COMMITTENTE:

DIREZIONE LAVORI:

APPALTATORE:

Consorzio Telese Società Consortile a Responsabilità Limitata

SYSTIA

PROGETTAZIONE:

MANDATARIA:

MANDANTI:

IL DIRETTORE DELLA PROGET/AZIONE:

Ing. L. LACOPO

Responsabile integrazione fra le varie prestazioni specialistiche

PROGETTO ESECUTIVO

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO - BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

RELAZIONE

OPERE D'ARTE VIABILITÀ IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 (NV22)

Relazione di calcolo impalcato

APPALTATORE		SCALA:
IL DIRETTORE TECNICO		• • · · · · · · · · · · · · · · · · · ·
ng. M. FERRONI		-
Wann Ir		
	·	

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	EMISSIONE	M. IMPECIATI	22/06/24	G. D'ANGELO	24/06/24	L. BRUZZONE	24/06/24	IL PROGETTISTA
_ ^	EIVIIOOIONE		23/06/21		24/06/21		24/06/21	5. DANGERO
В	REVISIONE A SEGUITO	M. IMPECIATI	29/10/21	G. D'ANGELO	30/10/21	L. BRUZZONE	30/10/21	(A)
Ь	RDV		29/10/21		30/10/21		30/10/21	ORDINET
								WANT OF THE
								14128
								0 x 0
								31/10/21

File: IF2R.2.2.E.ZZ.CL.IV.02.0.0.001.B n. Elab.:

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA

LOTTO

CODIFICA

DOCUMENTO

REV.

FOGLIO

IF2R 2.2.E.ZZ CL IV.02.0.0.001 2 di 129 В

INDICE

PRI	EMES	SSA	6
1.1	DE	SCRIZIONE DELL'OPERA	6
2	NOR	MATIVE DI RIFERIMENTO	10
3	MAT	ERIALI UTILIZZATI	11
3.1	Са	LCESTRUZZO	11
3.	.1.1	Calcestruzzo Soletta impalcato	11
3.	.1.2	Acciaio da C.A	11
3.	.1.3	Acciaio da Carpenteria Metallica	11
4	ANA	LISI DEI CARICHI	13
4.1	PE	SO PROPRIO DEGLI ELEMENTI STRUTTURALI	13
4.	.1.1	Calcestruzzo	13
	4.1.1.	1 Soletta C.A	13
	4.1.1.2	2 Predalles	14
4.	.1.2	Acciaio	14
4.2	Са	RICHI PERMANENTI NON STRUTTURALI	14
4.	.2.1	Passerelle pedonali di ispezione	15
4.	.2.2	Barriere anti - lancio	16
4.	.2.3	Veletta	17
4.	.2.4	Sicurvia	18
4.	.2.5	Pavimentazione	19
4.	.2.6	Marciapiede	20
4.3	Rıt	TRO	21

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ CL IV.02.0.0.001 B 3 di 129

4.4 SCORRIMENTI VISCOSI	24
4.5 CARICHI MOBILI	26
4.5.1 Verifiche SLU ed SLE	26
4.5.2 Verifiche a fatica	28
4.6 FRENATURA	28
4.7 FORZA CENTRIFUGA	28
4.8 URTO SUL SICURVIA	29
4.9 ALTRE AZIONI VARIABILI: URTO DI UN VEICOLO CONTRO LE STRUTTURE	29
4.9.1 Urti da traffico ferroviario	29
4.10 SOVRACCARICO ACCIDENTALE IN FASE DI REALIZZAZIONE	30
4.11 AZIONE DELLA NEVE	30
4.12 AZIONE DEL VENTO	31
4.12.1 SP1-P3	33
4.12.2 P4-SP2	34
4.13 AZIONE SISMICA	36
4.14 VARIAZIONE TERMICA UNIFORME	40
4.15 VARIAZIONE TERMICA DIFFERENZIALE	40
4.16 CEDIMENTI VINCOLARI	40
4.17 COMBINAZIONI DI CALCOLO	41
4.17.1 Verifiche allo stato limite ultimo	42
4.17.2 Verifiche in esercizio	45
4.17.2.1 Verifica delle tensioni	45
4.17.2.2 Verifica a fessurazione	46
5 INQUADRAMENTO GEOTECNICO	47

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

IE2D	2 2 E 77	CI	11/ 02 0 0 001	D	4 4: 120
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

6 MODELLO DI CALCOLO	48
7 ANALISI CONDOTTE E RISULTATI	54
7.1 ANALISI STATICHE	54
7.2 ANALISI MODALE – ISOLATORI NUOVI	62
7.3 ANALISI MODALE – ISOLATORI DEGRADATI	66
7.4 ANALISI SPETTRALE	70
8 VERIFICHE DI DEFORMABILITÀ E CONTROMONTE	71
8.1 VERIFICHE DI DEFORMABILITÀ	71
8.1.1 Diagramma delle contromonte	72
9 VERIFICHE DI RESISTENZA – TRAVE DI RIVA	74
9.1 SLU ENVELOPE M MAX/MIN TRAVE	76
9.2 SLU ENVELOPE N MAX/MIN TRAVE	80
9.3 SLU ENVELOPE V MAX TRAVE	84
10 VERIFICHE DI RESISTENZA – TRAVERSI E CONTROVENTI	88
11 VERIFICHE DI RESISTENZA – PIOLI NELSON	93
12 VERIFICHE DI STABILITA'	94
12.1 ANIME	94
12.2 PIATTABANDA INFERIORE	96
12.3 PIATTABANDA SUPERIORE	98
13 VERIFICHE FESSURAZIONE – ARMATURA LONGITUDINALE SOLETTA	100
14 VERIFICHE A FATICA – TRAVE DI RIVA	102
14.1 ACCIDENTALI FATICA ENVELOPE M MAX/MIN TRAVE	105
14.2 ACCIDENTALI FATICA ENVELOPE N MAX/MIN TRAVE	109
15 APPARECCHI D'APPOGGIO	113

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO

CL

2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA IF2R

LOTTO 2.2.E.ZZ

CODIFICA

DOCUMENTO IV.02.0.0.001

REV. В

FOGLIO 5 di 129

16	VERI	FICHE GIUNTO DI DILATAZIONE	116
17	VERI	FICHE SOLETTA DIREZIONE TRASVERSALE	117
18	PRE	DALLES - VERIFICHE IN FASE DI GETTO	126
	18.1.1	Predalla esterna con sbalzo	127
	18.1.2	Predalla interna	128
19	INCIE	DENZE	129

TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO

2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA IF2R

LOTTO 2.2.E.ZZ

CODIFICA CL

DOCUMENTO IV.02.0.0.001

REV. **FOGLIO** В

6 di 129

PREMESSA

Nell'ambito dell'Itinerario Napoli-Bari si inserisce il Raddoppio della Tratta Cancello - Benevento -II° Lotto Funzionale Frasso Telesino - Vitulano oggetto di progettazione definitiva. Le Opere d'Arte di Linea e Puntuali oggetto del presente documento sono Cavalcaferrovia IV02 appartenente alla S.P.106 al km 37+009,63.

Il progetto delle opere d'arte è stato redatto sulla base delle impostazioni ed esigenze espresse dal progetto della viabilità, uniformandosi a quest'ultimo per quanto riguarda ubicazione ed ampiezza del ponte, oltre che, ovviamente, per quanto concerne le rispettive caratteristiche planimetriche ed altimetriche, riservando particolare attenzione ai franchi orizzontali e verticali minimi prescritti dalla normativa vigente.

La presente relazione ha per oggetto le verifiche secondo il metodo semiprobabilistico agli Stati Limite (S.L.) delle strutture dell'impalcato da ponte di prima categoria.

Le analisi strutturali e le verifiche di sicurezza sono state effettuate in accordo con le disposizioni vigenti in Italia e con riferimento alla nuova classificazione sismica del territorio nazionale, secondo il DM 14 gennaio 2008 e le specifiche di progettazione Italferr come meglio indicato al capitolo 2.

Descrizione dell'opera 1.1

Il ponte in oggetto è realizzato in sistema misto acciaio - calcestruzzo con schema statico di trave continua a più campate di luce netta 30.0+36.0+36.0+36.0+36.0+30.0m, con una luce complessiva di 204.0 m.

L'impalcato, rappresentato nelle figure seguenti, è caratterizzato da una larghezza complessiva in campata variabile tra 12.2÷13.1 m dato lo sviluppo prevalentemente curvilineo del tracciato planimetrico (di cui 8.50÷9.4 m per la carreggiata stradale).

L'impalcato in misto acciaio - calcestruzzo è costituito da 4 travi metalliche longitudinali, caratterizzate da un'altezza minima pari a 1900 mm. Le quattro travi sono connesse in direzione trasversale mediante traversi realizzati con schema reticolare. La soletta presenta un'altezza APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

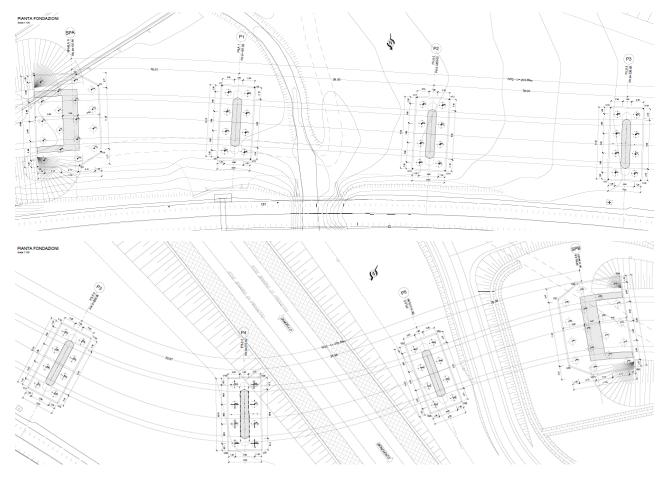
Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO


PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF2R 2.2.E.ZZ CL IV.02.0.0.001 B 7 di 129

variabile da un minimo di 25 cm ad un massimo di 35 cm circa. Il controvento inferiore e superiore è realizzato mediante controventi a croce di Sant'Andrea.

Le spalle, con paramento e muri di risvolto comprensivi di muri andatori, sono caratterizzate da fondazioni indirette, costituite da plinti e palificate sottostanti. Lo schema di vincolo dell'impalcato prevede un sistema di isolamento realizzato mediante isolatori circolari tipo "Freyssinet" in elastomero armato. Gli isolatori sono caratterizzati da una ridotta rigidezza orizzontale, elevata rigidezza verticale e opportuna capacità dissipativa. Queste caratteristiche consentono rispettivamente di aumentare il periodo proprio della struttura, di sostenere i carichi verticali senza apprezzabili cedimenti e di contenere lo spostamento orizzontale della struttura isolata.

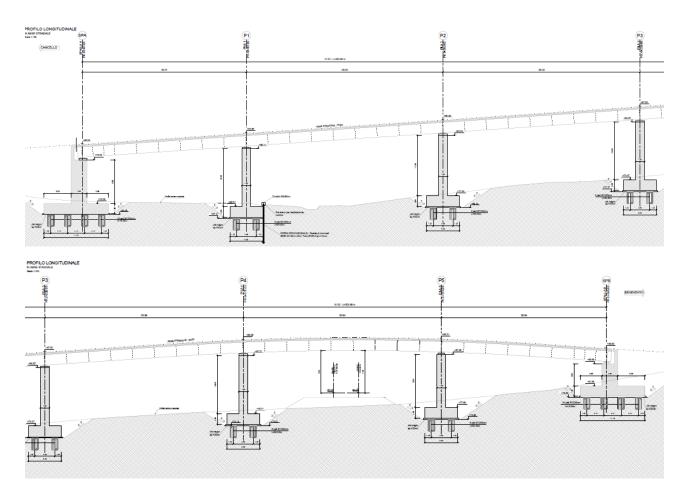
Planimetria

APPALTATORE: TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandante: Mandataria:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.


IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ CL IV.02.0.0.001 В 8 di 129

Profilo longitudinale

TELESE s.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

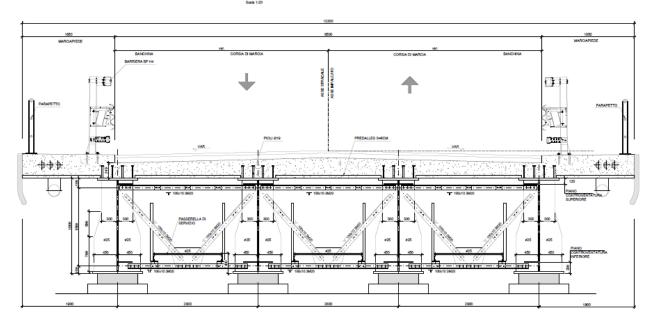
IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTT


LOTTO CODIFICA

2.2.E.ZZ CL

IV.02.0.0.001

REV. **B** FOGLIO 9 di 129

SEZIONE TRASVERSALE IN RETTIFILO IN APPOGGIO (DIAFRAMMA TIPO D1)

Sezione trasversale in rettifilo in appoggio

La travata tipo centrale è costituita dalla successione dei seguenti conci: CP (concio di pila – 10.0m); CI (concio intermedio – 8.5m); CM (concio mezzeria – 10.0m); CI (concio intermedio – 8.5m); CP (concio di pila – 10.0m). In corrispondenza delle pile di riva i conci CP e CI vengono sostituiti dai conci CPR (concio di pila di riva – 10.0m) e CIR (concio intermedio di riva – 8.5m); infine, per le campate di riva si prevede la seguente successione di conci: CS (concio di spalla – 8.5m); CMR (concio di mezzeria di riva – 8.0m); CIR (concio intermedio di riva – 8.5m); CPR (concio di pila di riva – 10.0m).

APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 IV.02.0.0.001
 B
 10 di 129

2 NORMATIVE DI RIFERIMENTO

Le principali Normative nazionali ed internazionali vigenti alla data di redazione del presente documento e prese a riferimento sono le seguenti:

- [1] Ministero delle Infrastrutture, DM 14 gennaio 2008, «Approvazione delle nuove norme tecniche per le costruzioni»
- [2] Ministero delle Infrastrutture e Trasporti, Circolare 2 febbraio 2009, n. 617 C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008»
- [3] Istruzione RFI DTC SI PS MA IFS 001 A Manuale di Progettazione delle Opere Civili Parte II Sezione 2 Ponti e Strutture
- [4] Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea

APPALTATORE: TELESE s.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** Relazione di calcolo impalcato IF2R 2.2.E.ZZ 11 di 129 CL IV.02.0.0.001 В

3 MATERIALI UTILIZZATI

3.1 Calcestruzzo

3.1.1 Calcestruzzo Soletta impalcato

CALCESTRUZZO PER SOLETTA

Classe	C32/40		
R _{ck} =	40.00	N/mm²	resistenza caratteristica cubica
$f_{ck} =$	32.00	N/mm²	resistenza caratteristica cilindrica
γ _M =	1.5	-	coefficiente parziale di sicurezza SLU
$f_{cd} =$	18.13	N/mm²	resistenza di progetto
c =	40	mm	copriferro minimo
	XC4	-	Classe di esposizione

3.1.2 Acciaio da C.A.

ACCIAIO PER ARMATURE ORDINARIE

controllato in stabilimento			B 450 C
tensione caratteristica di snervamento	N/mm²	450.0	$f_{yk} \geq $
coefficiente parziale di sicurezza SLU elastico	-	1.15	γ _M =
resistenza di progetto	N/mm²	391.3	$f_{yd} =$
modulo elastico	N/mm ²	210000	E _s =

3.1.3 Acciaio da Carpenteria Metallica

ACCIAIO PER CARPENTERIA METALLICA

	S355J2		controllato in stabilimento		
$f_{yk} =$	355.0	N/mm ²	Resistenza di calcolo (t ≤ 40 mm)		
$f_{yk} =$	335.0	N/mm ²	Resistenza di calcolo (t > 40 mm)		
E _s =	210000	N/mm²	modulo elastico		

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA IF2R

LOTTO 2.2.E.ZZ

CODIFICA

CL

DOCUMENTO IV.02.0.0.001

REV.

FOGLIO 12 di 129

ACCIAIO PER PROFILATI E PIASTRAME

	S355J2		controllato in stabilimento		
$f_{yk} =$	355.0	N/mm²	Resistenza di calcolo (t ≤ 40 mm)		
$f_{yk} =$	335.0	N/mm ²	Resistenza di calcolo (t > 40 mm)		
E _s =	210000	N/mm²	modulo elastico		

ACCIAIO PIOLI NELSON

		7-3K DIN 17100	St 37
tensione caratteristica di snervamento	N/mm²	355.00	$f_y \geq$
tensione di rottura	N/mm²	450	$f_t \geq$
modulo elastico	N/mm²	210000	E _s =

ACCIAIO BULLONI E DADI

Conformi per le caratteristiche dimensionali alle UNI EN 14399

Vite Classe 8.8

Dado Classe 8

Vite Classe 10.9

Dado Classe 10

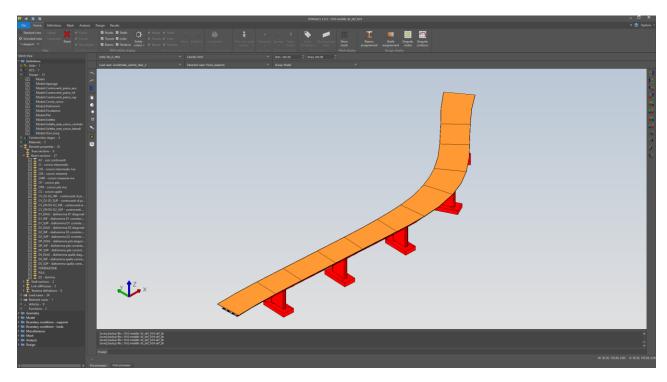
SALDATURE

Procedimenti di saldatura omologati e qualificati (tipo automatico ad arco sommerso o altri che verranno concordati e accettati dall'ente appaltante) conformi a D.M. 14.01.2008 e all'Istruzione FS44/S.

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SYSTRA-SOTECNI S.p.A. SWS Engineering S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA **DOCUMENTO** REV. **FOGLIO** Relazione di calcolo impalcato IF2R 2.2.E.ZZ 13 di 129 CL IV.02.0.0.001 В

4 ANALISI DEI CARICHI

Si riportano nel presente capitolo le azioni considerate nel modello di calcolo per la determinazione delle sollecitazioni agenti.

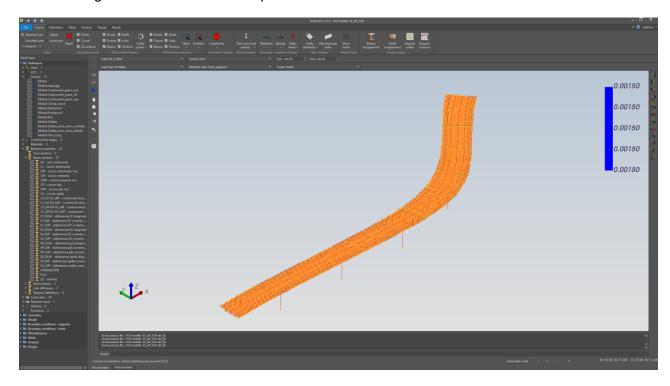

4.1 Peso proprio degli elementi strutturali

4.1.1 Calcestruzzo

Agli elementi strutturali è stato attribuito un peso specifico del cemento armato pari a 25 kN/m³ come previsto dalle vigenti normative.

4.1.1.1 Soletta C.A

Tale carico viene computato in automatico dal programma di calcolo agli elementi finiti; la soletta è stata modellata con la sua reale geometria, nel suo sviluppo planimetrico curvilineo di larghezza variabile tra 12.2÷13.1 m.



Modello strutturale estruso: vista soletta

APPALTATORE: ELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE - SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: PROGETTO ESECUTIVO SYSTRA-SOTECNI S.p.A. SYSTRA S.A. SWS Engineering S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA **DOCUMENTO** REV. **FOGLIO** Relazione di calcolo impalcato IF2R 2.2.E.ZZ CL IV.02.0.0.001 14 di 129 В

4.1.1.2 Predalles

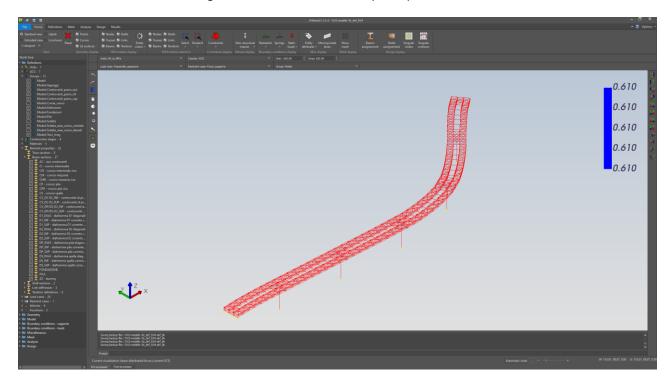
Il peso delle predalles è stato applicato al modello di calcolo come carico uniformemente distribuito agli shell della soletta di impalcato.

Carico applicato al modello: Predalles (MPa)

4.1.2 Acciaio

Agli elementi strutturali è stato attribuito un peso specifico dell'acciaio pari a 78.5 kN/m³ come previsto dalle vigenti normative; si precisa tuttavia che al fine di computare masse e pesi dei piatti di irrigidimento dei fazzoletti e delle bullonature si è considerato un moltiplicatore del peso specifico pari a 1.05 il valore di calcolo risulta pertanto pari a 82.4 kN/m³.

Tale carico viene computato in automatico dal programma di calcolo agli elementi finiti in funzione della lunghezza delle aste e della sezione assegnata.

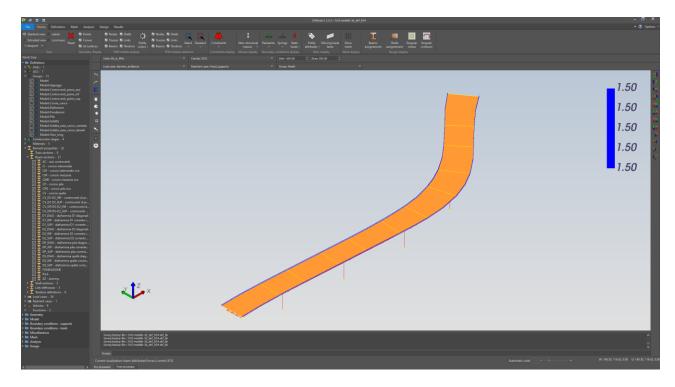

4.2 Carichi permanenti non strutturali

Si illustrano nel seguito i carichi elementari permanenti non strutturali applicati al modello di calcolo.

I ELESE S.c.a r.l.			ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO					
PROGETTAZION	NE:		2° SUBLOTTO TELESE – SAN LORENZO					
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO ESECUTIVO					
IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 Relazione di calcolo impalcato		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
		IF2R	2.2.E.ZZ	CL	IV.02.0.0.001	В	15 di 129	

4.2.1 Passerelle pedonali di ispezione

Per la singola passerella di ispezione si è assunto un peso complessivo al metro lineare di impalcato pari a 0.61 kN/m. il carico è stato applicato al modello di calcolo come carico uniformemente distribuito longitudinalmente sulle travi principali.

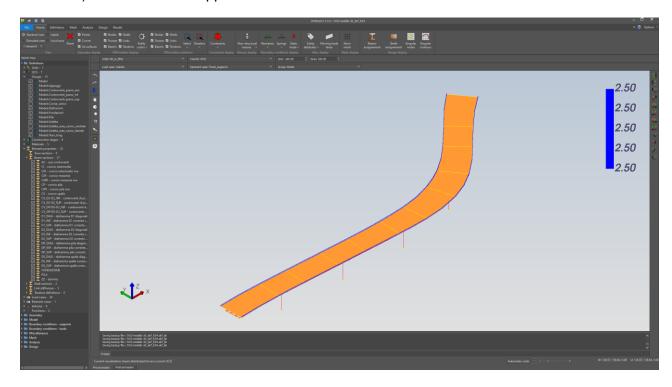


Carico applicato al modello: Passerelle ispezione (kN/m)

APPALTATORE:	TELESII Consorzio Telese Società Consortile a	D 1700 T1 14 4	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULAN			ANO	
PROGETTAZION	NE:	2° SUBLOTTO TELESE – SAN LORENZO					
Mandataria: SYSTRA S.A.	Mandante: SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO ESECUTIVO				
IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 Relazione di calcolo impalcato		COMMESSA IF2R	LOTTO 2.2.E.ZZ	CODIFICA CL	DOCUMENTO IV.02.0.0.001	REV.	FOGLIO 16 di 129

4.2.2 Barriere anti - Iancio

Per la barriera anti lancio si è assunto un peso al metro pari a 1.5 kN/m (complessivo sull'impalcato di 3 kN/m). Il carico è stato applicato in modo uniformemente distribuito ai bordi della soletta.

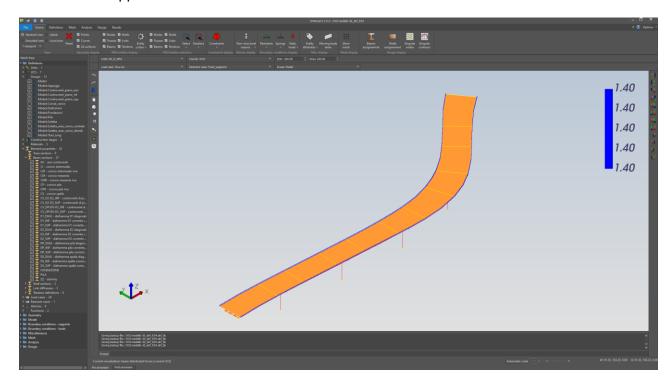


Carico applicato al modello: Barriere antilancio (kN/m)

I ELESE S.c.a r.l.			ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO					
PROGETTAZIONE:								
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO ESECUTIVO					
IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 Relazione di calcolo impalcato		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
		IF2R	2.2.E.ZZ	CL	IV.02.0.0.001	В	17 di 129	

4.2.3 Veletta

Per la veletta si è assunto cautelativamente un peso al metro pari a 2.5 kN/m (valore complessivo di 5 kN/m). Il carico è stato applicato in modo uniformemente distribuito ai bordi della soletta

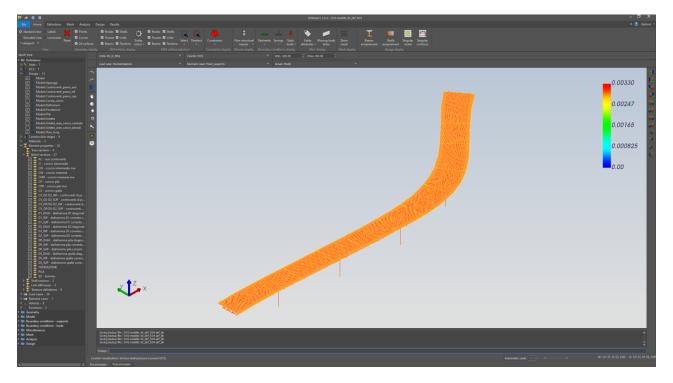


Carico applicato al modello: Velette (kN/m)

APPALTATORE	TELESE Consorzio Telese Società Con sortile a		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULAN		ANO			
PROGETTAZION	NE:		2° SUBLOTTO TELESE – SAN LORENZO					
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO ESECUTIVO					
IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 Relazione di calcolo impalcato		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
		IF2R	2.2.E.ZZ	CL	IV.02.0.0.001	В	18 di 129	

4.2.4 Sicurvia

Per il sicurvia si è assunto un peso al metro pari a 1.4 kN/m (valore complessivo di 2.8 kN/m). Il carico è stato applicato in modo uniformemente distribuito ai bordi della soletta

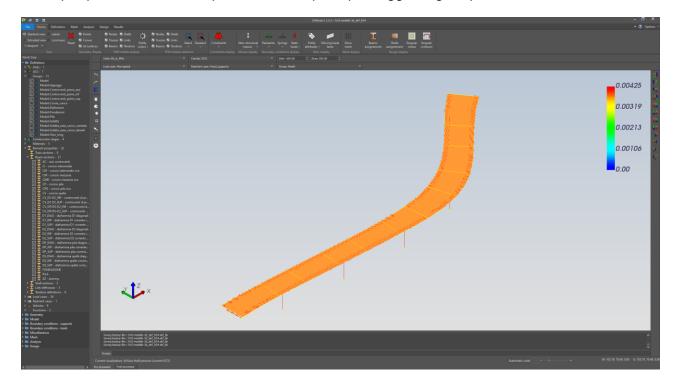


Carico applicato al modello: Sicurvia (kN/m)

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SYSTRA-SOTECNI S.p.A. SWS Engineering S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA **DOCUMENTO** REV. **FOGLIO** Relazione di calcolo impalcato IF2R 2.2.E.ZZ 19 di 129 CL IV.02.0.0.001 В

4.2.5 Pavimentazione

Il peso specifico della pavimentazione è stato assunto pari a 22 kN/m³. Conseguentemente alla planimetria curvilinea del tracciato la larghezza bitumata risulta variabile tra 8.50÷9.4 m mentre lo spessore della pavimentazione assunto è pari 0.15 m, per un carico pari a 3.3kN/m². Al modello di calcolo è stato applicato un carico uniformemente distribuito agli shell della soletta per la larghezza compresa tra i due cordoli.



Carico applicato al modello: Pavimentazione (MPa)

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA **DOCUMENTO** REV. **FOGLIO** Relazione di calcolo impalcato IF2R 2.2.E.ZZ 20 di 129 CL IV.02.0.0.001 В

4.2.6 Marciapiede

Per il cordolo, cautelativamente, si è assunto un peso specifico di 25 kN/m³ per uno spessore di 17cm, equivalente a un carico distribuito di 4.25kN/m². Il carico complessivo è stato valutato vuoto per pieno, trascurando pertanto i vuoti per il passaggio degli impianti.

Carico applicato al modello: Marciapiedi (MPa)

APPALTATORE: TELESE s.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 IV.02.0.0.001
 B
 21 di 129

4.3 Ritiro

Cls a t=0

 $f_{ck} = 33 \text{ Mpa}$ $f_{cm} = 41 \text{ MPa}$ $\alpha = 0.00001$

Ecm = 33642778 kN/m^2

cls tipo = N

k = 1 coef. di correzione di Ecm

Ecm = 33642778 kN/m²

Tempo e ambiente

ts = 2 gg età del calcestruzzo in giorni, all'inizio del ritiro per essiccamento

to = 28 gg età del calcestruzzo in giorni al momento del carico

t = 25550 gg età del calcestruzzo in giorni

ho = 2Ac/u = 571.875 mm dimensione fittizia dell'elemento di cls

Ac = 3660000 mmq sezione dell'elemento

u = 12800 mm perimetro a contatto con l'atmosfera

RH = 75 % umidità relativa percentuale

Coefficiente di viscosità φ (t,to) e modulo elastico ECt a tempo "t"

 ϕ (t,to)= ϕ 0 β c(t,to) = 1.589

φο=φRH βχ(fcm) βχ (to)= 1.611 coefficiente nominale di viscosità

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A.

SYSTRA-SOTECNI S.p.A. SWS Engineering S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** IF2R 2.2.E.ZZ IV.02.0.0.001 22 di 129 CL В

$$\varphi_{\rm RH} = 1 + \left[\frac{1 - RH/100}{0.1 \cdot \sqrt[3]{h_0}} \alpha_1 \right] \alpha_2 = 1.260$$
 coefficiente che tiene conto dell'umidità

$$\alpha_1 = \begin{cases} \left(35 \, / \, f_{cm}\right)^{0.7} \, per \ f_{cm} > 35 MPa \\ 1 \qquad per \ f_{cm} \leq 35 MPa \end{cases} =$$

0.892 coeff. per la resistenza del cls

$$\alpha_2 = \begin{cases} \left(35/f_{cm}\right)^{0.2} per \ f_{cm} > 35MPa \\ 1 \ per \ f_{cm} \leq 35MPa \end{cases} =$$

0.968 coeff. per la resistenza del cls

$$\beta_c(f_{cm}) = \frac{16.8}{\sqrt{f_{cm}}} =$$

2.617343 coefficiente che tiene conto della resistenza del cls

$$\beta_c(t_0) = \frac{1}{(0.1 + t_0^{0.20})} =$$

0.488 coefficiente per l'evoluzione della viscosità nel

$$t_0 = t_0 \left(\frac{9}{2 + t_0^{1.2}} + 1 \right)^{\alpha} \ge 0.5 =$$

 $t_{\rm o} = t_{\rm o} \bigg(\frac{9}{2 + t_{\rm o}^{1.2}} + 1 \bigg)^{\alpha} \ge 0.5 =$ 28.00 tempo to corretto in funzione della tipologia di cemento

$$\alpha = 0$$

coefficiente per il tipo di cemento (-1 per Classe S, 0 per Classe N, 1 per Classe R)

S	-1
N	0
R	1

$$\beta_c(t, t_0) = \left[\frac{(t - t_0)}{(\beta_H + t - t_0)}\right]^{0.3} = 0.986$$

coeff, per la variabilità della viscosità nel tempo

$$\beta_H = 1.5 \left[1 + (0.012 \cdot RH)^{18} \right] h_0 + 250 \cdot \alpha_3 \le 1500 \cdot \alpha_3 = 1217.0$$

coefficiente che tiene conto dell'umidità relativa

$$\alpha_3 = \begin{cases} \left(35/f_{cm}\right)^{0.5} per \ f_{cm} > 35MPa \\ 1 \ per \ f_{cm} \le 35MPa \end{cases} =$$

0.922

coeff. per la resistenza del calcestruzzo

Il modulo elastico al tempo "t" è pari a:

$$E_{cm}(t,t_0) = \frac{E_{cm}}{1+\varphi(t,t_0)} = 12996660 \text{ kN/m}^2$$

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO **CODIFICA DOCUMENTO** REV. **FOGLIO** IF2R 2.2.E.ZZ 23 di 129 CL IV.02.0.0.001 В

Deformazione di Ritiro

$$\varepsilon_{s}(t,t_{o}) = \varepsilon_{cd}(t) + \varepsilon_{ca}(t) =$$

0.000268 deformazione di ritiro ε(t,to)

$$\varepsilon_{cd}(t) = \beta_{ds}(t,t_s) K_b \varepsilon_{cd,0} =$$

0.00021 deformazione dovuta al ritiro per essiccamento

$$\beta_{ds}(t,t_s) = \left[\frac{(t-t_s)}{(t-t_s) + 0.04\sqrt{h_0^3}} \right] =$$

0.979037

Kh =

0.7

parametro che dipende da ho secondo il prospetto seguente

Valori di k

Taron di A h					
h _o	4				
100	1,0				
200	0,85				
300	0,75				
≥500	0,70				

Valori di Kh intermedi a quelli del prospetto vengono calcolati tramite interpolazione lineare.

$$\varepsilon_{cd,0} = 0.85 \left[\left(220 + 110\alpha_{dz1} \right) \cdot \exp(-\alpha_{dz2} \frac{f_{cm}}{f_{cm0}}) \right] 10^{-6} \beta_{RH} = 0.000307 \text{ deformazione di base}$$

$$\beta_{RH} = 1.55 \left[1 - \left(\frac{RH}{RH0} \right)^3 \right] = 0.896094$$

$$f_{cm0} =$$

10 MPa

100 %

$$\alpha_{ds1} =$$

4

 $\alpha_{ds2} =$ 0.12 coefficiente per il tipo di cemento (3 per Classe S, 4

per Classe N, 6 per Classe R)

coefficiente per il tipo di cemento (0.13 per Classe

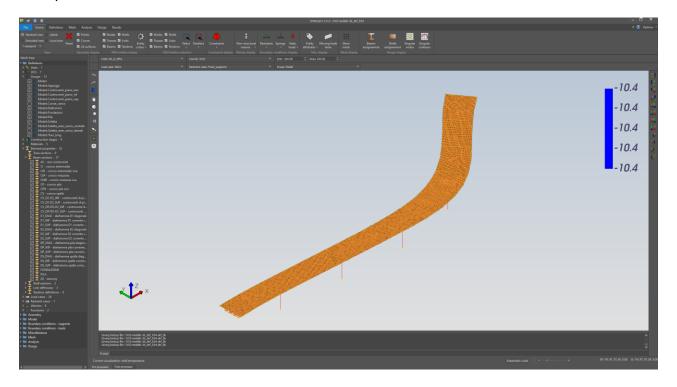
S, 0.12 per Classe N, 0.11 per Classe R)

$$\varepsilon_{ca}(t) = \beta_{as}(t) \varepsilon_{caoo} =$$

0.000058 deformazione dovuta al ritiro autogeno

$$\beta_{ar}(t) = 1 - \exp(-0.2t^{0.5}) =$$

$$\epsilon_{\text{caoo}} = 2.5 \ (f_{\text{ck}} - 10) \ 10^{-6} = : 0.000058$$

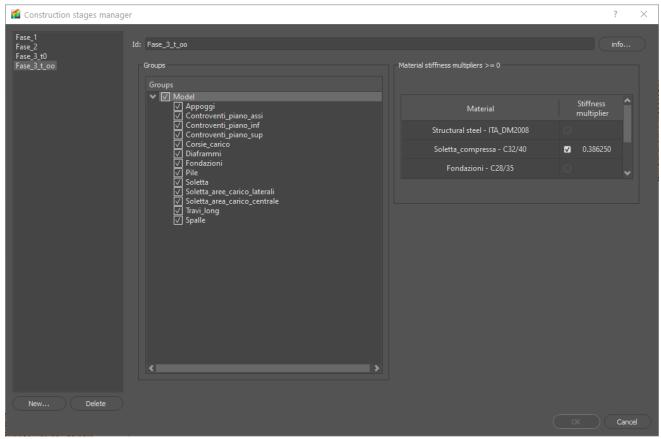

Variazione termica uniforme equivalente agli effetti del ritiro:

$$\Delta T_{\rm sition} = -\frac{\varepsilon_{\rm s}\left(t,t_0\right) \cdot E_{\rm cm}}{\left(1 + \varphi(t,t_0)\right) \cdot E_{\rm cm} \cdot \alpha} = -10.36 \ ^{\circ}{\rm C}$$

I fenomeni di ritiro vengono considerati agenti solo sulla soletta di copertura.

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE - SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA-SOTECNI S.p.A. SYSTRA S.A. SWS Engineering S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA **DOCUMENTO FOGLIO** REV. Relazione di calcolo impalcato 24 di 129 IF2R 2.2.E.ZZ CL IV.02.0.0.001 В

Nel modello di calcolo il ritiro è stato applicato come variazione termica uniforme in corrispondenza della soletta in C.A.



Carico applicato al modello: Ritiro (°C)

4.4 Scorrimenti viscosi

Gli effetti conseguenti alla viscosità del calcestruzzo per azioni di lunga durata (sovraccarichi permanenti, ritiro, ecc.) possono essere valutati assumendo nel calcolo delle caratteristiche geometriche della sezione composta un valore modificato del modulo di elasticità del calcestruzzo E_c^* , fornito dall'espressione $E_c^* = E_c / (1+\phi) = E_c \times 0.38625$, ridotto in ragione del coefficiente finale di viscosità $\phi = 1.589$. Il programma di calcolo *CMArkad X* tiene automaticamente conto di questo abbattimento del modulo di elasticità qualora si stia effettuando un'analisi per fasi nella quale ad ogni caso di carico è stata assegnata la corrispondente fase temporale.

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di calcolo impalcato 25 di 129 IF2R 2.2.E.ZZ CL IV.02.0.0.001 В

Fasi costruttive: fase 3 too

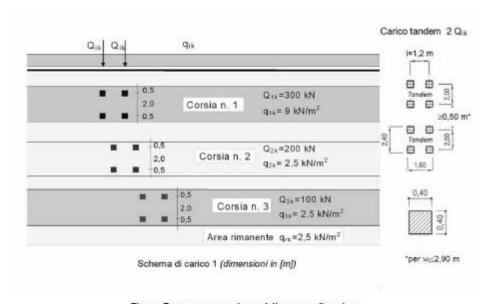
APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE - SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: PROGETTO ESECUTIVO SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA **DOCUMENTO** REV. **FOGLIO** Relazione di calcolo impalcato IF2R 2.2.E.ZZ IV.02.0.0.001 26 di 129 CL В

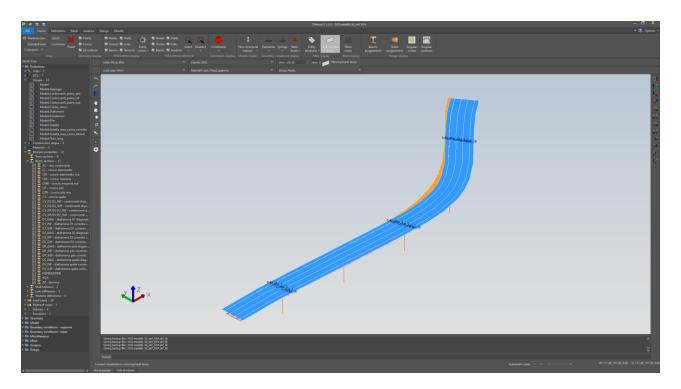
4.5 Carichi mobili

4.5.1 Verifiche SLU ed SLE

In conformità alla normativa di riferimento (N.T.C.2008 §5.1.3.3), si prendono in considerazione i seguenti carichi mobili per ponti di 1° categoria:

- prima colonna di carico costituita da due carichi assiali Q1k = 300 kN e un carico uniformemente distribuito q_{1k} = 9 kN/m² su una larghezza convenzionale pari a 3.00m;
- seconda colonna di carico analoga alla precedente, ma con carichi rispettivamente pari a
 Q2k = 200 kN e q_{2k} = 2.5 kN/m²;
- area rimanente costituita da un carico uniformemente distribuito pari a $q_{rk} = 2.5 \text{ kN/m}^2$.



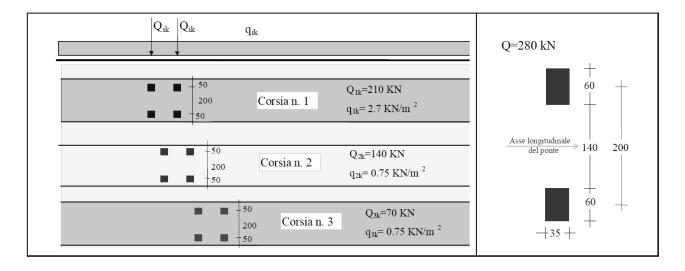

Figura 7: rappresentazione delle stese di carico.

In relazione alle dimensioni dell'impalcato sono state considerate 2 "corsie convenzionali" più una fascia di larghezza pari rispettivamente a 2.5 m di "parte rimanente". Su tutti i marciapiedi è stato applicato un carico uniformemente distribuito pari a 2.5 kN/m².

I sovraccarichi mobili sono considerati nelle diverse disposizioni longitudinali e trasversali atte a generare le massime sollecitazioni nelle sezioni di verifica. Il modello di calcolo utilizzato è implementato nel programma di analisi strutturale agli elementi finiti CMArkad X; tale codice di calcolo, tramite l'utility Moving Load Case, permette di costruire le linee di influenza relative alle

I ELESE S.c.a r.l.		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO						
PROGETTAZIONE:			2° SUBLOT	TO TELE	SE – SAN L	ORENZO		
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO ESECUTIVO					
IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 Relazione di calcolo impalcato		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
		IF2R	2.2.E.ZZ	CL	IV.02.0.0.001	В	27 di 129	

distinte sollecitazioni per ciascun punto della struttura (inteso come ciascuna delle stazioni di output definite nell'ambito della descrizione del modello di calcolo), procedendo automaticamente nell'individuazione delle disposizioni longitudinali del carico mobile sulle strisce di carico *lane*.



CORSIE DI CARICO: Lane

APPALTATORE: TELESE s.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE - SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: PROGETTO ESECUTIVO SYSTRA-SOTECNI S.p.A. SYSTRA S.A. SWS Engineering S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA **DOCUMENTO** REV. **FOGLIO** Relazione di calcolo impalcato IF2R 2.2.E.ZZ IV.02.0.0.001 28 di 129 CL В

4.5.2 Verifiche a fatica

Le verifiche a fatica a vita illimitata vengono condotte impiegando lo schema di carico n° 1 per la fatica, rappresentato nella figura seguente.

4.6 Frenatura

Per i ponti di 1° categoria la forza di frenamento/accelerazione è determinata secondo la seguente relazione:

180 kN
$$\leq q_3 = 0.6 \cdot (2 \cdot Q_{1k}) + 0.1 \cdot q_{1k} \cdot w_1 \cdot L \leq 900 \text{ kN}$$

Tale forza viene applicata al livello della pavimentazione ed agente lungo l'asse della corsia dal programma di calcolo *CMArkad X* mediante la definizione di un apposito *load case*.

4.7 Forza centrifuga

Nei ponti con asse curvo di raggio R (in metri) l'azione centrifuga corrispondente ad ogni colonna di carico si valuta convenzionalmente come indicato in Tab. 5.1.III, essendo $Q_v = \sum_i 2 \cdot Q_{ik}$ il carico totale dovuto agli assi tandem dello schema di carico 1 agenti sul ponte.

Il carico concentrato Q₄, applicato a livello della pavimentazione, applicato in direzione normale all'asse del ponte dal programma di calcolo *CMArkad X* mediante la definizione di un apposito *load case*.

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE - SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: PROGETTO ESECUTIVO SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA **DOCUMENTO** REV. **FOGLIO** Relazione di calcolo impalcato IF2R 2.2.E.ZZ IV.02.0.0.001 29 di 129 CL В

Tabella 5.1.III - Valori caratteristici delle forze centrifughe

Raggio di curvatura [m]	Q ₄ [kN]
R < 200	$0.2 \cdot Q_v$
200 ≤R ≤ 1500	$40 \cdot Q_v / R$
1500 ≤R	0

Nelle analisi è stato considerato un raggio di curvatura pari a 56.5 m.

