.1 PICCHETTO 172PR. PALO LSU 16B.

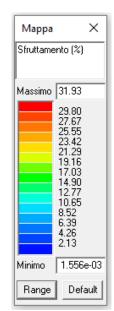

3.1.1 Verifica profili UPN160(S355)

Dalle verifiche condotte si sono ottenuti i seguenti valori dello sfruttamento massimo delle sezioni:

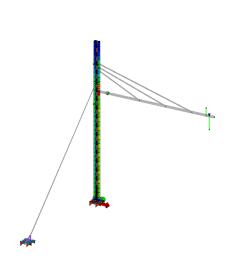


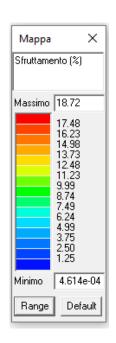



Verifiche Sismiche



Sfruttamenti condizione B





APPALTATORE	Consorzio Telese Società Con sor		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO									
PROGETTAZIO			2° e 3 SUBI	-0110 11	ELESE - SA	AN LORENZO	– VII UI	LANO				
Mandataria:	Mandante:											
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU	rivo							
Relazione di Ca verifica del blo	AZIONE ELETTRICA alcolo Sostegno LSU16b con cco di fondazione tipo B3 per a terra e fondazione		COMMESSA IF2R	LOTTO 0.2.E.ZZ	CODIFICA CL	DOCUMENTO LC.00.0.0.016	REV. B	FOGLIO 45 di 127				

Condizione eccezionale

Riportiamo in forma tabellare i valori delle verifiche eseguite per ogni elemento finito rappresentante il sostegno relativamente ai profili UPN160 (acciaio S355) in condizione D con combinazioni statiche:

Pilas.	Stato	Note	V V/T	V N/M	V stab	CI.	LamS 22	LamS 33	Snell.	Chi mn	V flst	LamS LT	Chi LT	Rif. cmb
		11010	, .	1 14111					0	O			O	
9	ok	s=1,m=13	0.02	0.21		1					0.01	8.13e-02	1.00	8,8,0,16
16	ok	s=1,m=13		0.33		1					0.02	7.28e-02	1.00	10,8,0,7
17	ok	s=1,m=13	6.04e-03	0.34		1					0.02	7.27e-02	1.00	7,8,0,7
18	ok	s=1,m=13	0.01	0.35		1					0.02	7.13e-02	1.00	8,8,0,7
19	ok	s=1,m=13	0.06	0.07		1					0.02	1.21e-02	1.00	8,8,0,8
20	ok	s=1,m=13	5.63e-03	0.34		1					0.02	6.87e-02	1.00	7,8,0,8
21	ok	s=1,m=13	5.77e-03	0.31		1					0.02	7.18e-02	1.00	9,8,0,7
22	ok	s=1,m=13	6.04e-03	0.32		1					0.02	6.75e-02	1.00	9,8,0,8
26	ok	s=1,m=13	6.02e-03	0.30		1					0.02	7.09e-02	1.00	7,8,0,7
27	ok	s=1,m=13	0.08	0.19		1					9.12e-03	1.95e-02	1.00	8,8,0,16
28	ok	s=1,m=13	0.02	0.20		1					0.02	8.48e-02	1.00	7,8,0,16
35	ok	s=1,m=13	0.04	0.06		1					0.02	6.01e-02	1.00	7,8,0,15
36	ok	s=1,m=13	0.02	0.16		1					0.02	8.20e-02	1.00	9,8,0,15
43	ok	s=1,m=13	0.09	0.32		1					0.01	3.19e-02	1.00	7,8,0,8
51	ok	s=1,m=13	5.80e-03	0.28		1					0.01	5.91e-02	1.00	7,8,0,8
59	ok	s=1,m=13	5.94e-03	0.33		1					0.02	7.27e-02	1.00	9,8,0,7
60	ok	s=1,m=13	5.88e-03	0.30		1					0.01	6.28e-02	1.00	7,8,0,8
64	ok	s=1,m=13	5.81e-03	0.32		1					0.02	7.20e-02	1.00	9,8,0,7
66	ok	s=1,m=13	5.72e-03	0.27		1					9.13e-03	6.01e-02	1.00	7,8,0,9
67	ok	s=1,m=13	5.89e-03	0.34		1					0.02	6.96e-02	1.00	9,8,0,8
68	ok	s=1,m=13	5.98e-03	0.31		1					0.02	6.54e-02	1.00	7,8,0,8
77	ok	s=1,m=13	0.09	0.44		1					0.02	1.96e-02	1.00	8,8,0,16
78	ok	s=1,m=13	0.02	0.04		1					3.13e-03	1.58e-02	1.00	8,8,0,8
79	ok	s=1,m=13	8.55e-03	0.23		1					8.74e-03	4.21e-02	1.00	9,8,0,7

APPALTATORE:

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA

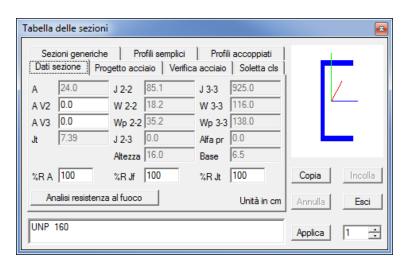
Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 0.2.E.ZZ CL LC.00.0.0.016 B 46 di 127

	Stato			V stab	CI.	LamS 22	LamS 33	Snell.	Chi mn		LamS LT		Rif. cmb
88		s=1,m=13	0.29		1					0.02		1.00	7,8,0,8
100		s=1,m=13	0.22		1					8.63e-03		1.00	8,8,0,7
101		s=1,m=13			1					0.01	2.24e-02	1.00	9,8,0,7
103	_	s=1,m=13	 		1					0.02	6.88e-02	1.00	7,8,0,7
106	_	s=1,m=13	0.41		1					0.03	2.04e-02	1.00	8,8,0,8
111		s=1,m=13			1					0.01		1.00	9,8,0,8
128		s=1,m=13	0.22		1					5.67e-03		1.00	8,8,0,16
129		s=1,m=13	0.04		1					9.54e-04		1.00	8,8,0,9
152		s=1,m=13	 0.38		1					0.02	7.21e-02	1.00	9,8,0,8
153		s=1,m=13			1					0.02	6.99e-02	1.00	8,8,0,8
199		s=1,m=13			1					0.0	6.55e-03	1.00	8,8,0,16
204	_	s=1,m=13	0.06		1					0.02	1.10e-02	1.00	8,8,0,8
212	_	s=1,m=13	0.39		1					0.01	5.99e-02	1.00	8,8,0,16
214		s=1,m=13			1					0.0	6.55e-03	1.00	18,16,0,18
219		s=1,m=13	0.12		1					0.01	1.59e-02	1.00	7,7,0,15
220	_	s=1,m=13	0.10		1					0.02	8.51e-02	1.00	7,8,0,16
223		s=1,m=13	0.30		1					0.01	3.29e-02	1.00	15,7,0,15
224		s=1,m=13	0.21		1					7.17e-03		1.00	8,8,0,16
225	_	s=1,m=13	0.40		1					0.01	6.16e-02	1.00	7,7,0,8
226		s=1,m=13	0.22		1					0.01		1.00	15,8,0,7
227		s=1,m=13			1					0.01	6.84e-02	1.00	9,8,0,8
229		s=1,m=13	0.26		1					7.69e-03		1.00	7,8,0,9
230		s=1,m=13	-		1					8.74e-03		1.00	7,8,0,7
232		s=1,m=13			1					7.95e-03		1.00	8,8,0,10
233		s=1,m=13			1					0.01	6.48e-02	1.00	9,8,0,9
234		s=1,m=13			1					9.32e-03		1.00	7,8,0,10
235		s=1,m=13			1					0.01	6.75e-02	1.00	9,8,0,9
236		s=1,m=13			1					0.01	5.36e-02	1.00	7,8,0,10
237		s=1,m=13			1					0.01	6.96e-02	1.00	9,8,0,9
238		s=1,m=13			1					0.02	7.09e-02	1.00	9,8,0,7
239		s=1,m=13			1					0.01	6.72e-02	1.00	7,8,0,7
246	_	s=1,m=13	0.15		1					0.02	3.74e-02	1.00	8,8,0,16
247		s=1,m=13	0.14		1					0.02	8.52e-02	1.00	7,8,0,15
248		s=1,m=13	 0.24		1					7.62e-03		1.00	7,8,0,8
249		s=1,m=13	0.20		1					0.03	3.59e-02	1.00	15,8,0,15
251		s=1,m=13	0.22		1					0.02	6.86e-02	1.00	7,8,0,8
252		s=1,m=13	0.24		1					7.00e-03		1.00	7,8,0,9
253 254		s=1,m=13	0.05		1					0.02	2.36e-02	1.00	7,8,0,15
		s=1,m=13			1					0.01	6.43e-02	1.00	7,8,0,7
255	_	s=1,m=13	0.22		1					8.86e-03		1.00	7,8,0,9
256 257		s=1,m=13 s=1,m=13			1					9.19e-03 0.01		1.00	9,8,0,7 8,8,0,9
	_				1						5.90e-02	1.00	
258 259		s=1,m=13 s=1,m=13		 	1				1	7.52e-03 0.01		1.00	7,8,0,7 7,8,0,9
259 260		s=1,m=13 s=1,m=13			1					8.55e-03		1.00	9,8,0,10
260 261		s=1,m=13 s=1,m=13		1	1				1	0.01	6.52e-02		7,8,0,9
261 262		s=1,m=13 s=1,m=13		 	1				1	0.01			9,8,0,10
262 263		s=1,m=13 s=1,m=13			1					0.01	6.23e-02	1.00	9,8,0,10
203 275		s=1,111=13 s=1,m=13			1					0.01	7.00e-02	1.00	7,8,0,7
431		s=1,111=13 s=1,m=13	0.29		1					2.33e-03		1.00	7,7,0,16
431 438		s=1,111=13 s=1,m=13	0.02	 	1					3.49e-03		1.00	7,7,0,16
430 439		s=1,111=13 s=1,m=13	0.04	-	1					7.00e-03		1.00	7,7,0,15
440		s=1,m=13	0.19	 	1					8.80e-03		1.00	7,7,0,16
453		s=1,m=13		 	1					5.56e-04		1.00	8,7,0,16
460		s=1,m=13			1					4.08e-04		1.00	7,7,0,16
461		s=1,m=13	0.02	 	1					1.99e-03		1.00	7,7,0,16
462		s=1,m=13	0.02	 	1					5.46e-04		1.00	9,7,0,16
488		s=1,111=13 s=1,m=13		-	1					3.70e-04		1.00	8,16,0,16
489	_	s=1,m=13		 	1					3.04e-04		1.00	7,7,0,7
		s=1,m=13	0.36	-	1					5.81e-03		1.00	7,7,0,7
	Ωk			1	1.5	1	1		1	0.01000		1.00	. , . , . , . , .
497 498	_	s=1,m=13	0.23		1					0.01	6.55e-02	1.00	7,7,0,15


APPALTATORE: ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO Mandataria: Mandante: **PROGETTO ESECUTIVO** SWS Engineering S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO REV. Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e 0.2.E.ZZ CL LC.00.0.0.016 47 di 127 IF2R В verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

Pilas.	Stato	Note	V V/T	V N/M	V stab	CI.	LamS 22	LamS 33	Snell.	Chi mn	V flst	LamS LT	Chi LT	Rif. cmb
519	ok	s=1,m=13	0.03	0.18		1					0.02	2.47e-02	1.00	7,8,0,18
520	ok	s=1,m=13	0.03	0.19		1					0.02	2.51e-02	1.00	10,8,0,15
521	ok	s=1,m=13	0.09	0.17		1					8.80e-03	8.03e-03	1.00	15,8,0,15
522	ok	s=1,m=13	0.02	0.19		1					0.02	8.06e-03	1.00	8,8,0,15
Pilas.			V V/T	V N/M	V stab		LamS 22	LamS 33	Snell.	Chi mn	V flst	LamS LT	Chi LT	
													1.00	
			0.16	0.44							0.03	0.09		

Ogni singolo elemento UPN costituente il palo LSU16b risulta verificato. Il valore massimo raggiunto dello sfruttamento è pari al 44,24 % raggiunto nella verifica di resistenza N/M.

Si espliciterà la verifica più gravosa per gli elementi maggiormente sollecitati.

UPN 160.

Verifiche di resistenza M/N [DM'08 §4.2.4.1.2 e segg.]. Classificazione della sezione. Rif.§4.2.3.1 DM'08.

Tipologia sezione: Profilo ad U

Coefficiente Epsilon= 0,81

Profilo in classe di resistenza: 2.

Parti soggette a compressione: Anima.

Classe 1: Rapporto c / $t = 147 / 7,5 = 19,6 \le 26,73 = 33 \times Epsilon$

Classe 2: Rapporto c / t= 147 / 7,5= 19,6 <= 30,78 = 38 x Epsilon

Classe 3: Rapporto c / $t = 147 / 7,5 = 19,6 \le 34,02 = 42 \times Epsilon$

Parti soggette a compressione: Piattabanda.

Classe 1: Rapporto c / t = 50 / 6,5 = 7,69 <= 7,29 = 9 x Epsilon

Classe 2: Rapporto c / t = 50 / 6,5 = 7,69 <= 8,1 = 10 x Epsilon

Classe 3: Rapporto c / $t = 50 / 6,5 = 7,69 \le 11,34 = 14 x$ Epsilon

APPALTATORE: TELESES

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 0.2.E.ZZ CL LC.00.0.0.016 B 48 di 127

Parti soggette a flessione: Anima.

Classe 1: Rapporto c / $t = 147 / 7,5 = 19,6 \le 58,32 = 72 \times Epsilon$

Classe 2: Rapporto c / $t = 147 / 7,5 = 19,6 \le 67,23 = 83 \times Epsilon$

Classe 3: Rapporto c / t= 147 / 7,5= 19,6 <= 100,44 = 124 x Epsilon

Profilo in classe di resistenza: 2.

Le azioni maggiormente gravose per il tratto più sollecitato in esame sono quelle relative all'elemento 77 in combinazione 8:

Coefficiente parziale di sicurezza sulla resistenza: gM0= 1,05

Resistenza caratteristica dell'acciaio: fyk= 3550 daN/cmq

Area sezione lorda: A= 24 cmq

Azione assiale di progetto: NEd= 23530 daN

 $NRd = A \times fyk / g M0 = 24 \times 3550 / 1,05 = 81142,86 daN$

NEd/NRd= 23530 / 81142,86= 29 %

Modulo di elasticità plastico W22pl= 35,2 cm3

M22pl,Rd= W22pl x fyk / g M0= $35,2 \times 3550 / 1,05 = 119009,52 \text{ daNcm}$

M22Ed / M22pl,Rd= -17010 / 119009,52= 14,29 %

Modulo di elasticità plastico W33pl= 138 cm3

M33pl,Rd= W33pl x fyk / g M0= $138 \times 3550 / 1,05 = 466571,43 \text{ daNcm}$

M33Ed / M33pl,Rd = 4396,48 / 466571,43= 0,95 %

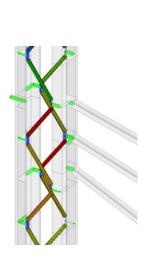
Eseguiamo la verifica di resistenza N-M:

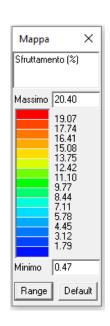
NEd / (A fy / gM0) + M22, Ed / (W22pl fy / gM0) + M33, Ed / (W33pl fy / gM0) <= 1

 $23530 \times 1,05 / (3550 \times 24) + -17010 \times 1,05 / (3550 \times 35,2) + 4396,48 \times 1,05 / (3550 \times 138) <=1$

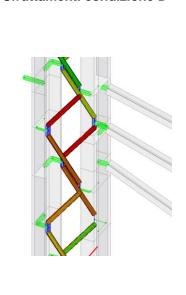
29 + 14,29 + 0,95= 44,24 %

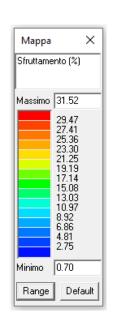
Complessivamente si ha uno sfruttamento della sezione pari al 44,24 %

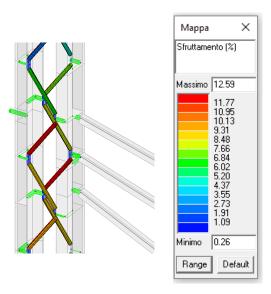

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO REV. Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e CL 49 di 127 IF2R 0.2.E.ZZ LC.00.0.0.016 В verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

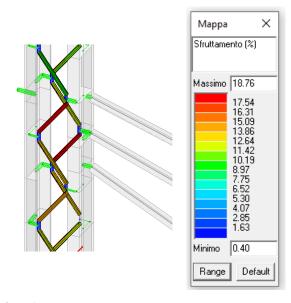

3.1.2 Verifica tralicciatura Φ 20 (S355)

Dalle verifiche condotte si sono ottenuti i seguenti valori dello sfruttamento massimo delle sezioni:


Verifiche Statiche

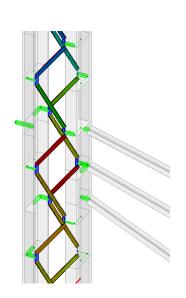

Sfruttamenti condizione B

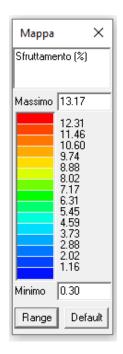

Sfruttamenti condizione D



Verifiche Sismiche

Sfruttamenti condizione B




Sfruttamenti condizione D

Condizione eccezionale

APPALTATORE	TELES Consorzio Telese Società Con so		_	O TRATT	A CANCEL	LO-BENEVEN O TELESINO -	_	ANO
PROGETTAZIO	NE:		2° e 3 SUBI	LOTTO TE	ELESE – SA	AN LORENZO	– VITUI	_ANO
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙVΟ			
	AZIONE ELETTRICA	D.R. fuori standard e	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
verifica del bloc	cco di fondazione tipo B3 per a terra e fondazione		IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	50 di 127

Riportiamo in forma tabellare i valori delle verifiche eseguite per ogni elemento finito rappresentante la tralicciatura in tondini Φ 20 (acciaio S355) per la condizione di analisi D con combinazioni sismiche:

	I								I	I	L		I	
Trave	Stato	Note	V V/T	V N/M	V stab	CI.	LamS 22	LamS 33	Snell.	Chi mn	V flst	LamS LT	Chi LT	Rif. cmb
12	ok	s=2,m=13	2 040-03	0.00		2								8,8,0,0
37	ok	s=2,m=13				2								10,9,0,0
45	ok	s=2,m=13				2								8,8,0,0
65	ok	s=2,m=13				2								16,7,0,0
94	ok	s=2,m=13				2								7,9,0,0
98	ok	s=2,m=13				2								7,7,0,0
105	ok	s=2,m=13				2								9,9,0,0
113	ok	s=2,m=13		0.31		2								7,16,0,0
115	ok	s=2.m=13		0.12		2								8,8,0,0
116	ok	s=2.m=13		0.08		2								8,8,0,0
244	ok	s=2,m=13	9.10e-03	0.08		2								7,8,0,0
245	ok	s=2,m=13		0.11		2								8,9,0,0
268	ok	s=2,m=13	3.57e-03	0.13		2								7,9,0,0
278	ok	s=2,m=13				2								8,8,0,0
283	ok	s=2,m=13	2.79e-03	0.08		2								10,8,0,0
284	ok	s=2,m=13	2.93e-03	0.13		2								7,9,0,0
289	ok	s=2,m=13	3.08e-03	0.13		2								7,9,0,0
290	ok	s=2,m=13				2								8,8,0,0
295	ok	s=2,m=13	2.74e-03	0.08		2								8,8,0,0
296	ok	s=2,m=13	2.91e-03	0.12		2								7,9,0,0
301	ok	s=2,m=13	2.98e-03	0.12		2								7,9,0,0
302	ok	s=2,m=13	1.90e-03	0.09		2								8,8,0,0
307	ok	s=2,m=13	2.72e-03	0.08		2								8,8,0,0
308	ok	s=2,m=13	2.86e-03	0.12		2								7,9,0,0
313	ok	s=2,m=13	2.95e-03	0.12		2								7,7,0,0
314	ok	s=2,m=13	1.85e-03	0.09		2								8,8,0,0
319	ok	s=2,m=13				2								8,8,0,0
320	ok	s=2,m=13				2								7,9,0,0

APPALTATORE:

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

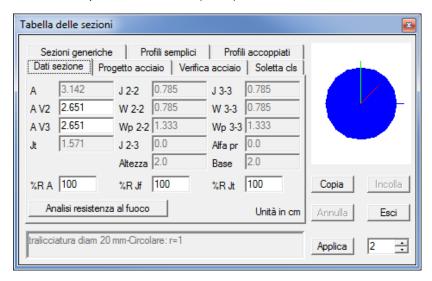
IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO **FOGLIO** REV. CL LC.00.0.0.016 51 di 127 IF2R 0.2.E.ZZ В


Trave	Stato	Note	V V/T	V N/M	V stab	CI.	LamS 22	LamS 33	Snell.	Chi mn	V flst	LamS LT	Chi LT	Rif. cmb
325	ok	s=2,m=13	2.93e-03	0.12		2								7,7,0,0
326	ok	s=2,m=13		0.08		2								8,8,0,0
331	ok	s=2,m=13		0.08		2								10.8.0.0
332	ok	s=2,m=13		0.12		2								7,9,0,0
337	_	s=2,m=13		0.12		2								7,7,0,0
338	ok	s=2,m=13		0.08		2								8,8,0,0
343	ok	s=2,m=13		0.08		2								8,8,0,0
344	ok	s=2,m=13		0.12		2								7,9,0,0
349	ok	s=2,m=13		0.12		2								7,7,0,0
350	ok	s=2,m=13		0.08		2								7,8,0,0
355	ok	s=2,m=13		0.08		2								8,8,0,0
356	ok	s=2,m=13		0.12		2								7,7,0,0
361	ok	s=2,m=13		0.12		2								7,7,0,0
362	ok	s=2,m=13		0.12		2								7,7,0,0
367	ok	s=2,m=13		0.08		2								7,8,0,0
368	ok	s=2,m=13		0.08		2								7,7,0,0
373	ok	s=2,111=13 s=2,m=13		0.12		2								
	-			-										7,7,0,0
374	ok	s=2,m=13		0.09		2								8,8,0,0
379	ok	s=2,m=13		0.07		2								7,7,0,0
380	ok	s=2,m=13		0.11		2								7,7,0,0
385	ok	s=2,m=13		0.16	0.00	2		0.7	FO 4	0.70				8,7,0,0
386	ok	s=2,m=13		0.18	0.22	2	0.7	0.7	52.4	0.73				7,8,8,0
391	ok	s=2,m=13		0.17		2								7,7,0,0
392	ok	s=2,m=13		0.09		2								7,9,0,0
397	ok	s=2,m=13		0.17		2								7,7,0,0
398	ok	s=2,m=13			0.25	2	0.7	0.7	52.4	0.73				7,8,8,0
403	ok	s=2,m=13		0.20		2								7,8,0,0
404	ok	s=2,m=13		0.24	0.25	2	0.7	0.7	52.4	0.73				7,7,8,0
409	ok	s=2,m=13		0.11		2								15,8,0,0
410	ok	s=2,m=13		0.22	0.27	2	0.7	0.7	52.4	0.73				8,8,8,0
415	ok	s=2,m=13		0.19		2								16,8,0,0
416	ok	s=2,m=13			0.23	2	0.7	0.7	52.4	0.73				8,8,8,0
421	ok	s=2,m=13	6.46e-03	0.24		2								8,8,0,0
422	ok	s=2,m=13	0.04	0.21		2								7,8,0,0
427	ok	s=2,m=13	0.03	0.32		2								7,8,0,0
428	ok	s=2,m=13	0.01	0.22	0.27	2	0.7	0.7	52.4	0.73				7,8,8,0
432	ok	s=2,m=13	0.02	0.05		2								7,7,0,0
444	ok	s=2,m=13		0.14		2			1		1			7,7,0,0
449	ok	s=2,m=13	0.05	0.19		2								7,7,0,0
450	ok	s=2,m=13		0.16		2								7,8,0,0
454	ok	s=2,m=13		0.02		2								8,7,0,0
466	ok	s=2,m=13		9.88e-03		2								8,7,0,0
471	ok	s=2,m=13		0.03		2								7,7,0,0
472	ok	s=2,m=13		0.06		2								7,7,0,0
485	ok	s=2,m=13		6.98e-03		2								8,15,0,0
486	ok	s=2.m=13		0.01		2								7,8,0,0
		,				Ĺ								, , , , , ,
Trave			V V/T	V N/M	V stab		LamS 22	LamS 33	Snell.	Chi mn 0.73	V flst	LamS LT	Chi LT	
			0.07	0.32	0.27		0.69	0.69	52.36	0.13	1			

La verifica è stata eseguita per tutti gli elementi. Il valore massimo raggiunto dello sfruttamento è pari al 31,52 % della capacità resistente ottenuta nella verifica di stabilità .

Si espliciterà la verifica più gravosa per l'elemento maggiormente sollecitato.

APPALTATORE: ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO Mandataria: Mandante: **PROGETTO ESECUTIVO** SWS Engineering S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO REV. Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e CL 52 di 127 IF2R 0.2.E.ZZ LC.00.0.0.016 В verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

Tralicciatura palo LSU16b Ф20 (S355).

Verifiche di resistenza M/N [DM'08 §4.2.4.1.2 e segg.]. Classificazione della sezione. Rif.§4.2.3.1 DM'08.

Tipologia sezione: Profilo Circolare Pieno

Coefficiente Epsilon= 0,81

Profilo in classe di resistenza: 1.

Parti soggette a compressione e/o flessione:

Classe 1: Rapporto d / t= 2 <= 32,81= 50 x Epsilon^2

Classe 2: Rapporto d / t= 2 <= 45,93= 70 x Epsilon^2

Classe 3: Rapporto d / t= 2 <= 59,05= 90 x Epsilon^2

Profilo in classe di resistenza: 1.