4.8 Urto sul sicurvia

Sulla base delle prescrizioni normative (§5.1.3.10 N.T.C.2008), l'urto di un veicolo stradale sulle barriere sicurvia è stato modellato come una forza orizzontale applicate in corrispondenza delle barriere ad un'altezza pari a 1.0 m dal piano stradale. In particolare, ai fini del calcolo degli effetti locali sulla soletta d'impalcato, si è tenuto conto delle seguenti azioni:

- una forza pari a 100 kN considerata distribuita su 0.50 m diretta in direzione trasversale all'asse impalcato;
- un carico verticale isolato costituito dal Secondo Schema di Carico, posizionato in adiacenza al sicurvia stesso e disposto nella posizione più gravosa.

4.9 Altre azioni variabili: urto di un veicolo contro le strutture

I piedritti dei ponti ubicati a distanza ≤ 5.0 m dalla sede stradale, dovranno essere protetti contro il pericolo di urti di veicoli stradali, mediante adeguate opere chiaramente destinate alla protezione dei piedritti stessi.

In ogni caso, gli impalcati sovrappassanti strade con franco inferiore a 6 m e gli elementi di sostegno verticale dovranno essere progettati in modo da resistere all'azione delle forze statiche indicate al §3.6.3.5.

4.9.1 Urti da traffico ferroviario

All'occorrenza di un deragliamento può verificarsi il rischio di collisione fra i veicoli deragliati e le strutture adiacenti la ferrovia. Queste ultime dovranno essere progettate in modo da resistere alle azioni conseguenti ad una tale evenienza.

Dette azioni devono determinarsi sulla base di una specifica analisi di rischio, tenendo conto della

TELESE S.c.a r.l.
Consorzio Telese Società Consortile a Responsabilità Limitata

Constitution Telescoperation Control their Telescope

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF2R 2.2.E.ZZ CL IV.02.0.0.001 B 30 di 129

presenza di eventuali elementi protettivi o sacrificali (respingenti) ovvero di condizioni di impianto che possano ridurre il rischio di accadimento dell'evento (marciapiedi, controrotaie, ecc.).

In mancanza di specifiche analisi di rischio possono assumersi le seguenti azioni statiche equivalenti, in funzione della distanza d degli elementi esposti dall'asse del binario:

- per d ≤ 5 m:
 - 4000 kN in direzione parallela alla direzione di marcia dei convogli ferroviari;
 - 1500 kN in direzione perpendicolare alla direzione di marcia dei convogli ferroviari;
- per 5 m < d ≤ 15 m:
 - 2000 kN in direzione parallela alla direzione di marcia dei convogli ferroviari;
 - 750 kN in direzione perpendicolare alla direzione di marcia dei convogli ferroviari;
- per d > 15 m pari a zero in entrambe le direzioni.

Queste forze dovranno essere applicate a 1,80 m dal piano del ferro e non dovranno essere considerate agenti simultaneamente.

4.10 Sovraccarico accidentale in fase di realizzazione

In fase costruttiva si è adottato un sovraccarico accidentale uniformemente distribuito pari a 1.50 kN/m² rappresentativo degli operari e delle attrezzature necessarie alle fasi di getto. Tale azione viene considerata solo per la verifica in fase zero della trave in acciaio.

4.11 Azione della neve

Per l'opera oggetto della presente relazione il carico risulta non dimensionante.

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA IF2R LOTTO

2.2.E.ZZ

CODIFICA CL

DOCUMENTO IV.02.0.0.001

REV. **B** FOGLIO **31 di 129**

4.12 Azione del vento

CALCOLO DELL'AZIONE DEL VENTO

3) Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)

Zona	v _{b,0} [m/s]	a ₀ [m]	k _a [1/s]				
3	27	500	0.02				
a _s (altitudir	a _s (altitudine sul livello del mare [m])						
T _R	(Tempo di ritori	10)	100				
	$v_b = v_{b,0}$ per $a_s \le a_0$						
$v_b = v_{b,0}$	v _b = v _{b,0} + k _a (a _s - a ₀) per a ₀ < a _s ≤ 1500 m						
V	<u>v</u> _b (T _R = 50 [m/s])						
	1.03924						
v _b (28.059						

p (pressione del vento [N/mq]) = $q_b \cdot c_e \cdot c_p \cdot c_d$ q_b (pressione cinetica di riferimento [N/mq]) c_e (coefficiente di esposizione) c_p (coefficiente di forma) c_d (coefficiente dinamico)

Pressione cinetica di riferimento

$$q_b = 1/2 \cdot \rho \cdot v_b^2$$
 ($\rho = 1,25 \text{ kg/mc}$)

q _b [N/mq]	492.08
q _b [N/mq]	492.00

Coefficiente di forma

E' il coefficiente di forma (o coefficiente aerodinamico), funzione della tipologia e della geometria della costruzione e del suo orientamento rispetto alla direzione del vento. Il suo valore può essere ricavato da dati suffragati da opportuna documentazione o da prove sperimentali in galleria del vento.

Coefficiente dinamico

Esso può essere assunto autelativamente pari ad 1 nelle costruzioni di tipologia ricorrente, quali gli edifici di forma regolare non eccedenti 80 m di altezza ed i capannoni industriali, oppure può essere determinato mediante analisi specifiche o facendo riferimento a dati di comprovata affidabilità.

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

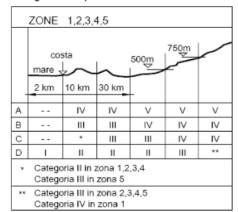
IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO


 IF2R
 2.2.E.ZZ
 CL
 IV.02.0.0.001
 B
 32 di 129

Coefficiente di esposizione

Classe di rugosità del terreno

D) Aree prive di ostacoli (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate, mare, laghi,....)

Categoria di esposizione

$c_e(z) = k_r^2 \cdot c_t \cdot \ln(z/z_0) \left[7 + c_t \cdot \ln(z/z_0)\right]$	per z≥z _{min}
$c_e(z) = c_e(z_{min})$	per z < z _{min}

	ZONA	6			
	co	sta		500 <u>m</u>	
	mare ,	<u> </u>	~	ブ	
-	2 km	10 km	30 km		
Α		III	IV	٧	٧
В		II	III	IV	IV
С		Ш	III	III	IV
D	ı	- 1	II	=	III

	ZONE 7,8					
		costa				
П		mare				
П		1.5 km	0.5 km	_		
П	Α			IV		
+	В			IV		
+	С			Ш		
+	D	1	II	*		
+	Categoria II in zona 8 Categoria III in zona 7					

		ZONA 9			
1			costa		
		mare <	_/		
	Α		ı		
\dashv	В		- 1		
\dashv	С		I		
	D	- 1	- 1		

Zona	Classe di rugosità	a _s [m]
3	D	80

Cat. Esposiz.	k _r	z ₀ [m]	z _{min} [m]	Ct
II	0.19	0.05	4	1

z [m]	C _e
z ≤ 4	1.801
z = 13	2.521
z = 13	2.521

Cp=1.4

Si assume il valore dell'azione del vento pari a 1.4x1.25=1.75 kN/m².

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** Relazione di calcolo impalcato IF2R 2.2.E.ZZ 33 di 129 CL IV.02.0.0.001 В

L'azione del vento è stata distribuita sulle travi secondo le indicazioni del DM2008, Circolare C3.3.10.04:

4.12.1 SP1-P3

	N° travi	4	
Interasse travi		2.85	m
Altezza travi		1.90	m
Coeff. mu		0.2	
Coefficiente riduzione travi		0.2	
Coefficiente	e travi multiple	1.248	
Carico	vento su travi	4.2	kN/m
Altezza se	oletta+cordolo	0.5	m
Carico ve	nto su soletta	0.9	kN/m
Altezza veletta so	pre impalcato	0.00	m
Larghezza impalcato		13.95	m
	Coeff. mu	0.2	(velette piene)
Coefficiente riduzione veletta		1	
Coefficiente velette		2	
Carico vento su velette		0.0	kN/m
Altezza sovraccario		3.0	m
Larghez	za carreggiata	8.6	m
Coeff. mu		0.2	(sovraccarico pieno)
Coefficiente riduzione sovraccaric		0.426666667	
Coefficiente sovraccarico		1	
Carico vento su sovraccarico		5.3	kN/m
Pression	ne del vento	1754.10	N/m2
1 1633101	ne dei vento	1/34.10	14/11/2
	travi p	4.16	kN/m
Vento impalcato scarico	soletta p	0.86	kN/m
	soletta m	0.00	kN*m/m
	Joint III	5.00	,
	travi	4.16	kN/m
Vento impalcato carico soletta p		6.12	kN/m
vento imparcato carico soletta p		0.10	LAUR /

soletta m

9.18

kN*m/m

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 IV.02.0.0.001
 B
 34 di 129

4.12.2 P4-SP2

N° travi	4	
Interasse travi	2.85	m
Altezza travi	1.90	m
Coeff. mu	0.2	
Coefficiente riduzione travi	0.2	
Coefficiente travi multiple	1.248	
Carico vento su travi	4.2	kN/m
Altezza soletta+cordolo	1.2	m
Carico vento su soletta	2.0	kN/m
Altezza veletta sopre impalcato	0.00	m
Larghezza impalcato	13.95	m
Coeff. mu	0.2	(velette piene)
Coefficiente riduzione veletta	1	
Coefficiente velette	2	
Carico vento su velette	0.0	kN/m
Altezza sovraccarico accidentale	3.0	m
Larghezza carreggiata	8.6	m
Coeff. mu	0.2	(sovraccarico pieno)
Coefficiente riduzione sovraccarico sotto velette	0.426666667	
Coefficiente sovraccarico sopra velette	1	
Carico vento su sovraccarico	5.3	kN/m

1754.10

N/m2

			-
	travi p	4.16	kN/m
Vento impalcato scarico	soletta p	2.04	kN/m
	soletta m	1.18	kN*m/m
	travi	4.16	kN/m
Vento impalcato carico	soletta p	7.30	kN/m
	soletta m	15.18	kN*m/m

Pressione del vento

APPALTATORE:

TELESE S.c.a r.l.

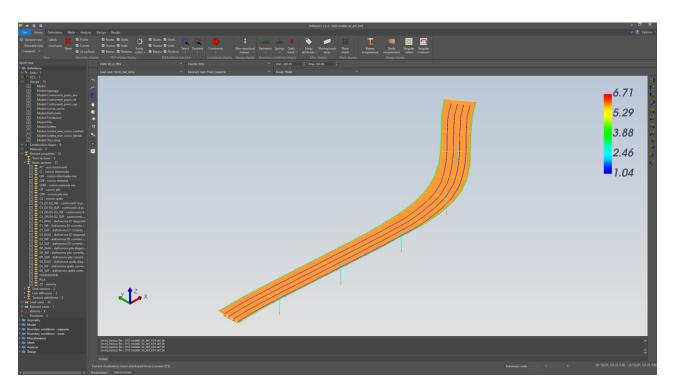
Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009


Relazione di calcolo impalcato

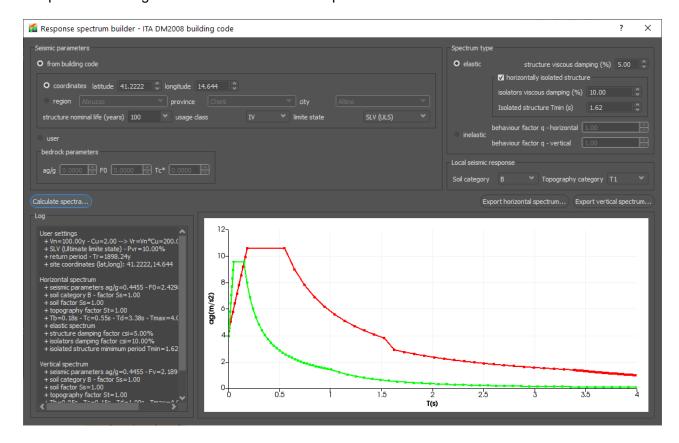
ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 IV.02.0.0.001
 B
 35 di 129

Carico applicato al modello: Vento impalcato carico (kN/m)


APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE - SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: PROGETTO ESECUTIVO SYSTRA-SOTECNI S.p.A. SYSTRA S.A. SWS Engineering S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA **DOCUMENTO** REV. **FOGLIO** Relazione di calcolo impalcato IF2R 2.2.E.ZZ IV.02.0.0.001 36 di 129 CL В

4.13 Azione sismica

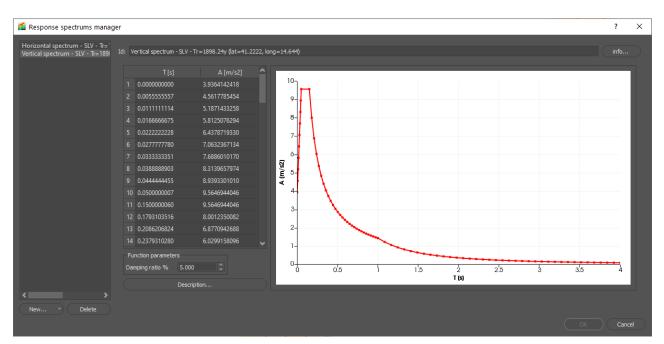
Poiché la struttura in esame presenta un sistema di isolamento sismico è stata condotta un'analisi lineare dinamica considerando uno spettro di risposta elastico. Lo spettro definito al §3.2.3.2 è stato ridotto per tutto il campo di periodi $T \ge 0.8 \cdot T_{is}$ secondo quanto prescritto al §7.10.5.3.2 del D.M 14/01/2008, assumendo per il coefficiente riduttivo η il valore corrispondente al coefficiente di smorzamento viscoso equivalente ξ_{eq} del sistema di isolamento. Il dettaglio dei parametri base e dell'azione sismica è indicato nel seguito.

- T_{is} = 1.62s (dall'analisi modale, modo 3)
- $T \ge 0.8 \cdot T_{is} = 1.296s$
- ξ struttura = 5%
- ξ isolatori = 10%

Si riportano nel seguito le schermate con la ricapitolazione delle azioni sismiche.

Individuazione parametri sismici

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SYSTRA-SOTECNI S.p.A. SWS Engineering S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA **DOCUMENTO** REV. **FOGLIO** Relazione di calcolo impalcato IF2R 2.2.E.ZZ 37 di 129 CL IV.02.0.0.001 В



Spettro elastico orizzontale

Horizontal spectrum

- + seismic parameters ag/g=0.4455 F0=2.4298 Tc*=0.4182
- + soil category B factor Ss=1.00
- + soil factor Ss=1.00
- + topography factor St=1.00
- + Tb=0.18s Tc=0.55s Td=3.38s Tmax=4.00s
- + elastic spectrum
- + structure damping factor csi=5.00%
- + isolators damping factor csi=10.00%
- + isolated structure mimimum period Tmin=1.69s

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA **DOCUMENTO** REV. **FOGLIO** Relazione di calcolo impalcato IF2R 2.2.E.ZZ IV.02.0.0.001 38 di 129 CL В

Spettro elastico verticale

Vertical spectrum

- + seismic parameters ag/g=0.4455 Fv=2.1894 Tc*=0.4182
- + soil category B factor Ss=1.00
- + soil factor Ss=1.00
- $+ \ topography \ factor \ St{=}1.00$
- + Tb=0.05s Tc=0.15s Td=1.00s Tmax=4.00s
- + elastic spectrum
- + structure damping factor csi=5.00%

APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV.

IF2R 2.2.E.ZZ CL IV.02.0.0.001 B

FOGLIO

39 di 129

La formula 3.2.18 delle NTC-08 riporta lo spostamento relativo fra due punti il cui moto possa considerarsi indipendente (l'ipotesi è valida quando i due punti sono posti a distanza notevole, oppure in presenza di forti discontinuità orografiche):

$$d_{ijmax} = 1.25 \cdot \sqrt{d_{gi}^2 + d_{gj}^2}$$

in cui d_{gi} e d_{gj} sono gli spostamenti assoluti massimi del suolo nei due punti, valutati secondo l'espressione 3.2.15:

$$d_q = 0.025 \cdot a_q \cdot S \cdot T_C \cdot T_D$$

Per prima cosa si valuta se il moto della base delle due pile può essere considerato indipendente o meno. L'EC8-2 impone di considerare la variabilità spaziale del moto per i ponti a travata continua quando:

- fra due punti di contatto con il suolo varia la categoria stratigrafica o topografica;
- anche in presenza di sottosuolo omogeneo, la lunghezza del segmento di impalcato continuo è maggiore del valore limite L_{lim}.

 $L_{lim} = L_g/1,5$ in cui L_g , definito in tabella in funzione della categoria di sottosuolo, è la distanza oltre la quale il moto di due punti può considerarsi indipendente.

Table 3.1N: distance beyond which ground motions may be considered uncorrelated

Ground Type	A	В	С	D	E
$L_{\rm g}$ (m)	600	500	400	300	500

Fra i diversi punti di contatto con il suolo non varia la categoria stratigrafica e topografica ma relativamente al secondo punto si ha:

 L_g (cat. sottosuolo B) = 500 m \rightarrow $L_{lim} = L_g/1,5 = 333$ m;

 L_{max} = 192 m (massima lunghezza tra i segmenti di impalcato continuo, ovvero quello tra le due spalle);

$$L_{max} < L_{lim}$$

Pertanto, il moto risulta dipendente.

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA IF2R LOTTO **2.2.E.ZZ**

CODIFICA CL DOCUMENTO IV.02.0.0.001

REV.

В

FOGLIO **40 di 129**

4.14 Variazione termica uniforme

Sulla struttura è stata applicata una variazione termica uniforme pari a ∓ 15° C. Tale azione, compatibilmente a quanto indicato in normativa, è considerata una azione di lungo termine pertanto applicato ad un modello di calcolo con modulo elastico del calcestruzzo a lungo termine.

4.15 Variazione termica differenziale

Il carico termico differenziale risulta pari a 10° C. tale azione è da considerarsi di breve durata pertanto applicata al modello di calcolo con il modulo elastico del calcestruzzo valutata in condizione di breve termine.

4.16 Cedimenti vincolari

Le distorsioni, quali ad esempio i cedimenti vincolari artificialmente provocati e non, sono da considerarsi azioni permanenti. Nei ponti in c.a., c.a.p. e a struttura mista i loro effetti vanno valutati tenendo conto dei fenomeni di viscosità.

Con riferimento a quanto indicato al § 2.6.2.10 della specifica RFI DTC SI PS MA IFS 001 A, nel calcolo delle strutture continue dovranno valutarsi accuratamente gli effetti di eventuali cedimenti differenziali, pur compatibili con la funzionalità del manufatto, in relazione alla natura dei terreni di fondazione.

Nell'analisi di deformabilità verticale delle fondazioni, i cedimenti differenziali " δ " fra fondazioni adiacenti, calcolati considerando agenti tutte le azioni permanenti con il loro valore caratteristico, dovranno rispettare i seguenti limiti:

$$\delta \leq \frac{Lmed}{3000}$$

Dove:

L_{med} = luce media delle campate afferenti sulla fondazione in esame Risulta pertanto:

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA-SOTECNI S.p.A. SYSTRA S.A. SWS Engineering S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO

2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA IF2R

LOTTO 2.2.E.ZZ CODIFICA CL

DOCUMENTO REV. IV.02.0.0.001

FOGLIO 41 di 129

В

Cedimenti differenziali fondazioni

Spalla 1 10.000 mm

Pila 1 11.000

Pila 2 12.000 mm

Pila 3 12.000 mm

Pila 4 12.000 mm

Pila 5 11.000 mm

Spalla 2 10.000 mm

Il cedimento differenziale di ciascuna sottostruttura corrisponde ad un differente caso di carico nel modello FEM; a valle dell'analisi le azioni più sfavorevoli derivanti dai cedimenti differenziali vengono calcolate mediante un inviluppo dei casi di carico elementari relativi ai cedimenti delle singole sottotrutture.

4.17 Combinazioni di calcolo

Le combinazioni di carico SLU statiche (in assenza di azioni sismiche) sono ottenute mediante diverse combinazioni dei carichi permanenti ed accidentali in modo da considerare tutte le situazioni più sfavorevoli agenti sulla struttura. I carichi vengono applicati mediante opportuni coefficienti parziali di sicurezza, considerando l'eventualità più gravosa per la struttura.

Le azioni sismiche sono valutate in conformità a quanto stabilito dalle norme e specificato nel paragrafo sulle azioni. Vengono in particolare controllate le deformazioni allo stato limite ultimo ed allo stato limite di danno.

In sede di dimensionamento sono state analizzate tutte le combinazioni, anche sismiche, impostate ai fini della verifica SLU. Sono state altresì processate le specifiche combinazioni di carico introdotte per valutare lo stato limite di esercizio SLE (tensioni, fessurazione, deformabilità).

Oltre all'impostazione spaziale delle situazioni di carico potenzialmente più critiche, in sede di dimensionamento sono state ulteriormente valutate, per le varie travate, tutte le condizioni di lavoro statico derivanti dall'alternanza dei carichi variabili, i cui effetti si sovrappongono a quelli dei pesi propri e dei carichi permanenti. Sono state inoltre imposte delle sollecitazioni flettenti di sicurezza in campata, e controllate le deformazioni in luce degli elementi.

APPALTATORE: TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTAZIONE: Mandataria:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Mandante:

Relazione di calcolo impalcato

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA **DOCUMENTO** REV. **FOGLIO** IF2R 2.2.E.ZZ IV.02.0.0.001 42 di 129 CL В

4.17.1 Verifiche allo stato limite ultimo

La verifica di sicurezza agli stati limite ultimi è stata condotta controllando che risultasse, per ciascuna sollecitazione considerata:

$$R_d \ge E_d$$

in cui R_d rappresentano le resistenze di calcolo ed E_d le sollecitazioni di calcolo nei vari elementi strutturali valutate per le azioni di calcolo F_d ottenute combinando le azioni caratteristiche nella forma

$$F_d = \sum_{i=1}^m \gamma_{Gi} \cdot G_{kj} + \gamma_{Ql} \cdot Q_{kl} + \sum_{i=2}^n \psi_{0i} \cdot \gamma_{Qki} \cdot Q_{ki}$$
: combinazione statica

$$F_d = E + G_k + \sum_i \psi_{2i} \cdot Q_{ki} \qquad \qquad : combinazione \ sismica$$

in cui si sono indicati:

 G_{ki} valore caratteristico della j-esima azione permanente

 Q_{k1} valore caratteristico della azione variabile base per ogni combinazione

 Q_{ki} valore caratteristico della i-esima azione variabile

Ε valore caratteristico dell'azione sismica

I valori y e Ψ sono riportati nelle seguenti tabelle.

Tabella 1: coefficienti parziali relativi alle azioni per la verifica agli SLU combinazione A1

Azione	Simbolo	Coefficiente parziale	
Permanente sfavorevole		1.35	
Permanente favorevole	γ G	1.0	
Variabile sfavorevole		1.5	
Variabile favorevole	γα	0.0	

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SYSTRA-SOTECNI S.p.A. SWS Engineering S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** Relazione di calcolo impalcato IF2R 2.2.E.ZZ 43 di 129 CL IV.02.0.0.001 В

Tabella 2: coefficienti parziali relativi alle azioni per la verifica agli SLU combinazione A2

Azione	Simbolo	Coefficiente parziale
Permanente sfavorevole		1.0
Permanente favorevole	γ G	1.0
Variabile veicolare sfavorevole veicolare		1.35
Variabile veicolare favorevole	γα	0.0

Le azioni di cui ai paragrafi precedenti sono combinate tra loro, al fine di ottenere le sollecitazioni di progetto relative agli elementi strutturali di volta in volta considerati in base a quanto prescritto dalle N.T.C nei § 2.5.3 e §5.1.3.12.

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA **DOCUMENTO** IF2R 2.2.E.ZZ CL IV.02.0.0.001

REV. В

FOGLIO 44 di 129

Tabella 5.1.IV - Valori caratteristici delle azioni dovute al traffico

		Carichi sulla carreggiata							
	Carichi verticali			Carichi orizz	ontali	Carichi verticali			
Gruppo di azioni	Modello principale (Schemi di carico 1, 2, 3, 4, 6)	Veicoli speciali	Folla (Schema di carico 5)	Frenatura q₃	Forza centrifuga q ₄	Carico uniformemente. distribuito			
1	Valore caratteristico					Schema di carico 5 con valore di combinazione 2,5 kN/m ²			
2 a	Valore frequente			Valore caratteristico					
2 b	Valore frequente				Valore caratteristico				
3 (*)						Schema di carico 5 con valore caratteristico 5,0 kN/m ²			
4 (**)			Schema di carico 5 con valore caratteristico 5,0 kN/m²			Schema di carico 5 con valore caratteristico 5,0 kN/m ²			
5 (***)	Da definirsi per il singolo progetto	Valore caratteristico o nominale							

Ponti di 3ª categoria

Tabella 5.1.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	$\gamma_{\rm G1}$	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γο	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	$\gamma_{\epsilon 2}, \gamma_{\epsilon 3}, \gamma_{\epsilon 4}$	0,00 1,20	0,00 1,20	0,00 1,00

Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

^{*)} Da considerare solo se richiesto dal particolare progetto (ad es. ponti in zona urbana)

^{***)} Da considerare solo se si considerano veicoli speciali

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

^{(4) 1,20} per effetti locali

TELESE s.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA IF2R LOTTO 2.2.E.ZZ

CODIFICA DOCUMENTO
CL IV.02.0.0.001

REV. **B** FOGLIO **45 di 129**

Tabella 5.1.VI - Coefficienti ψ per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente ψ₀ di combinazione	Coefficiente ψ ₁ (valori frequenti)	Coefficiente ψ₂ (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	Vento a ponte scarico			
T/	SLU e SLE	0,6	0,2	0,0
Vento q₅	Esecuzione	0,8		0,0
	Vento a ponte carico	0,6		
Neve q₅	SLU e SLE	0,0	0,0	0,0
rveve q5	esecuzione	0,8	0,6	0,5
Temperatura	T_k	0,6	0,6	0,5

Nelle combinazioni sismiche non è stata considerata l'aliquota di carico relativa ai variabili da traffico.

4.17.2 Verifiche in esercizio

Al fine di verificare la funzionalità della struttura in condizioni d'esercizio, sono state condotte le verifiche agli SLE previste dalle NTC 2008. In particolare, sono stati effettuati i seguenti controlli:

- Verifica delle tensioni in esercizio
- Verifica a fessurazione

4.17.2.1 Verifica delle tensioni

La verifica tensionale in esercizio è stata effettuata controllando che le tensioni di lavoro dei materiali risultassero inferiori alle tensioni massime consentite per ciascuna delle seguenti combinazioni di carico:

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA IF2R LOTTO **2.2.E.ZZ**

CODIFICA CL IV.02.0.0.001

FOGLIO

REV.

В

46 di 129

Combinazioni rare

$$F_{d} = G_{1} + G_{2} + Q_{k1} + \sum_{i=2}^{n} \psi_{0i} \cdot Q_{ki}$$

Combinazioni quasi permanenti

$$F_{d} = G_{1} + G_{2} + \sum_{i=1}^{n} \psi_{2i} \cdot Q_{ki}$$

in cui si sono indicati:

G_{kj} valore caratteristico della j-esima azione permanente

Qk1 valore caratteristico della azione variabile base per ogni combinazione

Qki valore caratteristico della i-esima azione variabile

Per i valori dei coefficienti Ψ_{11} e Ψ_{22} si rimanda al paragrafo 4.17.1.

4.17.2.2 Verifica a fessurazione

Per tutte le strutture in cemento armato normale e precompresso, le verifiche a fessurazione saranno eseguite adottando i criteri definiti al p.to 4.1.2.2.4.5 del DM 14.01.2008, con le seguenti ulteriori prescrizioni:

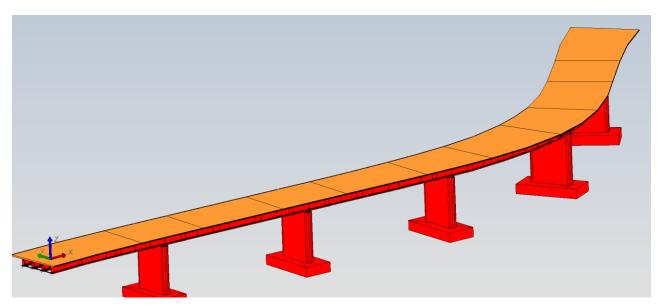
- i valori limite di apertura delle fessure, per la combinazione frequente e per armature poco sensibili, sono i seguenti:
 - $\delta_f \le w$ per strutture in condizioni ambientali aggressive e molto aggressive, così come

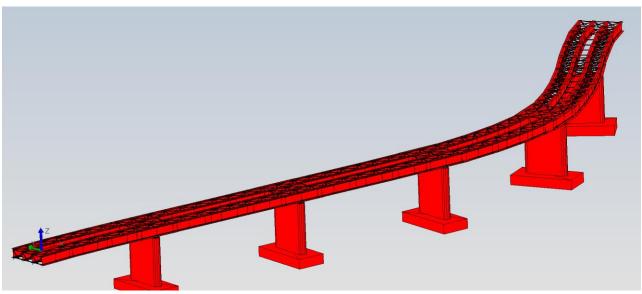
identificate nel par. 4.1.2.2.4.3 del DM 14.1.2008, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture;

 δ_f ≤ w per strutture in condizioni ambientali ordinarie secondo il citato paragrafo del DM.

In ogni caso devono essere condotte le verifiche a fessurazione mediante "calcolo diretto", ai sensi del DM 14.01.2008, p.to 4.1.2.2.4.6.

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** Relazione di calcolo impalcato 47 di 129 IF2R 2.2.E.ZZ IV.02.0.0.001 CL В


5 INQUADRAMENTO GEOTECNICO


Per l'inquadramento geotecnico dell'opera si rimanda agli elaborati specifici.

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA **DOCUMENTO** REV. **FOGLIO** Relazione di calcolo impalcato IF2R 2.2.E.ZZ 48 di 129 CL IV.02.0.0.001 В

6 MODELLO DI CALCOLO

È stato realizzato un modello di calcolo agli elementi finiti del cavalcaferrovia con il software CMArkad X di Arkad Engineering.

Vista 3D estrusa del modello agli elementi finiti

Il modello di calcolo è stato determinato seguendo una modellazione "mista", nella quale alcuni elementi strutturali sono stati modellati mediante elementi *frame* altri mediante *shell*.

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO

2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA IF2R LOTTO **2.2.E.ZZ**

CODIFICA DOCUMENTO
CL IV.02.0.0.001

O REV.

FOGLIO **49 di 129**

In particolare, con gli shell sono stati modellati i seguenti elementi strutturali:

Soletta

Con i frame, invece, sono stati modellati i seguenti elementi strutturali:

- Travi principali
- Controventi superiori e inferiori
- Traversi a "X"
- Briglie superiori e inferiori
- Pile
- Plinto di fondazione

Tutti gli elementi tipo "frame" sono modellati nei rispettivi assi baricentrici. Il vincolo tra soletta e travi longitudinali è stato realizzato attraverso l'utility "Offest constraint" del software CMArkad X, che consente di imporre in automatico dei body constraint tra i corrispondenti nodi di trave e soletta, realizzando dunque le condizioni di deformazione piana della sezione composta trave+soletta.

Nel modello di calcolo non è stato considerato per semplicità l'andamento altimetrico della strada mentre si è tenuto in conto della variazione di altezza delle sottostrutture.

I vincoli esterni rappresentanti gli apparecchi d'appoggio della struttura sono stati modellati mediante elementi *link* a comportamento lineare ai quali sono state assegnate le rigidezze dell'isolatore elastomerico scelto:

Spalle: Freyssinet HDRB-N 650/161

Pile: Freyssinet HDRB-N 750/168

Per tenere conto dell'invecchiamento degli isolatori nel tempo, accanto al modello con isolatori "nuovi", è stato sviluppato un modello con rigidezze degli stessi incrementate del 10%, come suggerito in letteratura ("Effetti di invecchiamento sui dispositivi di isolamento sismico: applicazione ad un viadotto ferroviario, Franco Bontempi ed altri").

APPALTATORE:	TELESE s.c.a Consorzio Telese Società Consortile a Responsab		_	O TRATT	A CANCEL	LO-BENEVEN D TELESINO -	_	ANO
PROGETTAZION	IE:		2° SUBLOTTO TELESE – SAN LORENZO					
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A. SYSTRA-S	OTECNI S.p.A.	PROGETTO	ESECUT	IVO			
IV02 - CAVALCA	FERROVIA S.S. 106 al km 37+009		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di cal	colo impalcato		IF2R	2.2.E.ZZ	CL	IV.02.0.0.001	В	50 di 129

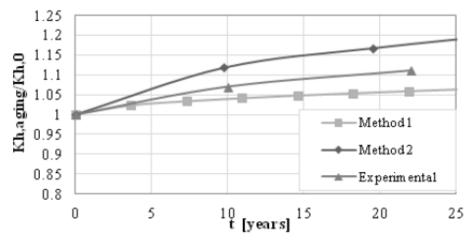
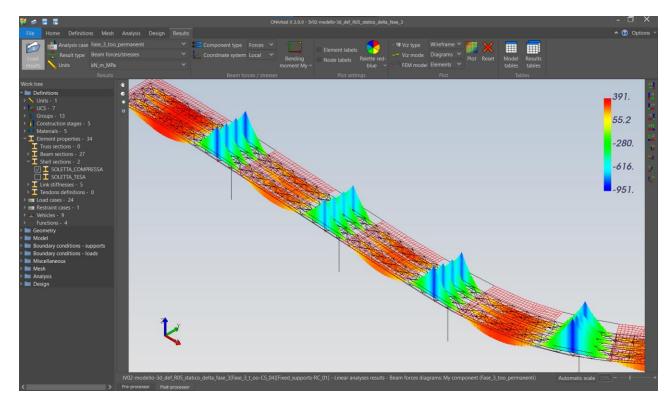


Figura 4-8 Confronto tra i due Metodi analizzati e i risultati sperimentali.

Evoluzione della rigidezza orizzontale degli isolatori nel tempo


In accordo con il DM2008, par. 4.3.2.2.1, la soletta è divisa tra zone compresse, in cui si considera il calcestruzzo reagente a compressione, e zone tese (in corrispondenza delle pile) nelle quali si considera il calcestruzzo non reagente e dunque si tiene conto del solo contributo delle barre di armatura presenti in soletta, attraverso un modulo elastico equivalente:

s	oletta - armatura longitudinale e proprietà d	lella sezion	e						
Spessore soletta 25 cm									
	Modulo elastico cls soletta 33643 MPa								
I	Distanza baricentro soletta-baricentro trave	112.7	cm						
	Diametro barre	26	mm						
Barre	Passo	10	cm						
superiori	Copriferro	5	cm						
superiori	Area	53.093	cm2						
	Momento statico intradosso soletta	1061.858	cm3						
	Diametro barre	26	mm						
Barre	Passo	10	cm						
inferiori	Copriferro	5	cm						
illelloll	Area	53.093	cm2						
	Momento statico intradosso soletta	265.465	cm3						
	Area totale	106.186	cm2						
	Momento statico totale intradosso soletta	1327.323	cm3						
C	Quota barre baricentro da intradosso soletta	12.500	cm						
Qu	ota baricentro soletta da intradosso soletta	12.500	cm						
Ecce	entricità baricentro barre-baricentro soletta	0.000	cm						
Fattore n	noltiplicativo rigidezza membranale soletta	1.0000							
	Modulo elastico cls fessurato 8919.6 MPa								
Rap	porto rigidezze cls fessurato/non fessurato	26.51%							

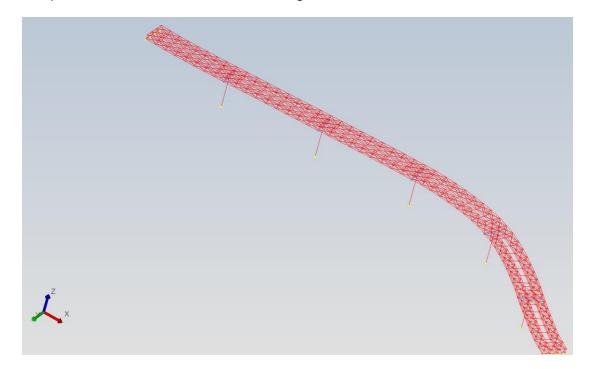
APPALTATORE	TELESE s.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata	_	O TRATT	A CANCEL	LO-BENEVEN O TELESINO -	_	ANO
PROGETTAZIO	NE:	2° SUBLOTTO TELESE – SAN LORENZO					
Mandataria: SYSTRA S.A.	Mandante: SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A	PROGETTO	ESECU ⁻	ΓΙVΟ			
IV02 - CAVALCA Relazione di cal	AFERROVIA S.S. 106 al km 37+009 colo impalcato	COMMESSA IF2R	LOTTO 2.2.E.ZZ	CODIFICA CL	DOCUMENTO IV.02.0.0.001	REV.	FOGLIO 51 di 129

Tale modellazione è del tutto equivalente, in termini di risultati dell'analisi FEM, a quella, alternativa, che assegni un modulo elastico nullo alla soletta tesa ed aggiunga nella modellazione, attraverso elementi beam opportunamente connessi ai nodi della soletta, le barre di armatura in zona tesa.

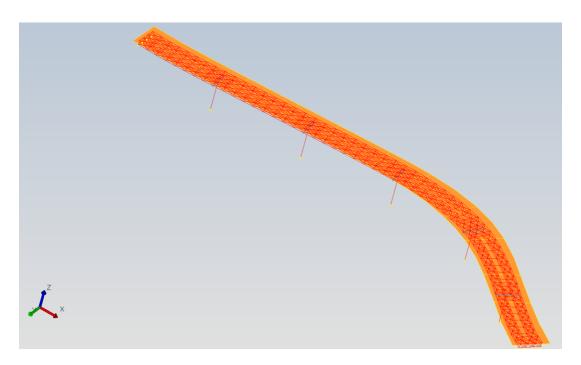
Per l'individuazione dell'estensione delle zone tese della soletta, si è eseguita una procedura iterativa considerando dapprima tutta la soletta reagente al fine di individuare le zone tese e modificando in seguito il modulo elastico di tali zone. Si può osservare nello screenshot sotto riportato, relativo ai momenti flettenti dovuti ai soli carichi permanenti, che l'estensione delle zone a momento negativo coincide con quella delle porzioni di soletta tesa (che è stata nascosta nella visualizzazione del modello). Tale estensione è di circa 16.0m a cavallo delle pile.

Individuazione delle zone di soletta tesa

Per il calcolo delle sollecitazioni sulle strutture sono state individuate tre differenti fasi costruttive, descritte nel seguito, i cui effetti vengono sommati:


• Fase iniziale "a vuoto" (Fase 2) utilizzata per il calcolo delle sollecitazioni dovute al peso proprio degli elementi strutturali; la soletta si considera non reagente ma

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE - SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA-SOTECNI S.p.A. SYSTRA S.A. SWS Engineering S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** Relazione di calcolo impalcato 2.2.E.ZZ 52 di 129 IF2R CL IV.02.0.0.001 В


viene considerata dal modello soltanto come carico applicato alle travi principali che in questa fase costituiscono la struttura portante.

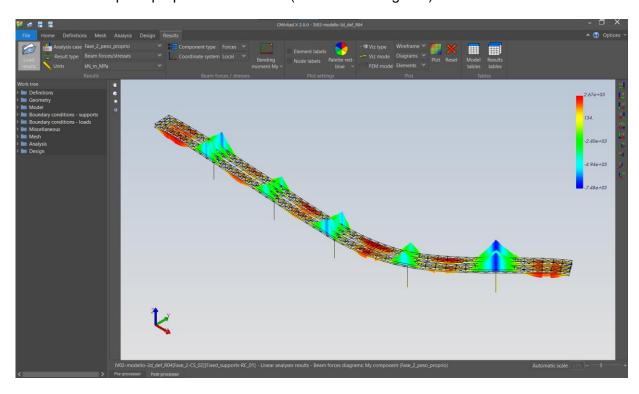
- Fase a breve termine (Fase 3 t0) utilizzata per il calcolo delle sollecitazioni dovute ai sovraccarichi permanenti, variabili da traffico veicolare, termica differenziale tra soletta e impalcato metallico; la soletta si considera reagente e si assume il modulo elastico del calcestruzzo a breve termine.
- Fase a lungo termine (Fase 3 too) utilizzata per il calcolo delle sollecitazioni dovute ai sovraccarichi permanenti, termica uniforme, ritiro e cedimenti vincolari; il programma di calcolo considera la soletta reagente e abbatte il modulo elastico del calcestruzzo.

Si riportano a titolo illustrativo alcuni dettagli dei modelli di calcolo utilizzati nelle analisi.

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di calcolo impalcato 53 di 129 IF2R 2.2.E.ZZ IV.02.0.0.001 CL В

Modello completo di controventi: vista tridimensionale dal basso

APPALTATORE	TELES			O TRATT	A CANCEL	LO-BENEVEN O TELESINO -		ANO
PROGETTAZIO	ROGETTAZIONE:			2° SUBLOTTO TELESE – SAN LORENZO				
Mandataria: SYSTRA S.A.	Mandante: SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	TVO			
IV02 - CAVALC Relazione di ca	AFERROVIA S.S. 106 al km 37 lcolo impalcato	+009	COMMESSA IF2R	LOTTO 2.2.E.ZZ	CODIFICA CL	DOCUMENTO IV.02.0.0.001	REV.	FOGLIO 54 di 129


7 ANALISI CONDOTTE E RISULTATI

I modelli di calcolo descritti nel paragrafo 6 sono stati impiegati per l'effettuazione di analisi di tipo lineare statico ed analisi spettrale. Le prime per tutte le azioni di tipo gravitazionale e per i carichi orizzontali relativi alla frenatura ed al vento; le seconde per la valutazione degli effetti indotti dall'azione sismica. I risultati delle analisi sono sintetizzati in forma grafica e numerica per i soli casi di carico principali (permanenti, veicolari, sismici).

7.1 Analisi statiche

Si riportano le sollecitazioni SLU agenti sulla struttura (trave esterna più sollecitata) per effetto di:

• SLU carico peso proprio trave+soletta (soletta non reagente)

Modello FEM - Momenti flettenti My travi longitudinali

APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

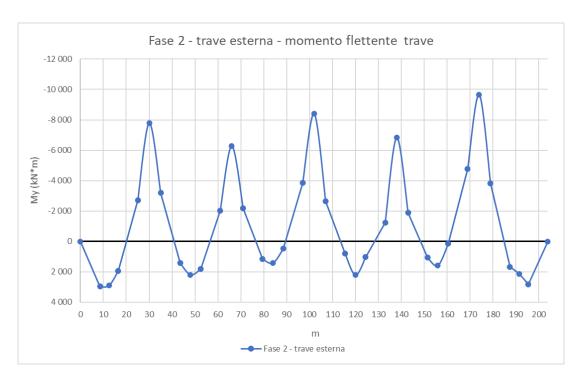
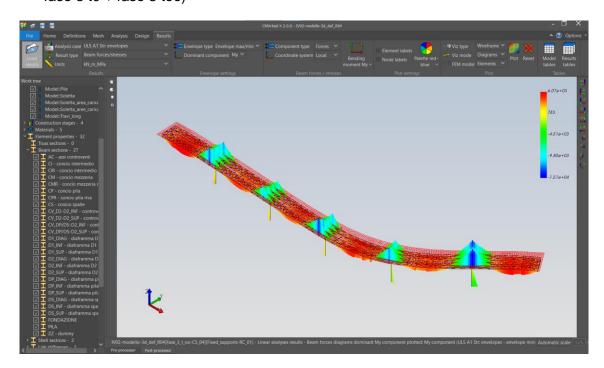
IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

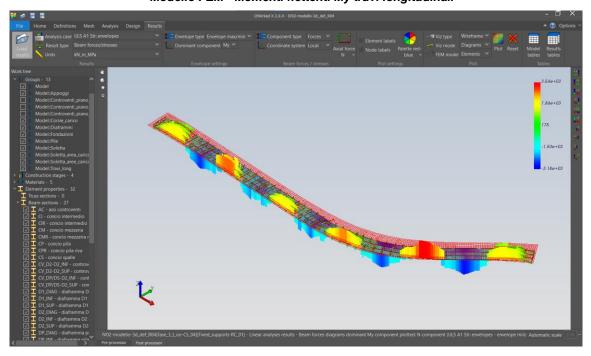
Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** IF2R 2.2.E.ZZ IV.02.0.0.001 55 di 129 CL В


Diagramma momenti flettenti My trave longitudinale esterna

APPALTATORE	TELES Consorzio Telese Società Consortilo			O TRATT	A CANCEL	LO-BENEVEN O TELESINO -		ANO
PROGETTAZIO	PROGETTAZIONE:			2° SUBLOTTO TELESE – SAN LORENZO				
Mandataria: SYSTRA S.A.	Mandante: SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	īvo			
IV02 - CAVALC Relazione di ca	AFERROVIA S.S. 106 al km 37- Icolo impalcato	-009	COMMESSA IF2R	LOTTO 2.2.E.ZZ	CODIFICA CL	DOCUMENTO IV.02.0.0.001	REV.	FOGLIO 56 di 129

 SLU inviluppo Mmax/min trave (soletta collaborante) – sollecitazioni cumulate (fase 2 + fase 3 t0 + fase 3 too)

Modello FEM - Momenti flettenti My travi longitudinali

Modello FEM – Sforzi normali N travi longitudinali

APPALTATORE: TELESE s.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 IV.02.0.0.001
 B
 57 di 129

Sulla sezione composta trave + soletta, in assenza di forze esterna applicate in direzione assiale, lo sforzo normale agente risulta identicamente nullo (il tira e spingi tra trave e soletta ha risultante zero). Nel seguito si riportano i diagrammi dei momenti flettenti agenti sulla sezione composta divisi per fase 3 t0 (accidentali, vento, grad T) e fase 3 too (permanenti, ritiro, termica, ...).