Le azioni maggiormente gravose per il tratto più sollecitato in esame sono quelle relative all'elemento 427 in combinazione 8:

Coefficiente parziale di sicurezza sulla resistenza: gM0= 1,05

Resistenza caratteristica dell'acciaio: fyk= 3550 daN/cmq

Area sezione lorda: A= 3,14 cmq

Azione assiale di progetto: NEd= 1496,73 daN

 $NRd = A \times fyk / g M0 = 3,14 \times 3550 / 1,05 = 10616,19 daN$

NEd/NRd= 1496,73 / 10616,19= 14,1 %

APPALTATORE: TELESE s.c.a r.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e

verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 0.2.E.ZZ
 CL
 LC.00.0.0.016
 B
 53 di 127

Modulo di elasticità plastico W22pl= 1,33 cm3

 $M22pI,Rd=W22pI \times fyk / g M0=1,33 \times 3550 / 1,05 = 4496,67 daNcm$

SYSTRA-SOTECNI S.p.A.

M22Ed / M22pl,Rd= 0 / 4496,67= 0 %

Modulo di elasticità plastico W33pl= 1,33 cm3

M33pl,Rd= W33pl x fyk / g M0= $1,33 \times 3550 / 1,05 = 4496,67 \text{ daNcm}$

M33Ed / M33pl,Rd = 785,72 / 4496,67 = 17,47 %

Eseguiamo la verifica di resistenza N-M:

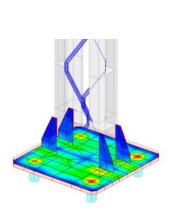
NEd / (A fy / gM0) + M22,Ed / (W22pl fy / gM0) + M33,Ed / (W33pl fy / gM0) <= 1 1496,73 x 1,05 / ($3550 \times 3,14$) + 0 x 1,05 / ($3550 \times 1,33$) + $785,72 \times 1,05$ / ($3550 \times 1,33$) <=1 14,1 + 0 + 17,47= 31,57 %

Complessivamente si ha uno sfruttamento della sezione pari al 31,57 %

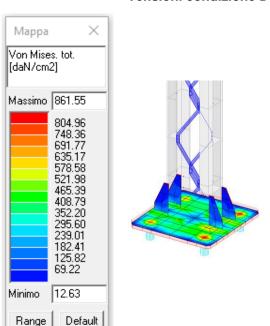
APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO FOGLIO CODIFICA **DOCUMENTO** RFV Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e IF2R 0.2.E.ZZ CL LC.00.0.0.016 В 54 di 127 verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

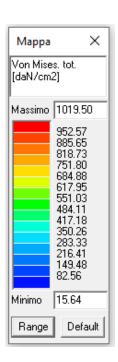
3.1.3 Verifica piastra di base (\$355)

La piastra di base ed i fazzoletti di rinforzo laterali sono stati modellati attraverso l'utilizzo di elementi d3 denominati shell. Di seguito le verifiche condotte considerando i valori delle sollecitazioni più gravose.


Verifichiamo la condizione di resistenza elastica del materiale (DM'08- §4.2.4.1.2)

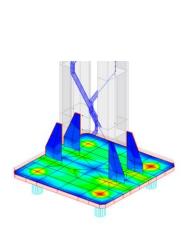
$$\sigma_{x,Ed}^2 + \sigma_{z,Ed}^2 + \sigma_{x,Ed} \sigma_{z,Ed} + 3 \tau_{Ed}^2 \le (f_{yk} / \gamma_{M0})^2$$

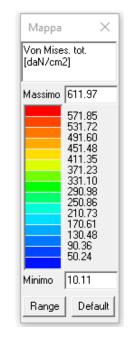

Il valore massimo è inferiore alla tensione caratteristica di snervamento della piastra che per acciai tipo Fe510 S355 è f_{yk} 3550 daN/cmq. Considerando un coefficiente di sicurezza γ_{M0} =1,05 otteniamo una resistenza pari a 3380 daN/cmq.


Verifiche Statiche

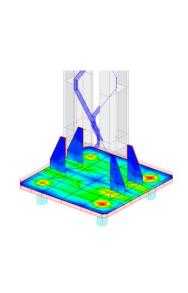
Tensioni condizione B

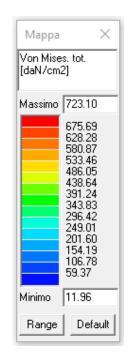
Tensioni condizione D

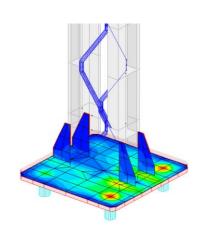


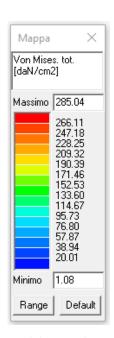


APPALTATORE	TELES Consorzio Telese Società Consor			O TRATT	A CANCEL	LO-BENEVEN O TELESINO -		ANO			
PROGETTAZIO	NE:		2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO								
Mandataria:	Mandante:										
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο						
IMPIANTI DI TR	AZIONE ELETTRICA		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO			
verifica del bloc	alcolo Sostegno LSU16b con cco di fondazione tipo B3 per a terra e fondazione		IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	55 di 127			


Verifiche Sismiche


Tensioni condizione B



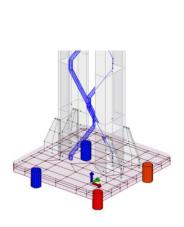

Tensioni condizione D

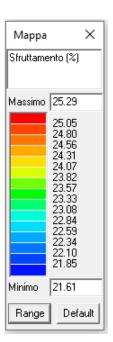
Condizione eccezionale

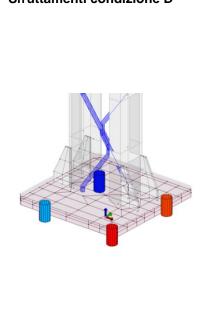
La combinazione 10 in condizione D con combinazioni statiche corrisponde ad uno stato di massima tensione sulle piastre pari a 1019,50 daN/cmq (< 3380 daNcmq).

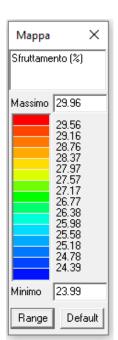
APPALTATORE	TELES Consorzio Telese Società Consor			O TRATT	A CANCEL	LO-BENEVEN O TELESINO -		ANO			
PROGETTAZIO	NE:		2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO								
Mandataria:	Mandante:										
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο						
IMPIANTI DI TR	AZIONE ELETTRICA		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO			
verifica del bloc	alcolo Sostegno LSU16b con acco di fondazione tipo B3 per a terra e fondazione		IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	56 di 127			

3.1.4 Verifica tirafondi M52 (\$355).

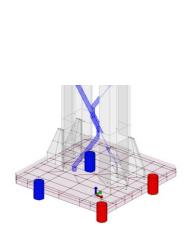

Per una verifica dei tirafondi a favore di sicurezza non si è tenuto in considerazione l'effetto irrigidente del dado.

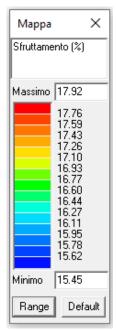

Dalle verifiche condotte si sono ottenuti i seguenti valori dello sfruttamento massimo delle sezioni:


Verifiche Statiche

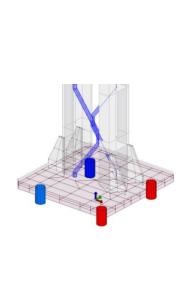

Sfruttamenti condizione B

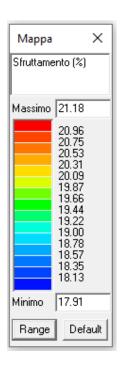
Sfruttamenti condizione D

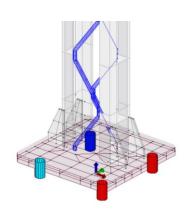


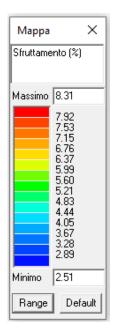


APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO PROGETTAZIONE: Mandataria: Mandante: PROGETTO ESECUTIVO SYSTRA S.A. SYSTRA-SOTECNI S.p.A. SWS Engineering S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO REV. Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e CL 57 di 127 IF2R 0.2.E.ZZ LC.00.0.0.016 В verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione


Verifiche Sismiche


Sfruttamenti condizione B



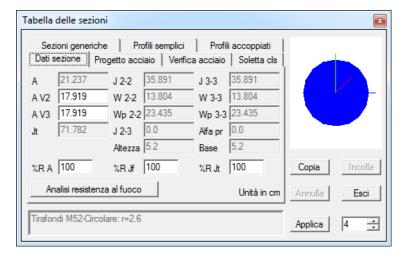

Sfruttamenti condizione D

Condizione eccezionale

Riportiamo in forma tabellare i valori delle verifiche eseguite per ogni elemento finito rappresentante i profili M52 dei tirafondi alla base (acciaio S355) in condizione di carico D:

APPALTATORE: ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO Mandataria: Mandante: **PROGETTO ESECUTIVO** SWS Engineering S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. COMMESSA LOTTO IMPIANTI DI TRAZIONE ELETTRICA CODIFICA DOCUMENTO RFV FOGLIO Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e IF2R 0.2.E.ZZ CL LC.00.0.0.016 58 di 127 В verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

Pilas.	Stato	Note	V V/T	V N/M	V stab	CI.	LamS 22	LamS 33	Snell.	Chi mn	V flst	LamS LT	Chi LT	Rif. cmb
50	ok	s=4,m=13	0.05	0.30		2								8,8,0,0
155	ok	s=4,m=13	0.04	0.24		2								8,8,0,0
208	ok	s=4,m=13	0.05	0.25		2								8,8,0,0
231	ok	s=4,m=13	0.05	0.29		2								8,8,0,0
Pilas.			V V/T	V N/M	V stab		LamS 22	LamS 33	Snell.	Chi mn	V flst	LamS LT	Chi LT	
			0.05	0.30										


La verifica è stata eseguita per tutti gli elementi. Il valore massimo raggiunto dello sfruttamento è pari al 29,96 % della capacità resistente ottenuta nella verifica di resistenza M-N.

Si espliciterà la verifica più gravosa per l'elemento maggiormente sollecitato.

Verifiche di resistenza M/N [DM'08 §4.2.4.1.2 e segg.].

Classificazione della sezione. Rif.§4.2.3.1 DM'08.

Tirafondi 452 (S355).

Verifiche di resistenza M/N

Tipologia sezione: Profilo Circolare Pieno

Coefficiente Epsilon= 0,81

Profilo in classe di resistenza: 1.

Parti soggette a compressione e/o flessione:

Classe 1: Rapporto d / t= 2 <= 32,81= 50 x Epsilon^2

Classe 2: Rapporto d / t= 2 <= 45,93= 70 x Epsilon^2

Classe 3: Rapporto d / t= 2 <= 59,05= 90 x Epsilon^2

Profilo in classe di resistenza: 1.

APPALTATORE:

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A.

IMPIANTI DI TRAZIONE ELETTRICA

SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO

CL

II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO IF2R

0.2.E.ZZ

CODIFICA DOCUMENTO LC.00.0.0.016

REV. FOGLIO В

59 di 127

Le azioni maggiormente gravose per il tratto più sollecitato in esame sono quelle relative all'elemento 50 in combinazione 8:

Coefficiente parziale di sicurezza sulla resistenza: gM0= 1,05

Resistenza caratteristica dell'acciaio: fyk= 3550 daN/cmq

Area sezione lorda: A= 21,24 cmq

Azione assiale di progetto: NEd= 8647,71 daN

 $NRd = A \times fyk / g M0 = 21,24 \times 3550 / 1,05 = 71811,43 daN$

NEd/NRd= 8647,71 / 71811,43= 12,04 %

Modulo di elasticità plastico W22pl= 23,43 cm3

 $M22pI,Rd=W22pI \times fyk / g M0=23,43 \times 3550 / 1,05 = 79215,71 daNcm$

M22Ed / M22pl, Rd = 0 / 79215, 71 = 0 %

Modulo di elasticità plastico W33pl= 23,43 cm3

M33pl,Rd= W33pl x fyk / g M0= $23,43 \times 3550 / 1,05 = 79215,71 \text{ daNcm}$

M33Ed / M33pl,Rd = 14193,49 / 79215,71= 17,92 %

Eseguiamo la verifica di resistenza N-M:

NEd / (A fy / gM0) + M22, Ed / (W22pl fy / gM0) + M33, Ed / (W33pl fy / gM0) <= 1 $8647.71 \times 1.05 / (3550 \times 21.24) + 0 \times 1.05 / (3550 \times 23.43) + 14193.49 \times 1.05 / (3550 \times 23.43) <= 1$

12,04 + 0 + 17,92= 29,96 %

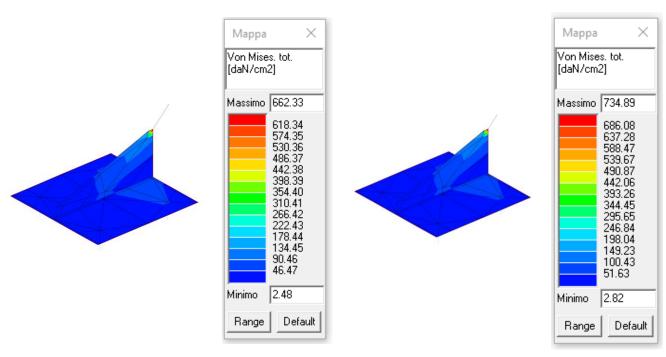
Complessivamente si ha uno sfruttamento della sezione pari al 29,96 %

APPALTATORE	TELES Consorzio Telese Società Consor		_	O TRATT	A CANCEL	LO-BENEVEN O TELESINO -		ANO			
PROGETTAZIO	NE:		2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO								
Mandataria:	Mandante:										
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙVΟ						
IMPIANTI DI TR	AZIONE ELETTRICA		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO			
verifica del blo	alcolo Sostegno LSU16b con cco di fondazione tipo B3 per a terra e fondazione		IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	60 di 127			

3.1.1 Verifica piastra di base del TT (\$355)

La piastra di base ed i fazzoletti di rinforzo laterali sono stati modellati attraverso l'utilizzo di elementi d3 denominati shell. Di seguito le verifiche condotte considerando i valori delle sollecitazioni più gravose.

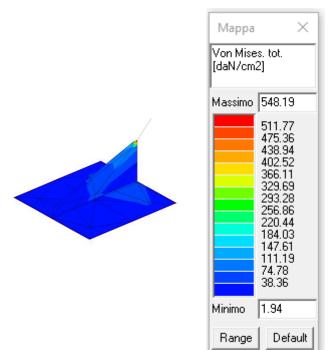
Verifichiamo la condizione di resistenza elastica del materiale (DM'08- §4.2.4.1.2)

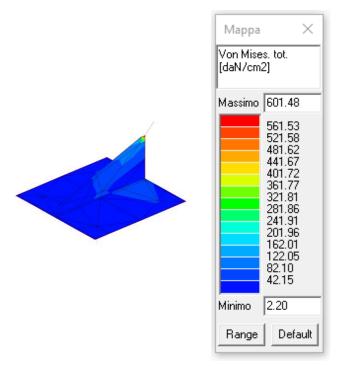

$$\sigma_{x,Ed}^2 + \sigma_{z,Ed}^2 + \sigma_{x,Ed} \sigma_{z,Ed} + 3 \tau_{Ed}^2 \le (f_{yk} / \gamma_{M0})^2$$

Il valore massimo è inferiore alla tensione caratteristica di snervamento della piastra che per acciai tipo Fe510 S355 è f_{yk} 3550 daN/cmq. Considerando un coefficiente di sicurezza γ_{M0} =1,05 otteniamo una resistenza pari a 3380 daN/cmq.

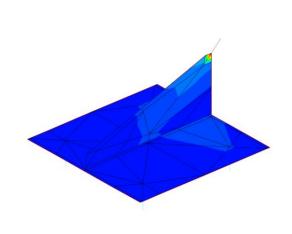
Verifiche Statiche

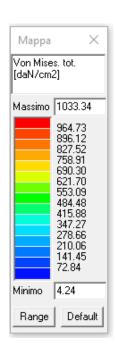
Tensioni condizione B


Tensioni condizione D


APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SYSTRA-SOTECNI S.p.A. SWS Engineering S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO FOGLIO CODIFICA DOCUMENTO REV. Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e CL 61 di 127 IF2R 0.2.E.ZZ LC.00.0.0.016 В verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

Verifiche Sismiche


Tensioni condizione B



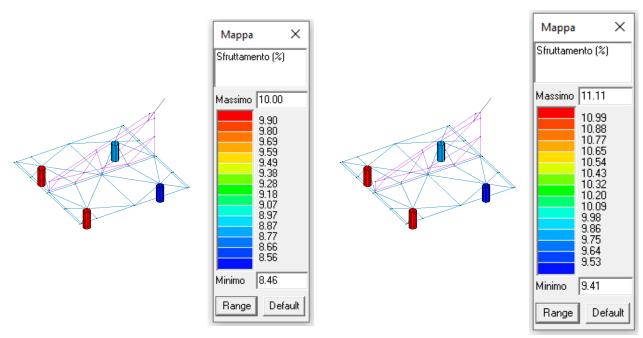
Tensioni condizione D

Condizione eccezionale

APPALTATORE	TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Li	nitata	II LOTTO FI	O TRATT JNZIONA	A CANCEL LE FRASS	LO-BENEVEN O TELESINO -	- VITUL	-
PROGETTAZIO	NE:		2° e 3 SUBI	-011011	:LESE - SA	AN LORENZO	– VII UI	LANO
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A. SYSTRA-SOTEC	NI S.p.A.	PROGETTO	ESECUT	ΓΙνο			
IMPIANTI DI TR	AZIONE ELETTRICA		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
verifica del bloc	elcolo Sostegno LSU16b con D.R. fuori standard co di fondazione tipo B3 per ormeggio punto fis a terra e fondazione	IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	62 di 127	

La combinazione eccezionale corrisponde ad uno stato di massima tensione sulle piastre pari a 1033,34 daN/cmq (< 3380 daNcmq).

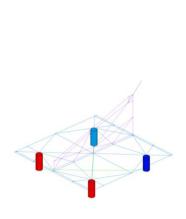
3.1.1 Verifica tirafondi del TT M36 (\$355).

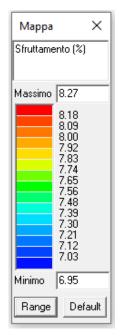

Per una verifica dei tirafondi a favore di sicurezza non si è tenuto in considerazione l'effetto irrigidente del dado.

Dalle verifiche condotte si sono ottenuti i seguenti valori dello sfruttamento massimo delle sezioni:

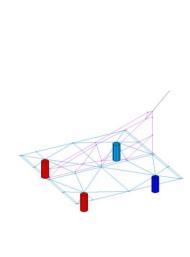
Verifiche Statiche

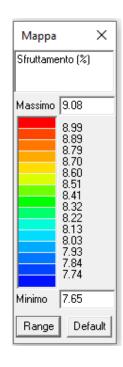
Sfruttamenti condizione B

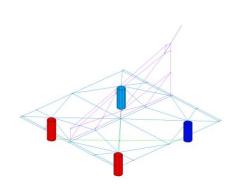

Sfruttamenti condizione D

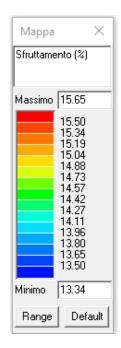


APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO PROGETTAZIONE: Mandataria: Mandante: PROGETTO ESECUTIVO SYSTRA S.A. SYSTRA-SOTECNI S.p.A. SWS Engineering S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO REV. Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e CL 63 di 127 IF2R 0.2.E.ZZ LC.00.0.0.016 В verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione


Verifiche Sismiche


Sfruttamenti condizione B



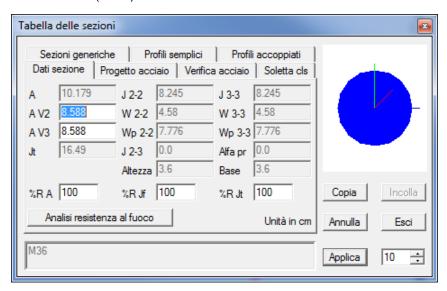

Sfruttamenti condizione D

Condizione eccezionale

APPALTATORE: ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO Mandataria: Mandante: PROGETTO ESECUTIVO SWS Engineering S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e 0.2.E.ZZ CL LC.00.0.0.016 64 di 127 IF2R В verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

Riportiamo in forma tabellare i valori delle verifiche eseguite per ogni elemento finito rappresentante i profili M36 dei tirafondi alla base (acciaio S355) in condizione di carico ECCEZIONALE:

Pilas.	Stato	Note	V V/T	V N/M	V stab	CI.	LamS 22	LamS 33	Snell.	Chi mn	V flst	LamS LT	Chi LT	Rif. cmb
502	ok	s=10,m=13	0.04	0.16		2								1,1,0,0
508	ok	s=10,m=13	0.04	0.16		2								1,1,0,0
509	ok	s=10,m=13	0.03	0.14		2								1,1,0,0
511	ok	s=10,m=13	0.03	0.13		2								1,1,0,0
Pilas.			V V/T	V N/M	V stab		LamS 22	LamS 33	Snell.	Chi mn	V flst	LamS LT	Chi LT	
			0.04	0.16										


La verifica è stata eseguita per tutti gli elementi. Il valore massimo raggiunto dello sfruttamento è pari al 15,65 % della capacità resistente ottenuta nella verifica di resistenza M-N.

Si espliciterà la verifica più gravosa per l'elemento maggiormente sollecitato.

Verifiche di resistenza M/N [DM'08 §4.2.4.1.2 e segg.].

Classificazione della sezione. Rif.§4.2.3.1 DM'08.

Tirafondi ⊕36 (S355).

Verifiche di resistenza M/N

Tipologia sezione: Profilo Circolare Pieno

Coefficiente Epsilon= 0,81

Profilo in classe di resistenza: 1.

Parti soggette a compressione e/o flessione:

APPALTATORE: TELESE s.c.a r

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 0.2.E.ZZ CL LC.00.0.0.016 B 65 di 127

Classe 1: Rapporto d / t= 2 <= 32,81= 50 x Epsilon^2

Classe 2: Rapporto d / t= 2 <= 45,93= 70 x Epsilon^2

Classe 3: Rapporto d / t= 2 <= 59,05= 90 x Epsilon^2

Profilo in classe di resistenza: 1.

Le azioni maggiormente gravose per il tratto più sollecitato in esame sono quelle relative all'elemento 508 in combinazione 1:

Coefficiente parziale di sicurezza sulla resistenza: gM0= 1,05

Resistenza caratteristica dell'acciaio: fyk= 3550 daN/cmq

Area sezione lorda: A= 10,18 cmq

Azione assiale di progetto: NEd= 492,61 daN

 $NRd = A \times fyk / g M0 = 10,18 \times 3550 / 1,05 = 34418,1 daN$

NEd/NRd= 492,61 / 34418,1= 1,43 %

Modulo di elasticità plastico W22pl= 7,78 cm3

 $M22pI,Rd=W22pI \times fyk / g M0=7,78 \times 3550 / 1,05 = 26303,81 daNcm$

M22Ed / M22pl,Rd= 0 / 26303,81= 0 %

Modulo di elasticità plastico W33pl= 7,78 cm3

M33pl,Rd= W33pl x fyk / g M0= $7.78 \times 3550 / 1.05 = 26303.81 \text{ daNcm}$

M33Ed / M33pl,Rd = 3738,37 / 26303,81= 14,21 %

Eseguiamo la verifica di resistenza N-M:

NEd / (A fy / gM0) + M22,Ed / (W22pl fy / gM0) + M33,Ed / (W33pl fy / gM0) <= 1492,61 x 1,05 / (3550 x 10,18) + 0 x 1,05 / (3550 x 7,78) + 3738,37 x 1,05 / (3550 x 7,78) <= 11,43 + 0 + 14,21= 15,64 %

Complessivamente si ha uno sfruttamento della sezione pari al 15,64 %

APPALTATORE: TELESE s.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

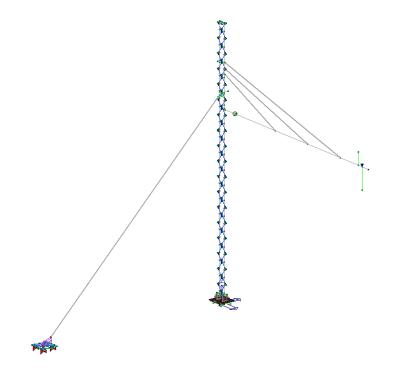
PROGETTAZIONE:

Mandataria:

SYSTRA S.A. SWS Engineerin

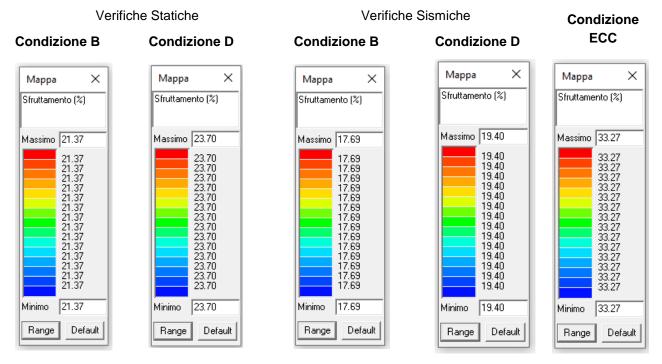
Mandante:


SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.