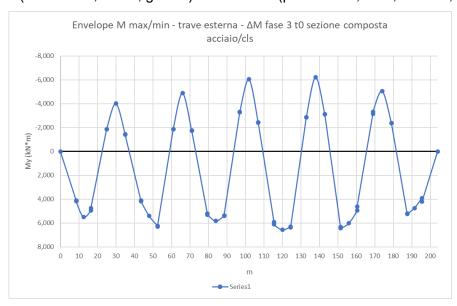
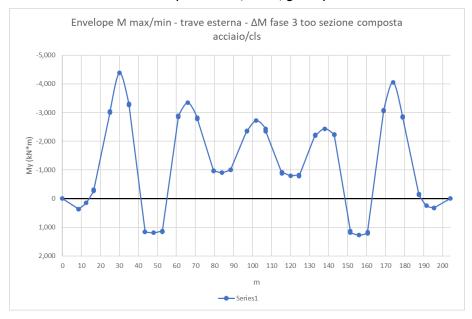
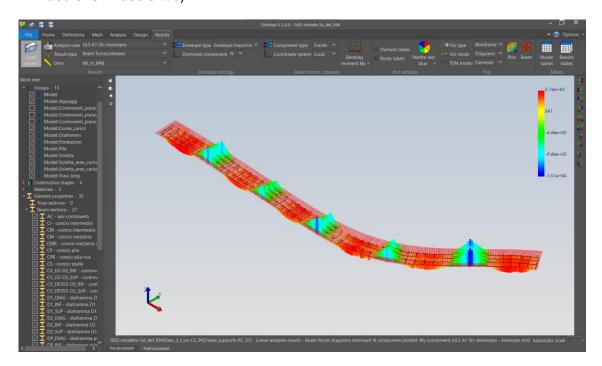
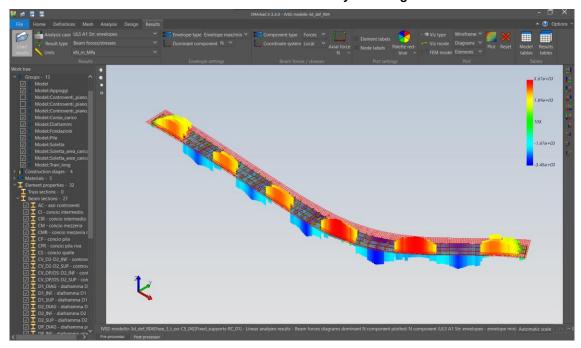


Diagramma momenti flettenti My sezione composta trave longitudinale esterna
Fase 3 t0 (accidentali, vento, grad T)


Diagramma momenti flettenti My sezione composta trave longitudinale esterna
Fase 3 too (permanenti, ritiro, termica, ...)

APPALTATORE	TELES Consorzio Telese Società Con sorti			O TRATT	A CANCEL	LO-BENEVEN O TELESINO -		ANO
PROGETTAZIO	NE:		2° SUBLOTTO TELESE – SAN LORENZO					
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙVO			
IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di ca	Icolo impalcato		IF2R 2.2.E.ZZ CL IV.02.0.0.001 B 58 di 1				58 di 129	

 SLU inviluppo Nmax/min trave (soletta collaborante) – sollecitazioni cumulate (fase 2 + fase 3 t0 + fase 3 too)

Modello FEM - Momenti flettenti My travi longitudinali

Modello FEM – Sforzi normali N travi longitudinali

APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 IV.02.0.0.001
 B
 59 di 129

Sulla sezione composta trave + soletta, in assenza di forze esterna applicate in direzione assiale, lo sforzo normale agente risulta identicamente nullo (il tira e spingi tra trave e soletta ha risultante zero). Nel seguito si riportano i diagrammi dei momenti flettenti agenti sulla sezione composta divisi per fase 3 to (accidentali, vento, grad T) e fase 3 too (permanenti, ritiro, termica, ...).

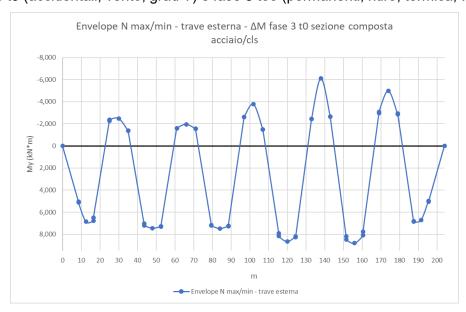


Diagramma momenti flettenti My sezione composta trave longitudinale esterna Fase 3 t0 (accidentali, vento, grad T)

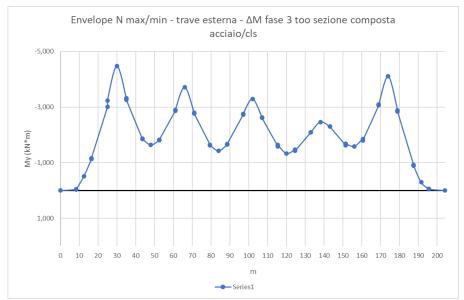
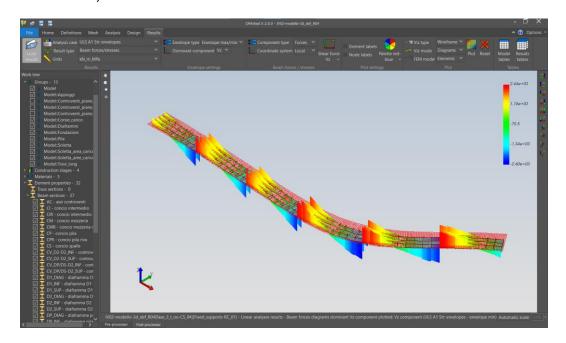



Diagramma momenti flettenti My sezione composta trave longitudinale esterna
Fase 3 too (permanenti, ritiro, termica, ...)

APPALTATORE: TELESE s.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata			ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO					
PROGETTAZIONE:								
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO ESECUTIVO					
IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 Relazione di calcolo impalcato			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
			IF2R	2.2.E.ZZ	CL	IV.02.0.0.001	В	60 di 129

 SLU inviluppo |V|max trave (soletta collaborante) – sollecitazioni cumulate (fase 2 + fase 3 t0 + fase 3 too)

Modello FEM – Tagli Vz travi longitudinali

Sulla sezione composta trave + soletta, in assenza di forze esterna applicate in direzione assiale, lo sforzo normale agente risulta identicamente nullo (il tira e spingi tra trave e soletta ha risultante zero). Nel seguito si riportano i diagrammi dei momenti flettenti agenti sulla sezione composta divisi per fase 3 to (accidentali, vento, grad T) e fase 3 too (permanenti, ritiro, termica, ...).

APPALTATORE: TELESE s.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 IV.02.0.0.001
 B
 61 di 129

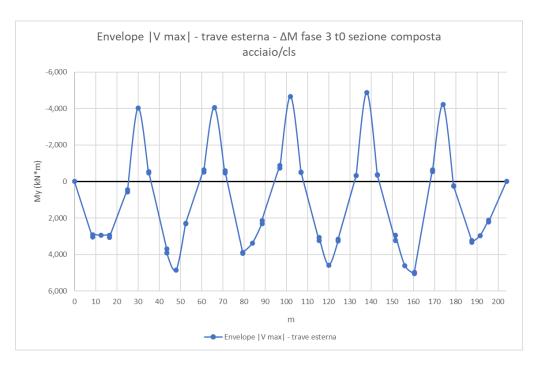


Diagramma momenti flettenti My sezione composta trave longitudinale esterna
Fase 3 t0 (accidentali, vento, grad T)

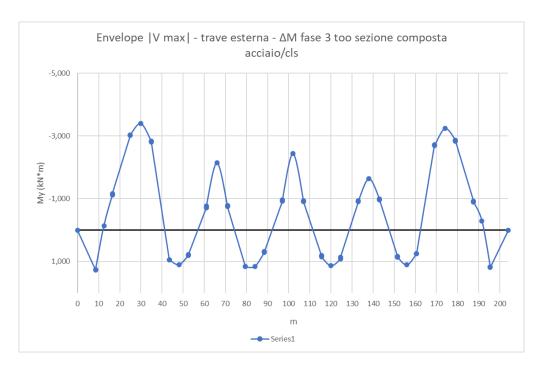
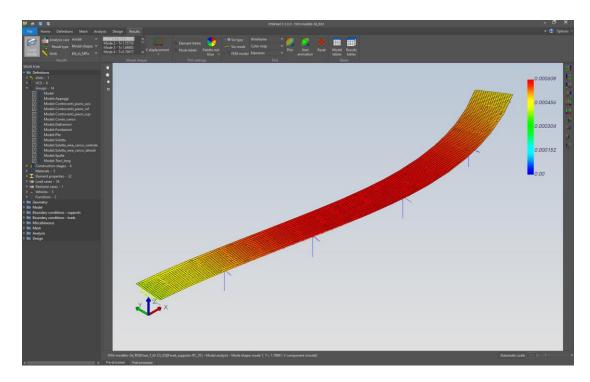
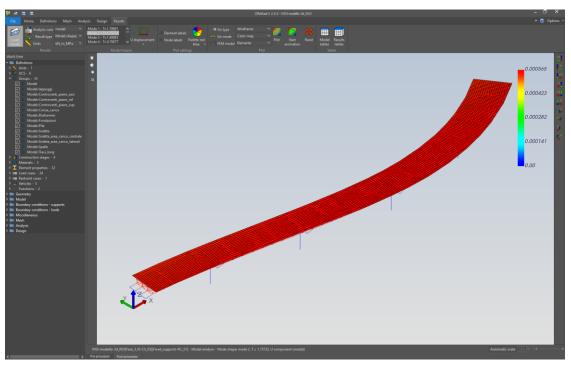
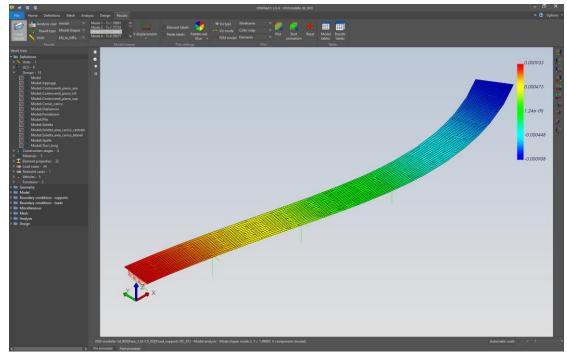



Diagramma momenti flettenti My sezione composta trave longitudinale esterna
Fase 3 too (permanenti, ritiro, termica, ...)

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA **DOCUMENTO FOGLIO** REV. Relazione di calcolo impalcato IF2R 2.2.E.ZZ 62 di 129 CL IV.02.0.0.001 В


7.2 Analisi modale – isolatori nuovi

L'analisi è stata effettuata considerando le prime 500 forme modali consentendo di attivare oltre l'85% della massa dell'impalcato nelle tre direzioni X, Y e Z. I risultati sono sintetizzati in forma grafica e tabellare.



Modo n° 1 - T= 1.698s - impalcato disaccoppiato in direzione trasversale

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di calcolo impalcato IF2R 2.2.E.ZZ IV.02.0.0.001 63 di 129 CL В

Modo $n^{\circ} 2 - T = 1.675s - impalcato disaccoppiato in direzione longitudinale$

Modo n° 3 – T= 1.452s – impalcato disaccoppiato per rotazione intorno asse Z

APPALTATORE: TELESE S.c.a r.l.

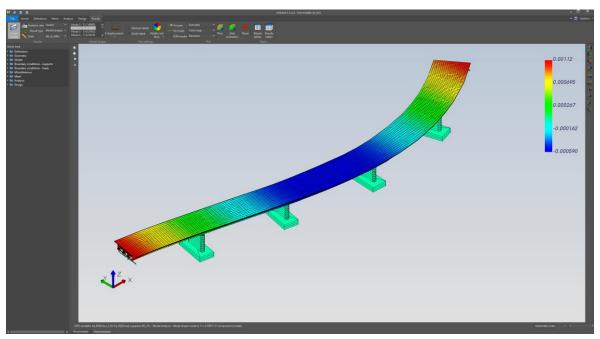
Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

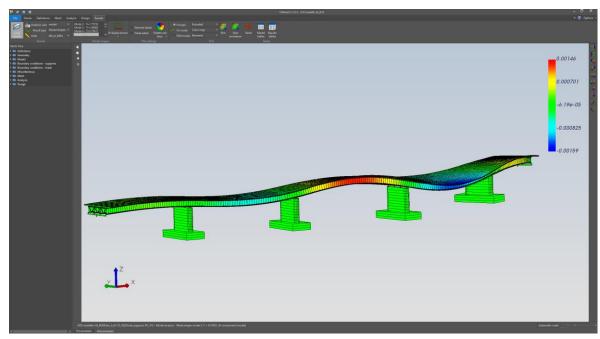
Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009


Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO


PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 IV.02.0.0.001
 B
 64 di 129

Modo n° 4 – T= 0.786s – primo modo flessionale nel piano orizzontale impalcato

Modo n° 5 – T= 0.374s – primo modo flessionale nel piano verticale impalcato

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

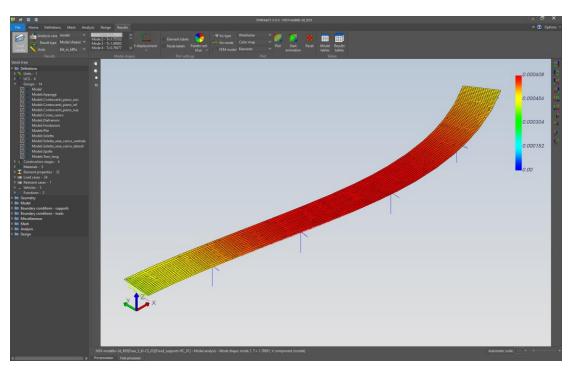
Relazione di calcolo impalcato

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

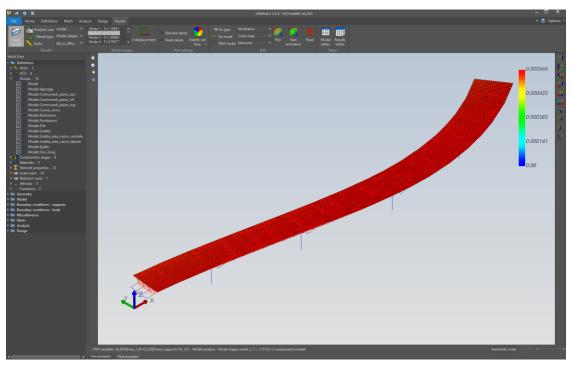
CODIFICA COMMESSA LOTTO **DOCUMENTO** REV. **FOGLIO** 65 di 129 IF2R 2.2.E.ZZ CL IV.02.0.0.001 В

THE CALCULATED EIGENVALUES AND PERIODS ARE:

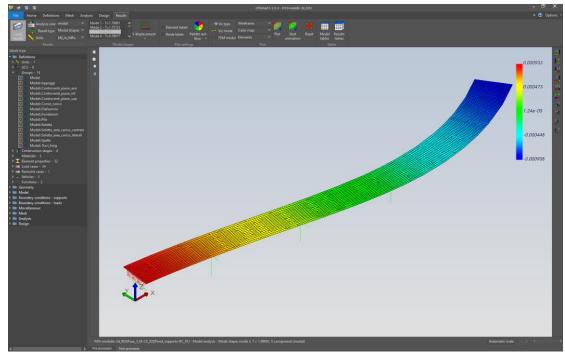

- MODE 001 OF 500: EV=13.6867278 T=1.6983612 ERROR BOUND: 2.832338E-10
- MODE 002 OF 500: EV=14.0659412 T=1.6753111 ERROR BOUND: 2.757282E-10
- MODE 003 OF 500: EV=18.7173337 T=1.4523051 ERROR BOUND: 2.869009E-10 MODE 004 OF 500: EV=63.8425734 T=0.7863659 ERROR BOUND: 2.591988E-10
- MODE 005 OF 500: EV=281.5259995 T=0.3744731 ERROR BOUND: 2.964100E-10
- MODE 006 OF 500: EV=302.2241281 T=0.3614226 ERROR BOUND: 2.609796E-10
- MODE 007 OF 500: EV=424.2393064 T=0.3050524 ERROR BOUND: 2.236462E-10
- MODE 008 OF 500: EV=591.4000615 T=0.2583683 ERROR BOUND: 3.168529E-10
- MODE 009 OF 500: EV=620.6329949 T=0.2522101 ERROR BOUND: 2.900720E-10
- MODE 010 OF 500: EV=760.5609188 T=0.2278310 ERROR BOUND: 2.389207E-10
- MODE 011 OF 500: EV=843.6066844 T=0.2163266 ERROR BOUND: 1.537115E-10
- MODE 012 OF 500: EV=868.4327445 T=0.2132121 ERROR BOUND: 1.662746E-10
- MODE 013 OF 500: EV=986.6735063 T=0.2000291 ERROR BOUND: 1.148746E-10
- MODE 014 OF 500: EV=995.6558903 T=0.1991247 ERROR BOUND: 1.468612E-10
- MODE 015 OF 500: EV=1162.2720070 T=0.1843003 ERROR BOUND: 2.286142E-10
- MODE 016 OF 500: EV=1188.3290005 T=0.1822685 ERROR BOUND: 1.732103E-10
- MODE 017 OF 500: EV=2200.8958827 T=0.1339307 ERROR BOUND: 5.387511E-11
- MODE 018 OF 500: EV=2627.0344577 T=0.1225877 ERROR BOUND: 4.387008E-11
- MODE 019 OF 500: EV=2728.4678980 T=0.1202875 ERROR BOUND: 5.109143E-11
- MODE 020 OF 500: EV=3005.1859572 T=0.1146157 ERROR BOUND: 5.991422E-11
- MODE 021 OF 500: EV=3161.9694919 T=0.1117380 ERROR BOUND: 6.047232E-11
- MODE 022 OF 500: EV=3401.2782757 T=0.1077355 ERROR BOUND: 5.987129E-11
- MODE 023 OF 500: EV=3511.5552778 T=0.1060303 ERROR BOUND: 4.770448E-11
- MODE 024 OF 500: EV=3676.2328478 T=0.1036283 ERROR BOUND: 7.714028E-11
- MODE 025 OF 500; EV=3884.7711507 T=0.1008085 ERROR BOUND; 3.363371E-11
- MODE 026 OF 500: EV=4064.5206014 T=0.0985542 ERROR BOUND: 3.736212E-11
- MODE 027 OF 500: EV=4231.8418769 T=0.0965862 ERROR BOUND: 2.665772E-11
- MODE 028 OF 500: EV=4317.4175127 T=0.0956242 ERROR BOUND: 1.960737E-11 - MODE 029 OF 500: EV=4397.7047711 T=0.0947473 ERROR BOUND: 2.840121E-11
- MODE 030 OF 500: EV=5001.7823234 T=0.0888418 ERROR BOUND: 2.229194E-11
- MODE 031 OF 500: EV=5072.6180477 T=0.0882193 ERROR BOUND: 2.602626E-11
- MODE 032 OF 500: EV=5085.6975265 T=0.0881058 ERROR BOUND: 2.703599E-11
- MODE 033 OF 500: EV=5388.9035537 T=0.0855913 ERROR BOUND: 2.130812E-11
- MODE 034 OF 500: EV=5461.0268123 T=0.0850242 ERROR BOUND: 2.672348E-11
- MODE 035 OF 500: EV=5637.6103046 T=0.0836821 ERROR BOUND: 1.785554E-11
- MODE 036 OF 500: EV=5713.0959329 T=0.0831274 ERROR BOUND: 1.601793E-11
- MODE 037 OF 500: EV=6068.1213910 T=0.0806590 ERROR BOUND: 1.356708E-11
- MODE 038 OF 500: EV=6178.3864741 T=0.0799360 ERROR BOUND: 1.508170E-11
- MODE 039 OF 500: EV=6276.6302625 T=0.0793079 ERROR BOUND: 1.078116E-11
- MODE 040 OF 500: EV=6400.9564334 T=0.0785339 ERROR BOUND: 1.249901E-11
- MODE 041 OF 500: EV=6640.1112312 T=0.0771067 ERROR BOUND: 1.480092E-11 - MODE 042 OF 500: EV=6769.8074839 T=0.0763645 ERROR BOUND: 1.096247E-11
- MODE 043 OF 500: EV=7008.5660457 T=0.0750525 ERROR BOUND: 7.786040E-12
- MODE 044 OF 500: EV=7068.3767388 T=0.0747343 ERROR BOUND: 1.566875E-11
- MODE 045 OF 500: EV=7209.5992383 T=0.0739987 ERROR BOUND: 1.293930E-11
- MODE 046 OF 500: EV=7297.4524389 T=0.0735520 ERROR BOUND: 1.065678E-11
- MODE 047 OF 500: EV=7717.4786786 T=0.0715224 ERROR BOUND: 8.664856E-12
- MODE 048 OF 500: EV=7784.2556346 T=0.0712150 ERROR BOUND: 9.042512E-12 - MODE 049 OF 500: EV=7914.9815710 T=0.0706244 ERROR BOUND: 1.238329E-11
- MODE 050 OF 500: EV=8147.2447318 T=0.0696105 ERROR BOUND: 8.817882E-12

APPALTATORE: ELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SYSTRA-SOTECNI S.p.A. SWS Engineering S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA **DOCUMENTO** REV. **FOGLIO** Relazione di calcolo impalcato 66 di 129 IF2R 2.2.E.ZZ CL IV.02.0.0.001 В

7.3 Analisi modale – isolatori degradati


Il degrado degli isolatori è stato modellato incrementandone la rigidezza orizzontale del 10% rispetto al valore di targa dell'isolatore nuovo (vedi ("Effetti di invecchiamento sui dispositivi di isolamento sismico: applicazione ad un viadotto ferroviario, Franco Bontempi ed altri")

L'analisi è stata effettuata considerando le prime 500 forme modali consentendo di attivare oltre l'85% della massa dell'impalcato nelle tre direzioni X, Y e Z. I risultati sono sintetizzati in forma grafica e tabellare.



Modo n° 1 – T= 1.622s – impalcato disaccoppiato in direzione trasversale

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di calcolo impalcato IF2R 2.2.E.ZZ IV.02.0.0.001 67 di 129 CL В

Modo n° 2 – T= 1.598s – impalcato disaccoppiato in direzione longitudinale

Modo n° 3 – T= 1.386s – impalcato disaccoppiato per rotazione intorno asse Z

APPALTATORE: TELESE s.c.a r.l.

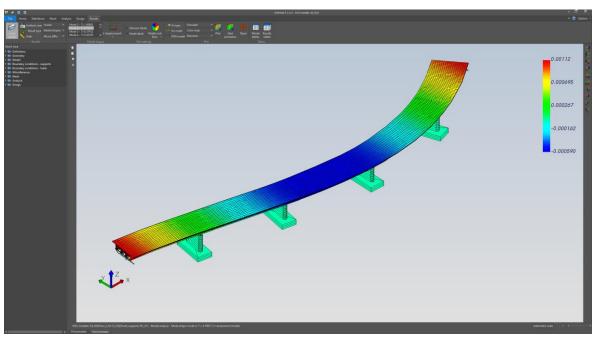
Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

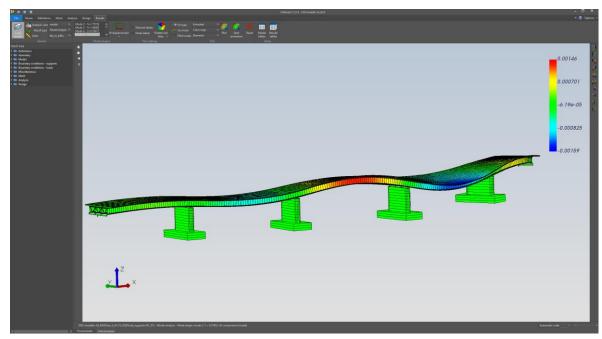
Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009


Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO


PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 IV.02.0.0.001
 B
 68 di 129

Modo n° 4 – T= 0.773s – primo modo flessionale nel piano orizzontale impalcato

Modo n° 5 – T= 0.374s – primo modo flessionale nel piano verticale impalcato

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

CODIFICA COMMESSA LOTTO **DOCUMENTO** REV. **FOGLIO** 69 di 129 IF2R 2.2.E.ZZ CL IV.02.0.0.001 В

THE CALCULATED EIGENVALUES AND PERIODS ARE:

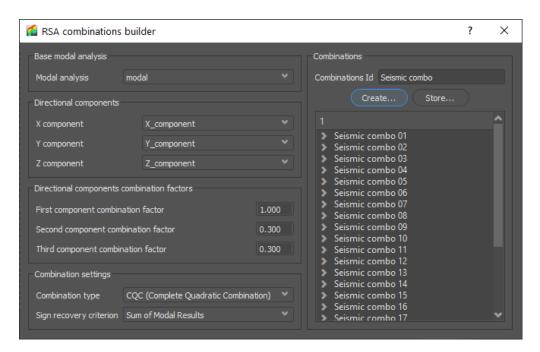
- MODE 001 OF 500: EV=15.0023322 T=1.6221854 ERROR BOUND: 3.493567E-10
 - MODE 002 OF 500: EV=15.4570086 T=1.5981485 ERROR BOUND: 3.565124E-10
 - MODE 003 OF 500: EV=20.5405360 T=1.3863535 ERROR BOUND: 3.519395E-10
 - MODE 004 OF 500: EV=66.0372789 T=0.7731883 ERROR BOUND: 3.690056E-10
 - MODE 005 OF 500: EV=281.6098180 T=0.3744174 ERROR BOUND: 3.406406E-10
 - MODE 006 OF 500: EV=304.4563959 T=0.3600952 ERROR BOUND: 2.438647E-10
 - MODE 007 OF 500: EV=424.3041976 T=0.3050291 ERROR BOUND: 4.394661E-10
 - MODE 008 OF 500: EV=591.4598305 T=0.2583552 ERROR BOUND: 2.576377E-10
 - MODE 009 OF 500: EV=620.6773672 T=0.2522011 ERROR BOUND: 2.891599E-10
 - MODE 010 OF 500: EV=760.6320526 T=0.2278204 ERROR BOUND: 2.584468E-10
 - MODE 011 OF 500: EV=843.7401752 T=0.2163095 ERROR BOUND: 2.349093E-10
 - MODE 012 OF 500: EV=868.5422916 T=0.2131986 ERROR BOUND: 2.384691E-10
 - MODE 013 OF 500: EV=987.8733534 T=0.1999076 ERROR BOUND: 1.006802E-10

 - MODE 014 OF 500: EV=996.5944680 T=0.1990310 ERROR BOUND: 1.433905E-10
 - MODE 015 OF 500: EV=1162.3828991 T=0.1842915 ERROR BOUND: 1.684066E-10
 - MODE 016 OF 500: EV=1188.5450173 T=0.1822519 ERROR BOUND: 1.906620E-10
 - MODE 017 OF 500: EV=2204.3054389 T=0.1338271 ERROR BOUND: 5.616355E-11
 - MODE 018 OF 500: EV=2628.3344689 T=0.1225574 ERROR BOUND: 3.896142E-11
 - MODE 019 OF 500: EV=2728.7402460 T=0.1202815 ERROR BOUND: 6.376230E-11
 - MODE 020 OF 500: EV=3005.3364700 T=0.1146129 ERROR BOUND: 6.499122E-11
 - MODE 021 OF 500: EV=3162.2198411 T=0.1117336 ERROR BOUND: 4.849521E-11 - MODE 022 OF 500: EV=3401.3708025 T=0.1077340 ERROR BOUND: 4.678607E-11
 - MODE 023 OF 500: EV=3511.6573566 T=0.1060288 ERROR BOUND: 4.755406E-11
 - MODE 024 OF 500: EV=3676.4776889 T=0.1036248 ERROR BOUND: 4.751314E-11
 - MODE 025 OF 500; EV=3885,3427462 T=0.1008011 ERROR BOUND: 4.583953E-11

 - MODE 026 OF 500: EV=4064.6477427 T=0.0985527 ERROR BOUND: 3.577632E-11 - MODE 027 OF 500: EV=4231.9275658 T=0.0965852 ERROR BOUND: 2.864187E-11
 - MODE 028 OF 500: EV=4318.6248865 T=0.0956108 ERROR BOUND: 1.218860E-11
 - MODE 029 OF 500: EV=4398.0979095 T=0.0947431 ERROR BOUND: 2.782362E-11
 - MODE 030 OF 500: EV=5001.8709811 T=0.0888410 ERROR BOUND: 1.906537E-11
 - MODE 031 OF 500: EV=5072.8231579 T=0.0882176 ERROR BOUND: 1.917444E-11
 - MODE 032 OF 500: EV=5085.9666907 T=0.0881035 ERROR BOUND: 1.786873E-11
 - MODE 033 OF 500: EV=5388.9672225 T=0.0855908 ERROR BOUND: 2.458514E-11
 - MODE 034 OF 500: EV=5461.1916990 T=0.0850229 ERROR BOUND: 3.548776E-11
 - MODE 035 OF 500: EV=5637.7182466 T=0.0836813 ERROR BOUND: 1.628321E-11 - MODE 036 OF 500: EV=5713.2069980 T=0.0831266 ERROR BOUND: 1.861412E-11
 - MODE 037 OF 500: EV=6068.1826039 T=0.0806586 ERROR BOUND: 1.147719E-11
 - MODE 038 OF 500: EV=6178.5409791 T=0.0799350 ERROR BOUND: 1.553973E-11
 - MODE 039 OF 500: EV=6276.7613487 T=0.0793071 ERROR BOUND: 1.405418E-11
 - MODE 040 OF 500: EV=6401.1655221 T=0.0785327 ERROR BOUND: 1.471812E-11
 - MODE 041 OF 500: EV=6640.3083674 T=0.0771056 ERROR BOUND: 1.038686E-11 MODE 042 OF 500: EV=6769.9204887 T=0.0763639 ERROR BOUND: 8.956056E-12

 - MODE 043 OF 500: EV=7010.0186318 T=0.0750447 ERROR BOUND: 7.792031E-12
 - MODE 044 OF 500: EV=7068.5556284 T=0.0747334 ERROR BOUND: 1.276256E-11 - MODE 045 OF 500: EV=7209.7413332 T=0.0739980 ERROR BOUND: 1.008350E-11
 - MODE 046 OF 500: EV=7297.6133041 T=0.0735511 ERROR BOUND: 9.968067E-12
 - MODE 047 OF 500: EV=7717.5279974 T=0.0715222 ERROR BOUND: 7.356615E-12
 - MODE 048 OF 500: EV=7784.3854172 T=0.0712144 ERROR BOUND: 9.319581E-12
 - MODE 049 OF 500: EV=7915.0321779 T=0.0706242 ERROR BOUND: 9.273433E-12 - MODE 050 OF 500: EV=8147.3004774 T=0.0696102 ERROR BOUND: 8.339064E-12

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE - SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA-SOTECNI S.p.A. SYSTRA S.A. SWS Engineering S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA **DOCUMENTO** REV. **FOGLIO** Relazione di calcolo impalcato IF2R 2.2.E.ZZ CL IV.02.0.0.001 70 di 129 В


7.4 Analisi spettrale

Il modello di calcolo è stato oggetto di tre analisi sismiche distinte per lo SLV, rispettivamente per la direzione di ingresso dell'azione sismica longitudinale, traversale e verticale; i risultati modali vengono tra loro combinati con la regola della Combinazione Quadratica Completa (CQC).

Le analisi sismiche direzionali sopra svolte vengono poi combinate tra loro con la regola

E=1.0xE1+0.3xE2+0.3xE3

ottenendo in totale 24 combinazioni d verifica SLV.

APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO
II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO

2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA IF2R LOTTO **2.2.E.ZZ**

CODIFICA CL DOCUMENTO IV.02.0.0.001

FOGLIO **71 di 129**

REV.

В

8 VERIFICHE DI DEFORMABILITÀ E CONTROMONTE

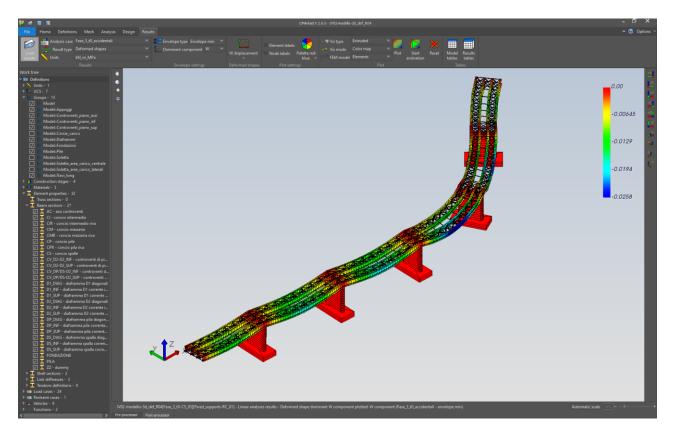
SYSTRA-SOTECNI S.p.A.

Nel presente paragrafo si riportano le verifiche di deformabilità nelle varie fasi di vita della struttura e la relativa contromonta da assegnare ai vari conci secondo quanto prescritto dalla specifica RFI DTC SI PS MA IFS 001 A.

8.1 Verifiche di deformabilità

In tutte le strutture, limitatamente agli elementi principali, si dovrà rispettare il seguente limite di deformazione sotto l'azione dei carichi accidentali di progetto incrementati dinamicamente nella combinazione caratteristica (rara) agli S.L.E.:

$$f \le \frac{L}{700}$$


Dove:

L = luce di calcolo:

f = massima freccia verticale;

La verifica di deformabilità dell'impalcato è stata effettuata valutando la freccia indotta dal carico accidentale veicolare che risulta pari a 25.8 mm, valore inferiore a 51 mm pari ad 1/700 della luce dell'impalcato. Si riporta nel seguito una rappresentazione della deformata delle travi dell'impalcato (inviluppo w minimo).

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE - SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SYSTRA-SOTECNI S.p.A. SWS Engineering S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** Relazione di calcolo impalcato 2.2.E.ZZ 72 di 129 IF2R CL IV.02.0.0.001

Carichi mobili - inviluppo w minimo: abbassamento massimo 25.8mm

8.1.1 Diagramma delle contromonte

Le strutture in acciaio, in C.A.P. e miste acciaio - calcestruzzo (ad eccezione delle strutture con travi in ferro incorporate nel cls) dovranno presentare una contromonta da determinare considerando per la totalità dei carichi permanenti e degli effetti lenti del cls, nonché per il 25% dei carichi accidentali dinamizzati.

Si dovranno valutare le deformazioni elastiche dovute ai seguenti carichi:

- Peso proprio della struttura metallica e della soletta d'impalcato (f_p);
- Peso delle opere di finitura (f_f);
- Carichi verticali da traffico (fs);
- Effetti del ritiro della soletta ed effetto viscoso (f_r).

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. SWS Engineering S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO

2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA

IF2R

LOTTO CODIFICA 2.2.E.ZZ CL

DOCUMENTO IV.02.0.0.001

REV. **FOGLIO** В

73 di 129

Dovrà essere assorbita da opportuna controfreccia di costruzione (c_f) la somma dei seguenti contributi: $c_f = f_p + f_f + f_r + 0.25 f_s = 100 + 4 + (0.25*26) + 2 \approx 112.5 \text{ mm}$

Tale controfreccia dovrà essere ottenuta di norma mediante sagomatura dell'anima all'atto del taglio delle lamiere o tramite spezzata realizzata in corrispondenza dei giunti tra conci. L'asse del giunto sarà disposto lungo il raggio dell'arco e l'apertura del varco trai conci dovrà risultare costante lungo tutta l'altezza della trave

Dovrà inoltre risultare: $f_p \le \frac{L}{300}$

TELESE s.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA IF2R

LOTTO 2.2.E.ZZ

CODIFICA CL DOCUMENTO IV.02.0.0.001

FOGLIO **74 di 129**

REV.

В

9 VERIFICHE DI RESISTENZA – TRAVE DI RIVA

Le verifiche strutturali dell'opera sono riportate nei paragrafi seguenti separate in paragrafi specifici per i singoli elementi: trave di riva; traversi; controvento superiore; controvento inferiore; apparecchi di appoggio.

Le verifiche allo SLU sono state condotte in campo elastico (sezioni di classe 4), ovvero verificando che in nessun caso nella trave e nelle barre di armatura si superi la tensione di plasticizzazione di calcolo fyd e fsd e nella soletta compressa la tensione di plasticizzazione di calcolo fcd (NTC 2008, par. 4.3.4.2.1.1). Le proprietà geometriche considerate per le sezioni sono quelle effettive anziché quelle efficaci, dal momento che nel paragrafo 12 "Verifiche di Stabilità" verrà dimostrata l'assenza di fenomeni di buckling locale di piattabande e pannelli d'anima delle travi, attraverso una analisi FEM di buckling nonlineare condotta in accordo con quanto prescritto da EN 1993-1-5 e UNI (software Plate Buckling, Dlubal).

Le tensioni risultanti sulla trave sono pari alla somma di

- tensioni dovute al peso proprio di trave+soletta, calcolate considerando la soletta non collaborante
- tensioni dovute agli altri carichi agenti, calcolate sulla sezione composta trave-soletta nel caso di momento positivo (cls soletta reagente a compressione), oppure sulla sezione trave+barre soletta nel caso di momento negativo (cls soletta non reagente a trazione)

Per quanto riguarda invece le caratteristiche geometriche e inerziali della sezione, queste vengono determinate a seconda della fase progettuale considerata e del tipo di sollecitazione. Nel caso di sezione composta soggetta a flessione positiva la larghezza efficace di soletta viene determinata secondo quanto prescritto dall'EC4 EN 1994 – 2: 2005 al § 5.4.1.2.

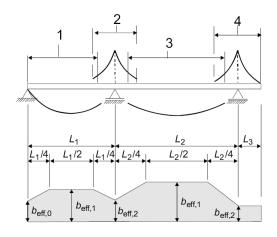
TELESE S.c.a r.l.

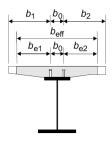
Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.


IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009


Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

CODIFICA COMMESSA LOTTO **DOCUMENTO** REV. FOGLIO IF2R 2.2.E.ZZ CL IV.02.0.0.001 75 di 129 В

Key:

1 $L_e = 0.85 L_1$ for $b_{eff,1}$

2 $L_e = 0.25(L_1 + L_2)$ for $b_{eff.2}$

3 $L_e = 0.70 L_2$ for $b_{eff,1}$

4 L_e = 2 L_3 for $b_{eff,2}$

Legenda

z=0: intradosso trave N positivo trazione

Input globale

E trave	210000	MPa
E soletta	33642.777	MPa
h soletta	250	mm
h predalles	60	mm
Copriferro barre soletta	40	mm
fyd trave	338.10	MPa
fyd barre armatura	391.30	MPa
Larghezza connettori b0	0.6	m
Semilarghezza geometrica soletta b1	1.1	m
Semilarghezza geometrica soletta b2	1.1	m
Armatura soletta zona tesa	1\psi 26/10	
Armatura soletta zona compressa	1φ16/20	

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA

LOTTO CODIFICA

DOCUMENTO REV. FOGLIO

IF2R 2.2.E.ZZ IV.02.0.0.001 76 di 129 CL В

SLU Envelope M max/min trave 9.1

	- 1											INF	PUT										\neg
			h	h	t				Camp		b eff	A	A	cree	cree	М	٧	ΔN	ΔΜ	ΔV	ΔN	ΔΜ	ΔV
sezio ne	ID.	h trave	piatt.	piatt.	anim a	A trave	zg trave	J trave	оb	Lc	solett	barre int	barre sup	P	p solett	trave fase	trave fase	trave fase	trave fase	trave fase	trave fase	trave fase	trave fase
"		tiave	inf	sup	trave	uave	uave	uave	eff		a	solett	solett	a	a	2	2	3 tO	3 t0	3 10	3 too	3 too	3 too
		mm	mm	mm	mm	m²	m	m°		m	m	cm²	cm ^e			kN'm	kN	kN	kN'm	kN			\Box
		4000							TRAVE						/min	_		_	_		_	_	
0 8.5	CS_s1_s CS_s1_e	1900	25 25	20	16 16	0.065	0.815	0.039	1	25.50 25.5	2.800	28.14	28.14	0	2	0 2967	588 166	2281	1202	320 198	-622	1152	31 -1
8.5	CMR_c1_s	1900	30	25	16	0.003	0.848	0.043	1	25.5	2.800	28.14	28.14	0	2	2967	130	2376	1250	124	-665	1183	-8
	CMR_c1_m	1900	30	25	16	0.07	0.848	0.043	1	25.5	2.800	28.14	28.14	0	2	2886	0	2758	2084	67.3	-775	1102	-63
16.5 16.5	CMR_c1_e CIR_c1_s	1900	30 35	25 20	16 20	0.07	0.848	0.043	1	25.5 25.5	2.800	28.14	28.14	0	2	1928 1928	-378 -451	2653 2472	1656 1611	-25 -265	-928 -991	873 952	-101 -130
25	CIR_c1_e	1900	35	20	20	0.081	0.817	0.048	2	16.5	2.800	148.7	148.7	0	2	-2708	-863	-335	-1414	-211	-1771	-746	-277
25	CPR_p1_s	1900	40	40	24	0.116	0.886	0.074	2	16.5	2.800	148.7	148.7	- 0	2	-2708	-896	-292	-1492	-170	-1835	-830	-280
	CPR_p1_m	1900	40	40	24	0.116	0.886	0.074	2	16.5	2.800	148.7	148.7	0	2	-7790	1098	-583	-3283	758	-2119	-1831	220
35 35	CPR_p1_e CIR_c2_s	1900	40 35	40 20	24 20	0.116	0.886	0.074	2	16.5 16.5	2.800	148.7	148.7	0	2	-3189 -3189	864 819	-146 -159	-1256 -1194	229 262	-1895 -1841	-1025 -926	205 205
43.5	CIR_c2_e	1900	35	20	20	0.081	0.817	0.048	3	25.2	2.800	28.14	28.14	ő	2	1408	333	1908	1658	183	526	485	26
43.5	CM_c2_s	1900	30	20	18	0.07	0.807	0.041	3	25.2	2.800	28.14	28.14	0	2	1408	302	2026	1550	96	550	456	21
48 52.5	CM_c2_m CM_c2_e	1900	30 30	20 20	18 18	0.07	0.807	0.041	3	25.2 25.2	2.800	28.14 28.14	28.14	0	2	2190 1805	-216	2703 3285	1950 2004	-48	575 520	456 460	7 -20
52.5	CL_c2_s	1900	35	20	20	0.078	0.775	0.041	3	25.2	2.800	28.14	28.14	0	2	1805	-285	3218	2004	-268	498	506	-10
61	CL_c2_e	1900	35	20	20	0.078	0.775	0.044	4	15.5	2.800	148.7	148.7	0	2	-2037	-728	-314	-1410	-261	-1678	-648	-151
61	CP_p2_s	1900	40	30	24	0.108	0.815	0.066	4	15.5	2.800	148.7	148.7	0	2	-2037	-773	-300	-1455	-226	-1740	-673	-159
66 71	CP_p2_m CP_p2_e	1900	40 40	30 30	24 24	0.108	0.815	0.066	4	15.5 15.5	2.800	148.7 148.7	148.7 148.7	0	2	-6280 -2179	996 736	-1311 -291	-3192 -1356	757 245	-1499 -1727	-1430 -627	283 175
71	CL_c3_s	1900	35	20	20	0.078	0.775	0.044	3	25.2	2.800	148.7	148.7	ő	2	-2179	695	-296	-1355	277	-1665	-590	166
79.5	CL_c3_e	1900	35	20	20	0.078	0.775	0.044	3	25.2	2.800	28.14	28.14	0	2	1152	216	2753	1595	196	-1192	585	23
79.5 84	CM_c3_s	1900	30 30	20 20	18	0.07	0.807	0.041	3	25.2	2.800	28.14	28.14	0	2	1152	179	2857	1613	101	-1165 -1095	517 488	13 -45
88.5	CM_c3_m CM_c3_e	1900	30	20	18 18	0.07	0.807	0.041	3	25.2 25.2	2.800	28.14	28.14	0	2	1415 475.2	-35 -307	3115 2928	1819 1635	-59	-1179	500	-45
88.5	CL_c3_s	1900	35	20	20	0.078	0.775	0.044	3	25.2	2.800	28.14	28.14	Ö	2	475.2	-345	2839	1620	-154	-1183	536	-28
97	CL_o3_e	1900	35	20	20	0.078	0.775	0.044	3	25.2	2.800	148.7	148.7	0	2	-3849	-816	-1163	-1732	-269	-1309	-644	-215
97 102	CP_p3_s CP_p3_m	1900	40 40	30 30	24 24	0.108	0.815	0.066	4	15.5 15.5	2.800	148.7	148.7	0	2	-3849 -8411	-860 1107	-1142 -1770	-1830 -3749	-240 853	-1343 -925	-638 -1534	-227 301
107	CP_p3_e	1900	40	30	24	0.108	0.815	0.066	4	15.5	2.800	148.7	148.7	Ö	2	-2641	962	-712	-1473	283	-1419	-631	135
107	CL_c4_s	1900	35	20	20	0.078	0.775	0.044	3	15.5	2.800	148.7	148.7	0	2	-2641	923	-724	-1453	279	-1330	-600	220
115.5 115.5	CL_c4_e CM_c4_s	1900	35 35	20 20	20 18	0.078	0.775	0.044	3	25.2 25.2	2.800	28.14 28.14	28.14	0	2	789.8 789.8	429 388	3072 3238	1855 1820	382 99	-1141 -1134	610 569	35 24
120	CM_c4_s	1900	35	20	18	0.074	0.766	0.043	3	25.2	2.800	28.14	28.14	0	2	2210	-23	3481	1980	-222	-1046	577	-39
124.5	CM_c4_e	1900	35	20	18	0.074	0.766	0.043	3	25.2	2.800	28.14	28.14	0	2	1023	-214	3323	1901	-118	-1099	619	-1
124.5	CL_c4_s	1900	35	20	20	0.078	0.775	0.044	3	25.2	2.800	28.14	28.14	0	2	1023	-258	3064	2329	-552	-1102	657	-12
133	CL_c4_e CP_p4_s	1900	35 40	20 30	20 24	0.078	0.775	0.044	4	15.5 15.5	2.800	148.7 148.7	148.7 148.7	0	2	-1245 -1245	-846 -894	-1047 -1037	-1490 -1546	-283 -236	-874 -657	-1075 -1354	-235 -252
138	CP_p4_m	1900	40	30	24	0.108	0.815	0.066	4	15.5	2.800	148.7	148.7	0	2	-6840	967	-1951	-3696	813	-700	-1538	278
143	CP_p4_e	1900	40	30	24	0.108	0.815	0.066	4	15.5	2.800	148.7	148.7	0	2	-1883	908	-1058	-1740	227	-698	-1336	240
143 151.5	CL_c5_s CL_c5_e	1900	35 35	20 20	20 20	0.078	0.775	0.044	4	15.5 25.2	2.800	148.7 28.14	148.7 28.14	0	2	-1883 1058	864 103	-1068 3331	-1684 1954	279 193	-902 434	-1026 556	224 -2
151.5	CM_c5_s	1900	35	20	18	0.076	0.766	0.044	3	25.2	2.800	28.14	28.14	0	2	1058	66	3419	1909	-28	503	516	-12
156	CM_c5_m	1900	35	20	18	0.074	0.766	0.043	3	25.2	2.800	28.14	28.14	0	2	1585	-110	2987	2047	-70	588	493	26
	CM_c5_e	1900	35	20	18	0.074	0.766	0.043	3	25.2	2.800	28.14	28.14	0	2	152.6	-453	2431	1722	-49	538	496	-33
160.5 169	CIR_c5_s CIR_c5_e	1900	35 35	20 20	20 20	0.081	0.817	0.048	3	25.2 16.5	2.800	28.14 148.7	28.14 148.7	0	2	152.6 -4770	-496 -979	2375 -183	1587 -2878	-405 -314	514 -1710	514 -877	-52 -170
	CPR_p5_s	1900	40	40	24	0.116	0.886	0.074	2	16.5	2.8	148.7	148.7	0	2	-4770	-1025	-195	-3031	-287	-1730	-1006	-176
174	CPR_p5_m	1900	40	40	24	0.116	0.886	0.074	2	16.5	2.8	148.7	148.7	0	2	-9665	-1107	-952	-3871	-1279	-1990	-1662	262
	CPR_p5_e	1900	40 35	40 20	24 20	0.116	0.886	0.074	2	16.5 16.5	2.8	148.7	148.7	0	2	-3811 -3811	964 928	-448 -500	-1835	206 244	-1747	-764 -695	256 253
	CIR_c6_s CIR_c6_e	1900	35	20	20	0.081	0.817	0.048	2	25.5	2.8	148.7 28.14	148.7 28.14	0	2	1665	399	2748	-1720 1700	151	-1686 -929	1019	106
187.5	CMR_c6_s	1900	30	25	16	0.07	0.848	0.043	1	25.5	2.8	28.14	28.14	0	2	1665	363	2806	1748	32	-875	944	81
	CMR_c6_m	1900	30	25	16	0.07	0.848	0.043	1	25.5	2.8	28.14	28.14	0	2	2132	0	2463	1695	-52	-725	1137	29
195.5	CMR_c6_e CS_s2_s	1900	30 25	25 20	16 16	0.07	0.848	0.043	1	25.5 25.5	2.8	28.14	28.14	0	2	2808 2808	-87 -118	2323	1053	-132 -203	-679 -639	1159	-2
204	CS_s2_e	1900	25	20	16	0.065	0.815	0.039	1	25.5	2.8	28.14	28.14	0	2	0	-554	0	0	-382	0	0	-17
			-		-	-					-	-	-	-	-					-	-		