IMPIANTI DI TRAZIONE ELETTRICA Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 0.2.E.ZZ CL LC.00.0.0.016 B 66 di 127


3.1.1 Verifica del tirante a terra Φ 20 (S275)

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO Mandataria: Mandante: PROGETTO ESECUTIVO SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO **CODIFICA DOCUMENTO** REV. **FOGLIO** Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e 0.2.E.ZZ CL LC.00.0.0.016 67 di 127 IF2R В verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

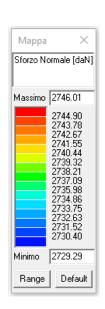
Si sono determinati i valori di trazione agente sul tirante nelle diverse condizioni di carico:

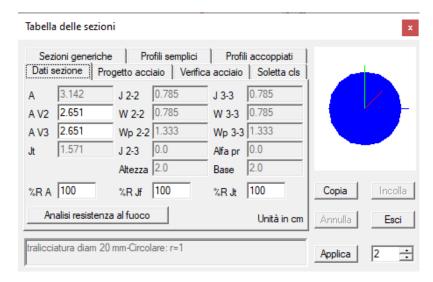
Riportiamo in forma tabellare i valori delle verifiche eseguite per ogni elemento finito rappresentante i profili M36 dei tirafondi alla base (acciaio S355) in condizione di carico E:

Asta	Stato	Note	V N	N	V stab	N	CI.	Beta x L	Snell.	LambDaS	Chi mn	v.Omeg	Rif. cmb
				daN		daN		cm					
5	ok	s=2,m=12	0.33	2737.7			1	776.8	1553.6	17.90	3.04e-03	0.0	1,0
Asta			۷N	N	V stab	N		Beta x L	Snell.	LambDaS	Chi mn	v.Omeg	
				2737.73						17.90	3.04e-03	0.0	
			0.33	2737.73				776.81	1553.62	17.90		0.0	

Il valore massimo raggiunto dello sfruttamento è pari al 33,27 % della capacità resistente ottenuta nella verifica di resistenza a trazione.

APPALTATORE: TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata PROGETTAZIONE: Mandataria: Mandante: SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e IF2R verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e


ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO


PROGETTO ESECUTIVO

LOTTO **CODIFICA DOCUMENTO** REV. **FOGLIO** CL 0.2.E.ZZ LC.00.0.0.016 В 68 di 127

relativo Tirante a terra e fondazione

La resistenza a trazione della sezione è pari a:

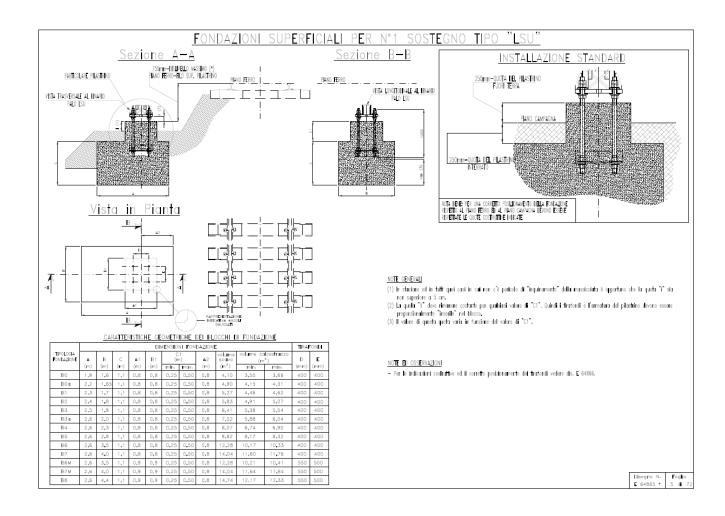
 R_{Ed} =A x fy = 3,142 x 2750 / 1,05=8229,05 daN

Lo sfruttamento risulta pari a:

sfr. $\% = (2746,09 / 8229,05) \times 100 = 33,37 \%$

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO FOGLIO **CODIFICA** DOCUMENTO RFV Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e 0.2.E.ZZ CL LC.00.0.0.016 В 69 di 127 IF2R verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

4 VERIFICA DEL PLINTO DI FONDAZIONE


Procediamo alla verifica della fondazione seguendo le indicazioni contenute nel DM'08 ripreso da E64864 rev.C. Relativamente alle combinazioni di carico e alle verifiche da eseguire si rimanda al precedente § 2.2.

Il plinto di fondazione adottato ha le seguenti dimensioni (E64864c – plinto tipo B3):

- larghezza 250 cm
- lunghezza 190 cm
- profondità 110 cm

Dimensioni pilastrino:

- larghezza 80 cm
- lunghezza 80 cm
- altezza 50 cm
- eccentricità 45 cm

APPALTATORE: TELESE s.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

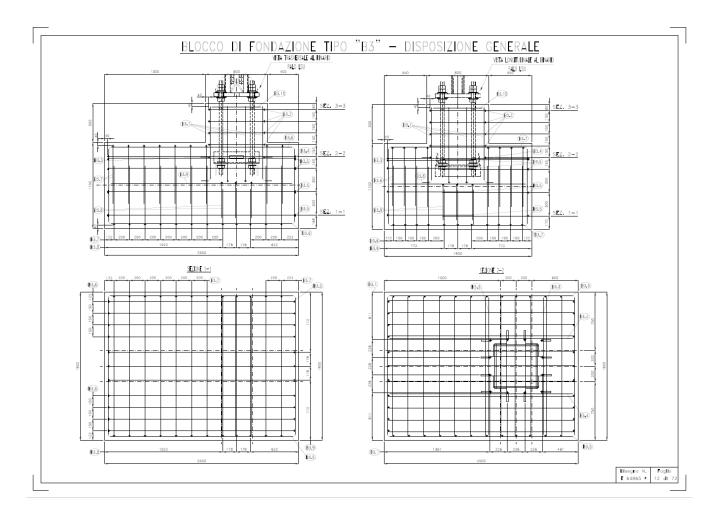
PROGETTAZIONE:

Mandataria:

SYSTRA S.A. SWS Engineering S.p.A.

Mandante:

SYSTRA-SOTECNI S.p.A.


IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 0.2.E.ZZ CL LC.00.0.0.016 B 70 di 127

La carpenteria e l'armatura del plinto sono descritte nel documento di progetto costruttivo relativo.

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO CODIFICA DOCUMENTO RFV FOGLIO Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e 0.2.E.ZZ CL LC.00.0.0.016 71 di 127 IF2R В verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

4.1 CARATTERIZZAZIONE GEOTECNICA

La verifica geotecnica è stata fatta facendo riferimento al doc. E64864 che riprende in larga misura le disposizioni del cap. 6 del DM.'08 e circolare esplicativa 7/09.

Le caratteristiche meccaniche del terreno utilizzate per la verifica derivano dalla relazione geotecnica

IF2R.0.2.E.ZZ.RB.GE.00.0.5.001.A
 Relazione geotecnica generale di linea delle opere all'aperto

Caratteristiche meccaniche:

• peso specifico asciutto γ =1900 daN/m³

• angolo di attrito interno $\varphi = 30^{\circ}$

coesione drenata c'=0 daN/cm²
 coesione non drenata c_u=0 daN/cm²

L'analisi degli effetti in fondazione è stata eseguita seguendo quanto previsto dalla normativa DM '08 al §6.4.2.1, relativamente alle verifiche geotecniche.

Per capacità portante e scorrimento sia statico che sismico i coefficienti di sicurezza da imporre ai parametri geotecnici sono di tipo M1, quindi unitari.

Le condizioni sismiche applicate sono quelle descritte nel paragrafo dedicato.

Il valore del coefficiente sismico orizzontale cinematico ($K_{hk} = \beta_m x a_{max}/g = 0.31 x 3.043 / 9.81 = 0.096$) e di quello verticale K_v , solo ai fini del calcolo delle spinte del terreno, sono stati considerati raddoppiando l'accelerazione come indicato dal Manuale di Progettazione delle Opere Civili – Parte II – Sezione 3 – Corpo Stradale.

Sicché i valori di calcolo utilizzati sono i seguenti:

 $k_{hk}=0,095 \times 2=0,1923$

 $k_v = 0,096$

Nella valutazione delle spinte totali sismiche si è dovuto operare una scelta relativamente al segno del coefficiente k_v che può comparire positivo o negativo in relazione al verso della componente verticale del moto sismico. Per tale motivo, nelle analisi simiche, i valori dei coefficienti di spinta saranno valutati tenendo in conto il moto verticale del sisma e le azioni inerziali agenti sul plinto, (attraverso la valutazione pseudostatica dei coefficienti di spinta secondo Mononobe-Okabe).

Ciò premesso si possono definire i parametri alla base delle determinazioni successive.

APPALTATORE	TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata		O TRATT	A CANCEL	LO-BENEVEN O TELESINO -		.ANO			
PROGETTAZIO	NE:		2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO							
Mandataria:	Mandante:									
SYSTRA S.A.	SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A	A. PROGETTO) ESECU	ΓΙνο						
IMPIANTI DI TR	AZIONE ELETTRICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO			
	alcolo Sostegno LSU16b con D.R. fuori standard e cco di fondazione tipo B3 per ormeggio punto fisso e	IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	72 di 127			

Ipotesi di calcolo:

relativo Tirante a terra e fondazione

Inclinazione del paramento interno del plinto rispetto all'orizzontale α =90°

Inclinazione del terreno a monte del muro rispetto all'orizzontale $\beta=0^{\circ}$

Angolo di attrito terra-plinto δ =0°

Coefficiente di spinta attiva (A1+M1+R3): k_a= 0,3333

Coefficiente di spinta passiva (A1+M1+R3): k_p= 3

$$K_a = \frac{\cos^2(\varphi - \vartheta)}{\cos^2 \vartheta \, \cos(\vartheta + \delta) \left[1 + \sqrt{\frac{\sin(\delta + \varphi)\sin(\varphi - \beta)}{\cos(\vartheta + \delta)\cos(\vartheta - \beta)}} \right]^2}$$

$$K_p = \frac{\cos^2(\varphi + \vartheta)}{\cos^2 \vartheta \, \cos(\vartheta - \delta) \left[1 - \sqrt{\frac{\sin(\delta + \varphi)\sin(\varphi + \beta)}{\cos(\vartheta - \delta)\cos(\vartheta - \beta)}} \right]^2}$$

Per le condizioni sismiche, utilizzando la formulazione per il calcolo della spinta totale simica attiva e passiva (metodo pseudo statico di Mononobe - Okabe) si è ottenuto:

$$K_{AE} = \frac{\sin^2(\alpha + \varphi - \theta)}{\cos\theta \sin^2\alpha \sin(\alpha - \delta - \theta) \left[1 + \sqrt{\frac{\sin(\varphi + \delta)\sin(\varphi - \beta - \theta)}{\sin(\alpha - \delta - \theta)\sin(\alpha + \beta)}} \right]^2}$$

$$K_{PE} = \frac{\sin^2(\alpha - \varphi + \theta)}{\cos\theta \sin^2\alpha \sin(\alpha + \delta + \theta) \left[1 - \sqrt{\frac{\sin(\varphi + \delta)\sin(\varphi + \beta - \theta)}{\sin(\alpha + \delta + \theta)\sin(\alpha + \beta)}} \right]^2}$$

$$\theta = \arctan\frac{|k_h|}{1 \pm k_v}$$

Componente verticale del moto sismico diretta verso il basso (-kv)

Coefficiente di spinta attiva (SIS+M1+R3): k_{aE}= 0,6299

Coefficiente di spinta passiva (SIS+M1+R3): k_{pE}= 2,2974

Componente verticale del moto sismico diretta verso l'alto (+kv)

Coefficiente di spinta attiva (SIS+M1+R3): kaE= 0,5282

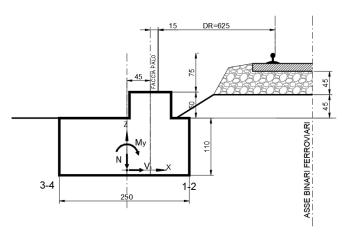
Coefficiente di spinta passiva (SIS+M1+R3): k_{pE}= 2,5048

APPALTATORE: TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO
PROGETTAZIONE:	2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO
Mandataria: Mandante:	
SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.	PROGETTO ESECUTIVO
IMPIANTI DI TRAZIONE ELETTRICA	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione	IF2R 0.2.E.ZZ CL LC.00.0.016 B 73 di 127

Dalla spinta totale simica, al fine della determinazione dei momenti ribaltanti o stabilizzanti agenti sul plinto, è stata determinata la quota parte sismica detraendo il valore della spinta statica. La quota parte sismica è stata applicata a metà della parete del plinto, quella statica ad h/3 dalla base.

4.2 INFLUENZA DELLE SPINTE DEL TERRENO

Non è possibile eseguire le verifiche senza tenere in conto il contributo laterale del terreno ed i sovraccarichi determinati dal peso del ballast ferroviario e dal peso dello strato di rilevato al di sopra del dado di fondazione. Tali contributi determinano una costante spinta diretta dai binari verso la campagna che influenza le verifiche. In particolare distinguiamo le verifiche "lato binario" da quelle "lato campagna". Le prime sono caratterizzate da un complesso di azioni che tende a ribaltare la struttura (e a spostarla) verso i binari, mentre la seconda verso la campagna. Il terreno è considerato presente mediante opportuni coefficienti percentuali di spinta Passiva ed Attiva a seconda del tipo di verifica eseguito (vedi in proposito E64864c).


I contributi del terreno laterale sono stati quindi considerati secondo le modalità e quantità riportate:

	LATO BIN	ARIO	LATO ESTERNO	
	<u>Azione</u>	Resistenza	<u>Azione</u>	Resistenza
Carico Limite	nullo	% spinta passiva variabile (≤70%)*	100% spinta attiva	nullo
Scorrimento	nulla	nulla	100% spinta attiva	nulla
Equilibrio	nulla	100% spinta passiva	100% spinta attiva	nulla

La valutazione del contributo del terreno viene quindi semplificata nell'ottica di eseguire le verifiche richieste senza però eccedere nei valori di spinta.

Quindi si applicherà, quando pertinente, una percentuale di spinta attiva pari al 100% per le verifiche lato campagna mentre, quando necessario, una percentuale variabile di spinta passiva rispettosa delle condizioni sopra esposte.

SCHEMA GENERALE PER LE VERIFICHE A RIBALTAMENTO CAPACITA' PORTANTE E SCORRIMENTO

APPALTATORE:

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 0.2.E.ZZ CL LC.00.0.0.016 B 74 di 127

IMPIANTI DI TRAZIONE ELETTRICA Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

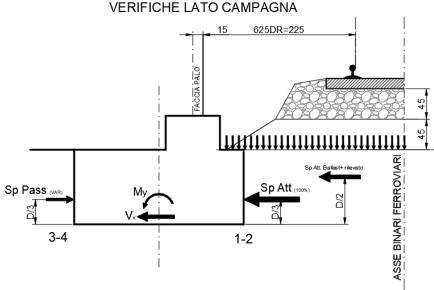
VERIFICHE LATO BINARIO

15

DR=625

Sp Att (100%)

Ny


3-4

1-2

VERIFICHE LATO CAMPAGNA

15

625DR=225

Facendo riferimento alle condizioni di verifica citate dalla E64864c, in particolare al manuale di progettazione delle Opere civili – parte II – Sezione 3 - Corpo stradale, si considererà un'altezza di ballast ferroviario pari a 80 cm dal piano del ferro con peso specifico di 1800 daN/m³. Per compensare i tratti in curva dove la sopraelevazione dei binari determina un aumento dell'altezza del ballast ferroviario si considererà un peso specifico pari a 2000 daN/m³.

Inoltre lo stato di rilevato presente al di sopra della quota di interramento del dado (h=110 cm) sarà anch'esso tenuto in conto per la determinazione della spinta laterale sulla superficie del plinto. In particolare

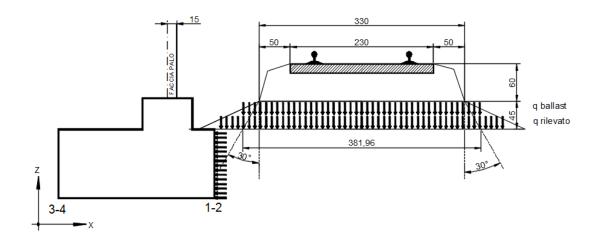
APPALTATORE	TELES Consorzio Telese Società Consor			O TRATT	A CANCEL	LO-BENEVEN O TELESINO -		ANO
PROGETTAZIO	NE:		2° e 3 SUBI	LOTTO TE	ELESE - SA	AN LORENZO	– VITUI	_ANO
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο			
Relazione di Ca verifica del bloc	AZIONE ELETTRICA alcolo Sostegno LSU16b con co di fondazione tipo B3 per a terra e fondazione		COMMESSA IF2R	LOTTO 0.2.E.ZZ	CODIFICA CL	DOCUMENTO LC.00.0.0.016	REV. B	FOGLIO 75 di 127

per un dislivello di calcolo tra estradosso pilastrino e piano del ferro pari a 75 cm, per un'altezza di strato ballast pari a 80-20=60 cm (al netto dell'altezza del fungo delle rotaie) otteniamo le seguenti quote:

H ballast= 60 cm

H rilevato = 45 cm

Impostato un angolo di diffusione del carico pari a 30° ed ipotizzato, a favore di sicurezza, che la pressione del ballast sia costante per tutta la larghezza di base otteniamo:


L_piano di regolamento= $2 \times (50 + 115) = 330 \text{ cm}$

L_piano plinto= L_piano di regolamento + 2 x 45 x tan30° = 381,96 cm

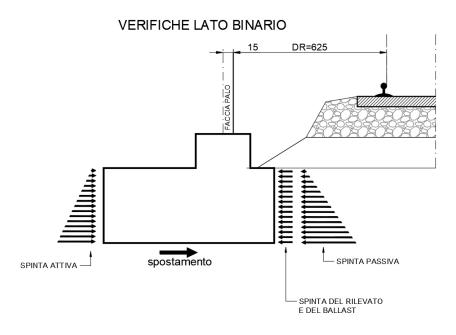
Q0_ballast= 0,6 x (2000/10000) x 330 / 381,96= 0,10367 daN/cm²

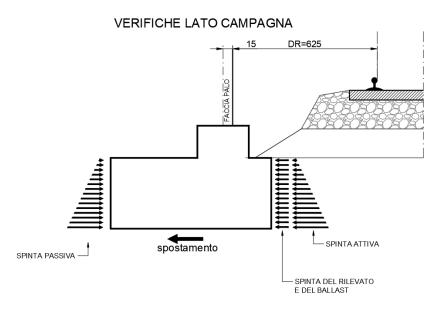
 $Q0_rilevato = 0.45 \times (1500/10000) = 0.0675 \text{ daN/cm}^2$

(ipotizziamo che il peso specifico del rilevato sia lo stesso del terreno)

La pressione sulla superficie laterale sarà calcolata come prodotto della pressione verticale totale (ballast + rilevato) moltiplicata per il coefficiente di spinta attiva del rilevato per la superficie laterale del plinto.

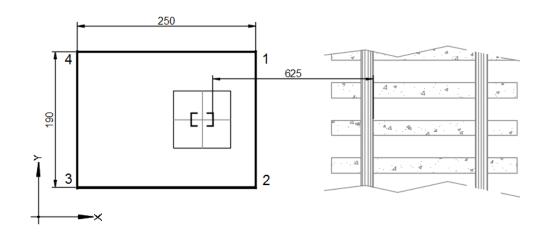
La coesione presente nel corpo del rilevato viene tenuta in conto nel calcolo delle spinte attive e passive agenti sulla parete lato binario del plinto. In particolare il contributo costante definito mediante le pressioni:


$$\sigma_{ca}$$
 = 2 c $k_a^{0,5}$


APPALTATORE	TELES Consorzio Telese Società Consor			O TRATT	A CANCEL	LO-BENEVEN O TELESINO -		ANO		
PROGETTAZIO	NE:		2° e 3 SUBI	OTTO TE	ELESE - SA	N LORENZO	– VITUI	LANO		
Mandataria:	ndataria: Mandante:									
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο					
Relazione di Ca verifica del bloc	AZIONE ELETTRICA Icolo Sostegno LSU16b con co di fondazione tipo B3 per a terra e fondazione		COMMESSA IF2R	LOTTO 0.2.E.ZZ	CODIFICA CL	DOCUMENTO LC.00.0.0.016	REV. B	FOGLIO 76 di 127		

$$\sigma_{cp} = 2 c k_p^{0,5}$$

Determineranno delle spinte sulla parete del plinto tendenti a diminuire quella attiva ed a aumentare quella passiva.

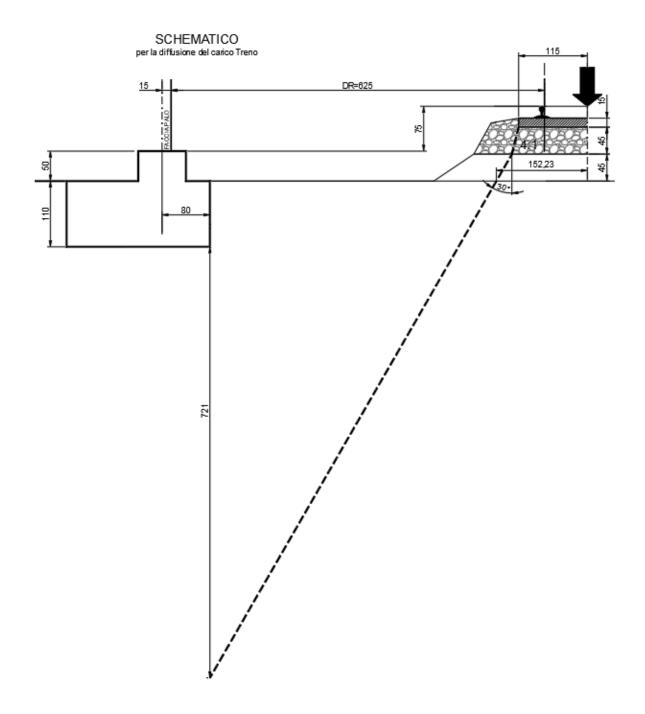

Per semplificare le modalità di calcolo il contributo di queste spinte sarà considerato fino al valore massimo uguale alla spinta dei sovraccarichi del rilevato ferroviario e del ballast al quale verrà sottratto (per le verifiche lato campagna in stato di spinta attiva) o sommato (per le verifiche lato binario in stato di spinta passiva) a seconda del tipo di verifica richiesto.

PROGETTAZIO Mandataria: SYSTRA S.A.	Consorzio Telese Società Consor NE: <u>Mandante:</u>		II LOTTO FI	O TRATT JNZIONA LOTTO TE	A CANCEL LE FRASSO ELESE – SA	LO-BENEVEN D TELESINO - AN LORENZO	- VITUL	
3131KA 3.A.	SWS Engineering S.p.A.	3131KA-301ECN13.p.A.						
Relazione di Ca verifica del blo	AZIONE ELETTRICA alcolo Sostegno LSU16b con acco di fondazione tipo B3 per a terra e fondazione		COMMESSA IF2R	LOTTO 0.2.E.ZZ	CODIFICA CL	DOCUMENTO LC.00.0.0.016	REV. B	FOGLIO 77 di 127

Schema planimetrico per la determinazione delle pressioni alla base del plinto:

APPALTATORE: TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO
PROGETTAZIONE:	2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO
Mandataria: Mandante:	
SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.	PROGETTO ESECUTIVO
IMPIANTI DI TRAZIONE ELETTRICA	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione	IF2R 0.2.E.ZZ CL LC.00.0.0.016 B 78 di 127

4.3 SOVRACCARICO DOVUTO AI CONVOGLI FERROVIARI


Prendiamo in considerazione la componente di spinta dovuta alla presenza del carico variabile derivante dal transito del carico ferroviario. La diffusione delle pressioni all'interno del rilevato interessa parzialmente la parete verticale del blocco di fondazione.

Le ipotesi da cui si è partiti sono:

- Distanza faccia palo-interno rotaia, DR=625cm
- Larghezza traversina= 230 cm
- Spessore traversina=15cm
- Spessore ballast = 80cm (60cm di ballast + 20cm di fungo)
- Angolo di diffusione carico ferroviario nel Ballast= 14° (4:1) da NTC 2008
- Angolo di diffusione carico ferroviario in un rilevato correttamente consolidato= 30°
- Distanza piano ferro-testa plinto= 75 cm
- H plinto=110 cm + 50 cm pilastrino
- Larghezza plinto = 250 cm con eccentricità di pilastrino pari a 45 cm.

Considerando queste ipotesi di partenza si riporta uno schema che mette in evidenza come la diffusione del sovraccarico ferroviario non vada ad interessare il blocco di fondazione.

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO REV. Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e CL LC.00.0.0.016 79 di 127 IF2R 0.2.E.ZZ В verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

Non si terrà quindi in conto la spinta dovuta alle sovrappressioni dei convogli ferroviari.

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

CODIFICA DOCUMENTO COMMESSA LOTTO RFV FOGLIO 0.2.E.ZZ CL LC.00.0.0.016 80 di 127 IF2R В

VERIFICHE GEOTECNICHE. 4.4

LEGENDA:

a: dimensione trasversale del plinto (perpendicolare ai binari)

b: dimensione longitudinale del plinto (parallela ai binari)

c: altezza del dado di fondazione

ap: dimensione trasversale del pilastrino

bp: dimensione longitudinale del pilastrino

cp: altezza del pilastrino

ex: eccentricità trasversale del carico (rispetto alla base)

ey: eccentricità longitudinale del carico (rispetto alla base)

d: sporgenza testa blocco dal piano banchina

f: distanza piastra base - testa blocco (se da considerare)

hv: ricoprimento del plinto lato campagna

V: Volume complessivo del plinto

Dimensioni e caratteristiche della fondazione.

Denominazione: B3

а	b	С	ар	bp	ср	ex	ey	d	f	hv	٧
[cm]	[mc]										
250	190	110	80	80	50	45	0	50	0	110	5,545

CONDIZIONI DI VERIFICA: Plinto a gravità.

Pressioni alla base del plinto e verifiche Geotecniche (gt=1900 daN/mc, fi=30°, delta (terra/muro)=0°, coesione c=0 daN/cmg).

Percentuale di Spinta Passiva computata: Sp_P= Variabile

Percentuale di Spinta Attiva computata: Sp_A= 100 %.

Tipo di combinazioni analizzate: STATICHE

Tipo di verifica eseguita: A1+M1+R3 (Capacità portante - Scorrimento X ed Y - Ribaltamento - NTC2008)

Analisi del nodo vincolato nº: 6

CONDIZIONI DI CALCOLO

Tipo di sostegno: LSU 16 b

Tracciato: Curva Interna

APPALTATORE: TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata PROGETTAZIONE:

Mandataria:

SYSTRA S.A. SWS Engineering S.p.A.