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA

DOCUMENTO F

REV. FOGLIO

IF2R 2.2.E.ZZ CL IV.02.0.0.001 B 77 di 129

				LOLOILE	THORIE OF			ASE 3 tO	CARATTI		OLO.IL.	TOTIL GEE			
sezio ne	ID	coeff. omog. soletta	A soletta omog.	zg soletta omog.	J soletta omog.	A sezione compost a fase 3	zg sezione compost a fase 3	J sezione compost a fase 3	coeff. omog. soletta	A soletta omog.	zg soletta omog.	J soletta omog.	A sezione compost a fase 3	zg sezione compost a fase 3	J sezione compost a fase 3
			m²	m	m ⁴	m²	m	m ⁴		m²	m	m ⁴	m²	m	m ⁴
٥	CS_st_s	0.1602	0.0056	2.0850	0.0000	0.0708	0.9159	0.0470	0.0534	0.0056	2.0850	0.0000	0.0708	0.9159	0.0470
8.5 8.5	CS_s1_e CMR_c1_s	0.1602 0.1602	0.1178 0.1178	2.0850 2.0850	0.0000	0.1830 0.1875	1.6325 1.6247	0.1063 0.1100	0.0534 0.0534	0.0430 0.0430	2.0850 2.0850	0.0000	0.1082 0.1128	1.3199 1.3196	0.0804 0.0837
12.5	CMR_c1_m	0.1602	0.1178	2.0850	0.0000	0.1875	1.6247	0.1100	0.0534	0.0430	2.0850	0.0000	0.1128	1.3196	0.0837
16.5	CMR_c1_e	0.1602	0.1178	2.0850	0.0000	0.1875	1.6247	0.1100	0.0534	0.0430	2.0850	0.0000	0.1128	1.3196	0.0837
16.5	CIR_c1_s	0.1602	0.1178	2.0850	0.0000	0.1987	1.5685	0.1247	0.0534	0.0430	2.0850	0.0000	0.1239	1.2569	0.0927
25	CIR_c1_e	0.1602	0.0297	2.0850	0.0008	0.1106	1.1575	0.0833	0.0534	0.0297	2.0850	0.0004	0.1106	1.1575	0.0829
25	CPR_p1_s	0.1602	0.0297	2.0850	0.0008	0.1454	1.1309	0.1087	0.0534	0.0297	2.0850	0.0004	0.1454	1.1309	0.1083
30 35	CPR_p1_m	0.1602	0.0297 0.0297	2.0850	0.0008	0.1454 0.1454	1.1309	0.1087	0.0534 0.0534	0.0297 0.0297	2.0850	0.0004	0.1454 0.1454	1.1309 1.1309	0.1083
35	CPR_p1_e CIR_c2_s	0.1602 0.1602	0.0237	2.0850 2.0850	0.0008	0.1454	1.1309 1.1575	0.1087 0.0833	0.0534	0.0237	2.0850 2.0850	0.0004	0.1454	1.1575	0.1083 0.0829
43.5	CIR_c2_e	0.1602	0.0231	2.0850	0.0006	0.1987	1.5685	0.1253	0.0534	0.0231	2.0850	0.0004	0.1239	1.2569	0.0023
43.5	CM_c2_s	0.1602	0.1178	2.0850	0.0006	0.1881	1.6073	0.1131	0.0534	0.0430	2.0850	0.0002	0.1133	1.2921	0.0843
48	CM_c2_m	0.1602	0.1178	2.0850	0.0000	0.1881	1.6073	0.1125	0.0534	0.0430	2.0850	0.0000	0.1133	1.2921	0.0842
52.5	CM_c2_e	0.1602	0.1178	2.0850	0.0006	0.1881	1.6073	0.1131	0.0534	0.0430	2.0850	0.0002	0.1133	1.2921	0.0843
52.5	CL_c2_s	0.1602	0.1178	2.0850	0.0006	0.1957	1.5636	0.1250	0.0534	0.0430	2.0850	0.0002	0.1209	1.2411	0.0917
61	CL_c2_e	0.1602	0.0297	2.0850	0.0008	0.1076	1.1371	0.0816	0.0534	0.0297	2.0850	0.0004	0.1076	1.1371	0.0813
61 66	CP_p2_s	0.1602 0.1602	0.0297 0.0297	2.0850 2.0850	0.0008	0.1377 0.1377	1.0896 1.0896	0.1043 0.1043	0.0534 0.0534	0.0297 0.0297	2.0850 2.0850	0.0004 0.0004	0.1377 0.1377	1.0896 1.0896	0.1039 0.1039
71	CP_p2_m CP_p2_e	0.1602	0.0237	2.0850	0.0008	0.1377	1.0896	0.1043	0.0534	0.0237	2.0850	0.0004	0.1377	1.0896	0.1033
71	CL_c3_s	0.1602	0.0297	2.0850	0.0008	0.1076	1.1371	0.0816	0.0534	0.0297	2.0850	0.0004	0.1076	1.1371	0.0813
79.5	CL_c3_e	0.1602	0.1178	2.0850	0.0006	0.1957	1.5636	0.1250	0.0534	0.0430	2.0850	0.0002	0.1209	1.2411	0.0917
79.5	CM_c3_s	0.1602	0.1178	2.0850	0.0006	0.1881	1.6073	0.1131	0.0534	0.0430	2.0850	0.0002	0.1133	1.2921	0.0843
84	CM_c3_m	0.1602	0.1178	2.0850	0.0006	0.1881	1.6073	0.1131	0.0534	0.0430	2.0850	0.0002	0.1133	1.2921	0.0843
88.5	CM_c3_e	0.1602	0.1178	2.0850	0.0006	0.1881	1.6073	0.1131	0.0534	0.0430	2.0850	0.0002	0.1133	1.2921	0.0843
88.5 97	CL_o3_s	0.1602 0.1602	0.1178 0.0297	2.0850	0.0006	0.1957 0.1076	1.5636 1.1371	0.1250 0.0816	0.0534 0.0534	0.0430 0.0297	2.0850 2.0850	0.0002 0.0004	0.1209 0.1076	1.2411 1.1371	0.0917 0.0813
97	CL_o3_e CP_p3_s	0.1602	0.0237	2.0850 2.0850	0.0008	0.1076	1.0896	0.1043	0.0534	0.0237	2.0850	0.0004	0.1076	1.0896	0.1039
102	CP_p3_m	0.1602	0.0297	2.0850	0.0008	0.1377	1.0896	0.1043	0.0534	0.0297	2.0850	0.0004	0.1377	1.0896	0.1033
107	CP_p3_e	0.1602	0.0297	2.0850	0.0008	0.1377	1.0896	0.1043	0.0534	0.0297	2.0850	0.0004	0.1377	1.0896	0.1039
107	CL_c4_s	0.1602	0.0297	2.0850	0.0008	0.1076	1.1371	0.0816	0.0534	0.0297	2.0850	0.0004	0.1076	1.1371	0.0813
115.5	CL_c4_e	0.1602	0.1178	2.0850	0.0006	0.1957	1.5636	0.1250	0.0534	0.0430	2.0850	0.0002	0.1209	1.2411	0.0917
115.5	CM_c4_s	0.1602	0.1178	2.0850	0.0006	0.1920	1.5752	0.1226	0.0534	0.0430	2.0850	0.0002	0.1172	1.2501	0.0903
120 124.5	CM_c4_m CM_c4_e	0.1602 0.1602	0.1178 0.1178	2.0850 2.0850	0.0000	0.1920 0.1920	1.5752 1.5752	0.1220 0.1226	0.0534 0.0534	0.0430 0.0430	2.0850 2.0850	0.0000 0.0002	0.1172 0.1172	1.2501 1.2501	0.0902
124.5	Cl_c4_e	0.1602	0.1178	2.0850	0.0006	0.1320	1.5636	0.1250	0.0534	0.0430	2.0850	0.0002	0.1209	1.2301	0.0303
133	CLc4_e	0.1602	0.0297	2.0850	0.0002	0.1076	1.1371	0.0811	0.0534	0.0297	2.0850	0.0002	0.1076	1.1371	0.0811
133	CP_p4_s	0.1602	0.0297	2.0850	0.0002	0.1377	1.0896	0.1037	0.0534	0.0297	2.0850	0.0002	0.1377	1.0896	0.1037
138	CP_p4_m	0.1602	0.0297	2.0850	0.0008	0.1377	1.0896	0.1043	0.0534	0.0297	2.0850	0.0004	0.1377	1.0896	0.1039
143	CP_p4_e	0.1602	0.0297	2.0850	0.0008	0.1377	1.0896	0.1043	0.0534	0.0297	2.0850	0.0004	0.1377	1.0896	0.1039
143	CL_c5_s	0.1602	0.0297	2.0850	0.0008	0.1076	1.1371	0.0816	0.0534	0.0297	2.0850	0.0004	0.1076	1.1371	0.0813
151.5 151.5	CL_o5_e CM_o5_s	0.1602 0.1602	0.1178 0.1178	2.0850 2.0850	0.0006	0.1957 0.1920	1.5636 1.5752	0.1250 0.1226	0.0534 0.0534	0.0430 0.0430	2.0850 2.0850	0.0002	0.1209 0.1172	1.2411 1.2501	0.0917
156	CM_c5_m	0.1602	0.1178	2.0850	0.0006	0.1920	1.5752	0.1226	0.0534	0.0430	2.0850	0.0002	0.1172	1.2501	0.0303
160.5	CM_c5_e	0.1602	0.1178	2.0850	0.0006	0.1920	1.5752	0.1226	0.0534	0.0430	2.0850	0.0002	0.1172	1.2501	0.0303
160.5	CIR_c5_s	0.1602	0.1178	2.0850	0.0006	0.1987	1.5685	0.1253	0.0534	0.0430	2.0850	0.0002	0.1239	1.2569	0.0929
169	CIR_c5_e	0.1602	0.0297	2.0850	0.0008	0.1106	1.1575	0.0833	0.0534	0.0297	2.0850	0.0004	0.1106	1.1575	0.0829
169	CPR_p5_s	0.1602	0.0297	2.0850	0.0008	0.1454	1.1309	0.1087	0.0534	0.0297	2.0850	0.0004	0.1454	1.1309	0.1083
174	CPR_p5_m	0.1602	0.0297	2.0850	0.0008	0.1454	1.1309	0.1087	0.0534	0.0297	2.0850	0.0004	0.1454	1.1309	0.1083
179 179	CPR_p5_e CIR_c6_s	0.1602 0.1602	0.0297 0.0297	2.0850 2.0850	0.0008	0.1454 0.1106	1.1309 1.1575	0.1087 0.0833	0.0534 0.0534	0.0297 0.0297	2.0850 2.0850	0.0004 0.0004	0.1454 0.1106	1.1309 1.1575	0.1083 0.0829
187.5	CIR_c6_e	0.1602	0.0297	2.0850	0.0008	0.1987	1.5685	0.0833	0.0534	0.0297	2.0850	0.0004	0.106	1.2569	0.0829
	CMR_c6_s	0.1602	0.1178	2.0850	0.0006	0.1307	1.6247	0.1253	0.0534	0.0430	2.0850	0.0002	0.1233	1,3196	0.0323
	CMR_c6_m	0.1602	0.1178	2.0850	0.0000	0.1875	1.6247	0.1100	0.0534	0.0430	2.0850	0.0002	0.1128	1.3136	0.0837
	CMR_c6_e	0.1602	0.1178	2.0850	0.0000	0.1875	1.6247	0.1100	0.0534	0.0430	2.0850	0.0000	0.1128	1.3196	0.0837
195.5	CS_s2_s	0.1602	0.1178	2.0850	0.0000	0.1830	1.6325	0.1063	0.0534	0.0430	2.0850	0.0000	0.1082	1.3199	0.0804
204	CS_s2_e	0.1602	0.0056	2.0850	0.0000	0.0708	0.9159	0.0470	0.0534	0.0056	2.0850	0.0000	0.0708	0.9159	0.0470

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA

IF2R 2.2.E.ZZ CL IV.02.0.0.001 B 78 di 129

DOCUMENTO

REV.

FOGLIO

SOLI ECITAZIONI SEZIONE SOLI ECITAZIONI SEZIONE TENSIONI TRAVE E BARRE SOLETTA COMPOSTA FASE 3 to COMPOSTA FASE 3 too ΛΗ ٨N ΔN Λ ΔΝ ΔΜ G_x soletta soletta ezio sezione sezione sezione sezione barre estrado: intrados ID soletta soletta intrados estrado anima composi ne composi composi fase 3 fase 3 compost uperior 50 so fase 3 tO fase 3 tO so trave so trave trave too kN piattaba MPa piattaba MPa a fase 3 a fase 3 too a fase 3 a fase 3 soletta MPa kN'm MPa MPa CS_s1_s 85 CS -2281.0 12.230 8.333 8.5 CS_s1_e 8.5 CMR_c1_s 13 0.0 4099.8 622.0 ΠN 131 598 -96.372 | -24.569 | 130 331 | 96 331 -2376.0 1.2 4190.5 665.0 11 361.4 -24.442 0.0 0.0 12.5 CMR_c1_m -85.531 -28.715 -2758.0 2.0 1.6 0.0 5497.9 775.0 1.0 0.0 144.2 140.489 0.146 16.5 CMR_c1_e 0.0 4940.1 928.0 0.8 -274.3 106,715 -2472.0 335.0 16.5 CIR_c1_s 991.0 1771.0 0.0 -22.927 94.801 66.193 -36.612 127.180 120.865 25 CIR_c1_e 0.0 -1862.6 -12.5 0.0 2998.8 -114.285 105.203 59.261 CPR_p1_s 92.0 1835.0 -9.0 0.0 0.0 30 CPR_p1_m -4017.2 2119 N -19.8 -11.1 -180.974 | 166.520 | 80 455 192,182 CPR_p1_e 146.0 77.474 -13.6 98.763 0.0 -1445.0 0.0 3303.4 -87.770 35 CIR_o2_s 43.5 CIR_o2_e -15.6 0.0 -1908 O 4099.9 1154.6 55,607 ΠN 64 ΠN 91 134 -50 941 | -31 027 | 14 688 92 101 43.5 CM_c2_s -550.0 4163.1 0.0 1161.6 23.9 0.0 -2026.0 8 CM_c2_m 2.5 CM_c2_e 48 -2703.0 ΠN 5406.7 -575.0 0.5 0.0 1191.3 139 153 -81.727 -39.478 0.480 135,668 79 406 52.5 CL_c2_s -3218.0 498.0 7.2 -11.8 -71.490 61 CLc2e 61 CP_p2s 66 CP_p2m 71 CP_p2e 71 CLc3s 79.5 CLc3e 314.0 -2851.8 -2886.5 96.192 59.615 0.0 -1846.8 1678.0 0.0 -101.580 -30.894 111.602 108.260 -17.6 0.0 0.0 1311.0 ΛN -4895.1 1499.0 -17.3 0.0 -3342.2 -163.921 167.524 85.488 46,357 176,290 181.067 291.0 296.0 -2753.0 71.445 47.421 26.321 84.970 -16.4 0.0 -1742.0 1727.0 -7.6 0.0 -1767.4 1665.0 -101.919 -10.7 72.503 | -36.555 | -15.490 | 0.0 1192.0 0.0 11.789 73.392 | 40.872 -2857.0 -3115.0 79.5 CM_c3_s -37.767 -16.243 -46.695 -19.552 0.0 8.0 0.0 84 CM_c3_m 88.5 CM_c3_e 28.0 25.2 0.0 1095.0 0.0 -908.6 97.109 94 891 | 45 292 0.0 0.0 1179.0 1183.0 65.161 5361.2 -3286.9 -19.338 -15.777 151.461 71.640 88.5 CL_c3_s 7.6 -11.7 -1010.6 -14.282 65.161 -35.230 153.909 1163.0 CL_c3_e 97 | CLo3_e 97 | CP_p3_s 102 | CP_p3_m 107 | CP_p3_e 107 | CLo4_s 115.5 | CLo4_e 115.5 | CM_c4_s 120 | CM_c4_s 0.0 1309.0 0.0 2364.5 160.383 1142.0 1770.0 -45.5 ΠN -6041.4 925 N -18.6 ΠN -2718 O -195.713 | 206.638 | 90.873 51 480 | 207 390 | 219 237 712.0 -17.9 1419.0 81.105 50.165 31.421 -2395.3 -2428.1 5905.2 0.0 0.0 -2436.7 724.0 -3072.0 -3238.0 -113,269 0.0 1330.0 -10.9 0.0 -2347.6 112.341 60.560 38.537 75.885 -29.786 -19.727 80.000 -30.513 -20.285 113.369 -70.329 -23.868 26.4 1141.0 0.0 8.3 0.5 -3481.0 -8.552 110.978 69.981 120 CM_c4_m 1.9 0.0 6572.7 1046.0 0.0 -801.9 124.5 CM_c4_e 27.8 1099.0 0.0 -827.0 0.0 124.5 CL_o4_s 133 CL_o4_e -3064.0 6374.9 1102.0 -37.736 -23.002 79.811 64.908 -22.276 93.267 53.000 -36.965 110.637 100.902 1047.0 874.0 -5.3 -93.421 0.0 -2868.9 0.0 133 CP_p4_s 138 CP_p4_m 143 CP_p4_e 143 CL_c5_s 151.5 CL_c5_e 60.051 52.736 -31.466 179.961 89.770 46.858 1951.0 -44 8 ΠN -6217.6 700 O -18 7 ΠN -2436.4 -175 172 186 303 1058.0 -21.1 72.538 55.367 98.125 67.567 93.316 88.6 0.0 -3104.2 698.0 0.0 -2230.6 -2217.0 1068.0 -30.6 0.0 -3113.2 902.0 -18.7 0.0 -107 617 37.046 122.055 115.436 151.5 CM_c5_s -3419.0 6445.5 -503.0 1182.2 118.169 156 CM_c5_m -2987.0 29.9 0.0 6016.3 -588.0 0.0 1271.2 123.320 | -67.120 | -42.142 | -4.637 120.080 | 65.609 0.0 0.0 -23.790 -33.664 160.5 CIR_c5_s 375 O 20.9 ΠN 4620.8 -514 N 6.8 0.0 1168.5 76.268 86.834 50 180 -168.489 164.250 174.801 169 CIR_c5_e 183.0 1710.0 -14.1 -39.648 176.285 -48.4 0.0 0.0 169 CPR_p5_s 174 CPR_p5_m -123.743 110.755 195.0 -32.8 -41.9 1730.0 -10.9 0.0 61.144 952.0 -210.868 197.309 87.262 -4057.9 0.0 -18.0 0.0 179 CPR_p5_e 448.0 -100.493 0.0 0.0 179 CIR_c6_s -138.248 | 133.563 | 63.642 500.0 -28.9 0.0 1686.0 -11 7 0.0 38.618 149.088 146.8 187.5 CIR_c6_e -2748.0 0.0 91.716 -50.664 -23.487 0.0 CMR_c6_s 187.5 107.843 -52.949 · 115.978 -65.812 · 13.7 191.5 CMR_c6_r 4744.2 0.0 241.1 -0.779 113.115 63.435 -2463.0 1.6 0.0 725.0 11 195.5 CMR_c6_e 195.5 CS s 14 ΠN 4217.5 639.0 ΠN -10 883 | 127 844 | 91 5 -32.109 55.615 55.615 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.000 0.000 0.000

TELESE S.c.a r.l.

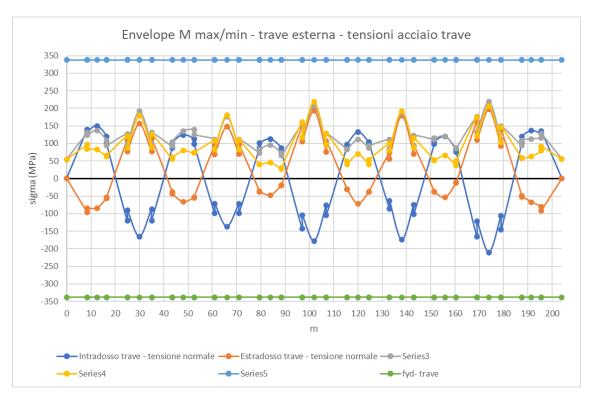
Consorzio Telese Società Consortile a Responsabilità Limitata

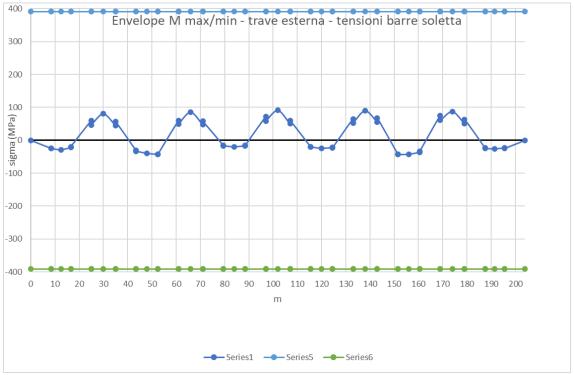
PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009


Relazione di calcolo impalcato


ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 IV.02.0.0.001
 B
 79 di 129

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA

DOCUMENTO

REV. FOGLIO

IF2R 2.2.E.ZZ IV.02.0.0.001 80 di 129 CL В

9.2 SLU Envelope N max/min trave

												INF	TUT										
			h	h	t	١.			Camp		b eff	. А	. А	cree	cree	М	٧	ΔN	ΔМ	ΔV	ΔN	ΔΜ	Δ٧
sezio ne	ID	h trave	piatt.	piatt.	anim a	A trave	zg trave	J trave	оb	Lc	solett	barre int	barre sup	p solett	p solett	trave fase	trave fase	trave fase	trave fase	trave fase	trave fase	trave fase	trave fase
			inf	sup	trave				eff		a	solett	solett	a	а	2	2	3 tO	3 tO	3 tO	3 too	3 too	3 too
		mm	mm	mm	mm	m"	m	m ⁴		m	m	cm ^e	cm"			kN'm	kN	kN	kN'm	kN			<u> </u>
	CS_s1_s	1900	25	20	16	0.065	0.815	0.039	TRAVE	25.5	2.800	28.14	zelope 28.14	N maxi	min 2	0	588	0	0	461	0	0	21
8.5	CS_s1_e	1900	25	20	16	0.065	0.815	0.039	i	25.5	2.800	28.14	28.14	0	2	2967	166	3162	1015	278	-783	960	-41
8.5	CMR_c1_s	1900	30	25	16	0.07	0.848	0.043	1	25.5	2.800	28.14	28.14	0	2	2967	130	3309	1022	284	-839	992	-47
12.5 16.5	CMR_c1_m CMR_c1_e	1900	30 30	25 25	16 16	0.07	0.848	0.043	1	25.5 25.5	2.800	28.14 28.14	28.14 28.14	0	2	2886 1928	-378	3857 3948	2074 1875	140 -30	-1053 -1273	791 448	-103 -142
16.5	CIR_o1_s	1900	35	20	20	0.081	0.817	0.048	1	25.5	2.800	28.14	28.14	ő	2	1928	-451	3700	1808	-192	-1349	548	-180
25	CIR_c1_e	1900	35	20	20	0.081	0.817	0.048	2	16.5	2.800	148.7	148.7	0	2	-2708	-863	-776	-1245	-124	-1771	-757	-277
25 30	CPR_p1_s CPR_p1_m	1900	40 40	40 40	24 24	0.116	0.886	0.074	2	16.5 16.5	2.800	148.7 148.7	148.7 148.7	0	2	-2708 -7790	-896 1098	-449 -527	-1795 -1829	-236 410	-1895 -2119	-952 -1927	-287 221
35	CPR_p1_e	1900	40	40	24	0.116	0.886	0.074	2	16.5	2.800	148.7	148.7	0	2	-3189	864	-322	-983	201	-1895	-1043	205
35	CIR_c2_s	1900	35	20	20	0.081	0.817	0.048	2	16.5	2.800	148.7	148.7	0	2	-3189	819	-328	-949	172	-1841	-926	205
43.5 43.5	CIR_c2_e CM_c2_s	1900	35 30	20 20	20 18	0.081	0.817	0.048	3	25.2 25.2	2.800	28.14	28.14	0	2	1408 1408	333 302	4041 4106	1858 1907	107 42	-1607 -1530	175 97	110 78
48	CM_c2_m	1900	30	20	18	0.07	0.807	0.041	3	25.2	2.800	28.14	28.14	0	2	2190	0	4257	1989	-34	-1446	207	-13
52.5	CM_c2_e	1900	30	20	18	0.07	0.807	0.041	3	25.2	2.800	28.14	28.14	0	2	1805	-216	4166	1934	-104	-1501	111	-55
52.5 61	CL_c2_s CL_c2_e	1900	35 35	20 20	20	0.078	0.775	0.044	3 4	25.2 15.5	2.800	28.14 148.7	28.14 148.7	0	2	1805 -2037	-285 -728	4110 -401	1871 -1066	-69 -162	-1546 -1678	204 -660	-68 -151
61	CP_p2_s	1900	40	30	24	0.076	0.715	0.066	4	15.5	2.800	148.7	148.7	0	2	-2037	-773	-399	-1000	-208	-1740	-681	-159
66	CP_p2_m	1900	40	30	24	0.108	0.815	0.066	4	15.5	2.800	148.7	148.7	0	2	-6280	996	-643	-1130	304	-1925	-1267	199
71	CP_p2_e	1900	40	30	24	0.108	0.815	0.066	4	15.5	2.800	148.7	148.7	0	2	-2179	736	-394	-1036	222	-1727	-601	175
71 79.5	CL_c3_s CL_c3_e	1900	35 35	20 20	20	0.078	0.775	0.044	3	25.2 25.2	2.800	148.7 28.14	148.7 28.14	0	2	-2179 1152	695 216	-387 4049	-1028 1826	184 145	-1665 -1471	-590 281	166 75
79.5	CM_c3_s	1900	30	20	18	0.07	0.807	0.041	3	25.2	2.800	28.14	28.14	Ö	2	1152	179	4130	1901	58	-1427	196	61
84	CM_c3_m	1900	30	20	18	0.07	0.807	0.041	3	25.2	2.800	28.14	28.14	0	2	1415	-35	4273	1976	-44	-1351	298	-29
88.5 88.5	CM_c3_e CL_c3_s	1900	30 35	20 20	18 20	0.07	0.807 0.775	0.041	3	25.2 25.2	2.800	28.14	28.14	0	2	475.2 475.2	-307 -345	4177 4103	1883 1846	-106 -107	-1435 -1455	184 237	-66 -83
97	CL_c3_e	1900	35	20	20	0.078	0.775	0.044	3	25.2	2.800	148.7	148.7	0	2	-3849	-816	-637	-1754	-268	-1636	-576	-150
97	CP_p3_s	1900	40	30	24	0.108	0.815	0.066	4	15.5	2.800	148.7	148.7	0	2	-3849	-860	-620	-1814	-326	-1685	-610	-158
102 107	CP_p3_m CP_p3_e	1900	40 40	30 30	24 24	0.108	0.815	0.066	4	15.5 15.5	2.800	148.7	148.7 148.7	0	2	-8411 -2641	1107 962	-1150 -295	-2290 -1104	798 243	-1742 -1580	-1074 -624	99 120
107	CL_c4_s	1900	35	20	20	0.078	0.775	0.044	3	15.5	2.800	148.7	148.7	0	2	-2641	923	-292	-1098	206	-1557	-573	111
115.5	CL_c4_e	1900	35	20	20	0.078	0.775	0.044	3	25.2	2.800	28.14	28.14	0	2	789.8	429	4402	2093	191	-1440	297	86
115.5	CM_c4_s	1900	35	20	18	0.074	0.766	0.043	3	25.2	2.800	28.14	28.14	0	2	789.8	388	4561	2108	180	-1420	237	75
120 124.5	CM_c4_m CM_c4_e	1900	35 35	20 20	18 18	0.074	0.766	0.043	3	25.2 25.2	2.800	28.14	28.14	0	2	2210 1023	-23 -214	4688 4568	2432 2139	-131 -90	-1307 -1356	390 318	-24 -50
124.5	CL_c4_s	1900	35	20	20	0.078	0.775	0.044	3	25.2	2.800	28.14	28.14	ō	2	1023	-258	4354	2514	-430	-1375	376	-62
133	CL_c4_e	1900	35	20	20	0.078	0.775	0.044	4	15.5	2.800	148.7	148.7	0	2	-1245	-846	-613	-1613	-297	-1421	-234	-78
133 138	CP_p4_s CP_p4_m	1900	40 40	30 30	24 24	0.108	0.815	0.066	4	15.5 15.5	2.800	148.7 148.7	148.7 148.7	0	2	-1245 -6840	-894 967	-604 -1632	-1653 -3995	-350 835	-1459 -1573	-243 -464	-90 5
143	CP_p4_e	1900	40	30	24	0.108	0.815	0.066	4	15.5	2.800	148.7	148.7	Ö	2	-1883	908	-618	-1833	365	-1537	-348	82
143	CL_c5_s	1900	35	20	20	0.078	0.775	0.044	4	15.5	2.800	148.7	148.7	0	2	-1883	864	-616	-1801	302	-1504	-324	73
151.5 151.5	CL_c5_e CM_c5_s	1900	35 35	20 20	20 18	0.078	0.775	0.044	3	25.2 25.2	2.800	28.14	28.14	0	2	1058 1058	103 66	4638 4746	2085 2184	109 87	-1455 -1438	275 212	51 41
156	CM_c5_m	1900	35	20	18	0.074	0.766	0.043	3	25.2	2.800	28.14	28.14	0	2	1585	-110	4950	2240	43	-1403	263	-3
	CM_c5_e	1900	35	20	18	0.074	0.766	0.043	3	25.2	2.800	28.14	28.14	0	2	152.6	-453	4527	2092	-108	-1501	121	-94
160.5 169	CIR_c5_s	1900	35 35	20 20	20	0.081	0.817	0.048	3	25.2 16.5	2.800	28.14 148.7	28.14 148.7	0	2	152.6 -4770	-496 -979	4339 -410	2215 -2398	-183 -201	-1546 -1710	160 -886	-91 -170
169	CIR_c5_e CPR_p5_s	1900	40	40	24	0.001	0.886	0.046	2	16.5	2.800	148.7	148.7	0	2	-4770	-1025	-326	-2645	-392	-1730	-1008	-176
174	CPR_p5_m	1900	40	40	24	0.116	0.886	0.074	2	16.5	2.800	148.7	148.7	0	2	-9665	-1107	-953	-3807	-1245	-1990	-1707	263
	CPR_p5_e	1900	40 35	40	24 20	0.116	0.886	0.074	2	16.5	2.800	148.7	148.7	0	2	-3811	964	-516 -548	-2219	205	-1747	-780	256 253
179 187.5	CIR_c6_s CIR_c6_e	1900	35	20 20	20	0.081	0.817	0.048	2	16.5 25.5	2.800	148.7 28.14	148.7 28.14	0	2	-3811 1665	928 399	-548 3960	-2211 1751	164 -48	-1686 -1244	-692 651	253 156
	CMR_c6_s	1900	30	25	16	0.07	0.848	0.043	1	25.5	2.800	28.14	28.14	Ö	2	1665	363	3978	1904	-42	-1175	558	124
191.5	CMR_c6_m	1900	30	25	16	0.07	0.848	0.043	1	25.5	2.800	28.14	28.14	0	2	2132	0	3866	1926	-128	-934	860	70
195.5	CMR_c6_e CS_s2_s	1900	30 25	25 20	16 16	0.07	0.848	0.043	1	25.5 25.5	2.800	28.14	28.14	0	2	2808 2808	-87 -118	3135 3123	1080 1070	-206 -288	-841 -789	981 957	41 38
204	CS_s2_e	1900	25	20	16	0.065	0.815	0.033	1	25.5	2.800	28.14	28.14	0	2	0	-554	0	0	-471	0	0	-14
				-	-				-		-	-		-	-	-							,—-

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO

CODIFICA

DOCUMENTO REV.

FOGLIO

IF2R 2.2.E.ZZ CL IV.02.0.0.001 В 81 di 129

	I	CARATT	ERISTICH	E GEOME	TRICHE SE	ZIONE COI	MPOSTA F	ASE 3 tO	CARATTE	RISTICHE	GEOMETE	RICHE SEZ	IONE COM	POSTA FA	ASE 3 too
sezio ne	ID	coeff. omog. soletta	A soletta omog.	zg soletta omog.	J soletta omog.	A sezione compost a fase 3	zg sezione compost a fase 3	J sezione compost a fase 3	coeff. omog. soletta	A soletta omog.	zg soletta omog.	J soletta omog.	A sezione compost a fase 3	zg sezione compost a fase 3	J sezione compost a fase 3
			m²	m	m ⁴	m"	m	m'		m²	m	m ⁴	m"	m	m*
0	CS_s1_s	0.1602	0.0056	2.0850	0.0000	0.0708	0.9159	0.0470	0.0534	0.0056	2.0850	0.0000	0.0708	0.9159	0.0470
8.5	CS_s1_e	0.1602	0.1178	2.0850	0.0000	0.1830	1.6325	0.1063	0.0534	0.0430	2.0850	0.0000	0.1082	1.3199	0.0804
8.5	CMR_c1_s	0.1602	0.1178 0.1178	2.0850	0.0000	0.1875	1.6247	0.1100 0.1100	0.0534 0.0534	0.0430 0.0430	2.0850	0.0000	0.1128 0.1128	1.3196 1.3196	0.0837 0.0837
12.5 16.5	CMR_c1_m CMR_c1_e	0.1602 0.1602	0.1178	2.0850 2.0850	0.0000	0.1875 0.1875	1.6247 1.6247	0.1100	0.0534	0.0430	2.0850 2.0850	0.0000	0.1128	1.3136	0.0637
16.5	CIR_c1_s	0.1602	0.1178	2.0850	0.0000	0.1987	1.5685	0.1247	0.0534	0.0430	2.0850	0.0000	0.1239	1.2569	0.0037
25	CIR_c1_e	0.1602	0.0297	2.0850	0.0008	0.1106	1.1575	0.0833	0.0534	0.0297	2.0850	0.0004	0.1106	1.1575	0.0829
25	CPR_p1_s	0.1602	0.0297	2.0850	0.0008	0.1454	1,1309	0.1087	0.0534	0.0297	2.0850	0.0004	0.1454	1.1309	0.1083
30	CPR_p1_m	0.1602	0.0297	2.0850	0.0008	0.1454	1.1309	0.1087	0.0534	0.0297	2.0850	0.0004	0.1454	1.1309	0.1083
35	CPR_p1_e	0.1602	0.0297	2.0850	0.0008	0.1454	1.1309	0.1087	0.0534	0.0297	2.0850	0.0004	0.1454	1.1309	0.1083
35	CIR_c2_s	0.1602	0.0297	2.0850	0.0008	0.1106	1.1575	0.0833	0.0534	0.0297	2.0850	0.0004	0.1106	1.1575	0.0829
43.5	CIR_c2_e	0.1602	0.1178	2.0850	0.0006	0.1987	1.5685	0.1253	0.0534	0.0430	2.0850	0.0002	0.1239	1.2569	0.0929
43.5	CM_c2_s	0.1602	0.1178	2.0850	0.0006	0.1881	1.6073	0.1131	0.0534	0.0430	2.0850	0.0002	0.1133	1.2921	0.0843
48 52.5	CM_c2_m	0.1602	0.1178	2.0850 2.0850	0.0000	0.1881 0.1881	1.6073	0.1125 0.1131	0.0534 0.0534	0.0430	2.0850 2.0850	0.0000 0.0002	0.1133	1.2921 1.2921	0.0842 0.0843
	CM_c2_e	0.1602 0.1602	0.1178 0.1178	2.0850	0.0006	0.1881	1.6073	0.1250	0.0534	0.0430 0.0430		0.0002	0.1133 0.1209		0.0843
52.5 61	CL_c2_s CL_c2_e	0.1602	0.0297	2.0850	0.0008	0.1076	1.5636 1.1371	0.0816	0.0534	0.0430	2.0850 2.0850	0.0002	0.1203	1.2411 1.1371	0.0317
61	CP_p2_s	0.1602	0.0297	2.0850	0.0008	0.1377	1.0896	0.1043	0.0534	0.0237	2.0850	0.0004	0.1377	1.0896	0.1039
66	CP_p2_m	0.1602	0.0297	2.0850	0.0008	0.1377	1.0896	0.1043	0.0534	0.0297	2.0850	0.0004	0.1377	1.0896	0.1039
71	CP_p2_e	0.1602	0.0297	2.0850	0.0008	0.1377	1.0896	0.1043	0.0534	0.0297	2.0850	0.0004	0.1377	1.0896	0.1039
71	CL_c3_s	0.1602	0.0297	2.0850	0.0008	0.1076	1.1371	0.0816	0.0534	0.0297	2.0850	0.0004	0.1076	1.1371	0.0813
79.5	Cl_c3_e	0.1602	0.1178	2.0850	0.0006	0.1957	1.5636	0.1250	0.0534	0.0430	2.0850	0.0002	0.1209	1.2411	0.0917
79.5	CM_c3_s	0.1602	0.1178	2.0850	0.0006	0.1881	1.6073	0.1131	0.0534	0.0430	2.0850	0.0002	0.1133	1.2921	0.0843
84	CM_c3_m	0.1602	0.1178	2.0850	0.0006	0.1881	1.6073	0.1131	0.0534	0.0430	2.0850	0.0002	0.1133	1.2921	0.0843
88.5	CM_c3_e	0.1602	0.1178	2.0850	0.0006	0.1881	1.6073	0.1131	0.0534	0.0430	2.0850	0.0002	0.1133	1.2921	0.0843
88.5 97	CL_o3_s	0.1602 0.1602	0.1178 0.0297	2.0850 2.0850	0.0006	0.1957 0.1076	1.5636 1.1371	0.1250 0.0816	0.0534 0.0534	0.0430 0.0297	2.0850 2.0850	0.0002	0.1209 0.1076	1.2411 1.1371	0.0917 0.0813
97	CL_c3_e CP_p3_s	0.1602	0.0237	2.0850	0.0008	0.1076	1.0896	0.1043	0.0534	0.0237	2.0850	0.0004	0.1076	1.0896	0.1039
102	CP_p3_m	0.1602	0.0237	2.0850	0.0008	0.1377	1.0836	0.1043	0.0534	0.0237	2.0850	0.0004	0.1377	1.0896	0.1033
107	CP_p3_e	0.1602	0.0297	2.0850	0.0008	0.1377	1.0896	0.1043	0.0534	0.0297	2.0850	0.0004	0.1377	1.0896	0.1039
107	CL_c4_s	0.1602	0.0297	2.0850	0.0008	0.1076	1.1371	0.0816	0.0534	0.0297	2.0850	0.0004	0.1076	1,1371	0.0813
115.5	CL_c4_e	0.1602	0.1178	2.0850	0.0006	0.1957	1.5636	0.1250	0.0534	0.0430	2.0850	0.0002	0.1209	1.2411	0.0917
115.5	CM_c4_s	0.1602	0.1178	2.0850	0.0006	0.1920	1.5752	0.1226	0.0534	0.0430	2.0850	0.0002	0.1172	1.2501	0.0903
120	CM_c4_m	0.1602	0.1178	2.0850	0.0006	0.1920	1.5752	0.1226	0.0534	0.0430	2.0850	0.0002	0.1172	1.2501	0.0903
124.5	CM_c4_e	0.1602	0.1178	2.0850	0.0006	0.1920	1.5752	0.1226	0.0534	0.0430	2.0850	0.0002	0.1172	1.2501	0.0903
124.5	CL_c4_s	0.1602	0.1178	2.0850	0.0006	0.1957	1.5636	0.1250	0.0534	0.0430	2.0850	0.0002	0.1209	1.2411	0.0917
133	CL_c4_e	0.1602 0.1602	0.0297 0.0297	2.0850 2.0850	0.0002	0.1076 0.1377	1.1371 1.0896	0.0811 0.1037	0.0534 0.0534	0.0297 0.0297	2.0850 2.0850	0.0002	0.1076 0.1377	1.1371 1.0896	0.0811 0.1037
138	CP_p4_s CP_p4_m	0.1602	0.0237	2.0850	0.0002	0.1377	1.0896	0.1037	0.0534	0.0237	2.0850	0.0004	0.1377	1.0896	0.1037
143	CP_p4_e	0.1602	0.0297	2.0850	0.0008	0.1377	1.0896	0.1043	0.0534	0.0297	2.0850	0.0004	0.1377	1.0896	0.1039
143	CL_c5_s	0.1602	0.0297	2.0850	0.0008	0.1076	1.1371	0.0816	0.0534	0.0297	2.0850	0.0004	0.1076	1.1371	0.0813
151.5	CL_c5_e	0.1602	0.1178	2.0850	0.0006	0.1957	1.5636	0.1250	0.0534	0.0430	2.0850	0.0002	0.1209	1.2411	0.0917
151.5	CM_c5_s	0.1602	0.1178	2.0850	0.0006	0.1920	1.5752	0.1226	0.0534	0.0430	2.0850	0.0002	0.1172	1.2501	0.0903
156	CM_c5_m	0.1602	0.1178	2.0850	0.0006	0.1920	1.5752	0.1226	0.0534	0.0430	2.0850	0.0002	0.1172	1.2501	0.0903
160.5	CM_c5_e	0.1602	0.1178	2.0850	0.0006	0.1920	1.5752	0.1226	0.0534	0.0430	2.0850	0.0002	0.1172	1.2501	0.0903
160.5	CIR_c5_s	0.1602	0.1178	2.0850	0.0006	0.1987	1.5685	0.1253	0.0534	0.0430	2.0850	0.0002	0.1239	1.2569	0.0929
169	CIR_c5_e	0.1602	0.0297	2.0850	0.0008	0.1106	1.1575	0.0833	0.0534	0.0297	2.0850	0.0004	0.1106	1.1575	0.0829
169 174	CPR_p5_s CPR_p5_m	0.1602 0.1602	0.0297 0.0297	2.0850 2.0850	0.0008	0.1454 0.1454	1.1309 1.1309	0.1087 0.1087	0.0534 0.0534	0.0297 0.0297	2.0850 2.0850	0.0004 0.0004	0.1454 0.1454	1.1309 1.1309	0.1083 0.1083
179	CPR_p5_e	0.1602	0.0237	2.0850	0.0008	0.1454	1.1303	0.1087	0.0534	0.0237	2.0850	0.0004	0.1454	1.1309	0.1083
179	CIR_c6_s	0.1602	0.0237	2.0850	0.0008	0.1106	1.1575	0.0833	0.0534	0.0237	2.0850	0.0004	0.1106	1.1575	0.0829
187.5	CIR_c6_e	0.1602	0.1178	2.0850	0.0006	0.1987	1.5685	0.1253	0.0534	0.0430	2.0850	0.0004	0.1239	1.2569	0.0023
	CMR_c6_s	0.1602	0.1178	2.0850	0.0006	0.1875	1.6247	0.1106	0.0534	0.0430	2.0850	0.0002	0.1128	1.3196	0.0839
	CMR_c6_m	0.1602	0.1178	2.0850	0.0000	0.1875	1.6247	0.1100	0.0534	0.0430	2.0850	0.0000	0.1128	1.3196	0.0837
	CMR_c6_e	0.1602	0.1178	2.0850	0.0000	0.1875	1.6247	0.1100	0.0534	0.0430	2.0850	0.0000	0.1128	1.3196	0.0837
195.5	CS_s2_s	0.1602	0.1178	2.0850	0.0000	0.1830	1.6325	0.1063	0.0534	0.0430	2.0850	0.0000	0.1082	1.3199	0.0804
204	CS_s2_e	0.1602	0.0056	2.0850	0.0000	0.0708	0.9159	0.0470	0.0534	0.0056	2.0850	0.0000	0.0708	0.9159	0.0470