Mandante:

IMPIANTI DI TRAZIONE ELETTRICA Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e

verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA FOGLIO DOCUMENTO REV. CL IF2R 0.2.E.ZZ LC.00.0.0.016 В 81 di 127

Raggio curva: 1000

LEGENDA:

B/C: verso della verifica (Binario - Campagna)

Cmb: combinazione dei carichi N: azione assiale di progetto

Hx: azione orizzontale di progetto in direzione X

My: momento flettente di progetto attorno all'asse Y

Hy: azione orizzontale di progetto in direzione Y

Mx: momento flettente di progetto attorno all'asse X

Rd/Ed: coefficiente di sicurezza per la capacità portante [>1]

Rib.X: coefficiente di sicurezza per il ribaltamento attorno all'asse X [>1]

SYSTRA-SOTECNI S.p.A.

Rib.Y: coefficiente di sicurezza per il ribaltamento attorno all'asse Y [>1]

Scorr.X: coefficiente di sicurezza per scorrimento in direzione X [>1]

Scorr.Y: coefficiente di sicurezza per scorrimento in direzione Y [>1]

APPALTATORE: TELESE s.c.a r.

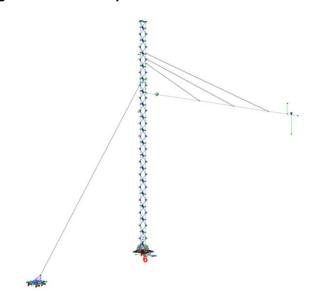
Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA


Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 0.2.E.ZZ CL LC.00.0.0.016 B 82 di 127

4.4.1 Azioni agenti alla base del palo

Condizione di carico B statica:

Nodo	Cmb	Azione X	Azione Y	Azione Z	Azione RX	Azione RY	Azione RZ
		daN	daN	daN	daN cm	daN cm	daN cm
6	1	-285.96	21.70	-2284.66	-1.129e+04	-1.129e+04 4.678e+04	
6	2	-285.96	21.54	-2095.85	-1.123e+04	3.890e+04	-3794.27
6	3	-801.18	21.43	-2284.92	-1.109e+04	-2.535e+05	-3389.96
6	4	229.26	21.96	-2284.40	-1.148e+04	3.470e+05	-4198.58
6	5	-801.18	21.28	-2096.11	-1.104e+04	-2.614e+05	-3389.96
6	6	229.26	21.81	-2095.59	-1.142e+04	3.392e+05	-4198.58
6	7	-1141.92	21.26	-2285.10	-1.096e+04	-4.528e+05	-3120.42
3	8	570.00	22.14	-2284.23	-1.161e+04	5.464e+05	-4468.12
3	9	-1141.92	21.10	-2096.29	-1.091e+04	-4.607e+05	-3120.42
3	10	570.00	21.98	-2095.42	-1.155e+04	5.385e+05	-4468.12
3	11	-285.96	-23.15	-2221.32	-4350.24	4.678e+04	-4628.47
3	12	-285.96	66.54	-2348.00	-1.822e+04	4.678e+04	-2960.06
3	13	-285.96	-23.30	-2032.51	-4293.69	3.890e+04	-4628.47
3	14	-285.96	66.39	-2159.19	-1.817e+04	3.890e+04	-2960.06
3	15	-285.96	-53.04	-2179.10	274.09	4.678e+04	-5184.61
3	16	-285.96	96.44	-2390.23	-2.285e+04	4.678e+04	-2403.92
3	17	-285.96	-53.20	-1990.28	330.65	3.890e+04	-5184.61
6	18	-285.96	96.28	-2201.42	-2.279e+04	3.890e+04	-2403.92

Condizione di carico B sismica:

Nodo	Cmb	Azione X	Azione Y	Azione Z	Azione RX	Azione RY	Azione RZ
		daN	daN	daN	daN cm	daN cm	daN cm
6	1	-695.34	-9.65	-1285.65	-1819.36	-3.241e+05	-2607.20
6	2	-695.34	32.45	-1537.99	-9845.67	-3.241e+05	-1997.14
6	3	390.31	-8.99	-1284.99	-2309.14	3.901e+05	-2050.08
6	4	390.31	33.12	-1537.33	-1.034e+04	3.901e+05	-1440.02
6	5	-315.36	-58.54	-991.02	7373.24	-7.411e+04	-3123.95

APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

0.2.E.ZZ CL LC.00.0.0.016 83 di 127 IF2R В

Nodo	Cmb	Azione X	Azione Y	Azione Z	Azione RX	Azione RY	Azione RZ
6	6	-315.36	81.80	-1832.17	-1.938e+04	-7.411e+04	-1090.41
6	7	10.34	-58.34	-990.82	7226.30	1.401e+05	-2956.81
6	8	10.34	82.00	-1831.97	-1.953e+04	1.401e+05	-923.27

Riportiamo la tabella con i valori delle verifiche ottenuti per la condizione B.

Combinazioni statiche.

Lato	Cmb	N	Hx	Му	Ну	Mx	%	Rd/Ed	Rib.	Rib.	Scorr.	Scorr.
		[daN]	[daN]	[daNm]	[daN]	[daNm]	X - Y	[-]	Х	Υ	Х	Υ
С	1	-2284,66	-285,96	467,8	21,7	-112,9	0 - 0	7,65	28,42	18,51	5,33	491,14
С	2	-2095,85	-285,96	389	21,54	-112,3	0 - 0	9,642	27,09	17,65	5,22	388,86
С	3	-2284,92	-801,18	-2535	21,43	-110,9	0 - 0	6,551	28,53	4,64	4,24	497,34
В	4	-2284,4	229,26	3470	21,96	-114,8	0 - 0	6,88	28,31	8,03	7,18	485,32
С	5	-2096,11	-801,18	-2614	21,28	-110,4	0 - 0	7,845	27,21	3,83	3,95	393,61
В	6	-2095,59	229,26	3392	21,81	-114,2	0 - 0	8,382	26,96	5,78	7,69	384,04
С	7	-2285,1	-1141,92	-4528	21,26	-109,6	0 - 0	5,669	28,61	3,1	3,73	501,32
В	8	-2284,23	570	5464	22,14	-116,1	0 - 0	6,234	28,24	3,26	9,32	481,37
С	9	-2096,29	-1141,92	-4607	21,1	-109,1	0 - 0	6,311	27,3	2,52	3,41	396,98
В	10	-2095,42	570	5385	21,98	-115,5	0 - 0	7,072	26,87	2,6	11,2	381,06
С	11	-2221,32	-285,96	467,8	-23,15	-43,5024	0 - 0	7,748	38,03	18,44	5,31	458,95
С	12	-2348	-285,96	467,8	66,54	-182,2	0 - 0	7,553	23,11	18,58	5,35	160,67
С	13	-2032,51	-285,96	389	-23,3	-42,9369	0 - 0	9,797	38,88	17,56	5,2	358,06
С	14	-2159,19	-285,96	389	66,39	-181,7	0 - 0	9,485	21,19	17,73	5,24	126,66
С	15	-2179,1	-285,96	467,8	-53,04	2,7409	0 - 0	7,725	31,39	18,39	5,3	199,9
С	16	-2390,23	-285,96	467,8	96,44	-228,5	0 - 0	7,488	20,56	18,63	5,36	111,09
С	17	-1990,28	-285,96	389	-53,2	3,3065	0 - 0	9,759	30,48	17,5	5,19	156,4
С	18	-2201,42	-285,96	389	96,28	-227,9	0 - 0	9,382	18,52	17,79	5,26	87,57
С	7	-2285,1	-1141,92	-4528	21,26	-109,6	0 - 0	5,669				
С	18	-2201,42	-285,96	389	96,28	-227,9	0		18,52			
С	9	-2096,29	-1141,92	-4607	21,1	-109,1	0			2,52		
С	9	-2096,29	-1141,92	-4607	21,1	-109,1	0				3,41	
С	18	-2201,42	-285,96	389	96,28	-227,9	0					87,57

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

SYSTRA-SOTECNI S.p.A.

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA IF2R

LOTTO 0.2.E.ZZ CODIFICA CL

DOCUMENTO

FOGLIO

LC.00.0.0.016 В

REV.

84 di 127

Combinazioni sismiche (+kv).

Lato	Cmb	N	Нх	Му	Ну	Mx	%	Rd/Ed	Rib.	Rib.	Scorr.	Scorr.
		[daN]	[daN]	[daNm]	[daN]	[daNm]	X - Y	[-]	Х	Υ	Х	Υ
С	1	-1285,65	-695,34	-3241	-9,65	-18,1936	0 - 0	2,991	13,81	2,64	1,25	7,21
С	2	-1537,99	-695,34	-3241	32,45	-98,4567	0 - 0	3,042	12,44	2,69	1,27	7,19
В	3	-1284,99	390,31	3901	-8,99	-23,0914	0 - 0	6,329	13,87	2,96	4,23	7,22
В	4	-1537,33	390,31	3901	33,12	-103,4	0 - 0	6,204	12,39	2,99	4,29	7,18
С	5	-991,02	-315,36	-741,1	-58,54	73,7324	0 - 0	4,381	4,93	6,56	2,77	2,11
С	6	-1832,17	-315,36	-741,1	81,8	-193,8	0 - 0	4,394	4,93	7	2,91	2,21
В	7	-990,82	10,34	1401	-58,34	72,263	0 - 0	5,402	4,93	23,54	22,85	2,11
В	8	-1831,97	10,34	1401	82	-195,3	0 - 0	5,213	4,93	24,3	23,99	2,21
С	1	-1285,65	-695,34	-3241	-9,65	-18,1936	0 - 0	2,991				
С	5	-991,02	-315,36	-741,1	-58,54	73,7324	0		4,93			
С	1	-1285,65	-695,34	-3241	-9,65	-18,1936	0			2,64		
С	1	-1285,65	-695,34	-3241	-9,65	-18,1936	0				1,25	
С	5	-991,02	-315,36	-741,1	-58,54	73,7324	0					2,11

Combinazioni sismiche (-kv).

Lato	Cmb	N	Нх	Му	Ну	Mx	%	Rd/Ed	Rib.	Rib.	Scorr.	Scorr.
		[daN]	[daN]	[daNm]	[daN]	[daNm]	X - Y	[-]	Х	Υ	Х	Υ
С	1	-1285,65	-695,34	-3241	-9,65	-18,1936	0 - 0	2,293	11,14	2,1	1	5,48
С	2	-1537,99	-695,34	-3241	32,45	-98,4567	0 - 0	2,233	8,87	2,15	1,01	5,48
В	3	-1284,99	390,31	3901	-8,99	-23,0914	0 - 0	5,11	11,19	2,13	2,84	5,48
В	4	-1537,33	390,31	3901	33,12	-103,4	0 - 0	4,556	8,83	2,15	2,89	5,48
С	5	-991,02	-315,36	-741,1	-58,54	73,7324	0 - 0	4,328	3,91	5,46	2,15	1,6
С	6	-1832,17	-315,36	-741,1	81,8	-193,8	0 - 0	3,683	3,51	5,91	2,29	1,69
В	7	-990,82	10,34	1401	-58,34	72,263	0 - 0	4,903	3,91	6,18	22,06	1,6
В	8	-1831,97	10,34	1401	82	-195,3	0 - 0	3,918	3,5	6,44	23,52	1,69
С	1	-1537,99	-695,34	-3241	32,45	-98,4567	0 - 0	2,233				
В	8	-1831,97	10,34	1401	82	-195,3	0		3,5			
С	1	-1285,65	-695,34	-3241	-9,65	-18,1936	0			2,1		
С	1	-1285,65	-695,34	-3241	-9,65	-18,1936	30				1	
С	5	-991,02	-315,36	-741,1	-58,54	73,7324	0					1,6

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO PROGETTAZIONE: Mandataria: Mandante: PROGETTO ESECUTIVO SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO REV. Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e CL 85 di 127 IF2R 0.2.E.ZZ LC.00.0.0.016 В verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

Riportiamo la tabella con i valori delle verifiche ottenuti per la condizione D.

Condizione di carico D statica:

Nodo	Cmb	Azione X	Azione Y	Azione Z	Azione RX	Azione RY	Azione RZ
		daN	daN	daN	daN cm	daN cm	daN cm
6	1	-292.35	24.11	-2784.10	-1.294e+04	1.805e+05	-4413.02
6	2	-292.35	23.96	-2595.29	-1.288e+04	1.726e+05	-4413.01
6	3	-740.87	23.86	-2784.35	-1.275e+04	-9.719e+04	-3806.43
6	4	156.17	24.37	-2783.85	-1.312e+04	4.582e+05	-5019.60
6	5	-740.87	23.70	-2595.54	-1.269e+04	-1.051e+05	-3806.43
6	6	156.17	24.21	-2595.04	-1.307e+04	4.503e+05	-5019.60
6	7	-1037.15	23.69	-2784.51	-1.263e+04	-2.815e+05	-3402.05
6	8	452.45	24.53	-2783.68	-1.325e+04	6.425e+05	-5423.98
6	9	-1037.15	23.53	-2595.70	-1.257e+04	-2.893e+05	-3402.05
6	10	452.45	24.38	-2594.87	-1.319e+04	6.346e+05	-5423.98
6	11	-292.35	0.86	-2751.25	-9338.02	1.805e+05	-4845.57
6	12	-292.35	47.37	-2816.95	-1.653e+04	1.805e+05	-3980.46
6	13	-292.35	0.70	-2562.44	-9281.47	1.726e+05	-4845.57
6	14	-292.35	47.21	-2628.14	-1.648e+04	1.726e+05	-3980.46
6	15	-292.35	-14.65	-2729.35	-6939.68	1.805e+05	-5133.93
6	16	-292.35	62.87	-2838.85	-1.893e+04	1.805e+05	-3692.10
6	17	-292.35	-14.80	-2540.54	-6883.13	1.726e+05	-5133.93
6	18	-292.35	62.72	-2650.04	-1.887e+04	1.726e+05	-3692.10

Condizione di carico D sismica:

Nodo	Cmb	Azione X	Azione Y	Azione Z	Azione RX	Azione RY	Azione RZ
		daN	daN	daN	daN cm	daN cm	daN cm
6	1	-698.75	-8.37	-1552.02	-2698.71	-2.527e+05	-2937.20
6	2	-698.75	33.74	-1804.36	-1.073e+04	-2.527e+05	-2327.14
6	3	386.91	-7.70	-1551.36	-3188.50	4.614e+05	-2380.08
6	4	386.91	34.40	-1803.70	-1.121e+04	4.614e+05	-1770.02
6	5	-318.77	-57.25	-1257.38	6493.88	-2792.07	-3453.95
6	6	-318.77	83.09	-2098.53	-2.026e+04	-2792.35	-1420.41
6	7	6.93	-57.05	-1257.19	6346.95	2.114e+05	-3286.81
6	8	6.93	83.29	-2098.33	-2.041e+04	2.114e+05	-1253.27

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO IF2R

0.2.E.ZZ

CODIFICA CL

DOCUMENTO LC.00.0.0.016

REV. FOGLIO В

86 di 127

Combinazioni statiche

Lato	Cmb	N	Нх	Му	Ну	Mx	%	Rd/Ed	Rib.	Rib.	Scorr.	Scorr.
		[daN]	[daN]	[daNm]	[daN]	[daNm]	X - Y	[-]	Х	Υ	Х	Υ
В	1	-2784,1	-292,35	1805	24,11	-129,4	0 - 0	7,068	28,15	434,54	5,44	452,92
С	2	-2595,29	-292,35	1726	23,96	-128,8	0 - 0	8,719	26,82	61,28	5,36	360,52
С	3	-2784,35	-740,87	-971,9	23,86	-127,5	0 - 0	6,975	28,26	7,08	4,45	457,67
В	4	-2783,85	156,17	4582	24,37	-131,2	0 - 0	6,371	28,05	5,88	7,01	448,09
С	5	-2595,54	-740,87	-1051	23,7	-126,9	0 - 0	8,532	26,94	6,03	4,2	364,48
В	6	-2595,04	156,17	4503	24,21	-130,7	0 - 0	7,508	26,7	4,34	7,44	356,79
С	7	-2784,51	-1037,15	-2815	23,69	-126,3	0 - 0	6,193	28,32	4,24	3,97	460,96
В	8	-2783,68	452,45	6425	24,53	-132,5	0 - 0	5,7	27,98	2,97	8,66	445,16
С	9	-2595,7	-1037,15	-2893	23,53	-125,7	0 - 0	7,313	27,01	3,51	3,67	367,12
В	10	-2594,87	452,45	6346	24,38	-131,9	0 - 0	6,289	26,62	2,37	9,98	354,3
В	11	-2751,25	-292,35	1805	0,86	-93,3802	0 - 0	7,114	31,84	434,06	5,44	10000
С	12	-2816,95	-292,35	1805	47,37	-165,3	0 - 0	7,023	25,24	435,01	5,45	230,89
С	13	-2562,44	-292,35	1726	0,7	-92,8147	0 - 0	8,789	31,17	61,2	5,35	10000
В	14	-2628,14	-292,35	1726	47,21	-164,8	0 - 0	8,648	23,54	61,37	5,38	183,34
В	15	-2729,35	-292,35	1805	-14,65	-69,3968	0 - 0	7,144	34,9	433,74	5,43	743,43
С	16	-2838,85	-292,35	1805	62,87	-189,3	0 - 0	6,993	23,62	435,33	5,46	174,15
С	17	-2540,54	-292,35	1726	-14,8	-68,8313	0 - 0	8,835	34,96	61,14	5,35	581,71
В	18	-2650,04	-292,35	1726	62,72	-188,7	0 - 0	8,603	21,78	61,42	5,38	138,18
В	8	-2783,68	452,45	6425	24,53	-132,5	0 - 0	5,7				
В	18	-2650,04	-292,35	1726	62,72	-188,7	0		21,78			
В	10	-2594,87	452,45	6346	24,38	-131,9	0			2,37		
С	9	-2595,7	-1037,15	-2893	23,53	-125,7	0				3,67	
В	18	-2650,04	-292,35	1726	62,72	-188,7	0					138,18

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e

relativo Tirante a terra e fondazione

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA

LOTTO

CODIFICA

DOCUMENTO

REV.

FOGLIO 87 di 127

CL IF2R 0.2.E.ZZ LC.00.0.0.016 В

Combinazioni sismiche (+kv).

Lato	Cmb	N	Нх	Му	Ну	Mx	% Cap	Rd/Ed	Rib.	Rib.	Scorr.	Scorr.
		[daN]	[daN]	[daNm]	[daN]	[daNm]	X - Y	[-]	Х	Υ	Х	Υ
С	1	-	-698,75	-2527	-8,37	-26,9871	0 - 0	3,294	14,39	2,93	1,27	7,33
С	2	-	-698,75	-2527	33,74	-107,3	0 - 0	3,026	11,61	2,98	1,29	7,29
В	3	-	386,91	4614	-7,7	-31,885	0 - 0	5,987	14,46	2,74	4,31	7,33
В	4	-1803,7	386,91	4614	34,4	-112,1	0 - 0	5,451	11,56	2,76	4,37	7,28
С	5	-	-318,77	-27,9207	-57,25	64,9388	0 - 0	4,534	5,02	8,56	2,82	2,15
С	6	-	-318,77	-27,9235	83,09	-202,6	0 - 0	4,526	4,99	9,12	2,95	2,24
В	7	-	6,93	2114	-57,05	63,4695	0 - 0	5,245	5,02	13,25	23,01	2,15
В	8	-	6,93	2114	83,29	-204,1	0 - 0	5,054	4,99	13,67	24,14	2,24
С	2	-	-698,75	-2527	33,74	-107,3	0 - 0	3,026				
С	6	-	-318,77	-27,9235	83,09	-202,6	0		4,99			
В	3	-	386,91	4614	-7,7	-31,885	0			2,74		
С	1	-	-698,75	-2527	-8,37	-26,9871	0				1,27	
С	5	-	-318,77	-27,9207	-57,25	64,9388	0					2,15

Combinazioni sismiche (-kv).

Lato	Cmb	N	Нх	Му	Ну	Mx	%	Rd/Ed	Rib.	Rib.	Scorr.	Scorr.
		[daN]	[daN]	[daNm]	[daN]	[daNm]	X - Y	[-]	Х	Υ	Х	Υ
С	1	-1552,02	-698,75	-2527	-8,37	-26,9871	0 - 0	2,65	11,45	2,35	1,01	5,59
С	2	-1804,36	-698,75	-2527	33,74	-107,3	0 - 0	2,544	8,99	2,41	1,02	5,59
В	3	-1551,36	386,91	4614	-7,7	-31,885	0 - 0	4,619	11,51	1,97	2,9	5,6
В	4	-1803,7	386,91	4614	34,4	-112,1	0 - 0	4,123	8,95	2	2,96	5,58
С	5	-1257,38	-318,77	-27,9207	-57,25	64,9388	0 - 0	4,553	3,99	7,2	2,19	1,63
С	6	-2098,53	-318,77	-27,9235	83,09	-202,6	0 - 0	3,863	3,57	7,78	2,34	1,72
В	7	-1257,19	6,93	2114	-57,05	63,4695	0 - 0	4,747	4	4,88	22,27	1,63
В	8	-2098,33	6,93	2114	83,29	-204,1	0 - 0	3,794	3,57	5,09	23,71	1,72
С	2	-1804,36	-698,75	-2527	33,74	-107,3	0 - 0	2,544				
С	6	-2098,53	-318,77	-27,9235	83,09	-202,6	0		3,57			
В	3	-1551,36	386,91	4614	-7,7	-31,885	0			1,97		
С	1	-1552,02	-698,75	-2527	-8,37	-26,9871	0				1,01	
С	5	-1257,38	-318,77	-27,9207	-57,25	64,9388	0					1,63

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO CODIFICA DOCUMENTO **FOGLIO** REV. Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e CL IF2R 0.2.E.ZZ LC.00.0.0.016 В 88 di 127 verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

Riportiamo la tabella con i valori delle verifiche ottenuti per la condizione ECCEZIONALE:

Nodo	Cmb	Azione X	Azione Y	Azione Z	Azione RX	Azione RY	Azione RZ
		daN	daN	daN	daN cm	daN cm	daN cm
6	1	-57.63	36.41	-2778.28	-1.898e+04	1.321e+05	-6458.75

Combinazione eccezionale

Lato	Cmb	N	Нх	Му	Ну	Mx	%	Rd/Ed	Rib.	Rib.	Scorr.	Scorr.
		[daN]	[daN]	[daNm]	[daN]	[daNm]	X - Y	[-]	Х	Υ	Х	Υ
В	1	-2778,28	-57,63	1321	36,41	-189,8	0 - 0	8,806	23,45	69,43	6,35	239,88
В	1	-2778,28	-57,63	1321	36,41	-189,8	0 - 0	8,806				
В	1	-2778,28	-57,63	1321	36,41	-189,8	0		23,45			
В	1	-2778,28	-57,63	1321	36,41	-189,8	0			69,43		
В	1	-2778,28	-57,63	1321	36,41	-189,8	0				6,35	
В	1	-2778,28	-57,63	1321	36,41	-189,8	0					239,88

Esplicitiamo di seguito le verifiche condotte con riferimento a quelle risultate maggiormente gravose in termini di coefficienti di sicurezza e di percentuale di spinta passiva mobilitata.

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO PROGETTAZIONE: Mandataria: Mandante: PROGETTO ESECUTIVO SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO REV. Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e CL LC.00.0.0.016 IF2R 0.2.E.ZZ В 89 di 127 verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

4.4.2 Verifiche geotechine. Esplicitazione delle verifiche Statiche.

Verifica di Capacità Portante. (STATICA)			
Dimensioni del plinto in analisi.			
Dado di fondazione: Altezza:	H =	110	[cm]
Dado di fondazione: Dimensione perpendicolare ai binari:	Lx =	250	[cm]
Dado di fondazione: Dimensione parallela ai binari:	Ly =	190	[cm]
Pilastrino: Altezza:	h =	50	[cm]
Pilastrino: Dimensione perpendicolare ai binari:	lx =	80	[cm]
Pilastrino: Dimensione parallela ai binari:	ly =	80	[cm]
Pilastrino: Eccentricità in X rispetto alla base del dado:	eccX =	<i>4</i> 5	[cm]
Pilastrino: Eccentricità in Y rispetto alla base del dado:	eccY=	0	[cm]
Altezza fuori terra:	d =	50	[cm]
Altezza del terreno di ricoprimento lato binario:	hb =	110	[cm]
Altezza del terreno di ricoprimento lato campagna:	hc =	110	[cm]
Altezza media del terreno per spinte in direzione Y:	hy =	110	[cm]
Altezza minima di interramento	Hmin =	110	[cm]
Angolo di attrito terra/muro Delta:	Delta =	0	[0,00°]
Per convenzione L' dimensione maggiore in pianta.			
Dimensione L'=L-2eL:	L'=	192,86	[cm]
Dimensione B'=B-2eB:	B' =	188,58	[cm]
Dimensione B – D-2eb.	D =	100,00	Loui
Verifica eseguita secondo l'approccio progettuale:	A1+M1+R3		[-]
Caratteristiche del terreno di fondazione.			
Angolo di attrito interno:	fi =	30	[0,00°]
Peso specifico del terreno asciutto:	gt =	1900	[daN/mc]
Coesione drenata:	c'=	0	[daN/cmq]
Coefficiente di spinta attiva statica:	Ka =	0,3333	[-]
Coefficiente di spinta passiva statica:	Kp =	3	[-]
Calcolo del contributo dovuto alla coesione in direzione			
Contributo della Coesione nullo.			
Calcolo del contributo dovuto alla coesione in direzione			
Contributo della Coesione nullo.			
Calcolo del sovraccarico q0 di Ballast e di Rilevato.			
Peso specifico del Ballast:	ps Blst =	2000	[daN/mc]
Spessore dello strato di Ballast:	sp_B/st =	60	[cm]
Larghezza del piano di posa del Ballast:	6 <u>6</u> 2.60	00	[OIII]
(L traversina $+ 2 \times 50$) =	<i>I_Blst</i> =	330	[cm]
Larghezza del piano di posa del Ballast all'estradosso	L_Blst =	382	[cm]
Carico verticale distribuito Ballast all'estradosso dado:	L_Dist =	00 <u>2</u>	נטווון
(ps_Blst sp_Blst I_Blst / L_Blst) =	q0_B=	0,104	[daN/cmq]
		U, 1U 4	[uai v/ciriq]
		1900	[daN/mc]
Peso specifico del Rilevato: Spessore dello strato di Rilevato all'estradosso dado:	ps_Ril = sp_Ril =	1900 45	[daN/mc] [cm]

APPALTATORE: TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata	_	O TRATT	A CANCEL	LO-BENEVENT O TELESINO –	_	.ANO
PROGETTAZIONE:	2° e 3 SUBI	LOTTO T	ELESE - SA	AN LORENZO -	VITU	LANO
Mandataria: Mandante:	DDOCETTO	S ECECIT	TIVO			
SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.	PROGETTO	DESECO	1100			
MPIANTI DI TRAZIONE ELETTRICA Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione	COMMESSA IF2R	LOTTO 0.2.E.ZZ	CODIFICA CL	DOCUMENTO LC.00.0.0.016	REV. B	FOGLIO 90 di 127
$(ps_Ril / sp_Ril) =$	q0_R =			0,086	[da	aN/cmq]
Carico verticale totale all'estradosso dado:						
Ballast	q0_B =			0,104	-	nN/cmq]
Rilevato ferroviario	q0_R =			0,086	-	aN/cmq]
Fattore parziale sui carichi permanenti compiutamente	gG =			1,3	[-]	
Coefficiente di spinta attiva:	ka =			0,3333	[-]	
Spinta agente sulla faccia del plinto (Ballast):						
(Ly hb q0_B Ka gG) =	Spq0_B	=		-938,95	[da	aN]
Spinta agente sulla faccia del plinto (Rilevato):						
(Ly hb q0_R Ka gG) =	Spq0_R	=		-774,35	[da	aN]
Componente verticale della spinta:	Spq0_B	_V=		0	[-]	
Componente verticale della spinta:	Spq0_R	_V=		0	[-]	
Sovraccarico q0 dovuto ai convogli ferroviari nullo.						
Momento Ribaltante dovuto a (q0Blst + q0Ril + q0_treno Azioni di Progetto.	o): Mq0 =			-94231	[da	nNcm]
Combinazione critica:	cmb =			7	[-]	
Azione assiale verticale:	N =			, -2285,1	[da	λ/1
Azione orizzontale in direzione X:	Hx =			-1141,92	-	-
Momento flettente attorno all'asse Y:	My =			-452800	-	aNcm]
Azione orizzontale in direzione Y:	-			21,26	-	-
Momento flettente attorno all'asse X:	Hy = Mx =			-10960	[da	aNcm]
memeric neteric attende an accept.	<i>WX</i> =			70000	Įūc	
Verifica riferita al lato CAMPAGNA.						
Calcolo della capacità portante.						
Fattori di Capacità portante - Teoria del Vesic (1975).						
$Nq = e^{(p_g tg(fi)(tg (p_g/4 + fi/2))^2} =$	Nq =			18,4011	_	aN/cmq]
$Nc = (Nq-1) \cot g (fi) =$	Nc =			30,1396	-	nN/cmq]
Ng = 2 (Nq+1) tg (fi) =	Ng =			22,4025	[da	nN/cmq]
Fattori correttivi.						
Fattori di FORMA (B' <l').< td=""><td></td><td></td><td></td><td></td><td></td><td></td></l').<>						
sc = 1 + (B'/L') (Nq/Nc) =	sc =			1,597	[-]	
sq = 1 + (B'/L') tg(fi) =	sq =			1,5645	[-]	
sg = 1 + 0.4 (B'/L') =	sg =			0,6089	[-]	
Fattori di PROFONDITA' (B' <l').< td=""><td></td><td></td><td></td><td></td><td></td><td></td></l').<>						
dc = dq - (1 - dq) / (Nc tg(fi)) =	dc =			1,1781	[-]	
$dq = 1 + 2 tg(fi) (1-sin (fi))^2 (D/B') =$	dq =			1,1684	[-]	
	dg =			1	[-]	
Fattori di INCLINAZIONE DEL CARICO (B' <l').< td=""><td></td><td></td><td></td><td></td><td></td><td></td></l').<>						
Azione Orizzontale TOTALE	Hd =			2855,3	[da	aN1
Azione Verticale TOTALE Azione Verticale TOTALE	Vd =			20306,35	-	•
Angolo Teta del carico proiettato rispetto ad L'	Teta =			0,43	[0,	00°]

 ${\it Coefficiente}\ m$

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO PROGETTAZIONE: Mandataria: Mandante: PROGETTO ESECUTIVO SWS Engineering S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO CODIFICA DOCUMENTO RFV FOGLIO Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e 0.2.F.77 CL LC.00.0.0.016 91 di 127 IF2R В verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione $m = mL \cos(teta)^2 + mB \sin(teta)^2 =$ m =1,49 [-] Coefficiente mL mL = (2 + (L'/B'))/(1 + (L'/B')) =mL =1,49 [-] Coefficiente mB mB = (2 + (B'/L'))/(1 + (B'/L')) =mB =1,51 [-] ic = 0 [-] $iq = (1 - Hd/Vd)^m =$ 0.7974 [-] iq = $g = (1 - Hd/Vd)^{(m+1)} =$ 0,6852 [-] ig =Fattori di INCLINAZIONE DEL PIANO DI POSA. (EPSILON < 45°) Angolo di inclinazione del piano di posa Epsilon = 0 [0,00°] bc = bq - (1 - bq)/(Nc tg(fi)) =bc = 1 [-] $bq = (1 - Epsilon tg(fi)^2 =$ bq =1 [-] $bg = (1 - Epsilon tg(fi)^2 =$ bg =[-] Fattori di INCLINAZIONE DEL PIANO CAMPAGNA. (OMEGA < 45°, OMEGA < FI) Angolo di inclinazione del piano campagna Omega = 0 [0,00°] gc = gq - (1 - gq)/(Nc tg(fi)) =gc = 1 [-] $gq = (1 - tg(Omega))^2 cos(Omega) =$ 1 [-] gq =gg = gq / cos(Omega) =[-] gg =gR= Coefficiente parziale di sicurezza applicato a glim 2,3 [-] Pressione litostatica q 0.209 [daN/cmq] q = gt Hmin =Carico limite glim c qc = c Nc sc dc ic bc gc =0 [daN/cmq] Carico limite glim q qq = q Nq sq dq iq bq gq =-2,437[daN/cmq] -0.728Carico limite glim g qg = 0.5 gt B' Ng sg dg ig bg gg =[daN/cmq]

qlim = qlim c + qlim q + qlim g =

Arid =

Ed =

Rd = qlim Arid =

(Rd/Ed) > 1 =

-3,165

3.63695

115118,2

20306,35

5,669

[daN/cmq]

[mq]

[daN]

[daN]

[-]

Carico limite glim

Area ridotta resistente

Resistenza di progetto

Coefficiente di sicurezza

Azione di progetto

TELESE S.c.a r.l.

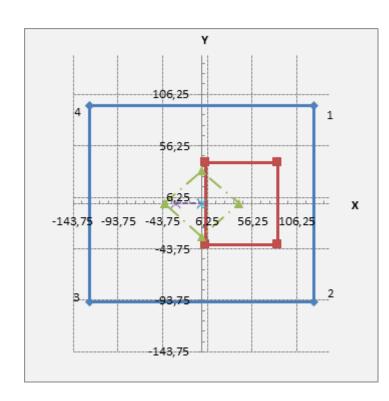
Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.


IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO DOCUMENTO FOGLIO CODIFICA RFV IF2R 0.2.E.ZZ CL LC.00.0.0.016 В 92 di 127

Sezione interamente compressa.

Sp. Attiva X [daN] =-946,42

Sp. Passiva X [daN] (= Sp. Attiva X) =946,42

Sp. Attiva Y [daN] =1245,29

Sp. Passiva Y [daN] (= Sp Attiva Y) =-1245,29

Pressione al vertice 1 [daN/cmq] =0,14

Pressione al vertice 2 [daN/cmq] =0,12

Pressione al vertice 3 [daN/cmq] =0,71

Pressione al vertice 4 [daN/cmq] =0,73

Eccentricità di carico eX [cm] =-28,568

Eccentricità di carico eY [cm] =0,707

Dimensione L'=L-2eL [cm] =192,86

Dimensione B'=B-2eB [cm] =188,58

Area ridotta A'=L' B' [mq] =3,637

Ricoprimento di monte H [cm] =110

Verifica a SCORRIMENTO in direzione X. (STATICA)

Dimensioni del plinto in analisi. Dado di fondazione: Altezza:

Dado di fondazione: Dimensione perpendicolare ai binari: Dado di fondazione: Dimensione parallela ai binari:

Pilastrino: Altezza:

Pilastrino: Dimensione perpendicolare ai binari:

Pilastrino: Dimensione parallela ai binari:

Pilastrino: Eccentricità in X rispetto alla base del dado: Pilastrino: Eccentricità in Y rispetto alla base del dado:

Altezza fuori terra:

Altezza del terreno di ricoprimento lato binario:

Altezza del terreno di ricoprimento lato campagna:

Altezza media del terreno per spinte in direzione Y:

Altezza minima di interramento

Angolo di attrito terra/muro Delta:

Per convenzione L' dimensione maggiore in pianta.

Dimensione L'=L-2eL:

Dimensione B'=B-2eB:

Verifica eseguita secondo l'approccio progettuale:

H = 110 250 I x =

190 Ly =50

h =80 Ix =80 Iv =

eccX =

eccY=

d =hb =

hc =hy =

L'=

B'=

Hmin =

Delta =

110 n

45

0

50

110

110

110

188.2 176,62

[cm] [cm]

[cm]

[cm]

[cm]

[cm]

[cm]

[cm]

[cm]

[cm]

[cm]

[cm]

[cm]

[cm]

[cm]

[0,00°]

A1+M1+R3

[-]

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO PROGETTAZIONE: Mandataria: Mandante: PROGETTO ESECUTIVO SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e 0.2.E.ZZ CL LC.00.0.0.016 В 93 di 127 IF2R verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

Caratteristiche del terreno di fondazione.			
	fi =	30	[0,00°]
Angolo di attrito interno:		1900	
Peso specifico del terreno asciutto: Coesione drenata:	gt = c' =		[daN/mc]
		0	[daN/cmq]
Coefficiente di spinta attiva statica:	Ka =	0,3333	[-]
Coefficiente di spinta passiva statica:	Kp =	3	[-]
Calcolo del sovraccarico q0 di Ballast e di Rilevato.			
Peso specifico del Ballast:	ps_Blst =	2000	[daN/mc]
Spessore dello strato di Ballast:	sp_Blst =	60	[cm]
Larghezza del piano di posa del Ballast:			
(L traversina + 2 x 50) =	I_Blst =	330	[cm]
Larghezza del piano di posa del Ballast all'estradosso dado:	$L_Blst =$	382	[cm]
Carico verticale distribuito Ballast all'estradosso dado:			
(ps_Blst sp_Blst I_Blst / L_Blst) =	q0_B=	0,104	[daN/cmq]
Peso specifico del Rilevato:	ps_Ril =	1900	[daN/mc]
Spessore dello strato di Rilevato all'estradosso dado:	sp_Ril =	<i>4</i> 5	[cm]
Carico verticale distribuito Rilevato all'estradosso dado:			
$(ps_Ril / sp_Ril) =$	q0_R =	0,086	[daN/cmq]
Carico verticale totale all'estradosso dado:			
Ballast	$q0_B =$	0,104	[daN/cmq]
Rilevato ferroviario	q0_R =	0,086	[daN/cmq]
Fattore parziale sui carichi permanenti compiutamente definiti:	gG =	1	[-]
Coefficiente di spinta attiva:	ka =	0,3333	[-]
Spinta agente sulla faccia del plinto (Ballast):			
(Ly hb $q0_B \text{ Ka } gG) =$	$Spq0_B =$	-722,27	[daN]
Spinta agente sulla faccia del plinto (Rilevato):			
(Ly hb q0_R Ka gG) =	$Spq0_R =$	-595,65	[daN]
Componente verticale della spinta:	Spq0_B_V =	0	[-]
Componente verticale della spinta:	$Spq0_R_V =$	0	[-]
Sovraccarico q0 dovuto ai convogli ferroviari nullo.			
Azioni di Progetto.			
Combinazione critica:	cmb =	9	[-]
Azione assiale verticale:	N =	-2096,29	[daN]
Azione orizzontale in direzione X:	Hx =	-1141,92	[daN]
Momento flettente attorno all'asse Y:	My =	-460700	[daNcm]
Azione orizzontale in direzione Y:	Hy =	21,1	[daN]
Momento flettente attorno all'asse X:	Mx =	-10910	[daNcm]
Verifica riferita al lato CAMPAGNA.			
Calcolo dell'Azione di progetto a scorrimento in direzione X.			
Azione Orizzontale in direzione X:	Fx =	-1141,92	[daN]
Coefficiente parziale per le azioni riferite alle spinte Terreno:	gG1 =	1	[-]
Consideriamo la presenza della spinta attiva del terreno:	3 -		
Spinta Attiva statica:	SpA =	-728,02	[daN]
Consideriamo la presenza della spinta passiva del terreno:			

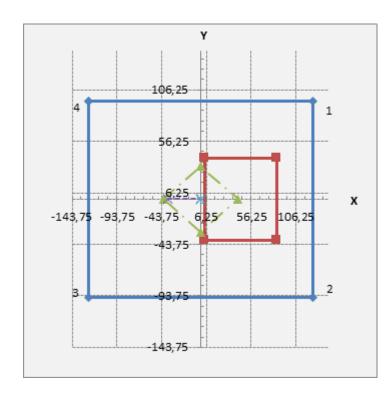
APPALTATORE:	TELESE S.c.a r.l.			
	Consorzio Telese Società Consortile a Responsabilità Lin			
DBOCETTAZIONE:				

ilità Limitata

Mandataria: Mandante:

SYSTRA-SOTECNI S.p.A. SYSTRA S.A. SWS Engineering S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA


Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	94 di 127

Spinta Passiva statica: Spinta sovraccarico q0_B: Spinta sovraccarico q0_R:	Sp_P = Spq0_B = Spq0_R =	728,02 -722,27 -595,65	[daN] [daN] [daN]
Azione di progetto a scorrimento in direzione X:	FxEd =	-2459,84	[daN]
Calcolo della resistenza di progetto a scorrimento in direzione X. Peso Plinto: Azione Verticale TOTALE:	<i>Pplt</i> = <i>V</i> =	-13862,5 -15958,79	[daN] [daN]
Resistenza di progetto a scorrimento della BASE. Fattore parziale di sicurezza a scorrimento di base: Rd_base = V tg(fi) / 1,1 = Resistenza di progetto a scorrimento LATERALE: Fattore parziale di sicurezza a scorrimento laterale: Rd_lat = (2 sp_A tg(delta) / 1,3) =	g_R =	1,1 8376,192 1,3 0	[-] [daN] [-] [daN]
Resistenza di progetto a scorrimento TOTALE: Rd = Rd_base + Rd_laterale =	Rd =	8376,19	[daN]
Verifica a scorrimento in direzione X. Coefficiente di sicurezza:	(Rd/Ed) > 1 =	3,41	[-]

Sezione interamente compressa.

Sp. Attiva X [daN] =-728,02

Sp. Passiva X [daN] (= Sp. Attiva X) =728,02

Sp. Attiva Y [daN] =957,92

Sp. Passiva Y [daN] (= Sp Attiva Y) =-957,92

Pressione al vertice 1 [daN/cmq] =0,05

Pressione al vertice 2 [daN/cmq] =0,03

Pressione al vertice 3 [daN/cmq] =0,62

Pressione al vertice 4 [daN/cmq] =0,64

Eccentricità di carico eX [cm] =-36,692

Eccentricità di carico eY [cm] =0,895

Dimensione L'=L-2eL [cm] =188,2

Dimensione B'=B-2eB [cm] =176,62

Area ridotta A'=L' B' [mq] =3,324

Ricoprimento di monte H [cm] =110

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO CL LC.00.0.0.016 95 di 127 IF2R 0.2.E.ZZ В

Varifica a SCORDIMENTO in directions V (STATICA)			
Verifica a SCORRIMENTO in direzione Y. (STATICA) Dimensioni del plinto in analisi.			
•	11	110	[om]
Dado di fondazione: Altezza:	H =	110	[cm]
Dado di fondazione: Dimensione perpendicolare ai binari:	Lx =	250	[cm]
Dado di fondazione: Dimensione parallela ai binari:	Ly =	190	[cm]
Pilastrino: Altezza:	h =	50	[cm]
Pilastrino: Dimensione perpendicolare ai binari:	lx =	80	[cm]
Pilastrino: Dimensione parallela ai binari:	ly =	80	[cm]
Pilastrino: Eccentricità in X rispetto alla base del dado:	eccX =	45	[cm]
Pilastrino: Eccentricità in Y rispetto alla base del dado:	eccY=	0	[cm]
Altezza fuori terra:	<i>d</i> =	50	[cm]
Altezza del terreno di ricoprimento lato binario:	hb =	110	[cm]
Altezza del terreno di ricoprimento lato campagna:	hc =	110	[cm]
Altezza media del terreno per spinte in direzione Y:	hy =	110	[cm]
Altezza minima di interramento	Hmin =	110	[cm]
Angolo di attrito terra/muro Delta:	Delta =	0	[0,00°]
Per convenzione L' dimensione maggiore in pianta.			
Dimensione L'=L-2eL:	L' =	243,06	[cm]
Dimensione B'=B-2eB:	B' =	185,24	[cm]
Verifica eseguita secondo l'approccio progettuale:	A1+M1+R3		[-]
Caratteristiche del terreno di fondazione.			
Angolo di attrito interno:	fi =	30	[0,00°]
Peso specifico del terreno asciutto:	gt =	1900	[daN/mc]
Coesione drenata:	c'=	0	[daN/cmq]
Coefficiente di spinta attiva statica:	Ka =	0,3333	[-]
Coefficiente di spinta passiva statica:	Kp =	3	[-]
Azioni di Progetto.			
Combinazione critica:	cmb =	18	[-]
Azione assiale verticale:	N =	-2201,42	[daN]
Azione orizzontale in direzione X:	Hx =	-285,96	[daN]
Momento flettente attorno all'asse Y:	My =	38900	[daNcm]
Azione orizzontale in direzione Y:	Hy =	96,28	[daN]
Momento flettente attorno all'asse X:	Mx =	-22790	[daNcm]
Verifica riferita al lato CAMPAGNA.			
Calcolo dell'Azione di progetto a scorrimento in direzione Y.			
Azione Orizzontale in direzione Y:	Fy =	96,28	[daN]
Coefficiente parziale per le azioni riferite alle spinte Terreno	gG1 =	1	[-]
Consideriamo il contributo dovuto alla spinta attiva del terreno:	901	•	LJ
Spinta Attiva statica:	SpA =	957,92	[daN]
Consideriamo il contributo dovuto alla spinta passiva del terreno:	<i>Ορ</i> /1 –	301,32	[GGIV]
Spinta Passiva statica:	SpP =	-957,92	[deN]
Οριπα r αδδίνα διαίισα.	3ρr =	-301,32	[daN]
Azione di progetto a scorrimento in direzione Y:	FyEd =	96,28	[daN]

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTR

SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 0.2.E.ZZ CL LC.00.0.0.016 B 96 di 127

Calcolo della resistenza di progetto a scorrimento in direzione Y.

Peso Plinto:

Azione Verticale TOTALE:

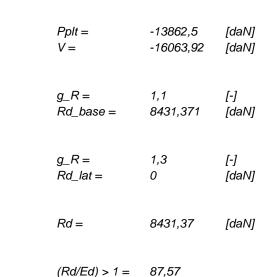
Resistenza di progetto a scorrimento della BASE Rd.

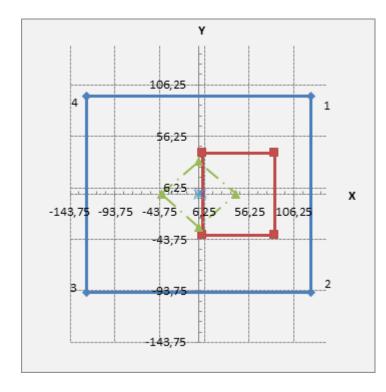
Fattore parziale di sicurezza a scorrimento:

 $Rd_base = V tg(fi) / 1,1 =$

Resistenza di progetto a scorrimento LATERALE:

Fattore parziale di sicurezza a scorrimento laterale:


 $Rd_{lat} = 2 sp_{A} tg(delta) / 1,3 =$


Resistenza di progetto a scorrimento TOTALE:

Rd = Rd_base + Rd_laterale =

Verifica a scorrimento in direzione Y.

Coefficiente di sicurezza

Sezione interamente compressa.

Sp. Attiva X [daN] =-728,02

Sp. Passiva X [daN] (= Sp. Attiva X) =728,02

Sp. Attiva Y [daN] =957,92

Sp. Passiva Y [daN] (= Sp Attiva Y) =-957,92

Pressione al vertice 1 [daN/cmq] =0,39

Pressione al vertice 2 [daN/cmq] =0,34

Pressione al vertice 3 [daN/cmq] =0,28

Pressione al vertice 4 [daN/cmq] =0,34

Eccentricità di carico eX [cm] =3,469

Eccentricità di carico eY [cm] =2,378

Dimensione L'=L-2eL [cm] =243,06

Dimensione B'=B-2eB [cm] =185,24

Area ridotta A'=L' B' [mq] =4,5024

Ricoprimento di monte H [cm] =110

APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 0.2.E.ZZ CL LC.00.0.0.016 В 97 di 127 IF2R

Verifica a RIBALTAMENTO attorno all'asse X. Spigolo X: 1-4.	(STATICA)		
Dimensioni del plinto in analisi.			
Dado di fondazione: Altezza:	H =	110	[cm]
Dado di fondazione: Dimensione perpendicolare ai binari:	Lx =	250	[cm]
Dado di fondazione: Dimensione parallela ai binari:	Ly =	190	[cm]
Pilastrino: Altezza:	h =	50	[cm]
Pilastrino: Dimensione perpendicolare ai binari:	lx =	80	[cm]
Pilastrino: Dimensione parallela ai binari:	ly =	80	[cm]
Pilastrino: Eccentricità in X rispetto alla base del dado:	eccX =	45	[cm]
Pilastrino: Eccentricità in Y rispetto alla base del dado:	eccY=	0	[cm]
Altezza fuori terra:	<i>d</i> =	50	[cm]
Altezza del terreno di ricoprimento lato binario:	hb =	110	[cm]
Altezza del terreno di ricoprimento lato campagna:	hc =	110	[cm]
Altezza media del terreno per spinte in direzione Y:	hy =	110	[cm]
Altezza minima di interramento	Hmin =	110	[cm]
Angolo di attrito terra/muro Delta:	Delta =	0	[0,00°]
Per convenzione L' dimensione maggiore in pianta.			
Dimensione L'=L-2eL:	L'=	243,06	[cm]
Dimensione B'=B-2eB:	B' =	185,24	[cm]
Difficiliation B = B 26B.	Ъ –	100,24	[OIII]
Verifica eseguita secondo l'approccio progettuale:	A1+M1+R3		[-]
Caratteristiche del terreno di fondazione.			
Angolo di attrito interno:	fi =	30	[0,00°]
Peso specifico del terreno asciutto:	gt =	1900	[daN/mc]
Coesione drenata:	c' =	0	[daN/cmq]
Coefficiente di spinta attiva statica:	Ka =	0,3333	[-]
Coefficiente di spinta passiva statica:	Kp =	3	[-]
Calcolo del contributo dovuto alla coesione in direzione Y.			
Contributo della Coesione nullo.			
Azioni di Progetto.			
Combinazione critica:	cmb =	18	[-]
Azione assiale verticale:	<i>N</i> =	-2201,42	[daN]
Azione orizzontale in direzione X:	Hx =	-285,96	[daN]
Momento flettente attorno all'asse Y:	My =	38900	[daNcm]
Azione orizzontale in direzione Y:	Hy =	96,28	[daN]
Momento flettente attorno all'asse X:	Mx =	-22790	[daNcm]
Verifica riferita al lato CAMPAGNA.			
Calcolo dei momenti STABILIZZANTI.			
	aC1 -	1	<i>r</i> 1
Coefficiente parziale per le spinte Terreno: Peso totale del plinto per coefficiente parziale:	gG1 = Pb = V gcls gG1 =	1 -13862	[-] [daN]
	Fb = V gcis gGT =	-13002	[uaiv]
Momento dovuto al peso del blocco ed ai carichi verticali:	Mathyd	1506070	[doNom1
Mstbx1 = (Pdado Ly/2) + (Ppilastrino + Fz) (Ly/2-eccY) =	Mstbx1 =	1526072	[daNcm]
Calcolo dei momenti dovuti al contributo del terreno			
Componente Orizzontale Spinta Passiva statica:	0 0 0	057.00	, , , , , , , , , , , , , , , , , , ,
$Sp_P_0 = gG1 (0.5 \text{ hy}^2 \text{ Ly gt } [tg(45^\circ + fi'/2)]^2) \cos(\text{delta}) =$	Sp_P_O =	-957,92	[daN]

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

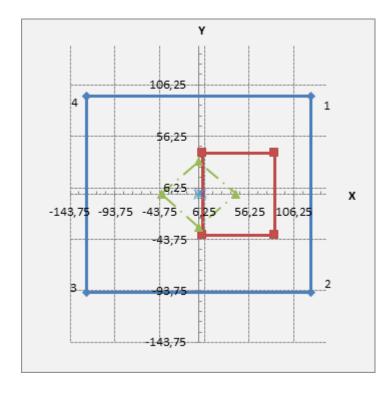
PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA


Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA **DOCUMENTO** REV. **FOGLIO** 0.2.E.ZZ CL LC.00.0.0.016 98 di 127 IF2R В

(Sp_P_O = Sp_A_O) Momento comp. Orizzontale Sp. Passiva e Coesione : Mx_P_O = Sp_P_O hc/3 + M_Sp_CPss = Componente Verticale Spinta Attiva statica:	<i>Mx_P</i> =	35124	[daNcm]
$Sp_A_V = gG1 (0.5 \text{ hy}^2 \text{ Ly gt } [tg(45^\circ\text{-fi}'/2)] ^2) \sin(\text{delta}) = Momento comp. Verticale Sp. Attiva e Coesione :$	<i>Sp_A_V</i> =	0	[daN]
$Mx_A_V = Sp_A_V Ly + M_sp_CAtt_V =$	$Mx_A_V =$	0	[daNcm]
Calcolo dei momenti RIBALTANTI.			
Momento alla base del palo dovuto ai carichi esterni:	Mribx1 =	-22790	[daNcm]
Azione Orizzontale in direzione Y:	Fy =	96,28	[daN]
Momento rispetto alla base di posa: Componente Orizzontale Spinta Attiva statica:	Mribx2 = Fy (c+cp+f) =	-15405	[daNcm]
$Sp_A_O = gG1 (0.5 \text{ hy}^2 \text{ Ly gt } [tg(45^\circ\text{-fi}'/2)] ^2) \cos(\text{delta}) = Momento componente Orizzontale Spinta Attiva e Coesione:$	<i>Sp_A_O</i> =	957,92	[daN]
$Mx_A_O = Sp_A_O hb/3 + M_Sp_CAtt =$	$Mx_A_O =$	-35123,61	[daNcm]
Momento Ribaltante totale:			
$Mribx = Mribx1 + Mribx2 + Mx_A_O =$	Mribx =	-73318	[daNcm]
Momento Stabilizzante totale:			-
$Mstbx = Mstbx1 + Mx_P + Mx_AV =$	Mstbx =	1561196	[daNcm]
Fattore parziale di sicurezza a ribaltamento:	<i>g_R</i> =	1,15	[-]
Coefficiente di sicurezza al ribaltamento attorno all'asse X:	$(Mstbx/(g_R Mribx) > 1 =$	18,52	[-]

Sezione interamente compressa.