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA

DOCUMENTO REV. FOGLIO

IF2R 2.2.E.ZZ CL IV.02.0.0.001 B 82 di 129

sezio ne			:OMPOST/	иничн Зі								II TRAVE E			
				ΔΝ	ΔM	ΔN	OMPOSTA AM	FASE 3 to	ΔΜ			σ		σ;,	σ;,
ne		ΔN	ΔΜ	sezione	sezione	soletta	soletta	sezione	sezione	σ _{xx}	Gxx.	barre	Txx	estrados	intrados
	ID	soletta fase 3 t0	soletta fase 3 t0	compost	compost	fase 3	fase 3	compost	compost	intrados	estrados	superiori	anima	so	so
			rase 5 to	a fase 3	a fase 3	too	too	a fase 3	a fase 3	so trave	so trave	soletta	trave	piattaba	piattaba
		kN	kN'm	kN	kN'm	kN	kN'm	kN	kN'm	MPa	MPa	MPa	MPa	MPa	MPa
0	CS_s1_s	0.0	0.0	0.0	0.0	0.0	0.0 1.0	0.0	0.0	0.000	0.000	0.000	36.051	62.443	62.443
8.5 8.5	CS_s1_e CMR_c1_s	-3162.0 -3309.0	1.1 1.0	0.0 0.0	5031.5 5116.6	783.0 839.0	0.9	0.0	-33.4 -45.1	139.396 133.474	-95.855 -85.250	-25.086 -24.901	13.578 12.432	138.315 131.791	96.295 85.140
	CMR_c1_m	-3857.0	2.0	0.0	6847.6	1053.0	0.7	0.0	-511.0	150.088	-84.363	-28.745	1.253	146.403	81.307
	CMR_c1_e	-3948.0	1.8	0.0	6761.5	1273.0	0.4	0.0	-1126.6	120.174	-56.375	-22.063	-18.631	121.741	62.953
16.5	CIR_c1_s	-3700.0	1.5	0.0	6502.9	1349.0	0.5	0.0	-1162.6	99.156	-53.176	-19.916	-22.304	103.806	64.437
25	CIR_c1_e	776.0	-20.9	0.0	-2250.1	1771.0	-12.7	0.0	-3009.9	-119.825	108.756	64.106	-34.255	129.950	121.781
	CPR_p1_s	449.0 F27.0	-19.4 -19.8	0.0	-2352.8 -2480.3	1895.0 2119.0	-10.3 -20.8	0.0	-3230.0 -4479.0	-90.687 -165.990	76.776 156.331	53.485 66.688	-32.486 39.583	103.746 173.339	92.368
35	CPR_p1_m CPR_p1_e	527.0 322.0	-10.6	0.0	-1380.1	1895.0	-20.6	0.0	-3321.5	-87.284	77.143	45.063	29.075	97.787	164.512 89.247
35	CIR_c2_s	328.0	-16.0	0.0	-1381.3	1841.0	-15.6	0.0	-3269.1	-119.631	114.291	56.712	32,412	128.260	125.129
43.5	CIR_o2_e	-4041.0	24.4	0.0	7008.0	1607.0	2.3	0.0	-1862.5	86.734	-37.755	-15.342	14.905	88.299	44.662
43.5	CM_o2_s	-4106.0	29.4	0.0	7183.8	1530.0	1.5	0.0	-1857.8	101.706	-43.182	-16.420	12.673	101.813	47.086
48	CM_c2_m	-4257.0	2.0	0.0	7431.8	1446.0	0.2	0.0	-1640.8	124.609	-66.539	-20.065	-1.411	121.615	64.573
52.5 52.5	CM_c2_e CL_c2_s	-4166.0 -4110.0	29.8 26.6	0.0	7288.0 7280.7	1501.0 1546.0	1.7 2.9	0.0	-1806.6 -1819.8	111.874 98.306	-54.523 -52.738	-17.471 -16.893	-11.261 -11.436	110.974 97.555	56.261 54.850
61	CL_c2_s	401.0	-19.4	0.0	-1610.4	1678.0	-12.0	0.0	-2863.9	-98.458	94.098	56.780	-28.211	106.751	104.234
61	CP_p2_s	399.0	-13.2	0.0	-1610.7	1740.0	-8.3	0.0	-2894.6	-72.400	68.643	46.797	-25.956	82.715	80.202
66	CP_p2_m	643.0	-13.7	0.0	-1959.9	1925.0	-15.4	0.0	-3719.1	-137.203	147.650	58.992	34.130	143.908	154.878
71	CP_p2_e	394.0	-12.6	0.0	-1548.9	1727.0	-7.3	0.0	-2797.6	-72.491	69.740	45.148	25.797	82.621	80.944
71 79.5	CL_c3_s CL_c3_e	387.0 -4049.0	-18.7 26.0	0.0 0.0	-1553.7 7155.6	1665.0 1471.0	-10.7 4.0	0.0	-2776.2 -1644.1	-98.942 87.586	96.373 -36.933	54.947 -18.065	28.320 11.816	107.222 87.713	106.310 41.083
79.5	CM_c3_s	-4130.0	29.3	0.0	7208.9	1427.0	3.0	0.0	-1626.6	100.498	-37.996	-18.951	8.949	99.525	39,690
84	CM_c3_m	-4273.0	30.5	0.0	7467.6	1351.0	4.6	0.0	-1426.9	112,476	-47.204	-22.317	-3.243	110.098	45.868
88.5	CM_c3_e	-4177.0	29.0	0.0	7250.1	1435.0	2.8	0.0	-1648.9	87.274	-19.702	-18.924	-14.384	89.138	31.077
88.5	CL_c3_s	-4103.0	26.3	0.0	7246.0	1455.0	3.4	0.0	-1667.4	76.465	-19.692	-18.268	-14.499	78.802	31.298
97	CL_c3_e	637.0 620.0	-31.9	0.0	-2620.4	1636.0	-10.5	0.0	-2724.1	-142.540 -103.919	148.610	67.780	-33.442 -30.601	148.904	156.647
97 102	CP_p3_s CP_p3_m	1150.0	-22.0 -27.8	0.0	-2623.4 -3777.5	1685.0 1742.0	-7.4 -13.0	0.0	-2753.3 -3292.6	-178.082	105.241 193.524	55.822 73.389	45.628	112.750 187.707	114.894 203.619
107	CP_p3_e	295.0	-13.4	0.0	-1492.4	1580.0	-7.6	0.0	-2634.1	-75,898	75.626	42.861	30.168	89.537	89,965
107	CL_c4_s	292.0	-20.0	0.0	-1500.8	1557.0	-10.4	0.0	-2617.6	-104.134	106.212	52.262	33.604	115.930	119.178
115.5	Cl_c4_e	-4402.0	29.8	0.0	7888.6	1440.0	4.2	0.0	-1587.5	91,138	-30.050	-22.196	19,133	94.881	43.888
115.5	CM_c4_s	-4561.0	30.8	0.0	8154.2	1420.0	3.5	0.0	-1634.4	96.344	-30.796	-22.932	19.362	99.805	44.636
120	CM_c4_m CM_c4_e	-4688.0 -4568.0	35.5 31.3	0.0 0.0	8650.2 8194.3	1307.0 1356.0	5.7 4.6	0.0	-1331.5 -1468.6	132.362 103.340	-71.954 -38.289	-28.423 -24.815	-5.360 -10.659	128.933 102.409	70.417 41.170
124.5	CL_c4_s	-4354.0	35.7	0.0	8252.1	1375.0	5.3	0.0	-1422.9	102.035	-38.191	-25.627	-20.325	105.499	50.866
133	CL_c4_e	613.0	-7.9	0.0	-2424.1	1421.0	-1.1	0.0	-2096.3	-85.376	74.414	57.600	-33.089	100.398	92.599
133	CP_p4_s	604.0	-5.4	0.0	-2425.6	1459.0	-0.8	0.0	-2096.3	-62.921	55.839	47.122	-30.373	80.114	75.364
138	CP_p4_m	1632.0	-48.4	0.0	-6115.2	1573.0	-5.6	0.0	-2464.2	-174.394	179.381	88.998	41.143	181.519	187.838
143 143	CP_p4_e CL_c5_s	618.0 616.0	-22.2 -32.8	0.0 0.0	-2639.7 -2640.3	1537.0 1504.0	-4.2 -5.9	0.0	-2301.7 -2296.9	-75.030 -102.150	69.482 94.457	51.294 62.601	30.852 33.577	89.653 114.412	85.857 109.168
151.5	CL_c5_e	-4638.0	29.6	0.0	-2040.3 8188.9	1455.0	3.9	0.0	-2236.3 -1629.2	99.071	-37.437	-23.230	7.127	97.342	38.058
151.5	CM_c5_s	-4746.0	31.9	0.0	8474.6	1438.0	3.1	0.0	-1683.3	104.601	-38.418	-23.989	5.842	102.467	38.275
	CM_c5_m	-4950.0	32.7	0.0	8801.0	1403.0	3.8	0.0	-1585.8	119.579	-53.947	-26.565	-2.108	116.440	52.248
160.5	CM_c5_e	-4527.0	30.6	0.0	8093.3	1501.0	1.8	0.0	-1857.9	81.050	-12.129	-20.361	-19.723	86.376	35.934
160.5 169	CIR_c5_s CIR_c5_e	-4339.0 410.0	29.1 -40.3	0.0 0.0	7748.2 -2958.8	1546.0 1710.0	2.1 -14.9	0.0	-1800.2 -3062.6	75.267 -165.835	-11.519 162.547	-19.507 73.365	-20.867 -36.585	82.057 171.892	37.667 171.246
	CPR_p5_s	326.0	-40.3 -28.6	0.0	-2350.0	1730.0	-14.3	0.0	-3088.4	-121.339	109.120	58.935	-36.470	132.512	121.910
	CPR_p5_m	953.0	-41.2	0.0	-4991.5	1990.0	-18.5	0.0	-4103.1	-210.679	197.181	87.089	-47.825	218.411	205.985
179	CPR_p5_e	516.0	-24.0	0.0	-2861.8	1747.0	-8.4	0.0	-2879.5	-105.549	93.036	54.988	32.624	116.054	105.300
179	CIR_c6_s	548.0	-37.2	0.0	-2943.2	1686.0	-11.6	0.0	-2836.5	-145.990	138.529	70.414	36.450	154.259	149.517
187.5	CIR_c6_e	-3960.0	23.0 27.7	0.0	6797.4	1244.0 1175.0	8.6	0.0	-923.7	101.202	-49.543 -51.697	-23.555	13.740 15.075	101.261	53.537
	CMR_c6_s CMR_c6_m	-3978.0 -3866.0	1.8	0.0	6853.8 6711.3	934.0	8.1 0.8	0.0	-892.7 -294.7	119.523 136.576	-51.697 -67.018	-24.739 -30.267	-1.965	119.701 133.405	55.915 64.429
	CMR_c6_e	-3135.0	1.0	0.0	4959.7	841.0	0.0	0.0	-58.6	127.797	-80.858	-23.986	-8.537	125.377	79.499
195.5	CS_s2_s	-3123.0	1.1	0.0	5037.4	789.0	1.0	0.0	-44.0	135.946	-91.314	-25.003	-12.399	134.679	91.478
204	CS_s2_e	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.000	0.000	0.000	-35.007	60.633	60.633

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

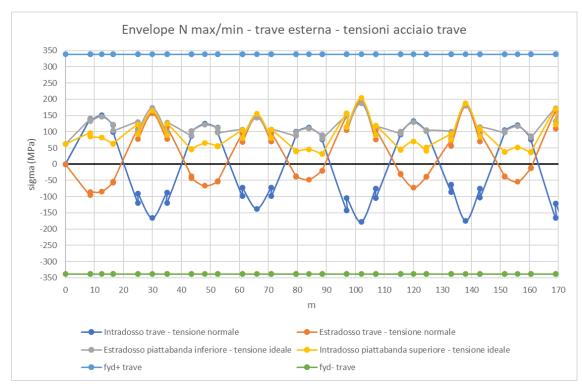
PROGETTAZIONE:

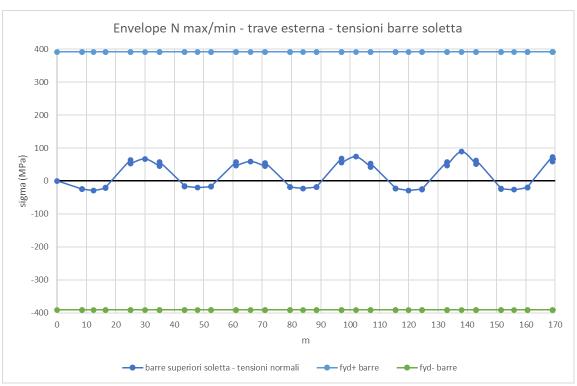
Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009


Relazione di calcolo impalcato


ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 IV.02.0.0.001
 B
 83 di 129

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA IF2R

LOTTO CODIFICA

DOCUMENTO

REV. FOGLIO

84 di 129

2.2.E.ZZ CL IV.02.0.0.001 B

9.3 SLU Envelope |V| max trave

													INF	PUT										
				h	h	t				Camp		b eff	Α	Α	cree	cree	М	٧	ΔN	ΔΜ	Δ٧	ΔN	ΔΜ	Δ٧
sezio ne	ID	ID	h trave	piatt.	piatt.	anim a	A trave	zg trave	J trave	оb	Lc	solett	barre int	barre sup	p solett	p solett	trave fase	trave fase	trave fase	trave fase	trave fase	trave fase	trave fase	trave fase
			llave	inf	sup	trave	llave	tiave	liave	eff		а	solett	solett	a	a	2	2	3 tO	3 tO	3 tO	3 too	3 too	
			mm	mm	mm	mm	m²	m	m ⁴		Е	m	cm²	cm²			kN°m	kN	kN	kN'm	kN			
			4000			1 40	0.005	0.045		TRAV					e IVI m		_	F00	_	_	455		_	101
0 8.5	CS_s1_s CS_s1_e	CS_s1_s CS_s1_e	1900	25 25	20	16 16	0.065	0.815	0.039	+	25.5 25.5	2.800	28.14	28.14 28.14	0	2	0 2967	588 166	1441	1220	455 285	0 579	0 522	164 66
	CMR_c1_s	CMR_c1_s	1900	30	25	16	0.07	0.848	0.043	i	25.5	2.800	28.14	28.14	Ö	2	2967	130	1457	1105	259	596	533	57
	CMR_c1_m	CMR_c1_m		30	25	16	0.07	0.848	0.043	1	25.5	2.800	28.14	28.14	0	2	2886	0	1620	943.7	-417	-753	791	-103
	CMR_c1_e CIR_c1_s	CMR_c1_e CIR_c1_s	1900	30 35	25 20	16 20	0.07	0.848	0.043	1	25.5 25.5	2.800	28.14	28.14 28.14	0	2	1928 1928	-378 -451	1716 1658	818.2 958.2	-242 -325	-1273 -1349	454 550	-142 -180
25	CIR_o1_e	CIR_c1_e	1900	35	20	20	0.081	0.817	0.048	2	16.5	2.800	148.7	148.7	0	2	-2708	-863	499	-181	-690	-1771	-760	-277
	CPR_p1_s	CPR_p1_s		40	40	24	0.116	0.886	0.074	2	16.5	2.800	148.7	148.7	0	2	-2708	-896	389	108.1	-702	-1835	-830	-280
		CPR_p1_m CPR_p1_e	1900	40 40	40 40	24 24	0.116	0.886	0.074	2	16.5	2.800	148.7	148.7	0	2	-7790 -3189	1098 864	-1005 -337	-2787	849	-1449 -1880	-1654	283 223
	CPR_p1_e CIR_o2_s	CIR_o2_s	1900	35	20	20	0.116	0.886	0.074	2	16.5 16.5	2.800	148.7 148.7	148.7 148.7	0	2	-3189	819	-33 r -168	-64.3 -333	697 698	-1760	-570 -562	223
43.5	CIR_c2_e	CIR_c2_e	1900	35	20	20	0.081	0.817	0.048	3	25.2	2.800	28.14	28.14	0	2	1408	333	2012	1130	326	544	265	137
43.5	CM_c2_s	CM_c2_s	1900	30	20	18	0.07	0.807	0.041	3	25.2	2.800	28.14	28.14	0	2	1408	302	2080	1243	181	606	170	103
	CM_c2_m CM_c2_e	CM_c2_m CM_c2_e	1900	30 30	20	18 18	0.07	0.807	0.041	3	25.2 25.2	2.800	28.14	28.14 28.14	0	2	2190 1805	-216	2900 1163	1143 816.1	263 -282	520 410	436 281	-90
52.5	CL_c2_s	CL_c2_s	1900	35	20	20	0.078	0.775	0.044	3	25.2	2.800	28.14	28.14	0	2	1805	-285	1021	953.1	-306	366	302	-106
61	CL_c2_e	CL_c2_e	1900	35	20	20	0.078	0.775	0.044	4	15.5	2.800	148.7	148.7	0	2	-2037	-728	-164	-419	-677	-164	-495	-219
61 66	CP_p2_s CP_p2_m	CP_p2_s CP_p2_m	1900	40 40	30	24 24	0.108	0.815	0.066	4	15.5 15.5	2.800	148.7 148.7	148.7 148.7	0	2	-2037 -6280	-773 996	-340 -1076	-82.8 -2651	-705 863	-207 -499	-499 -1507	-231 284
71	CP_p2_e	CP_p2_m	1900	40	30	24	0.108	0.815	0.066	4	15.5	2.800	148.7	148.7	0	2	-2179	736	-340	-33.1	752	-220	-502	235
71	CL_c3_s	CL_c3_s	1900	35	20	20	0.078	0.775	0.044	3	25.2	2.800	148.7	148.7	0	2	-2179	695	-176	-362	725	-185	-503	224
79.5	CL_c3_e	CL_c3_e	1900	35	20	20	0.078	0.775	0.044	3	25.2	2.800	28.14	28.14	0	2	1152	216	2238	993.5	344	613	357	98
	CM_c3_s CM_c3_m	CM_c3_s CM_c3_m	1900	30 30	20	18 18	0.07	0.807	0.041	3	25.2 25.2	2.800	28.14 28.14	28.14 28.14	0	2	1152 1415	179 -35	2022 1768	1290 1121	292 239	676 556	299 444	83 42
88.5	CM_o3_e	CM_c3_e	1900	30	20	18	0.07	0.807	0.041	3	25.2	2.800	28.14	28.14	ō	2	475.2	-307	1192	779.8	-293	344	264	-95
88.5	CL_o3_s	CL_o3_s	1900	35	20	20	0.078	0.775	0.044	3	25.2	2.800	28.14	28.14	0	2	475.2	-345	1083	708.8	-435	319	269	-115
97 97	CL_c3_e CP_p3_s	CL_c3_e CP_p3_s	1900	35 40	20 30	20 24	0.078	0.775	0.044	3	25.2 15.5	2.800	148.7 148.7	148.7 148.7	0	2	-3849 -3849	-816 -860	-262 -434	-527 -191	-728 -757	-263 -309	-573 -570	-235 -246
	CP_p3_m	CP_p3_m	1900	40	30	24	0.108	0.815	0.066	4	15.5	2.800	148.7	148.7	0	2	-8411	1107	-1358	-2909	956	-625	-1641	301
107	CP_p3_e	CP_p3_e	1900	40	30	24	0.108	0.815	0.066	4	15.5	2.800	148.7	148.7	0	2	-2641	962	-225	-218	858	-306	-549	263
107 115.5	CL_c4_s CL_c4_e	CL_c4_s CL_c4_e	1900	35 35	20 20	20	0.078	0.775	0.044	3	15.5 25.2	2.800	148.7 28.14	148.7 28.14	0	2	-2641 789.8	923 429	-12 1483	-479 1275	836 471	-266 347	-554 355	249 131
	CM_c4_s	CM_c4_s	1900	35	20	18	0.074	0.766	0.044	3	25.2	2.800	28.14	28.14	0	2	789.8	388	1560	994.3	428	394	326	115
120	CM_c4_m	CM_c4_m	1900	35	20	18	0.074	0.766	0.043	3	25.2	2.800	28.14	28.14	0	2	2210	-23	2537	1234	489	426	576	44
	CM_o4_e	CM_c4_e	1900	35	20	18	0.074	0.766	0.043	3	25.2	2.800	28.14	28.14	0	2	1023	-214	1634	1096	-378	425	356	-105
124.5 133	CL_c4_s Cl_c4_e	CL_c4_s CL_c4_e	1900	35 35	20 20	20 20	0.078	0.775	0.044	3	25.2 15.5	2.800	28.14 148.7	28.14 148.7	0	2	1023 -1245	-258 -846	1415 -30	1296 -272	-439 -925	377 -281	368 -536	-124 -262
133	CP_p4_s	CP_p4_s	1900	40	30	24	0.108	0.815	0.066	4	15.5	2.800	148.7	148.7	0	2	-1245	-894	-278	28.7	-951	-330	-514	-278
	CP_p4_m	CP_p4_m	1900	40	30	24	0.108	0.815	0.066	4	15.5	2.800	148.7	148.7	0	2	-6840	967	-1530	-2890	1076	-435	-1085	311
143 143	CP_p4_e CL_c5_s	CP_p4_e CL_c5_s	1900	40 35	30 20	24	0.108	0.815	0.066	4	15.5 15.5	2.800	148.7 148.7	148.7 148.7	0	2	-1883 -1883	908 864	-244 7	-68.7 -361	892 851	-354 -305	-540 -561	262 245
151.5	CL_c5_e	CLo5_e	1900	35	20	20	0.078	0.775	0.044	3	25.2	2.800	28.14	28.14	0	2	1058	103	1530	1214	414	369	345	114
	CM_c5_s	CM_c5_s	1900	35	20	18	0.074	0.766	0.043	3	25.2	2.800	28.14	28.14	0	2	1058	- 66	1529	929.6	372	410	320	100
	CM_c5_m CM_c5_e	CM_c5_m CM_c5_e	1900	35 35	20	18 18	0.074	0.766	0.043	3	25.2 25.2	2.800	28.14	28.14	0	2	1585 152.6	-110 -453	2664 2659	1089 1530	-421 -367	521 421	423 196	-71 -119
	CIR_c5_s	CIR_c5_s	1900	35	20	20	0.074	0.766	0.043	3	25.2	2.800	28.14	28.14	0	2	152.6	-496	2665	1565	-443	338	329	-122
169	CIR_c5_e	CIR_c5_e	1900	35	20	20	0.081	0.817	0.048	2	16.5	2.800	148.7	148.7	0	2	-4770	-979	-163	-433	-806	-1687	-578	-236
	CPR_p5_s	CPR_p5_s		40	40	24	0.116	0.886	0.074	2	16.5	2.800	148.7	148.7	0	2	-4770	-1025	-358	-113	-803	-1735	-604	-243
	CPR_p5_m CPR_p5_e	CPR_p5_m CPR_p5_e	1900	40 40	40	24 24	0.116	0.886	0.074	2	16.5 16.5	2.800	148.7 148.7	148.7 148.7	0	2	-9665 -3811	-1107 964	-1080 306	-2889 -125	3282 728	-1302 -1747	-1671 -767	269 256
179	CIR_c6_s	CIR_c6_s	1900	35	20	20	0.081	0.817	0.048	2	16.5	2.800	148.7	148.7	0	2	-3811	928	452	-319	721	-1686	-687	253
	CIR_c6_e	CIR_c6_e	1900	35	20	20	0.081	0.817	0.048	1	25.5	2.800	28.14	28.14	0	2	1665	399	1663	1116	330	-1244	650	156
	CMR_c6_s CMR_c6_m	CMR_c6_s CMR_c6_m		30 30	25 25	16 16	0.07	0.848	0.043	1	25.5 25.5	2.800	28.14	28.14	0	2	1665 2132	363 0	1679	1250 1356	223 288	-1175 -934	554 860	124 70
	CMR_c6_e			30	25	16	0.07	0.848	0.043	1	25.5	2.800	28.14	28.14	0	2	2808	-87	1286	541	-244	571	488	-53
195.5	CS_s2_s	CS_s2_s	1900	25	20	16	0.065	0.815	0.039	1	25.5	2.800	28.14	28.14	0	2	2808	-118	1256	631	-287	556	471	-62
204	CS_s2_e	CS_s2_e	1900	25	20	16	0.065	0.815	0.039	- 1	25.5	2.800	28.14	28.14	- 0	2	- 0	-554	- 0	- 0	-471	0	0	-147

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA

CA DOCUMENTO

REV. FOGLIO

IF2R 2.2.E.ZZ CL IV.02.0.0.001 B 85 di 129

	- 1	CARATT	ERISTICH	E GEOMET	TRICHE SE	ZIONE CO	MPOSTA F	ASE 3 tO	CARATTE	RISTICHE	GEOMETE	RICHE SEZ	IONE COM	POSTA FA	ASE 3 too
sezio ne	ID	coeff. omog. soletta	A soletta omog.	zg soletta omog.	J soletta omog.	A sezione compost a fase 3	zg sezione compost a fase 3	J sezione compost a fase 3	coeff. omog. soletta	A soletta omog.	zg soletta omog.	J soletta omog.	A sezione compost a fase 3	zg sezione compost a fase 3	J sezione compost a fase 3
			- ""	m	- "	- ""	m	""		- ""	m	- ""	<u> </u>	m	- '''
0	CO -1 -	0.1602	0.0056	2.0850	0.0000	0.0708	0.9159	0.0470	0.0534	0.0056	2.0850	0.0000	0.0708	0.9159	0.0470
8.5	CS_s1_s CS_s1_e	0.1602	0.0036	2.0850	0.0000	0.0700	1.6325	0.1063	0.0534	0.0036	2.0850	0.0000	0.0708	1.3199	0.0470
8.5	CMR_c1_s	0.1602	0.1178	2.0850	0.0000	0.1875	1.6247	0.1100	0.0534	0.0430	2.0850	0.0000	0.1128	1.3196	0.0837
12.5	CMR_c1_m	0.1602	0.1178	2.0850	0.0000	0.1875	1.6247	0.1100	0.0534	0.0430	2.0850	0.0000	0.1128	1.3196	0.0837
16.5	CMR_c1_e	0.1602	0.1178	2.0850	0.0000	0.1875	1.6247	0.1100	0.0534	0.0430	2.0850	0.0000	0.1128	1.3196	0.0837
16.5	CIR_c1_s	0.1602	0.1178	2.0850	0.0000	0.1987	1.5685	0.1247	0.0534	0.0430	2.0850	0.0000	0.1239	1.2569	0.0927
25	CIR_c1_e	0.1602	0.0297	2.0850	0.0008	0.1106	1.1575	0.0833	0.0534	0.0297	2.0850	0.0004	0.1106	1.1575	0.0829
25	CPR_p1_s	0.1602	0.1419	2.0850	0.0008	0.2576	1.5463	0.1663	0.0534	0.0297	2.0850	0.0004	0.1454	1.1309	0.1083
30	CPR_p1_m	0.1602	0.0297	2.0850	0.0008	0.1454	1.1309	0.1087	0.0534	0.0297	2.0850	0.0004	0.1454	1.1309	0.1083
35	CPR_p1_e	0.1602	0.0297	2.0850	0.0008	0.1454	1.1309	0.1087	0.0534	0.0297	2.0850	0.0004	0.1454	1.1309	0.1083
35 43.5	CIR_c2_s CIR_c2_e	0.1602 0.1602	0.0297 0.1178	2.0850 2.0850	0.0008	0.1106 0.1987	1.1575 1.5685	0.0833 0.1247	0.0534 0.0534	0.0297 0.0430	2.0850 2.0850	0.0004	0.1106 0.1239	1.1575 1.2569	0.0829 0.0927
43.5	CM_c2_s	0.1602	0.1178	2.0850	0.0000	0.1361	1.6073	0.1247	0.0534	0.0430	2.0850	0.0000	0.1233	1.2921	0.0327
48	CM_c2_m	0.1602	0.1178	2.0850	0.0000	0.1881	1.6073	0.1125	0.0534	0.0430	2.0850	0.0000	0.1133	1.2921	0.0842
52.5	CM_c2_e	0.1602	0.1178	2.0850	0.0000	0.1881	1.6073	0.1125	0.0534	0.0430	2.0850	0.0000	0.1133	1.2921	0.0842
52.5	CL_c2_s	0.1602	0.1178	2.0850	0.0000	0.1957	1.5636	0.1244	0.0534	0.0430	2.0850	0.0000	0.1209	1.2411	0.0915
61	CL_c2_e	0.1602	0.0297	2.0850	0.0008	0.1076	1.1371	0.0816	0.0534	0.0297	2.0850	0.0004	0.1076	1.1371	0.0813
61	CP_p2_s	0.1602	0.0297	2.0850	0.0008	0.1377	1.0896	0.1043	0.0534	0.0297	2.0850	0.0004	0.1377	1.0896	0.1039
66	CP_p2_m	0.1602	0.0297	2.0850	0.0008	0.1377	1.0896	0.1043	0.0534	0.0297	2.0850	0.0004	0.1377	1.0896	0.1039
71	CP_p2_e	0.1602	0.0297	2.0850	0.0008	0.1377	1.0896	0.1043	0.0534	0.0297	2.0850	0.0004	0.1377	1.0896	0.1039
71 79.5	CL_o3_s	0.1602 0.1602	0.0297 0.1178	2.0850	0.0008	0.1076 0.1957	1.1371	0.0816 0.1244	0.0534	0.0297 0.0430	2.0850 2.0850	0.0004	0.1076 0.1209	1.1371 1.2411	0.0813 0.0915
79.5	CL_o3_e CM_o3_s	0.1602	0.1178	2.0850 2.0850	0.0006	0.1881	1.5636 1.6073	0.1244	0.0534 0.0534	0.0430	2.0850	0.0000	0.1203	1.2921	0.0315
84	CM_c3_m	0.1602	0.1178	2.0850	0.0000	0.1881	1.6073	0.1125	0.0534	0.0430	2.0850	0.0002	0.1133	1.2921	0.0842
88.5	CM_c3_e	0.1602	0.1178	2.0850	0.0006	0.1881	1.6073	0.1123	0.0534	0.0430	2.0850	0.0002	0.1133	1.2921	0.0843
88.5	CL_c3_s	0.1602	0.1178	2.0850	0.0006	0.1957	1.5636	0.1250	0.0534	0.0430	2.0850	0.0002	0.1209	1.2411	0.0917
97	CL_c3_e	0.1602	0.0297	2.0850	0.0008	0.1076	1.1371	0.0816	0.0534	0.0297	2.0850	0.0004	0.1076	1.1371	0.0813
97	CP_p3_s	0.1602	0.0297	2.0850	0.0008	0.1377	1.0896	0.1043	0.0534	0.0297	2.0850	0.0004	0.1377	1.0896	0.1039
102	CP_p3_m	0.1602	0.0297	2.0850	0.0008	0.1377	1.0896	0.1043	0.0534	0.0297	2.0850	0.0004	0.1377	1.0896	0.1039
107	CP_p3_e	0.1602	0.0297	2.0850	0.0008	0.1377	1.0896	0.1043	0.0534	0.0297	2.0850	0.0004	0.1377	1.0896	0.1039
107	CL_c4_s	0.1602	0.0297	2.0850	0.0008	0.1076	1.1371	0.0816	0.0534	0.0297	2.0850	0.0004	0.1076	1.1371	0.0813
115.5	CL_c4_e	0.1602	0.1178	2.0850	0.0006	0.1957	1.5636	0.1250	0.0534 0.0534	0.0430 0.0430	2.0850	0.0002	0.1209	1.2411 1.2501	0.0917 0.0903
115.5 120	CM_c4_s CM_c4_m	0.1602	0.1178 0.1178	2.0850 2.0850	0.0006	0.1920 0.1920	1.5752 1.5752	0.1226 0.1220	0.0534	0.0430	2.0850 2.0850	0.0002	0.1172 0.1172	1.2501	0.0303
124.5	CM_c4_iii	0.1602	0.1178	2.0850	0.0006	0.1920	1.5752	0.1226	0.0534	0.0430	2.0850	0.0002	0.1172	1.2501	0.0302
124.5	CL_c4_s	0.1602	0.1178	2.0850	0.0006	0.1957	1.5636	0.1250	0.0534	0.0430	2.0850	0.0002	0.1209	1.2411	0.0000
133	CLc4_e	0.1602	0.0297	2.0850	0.0008	0.1076	1.1371	0.0816	0.0534	0.0297	2.0850	0.0004	0.1076	1.1371	0.0813
133	CP_p4_s	0.1602	0.1419	2.0850	0.0008	0.2498	1.5364	0.1655	0.0534	0.0297	2.0850	0.0004	0.1377	1.0896	0.1039
138	CP_p4_m	0.1602	0.0297	2.0850	0.0008	0.1377	1.0896	0.1043	0.0534	0.0297	2.0850	0.0004	0.1377	1.0896	0.1039
143	CP_p4_e	0.1602	0.0297	2.0850	0.0008	0.1377	1.0896	0.1043	0.0534	0.0297	2.0850	0.0004	0.1377	1.0896	0.1039
143	CL_c5_s	0.1602	0.0297	2.0850	0.0008	0.1076	1.1371	0.0816	0.0534	0.0297	2.0850	0.0004	0.1076	1.1371	0.0813
151.5	CL_c5_e	0.1602	0.1178	2.0850	0.0006	0.1957	1.5636	0.1250	0.0534	0.0430	2.0850	0.0002	0.1209	1.2411	0.0917
151.5 156	CM_c5_s CM_c5_m	0.1602 0.1602	0.1178 0.1178	2.0850 2.0850	0.0000	0.1920 0.1920	1.5752 1.5752	0.1220 0.1220	0.0534 0.0534	0.0430 0.0430	2.0850 2.0850	0.0000	0.1172 0.1172	1.2501 1.2501	0.0902 0.0902
160.5	CM_c5_e	0.1602	0.1178	2.0850	0.0006	0.1920	1.5752	0.1226	0.0534	0.0430	2.0850	0.0002	0.1172	1.2501	0.0302
160.5	CIR_o5_s	0.1602	0.1178	2.0850	0.0006	0.1320	1.5685	0.1253	0.0534	0.0430	2.0850	0.0002	0.11239	1.2569	0.0303
169	CIR_c5_e	0.1602	0.0297	2.0850	0.0008	0.1106	1.1575	0.0833	0.0534	0.0297	2.0850	0.0004	0.1106	1.1575	0.0829
169	CPR_p5_s	0.1602	0.0297	2.0850	0.0008	0.1454	1.1309	0.1087	0.0534	0.0297	2.0850	0.0004	0.1454	1.1309	0.1083
	CPR_p5_m	0.1602	0.0297	2.0850	0.0008	0.1454	1.1309	0.1087	0.0534	0.0297	2.0850	0.0004	0.1454	1.1309	0.1083
179	CPR_p5_e	0.1602	0.0297	2.0850	0.0008	0.1454	1.1309	0.1087	0.0534	0.0297	2.0850	0.0004	0.1454	1.1309	0.1083
179	CIR_c6_s	0.1602	0.0297	2.0850	0.0008	0.1106	1.1575	0.0833	0.0534	0.0297	2.0850	0.0004	0.1106	1.1575	0.0829
187.5	CIR_c6_e	0.1602	0.1178	2.0850	0.0000	0.1987	1.5685	0.1247	0.0534	0.0430	2.0850	0.0000	0.1239	1.2569	0.0927
	CMR_c6_s	0.1602 0.1602	0.1178 0.1178	2.0850 2.0850	0.0000	0.1875	1.6247	0.1100	0.0534 0.0534	0.0430 0.0430	2.0850 2.0850	0.0000	0.1128 0.1128	1.3196 1.3196	0.0837 0.0837
	CMR_c6_m CMR_c6_e	0.1602	0.1178	2.0850	0.0000	0.1875 0.1875	1.6247 1.6247	0.1100 0.1100	0.0534	0.0430	2.0850	0.0000	0.1128	1.3196	0.0837
195.5	CS_s2_s	0.1602	0.1178	2.0850	0.0000	0.1830	1.6325	0.1063	0.0534	0.0430	2.0850	0.0000	0.1082	1.3199	0.0804
204	CS_s2_e	0.1602	0.0056	2.0850	0.0000	0.0708	0.9159	0.0470	0.0534	0.0056	2.0850	0.0000	0.0708	0.9159	0.0004
					+	+	+				2	+	+		