Sp. Attiva X [daN] =-728,02

Sp. Passiva X [daN] (= Sp. Attiva X) =728,02

Sp. Attiva Y [daN] =957,92

Sp. Passiva Y [daN] (= Sp Attiva Y) =-957,92

Pressione al vertice 1 [daN/cmq] =0,39

Pressione al vertice 2 [daN/cmq] =0,34

Pressione al vertice 3 [daN/cmq] =0,28

Pressione al vertice 4 [daN/cmq] =0,34

Eccentricità di carico eX [cm] =3,469

Eccentricità di carico eY [cm] =2,378

Dimensione L'=L-2eL [cm] =243,06

Dimensione B'=B-2eB [cm] =185,24

Area ridotta A'=L' B' [mq] =4,5024

Ricoprimento di monte H [cm] =110

APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 0.2.E.ZZ CL LC.00.0.0.016 В 99 di 127 IF2R

Verifica a RIBALTAMENTO attorno all'asse Y. Spigolo Y: 3	-4. (STATICA)		
Dimensioni del plinto in analisi. Dado di fondazione: Altezza:	H =	110	[cm]
Dado di fondazione: Altezza. Dado di fondazione: Dimensione perpendicolare ai binari:	н = Lx =	250	[cm]
Dado di fondazione: Dimensione perpendicolare ai binari. Dado di fondazione: Dimensione parallela ai binari:		190	[cm]
Dado di londazione. Dimensione parallela ai binan. Pilastrino: Altezza:	Ly = h =		[cm]
	// = /x =	50 80	[cm]
Pilastrino: Dimensione perpendicolare ai binari:			[cm]
Pilastrino: Dimensione parallela ai binari:	ly =	80 45	[cm]
Pilastrino: Eccentricità in X rispetto alla base del dado:	eccX = eccY =	<i>4</i> 5	[cm]
Pilastrino: Eccentricità in Y rispetto alla base del dado: Altezza fuori terra:		0	[cm]
	d =	50	[cm]
Altezza del terreno di ricoprimento lato binario:	hb =	110	[cm]
Altezza del terreno di ricoprimento lato campagna:	hc =	110	[cm]
Altezza media del terreno per spinte in direzione Y:	hy =	110	[cm]
Altezza minima di interramento	Hmin =	110	[cm]
Angolo di attrito terra/muro Delta:	Delta =	0	[0,00°]
Per convenzione L' dimensione maggiore in pianta.			
Dimensione L'=L-2eL:	L'=	187,92	[cm]
Dimensione B'=B-2eB:	B' =	154,32	[cm]
Verifica eseguita secondo l'approccio progettuale:	A1+M1+R3		[-]
Caratteristiche del terreno di fondazione.			
Angolo di attrito interno:	fi =	30	[0,00°]
Peso specifico del terreno asciutto:	gt =	1900	[daN/mc]
Coesione drenata:	c'=	0	[daN/cmc
Coefficiente di spinta attiva statica:	Ka =	0,3333	[-]
Coefficiente di spinta passiva statica:	Kp =	3	[-]
Calcolo del contributo dovuto alla coesione in direzione X.			
Contributo della Coesione nullo.			
Calcolo del sovraccarico q0 di Ballast e di Rilevato.			
Peso specifico del Ballast:	ps_Blst =	2000	[daN/mc]
Spessore dello strato di Ballast:	sp_Blst =	60	[cm]
Larghezza del piano di posa del Ballast:			-
(L traversina + 2 x 50) =	<i>I_Blst</i> =	330	[cm]
Larghezza del piano di posa del Ballast all'estradosso dado:	$L_Blst =$	382	[cm]
Carico verticale distribuito Ballast all'estradosso dado:			-
(ps_Blst sp_Blst l_Blst / L_Blst) =	q0_B=	0,104	[daN/cmd
Peso specifico del Rilevato:	ps_Ril =	1900	[daN/mc]
Spessore dello strato di Rilevato all'estradosso dado:	sp_Ril =	45	[cm]
Carico verticale distribuito Rilevato all'estradosso dado:	-r -		r1
(ps_Ril / sp_Ril) =	q0_R =	0,086	[daN/cmc
Carico verticale totale all'estradosso dado:	T =	-,	

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO PROGETTAZIONE: Mandataria: Mandante: PROGETTO ESECUTIVO SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e 0.2.E.ZZ CL LC.00.0.0.016 В 100 di 127 IF2R verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

Ballast	q0_B =	0,104	[daN/cmq]
Rilevato ferroviario	q0_R =	0,086	[daN/cmq]
Fattore parziale sui carichi permanenti compiutamente definiti:	gG =	1	[-]
Coefficiente di spinta attiva:	ka =	0,3333	[-]
Spinta agente sulla faccia del plinto:			
(Ly hb q 0_B Ka gG) =	$Spq0_B =$	-722,27	[daN]
(Ly hb q0_R Ka gG) =	$Spq0_R =$	-595,65	[daN]
Componente verticale della spinta:	$Spq0_B_V =$	0	[-]
Componente verticale della spinta:	$Spq0_R_V =$	0	[-]
Sovraccarico q0 dovuto ai convogli ferroviari nullo.			
Momento Stabilizzante dovuto a (q0Blst + q0Ril + q0_treno):	Mq0 =	-72486	[daNcm]
Azioni di Progetto.			
Combinazione critica:	cmb =	10	[-]
Azione assiale verticale:	N =	-2594,87	[daN]
Azione orizzontale in direzione X:	Hx =	<i>452,45</i>	[daN]
Momento flettente attorno all'asse Y:	My =	634600	[daNcm]
Azione orizzontale in direzione Y:	Hy =	24,38	[daN]
Momento flettente attorno all'asse X:	Mx =	-13190	[daNcm]
Verifica riferita al lato BINARIO.			
Calcolo dei momenti STABILIZZANTI.			
Coefficiente parziale per le spinte Terreno:	gG1 =	1	[-]
Peso totale del plinto per coefficiente parziale:	Pb = V gcls gG1 =	-13862	[daN]
Momento dovuto al peso del blocco ed ai carichi verticali:			
Mstby1 = (Pdado Lx/2) + (Ppilastrino + Fz) (Lx/2-eccY) =	Mstby1 =	-	[daNcm]
Calcolo dei momenti dovuti al contributo del terreno			
Componente Orizzontale della Spinta Passiva statica:			
$Sp_P_O = gG1 (0.5 \text{ hy}^2 \text{ Lx gt } [tg(45^\circ + fi'/2)] ^2) \cos(delta) = (Sp_P_O = Sp_A_O)$	Sp_P_0 =	-728,02	[daN]
Momento componente Orizzontale Spinta Passiva e contributo			
$My_P_0 = Sp_P_0 hc/3 + M_Sp_CPss =$	$My_P_0 =$	-26694	[daNcm]
Componente Verticale della Spinta Attiva statica:	7 — —		. ,
$Sp_A_V = gG1 (0.5 \text{ hy}^2 \text{ Lx gt } [tg(45^\circ\text{-fi}'/2)]^2) \sin(delta) =$	$Sp_A_V =$	0	[daN]
Componente Verticale Coesione in stato Attivo:	Sp_C_V =	0	[daN]
Momento componente Verticale Spinta Attiva e Coesione:			
$My_A_V = Sp_A_V Lx + M_sp_CAtt_V =$	$My_A_V =$	0	[daNcm]
Calcolo dei momenti RIBALTANTI.			
Momento alla base del palo dovuto ai carichi esterni:	Mriby1 =	634600	[daNcm]
Azione Orizzontale in direzione X:	Fx =	452,45	[daN]
Momento rispetto alla base di posa:	Mriby2 = Fx (c+cp+f) =	72392	[daNcm]
Componente Orizzontale della Spinta Attiva statica:	. , ,		•
$Sp_A_O = gG1 (0.5 \text{ hy}^2 \text{ Lx gt } [tg(45^\circ\text{-fi}'/2)] ^2) \cos(delta) =$	$Sp_A_O =$	728,02	[daN]
Momento comp. Orizzontale Spinta Attiva e Coesione:	•		
$My_A_O = Sp_A_O hy/3 + M_sp_CAtt =$	$My_A_O =$	26694	[daNcm]
	•		=

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SWS Engineering S.p.A. SYSTRA S.A.

SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA

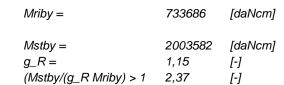
Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

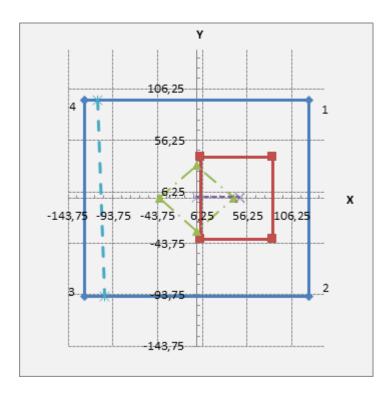
ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO RFV CL IF2R 0.2.E.ZZ LC.00.0.0.016 В 101 di 127

Momento Ribaltante totale:


 $Mriby = Mriby1 + Mriby2 + My_A_O =$


Momento Stabilizzante totale:

 $Mstby = Mstby1 + My_P_O + My_A_V + MqO =$

Fattore parziale di sicurezza a ribaltamento:

Coefficiente di sicurezza al ribaltamento attorno all'asse Y:

Sezione parzializzata.

Sp. Attiva X [daN] =728,02

Sp. Passiva X [daN] (= Sp. Attiva X) =-728,02

Sp. Attiva Y [daN] =957,92

Sp. Passiva Y [daN] (= Sp Attiva Y) =-957,92

Pressione al vertice 1 [daN/cmq] =0,76

Pressione al vertice 2 [daN/cmq] =0,74

Pressione al vertice 3 [daN/cmq] =0

Pressione al vertice 4 [daN/cmq] =0

Eccentricità di carico eX [cm] =47,837

Eccentricità di carico eY [cm] =1,038

Dimensione L'=L-2eL [cm] =187,92

Dimensione B'=B-2eB [cm] =154,32

Area ridotta A'=L' B' [mq] =2,9

Ricoprimento di monte H [cm] =110

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO PROGETTAZIONE: Mandataria: Mandante: PROGETTO ESECUTIVO SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO CODIFICA DOCUMENTO **FOGLIO** REV. Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e CL IF2R 0.2.E.ZZ LC.00.0.0.016 В 102 di 127 verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

4.4.1 Verifiche geotecniche. Esplicitazione delle verifiche Sismiche.

Verifica di Capacità Portante. (SISMICA)			
Dimensioni del plinto in analisi.			
Dado di fondazione: Altezza:	H =	110	[cm]
Dado di fondazione: Dimensione perpendicolare ai binari:	Lx =	250	[cm]
Dado di fondazione: Dimensione parallela ai binari:	Ly =	190	[cm]
Pilastrino: Altezza:	h =	50	[cm]
Pilastrino: Dimensione perpendicolare ai binari:	lx =	80	[cm]
Pilastrino: Dimensione parallela ai binari:	ly =	80	[cm]
Pilastrino: Eccentricità in X rispetto alla base del dado:	eccX =	45	[cm]
Pilastrino: Eccentricità in Y rispetto alla base del dado:	eccY =	0	[cm]
Altezza fuori terra:	d =	50	[cm]
Altezza del terreno di ricoprimento lato binario:	hb =	110	[cm]
Altezza del terreno di ricoprimento lato campagna:	hc =	110	[cm]
Altezza media del terreno per spinte in direzione Y:	hy =	110	[cm]
Altezza minima di interramento	Hmin =	110	[cm]
Angolo di attrito terra/muro Delta:	Delta =	0	[0,00°]
Per convenzione L' dimensione maggiore in pianta.			
Dimensione L'=L-2eL:	L' =	158,14	[cm]
Dimensione B'=B-2eB:	B' =	147,18	[cm]
Verifica eseguita secondo l'approccio progettuale:	SIS+M1+R3		[-]
Caratteristiche del terreno di fondazione.			
Angolo di attrito interno:	fi =	30	[0,00°]
Peso specifico del terreno asciutto:	gt =	1900	[daN/mc]
Coesione drenata:	c' =	0	[daN/cmq]
Coefficiente di spinta attiva sismica (Mononobe-Okabe):	KaE =	0,6299	[-]
Coefficiente di spinta passiva sismica (Mononobe-Okabe):	KpE =	2,2974	[-]
Calcolo del contributo dovuto alla coesione in direzione X.			
Contributo della Coesione nullo.			
Calcolo del contributo dovuto alla coesione in direzione Y.			
Contributo della Coesione nullo.			
Contributo della coesione nalio.			
Calcolo del sovraccarico q0 di Ballast e di Rilevato.			
Peso specifico del Ballast:	ps_Blst =	2000	[daN/mc]
Spessore dello strato di Ballast:	sp_Blst =	60	[cm]
Larghezza del piano di posa del Ballast:	· -		
(L traversina + 2 x 50) =	Blst =	330	[cm]
Larghezza del piano di posa del Ballast all'estradosso dado:	_ L_Blst =	382	[cm]
Carico verticale distribuito Ballast all'estradosso dado:	_		. ,
(ps_Blst sp_Blst Blst / L_Blst) =	q0_B=	0,104	[daN/cmq]
Peso specifico del Rilevato:	ps_Ril =	1900	[daN/mc]
Spessore dello strato di Rilevato all'estradosso dado:	sp_Ril =	45	[cm]
Carico verticale distribuito Rilevato all'estradosso dado:	-r_		t- 1

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO Mandataria: **PROGETTO ESECUTIVO** SWS Engineering S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO RFV Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e CL 0.2.E.ZZ LC.00.0.0.016 В 103 di 127 IF2R verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione (ps_Ril / sp_Ril) = q0_R = 0,086 [daN/cmq] Carico verticale totale all'estradosso dado: Ballast q0_B = 0,104 [daN/cmq] Rilevato ferroviario $q0_R =$ 0,086 [daN/cmq] Termine sismico 0,8505 (1-kv) =[-] Fattore parziale sui carichi permanenti compiutamente definiti: gEx = -1 [-] Coefficiente di spinta attiva: kaE = 0,6299 [-] Spinta agente sulla faccia del plinto: [daN] (Ly hb q 0_B KaE (1-kv) gEx) = $Spq0_B =$ -1160,89 [daN] (Ly hb q0_R KaE (1-kv) gEx) = $Spq0_R =$ -957,37 Componente verticale della spinta: $Spq0_B_V =$ 0 [-] Componente verticale della spinta: $Spq0_R_V =$ 0 [-] Sovraccarico q0 dovuto ai convogli ferroviari nullo. Momento Ribaltante dovuto a (q0Blst + q0Ril + q0_treno): Mq0 =-116504 [daNcm] Azioni di Progetto. Combinazione critica: cmb = [-] Azione assiale verticale: N = -1537,99 [daN] Azione orizzontale in direzione X: Hx = -695,34 [daN] Momento flettente attorno all'asse Y: My = -324100 [daNcm] Azione orizzontale in direzione Y: Hy = 32,45 [daN] Momento flettente attorno all'asse X: -9845,67 [daNcm] Mx = Verifica riferita al lato CAMPAGNA. Verifica della capacità portante in condizioni SISMICHE. (rif. NTC18 cap.7 §7.11.5.3.1 e segg e Circ. Espl. 7/19 cap.7). Caratterizzazione sismica di base: Accelerazione orizzontale max attesa su sito riferimento rigido: ag = 3,043 [m/sec^2] Valore max fattore amplificazione spettro in accel. orizzontale: 2,32 [-] Fo = Caratterizzazione Topografica: T = 1 [-] Amplificazione topografica: St = 1 [-] Tipo C Caratterizzazione del sottosuolo: [-] Amplificazione stratigrafica: 1,2681 [-] Ss = Coefficiente riduzione accel. max attesa al sito: Betam = 0,38 [-] [m/sec^2] 3,8587 Accelerazione orizzontale max attesa al sito: amax =Ss St ag = Coefficiente sismico orizzontale inerziale: Khi = Vtot / N = 0,5309 [-] Coefficiente sismico orizzontale cinematico: Khk = 2 Betam amax / g = 0,299 [-] Coefficiente sismico verticale: Kv = 0,5 khk = 0,1495 [-] Termine sismico (1-kv) =0,8505 [-] Coefficienti correttivi (Cascone, Maugeri, Motta (2004)). Coeff. sismico da applicare al fattore di capacità portante Ng: eyi = (1-0,7 Khi) ^5 = 0,098 eyi = [-]

eyk =

0,7201

[-]

Coeff. sismico da applicare al fattore di capacità portante Ng:

 $eyk = (1-Khk/tan(fi)) ^0,45 =$

APPALTATORE: TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata PROGETTAZIONE: Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	104 di 127

Fattori di Capacità portante - Teoria del Vesic (1975).			
$Nq = e^{(p_g tg(fi)(tg (p_g/4 + fi/2))^2} =$	Nq =	18,4011	[daN/cmq
Nc = (Nq-1) cotg (fi) =	Nc =	30,1396	[daN/cmq
Ng = eyk eyi 2 (Nq+1) tg (fi) =	Ng =	1,5807	[daN/cmq
Fattori correttivi.			
Fattori di FORMA (B' <l').< td=""><td></td><td></td><td></td></l').<>			
sc = 1 + (B'/L') (Nq/Nc) =	SC =	1,5682	[-]
sq = 1 + (B'/L') tg(fi) =	sq =	1,5373	[-]
sg = 1 + 0,4 (B'/L') =	sg =	0,6277	[-]
Fattori di PROFONDITA' (B' <l').< td=""><td></td><td></td><td></td></l').<>			
dc = dq - (1 - dq) / (Nc tg(fi)) =	dc =	1,2281	[-]
$dq = 1 + 2 tg(fi) (1-sin (fi))^2 (D/B') =$	dq =	1,2158	[-]
	dg =	1	[-]
Fattori di INCLINAZIONE DEL CARICO (B' <l').< td=""><td></td><td></td><td></td></l').<>			
Inerzia orizzontale del plinto dir. X:	H_Ex = Pb Kh gEx =	-4145,5	[daN]
Inerzia orizzontale del plinto dir. Y:	H_Ey = Pb Kh gEy =	1243,65	[daN]
Azione Orizzontale TOTALE			
$Hd = [(Hx+H_Ex)^2+(Hy+H_Ey)^2]^0.5 =$	Hd =	7075,14	[daN]
Inerzia verticale del plinto:	W_E = Pb Kv =	-2072,75	[daN]
Azione Verticale TOTALE	$Vd = V + W_E =$	13327,74	[daN]
Angolo Teta del carico proiettato rispetto ad L'	Teta =	79,61	[0,00°]
Coefficiente m			
$m = mL \cos(teta)^2 + mB \sin(teta)^2 =$	m =	1,52	[-]
Coefficiente mL			
mL = (2 + (L'/B'))/(1 + (L'/B')) =	mL =	1,48	[-]
Coefficiente mB		4.50	
mB = (2 + (B'/L'))/(1 + (B'/L')) =	mB =	1,52	[-]
:- (4 Hal (\sqrt)\) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ic =	0	[-]
iq = (1 - Hd/Vd)^m =	iq =	0,3173	[-]
g = (1 - Hd/Vd)^(m+1) =	ig =	0,1488	[-]
Fattori di INCLINAZIONE DEL PIANO DI POSA.			
(EPSILON < 45°)		_	
Angolo di inclinazione del piano di posa	Epsilon =	0	[0,00°]
bc = bq - (1 - bq)/(Nc tg(fi)) =	bc =	1	[-]
bq = (1 - Epsilon tg(fi)^2 =	bq =	1	[-]
bg = (1 - Epsilon tg(fi)^2 =	bg =	1	[-]
Fattori di INCLINAZIONE DEL PIANO CAMPAGNA.			
(OMEGA < 45°, OMEGA < FI)			_
Angolo di inclinazione del piano campagna	Omega =	0	[0,00°]
gc = gq - (1 - gq)/(Nc tg(fi)) =	gc =	1	[-]
$gq = (1 - tg(Omega))^2 cos(Omega) =$	gq =	1	[-]

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

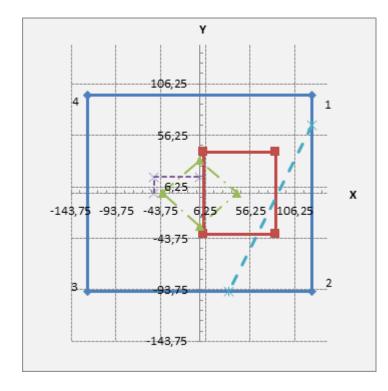
Mandataria:

ria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA


Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	105 di 127

gg = gq / cos(Omega) =	gg =	1	[-]
Coefficiente parziale di sicurezza applicato a qlim	gR=	1,8	[-]
Pressione litostatica q	q = gt Hmin =	0,209	[daN/cmq]
Carico limite qlim c	qc = c Nc sc dc ic bc gc =	0	[daN/cmq]
Carico limite qlim q	qq = q Nq sq dq iq bq gq =	-1,267	[daN/cmq]
Carico limite qlim g	qg = 0.5 gt B' Ng sg dg ig bg gg =	-0,011	[daN/cmq]
Carico limite qlim	qlim = qlim c + qlim q + qlim g =	-1,278	[daN/cmq]
Area ridotta resistente	Arid =	2,3275	[mq]
Resistenza di progetto	Rd = qlim Arid =	29756,2	[daN]
Azione di progetto	Ed =	13327,739	[daN]
Coefficiente di sicurezza	(Rd/Ed) > 1 =	2,233	[-]

Sezione parzializzata.

Fattore parziale sismico in direzione X gEX =-1

Sp. Attiva sis X [daN] =-1170,12

Sp. Passiva sis X = Sp. Attiva sis X

Sp. Passiva sis X [daN] =1170,12

Fattore parziale sismico in direzione Y gEY =0,3

Sp. Attiva sis Y [daN] =1132,43

Sp. Passiva sis Y = Sp. Attiva sis Y

Sp. Passiva sis Y [daN] =-1132,43

Termine sismico (1-kv) =0,8505

Pressione al vertice 1 [daN/cmq] =0,05

Pressione al vertice 2 [daN/cmq] =0

Pressione al vertice 3 [daN/cmq] =0,48

Pressione al vertice 4 [daN/cmq] =0,82

Eccentricità di carico eX [cm] =-51,413

Eccentricità di carico eY [cm] =15,929

Dimensione L'=L-2eL [cm] =158,14

Dimensione B'=B-2eB [cm] =147,18

Area ridotta A'=L' B' [mq] =2,3275

Ricoprimento di monte H [cm] =110

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

dataria: Mandant

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 0.2.E.ZZ CL LC.00.0.0.016 B 106 di 127

Verifica a SCORRIMENTO in direzione X. (SISMICA) Dimensioni del plinto in analisi. Dado di fondazione: Altezza: H = 110 [cm] Dado di fondazione: Dimensione perpendicolare ai binari: 250 [cm] Dado di fondazione: Dimensione parallela ai binari: 190 [cm] Ly = Pilastrino: Altezza: h= 50 [cm] Pilastrino: Dimensione perpendicolare ai binari: lx = 80 [cm] Pilastrino: Dimensione parallela ai binari: ly = 80 [cm] Pilastrino: Eccentricità in X rispetto alla base del dado: eccX = 45 [cm] Pilastrino: Eccentricità in Y rispetto alla base del dado: 0 eccY = [cm] Altezza fuori terra: d = 50 [cm] Altezza del terreno di ricoprimento lato binario: hb = 110 [cm] Altezza del terreno di ricoprimento lato campagna: [cm] hc = 110 Altezza media del terreno per spinte in direzione Y: hy = 110 [cm] Altezza minima di interramento [cm] Hmin = 110 Angolo di attrito terra/muro Delta: Delta = 0 [0,00°] Per convenzione L' dimensione maggiore in pianta. Dimensione L'=L-2eL: 183,86 [cm] Dimensione B'=B-2eB: B' = 143,46 [cm] Verifica eseguita secondo l'approccio progettuale: SIS+M1+R3 [-] Caratteristiche del terreno di fondazione. 30 [0,00°] Angolo di attrito interno: fi = 1900 Peso specifico del terreno asciutto: gt = [daN/mc] [daN/cmq] Coesione drenata: Coefficiente di spinta attiva sismica (Mononobe-Okabe): 0,6299 [-] KaE = 2,2974 Coefficiente di spinta passiva sismica (Mononobe-Okabe): KpE = [-] Calcolo del sovraccarico q0 di Ballast e di Rilevato. Peso specifico del Ballast: 2000 ps_Blst = [daN/mc] Spessore dello strato di Ballast: sp_Blst = 60 [cm] Larghezza del piano di posa del Ballast: (L traversina + 2×50) = I_Blst = 330 [cm] Larghezza del piano di posa del Ballast all'estradosso dado: L_Blst = 382 [cm] Carico verticale distribuito Ballast all'estradosso dado: (ps_Blst sp_Blst | Blst / L_Blst) = q0_B= 0,104 [daN/cmq] Peso specifico del Rilevato: ps_Ril = 1900 [daN/mc] Spessore dello strato di Rilevato all'estradosso dado: sp_Ril = 45 [cm] Carico verticale distribuito Rilevato all'estradosso dado: $(ps_Ril / sp_Ril) =$ $q0_R =$ 0,086 [daN/cmq] Carico verticale totale all'estradosso dado: 0,104 [daN/cmq] **Ballast** q0_B = Rilevato ferroviario q0_R = 0,086 [daN/cmq] Termine sismico (1-kv) =0,8505 [-] Fattore parziale sui carichi permanenti compiutamente definiti: [-] gEx = -1 Coefficiente di spinta attiva: kaE = 0,6299 [-] Spinta agente sulla faccia del plinto:

APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Con sortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

IMPIANTI DI TRAZIONE ELETTRICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e	IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	107 di 127
verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e						
relativo Tirante a terra e fondazione						

SYSTRA-SOTECNI S.p.A.

(Ly hb qO_B KaE (1-kv) gEx) =	Spq0_B =	-1160,89	[daN]
(Ly hb q0_R KaE (1-kv) gEx) =	Spq0_R =	-957,37	[daN]
Componente verticale della spinta:	$Spq0_B_V =$	0	[-]
Componente verticale della spinta:	Spq0_R_V =	0	[-]
Sovraccarico q0 dovuto ai convogli ferroviari nullo.			
Azioni di Progetto.			
Combinazione critica:	cmb =	1	[-]
Azione assiale verticale:	N =	-1285,65	[daN]
Azione orizzontale in direzione X:	Hx =	-695,34	[daN]
Momento flettente attorno all'asse Y:	My =	-324100	[daNcm]
Azione orizzontale in direzione Y:	Hy =	-9,65	[daN]
Momento flettente attorno all'asse X:	Mx =	-1819,36	[daNcm]
Verifica riferita al lato CAMPAGNA.			
Calcolo dell'Azione di progetto a scorrimento in direzione X.			
Azione Orizzontale in direzione X:	Fx =	-695,34	[daN]
Componente Orizzontale Spinta Attiva totale sismica Sp_AE_O:			
(Contributo relativo alla quota parte del 100 %)	Sp_AE_O =	-1170,12	[daN]
Componente Orizzontale Spinta Passiva totale sismica Sp_PE_O:			
(Contributo relativo alla quota parte del 30 %)	Sp_PE_O =	1280,2	[daN]
Spinta sovraccarico q0_B:	Spq0_B =	-1160,89	[daN]
Spinta sovraccarico q0_R:	Spq0_R =	-957,37	[daN]
Coefficiente sismico orizzontale:	Kh =	0,299	[-]
Coefficiente parziale per l'azione sismica in direzione X:	gEx =	-1	[-]
Peso del blocco di fondazione	Pb =	-13862,5	[daN]
Spinta dovuta all'inerzia orizzontale del plinto:	H_E = Pb Kh gEx =	-4145,5	[daN]
Azione di progetto a scorrimento in direzione X:	FxEd =	-6849,03	[daN]
Calcolo della resistenza di progetto a scorrimento in direzione X.			
Peso Plinto:	Pplt =	-13862,5	[daN]
Azione Verticale TOTALE:	V =	-13075,4	[daN]
Angolo di attrito terra/muro Delta:	Delta =	0	[0,00°]
Componente Verticale Spinta Attiva totale sismica:	Sp_AE_V =	0	[daN]
Componente Verticale Spinta Passiva totale sismica:	Sp_PE_V =	0	[daN]
Coefficiente sismico orizzontale:	Kh =	0,299	[-]
Coefficiente sismico verticale:	Kv = 0,5 Kh =	0,1495	[-]
Peso del blocco di fondazione	Pb =	-13862,5	[daN]
Inerzia verticale del plinto:	W_E = Pb Kv =	-2072,75	[daN]
Resistenza di progetto a scorrimento della BASE.			
Fattore parziale di sicurezza a scorrimento di base:	g_R =	1,1	[-]
Rd_base = (V + Sp_AE_V - Sp_PE_V - W_E) tg(fi) / 1,1 =	Rd_base =	6862,804	[daN]

APPALTATORE: TELESE s.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

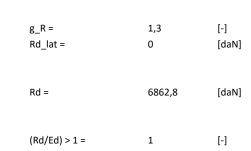
ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

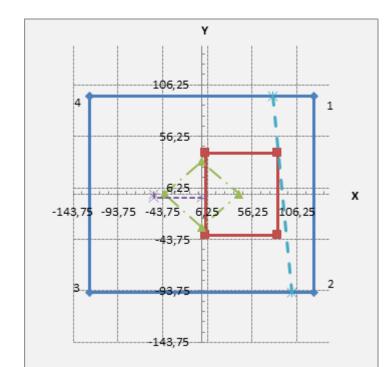
PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	108 di 127

Resistenza di progetto a scorrimento LATERALE:

Fattore parziale di sicurezza a scorrimento laterale:


Rd_lat = (2 sp_A tg(delta) / 1,3) =


Resistenza di progetto a scorrimento TOTALE:

Rd = Rd_base + Rd_laterale =

Verifica a scorrimento in direzione X.

Coefficiente di sicurezza:

Sezione parzializzata.

Fattore parziale sismico in direzione X gEX =-1

Sp. Attiva sis X [daN] =-1170,12

Percentuale Spinta Passiva sismica X [%] chiX =30

Sp. Passiva sis X [daN] =1280,2

Fattore parziale sismico in direzione Y gEY =-0,3

Sp. Attiva sis Y [daN] =-1132,43

Percentuale Spinta Passiva sismica Y [%] chiY =0

Sp. Passiva sis Y [daN] =1132,43

Termine sismico (1-kv) =0,8505

Pressione al vertice 1 [daN/cmq] =0

Pressione al vertice 2 [daN/cmq] =0

Pressione al vertice 3 [daN/cmq] =0,67

Pressione al vertice 4 [daN/cmq] =0,61

Eccentricità di carico eX [cm] =-53,273

Eccentricità di carico eY [cm] =-3,074

Dimensione L'=L-2eL [cm] =183,86

Dimensione B'=B-2eB [cm] =143,46

Area ridotta A'=L' B' [mq] =2,6377

Ricoprimento di monte H [cm] =110

APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA

Mandante:

Mandataria:

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

(Contributo relativo alla quota parte del 100 %)

(Contributo relativo alla quota parte del 0 %)

Spinta dovuta all'inerzia orizzontale del plinto

Coefficiente parziale per l'azione sismica in direzione Y:

Coefficiente sismico orizzontale

Peso del blocco di fondazione

Componente Orizzontale Spinta Passiva totale sismica Sp_PE_O:

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

CODIFICA

CL

DOCUMENTO

LC.00.0.0.016

REV.

В

FOGLIO

109 di 127

PROGETTO ESECUTIVO

LOTTO

0.2.E.ZZ

COMMESSA

IF2R

Dado di fondazione: Altezza:	H =	110	[cm]
Dado di fondazione: Dimensione perpendicolare ai binari:	Lx =	250	[cm]
Dado di fondazione: Dimensione parallela ai binari:	Ly =	190	[cm]
Pilastrino: Altezza:	h =	50	[cm]
Pilastrino: Dimensione perpendicolare ai binari:	lx =	80	[cm]
Pilastrino: Dimensione parallela ai binari:	ly =	80	[cm]
Pilastrino: Eccentricità in X rispetto alla base del dado:	eccX =	45	[cm]
Pilastrino: Eccentricità in Y rispetto alla base del dado:	eccY =	0	[cm]
Altezza fuori terra:	d =	50	[cm]
Altezza del terreno di ricoprimento lato binario:	hb =	110	[cm]
Altezza del terreno di ricoprimento lato campagna:	hc =	110	[cm]
Altezza media del terreno per spinte in direzione Y:	hy =	110	[cm]
Altezza minima di interramento	Hmin =	110	[cm]
Angolo di attrito terra/muro Delta:	Delta =	0	[0,00°]
Per convenzione L' dimensione maggiore in pianta.			
Dimensione L'=L-2eL:	L' =	222,12	[cm]
Dimensione B'=B-2eB:	B' =	150,48	[cm]
Verifica eseguita secondo l'approccio progettuale:	SIS+M1+R3		[-]
Caratteristiche del terreno di fondazione.			
Angolo di attrito interno:	fi =	30	[0,00°]
Peso specifico del terreno asciutto:	gt =	1900	[daN/mc]
Coesione drenata:	c' =	0	[daN/cmq]
Coefficiente di spinta attiva sismica (Mononobe-Okabe):	KaE =	0,6299	[-]
Coefficiente di spinta passiva sismica (Mononobe-Okabe):	KpE =	2,2974	[-]
Azioni di Progetto.			
Combinazione critica:	cmb =	5	[-]
Azione assiale verticale:	N =	-991,02	[daN]
Azione orizzontale in direzione X:	Hx =	-315,36	[daN]
Momento flettente attorno all'asse Y:	My =	-74110	[daNcm]
Azione orizzontale in direzione Y:	Hy =	-58,54	[daN]
Momento flettente attorno all'asse X:	Mx =	7373,24	[daNcm]
Verifica riferita al lato CAMPAGNA.			
Calcolo dell'Azione di progetto a scorrimento in direzione Y.			
Azione Orizzontale in direzione Y:	Fy =	-58,54	[daN]
Componente Orizzontale Spinta Attiva totale sismica Sp_AE_O:			

 $Sp_AE_O =$

gEy =

Pb =

 $Sp_PE_O [daN] =$

H_E [daN]= Pb Kh gEy =

-1539,64

1539,64

0,299

-13862,5

-4145,5

-1

[daN]

[daN]

[-]

[-]

[daN]

[daN]

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: Mandataria: Mandante: SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e

verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e

relativo Tirante a terra e fondazione

2° e 3 SUBL	OTTO TE	ELESE – SA	N LORENZO	– VITUI	_ANO
PROGETTO	ESECUT	ΓΙVΟ			
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	110 di 127

Azione di progetto a scorrimento in direzione Y:	FyEd =	-4204,04	[daN]
Calcolo della resistenza di progetto a scorrimento in direzione Y.			
Peso Plinto:	Pplt =	-13862,5	[daN]
Azione Verticale TOTALE:	V =	-12780,77	[daN]
Angolo di attrito terra/muro Delta:	Delta =	0	[0,00°]
Componente Verticale Spinta Attiva totale sismica:	Sp_AE_V =	0	[daN]
Componente Verticale Spinta Passiva totale sismica:	Sp_PE_V =	0	[daN]
Coefficiente sismico orizzontale	Kh =	0,299	[-]
Coefficiente sismico verticale	Kv = 0,5 Kh =	0,1495	[-]
Peso del blocco di fondazione:	Pb =	-13862,5	[daN]
	W_E = Pb Kv =	-2072,75	[daN]
Resistenza di progetto a scorrimento della BASE Rd.			
Fattore parziale di sicurezza a scorrimento:	g_R =	1,1	[-]
Rd_base = (V + Sp_AE_V - Sp_PE_V - W_E) tg(fi) / 1,1 =	Rd_base =	6708,164	[daN]
Resistenza di progetto a scorrimento LATERALE:			
Fattore parziale di sicurezza a scorrimento laterale:	g_R =	1,3	[-]
Rd_lat = 2 sp_A tg(delta) / 1,3 =	Rd_lat =	0	[daN]
Resistenza di progetto a scorrimento TOTALE:			
Rd = Rd_base + Rd_laterale =	Rd =	6708,16	[daN]
Verifica a scorrimento in direzione Y.			
Coefficiente di sicurezza	(Rd/Ed) > 1 =	1,6	

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

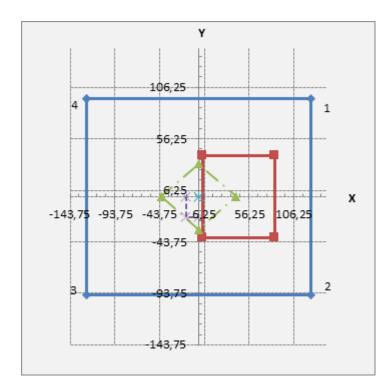
PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.


IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO FOGLIO CODIFICA **DOCUMENTO** RFV 0.2.E.ZZ CL LC.00.0.0.016 111 di 127 IF2R В

Sezione interamente compressa.

Fattore parziale sismico in direzione X gEX =-0,3

Sp. Attiva sis X [daN] = -860,65

Sp. Passiva sis X = Sp. Attiva sis X

Sp. Passiva sis X [daN] =860,65

Fattore parziale sismico in direzione Y gEY =-1

Sp. Attiva sis Y [daN] =-1539,64

Sp. Passiva sis Y = Sp. Attiva sis Y

Sp. Passiva sis Y [daN] =1539,64

Termine sismico (1-kv) =0,8505

Pressione al vertice 1 [daN/cmq] =0,01

Pressione al vertice 2 [daN/cmq] =0,35

Pressione al vertice 3 [daN/cmq] =0,53

Pressione al vertice 4 [daN/cmq] =0,19

Eccentricità di carico eX [cm] =-13,944

Eccentricità di carico eY [cm] =-19,764

Dimensione L'=L-2eL [cm] =222,12

Dimensione B'=B-2eB [cm] =150,48

Area ridotta A'=L' B' [mq] =3,3425

Ricoprimento di monte H [cm] =110

Verifica a RIBALTAMENTO attorno all'asse X. Spigolo X: 1-4. (SISMICA)

Dimensioni del plinto in analisi. Dado di fondazione: Altezza: Dado di fondazione: Dimensione perpendicolare ai binari: Dado di fondazione: Dimensione parallela ai binari: Pilastrino: Altezza: Pilastrino: Dimensione perpendicolare ai binari: Pilastrino: Dimensione parallela ai binari: Pilastrino: Eccentricità in X rispetto alla base del dado: Pilastrino: Eccentricità in Y rispetto alla base del dado: Altezza fuori terra: Altezza del terreno di ricoprimento lato binario: Altezza del terreno di ricoprimento lato campagna: Altezza media del terreno per spinte in direzione Y:

Altezza minima di interramento

H = Lx = Ly = h = lx = ly = eccX = eccY = d= hb = hc =

Hmin =

hy =

110

110

110

[cm] [cm] [cm] [cm] [cm] [cm]

[cm]

[cm]

[cm]

[cm]

[cm]

[cm]

[cm]

APPALTATORE: TELESE S.c.a r.l.
Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

				REV.	
IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	112 di 127

Angolo di attrito terra/muro Delta:	Delta =	0	[0,00°]
Per convenzione L' dimensione maggiore in pianta.			
Dimensione L'=L-2eL:	L' =	199,76	[cm]
Dimensione B'=B-2eB:	B' =	127,56	[cm]
Verifica eseguita secondo l'approccio progettuale:	SIS+M1+R3		[-]
Caratteristiche del terreno di fondazione.	313+1011+13		נ־ז
Angolo di attrito interno:	fi =	30	[0,00°]
Peso specifico del terreno asciutto:	gt =	1900	[0,00] [daN/mc]
Coesione drenata:	c' =	0	[daN/cmq]
Coefficiente di spinta attiva sismica (Mononobe-Okabe):	KaE =	0,6299	[-]
Coefficiente di spinta attiva sismica (Mononobe-Okabe):	KpE =	2,2974	[-]
Calcolo del contributo dovuto alla coesione in direzione Y.			
Contributo della Coesione nullo.			
Azioni di Progetto.			
Combinazione critica:	cmb =	8	[-]
Azione assiale verticale:	N =	-1831,97	[daN]
Azione orizzontale in direzione X:	Hx =	10,34	[daN]
Momento flettente attorno all'asse Y:	My =	140100	[daNcm]
Azione orizzontale in direzione Y:	Hy =	82	[daN]
Momento flettente attorno all'asse X:	Mx =	-19530	[daNcm]
Verifica riferita al lato BINARIO.			
Calcolo dei momenti STABILIZZANTI.			
Coefficiente parziale per le spinte Terreno:	gG1 =	1	[-]
Peso totale del plinto per coefficiente parziale:	Pb = V gcls gG1 =	-13862	[daN]
Momento dovuto al peso del blocco ed ai carichi verticali:			
Mstbx1 = (Pdado Ly/2) + (Ppilastrino + Fz) (Ly/2-eccY) =	Mstbx1 =	1490975	[daNcm]
Momento dovuto all'inerzia verticale del plinto:			
Coefficiente sismico orizzontale:	Kh =	0,299	[-]
Coefficiente sismico verticale:	Kv = 0,5 Kh =	0,1495	[-]
esemblente sismico verticale.	MEV =Pb Kv Ly/2 =	-196911	[daNcm]
Calcolo dei momenti dovuti al contributo del terreno			
Componente Orizzontale Spinta Passiva totale sismica:	Sp_PE_O =	-1539,64	[daN]
(Sp_Pss = Sp_Att)			
Momento componente Orizzontale Spinta Passiva e contributo Coesione:			
Sp_P_O gEy D/3+(Sp_PE_O gEy-Sp_P_O) D/2+M_Sp_CPss=	Mx_PE_O =	-78401	[daNcm]
Componente Verticale Spinta Attiva totale sismica:	Sp_AE_V =	0	[daN]
Componente Verticale Coesione in stato Attivo:	Sp_CAE_V =	0	[daN]
Momento componente Verticale Spinta Attiva totale Sismica e Coesione:			
$Mx_AE_V = Sp_AE_V Ly =$	Mx_AE_V =	0	[daNcm]
Calcolo dei momenti RIBALTANTI.			
Momento alla base del palo dovuto ai carichi esterni:	Mribx1 =	-19530	[daNcm]

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

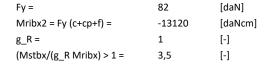
SYSTRA-SOTECNI S.p.A.

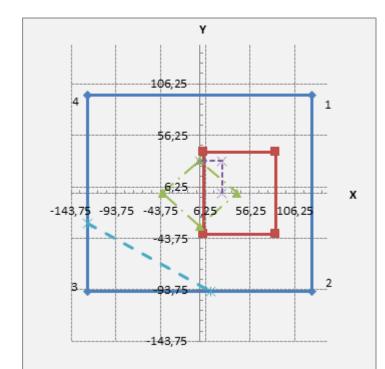
IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO


COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	113 di 127


Azione Orizzontale in direzione Y:

Momento rispetto alla base di posa:

Fattore parziale di sicurezza a ribaltamento:

Coefficiente di sicurezza al ribaltamento attorno all'asse X:

Sezione parzializzata.

Fattore parziale sismico in direzione X gEX =0,3

Sp. Attiva sis X [daN] =860,65

Sp. Passiva sis X = Sp. Attiva sis X

Sp. Passiva sis X [daN] =-860,65

Fattore parziale sismico in direzione Y gEY =1

Sp. Attiva sis Y [daN] =1539,64

Sp. Passiva sis Y = Sp. Attiva sis Y

Sp. Passiva sis Y [daN] =-1539,64

Termine sismico (1-kv) =0,8505

Pressione al vertice 1 [daN/cmq] =0,77

Pressione al vertice 2 [daN/cmq] =0,17

Pressione al vertice 3 [daN/cmq] =0

Pressione al vertice 4 [daN/cmq] =0,39

Eccentricità di carico eX [cm] =25,123

Eccentricità di carico eY [cm] =31,223

Dimensione L'=L-2eL [cm] =199,76

Dimensione B'=B-2eB [cm] =127,56

Area ridotta A'=L' B' [mq] =2,5481

Ricoprimento di monte H [cm] =110

Verifica a RIBALTAMENTO attorno all'asse Y. Spigolo Y: 3-4. (SISMICA)

Dimensioni del plinto in analisi.

Dado di fondazione: Altezza:	H =	110	[cm]
Dado di fondazione: Dimensione perpendicolare ai binari:	Lx =	250	[cm]
Dado di fondazione: Dimensione parallela ai binari:	Ly =	190	[cm]
Pilastrino: Altezza:	h =	50	[cm]
Pilastrino: Dimensione perpendicolare ai binari:	lx =	80	[cm]
Pilastrino: Dimensione parallela ai binari:	ly =	80	[cm]
Pilastrino: Eccentricità in X rispetto alla base del dado:	eccX =	45	[cm]

APPALTATORE: TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	114 di 127

Pilastrino: Eccentricità in Y rispetto alla base del dado:	eccY =	0	[cm]
Altezza fuori terra:	d =	50	[cm]
Altezza del terreno di ricoprimento lato binario:	hb =	110	[cm]
Altezza del terreno di ricoprimento lato campagna:	hc =	110	[cm]
Altezza media del terreno per spinte in direzione Y:	hy =	110	[cm]
Altezza minima di interramento	Hmin =	110	[cm]
Angolo di attrito terra/muro Delta:	Delta =	0	[0,00°]
Per convenzione L' dimensione maggiore in pianta.			
Dimensione L'=L-2eL:	L' =	184,22	[cm]
Dimensione B'=B-2eB:	B' =	119,52	[cm]
Verifica eseguita secondo l'approccio progettuale:	SIS+M1+R3		[-]
Caratteristiche del terreno di fondazione.			
Angolo di attrito interno:	fi =	30	[0,00°]
Peso specifico del terreno asciutto:	gt =	1900	[daN/mc]
Coesione drenata:	c' =	0	[daN/cmq]
Coefficiente di spinta attiva sismica (Mononobe-Okabe):	KaE =	0,6299	[-]
Coefficiente di spinta passiva sismica (Mononobe-Okabe):	KpE =	2,2974	[-]
Calcolo del contributo dovuto alla coesione in direzione X.			
Contributo della Coesione nullo.			
Calcolo del sovraccarico q0 di Ballast e di Rilevato.			
Peso specifico del Ballast:	ps_Blst =	2000	[daN/mc]
Spessore dello strato di Ballast:	sp_Blst =	60	[cm]
Larghezza del piano di posa del Ballast:			
(L traversina + 2 x 50) =	I_BIst =	330	[cm]
Larghezza del piano di posa del Ballast all'estradosso dado:	L_Blst =	382	[cm]
Carico verticale distribuito Ballast all'estradosso dado:			
(ps_Blst sp_Blst I_Blst / L_Blst) =	q0_B=	0,104	[daN/cmq]
Peso specifico del Rilevato:	ps_Ril =	1900	[daN/mc]
Spessore dello strato di Rilevato all'estradosso dado:	sp_Ril =	45	[cm]
Carico verticale distribuito Rilevato all'estradosso dado:			
(ps_Ril / sp_Ril) =	q0_R =	0,086	[daN/cmq]
Carico verticale totale all'estradosso dado:			
Ballast	q0_B =	0,104	[daN/cmq]
Rilevato ferroviario	q0_R =	0,086	[daN/cmq]
Termine sismico	(1-kv) =	0,8505	[-]
Fattore parziale sui carichi permanenti compiutamente definiti:	gEx =	1	[-]
Coefficiente di spinta attiva:	kaE =	0,6299	[-]
Spinta agente sulla faccia del plinto:			
(Ly hb q0_B KaE (1-kv) gEx) =	Spq0_B =	-1160,89	[daN]
(Ly hb q0_R KaE (1-kv) gEx) =	Spq0_R =	-957,37	[daN]
Componente verticale della spinta:	$Spq0_B_V =$	0	[-]
Componente verticale della spinta:	$Spq0_R_V =$	0	[-]

Sovraccarico q0 dovuto ai convogli ferroviari nullo.