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA

CA DOCUMENTO REV. FOGLIO

IF2R 2.2.E.ZZ CL IV.02.0.0.001 B 86 di 129

Sezion ID	MPa 40.667 3 17.419 5 15.108 4-17.615 -25.813 -25.833 -49.593 -49.593 40.842 47.100 3 21.572 3 17.598	116.895	so
Section Soletta Sole	mpa 40.667 3 17.419 0 15.108 1-7.615 -25.813 -25.908 -49.593 -49.593 40.842 47.100 21.572 3 21.572 3 17.598	estrados so piattaba MPa 70.438 130.673 121.152 100.345 76.533 70.264 116.895	rotados so piattaba MPa 70.438 102.312 89.973 80.851 63.721 62.145
No. Solitation Solitation	MPa 40.667 3 17.419 0 15.108 17.615 -25.813 -25.908 -49.593 -42.995 51.053 40.842 47.100 21.572 3 21.572 3 17.598	ro.438 70.438 130.673 121.152 100.345 76.533 70.264 116.895	so piattaba MPa 70.438 102.312 89.973 80.851 63.721 62.145
	MPa 40.667 3 17.419 5 15.108 4-17.615 -25.813 -25.833 -49.593 -49.593 40.842 47.100 3 21.572 3 17.598	70,438 130,673 121,152 100,345 76,533 70,264 116,895	70.438 102.312 89.973 80.851 63.721 62.145
C	MPa 40.667 3 17.419 0 15.108 1 -17.615 -25.813 -25.908 -49.593 -42.995 51.053 40.842 47.100 3 21.572 9 17.598	70,438 130,673 121,152 100,345 76,533 70,264 116,895	70.438 102.312 89.973 80.851 63.721 62.145
8.5 CS_ste	3 17.419 0 15.108 4 -17.615 -25.813 -25.908 -49.593 -42.995 51.053 40.842 47.100 3 21.572 9 17.598	130.673 121.152 100.345 76.533 70.264 116.895	102.312 89.973 80.851 63.721 62.145
8.5 CS_ste	3 17.419 0 15.108 4 -17.615 -25.813 -25.908 -49.593 -42.995 51.053 40.842 47.100 3 21.572 9 17.598	130.673 121.152 100.345 76.533 70.264 116.895	102.312 89.973 80.851 63.721 62.145
8.5 CS_st_e	3 17.419 0 15.108 4 -17.615 -25.813 -25.908 -49.593 -42.995 51.053 40.842 47.100 3 21.572 9 17.598	121.152 100.345 76.533 70.264 116.895	89.973 80.851 63.721 62.145
125 CMR_CL_m -1620	-17.615 -25.813 -25.908 -49.593 -42.995 51.053 40.842 47.100 3 21.572 9 17.598	100.345 76.533 70.264 116.895	80.851 63.721 62.145
125 CMR_CL_m -1620	-25.813 -25.908 -49.593 -42.995 51.053 40.842 47.100 21.572 17.598	76.533 70.264 116.895	63.721 62.145
16.5 C R_c L_s	-25.908 -49.593 -42.995 51.053 40.842 47.100 9 21.572 9 17.598	70.264 116.895	62.145
25	-49.593 -42.995 51.053 40.842 47.100 9 21.572 9 17.598	116.895	
25	-42.995 51.053 40.842 47.100 3 21.572 3 17.598		119 // 22
30	51.053 40.842 47.100 21.572 3 17.598	1 93 397	
35	40.842 47.100 3 21.572 9 17.598		92.620
35	47.100 3 21.572 3 17.598	186,160	176.394
43.5 CIR_c2_e -2012.0 1.0 0.0 3683.0 -544.0 0.2 0.0 955.2 83.462 -48.518 -27.16 43.5 CM_c2_s -2080.0 1.2 0.0 390.25 -606.0 0.2 0.0 944.6 98.306 -54.518 -27.16 43.5 CM_c2_s -2900.0 1.1 0.0 4850.7 -520.0 0.4 0.0 1101.0 129.820 -73.628 -35.7 52.5 CM_c2_s -1163.0 0.8 0.0 2303.2 -410.0 0.3 0.0 805.3 81215 -60.486 -19.32 52.5 CL_c2_s -1021.0 0.9 0.0 2231.2 -366.0 0.3 0.0 761.6 71253 -58.039 -91.16 61 CL_c2_s 161.0 -7.6 0.0 -641.3 164.0 -9.0 0.0 -774.4 -54.880 64.860 17.19 61 CL_c2_s 340.0 -10.0 -515.6	9 21.572 9 17.598	99.314	95.562
43.5 CM_c2_s -2080.0 1.2 0.0 3902.5 -606.0 0.2 0.0 944.6 38.306 -54.951 -29.31 -290.0 1.1 0.0 4850.7 -520.0 0.4 0.0 1101.0 129.820 -73.628 -35.75 -35.5 CL_c2_s -1021.0 0.8 0.0 2303.2 -410.0 0.3 0.0 805.3 81.215 -60.486 -19.32 -35.5 CL_c2_s -1021.0 0.9 0.0 2291.2 -366.0 0.3 0.0 781.6 71.253 -58.039 -19.10 -30.6 -30.6 -30.6 -30.7 -30.6 -30.0	17.598	127.347	129.475
## CM_c2_m		89.230	60.143
\$\frac{52.5}{5}	4 9249	100.614	61.433 79.052
S2.5		84.692	66.451
61 C_c_2_e		76,248	65,443
61 CP_p2_s 340.0 -1.0 0.0 -515.6 207.0 -6.1 0.0 -764.9 -38.619 43.516 13.29 66 CP_p2_m 1076.0 -32.1 0.0 -4049.2 499.0 -18.3 0.0 -2150.0 -142.576 151.647 64.32 71 CP_p2_e 340.0 -0.4 0.0 -465.2 220.0 -6.1 0.0 -784.5 -40.052 45.611 12.98 71 CLo3_s 176.0 -6.6 0.0 -599.2 185.0 -9.1 0.0 -754.5 -40.052 45.611 12.98 71 CLo3_e -2238.0 0.9 0.0 3925.6 -613.0 0.3 0.0 1160.2 85.399 -48.455 -30.9 79.5 CLo3_e -2238.0 0.9 0.0 3925.6 -613.0 0.3 0.0 1160.2 85.399 -48.455 -30.9 79.5 CLo3_e -2022.0 19.9 0.0 3934.5 -676.0 4.6 0.0 1164.7 96.135 -49.551 -31.5 12.9 88.5 CM_o3_e -1768.0 1.1 0.0 3381.8 -556.0 0.4 0.0 1155.0 94.231 -55.298 -28.9 188.5 CM_o3_e -192.0 12.0 0.0 2315.2 -344.0 4.1 0.0 705.2 53.178 -23.891 -18.8 85.5 CLo3_e -192.0 12.0 0.0 2315.2 -344.0 4.1 0.0 705.2 53.178 -23.891 -18.8 85.5 CLo3_e -262.0 -9.6 0.0 -879.9 263.0 -10.4 0.0 -922.8 -93.093 115.494 22.8 6 37 CL_o3_e -262.0 -9.6 0.0 -879.9 263.0 -10.4 0.0 -922.8 -93.093 115.494 22.8 6 37 CL_o3_e -262.0 -9.6 0.0 -879.9 263.0 -10.4 0.0 -922.8 -93.093 115.494 22.8 6 37 CL_o3_e -262.0 -9.6 0.0 -506.7 306.0 -6.9 0.0 -965.9 -655.38 76.632 17.76 107 CP_p3_e -225.0 -2.6 0.0 -506.7 306.0 -6.7 0.0 -941.0 -47.840 54.756 15.03 107 CLo4_s 12.0 -8.7 0.0 -503.8 266.0 -10.1 0.0 -907.6 -66.319 80.840 17.91 115.5 CLo4_e -1483.0 18.1 0.0 3266.7 -425.0 -52 0.0 81.7 4 65.399 -34.761 -23.9 115.5 CM_o4_e -1534.0 16.0 0.0 3266.7 -425.0 5.2 0.0 918.5 73.033 -42.402 -25.2 124.5 CM_o4_e -1634.0 16.0 0.0 3266.7 -425.0 5.2 0.0 918.5 73.033 -42.402 -25.2 124.5 CLo4_e -1634.0 16.0 0.0 3266.7 -425.0 5.2 0.0 918.5 73.033 -42.402 -25.2 124.5 CLo4_e -1634.0 16.0 0.0 3266.7 -425.0 5.2 0.0 918.5 73.033 -42.402 -25.2 124.5 CLo4_e -1634.0 16.0 0.0 3266.7 -425.0 5.2 0.0 918.5 73.033 -42.402 -25.2 124.5 CLo4_e -1634.0 16.0 0.0 3266.7 -425.0 5.2 0.0 918.5 73.033 -42.402 -25.2 124.5 CLo4_e -1634.0 16.0 0.0 3266.7 -425.0 5.2 0.0 918.5 73.033 -42.402 -25.2 124.5 CLo4_e -1634.0 16.0 0.0 3266.7 -425.0 5.2 0.0 918.5 73.033 -42.402 -25.2 124.5 CLo4_e -1634.0 16.0 0.0 3266.7 -425.0 5.2 0.0 918.5 73.033 -42.402 -25	-44.011	92.658	99.276
66 CP_p2_m 1076.0 -32.1 0.0 -4049.2 499.0 -18.3 0.0 -2150.0 -142.576 151.647 64.32 71 CP_p2_e 340.0 -0.4 0.0 -465.2 220.0 -6.1 0.0 -764.5 -40.052 45.611 12.98 71 CL_c3_s 176.0 -6.6 0.0 -599.2 185.0 -9.1 0.0 -750.0 -57.294 68.430 17.11 79.5 CL_c3_e -2238.0 0.9 0.0 3925.6 -613.0 0.3 0.0 1160.2 85.399 -48.455 -30.9 79.5 CM_c3_s -2022.0 19.9 0.0 3981.5 -676.0 4.6 0.0 1160.7 96.135 -49.531 -315.0 84 CM_c3_s -1083.0 1.1 0.0 3381.8 -556.0 0.4 0.0 1755.2 93.231 -18.8 85.5 CL_c3_s -1083.0 10.1 0.0 2315.2 <		76,832	79,529
71		160.444	169.563
71		77.974	81.092
79.5 CLG3_e -2238.0 0.9 0.0 3325.6 -613.0 0.3 0.0 1160.2 85.399 -48.455 -30.9 79.5 CM_o3_s -2022.0 19.9 0.0 3894.5 -676.0 4.6 0.0 1160.7 96.135 -49.531 -315.0 84 CM_co3_s -1768.0 1.1 0.0 3381.8 -556.0 0.4 0.0 1155.0 94.231 -55.298 -28.9 88.5 CM_co3_s -1192.0 12.0 0.0 2315.2 -344.0 4.1 0.0 705.2 53.178 -23.891 -18.86 88.5 CL_c3_s -1083.0 10.1 0.0 2137.3 -319.0 3.8 0.0 688.3 44.440 -22.866 -17.3 97 CL_c3_s 262.0 -9.6 0.0 -87.9 263.0 -10.0 -922.8 -39.093 115.434 22.86 97 CP_p3_s 1358.0 -35.3 0.0 -4668.1	44.553	94.749	102.265
84 CM_c3_m -1768.0 1.1 0.0 3381.8 -556.0 0.4 0.0 1155.0 94.231 -55.298 -28.96 88.5 CM_c3_e -1192.0 12.0 0.0 2315.2 -344.0 4.1 0.0 705.2 53.178 -23.891 -18.86 88.5 CL_c3_e -1083.0 10.1 0.0 2137.3 -319.0 3.8 0.0 688.3 44.40 -22.866 -17.33 97 CL_c3_e 262.0 -9.6 0.0 -879.3 263.0 -10.4 0.0 -922.8 -93.093 115.494 22.86 17.76 97 CP_p3_s 434.0 -2.3 0.0 -744.5 309.0 -6.9 0.0 -965.9 -65.538 76.692 17.76 107 CP_p3_m 1358.0 -35.3 0.0 -4668.1 62.20 -9.47 0.0 -444.5 309.0 -6.9 0.0 -2444.8 -178.497 193.332 17.76	17.832	88.498	56.279
88.5 CM_c3_e -1192.0 12.0 0.0 2315.2 -344.0 4.1 0.0 705.2 53.178 -23.891 -18.86 88.5 CL_c3_e -1083.0 10.1 0.0 2137.3 -319.0 3.8 0.0 688.3 44.440 -22.866 -17.36 97 CL_c3_e 262.0 -9.6 0.0 -879.9 263.0 -10.4 0.0 -922.8 -93.093 115.434 22.86 97 CL_c3_e 434.0 -2.3 0.0 -744.5 309.0 -6.9 0.0 -965.9 -65.538 76.6322 17.76 102 CP_p3_m 1358.0 -35.3 0.0 -4688.1 625.0 -19.9 0.0 -2444.8 -178.497 193.832 73.80 107 CL_c4_s 12.0 -8.7 0.0 -506.7 306.0 -6.7 0.0 -9410.0 -47.840 54.756 15.03 115.5 CM_c4_s 12.0 -8.7 0.0	16.637	98.159	55.983
88.5 CLG3_s -1083.0 10.1 0.0 2137.3 -319.0 3.8 0.0 688.3 44.440 -22.866 -17.34 97 CLG3_e 262.0 -9.6 0.0 -879.9 263.0 -10.4 0.0 -922.8 -33.093 115.434 22.68 97 CP_p3_s 434.0 -2.3 0.0 -744.5 309.0 -6.9 0.0 -965.9 -65.538 76.6932 17.76 102 CP_p3_m 1358.0 -35.3 0.0 -4688.1 625.0 -19.9 0.0 -2444.8 -178.497 193.832 73.80 107 CP_p3_e 12.0 -8.7 0.0 -506.7 306.0 -6.7 0.0 -941.0 -47.840 54.756 15.03 107 CL_c4_e 12.0 -8.7 0.0 -503.8 266.0 -10.1 0.0 -997.6 -66.313 80.40 17.31 115.5 CM_c4_s 12.0 -8.7 0.0 3		92.757	55.227
97 CLG3_e 262.0		63,299	42.889
97 CP_p3_s			47.495
102 CP_p3_m 1358.0 -35.3 0.0 -4668.1 625.0 -19.9 0.0 -2444.8 -178.497 133.832 73.80 107 CP_p3_e 225.0 -2.6 0.0 -506.7 306.0 -6.7 0.0 -941.0 -47.840 54.756 15.03 115.5 CL_c4_e 12.0 -8.7 0.0 -503.8 266.0 -10.1 0.0 -907.6 -66.319 80.840 17.91 115.5 CL_c4_e -1483.0 18.1 0.0 3235.8 -347.0 5.0 0.0 811.4 65.393 -34.761 -23.9 115.5 CM_c4_s -1560.0 14.5 0.0 3066.1 -394.0 4.8 0.0 847.4 65.287 -35.166 -23.50 124.5 CM_c4_e -1634.0 16.0 0.0 3266.7 -425.0 5.2 0.0 1138.4 114.552 -73.014 -33.9 124.5 CL_c4_s -1415.0 18.4 0.0 3167.4 -377.0 5.2 0.0 863.7 69.375 -40.933 -24.17 133 CL_c4_e 30.0 -5.0 0.0 -316.5 281.0 -9.7 0.0 -909.0 -39.096 43.363 15.56 133 CP_p4_s 1530.0 -35.0 0.0 -4867.3 435.0 -13.2 0.0 -962.8 -37.682 41.702 14.25		122.225	140.698
107 CP_p3_e 225.0 -2.6 0.0 -506.7 306.0 -6.7 0.0 -941.0 -47.840 54.756 15.03 107 Cl_c4_s 12.0 -8.7 0.0 -503.8 266.0 -10.1 0.0 -907.6 -66.319 80.840 17.31 115.5 Cl_c4_e -1483.0 18.1 0.0 3235.8 -347.0 5.0 0.0 811.4 65.393 -34.761 -23.91 115.5 CM_c4_s -1560.0 14.5 0.0 3066.1 -394.0 4.8 0.0 847.4 65.287 -35.166 -23.51 120 CM_c4_m -2537.0 1.2 0.0 4581.1 -426.0 0.5 0.0 1138.4 114.552 -79.014 -33.91 124.5 CM_c4_e -1634.0 16.0 0.0 3266.7 -425.0 5.2 0.0 918.5 73.033 -42.402 -25.20 124.5 CM_c4_e -1415.0 18.4 0.0 3167.4 -377.0 5.2 0.0 863.7 69.375 -40.933 -24.11 133 CL_c4_e 30.0 -5.0 0.0 -316.5 281.0 -9.7 0.0 -909.0 -39.096 43.363 15.56 133 CP_p4_s 1530.0 -35.0 0.0 -4867.3 435.0 -13.2 0.0 -1644.1 -152.752 163.283 67.53 143 CP_p4_e 244.0 -0.8 0.0 -379.4 354.0 -6.5 0.0 -952.8 -37.682 41.702 14.25 145.0 -36.0 -36.0 -379.4 354.0 -6.5 0.0 -592.8 -37.682 41.702 14.25 145.0 -36.0 -36.0 -379.4 354.0 -6.5 0.0 -592.8 -37.682 41.702 14.25 145.0 -36.0 -36.0 -379.4 354.0 -6.5 0.0 -592.8 -37.682 41.702 14.25 145.0 -36.0 -36.0 -379.4 354.0 -6.5 0.0 -392.8 -37.682 41.702 14.25 145.0 -36.0 -36.0 -379.4 354.0 -6.5 0.0 -392.8 -37.682 41.702 14.25 145.0 -36.0 -36.0 -36.0 -379.4 354.0 -6.5 0.0 -392.8 -37.682 41.702 14.25 145.0 -36.0 -36.0 -36.0 -379.4 354.0 -6.5 0.0 -392.8 -37.682 41.702 14.25	-42.418	96,486	104.595
107 Cl_o4_s 12.0 -8.7 0.0 -503.8 266.0 -10.1 0.0 -907.6 -66.319 80.840 17.91 115.5 Cl_o4_e -1483.0 18.1 0.0 3235.8 -347.0 5.0 0.0 811.4 65.399 -34.761 -23.9 115.5 CM_o4_s -1560.0 14.5 0.0 3066.1 -394.0 4.8 0.0 847.4 65.287 -35.166 -23.51 120 CM_o4_m -2537.0 1.2 0.0 4581.1 -426.0 0.5 0.0 1138.4 114.552 -73.014 -33.9 124.5 CM_o4_e -1634.0 16.0 0.0 3266.7 -425.0 5.2 0.0 918.5 73.033 -42.402 -25.21 124.5 Cl_o4_s -1415.0 18.4 0.0 3167.4 -377.0 5.2 0.0 863.7 69.375 -40.933 -24.11 133 Cl_o4_e 30.0 -5.0 0.0 -316.5 2810 -9.7 0.0 -909.0 -39.96 43.363 15.56 133 CP_p4_s 278.0 0.3 0.0 -323.9 330.0 -6.2 0.0 -36.2 -28.229 28.509 10.37 138 CP_p4_s 1530.0 -35.0 0.0 -4867.3 435.0 -13.2 0.0 -1644.1 -152.752 183.28 67.53 143 CP_p4_e 244.0 -0.8 0.0 -379.4 354.0 -6.5 0.0 -992.8 -37.682 41.702 14.25		194.462	209.804
115.5		93,993	97.834
115.5 CM_o4_s -1560.0 14.5 0.0 3066.1 -394.0 4.8 0.0 847.4 65.287 -35.166 -23.50 120 CM_o4_m -2537.0 1.2 0.0 4581.1 -426.0 0.5 0.0 1138.4 114.552 -79.014 -33.95 124.5 CM_o4_e -1634.0 16.0 0.0 3266.7 -425.0 5.2 0.0 918.5 73.033 -42.402 -25.20 124.5 CM_o4_e -1415.0 18.4 0.0 3167.4 -377.0 5.2 0.0 863.7 69.375 -40.933 -24.11 133 CL_o4_e 30.0 -5.0 0.0 -316.5 281.0 -9.7 0.0 -909.0 -39.096 43.363 15.56 133 CP_p4_s 278.0 0.3 0.0 -323.9 330.0 -6.2 0.0 -936.2 -28.229 28.509 10.97 138 CP_p4_m 1530.0 -35.0 0.0 -4867.3 435.0 -13.2 0.0 -1644.1 -152.752 163.283 67.53 143 CP_p4_e 244.0 -0.8 0.0 -379.4 354.0 -6.5 0.0 -952.8 -37.682 41702 14.25 1	54.417 3 27.940	113.709 79.882	123.170 58.976
124.5 CM_c4_m -2537.0 1.2 0.0 4581.1 -426.0 0.5 0.0 1138.4 114.552 -79.014 -33.955 124.5 CM_c4_e -1634.0 16.0 0.0 3266.7 -425.0 5.2 0.0 318.5 73.033 -42.402 -25.21 124.5 CLc4_s -1415.0 18.4 0.0 3167.4 -377.0 5.2 0.0 863.7 69.375 -40.933 -24.11 133 CL_c4_e 30.0 -5.0 0.0 -316.5 281.0 -9.7 0.0 -909.0 -39.096 43.363 15.56 133 CP_p4_s 278.0 0.3 0.0 -323.9 330.0 -6.2 0.0 -936.2 -28.229 28.509 10.97 138 CP_p4_m 1530.0 -35.0 0.0 -4867.3 435.0 -13.2 0.0 -1644.1 -152.752 163.283 67.53 143 CP_p4_e 244.0 -0.8 0.0 -379.4 354.0 -6.5 0.0 -932.8 -37.682 41.702 14.25 1		79.887	59.339
124.5 CM_o4_e -1634.0 16.0 0.0 3266.7 -425.0 5.2 0.0 918.5 73.033 -42.402 -25.20 124.5 CLc4_s -1415.0 18.4 0.0 3167.4 -377.0 5.2 0.0 863.7 69.375 -40.933 -24.1° 133 CL_c4_e 30.0 -5.0 0.0 -316.5 281.0 -9.7 0.0 -903.0 -33.09 43.363 15.56 133 CP_p4_s 278.0 0.3 0.0 -323.9 330.0 -6.2 0.0 -936.2 -28.229 28.509 10.97 138 CP_p4_m 1530.0 -35.0 0.0 -4867.3 495.0 -13.2 0.0 -1644.1 -152.752 163.283 67.53 143 CP_p4_e 244.0 -0.8 0.0 -379.4 354.0 -6.5 0.0 -992.8 -37.682 41.702 14.25		114,129	81.442
124.5 Cl_c4_s -1415.0 18.4 0.0 3167.4 -377.0 5.2 0.0 863.7 69.375 -40.933 -24.1* 133 Cl_c4_e 30.0 -5.0 0.0 -316.5 281.0 -9.7 0.0 -909.0 -39.096 43.363 15.56 133 CP_p4_s 278.0 0.3 0.0 -323.9 330.0 -6.2 0.0 -986.2 -28.229 28.509 10.97 138 CP_p4_m 1530.0 -35.0 0.0 -4867.3 435.0 -13.2 0.0 -164.1 -152.752 163.283 67.53 143 CP_p4_e 244.0 -0.8 0.0 -379.4 354.0 -6.5 0.0 -992.8 -37.682 41.702 142.5		79.682	54,935
133 CL_c4_e 30.0 -5.0 0.0 -316.5 281.0 -9.7 0.0 -909.0 -39.096 43.363 15.56 133 CP_p4_s 278.0 0.3 0.0 -323.9 330.0 -6.2 0.0 -936.2 -28.229 28.509 10.97 138 CP_p4_m 1530.0 -35.0 0.0 -4867.3 435.0 -13.2 0.0 -1644.1 -152.752 163.283 67.53 143 CP_p4_e 244.0 -0.8 0.0 -379.4 354.0 -6.5 0.0 -992.8 -37.682 41.702 14.25			55.380
133 CP_p4_s 278.0 0.3 0.0 -323.9 330.0 -6.2 0.0 -936.2 -28.229 28.509 10.97 138 CP_p4_m 1530.0 -35.0 0.0 -4867.3 435.0 -13.2 0.0 -1644.1 -152.752 163.283 67.53 143 CP_p4_e 244.0 -0.8 0.0 -379.4 354.0 -6.5 0.0 -992.8 -37.682 41.702 14.25			104.461
138 CP_p4_m 1530.0 -35.0 0.0 -4867.3 435.0 -13.2 0.0 -1644.1 -152.752 163.283 67.53 143 CP_p4_e 244.0 -0.8 0.0 -379.4 354.0 -6.5 0.0 -992.8 -37.682 41.702 14.25			88.160
143 CP_p4_e 244.0 -0.8 0.0 -379.4 354.0 -6.5 0.0 -992.8 -37.682 41.702 14.25		173.098	183.507
		88.935	90.822
143 CLe5_s -7.0 -6.6 0.0 -358.1 305.0 -10.2 0.0 -965.7 -51.738 60.633 16.80	53.117	104.551	109.537
151.5 CL_c5_e -1530.0 17.3 0.0 3234.8 -369.0 4.9 0.0 830.1 70.382 -41.772 -24.10		74.460	50.248
151.5 CM_c5_s -1529.0 0.9 0.0 2947.0 -410.0 0.3 0.0 861.0 68.966 -42.124 -23.15		72.564	49.644
156 CM_o5_m -2664.0 1.0 0.0 4603.5 -521.0 0.4 0.0 1110.5 103.254 -62.296 -33.76		105.008	68.209
180.5 CM_c5_e			53.607
160.5 CIR_c5_s			53.992
	-54.770 -47.413	156.156 119.746	165.884 117.948
169 CPR_p5_s 358.0 -1.2 0.0 -544.0 1735.0 -6.5 0.0 -2688.2 -90.926 88.439 30.99 174 CPR_p5_m 1080.0 -31.3 0.0 -4215.9 1302.0 -18.1 0.0 -3241.8 -193.614 185.576 71.40		209,406	202.315
179 CPR_p5_e -306.0 -1.4 0.0 240.7 1747.0 -8.3 0.0 -2866.5 -73.129 70.989 25.20		104.307	102.882
179 CR_66_s -452.0 -5.4 0.0 249.0 1686.0 -11.6 0.0 -2831.5 -101.561 110.030 31.55	51.545	132.321	139.971
187.5 CR_66_e - 1663.0 1.0 0.0 3226.8 1244.0 0.6 0.0 -927.4 56.618 -40.038 -6.43		68.795	57.034
187.5 CMR_o6_s -1679.0 1.2 0.0 3328.9 1775.0 0.5 0.0 -383.2 67.866 -42.909 -7.36		78.147	58.767
191.5 CMP_c6_m -1298.0 1.3 0.0 2963.5 934.0 0.8 0.0 -294.7 81.231 -57.640 -11.68	1 24.051	81.782	59.635
195.5 CMR_o6_e -1286.0 0.5 0.0 2132.6 -571.0 0.5 0.0 1194.9 105.813 -82.478 -22.7		105.279	83.113
195.5 CS_s2_s -1256.0 0.7 0.0 2226.8 -556.0 0.5 0.0 1177.6 112.833 -93.055 -23.76	12.127	113.446	94.885
204 C5_s2_e 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	3 12.127 3 -13.008		68.395
	3 12.127 3 -13.008		00.000

ELESE s.c.a r.l.

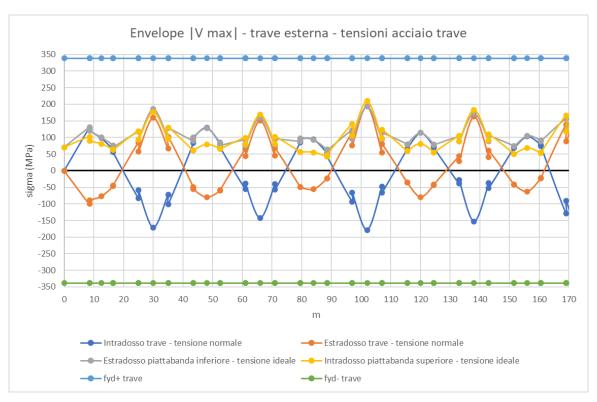
Consorzio Telese Società Consortile a Responsabilità Limitata

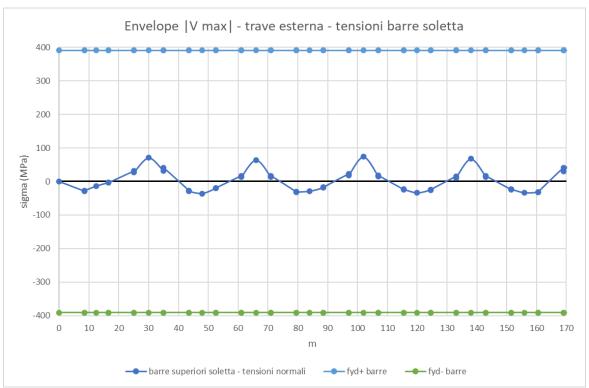
PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

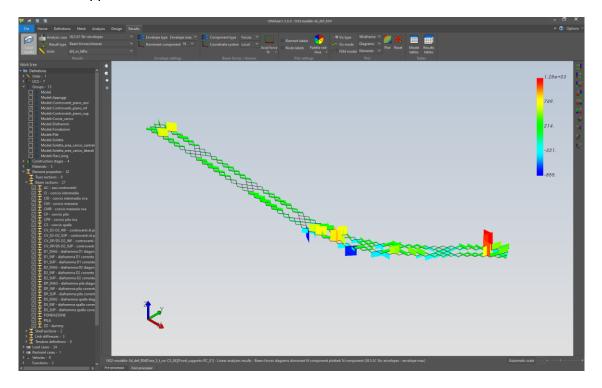

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009


Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA **DOCUMENTO** REV. **FOGLIO** 87 di 129 IF2R 2.2.E.ZZ CL IV.02.0.0.001 В



APPALTATORE	TELES Consorzio Telese Società Con sorti		_	O TRATT	A CANCEL	LO-BENEVEN O TELESINO -	_	ANO
PROGETTAZION	NE:		2° SUBLOT	TO TELE	SE – SAN L	ORENZO		
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU	IVO			
IV02 - CAVALCA	AFERROVIA S.S. 106 al km 37	7+009	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di cal	colo impalcato		IF2R	2.2.E.ZZ	CL	IV.02.0.0.001	В	88 di 129

10 VERIFICHE DI RESISTENZA – TRAVERSI E CONTROVENTI

Per i traversi e i controventi si verifica sia la resistenza a trazione che la resistenza a compressione, quest'ultima tenendo conto dei possibili fenomeni di instabilità delle aste compresse attraverso un coefficiente amplificativo ω degli sforzi normali. Per le verifiche si considera l'inviluppo SLU Nmax/min.

Controventi di piano inferiori - SLU envelope N max – sforzi normali (kN)

APPALTATORE: TELESE S.c.a r.l.

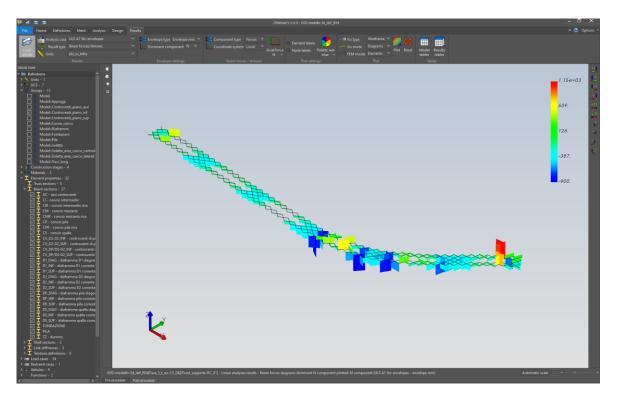
Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

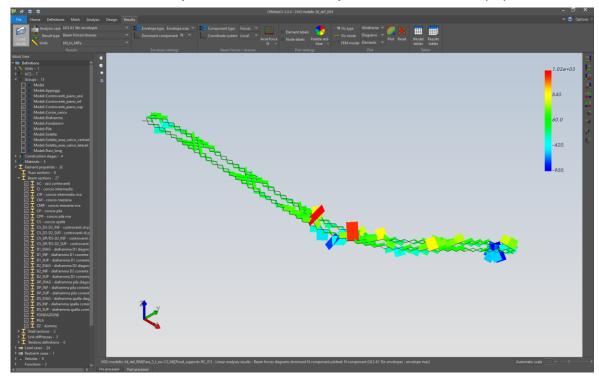
Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009


Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO


PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 IV.02.0.0.001
 B
 89 di 129

Controventi di piano inferiori - SLU envelope N min - sforzi normali (kN)

Controventi di piano superiori - SLU envelope N max - sforzi normali (kN)

APPALTATORE: TELESE S.c.a r.l.

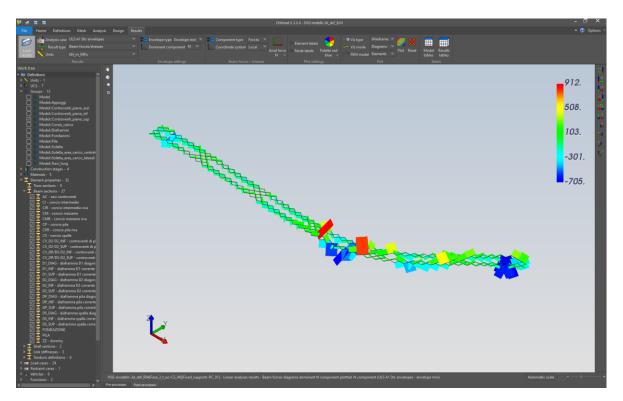
Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

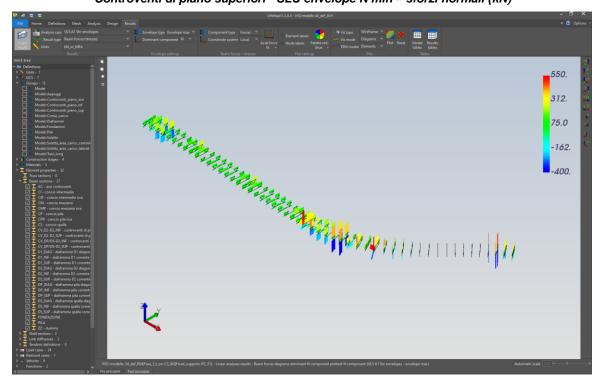
Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009


Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO


PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 IV.02.0.0.001
 B
 90 di 129

Controventi di piano superiori - SLU envelope N min – sforzi normali (kN)

Diaframmi - SLU envelope N max - sforzi normali (kN)

APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009


Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 IV.02.0.0.001
 B
 91 di 129

Diaframmi - SLU envelope N min - sforzi normali (kN)

Risulta per le verifiche

Envelope ULS static - Nmax/m	in		10y	Nby,Rd	10z	Nbz,Rd	Ny,Rd	ω	
			m	kN	m	kN	kN		
Diaframma pila DP corrente superiore	DP_SUP	2 L 100 x 100 x 10	2.8	557.6	2.8	789.6	1294.9	2.322	
Diaframma pila DP corrente inferiore	DP_INF	2 L 100 x 100 x 10	1.4	1 015	2.8	789.6	1294.9	1.640	
Diaframma pila DP diagonali	DP_DIAG	2 L 100 x 100 x 10	2.1	772.9	2.1	968.1	1294.9	1.675	
Diaframma D1 corrente superiore	D1_SUP	2 L 90 x 90 x 8	2.8	346.3	2.8	502.2	939.2	2.712	
Diaframma D1 corrente inferiore	D1_INF	2 L 90 x 90 x 8	1.4	676	2.8	502.2	939.2	1.870	
Diaframma D1 diagonali	D1_DIAG	2 L 90 x 90 x 8	2.1	494.9	2.1	636.5	939.2	1.898	
Diaframma D2 corrente superiore	D2_SUP	2 L 90 x 90 x 8	2.8	346.3	2.8	502.2	939.2	2.712	
Diaframma D2 corrente inferiore	D2_INF	2 L 90 x 90 x 8	1.4	676	2.8	502.2	939.2	1.870	
Diaframma D2 diagonali	D2_DIAG	2 L 90 x 90 x 8	2.1	494.9	2.1	636.5	939.2	1.898	
Diaframma spalla DS corrente superiore	DS_SUP	2 L 100 x 100 x 10	2.8	557.6	2.8	789.6	1294.9	2.322	
Diaframma spalla DS corrente inferiore	DS_INF	2 L 100 x 100 x 10	2.8	557.6	2.8	789.6	1294.9	2.322	
Diaframma spalla DS diagonali	DS_DIAG	2 L 100 x 100 x 10	2.1	772.9	2.1	968.1	1294.9	1.675	
Controventi di piano tra diaframmi DP/DS e D2 superiori	CV_DP/DS-D2_SUP	L 120 x 120 x 15	2.34	726.6	2.34	726.6	1147.2	1.579	
Controventi di piano tra diaframmi DP/DS e D2 inferiori	CV_DP/DS-D2_INF	2 L 100 x 100 x 10	2.34	907.3	2.34	907.3	1294.9	1.427	
Controventi di piano tra diaframmi D2 e D2 superiori	CV_D2-D2_SUP	L 120 x 120 x 15	2.34	726.6	2.34	726.6	1147.2	1.579	
Controventi di piano tra diaframmi D2 e D2 inferiori	CV_D2-D2_INF	2 L 100 x 100 x 10	2.34	907.3	2.34	907.3	1294.9	1.427	

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 IV.02.0.0.001
 B
 92 di 129

sigma positivo trazione

Envelope ULS static - Nmax/m	in	Nmax	Nmin	Α	ω	σ_{XX} max	$\sigma_{\chi\chi}$ min	fyd	η
		kN	kN	m2			MPa	MPa	
Diaframma pila DP corrente superiore	DP_SUP	223	-51	0.00383	2.322	58	-31	338	5.81
Diaframma pila DP corrente inferiore	DP_INF	226	-203	0.00383	1.640	59	-87	338	3.89
Diaframma pila DP diagonali	DP_DIAG	196	-195	0.00383	1.675	51	-85	338	3.96
Diaframma D1 corrente superiore	D1_SUP	412	-184	0.00278	2.712	148	-180	338	1.88
Diaframma D1 corrente inferiore	D1_INF	531	-350	0.00278	1.870	191	-236	338	1.43
Diaframma D1 diagonali	D1_DIAG	487	-487	0.00278	1.898	175	-333	338	1.02
Diaframma D2 corrente superiore	D2_SUP	551	-317	0.00278	2.712	198	-309	338	1.09
Diaframma D2 corrente inferiore	D2_INF	479	-498	0.00278	1.870	172	-335	338	1.01
Diaframma D2 diagonali	D2_DIAG	358	-359	0.00278	1.898	129	-245	338	1.38
Diaframma spalla DS corrente superiore	DS_SUP	139	-25	0.00383	2.322	36	-15	338	9.32
Diaframma spalla DS corrente inferiore	DS_INF	166	-311	0.00383	2.322	43	-189	338	1.79
Diaframma spalla DS diagonali	DS_DIAG	345	-343	0.00383	1.675	90	-150	338	2.25
Controventi di piano tra diaframmi DP/DS e D2 superiori	CV_DP/DS-D2_SUP	1020	-334	0.00339	1.579	301	-155	338	1.12
Controventi di piano tra diaframmi DP/DS e D2 inferiori	CV_DP/DS-D2_INF	516	-897	0.00383	1.427	135	-334	338	1.01
Controventi di piano tra diaframmi D2 e D2 superiori	CV_D2-D2_SUP	328	-705	0.00339	1.579	97	-328	338	1.03
Controventi di piano tra diaframmi D2 e D2 inferiori	CV_D2-D2_INF	1284	-618	0.00383	1.427	335	-230	338	1.01

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

CL

PROGETTO ESECUTIVO

COMMESSA IF2R LOTTO CODIFICA

2.2.E.ZZ

DOCUMENTO IV.02.0.0.001

REV. FOGLIO

В

93 di 129

11 VERIFICHE DI RESISTENZA – PIOLI NELSON

La verifica dei pioli viene effettuata a completo ripristino. La forza di scorrimento tra una sezione soggetta al minimo momento flettente e la sezione soggetta al massimo momento flettente è:

$$V_{\text{Id}} = F_{\text{cf}} + \frac{A_{\text{s}} \cdot f_{\text{sk}}}{\gamma_{\text{s}}} + \frac{A_{\text{ap}} \cdot f_{\text{yp}}}{\gamma_{\text{ap}}} = min\left\{\frac{A_{\text{a}} \cdot f_{\text{yk}}}{\gamma_{\text{a}}}; 0,85 \frac{f_{\text{ck}} \cdot A_{\text{c}}}{\gamma_{\text{c}}} + \frac{A_{\text{se}} \cdot f_{\text{sk}}}{\gamma_{\text{s}}}\right\} + \frac{A_{\text{s}} \cdot f_{\text{sk}}}{\gamma_{\text{s}}} + \frac{A_{\text{ap}} \cdot f_{\text{yp}}}{\gamma_{\text{ap}}}$$

Risulta:

Area trasversale trave Aa 0.1157 m2

Tensione di plasticizzazione di calcolo trave fyd,t 338.10 MPa

Area trasversale soletta Ac 0.700 m2

Tensione di plasticizzazione di calcolo soletta fcd 21.33 MPa

Area barre tese soletta Ab,t 0.0297 m2

Area barre compresse soletta Ab,ct 0.0056 m2

Tensione di plasticizzazione di calcolo barre fyd,b 391.30 MPa

Fcf 14895.6 kN

Forza di scorrimento tra appoggio e mezzeria Vid 28733.5 kN

Distanza appoggio-mezzeria L/2 18 m

Scorrimento vid 1596.31 kN/m

Si ottiene dunque uno scorrimento pari a 28733/18 = 1596 kN/m.

P_{Rd1} = 0.8
$$\frac{f_u}{\gamma_v} = \frac{\pi}{4} \frac{d^2}{\sqrt{\frac{f_ck^*E_cm}{\gamma_v}}} = 0$$
 [kN]

P_{Rd2} = 0.29 α d² $\frac{\sqrt{\frac{f_ck^*E_cm}{\gamma_v}}}{\sqrt{\frac{f_ck^*E_cm}{\gamma_v}}} = 0$ [kN]

K = 1

DATI						
h piolo	250	mm				
d	22	mm				
N° pioli fila	5	-				
Passo fila	200	mm				
α	1	-				
Ϋ́ν	1.25	-				
ft	450	MPa				
f _{ck}	32	MPa				
Ec	33345.76	MPa				
φ (t,to)	1.589	-				
E _{c,LT}	12879.79	MPa				

RESISTENZA SIST. COMMESSIONE					
P _{Rd,a}	P _{Rd,a} 109 kN				
P _{Rd,c}	72	kN			
P _{Rd}	72	kN			

P _{Rd fila}	360	kN
P _{Rd in 1m}	1802	KN/m

V_{ed}	1593	KN/m
V_{Rd}	1802	KN/m
i.r	0.88	-

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA-SOTECNI S.p.A. SYSTRA S.A. SWS Engineering S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA

LOTTO

CODIFICA

DOCUMENTO

REV. В

FOGLIO 94 di 129

IF2R 2.2.E.ZZ IV.02.0.0.001 CL

12 VERIFICHE DI STABILITA'

Si riportano nel seguito le verifiche relative all'instabilità dell'anima e delle piattabande dei vari conci della trave, riferite alla trave di bordo esterna, la più sollecitata. Le azioni sono relative agli inviluppi SLU.

12.1 Anime

PLATE-BUCKLING

with selection Plate buckling analysis UNI EN 1993-1-5/NA:2011-02

Material

Material	ElastMod	ElastMod Characteristic yield strength		Reference Stress
Description	E [MPa]	f _{yk} [MPa]	ν[-]	σ_{e} [MPa]
Steel S 355 (UNI EN 1993-1-1)	2.100E+05	355.000	0.300	22.303

PLATE-BUCKLING

with selection Plate buckling analysis UNI EN 1993-1-5/NA:2011-02

Boundary conditions

•			
Edge	Edge	Edge	Edge
A-B	C-D	A-C	B-D
Hinged	Hinged	Hinged	Hinged

Data for National Annex

UNI EN 1993-1-5/NA:2011-02 - Italy

Partial safety factor $\gamma_{M1}:\ 1.05$ η: 1.20 Coefficient for shear resistance Θ: 6.00 Torsional buckling parameter for open stiffeners considering warping:

Used Standards

[1] UNI EN 1993-1-5/NA:2011-02 Eurocode 3: Design of steel structures - Part 1-5: Plated structural elements [2] UNI EN 1993-1-1/NA:2010-09 Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings [3] Guide from ECCS The Book: Design of Plated Structures, ISBN (ECCS): 978-92-9147-100-3

Calculation parameters

FE-Model for Stiffeners Eigenvalue solver method Divisions for FE mesh

Number of buckling modes to calculate

Type of calculation

Determination of Reduction Factors

Contribution from the web χ_{w} acc. to Tab. 5.1 Help values acc. to Tab. B.1 Determination of Buckling Curve Shape

3D using surface elements

Method by Lanczos

Calculate buckling values for unstiffened plates according to standard formulas if

possible. (Tab. 4.1 or Tab. 4.2)

Rigid end post Welded or cold formed Various buckling curves APPALTATORE: TELESE S.c.a r.l.

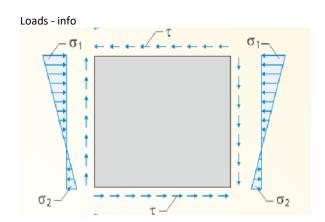
Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009


Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 IV.02.0.0.001
 B
 95 di 129

Interasse trasversi 4.00 m

micerasse (lasversi 4.00	1111							
		Verifiche stabilità anima trave							
	_		CS_s1	CMR_c1	CIR_c5	CPR_p5	CM_c2	Cl_c3	CP_p3
a (lunghezza pannello)		mm	4000.00	4000.00	4000.00	4000.00	4000.00	4000.00	4000.00
b (altezza pannello pannello)		mm	1855.00	1845.00	1845.00	1820.00	1850.00	1845.00	1830.00
t (spessore pannello)		mm	16.00	16.00	20.00	24.00	18.00	20.00	24.00
	σ_1 (estradosso trave)	MPa	96.37	85.75	-164.25	-197.31	81.36	-139.16	-203.67
Envelope M	σ_2 (intradosso trave)	MPa	-131.60	-140.49	168.49	210.87	-138.37	128.46	191.72
max/min	τ (anima)	MPa	31.64	17.07	39.65	48.63	12.58	35.23	51.48
	Design ratio		0.347	0.260	0.500	0.624	0.239	0.349	0.567
	$\sigma_{\scriptscriptstyle 1}$ (estradosso trave)	MPa	95.85	85.25	-162.55	-197.18	66.54	-148.61	-193.52
Envelope N	$\sigma_{\scriptscriptstyle 2}$ (intradosso trave)	MPa	-139.40	-150.09	165.83	210.68	-124.61	142.54	178.08
max/min	τ (anima)	MPa	36.05	18.63	36.59	47.83	12.67	33.44	45.63
	Design ratio		0.358	0.264	0.486	0.623	0.216	0.431	0.527
	$\sigma_{\scriptscriptstyle 1}$ (estradosso trave)	MPa	100.19	88.85	-122.17	-178.76	79.63	-115.43	-193.83
Envelope	σ_2 (intradosso trave)	MPa	-130.17	-121.62	102.89	183.59	-129.82	93.09	178.50
V max	τ (anima)	MPa	40.67	25.81	54.77	55.95	17.66	48.21	53.83
	Design ratio		0.371	0.298	0.349	0.543	0.328	0.312	0.528

tensioni positive di compressione

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA IF2R LOTTO **2.2.E.ZZ**

CODIFICA CL DOCUMENTO IV.02.0.0.001

REV. F

В

FOGLIO **96 di 129**

12.2 Piattabanda inferiore

PLATE-BUCKLING

with selection Plate buckling analysis UNI EN 1993-1-5/NA:2011-02

Material

Material	ElastMod	Characteristic yield strength	Poisson's Ratio	Reference Stress
Description	E [MPa]	f _{yk} [MPa]	ν [-]	σ_{e} [MPa]
Steel S 355 (UNI EN 1993-1-1)	2.100E+05	355.000	0.300	1453.160

PLATE-BUCKLING

with selection
Plate buckling analysis
UNI EN 1993-1-5/NA:2011-02

Boundary conditions

Edge	Edge	Edge	Edge
A-B	C-D	A-C	B-D
Unsupported	Hinged	Hinged	Hinged

Data for National Annex

UNI EN 1993-1-5/NA:2011-02 - Italy

Partial safety factor $\gamma_{\text{M1}} \colon \ 1.05$ Coefficient for shear resistance $\eta \colon \ 1.20$ Torsional buckling parameter for open stiffeners considering warping: $\Theta \colon \ 6.00$

Used Standards

[1] UNI EN 1993-1-5/NA:2011-02 Eurocode 3: Design of steel structures - Part 1-5: Plated structural elements
[2] UNI EN 1993-1-1/NA:2010-09 Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings

[3] Guide from ECCS The Book: Design of Plated Structures, ISBN (ECCS): 978-92-9147-100-3

Calculation parameters

FE-Model for Stiffeners 3D using surface elements Eigenvalue solver method Method by Lanczos

Divisions for FE mesh
Number of buckling modes to calculate

Type of calculation Calculate buckling values for unstiffened plates according to standard formulas if

8

possible. (Tab. 4.1 or Tab. 4.2)

Help values acc. to Tab. B.1

Determination of Buckling Curve Shape

Rigid end post Welded or cold formed

Various buckling curves

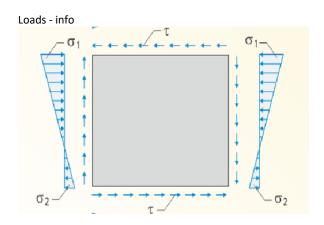
APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.


IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ 97 di 129 CL IV.02.0.0.001 В

			Verifiche stabilità piattabanda inferiore trave						
	_		CS_s1	CMR_c1	CIR_c5	CPR_p5	CM_c2	Cl_c3	CP_p3
a (lunghezza pannello) mm		4000.00	4000.00	4000.00	4000.00	4000.00	4000.00	4000.00	
b (altezza pannello pannello) t (spessore pannello)		mm	450.00	400.00	400.00	500.00	400.00	400.00	500.00
		mm	25.00	30.00	35.00	40.00	30.00	35.00	40.00
Envelope M	σ (intradosso trave)	MPa	<0	<0	168.49	210.87	<0	128.46	191.72
max/min	Design ratio			-	0.500	0.666	-	0.445	0.606
Envelope N	σ (intradosso trave)	MPa	<0	<0	165.83	210.68	<0	142.54	178.08
max/min	Design ratio				0.493	0.665		0.423	0.563

tensioni positive di compressione

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

CL

PROGETTO ESECUTIVO

COMMESSA I

IF2R

LOTTO CODIFICA

2.2.E.ZZ

DOCUMENTO
IV.02.0.0.001

REV. I

В

FOGLIO 98 di 129

12.3 Piattabanda superiore

PLATE-BUCKLING

with selection Plate buckling analysis UNI EN 1993-1-5/NA:2011-02

Material

Material	ElastMod	Characteristic yield strength	Poisson's Ratio	Reference Stress
Description	E [MPa]	f _{yk} [MPa]	ν[-]	σ_{e} [MPa]
Steel S 355 (UNI EN 1993-1-1)	2.100E+05	355.000	0.300	1453.160

PLATE-BUCKLING

with selection
Plate buckling analysis
UNI EN 1993-1-5/NA:2011-02

Boundary conditions

Edge	Edge	Edge	Edge
A-B	C-D	A-C	B-D
Unsupported	Hinged	Hinged	Hinged

Data for National Annex

UNI EN 1993-1-5/NA:2011-02 - Italy

Partial safety factor $\gamma_{\text{M1}} : \ 1.05$ Coefficient for shear resistance $\eta : \ 1.20$ Torsional buckling parameter for open stiffeners considering warping: $\Theta : \ 6.00$

Used Standards

[1] UNI EN 1993-1-5/NA:2011-02 Eurocode 3: Design of steel structures - Part 1-5: Plated structural elements
[2] UNI EN 1993-1-1/NA:2010-09 Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings

[3] Guide from ECCS The Book: Design of Plated Structures, ISBN (ECCS): 978-92-9147-100-3

Calculation parameters

FE-Model for Stiffeners 3D using surface elements
Eigenvalue solver method Method by Lanczos

Divisions for FE mesh
Number of buckling modes to calculate

Type of calculation Calculate buckling values for unstiffened plates according to standard formulas if

8

possible. (Tab. 4.1 or Tab. 4.2)

Help values acc. to Tab. B.1

Determination of Buckling Curve Shape

Rigid end post
Welded or cold formed

Various buckling curves

APPALTATORE: TELESE S.c.a r.l.