APPALTATORE: TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	115 di 127

Momento Stabilizzante dovuto a (q0Blst + q0Ril + q0_treno):	Mq0 =	-116504	[daNcm]
Azioni di Progetto. Combinazione critica:	cmb =	3	[-]
Azione assiale verticale:	N =	-1551,36	[daN]
Azione orizzontale in direzione X:	Hx =	386,91	[daN]
Momento flettente attorno all'asse Y:	пх – Му =	461400	[daNcm]
Azione orizzontale in direzione Y:	Hy =	-7,7	[daNciii]
Momento flettente attorno all'asse X:	пу – Мх =	-7,7 -3188,5	[daNcm]
Momento nettente attorno an asse x.	IVIX -	-3100,3	[uaivciii]
Verifica riferita al lato BINARIO.			
Calcolo dei momenti STABILIZZANTI.			
Coefficiente parziale per le spinte Terreno:	gG1 =	1	[-]
Peso totale del plinto per coefficiente parziale:	Pb = V gcls gG1 =	-13862	[daN]
Momento dovuto al peso del blocco ed ai carichi verticali:			
Mstby1 = (Pdado Lx/2) + (Ppilastrino + Fz) (Lx/2-eccY) =	Mstby1 =	-1820921	[daNcm]
Momento dovuto all'inerzia verticale del plinto:			
Coefficiente sismico orizzontale:	Kh =	0,299	[-]
Coefficiente sismico verticale:	Kv = 0,5 Kh =	0,1495	[-]
Momento Inerzia Vericale:	$ME_V = Pb Kv Lx/2 =$	259094	[daNcm]
Calcolo dei momenti dovuti al contributo del terreno			
Componente Orizzontale della Spinta Passiva totale sismica:	Sp_PE_O =	-1170,12	[daN]
(Sp_PE_O = Sp_AE_O)	-FS	,	[]
Momento componente Orizzontale Spinta Passiva e contributo Coesione:			
Sp_P_O gEx hy/3+(Sp_PE_O gEx-Sp_P_O) hy/2+M_Sp_CPss =	My_PE_O =	59585	[daNcm]
Componente Verticale Spinta Attiva totale sismica:	Sp_AE_V =	0	[daN]
Componente Verticale Coesione in stato Attivo:	Sp_CAE_V =	0	[daN]
Momento comp. Verticale Spinta Attiva e Coesione:			
$My_AE_V = Sp_AE_V Lx + M_sp_CAtt_V =$	My_AE_V =	0	[daNcm]
Calcolo dei momenti RIBALTANTI.			
Momento alla base del palo dovuto ai carichi esterni:	Mriby1 =	461400	[daNcm]
Azione Orizzontale in direzione X:	Fx =	386,91	[daN]
Momento rispetto alla base di posa:	Mriby2 = $Fx (c+cp+f) =$	61906	[daNcm]
Momento dovuto all'inerzia orizzontale del plinto:		01300	[uuituiii]
Altezza del baricentro del plinto:	hg =	59,6168	[cm]
Momento Inerzia Orizzontale:	ME_O = Pb Kh hg =	247142	[daNcm]
Componente Orizzontale Spinta Attiva:	Sp_AE_O =	1170,12	[daN]
Momento comp. Orizzontale Spinta Attiva e Coesione:	3p_, t2_0	1170,12	[uuiv]
Coefficiente parziale per l'azione sismica in direzione X gEx =	1		
Sp_A_O gEx hy/3 + (Sp_AE_O gEx - Sp_A_O) hy/2 + M_sp_CAtt =	My_AE_O =	51010	[daNcm]
Momento Ribaltante totale:			
Mriby = Mriby1 + Mriby2 + My_AE_O + ME_O =	Mriby =	821457	[daNcm]
Momento Stabilizzante totale:			
Mstby = Mstby1 + My_PE_O + My_AE_V + ME_V + Mq0 =	Mstby =	-1618747	[daNcm]
Fattore parziale di sicurezza a ribaltamento:	g_R =	1	[-]
Coefficiente di sicurezza al ribaltamento attorno all'asse Y:	$(Mstby/(g_R Mriby) > 1 =$	1,97	[-]

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

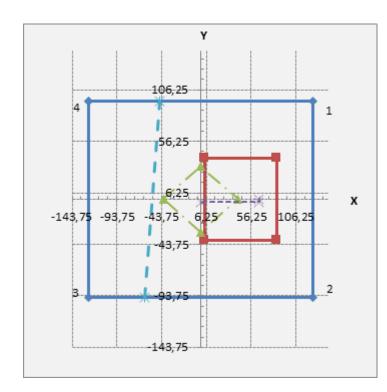
PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.


IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 0.2.E.ZZ CL LC.00.0.0.016 B 116 di 127

Sezione parzializzata.

Fattore parziale sismico in direzione X gEX =1

Sp. Attiva sis X [daN] =1170,12

Sp. Passiva sis X = Sp. Attiva sis X

Sp. Passiva sis X [daN] = -1170,12

Fattore parziale sismico in direzione Y gEY =-0,3

Sp. Attiva sis Y [daN] =-1132,43

Sp. Passiva sis Y = Sp. Attiva sis Y

Sp. Passiva sis Y [daN] =1132,43

Termine sismico (1-kv) =0,8505

Pressione al vertice 1 [daN/cmq] =0,75

Pressione al vertice 2 [daN/cmq] =0,82

Pressione al vertice 3 [daN/cmq] =0

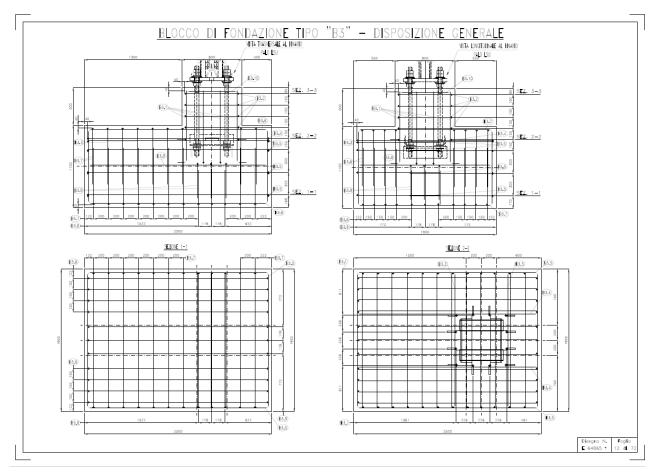
Pressione al vertice 4 [daN/cmq] =0

Eccentricità di carico eX [cm] =65,238

Eccentricità di carico eY [cm] =-2,886

Dimensione L'=L-2eL [cm] =184,22

Dimensione B'=B-2eB [cm] =119,52


Area ridotta A'=L' B' [mq] =2,2018

Ricoprimento di monte H [cm] =110

APPALTATORE: TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO
PROGETTAZIONE:	2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO
Mandataria: Mandante:	
SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.	PROGETTO ESECUTIVO
IMPIANTI DI TRAZIONE ELETTRICA	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione	IF2R 0.2.E.ZZ CL LC.00.0.0.016 B 117 di 127

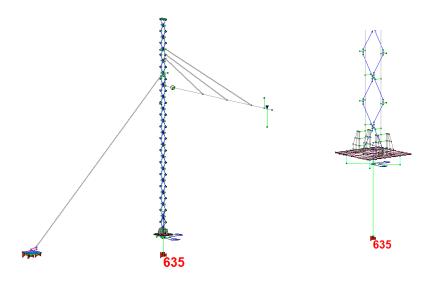
4.5 VERIFICA DELLE ARMATURE

Operiamo la verifica delle armature poste alla base del plinto con le azioni di progetto individuate precedentemente. Le armature sono quelle descritte nel tipologico RFI E64865f. i materiali impiegati sono quelli descritti nel tipologico.

APPALTATORE: TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata			ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO					
PROGETTAZIONE:								
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO ESECUTIVO					
IMPIANTI DI TRAZIONE ELETTRICA Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione			COMMESSA IF2R	LOTTO 0.2.E.ZZ	CODIFICA CL	DOCUMENTO LC.00.0.0.016	REV. B	FOGLIO 118 di 127

4.5.1 Dado di fondazione

Verifichiamo l'armatura dei disegni costruttivi che prevedono il posizionamento alla base del plinto di ferri Φ 12 nelle direzioni X ed Y.


Materi	ali:	Calcestruzzo: C25/30		
Acciai	o: B450C	Rck	= 300 daN/cmq	
Fyk	= 4500 daN/cmq	fcd	= 141,1 daN/cmq	
fsd	= 3913 daN/cmq	fctm	= 25,6 daN/cmq	
		fctd	= 11.9 daN/cmg	

Con riferimento alle azioni trasmesse dalla struttura nelle combinazioni agli stati limite ultimi STR si sono eseguite le verifiche delle armature nelle direzioni X e Y del plinto.

Si è ipotizzato che la diffusione degli sforzi all'interno del plinto inizi ad una profondità pari al posizionamento dei martelli per la tenuta dei tirafondi (circa 80 cm dalla sommità del pilastrino) e che l'armatura di base sia posizionata almeno a 20 cm sopra il piano di posa (ipotesi cautelative).

Dall'analisi dei risultati ottenuti per le verifiche geotecniche e considerando che i valori più elevati di trazione nell'armatura si ottengono per elevati valori di sforzo assiale e momenti flettenti si ritiene corretto operare la verifica considerando le azioni di progetto in condizione di carico B. I valori delle azioni di progetto sono state valutate nel modello agli elementi finiti nell'incastro perfetto posto alla profondità di 80 dalla fine dei tirafondi:

ORMEGGIO PUNTO FISSO PICCH172PR

Verifiche armature in direzione X-Y. Metodo delle Bielle.

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SWS Engineering S.p.A. SYSTRA S.A.

SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e

verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO IF2R

0.2.E.ZZ

CODIFICA CL

DOCUMENTO LC.00.0.0.016

FOGLIO REV. В

119 di 127

LEGENDA

Cmb.= Numero della combinazione dei carichi di progetto analizzata

Dir.= Direzione dell'armatura verificata (X o Y)

T(NEd)= Trazione nell'armatura di base dovuta all'azione assiale NEd

T(MEd)= Trazione nell'armatura di base dovuta al momento flettente MEd

T_Ed_tot= Trazione totale nell'armatura di base T(NEd)+T(MEd)

As Ed= Area di acciaio necessaria per la trazione totale di progetto T Ed tot

Diam.= Diametro adottato dei ferri di armatura

n° ferri= Numero minimo di ferri di armatura

As Rd= Area di acciaio minima

T Rd tot= Trazione totale resistente dell'armatura di base

Sforzo nell'armatura inferiore calcolato con il metodo delle bielle.

Tabella dei risultati eseguiti per ogni combinazione.

Verifiche armature in direzione X-Y. Metodo delle Bielle. Risultati della condizione D statica:

Cmb.	Dir.	T(NEd)	T(MEd)	T_Ed_tot	As_Ed	Diam.	n° ferri	As_Rd	T_Rd_tot
[n]	[X-Y]	[daN]	[daN]	[daN]	[cmq]	[mm]	[n]	[cmq]	[daN]
1	X:	2494,74	1309,17	3803,91	1,13	12	1	1,13	3823,77
2	X:	2325,6	1243,33	3568,93	1,06	12	1	1,13	3823,77
3	X:	2494,96	1303,33	3798,29	1,12	12	1	1,13	3823,77
4	X:	2494,53	3921,67	6416,2	1,9	12	2	2,26	7647,53
5	X:	2325,82	1369,17	3694,98	1,09	12	1	1,13	3823,77
6	X:	2325,39	3855,83	6181,22	1,83	12	2	2,26	7647,53
7	X:	2495,1	3035,83	5530,94	1,64	12	2	2,26	7647,53
8	X:	2494,39	5654,17	8148,55	2,41	12	3	3,39	11471,3
9	X:	2325,96	3101,67	5427,63	1,61	12	2	2,26	7647,53
10	X:	2325,24	5588,33	7913,58	2,34	12	3	3,39	11471,3
11	X:	2465,1	1309,17	3774,27	1,12	12	1	1,13	3823,77
12	X:	2524,39	1309,17	3833,55	1,13	12	2	2,26	7647,53
13	X:	2295,96	1243,33	3539,29	1,05	12	1	1,13	3823,77
14	X:	2355,24	1243,33	3598,58	1,06	12	1	1,13	3823,77
15	X:	2445,34	1309,17	3754,5	1,11	12	1	1,13	3823,77
16	X:	2544,15	1309,17	3853,32	1,14	12	2	2,26	7647,53
17	X:	2276,2	1243,33	3519,53	1,04	12	1	1,13	3823,77
18	X:	2375,01	1243,33	3618,34	1,07	12	1	1,13	3823,77
1	Y:	1102,33	118,83	1221,16	0,36	12	1	1,13	3823,77
2	Y:	1027,59	118,25	1145,84	0,34	12	1	1,13	3823,77

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 0.2.E.ZZ CL LC.00.0.0.016 В 120 di 127 IF2R

3	Y:	1102,42	117,17	1219,59	0,36	12	1	1,13	3823,77
4	Y:	1102,23	120,5	1222,73	0,36	12	1	1,13	3823,77
5	Y:	1027,69	116,58	1144,27	0,34	12	1	1,13	3823,77
6	Y:	1027,5	119,92	1147,41	0,34	12	1	1,13	3823,77
7	Y:	1102,49	116,08	1218,57	0,36	12	1	1,13	3823,77
8	Y:	1102,17	121,58	1223,75	0,36	12	1	1,13	3823,77
9	Y:	1027,75	115,5	1143,25	0,34	12	1	1,13	3823,77
10	Y:	1027,43	121	1148,43	0,34	12	1	1,13	3823,77
11	Y:	1089,23	74,99	1164,22	0,34	12	1	1,13	3823,77
12	Y:	1115,43	162,67	1278,09	0,38	12	1	1,13	3823,77
13	Y:	1014,49	74,44	1088,93	0,32	12	1	1,13	3823,77
14	Y:	1040,69	162,08	1202,77	0,36	12	1	1,13	3823,77
15	Y:	1080,5	45,76	1126,26	0,33	12	1	1,13	3823,77
16	Y:	1124,16	191,92	1316,08	0,39	12	1	1,13	3823,77
17	Y:	1005,76	45,21	1050,97	0,31	12	1	1,13	3823,77
18	Y:	1049,42	191,33	1240,75	0,37	12	1	1,13	3823,77
	,,	0.40.4.0-		2442.75		10			
8	X:	2494,39	5654,17	8148,55	2,41	12	3	3,39	11471,3
16	Y:	1124,16	191,92	1316,08	0,39	12	1	1,13	3823,77

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

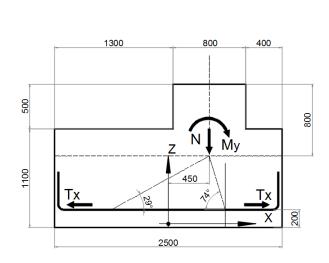
Mandante:

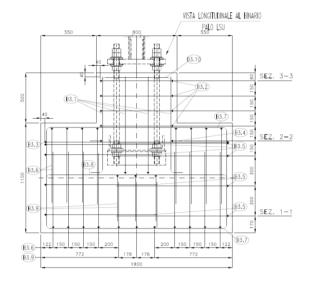
SWS Engineering S.p.A. SYSTRA S.A.

SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e


relativo Tirante a terra e fondazione


ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA FOGLIO **DOCUMENTO** REV. 0.2.E.ZZ CL LC.00.0.0.016 121 di 127 IF2R В

Verifica armatura dir. X

Esplicitazione della verifica armatura in direzione X

Dati:

H=h-c_sup-c_inf= 160 - 80 - 20= 60 cm

B= 250 cm

ex= 45 cm

L'angolo di diffusione degli sforzi alla base si determina attraverso la seguente espressione:

 $alfax = arctan(H/(B/4+ex)) = arctan(60/(250/4+45)) = 29,17^{\circ}$

Analizzando tutte le combinazioni di carico si ottiene il valore di trazione maggiore trasmesso all'armatura di base in combinazione 8:

N= -2784,43 daN

My= 678500 daNcm

TEd = $(N \cot(alfax) + My / H) / 2 = (2784,43 \times \cot(29,17^{\circ}) + 678500/60)/2 = 2494,39 + 5654,17 = 8148,55$ daN

Per contrastare TEd = 8148,55 daN occorrono 3 Diam.12

Sforzo di trazione ultimo (3 Diam.12) = 3 x 3823,77= 11471,3 daN

Da cui la verifica positiva: TRd = 11471,3 daN > TEd = 8148,55 daN

Verifica armatura dir. Y

TELESE S.c.a r.l.

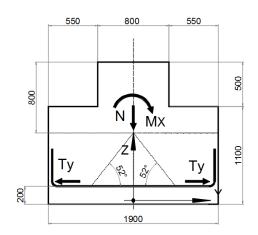
Consorzio Telese Società Consortile a Responsabilità Limitata

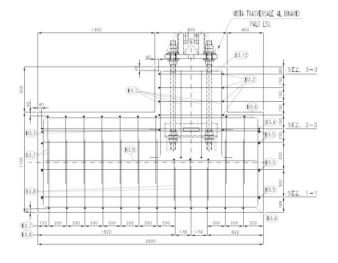
PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.


IMPIANTI DI TRAZIONE ELETTRICA


Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 0.2.E.ZZ CL LC.00.0.0.016 B 122 di 127

Esplicitazione della verifica armatura in direzione Y

Dati:

H=h-c_sup-c_inf= 160 - 80 - 20= 60 cm

B= 190 cm

ey= 0 cm

L'angolo di diffusione degli sforzi alla base si determina attraverso la seguente espressione:

 $alfay = arctan(H/(B/4+ey)) = arctan(60/(190/4+0)) = 51,63^{\circ}$

Analizzando tutte le combinazioni di carico si ottiene il valore di trazione maggiore trasmesso all'armatura di base in combinazione 16:

N= -2839,98 daN

Mx= -23030 daNcm

 $TEd = (N \ cotan(alfay) + Mx \ / \ H \) \ / \ 2 = (2839,98 \ x \ cotan(51,63^\circ) + 23030/60 \) \ / \ 2 = 1124,16 + 191,92 = 1316,08 \ daN$

Per contrastare TEd = 1316,08 daN occorrono 1 Diam.12

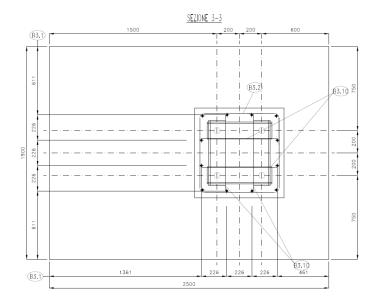
Sforzo di trazione ultimo (1 Diam.12) = 1 x 3823,77= 3823,77 daN

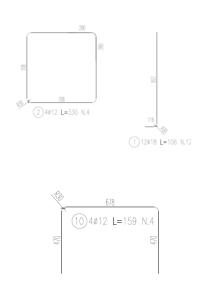
Da cui la verifica positiva: TRd = 3823,77 daN > TEd = 1316,08 daN

APPALTATORE:	TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO			.ANO		
PROGETTAZION	NE:	2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO					
Mandataria:	Mandante:						
SYSTRA S.A.	SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο			
IMPIANTI DI TRA	AZIONE ELETTRICA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di Cal verifica del bloc relativo Tirante	IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	123 di 127	

4.5.2 Pilastrino

Verifichiamo l'armatura del pilastrino rappresentato nei disegni costruttivi costituita da ferri verticali Φ 18 nelle direzioni X ed Y e staffe Φ 8/150.


 Materiali:
 Calcestruzzo: C25/30


 Acciaio: B450C
 Rck
 = 300 daN/cmq

 Fyk
 = 4500 daN/cmq
 fcd
 = 141,1 daN/cmq

 fsd
 = 3913 daN/cmq
 fctm
 = 25,6 daN/cmq

 fctd
 = 11,9 daN/cmq

4.5.2.1 Verifica di resistenza N-M biassiale della base.

Determiniamo le azioni di progetto in condizione di carico D alla base del pilastrino ed eseguiamo la verifica di resistenza biassiale.

APPALTATORE: TELESE s.c.a r.l

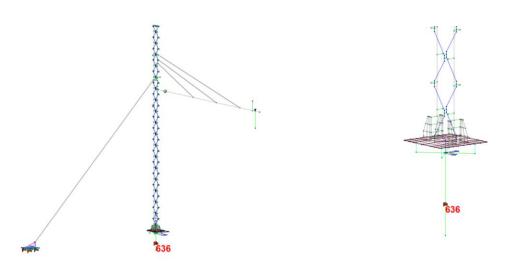
Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IMPIANTI DI TRAZIONE ELETTRICA

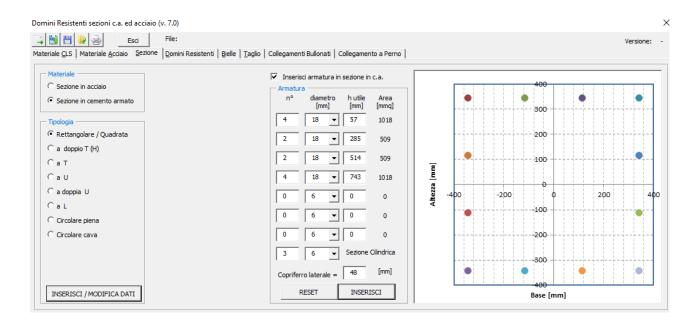

Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

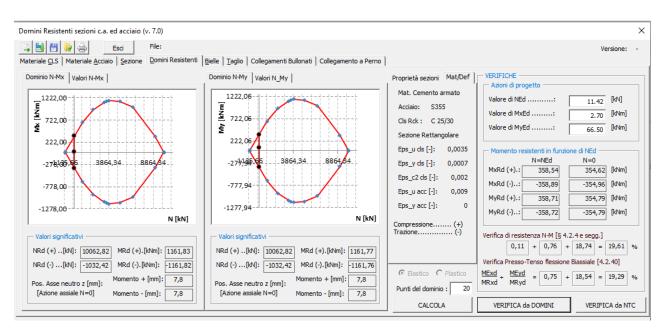
ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 0.2.E.ZZ CL LC.00.0.0.016 B 124 di 127

ORMEGGIO DI PUNTO FISSO PICC 172PR

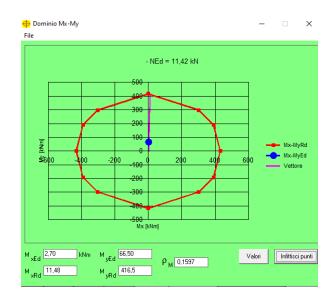



Nodo 636

Nodo	Cmb	Azione X	Azione Y	Azione Z	Azione RX	Azione RY	Azione RZ
		daN	daN	daN	daN cm	daN cm	daN cm
636	1	-285.96	21.30	-2285.05	-1.206e+04	3.247e+04	-3794.23
636	2	-285.96	21.15	-2096.24	-1.200e+04	2.459e+04	-3794.23
636	3	-801.18	21.04	-2285.31	-1.186e+04	-2.935e+05	-3389.93
636	4	229.26	21.56	-2284.80	-1.226e+04	3.584e+05	-4198.54
636	5	-801.18	20.89	-2096.49	-1.180e+04	-3.014e+05	-3389.93
636	6	229.26	21.41	-2095.98	-1.220e+04	3.506e+05	-4198.54
636	7	-1141.92	20.87	-2285.48	-1.173e+04	-5.098e+05	-3120.39
636	8	570.00	21.73	-2284.63	-1.240e+04	5.748e+05	-4468.08
636	9	-1141.92	20.72	-2096.66	-1.166e+04	-5.177e+05	-3120.39
636	10	570.00	21.58	-2095.81	-1.234e+04	5.669e+05	-4468.08
636	11	-285.96	-23.27	-2221.45	-3094.66	3.247e+04	-4628.43
636	12	-285.96	65.88	-2348.66	-2.103e+04	3.247e+04	-2960.04
636	13	-285.96	-23.42	-2032.63	-3031.93	2.459e+04	-4628.43
636	14	-285.96	65.72	-2159.84	-2.097e+04	2.459e+04	-2960.03
636	15	-285.96	-52.99	-2179.04	2883.76	3.247e+04	-5184.56
636	16	-285.96	95.59	-2391.06	-2.701e+04	3.247e+04	-2403.90
636	17	-285.96	-53.14	-1990.23	2946.49	2.459e+04	-5184.56
636	18	-285.96	95.44	-2202.25	-2.695e+04	2.459e+04	-2403.90
Nodo		Azione X	Azione Y	Azione Z	Azione RX	Azione RY	Azione RZ
		-1141.92	-53.14	-2391.06	-2.701e+04	-5.177e+05	-5184.56
		570.00	95.59	-1990.23	2946.49	5.748e+05	-2403.90

Sebbene in combinazioni di carico differenti consideriamo le azioni più gravose agenti alla base del pilastrino:

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO CODIFICA DOCUMENTO RFV FOGLIO Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e 0.2.F.77 CL LC.00.0.0.016 В 125 di 127 IF2R verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione



A conferma dei risultati ottenuti riportiamo una seconda analisi:

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SYSTRA-SOTECNI S.p.A. SWS Engineering S.p.A. IMPIANTI DI TRAZIONE ELETTRICA COMMESSA LOTTO CODIFICA **DOCUMENTO** REV. **FOGLIO** Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e IF2R 0.2.E.ZZ CL LC.00.0.0.016 В 126 di 127 verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione

Lo sfruttamento massimo dei ferri verticali del pilastrino si attesta al 19,29%.

APPALTATORE: TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata			ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO					
PROGETTAZIO	2° e 3 SUBLOTTO TELESE – SAN LORENZO – VITULANO							
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO ESECUTIVO					
IMPIANTI DI TR	AZIONE ELETTRICA		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di Calcolo Sostegno LSU16b con D.R. fuori standard e verifica del blocco di fondazione tipo B3 per ormeggio punto fisso e relativo Tirante a terra e fondazione			IF2R	0.2.E.ZZ	CL	LC.00.0.0.016	В	127 di 127

5 CONCLUSIONI

Riportiamo in forma tabellare le conclusioni delle verifiche condotte sulla struttura e sulla fondazione (il riferimento è solo ai risultati maggiormente gravosi ottenuti):

VERIFICA	VALORI	U.M.	ESITO
Profili UPN160 palo LSU16b	44,24 %	-	Positivo
Profili tralicciatura palo LSU16b	31,52 %	-	Positivo
Piastre di base	1019,50 < 3380	daN/cm ²	Positivo
Tirafondi M52	29,96 %	-	Positivo
Piastre di base TT	1033,34 < 3380	daN/cm ²	Positivo
Tirafondi M36 TT	15,65 %	-	Positivo
Tirante a terra	33,37 %	-	Positivo
Plinto di fondazione capacità portante	5,669 > 1	-	Positivo
Plinto di fondazione capacità portante SIS	2,233> 1	-	Positivo
Plinto di fondazione ribaltamento X	18,52 > 1	-	Positivo
Plinto di fondazione ribaltamento X SIS	3,5> 1	-	Positivo
Plinto di fondazione ribaltamento Y	2,37 > 1	-	Positivo
Plinto di fondazione ribaltamento Y SIS	1,97 > 1	-	Positivo
Plinto di fondazione scorrimento X	3,41 > 1	-	Positivo
Plinto di fondazione scorrimento X SIS	1 > 1	-	Positivo
Plinto di fondazione scorrimento Y	87,57 > 1	-	Positivo
Plinto di fondazione scorrimento Y SIS	1,6 >1	-	Positivo
Armatura di base in direzione X	11471,3 > 8148,55	daN	Positivo
Armatura di base in direzione Y	3823,77 > 1316,08	daN	Positivo
Armatura pilastrino	19,29 %	-	Positivo