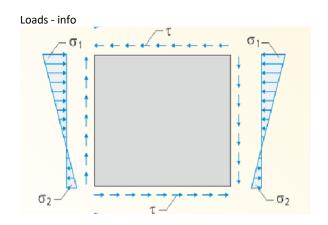
Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009


Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 IV.02.0.0.001
 B
 99 di 129

			Verifiche stabilità piattabanda superiore trave											
	_	CS_s1	CMR_c1	CIR_c5	CPR_p5	CM_c2	Cl_c3	CP_p3						
	a (lunghezza pannello)	mm	4000.00	4000.00	4000.00	4000.00	4000.00	4000.00	4000.00					
b (alte	325.00	325.00	400.00	400.00	325.00	325.00	400.00							
	t (spessore pannello) mm				20.00	40.00	20.00	20.00	30.00					
Envelope M	σ (estradosso trave)	MPa	96.37	85.75	<0	<0	81.36	<0	<0					
max/min	Design ratio		0.370	0.279	1	I	0.313	-	-					
Envelope N	σ (estradosso trave)	MPa	95.85	85.25	<0	<0	66.54	<0	<0					
max/min	Design ratio		0.368	0.276	-	1	0.256		-					

tensioni positive di compressione

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE - SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA-SOTECNI S.p.A. SYSTRA S.A. SWS Engineering S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA **DOCUMENTO** REV. **FOGLIO** Relazione di calcolo impalcato IF2R 2.2.E.ZZ IV.02.0.0.001 100 di 129 CL В

13 VERIFICHE FESSURAZIONE – ARMATURA LONGITUDINALE SOLETTA

Poiché l'impalcato analizzato è caratterizzato da uno schema statico a trave continua la soletta in C.A è soggetta a flessione negativa in prossimità delle zone di appoggio. Secondo quanto prescritto al §2.6.2.8.2 della specifica RFI DTC SI PS MA IFS 001 A, per strutture a trave continua, particolare riguardo andrà posto nella limitazione della massima tensione di trazione in soletta in corrispondenza degli appoggi intermedi. Per le ipotesi di modellazione, per le verifiche della soletta e dell'armatura longitudinale, si farà riferimento alle prescrizioni dell'EN 1994 (parte 2) considerando, allo SLE rara, un valore ammissibile dell'apertura delle fessure minore o uguale a w = 0.20 mm.

L'armatura longitudinale in zona tesa in soletta risulta essere la seguente:

- Armatura superiore Φ26/10 con un copriferro pari a 40 mm.
- Armatura inferiore Φ26/10 con copriferro pari 10 mm contato a partire dalla predalla.

Risulta

Es	200000.00	MPa
Ecm	32837	MPa
fctm	2.896	MPa
kt	0.60	carichi breve durata
k1	0.80	barre aderenza migliorata
k2	1.0	trazione semplice (caso peggiore)
k3	3.40	
k4	0.43	
Ac,eff	2000.00	cm2
αe	6.09	

TELESE s.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

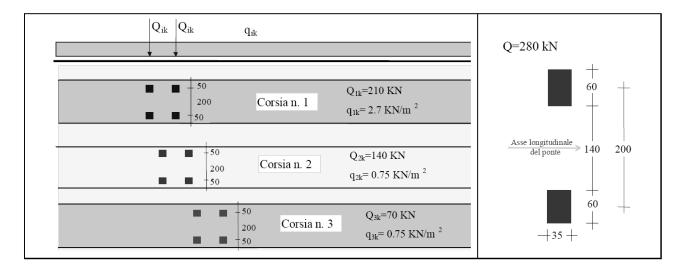
PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 IV.02.0.0.001
 B
 101 di 129

									INPUT							
sezione	ID	h trave	h piatt. inf	h piatt. sup	t anima trave	A trave	zg trave	J trave	b eff soletta	d barre soletta	A barre int soletta	A barre sup soletta	creep soletta fase 3	M trave fase 2	N trave fase 3	M trave fase 3
		mm	mm	mm	mm	m ²	m	m ⁴	m	mm	cm ²	cm ²		kN*m	kN	kN*m
		TRAVE ESTERNA - SLE rara Envelope M max/min														
30	CPR_p1_m	1900	40	40	24	0.11568	0.88569	0.07386	2.800	26	148.68	148.68	0	-5770	-2105	-9151
66	CP_p2_m	1900	40	30	24	0.10792	0.81527	0.06588	2.800	26	148.68	148.68	0	-4652	-1373	-8016
102	CP_p3_m	1900	40	30	24	0.10792	0.81527	0.06588	2.800	26	148.68	148.68	0	-6230	-1773	-10062
138	CP_p4_m	1900	40	30	24	0.10792	0.81527	0.06588	2.800	26	148.68	148.68	0	-5067	-1946	-8837
174	CPR_p5_m	1900	40	40	24	0.11568	0.88569	0.07386	2.800	26	148.68	148.68	0	-7159	-2265	-11193
						TRAVE	ESTERNA	- SLE rara	Envelop	e N max/n	nin					
30	CPR_p1_m	1900	40	40	24	0.11568	0.88569	0.07386	2.800	26	148.68	148.68	0	-5770	-2189	-8972
66	CP_p2_m	1900	40	30	24	0.10792	0.81527	0.06588	2.800	26	148.68	148.68	0	-4652	-2102	-7292
102	CP_p3_m	1900	40	30	24	0.10792	0.81527	0.06588	2.800	26	148.68	148.68	0	-6230	-2338	-9745
138	CP_p4_m	1900	40	30	24	0.10792	0.81527	0.06588	2.800	26	148.68	148.68	0	-5067	-2404	-8195
174	CPR p5 m	1900	40	40	24	0.11568	0.88569	0.07386	2.800	26	148.68	148.68	0	-7159	-2266	-11179

			CARATTERI	STICHE GEO	OMETRICH	E SEZIONE	COMPOSTA			TAZIONI COMPOSTA	TENSIONI BARRE	VERIFICA FESSURAZIONE					
sezione	ID	coeff. omog. soletta	A soletta omog.	zg soletta omog.	J soletta omog.	A sezione compost a fase 3	zg sezione compost a fase 3	J sezione compost a fase 3	N sezione composta fase 3	M sezione composta fase 3	σ _{xx} barre superiori soletta	ρeff	Esm	Δsmax	wd		
_	-	-	m ²	m	m ⁴	m ²	m	m ⁴	kN	kN*m	MPa			cm	mm		
	SLE rara Env																
30	CPR_p1_m	0.160204	0.030	2.085	0.000215	0.14542	1.131	0.10810	0.000	-5915.393	56.859	0.14868	0.00017294	19.4861985	0.03370		
66	CP_p2_m	0.160204	0.030	2.085	0.000215	0.13766	1.090	0.10368	0.000	-5118.313	53.336	0.14868	0.00016001	19.4861985	0.03118		
102	CP_p3_m	0.160204	0.030	2.085	0.000215	0.13766	1.090	0.10368	0.000	-6095.733	63.522	0.14868	0.00020626	19.4861985	0.04019		
138	CP_p4_m	0.160204	0.030	2.085	0.000215	0.13766	1.090	0.10368	0.000	-6253.194	65.162	0.14868	0.00021446	19.4861985	0.04179		
174	CPR_p5_m	0.160204	0.030	2.085	0.000215	0.14542	1.131	0.10810	0.000	-6762.182	64.998	0.14868	0.00021364	19.4861985	0.04163		
														max	0.05768		
	- SLE rara Env																
30	CPR_p1_m	0.160204	0.030	2.085	0.000215	0.14542	1.131	0.10810	0.000	-5836.614	56.102	0.14868	0.00016916	19.4861985	0.03296		
66	CP_p2_m	0.160204	0.030	2.085	0.000215	0.13766	1.090	0.10368	0.000	-5317.588	55.413	0.14868	0.00016624	19.4861985	0.03239		
102	CP_p3_m	0.160204	0.030	2.085	0.000215	0.13766	1.090	0.10368	0.000	-6495.098	67.683	0.14868	0.00022707	19.4861985	0.04425		
138	CP_p4_m	0.160204	0.030	2.085	0.000215	0.13766	1.090	0.10368	0.000	-6190.638	64.511	0.14868	0.0002112	19.4861985	0.04116		
174	CPR_p5_m	0.160204	0.030	2.085	0.000215	0.14542	1.131	0.10810	0.000	-6749.341	64.875	0.14868	0.00021302	19.4861985	0.04151		


< 0.2mm

max 0.05768 < 0.2mm

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SYSTRA-SOTECNI S.p.A. SWS Engineering S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA **DOCUMENTO** REV. **FOGLIO** Relazione di calcolo impalcato 2.2.E.ZZ 102 di 129 IF2R CL IV.02.0.0.001 В

14 VERIFICHE A FATICA – TRAVE DI RIVA

Le verifiche a fatica sono condotte adottando il carico veicolare di fatica n° 1 impiegato per le verifiche è rappresentato nella figura seguente.

Per la valutazione dello stato tensionale limite è stato utilizzato un coefficiente parziale di sicurezza γ_{mf} pari a 1.35 indicato in tabella C4.2.XII della circolare esplicativa delle vigenti NTC08.

Tabella C4.2.XII – Coefficienti parziali y_{Mf} per verifiche a fatica

	Conseguenza della rottura per fatio			
	Moderate	Significative		
Danneggiamento accettabile (strutture poco sensibili alla rottura per fatica)	γ _{Mf} =1,00	γ _{Mf} =1,15		
Vita utile (strutture sensibili alla rottura per fatica)	γ _{Mf} =1,15	γ _{Mf} =1,35		

Le verifiche sono condotte per i particolari costruttivi indicati nelle figure a seguire.

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

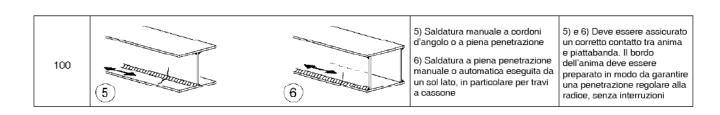
ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

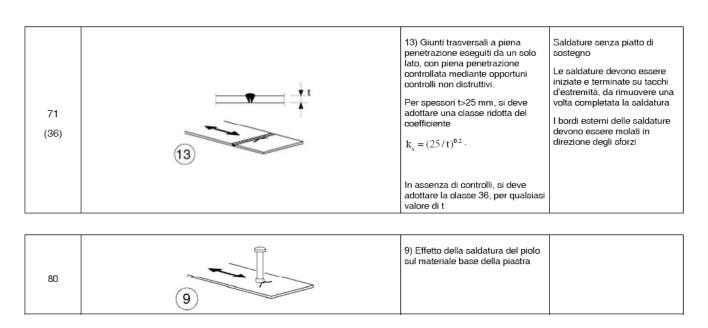
PROGETTO ESECUTIVO

COMMESSA IF2R LOTTO 2.2.E.ZZ

OTTO CODIFICA

CL


DOCUMENTO IV.02.0.0.001


REV.

FOGLIO 103 di 129

Tabella C4.2.XIV Dettagli costruttivi per sezioni saldate ($\Delta \sigma$)

Classe del dettaglio	Dettaglio costruttivo	Descrizione	Requisiti
125		Saldatura longitudinali continue 1) Saldatura automatica a piena penetrazione effettuata da entrambi i lati 2) Saldatura automatica a cordoni d'angolo. Le parti terminali dei piatti di rinforzo devono essere verificate considerando i dettagli 5) e 6) della tabella C4.2.XXI	1) e 2) Non sono consentite interruzioni/riprese, a meno che la riparazione sia eseguita da un tecnico qualificato e siano eseguiti controlli atti a verificare la corretta esecuzione della riparazione

Si riportano le verifiche dimensionanti relative al dettaglio della saldatura di testa a completa penetrazione delle due piattabande, superiore e inferiore, della trave di riva (dettaglio indicato con la nomenclatura 13 nelle figure precedenti).

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. SWS Engineering S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO

2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA

LOTTO

CODIFICA

DOCUMENTO

FOGLIO

REV. IF2R 2.2.E.ZZ CL IV.02.0.0.001 104 di 129 В

La tensione limite risulta pari a:

 $(71 \text{ MPa} / \gamma_{mf})*0.737 = 38.76 \text{ MPa}$ - (per le piattabande aventi spessore massimo di 25 mm)

Si è inoltre tenuto conto del coefficiente riduttivo ks per i piatti con spessore superiore ai 25 mm pari a Ks = $(25/t)^0$ 0.2. Per uno spessore di 40mm risulta ad esempio Ks = $(25/40)^0$ 0.2 = 0.91, da cui lo stato tensionale limite sulla piattabanda avente spessore pari a 40 mm risulta essere pari a $(71 \text{ MPa} / \gamma_{mf}) *0.91*0.737 = 35.27 \text{ MPa}.$

> Classe Δσc 71 MPa

Coeff. riduttivo limite fatica ad ampiezza costante 0.737

Limite fatica ad ampiezza costante (5*10^6 cicli) Δσd 52.327 MPa

Coeff. parziale ymf

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO

IF2R 2.2.E.ZZ CL

REV. IV.02.0.0.001

В

FOGLIO 105 di 129

14.1 Accidentali fatica Envelope M max/min trave

		INPUT															
sezione	ID	h trave	h piatt. inf	h piatt. sup	t anima trave	A trave	zg trave	J trave	Campo b eff	Lc	b eff soletta	A barre int soletta	A barre sup soletta	M trave fase 2	N trave fase 3	M trave fase 3	V trave fase 3
	-	mm	mm	mm	mm	m ²	m	m ⁴		m	m	cm ²	cm ²	kN*m	kN	kN*m	kN
0	CS_s1_s	1900	25	20	16	0.06518	0.815	0.03859	1	25.5	2.800	28.14	28.14	0	0	0	0
8.5	CS_s1_e	1900	25	20	16	0.06518	0.815	0.03859	1	25.5	2.800	28.14	28.14	0	939	720	0
8.5	CMR_c1_s	1900	30	25	16	0.06977	0.84778	0.04291	1	25.5	2.800	28.14	28.14	0	978	745	0
12.5 16.5	CMR_c1_m	1900	30 30	25 25	16 16	0.06977	0.84778 0.84778	0.04291	1	25.5 25.5	2.800	28.14	28.14	0	1137 1138	889 917	0
16.5	CMR_c1_e CIR_c1_s	1900 1900	35	20	20	0.0809	0.81659	0.04752	1	25.5	2.800	28.14	28.14	0	1080	857	0
25	CIR c1 e	1900	35	20	20	0.0809	0.81659	0.04752	2	16.5	2.800	148.68	148.68	0	-514	-925	0
25	CPR_p1_s	1900	40	40	24	0.11568	0.88569	0.07386	2	16.5	2.800	148.68	148.68	0	-455	-1083	0
30	CPR_p1_m	1900	40	40	24	0.11568	0.88569	0.07386	2	16.5	2.800	148.68	148.68	0	-413	-1192	0
35	CPR_p1_e	1900	40	40	24	0.11568	0.88569	0.07386	2	16.5	2.800	148.68	148.68	0	-367	-987	0
35 43.5	CIR_c2_s CIR_c2_e	1900 1900	35 35	20 20	20 20	0.0809	0.81659 0.81659	0.04752	3	16.5 25.2	2.800	148.68 28.14	148.68 28.14	0	-438 1047	-812 825	0
43.5	CM c2 s	1900	30	20	18	0.0809	0.81639	0.04752	3	25.2	2.800	28.14	28.14	0	1047	787	0
48	CM c2 m	1900	30	20	18	0.0703	0.80699	0.04053	3	25.2	2.800	28.14	28.14	0	1132	830	0
52.5	CM_c2_e	1900	30	20	18	0.0703	0.80699	0.04053	3	25.2	2.800	28.14	28.14	0	1124	820	0
52.5	Cl_c2_s	1900	35	20	20	0.0779	0.77525	0.04393	3	25.2	2.800	28.14	28.14	0	1106	803	0
61	Cl_c2_e	1900	35	20	20	0.0779	0.77525	0.04393	4	15.5	2.800	148.68	148.68	0	-509	-866	0
61	CP_p2_s	1900	40	30	24	0.10792	0.81527	0.06588	4	15.5	2.800	148.68	148.68	0	-448	-1041	0
66	CP_p2_m	1900	40	30	24	0.10792	0.81527	0.06588	4	15.5	2.800	148.68	148.68	0	-474	-1207	0
71 71	CP_p2_e CI c3 s	1900 1900	40 35	30 20	24 20	0.10792	0.81527 0.77525	0.06588	3	15.5 25.2	2.800	148.68 148.68	148.68 148.68	0	-435 -501	-1009 -841	0
79.5	CI c3 e	1900	35	20	20	0.0779	0.77525	0.04393	3	25.2	2.800	28.14	28.14	0	1106	816	0
79.5	CM c3 s	1900	30	20	18	0.0703	0.80699	0.04053	3	25.2	2.800	28.14	28.14	0	1140	828	0
84	CM_c3_m	1900	30	20	18	0.0703	0.80699	0.04053	3	25.2	2.800	28.14	28.14	0	1186	875	0
88.5	CM_c3_e	1900	30	20	18	0.0703	0.80699	0.04053	3	25.2	2.800	28.14	28.14	0	1227	893	0
88.5	Cl_c3_s	1900	35	20	20	0.0779	0.77525	0.04393	3	25.2	2.800	28.14	28.14	0	1209	875	0
97	Cl_c3_e	1900	35	20	20	0.0779	0.77525	0.04393	3	25.2	2.800	148.68	148.68	0	-650	-1015	0
97 102	CP_p3_s CP_p3_m	1900 1900	40 40	30 30	24 24	0.10792	0.81527 0.81527	0.06588	4	15.5 15.5	2.800	148.68 148.68	148.68 148.68	0	-564 -630	-1225 -1490	0
107	CP_p3_III CP_p3_e	1900	40	30	24	0.10792	0.81527	0.06588	4	15.5	2.800	148.68	148.68	0	-452	-998	0
107	Cl_c4_s	1900	35	20	20	0.0779	0.77525	0.04393	3	15.5	2.800	148.68	148.68	0	-509	-848	0
115.5	CI_c4_e	1900	35	20	20	0.0779	0.77525	0.04393	3	25.2	2.800	28.14	28.14	0	1255	933	0
115.5	CM_c4_s	1900	35	20	18	0.07421	0.76619	0.04275	3	25.2	2.800	28.14	28.14	0	1312	921	0
120	CM_c4_m	1900	35	20	18	0.07421	0.76619	0.04275	3	25.2	2.800	28.14	28.14	0	1338	993	0
124.5 124.5	CM_c4_e	1900 1900	35 35	20 20	18 20	0.07421	0.76619	0.04275	3	25.2 25.2	2.800	28.14 28.14	28.14 28.14	0	1297 1382	984 979	0
133	CI_c4_s CI_c4_e	1900	35	20	20	0.0779	0.77525	0.04393	4	15.5	2.800	148.68	148.68	0	-658	-956	0
133	CP p4 s	1900	40	30	24	0.10792	0.81527	0.06588	4	15.5	2.800	148.68	148.68	0	-566	-1131	0
138	CP_p4_m	1900	40	30	24	0.10792	0.81527	0.06588	4	15.5	2.800	148.68	148.68	0	-589	-1330	0
143	CP_p4_e	1900	40	30	24	0.10792	0.81527	0.06588	4	15.5	2.800	148.68	148.68	0	-624	-1219	0
143	Cl_c5_s	1900	35	20	20	0.0779	0.77525	0.04393	4	15.5	2.800	148.68	148.68	0	-719	-1038	0
151.5	Cl_c5_e	1900	35	20	20	0.0779	0.77525	0.04393	3	25.2	2.800	28.14	28.14	0	1403	982	0
151.5 156	CM_c5_s CM_c5_m	1900 1900	35 35	20 20	18 18	0.07421	0.76619	0.04275	3	25.2 25.2	2.800	28.14	28.14 28.14	0	1369 1359	980 970	0
160.5	CM c5 e	1900	35	20	18	0.07421			3	25.2	2.800	28.14	28.14	0	1204	867	0
160.5	CIR c5 s	1900	35	20	20	0.0809	0.81659		3	25.2	2.800	28.14	28.14	0	1150	934	0
169	CIR_c5_e	1900	35	20	20	0.0809		0.04752	2	16.5	2.800	148.68	148.68	0	-427	-811	0
169	CPR_p5_s	1900	40	40	24	0.11568			2	16.5	2.800	148.68	148.68	0	-361	-1012	0
174	CPR_p5_m	1900	40	40	24				2	16.5	2.800	148.68	148.68	0	-547	-1521	0
179	CPR_p5_e	1900	40	40	24				2	16.5	2.800	148.68	148.68	0	-539	-1243	0
179 187.5	CIR_c6_s CIR_c6_e	1900 1900	35 35	20	20	0.0809		0.04752	2	16.5 25.5	2.800	148.68 28.14	148.68 28.14	0	-612 1175	-1066 912	0
187.5	CMR c6 s	1900	30	25	16	0.0809			1	25.5	2.800	28.14	28.14	0	1175	935	0
191.5	CMR c6 m	1900	30	25	16	0.06977	0.84778		1	25.5	2.800	28.14	28.14	0	1114	871	0
195.5	CMR_c6_e	1900	30	25	16	0.06977	0.84778		1	25.5	2.800	28.14	28.14	0	964	718	0
195.5	CS_s2_s	1900	25	20	16	0.06518	0.815	0.03859	1	25.5	2.800	28.14	28.14	0	903	654	0
204	CS_s2_e	1900	25	20	16	0.06518	0.815	0.03859	1	25.5	2.800	28.14	28.14	0	0	0	0

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF2R 2.2.E.ZZ CL IV.02.0.0.001 B 106 di 129

SOLLECITAZIONI LIMITI TENSIONALI CARATTERISTICHE GEOMETRICHE SEZIONE COMPOSTA TENSIONI TRAVE SEZIONE COMPOSTA coeff. A sezione Lsezione N sezione M sezione $\Delta \sigma_n$ Λσ... zg soletta J soletta ammissibi ammissibil sezione ID omog. compost compost composta composta intradosso estradoss omog. omog. omog. compost piattabanda piattabanda soletta a fase 3 a fase 3 fase 3 fase 3 trave trave a fase 3 superiore inferiore m⁴ m m m m kN kN*m MPa MPa MPa MPa 2.085 0 CS s1 s 0.160204 0.006 4.07E-05 0.07081 0.916 0.04698 0.000 0.000 0.000 0.000 38.76 38.76 2.085 1.633 8.5 CS_s1_e 0.160204 0.118 0.000625 0.18295 0.10689 0.000 1924.191 29.389 -4.815 38.76 38.76 2.085 38.76 8.5 CMR c1 s 0.160204 0.118 0.000625 0.18754 1.625 0.11060 0.000 1965.846 28.878 -4.893 37.37 12.5 CMR_c1_m 0.160204 0.118 2.085 0.000625 0.18754 1.625 0.11060 0.000 2308,661 33,914 -5.746 37.37 38.76 16.5 CMR c1 e 0.160204 0.118 2.085 0.000625 0.18754 1.625 0.11060 0.000 2338.306 34.349 -5.820 37.37 38.76 16.5 CIR c1 s 0.160204 0.118 2.085 0.000625 0.19867 1.568 0.12530 0.000 2238.156 28.017 -5.922 36.24 38.76 25 CIR c1 e 0.160204 0.030 2.085 0.000215 0.11064 1.158 0.08272 0.000 -1581.147 -22.126 14.193 36.24 38.76 CPR p1 s 0.160204 25 0.030 2.085 0.000215 0.14542 1.131 0.10810 0.000 -1631.838 -17.07211.610 35.28 35.28 CPR p1 m 0.160204 -1690,784 0.000215 0.14542 0.10810 -17.689 30 0.030 2.085 1.131 0.000 12.029 35.28 35.28 CPR_p1_e 0.160204 2.085 35 0.030 0.000215 0.14542 1.131 0.10810 0.000 -1430.020 -14.96110.174 35.28 35.28 CIR_c2_s 0.160204 0.030 -1371.237 36.24 35 2.085 0.000215 0.11064 1.158 0.08272 0.000 -19.189 12.309 38.76 43.5 CIR_c2_e 0.160204 2163.877 27.087 -5.725 36.24 38.76 0.118 2.085 0.000625 0.19867 1.568 0.12530 0.000 CM_c2_s 2187.048 43.5 0.160204 0.118 2.085 0.000625 0.18807 1.607 0.11306 0.000 31.092 -5.662 37.37 38.76 48 0.000 32.549 -5.928 37.37 38.76 CM_c2_m 0.160204 0.118 2.085 0.000625 0.18807 1.607 0.11306 2289.500 CM_c2_e 0.160204 0.118 2.085 0.000625 0.18807 1.607 0.11306 0.000 2269.121 32.259 -5.875 37.37 38.76 52.5 2.085 52.5 Cl_c2_s 0.160204 0.118 0.000625 0.19567 1.564 0.12498 0.000 2263.007 28.310 -6.092 36.24 38.76 61 0.160204 0.030 2.085 0.000215 0.10764 1.137 0.08106 0.000 -1536.900 -21.559 14.465 36.24 38.76 CI c2 e CP_p2_s 61 0.160204 0.030 2.085 0.000215 0.13766 1.090 0.10368 0.000 -1613.235 -16.953 12.610 35.28 37.37 66 CP_p2_m 0.160204 0.030 2.085 0.000215 0.13766 1.090 0.10368 0.000 -1812.789 -19.050 14.170 35.28 37.37 -16.442 37.37 71 CP_p2_e 0.160204 0.030 2.085 0.000215 0.13766 1.090 0.10368 0.000 -1564.624 12.230 35.28 0.10764 1.137 -21.059 71 0.160204 0.030 2.085 0.000215 0.08106 0.000 -1501.299 14.130 36.24 38.76 79.5 0.160204 2.085 0.000625 0.19567 1.564 0.12498 0.000 2276,192 28,475 -6.127 36.24 38.76 CI c3 e 0.118 CM_c3_s 1.607 0.11306 79.5 0.160204 0.118 2.085 0.000625 0.18807 0.000 2297.693 32,665 -5.949 37.37 38.76 0.118 0.000 84 CM_c3_m 0.160204 2.085 0.000625 0.18807 1.607 0.11306 2404.206 34.179 -6.225 37.37 38.76 88.5 CM c3 e 0.160204 0.118 2.085 0.000625 0.18807 1.607 0.11306 0.000 2474.882 35.184 -6.408 37.37 38.76 88.5 0.160204 0.118 2.085 0.000625 0.19567 1.564 0.12498 0.000 2470.935 30.912 -6.651 36.24 38.76 CI c3 s 97 CI c3 e 0.160204 0.030 2.085 0.000215 0.10764 1.137 0.08106 0.000 -1871.304 -26.250 17.612 36.24 38.76 97 CP p3 s 0.160204 0.030 2.085 0.000215 0.13766 1.090 0.10368 0.000 -1945.124 -20.440 15.204 35.28 37.37 102 CP p3 m 0.160204 0.030 2.085 0.000215 0.13766 1.090 0.10368 0.000 -2294,791 -24.115 17.937 35.28 37.37 107 CP p3 e 0.160204 0.030 2.085 0.000215 0.13766 1.090 0.10368 0.000 -1575.174 -16.55312.312 35.28 37.37 107 CI c4 s 0.160204 0.030 2.085 0.000215 0.10764 1.137 0.08106 0.000 -1518.812 -21.305 14.294 36.24 38.76 0.160204 115.5 CI c4 e 0.118 2.085 0.000625 0.19567 1.564 0.12498 0.000 2590.009 32.401 -6.97236.24 38.76 0.160204 115.5 CM c4 s 0.118 2.085 0.000625 0.19198 1.575 0.12256 0.000 2664.744 34.250 -7.06236.24 38.76 0.160204 2772.085 120 CM c4 m 0.118 2.085 0.000625 0.19198 1.575 0.12256 0.000 35.629 -7.34636.24 38.76 -7.179 124.5 CM c4 e 0.160204 0.118 2.085 0.000625 0.19198 1.575 0.12256 0.000 2708.882 34.817 36.24 38.76 124.5 0.160204 0.118 2.085 0.000625 0.19567 1.564 0.12498 0.000 2803.002 35.066 -7.545 36.24 38.76 CI c4 s Cl_c4_e 0.160204 2.085 0.10764 0.08106 0.000 -1822.493 -25.565 17.153 36.24 38.76 133 0.030 0.000215 1.137 133 0.160204 0.030 2.085 0.000215 0.13766 1.090 0.10368 0.000 -1853.357 -19.476 14.487 35.28 37.37 CP p4 s CP_p4_m 0.160204 0.030 2.085 0.000215 0.13766 1.090 0.10368 0.000 -2082.210 -21.881 16.276 35.28 37.37 143 CP_p4_e 0.160204 0.030 2.085 0.000215 0.13766 1.090 0.10368 0.000 -2015.288 -21.178 15.753 35.28 37.37 CI_c5_s 143 0.160204 0.030 2.085 0.000215 0.10764 1.137 0.08106 0.000 -1984.789 -27.842 18.680 36.24 38.76 151.5 CI c5 e 0.160204 0.118 2.085 0.000625 0.19567 1.564 0.12498 0.000 2833.549 35.448 -7.627 36.24 38.76 0.160204 35.985 -7.420 151.5 CM_c5_s 0.118 2.085 0.000625 0.19198 1.575 0.12256 0.000 2799.778 36.24 38.76 0.000625 2776.444 35.686 -7.358 36.24 38.76 156 CM_c5_m 0.160204 0.118 2.085 0.19198 1.575 0.12256 0.000 CM_c5_e 0.160204 -6.539 160.5 0.118 2.085 0.000625 0.19198 1.575 0.12256 0.000 2467.523 31.715 36.24 38.76 0.19867 CIR c5 s 0.000625 2404.957 30.105 -6.363 38.76 160.5 0.160204 0.118 2.085 1.568 0.12530 0.000 36.24 CIR_c5_e 0.160204 0.000215 0.11064 0.08272 0.000 -1356.280 -18.979 12.175 36.24 38.76 169 0.030 2.085 1.158 2.085 -1447.896 CPR_p5_s 0.160204 0.030 0.000215 0.14542 0.10810 0.000 -15.148 10.301 35.28 35.28 169 1.131 174 2.085 CPR p5 m 0.160204 0.030 0.000215 0.14542 1.131 0.10810 0.000 -2181.449 -22.822 15.520 35.28 35.28 179 CPR p5 e 0.160204 0.030 2.085 0.000215 0.14542 1.131 0.10810 0.000 -1893.046 -19.805 13,468 35.28 35.28 179 CIR c6 s 0.160204 0.030 2.085 0.000215 0.11064 1.158 0.08272 0.000 -1847.090 -25.848 16.580 36.24 38.76 187.5 CIR c6 e 0.160204 0.118 2.085 0.000625 0.19867 1.568 0.12530 0.000 2414.378 30.223 -6.388 36.24 38.76 187.5 CMR c6 s 0.160204 0.118 2.085 0.000625 0.18754 1.625 0.11060 0.000 2418,429 35,526 -6.019 37.37 38.76 191.5 CMR c6 m 0.160204 0.118 2.085 0.000625 0.18754 1.625 0.11060 0.000 2261,943 33,227 -5.630 37.37 38.76 CMR c6 e 0.160204 0.18754 37.37 195.5 0.118 2.085 0.000625 1.625 0.11060 0.000 1921.132 28.221 -4.78238.76 CS 52 5 0.160204 -4.533 2.085 27.667 38.76 38.76 195.5 0.118 0.000625 0.18295 1.633 0.10689 0.000 1811.402 204 CS s2 e 0.160204 0.006 2.085 4.07E-05 0.07081 0.916 0.04698 0.000 0.000 0.000 0.000 38.76 38.76

TELESE s.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

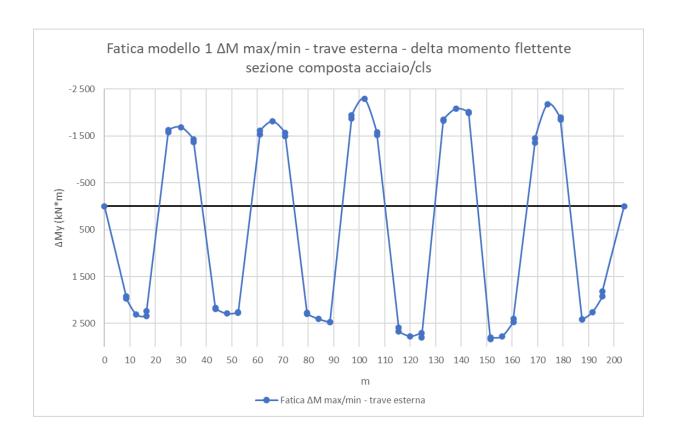
Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA

SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009


Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 IV.02.0.0.001
 B
 107 di 129

TELESE s.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

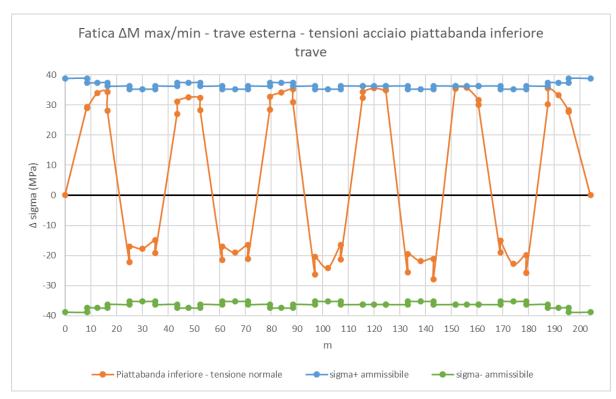
PROGETTAZIONE:

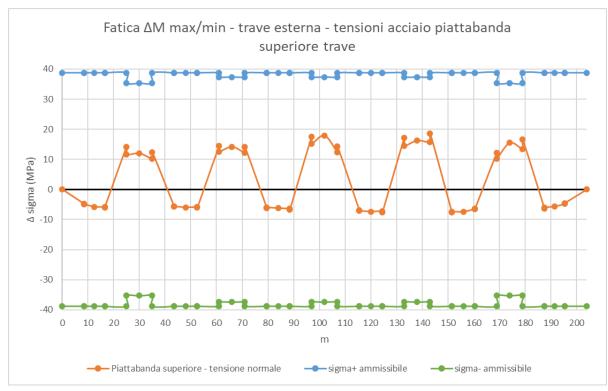
Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009


Relazione di calcolo impalcato


ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 IV.02.0.0.001
 B
 108 di 129

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LO

LOTTO CODIFICA

DOCUMENTO

REV. FOGLIO

IF2R 2.2.E.ZZ CL IV.02.0.0.001 B 109 di 129

14.2 Accidentali fatica Envelope N max/min trave

									INF	TUT							
sezione	ID	h trave	h piatt. inf	h piatt. sup	t anima trave	A trave	zg trave	J trave	Campo b eff	Lc	b eff soletta	A barre int soletta	A barre sup soletta	M trave fase 2	N trave fase 3	M trave fase 3	V trave fase 3
		mm	mm	mm	mm	m ²	m	m ⁴		m	m	cm ²	cm ²	kN*m	kN	kN*m	kN
0	CS_s1_s	1900	25	20	16	0.06518	0.815	0.03859	1	25.5	2.800	28.14	28.14	0	0	0	0
8.5	CS_s1_e	1900	25	20	16	0.06518	0.815	0.03859	1	25.5	2.800	28.14	28.14	0	939	720	0
8.5 12.5	CMR_c1_s CMR_c1_m	1900 1900	30 30	25 25	16 16	0.06977	0.84778	0.04291	1	25.5 25.5	2.800	28.14 28.14	28.14 28.14	0	1015 1157	768 899	0
16.5	CMR c1 e	1900	30	25	16	0.06977	0.84778	0.04291	1	25.5	2.800	28.14	28.14	0	1137	875	0
16.5	CIR c1 s	1900	35	20	20	0.0809	0.81659	0.04752	1	25.5	2.800	28.14	28.14	0	1117	865	0
25	CIR_c1_e	1900	35	20	20	0.0809	0.81659	0.04752	2	16.5	2.800	148.68	148.68	0	-540	-909	0
25	CPR_p1_s	1900	40	40	24	0.11568	0.88569	0.07386	2	16.5	2.800	148.68	148.68	0	-435	-1011	0
30	CPR_p1_m	1900	40	40	24	0.11568	0.88569	0.07386	2	16.5	2.800	148.68	148.68	0	-408	-1159	0
35	CPR_p1_e	1900	40 35	40	24	0.11568	0.88569	0.07386	2	16.5	2.800	148.68	148.68	0	-383	-897	0
35 43.5	CIR_c2_s CIR_c2_e	1900 1900	35	20	20	0.0809	0.81659 0.81659	0.04752	2	16.5 25.2	2.800	148.68 28.14	148.68 28.14	0	-456 1047	-793 825	0
43.5	CM c2 s	1900	30	20	18	0.0703	0.80699	0.04053	3	25.2	2.800	28.14	28.14	0	1087	786	0
48	CM_c2_m	1900	30	20	18	0.0703	0.80699	0.04053	3	25.2	2.800	28.14	28.14	0	1136	819	0
52.5	CM_c2_e	1900	30	20	18	0.0703	0.80699	0.04053	3	25.2	2.800	28.14	28.14	0	1129	805	0
52.5	Cl_c2_s	1900	35	20	20	0.0779	0.77525	0.04393	3	25.2	2.800	28.14	28.14	0	1108	803	0
61	Cl_c2_e	1900	35	20	20	0.0779	0.77525	0.04393	4	15.5	2.800	148.68	148.68	0	-532	-850	0
61 66	CP_p2_s CP_p2_m	1900 1900	40 40	30 30	24 24	0.10792	0.81527 0.81527	0.06588	4	15.5 15.5	2.800	148.68 148.68	148.68 148.68	0	-460 -482	-942 -1185	0
71	CP p2 e	1900	40	30	24	0.10792	0.81527	0.06588	4	15.5	2.800	148.68	148.68	0	-450	-906	0
71	Cl_c3_s	1900	35	20	20	0.0779	0.77525	0.04393	3	25.2	2.800	148.68	148.68	0	-510	-824	0
79.5	Cl_c3_e	1900	35	20	20	0.0779	0.77525	0.04393	3	25.2	2.800	28.14	28.14	0	1106	816	0
79.5	CM_c3_s	1900	30	20	18	0.0703	0.80699	0.04053	3	25.2	2.800	28.14	28.14	0	1140	824	0
84	CM_c3_m	1900	30	20	18	0.0703	0.80699	0.04053	3	25.2	2.800	28.14	28.14	0	1211	871	0
88.5	CM_c3_e	1900	30	20	18	0.0703	0.80699	0.04053	3	25.2	2.800	28.14	28.14	0	1230	877	0
88.5 97	CI_c3_s CI_c3_e	1900 1900	35 35	20	20	0.0779	0.77525	0.04393	3	25.2 25.2	2.800	28.14 148.68	28.14 148.68	0	1209 -660	877 -999	0
97	CP p3 s	1900	40	30	24	0.10792	0.81527	0.06588	4	15.5	2.800	148.68	148.68	0	-577	-1104	0
102	CP p3 m	1900	40	30	24	0.10792	0.81527	0.06588	4	15.5	2.800	148.68	148.68	0	-637	-1473	0
107	CP_p3_e	1900	40	30	24	0.10792	0.81527	0.06588	4	15.5	2.800	148.68	148.68	0	-457	-914	0
107	Cl_c4_s	1900	35	20	20	0.0779	0.77525	0.04393	3	15.5	2.800	148.68	148.68	0	-532	-830	0
115.5	Cl_c4_e	1900	35	20	20	0.0779	0.77525	0.04393	3	25.2	2.800	28.14	28.14	0	1272	919	0
115.5	CM_c4_s	1900	35	20	18	0.07421	0.76619	0.04275	3	25.2	2.800	28.14	28.14	0	1327	912	0
120 124.5	CM_c4_m CM_c4_e	1900 1900	35 35	20 20	18 18	0.07421	0.76619	0.04275	3	25.2 25.2	2.800	28.14	28.14	0	1347 1357	989 984	0
124.5	Cl c4 s	1900	35	20	20	0.07421	0.77525	0.04273	3	25.2	2.800	28.14	28.14	0	1382	979	0
133	Cl_c4_e	1900	35	20	20	0.0779	0.77525	0.04393	4	15.5	2.800	148.68	148.68	0	-669	-906	0
133	CP_p4_s	1900	40	30	24	0.10792	0.81527	0.06588	4	15.5	2.800	148.68	148.68	0	-578	-1068	0
138	CP_p4_m	1900	40	30	24	0.10792	0.81527	0.06588	4	15.5	2.800	148.68	148.68	0	-607	-1298	0
143	CP_p4_e	1900	40	30	24	0.10792	0.81527	0.06588	4	15.5	2.800	148.68	148.68	0	-635	-1152	0
143 151.5	CI_c5_s CI_c5_e	1900 1900	35 35	20	20 20	0.0779	0.77525	0.04393	3	15.5 25.2	2.800	148.68 28.14	148.68 28.14	0	-726 1410	-990 989	0
151.5	CM c5 s	1900	35	20	18	0.0773	0.76619	0.04393	3	25.2	2.800	28.14	28.14	0	1376	989	0
156	CM c5 m	1900	35	20	18	0.07421	0.76619	0.04275	3	25.2	2.800	28.14	28.14	0	1386	973	0
160.5	CM_c5_e	1900	35	20	18		0.76619		3	25.2	2.800	28.14	28.14	0	1233	865	0
160.5	CIR_c5_s	1900	35	20	20		0.81659		3	25.2	2.800	28.14	28.14	0	1155	919	0
169	CIR_c5_e	1900	35	20	20		0.81659		2	16.5	2.800	148.68	148.68	0	-438	-795	0
169	CPR_p5_s CPR_p5_m	1900	40 40	40 40	24		0.88569		2	16.5 16.5	2.800	148.68 148.68	148.68 148.68	0	-377 -548	-769 -1506	0
174 179	CPR_p5_m CPR_p5_e	1900 1900	40	40	24		0.88569		2	16.5	2.800	148.68	148.68	0	-548	-1176	0
179	CIR_c6_s	1900	35	20	20	0.0809	0.81659		2	16.5	2.800	148.68	148.68	0	-634	-1047	0
187.5	CIR_c6_e	1900	35	20	20	0.0809	0.81659		1	25.5	2.800	28.14	28.14	0	1176	894	0
187.5	CMR_c6_s	1900	30	25	16	0.06977	0.84778	0.04291	1	25.5	2.800	28.14	28.14	0	1186	937	0
191.5	CMR_c6_m	1900	30	25	16	0.06977			1	25.5	2.800	28.14	28.14	0	1114	862	0
195.5	CMR_c6_e	1900	30	25	16	0.06977			1	25.5	2.800	28.14	28.14	0	965	718	0
195.5 204	CS_s2_s CS_s2_e	1900 1900	25 25	20	16 16	0.06518		0.03859	1	25.5 25.5	2.800	28.14	28.14 28.14	0	924	683 0	0
204	C3_32_E	1300	25	20	10	0.00318	0.013	0.03639	1	23.3	2.000	20.14	20.14	U	U	U	U

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUM

DOCUMENTO REV. FOGLIO

IF2R 2.2.E.ZZ CL IV.02.0.0.001 B 110 di 129

		CARATTERISTICHE GEOMETRICHE SEZIONE COMPOSTA			4	SOLLECITAZIONI SEZIONE COMPOSTA TENSIONI TRAVE			NI TRAVE	LIMITI TENSIONALI ACCIAIO				
		coeff.	A soletta	zg soletta	J soletta	A sezione	zg sezione	J sezione	N sezione	M sezione	Δσ _{xx}	$\Delta\sigma_{xx}$	Δs ammissibile	Δs ammissibile
sezione	ID	omog. soletta	omog.	omog.	omog.	compost a fase 3	compost	compost a fase 3	composta fase 3	composta fase 3	intradosso	estradosso	piattabanda	piattabanda
		soletta				a lase 5	a fase 3	a lase 5	lase 5	lase 5	trave	trave	superiore	inferiore
			m ²	m	m ⁴	m ²	m	m ⁴	kN	kN*m	MPa	MPa	MPa	MPa
0	CS s1 s	0.160204	0.006	2.085	4.07E-05	0.07081	0.916	0.04698	0.000	0.000	0.000	0.000	38.76	38.76
8.5	CS_s1_e	0.160204	0.118	2.085	0.000625	0.18295	1.633	0.10689	0.000	1924.191	29.389	-4.815	38.76	38.76
8.5	CMR_c1_s	0.160204	0.118	2.085	0.000625	0.18754	1.625	0.11060	0.000	2034.958	29.893	-5.065	37.37	38.76
12.5	CMR_c1_m	0.160204	0.118	2.085	0.000625	0.18754	1.625	0.11060	0.000	2343.551	34.426	-5.833	37.37	38.76
16.5	CMR_c1_e	0.160204	0.118	2.085	0.000625	0.18754	1.625	0.11060	0.000	2295.694	33.723	-5.714	37.37	38.76
16.5	CIR_c1_s	0.160204	0.118	2.085	0.000625	0.19867	1.568	0.12530	0.000	2293.192	28.706	-6.067	36.24	38.76
25	CIR_c1_e	0.160204	0.030	2.085	0.000215	0.11064	1.158	0.08272	0.000	-1598.054	-22.363	14.345	36.24	38.76
25	CPR_p1_s	0.160204	0.030	2.085	0.000215	0.14542	1.131	0.10810	0.000	-1535.643	-16.066	10.925	35.28	35.28
30	CPR_p1_m	0.160204	0.030	2.085	0.000215	0.14542	1.131	0.10810	0.000	-1651.692	-17.280	11.751	35.28	35.28
35	CPR_p1_e	0.160204	0.030	2.085	0.000215	0.14542	1.131	0.10810	0.000	-1358.947	-14.217	9.668	35.28	35.28
35	CIR_c2_s	0.160204	0.030	2.085	0.000215	0.11064	1.158	0.08272	0.000	-1374.983	-19.241	12.343	36.24	38.76
43.5	CIR_c2_e	0.160204	0.118	2.085	0.000625	0.19867	1.568	0.12530	0.000	2163.877	27.087	-5.725	36.24	38.76
43.5	CM_c2_s	0.160204	0.118	2.085	0.000625	0.18807	1.607	0.11306	0.000	2187.311	31.096	-5.663	37.37	38.76
48	CM_c2_m	0.160204	0.118	2.085	0.000625	0.18807	1.607	0.11306	0.000	2283.442	32.463	-5.912	37.37	38.76
52.5	CM_c2_e	0.160204	0.118	2.085	0.000625	0.18807	1.607	0.11306 0.12498	0.000	2260.280	32.133	-5.852	37.37	38.76
52.5 61	CI_c2_s CI_c2_e	0.160204 0.160204	0.118	2.085 2.085	0.000625	0.19567 0.10764	1.564 1.137	0.12498	0.000	2265.626 -1550.946	28.343 -21.756	-6.099 14.597	36.24 36.24	38.76 38.76
61	CP p2 s	0.160204	0.030	2.085	0.000215	0.10764	1.090	0.10368	0.000	-1529.149	-16.069	11.953	35.28	37.37
66	CP_p2_m	0.160204	0.030	2.085	0.000215	0.13766	1.090	0.10368	0.000	-1800.876	-18.924	14.077	35.28	37.37
71	CP_p2_III	0.160204	0.030	2.085	0.000215	0.13766	1.090	0.10368	0.000	-1480.334	-15.556	11.571	35.28	37.37
71	Cl c3 s	0.160204	0.030	2.085	0.000215	0.10764	1.137	0.08106	0.000	-1496.004	-20.985	14.080	36.24	38.76
79.5	CI c3 e	0.160204	0.118	2.085	0.000625	0.19567	1.564	0.12498	0.000	2276.192	28.475	-6.127	36.24	38.76
79.5	CM c3 s	0.160204	0.118	2.085	0.000625	0.18807	1.607	0.11306	0.000	2293.631	32.608	-5.938	37.37	38.76
84	CM c3 m	0.160204	0.118	2.085	0.000625	0.18807	1.607	0.11306	0.000	2432.094	34.576	-6.297	37.37	38.76
88.5	CM c3 e	0.160204	0.118	2.085	0.000625	0.18807	1.607	0.11306	0.000	2462.469	35.008	-6.376	37.37	38.76
88.5	Cl_c3_s	0.160204	0.118	2.085	0.000625	0.19567	1.564	0.12498	0.000	2472.964	30.937	-6.657	36.24	38.76
97	CI_c3_e	0.160204	0.030	2.085	0.000215	0.10764	1.137	0.08106	0.000	-1868.323	-26.208	17.584	36.24	38.76
97	CP_p3_s	0.160204	0.030	2.085	0.000215	0.13766	1.090	0.10368	0.000	-1840.236	-19.338	14.384	35.28	37.37
102	CP_p3_m	0.160204	0.030	2.085	0.000215	0.13766	1.090	0.10368	0.000	-2286.623	-24.029	17.874	35.28	37.37
107	CP_p3_e	0.160204	0.030	2.085	0.000215	0.13766	1.090	0.10368	0.000	-1497.248	-15.734	11.703	35.28	37.37
107	CI_c4_s	0.160204	0.030	2.085	0.000215	0.10764	1.137	0.08106	0.000	-1530.848	-21.474	14.408	36.24	38.76
115.5	Cl_c4_e	0.160204	0.118	2.085	0.000625	0.19567	1.564	0.12498	0.000	2598.076	32.502	-6.994	36.24	38.76
115.5	CM_c4_s	0.160204	0.118	2.085	0.000625	0.19198	1.575	0.12256	0.000	2675.394	34.387	-7.090	36.24	38.76
120	CM_c4_m	0.160204	0.118	2.085	0.000625	0.19198	1.575	0.12256	0.000	2779.896	35.730	-7.367	36.24	38.76
124.5	CM_c4_e	0.160204	0.118	2.085	0.000625	0.19198	1.575	0.12256	0.000	2788.011	35.834	-7.389	36.24	38.76
124.5	Cl_c4_s	0.160204	0.118	2.085	0.000625	0.19567	1.564	0.12498	0.000	2803.002	35.066	-7.545	36.24	38.76
133	Cl_c4_e	0.160204	0.030	2.085	0.000215	0.10764	1.137	0.08106	0.000	-1786.656	-25.062	16.815	36.24	38.76
133	CP_p4_s	0.160204	0.030	2.085 2.085	0.000215	0.13766	1.090 1.090	0.10368	0.000	-1805.388	-18.972	14.112	35.28 35.28	37.37
138 143	CP_p4_m	0.160204 0.160204	0.030	2.085	0.000215	0.13766 0.13766	1.090	0.10368 0.10368	0.000	-2072.961 -1962.037	-21.784 -20.618	16.203 15.336	35.28	37.37 37.37
143	CP_p4_e CI_c5_s	0.160204	0.030	2.085	0.000215	0.13766	1.137	0.10368	0.000	-1962.037	-20.618	18.312	35.28	37.37
151.5	Cl c5 e	0.160204	0.030	2.085	0.000213	0.10764	1.564	0.12498	0.000	2849.817	35.651	-7.671	36.24	38.76
151.5	CM c5 s	0.160204	0.118	2.085	0.000625	0.19307	1.575	0.12256	0.000	2818.142	36.221	-7.468	36.24	38.76
156	CM c5 m	0.160204	0.118	2.085	0.000625	0.19198	1.575	0.12256	0.000	2815.096	36.182	-7.460	36.24	38.76
160.5	CM c5 e	0.160204	0.118	2.085	0.000625	0.19198	1.575	0.12256	0.000	2503.739	32.180	-6.635	36.24	38.76
160.5	CIR_c5_s	0.160204	0.118	2.085	0.000625	0.19867	1.568	0.12530	0.000	2396.102	29.994	-6.339	36.24	38.76
169	CIR c5 e	0.160204	0.030	2.085	0.000215		1.158	0.08272	0.000	-1354.160	-18.950	12.156	36.24	38.76
169	CPR p5 s	0.160204	0.030	2.085	0.000215		1.131	0.10810	0.000	-1223.379	-12.799	8.704	35.28	35.28
174	CPR_p5_m	0.160204	0.030	2.085	0.000215		1.131	0.10810	0.000	-2167.605	-22.677	15.421	35.28	35.28
179	CPR_p5_e	0.160204	0.030	2.085	0.000215		1.131	0.10810	0.000	-1836.645	-19.215	13.067	35.28	35.28
179	CIR_c6_s	0.160204	0.030	2.085	0.000215		1.158	0.08272	0.000	-1855.909	-25.971	16.660	36.24	38.76
187.5	CIR_c6_e	0.160204	0.118	2.085	0.000625	0.19867	1.568	0.12530	0.000	2397.410	30.011	-6.343	36.24	38.76
187.5	CMR_c6_s	0.160204	0.118	2.085	0.000625	0.18754	1.625	0.11060	0.000	2417.983	35.520	-6.018	37.37	38.76
191.5	CMR_c6_m	0.160204	0.118	2.085	0.000625	0.18754	1.625	0.11060	0.000	2252.812	33.093	-5.607	37.37	38.76
195.5	CMR_c6_e	0.160204	0.118	2.085	0.000625	0.18754	1.625	0.11060	0.000	1922.370	28.239	-4.785	37.37	38.76
195.5	CS_s2_s	0.160204	0.118	2.085	0.000625	0.18295	1.633	0.10689	0.000	1867.542	28.524	-4.673	38.76	38.76
204	CS s2 e	0.160204	0.006	2.085	4.07E-05	0.07081	0.916	0.04698	0.000	0.000	0.000	0.000	38.76	38.76

TELESE S.c.a r.l.

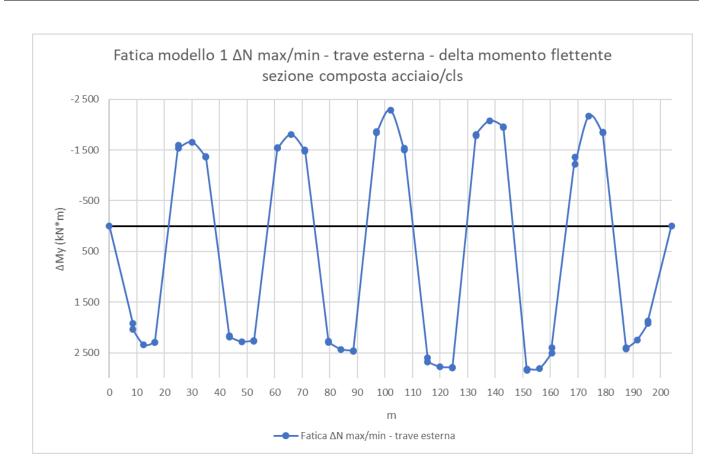
Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.


IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ CL IV.02.0.0.001 B 111 di 129

TELESE s.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

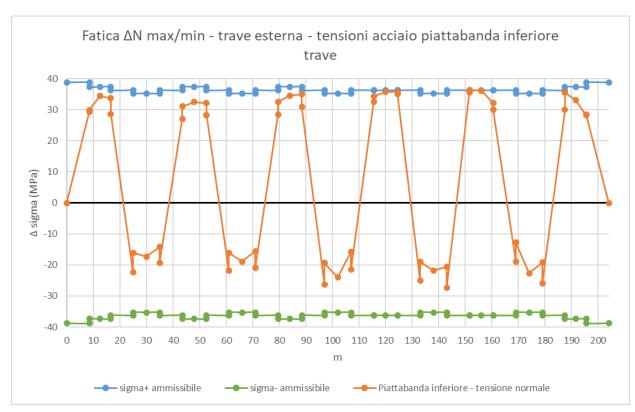
PROGETTAZIONE:

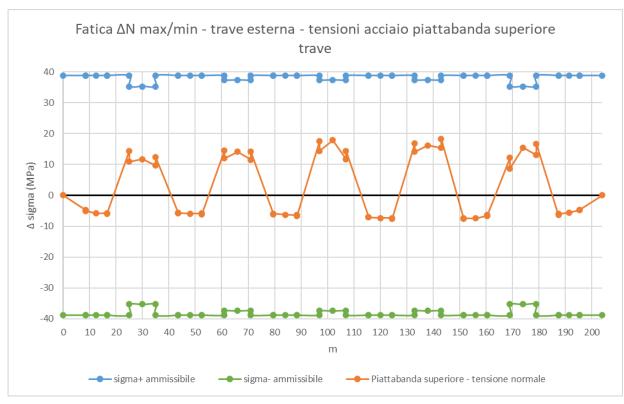
Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009


Relazione di calcolo impalcato


ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 IV.02.0.0.001
 B
 112 di 129

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. SWS Engineering S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA IF2R

LOTTO 2.2.E.ZZ CODIFICA CL

DOCUMENTO IV.02.0.0.001

REV. **FOGLIO** В

113 di 129

15 APPARECCHI D'APPOGGIO

L'impalcato continuo risulta essere poggiato su un sistema di isolamento sismico realizzato mediante isolatori elastomerici a sezione circolare disposti al disotto di ciascuna trave principale in asse appoggi.

Per l'assegnazione delle caratteristiche geometriche e meccaniche dei singoli apparecchi d'appoggio, modellati mediante elementi lineari tipo link, si è fatto riferimento ai cataloghi reperibili in commercio tipo "Freyssinet ISOSISM® HDRB". In particolare, si è scelto:

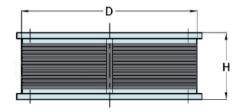
Spalle: Freyssinet HDRB-N 650/161

Pile: Freyssinet HDRB-N 750/168

Si riporta la tabella relativa al tipo di apparecchio utilizzato nelle analisi:

Ø: Diametro

T_.: Spessore totale dell'elastomero


H: Altezza totale dell'isolatore

 Δ_{max} : Spostamento massimo orizzontale

V_{max}: Carico verticale max a spostamento zero

V_____ : Carico verticale max a spostamento max

K.: Rigidezza orizzontale

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

CL

PROGETTO ESECUTIVO

COMMESSA LOTTO IF2R 2.2.E.ZZ

LOTTO CODIFICA

DOCUMENTO
IV.02.0.0.001

REV. **B**

FOGLIO **114 di 129**

Ø	т			HDF	RB - S					HDRB	- N					HDR	B - H		
mm	T,	H	Δ _{max} mm	dbd	V _{max} kN	V seism kN	K _r	H	Δ _{max} mm	dbd	V _{max} kN	V seism kN	K _r kN/mm	H	Δ _{max} mm	dbd	V _{max} kN	V _{seism} kN	K _r
300	45	114	110	65	1300	800	0,63	114	95	55	2700	1800	1,26	114	75	42	3300	2800	1,81
300	70	154	170	97	900	300	0,40	154	150	83	1800	700	0,81	154	120	63	2600	1400	1,16
350	55	130	135	82	2200	1300	0,70	130	115	68	4400	2800	1,40	130	95	55	4600	3800	2,01
350	75	162	185	107	1600	600	0,51	172	160	90	3300	1500	1,03	162	130	70	4300	2600	1,48
400	60	138	150	83	2900	2000	0,84	138	130	70	5800	3500	1,68	138	100	50	5800	4700	2,41
400	90	186	225	125	2200	700	0,56	196	195	105	4500	1800	1,12	196	155	78	5500	3400	1,61
450	72	150	180	103	3700	2200	0,88	160	155	87	6200	4700	1,77	150	125	67	6200	6200	2,54
450	108	204	260	148	2600	800	0,59	214	230	128	5200	1900	1,18	224	185	98	5900	3700	1,69
500	84	168	210	123	5100	2900	0,93	178	180	103	7800	5800	1,87	178	145	80	7800	7600	2,69
500	126	231	290	160	3300	1000	0,62	251	270	147	6700	2100	1,25	251	215	110	7100	4300	1,79
550	90	177	225	125	6300	4000	1,06	187	195	105	9200	6600	2,11	187	155	78	9200	8600	3,04
550	144	258	320	180	4400	1300	0,66	288	310	173	8800	2300	1,32	278	250	133	8800	4800	1,90
600	98	205	245	138	7300	4500	1,15	205	210	115	12700	8200	2,31	220	170	88	12700	10600	3,32
600	147	282	350	200	5300	1600	0,77	302	315	177	10700	3500	1,54	317	255	137	12200	6600	2,21
650	105	206	260	148	9200	6000	1,26	226	225	125	15100	9500	2,53	221	180	95	15100	12200	3,63
650	161	304	380	212	6600	1900	0,82	324	350	192	13200	4000	1,65	329	280	145	14100	7800	2,37
700	119	238	295	172	11700	6700	1,29	248	255	145	17700	11000	2,59	253	205	112	17700	13800	3,72
700	168	315	410	232	8600	2400	0,92	350	365	202	16600	5400	1,83	360	290	152	16600	10100	2,63
750	133	260	330	187	13800	7200	1,33	285	285	157	19900	12100	2,66	285	230	120	19900	15000	3,82
750	168	315	420	238	11600	3500	1,05	350	365	202	19300	7800	2,10	360	290	152	19300	13900	3,02
800	136	255	340	193	14900	8800	1,48	280	295	163	23400	14100	2,96	280	235	123	23400	17800	4,25
800	176	325	440	252	12700	4100	1,14	360	380	212	22700	9300	2,28	355	305	162	22700	16100	3,28

Risulta:

		S1	P1	P2	P3	P4	P5	S2	_
	Fz max	2018	4663	4410	4848	5174	4939	1948	kN
	Fz min	781	2718	2343	2604	2674	3018	960	kN
SLU	H max	85	110	124	131	127	118	93	kN
	ke	1.65	2.1	2.1	2.1	2.1	2.1	1.65	kN/mm
	d max	51.5	52.4	59.0	62.4	60.5	56.2	56.4	mm
	Fz peso proprio	695	2077	1857	2330	2457	2530	914	kN
	Fz max sisma	656	1363	1111	915	1343	1223	649	kN
SLV -	Fz min sisma	-656	-1363	-1111	-915	-1343	-1223	-649	kN
	Fz max	1351	3440	2968	3245	3800	3753	1563	kN
appoggi	Fz min	39	714	746	1415	1114	1307	265	kN
nuovi	H max	375	460	467	512	516	497	386	kN
	ke	1.65	2.1	2.1	2.1	2.1	2.1	1.65	kN/mm
	d max	227.3	219.0	222.4	243.8	245.7	236.7	233.9	mm
	Fz peso proprio	695	2077	1857	2330	2457	2530	914	kN
	Fz max sisma	655	1364	1111	921	1344	1225	650	kN
SLV -	Fz min sisma	-655	-1364	-1111	-921	-1344	-1225	-650	kN
	Fz max	1350	3441	2968	3251	3801	3755	1564	kN
appoggi	Fz min	40	713	746	1409	1113	1305	264	kN
degradati	H max	395	483	489	541	543	517	401	kN
	ke	1.815	2.31	2.31	2.31	2.31	2.31	2.31	kN/mm
	d max	217.6	209.1	211.7	234.2	235.1	223.8	173.6	mm

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

CODIFICA COMMESSA LOTTO DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ CL IV.02.0.0.001 115 di 129 В

Isolatori spalle

Freyssinet HDRB-N 650/161

		FEM -	FEM -		
	Limite	Appoggi	Appoggi		
		nuovi	degrado		
Fz max SLU	13200	2018.0	2018.0	kN	ОК
Fz min SLU	0	781.0	781.0	kN	ОК
Fz max SLV	4000	1563.0	1564	kN	ОК
Fz min SLV	0	39.0	40	kN	ОК
dmax	350	233.9	217.6	mm	ОК

Isolatori pile

Freyssinet HDRB-N 750/168

		FEM -	FEM -			
	Limite	Appoggi	Appoggi			
		nuovi	degrado			
Fz max SLU	19300	5174.0	5174.0	kN	ОК	
Fz min SLU	0	2343.0	2343.0	kN	ОК	
Fz max SLV	7800	3800.0	3801	kN	ОК	
Fz min SLV	0	714.0	713	kN	ОК	
dmax	365	245.7	235.1	mm	ОК	

TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. SWS Engineering S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA **DOCUMENTO** IF2R

2.2.E.ZZ CL IV.02.0.0.001 В

FOGLIO 116 di 129

REV.

16 VERIFICHE GIUNTO DI DILATAZIONE

Le massime escursioni dell'impalcato in corrispondenza delle due spalle, valutate allo SLV, risultano pari a 24 cm.

Tale escursione è il risultato della combinazione vettoriale delle componenti di spostamento ortogonali del sistema di riferimento locale del singolo apparecchio d'appoggio, pertanto si è scelto di utilizzare un giunto stradale a doppia escursione +/-300mm.

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA-SOTECNI S.p.A. SYSTRA S.A. SWS Engineering S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA IF2R

LOTTO 2.2.E.ZZ CODIFICA CL

DOCUMENTO IV.02.0.0.001

REV. В

FOGLIO 117 di 129

17 VERIFICHE SOLETTA DIREZIONE TRASVERSALE

Nell'analisi delle sollecitazioni trasversali della soletta si sono considerati gli inviluppi SLU ed SLE rara già analizzati nei precedenti paragrafi, modificati per includere tra gli accidentali, accanto allo schema di carico 1, anche lo schema di carico 2 applicato alternativamente su tutte le corsie di carico dell'impalcato.

Si è inoltre considerato l'urto del veicolo sul sicurvia, nella posizione che massimizza gli effetti sulla soletta (massima distanza trasversale del sicurvia dalla trave di bordo), in combinazione con il peso proprio e tutti i permanenti agenti sulla soletta. Si è scelto di effettuare una modellazione 3d del fenomeno (carico applicato al nodo di un elemento shell della soletta per mezzo di un elemento beam fittizio di altezza pari a quella del sicurvia) in modo da cogliere gli effetti di redistribuzione delle sollecitazioni all'interno della soletta stessa.

A favore di sicurezza i carichi mobili concentrati (assi) risultano applicati direttamente nel piano medio della soletta, senza diffusione.

Le sollecitazioni di verifica risultano le seguenti:

N(Min) = -50.0N*mSLU urto veicolo:

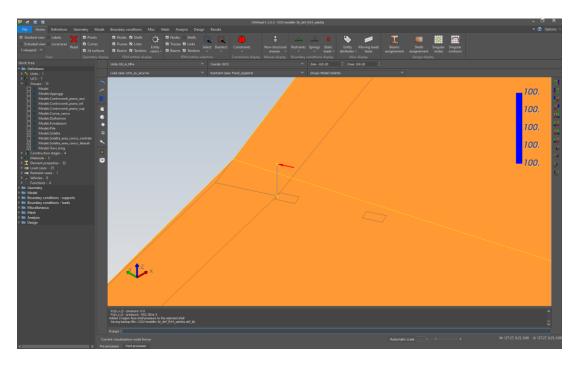
Mmin=-110.0kN*m

Vmax=144kN*m

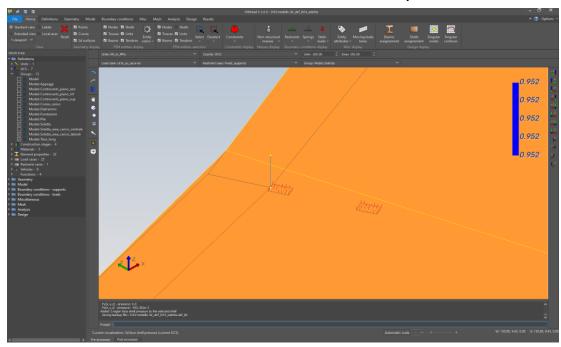
(azioni integrate su una larghezza di 1.50m)

SLU schema 2:

Mmax = 70kN*m


Mmin=-105kN*m

Vmax=220kN*m

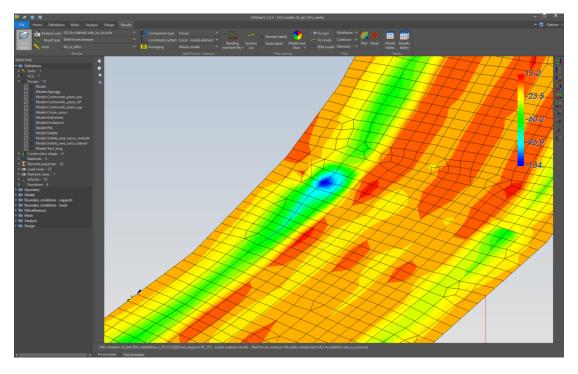

SLE rara schema 2: Mmax = 50kN*m

Mmin=-75kN*m

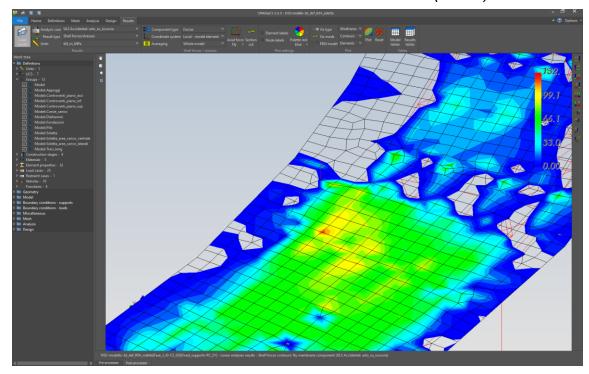
APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di calcolo impalcato IF2R 2.2.E.ZZ IV.02.0.0.001 118 di 129 CL В

Soletta - Carico concentrato 100kN urto veicolo a 1m dal piano stradale

Soletta – Schema carico 2 associato a urto veicolo (MPa)


APPALTATORE: TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata PROGETTAZIONE: Mandataria: Mandante: SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA

Relazione di calcolo impalcato


ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ IV.02.0.0.001 119 di 129 CL В

Soletta - SLU urto veicolo - momenti flettenti trasversali (kN*m/m)

Soletta - SLU urto veicolo – sforzi normali (kN/m positivi di trazione)

APPALTATORE: TELESE S.c.a r.l.

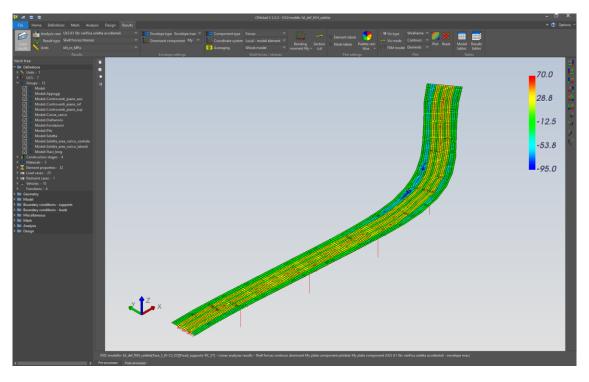
Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

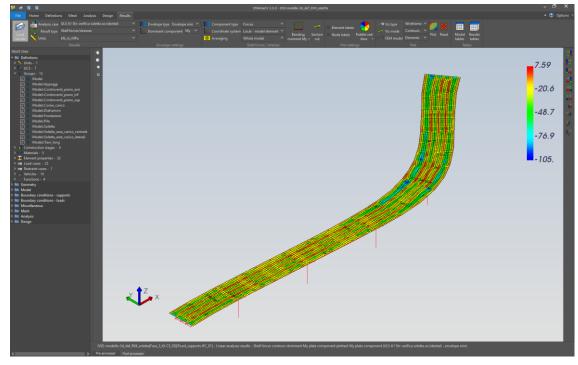
Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009


Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

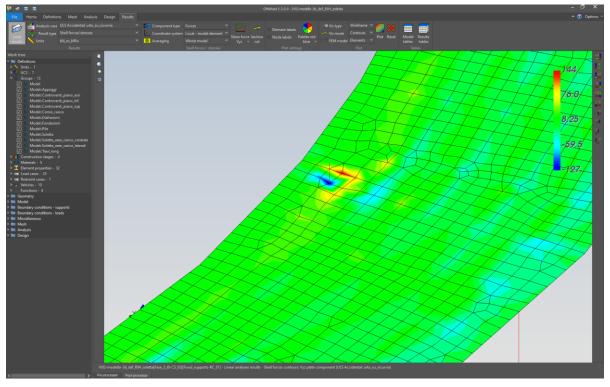

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

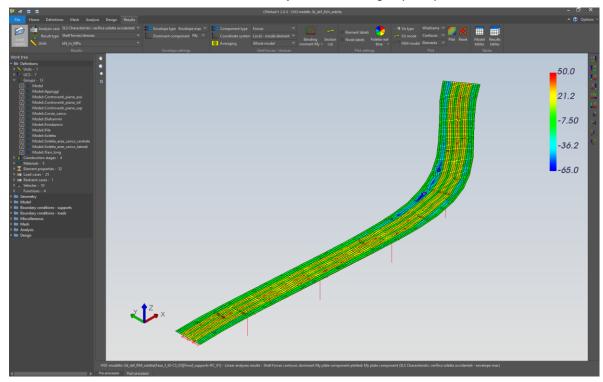
IF2R 2.2.E.ZZ CL IV.02.0.0.001 B 120 di 129

Soletta - SLU envelope Mx max - momenti flettenti trasversali positivi (kN*m/m)

Soletta - SLU envelope Mx min – momenti flettenti trasversali negativi (kN*m/m)


APPALTATORE: TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata PROGETTAZIONE: Mandataria: Mandante: SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA

Relazione di calcolo impalcato


ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

LOTTO CODIFICA **DOCUMENTO** REV. FOGLIO IF2R 2.2.E.ZZ IV.02.0.0.001 121 di 129 CL В

Soletta - SLU envelope Vxz max - taglio (kN/m)

Soletta – SLE rara envelope Mx max – momenti flettenti trasversali positivi (kN*m/m)

APPALTATORE: TELESE S.c.a r.l.

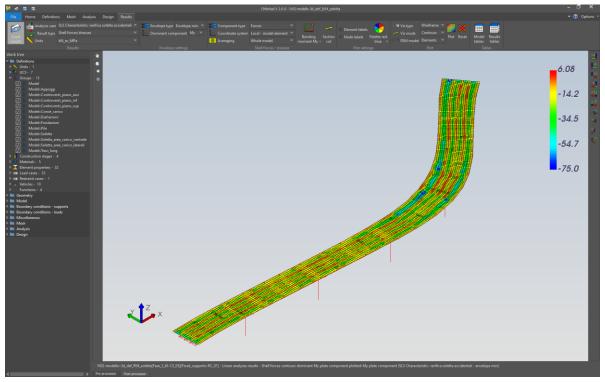
Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

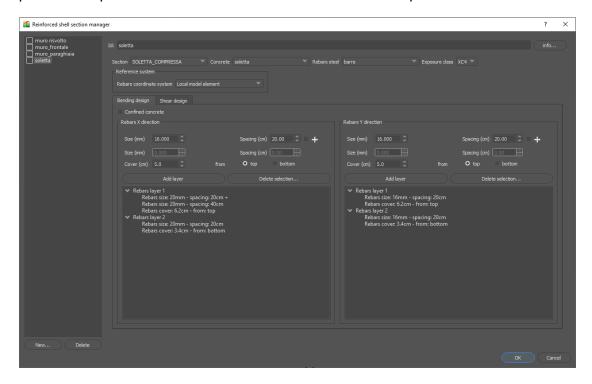
IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

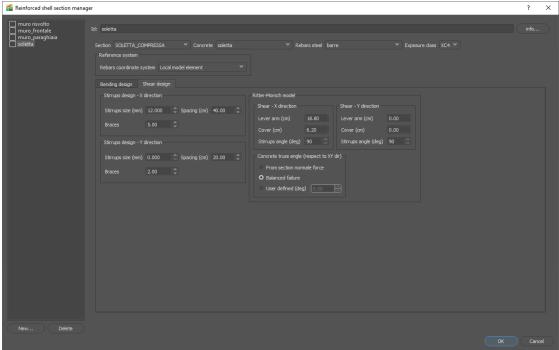

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

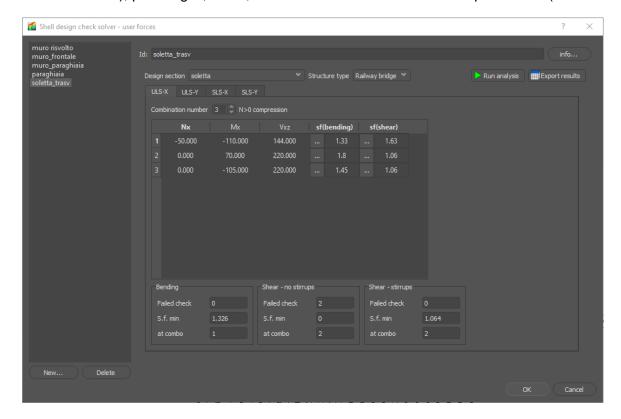
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

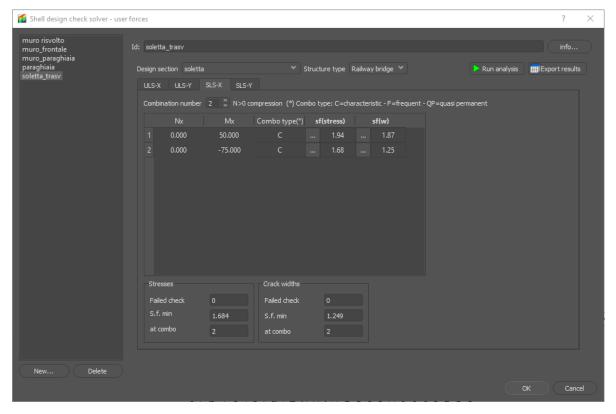

 IF2R
 2.2.E.ZZ
 CL
 IV.02.0.0.001
 B
 122 di 129

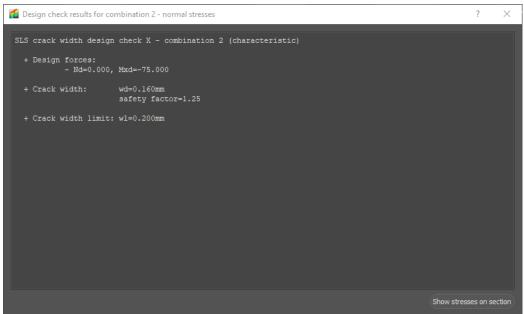


Soletta – SLE rara envelope Mx min – momenti flettenti trasversali positivi (kN*m/m)

APPALTATORE: TELESE s.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata				O TRATT	A CANCEL	LO-BENEVEN O TELESINO -		.ANO
PROGETTAZIO	NE:		2° SUBLOT	TO TELE	SE – SAN L	ORENZO		
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A. S	YSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	IVO			
IV02 - CAVALC	AFERROVIA S.S. 106 al km 37+0	09	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di ca	lcolo impalcato		IF2R	2.2.E.ZZ	CL	IV.02.0.0.001	В	123 di 129

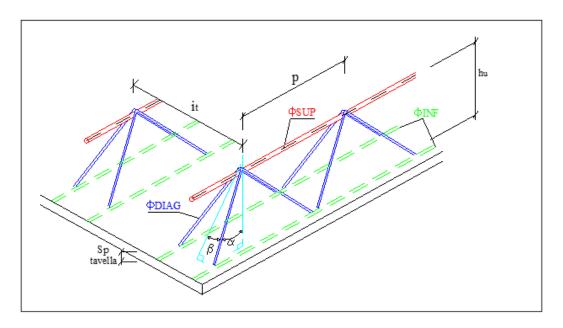

La soletta corrente risulta armata a flessione con 1fi20/20 sia superiore che inferiore; in corrispondenza degli sbalzi dei marciapiedi si prevede un rinforzo fi20/40 superiore; per il taglio si prevedono spilli f12/20x40. La sezione di verifica ha altezza pari a 25cm.

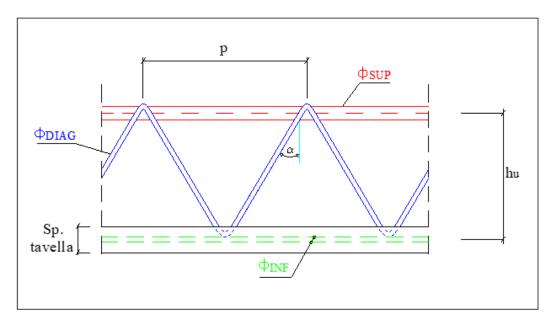

APPALTATORE: TELESE s.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata			ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO						
PROGETTAZIO	NE:		2° SUBLOT	TO TELE	SE – SAN L	ORENZO			
Mandataria:	Mandante:		BBBBBTT		-IV (O				
SYSTRA S.A.	SWS Engineering S.p.A. SYSTR	A-SOTECNI S.p.A.	PROGETTO	ESECUI	IVO				
IV02 - CAVALC	AFERROVIA S.S. 106 al km 37+009		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di ca	colo impalcato		IF2R	2.2.E.ZZ	CL	IV.02.0.0.001	В	124 di 129	


Le verifiche SLU risultano soddisfatte con un coeff. di sicurezza minimo di 1.80 per la flessione a momento positivo (Mu=126.28kN*m/m) e di 1.33 per la flessione a momento negativo (Mu=-145.86kN*m/m); per il taglio, infine, si ha un coff. di sicurezza minimo pari a 1.06 (Vu=233.2kN/m).

APPALTATORE: TELESE s.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata			_	O TRATT	A CANCEL	LO-BENEVEN O TELESINO -	_	.ANO
PROGETTAZION	NE:		2° SUBLOT	TO TELE	SE – SAN L	ORENZO		
Mandataria:	Mandante:				-n. / o			
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU	IVO			
IV02 - CAVALCA	AFERROVIA S.S. 106 al km 3	7+009	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di cal	colo impalcato		IF2R	2.2.E.ZZ	CL	IV.02.0.0.001	В	125 di 129

Per le verifiche SLE, si ha un coeff. di sicurezza minimo di 1.68 per la verifica tensionale e un'apertura massima delle fessure pari a 0.160mm, contro il limite previsto di 0.20mm.





APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SYSTRA-SOTECNI S.p.A. SWS Engineering S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA **DOCUMENTO** REV. **FOGLIO** Relazione di calcolo impalcato IF2R 2.2.E.ZZ IV.02.0.0.001 126 di 129 CL В

18 PREDALLES - VERIFICHE IN FASE DI GETTO

Nel presente paragrafo si riportano le verifiche delle predalles durante la fase di getto. Il paragrafo è articolato in due parti: la prima relativa alla predalla dei campi centrali, con schema statico di semplice appoggio tra due travi successive; la seconda relativa alla predalla di bordo, avente uno schema statico di mensola con sbalzo di estremità.

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 CODIFICA COMMESSA LOTTO DOCUMENTO REV. FOGLIO Relazione di calcolo impalcato 127 di 129 IF2R 2.2.E.ZZ IV.02.0.0.001 CL В

18.1.1 Predalla esterna con sbalzo

2. LASTRE PREDALLE CON SBALZI DI ESTREMITA'

D	ATI		
GEOMETRIA			
Luce di calcolo	L =	2.00	m
Interasse tralicci	$i_t =$	0.40	m
Passo tra i nodi delle briglie	p =	0.20	m
Altezza utile	$h_u =$	0.21	m
Angolo α	α=	26	
Angolo β	$\beta =$	15	
Armatura corrente superiore	Φ sup =	16	mm
Armatura corrente inferiore	ϕ inf =	12	mm
Armatura diagonale	Фdiag =	10	mm
Spessore Tavella	Sp.Tavella =	0.06	m
Spessore Soletta	Sp.Soletta =	0.25	m
SOVRACCARICHI PERMANENTI			
Sovraccarico aggiuntivo	$PP_{SA} =$	0.05	tonn / m

VERIFICHE		
1. Incastro - [Verifica del	Corrente s	uperiore]
Momento Flettente all'Incastro $M_{INC.} = PP * L^2/2 =$	2.60	tonn * m
$N = M_{INC.} / h_u =$	12.68	tonn
Lunghezza libera d'inflessione lo = p =	20.00	cm
Armatura superiore $Aam.sup.= \pi * (\Phi sup/2)^2 =$	2.01	cm ²
Momento d'Inerzia $J = \pi/64 * \oplus \sup^4 =$	0.32	cm ⁴
Raggio giratore d'Inerzia $i = \sqrt{(J/A)} =$	0.40	cm
Snellezza corrente superiore \(\lambda \sup.= \lambda \in i = \)	50.00	
ω sup. [tabellato in funz.di $λ$ sup.] =	1	
$0 \inf = N * \omega / A =$	2523.19	kg/cm2
2. Incastro - [Verifica del	la Diagonal	_
	l <mark>a Diagonal</mark> 1.65	_
•		e]
Taglio all'Incastro $V_{INC.} = PP * L =$	1.65	e] tonn
Taglio all'Incastro $V_{INC.} = PP * L = N = V_{INC.}/2 * 1/\cos\alpha * 1/\cos\beta =$	1.65 0.95	e] tonn tonn
Taglio all'Incastro $V_{INC.} = PP * L = \\ N = V_{INC.}/2 * 1/\cos\alpha * 1/\cos\beta = \\ Lunghezza libera d'inflessione lo = (hu-st/2)/\cos\alpha * \cos\beta \\$	1.65 0.95 20.16	tonn tonn cm
Taglio all'Incastro $V_{INC.} = PP * L = \\ N = V_{INC.}/2 * 1/\cos\alpha * 1/\cos\beta = \\ Lunghezza libera d'inflessione lo = (hu-st/2)/\cos\alpha * \cos\beta \\ Armatura diagonale Aam.diag. = \pi * (\Phi \text{diag}/2)^2 = $	1.65 0.95 20.16 0.79	tonn tonn cm cm²
Taglio all'Incastro $V_{INC.} = PP * L = \\ N = V_{INC.}/2 * 1/\cos\alpha * 1/\cos\beta = \\ Lunghezza libera d'inflessione lo = (hu-st/2)/\cos\alpha * \cos\beta \\ Armatura diagonale Aarm.diag. = \pi * (\varphi diag/2)^2 = \\ Momento d'Inerzia \\ J = \pi/64 * \varphi diag^4 = \\ Armatura diagonale Armatura d$	1.65 0.95 20.16 0.79 0.05	tonn tonn cm cm² cm ⁴
Taglio all'Incastro $V_{INC.} = PP * L = \\ N = V_{INC.}/2 * 1/\cos\alpha * 1/\cos\beta = \\ \text{Lunghezza libera d'inflessione} \text{lo} = (\text{hu-st/2})/\cos\alpha * \cos\beta \\ \text{Armatura diagonale} \qquad \text{Aam.diag.} = \pi * (\Phi \text{diag/2})^2 = \\ \text{Momento d'Inerzia} \qquad \qquad J = \pi/64 * \Phi \text{diag}^4 = \\ \text{Raggio giratore d'Inerzia} \qquad \qquad i = \sqrt{J/A}) = \\ \end{cases}$	1.65 0.95 20.16 0.79 0.05 0.25	tonn tonn cm cm² cm ⁴

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di calcolo impalcato IF2R 2.2.E.ZZ IV.02.0.0.001 128 di 129 CL В

18.1.2 Predalla interna

Verifica della predalla centrale con schema di calcolo in semplice appoggio.

1. LASTRE PREDALLE SEMPLICEMENTE APPOGGIATE ALLE ESTREMITA'

1	DATI		
GEOMETRIA			
Luce di calcolo	L =	2.80	m
Interasse tralicci	$i_t =$	0.40	m
Passo tra i nodi delle briglie	p =	0.20	m
Altezza utile	$h_u =$	0.21	m
Angolo α	α=	26	
Angolo β	β=	15	
Armatura corrente superiore	Φ sup =	12	mm
Armatura corrente inferiore	ϕ inf =	10	mm
Armatura diagonale	Φ diag =	10	mm
Spessore Tavella	Sp.Tavella =	0.06	m
Spessore Soletta	Sp.Soletta =	0.25	m
SOVRACCARICHI PERMANENTI			
Sovraccarico aggiuntivo	$PP_{SA} =$	0.05	tonn / m

VERIFICHE			
1. Mezzeria - [Verifica del Corrente Superiore]			
Momento Flettente in Mezzeria	$M_{MEZZ} = PP * L^2/8 =$	0.81	tonn * m
$N = M_{MEZZ} / h_u =$		3.94	tonn
Lunghezza libera d'inflessione	lo = p =	20.00	cm
Armatura superiore	Aam.sup.= $\pi * (\phi \sup/2)^2 =$	1.13	cm ²
Momento d'Inerzia	$J = \pi/64 * \Phi sup^4 =$	0.10	cm ⁴
Raggio giratore d'Inerzia	$i = \sqrt{(J/A)} =$	0.30	cm
Snellezza corrente superiore	$\lambda \sup = lo/i =$	66.67	-
ω sup. [tabellato in funz.di λ sup.] =		1.16	-
$\circ \sup = \mathbf{N} \bullet \omega / \mathbf{A} =$		1618.05	kg/cm ²
2. Appoggio - [Verifica della Diagonale]			
Taglio all'Appoggio	$V_{APP} = PP * L/2 =$	1.16	tonn
$N = V_{APP}/2 * 1/\cos\alpha * 1/\cos\beta =$	=	0.67	tonn
Lunghezza libera d'inflessione	$lo = (hu-st/2)/cos\alpha*cos\beta$	20.16	cm
Armatura diagonale	Aarm.diag. = $\pi * (\Phi \text{diag}/2)^2 =$	0.79	cm ²
Momento d'Inerzia	$J = \pi/64 * \Phi diag^4 =$	0.05	cm ⁴
Raggio giratore d'Inerzia	$i = \sqrt{(J/A)} =$	0.25	cm
Snellezza diagonale	λ diag.= $10/i$ =	80.63	-
ω diag. [tabellato in funz.di λ diag.] =	=	1.71	-
$od = N*\omega/A =$		579.31	kg/cm ²

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IV02 - CAVALCAFERROVIA S.S. 106 al km 37+009

Relazione di calcolo impalcato

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

CODIFICA

CL

PROGETTO ESECUTIVO

COMMESSA IF2R

LOTTO **2.2.E.ZZ**

DOCUMENTO
IV.02.0.0.001

REV.

FOGLIO **129 di 129**

19 INCIDENZE

19.1 Soletta

Si prevede come armatura corrente 1fi20/20 superiori e inferiori in direzione trasversale; 1fi26/10 superiori e inferiori come armatura longitudinale in zona tesa (circa 12m a cavallo delle pile); 1fi16/20 superiori e inferiori come armatura longitudinale in zona compressa; per il taglio è invece previsto 1fi12/20x40; risulta dunque

h soletta=0.25m

 γ barre =7850kg/m2

Abarra_26=5.31cm2 n°barra_26=20 l_barre_26=12*4=48m \rightarrow 5.31*20*48*(7850/100^2) /0.25=16006.46kg/m2

Abarra_16=2.01cm2 n°barra_16=10 l_barre_16=170-48m=122m → 2.01*10*122*(7850/100^2) /0.25=7699.91kg/m2

Abarre_26_16=(16006.46+7699.91)/170=135.45 kg/m3

Aspilli_12=1.13cm2 | Ispilli_12=0.15+0.25*2=0.65m →

0.65/ (0.2*0.4)*1.13*(7850/100^2) /0.25=28.83kg/m3

Applicando alle incidenze sopra ottenute un incremento del 25% per tenere conto di sovrapposizioni e risvolti, si trova infine

 $I_soletta=1.25*(139.45+28.83) = 210.35kg/m3 \approx 210 kg/m3.$